
CLEARCASE PRODUCT FAMILY
DOCUMENTATION SUPPLEMENT

R e l e a s e 4 . 2

Windows/UNIX Edition

800-024446-000 (patch)

/vobs/doc/ccase/4.2_supplement/cpf_supplementTTL.fm — June 20, 2001 2:45 pm

ClearCase Product Family Documentation Supplement
Document Number 800-024446-000 (patch) June 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ... xiii

About This Manual .. xiii

ClearCase Documentation Roadmap.. xiv

ClearCase LT Documentation Roadmap ..xv

Typographical Conventions ... xvi

Online Documentation ... xvii

Technical Support .. xviii

1. Introduction ...1

1.1 UCM Information...1

1.2 Administrative Information ...2

1.3 Build Information...2

1.4 New Command to Import File-System Objects...2

1.5 Snapshot View Creation Option for mkview Command.............................2

2. Using Triggers to Enforce Development Policies ...3

2.1 Overview of Triggers...3

Preoperation and Postoperation Triggers ..4

Scope of Triggers ..5

Using Attributes with Triggers ..5

When to Use ClearQuest Scripts Instead of UCM Triggers.........................5

2.2 Sharing Triggers Between UNIX and Windows..6

Using Different Pathnames or Different Scripts ..6

Using the Same Script..7

Tips ...7

2.3 Enforce Serial Deliver Operations ...7

Setup Script ...8

Preoperation Trigger Script ..9

Postoperation Trigger Script...10

2.4 Send Mail to Developers on Deliver Operations...11
Contents iii

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

Setup Script..11

Postoperation Trigger Script ...12

2.5 Do Not Allow Activities to Be Created on the Integration Stream14

2.6 Implementing a Role-Based Access Control System...................................15

Preoperation Trigger Script...15

2.7 Additional Uses for UCM Triggers..17

3. Setting Up a ClearQuest User Database ..19

3.1 Using the Predefined UCM-Enabled Schemas...19

3.2 Enabling a Schema to Work with UCM ..20

Requirements for Enabling Custom Record Types23

Setting State Types ...24

State Transition Default Action Requirements for Record Types24

3.3 Upgrading Your Schema to the Latest UCM Package26

3.4 Customizing ClearQuest Project Policies..27

3.5 Associating Child Activity Records with a Parent Activity Record27

Using Parent/Child Controls ...28

3.6 Creating Users...28

3.7 Setting the Environment on UNIX...28

3.8 How MultiSite Affects the UCM-ClearQuest Integration29

Replica and Naming Requirements ...29

Enabling a Project to Use the UCM-ClearQuest Integration......................30

Transferring Mastership of the PVOB’s Root Folder30

Transferring Mastership of the Project...30

Linking Activities to ClearQuest Records ...30

Managing the Project ...31

Changing Project Policy Settings ..31

Controlling Deliver Operations...31

Changing the Project Name ...32

Working on Activities ..32

4. Cross-Platform File Access ...33

4.1 ClearCase File Server ...35
iv ClearCase Product Family Documentation Supplement

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

Enabling and Disabling CCFS on Windows NT..36

4.2 NFS Client Products...36

Disabling Automatic Case Conversion...37

Microsoft SFU and Intergraph DiskAccess ...37

Hummingbird NFS Maestro ...37

Setting an NFS Client’s Default Protection ..37

Microsoft SFU or Intergraph DiskAccess ..37

Hummingbird NFS Maestro ...38

Setting the Correct Logon Name ...38

Microsoft SFU or Intergraph DiskAccess ..38

Hummingbird NFS Maestro ...39

Hummingbird NFS Maestro: Disabling DOS Sharing................................39

Automounting and NFS Client Software ...39

Microsoft SFU or Intergraph DiskAccess: Setting Up the ClearCase Server

Process User and ClearCase Group...40

Setting Up the UNIX Account...41

Preparing the Windows NT Client...41

Alternative Setup: Administrative Option..42

Microsoft SFU: Configuring the Default LAN...43

4.3 SMB Server Products ...43

Installing and Configuring Samba 2.2...43

Creating a Samba Username Map for clearcase_albd44

Using the Samba Web Administration Tool (SWAT)..........................45

Configuring Samba Globals for ClearCase ...45

Creating Shares for VOB and View Storage..46

Starting Samba Services ...47

Configuring ClearCase to Support Samba ..47

Testing the Samba Configuration on Non-ClearCase Files47

Testing the Samba Configuration with ClearCase...............................48

Syntax TotalNET Advanced Server...48

Installing TAS 6.0 ..49

Enabling the Multiuser Kernel Driver on AIX......................................49

Accessing the Syntax Administration Framework49
Contents v

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

Performing Initial Setup of TAS..50

General TAS Settings ..50

Enabling and Configuring the CIFS Realm ...51

Configuring TAS to Support ClearCase...51

Creating a TAS Username Map for clearcase_albd..............................51

Creating a Volume ..52

Configuring the File Service ..53

Start Services and Accept Service Connections55

Configuring ClearCase to Support TAS...55

Testing the TAS Configuration on Non-ClearCase Files.....................56

Testing the TAS Configuration with ClearCase56

chactivity ... 59

chbl ... 63

chfolder .. 67

chproject ... 71

chstream .. 77

cleardiffbl .. 79

clearfsimport .. 81

clearjoinproj ... 85

clearmake .. 87

clearprojexp .. 111

deliver .. 113

diffbl .. 121

lsactivity .. 125

lsbl .. 129

lscomp ... 133

lsfolder ... 137

lsproject ... 141

lsstream ... 145

mkactivity .. 149

mkbl .. 153

mkcomp ... 159

mkfolder .. 163
vi ClearCase Product Family Documentation Supplement

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

mkproject .. 167

mkstream .. 171

mktrigger .. 175

mktrtype .. 181

mkview .. 207

omake .. 221

rebase .. 233

rmactivity .. 241

rmbl .. 245

rmcomp ... 247

rmfolder ... 251

rmproject .. 255

rmstream ... 259

rmtrigger ... 263

setactivity ... 267

setplevel .. 271
Contents vii

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

viii ClearCase Product Family Documentation Supplement

/vobs/doc/ccase/4.2_supplement/cpf_supplementTOC.fm — June 20, 2001 2:51 pm

Figures

Figure 1 Preoperation and Postoperation Triggers ..4

Figure 2 Associating a User Database with a UCM-Enabled Schema.........................20

Figure 3 Adding the UCMPolicyScripts Package to a Schema.....................................21

Figure 4 Assigning State Types to a Record Type’s States..22

Figure 5 Navigating to Record Type’s State Transition Matrix....................................22

Figure 6 State Transitions of UCM-enabled BaseCMActivity Record Type...............25

Figure 7 Data Flow in a clearmake Build...90

Figure 8 Data Flow in an omake Build...223
Figures ix

/vobs/doc/ccase/4.2_supplement/cpf_supplementLOF.fm — June 20, 2001 2:37 pm

x ClearCase Product Family Documentation Supplement

/vobs/doc/ccase/4.2_supplement/cpf_supplementLOF.fm — June 20, 2001 2:37 pm

Tables

Table 1 State Types in UCM-Enabled Schema ..24

Table 2 Environment Variables Required for Integration ...29

Table 3 Protocols for ClearCase Client Access to VOB Data.......................................34

Table 4 Protocols for ClearCase Client Access to View Data......................................34

Table 5 Protocols for view_server Access to VOB Data...35

Table 6 Samba Global Settings for ClearCase..45

Table 7 Element Trigger Definition Operation Keywords ..193

Table 8 UCM Object Trigger Definition Operation Keywords.................................195
Tables xi

/vobs/doc/ccase/4.2_supplement/cpf_supplementLOT.fm — June 20, 2001 2:37 pm

xii ClearCase Product Family Documentation Supplement

/vobs/doc/ccase/4.2_supplement/cpf_supplementLOT.fm — June 20, 2001 2:37 pm

Preface

This manual contains documentation about new features in ClearCase and ClearCase LT for

Release 4.2. Some of the information supersedes the chapters and reference pages in existing

ClearCase and ClearCase LT manuals.

About This Manual

This manual is intended for all ClearCase, ClearCase LT, and MultiSite users.
Preface xiii

ClearCase Documentation Roadmap

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase
ClearCase Product Family Installation Notes

ClearCase MultiSite Manual
ClearCase Platform-Specific Guide

Project
Management

Managing Software Projects with ClearCase

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes

ClearCase Tutorials

Development

Developing Software with ClearCase

Build
Management

ClearCase OMAKE Manual (Windows)
Building Software with ClearCase
xiv ClearCase Product Family Documentation Supplement

ClearCase LT Documentation Roadmap

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase LT

Project
Management

Managing Software Projects
with ClearCase

Orientation

Introducing Rational ClearCase LT
ClearCase LT Release Notes

ClearCase Tutorials

Development

See online help.
Preface xv

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
xvi ClearCase Product Family Documentation Supplement

Online Documentation

The ClearCase Product Family (CPF) graphical interfaces include an online help system.

There are three ways to access the online help system: the Help menu, the Help button, or the F1

key. Help>Contents provides access to the complete set of online documentation. For help on a

particular context, press F1. Use the Help button on various dialog boxes to get information

specific to that dialog box.

CPF products also provide access to full reference pages (detailed descriptions of commands,

utilities, and data structures) using the man command. Without any argument man displays the

overview reference page for the command line interface. For information about using a

particular command, specify the command name as an argument.

Examples:

cleartool man (display the cleartool overview page)

multitool man mkreplica (display the multitool mkreplica reference page)

attache-workspace> man checkout (display the Attache checkout reference page)

CPF products provide access to syntax for individual commands. The –help command option

displays individual subcommand syntax. For example:

cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Without any argument, cleartool help displays the syntax for all cleartool commands.

On UNIX, the apropos command displays command summary information and entries from the

ClearCase glossary. See the apropos reference page for more information.

Additionally, the online tutorials provide important information on setting up a user’s

environment, along with a step-by-step tour through each product’s most important features.
Preface xvii

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xviii ClearCase Product Family Documentation Supplement

11 Introduction

This chapter describes the material included in this manual. The chapters and reference pages in

this manual supersede the information in the Release 4.1 manuals.

1.1 UCM Information

New in this release is UCM trigger support. Chapter 2, Using Triggers to Enforce Development
Policies (from the Managing Software Projects with ClearCase manual) and the mktrigger, mktrtype,

and rmtrigger reference pages contain information about UCM triggers.

Chapter 3, Setting Up a ClearQuest User Database, contains new information about using MultiSite

to replicate the PVOB or ClearQuest user database involved in the UCM-ClearQuest integration.

The Restrictions sections of all UCM reference pages have been updated with new information on

locks and required identities. The operations listed below require a privileged identity (for all

other UCM operations, no special identity is required):

➤ chproject
➤ rmactivity
➤ rmbl
➤ rmcomp
➤ rmfolder
➤ rmproject
➤ rmstream

For specific information, see the UCM reference pages.
1 - Introduction 1

1.2 Administrative Information

Chapter 4, Cross-Platform File Access, contains new information about configuring TAS 6.0 and

Samba.

1.3 Build Information

The ClearCase build tools, clearmake and omake, have a new option to check out derived objects

automatically before using them. The clearmake and omake reference pages contain information

about this new option. These reference pages do not apply to ClearCase LT.

1.4 New Command to Import File-System Objects

The new clearfsimport command reads file-system source objects and places them in the target

VOB. This command can be run in UCM views. The clearfsimport reference page describes this

command.

1.5 Snapshot View Creation Option for mkview Command

In ClearCase Release 4.1, support for the mkview –vws option for snapshot view creation was

withdrawn; Release 4.2 restores this functionality.
2 ClearCase Product Family Documentation Supplement

22 Using Triggers to Enforce
Development Policies

UCM provides a group of development policies that you can easily set in a project by using the

GUI or CLI. In addition, you can use triggers on certain UCM operations to enforce customized

development policies for your project team. This chapter describes how to create triggers and

shows how to use triggers to implement various development policies in UCM projects. For

additional information, see the cleartool mktrigger and mktrtype reference pages.

2.1 Overview of Triggers

A trigger is a monitor that causes one or more procedures or actions to be executed whenever a

certain ClearCase operation is performed. Typically, the trigger executes a Perl, batch, or shell

script. You can use triggers to restrict operations to specific users and to specify the conditions

under which they can perform those operations. You can use triggers with the following UCM

operations:

➤ deliver
➤ mkactivity
➤ mkbl
➤ mkstream
➤ rebase
➤ setactivity
2 - Using Triggers to Enforce Development Policies 3

Preoperation and Postoperation Triggers

Triggers fall into one of two categories. Preoperation triggers fire, or execute their corresponding

procedures, before an operation takes place. Postoperation triggers fire after an operation occurs.

Use preoperation triggers to prevent users from performing operations unless certain conditions

apply. Use postoperation triggers to perform actions after an operation completes. For example,

you may want to place a postoperation trigger on the deliver operation to notify team members

whenever a developer delivers work to the project’s integration stream. Figure 1 illustrates the

timing of preoperation and postoperation triggers.

Figure 1 Preoperation and Postoperation Triggers

preoperation trigger

user enters a
ClearCase
command

trigger defined
on this operation?

no

trigger does not fire,
ClearCase

command proceeds
trigger fires:
procedure

executes

check exit status of
trigger procedure

ClearCase
 operation
disallowed

ClearCase
operation
proceeds

postoperation trigger

no

yes

failure

success

user enters a
ClearCase
command

ClearCase
operation
completes

trigger definition
matches current

context?

trigger fires:
procedure

executes

 trigger does
not fire
4 ClearCase Product Family Documentation Supplement

Scope of Triggers

A trigger type defines a trigger for use within a VOB or PVOB. When you create a trigger type,

with the cleartool mktrtype command, you specify the scope to be one of the following:

➤ An element trigger type applies to one or more elements. You attach an instance of the trigger

type to one or more elements by using the cleartool mktrigger command.

➤ An all-element trigger type applies to all elements in a VOB.

➤ A type trigger type applies to type objects, such as attributes types, in a VOB.

➤ A UCM trigger type applies to a UCM object, such as a stream or a project, in a PVOB.

➤ An all-UCM-object trigger type applies to all UCM objects in a PVOB.

Using Attributes with Triggers

As you design triggers to enforce development policies, you may find it useful to use attributes.

An attribute is a name/value pair. An attribute type defines an attribute. You can apply an

attribute to an object, such as a stream or an activity, or to a version of an element. In your trigger

scripts, you can test the value of an attribute to determine whether to fire the trigger. For

example, you could define an attribute type called TESTED and attach a TESTED attribute to

elements to indicate whether they had been tested. Acceptable values would be Yes and No.

When to Use ClearQuest Scripts Instead of UCM Triggers

This chapter presents several use cases for UCM triggers. If your UCM project is enabled to work

with ClearQuest, you can set the following policies, which are described in Managing Software
Projects with ClearCase:

➤ Check Before Work On

➤ Check Before ClearCase Delivery

➤ Do ClearQuest Action After Delivery

➤ Check Mastership Before Delivery

Each of these policies has a ClearQuest global hook script associated with it, which you can edit

or replace in ClearQuest Designer to customize the policy for your environment. You can also
2 - Using Triggers to Enforce Development Policies 5

write your own ClearQuest hooks to enforce development policies. In general, if the policy you

want to enforce involves a ClearQuest action, use one of the three ClearQuest policies listed

above or use ClearQuest hooks. If the policy you want to enforce involves a ClearCase action,

use UCM triggers.

2.2 Sharing Triggers Between UNIX and Windows

You can define triggers that fire correctly on both UNIX and Windows computers. The following

sections describe two techniques. With one, you use different pathnames or different scripts;

with the other, you use the same script for both platforms.

Using Different Pathnames or Different Scripts

To define a trigger that fires on UNIX, Windows, or both, and that uses different pathnames to

point to the trigger scripts, use the –execunix and –execwin options with the mktrtype
command. These options behave the same as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). On the other platform, they do nothing. This technique allows

a single trigger type to use different paths for the same script or to use completely different

scripts on UNIX and Windows computers. For example:

cleartool mktrtype –element –all –nc –preop checkin
–execunix /public/scripts/precheckin.sh –execwin \\neon\scripts\precheckin.bat
pre_ci_trig

NOTE: The command line example is broken across lines to make it easier to read. You must enter

it all on one line.

On UNIX, only the script precheckin.sh runs. On Windows, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers that specify only

–execunix always fail on Windows. Likewise, triggers that specify only –execwin fail on UNIX.
6 ClearCase Product Family Documentation Supplement

Using the Same Script

To use the same trigger script on Windows and UNIX platforms, you must use a batch command

interpreter that runs on both operating systems. For this purpose, ClearCase includes the ccperl
program, a version of Perl that you can use on Windows and UNIX.

The following mktrtype command creates sample trigger type pre_ci_trig and names

precheckin.pl as the executable trigger script.

On UNIX:

cleartool mktrtype –element –all –nc –preop checkin \
–execunix 'Perl /public/scripts/precheckin.pl' \
–execwin 'ccperl \\neon\scripts\precheckin.pl' \
pre_ci_trig

On Windows:

cleartool mktrtype –element –all –nc –preop checkin ^
–execunix "Perl /public/scripts/precheckin.pl" ^
–execwin "ccperl \\neon\scripts\precheckin.pl" ^
pre_ci_trig

Tips

➤ To tailor script execution for each operating system, use environment variables in Perl

scripts.

➤ To collect or display information interactively, you can use the clearprompt command.

2.3 Enforce Serial Deliver Operations

Because UCM allows multiple developers to deliver work to the same integration stream

concurrently, conflicts can occur if two or more developers attempt to deliver changes to the

same element. If one developer’s deliver operation has an element checked out, the second

developer cannot deliver changes to that element until the first deliver operation is completed or

canceled. The second deliver operation attempts to check out all elements other than the

checked-out one, but it does not proceed to the merge phase of the operation. The second
2 - Using Triggers to Enforce Development Policies 7

developer must either wait for the first deliver operation to finish, or undo the second deliver

operation.

You may want to implement a development policy that eliminates the confusion that concurrent

deliveries can cause developers. This section shows three Perl scripts that prevent multiple

developers from delivering work to the same integration stream concurrently:

➤ Script 1 creates the trigger types and an attribute type.

➤ Script 2 is the preoperation trigger action that fires at the start of a deliver operation.

➤ Script 3 is the postoperation trigger action that fires at the end of a deliver operation.

Setup Script

This setup script creates a preoperation trigger type, a postoperation trigger type, and an

attribute type. The preoperation trigger action fires when a deliver operation starts, as

represented by the deliver_start operation kind (opkind). The postoperation trigger action fires

when a deliver operation is canceled or completed, as represented by the deliver_cancel and

deliver_complete opkinds, respectively.

The script runs on both UNIX and Windows platforms. Because the command-line syntax to run

the preoperation and postoperation scripts on Windows differs slightly depending on whether

the PVOB resides on Windows or UNIX, the setup script uses an IF ELSE Boolean expression to

set the appropriate execwin command.

The mktrtype command uses the –ucmobject and –all options to specify that the trigger type

applies to all UCM objects in the PVOB, but the –stream option restricts the scope to one

integration stream.

The mkattype command creates an attribute type called deliver_in_progress, which the

preoperation and postoperation scripts use to indicate whether a developer is delivering work

to the integration stream.
8 ClearCase Product Family Documentation Supplement

perl script to set up triggers for enforcing serial delivery.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
my $PREOPCMDW;
my $POSTOPCMDW;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
$PREOPCMDW = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_preop.pl"';
$POSTOPCMDW = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_postop.pl"';
}
else {

$PVOBTAG = '/pvobs/cyclone_pvob';
$PREOPCMDW = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_preop.pl"';
$POSTOPCMDW = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_postop.pl"';
}

my $PREOPCMDU = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex1/ex1_preop.pl"';
my $POSTOPCMDU = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex1/ex1_postop.pl"';
my $STREAM = "stream:P1_int\@$PVOBTAG";
my $PREOPTRTYPE = "trtype:ex1_preop\@$PVOBTAG";
my $POSTOPTRTYPE = "trtype:ex1_postop\@$PVOBTAG";
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

set up the trigger types and attribute type.
print `cleartool mktrtype -ucmobject -all -preop deliver_start $PREOPCMDU
$PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE`;
print `cleartool mktrtype -ucmobject -all -postop deliver_complete,
deliver_cancel $POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $POSTOPTRTYPE`;
print `cleartool mkattype -vtype integer -default 1 -nc $ATTYPE`;

Preoperation Trigger Script

This preoperation trigger action fires when a developer begins to deliver work to the specified

integration stream. The script attempts to attach an attribute of type deliver_in_progress to the

integration stream. If another developer is in the process of delivering work to the same stream,

the mkattr command fails and the script displays a message suggesting that the developer try
2 - Using Triggers to Enforce Development Policies 9

again later. Otherwise, the mkattr command succeeds and prevents other developers from

delivering to the integration stream until the current deliver operation finishes.

perl script that fires on deliver_start preop trigger.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
}
else{

$PVOBTAG = '/pvobs/cyclone_pvob';
}
my $STREAM = CLEARCASE_STREAM;
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

try to create the attribute, capture the output.
$msg = 'cleartool mkattr -default $ATTYPE $STREAM 2>&1';

if the attribute already existed, a deliver is in progress, disallow this
delivery.
if (index($msg, "Error: Object already has an attribute") >= 0) {

print "***\n";
print "*** A deliver operation is already in progress. Please try again

later.\n";
print "***\n";
exit 1;

}

the attribute was created, deliveries will be disallowed until postop fires.
exit 0

Postoperation Trigger Script

This postoperation trigger action fires when a developer cancels or completes a deliver operation

to the specified integration stream. This script removes the deliver_in_progress attribute that the

preoperation script attaches to the integration stream at the start of the deliver operation. After

the attribute is removed, another developer can deliver work to the integration stream.

perl script that fires on deliver_complete or deliver_cancel postop trigger.
use Config;
10 ClearCase Product Family Documentation Supplement

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
}
else{

$PVOBTAG = '/pvobs/cyclone_pvob';
}
my $STREAM = CLEARCASE_STREAM;
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

remove the attribute to allow deliveries.
print `cleartool rmattr -nc $ATTYPE $STREAM`;
exit 0;

2.4 Send Mail to Developers on Deliver Operations

To improve communication among developers on your project team, you may want to create a

trigger type that sends an e-mail message to team members whenever a developer completes a

deliver operation. This section includes two scripts:

➤ Script 1 creates a trigger type that fires at the end of a successful deliver operation.

➤ Script 2 is the postoperation trigger action that sends e-mail messages to developers.

Setup Script

This script creates a postoperation trigger type that fires when a developer finishes a deliver

operation, as represented by the deliver_complete opkind. The mktrtype command uses the

–stream option to indicate that the trigger type applies only to deliver operations that target the

specified integration stream.

This is a Perl script to set up the triggertype
for e-mail notification on deliver.
use Config;
2 - Using Triggers to Enforce Development Policies 11

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
$WCMD = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"';
}
else {

$PVOBTAG = '/pvobs/cyclone_pvob';
$WCMD = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"';
}
my $STREAM = "stream:P1_int\@$PVOBTAG";
my $TRTYPE = "trtype:ex2_postop\@$PVOBTAG";
my $UCMD = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex2/ex2_postop.pl"';

print 'cleartool mktrtype -ucmobject -all -postop deliver_complete $WCMD $UCMD
-stream $STREAM -nc $TRTYPE`;

Postoperation Trigger Script

This postoperation trigger action fires when a developer finishes delivering work to the

integration stream. The script composes and sends an e-mail message to other developers on the

project team telling them that a deliver operation has just finished. The script uses ClearCase

environment variables to provide the following details about the deliver operation in the body

of the message:

➤ Project name

➤ Development stream that delivered work

➤ Integration stream that received delivered work

➤ Integration activity created by the deliver operation

➤ Activities delivered

➤ Integration view used by deliver operation

Perl script to send mail on deliver complete.

##
Simple package to override the "open" method of Mail::Send so we
can control the mailing mechanism.
12 ClearCase Product Family Documentation Supplement

package SendMail;

use Config;
use Mail::Send;

@ISA = qw(Mail::Send);

sub open {
my $me = shift;
my $how; # How to send mail
my $notused;
my $mailhost;

On Windows use SMTP

if ($Config{'osname'} eq 'MSWin32') {
$how = 'smtp';
$mailhost = "localmail0.company.com";
}

else use defaults supplied by Mail::Mailer

Mail::Mailer->new($how, $notused, $mailhost)->open($me);
}

#
##
Main program

my @to = "developers\@company.com";
my $subject = "Delivery complete";

my $body = join '', ("\n",
"UCM Project: ", $ENV{CLEARCASE_PROJECT}, "\n",
"UCM source stream: ", $ENV{CLEARCASE_SRC_STREAM}, "\n",
"UCM destination stream: ", $ENV{CLEARCASE_STREAM}, "\n",
"UCM integration activity: ", $ENV{CLEARCASE_ACTIVITY}, "\n",
"UCM activities delivered: ", $ENV{CLEARCASE_DLVR_ACTS}, "\n",
"UCM view: ", $ENV{CLEARCASE_VIEW_TAG}, "\n"

);

my $msg = new SendMail(Subject=>$subject);
2 - Using Triggers to Enforce Development Policies 13

$msg->to(@to);
my $fh = $msg->open($me);
$fh->print($body);
$fh->close();
1; # return success

#
##

2.5 Do Not Allow Activities to Be Created on the Integration Stream

Anyone who has an integration view attached to the integration stream can create activities on

that stream, but the UCM process calls for developers to create activities in their development

streams. You may want to implement a policy that prevents developers from creating activities

on the integration stream inadvertently. This section shows a Perl script that enforces that policy.

The following mktrtype command creates a preoperation trigger type called

block_integration_mkact. The trigger type fires when a developer attempts to make an activity.

cleartool mktrtype -ucmobject -all -preop mkactivity -execwin "ccperl ^
\\pluto\disk1\triggers\block_integ_mkact.pl" -execunix "Perl ^
/net/jupiter/triggers/block_integ_mkact.pl" block_integration_mkact@\my_pvob

The following preoperation trigger script runs when the block_integration_mkact trigger fires.

The script uses the cleartool lsproject command and the CLEARCASE_PROJECT environment

variable to determine the name of the project’s integration stream. ClearCase creates an

integration activity to keep track of changes that occur during a deliver operation. The script uses

the CLEARCASE_POP_KIND environment variable to determine whether the activity being created

is an integration activity. If the mkactivity operation is the result of a deliver operation, the value

of CLEARCASE_POP_KIND, which identifies the parent operation, is deliver_start.

If the value of CLEARCASE_POP_KIND is not deliver_start, the activity is not an integration activity,

and the script disallows the mkactivity operation.

Get the integration stream name for this project
my $istream = 'cleartool lsproject -fmt "%[istream]p"
$ENV{'CLEARCASE_PROJECT'}';

Get the current stream and strip off VOB tag
$_ = $ENV{'CLEARCASE_STREAM'};
s/\@.*//;
my $curstream = $_;
14 ClearCase Product Family Documentation Supplement

If it’s the same as our stream, then it is the integration stream
if ($istream eq $curstream) {

Only allow this mkact if it is a result of a deliver
Determine this by checking the parent op kind
if ($ENV{'CLEARCASE_POP_KIND'} ne "deliver_start") {

print "Activity creation is only permitted in integration streams for
delivery.\n";
exit 1

}
}

exit 0

2.6 Implementing a Role-Based Access Control System

In a ClearCase environment, where users perform different roles, you may want to restrict access

to certain ClearCase operations based on role. This section shows a trigger definition and script

that implement a role-based access control system.

The following mktrtype command creates a preoperation trigger type called role_restrictions.

The trigger type fires when a user attempts to make a baseline, stream, or activity.

cleartool mktrtype -nc -ucmobject -all -preop mkstream,mkbl,mkactivity \
-execunix "perl /net/jupiter/triggers/role_restrictions.pl" \
-execwin "ccperl \\pluto\disk1\triggers\role_restrictions.pl" \
role_restrictions@\my_pvob

Preoperation Trigger Script

The following preoperation trigger script maps users to the following roles:

➤ Project manager

➤ Integrator

➤ Developer

The script maps the mkactivity, mkbl, and mkstream operations to the roles that are permitted

to perform them. For example, only users designated as project managers or integrators can

make a baseline.
2 - Using Triggers to Enforce Development Policies 15

The script uses the CLEARCASE_USER environment variable to retrieve the user’s name, the

CLEARCASE_OP_KIND environment variable to identify the operation the user attempts to

perform, and the CLEARCASE_POP_KIND environment variable to identify the parent operation. If

the parent operation is deliver or rebase, the script does not check permissions.

use strict;

sub has_permission
{

my ($user,$op,$pop,$proj) = @_;

#When performing a composite operation like 'deliver' or 'rebase',
#we don’t need to check permissions on the individual sub-operations
#that make up the composite.

return 1 if($pop eq 'deliver_start' || $pop eq 'rebase_start' ||
 ($pop eq 'deliver_complete' || $pop eq 'rebase_complete' ||
 ($pop eq 'deliver_cancel' || $pop eq 'rebase_cancel');

Which roles can perform what operations?
Note that these maps could be stored in a ClearCase attribute
on each project instead of hard-coded here in the trigger script
to give true per-project control.

my %map_op_to_roles = (
mkactivity => ["projectmgr", "integrator", "developer"],
mkbl => ["projectmgr", "integrator"],
mkstream => ["projectmgr", "integrator", "developer"],

);

Which users belong to what roles?

my %map_role_to_users = (
projectmgr => ["kate"],
integrator => ["kate", "mike"],
developer => ["kate", "mike", "jones"],

);
16 ClearCase Product Family Documentation Supplement

Does user belong to any of the roles that can perform this operation?

my ($role,$tmp_user);

for $role (@{ $map_op_to_roles{$op} }) {
for $tmp_user (@{ $map_role_to_users{$role} }) {

if ($tmp_user eq $user) {
return 1;

}
}

}

return 0;
}

sub Main
{

my $user = $ENV{CLEARCASE_USER};
my $proj = $ENV{CLEARCASE_PROJECT};
my $op = $ENV{CLEARCASE_OP_KIND};
my $pop = $ENV{CLEARCASE_POP_KIND};

my $perm = has_permission($user, $op, $proj);

printf("$user %s permission to perform '$op' in project $proj\n",
$perm ? "has" : "does NOT have");

exit($perm ? 0 : 1);
}

Main();

2.7 Additional Uses for UCM Triggers

The examples shown in the previous sections represent just a few ways that you may use UCM

triggers to enforce development policies. Other uses for UCM triggers include the following:

➤ Creating an integration between UCM and a change request management (CRM) system.

Although we expect that most customers will use the out-of-the-box integration with

ClearQuest, you may want to integrate with another CRM system. To accomplish this, you

could do the following:
2 - Using Triggers to Enforce Development Policies 17

➣ Create a trigger type on mkactivity that creates a corresponding record in the CRM

database when a developer makes a new activity.

➣ Create a trigger type on setactivity that transitions the record in the CRM database to a

scheduled state when a developer starts working on an activity.

➣ Create a trigger type on deliver that transitions the record in the CRM database to a

completed state when a developer finishes delivering the activity to the integration

stream.

➤ Creating a trigger type on rebase that prevents developers from rebasing certain

development streams. You may want to enforce this policy on a development stream that is

being used to fix one particular bug.

➤ Creating a trigger type on setactivity that allows specific developers to work on specific

activities.
18 ClearCase Product Family Documentation Supplement

33 Setting Up a ClearQuest User
Database

This chapter describes how to set up a ClearQuest user database so that you can use the

UCM-ClearQuest integration for your project. The steps in this chapter are typically completed

by the ClearQuest database administrator. ClearQuest includes predefined schemas that are

ready for use with UCM. You can also enable a custom schema, or another predefined schema,

to work with UCM. See Managing Software Projects with ClearCase for information on the decisions

you need to make before setting up the integration.

3.1 Using the Predefined UCM-Enabled Schemas

The predefined UCM schemas, named UnifiedChangeManagement and Enterprise, include the

record type, field, form, state, and other definitions necessary to work with a UCM project. To set

up a ClearQuest user database to work with UCM:

1. Create a user database that is associated with one of the predefined UCM-enabled schemas.

In the ClearQuest Designer, click Database>New Database to start the New Database

Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to associate with the

new database. Scroll the list of schema names and select the new schema, as shown in

Figure 2.

3. Click Finish.
3 - Setting Up a ClearQuest User Database 19

Figure 2 Associating a User Database with a UCM-Enabled Schema

3.2 Enabling a Schema to Work with UCM

The predefined UCM schemas let you use the UCM-ClearQuest integration right away, but you

may prefer to design a custom schema to track your project’s activities and change requests, or

you may prefer to use a different predefined schema. To enable a schema to work with UCM:

1. Ensure that the schema does not contain a record type named UCM_Project, which is a

reserved name used by the UCM-ClearQuest integration.

2. In the ClearQuest Designer, click Package>Package Wizard to start the Package Wizard, as

shown in Figure 3.

3. Add the UCMPolicyScripts package to your schema. If this package is not listed in the first

page of the wizard, it has not been installed in your schema repository. To add the package

to your schema repository, click More Packages to open the Install Packages dialog box;

select the highest version of the package, and click OK. In the wizard, select the package, as

shown in Figure 3. Click Next.
20 ClearCase Product Family Documentation Supplement

Figure 3 Adding the UCMPolicyScripts Package to a Schema

4. On the second page of the wizard, select your schema, and click Finish. To make the changes

to the schema, ClearQuest checks out the schema for you. Check in the schema by clicking

File>Check In. ClearQuest creates a new version of the schema.

5. Optionally, you can use the Package Wizard to apply the BaseCMActivity package to your

schema. The BaseCMActivity package adds the BaseCMActivity record type to your

schema. The BaseCMActivity record type is a lightweight activity record type. You may want

to use the BaseCMActivity record type as a starting point and then modify it to include

additional fields, states, and so on. If you want to rename the BaseCMActivity record type,

be sure to do so before you create any records of that type.

6. Apply the AMStateTypes package to the schema. Start the Package Wizard. Select

AMStateTypes, and click Next.

7. In the second page of the wizard, select your schema. Click Next.

8. The third page of the wizard prompts you to specify the schema’s record types. Select the

check boxes of the record types that you want to enable. Click Next. All selected record types

must meet the requirements listed in Requirements for Enabling Custom Record Types on

page 23.
3 - Setting Up a ClearQuest User Database 21

9. In the fourth page of the wizard, you must assign state types to the states for each record type

that you choose to enable. For each state, click in the adjacent state type cell to display the

list of available state types, as shown in Figure 4, and select one. To enable another record

type, click the arrow in the Record Type list to see the available record types. See Setting State
Types on page 24 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema.

Figure 4 Assigning State Types to a Record Type’s States

10. Before you can check in your schema, you must set default actions for the states of each

enabled record type. Default actions are state transition actions that ClearQuest takes when

a developer begins to work on an activity or delivers an activity. In the ClearQuest Designer

workspace, navigate to the record type’s state transition matrix, as shown in Figure 5.

Figure 5 Navigating to Record Type’s State Transition Matrix
22 ClearCase Product Family Documentation Supplement

Double-click State Transition Matrix to display the matrix. Right-click the state column

heading, and select Properties from its shortcut menu. Click the Default Action tab. Select

the default action. See State Transition Default Action Requirements for Record Types on page 24

for default action requirements. Before you can set default actions, you may need to add

some actions to the record type. To do so, double-click Actions to display the Actions grid,

and then click Edit>Add Action.

11. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File>Check In.

12. Apply the UnifiedChangeManagement package to the schema. Start the Package Wizard.

Select UnifiedChangeManagement, and click Next.

13. In the second page of the wizard, select your schema. Click Next.

14. The third page of the wizard prompts you to specify the schema’s record types. Select the

check boxes of the same record types that you chose when you applied the AMStateTypes
package. Click Next. All selected record types must meet the requirements listed in

Requirements for Enabling Custom Record Types on page 23.

15. In the ClearQuest Designer workspace, navigate to the record type’s Behaviors.

Double-click Behaviors to display the Behaviors grid. Verify that the Headline field is set to

Mandatory for all states. Verify that the Owner field is set to Mandatory for all Ready and

Active state types.

16. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File>Check In.

17. Upgrade the user database so that it is associated with the UCM-enabled version of the

schema by clicking Database>Upgrade Database. Alternatively, create a new user database

that is based on the UCM-enabled version of the schema.

Requirements for Enabling Custom Record Types

Before you can apply the UnifiedChangeManagement package to a custom record type, the

record type must meet the following requirements:

➤ It contains a field named Headline defined as a SHORT_STRING, and a field named

Owner defined as a REFERENCE to the ClearQuest-supplied users record type. The

Headline field must be at least 120 characters long.

➤ It does not contain fields with these names:
3 - Setting Up a ClearQuest User Database 23

➣ ucm_vob_object
➣ ucm_stream
➣ ucm_stream_object
➣ ucm_view

➤ It contains an action named Modify of type Modify.

Setting State Types

The integration uses a state transition model to help you monitor the progress of activities. To

implement this model, the integration adds state types to UCM-enabled schemas. Table 1 lists

and describes the four state types. You must assign each state to a state type. You must have at

least one state definition of state type Waiting, one of state type Ready, one of state type Active,

and one of state type Complete.

State Transition Default Action Requirements for Record Types

Record types can include numerous state definitions. However, UCM-enabled record types must

have at least one path of transitions among state types as follows: Waiting to Ready to Active to

Complete. The transition from one state to the next must be made by a default action.

For example, Figure 6 shows the actions and default actions between the states defined in the

UCM-enabled BaseCMActivity record type included in the predefined UCM schema. The

Table 1 State Types in UCM-Enabled Schema

State Type Description

Waiting The activity is not ready to be worked on, either because it has not

been assigned or it has not satisfied a dependency.

Ready The activity is ready to be worked on. It has been assigned, and

all dependencies have been satisfied.

Active The developer has started work on the activity but has not

completed it.

Complete The developer has either worked on and completed the activity,

or not worked on and abandoned the activity.
24 ClearCase Product Family Documentation Supplement

default actions are identified with an asterisk (*). The state types are in uppercase letters enclosed

in brackets. The states appear immediately above their state types.

Figure 6 State Transitions of UCM-enabled BaseCMActivity Record Type

In addition to this single path requirement, states must adhere to the following rules:

➤ All Waiting type states must have a default action that transitions to another Waiting type

state or to either a Ready or Active type state.

➤ If a Ready type state has an action that transitions directly to a Waiting type state, that

Waiting type state must have a default action that transitions directly to that Ready type

state.

➤ All Ready type states must have a default action that transitions to another Ready type state

or to an Active type state.

➤ All Ready type states must have at least one action that transitions directly to a Waiting type

state.

➤ For the BaseCMActivity record type, its initial state must be a Waiting type.

Submitted Ready Active Complete

[WAITING] [READY] [ACTIVE] [COMPLETE]

*Complete *Assign *Activate

Postpone

Postpone

Re-open
3 - Setting Up a ClearQuest User Database 25

3.3 Upgrading Your Schema to the Latest UCM Package

If you have a UCM-enabled ClearQuest schema from a previous release of ClearQuest, you may

want to upgrade that schema with the latest version of the UnifiedChangeManagement package

so that you can use new functionality. To upgrade the schema, perform the following steps:

1. In the ClearQuest Designer, click Package>Package Wizard to start the Package Wizard.

2. Select the AMStateTypes package, and click Next.

3. On the second page of the wizard, select your schema. Click Next.

4. The third page of the wizard prompts you to specify the schema’s record types. Select the

check boxes of the record types that you want to enable. Click Next.

5. On the fourth page of the wizard, you must assign state types to the states for each record

type that you choose to enable. For each state, click in the adjacent state type cell to display

the list of available state types (Figure 4) and select one. To enable another record type, click

the arrow in the Record Type list to see the available record types. See Setting State Types on

page 24 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema and exit the Package Wizard.

6. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File>Check In.

7. Start the Package Wizard again and select the new version of the

UnifiedChangeManagement package.

8. On the second page of the wizard, select your schema. Click Next.

9. Click Next until you get to the last page of the wizard. Click Finish.

10. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File>Check In.

11. Upgrade the user database to associate it with the new version of the schema by clicking

Database>Upgrade Database.
26 ClearCase Product Family Documentation Supplement

3.4 Customizing ClearQuest Project Policies

To implement the project policies, the integration adds the following pairs of scripts to a

UCM-enabled schema:

➤ UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver_Def
➤ UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def
➤ UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

Each policy has two scripts: a base script and a default script. The default scripts have _Def
appended to their names and are installed by the UnifiedChangeManagement package. The

integration invokes the base scripts, which are installed by the UCMPolicyScripts package. The

base script calls the corresponding default script, which contains the logic for the default

behavior. To modify the behavior of a policy, remove the call to the default script from the base

script. Then add logic for the new behavior to the base script. Adhere to the rules stated in the

base script.

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts have a UCM
prefix. The Perl scripts have a UCU prefix. For ClearQuest clients on Windows NT, the

integration uses the Visual Basic scripts. For ClearQuest clients on UNIX, the integration uses the

Perl scripts. If you modify a policy’s behavior and your environment includes ClearQuest clients

on both platforms, be sure to make the same changes in both the Visual Basic and Perl versions

of the policy’s script. Otherwise, the policy will behave differently for ClearQuest clients on

UNIX and Windows NT.

For descriptions of these policies, see Managing Software Projects with ClearCase.

3.5 Associating Child Activity Records with a Parent Activity
Record

As project manager, you may assign activities for large tasks to developers. When the developers

research their activities, they may determine that they need to perform several separate activities

to complete one large activity.

For example, an “Add customer verification functionality” activity may require significant work

in the product’s GUI, the command-line interface, and a library. To more accurately track the

progress of the activity, you can decompose it into three separate activities.
3 - Setting Up a ClearQuest User Database 27

By using the parent/child controls in ClearQuest, you can accomplish this decomposition and

tie the child activities back to the parent activity.

Using Parent/Child Controls

In ClearQuest, you use controls to display fields in record forms. A parent/child control, when

used with a reference or reference list field, lets you link related records. By adding a

parent/child control to the record form of a UCM-enabled record type, you can provide the

developers on your team with the ability to decompose a parent activity into several child

activities.

To have ClearQuest change the state of the parent activity to Complete when all child activities

have been completed, you need to write a hook. See Administering Rational ClearQuest for an

example of such a hook.

3.6 Creating Users

Before you can assign activities to the developers on your project team, you must create user

account profiles for each developer in ClearQuest. To do so:

1. In ClearQuest Designer, click Tools>User Administration.

2. Click Add.

3. Complete the User Information dialog box.

See Administering Rational ClearQuest and the ClearQuest Designer online help for details on

creating user profiles.

3.7 Setting the Environment on UNIX

This section applies to UNIX only.
28 ClearCase Product Family Documentation Supplement

Before you can enable a UCM project to work with a ClearQuest user database, you must define

two environment variables as shown in Table 2. Developers who want to use the integration

must also define these variables on their machines.

The ClearQuest installation directory includes a C shell script, cq_setup.csh, which you can

execute to set the environment variables for you. For example:

% source ClearQuest-install-directory/cq_setup.csh

In addition, if you have multiple ClearQuest schema repositories, you must set the

$SQUID_DBSET environment variable to the name of the schema repository you want to use.

3.8 How MultiSite Affects the UCM-ClearQuest Integration

If you use MultiSite to replicate the PVOB or ClearQuest user database involved in the

UCM-ClearQuest integration, you need to be aware of several requirements. This section

describes those requirements.

Replica and Naming Requirements

When you set up the UCM-ClearQuest integration, you establish a link between a PVOB and a

ClearQuest user database. If you use MultiSite, the following requirements apply:

➤ Each site that contains a linked PVOB replica must contain a replica of the ClearQuest user

database to which the PVOB is linked. Similarly, each site that contains a linked ClearQuest

user database replica must contain a replica of the PVOB to which the user database is

linked.

Table 2 Environment Variables Required for Integration

Variable Setting

$CQ_HOME ClearQuest-install-directory/releases/ClearquestClient

$LD_LIBRARY_PATH

($SHLIB_PATH on HP-UX)

Must include:

ClearCase-install-directory/shlib and

ClearQuest-install-directory/releases/ClearquestClient/architecture/shlib
3 - Setting Up a ClearQuest User Database 29

➤ The name of the linked ClearQuest user database replica must match the name of the linked

PVOB replica at the same site.

Enabling a Project to Use the UCM-ClearQuest Integration

This section describes the additional steps to set up the UCM-ClearQuest integration when you

use MultiSite. For the full set of steps required to enable a project to work with ClearQuest, see

the Setting Up the Project chapter in Managing Software Projects with ClearCase.

Transferring Mastership of the PVOB’s Root Folder

The first time you enable a project within a PVOB to work with ClearQuest, your current PVOB

replica must master the PVOB’s root folder. If your current replica does not have mastership,

transfer mastership of the root folder by using the multitool chmaster command at the replica

that masters the root folder. The following example transfers mastership of the root folder from

the current replica to the lowell replica.

multitool chmaster lowell folder:RootFolder

See ClearCase MultiSite Manual for details on transferring mastership.

Transferring Mastership of the Project

Before you enable a project to work with ClearQuest, your current PVOB replica must master the

project. If your replica does not master the project, transfer mastership of the project by using the

multitool chmaster command at the replica that masters the project.

When you enable the project to work with ClearQuest, the integration creates a corresponding

project record in the ClearQuest user database and assigns mastership of that record to the

current replica of the ClearQuest user database. If a project record with the same name as the

project exists in the ClearQuest user database when you enable the project, and that project

record is not mastered by your current replica, you must transfer mastership of the project record

to your current replica.

Linking Activities to ClearQuest Records

If a project contains activities, when you enable that project to work with ClearQuest, the

integration creates corresponding ClearQuest records for the activities and links the records to

the activities. The integration cannot link activities that are mastered by remote replicas. To link

activities that are mastered by a remote replica:
30 ClearCase Product Family Documentation Supplement

1. At the remote site, start ClearCase Project Explorer. On UNIX, enter clearprojexp. On

Windows, in the left pane of ClearCase Explorer, click UCM, and then click Project Explorer.

2. In the Project Explorer, display the project’s property sheet, and click the ClearQuest tab.

3. Click Ensure all Activities are Linked. The integration checks all the project’s activities. If

the project is enabled, the integration links any unlinked activities. The integration then

displays the following summary information:

➣ Number of activities that had to be linked.

➣ Number of activities that were previously linked.

➣ Number of activities that could not be linked because they are not mastered by the

current PVOB replica. In this case, the integration also displays a list of replicas on which

you must run the Ensure all Activities are Linked operation again to correct the

problem.

4. At each replica on the list described in Step #3, repeat Step #1 through Step #3.

Managing the Project

This section describes how MultiSite affects how you maintain the project after enabling it to

work with ClearQuest.

Changing Project Policy Settings

Before you can change a project’s policy settings from within ClearQuest, the ClearQuest project

record must be mastered. Similarly, before you can change a project’s policy settings from within

ClearCase, the project object must be mastered. After you change a project’s policy settings in the

current replica, the new settings do not take effect in streams in sibling replicas until you

synchronize the current replica with those replicas. See ClearCase MultiSite Manual for details on

synchronizing replicas.

Controlling Deliver Operations

The Do ClearQuest Action After Delivery project policy transitions activities to a Complete type

state when a deliver operation completes successfully. For this policy to work correctly in a

MultiSite environment, the activities being delivered must be mastered by the same replica that

masters the target integration stream. To ensure that this is the case, you can set the Check

Mastership Before Delivery policy.
3 - Setting Up a ClearQuest User Database 31

The behavior of the Check Mastership Before Delivery policy depends on whether the deliver

operation is local or remote. If the deliver operation is local, meaning that the target integration

stream is mastered by the local PVOB replica, this policy causes the deliver operation to fail

unless all activities being delivered are mastered locally.

A remote deliver operation is one for which the target integration stream is mastered by a remote

PVOB replica. The developer starts the deliver operation but ClearCase leaves the operation in a

posted state. The project manager at the remote site completes the deliver operation.

For a remote deliver operation, the Check Mastership Before Delivery policy causes the

following behavior:

➤ If all activities in the deliver operation are mastered by the remote replica, ClearCase allows

the deliver operation to proceed.

➤ If the deliver operation contains activities that are mastered by the local replica, MultiSite

transfers mastership of those activities to the remote replica. After the project manager at

the remote site performs any required merges and completes the deliver operation,

MultiSite transfers mastership of the activities back to the local replica.

➤ If the deliver operation contains activities that are mastered by a third replica, the deliver

operation fails.

Changing the Project Name

The integration links a project name to the title field in the corresponding ClearQuest project

record. If you change the project name in ClearCase, the integration makes the same change to

the title field in the corresponding ClearQuest project record. Similarly, if you change the title in

ClearQuest, the integration makes the same change to the project name in ClearCase. Before you

can change the project name and title in a MultiSite environment, the project record and the

project object must both be mastered.

Working on Activities

Before you can work on, set, or change an activity, the activity object and its ClearQuest record

must be mastered locally.
32 ClearCase Product Family Documentation Supplement

44 Cross-Platform File Access

In mixed networks of Windows and UNIX computers, certain ClearCase operations may require

a Windows or UNIX computer to access the file system of a different type of computer. ClearCase

supports several protocols that allow a Windows computer to access the file system of a UNIX

computer and also provides for more limited access by UNIX computers to ClearCase data in

Windows file systems. The following protocols—some of which can only be enabled using a

software from a third party (neither Rational nor the computer vendor)—may be used.

➤ ClearCase File Server (CCFS) — The ClearCase File Server is a TCP/IP-based file transfer

mechanism included with ClearCase. It provides snapshot views with access to VOB data.

It does not support dynamic views. For information about CCFS, see ClearCase File Server on

page 35.

➤ NFS client products — NFS client products for Windows NT are available from several

vendors. These products allow Windows NT computers to access UNIX file systems using

the NFS protocol, which all UNIX computers support. You install an NFS client product on

each Windows NT computer from which you want to access UNIX VOBs and views. For

more information about which NFS client products ClearCase supports and how to

configure them, see NFS Client Products on page 36.

➤ SMB server products — The SMB (Server Message Block) protocol is the native protocol

that Windows computers use for network file-system access. SMB servers that run on UNIX

computers allow Windows computers to access UNIX VOBs and views using native

Windows protocols. You install an SMB server product on each UNIX VOB or view server

you will access from a Windows NT client. For more information about which SMB server

products ClearCase supports and how to configure them, see SMB Server Products on

page 43

Table 3 lists the protocols that ClearCase clients can use to access VOB data. Table 4 lists the

protocols that ClearCase clients use to access view_server storage. In these tables, protocols
4 - Cross-Platform File Access 33

native to their respective computer platforms are labeled “Native.”CCFS is included in

ClearCase. All other protocols require third-party software support.

NOTE: When a view has been created with the -ngpath option and both the client and server

platforms are running ClearCase 4.1 or later, Windows 98 and Windows Me platforms can access

view data on UNIX, and UNIX snapshot views can access view data on Windows NT using the

native ClearCase RPC mechanism. This configuration is found most often in ClearCase LT

communities.

Table 3 Protocols for ClearCase Client Access to VOB Data

Client Platform Access to VOB data on UNIX
Access to VOB data on
Windows NT

Windows 98, Windows Me CCFS Native SMB

Windows NT (dynamic

views)

Third-party NFS or SMB Native SMB

Windows NT (snapshot

views)

CCFS, third-party NFS or

SMB

Native SMB

UNIX (dynamic views) Native NFS Unsupported

UNIX (snapshot views) Native NFS CCFS

Table 4 Protocols for ClearCase Client Access to View Data

Client Platform Access to view data on UNIX
Access to view data on
Windows NT

Windows 98, Windows Me See note. Native SMB

Windows NT (dynamic

views)

Third-party NFS or SMB Native SMB

Windows NT (snapshot

views)

Third-party NFS or SMB Native SMB

UNIX (dynamic views) Native NFS Unsupported

UNIX (snapshot views) Native NFS See note.
34 ClearCase Product Family Documentation Supplement

Table 5 lists the protocols used by a view_server process to access VOB data.

4.1 ClearCase File Server

The ClearCase File Server is a TCP/IP-based mechanism that enables cross-platform file

transfers between VOB servers and snapshot views. It supports access by snapshot views on

Windows computers to VOB data on UNIX computers and access by snapshot views on UNIX

computers to VOB data on Windows NT.

If a ClearCase client uses only snapshot views, no third-party NFS client-based or SMB

server-based product is necessary to access VOB data on any platform. Dynamic views support

access by snapshot views on Windows computers to VOB data on UNIX computers. Dynamic

views on Windows NT computers still require a supported NFS client or SMB server product to

access UNIX VOBs.

ClearCase clients running Windows Me or Windows 98 use CCFS as their sole transfer

mechanism when accessing UNIX VOBs. Because Windows Me and Windows 98 computers

cannot use dynamic views or run view servers, you must have at least one Windows NT

computer that will run the view server process and contain the view storage directory for

snapshot views created on Windows Me and Windows 98 computers.

When CCFS is enabled, file transfers between snapshot view clients and VOB servers (for

example, operations such as checking out, checking in, and creating and updating snapshot

views) take place over a standard TCP/IP connection. File transfers between a VOB server and

a snapshot view’s view server also use this TCP/IP connection.

CCFS is always enabled on a UNIX computer running ClearCase. It may be enabled or disabled

on Windows NT using the ClearCase program in Control Panel

Table 5 Protocols for view_server Access to VOB Data

view_server platform Access to VOB data on UNIX
Access to VOB data on
Windows NT

Windows NT CCFS, third-party NFS, or

SMB

Native SMB

UNIX Native NFS CCFS
4 - Cross-Platform File Access 35

Enabling and Disabling CCFS on Windows NT

To enable and disable CCFS on a Windows NT computer:

1. Click Start>Settings>Control Panel. Open the ClearCase program.

2. On the Options tab, select the Use CCFS to access UNIX VOBs check box to enable use of

CCFS. Clear this check box to disable use of CCFS.

Click OK.

3. Shut down and restart the computer to ensure that the change takes effect for all processes.

NOTE: When CCFS is disabled (which is the default setting on Windows NT), you must have a

supported NFS client or SMB server product to access UNIX VOBs.

4.2 NFS Client Products

ClearCase supports these NFS client products on Windows NT computers:

➤ Microsoft Windows NT Services for UNIX Client for NFS Products (SFU 1.0)

➤ Intergraph DiskAccess

➤ Hummingbird NFS Maestro

If you are using an NFS client product, you must install it on each Windows NT client that will

access VOBs or views located on UNIX servers. You must install the product correctly and

completely; in particular, you must assign and configure the NFS daemon and authentication

process.

NOTE: The READ ME FIRST chapter in ClearCase and MultiSite Release Notes (Windows edition)

contains last-minute information about NFS client products, including which versions of those

products ClearCase supports.For more information about configuring NFS client products, read

the remainder of that manual.

The rest of this section describes configuration procedures specific to using an NFS client product

with ClearCase. Read and perform all procedures recommended for your product.
36 ClearCase Product Family Documentation Supplement

Disabling Automatic Case Conversion

Some NFS client products change the case of file names by default, typically by converting to

lowercase. Because ClearCase is case-sensitive, you need to disable case conversion, as described

later in this section.

NOTE: Typically, you can use a command-line option to disable case conversion for a particular

NFS mount. However, ClearCase can automount remote storage directories. See Automounting
and NFS Client Software on page 39. For correct behavior on these mounts, configure NFS mount

drive options to disable case conversion.

Microsoft SFU and Intergraph DiskAccess

To disable automatic case conversion:

1. Start the Client for NFS (for SFU) or DiskAccess (for DiskAccess) Control Panel program.

2. On the Filenames tab, click Preserve Case (no conversion).

Hummingbird NFS Maestro

To disable automatic case conversion:

1. Click Start>Settings>Control Panel. Start the Network program.

2. On the Services tab, select NFS Maestro for Windows NT Client.

3. Click Properties to open the client configuration dialog box.

4. Under Filename Capitalization, click Preserve Case.

Setting an NFS Client’s Default Protection

If you plan to work in a shared UNIX view, configure your NFS client with a default protection

that grants group write access. Without this permission, other developers cannot modify

view-private files that you have created.

Microsoft SFU or Intergraph DiskAccess

To set the default protection:
4 - Cross-Platform File Access 37

1. Start the Client for NFS (for SFU) or DiskAccess (for DiskAccess) Control Panel program.

2. On the File Access tab, ensure User is RWX, Group is RWX, and Other is RX.

Hummingbird NFS Maestro

To set the default protection:

1. Click Start>Settings>Control Panel. Start the Network program.

2. On the Services tab, select NFS Maestro for Windows NT –Client.

3. Click Properties to open the client configuration dialog box.

4. Under Default Protection, specify the protections as follows:

User Group Other
RWX RWX RWX
xxx xxx x x

Setting the Correct Logon Name

To avoid VOB and view access permission problems, do not log on to an NFS server as user

nobody or with any user or group ID that does not match your Windows NT user and primary

group IDs.

To verify that your Windows NT user name/UID and group name/GID match their UNIX

counterparts, pass the name of a UNIX NFS server to ccase-home-dir\etc\utils\credmap. For

example:

ccase-home-dir\etc\utils\credmap saturn

After you confirm your user name/UID and group name/GID, supply the user name as an NFS

logon parameter.

Microsoft SFU or Intergraph DiskAccess

To set your logon user name:

1. Start the Client for NFS (for SFU) or DiskAccess (for DiskAccess) Control Panel program.

2. On the Authentication tab, type the correct User Name, Password, and PCNFSD Server.
38 ClearCase Product Family Documentation Supplement

3. Click OK; your logon session is validated.

Hummingbird NFS Maestro

To set your logon user name; at the command prompt, run the nfs register command:

nfs register username

This command prompts for a password.

Hummingbird NFS Maestro: Disabling DOS Sharing

The Maestro DOS Sharing option is incompatible with ClearCase use. When using

Hummingbird NFS Maestro with ClearCase, you must disable this mode. If you do not, you may

encounter MVFS log errors when attempting to open MVFS files. For example:

ZwOpenFile returned status 0xc0000043

This error indicates a sharing violation.

To disable DOS Sharing:

1. Start the Network program in Control Panel.

2. On the Services tab, select NFS Maestro for Windows NT –Client.

3. Click Properties to open the client configuration dialog box.

4. Under Default Links, clear the DOS-Style Sharing check box.

Automounting and NFS Client Software

When you mount a UNIX VOB or start a UNIX dynamic view, ClearCase needs to access the VOB
storage directory or view storage directory on the UNIX file-system partition. In the ClearCase

program in Control Panel, the setting of the Enable automatic mounting of NFS storage
directories check box determines how ClearCase accesses those directories when you use NFS

client products.
4 - Cross-Platform File Access 39

All supported NFS client products can process UNC names. If you are using one of these

products, clear the Enable automatic mounting of NFS storage directories check box. ClearCase

then uses UNC names to access UNIX VOB and view storage directories. We recommend that

you configure ClearCase hosts in this way.

If you have been using ClearCase with the Enable automatic mounting of NFS storage
directories check box selected, you can continue to do so. ClearCase then maps Windows drive

letters to UNIX VOB and view storage directories and accesses the directories through those

drive letters.

NOTE: These drive letters are for internal ClearCase use. They are different from the drive letters

you can assign and use for your own work within views. In particular, do not confuse them with

the drive letters you can assign to dynamic views when you start those views.

We recommend that you disable automounting when using any supported NFS client product.

If you install Microsoft SFU or Intergraph DiskAccess before you install ClearCase, the ClearCase

installation procedure disables automounting for you.

If you are using Hummingbird NFS Maestro or if you install a supported NFS product after you

have installed ClearCase, you can disable automounting using the ClearCase program in Control

Panel.

1. Click Start>Settings>Control Panel. Open the ClearCase program.

2. On the Options tab, clear the Enable automatic mounting of NFS storage directories check

box.

3. Click OK.

Microsoft SFU or Intergraph DiskAccess: Setting Up the ClearCase Server
Process User and ClearCase Group

SFU and DiskAccess use a scheme to map Windows NT user credentials to NFS user and group

ID. This scheme requires that you perform an additional setup procedure for the special

ClearCase server process user account, as described in Administering ClearCase.

The setup procedure enables ClearCase services to access remote NFS view and VOB storage

directories with the proper privileges, which enables operations such as cleartext construction.

Cleartext construction is the process by which data is extracted from the VOB storage area source

container by a ClearCase type manager. This type manager then constructs or creates a cleartext
40 ClearCase Product Family Documentation Supplement

container the first time a version is accessed. For faster access, subsequent reads of that version

access the cleartext file directly.

Setting Up the UNIX Account

On UNIX, the group ID (GID) is used for the permission to construct cleartext. The UNIX

primary group name must match the user’s Windows NT primary group name.

NOTE: By convention, the name of the ClearCase group is clearcase. A community can choose a

different name as long as all ClearCase hosts in the community define the ClearCase group as

that group name. If multiple communities share a single Windows NT domain, each community

must have a unique name for its ClearCase group.

As part of setting up SFU or DiskAccess, the administrator needs to supply the ClearCase server

process user with a valid UNIX name and password for a user account that belongs to the correct

primary group. The administrator can identify the UNIX account by performing one of the

following tasks:

➤ Add a UNIX account that matches the Windows NT name of the ClearCase server process

user account.

➤ Add a new UNIX account that does not match the Windows NT name.

➤ Use an existing UNIX account.

Preparing the Windows NT Client

Set up the ClearCase server process user account (clearcase_albd) on every ClearCase

Windows NT client that will access remote NFS views or VOBS. For the first client, follow the

steps below. For subsequent clients, either follow the steps here or perform the steps in

Alternative Setup: Administrative Option.

1. Install SFU or DiskAccess, restart, and set up your regular user account, from which you will

log on to SFU or DiskAccess.

2. Log off from your current user session.

3. Log on as the ClearCase server process user on your system.

4. Start the Client for NFS (for SFU) or DiskAccess (for DiskAccess) Control Panel program.

5. On the Authentication tab, specify the UNIX name and password that you established in

Setting Up the UNIX Account.
4 - Cross-Platform File Access 41

6. Click OK.

When you exit the Client for NFS (for SFU) or DiskAccess (for DiskAccess) program, read

the confirmation dialog box. Verify that you are currently logged on with the desired UID

and GID.

If there is an error, or if you are logged on with UID and GID of -1 and -2, repeat Step #3

through Step #6 in this section.

7. Log off.

Alternative Setup: Administrative Option

Instead of performing the steps in Preparing the Windows NT Client, you can instead perform the

steps in this section. For example, it may be inconvenient to log on as the ClearCase server

process user on every client system. As an alternative, perform the following steps:

1. Log on as the ClearCase server process user (clearcase_albd) on one system.

2. Run the Windows Registry Editor (type regedit in the Run dialog box or from a command

prompt).

3. Carefully save the security-id key here:

HKEY_LOCAL_MACHINE\SOFTWARE\Intergraph\DiskAccess\CurrentVersion\Users

Select the security-id subkey whose Name key value is your ClearCase server process user

account name. To find the correct subkey, type the following command, and look on the line

in the output that starts with SID :

ccase-home-dir\etc\utils\creds clearcase_albd

NOTE: If your community uses a ClearCase server process user account name other than

clearcase_albd, use that name instead.

4. Save the key to a registry file by clicking Registry>Export Registry File in the Registry

Editor.

To share the registry file, mail it to users or place it on a shared directory. When users want

to load the file into the registry, they double-click the file name in a file browser such as

Windows Explorer. The system displays a confirmation message after it loads the file.

All users who use the same ClearCase server process user account and the same primary

Windows NT group that maps to the UNIX GID to which it was logged on can share this file.
42 ClearCase Product Family Documentation Supplement

Microsoft SFU: Configuring the Default LAN

Browsing of UNIX resources from Windows NT is not enabled by default on SFU. You must

enable this feature manually for it to work. Otherwise, users cannot browse for UNIX resources

using either net view at the command prompt or Network Neighborhood on the desktop. After

configuring the client for NFS, take the following steps:

1. Start the Client for NFS Control Panel program.

2. On the Configured NFS LANs tab, click Add, enter a name for the LAN (for example,

Default_LAN), click Specify LAN to browse, and then click OK.

3. On the Configured NFS LANs tab, click Edit, and in the Broadcast Address box type

255.255.255.255. You can either accept the defaults or customize the rest of the broadcast

parameters.

4. Click OK in the Broadcasting dialog box; then click OK in the Client for NFS dialog box.

NOTE: Configuring SFU for browsing as described here is not required by ClearCase and

increases the UDP broadcast traffic on your network.

4.3 SMB Server Products

Rational supports two SMB products— Samba version 2.2 (available from www.samba.org) and

Syntax TotalNET Advanced Server (TAS)—to enable access to UNIX file systems from

Windows NT computers. This section describes how to install and configure Samba and TAS.

The READ ME FIRST chapter in ClearCase and MultiSite Release Notes (Windows edition) contains

last-minute information about SMB server products, including which versions of those products

that ClearCase supports. For more information about configuring SMB server products, read the

remainder of that manual. For information on current UNIX platform support for ClearCase,

Samba, and TAS, see the Rational ClearCase Web page.

Installing and Configuring Samba 2.2

ClearCase supports use of Samba 2.2 to provide Windows NT computers that use dynamic views

with access to VOBs and views on Solaris 8 or later.
4 - Cross-Platform File Access 43

Samba 2.2 can be downloaded from www.samba.org. Download it and follow the installation

instructions for the operating system on which you are installing it. Samba must be installed and

configured on each UNIX VOB and view server that you want to access from Windows NT.

To configure Samba for use by ClearCase, you must do the following:

1. Create a Samba username map for the clearcase_albd user

2. Configure Samba globals

3. Create shares for VOB and view storage

4. Start Samba services

Creating a Samba Username Map for clearcase_albd

NOTE: In this section, we assume that the user account for the ClearCase server process on

Windows NT is named clearcase_albd. If your user account for this server process is configured

to use a different name, use that name instead.

Samba requires a username map that associates the user account for ClearCase server process

Windows NT with a UNIX user account. For more information on administering Windows NT

domains, see the release 4.1 edition of Administering ClearCase

To create the Samba username map, use any text editor to create a file named username.map on

the host where Samba is installed. We recommend that you create the file in the same directory

where you have installed other Samba configuration files (such as smb.conf).

The file must contain a line of the form

account = clearcase_albd

where account is the name of an existing UNIX user account. We strongly recommend that this

user's primary group (the group listed in the user's entry in the passwd database) be one to which

all ClearCase users accessing VOBs and views on this server belong. For details about group- and

user-level access to ClearCase data, see the chapter on access controls in the release 4.1 edition of

Administering ClearCase

For more information about the username.map file, see the Samba documentation.
44 ClearCase Product Family Documentation Supplement

Using the Samba Web Administration Tool (SWAT)

Samba can be configured using various methods that range from a simple text editor to graphical

tools. The examples in this document describe the configuration of Samba through the use of the

Samba Web Administration Tool (SWAT), which is included in the Samba download.

Instructions included with the Samba download explain how to enable this tool.

To access the SWAT interface:

1. Type a URL of this format in a Web browser:

http://computer:port#

where computer is the host name of a UNIX VOB server or view server host on which you

have installed Samba and port# represents the SWAT port number. (The default value is 901.)

2. Log on as root. The SWAT interface now appears in your browser.

Configuring Samba Globals for ClearCase

Click the GLOBALS icon at the top of the SWAT interface's home page. Then click Advanced
View. Set the global options as described in Table 6.

Table 6 Samba Global Settings for ClearCase (Part 1 of 2)

Base options

workgroup Set to the name of the Windows NT domain to which

ClearCase hosts accessing this server belong

netbios name Set to the host name of this computer

Security options

security DOMAIN (recommended) or USER (see note)

encrypt passwords Yes

create mask 0775

directory mask 0775

username map Set to the local pathname of the username.map file
4 - Cross-Platform File Access 45

NOTE: If you select USER security, you must enter every user that will access Samba file services

in a local password encryption database on the server that supports those file services. Click the

PASSWORD icon on the SWAT home page. In the Server Password Management section, enter

the name and password of each user.

ClearCase has no special requirements for other Samba globals, so you may configure them in

any way that's appropriate for your site.

Creating Shares for VOB and View Storage

You must create one or more Samba shares to hold server storage locations or individual VOB or

view storage directories. To create a Samba share:

1. Click the SHARES icon at the top of the SWAT interface's home page.

2. Enter a name for the share in the text field to the right of the Create Share button. To simplify

administration, we recommend that the share name be similar or identical to that of the

UNIX directory whose name you will enter in Step #4.

3. Click Create Share.

4. Edit the path option under Base Options. Set its value to be a directory under which the VOB

or view storage areas reside. The VOB or view storage areas do not need to be in the directory

specified, but they must be somewhere below the specified directory.

5. Click Commit Changes.

Locking options

oplocks No

kernel oplocks No

File-name handling options

case sensitive No

preserve case Yes

Table 6 Samba Global Settings for ClearCase (Part 2 of 2)
46 ClearCase Product Family Documentation Supplement

Starting Samba Services

The Samba smbd and nmbd services must be running before Windows computers can access

files using Samba. We recommend that you configure your UNIX host to start the smbd and

nmbd services at boot time. Platform-specific instructions for configuring automatic service

startup are included in the Samba documentation.

Samba services can also be started manually from the SWAT interface using the following

procedure:

1. Click the STATUS icon at the top of the SWAT interface's home page.

2. Click Start smbd.The page refreshes and should display the smbd status as running .

3. Click Start nmbd.The page refreshes and should display the nmbd status as running .

Configuring ClearCase to Support Samba

For all ClearCase clients on Windows NT that have the MVFS installed and that will access

Samba shares, change the MVFS Performance settings in the ClearCase program in Control

Panel as follows:

1. Click Start>Settings>Control Panel. Start ClearCase.

2. On the MVFS Performance tab:

➣ Select Override for both Maximum number of mnodes to keep on the free list and

Maximum number of mnodes to keep for cleartext free list.

➣ Set the value for both to 800.

3. Click OK to apply the changes and close the dialog box.

4. Restart Windows NT.

Testing the Samba Configuration on Non-ClearCase Files

We recommend that you test the Samba installation and configuration using non-ClearCase files

and directories before attempting to use Samba to provide file access to VOBs and views, as

follows:

1. Create a directory on your Samba server (for example, /testshare/testdir) and a test file in

that directory (for example, /testshare/testdir/testfile).
4 - Cross-Platform File Access 47

2. Create a Samba share using testshare as the share name and /testshare as the path name for

the share.

3. From a Windows NT client, create a file in the Samba share. Then verify that the UNIX user

and group settings for that file are correct.

4. Verify that all Windows NT clients can access the Samba share, including testing permission

and access restrictions, until you are confident that Samba is working properly.

Testing the Samba Configuration with ClearCase

To verify that ClearCase and Samba are working together properly:

1. On a UNIX VOB or view server, install and configure Samba as described in this chapter,

creating shares for VOB and/or view storage.

2. Verify that your ClearCase user and group assignments are appropriate. To do so, refer to the

chapter on this subject in the release 4.1 edition of Administering ClearCase.

3. Verify that you can access VOBs and views on the server from a UNIX client.

4. Log on to a ClearCase client on Windows NT. Use the Region Synchronizer to import VOB

and view tags for VOBs and views hosted on the UNIX server into the Windows region.

5. Ensure that you can use these views and VOBs by performing some basic ClearCase

operations (for example, mkelem, checkin, and checkout) in them.

Syntax TotalNET Advanced Server

ClearCase supports the Syntax TotalNET Advanced Server (TAS) SMB server product to provide

Windows NT computers using dynamic views with access to VOBs and views on any of the

following UNIX Platforms:

➤ Solaris 2.5.1 or later

➤ HP-UX 11.0 or later

➤ AIX 4.3 or later
48 ClearCase Product Family Documentation Supplement

Installing TAS 6.0

This section describes how to install TAS 6.0, including how to configure TAS and ClearCase to

support mixed-environment file access. If you are using Syntax TotalNET Advanced Server, you

must install and configure it on each UNIX VOB and view server that you want to access from a

Windows NT client.

Follow the instructions in the appropriate platform-specific installation section of TotalNET
Advanced Server Release Notes to install TAS on each VOB and view server requiring access from

Windows NT.

Enabling the Multiuser Kernel Driver on AIX

If you are installing Syntax TotalNET Advanced Server on an AIX platform, you must enable the

multiuser kernel driver after installing TAS. This step provides support for the TAS SMB

multiplexor, which is required when using ClearCase with TAS on AIX.

To enable the multiuser kernel driver, use the TAS smbmxenable command. This command does

not take any command-line options or arguments.

cd /var/totalnet/usr/sbin
./smbmxenable

To disable the multi-user kernel driver, use the TAS smbmxdisable command. This command

does not take any command-line options or arguments.

cd /var/totalnet/usr/sbin
./smbmxdisable

NOTE: You cannot enable or disable the multiuser support from the Framework interface. You for

details about multiuser support on AIX platforms, see Appendix E, TAS Multiplexing, in the

TotalNET Advanced Server Administration Manual.

Accessing the Syntax Administration Framework

You can configure and administer TAS using the Syntax Administration Framework (formerly

known as the TotalNET Administration Suite, or TNAS) Web interface. For details, see the

chapter on syntax administration framework in TotalNET Advanced Server Administration Manual.

To access the Syntax Administration Framework Web interface:

1. Type a URL of this format in a Web browser:
4 - Cross-Platform File Access 49

http://computer:port#

where

➣ computer is the host name of a UNIX VOB- or view-server host on which you have

installed TAS

➣ port# represents the Framework port number (the default is 7777)

The Syntax Enterprise Services page appears.

2. Click Syntax Administration Framework; a Framework logon program appears.

3. Log on as root, using the root password for the TAS server. The Framework interface now

appears in your browser.

4. Click TAS Configuration and Administration in the sphere frame (that is, the frame at the

upper right of the interface).

The TAS configuration and administration menu now appears in the menu frame (that is, the

frame at the lower left of the interface).

Performing Initial Setup of TAS

NOTE: If you are upgrading an existing installation of TAS, the upgrade procedures preserve the

previous configuration, including existing TAS volumes and file services supporting ClearCase,

so you can skip the remaining sections of this chapter. After you have upgraded, ensure that

opportunistic locks are disabled for each TAS volume that contains ClearCase storage. (The

Support opportunistic locks check box in the volume definition should be cleared.) For details,

see Administering Volume Attributes in the chapter on volume administration in TotalNET
Advanced Server Administration Manual.

After you have installed TAS on a server, you must perform an initial setup on that TAS

installation. For details, see the chapter on initial setup in TotalNET Advanced Server
Administration Manual.

Click Initial Setup in the menu frame of the Framework Web interface, and follow the

instructions in the Syntax documentation, subject to the changes noted in these sections that are

specific to use of TAS with ClearCase.

General TAS Settings

Accept the defaults for Admin user, Admin group, and so on in the General TAS Settings pane.
50 ClearCase Product Family Documentation Supplement

Enabling and Configuring the CIFS Realm

In the Select Realms to Configure pane, enable the CIFS realm, and click Next; the CIFS Realm
Configuration pane appears.

NOTE: ClearCase does not require that the NetWare and AppleTalk realms be enabled.

Configure the CIFS realm as follows:

➤ Server name — Type the name of the VOB or view server, if it is not already the default.

➤ Workgroup — Type the name of the Windows NT domain to which your ClearCase clients

belong.

➤ Transports — Select the protocols appropriate for your site.

➤ Device for NetBEUI — Accept the default.

➤ WINS Server(s) — If you are using proxy server authentication mode for CIFS file services

(see Configuring the File Service on page 53), you may have to specify the IP addresses of the

WINS servers for the network on which the authentication proxy server resides.

For details about configuring the CIFS realm, see the section Updating CIFS Realm Configuration
in the chapter Updating Realm Configuration in the System/Realm Administration of the TotalNET
Advanced Server Administration Manual.

Configuring TAS to Support ClearCase

After initial setup, configure the TAS server to support ClearCase, using the Framework Web

interface.

Creating a TAS Username Map for clearcase_albd

Create a TAS username map from the user account for the ClearCase server process on

Windows NT to a UNIX user account whose primary group ID (GID) can access all VOBs and

views that will be accessed by TAS file services. In this section, we assume that this user account

is named clearcase_albd. If the user account for your server process is configured to use a

different name, use that name instead.

To create the TAS username map:

1. Click TAS System in the menu frame; the TAS System Configuration and Administration
pane appears.
4 - Cross-Platform File Access 51

2. Click Username Maps; the Username Maps pane appears. Make these changes to support

ClearCase:

➣ In the text box, type the name of an existing UNIX user account and click Create. We

strongly recommend that this user’s primary group (the group listed in the user’s entry

in the passwd database) be one to which all ClearCase users who access VOBs and views

on this server belong.

For details about group- and user-level access to ClearCase data, see Administering
ClearCase

➣ In List of client accounts, type clearcase_albd.

Click Submit at the bottom of the form; then click OK in the confirmation message.

For details about the ClearCase server process user, see the chapter on administering

WIndows NT domains in Administering ClearCase. For details about creating user name

mappings in TAS, see Username Maps in the Sharing Volumes and Printers chapter of TotalNET
Advanced Server Administration Manual.

Creating a Volume

Create a TAS volume that exports the directory in which the VOB and/or view storage are

physically located. Clients use the volume name to represent the path to the physical VOB or

view storage location.

NOTE: We recommend that you test the TAS installation and configuration using non-ClearCase

files before attempting to use TAS to access VOBs and views. For details, see Testing the TAS
Configuration on Non-ClearCase Files on page 56.

The procedure required to support ClearCase is summarized here:

1. Click TAS System in the menu frame; then click Volumes in the TAS System Configuration
and Administration pane.

2. Type a name (for example, ccstore) in the text box.

Ensure that the volume name is of a form that is acceptable for all realms that will access it.

For example, some realms do not accept names longer than 12 characters.

NOTE: The text box contains a symbolic name for the volume, not the pathname to the

volume storage. However, it is a good idea to specify TAS volume names that correlate to the

VOB and view storage paths. (For example, a TAS volume named ccstore may be associated
52 ClearCase Product Family Documentation Supplement

with /ccstore on the UNIX computer.) If these names do not correlate, examine the volume

properties to determine which pathnames are associated with which volumes.

3. Click Create; a New Volume Definition pane appears. Make these changes to support

ClearCase:

➣ Pathname — Type the pathname to the virtual root of the storage area. This pathname

is the root of the VOB or view storage areas for the VOB or view server. In other words,

all VOB or view storage areas must be located below this pathname (but they need not

be direct subdirectories of this pathname).

For example, if you type /ccstore, legal VOB and view storage names for this volume are

/ccstore/vobstore, /ccstore/home/vobstore, and /ccstore/home/project/viewstore.

➣ Volume umask — Type 002.

➣ Filename Case — Select preserve.

➣ Support opportunistic locks — Clear the check box.

Click Submit at the bottom of the form; then click OK in the confirmation pane.

For details about creating and administering volumes, see Administering Volume Attributes in the

Volume Administration chapter of TotalNET Advanced Server Administration Manual.

Configuring the File Service

To configure the TAS file service to support ClearCase:

1. Access the file service:

a. Click CIFS (NB) Realm in the menu frame.

b. Click Manage CIFS File Services; a list of the file services appears.

c. Click the file service that corresponds to your TAS server; then click Administer. A menu

of file service operations appears.

2. Click Configuration; an update file service form appears. Make these changes to support

ClearCase:

➣ Volume references — Select the TAS volumes this file service references and exports.

➣ Browse master — Select off.
4 - Cross-Platform File Access 53

➣ Umask — Type 002.

➣ Freespace report method — Select root.

➣ Windows 95 logon server — Clear this check box.

➣ Windows NT logon server — Clear this check box.

NOTE: You cannot use the Windows NT Logon Server feature if the TAS volumes are to

include ClearCase storage.

Click Submit at the bottom of the form; then click OK in the confirmation pane to return to

the menu of file service operations.

3. Click Authentication Options; the Authentication Options form appears. Under

User-mode authentication options, click Local or Remote.

NOTE: You cannot use Share mode authentication if the TAS volumes are to include

ClearCase storage.

For assistance in determining the authentication mode for your site, see your system

administrator. For details about authentication, see section 11.2, User Authentication, in the

TotalNET Advanced Server Administration Manual.

4. If you select Remote authentication, configure the authentication as follows:

➣ Proxies—Click Proxies and type the name of the proxy servers in this text box, one per

line.

NOTE: You may need to specify in the CIFS realm the IP addresses of the WINS servers

for the network on which the authentication proxy server resides. (See Enabling and
Configuring the CIFS Realm on page 51.)

➣ Use Username map — Select this check box to ensure that the file service references the

clearcase_albd username map specified in Creating a TAS Username Map for clearcase_albd
on page 51.

For details about Remote authentication, see section 11.2.2, Configuring a File Service to use
Proxy Authentication, in the TotalNET Advanced Server Administration Manual.

If you select Local authentication, configure the authentication as follows:

➣ Use Secure Passwords — Select this check box.
54 ClearCase Product Family Documentation Supplement

NOTE: If you select Local authentication, you must enter every user that will access TAS

file services in a local password encryption database on the server supporting those file

services. If your CIFS realm contains multiple servers supporting TAS file services, you

must configure a local password encryption database on each server.

➣ Use Username map — Select this check box to ensure that the file service references the

clearcase_albd username map specified in Creating a TAS Username Map for clearcase_albd
on page 51.

Click Submit at the bottom of the authentication options form. Then click OK in the

confirmation pane to return to the menu of file service operations.

For details about Local authentication, see section 11.2.1, Configuring a File Service to use Local
Authentication, in the TotalNET Advanced Server Administration Manual.

Start Services and Accept Service Connections

To start the TAS file services and accept service connections:

1. Click TAS System in the menu frame and then click TAS System Administration.

2. Click Start Services in the TAS System Administration pane.

Click OK in the Confirmation pane; then click OK to return to the TAS System
Administration pane.

3. In the TAS System Administration pane, click Accept Service Connections.

Click OK in the Confirmation pane; then click OK to return to the TAS System
Administration pane.

For details about starting TAS services and accepting service connections, see sections 10.1.1,

Starting TAS Services, and 10.4.1, Accepting Services in TAS, in the TotalNET Advanced Server
Administration Manual.

At this point, TAS is configured to support ClearCase. You can exit the Framework Web interface.

Configuring ClearCase to Support TAS

For all ClearCase clients on Windows NT that have the MVFS installed and will access TAS

volumes, change the MVFS Performance settings in the ClearCase program in Control Panel as

follows:
4 - Cross-Platform File Access 55

1. Click Start>Settings>Control Panel. Start ClearCase.

2. On the MVFS Performance tab:

➣ Select Override for both Maximum number of mnodes to keep on the free list and

Maximum number of mnodes to keep for cleartext free list.

➣ Set the value for both to 800.

3. Click OK to apply the changes and close the dialog box.

4. Restart the Windows NT client.

Testing the TAS Configuration on Non-ClearCase Files

We recommend that you test the TAS installation and configuration using non-ClearCase files

and directories before attempting to use TAS to provide file access to VOBs and views, as follows:

1. Create a directory structure on your TAS server (for example, /tasstore/testdir) and a test file

in that directory (for example, /tasstore/testdir/testfile).

2. Install and configure TAS as described in this chapter, using tasstore as the volume name and

/tasstore as the path name for the volume.

3. From a Windows NT client, create a file in the TAS volume. Then verify that the UNIX user

and group settings for that file are correct.

4. Verify that all Windows NT clients can access the TAS volume, including testing permission

and access restrictions, until you are confident that TAS is working properly.

Testing the TAS Configuration with ClearCase

To verify that ClearCase and TAS are working together properly:

1. On a UNIX VOB or view server, install and configure TAS as described in this chapter,

creating volumes containing VOB and/or view storage.

2. Verify that your ClearCase user and group assignments are appropriate. To do so, use the

tests described in the chapter on configuring ClearCase in a mixed network in Administering
ClearCase.

3. Verify that you can access VOBs and views on the server from a UNIX client.
56 ClearCase Product Family Documentation Supplement

4. Log on to a ClearCase client on Windows NT. Use the Region Synchronizer to import

VOB-tags and view-tags for VOBs and views hosted on the UNIX server into the Windows

region.

5. Ensure that you can use these views and VOBs by performing some basic ClearCase

operations (for example, mkelem, checkin, and checkout) in them.
4 - Cross-Platform File Access 57

58 ClearCase Product Family Documentation Supplement

chactivity
chactivity
Changes a UCM activity

APPLICABILITY

SYNOPSIS

chact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
{ [–hea⋅dline headline activity-selector ...] |

[–fcs⋅et src-activity-selector –tcs⋅et dest-activity-selector version-pname[,...] }

DESCRIPTION

The chactivity command modifies one or more UCM activities. Use this command for these

tasks:

• Change an activity’s headline

• Move versions from the change set of one activity to the change set of another activity

Note that changing the headline for an activity does not affect its name (its unique identifier). See

rename for related information.

The destination activity must exist before you can move a change set and both the source and

destination activities must be in the same stream. Use lsactivity –long to list the pathnames of

change set versions associated with an activity.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the activity.

Mastership: The current replica must master the activity.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 59

chactivity
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

MODIFY AN ACTIVITY’S HEADLINE. Default: None.

–hea⋅dline headline
Specifies a new headline for the activity. The headline argument can be a character string

of any length. Use double quotes to enclose a headline with spaces or special characters.

SPECIFYING THE ACTIVITY. Default: None.

activity-selector ...
Specifies one or more activities to modify.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

SPECIFYING THE SOURCE AND DESTINATION ACTIVITIES. Default: None.

–fcs⋅et src-activity-selector
Specifies the activity from which to move versions.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

–tcs⋅et dest-activity-selector
Specifies the activity to move versions to. These versions are recorded in the activity’s

change set.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with
60 ClearCase Product Family Documentation Supplement

chactivity
the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

version-pname[,...]
One or more version-extended pathnames that specify the versions to be moved to

another change set.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Change an activity’s headline.

cmd-context chactivity -headline "Fix front matter" fix_copyright
Changed activity "fix_copyright".

• Move a version from one activity’s change set to another activity’s change set.

cmd-context chactivity -fcset update_date \
-tcsets fix_copyright add_proc@@/main/chris_webo_dev/1

Moved version "add_proc@@/main/chris_webo_dev/1" from activity
"update_date" to activity "fix_copyright".

SEE ALSO

lsactivity, mkactivity, rename, rmactivity
 ClearCase Reference Pages 61

chactivity
62 ClearCase Product Family Documentation Supplement

chbl
chbl
Changes a UCM baseline

APPLICABILITY

SYNOPSIS

chbl [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]
{ [–inc⋅remental | –fu⋅ll] [–level promotion-level] }

baseline-selector ...

DESCRIPTION

The chbl command modifies one or more UCM baselines. You can modify a baseline’s labeling

status or assign a new promotion level to a baseline.

Baseline Labels

Baselines can be unlabeled, incrementally labeled, or fully labeled. Only labeled baselines can be

used to configure streams (see the reference pages for rebase and mkstream).

Promotion Levels

Promotion levels must be defined in the baseline’s project VOB, before they can applied to

baselines. See the setplevel reference page for information on promotion levels.

The promotion levels available in a VOB can be listed by running the describe command on the

UCM project VOB object.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the baseline.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 63

chbl
Mastership: The current replica must master the baseline.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CHANGING A BASELINE’S LABELING STATUS. Default: None.

–inc⋅remental
Changes the labeling status for an unlabeled baseline to incremental. This option has no

effect if the baseline is already incrementally or fully labeled.

–fu⋅ll
Changes the labeling status for a baseline from unlabeled or incremental to full. This

option has no effect if the baseline is already fully labeled. A chbl –full operation make

take a long time for components with many elements.

ASSIGNING PROMOTION LEVELS. Default: No change in promotion level.

–level promotion-level
Sets the promotion level for the specified baselines. The specified promotion level must

defined in the baseline’s project VOB.

SPECIFYING THE BASELINE. Default: None.

baseline-selector ...

Specifies one or more baselines to modify.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.
64 ClearCase Product Family Documentation Supplement

chbl
NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Change an unlabeled baseline to be incrementally labeled. The baseline specifier includes a VOB

component, which must be the baseline’s project VOB.

cmd-context chbl -incremental testbl.121@/vobs/core_projects

Begin incrementally labeling baseline "testbl.121".
Done incrementally labeling baseline "testbl.121".

• Change a baseline’s promotion level and check the labeling status. The baseline specifier

includes a VOB component, which must be the baseline’s project VOB.

cmd-context chbl -full -level TESTED testbl.121@\vobs\core_projects

Change baseline "testbl.121".
Baseline "testbl.121" is already fully labeled.

SEE ALSO

describe, diffbl, lsbl, lscomp, mkbl, rmbl, setplevel
 ClearCase Reference Pages 65

chbl
66 ClearCase Product Family Documentation Supplement

chfolder
chfolder
Modifies a UCM folder

APPLICABILITY

SYNOPSIS
chfolder [–c⋅omment comment | –cfi⋅le comment-file-pname |

–cq⋅uery | –cqe⋅ach |–nc⋅omment]
{ [–tit⋅le title] [–to to-folder-selector] }

folder-selector ...

DESCRIPTION

The chfolder command modifies one or more UCM folders. Use it for these tasks:

• To change the title of a folder

• To move a folder to another location in the folder hierarchy of a project VOB. The

RootFolder cannot be moved.

Note that changing a folder’s title does not affect its name (its unique identifier). See rename for

related information.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the folder, the UCM project VOB.

Mastership: (Replicated VOBs only) Your current replica must master the folder.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 67

chfolder
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ASSIGNING A NEW TITLE. Default: None.

–tit⋅le title
Specifies the new title for the folder. The title argument can be a character string of any

length. Use double quotes to enclose a title with special characters.

MOVING A FOLDER. Default: None.

–to to-folder-selector
Specifies the new parent folder. The to-folder and the folder you are moving must belong

to the same UCM project VOB.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING THE FOLDER TO CHANGE. Default: None.

folder-selector ...
Specifies one or more folders to modify. RootFolder cannot be moved.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form
68 ClearCase Product Family Documentation Supplement

chfolder
/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Assign a new title to the Parsers folder. Note the VOB component of the folder-specifier must be

the folder’s project VOB.

cmd-context chfolder -title "Team Parser Projects" Parsers@/vobs/core_projects
Changed folder "Parsers@/vobs/core_projects".

• Make the folder Core_Parsers a subfolder of RootFolder. Note that the folder’s project VOB

is given as the VOB component of the folder-specifier.

cmd-context chfolder -to RootFolder Core_Parsers@/vobs/core_projects
Changed folder "Core_Parsers@\vobs\core_projects".

SEE ALSO

lsfolder, mkfolder, rmfolder, rename
 ClearCase Reference Pages 69

chfolder
70 ClearCase Product Family Documentation Supplement

chproject
chproject
Modifies a UCM project

APPLICABILITY

SYNOPSIS
chproj⋅ect [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–tit⋅le title]

 [–amo⋅dcomp component-selector[,...]]

 [–to to-folder-selector]

 [–reb⋅ase_level promotion-level]

 [–policy policy-keyword[,...]] [–npolicy policy-keyword[,...]]

 [–crm⋅enable ClearQuest-user-database-name | –ncr⋅menable] }

 project-selector ...

DESCRIPTION

The chproject command modifies one or more UCM projects. Use it to:

• Change a project’s title

• Add one or more modifiable components to a project

• Move a project to another folder

• Change the promotion level required of a baseline before it can be used in a rebase

operation.

• Set policy for a project.

• Enable or disable a project for use with Rational ClearQuest

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 71

chproject
Project Titles

Note that changing a project’s title does not affect its name (its unique identifier). See rename for

related information.

Adding New Components

Over time, a project’s scope can broaden, and you may need to add writable components to the

project’s integration stream. The –amodcomp option allows you to add one or more modifiable

components. Components can be added to project development streams with the rebase
–baseline command.

Setting Required Promotion Levels for Recommended Baselines

A project’s rebase level is defined as the minimum promotion level a baseline must have to be

recommended in a rebase operation. For example, if ProjectA has three promotion levels,

REJECTED, TESTED, and RELEASED (in ascending order), and TESTED in the rebase level,

only baselines that are labeled TESTED or RELEASED are included in the project’s list of

recommended baselines. See rebase and setplevel for more information.

Project Policies

You can set or unset projectwide policies, such as specifying that views attached to the

integration stream must be snapshot views. Policies are identified on the command line by their

keyword. The following table describes these policies and lists the keywords used to set them.

Using Rational ClearQuest with UCM projects

You can link or unlink a UCM project to a ClearQuest database with the –crmenable or

–ncrmenable options. When you ClearQuest-enable a UCM project that contains UCM activities,

for each UCM activity, a ClearQuest record of type UCMUtilityActivity is created and linked to

Policy Keyword

Recommend snapshot views for

integration work. Dynamic views are

suggested if this policy is not set.

POLICY_UNIX_INT_SNAP (UNIX) or

POLICY_WIN_INT_SNAP (Windows)

Recommend snapshot views for

development work. Dynamic views are

suggested if this policy is not set.

POLICY_UNIX_DEV_SNAP (UNIX) or

POLICY_WIN_DEV_SNAP (Windows)

Require a development stream to be based

on the current recommended baselines

before it can be used to deliver changes to

the integration stream.

POLICY_DELIVER_REQUIRE_REBASE

Do not allow delivery from a development

stream that has checkouts.

POLICY_DELIVER_NCO_DEVSTR
72 ClearCase Product Family Documentation Supplement

chproject
the activity. This process is called activity migration. If you disable a link to ClearQuest, from a

UCM project that contains activities, all its activities are unlinked from their ClearQuest records.

All ClearQuest-enabled projects in the same UCM project VOB must link to the same ClearQuest

user database.

The –crmenable and –ncrmenable options display a summary of the number of activities that

have been migrated or unlinked.

You are informed if activities cannot be migrated or linked because they are not mastered in the

current UCM project VOB replica. If any are discovered, you are informed of the number of

activities for which this is true and shown a list of replicas from which to run the command again

to correct the problem.

Detecting and Correcting Incorrectly Enabled Activities

You can also use the –crmenable and –ncrmenable options to check for possible linking errors.

If you believe that your ClearQuest-enabled project may contain activities that are not linked to

a ClearQuest record, run the chproject –crmenable command. This scans all activities in the

project, skipping activities that are already linked and migrating all activities that are not linked.

To check for linked activities in projects that have been disabled for use with ClearQuest, run the

chproject –ncrmenable. This removes links between activities as needed. See Managing Software
Projects with ClearCase for further information.

RESTRICTIONS

Identities: You must be the project owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—local administrator of the ClearCase LT server host

Locks: An error occurs if there are locks on any of the following objects: the project, the UCM

project VOB.

Mastership: The current replica must master the project.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cq). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ASSIGNING A NEW TITLE. Default: None.
 ClearCase Reference Pages 73

chproject
–tit⋅le title
Specifies a new title for the project. The title argument can be a character string of any

length. Enclose a title with special characters in double quotes

ADDING TO THE LIST OF MODIFIABLE COMPONENTS FOR A PROJECT. Default: None.

–amo⋅dcomp component-selector[,...]

Adds one or more components to the project’s set of modifiable components.

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

MOVING THE PROJECT TO ANOTHER FOLDER. Default: None.

–to to-folder-selector
Moves one or more projects to the specified folder.The to-folder and project must have

the same UCM project VOB.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

CHANGING THE RECOMMENDED PROMOTION LEVEL FOR A REBASE OPERATION. Default: None.

–reb⋅ase_level promotion-level
Changes the promotion level required for baselines to be recommended baselines in a

rebase operation. For each component, the latest baseline in the integration stream at or

above this promotion level is recommended.

SETTING PROJECT POLICY. Default: None.

–policy policy-keyword
Activates the specified policy. See Project Policies on page 72

–npolicy policy-keyword
Removes the specified policy. See Project Policies on page 72

LINKING A PROJECT TO RATIONAL CLEARQUEST. Default: None.

–crm⋅enable ClearQuest-user-database-name
Enables a link from the project to the specified Rational ClearQuest database. The

schema of the ClearQuest database must be UCM-enabled, and your system must be

configured for the correct schema repository.

–ncr⋅menable
Disables use of Rational ClearQuest.

SELECTING A PROJECT. Default: None.

project-selector ...
Specifies one or more projects to modify.
74 ClearCase Product Family Documentation Supplement

chproject
project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Add the modifiable component, webo_modeler, to the project.

cmd-context chproject -amod webo_modeler webo_proj1@/vobs/webo_pvob

Changed modifiable component list for project
"webo_proj1@/vobs/webo_pvob".

SEE ALSO

chbl, lscomp, lsproject, mkproject, mkcomp, rebase, rmproject
 ClearCase Reference Pages 75

chproject
76 ClearCase Product Family Documentation Supplement

chstream
chstream
Modifies a UCM stream

APPLICABILITY

SYNOPSIS

chstream [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–title title] stream-selector ...

DESCRIPTION

The chstream command allows you to assign a new title to a stream. The stream’s UUID

(universal unique identifier) is not changed. See rename for related information.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on the following objects: the UCM project VOB, the

stream.

Mastership: The current replica must master the stream.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING A NEW STREAM TITLE Default: None.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 77

chstream
–title title
Specifies the new title for the stream. The title argument can be a character string of any

length. Enclose a title with special characters in double quotes.

SPECIFYING THE STREAM. Default: None.

stream-selector ...
Specifies one or more streams to be modified.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change the title of a stream.

cmd-context chstream -title "jamaica blue" java-int@vobs/javaprojvob

SEE ALSO

 lsstream, mkstream, rename, rmstream
78 ClearCase Product Family Documentation Supplement

cleardiffbl
cleardiffbl
Starts the diffbl browser

APPLICABILITY

SYNOPSIS
cleardiffbl [baseline-selector1 baseline-selector2]

DESCRIPTION

The cleardiffbl command invokes a graphical version of the diffbl utility, which compares two

baselines and displays differences in terms of activities or versions.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

baseline-selector1

baseline-selector2
Specifies the two baselines to compare. baseline-selector is of the form:

[baseline:]baseline-name[@vob-selector] and vob is the baseline’s UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows
 ClearCase Reference Pages 79

cleardiffbl
In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Display the differences between the baselines rev17bl1 and rev17bl2.

cmd-context cleardiffbl rev17bl1 rev17bl2

SEE ALSO

diffbl
80 ClearCase Product Family Documentation Supplement

clearfsimport
clearfsimport
Converts file system objects to element versions

APPLICABILITY

SYNOPSIS

• UNIX only:

clearfsimport [–preview] [–follow] [–recurse] [–rmname] [–comment comment]
[–mklabel label] [–nsetevent] [–identical] [–master] [–unco] source-name [. . .]

target-VOB-directory

• Windows only:

clearfsimport [–preview] [–recurse] [–rmname] [–comment comment]
[–mklabel label] [–nsetevent] [–identical] [–master] [–unco] [–downcase]

source-name [. . .] target-VOB-directory

DESCRIPTION

The clearfsimport command reads the specified file system source objects and places them in the

target VOB. This command uses magic files to determine which element type to use for each

element created (see the cc.magic reference page).

RESTRICTIONS

Identities: You must be root (UNIX) or the VOB owner to run clearfsimport unless you invoke it

with the -nsetevent option.

Locks: If it encounters a VOB lock while trying to write data during an import operation,

clearfsimport will pause and retry the operation every 60 seconds until it succeeds.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows
 ClearCase Reference Pages 81

clearfsimport
OPTIONS AND ARGUMENTS

PREVIEWING THE RESULTS. Default: No preview.

–preview
Previews the import, listing all elements that the import would add or change, as well

as any checkouts that would conflict with imports, but does not import anything.

HANDLING OF UNIX SYMBOLIC LINKS. Default: Processes each UNIX symbolic link as a VOB

symbolic link with the same link text.

–follow
Processes the object to which a UNIX symbolic link points, instead of importing the link

itself into the VOB.

HANDLING OF DIRECTORY ARGUMENTS. Default: If a source-name argument names a directory to

be imported, an element version is created for the directory and for each file, directory, or UNIX

symbolic link residing at the top level of the directory.

–recurse
Descends recursively into all source-name arguments that are directories.

HANDLING OF EXISTING VOB DIRECTORIES. Default: Existing VOB directories that are not present

in the sources to be imported are left as is.

–rmname
For all source-names that are directories, performs an rmname operation on elements that

already existed in the VOB but are not present in the source directory. If used in

combination with -recurse, performs this rmname operation in all directories traversed.

COMMENTS. Default: created by clearfsimport

–comment comment
Attaches the specified comment instead of the default comment to each element version

checked in to the VOB.

LABELING. Default: No labeling.

–mklabel label
Attaches the specified label instance to each element version checked in. If the

corresponding label type does not exist, it is created. If the label is already attached to an

existing element version, it is moved.

EVENT RECORDS. Default: Historical information associated with the sources is preserved.

–nsetevent
Specifies that event records and historical information for new elements and element

versions show the user who executed clearfsimport and the date of execution, not the

original data associated with the sources. This option creates element versions that are
82 ClearCase Product Family Documentation Supplement

clearfsimport
newer than the original sources; thus, the clearfsimport operation is not restartable after

you have invoked it with this option.

CREATION OF IDENTICAL SUCCESSOR VERSIONS. Default: Element versions that are identical to

their predecessors in the source are not created.

–identical
Creates a new version of an element—even if it is identical to its predecessor—if the

source has a more recent date than that of the version in the VOB.

BRANCH MASTERSHIP. Default: The main branch of the element is mastered by the replica that

masters the branch’s type.

–master
Assigns mastership of the main branch of the element to the VOB replica at which you

execute this command.

HANDLING OF EXISTING CHECKED OUT ELEMENTS. Default: When clearfsimport encounters a

checked out element that already exists in the target VOB and that corresponds to a source to be

imported, it prints an error and continues.

–unco
If a checked-out file element corresponding to a source file to be imported already exists

in the target VOB, an uncheckout operation is executed on the element and the

corresponding view-private file is retained with a suffix of .keep. The import operation

then proceeds to check the element out again, then checks in the imported version.

HANDLING OF CASE OF IMPORTED ELEMENTS. Default: Case preserving.

–downcase
Forces downcasing of imported elements.

NOTE: When importing files from a UNIX host into a VOB on a Windows NT host,

clearfsimport may be unable to operate correctly on files and directories that have

mixed-case names. For example, if a mixed-case name is specified on the command line,

clearfsimport will create the element name as specified, even if the case mix of the source

is different. In addition, the -rmname option will not work where source and target

elements differ only in character case. Consistent use of -downcase can help avoid these

problems. If -downcase is specified for an initial import from UNIX to Windows NT, it

should be specified on any subsequent imports into the same VOB directories.

SPECIFYING THE SOURCE. Default: None.

source-name [. . .]

Flat files, directories, and UNIX symbolic links to be imported to the VOB.
 ClearCase Reference Pages 83

clearfsimport
For each pathname, the leaf of the pathname is imported into the target VOB. For

example, /usr/src/lib/foo.c is imported into the VOB /vobs/mylib as /vobs/mylib/foo.c
or into the VOB /bigvob as /bigvob/foo.c.

For each file, an element version is imported. If a corresponding version of the file

already exists in the target VOB and is checked out, clearfsimport prints and error and

continues unless the -unco option was specified. A summary of import failures due to

checked out elements is printed at the completion of the import operation.

For each directory, versions are created for all files and UNIX symbolic links it contains.

Also created is a directory element with one version for the directory and each of its

subdirectories. Checked out VOB directories corresponding to source directories to be

imported are re-used.

SPECIFYING THE TARGET VOB. Default: None.

target-VOB-directory
The VOB directory to which the sources are to be imported.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Preview a VOB—/vobs/projectx/src—that is to be populated with the contents of

/usr/src/projectx. Recursively descend all directories encountered and follow UNIX

symbolic links to the target objects.

cmd-context clearfsimport –preview –follow –recurse /usr/src/projectx
/vobs/projectx/src

SEE ALSO

cc.magic, events_ccase, relocate, rmname, uncheckout
84 ClearCase Product Family Documentation Supplement

clearjoinproj
clearjoinproj
Starts the UCM Join Project Wizard

APPLICABILITY

SYNOPSIS
clearjoinproj

DESCRIPTION

The clearjoinproj command starts the UCM Join Project Wizard, which takes you through the

steps required to start work on an existing UCM project.

You can also start the Join Project Wizard from the Project Explorer.

RESTRICTIONS

Identities: No special identity required.

Locks: A stream cannot be created if there are locks on any of the following objects: the project

VOB and, for integration streams, the project.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

None.

EXAMPLE

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows
 ClearCase Reference Pages 85

clearjoinproj
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Invoke the Join Project wizard.

cmd-context clearjoinproj

SEE ALSO

clearprojexp, mkstream, mkview
86 ClearCase Product Family Documentation Supplement

clearmake
clearmake
ClearCase build utility; maintains, updates, and regenerates groups of programs

APPLICABILITY

SYNOPSIS

• UNIX only—Build a target:

clearmake [–f makefile] ... [–cukinservwdpqUNR]

[–J num] [–B bldhost-file] [–C compat-mode] [–V | –M] [–O | –T | –F]

[–A BOS-file] ... [macro=value ...] [target-name ...]

• Windows only—Build a target:

clearmake [–f makefile] ... [–cukinservwdpqUNR]

[–C compat-mode] [–V | –M] [–O | –T | –F]

[–A BOS-file] ... [macro=value ...] [target-name ...]

• Display version information for clearmake:

clearmake { –ver⋅sion | –VerAll }

DESCRIPTION

clearmake is ClearCase’s variant of the UNIX make(1) utility. It includes most of the features of

UNIX System V make(1). It also features compatibility modes, which enable you to use

clearmake with makefiles that were constructed for use with other popular make variants,

including Gnu make.

clearmake features a number of ClearCase extensions:

• Configuration Lookup—A build-avoidance scheme that is more sophisticated than the

standard scheme, which uses time stamps of built objects. Configuration lookup also

includes automatic dependency detection. For example, this guarantees correct build

Product Command Type

ClearCase command

Platform

UNIX

Windows
 ClearCase Reference Pages 87

clearmake
behavior as C-language header files change, even if the header files are not listed as

dependencies in the makefile.

• Derived Object Sharing—Developers working in different views can share the files created

by clearmake builds.

• Creation of Configuration Records—Software bill-of-materials records that fully document

a build and support the ability to rebuild.

NOTE: clearmake is intended for use in dynamic views. You can use clearmake in a snapshot

view, but most of the features that distinguish it from ordinary make programs—build

avoidance, build auditing, derived object sharing, and so on—are not enabled in snapshot views.

(Parallel builds are enabled.) The rest of the information in this reference page assumes you are

using clearmake in a dynamic view.

Related Reference Pages

The following reference pages include information related to clearmake operations and results:

See also Building Software with ClearCase.

View Context Required

For a build that uses the data in one or more VOBs, the shell or command interpreter from which

you invoke clearmake must have a view context:

• On UNIX systems, the view context must be either a set view or a working directory view. If

you have a working directory view, but it differs from the set view, clearmake changes its

set view to the working directory view.

abe Executes builds on remote hosts during a parallel build.

bldhost Specifies hosts to be used for parallel builds.

bldserver.control Controls use of a host for parallel builds.

omake Builds software on Windows NT and provides compatibility

with PC-based make products.

clearaudit Runs audited builds.

lsdo (cleartool subcommand) Lists derived objects created by

clearmake, omake, or clearaudit.
catcr (cleartool subcommand) Displays configuration records

created by clearmake, omake, or clearaudit.
diffcr (cleartool subcommand) Compares configuration records

created by clearmake, omake, or clearaudit.
rmdo (cleartool subcommand) Removes a derived object from a

VOB.

winkin (cleartool subcommand) Winks in a derived object to a view

or to the VOB.
88 ClearCase Product Family Documentation Supplement

clearmake
• On Windows systems, you must be on the dynamic-views drive (default: M:\) or a drive

assigned to a view. If you want derived objects to be shared among views, you must be on a

drive assigned to a view.

You can build objects in a standard directory, without a view context, but this disables many of

clearmake’s special features.

clearmake AND MAKEFILES

clearmake is designed to read makefiles in a way that is compatible with other make variants.

For details, including discussions of areas in which the compatibility is not absolute, see Using
clearmake Compatibility Modes in Building Software with ClearCase.

For more information about makefiles and clearmake, see Building Software with ClearCase.

HOW BUILDS WORK

In many ways, ClearCase builds adhere closely to the standard make paradigm:

1. You invoke clearmake, optionally specifying the names of one or more targets. (Such

explicitly specified targets are called “goal targets.”)

2. clearmake reads zero or more makefiles, each of which contains targets and their associated

build scripts. It also reads zero or more build options specification (BOS) files, which

supplement the information in the makefiles.

3. clearmake supplements the makefile-based software build instructions with its own built-in

rules, or, when it runs in a compatibility mode, with built-in rules specific to that mode.

4. For each target, clearmake performs build avoidance, determining whether it actually needs

to execute the associated build script (target rebuild). It takes into account both source

dependencies (Have any changes occurred in source files used in building the target?) and

build dependencies (Must other targets be updated before this one?).

5. If it decides to rebuild the target, clearmake executes its build script.

The following sections describe special clearmake build features in more detail. Figure 7

illustrates the associated data flow.
 ClearCase Reference Pages 89

clearmake
Figure 7 Data Flow in a clearmake Build

CONFIGURATION RECORDS AND DERIVED OBJECTS

In conjunction with the MVFS file system, clearmake audits the execution of all build scripts,

keeping track of file use at the system-call level. For each execution of a build script, it creates a

configuration record (CR), which includes the versions of files and directories used in the build,

the build script, build options, (for example, macro assignments) and other related information.

A copy of the CR is stored in the VOB database of each VOB in which the build script has built

new objects.

A file created within a VOB by a build script is called a derived object (DO), and it can be

shareable or nonshareable. When a shareable derived object is built in a view, a corresponding

VOB database object is also created. This enables any view to access and possibly share (subject

to access permissions) any derived object, no matter what view it was originally created in.

When a build tool creates a nonshareable derived object, the tool does not write any information

about the DO to the VOB. Therefore, the DO is invisible to other views and cannot be winked in

by them. Builds that create nonshareable DOs are called express builds. For more information

about using express builds, see Preventing Winkin to Other Views on page 92.

NOTE: Symbolic links created by a build script and files created in non-VOB directories are not

DOs. See MVFS FILES AND NON-MVFS OBJECTS on page 92.

For each build script execution, ClearCase logically associates each DO created with the build

script’s CR.

You can suppress the creation of CRs and derived objects with the –F option. For details on CRs,

derived objects, see Derived Objects and Configuration Records in Building Software with ClearCase.

For information on ClearCase-specific special targets, see Building Software with ClearCase.

source
data
files

existing

new

configuration
environment

makefiles

new

clearmake

build
options
spec files

variables

configuration
records

derived
objects

records
90 ClearCase Product Family Documentation Supplement

clearmake
Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, a single invocation of clearmake to build a

high-level target can cause multiple build scripts to be executed and, accordingly, multiple CRs

to be created.

CONFIGURATION LOOKUP AND WINKIN

For directory targets, clearmake uses standard make logic.

When a target names a nondirectory file in a VOB, clearmake (by default) uses configuration

lookup to determine whether a build is required. This involves comparing the CRs of existing

DOs with the current build configuration:

• The versions of elements selected by the view’s config spec.

• The build options to be applied, as specified on the clearmake command line, in the

environment, in makefile(s), or in build options specification file. See BUILD OPTIONS
SPECIFICATION FILE on page 93.

• The build script to be executed.

In performing configuration lookup, clearmake considers a DO version (a derived object that has

been checked in as a version of an element) only if the version’s element has the same pathname

as the original derived object. That is, if you copy a DO to a different location from where it was

created and check it in there, clearmake does not consider the DO version.

clearmake first tries to avoid rebuilding by reusing a DO in the current view; this succeeds only

if the CR of the candidate DO matches the current build configuration. For the purpose of

rebuilding, a branch/0 version of a file selected by a view is considered to match its non-zero

predecessor version in a CR.

clearmake can also avoid rebuilding by finding a shareable DO, built in another view, whose CR

matches the current build configuration. In this case, it winks in (winkin) that derived object,

causing it to be shared among views. Other derived objects created by the same build script

(siblings) are winked in at the same time. clearmake rebuilds a target only if it cannot locate any

existing derived object that matches the current build configuration.

DO versions must be checked out before they can be re-used or winked in. The -c option to

clearmake provides support for automatically checking out these DOs before they are used. The

CCASE_AUTO_DO_CI environment variable provides a means to automatically check in DOs

checked out by clearmake -c. Checkouts executed by this feature behave like any cleartool
checkout does with respect to reservation. Methods that can be used to change cleartool
checkout's default reservation policy apply here as well. The checkouts are not audited.

Checkins preserve the timestamp of the DO as though cleartool checkin -ptime were used. This

feature is fully compatible with checkout or checkin triggers, which fire normally when the

event occurs.
 ClearCase Reference Pages 91

clearmake
The .cmake.state File

The .cmake.state file is a view-private cache of config records for derived objects built in the

view. clearmake creates this file in the directory that was current when the build started. During

subsequent builds in that directory in the view, clearmake references the file instead of

communicating with the VOB. This makes configuration lookup faster, improving clearmake
performance.

You can delete .cmake.state files if they get too large. When clearmake looks for a .cmake.state
file and it doesn’t exist, no errors occur and clearmake creates a new file.

Suppressing Configuration Lookup

You can override the default configuration lookup behavior with command options and

ClearCase special targets. (For information on ClearCase special targets, see Building Software
with ClearCase). For example, –T turns off configuration lookup, basing rebuild decisions on time

stamps, and –V disables winkin of DOs from other views.

Preventing Winkin to Other Views

You can prevent derived objects that you create from being winked in to other views by using

express builds. During an express build, clearmake creates nonshareable DOs. These DOs have

config records, but clearmake does not write information about the DOs into the VOB. DOs

created during an express build are invisible to other views. To use express builds, invoke

clearmake in a view configured with the nonshareable DOs property:

• To configure an existing view for express builds, use chview –nshareable_dos view-tag. See

the chview reference page for more information.

• To create a new view and configure it with the nonshareable DOs property, use the mkview
command and specify the –nshareable_dos option. See the mkview reference page for

more information.

• Use the –T or –F options to create view-private files only.

• Use special targets that prevent winkin; for example, .NO_WINK_IN. For more

information, see Building Software with ClearCase.

• Set an environment variable that no other users set identically. This environment variable

will be recorded in the config records clearmake creates.

MVFS FILES AND NON-MVFS OBJECTS

All files with pathnames below a VOB-tag (VOB mount point) are termed MVFS files:

• Checked-in versions of file elements (data stored in VOB)

• Checked-out versions of file elements (data stored in view)

• Other view-private files

• Derived objects
92 ClearCase Product Family Documentation Supplement

clearmake
Conversely, a non-MVFS object is any file, directory, or UNIX link whose pathname is not under

a VOB-tag; such objects are not version controlled. By default, non-MVFS objects are not audited

during clearmake builds. Non-MVFS files that are read during a build are not included in the

detected dependency list of the CR, and non-MVFS files that are created are not ClearCase

derived objects. A CR includes information on a non-MVFS object used by a build script only if

either of these conditions are true:

• The object appears as an explicit dependency in the makefile.

• The object can be inferred to be a dependency through clearmake’s file-name extension

rules.

The explicit dependency is referred to as a makefile dependency. For example:

src.o : /usr/include/stdio.h

UNIX Systems Only—Non-MVFS Files in Configuration Lookup and Remote Building

During configuration lookup, clearmake examines each non-MVFS file that is listed in the CR of

a candidate DO. The CR entry includes: the non-MVFS file’s size, its time stamp, and its

checksum. The current version of the non-MVFS file must match the CR entry in one of these

ways:

• First check: file size and time stamp

• Second check: file size and checksum

clearmake also performs these checks during a parallel build. If the characteristics of a file are

different on the local machine and the remote build host, clearmake does not attempt the rebuild;

instead, it prints the following message:

abe: Error: Inconsistent version for dependency “dependency”

This ensures the consistency of a build across multiple hosts.

BUILD OPTIONS SPECIFICATION FILE

A build options specification (BOS) file is a text file containing macro definitions and/or

ClearCase special targets. We recommend that you place nonpermanent option specifications

(for example, a macro that specifies “compile for debugging”) in a BOS file, instead of on the

clearmake command line. This minimizes the likelihood of having clearmake perform a rebuild

unexpectedly (for example, because you specified –g (UNIX) or /Zi (Windows) on a compiler

command line last time, but forgot to specify it this time).

See Building Software with ClearCase for details.

clearmake SLEEP

clearmake can monitor the current VOB’s lock status during a build, so that if an administrator

locks the VOB while clearmake is running, the build does not terminate abnormally. Before

executing the build script and before creating a derived object and configuration record,
 ClearCase Reference Pages 93

clearmake
clearmake checks the lock status of the current VOB. If the VOB is locked, clearmake starts a

sleep-check cycle. When it finds the VOB unlocked, the build proceeds.

NOTE: clearmake starts the sleep-check cycle even if the user who invokes the build is on the

exception list for the lock.

When a sleep-check cycle begins, clearmake prints a message announcing the sleep, its duration,

and the reason for it. Initially, clearmake checks the lock status 10 times, waiting 60 seconds

between attempts. clearmake then increments the sleep time by 5 seconds and again tries 10

times, and so on. clearmake prints a sleep message at the start of each group of 10 retries.

This implementation does not guarantee that the build will not terminate abnormally. There are

still a few “windows of failure.” The build script will fail and terminate abnormally, and the

build will terminate if any of these conditions is true:

• The build script modifies the VOB, either by running a cleartool command that modifies

the VOB, or simply removing the derived object which is the target of the build.

• The build script writes to another VOB other than the current VOB, and the other VOB is

locked.

• The VOB becomes locked in the short time between the check and the build script

execution, and the build script has an action that modifies the VOB.

By default, clearmake checks the VOB containing the working directory that was current at the

start of the build. To check a set of VOBs, set the environment variable CCASE_BLD_VOBS to the

list of VOB-tags to check. Separate the VOB-tags in the list with a space, tab, colon (UNIX),

semicolon (Windows), or comma.

To disable the checks, set the environment variable CCASE_BLD_NOWAIT. When this environment

variable is set, clearmake does not check for a VOB-lock (or wait for the VOB to be unlocked).

CACHING UNAVAILABLE VIEWS

When clearmake shops for a derived object to wink in to a build, it may find DOs from a view

that is unavailable (because the view server host is down, the albd_server is not running on the

server host, and so on). Attempting to fetch the DO’s configuration record from an unavailable

view causes a long time-out, and the build may reference multiple DOs from the same view.

clearmake and other cleartool commands that access configuration records and DOs (lsdo,

describe, catcr, diffcr) maintain a cache of tags of inaccessible views. For each view-tag, the

command records the time of the first unsuccessful contact. Before trying to access a view, the

command checks the cache. If the view’s tag is not listed in the cache, the command tries to

contact the view. If the view’s tag is listed in the cache, the command compares the time elapsed

since the last attempt with the time-out period specified by the CCASE_DNVW_RETRY environment

variable. If the elapsed time is greater than the time-out period, the command removes the

view-tag from the cache and tries to contact the view again.
94 ClearCase Product Family Documentation Supplement

clearmake
NOTE: The cache is not persistent across clearmake sessions. Each recursive or individual

invocation of clearmake attempts to contact a view whose tag may have been cached in a

previous invocation.

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

UNIX ONLY—PARALLEL BUILDING

clearmake supports parallel building (execution of several build scripts concurrently on one or

more hosts). Parallel building is enabled by the –J option, which specifies the parallelism

(concurrency) level, and the build hosts file, which lists hosts where build scripts can be

dispatched.

Before starting a parallel build, clearmake determines what work needs to be done, organizing

the work as a sequence of target rebuilds. clearmake then dispatches build scripts to hosts, using

a load balancing scheme. By default, a host is used only if it is at least 50% idle. You can adjust

this idleness threshold with a –idle specification in your build hosts file. See the bldhost and

bldserver.control reference pages for details.

To suppress parallel building for some or all of a makefile’s targets, use the special

.NOTPARALLEL target. See Building Software with ClearCase for details.

For information on setting up a parallel build, see Setting Up a Parallel Build in Building Software
with ClearCase.

UNIX Only—Remote Build Environment

clearmake dispatches a build script to a remote host by invoking a remote shell there. This shell,

in turn, runs an audited build executor (abe) process which executes the build script. If the abe
process cannot be started, clearmake will not use the host.

For information on how the environment is set, see the abe reference page.

UNIX Only—Terminal Output

In a serial build (–J not specified), a target’s build script is connected to stdout directly. Output

appears as soon as it is produced by the script’s commands. In a parallel build (–J specified with

an argument >=1), the standard output of each build script is accumulated in a temporary file by

clearmake. As each build script finishes, clearmake sends it to stdout all at once.

UNIX Only—Enabling Parallel Building on the Local Host

To perform a parallel build on the local host, make sure that both of the following conditions are

true:

• CCASE_HOST_TYPE is unset when you invoke clearmake.

• You specify –J num on the clearmake command line, where num is greater than 0.
 ClearCase Reference Pages 95

clearmake
clearmake uses the idle specification in your host’s bldserver.control file to determine whether

it can perform the build on your host. If your host does not have a bldserver.control file,

clearmake assumes an idle threshold of 0 and performs the build regardless of the load on your

host.

NOTE: clearmake prints a message that it is performing a parallel build on the local host.

UNIX Only—Parallel Build Scheduler

clearmake schedules and manages target rebuilds as follows:

• It executes the build script for an out-of-date target as soon after detection as system build

resources will allow.

• It does not assume that executing a build script for a specific target implies that the target

was updated.

clearmake evaluates the dependency graph, beginning with the command-line supplied targets.

Before evaluating a specific target, clearmake ensures that all dependents of that target have

been evaluated and brought up to date. As soon as a target is deemed to be out of date, it is made

available for rebuilding. A rebuild is initiated as soon as system resources allow. Depending on

the availability of build hosts and load-balancing settings, this may happen immediately or be

delayed.

When DO shopping/winkin occurs, clearmake postpones DO lookup for any target that has

scheduled dependents until the target is encountered in the rebuild logic. When a target with

previously scheduled dependents is encountered in the rebuild logic, clearmake then performs

the DO shopping/winkin attempt only when the target’s dependencies have completed. This

eliminates unnecessary rebuilds in serial mode and allows a parallel clearmake to initiate

rebuilds sooner.

UNIX Only—Building Targets on Specified Hosts

When you perform a parallel build with clearmake, you can specify that clearmake must build

a target on a certain host. The environment variable CCASE_BLD_HOSTS specifies one or more

build hosts.

NOTE: These hosts do not have to appear in your build hosts file. If a specified host appears in

your build hosts file, clearmake ignores any –idle specifications for the host in the build hosts

file and uses –idle 0.

We recommend that you set this variable conditionally in your makefile, using target-dependent

variable bindings. If you set the variable on the clearmake command line, in your process

environment, or unconditionally in your makefile, it applies to all targets.

NOTE: clearmake supports target-dependent variable bindings in standard mode and in Sun

compatibility mode. You can also use target-dependent variable bindings in your BOS file for any

compatibility mode.
96 ClearCase Product Family Documentation Supplement

clearmake
For example, to ensure that the target foo is built on host neon or saturn:

foo := CCASE_BLD_HOSTS = neon saturn

You can also use patterns in target names. For example, to build all .o files on host pluto:

%.o := CCASE_BLD_HOSTS = pluto

clearmake applies CCASE_BLD_HOSTS bindings to dependencies of the specified targets. To apply

CCASE_BLD_HOSTS to the specified targets but not their dependencies, add the line shown below

to the builtins file for your compatibility mode:

BUILD REFERENCE TIME AND BUILD SESSIONS

clearmake takes into account the fact that as your build progresses, other developers can

continue to work on their files, and may check in new versions of elements that your build uses.

If your build takes an hour to complete, you do not want build scripts executed early in the build

to use version 6 of a header file, and scripts executed later to use version 7 or 8. To prevent such

inconsistencies, clearmake locks out any version that meets both of these conditions:

• The version is selected by a config spec rule that includes the LATEST version label.

• The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. clearmake
adjusts for the fact that the system clocks on different hosts in a network may be somewhat out

of sync (clock skew).

For more information, see Pointers on Using ClearCase Build Tools in Building Software with
ClearCase.

EXIT STATUS

clearmake returns a zero exit status if all goal targets are successfully processed. It returns a

nonzero exit status in two cases:

• clearmake itself detects an error, such as a syntax error in the makefile. In this case, the error

message includes the string “clearmake”.

• A makefile build script terminates with a nonzero exit status (for example, a compiler

error).

See also the description of the –q option.

Mode Location of builtins file Line to add

standard ccase-home-dir/etc/builtin.mk % := CCASE_BLD_HOSTS =

Sun ccase-home-dir/etc/sunbuiltin.mk % := CCASE_BLD_HOSTS =
 ClearCase Reference Pages 97

clearmake
OPTIONS AND ARGUMENTS

clearmake supports the options below. In general, standard make options are lowercase

characters and clearmake extensions are uppercase. Options that do not take arguments can be

combined on the command line (for example, –rOi).

–f makefile
Use makefile as the input file. If you omit this option, clearmake looks for input files

named makefile and Makefile (in that order) in the current working directory. You can

use more than one –f makefile argument pair. Multiple input files are effectively

concatenated.

–u
(Unconditional) Rebuild all goal targets specified on the command line, along with the

recursive closure of their dependencies, regardless of whether they need to be rebuilt.

(See also –U.)

–k
Abandon work on the current entry if it fails, but continue on other targets that do not

depend on that entry.

–i
Ignore error codes returned by commands.

–n
(No-execute) List command lines from the makefile for targets which need to be rebuilt,

but do not execute them. Even lines beginning with an at-sign (@) are listed. See Building
Software with ClearCase.

Exception: A command containing the string $(MAKE) is always executed on Windows

systems. On UNIX systems, it is executed unless you are using sgismake or sgipmake
compatibility mode. These modes do not necessarily execute $(MAKE).).

–s
(Silent) Do not list command lines before executing them.

–e
Environment variables override macro assignments within the makefile. (But

macro=value assignments on the command line or in a build options spec override

environment variables.)

–r
(No-rules) Do not use the built-in rules in file ccase-home-dir/etc/builtin.mk (UNIX) or

ccase-home-dir\etc\builtin.mk (Windows). When used with –C, this option also disables

reading platform-specific startup files. See the –C option for more information.
98 ClearCase Product Family Documentation Supplement

clearmake
–v
(Verbose) Slightly more verbose than the default output mode. These features are

particularly useful:

–w
(Working directory) Prints a message containing the working directory both before and

after executing the makefile.

–d
(Debug) Quite verbose; appropriate only for debugging makefiles.

–p
(Print) Lists all target descriptions and all macro definitions, including target-specific

macro definitions and implicit rules, and stops before executing anything.

–q
(Query) Evaluates makefile targets, but does not run the build scripts. clearmake returns

0 if the targets are up to date, and 1 if any targets need to be rebuilt. Note that clearmake
treats a winkin of a derived object as a rebuild, so clearmake –q returns 1 if a DO can be

winked in for a target.

–c
(Check out DOs) Before building or winking in a target, clearmake determines whether

the target is a checked-in DO visible in the view at the path named in the makefile. If

such a DO is found, clearmake -c checks it out before rebuilding it or winking it in. If a

target creates sibling DOs, target group syntax must be used in the makefile or siblings

will not be subject to this behavior.

–U
Unconditionally builds goal targets only. Subtargets undergo build avoidance. If you

don’t specify any target on the command line, the default target is the goal. (The –u
option unconditionally builds both goal targets and build dependencies.)

–N
Disables the default procedure for reading one or more BOS files. For a description of the

default procedure, see Building Software with ClearCase.

–R
(Reuse) Examines sibling derived objects (objects created by the same build rule that

created the target) when determining whether a target object in a VOB can be reused (is

up to date). By default, when determining whether a target can be reused, clearmake

• Listing of why clearmake does not reuse a DO that already appears in your view

(for example, because its CR does not match your build configuration, or because

your view does not have a DO at that pathname)

• Listing of the names of DOs being created
 ClearCase Reference Pages 99

clearmake
ignores modifications to sibling derived objects. –R directs clearmake to consider a

target out of date if its siblings have been modified or deleted.

–J num
Enables clearmake’s parallel building capability. The maximum number of concurrent

target rebuilds is set to the integer num. If num=0, parallel building is disabled. (This is

equivalent to not specifying a –J option at all.)

Alternatively, you can specify num as the value of environment variable CCASE_CONC,

described in Special Environment Variables on page 105.

For more information, see UNIX ONLY—PARALLEL BUILDING on page 95.)

–B bldhost-file
Uses bldhost-file as the build hosts file for a parallel build. If you do not specify –B,

clearmake uses the file .bldhost.$CCASE_HOST_TYPE in your home directory. When you

use –B, you must also use –J or have the CCASE_CONC environment variable set. For more

information, see the bldhost reference page.

–C compat-mode
(Compatibility) Invokes one of clearmake’s compatibility modes. (Alternatively, you can

use environment variable CCASE_MAKE_COMPAT in a BOS file or in the environment to

specify a compatibility mode.)

On UNIX systems, compat-mode can be one of the following:

sgismake Emulates the smake(1) native to IRIX systems. To define built-in

make rules, clearmake reads file /usr/include/make/system.mk
instead of ccase-home-dir/etc/builtin.mk.

sgipmake Emulates the pmake(1) native to IRIX systems. To define built-in

make rules, clearmake reads file /usr/include/make/system.mk
instead of ccase-home-dir/etc/builtin.mk.

sun Emulates the standard make(1) native to SunOS systems. clearmake
defines built-in make rules in the following ways:

• If you specify –r, clearmake reads ccase-home-dir/etc/sunvars.mk.

• If you do not specify –r, clearmake reads

ccase-home-dir/etc/sunvars.mk and

ccase-home-dir/etc/sunbuiltin.mk. If the current directory

contains a default.mk file, clearmake reads it; otherwise,

clearmake reads /usr/share/lib/make/make.rules (Solaris) or

/usr/include/make/default.mk (SunOS).

aix Emulates the standard make(1) native to IBM AIX systems.
100 ClearCase Product Family Documentation Supplement

clearmake
The –C option is UNIX-platform independent. However, some modes try to read

system-specific files, and if the files do not exist, the command fails. For more

information on the platform-specific methods for dealing with this failure, see ClearCase
and MultiSite Release Notes.

On Windows systems, compat-mode can be one of the following:

For details on compatibility mode features, see Using clearmake Compatibility Modes in

Building Software with ClearCase.

–V
(View) Restricts configuration lookup to the current view only. Winkin is disabled. This

option is mutually exclusive with –M.

–M
(Makefile) Restricts dependency checking to makefile dependencies only—those

dependencies declared explicitly in the makefile or inferred from a suffix rule. All

detected dependencies are ignored. For safety, this disables winkin.

For example, a derived object in your view may be reused even if it was built with a

different version of a header file than is currently selected by your view. This option is

mutually exclusive with –V.

–O (Objects)

–T (Time stamps)

–F (Files)

(–O, –T, and –F are mutually exclusive.)

gnu Emulates the Free Software Foundation’s Gnu make program. To

define built-in make rules, clearmake reads file

ccase-home-dir/etc/gnubuiltin.mk instead of

ccase-home-dir/etc/builtin.mk.

std Invokes the standard clearmake with no compatibility mode

enabled. Use this option to nullify a setting of the environment

variable CCASE_MAKE_COMPAT.

gnu Emulates the Free Software Foundation’s Gnu make program. To

define built-in make rules, clearmake reads file

ccase-home-dir\etc\gnubuiltin.mk instead of

ccase-home-dir\etc\builtin.mk.

std Invokes the standard clearmake with no compatibility mode

enabled. Use this option to nullify a setting of the environment

variable CCASE_MAKE_COMPAT.
 ClearCase Reference Pages 101

clearmake
–O compares only the names and versions of objects listed in the targets’ CRs; it does

not compare build scripts or build options. This is useful when this extra level of

checking would force a rebuild that you do not want. Examples:

–T makes rebuild decisions using the standard algorithm, based on time stamps;

configuration lookup is disabled. (A CR is still created for each build script execution.)

NOTE: This option causes both view-private files and derived objects to be used for build

avoidance. Because the view-private file does not have a CR to be included in the CR

hierarchy, the hierarchy created for a hierarchical build has a gap wherever clearmake
reuses a view-private file for a subtarget.

–F works like –T, but also suppresses creation of configuration records. All MVFS files

created during the build are view-private files, not derived objects.

–A BOS-file ...

You can use this option one or more times to specify BOS files to be read instead of, or

immediately after, the ones that are read by default. Using –N along with this option

specifies “instead of”; omitting –N causes clearmake to read the –A file after reading the

standard BOS files.

Alternatively, you can specify a colon-separated list of BOS file pathnames (UNIX) or a

semicolon-separated list such pathnames as the value of environment variable

CCASE_OPTS_SPECS.

–ver⋅sion
Prints version information about the clearmake executable.

–VerAll
Prints version information about the clearmake executable and the libraries (UNIX) or

ClearCase DLLs (Windows) that clearmake uses.

MAKE MACROS AND ENVIRONMENT VARIABLES

String-valued variables called make macros can be used anywhere in a makefile: in target lists,

in dependency lists, and/or in build scripts. For example, the value of make macro CFLAGS can

be incorporated into a build script as follows:

• UNIX:

• The only change from the previous build is the setting or canceling of a

“compile-for-debugging” option.

• A target was built using a makefile in the current working directory. Now, you

want to reuse it in a build to be performed in the parent directory, where a

different makefile builds the target (with a different script, which typically

references the target using a different pathname).
102 ClearCase Product Family Documentation Supplement

clearmake
cc -c $(CFLAGS) msg.c

• Windows:

cl $(CFLAGS) msg.c

Environment variables (EVs) can also be used in a makefile, but only in a build script. For

example:

print:
print_report -style $$PRT_STYLE -dest $${PRT_DEST}.rpt

clearmake converts the double-dollar-sign ($$) to a single dollar sign:

• On UNIX systems, the EV is expanded in the shell in which the build script executes.

(Programs invoked by the build script can also read their environment, using getenv(2).)

• On Windows systems, the EV is expanded in the shell in which the build script executes

only if the shell recognizes the dollar sign ($) (cmd.exe does not).

Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name may be specified both as a make macro and as an environment variable.

clearmake resolves such conflicts similarly to other make variants; it uses the following priority

order, from highest to lowest:

1. Target-specific macros specified in a BOS file

2. Target-specific macros specified in a makefile

3. Make macros specified on the command line

4. Make macros specified in a BOS file

5. Make macros specified in a makefile

6. Environment variables

7. Built-in macros

Using the –e option gives environment variables higher priority than make macros specified in

a makefile.

Conflict Resolution Details. The following discussion treats this topic more precisely but less

concisely.

clearmake starts by converting all EVs in its environment to make macros. (SHELL is an

exception—see SHELL Environment Variable on page 104.) These EVs are also placed in the

environment of the shell process in which a build script executes. Then, it adds in the make

macros declared in the makefile. If this produces name conflicts, they are resolved as follows:
 ClearCase Reference Pages 103

clearmake
• If clearmake was not invoked with the –e option, the macro value overwrites the EV value

in the environment.

• If clearmake was invoked with the –e option, the EV value becomes the value of the make

macro.

Finally, clearmake adds make macros specified on the command line or in a BOS file; these

settings are also added to the environment. These assignments always override any others that

conflict. (A command-line assignment overrides a BOS setting of the same macro.)

SHELL Environment Variable

clearmake does not use the SHELL environment variable to select the shell program in which to

execute build scripts. It uses a UNIX Bourne shell (/bin/sh) or Windows cmd.exe, unless you

specify another program with a SHELL macro. You can specify SHELL on the command line, in

the makefile, or in a build options spec; the value of SHELL must be a full pathname, and on

Windows, it must include the file extension.

NOTE: If clearmake determines that it can execute the build script directly, it does not use the shell

program even if you specify one explicitly. If you use Windows .bat files in build scripts, you

must make them executable (use the cleartool protect command). To force clearmake to always

use the shell program, set the environment variable CCASE_SHELL_REQUIRED.

Specifying Command Options in an Environment Variable

The CCASE_MAKEFLAGS and MAKEFLAGS environment variables provide an alternative (or

supplementary) mechanism for specifying clearmake command options. These environment

variables can contain a string of keyletters, the same letters used for clearmake command-line

options. (However, clearmake does not allow options that take arguments in a

CCASE_MAKEFLAGS or MAKEFLAGS string. See Special Environment Variables for information about

specifying options that are not supported through CCASE_MAKEFLAGS or MAKEFLAGS.)

For example, the commands

are equivalent to this one:

clearmake combines the value of CCASE_MAKEFLAGS or MAKEFLAGS with the options specified

on the command line (if any). The combined string of keyletters becomes the value of the macro

MAKEFLAGS, available to build scripts.

This is very useful for build scripts that involve recursive invocations of clearmake. When

clearmake –n is applied to such a build script, all the nested invocations of clearmake pick up

the “no-execute” option from the value of CCASE_MAKEFLAGS or MAKEFLAGS. Thus, no targets

setenv CCASE_MAKEFLAGS ei (options set in environment)
clearmake foo

clearmake -ei foo (options set on command line)
104 ClearCase Product Family Documentation Supplement

clearmake
are actually rebuilt, even though many levels of clearmake command may be executed. This is

one way to debug all of the makefiles for a software project without building anything.

clearmake uses one of CCASE_MAKEFLAGS or MAKEFLAGS, but not both. If CCASE_MAKEFLAGS is

set, clearmake uses it. If CCASE_MAKEFLAGS is not set, clearmake looks for MAKEFLAGS.

If you use other make programs in addition to clearmake, putting clearmake-specific options in

the MAKEFLAGS environment variable may cause the make programs to generate errors.

Therefore, we suggest you use the CCASE_MAKEFLAGS and MAKEFLAGS environment variables in

the following ways:

Special Environment Variables

The environment variables described below are also read by clearmake at startup. In some cases,

as noted, you can also specify the information as a make macro on the command line, in a

makefile, or in a BOS file.

CCASE_ABE_PN (or CLEARCASE_ABE_PN)

The full pathname with which clearmake invokes the audited build executor (abe) on a

local or remote host during a parallel build.

Default: /bin/abe

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where clearmake and clearaudit create temporary build audit files. If

this variable is not set or is set to an empty value, clearmake creates these files in the

directory specified by the TMPDIR (UNIX) or TMP (Windows) environment variable.

On UNIX systems, if neither CCASE_AUDIT_TMPDIR nor CLEARCASE_BLD_AUDIT_TMPDIR

is set, clearmake creates these files in the /tmp directory.

All temporary files are deleted when clearmake exits. If the value of

CCASE_AUDIT_TMPDIR is a directory under a VOB-tag, clearmake prints an error

message and exits.

If you use... Use...

clearmake only CCASE_MAKEFLAGS

clearmake and other make programs, but do

not use clearmake-specific options

MAKEFLAGS

clearmake and other make programs, and do

use clearmake-specific options

CCASE_MAKEFLAGS (all options) for

clearmake builds

MAKEFLAGS (all options except

clearmake-specific options) for other make
builds
 ClearCase Reference Pages 105

clearmake
NOTE: Multiple build clients can use a common directory for audit files. Names of audit

files are unique because clearmake names them using both the PID of the clearmake
process and the hostname of the machine on which the process is running.

Default on UNIX: /tmp

Default on Windows: None

CCASE_AUTO_DO_CI

Checks in DOs checked out by clearmake –c unless the build of the corresponding target

fails or the automatic checkout of the DO or a sibling DO fails. Checkout comments are

preserved. The checkin is invoked with the –ptime option to preserve the DO’s

modification time. This environment variable has no effect unless you specify –c.

Default: Undefined

CCASE_BLD_HOSTS

Specifies one or more build hosts on which clearmake must build targets. For more

information, see UNIX Only—Building Targets on Specified Hosts on page 96.

Default: Undefined.

CCASE_BLD_NOWAIT

Turns off clearmake’s sleep-check cycle during a build. When this environment variable

is set, clearmake does not check for a VOB-lock (or wait for the VOB to be unlocked). See

clearmake SLEEP on page 93 for more information.

CCASE_BLD_UMASK (or CLEARCASE_BLD_UMASK)

Sets the umask(1) value to be used for files created from a clearmake build script. It may

be advisable to have this EV be more permissive than your standard umask—for

example, CCASE_BLD_UMASK = 2 where umask = 2. The reason to create DOs that are

more accessible than other files is winkin: a winked-in file retains its original ownership

and permissions. For example, when another user winks in a file that you originally

built, the file is still owned by you, is still a member of your principal group, and still has

the permissions with which you created it. You can use the standard chmod command

to change the permissions of a DO after you create it, and these permissions remain in

effect while the DO is unshared. However, for a shared DO, you may need to use the

standard chmod and protect –chmod to set appropriate permissions.

If you are using a tool that ignores umask (and hence CCASE_BLD_UMASK) settings and

you want winkins to work correctly, you have to use chmod on the file in your build

script to give it write permissions if the tool creates the file without these permissions.

CCASE_BLD_UMASK can also be coded as a make macro.

NOTE: If you want to use CCASE_BLD_UMASK, do not set your umask value in your shell

startup file. If you set the umask value in your startup file, the umask value will be reset
106 ClearCase Product Family Documentation Supplement

clearmake
to its original value when clearmake starts a shell to run the build script. Setting

CCASE_BLD_UMASK in your startup file has no effect.

Default: Same as current umask.

CCASE_BLD_VOBS

A list of VOB-tags (separated with a space, tab, comma, colon (UNIX), or semicolon

(Windows) to be checked for lock status during a build. If a VOB on this list is locked,

clearmake goes into a sleep-check cycle. See clearmake SLEEP on page 93 for more

information.

CCASE_CONC (or CLEARCASE_BLD_CONC)

Sets the concurrency level. This EV takes the same values as the –J option. Specifying a

–J option on the command line overrides the setting of this EV.

Default: None.

CCASE_DNVW_RETRY

Specifies time-out period, in minutes, for clearmake to wait before trying to contact an

inaccessible view listed in its cache. To disable the cache, set CCASE_DNVW_RETRY to 0.

Default: 60 minutes.

CCASE_HOST_TYPE (or CLEARCASE_BLD_HOST_TYPE)

Determines the name of the build hosts file to be used during a parallel build (–J option):

file .bldhost.$CCASE_HOST_TYPE in your home directory. (Your home directory is

determined by examining the password database.)

Specifying a –B option on the command line overrides the setting of this EV.

C Shell Users: Set this EV in your .cshrc file, not in your .login file. The parallel build

facility invokes a remote shell, which does not read the .login file.

CCASE_HOST_TYPE can also be coded as a make macro.

Default: none.

CCASE_MAKE_CFG_DIR (or CLEARCASE_MAKE_CONFIG_DIR)

Expands to the full pathname of the clearmake configuration directory in the ClearCase

installation area—typically /usr/atria/config/clearmake (UNIX) or

ccase-home-dir\config\clearmake (Windows).

CCASE_MAKE_COMPAT (or CLEARCASE_MAKE_COMPAT)

Specifies one of clearmake’s compatibility modes. This EV takes the same values as the

–C option. Specifying a –C option on the command line overrides the setting of this EV.

This EV may also be coded as a make macro, but only in a BOS file (not in a makefile).

Default: None.
 ClearCase Reference Pages 107

clearmake
CCASE_OPTS_SPECS (or CLEARCASE_BLD_OPTIONS_SPECS)

A list of pathnames separated by colons (UNIX) or semicolons (Windows), each of which

specifies a BOS file to be read. You can use this EV instead of specifying BOS files on the

command line with one or more –A options.

Default: None.

CCASE_SHELL_FLAGS (or CLEARCASE_BLD_SHELL_FLAGS)

Specifies command options to be passed to the subshell program that executes a build

script command.

Default for UNIX: –e

Default for Windows: None

CCASE_SHELL_REQUIRED

Forces clearmake to execute build scripts in the shell program you specify with the

SHELL macro. To make clearmake execute builds scripts in the shell program, set this

EV to TRUE. To allow clearmake to execute build scripts directly, unset the EV.

Default: clearmake executes build scripts directly.

CCASE_VERBOSITY (or CLEARCASE_BLD_VERBOSITY)

Sets the clearmake message logging level, as follows:

If you also specify –v or –d on the command line, the higher value prevails.

Default: 0

CMAKE_PNAME_SEP

Sets the pathname separator for pathnames constructed by clearmake. This variable can

also be coded as a make macro in the makefile or in a BOS file.

Default: If this variable is not set or is set to any other value than / or \ (the slashes),

clearmake uses \ (a backslash) as the pathname separator.

EXAMPLES

• Unconditionally build the default target in a particular makefile, along with all its

dependent targets.

% clearmake -u -f project.mk

• Build target hello without checking build scripts or build options during configuration

lookup. Be moderately verbose in generating status messages.

1 Equivalent to –v on the command line

2 Equivalent to –d on the command line

0 or undefined Equivalent to standard message logging level
108 ClearCase Product Family Documentation Supplement

clearmake
z:\src> clearmake -v -O hello

• Build the default target in the default makefile, with a particular value of make macro

INCL_DIR. Base rebuild decisions on time-stamped comparisons instead of performing

configuration lookup, but still produce CRs.

y:\> clearmake -T INCL_DIR=\src\include_test

• Perform a parallel build of target bgrs, using up to five of the hosts listed in file

.bldhost.solaris in your home directory.

% setenv CCASE_HOST_TYPE solaris

% clearmake -J 5 bgrs

• Build target bgrs.exe, restricting configuration lookup to the current view only. Have

environment variables override makefile macro assignments.

z:\src> clearmake -e -V bgrs.exe

• Build the default target in Sun compatibility mode.

% clearmake -C sun

FILES

ccase-home-dir/etc/builtin.mk (UNIX) or ccase-home-dir\etc\builtin.mk (Windows)

SEE ALSO

abe, bldhost, bldserver.control, clearaudit, omake, promote_server, scrubber, umask(1)

Building Software with ClearCase
 ClearCase Reference Pages 109

clearmake
110 ClearCase Product Family Documentation Supplement

clearprojexp
clearprojexp
Starts the UCM Project Explorer

APPLICABILITY

SYNOPSIS
clearprojexp

DESCRIPTION

The clearprojexp command starts the Project Explorer, a graphical utility that lets you create,

manage, work in or view UCM projects.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

None.

EXAMPLE

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows
 ClearCase Reference Pages 111

clearprojexp
• Start the Project Explorer.

clearprojexp

 SEE ALSO

chbl, chfolder, chproject, chstream, clearjoinproj, clearmrgman, deliver, mkbl, mkcomp,

mkfolder, mkproject, mkstream, mkview, rebase
112 ClearCase Product Family Documentation Supplement

deliver
deliver
Delivers changes in a UCM development stream to the project’s integration stream

APPLICABILITY

SYNOPSIS
• Deliver changes in the development stream using the graphical user interface:

deliver –g⋅raphical [–str⋅eam stream-selector] [–to integration-view-tag]

• Cancel or obtain the status of a deliver operation in progress:

deliver { –can⋅cel | –sta⋅tus [–l⋅ong] } [–str⋅eam stream-selector]

• Preview a deliver operation:

deliver –preview [–s⋅hort | –l⋅ong] [–str⋅eam stream-selector] [–to integration-view-tag]

[–act⋅ivities activity-selector ...]

• Deliver changes in the development stream:

deliver [–str⋅eam stream-selector] [–to integration-view-tag] [–act⋅ivities activity-selector[,...]]

[–com⋅plete] [–gm⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

• Resume or complete work on a deliver operation:

deliver { –res⋅ume |–com⋅plete } [–str⋅eam stream-selector] [–gm⋅erge | –ok]

[–q⋅uery | –ab⋅ort | –qal⋅l] [–ser⋅ial] [–f⋅orce]

 DESCRIPTION

The deliver command lets you deliver work from your development stream to the project’s

integration stream. Work is delivered from your development stream to an integration view.

There may be several steps to delivering work:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 113

deliver
• Previewing the changes to be delivered

• Identifying the activities you want to deliver

• Resolving merge conflicts

• Testing and building work in the integration stream

• Completing a deliver operation, which checks in new versions and records other

information.

If a deliver operation is interrupted through a system interrupt or user action, you must explicitly

resume or cancel the deliver operation.

In general, it is good practice to check in all work to your development stream before beginning

a deliver operation.

The Integration Activity

The deliver operation creates a UCM activity called the integration activity, which records a

change set for the deliver operation. The activity name is of the form

deliver.stream-name.date-stamp. When the deliver operation begins, the integration activity

becomes the current activity for the integration view in use.

One-Step Deliver Operation

You can deliver your work in one step by specifying the –complete and –force options. The

–force option suppresses prompting for user input during the deliver operation. The –complete
option causes the deliver operation to continue to completion after the merge phase. Use this

feature carefully to avoid the possibility of delivering merged files that may not compile.

Using deliver with MultiSite

The deliver command determines whether the integration stream and development stream are

mastered at different replicas. If they are, a remote deliver operation is put into effect. The

development stream is assigned a posted status.

After the stream is in the posted state, the deliver operation can be continued only by someone

working at the integration stream’s replica. Generally, this is the team’s project integrator. Also,

once posted, the deliver operation can be canceled only by a user at the replica where the

integration stream resides.

The deliver –status command reports on any remote deliver operation in progress for the

specified stream. Using this information, the project integrator can then cancel or continue the

deliver operation, using the –cancel option to halt the deliver operation, or the –resume or

–complete options to continue the deliver operation.

You can create activities and perform checkins and checkouts for your development stream

while the remote deliver is in process. However, you cannot perform any of the following

operations while a remote deliver operation is in progress:
114 ClearCase Product Family Documentation Supplement

deliver
• Add, remove, or create baselines

• Add or remove components

• Rebase the development stream

• Post another deliver operation.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the development stream,

the UCM project VOB.

Mastership: The current replica must master the development streams.

OPTIONS AND ARGUMENTS

INVOKING THE GRAPHICAL USER INTERFACE: Default. Nongraphical interface.

–g⋅raphical
Invokes the graphical user interface for deliver.

SPECIFYING THE SOURCE AND DESTINATION FOR THE DELIVER OPERATION. Default: The source is

the stream attached to the current view. The default destination is the integration stream of the

development stream’s project, using either a view attached to the integration stream owned by

the current user, or the integration view used by the last deliver operation executed by the

current user.

–stre⋅am from-stream-selector
Specifies a development stream that is the source for the deliver operation.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

–to integration-view-tag
Specifies a view attached to the integration stream for the development stream’s project.

CANCELLING A DELIVER OPERATION. Default: None.

–can⋅cel
Halts a deliver operation in progress, returning the source and destination streams to

their states before the deliver operation began. However, this option cannot undo a

deliver operation after the completion phase has begun.

Also use –cancel when a deliver operation is interrupted with CTRL+C or when it

encounters an external error or condition that requires more information.

OBTAINING THE STATUS OF A DELIVER OPERATION. Default: None.
 ClearCase Reference Pages 115

deliver
–sta⋅tus
Displays the status of a deliver operation. You are informed whether a deliver operation

is in progress for the specified stream, whether the deliver is to a local stream or a remote

stream, and, in the case of a remote deliver, whether the posted deliver has been merged

with the integration stream.

PREVIEWING THE RESULTS OF A DELIVER OPERATION. Default: For each activity that would be

delivered, displays the owner, activity-selector, and title.

–pre⋅view
Shows activities that would be delivered if you were to execute the deliver operation for

the specified stream. These are any activities that have changed since the last deliver

operation from this stream. Use –preview only when there is no deliver operation in

progress for the stream.

CONTROLLING OUTPUT VERBOSITY. Default: Varies according to the kind of output that the

options described here modify: see the descriptions of –status and –preview.

–l⋅ong
As a modifier of –status or –preview, displays a list of versions that may require

merging, in addition to the default information displayed by –status or –preview.

–s⋅hort
Modifies the –preview option. (Currently, this option does not modify the default

–preview output.)

SELECTING ACTIVITIES TO DELIVER. Default: Delivers all activities in the stream that have changed

since the last deliver operation from the stream.

 –act⋅ivities activity-selector, ...
Specifies a list of activities to deliver. The list of activities must be self-consistent: they

must not depend on the inclusion of any unspecified activities. For example, activity A2

is dependent on activity A1 if they both contain versions of the same element and A2

contains a later version than A1. Additionally, any activities that have been included in

baselines but not delivered must also be delivered if there are changes for that

component in the specified activities. If the list of activities you specify is incomplete, the

additional required activities are listed and the operation fails.

activity-selector is of the form: [activity:]activity-name[@vob-selector] where vob is the

activity’s UCM project VOB.

RESUMING A DELIVER OPERATION. Default: None.

–res⋅ume
Resumes a deliver operation from the point at which it has been suspended.

COMPLETING A DELIVER OPERATION. Default: None.
116 ClearCase Product Family Documentation Supplement

deliver
–com⋅plete
Completes a deliver operation. Verifies that changes from the activities being delivered

have been merged with versions in the project integration stream and that merge

conflicts have been resolved. Checks in resulting new versions to the integration stream

and records that the deliver operation has been made. If merge conflicts exist, the deliver

operation is suspended.

Use this option to bring a deliver operation through the completion phase or to resume

a suspended deliver operation. To complete a deliver operation, you must specify this

option—checking in merged versions to the integration view alone does not complete

the deliver operation.

When used for a deliver operation in progress, this option implies the –resume option—

that is, deliver –complete reports any merges that are still required and attempts to

resolve them.

MERGING. Default: Merging works as automatically as possible, prompting you to make a choice

in cases where two or more nonbase contributors differ from the base contributor. For general

information, see the findmerge reference page.

–gm⋅erge
Performs a graphical merge for each element that requires it. This option does not

remain in effect after a deliver operation is interrupted.

–ok
Pauses for verification on each element to be merged, allowing you to process some

elements and skip others. This option does not remain in effect after a deliver operation

is interrupted.

–q⋅uery
Turns off automated merging for nontrivial merges and prompts you for confirmation

before proceeding with each change in the from-versions. Changes in the to-version are

automatically accepted unless a conflict exists. This option does not remain in effect after

a deliver operation is interrupted.

–abo⋅rt
Cancels a merge if it is not completely automatic. This option does not remain in effect

after a deliver operation is interrupted.

–qal⋅l
Turns off all automated merging. Prompts you for confirmation before proceeding with

each change. This option does not remain in effect after a deliver operation is

interrupted.

–ser⋅ial
Use a serial format when reporting differences among files. Differences are presented in
 ClearCase Reference Pages 117

deliver
a line-by-line comparison with each line from one contributor, instead of in a

side-by-side format. This option does not remain in effect after a deliver operation is

interrupted.

CONFIRMATION STEP. Default: Prompts for use input.

–f⋅orce
Suppresses prompting for user input during the course of a deliver operation. The –force
option does not remain in effect if the deliver operation is interrupted. You must include

it again on the command line when you restart the deliver operation with –resume or

–complete. The merge options to the deliver command are not affected by the –force
option.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Start a deliver operation using command defaults.

cmd-context deliver -to webo_integ

Changes to be DELIVERED:
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Do you wish to continue with this deliver operation? [no] yes
Needs Merge "/view/webo_integ/vobs/webo_modeler/design/foo" [(automatic)
to /main/integration/1 from /main/integration/chris_webo_dev/1 (base also
/main/integration/1)]
Checked out "/view/webo_integ/vobs/webo_modeler/design/foo" from version
"/main/integration/1".
118 ClearCase Product Family Documentation Supplement

deliver
Attached activities:
activity:deliver.chris_webo_dev.20000606.160519@/vobs/webo_pvob "deliver
chris_webo_dev on 06/06/00 16:05:19."

Needs Merge "/view/webo_integ/vobs/webo_modeler/design/foo" [to
/main/integration/CHECKEDOUT from /main/integration/chris_webo_dev/1 base
/main/integration/1]

Trivial merge: "/view/webo_integ/vobs/webo_modeler/design/foo" is same as
base "/view/webo_integ/vobs/webo_modeler/design/foo@@/main/integration/1".

Copying
"/view/webo_integ/vobs/webo_modeler/design/foo@@/main/integration/chris_we
bo_dev/1" to output file.
Moved contributor "/view/webo_integ/vobs/webo_modeler/design/foo" to
"/view/webo_integ/vobs/webo_modeler/design/foo.contrib".
Output of merge is in "/view/webo_integ/vobs/webo_modeler/design/foo".
Recorded merge of "/view/webo_integ/vobs/webo_modeler/design/foo".

Deliver has merged
FROM: stream "chris_webo_dev"
TO: stream "integration"
Using integration view: "webo_integ".
Build and test are necessary in integration view "webo_integ"
to ensure that the merges were completed correctly. When build and
test are confirmed, run "cleartool deliver -complete".

• Complete a deliver operation that is in progress.

cmd-context deliver –complete

Resume deliver
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Do you wish to continue with this deliver operation? [no] yes
Are you sure you want to complete this deliver operation? [no] yes
Deliver has completed

FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".

• Check the status of a deliver operation.

cmd-context deliver –status
 ClearCase Reference Pages 119

deliver
Deliver operation in progress on stream "stream:chris_webo_dev@\webo_pvob"
Started by "ktessier" on "14-Jun-00.16:07:46"
Using integration activity "deliver.chris_webo_dev.20000614.160746".
Using view "webo_integ".
Activities will be delivered to stream "stream:integration@\webo_pvob".

Development Stream Baselines:
baseline:deliverbl.chris_webo_dev.20000614.160746.129@\webo_pvob
Activities:
activity:fix_copyright@\webo_pvob
activity:update_date@\webo_pvob
activity:fix_defect_215@\webo_pvob

• Cancel a deliver operation that is in progress.

cmd-context deliver –cancel

Cancel deliver
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Are you sure you want to cancel this deliver operation? [no] yes
Private version of "/view/webo_integ/vobs/webo_modeler/design/add_proc"
saved in "/view/webo_integ/vobs/webo_modeler/design/add_proc.keep".
Deliver of stream "chris_webo_dev" canceled.

SEE ALSO

checkin, checkout, findmerge, rebase, setactivity
120 ClearCase Product Family Documentation Supplement

diffbl
diffbl
Compares the contents of UCM baselines or streams

APPLICABILITY

SYNOPSIS

• Display differences between two baselines or streams nongraphically:

diffbl [–act⋅ivities] [–ver⋅sions] [–fir⋅st_only]

{ baseline-selector1 | stream-selector1 }

{ baseline-selector2 | stream-selector2 }

• Display differences between the specified baseline and its predecessor baseline

nongraphically:

diffbl –pre⋅decessor [–act⋅ivities] [–ver⋅sions] baseline-selector

• Display differences between two baselines graphically:

diffbl –g⋅raphical baseline-selector1 baseline-selector2

• Display differences between the specified baseline and its predecessor baseline graphically:

diffbl –g⋅raphical –pre⋅decessor baseline-selector

DESCRIPTION

The diffbl command compares the contents of two baselines or streams and displays any

differences it finds. You can choose to see differences in terms of activities or versions, or both.

You can use the diffbl command to compare a baseline and a stream, a baseline and a baseline,

or a stream and a stream. When specifying a stream, all baselines in the stream are used in the

comparison as well as any changes in the stream that are not yet captured in a baseline.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 121

diffbl
The diffbl command must be issued from a view context to display versions. The view context

is needed to resolve pathnames of versions.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE INFORMATION TO DISPLAY. Default: –activities.

–act⋅ivities
Displays differences in terms of activities.

–ver⋅sions
Displays differences in terms of versions.

–fir⋅st_only
Shows only those changes that appear in the first object specified for the comparison.

COMPARING A VERSION WITH ITS PREDECESSOR. Default: None.

–pre⋅decessor
Displays differences between the specified baseline and its immediate predecessor.

REPORTING DIFFERENCES GRAPHICALLY. Default: Reports differences in nongraphical form.

–g⋅raphical
Displays differences graphically. This only applies to baselines and not streams.

SELECTING THE OBJECTS TO COMPARE. Default: None.

baseline-selector1
stream-selector1

Specifies an object to use in the comparison.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB. stream-selector is of the form:

[stream:]stream-name[@vob-selector] and vob is the stream’s UCM project VOB.

baseline-selector2
stream-selector2

Specifies an object to use in the comparison.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB. stream-selector is of the form:

[stream:]stream-name[@vob-selector] and vob is the stream’s UCM project VOB.
122 ClearCase Product Family Documentation Supplement

diffbl
EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Compare activities in two streams:

cmd-context diffbl stream:java_int stream:java_dev

<< deliver.java_dev.19990917.140443 "deliver java_dev on 09/17/99
14:04:43."

<< deliver.java_dev.19990917.141046 "deliver java_dev on 09/17/99
14:10:46."

• Compare baselines in two streams:

cmd-context diffbl -ver stream:java_int stream:java_dev

<< /vobs/parser/myfile.c@@/main/java_int/2

<< /vobs/parser/myfile.c@@/main/java_int/3

• Compare a baselines with its predecessor baseline:

cmd-context diffbl -predecessor
test_sum.D001207.124@net/acrolein/export/home/lli/vobs/lli_test_sum

>> deliver.lli_test_sum.20001113.165650 “deliver lli_test6_sum on 11/13/00
16:56:50.”

>> test_act_00795 “test act”

SEE ALSO

chbl, lsbl, mkbl, rmbl
 ClearCase Reference Pages 123

diffbl
124 ClearCase Product Family Documentation Supplement

lsactivity
lsactivity
Lists information about UCM activities

APPLICABILITY

SYNOPSIS
lsact⋅ivity [–s⋅hort | –l⋅ong | –fmt format-string |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in stream-selector-name |

–cac⋅t | [–cac⋅t] –vie⋅w view-tag | –cvi⋅ew | activity-selector ...] [–obs⋅olete]

DESCRIPTION

The lsactivity command lists information about UCM activities.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING OUTPUT FORMAT Default: A one-line summary of the activity.

–s⋅hort
Displays only the name of each activity.

–l⋅ong
Displays a detailed description of each activity.

–fmt format-string
Displays information in the format specified by format-string. See the fmt_ccase
reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 125

lsactivity
–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays the containing stream, project, and folder for one or more activities. For

information on the –fmt option, see the fmt_ccase reference page. The –depth option sets

the number of levels displayed. The depth argument must be a positive integer.

SPECIFYING THE ACTIVITY. Default: –cview.

–inv⋅ob vob-selector
Displays a list of all activities in the specified project VOB.

–in stream-selector
Displays a list of all activities in the specified stream.

–cac⋅t
Displays information for the current activity.

–vie⋅w view-tag
For the specified view, displays a list of all activities in its stream.

–cvi⋅ew
For the current view, displays a list of all activities in its stream.

activity-selector ...
Specifies one or more activities to list.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

LISTING OBSOLETE ACTIVITIES. Default: List only nonobsolete activities.

–obs⋅olete
Includes obsolete activities in the listing. Obsolete activities are those that have been

processed with lock –obsolete.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive
126 ClearCase Product Family Documentation Supplement

lsactivity
mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display detailed information for an activity.

cmd-context lsactivity -l fix_copyright

activity "fix_copyright"
06-Jun-00.15:49:23 by Ken Tessier (ktessier.user@mymachine)
owner: ktessier
group: user
stream: chris_webo_dev@/vobs/webo_pvob
title: Fix copyright text
change set versions:
/vobs/webo_modeler/design/add_proc@@/main/chris_webo_dev/1
/vobs/webo_modeler/design/foo@@/main/integration/chris_webo_dev/1

• Display a short description of the current activity. This is the currently set activity for the

view from which the command was issued.

cmd-context lsact -cact

06-Jun-00.17:16:12 update_date ktessier "Update for new date
convention"

SEE ALSO

chactivity, lock, mkactivity, rmactivity
 ClearCase Reference Pages 127

lsactivity
128 ClearCase Product Family Documentation Supplement

lsbl
lsbl
Lists information about a UCM baseline

APPLICABILITY

SYNOPSIS

• List baseline information per stream or component or by promotion level:

lsbl [–s⋅hort | –l⋅ong | –fmt format-string | –tre⋅e]

[–lev⋅el promotion-level | [–ltl⋅evel promotion-level] [–gtl⋅evel promotion-level]]

[–str⋅eam stream-selector | –com⋅ponent component-selector] [–obs⋅olete]

• List information for one or more specific baselines:

lsbl [–s⋅hort | –l⋅ong | –fmt format-string] [–tre⋅e] [baseline-selector ...] [–obs⋅olete]

DESCRIPTION

The lsbl command lists information for one or more UCM baselines.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE OUTPUT. Default: A one-line summary of each baseline.

–s⋅hort
Displays only the name of each baseline.

–l⋅ong
Displays detailed information for each baseline, including ownership, creation, and

label information and the UCM stream, component, change sets, and promotion level

associated with the baseline.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 129

lsbl
–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

–tre⋅e
Displays a list of streams and baselines associated with one or more baselines. The list is

indented to show the order of succession for baselines.

FILTERING BY PROMOTION LEVEL. Default: All promotion levels.

–lev⋅el promotion-level
Displays a list of baselines that are at the specified promotion level. An error results if

the specified level is not in the project VOB’s current list of valid promotion levels. This

option modifies the –stream and –component options. For general information on

promotion levels, see the setplevel reference page.

–ltl⋅evel promotion-level
Displays a list of baselines whose promotion level is lower than the one specified by the

promotion-level argument. For example, if your project has four promotion levels in this

order: PROTOTYPE, REVIEWED, TESTED, CERTIFIED, and you use the argument

–ltlevel TESTED, the lsbl command displays a list of all baselines whose promotion

level is PROTOTYPE or REVIEWED. This option modifies the –stream and

–component options.

–gtl⋅evel promotion-level
Displays a list of baselines whose promotion level is greater than the one given. This

option modifies the –stream and –component options.

SPECIFYING THE BASELINE. Default: Baselines in the UCM project VOB of the current directory.

–str⋅eam stream-selector
Displays a list of baselines created in the specified stream.

–com⋅ponent component-selector
Displays a list of baselines of the specified component.

baseline-selector ...
Specifies one or more baselines for which information is displayed.

LISTING OBSOLETE BASELINES. Default: List only nonobsolete baselines.

–obs⋅olete
Includes obsolete baselines in the listing. Obsolete baselines are those that have been

processed with lock –obsolete.
130 ClearCase Product Family Documentation Supplement

lsbl
EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display a one-line summary (the default) of baselines of the specified component.

cmd-context lsbl -component parser@/vobs/core_projects

17-Sep-99.12:06:59 parser_INITIAL.112 bill "parser_INITIAL"
 component: parser

• Display a description of baselines created in a stream:

cmd-context lsbl -stream java_int@/vobs/core_projects

17-Sep-99.13:56:10 testbl.121 bill "testbl"
 stream: java_int
 component: parser
17-Sep-99.14:05:30 new_bl.121 bill "new_bl"
 stream: java_int
 component: parser

SEE ALSO

chbl, deliver, describe, diffbl, lock, mkbl, rebase, rmbl, setplevel
 ClearCase Reference Pages 131

lsbl
132 ClearCase Product Family Documentation Supplement

lscomp
lscomp
Lists information for a UCM component

APPLICABILITY

SYNOPSIS
lscomp [–s⋅hort | –l⋅ong | –fmt format-string |–tre⋅e]

[–inv⋅ob vob-selector | component-selector ...] [–obs⋅olete]

DESCRIPTION

The lscomp command lists information describing one or more UCM components.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE OUTPUT. Default: A one-line summary.

–s⋅hort
Displays only the name of each component.

–l⋅ong
Displays an expanded multiple-line listing for each component, similar to the describe
–long command.

–fmt format-string
Displays information using the specified format-string. See the fmt_ccase reference page

for details.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 133

lscomp
–tre⋅e
Recursively lists baselines and streams in the specified components. Output format is

similar to that of the lsvtree command.

SPECIFYING THE COMPONENT Default: All components in the project VOB of the current directory.

–inv⋅ob vob-selector
Displays information for all components in the specified project VOB.

component-selector ...
Specifies one or more components for which information is displayed.

LISTING OBSOLETE COMPONENTS. Default: List only nonobsolete components.

–obs⋅olete
Includes obsolete components in the listing. Obsolete components are those that have

been processed with lock –obsolete.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display a description of components in the specified VOB.

cmd-context lscomp -invob /vobs/projects
134 ClearCase Product Family Documentation Supplement

lscomp
17-Sep-99.12:06:59 parser bill "parser"
root directory: "/vobs/parser"

29-Mar-99.17:23:16 applets pklenk "applets"
root directory: "/vobs/applets"

29-Mar-99.17:23:25 booch pklenk "booch"
root directory: "/vobs/booch"

29-Mar-99.17:23:37 libobj pklenk "libobj"
root directory: "/vobs/libobj"

29-Mar-99.17:23:44 stage pklenk "stage"
root directory: "/vobs/stage"

29-Mar-99.17:23:50 sun5_stage pklenk "sun5_stage"
root directory: "/vobs/sun5_stage"

29-Mar-99.17:24:01 nt_i386_stage pklenk "nt_i386_stage"
root directory: "/vobs/nt_i386_stage"

29-Mar-99.17:24:57 sys pklenk "sys"
root directory: "/vobs/sys"

SEE ALSO

describe, lsbl, mkcomp, rmcomp
 ClearCase Reference Pages 135

lscomp
136 ClearCase Product Family Documentation Supplement

lsfolder
lsfolder
Lists information about UCM folders

APPLICABILITY

SYNOPSIS
lsfolder [–s⋅hort | –l⋅ong | –fmt format-string |

–tre⋅e [–fmt format-string] [–dep⋅th depth] |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in folder-selector |

–vie⋅w view-tag | –cvi⋅ew | folder-selector ...] [–obs⋅olete]

DESCRIPTION

The lsfolder command displays information describing one or more UCM folders.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

CHOOSING A DISPLAY FORMAT. Default: A one-line summary.

–s⋅hort
Displays only the the name of each folder.

–l⋅ong
Displays a detailed listing for a folder.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

further information.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 137

lsfolder
–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information about a folder and its contents. Default output format is similar to

that of the lsvtree command.

The –fmt option displays information in the format specified by the format-string
argument. See the fmt_ccase reference page for details.

 The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information about a folder and any parent folders.

The –fmt option formats information using the specified format-string. See the fmt_ccase
reference page for further information.

The –depth option specifies how many levels to display. The depth argument must be a

positive integer: a value of zero lists the entire hierarchy.

SPECIFYING A FOLDER. Default: All folders in the project VOB of the current directory.

–inv⋅ob vob-selector
Displays a list of folders in the specified project VOB.

–in folder-selector ...

Displays a list of subfolders of the specified folder or folders.

–vie⋅w view-tag
Displays information about the parent folder of the stream attached to the specified

view.

–cvi⋅ew
Displays information about the parent folder of the stream attached to the current view.

folder-selector ...
Specifies one or more folders to list.

LISTING OBSOLETE FOLDERS. Default: List only nonobsolete folders.

–obs⋅olete
Includes obsolete folders in the listing. Obsolete folders are those that have been

processed with lock –obsolete.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.
138 ClearCase Product Family Documentation Supplement

lsfolder
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display a one-line summary of the specified folder.

cmd-context lsfolder Core_Parsers@/vobs/core_projects

17-Sep-99.11:21:36 Core_Parsers bill "Core_Parsers"

• Display a long listing for the specfied folder.

cmd-context lsfolder -long RootFolder@/vobs/core_projects

folder "RootFolder"
 17-Sep-99.10:52:34 by Bill Marrs (bill.user@propane)
 "Predefined Root folder."
 owner: bill
 group: user
 title: Root folder
 contains folders:
 Parsers
 Core_Parsers
 contains projects:
 Java_Parser

SEE ALSO

chfolder, lock, mkfolder, rmfolder
 ClearCase Reference Pages 139

lsfolder
140 ClearCase Product Family Documentation Supplement

lsproject
lsproject
Lists information about a UCM project

APPLICABILITY

SYNOPSIS
lsproj⋅ect [–s⋅hort | –l⋅ong | –fmt format-string |

–tre⋅e [–fmt format-string] [–dep⋅th depth] |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in folder-selector |

 –vie⋅w view-tag | –cvi⋅ew | project-selector ...]

DESCRIPTION

The lsproject command lists information for one or more UCM projects.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SELECTING A DISPLAY FORMAT. Default: A one-line summary.

–s⋅hort
Displays project names only.

–l⋅ong
Displays a detailed listing for a project, similar to the describe –long command.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 141

lsproject
–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information for a project, including its hierarchy of streams and activities. By

default output is presented in a version-tree format. You can modify how information is

displayed with the –fmt and –depth options.

The –fmt option displays information using the specified format. See the fmt_ccase
reference page for more information.

The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information about one or more projects and its parent folders.

The –fmt option displays information using the specified format. See the fmt_ccase
reference page for further information.

 The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

SPECIFYING THE PROJECT. Default: All projects in the project VOB of the current directory.

–inv⋅ob vob-selector
Displays a list of all projects in the specified project VOB.

–in folder-selector
Displays a list of projects in the specified folder.

–vie⋅w view-tag
Displays information for the project containing the stream attached to the specified view.

–cvi⋅ew
Displays information for the project containing the stream attached to the current view.

project-selector ...
Specifies one or more projects to list.

LISTING OBSOLETE PROJECTS. Default: List only nonobsolete projects.

–obs⋅olete
Includes obsolete projects in the listing. Obsolete projects are those that have been

processed with lock –obsolete.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.
142 ClearCase Product Family Documentation Supplement

lsproject
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display a detailed description of the specified project.

cmd-context lsproject -long Java_Parser_Project_28174@/vobs/core_projects

project "Java_Parser_Project_28174"
17-Sep-99.11:24:18 by BillM (bill.user@propane)
 owner: bill
 group: user
 folder: RootFolder
 title: Java Parser Project
 development streams:
 modifiable components:
 default rebase promotion level: TESTED
 recommended baselines:
 policies:
 UnixIntVSnap disabled
 UnixDevVSnap disabled
 WinIntVSnap disabled
 WinDevVSnap disabled
 DeliverReqRebase disabled
 DeliverAllowNCoDevStr disabled

• Display a one-line summary of the project visible from the specified view.

cmd-context lsproject –view java_int

17-Sep-99.11:24:18 Java_Parser_Project_28174 bill "Java Parser Project"

SEE ALSO

chproject, mkproject, rmproject
 ClearCase Reference Pages 143

lsproject
144 ClearCase Product Family Documentation Supplement

lsstream
lsstream
Lists information about one or more UCM streams

APPLICABILITY

SYNOPSIS
lsstream [–s⋅hort | –l⋅ong | –fmt format-string

| –tre⋅e [–fmt format-string] [–dep⋅th depth]

| –anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in project-selector | –vie⋅w view-tag
| –cvi⋅ew |stream-selector ...] [–obs⋅olete]

DESCRIPTION

The lsstream command displays information about one or more streams.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SELECTING A DISPLAY FORMAT. Default: One-line summary.

–s⋅hort
Displays only the name of each stream.

–l⋅ong
Displays detailed information for each stream, including the project it’s associated with

and the stream’s name and title, activities, and foundation baselines.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 145

lsstream
–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information for a stream, including its hierarchy of streams and activities. By

default output is presented in a version-tree format. You can modify how information is

displayed with the –fmt and –depth options.

The –fmt option presents information using the specified format string. See the

fmt_ccase reference page for further information.

The –depth option specifies the number of levels displayed. The depth argument must be

a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information for a stream, including its containing project and folders. By

default, output is presented in a version-tree format. You can modify how information

is displayed with the –fmt and –depth options.

 The –fmt option presents information using the specified format string. See the

fmt_ccase reference page for further information.

The –depth option sets the number of levels displayed. The depth argument must be a

positive integer.

SPECIFYING THE STREAM. Default: –cview.

–inv⋅ob vob-selector
Displays a list of all streams in the specified UCM project VOB.

–in project-selector
Displays a list of all streams for the specified project and highlights the integration

stream.

–vie⋅w view-tag
Displays information for the stream connected to the specified view.

–cvi⋅ew
Displays information for the stream connected to the current view.

stream-selector ...
Displays information for specified stream or streams.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

LISTING OBSOLETE STREAMS. Default: List only nonobsolete streams.
146 ClearCase Product Family Documentation Supplement

lsstream
–obs⋅olete
Includes obsolete streams in the listing. Obsolete streams are those that have been

processed with lock –obsolete.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Display a one-line summary of the stream attached to the specified view.

cmd-context lsstream –view java_int

17-Sep-99.11:54:50 java_int bill "Deliver your changes here"

• For all streams in the project VOB, display a detailed listing for the current stream using a

tree format. The asterisk (*) indicates java_int is the stream attached to the current view.

% cd /vobs/core_projects

cmd-context lsstream -tree
*java_int stream "Deliver your changes here"

rebase.java_int.19990917.132524 activity "rebase Deliver your
changes here on 09/17/99 13:25:24."

activity990917.133218 activity "activity990917.133218"
activity990917.133255 activity "my new activity"
new_activity activity "new_activity"
toms_edit activity "toms_edit"
activity990917.134751 activity "activity990917.134751"
deliver.java_dev.19990917.140443 activity "deliver java_dev

on 09/17/99 14:04:43."
deliver.java_dev.19990917.141046 activity "deliver java_dev

on 09/17/99 14:10:46."
 ClearCase Reference Pages 147

lsstream
java_dev stream "java_dev"
activity990917.140331 activity "activity990917.140331"

SEE ALSO

chstream, lock, mkstream, rmstream
148 ClearCase Product Family Documentation Supplement

mkactivity
mkactivity
Creates a UCM activity

APPLICABILITY

SYNOPSIS
mkact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–hea⋅dline headline] [–in stream-selector] [–nset] [–force] [activity-selector ...]

DESCRIPTION

The mkactivity command creates a UCM activity. Activities track the work you do in completing

a development task. An activity consists of a headline, which describes the task, and a change

set, which identifies all versions of elements that are created or modified by work on the activity.

Each stream can have one current activity, which records any changes being made. Use –nset if
you do not want to use an activity immediately. To begin recording changes in an activity, issue

a setactivity command from a view that is attached to the activity’s stream.

Behavior for ClearQuest-enabled Projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

generates an error. The correct way to create an activity is to use the setactivity command,

specifying a ClearQuest record-ID as the activity-selector.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on the following objects: the UCM project VOB.

Mastership: There are no mastership requirements.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 149

mkactivity
OPTIONS AND ARGUMENTS

ASSIGNING A HEADLINE TO AN ACTIVITY. Default: The activity’s name as specified by the

activity-selector argument.

–hea⋅dline headline
Specifies a description of the activity. The headline argument can be a character string of

any length. Enclose a headline with special characters in double quotes. The headline is

applied to all activities created with this invocation of the command.

SPECIFYING THE STREAM. Default: The stream attached to the current view.

–in stream-selector
Specifies that the activity be created in this stream.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

SETTING THE CURRENT ACTIVITY. Default: If one activity is created with this command: the newly

created activity. If more than one activity is created or any number of activities is created outside

a view context: none.

–nset
Specifies that the new activity not be set as the current activity for the view.

CONFIRMATION STEP. Default: Prompts for confirmation of a generated name for the activity if no

name is specified by activity-selector.

–force
Suppresses the confirmation step.

NAMING THE ACTIVITY. Default: If one activity is created with this command: a generated name.

If more than one activity is created: none.

activity-selector ...
Specifies one or more activities to create. The specifier must be unique within the project

VOB.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.
150 ClearCase Product Family Documentation Supplement

mkactivity
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create an activity, but do not set it to be the current activity for the view.

cmd-context mkact –nset

Create activity with automatically generated name? [yes] yes
Created activity "activity990917.133218".

• Create an activity. The activity is created in the stream attached to the current view. Its name

is generated automatically.

cmd-context mkact new_activity

Created activity "new_activity".
Set activity "new_activity" in view "java_int".

• Create an activity whose name is generated automatically. You are not prompted for

confirmation.

cmd-context mkact -f

Created activity "activity990917.134751".
Set activity "activity990917.134751" in view "java_int".

• Create an activity with the headline “Create directories”.

cmd-context mkactivity -headline "Create directories" create_directories

Created activity "create_directories".
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, rmactivity, setactivity
 ClearCase Reference Pages 151

mkactivity
152 ClearCase Product Family Documentation Supplement

mkbl
mkbl
Creates a UCM baseline or set of baselines

APPLICABILITY

SYNOPSIS

• Create a baseline of a component or set of baselines of components:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

[–vie⋅w view-tag]

[–com⋅ponent component-selector[,...] | –all | –act⋅ivities activity-selector[,...]]

[–ide⋅ntical]
[–nlabel | –inc⋅remental | –fu⋅ll]
baseline-root-name

• Create a baseline by importing a label type:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

–imp⋅ort label-type-selector ...

DESCRIPTION

The mkbl command creates a baseline or set of baselines. A baseline represents a snapshot of the

changes made to a particular component in the context of a particular stream—it is a version of

a component. For each element in the component, the baseline records the version of that element

selected by the stream’s configuration at the time the mkbl operation is executed. The baseline

also records the list of activities in the stream whose changes sets contain versions of the

component’s elements.

A baseline selects one version of each element of a component. You can create multiple baselines

per component, just as you can create multiple versions of an element. A baseline is associated

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 153

mkbl
with only one component and you can only create one baseline per component per invocation of

mkbl.

By default, all components that have been modified since the last full baseline are considered as

candidates for new baselines. You can also create baselines for a subset of components in the

stream or for components modified by specific activities.

Initial Baseline

When you create a component, it includes an initial baseline whose name is of the form

component-name_INITIAL. This baseline selects the /main/0 version of the component's root

directory and serves as a starting point for successive baselines of the component.

Creating a Baseline for an Unmodified Component

Use the –identical option to create a new baseline for a component that has not been modified.

This can be useful in working with several components. You can create new baselines for a set of

components independent of whether they have been modified.

Creating Baselines that Include a Set of Activities

By default, all activities modified since the last baseline was made are captured in new baselines.

You can select a subset of activities for inclusion in the baseline. If there are dependencies

between the change sets of activities, you may not be able to include just the activity you want;

you’ll also need to include those activities that it depends on.

A single baseline is created if the selected activities are part of the same component. If an activity

modifies more than one component, a new baseline is created for each component it modifies.

Creating a Baseline by Importing a Label

You can recognize a VOB as a component with the mkcomp command. When you do this, the

VOB is given an initial baseline that selects the /main/0 version of the component root directory.

However, this baseline does not give you access to files and directories that are already in the

VOB.

You can create a new baseline that corresponds to a set of labeled versions in the VOB. To do this,

use the –import option, specifying a label-type-selector. The mkbl command creates a baseline

that selects the labeled versions, making them accessible to the UCM project.

Before creating the baseline, be sure that the label is unlocked and ordinary (not global) and that

labeled elements are checked in. The label is locked when the baseline is created and you cannot

move the label later. Be certain the label selects a version of all visible elements.

Baseline Names

Baseline identifiers are made up of two parts: a user-specifiable root name and a generated,

unique numeric extension. The same root name can be used for baselines of more than one

component. However, a root name can be used only once per component per stream.
154 ClearCase Product Family Documentation Supplement

mkbl
When you create a baseline by importing a label, the root name is derived from the label’s type

selector. For example, the label-type selector REL1@/vobs/baz generates a baseline root name of

REL1 whose scope is the baz component.

Baseline Labels

You can choose whether versions of the baseline are to be labeled when the baseline is created.

Baselines can be unlabeled, incrementally labeled, or fully labeled.

All baselines record a component’s current configuration in a stream, but only labeled baselines

can be used to configure other streams (via the rebase operation or mkstream).

Choose a labeling scheme that suits your project’s structure. Incremental baselines are typically

faster to create than full baselines. Specifically, the time required to create a baseline is as follows:

• For a full baseline, it is proportional to the number of elements in the component.

• For an incremental baseline, the time is proportional to the number of elements changed

since the last full baseline.

These options control labeling during baseline creation:

• The –nlabel option, which creates an unlabeled baseline. Unlabeled baselines cannot be

used as foundation baselines to configure a stream. They can be used with the diffbl
command.

• The –incremental option, which labels versions of elements that have changed since the last

full baseline was created.

• The –full option, which creates a baseline by selecting and labeling a version of each

element in the component.

You can change the labeling status for a baseline with the chbl command.

Promotion Levels

Baselines are marked with a promotion level that signifies the quality of the baseline. When

created, a project VOB is assigned an ordered set of promotion levels, one of which is designated

the default promotion level, the level assigned to new baselines when they are created.

See the setplevel command for further information.

RESTRICTIONS

Identities: No special identity required.

Locks: An error is generated if there are locks on any of the following objects: the UCM project

VOB, the component, the containing stream; and if you are importing a label type, the label type

being imported.
 ClearCase Reference Pages 155

mkbl
Mastership: The master replica of the indicated objects must match the replica (originally)

performing the operation.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cq). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VIEW AND STREAM. Default: The stream to which the current view is attached.

⋅–vie⋅w view-tag
Specifies the view from which to create baselines. Baselines are created in the stream that

the view is attached to.

For example, if you are working in coyne_dev_view, but want to create a baseline from

the configuration specified by the view coyne_integration_view, use –view
coyne_integration_view. This creates a baseline in the project’s integration stream that

includes all the checked-in versions contained in coyne_integration_view. If you do not

specify view-tag, the current view is used.

SPECIFYING THE COMPONENTS OR ACTIVITIES. Default: –all.

–com⋅ponent component-selector[,...]

Specifies the components for which baselines are made.

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

–all
Creates a baseline for each component in the project that has been modified since the last

baseline.

–ide⋅ntical
Creates new baselines for all components, regardless of whether they have been

modified.

–act⋅ivities activity-selector, ...
Specifies a list of activities to include in the new baselines.

activity-selector is of the form: [activity:]activity-name[@vob-selector] where vob is the

activity’s UCM project VOB.

By default, all activities with changes that are not recorded in the last baselines are

recorded in the new baselines. You can use this option to include only a subset of the
156 ClearCase Product Family Documentation Supplement

mkbl
unrecorded changes in the new baselines. A baseline is created for each component that

has unrecorded changes in the specified list of activities.

The list of activities must be complete. That is, they must not depend on the inclusion of

any other activities. Activity A2 is dependent on activity A1 if they both contain versions

of the same element and A2 contains a later version than A1. If the list of activities is

incomplete, the required activities are listed and the operation fails.

SELECTING LABELING BEHAVIOR. Default: –incremental.

–nla⋅bel
Specifies that versions for this baseline are not labeled. Unlabeled baselines cannot be

used as foundation baselines, but can be used by the diffbl command and labeled later.

–inc⋅remental
Labels only versions that have changed since the last full baseline was created.

–fu⋅ll
Labels all versions visible below the component's root directory.

SPECIFYING THE BASELINE ROOT. Default: None.

baseline-root-name
Specifies the root portion of the baseline name. See Baseline Names on page 154.

SPECIFYING A LABEL TO IMPORT. Default: None.

–imp⋅ort label-type-selector
Creates a baseline using versions marked with the specified label-type-selector. The label

type must be applied to the component's root directory and to every element below the

root directory that you want to include in the component. Baselines are created as

successors to the initial baseline. The scope of the label type must be ordinary, not global.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In
 ClearCase Reference Pages 157

mkbl
this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Create a baseline for a component xroutines by importing a label type.

cmd-context mkbl -c “Import BL2 label” –import BL2@/vobs/xroutines

• Create baselines for all components in the project that have been modified since the last

baseline was created.

cmd-context mkbl BL1

Created baseline "BL1.119" in component "webo_modeler".
Begin incrementally labeling baseline "BL1.119".
Done incrementally labeling baseline "BL1.119".
Created baseline "BL1.120" in component "webo_gui".
Begin incrementally labeling baseline "BL1.120".
Done incrementally labeling baseline "BL1.120".

• Create baselines for the components modified by a particular activity.

cmd-context mkbl -activities line-lib@\pvob1

SEE ALSO

chbl, diffbl, lsbl, rmbl
158 ClearCase Product Family Documentation Supplement

mkcomp
mkcomp
Creates a UCM component object

APPLICABILITY

SYNOPSIS
mkcomp [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

–root dir-pname component-selector

DESCRIPTION

The mkcomp command creates a UCM component. A component groups directories and file

elements. The scope of a UCM project is declared in terms of components. A project must contain

at least one component, and it can contain multiple components. Projects can share components.

This command must be used within a view context.

Component objects live in project VOBs, and point to directory elements. All elements below the

directory root are in the component.

An initial baseline is automatically created when you create a component. This baseline selects

the /main/0 version of the component's root directory. Use this as a starting point for making

changes to the component.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on the following objects: the UCM project VOB.

Mastership: The master replica of the indicated objects must match the replica (originally)

performing the operation

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 159

mkcomp
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

The comment is stored in the creation event of the component object.

SPECIFYING A COMPONENT SELECTOR AND LOCATION.

–root dir-pname
Specifies the root directory pathname for this component. The directory-pathname must

be the root directory of a VOB. A VOB directory can be referenced only by one

component in one project VOB.

component-selector
Identifies the component.

component-selector is of the form [component:]component-name[@vob-selector] where vob is

the component’s UCM project VOB.

If no vob-selector is given, the component is created in the project VOB if it contains the

current working directory, otherwise the component is not created.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Create a component.
160 ClearCase Product Family Documentation Supplement

mkcomp
cmd-context mkcomp -c "modeling component" \
-root /vobs/webo_modeler webo_modeler@/vobs/webo_pvob

Set Admin VOB for component "webo_modeler"
Created component "webo_modeler".

SEE ALSO

lscomp, mkbl, rmcomp
 ClearCase Reference Pages 161

mkcomp
162 ClearCase Product Family Documentation Supplement

mkfolder
mkfolder
Creates a folder for a UCM project

APPLICABILITY

SYNOPSIS
mkfolder [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe ach | –nc omment]

[–title title] –in parent-folder-selector [folder-selector ...]

DESCRIPTION

The mkfolder command creates a folder for a UCM project. Folders have these characteristics:

• They can contain projects or other folders.

• They must reside in a UCM project VOB.

• Each folder must have a parent folder.

The parent folder for a top-level folder is named RootFolder, a predefined object.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: UCM project VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 163

mkfolder
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE FOLDER TITLE. Default: The folder’s name, specified as part of the folder-selector
argument.

–title title
Specifies a descriptive title displayed in output and the graphical interface for all folders

created. The title argument can be a character string of any length. Use double quotes to

enclose titles with spaces or special characters.

SPECIFYING THE PARENT FOLDER. Default: None.

–in parent-folder-selector
Specifies a parent folder for the new folder. To create a top-level folder, you must specify

the predefined folder object RootFolder as its parent folder.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING THE FOLDER NAME. Default: A generated name.

folder-selector ...
Identifies one or more new folders.Each folder must reside in the same UCM project

VOB as its parent folder and is created in the folder specified by the –in option.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.
164 ClearCase Product Family Documentation Supplement

mkfolder
Creates a top-level folder whose parent is the predefined object RootFolder.

cmd-context mkfolder -title "webo projects" -in \
RootFolder@/vobs/webo_pvob webo_projects@/vobs/webo_pvob

Created folder "webo_projects".

SEE ALSO

chfolder, lsfolder, mkproject, rmfolder
 ClearCase Reference Pages 165

mkfolder
166 ClearCase Product Family Documentation Supplement

mkproject
mkproject
Create a UCM project

APPLICABILITY

SYNOPSIS
mkproj⋅ect [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tit⋅le title] [–mod⋅comp component-selector[,...]]

–in folder-selector
[–crm⋅enable ClearQuest-user-database-name]

[project-selector ...]

DESCRIPTION

The mkproject command creates a UCM project. A project includes policy information and

configuration information.

Projects are created in UCM folders. A folder or folder hierarchy should be in place before you

create a project. If no folder exists, you can specify RootFolder as the folder selector with the –in
option. RootFolder is a predefined object representing the parent folder of a UCM folder

hierarchy. See mkfolder for more information.

Projects maintain a list of components that can be modified within the project. You can specify

these with the –modcomp option. Streams in the project can make changes, such as checking out

files, only in modifiable components; all other components are read-only.

See chproject for information on setting policy for a project.

Using Rational ClearQuest with UCM projects

Optionally, you can link a project to a Rational ClearQuest database. The schema of the

ClearQuest database must be UCM-enabled, and your system must be configured for the correct

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 167

mkproject
schema repository. All ClearQuest-enabled projects in the same project VOB must link to the

same ClearQuest user database.

 See chproject for related information.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if any of the following objects are locked: the UCM project VOB.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING A TITLE FOR THE PROJECT. Default: The project’s name, as specified by the

project-selector argument.

–tit⋅le title
Specifies a project title applied to all projects created with this command. The title
argument can be a character string of any length. Use double quotes to enclose a

multiple-word title or a title with special characters.

SPECIFYING A FOLDER FOR THE PROJECT. Default: None.

–in folder-selector
Specifies a folder.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING MODIFIABLE COMPONENTS. Default: None.

–mod⋅comp component-selector[,...]

Specifies the components that can be modified by this project.

SPECIFYING A LINK TO THE CLEARQUEST DATABASE. Default: None.

–crm⋅enable ClearQuest-user-database-name

Enables a link from the project to the specified Rational ClearQuest database. The

schema of the ClearQuest database must be UCM-enabled and your system must be

configured for the correct schema repository.

SPECIFYING THE PROJECT NAME. Default: A generated name.
168 ClearCase Product Family Documentation Supplement

mkproject
project-selector
Specifies the project.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Create a project in the RootFolder of the project VOB webo_pvob.

cmd-context mkproject -c "creating webo project release 1" \
-title webo_proj1 -in webo_projects@/vobs/webo_pvob webo_proj1@/vobs/webo_pvob

Created project "webo_proj1".

SEE ALSO

chproject, lsproject, mkfolder, rmproject
 ClearCase Reference Pages 169

mkproject
170 ClearCase Product Family Documentation Supplement

mkstream
mkstream
Creates a stream for a UCM project

APPLICABILITY

SYNOPSIS

mkstream [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–tit⋅le title] [–int⋅egration]

[–bas⋅eline baseline-selector[,...]]

–in project-selector [stream-selector...]

DESCRIPTION

The mkstream command creates a stream for use with a UCM project. A stream consists of a title,

a set of baselines that configure the stream, and a record of the set of activities associated with

the stream.

There are two kinds of streams with UCM projects:

• As a shared work area for integrating work from different sources. This is called the

project’s integration stream. Each project has exactly one integration stream.

• As an isolated work area for use in active code development. This is called a development

stream. A project can have any number of development streams.

To create a stream, you must specify its project and whether it is an integration stream or

development stream. Note that a project’s integration stream must be present before a

development stream can be created.

Optionally, you can assign the stream a title and a set of foundation baselines. Foundation

baselines specify a stream’s configuration by selecting the file and directory versions that are

accessible in the stream.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 171

mkstream
Streams are accessed through views (see mkview –stream). Typically, a project’s integration

stream has a view for each developer, whereas each development stream has a single view.

A stream can have more than one view attached to it. In general, because project members work

with a common integration stream, the stream has several views attached to it. A development

stream usually has only one view attached to it.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the project.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE STREAM TITLE. Default: A generated title.

–tit⋅le title
Assigns the specified title to all streams created.

STREAM CONFIGURATION. Default: The stream’s configuration is empty (that is, it has no

foundation baselines).

–baseline baseline-selector[,...]

Specifies one or more baselines to use as the stream's initial configuration—you can

subsequently use rebase to change the stream’s configuration.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

The following restrictions apply to the specified baselines:

• For a development stream, all foundation baseline must either be baselines created in the

project’s integration stream, or serve as the integration stream’s foundation baselines.

• For an integration stream, all foundation baselines must be either baselines created in

other projects’ integration streams, or be import or initial baselines. You cannot use

baselines created in development streams.

SPECIFYING THE STREAM’S ROLE IN THE PROJECT. Default: Development stream.
172 ClearCase Product Family Documentation Supplement

mkstream
–int⋅egration
Creates an integration stream, which is used for shared elements on a project and as a

source for recording baselines. Each project can have one integration stream.

SPECIFYING THE STREAM’S PROJECT. Default: None.

–in project-selector
Specifies the stream’s project.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

SPECIFYING THE STREAM NAME. Default: A generated name.

stream-selector ...
Specifies a stream name.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Create a development stream for the webo project.

cmd-context mkstream -title chris_webo_dev \
-in webo_proj1@/vobs/webo_pvob chris_webo_dev@/vobs/webo_pvob
 ClearCase Reference Pages 173

mkstream
Created stream "chris_webo_dev".

• Create an integration stream.

cmd-context mkstream -title integration -integration ^
-in webo_proj1 integration@\webo_pvob

Created stream "integration".

• Join a project. This example shows the sequence of commands to follow to join a UCM

project.

a. Find the project-selector for the project you want to join. For example:

cmd-context lsproject –invob /vobs/webo_pvob

01-Mar-00.16:31:33 webo_proj1 ktessier "webo_proj1"
05-Jun-00.12:31:33 webo_proj2 ktessier "webo_proj2"

b. Create your development stream. For example:

cmd-context mkstream –title chris_webo_dev \
-in webo_proj1@/vobs/webo_pvob –baseline BL3@/vobs/webo_pvob \
chris_webo_dev@/vobs/webo_pvob

Created stream "chris_webo_dev".

c. Create a view attached to your development stream:

cmd-context mkview -stream chris_webo_dev@/vobs/webo_pvob \
-tag chris_webo_dev /export/views/chris_webo_dev.vws

Created view.
Host-local path: venus:/export/views/chris_webo_dev.vws
Global path: /net/venus/export/views/chris_webo_dev.vws
It has the following rights:
User : chris : rwx
Group: user : rwx
Other: : r-x
Attached view to stream "chris_webo_dev".

d. Create a view attached to the project’s integration stream:

cmd-context mkview -stream integration@/vobs/webo_pvob \
-tag webo_integ /export/views/webo_integ.vws

SEE ALSO

chstream, lsstream, rebase, rmstream
174 ClearCase Product Family Documentation Supplement

mktrigger
mktrigger
Attaches a trigger to an element or UCM object

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Attach a trigger to an element or a UCM object:

mktrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–r⋅ecurse] [–nin⋅herit | –nat⋅tach] [–f⋅orce]

trigger-type-selector { pname | ucm-object-selector } ...

• Attache only—Attach a trigger to an element:

mktrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–r⋅ecurse] [–nin⋅herit | –nat⋅tach] [–f⋅orce]

trigger-type-selector pname ...

DESCRIPTION

The mktrigger command attaches a trigger to one or more elements or UCM objects. An attached

trigger fires (executes the trigger action) when the element (or any of its versions) or the UCM

object is involved in an operation specified in the trigger type definition. For example, if a trigger

type is defined to fire on a checkin command, the attached trigger fires when the specified

element is checked in. If a VOB operation causes multiple attached triggers to fire, the order of

firing is undefined.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows
 ClearCase Reference Pages 175

mktrigger
NOTE: A trigger type object, created with mktrtype –element must already exist in the VOBs

containing the specified elements. Similarly, you use mktrtype –ucmobject to create a trigger

type object in the project VOB containing the specified UCM objects before you can use this

command.

Element Trigger Inheritance

By means of a trigger inheritance scheme, newly created elements (but not existing elements)

inherit the triggers that are currently associated with their parent directory element. But a simple

inherit-all-triggers strategy does not suit the needs of many sites. For example:

• You may want some of a directory’s triggers not to propagate to its subtree.

• You may want some triggers to fire only for file elements, not for directory elements.

To enable such flexibility, each directory element has two independent lists of trigger types:

• Its attached list specifies triggers that fire on operations involving the directory element.

• Its inheritance list specifies triggers that elements created within the directory inherit.

By default, attaching a trigger to a directory element updates both lists:

cmd-context mktrigger trig_co proj

Added trigger "trig_co" to inheritance list of "proj".
Added trigger "trig_co" to attached list of "proj".

Each file element has only an attached list:

cmd-context mktrigger trig_co util.c

Added trigger "trig_co" to attached list of "util.c".

You can use the –ninherit and –nattach options to control exactly which triggers on a directory

element are inherited. (And you can make adjustments using the –ninherit and –nattach options

of the rmtrigger command.)

RESTRICTIONS

Identities: For each object processed, you must be one of the following: object group member,

object owner, VOB owner (for an element trigger), project VOB owner (for a UCM object trigger),

or:

• UNIX: root

• ClearCase on Windows: member of the ClearCase group

• ClearCase LT on Windows: local administrator of the ClearCase LT server host

See the permissions reference page.
176 ClearCase Product Family Documentation Supplement

mktrigger
Locks: An error occurs if any of the following objects are locked: VOB (for an element trigger),

project VOB (for a UCM object trigger), object type, object, trigger type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ATTACHING ELEMENT TRIGGERS TO AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument

names a directory element, the trigger is attached only to the element itself, not to any of the

existing elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). UNIX VOB symbolic links are not traversed during the recursive descent into the

subtree.

CONTROLLING ELEMENT TRIGGER INHERITANCE. Default: For a directory element, the specified

trigger type is placed both on the element’s attached list and its inheritance list. (For a file

element, the trigger type is placed on its attached list, which is its only trigger-related list.) The

following options apply to directory elements only.

–nin⋅herit
The trigger is placed on the element’s attached list, but not on its inheritance list. This

option is useful when you want to monitor operations on a directory, but not operations

on the files within the directory.

–nat⋅tach
The trigger is placed on the element’s inheritance list, but not on its attached list. This

option is useful when you want to monitor operations on the files within a directory, but

not operations on the directory itself.

OBSERVING TYPE RESTRICTIONS. Default: If trigger-type-name is defined with a restriction to one or

more object types, mktrigger refuses to process an object of another type.

–f⋅orce
Attaches a trigger to an object whose type does not match the definition of the trigger

type. Such a trigger does not fire unless you change the object’s type (chtype) or you

redefine the trigger type (mktrtype –replace).

SPECIFYING THE TRIGGER TYPE. Default: None.
 ClearCase Reference Pages 177

mktrigger
trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, specifying elements to which the specified trigger type is to be

attached.

SPECIFYING THE UCM OBJECT. Default: None.

ucm-object-selector ...

The name of the UCM object. Specify ucm-object-selector in the form

[ucm-object-type:]type-name[@vob-selector].

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

type-name Name of the trigger type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

ucm-object-type Name of the UCM object type

vob-selector UCM project VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the project VOB-tag

(whether or not the project VOB is

mounted) or of any file-system object

within the project VOB (if the project

VOB is mounted)
178 ClearCase Product Family Documentation Supplement

mktrigger
mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Attach a trigger to element hello.c.

cmd-context mktrigger trig1 hello.c
Added trigger "trig1" to attached list of "hello.c".

• Attach a trigger to element util.c, even if its element type does not appear in the trigger

type’s restriction list.

cmd-context mktrigger -force trig1 util.c
Added trigger "trig1" to attached list of "util.c".

• Attach a trigger to directory element src.

cmd-context mktrigger trig1 src
Added trigger "trig1" to attached list of "src".
Added trigger "trig1" to inheritance list of "src".

• Add a trigger to the release directory’s inheritance list, but not to its attached list.

cmd-context mktrigger -nattach trig1 release
Added trigger "trig1" to inheritance list of "release".

SEE ALSO

describe, mktrtype, rmtrigger
 ClearCase Reference Pages 179

mktrigger
180 ClearCase Product Family Documentation Supplement

mktrtype
mktrtype
Creates a trigger type object

APPLICABILITY

SYNOPSIS

• ClearCase, ClearCase LT, and Attache only—Create element trigger type:

mktrtype –ele⋅ment [–a⋅ll] [–rep⋅lace]

{ –pre⋅op | –pos⋅top } opkind[,...] [–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command
| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

[restriction-list]
[–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• ClearCase, ClearCase LT, and Attache only—Create type trigger type:

mktrtype –typ⋅e [–rep⋅lace] { –pre⋅op | –pos⋅top } opkind[,...]

[–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows
 ClearCase Reference Pages 181

mktrtype
| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

inclusion-list [–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• ClearCase and ClearCase LT only—Create a UCM trigger type:

mktrtype –ucm⋅object [–a⋅ll] [–rep⋅lace]

{ –pre⋅op | –pos⋅top } opkind[,...] [–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command
| –execw⋅in command
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

[restriction-list]
[–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• A restriction-list for an element trigger type contains one or more of:

NOTE: –xxxtype aaa,bbb is equivalent to –xxxtype aaa –xxtype bbb.

• A restriction-list for a UCM trigger type contains one or more of:

• An inclusion-list for an element trigger type contains one or more of:

–att⋅ype attr-type-selector[,...] –hlt⋅ype hlink-type-selector[,...]

–brt⋅ype branch-type-selector[,...] –lbt⋅ype label-type-selector[,...]

–elt⋅ype elem-type-selector[,...] –trt⋅ype trigger-type-selector[,...]

–com⋅ponent component-selector[,...] (Default: All components)

–pro⋅ject project-selector[,...] (Default: All projects)

–str⋅eam stream-selector[,...] (Default: All streams)

–att⋅ype attr-type-selector[,...] or –att⋅ype –all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype –all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype –all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype –all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype –all
182 ClearCase Product Family Documentation Supplement

mktrtype
NOTE: –xxxtype aaa,bbb is equivalent to –xxxtype aaa –xxtype bbb.

DESCRIPTION

The mktrtype command creates one or more trigger types for use within a VOB or UCM project

VOB. A trigger type defines a sequence of one or more trigger actions to be performed when a

specified ClearCase, ClearCase LT, or Attache operation occurs. The set of operations that

initiates each trigger action—that is, causes the trigger to fire—can be very limited (for example,

checkout only) or quite general (for example, any operation that modifies an element). You can

use a restriction list to further limit the circumstances under which a trigger action is performed.

The trigger types are as follows:

• An element trigger type works like a label type or attribute type: an instance of the type

(that is, a trigger) must be explicitly attached to one or more individual elements with the

mktrigger command. The trigger actions are performed when the specified operation is

invoked on any of those elements. An element must exist before the trigger can be attached.

(This means that putting a trigger on a mkelem operation has no effect.)

A variant of this type, called an all-element trigger type, is associated with the entire VOB.

(Hence, no mktrigger command is required.) In effect, an instance of the type is implicitly

attached to each element in the VOB, even those created after this command is executed. This

trigger type is useful for disallowing creation of elements that have certain characteristics.

• A type trigger type is associated with one or more type objects. The trigger actions are

performed when any of those type objects is created or modified.

• A UCM trigger type is attached to one or more UCM objects, such as a stream or activity,

and fires when the specified operation is invoked on the UCM object. You can also create an

all-UCM-object trigger type. Like the all-element type, this type is implicitly attached to all

existing and potential UCM objects in the project VOB (that is, no mktrigger command is

required).

Unlike other types, trigger types cannot be global.

TRIGGER FIRING

Causing a set of trigger actions to be performed is termed firing a trigger. Each trigger action can

be either of the following:

• Any command (or sequence of commands) that can be invoked from a shell or command

prompt. A command can use special environment variables (EVs), described in the Trigger
Environment Variables section, to retrieve information about the operation.

• Any of several built-in actions defined by mktrtype. The built-in actions attach metadata

annotations to the object involved in the operation.

–trt⋅ype trigger-type-selector[,...] or –trt⋅ype –all
 ClearCase Reference Pages 183

mktrtype
Trigger actions execute under the identity of the process that caused the trigger to fire.

Interactive Trigger Action Scripts

A script or batch file executed as (part of) a trigger action can interact with the user. The

clearprompt utility is designed for use in such scripts; it can handle several kinds of CLI-style

and GUI-style user interactions.

Multiple Trigger Firings

A single operation can cause any number of triggers to fire. The firing order of such simultaneous

triggers is indeterminate. If multiple trigger operations must be executed in a particular order,

use a single trigger defining all of the operations in order of execution.

It is also possible for triggers to create a chain reaction. For example, a checkin operation fires a

trigger that attaches an attribute to the checked-in version; the attach attribute operation, in turn,

fires a trigger that sends mail or writes a comment to a file. You can use the CLEARCASE_PPID

environment variable to help synchronize multiple firings (for more information, see Trigger
Environment Variables).

If a trigger is defined to fire on a hyperlink operation, and the hyperlink connects two elements,

the trigger fires twice—once for each end of the hyperlink.

Suppressing Trigger Firing

The firing of a trigger can be suppressed when the associated operation is performed by certain

identities. Firing of a trigger is suppressed if the trigger type has been made obsolete. (See the

lock reference page).

Trigger Interoperation

The –execunix and –execwin options allow a single trigger type to have different paths for the

same script, or completely different scripts, on UNIX and Windows hosts. When the trigger is

fired on UNIX, the command specified with –execunix runs; when the trigger is fired on

Windows, the command specified with –execwin runs.

Triggers with only –execunix commands always fail on Windows. Likewise, triggers that only

have –execwin commands fail when they fire on UNIX.

The –exec option, whose command will run on both platforms, can be used in combination with

the platform-specific options. For example, you can cascade options:

–exec arg1 –execunix arg2 –execwin arg3 –mklabel arg4 ...

PREOPERATION AND POSTOPERATION TRIGGERS

A preoperation trigger (–preop option) fires before the corresponding operation begins. The one

or more actions you’ve specified take place in their order on the command line.

This type of trigger is useful for enforcing policies:
184 ClearCase Product Family Documentation Supplement

mktrtype
• If any trigger action returns a nonzero exit status, the operation is canceled.

• If all trigger actions return a zero exit status, the operation proceeds.

For example, a preoperation trigger can prohibit checkin of an element that fails to pass a

code-quality test.

A postoperation trigger (–postop option) fires after completion of the corresponding operation.

The one or more actions you’ve specified take place in their order on the command line. This kind

of trigger is useful for recording—in the VOB or UCM project VOB, or outside them—the

occurrence of the operation. If a postoperation trigger action returns a nonzero exit status, a

failed exit status warning message is printed, but other trigger actions, if any, are executed.

For example, a post-operation trigger on checkin attaches an attribute to the checked-in version

and sends a mail message to interested users and/or managers.

RESTRICTION LISTS AND INCLUSION LISTS

You can define a trigger type with a restriction list, which limits the scope of the operation

specified with –preop or –postop. The trigger fires only if the operation involves particular type

objects.

A type trigger type is not associated with element or UCM objects, but with one or more type

objects. When creating a type trigger type, you must specify an inclusion list, naming the type

objects to be associated with the new trigger type. (Hence, it is unnecessary to use mktrigger to

create the association.) The special keyword –all allows you to associate a type trigger type with

every type object of a particular kind (for example, all branch type objects), even those objects

created after you enter this command.

TRIGGER ENVIRONMENT VARIABLES

When a trigger fires, the trigger action executes in a special environment whose EVs make

information available to –exec, –execunix, and –execwin routines: what operation caused the

trigger to fire, what object was involved in the operation, and so on. The complete set of EVs is

listed in TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES on page 192.

RESTRICTIONS

Identities: For each object processed, you must be one of the following: type owner (applies to

–replace only), VOB owner (element trigger types), project VOB owner (UCM trigger types) or:

• UNIX: root

• ClearCase on Windows: member of the ClearCase group

• ClearCase LT on Windows: local administrator of the ClearCase LT server host

See the permissions reference page.
 ClearCase Reference Pages 185

mktrtype
OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TRIGGER TYPE. Default: None.

–ele⋅ment
Creates an element trigger type, which can be attached to individual elements with

mktrigger.

–ele⋅ment –a⋅ll
Creates an all-element trigger type, which is implicitly attached to all VOB objects,

subject to the restriction list.

–ucm⋅object
Creates a UCM object trigger type, which can be attached to individual UCM objects

with mktrigger.

–ucm⋅object –a⋅ll
Creates an all-UCM-object trigger type, which is implicitly attached to all project VOB

objects, subject to the restriction list.

–typ⋅e
Creates a type trigger type, and associates it with specific type objects and/or kinds of

type objects.

HANDLING OF NAME COLLISIONS. Default: An error occurs if a trigger type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults.

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

If an instance of an element or UCM trigger type is currently attached to any object, the

replacement definition must correspond in kind: the new definition must be of an

element trigger type or a UCM trigger type (but not an all-element or all-UCM object

trigger type). You can remove an existing trigger type and all of its attached instances

using the rmtype command.

SPECIFYING THE OPERATIONS TO BE MONITORED. Default: None.

For both –preop and –postop, you must specify a comma-separated list of operations, any of

which fire the trigger. Many of the operation keywords have the same names as cleartool
subcommands (for example, checkout and unlock). Uppercase keywords (for example,
186 ClearCase Product Family Documentation Supplement

mktrtype
MODIFY_ELEM) identify groups of operations. See the TRIGGER OPERATIONS AND
TRIGGER ENVIRONMENT VARIABLES section for a list of operation keywords.

–pre⋅op opkind[,...]

Specifies one or more operations that cause the trigger to fire before the operation starts.

The exit status of the trigger actions is significant: for each trigger action, a zero exit

status allows the operation to proceed; a nonzero exit status cancels the operation.

–pos⋅top opkind[,...]

Specifies one or more operations that cause the trigger to fire after the operation

completes. The exit status of the trigger action is not significant.

SUPPRESSING TRIGGER FIRING FOR CERTAIN USERS. Default: Triggers fire regardless of who

performs the operation.

–nus⋅ers login-name[,...]

Suppresses trigger firing when any user on the comma-separated login-name list

performs the operation.

SPECIFYING THE TRIGGER ACTION. Default: None. Specify one or more of the following options to

indicate the action to be performed when the trigger fires; you can use more than one option of

the same kind. With multiple options, the trigger actions are performed in the specified

sequence.

–exe⋅c command
Executes the specified command in a shell when the trigger fires. If command includes

one or more arguments, quote the entire string. Use single quotes ('command ') if the

command includes ClearCase, ClearCase LT, or Attache environment variables, to delay

interpretation until trigger firing time.

ClearCase, ClearCase LT, and Attache on Windows—If you do not run mktrtype from

the cleartool prompt, enclose command—and any single quotes—in double quotes (" '

command ' "). (See also the cleartool reference page.)

If you invoke a command built in to the Windows shell (for example, cd, del, dir, or

copy), you must invoke the shell with cmd /c. For example:

–exec 'cmd /c copy %CLEARCASE_PN% %HOME%'

–execu⋅nix command
–execw⋅in command

These options have the same behavior as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). When fired on the other platform, they do nothing;

however, triggers with only –execunix commands always fail on Windows, and triggers

that only have –execwin commands always fail on UNIX.
 ClearCase Reference Pages 187

mktrtype
NOTE TO UNIX USERS: If you use –execwin when defining a trigger type on UNIX, you

must escape backslashes in command with a backslash. Also, if you invoke a command

built in to the Windows shell (for example, cd, del, dir, or copy), you must invoke the

shell with cmd /c. For example:

–execwin 'cmd /c copy %CLEARCASE_PN% %HOME%'

–mkl⋅abel label-type-selector
(With –postop only) Attaches the specified version label to the element version involved

in the operation that caused trigger firing. If the label type is a global type, a local copy

of the type must exist in the VOB in which you are creating the trigger type. Specify

label-type-selector in the form [lbtype:]type-name[@vob-selector]

–mka⋅ttr attribute-type-selector=value
(With –postop only) Attaches the specified attribute name/value pair to the object

involved in the operation that caused trigger firing. If the attribute type is a global type,

a local copy of the type must exist in the VOB in which you are creating the trigger type.

Specify attribute-type-selector in the form [attype:]type-name[@vob-selector]

–mkh⋅link hlink-type-selector,to=pname
(With –postop only) Creates a hyperlink from the object involved in the operation that

caused the trigger to fire to the object specified by pname. If the hyperlink type is a global

type-name Name of the label type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the attribute type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
188 ClearCase Product Family Documentation Supplement

mktrtype
type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

–mkh⋅link hlink-type-selector,from=pname
(With –postop only) Creates a hyperlink from the object specified by pname to the object

involved in the operation that caused the trigger to fire. If the hyperlink type is a global

type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

NOTES: With the built-in actions –mklabel, –mkattr, and –mkhlink, you can specify the

information either literally or using environment variables:

The built-in actions never cause additional triggers to fire. However, scripts or other

programs invoked with –exec may cause such chain reactions. For example, a mklabel
command in a shell script can cause another trigger to fire, but the corresponding

–mklabel trigger action cannot.

type-name Name of the hyperlink type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the hyperlink type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–mklabel RLS_2.3 (literal)
–mklabel RLS_$RLSNUM (depends on value of EV at trigger firing time)
–mklabel %THIS_RLS% (depends on value of EV at trigger firing time)
–mkattr ECO=437 (literal)
–mkattr ECO=$ECONUM (depends on value of EV at trigger firing time)
 ClearCase Reference Pages 189

mktrtype
ELEMENT TRIGGER TYPES: SPECIFYING A RESTRICTION LIST. Default: No restrictions; triggers fire

when any of the specified operations occurs, no matter what type objects are involved.

–att⋅ype attr-type-selector[,...]

–brt⋅ype branch-type-selector[,...]

–elt⋅ype elem-type-selector[,...]

–hlt⋅ype hlink-type-selector[,...]

–lbt⋅ype label-type-selector[,...]

–trt⋅ype trigger-type-selector[,...]

Use one or more of the above options (or multiple options of the same kind) to specify a

set of type objects for the restriction list. If the type object is an ordinary type, it must

already exist. If a type object is a global type and a local copy does not exist in the VOB,

a local copy is created automatically.

Repeated options, such as –elt text_file –elt c_source, are equivalent to a single option:

–elt text_file,c_source. Wildcarding (–eltype ‘*file’) is not supported.

At trigger firing time, the items on the restriction list form a logical condition. If the

condition is met, the trigger fires.

Specify the type-selector arguments in the form [type-kind:]type-name[@vob-selector]

NOTE: Suppressing the firing of a preoperation trigger means that the operation is

allowed to proceed.

Here is a simple condition:

type-kind One of

attype attribute type

brtype branch type

eltype element type

hltype hyperlink type

lbtype label type

trtype trigger type

type-name Name of the type object

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–brtype rel2_bugfix Fire the trigger only if the operation

involves a branch of type rel2_bugfix.
190 ClearCase Product Family Documentation Supplement

mktrtype
If the list includes multiple type objects, they are combined into a compound condition:

type objects of the same kind are grouped with logical OR; objects (or groups) of

different kinds are then logically ANDed.

In forming the condition, a type object is ignored if it could not possibly be affected by

the operation. (The relevant information is included in the TRIGGER OPERATIONS
AND TRIGGER ENVIRONMENT VARIABLES section.) For example, the restriction list

–lbtype REL2,REL2.01 applies only to the operations chtype, mklabel, and rmlabel.

UCM TRIGGER TYPES: SPECIFYING A RESTRICTION LIST: Default: For –component, all components;

for –project, all projects; for –stream, all streams.

–com⋅ponent component-selector[,...]

–pro⋅ject project-selector[,...]

–str⋅eam stream-selector[,...]

Use one or more of the above options to specify a set of UCM objects for the restriction

list. At trigger firing time, the items on the restriction list form a logical condition: if the

condition is met, the trigger fires.

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

TYPE TRIGGER TYPES: SPECIFYING AN INCLUSION LIST. Default: None. You must specify at least one

item for the inclusion list of a type trigger type.

–brtype rel2_bugfix –eltype
text_file,c_source

Fire the trigger only if the operation

involves a branch of type rel2_bugfix AND

it involves either an element of type text_file
OR of an element of type c_source.

–att⋅ype attr-type-selector[,...] or –att⋅ype -all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype -all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype -all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype -all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype -all
–trt⋅ype trigger-type-selector[,...] or –trt⋅ype -all
 ClearCase Reference Pages 191

mktrtype
You must specify at least one existing type object, or at least one kind of type object,

using the special keyword –all. The trigger fires only if the inclusion list contains the

type object that is being modified or used by the operation.

TRACING TRIGGER EXECUTION. Default: At trigger firing time, if the environment variable

CLEARCASE_TRACE_TRIGGERS is set to a nonnull value for the process that causes the trigger to

fire, a message that includes the trigger type name is printed when the trigger fires; a similar

message is generated when the trigger action completes.

–pri⋅nt
Causes the messages to be generated at trigger firing time, whether or not

CLEARCASE_TRACE_TRIGGERS is set.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE TRIGGER TYPE. Default: The trigger type is created in the VOB or UCM project VOB

that contains the current working directory unless you use the @vob-selector suffix to specify

another VOB.

type-selector ...

One or more names for the trigger types to be created. Specify trigger-type-selector in the

form [trtype:]type-name[@vob-selector]

TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES

Trigger Operations for Type Trigger Types

The following list shows the operation keywords (opkind) for use in definitions of type trigger

types (mktrtype –type). In UNIX, the operation fires a trigger only if the affected object is a type

object specified on the inclusion list, which is required.

type-name Name of the trigger type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB or project VOB is

mounted) or of any file-system object

within the VOB or project VOB (if the

VOB is mounted)
192 ClearCase Product Family Documentation Supplement

mktrtype
NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

MODIFY_TYPE

mktype (see following NOTE)

rmtype
rntype
lock
unlock
chevent
chmaster

NOTE: If you specify mktype, the corresponding inclusion list cannot specify individual type

objects; all relevant options must use the –all keyword. For example:

... –postop mktype –eltype –all –brtype -all ...

Trigger Operations for Element and All-Element Trigger Types

Table 7 lists the operation keywords (opkind) for use in definitions of element and all-element

trigger types (–element and –element –all). For any opkind, not all restrictions specified in the

restriction-list argument are especially relevant: Table 7 also shows which restrictions are checked

for each opkind. The opkinds in capitals (such as MODIFY_ELEM) specify all opkinds that appear

under them; in other words, they are generalizations of the more specific opkinds.

See also the events_ccase reference page.

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

Table 7 Element Trigger Definition Operation Keywords

Operation Keyword Restrictions Checked when Trigger Fires

MODIFY_ELEM

checkout Element type, branch type

reserve Element type, branch type

uncheckout Element type, branch type

unreserve Element type, branch type

MODIFY_DATA
 ClearCase Reference Pages 193

mktrtype
checkin Element type, branch type

chevent See NOTE at end of table

chtype All type objects

lnname Element type, branch type

lock See NOTE at end of table

mkbranch Element type, branch type

mkelem Element type

mkslink N/A

protect See NOTE at end of table

rmbranch Element type, branch type

rmelem Element type

rmname N/A

rmver Element type, branch type

unlock See NOTE at end of table

MODIFY_MD

chevent see NOTE at end of table

chmaster See NOTE at end of table

mkattr Element type, attribute type, branch type

mkhlink Element type, hyperlink type, branch type

mklabel Element type, label type, branch type

mktrigger Element type, trigger type

rmattr Element type, attribute type, branch type

rmhlink Element type, hyperlink type, branch type

Table 7 Element Trigger Definition Operation Keywords

Operation Keyword Restrictions Checked when Trigger Fires
194 ClearCase Product Family Documentation Supplement

mktrtype
NOTE: The operation fires a trigger only if the affected object is one of the following:

• A branch object or version object (in this case, only element type and branch type

restrictions apply)

• An element object (in this case, only element type restrictions apply)

• A type object (in this case, only restrictions on that kind of type object apply)

Trigger Operations for UCM Objects and All-UCM-Object Trigger Types

Table 8 lists the operation keywords (opkind) for use in definitions of UCM object and

all-UCM-object trigger types (–ucmobject and –ucmobject –all). The table shows the kind of

UCM object to which the trigger may be attached—you may also use –all to specify all UCM

objects. For any UCM operation, not all restrictions specified in the restriction-list argument are

especially relevant: Table 8 also shows which restrictions are checked for each operation. You can

use the UCM operation as a synonym for all other UCM operations; it causes a trigger to fire

when any UCM operation for which triggers are enabled occurs.

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls.

rmlabel Element type, label type

rmtrigger Element type, trigger type

Table 8 UCM Object Trigger Definition Operation Keywords

Operation Keyword Object Type Restrictions Checked when Trigger Fires

UCM

deliver_start Target

(integration)

stream

Stream, Project

deliver_cancel Target

(integration)

stream

Stream, Project

Table 7 Element Trigger Definition Operation Keywords

Operation Keyword Restrictions Checked when Trigger Fires
 ClearCase Reference Pages 195

mktrtype
Trigger Environment Variables

The following list shows the EVs that are set in the environment in which a trigger action script

runs. The words in parentheses at the beginning of the description indicate which operations

cause the EV to be set to a significant string; for all other operations, the EV is set to the null

string. (See the events_ccase reference page for a list of which commands cause which

operations.)

deliver_complete Target

(integration)

stream

Stream, Project

rebase_start Target

(development)

stream

Stream, Project

rebase_cancel Target

(development)

stream

Stream, Project

rebase_complete Target

(development)

stream

Stream, Project

mkactivity Stream that is to

contain the

activity

Stream, Project

setactivity Activity being set Stream, Project

mkstream Project that is to

contain the

stream

Project

mkbl Component that

is to contain the

baseline

Stream, Component, Project. No triggers are

fired if the baseline is initial; if imported,

triggers fire but the environment variables

CLEARCASE_STREAM and

CLEARCASE_PROJECT are undefined.

Table 8 UCM Object Trigger Definition Operation Keywords

Operation Keyword Object Type Restrictions Checked when Trigger Fires
196 ClearCase Product Family Documentation Supplement

mktrtype
CLEARCASE_ACTIVITY

(All deliver and rebase operations; checkin, checkout, mkactivity, setactivity,

uncheckout) The UCM activity, if applicable, involved in the operation that caused the

trigger to fire. For checkin, checkout and uncheckout operations, the activity that is set

in the view used for the operation. For the mkactivity, deliver_start, and rebase_start
operations, this environment variable is set only for a post-op trigger.

CLEARCASE_ATTACH

(mktrigger, rmtrigger) Set to 1 if an element trigger type (except an all-element trigger

type) is on the affected element’s attached list; set to 0 if it is on a directory element’s

inheritance list. See the mktrigger reference page for a description of these lists.

CLEARCASE_ATTYPE

(All operations that can be restricted by attribute type) Attribute type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed attribute type object.

CLEARCASE_BASELINES

(All rebase operations, mkbl) A space-separated list of all UCM foundation baselines to

which the destination stream is to be rebased. For the mkbl operation, a post-op trigger

only (list of length 1); for the chbl and rmbl operations, the list may specify only 1

foundation baseline.

CLEARCASE_BRTYPE

(All operations that can be restricted by branch type) Branch type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed branch type object.

CLEARCASE_CHGRP

(protect) New group of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CHMOD

(protect) New protection of the reprotected object as specified in the command line;

unset if not specified.

CLEARCASE_CHOWN

(protect) New owner of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CI_FPN

(checkin) Pathname in checkin –from.

CLEARCASE_CMDLINE

(All operations initiated through use of the cleartool command) A string specifying the

cleartool subcommand and any options and arguments included on the command line.
 ClearCase Reference Pages 197

mktrtype
NOTES:

CLEARCASE_COMMENT

(All operation kinds that support comments) Comment string for the command that

caused the trigger to fire.

CLEARCASE_COMPONENT

(mkbl) The UCM component containing the object involved in the action that caused the

trigger to fire, if applicable.

CLEARCASE_DLVR_ACTS

(deliver_start, deliver_complete) A space-separated list of all UCM activities merged

during the deliver operation.

CLEARCASE_ELTYPE

(All operations that can be restricted by element type) Element type of the element

involved in the operation that caused the trigger to fire. In a rename operation, the old

name of the renamed element type object.

CLEARCASE_FREPLICA

(chmaster) The old master replica, or “from-replica”: the replica that mastered the object

at the time the command was entered.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_FREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_FREPLICA is set to the name of the replica that masters the

branch type.

When the command chmaster –default branch-name is run, CLEARCASE_FREPLICA is set to

the name of the current replica. (If the command is run at a site that does not master the

branch, it fails.)

CLEARCASE_FTEXT

(mkhlink, rmhlink) Text associated with hyperlink from-object.

CLEARCASE_FVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink from-object.

CLEARCASE_FXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink from-object.

• This EV’s value is set by the cleartool command, and only by that command. If a

trigger is fired by any other means (through the use of a ClearCase or

ClearCase LT GUI, for example) the EV is not set.

• The EV’s value may be garbled if the command line contains nested quotes.
198 ClearCase Product Family Documentation Supplement

mktrtype
CLEARCASE_HLTYPE

(All operations that can be restricted by hyperlink type) Hyperlink type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed hyperlink type object.

CLEARCASE_ID_STR

(checkin, checkout, mkattr, mkbranch, mkhlink, mklabel, rmattr, rmhlink, rmlabel,
rmver) Version-ID of version, or branch pathname of branch, involved in the operation.

CLEARCASE_IS_FROM

(mkhlink, rmhlink) Set to 1 if CLEARCASE_PN contains name of hyperlink from-object;

set to 0 if CLEARCASE_PN contains name of hyperlink to-object.

CLEARCASE_LBTYPE

(All operations that can be restricted by label type) Label type involved in the operation

that caused the trigger to fire. In a rename operation, the old name of the renamed label

type object.

CLEARCASE_MTYPE

(All) Kind of object involved in the operation that caused the trigger to fire: element type,

branch type, directory version, and so on.

CLEARCASE_NEW_TYPE

(rename) New name of the renamed type object.

CLEARCASE_OP_KIND

(All) Actual operation that caused the trigger to fire.

CLEARCASE_OUT_PN

(checkout) Pathname in checkout –out. (Same as CLEARCASE_PN if –out not used.)

CLEARCASE_PN

(All operations; element triggers only) Name of element specified in the command that

caused the trigger to fire.

NOTES:

• With an all-element trigger, a pathname in the root directory of a VOB is reported

with an extra (but still correct) "/." or “\.” pathname component:

/vobs/proj/./releasedir (if VOB is mounted at ’/vobs/proj’)
\proj1\.\releasedir (if VOB-tag is \proj1)
 ClearCase Reference Pages 199

mktrtype
CLEARCASE_PN2

(lnname)

CLEARCASE_POP_KIND

(mkelem, mkslink, lnname, rmname, deliver, rebase) Parent operation kind. The

mkelem and mkslink operations both cause an lnname operation. If lnname happens

as a result of either of these parent operations, CLEARCASE_POP_KIND is set to mkelem or

mkslink, respectively. Note that both the parent operations (mkelem and mkslink) and

the child operation (lnname) set CLEARCASE_POP_KIND to the applicable parent

operation value—mkelem or mkslink.

• Some cleartool and Attache commands rename files during their execution.

Usually, such manipulations are unnoticeable, but you may need to adjust your

trigger scripts or batch files accordingly. For example, the script for a preoperation

mkelem trigger may need to operate on file

name “$CLEARCASE_PN.mkelem” instead of “$CLEARCASE_PN” (UNIX)

or on

name “%CLEARCASE_PN%.mkelem” instead of “%CLEARCASE_PN%” (Windows)

• If the file does not exist (for example, the checked-out file was removed), the value

of CLEARCASE_PN is different from its value when the file exists.

• When a side-effect of a mkelem operation, gets the same value as CLEARCASE_PN.

• When a side-effect of a mv operation, gets the old pathname of the element.

User Commands that Cause
Multiple Operations

Operations CLEARCASE_POP_KIND value

mkelem mkelem
lnname

mkelem
mkelem

ln –s mkslink
lnname

mkslink
mkslink

move | mv lnname
rmname

rmname
lnname

deliver_start mkactivity
setactivity
mkbl

deliver_start

rebase_start mkactivity
setactivity
mkbl

rebase_start

• With an all-element trigger, a pathname in the root directory of a VOB is reported

with an extra (but still correct) "/." or “\.” pathname component:
200 ClearCase Product Family Documentation Supplement

mktrtype
The move or mv command is a special case because there is no move operation.

Therefore, the CLEARCASE_POP_KIND environment variable is set to the values rmname
and lnname to show that those operations were part of the command execution.

CLEARCASE_PPID

(All) Parent Process-ID: the process-ID of the ClearCase or ClearCase LT program (for

example, cleartool) that invoked the trigger. This is useful for constructing unique

names for temporary files that will pass data between a preoperation trigger and a

postoperation trigger, or between successive parts of a multipart trigger action.

CLEARCASE_PPID is not useful for Attache clients.

CLEARCASE_PROJECT

(All deliver and rebase operations; mkactivity, mkstream, mkbl, setactivity) The UCM

project containing the object involved in the action that caused the trigger to fire, if

applicable. Not set for the mkbl operation if this is an initial (or imported) baseline.

CLEARCASE_RESERVED

(checkin, checkout) Set to 1 if user requested a reserved checkout; set to 0 if user

requested an unreserved checkout.

CLEARCASE_SLNKTXT

(mkslink; that is, the ln –s command) Text of the new VOB symbolic link.

CLEARCASE_SLNKTXT

(mkslink; that is, the ln –s command) Text of the new VOB symbolic link.

CLEARCASE_SNAPSHOT_PN

(All operations executed in a snapshot view) The path to the root of the snapshot view

directory in which the operation that caused the trigger to fire took place.

CLEARCASE_STREAM

(All deliver and rebase operations; mkactivity, setactivity, mkstream, mkbl) The UCM

stream containing the object involved in the action that caused the trigger to fire, if

applicable. For the mkstream operation, a post-op trigger only. Not set for the mkbl
operation if this is an initial (or imported) baseline.

CLEARCASE_TREPLICA

(chmaster) The new master replica, or “to-replica”: the replica specified to receive

mastership.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_TREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_TREPLICA is set to the name of the current replica.
 ClearCase Reference Pages 201

mktrtype
When the command chmaster –default branch-name is run, CLEARCASE_TREPLICA is set

to the name of the replica that masters the branch type. (If the command is run at a site

that does not master the branch, it fails.)

CLEARCASE_TRTYPE

(All operations that can be restricted by trigger type) Trigger type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed trigger type object.

CLEARCASE_TTEXT

(mkhlink, rmhlink) Text associated with hyperlink to-object.

CLEARCASE_TVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink to-object.

CLEARCASE_TXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink to-object.

CLEARCASE_USER

(All) The user who issued the command that caused the trigger to fire; derived from the

UNIX real user ID or the Windows user-ID.

CLEARCASE_VAL

(mkattr) String representation of attribute value for CLEARCASE_ATTYPE (for example,

"Yes" or 4657).

CLEARCASE_VIEW_KIND

(All operations) The kind of view in which the operation that caused the trigger to fire

took place; the value may be dynamic, snapshot, or snapshot web.

CLEARCASE_VIEW_TAG

(All non-UCM operations; for UCM, all deliver and rebase operations and setactivity)

View-tag of the view in which the operation that caused the trigger to fire took place.

CLEARCASE_VOB_PN

(All) VOB-tag of the VOB or UCM project VOB whose object was involved in the

operation that caused the trigger to fire.

CLEARCASE_VTYPE

(mkattr) Value type of the attribute in CLEARCASE_ATTYPE (for example, string or

integer).

CLEARCASE_XN_SFX

(All) Extended naming symbol (such as @@) for host on which the operation took place.

CLEARCASE_XPN

(All operations; element triggers only) Same as CLEARCASE_ID_STR, but prepended with
202 ClearCase Product Family Documentation Supplement

mktrtype
CLEARCASE_PN and CLEARCASE_XN_SFX values, to form a complete VOB-extended

pathname of the object involved in the operation.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: Trigger environment variables are typically evaluated when the trigger fires, not when

you enter the mktrtype command. If this is the case, escape the $ (UNIX) or % (Windows)

environment variable symbol according to the conventions of the shell you are using. Escaping

is not necessary if you enter the command manually in cleartool’s interactive mode (that is, if it

is not interpreted by a shell).

• Create an element type named script for use with shell-script files. Then, create an

all-element trigger type, chmod_a_plus_x, that makes newly created elements of type

script executable. Convert a view-private file to an element of this type.

cmd-context mkeltype -supertype text_file -c "shell script" script
Created element type "script".

cmd-context mktrtype -element -all -postop mkelem -eltype script -nc \
-exec ’/usr/atria/bin/cleartool protect -chmod a+x $CLEARCASE_PN’ chmod_a_plus_x
Created trigger type "chmod_a_plus_x".

cmd-context mkelem -eltype script -ci -nc cleanup.sh
Created element "cleanup.sh" (type "script").
Changed protection on "/usr/hw/src/cleanup.sh".
Checked in "cleanup.sh" version "/main/1".

• Create an all-element trigger type, to prevent files with certain extensions from being made

into elements.

cmd-context mktrtype -element -all -nc -preop mkelem -exec ^
‘M:\%CLEARCASE_VIEW_TAG%\%CLEARCASE_VOB_PN%\trigs\check_ext %CLEARCASE_PN%’ ^
check_ext

Created trigger type “check_ext”.

• Create an all-element trigger type, to run a script each time a checkin takes place.
 ClearCase Reference Pages 203

mktrtype
cmd-context mktrtype -element -all -postop checkin -nc \
-exec /usr/local/bin/notify notify_admin
Created trigger type "notify_admin".

‘notify’ script:
mail jones adm <<!
"notify_admin" Trigger:
checkin of "$CLEARCASE_PN"
version: $CLEARCASE_ID_STR
by: $CLEARCASE_USER
comment:
$CLEARCASE_COMMENT
!

• Create an element trigger type that runs a script when a mkbranch command is executed.

Specify different scripts for UNIX and Windows platforms.

cmd-context mktrtype –element –postop mkbranch –nc ^
–execunix /net/neon/scripts/branch_log.sh ^
–execwin \\photon\triggers\branch_log.bat branch_log
Created trigger type "branch_log".

• Create an all-element trigger type to monitor checkins of elements of type c_source. Firing

the trigger runs a test program on the file being checked in, and may cancel the checkin.

cmd-context mktrtype -element -all -nc -preop checkin \
-exec ’$CLEARCASE_VOB_PN/scripts/metrics_test $CLEARCASE_PN’ \
-eltype c_source metrics_trigger
Created trigger type "metrics_trigger".

Use of environment variable CLEARCASE_VOB_PN causes the test program to be retrieved

from a location in the current VOB.

• Create an all-element trigger type to attach a version label to each new version created on

any element’s main branch.

cmd-context mktrtype -element -all -postop checkin -mklabel REL\$BL_NUM \
-nc -brtype main label_i
Created trigger type "label_it".

Environment variable BL_NUM determines which version label is to be attached. This EV is

evaluated at trigger firing time, because the dollar sign ($) is escaped.

• Create a type trigger type to send a mail message each time any new branch type is created.

cmd-context mktrtype -type -nc -postop mktype -brtype -all \
-exec ’$CLEARCASE_VOB_PN/scripts/mail_admin’ new_branch_trigger
Created trigger type "new_branch_trigger".
204 ClearCase Product Family Documentation Supplement

mktrtype
• Create a type trigger type to monitor the creation of new label types. The trigger aborts the

label-type-creation operation if the specified name does not conform to standards.

cmd-context mktrtype -type -nc -preop mktype -lbtype -all -exec ^
’M:\%CLEARCASE_VIEW_TAG%\%CLEARCASE_VOB_PN%\trigs\check_label_name’ ^
check_label_trigger

Created trigger type "check_label_trigger".

• Create an element trigger type that, when attached to an element, fires whenever a new

version of that element is checked in. Firing the trigger attaches attribute TestedBy to the

version, assigning it the value of the CLEARCASE_USER environment variable as a

double-quoted string.

NOTE: In this example, the single quotes preserve the double quotes on the string literal, and

suppress environment variable substitution by the shell. The CLEARCASE_USER environment

variable is evaluated at firing time.

cmd-context mktrtype -element -postop checkin \
-c "set attribute to record which user checked in this version" \
-mkattr ’TestedBy="$CLEARCASE_USER"’ trig_who_didit
Created trigger type "trig_who_didit".

• Create an all-element trigger type that prompts for the source of an algorithm when an

element of type c_source is created. Firing the trigger executes a script named

hlink_algorithm, which invokes the clearprompt utility to obtain the necessary

information. The script then creates a text-only hyperlink between the newly created

element object (for example, foo.c@@) and the specified text. The hlink_algorithm script is

shown immediately after the mktrtype command.

cmd-context mktrtype -element -all -nc -postop mkelem -eltype c_source \
-exec ’$CLEARCASE_VOB_PN/scripts/hlink_algorithm’ describe_algorithm
Created trigger type "describe_algorithm".

hlink_algorithm script:

clearprompt text -outfile /usr/tmp/alg.$CLEARCASE_PPID -multi_line \
-def "Internal Design" -prompt "Algorithm Source Document:"

TOTEXT=‘cat /usr/tmp/alg.$CLEARCASE_PPID‘
cleartool mkhlink -ttext "$TOTEXT" design_spec
$CLEARCASE_PN$CLEARCASE_XN_SFX

rm /usr/tmp/alg.$CLEARCASE_PPID

• Use a postoperation trigger to modify the user-supplied comment whenever a new version

is created of an element of type header-file
 ClearCase Reference Pages 205

mktrtype
cmd-context mktrtype -element -all -nc -postop checkin -eltype header_file \
-exec ’/usr/local/scripts/hdr_comment’ change_header_file_comment
Created trigger type "change_header_file_comment".

hdr_comment script:

analyze change to header file
CMNT=‘/usr/local/bin/analyze_hdr_file $CLEARCASE_PN‘

append analysis to user-supplied checkin comment
cleartool chevent -append -c "$CMNT" $CLEARCASE_PN‘

• Create an all-element trigger type and a type trigger type that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects

and type objects in the current VOB:

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all ^
–c "ACL for chmaster" type_chmaster_ACL

• Create a preoperation trigger type that fires on the deliver_start operation.

cmd-context mktrtype -ucmobject -all -preop deliver_start $PREOPCMDU
$PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE

• Create a post-operation trigger type that fires on the deliver_complete operation.

cmd-context mktrtype -ucmobject -all -postop deliver_complete $WCMD $UCMD
-stream $STREAM -nc $TRTYPE

SEE ALSO

events_ccase, lstype, mktrigger, rmtype, type_object
206 ClearCase Product Family Documentation Supplement

mkview
mkview
Creates and registers a view

APPLICABILITY

SYNOPSIS

• ClearCase and Attache on UNIX only—Create and register a dynamic view:

mkview –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–reg⋅ion network-region] [–ln remote-storage-dir-pname]

[–nca⋅exported] [–cac⋅hesize size]

[–sha⋅reable_dos | –nsh⋅areable_dos] [–str⋅eam stream-selector]

{ –stg⋅loc { view-stgloc-name | –aut⋅o }

| [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

dynamic-view-storage-pname }

• ClearCase and Attache on Windows only—Create and register a dynamic view:

mkview –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–reg⋅ion network-region] [–cac⋅hesize size]

[–sha⋅reable_dos | –nsh⋅areable_dos] [–str⋅eam stream-selector]

{ –stg⋅loc { view-stgloc-name | –aut⋅o }

| [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

dynamic-view-storage-pname }

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows
 ClearCase Reference Pages 207

mkview
• ClearCase and Attache only—Create and register a snapshot view:

mkview –sna⋅pshot [–tag snapshot-view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–cac⋅hesize size] [–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name
| –col⋅ocated_server [–hos⋅t hostname –hpa⋅th host-snapshot-view-pname
–gpa⋅th global-snapshot-view-pname]

| –vws view-storage-pname [–hos⋅t hostname –hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname]

] snapshot-view-pname

• ClearCase LT only—Create and register a snapshot view:

mkview [–sna⋅pshot] [–tag view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name] snapshot-view-pname

DESCRIPTION

The mkview command creates a new view as follows:

• Creates a view storage directory. The view storage directory maintains information about

the view. Along with other files and directories, the directory contains the view’s config

spec and the view database. In ClearCase LT, the locations of view storage directories are

restricted to the ClearCase LT server host.

• Creates a view-tag, the name by which users access a dynamic view. Snapshot views also

have view-tags, but these are for administrative purposes; users access snapshot views by

setting the snapshot view directory, as with cd.

• For a snapshot view, creates the snapshot view directory. This is the directory into which

your files are loaded when you populate the view using update. This directory is distinct

from the view storage directory.

• Places entries in the network’s view registry; use the lsview command to list view tags.

• Starts a view_server process on the host where the view storage directory physically

resides. The view_server process manages activity in a particular view. It communicates

with VOBs during checkout, checkin, update, and other operations.

DISCONNECTED USE OF SNAPSHOT VIEWS

If you want to use a snapshot view when disconnected from the network:

• Create the snapshot view directory on the device that is to be disconnected from the

network from time to time.
208 ClearCase Product Family Documentation Supplement

mkview
• Create the view storage directory in a location that is consistently connected to the network,

on a host where ClearCase or ClearCase LT has been installed. This location could be a

server storage location (specified by –stgloc) or a location specified by the –vws option. Do

not use –colocated_server: this option creates the view storage directory as a subdirectory

of the snapshot view directory (where, of course, it will be subject to disconnection from the

network).

INTEROP TEXT MODES

Operating systems use different character sequences to terminate lines of text files. In UNIX, the

line terminator for text files is a single <LF> character. On Windows systems, the standard line

terminator is <CR><LF>. Each view has an interop text mode—specified by the –tmode option—

that determines the line terminator sequence for text files in that view. The interop text mode also

determines whether line terminators are adjusted before a text file is presented to the view (at

checkout time, for example). For example, a text file element created by a Windows client that is

accessed through a UNIX view would be stripped of <CR> characters, and the <CR> characters

would be reinserted when the file was written to the VOB as a new version.

In Attache, when you use mkws to create a workspace, you can create an associated view at the

same time. The mkws command does not take the –tmode option, but the Attache client has a

preference you can set to specify the interop text mode for any views created on behalf of a

workspace.

For more information, see Administering ClearCase and the reference pages for msdostext_mode
and mkeltype.

VIEWS AND UCM STREAMS

Views are attached to streams in the UCM model. Only views can modify a UCM stream. Views

cannot be moved between streams or detached from a stream without removing the view.

SETTING THE CACHE SIZE FOR VIEWS

Although both kinds of views use caches, cache size is more significant for a dynamic view than

it is for a snapshot view. The dynamic view’s cache size determines the number of VOB lookups

that can be stored. You can set the size of the cache with the –cachesize option. This creates the

following line in the .view file for the view:

–cache size

When a view_server process is started, it uses this value. For more information on the

view_server cache and changing its size, see the view_server, setcache, and chview reference

pages.
 ClearCase Reference Pages 209

mkview
RECONFIGURING A VIEW

A view’s associated view_server process reads a configuration file when it starts up. You can

revise this file—for example, to make the view read-only. See the view_server reference page for

details.

BACKING UP A VIEW

For information about performing view backups, see Administering ClearCase.

If you create a snapshot view in which the view-storage directory is located outside the snapshot

view directory, you must back up recursively both the view storage directory and the snapshot

view directory.

DELETING A VIEW

The view created by this command is the root of a standard directory tree; but a view must be

deleted only with the rmview command, never with an operating system file deletion command.

See the rmview reference page for details.

INFORMATION SPECIFIC TO PRODUCTS, VIEW TYPES AND PLATFORMS

This section contains information about view creation that differs depending on the product,

view type, and platform you are using.

ClearCase and Attache Dynamic Views Only—Using Express Builds

You can configure a dynamic view to use the express builds feature by creating the view with the

–nshareable_dos option. When you invoke clearmake or omake in this kind of view, clearmake
or omake builds nonshareable derived objects (DOs). Information about these DOs is not written

into the VOB, so the build is faster; however, nonshareable DOs cannot be winked in by other

views.

If you do not specify –sha⋅reable_dos or –nsh⋅areable_dos, mkview uses the site-wide default

set in the registry (with the setsite command). If there is no site-wide default, mkview configures

the view so that builds in the view create shareable DOs.

To change the DO property for an existing view, use the chview command. For more information

on shareable and nonshareable DOs, see Building Software with ClearCase.

ClearCase and Attache Dynamic Views on UNIX Only—Marking a View for Export

A dynamic view to be used for NFS export of one or more VOBs (for access by applications other

than those in the ClearCase Product Family) must be marked in the registry as an export view.

Each export view is assigned an export-ID, which ensures that NFS-exported view/VOB

combinations have stable NFS file handles across server reboots or shutdown and restart of

ClearCase.

If the dynamic view is registered in multiple regions, the export marking must be on the view-tag

in the server host’s default region. To create an export view, use the –ncaexported option. You
210 ClearCase Product Family Documentation Supplement

mkview
can register an existing dynamic view or VOB for export by using mktag –replace –ncaexported.

For information on exporting view-VOB combinations, see the export_mvfs reference page.

ClearCase and Attache Dynamic Views on UNIX Only—Activating a View

Creating a view-tag also executes the startview command, which activates the dynamic view on

the current host (unless the tag’s target network region does not include the local host.) It also

places an entry in the host’s viewroot directory. (For example, specifying –tag gamma creates the

entry /view/gamma.)

After it is activated, a dynamic view can be set with the setview command; it can also be accessed

with view-extended naming. (For details, see the startview, view, and pathnames_ccase
reference pages.)

ClearCase and Attache Dynamic Views on Windows Only—Activating a View

Creating a view-tag also executes the startview command, which activates the dynamic view on

the current host (unless the tag’s target network region does not include the local host.) It also

places an entry in the host’s .dynamic-views root directory (by default, M:\). (For example,

specifying –tag gamma creates the entry gamma.)

After a dynamic view is activated, you can assign it to a drive letter with the net use command

or by clicking Tools➔Map Network Drive in Windows Explorer; it can also be accessed with

view-extended naming. (For details, see the startview, view, and pathnames_ccase reference

pages.)

ClearCase, Attache, and ClearCase LT Snapshot Views Only—Activating a View

Snapshot views cannot be explicitly activated and cannot be accessed with view-extended

naming. However, a snapshot view becomes active when you change to the view directory and

issue a ClearCase or ClearCase LT command.

ClearCase, Attache, and ClearCase LT on UNIX Only—View Creator Identity and umask Permissions

Avoid creating views as root. This often causes problems with remote access to a view, because

root on one host often becomes user-ID –2 when accessing other hosts.

Your current umask(1) setting determines which users can access the view. For example, a umask

value of 2 allows anyone to read data in the view, but only you (the view’s owner) and others in

your group can write data to it—create view-private files, build derived objects, and so on. If

your umask value is 22, only you can write data to the new view.

RESTRICTIONS

Identities: No special identity required.

Locks: No locks apply.
 ClearCase Reference Pages 211

mkview
OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW-TAG. Default for ClearCase and Attache dynamic views: None. Default for
ClearCase LT and ClearCase/Attache snapshot views: A generated tag.

–tag view-tag
Dynamic view—Specifies a name for the view, in the form of a simple file name. This

name appears in the local host’s file system as a subdirectory of the viewroot directory.

For example, the view experiment appears as /view/experiment (UNIX) or

M:\experiment (Windows).

Snapshot view—Specifies a name for the view as it is recorded in the registry.

ClearCase and Attache only—If your network has multiple regions, use the mktag
command to create an additional view-tag for each additional region.

–tco⋅mment tag-comment
Adds a comment to the view-tag’s entry in the view_tag registry. Use lsview –long to

display the tag comment.

SPECIFYING THE KIND OF VIEW. Default for ClearCase and Attache: Dynamic view. Default for
ClearCase LT: –snapshot (the ClearCase LT synopsis for this command retains this option, even

though it is the default, for easier migration of view-creation scripts from ClearCase LT to

ClearCase).

–sna⋅pshot
Specifies a snapshot view. See the view reference page for a discussion of views and the

differences between snapshot and dynamic views.

SPECIFYING THE INTEROP TEXT MODE. Default: –tmode transparent for views created on UNIX

machines or those created through the MSDOS command line. –tmode transparent is also the

default for views created through the Windows GUI unless a different site-wide interop text

mode has been set with setsite.

NOTE: VOBs that are to be accessed by interop text mode views must be enabled to support such

views. See the vob and msdostext_mode reference pages.

–tmo⋅de transparent
A transparent interop text mode view is created. The line terminator for text files is a

single <NL> character. The view does not transform text file line terminators in any way.

–tmo⋅de insert_cr
Creates an insert_cr interop text mode view. The view converts <NL> line terminators to

the <CR><NL> sequence when reading from a VOB, and <CR><NL> line terminators to

single <NL> characters when writing to the VOB.

–tmo⋅de strip_cr
Creates a strip_cr interop text mode view. The view converts <CR><NL> line terminators
212 ClearCase Product Family Documentation Supplement

mkview
to <NL> when reading from a VOB, and <NL> line terminators back to the <CR><NL>

sequence when writing to the VOB.

SPECIFYING A NETWORK REGION. Default: The local host’s network region, as listed by the

hostinfo –long command. See the registry_ccase reference page for a discussion of network

regions.

–reg⋅ion network-region
Creates the view-tag in the specified network region. An error occurs if the region does

not already exist.

CAUTION: The view-tag created with mkview must be for the network region to which

the view server host belongs. Thus, use this option only when you are logged in to a

remote host that is in another region. Moreover, a view-tag for the view’s home region

must always exist.

REMOTE PRIVATE STORAGE AREA. Default: Creates the view’s private storage area as an actual

subdirectory of dynamic-view-storage-pname. This subdirectory, named .s, holds checked-out

versions, newly created derived objects, and other view-private objects.

–ln remote-storage-dir-pname
Creates the .s directory at the location specified by remote-storage-dir-pname. A

UNIX-level symbolic link to pname is created at view-storage-dir-pname/.s, providing

access to the remote storage area. Restrictions:

This mechanism is independent of the network storage registry facility. The pathname

to a remote storage area must be truly global, not global within a particular network

region.

MARKING THE VIEW FOR EXPORT. Default: The view is not marked as an exporting view.

–nca⋅exported
Assigns an export-ID to the view-tag.

SETTING THE CACHE SIZE. Default: Set to the value of the site-wide default (set with setcache
–view –site); if this default is not set, the cache size is set to 500 KB for a 32-bit platform and 1

MB for a 64-bit platform.

• remote-storage-dir-pname must be a valid pathname on every host (regardless of its

network region) from which users will access the view.

• This view cannot be used to export a VOB to a non-ClearCase host. (See the

exports_ccase reference page.)

• Some operations performed by root in this view may fail. This is another

symptom of the root-becomes-nobody problem explained in ClearCase, Attache,
and ClearCase LT on UNIX Only—View Creator Identity and umask Permissions.
 ClearCase Reference Pages 213

mkview
–cac⋅hesize size
Specifies a size for the view_server cache. size is an integer number of bytes, optionally

followed by the letter k to specify kilobytes or m to specify megabytes; for example, 800k
or 3m.

SPECIFYING THE KIND OF DERIVED OBJECTS TO CREATE IN A DYNAMIC VIEW. Default: mkview uses

the site-wide default. If a site-wide default is not set, mkview configures the view to create

shareable DOs.

–sha⋅reable_dos
Specifies that DOs created in the dynamic view can be winked in by other views.

–nsh⋅areable_dos
Specifies that DOs created in the dynamic view cannot be winked in by other views.

SETTING AN INITIAL DEFAULT FOR MODIFICATION TIMESTAMPS FOR A SNAPSHOT VIEW. Default: The

initial default for the time stamps of files copied into the view as part of the snapshot view

update operation is the time at which the file is copied into the view. Using the update command,

users can change the default time-stamp mode: the most recently used time scheme is retained

as part of the view’s state and is used as the default behavior for the next update.

–pti⋅me
Changes the initial default for file time stamps copied into the snapshot view to the time

at which the version was created (as recorded in the VOB).

ATTACHING A VIEW TO A STREAM. Default: None.

–str⋅eam stream-selector
Specifies a UCM stream. The view being created is attached to this stream.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

SPECIFYING THE VIEW STORAGE DIRECTORY LOCATION. Either dynamic-view-pname or

snapshot-view-pname is always a required argument. In addition, default behavior related to

specifying view storage location is as follows:

Default for ClearCase and Attache dynamic views: None; a server storage location must be specified

explicitly using –stgloc or indirectly using –auto.

For dynamic views, automatic server storage selection proceeds as follows:

1. Server storage locations that have no global path (–ngpath) are disqualified.

2. Server storage locations on heterogeneous hosts are disqualified.

3. Local server storage locations are preferred over remote ones.

4. A server storage location is selected at random from the remaining candidates.
214 ClearCase Product Family Documentation Supplement

mkview
Default for ClearCase and Attache snapshot views: An automatically selected server storage location,

if any can be found; else –colocated_server.

Default for ClearCase LT (snapshot) views: An automatically selected server storage location.

For snapshot views, automatic server storage selection proceeds as follows:

1. Server storage locations with global paths (–gpath) that reside on heterogeneous hosts are

disqualified.

2. Local server storage locations are preferred over remote ones.

3. A server storage location is selected at random from the remaining candidates.

–stg⋅loc { view-stgloc-name | –aut⋅o }

Specifies a server storage location to hold the view storage directory (you must have

previously used mkstgloc to create the server storage location). Either specify the server

storage location by name, or specify –auto to indicate a server storage location is to be

automatically selected as described previously.

For information on using this option to create snapshot views for disconnected use, see

the section, DISCONNECTED USE OF SNAPSHOT VIEWS.

You cannot create a view on a remote heterogeneous host unless the view is a snapshot

views that is to be created in no-global-path (–ngpath) server storage location.

–col⋅ocated_server
Specifies a view storage directory that is colocated with the snapshot view directory;

specifically, the view storage directory is created as a subdirectory of the snapshot view

directory (snapshot-view-pname).

We recommend you use –stgloc rather than this option whenever possible.

–vws
Specifies the location for the snapshot view storage directory. On Windows systems, this

must be a UNC name.

For information on using this option to create snapshot views for disconnected use, see

the section, DISCONNECTED USE OF SNAPSHOT VIEWS.

We recommend you use –stgloc rather than this option whenever possible.

–hos⋅t hostname
–hpa⋅th local-pname
–gpa⋅th global-pname

See the mkstgloc reference page for information on these options.

NOTE: The argument names shown above are generalizations of the argument names as

they appear in the synopses for this command in association with the –colocated_server
and –vws options.
 ClearCase Reference Pages 215

mkview
When you use one or more of the –host/–hpath/–gpath options in combination with

–colocated_server, the values you specify for –host/–hpath/–gpath must correspond to

the snapshot view directory (snapshot-view-pname), not the colocated view storage

directory.

When you use one or more of the –host/–hpath/–gpath options in combination with

–vws, the values you specify for –host/–hpath/–gpath must correspond to the view

storage directory (view-storage-pname), not the snapshot view directory.

dynamic-view-storage-pname
The location at which a new view storage directory is to be created for a dynamic view.

(An error occurs if something already exists at this pathname.) You can create a view

storage directory at any location in the file system where operating system permissions

allow you to create a subdirectory, with these restrictions:

In addition, on Windows systems:

snapshot-view-pname
The location at which the snapshot view directory is to be created.(An error occurs if

something already exists at this pathname.) You can create a snapshot view directory at

any location in the file system where operating system permissions allow you to create

a subdirectory, with the restriction that you cannot create a snapshot view under the

dynamic views root directory (on UNIX, this directory is /view; on Windows, M:).

In addition, on Windows systems:

• You cannot create a view storage directory under the dynamic views root

directory (on UNIX, this directory is /view; on Windows, M:)
• dynamic-view-storage-pname must specify a location on a host where ClearCase has

been installed; the view database files must physically reside on a ClearCase host

to enable access by the view_server process.

• dynamic-view-storage-pname must be a UNC name

• The directory must not be within a Windows special share, such as the share that

is designated by driveletter$ and that allows administrators to access the drive

over the network.

• snapshot-view-pname must be a UNC name if and only if the storage is colocated

(colocated storage can be the default in the circumstances described previously).

• For a colocated server, the snapshot view directory must not be within a Windows

special share, such as the share that is designated by driveletter$ and that allows

administrators to access the drive over the network.
216 ClearCase Product Family Documentation Supplement

mkview
EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

On a UNIX system, create a dynamic view storage directory and assign it the view-tag main_r2.

cmd-context mkview -tag mainr2 /net/host3/view_store/mainr2.vws
Created view.
Host-local path: host3:/view_store/mainr2.vws
Global path: /net/host3/view_store/mainr2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• On a Windows systems, create a dynamic view and assign it the view-tag main_r2. This

example assumes that host pluto shares its C: drive via sharename c_share.

cmd-context mkview -tag main_r2 \\pluto\c_share\vw_store\winproj\main_r2.vws

Created view.
Host: pluto
Local path: c:\vw_store\winproj\main_r2.vws
Global path: \\pluto\c_share\vw_store\winproj\main_r2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• On a UNIX system, create a dynamic view storage directory, assign it the view-tag

main_exp, and mark it for export.

cmd-context mkview -tag main_exp -ncaexported /net/neon/views/main_exp.vws
 ClearCase Reference Pages 217

mkview
• On a UNIX system, create a dynamic view storage directory named Rel2.vws in the current

working directory, but with its private storage area on a remote host.

cmd-context mkview -tag Rel2 -ln /net/host4/priv_view_store/Rel2.vps Rel2.vws
Created view.
Host-local path: host3:/view-store/Rel2.vws
Global path: /net/host3/view-store/Rel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• On a UNIX system, reate a dynamic view on the local host. Then activate the view on a

remote host.

cmd-context mkview -tag anneRel2 /view_store/anneRel2.vws
Created view.
Host-local path: host3:/view-store/anneRel2.vws
Global path: /net/host3/view-store/anneRel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

% rsh host4 cleartool startview anneRel2

The remote shell command is named remsh on some systems.

• On a UNIX system, create a dynamic view storage directory, assign it the view-tag

smg_bigvw, and specify a large cache size.

cmd-context mkview –tag smg_bigvw –cachesize 1m /home/smg/vws/smg_bigvw.vws

Created view.
Host-local path: neon:/home/smg/vws/smg_bigvw.vws
Global path: /net/neon/home/smg/vws/smg_bigvw.vws
It has the following rights:
User : susan : rwx
Group: user : rwx
Other: : r-x

• On a Windows system, create a dynamic view, assign it the view-tag smg_bigvw, and

specify a large cache size.

cmd-context mkview –tag smg_bigvw –cachesize 1m \\neon\vws\smg_bigvw.vws

Created view.
Host-local path: neon:C:\USERS\vws\smg_bigvw.vws
Global path: \\neon\vws\smg_bigvw.vws
218 ClearCase Product Family Documentation Supplement

mkview
• On a UNIX system, create a snapshot view tagged dev with the view path ~bert/my_views.

cmd-context mkview -tag dev -snapshot ~bert/my_views

Created view.
Host-local path: peroxide:/export/home/bert/my_views/.view.stg
Global path: /net/peroxide/export/home/bert/my_views/.view.stg
It has the following rights:
User : bert : rwx
Group: user : r-x
Other: : r--
Created snapshot view directory
"/net/peroxide/export/home/bert/my_views".

• On a UNIX system, create a UCM view and attach it to the specified stream.

cmd-context mkview -stream java_int@/vobs/core_projects -tag java_int
/usr1/views/java_int.vws

Created view.
Host-local path: propane:/usr1/views/java_int.vws
Global path: /net/propane/usr1/views/java_int.vws
It has the following rights:
User : bill : rwx
Group: user : rwx
Other: : r-x
Attached view to stream "java_int".

• On a UNIX system, create a dynamic view at a server storage location that has been

established for views.

cmd-context mkview -tag viewbert -stgloc view_stgloc
Created view.
Host-local path: dioxin:/export/home/frank/view_stgloc/bert/viewbert.vws
Global path:
/net/dioxin/export/home/frank/view_stgloc/bert/viewbert.vws
It has the following rights:
User: bert : rwx
Group: user : rwx
Other: : r-x

SEE ALSO

chflevel, chview, endview, lsview, mkstream, mkstgloc, mktag, registry_ccase, rmtag, rmview,

setcache, setview, startview, umask(1), unregister, update, view, view_server
 ClearCase Reference Pages 219

mkview
220 ClearCase Product Family Documentation Supplement

omake
omake
ClearCase build utility — maintain, update, and regenerate groups of programs

APPLICABILITY

SYNOPSIS
omake [–f makefile ...] [–b builtins-file ...]

[–akinservdphzACDGM] [–x file] [-OLWT]
[-EN | -EP | -EO] [-#1] [-#2] [-#4] [-#8]
[macro=value ...] [target_name ...]

DESCRIPTION

omake is a ClearCase utility for making (building) software. It includes many of the

configuration management (CM) facilities provided by the clearmake utility. It also features

emulation modes, which enable you to use omake with makefiles that were constructed for use

with other popular make variants, including Microsoft NMAKE, Borland Make and the PVCS

Configuration Builder (Polymake).

NOTE: omake is intended for use in dynamic views. You can use omake in a snapshot view, but

none of the features that distinguish it from ordinary make programs — build avoidance, build

auditing, derived object sharing, and so on — works in snapshot views. The rest of the

information in this reference page assumes you are using omake in a dynamic view.

omake features a number of ClearCase extensions:

• Configuration Lookup — a build-avoidance scheme that is more sophisticated than the

standard scheme based on the time-modified stamps of built objects. For example, this

guarantees correct build behavior as C-language header files change, even if the header files

are not listed as dependencies in the makefile.

• Derived Object Sharing — developers working in different views can share the files

created by omake builds.

Product Command Type

ClearCase command

Platform

Windows
 ClearCase Reference Pages 221

omake
• Creation of Configuration Records — software bill-of-materials records that fully

document a build and support rebuildability; also includes automatic dependency

detection.

Related Reference Pages

The following reference pages include information related to omake operations and results:

See also Building Software with ClearCase.

View Context Required

For a build that uses the data in one or more VOBs, the command interpreter from which you

invoke omake must have a view context—you must be on a drive assigned to a view or the

dynamic-views drive (default: M:\). If you want derived objects to be shared among views, you

should be on a drive assigned to a view.

You can build objects in a standard directory, without a view context, but this disables many of

omake’s special features.

omake AND MAKEFILES

omake is designed to read makefiles in a way that is compatible with other make variants. For

details, see the ClearCase OMAKE Manual.

HOW BUILDS WORK

In many ways, ClearCase builds adhere closely to the standard make paradigm:

1. You invoke omake, optionally specifying the names of one or more targets. (Such

explicitly-specified targets are termed goal targets.)

2. omake reads zero or more makefiles each of which contains targets and their associated

build scripts.

3. omake supplements the makefile-based software build instructions with its own built-in

rules. (And when it runs in a compatibility mode, omake also defines built-in rules specific

to that mode.)

clearmake Alternative make utility - provides the same functionality as the

clearmake tool in the UNIX version of ClearCase.

clearaudit Alternative to make utilities, for performing audited builds without

makefiles.

lsdo cleartool subcommand to list derived objects created by omake or

clearaudit.
catcr, diffcr cleartool subcommands to display and compare configuration

records created by omake or clearaudit.
rmdo cleartool subcommand to remove a derived object from a VOB.
222 ClearCase Product Family Documentation Supplement

omake
4. For each target, omake performs build avoidance, determining whether it actually needs to

execute the associated build script (“perform a target rebuild”). It takes into account both

source dependencies (“have any changes occurred in source files used in building the

target?”) and build dependencies (“must other targets be updated before this one?”).

The sources can be on the dependency list, or may be detected by omake. A source is a target

or file that must exist and be up-to-date before the target is built. The dependency list is used

to make decisions about build ordering (which targets need to be built and in which order).

Detected dependencies (source dependencies detected automatically by omake) are also

used to determine if a DO can be reused or is out of date.

Like detected dependencies, predefined dependencies are used for DO reuse questions, but

they are also used for determining which files should be built and when they should be built.

For example, for a .exe file, you must predefine all the .obj files to ensure that they are built

first; for an .obj file, you list the .c or .cpp files, but header files can be left off and omake still

detects them.

The difference is very important for a first build, when there are no existing DOs and only

the makefile exists to define the dependencies and what target depends on what other target.

5. If it decides to perform a target rebuild, omake executes its build script.

The following sections describe special omake build features in more detail. Figure 8 illustrates

the associated data flow.

Figure 8 Data Flow in an omake Build

CONFIGURATION RECORDS AND DERIVED OBJECTS

In conjunction with the MVFS file system, omake audits the execution of all build scripts,

keeping track of file usage at the OS-system-call level. For each execution of a build script, it

source
data
files

existing

new

configuration
environment

makefile(s)

new

omake

variables

configuration
records

derived
objects

records
 ClearCase Reference Pages 223

omake
creates a configuration record (CR), which includes the versions of files and directories used in

the build, the build script, build options, (for example, macro assignments) and other related

information. A copy of the CR is stored in the VOB database of each VOB in which the script has

built new objects.

A file created within a VOB by a build script is called a derived object (DO), and it can be

shareable or nonshareable. When a shareable derived object is built in a view, a corresponding

VOB database object is also created. This enables any view to access and possibly share (subject

to access permissions) any derived object, no matter what view it was originally created in. When

a build tool creates a nonshareable derived object, the tool does not write any information about

the DO to the VOB. Therefore, the DO is invisible to other views and cannot be winked in by

them. Builds that create nonshareable DOs are called express builds. For more information about

using express builds, see Preventing Winkin to Other Views.

For each build script execution, ClearCase logically associates each DO that was created in that

execution with the build script’s CR.

You can suppress the creation of CRs and derived objects with the –L option and

ClearCase-specific directives. See Building Software with ClearCase for details on CRs and derived

objects, and see the ClearCase OMAKE Manual for information on ClearCase-specific directives.

(Files created in non-VOB directories are not derived objects — see the MVFS FILES AND
OBJECTS OUTSIDE THE MVFS section.)

Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, a single invocation of omake to build a

high-level target can cause multiple build scripts to be executed and, accordingly, multiple CRs

to be created.

CONFIGURATION LOOKUP AND WINKIN

For directory targets, omake uses standard make logic.

When a target names a non-directory file in a VOB, omake (by default) uses configuration lookup

to determine whether a build is required. This involves a comparison of the CRs of existing

derived objects with the current build configuration:

• the versions of elements selected by the view’s config spec

• the build options to be applied, as specified on the omake command line, in the

environment, or in the makefile(s)

• the build script to be executed

In performing configuration lookup, omake considers a DO version (a derived object that has

been checked in as a version of an element) only if the version was created in place. That is, if you
224 ClearCase Product Family Documentation Supplement

omake
copy a DO to a different location from where it was created and check it in there, omake will not

consider the DO version.

omake first tries to avoid rebuilding by reusing a DO in the current view; this succeeds only if the

CR of the candidate DO matches the current build configuration. For the purpose of rebuilding,

a branch\0 version of a file selected by a view is considered to match its non-zero predecessor

version in a CR.

omake can also avoid rebuilding by finding another DO, built in another view, whose CR

matches the current build configuration. In this case, it will wink in that derived object, causing

it to be shared among views. Other derived objects created by the same build script (termed

siblings) are winked in at the same time. omake rebuilds a target only if it is unable to locate any

existing derived object that matches the current build configuration.

DO versions must be checked out before they can be re-used or winked in. The -C option to

omake provides support for automatically checking out these DOs before they are used. The

CCASE_AUTO_DO_CI environment variable provides a means to automatically check in DOs

checked out by omake -C. Checkouts executed by this feature behave like any cleartool checkout
does with respect to reservation. Methods that can be used to change cleartool checkout's default

reservation policy apply here as well. The checkouts are not audited. Checkins preserve the

timestamp of the DO as though cleartool checkin -ptime were used. This feature is fully

compatible with checkout or checkin triggers, which fire normally when the event occurs.

NOTE: Certain special targets may prevent winkin even if the build configuration conditions are

exactly the same. For example, if you are using .pdb files in Visual C++, winkin of any target that

has a .pdb for a sibling will not occur, even though all versions of dependencies in the config

record are selected by the view in which the build occurs.

The .cmake.state File

The .cmake.state file is a view-private cache of config records for derived objects built in the view

during a particular build. omake creates this file in the directory that was current when the build

started. During subsequent builds in the view, omake references the file instead of

communicating with the VOB. This makes configuration lookup faster, improving omake
performance.

You can delete .cmake.state files if they get too large. If omake looks for a .cmake.state file and

it doesn’t exist, no errors occur and omake creates a new file.

Suppressing Configuration Lookup

You can override the default configuration lookup behavior with command options and

ClearCase-specific directives (see the ClearCase OMAKE Manual for information on these

directives). For example, –L turns off configuration lookup, basing rebuild decisions on

time-modified stamps, and –W disables winkin of DOs from other views.
 ClearCase Reference Pages 225

omake
Preventing Winkin to Other Views

You can prevent derived objects that you create from being winked in to other views. For more

information, see Working with Derived Objects and Configuration Records in Building Software with
ClearCase.

CACHING UNAVAILABLE VIEWS

When omake shops for a derived object to wink in to a build, it may find DOs from a view that

is unavailable (because the view server host is down, the albd_server is not running on the server

host, and so on). Attempting to fetch the DO’s configuration record from the view causes a long

time-out, and the build may attempt to contact the same view multiple times.

omake maintains a cache of tags of inaccessible views. For each view-tag, omake records the

time of the first unsuccessful contact. Before trying to access a view, omake checks the cache. If

the view’s tag is not listed in the cache, omake tries to contact the view. If the view’s tag is listed

in the cache, omake compares the time elapsed since the last attempt with the time-out period

specified by the CCASE_DNVW_RETRY environment variable. If the elapsed time is greater than the

time-out period, omake removes the view-tag from the cache and tries to contact the view again.

NOTE: The cache is not persistent across omake sessions. Each recursive or individual invocation

of omake attempts to contact a view whose tag may have been cached in a previous invocation.

The default time-out period is 60 minutes. To specify a different timeout period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

MVFS FILES AND OBJECTS OUTSIDE THE MVFS

All files with pathnames below a VOB-tag (VOB mount point) are termed MVFS files:

• checked-in versions of file elements (data stored in VOB)

• checked-out versions of file elements (data stored in view)

• other view-private files

• derived objects

Conversely, a non-MVFS object is any file or directory whose pathname is not under a VOB-tag;

such objects are not version controlled. By default, non-MVFS objects are not audited during

omake builds.

OPTIONS AND ARGUMENTS

omake supports the options below. In general, standard make options are lowercase characters;

omake extensions are uppercase. Options that do not take arguments can be ganged on the

command line (for example, –rOi).
226 ClearCase Product Family Documentation Supplement

omake
–f makefile
Use makefile as the input file. If you omit this option, omake looks for input files named

makefile and Makefile (in that order) in the current working directory. You can use more

than one –f makefile argument pair. Multiple input files are effectively concatenated.

–b file
Specify an initialization (built-ins) file to be read instead of the default. If file is the empty

string, omake does not read an initialization file. Valid empty strings are "–b " (one

space), –b" ", or –b "".

NOTE: If you do not include the –b option, omake uses the file named by the OMAKECFG

environment variable. If this environment variable is not set, omake looks for a file

called make.ini in (in order) the current directory, ccase-home-dir\bin, and in directories

specified by the INIT environment variable.

–a
Rebuild all goal targets specified on the command line, along with the recursive closure

of their dependencies, regardless of whether or not they need to be rebuilt.

–k
Abandon work on the current entry if it fails, but continue on other targets that do not

depend on that entry.

–i
Ignore error codes returned by commands.

–n
(no-execute) List command lines from the makefile for targets which need to be rebuilt,

but do not execute them. Even lines beginning with an at-sign (@) character are listed.

To override this option for a recursive make, use the .MAKE target attribute. For

example:

nt .MAKE :
cd nt.dir & $(MAKE) $(MFLAGS)

Typing the command omake –n nt does a cd nt.dir , then a recursive make with omake

–n . Without the .MAKE attribute, omake would display but not execute the (cd nt.dir &
$(MAKE) $(MFLAGS) line.

–s
(silent) Do not list command lines before executing them.

–e
Environment variables override macro assignments within the makefile. (But

macro=value assignments on the command line override environment variables.)
 ClearCase Reference Pages 227

omake
–r
Do not use the built-in rules.

–v
(verbose) Slightly more verbose than the default output mode. Particularly useful

features of verbose mode include:

–d
(debug) Quite verbose; appropriate only for debugging makefiles.

–p
Lists all target descriptions and all macro definitions, including target-specific macro

definitions and implicit rules.

–h
Displays the command-line syntax.

–x file
Redirects error messages into file. If file is “ -” , the error messages are redirected to

standard output.

–z
Ignore the MFLAGS macro.

–A
Use automatic dependencies. This option is enabled only if you are not using

configuration lookup (because you are processing non-MVFS files or using the –W
option).

–C
(Check out DOs) Before building or winking in a target, omake determines whether the

target is a checked-in DO visible in the view at the path named in the makefile. If such a

DO is found, omake -C checks it out before rebuilding it or winking it in.

–D
Keep-directory mode. The first access of a directory to look for a file results in the

directory being read into memory.

–G
Restricts dependency checking to makefile dependencies only — those dependencies

declared explicitly in the makefile or inferred from an inference rule. All detected

dependencies are ignored. For safety, this automatically disables winkin of DOs from

• listing of why omake does not reuse a DO that already appears in your view (for

example, because its CR does not match your build configuration, or because

your view does not have a DO at that pathname)

• listing of the names of DOs being created
228 ClearCase Product Family Documentation Supplement

omake
other views; it is quite likely that other views select different versions of detected

dependencies.

For example, a derived object in your view may be reused even if it was built with a

different version of a header file than is currently selected by your view. This option is

mutually exclusive with –W.

–M
Makes the makefile before reading it.

–EN
Emulates Microsoft NMAKE utility.

–EP
Emulates PVCS Configuration Builder (PolyMake) utility.

–EO
Default emulation mode (that is, no emulation).

For details on emulation features, see the ClearCase OMAKE Manual.

–O
–L (mutually exclusive)

–O compares only the names and versions of objects listed in the targets’ CRs; it does

not compare build scripts or build options. This is useful when this extra level of

checking would force a rebuild that you do not want. Examples:

–L makes rebuild decisions using the standard algorithm, based on time-modified

stamps; configuration lookup is disabled. Also suppresses creation of configuration

records. All MVFS files created during the build will be view-private files, not derived

objects.

–W
Restricts configuration lookup to the current view only. Winkin of DOs from other views

is disabled.

–T
Examines sibling derived objects (objects created by the same build rule that created the

target) when determining whether a target object in a VOB can be reused (is up to date).

By default, when determining whether a target can be reused, omake ignores

• The only change from the previous build is the setting or canceling of a

“compile-for-debugging” option.

• A target was built using a makefile in the current working directory. Now, you

want to reuse it in a build to be performed in the parent directory, where a

different makefile builds the target (with a different script, which typically

references the target using a different pathname).
 ClearCase Reference Pages 229

omake
modifications to sibling derived objects. –T directs omake to consider a target out of date

if its siblings have been modified or deleted.

–#1
Read-time debugging mode. Displays omake reading makefiles and interpreting

conditional directives.

–#2
Displays a warning when omake tries to expand the value of an undefined macro.

–#4
Displays a warning when omake reads a makefile line that it can’t understand.

–#8
Do not delete generated response files and batch files.

MAKE MACROS AND ENVIRONMENT VARIABLES

String-valued variables called make macros can be used anywhere in a makefile: in target lists,

in dependency lists, and/or in build scripts. For example, the value of make macro CFLAGS can

be incorporated into a build script as follows:

cl $(CFLAGS) msg.c

Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name might be specified both as a make macro and as an environment variable.

omake resolves such conflicts similarly to other make variants:

• Make macros specified on the command line override any other settings.

• Make macros specified in a makefile or make.ini file have the next highest priority.

• Builtin macros override EVs, which in turn have the lowest priority.

Using the –e option changes the precedence rules — EVs get higher priority than make macros

specified in a makefile.

CONFLICT RESOLUTION DETAILS. The following discussion treats this topic more precisely (but

less concisely).

omake starts by converting all EVs in its environment to make macros. These EVs will also be

placed in the environment of the command interpreter process in which a build script executes.

Then, it adds in the make macros declared in the makefile. If this produces name conflicts, they

are resolved as follows:
230 ClearCase Product Family Documentation Supplement

omake
• If omake was not invoked with the –e option, the make macro wins: the macro value

overwrites the EV value in the environment.

• If omake was invoked with the –e option, the EV wins: the EV value becomes the value of

the make macro.

Finally, omake adds make macros specified on the command line; these settings are also added

to the environment. These assignments always override any others that conflict.

omake reads the following environment variable at startup:

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where omake creates temporary build audit files. If this variable is not

set, omake creates these files in %tmp%. All temporary files are deleted when omake
exits. CCASE_AUDIT_TMPDIR must not name a directory under a VOB-tag; if it does,

omake prints an error message and exits.

CCASE_AUTO_DO_CI

Checks in DOs checked out by omake –C unless the build of the corresponding target

fails or the automatic checkout of the DO or a sibling DO fails. Checkout comments are

preserved. The checkin is invoked with the -ptime option to preserve the DO’s

modification time. This environment variable has no effect unless you specify –C.

Default: Undefined

BUILD REFERENCE TIME AND BUILD SESSIONS

omake takes into account the fact that software builds are not instantaneous. As your build

progresses, other developers can continue to work on their files, and may check in new versions

of elements that your build uses. If your build takes an hour to complete, you would not want

build scripts executed early in the build to use version 6 of a header file, and scripts executed

later to use version 7 or 8. To prevent such inconsistencies, omake locks out any version that

meets both these conditions:

• The version is selected by a config spec rule that includes the LATEST version label.

• The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. omake
automatically adjusts for the fact that the system clocks on different hosts in a network may be

somewhat out of sync (clock skew).

For more information, see Pointers on Using ClearCase Build Tools in Building Software with
ClearCase.
 ClearCase Reference Pages 231

omake
EXIT STATUS

omake returns a zero exit status if all goal targets are successfully processed. It returns various

nonzero exit status values when the build is not successful. See the ClearCase OMAKE Manual.

EXAMPLES

• Build target hello.exe without checking build scripts or build options during configuration

lookup. Be moderately verbose in generating status messages.

> omake –v –O hello.exe

• Build the default target in the default makefile, with a particular value of make macro

INCL_DIR.

> omake INCL_DIR=c:\src\include_test

• Build target bgrs.exe, restricting configuration lookup to the current view only. Have

environment variables override makefile macro assignments.

> omake –e –W bgrs.exe

• Unconditionally build the default target in a particular makefile, along with all its

dependent targets.

> omake –a –f project.mk

FILES

ccase-home-dir\bin\builtins.cb
ccase-home-dir\bin\builtins.nm
ccase-home-dir\bin\make.ini

SEE ALSO

Building Software with ClearCase, ClearCase OMAKE Manual, clearmake, clearaudit, cleartool,
config_spec, promote_server, scrubber
232 ClearCase Product Family Documentation Supplement

rebase
rebase
Changes the configuration of a UCM stream

APPLICABILITY

SYNOPSIS

• Begin a rebase operation using the graphical user interface:

rebase –gr⋅aphical [–vie⋅w rebase-view-tag]

• Cancel or check the status of a rebase operation:

rebase { –can⋅cel | –sta⋅tus [–l⋅ong] } [–vie⋅w rebase-view-tag]

• Preview a rebase operation:

rebase –pre⋅view [–s⋅hort | –l⋅ong] [–vie⋅w rebase-view-tag]

{ –rec⋅ommended | { –bas⋅eline baseline-selector [,...] –dba⋅seline baseline-selector [,...] } }

• Begin a rebase operation:

rebase
{ –rec⋅ommended | { –bas⋅eline baseline-selector [,...] –dba⋅seline baseline-selector [,...] } }

[–vie⋅w rebase-view-tag] [–com⋅plete] [–gm ⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l]
[–ser⋅ial] [–f⋅orce]

• Resume or complete a rebase operation:

rebase { –res⋅ume | –com⋅plete } [–vie⋅w rebase-view-tag]

[–gm⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 233

rebase
DESCRIPTION

The rebase command reconfigures a stream by adding, dropping, or replacing one or more of the

stream’s foundation baselines. The file and directory versions selected by those new baselines

(and thus their associated activities) then become visible in the stream’s views.

Only labeled baselines can serve as foundation baselines.

Any changes made in the stream prior to a rebase operation are preserved during the rebase. For

any file modified in the stream, rebase merges any changes that are present in versions of that

file in the new foundation baselines into the latest version of that file in the stream, thereby

creating a new version. All such merged versions are captured in the change set of an integration

activity that rebase creates. This integration activity becomes the view’s current activity until the

rebase operation is completed or canceled.

You must perform a rebase operation in a view belonging to the stream that is being rebased.

Before starting the rebase operation, check in all files in that view. This way, you avoid potential

problems caused by rebase merging changes into an already-checked out file—rebase cannot

reliably unmerge those changes should you cancel the rebase operation.

As a rule, you should rebase development streams often to pick up changes in the project’s

recommended baselines. By doing so you can find integration problems early, when they are

easier to fix. In addition, rebasing just before performing a deliver operation should reduce or

eliminate the need for manual merging during the delivery.

Rules for Development Streams

A development stream can only be rebased to baselines that were created in its project’s

integration stream, or that serve as the integration stream’s foundation baselines. This rule

ensures that changes made in the development stream are based on the same line of

development as the rest of its project’s streams.

rebase is typically used to advance a stream’s configuration; that is, to replace its current

foundation baselines with more recent ones. However, you can also use rebase to:

• Revert to earlier baselines.

• Add baselines for components not currently in the stream’s configuration.

• Drop components from the stream’s configuration.

You cannot revert or drop a component that has been modified (that is, new versions have been

created) in the development stream. Without this rule, rebase could potentially leave stranded

the changes made against baselines that are no longer in the stream’s configuration.

rebase allows different baselines to be moved in different directions—you can advance one

baseline while reverting another.
234 ClearCase Product Family Documentation Supplement

rebase
Rules for Integration Streams

An integration stream can only be rebased to baselines created in other projects’ integration

streams (not development streams), or to import or initial baselines. See the mkcomp and mkbl
reference pages for information about import and initial baselines.

Just as for development streams, rebase can advance or revert baselines in an integration

stream’s configuration, and add or drop components. It can also switch to another baseline that

originates from a project different from the current foundation baseline; that is, a baseline that is

neither an ancestor nor a descendant of the current foundation.

You cannot revert, switch, or drop baselines for components that are in the project’s modifiable

component list. This rule prevents rebase from leaving stranded the changes made to those

components in the integration stream, as well as in the project’s development streams.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the development stream.

Mastership: The current replica must master the development stream.

OPTIONS AND ARGUMENTS

INVOKING THE GRAPHICAL USER INTERFACE. Default: Command-line interface.

–gr⋅aphical
Invokes the graphical user interface for the rebase operation.

SPECIFYING THE REBASE VIEW. Default: The current working UCM view.

–vie⋅w rebase-view_tag
Specifies the UCM view in which to execute the rebase command. The view must be

associated with a UCM stream that is the stream to be rebased.

CANCELLING A REBASE OPERATION.

–can⋅cel

Cancels a rebase operation and restores the stream’s prior configuration. The option

deletes the integration activity and any versions created by the rebase operation that are

not yet checked in.

If any new versions have been checked in, the cancellation is halted and you are

informed of completed merges and any checked in versions that resulted from the rebase

activity. After undoing the merges and check-ins, you must issue the rebase –cancel
command again to cancel the rebase operation.

OBTAINING THE STATUS OF A REBASE OPERATION.
 ClearCase Reference Pages 235

rebase
–sta⋅tus
Displays the status of a rebase operation. You are informed whether a rebase operation

is in progress in the specified stream; and if so, this option displays the new foundation

baselines and the list of new activities being brought into the stream.

PREVIEWING THE RESULTS OF A REBASE OPERATION.

–pre⋅view
Shows what baselines would change and what new activities would be brought into the

stream if a rebase operation were to be executed in nonpreview mode. –preview fails if

a rebase operation is in progress.

CONTROLLING OUTPUT VERBOSITY. Default: Varies according to the kind of output that the

options described here modify: see the descriptions of –status and –preview.

–l⋅ong
As a modifier of –status, displays a list of activities and change sets, and a list of elements

that will require merging, in addition to the default information displayed by –status.

As a modifier of –preview, displays a list of versions that potentially require merging, in

addition to the default information displayed by –preview.

–s⋅hort
Modifies the –preview option. Displays only a list of the activities.

SPECIFYING BASELINES. Default: None.

–rec⋅ommended
Specifies that a development stream is to be rebased to its project’s recommended

baseline

–bas⋅eline baseline-selector[,...]

Specifies one or more baselines to use as new foundation baselines for the stream. See

Rules for Development Streams and Rules for Integration Streams for criteria for specifying

baselines.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

–dba⋅seline baseline-selector[,...]

Specifies one or more baselines to remove from the stream’s configuration. Files in those

baseline’s components are subsequently no longer visible or modifiable in the stream.

See Rules for Development Streams and Rules for Integration Streams for criteria for

specifying baselines.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.
236 ClearCase Product Family Documentation Supplement

rebase
RESUMING A REBASE OPERATION. Default: None.

–res⋅ume
Restarts a rebase operation from the point at which it has been suspended. A rebase

operation can be interrupted with CTRL+C or when it encounters an external error or

condition that requires more information. To continue the operation, reissue the rebase

command with the –resume option. However, you cannot resume a rebase operation

that has been successfully halted with the –cancel option.

COMPLETING A REBASE OPERATION. Default: None.

–com⋅plete
Completes a rebase operation. Checking in merged versions in the development view

does not complete the rebase operation—you must use –complete to complete a rebase

operation. You can use this option after a rebase has been suspended, for example, to

resolve file conflicts. It resumes the command process, verifies that needed merges were

done, checks in any versions that are checked out, and records changes in the change set

for the rebase activity.

MERGE OPTIONS. Default: Works as automatically as possible, prompting you to make a choice in

cases where two or more nonbase contributors differ from the base contributor. For general

information, see the findmerge reference page.

-ok
Pauses for verification on each element to be merged, allowing you to process some

elements and skip others. This option does not remain in effect after a rebase operation

is interrupted.

–gm ⋅erge
 Performs a graphical merge for each element that requires it. This option does not

remain in effect after a rebase operation is interrupted.

–q⋅uery
Turns off automated merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are automatically accepted

unless a conflict exists. This option does not remain in effect after a rebase operation is

interrupted.

–abo⋅rt
Cancels a merge if it is not completely automatic. This option does not remain in effect

after a rebase operation is interrupted.

–qal⋅l
Turns off all automated merging. Prompts you to determine whether you want to

proceed with each change. This option does not remain in effect after a rebase operation

is interrupted.
 ClearCase Reference Pages 237

rebase
–ser⋅ ial
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format. This option does not remain in effect after a rebase operation is

interrupted.

CONTROLLING COMMAND-LINE PROMPTS. Default: Prompt for user input.

–f⋅orce
Suppresses prompting for user input during the course of a rebase operation. The –force
option does not remain in effect if the rebase is interrupted: you must respecify it when

you restart the rebase operation with –resume or –complete. The merge options to the

rebase command are not affected by the –force option.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Start a rebase operation.

cmd-context rebase –recommended
Advancing to baseline "BL1.119" of component "webo_modeler"
Updating rebase view’s config spec...
Creating integration activity...
Setting integration activity...
Merging files...
No versions require merging in stream "chris_webo_dev".
Build and test are necessary to ensure that the merges were completed
correctly.
When build and test are confirmed, run "cleartool rebase -complete".

• Complete a rebase operation.
238 ClearCase Product Family Documentation Supplement

rebase
cmd-context rebase –complete
Rebase in progress on stream "chris_webo_dev".
Started by "ktessier" at 06/06/00 15:36:42.
Merging files...
No versions require merging in stream "chris_webo_dev".
Checking in files...
Clearing integration activity...
Updating stream’s configuration...
Cleaning up...
Rebase completed.

SEE ALSO

checkin, checkout, deliver, findmerge, setactivity
 ClearCase Reference Pages 239

rebase
240 ClearCase Product Family Documentation Supplement

rmactivity
rmactivity
Deletes a UCM activity

APPLICABILITY

SYNOPSIS
rmact⋅ivity [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –nc⋅omment]

[–f⋅orce] activity-selector ...

DESCRIPTION

The rmactivity command deletes one or more UCM activities. The following restrictions apply:

• The activity can have no versions in its change set.

• The activity cannot be set as the current activity for a view.

If versions exist in the change set, you can delete the versions or move the versions to another

change set with chactivity –fcset –tcset.

ClearQuest-enabled Projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

unlinks the activity from its associated ClearQuest record and deletes the activity but it does not

delete the ClearQuest record.

RESTRICTIONS

Identities: You must be the activity owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—local administrator of the ClearCase LT server host

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 241

rmactivity
Locks: An error occurs if there is a lock on any of the following objects: the UCM project VOB or

the activity.

Mastership: The current replica must master the activity.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified activity is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE ACTIVITY. Default: None.

activity-selector ...
Specifies one or more activities to delete.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove an activity that is set as the current activity in a view.

a. Issue an rmactivity command. The error message tells you that the specified activity is

in use by the view java_parser_int:
242 ClearCase Product Family Documentation Supplement

rmactivity
cmd-context rmactivity -f new_object_tree@/usr1/tmp/foo_project
cleartool: Error: Activity
"activity:new_object_tree@/usr1/tmp/foo_project" is setworked in view
"java_parser_int".

cleartool: Error: Unable to remove activity
"new_object_tree@/usr1/tmp/foo_project".

b. Go to the view in which the activity is set and unset it:

cmd-context setact – none
Cleared current activity from view java_parser_int.

c. Reissue the rmactivity command:

cmd-context rmactivity -f new_object_tree@/usr1/tmp/foo_project
Removed activity "new_object_tree@/usr1/tmp/foo_project".

SEE ALSO

chactivity, lsactivity, mkactivity, setactivity
 ClearCase Reference Pages 243

rmactivity
244 ClearCase Product Family Documentation Supplement

rmbl
rmbl
Removes a UCM baseline

APPLICABILITY

SYNOPSIS
rmbl [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–f⋅orce] baseline-selector ...

DESCRIPTION

The rmbl command deletes one or more UCM baselines. Versions associated with the baseline

are not deleted, only the baseline relationship among the versions. The following restrictions

apply:

• The baseline cannot serve as a foundation baseline for any stream.

• The baseline cannot be an initial baseline for a component.

• The baseline cannot be deleted if it is a full baseline and serves as the backstop for any

incremental baseline.

RESTRICTIONS

Identities: You must be the baseline owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the baseline.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 245

rmbl
Mastership: The current replica must master the baseline.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

The comment is stored in a deletion event on the VOB object.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified baselevel is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE BASELINE. Default: None.

baseline-selector ...

Specifies one or more baselines to delete.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

 EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a baseline.

cmd-context rmbl -f START.109@/usr1/tmp/foo_project
Removed baseline "START.109@/usr1/tmp/foo_project".

SEE ALSO

diffbl, lsbl, mkbl
246 ClearCase Product Family Documentation Supplement

rmcomp
rmcomp
Removes a UCM component

APPLICABILITY

SYNOPSIS
rmcomp [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] component-selector ...

DESCRIPTION

The rmcomp command deletes a UCM component object. Elements of the component and the

VOB associated with the component are not deleted. The following restrictions apply:

• There cannot be any baselines of the component other than the initial baseline

• The component’s initial baseline cannot be in use as a foundation baseline for a stream.

RESTRICTIONS

Identities: You must be the component owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if there are locks on any of the following objects: the component, the UCM

project VOB.

Mastership: The current replica must master the component.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 247

rmcomp
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified component is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE COMPONENT TO BE DELETED. Default: None.

component-selector ...
Specifies one or more components to delete

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a component that contains baselines.

a. Issue the rmcomp command for a specified component:

cmd-context rmcomp parser@/usr1/tmp/foo_project
Remove component "parser@/usr1/tmp/foo_project"? [no] yes

cleartool: Error: Cannot remove component that has baselines other than
the initial baseline.

cleartool: Error: Unable to remove component
"parser@/usr1/tmp/foo_project".

b. Use the lsbl command to find the baselines associated with the component:
248 ClearCase Product Family Documentation Supplement

rmcomp
cmd-context lsbl –component parser@/usr1/tmp/foo_project
07-Sep-99.10:47:47 parser_INITIAL.109 bill "parser_INITIAL"
 component: parser

07-Sep-99.10:49:06 START.109 bill "START"
 component: parser

c. Remove the baseline:

cmd-context rmbl –f START.109@/usr1/tmp/foo_project
Removed baseline "START.109@/usr1/tmp/foo_project".

d. Reissue the rmcomp command:

cmd-context rmcomp –f parser@/usr1/tmp/foo_project
Removed component "parser@/usr1/tmp/foo_project".

SEE ALSO

lscomp, mkcomp, rmbl
 ClearCase Reference Pages 249

rmcomp
250 ClearCase Product Family Documentation Supplement

rmfolder
rmfolder
Remove a UCM folder

APPLICABILITY

SYNOPSIS
rmfolder [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment]
[–f⋅orce] folder-selector ...

DESCRIPTION

The rmfolder command deletes one or more UCM folders.

RESTRICTIONS

Identities: You be the folder owner, the project VOB owner, or

• UNIX—root
• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if one or more of these objects are locked:the UCM project VOB, the folder.

Mastership: (Replicated VOBs only) Your current replica must master the folder.

Other: You cannot delete a folder if it contains any projects or other folders, or is the RootFolder.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 251

rmfolder
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed folder is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE FOLDER. Default: None.

folder-selector ...
Specifies one or more folders to delete.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a folder that contains a subfolder, moving the subfolder to a new location.

a. Issue the rmfolder command:

cmd-context rmfolder –f top
cleartool: Error: Cannot remove folder that has sub projects or folders.
cleartool: Error: Unable to remove folder "top".

b. Use lsfolder to find subprojects or folders for the specified folder:

cmd-context lsfolder –l top
folder "top"
 07-Sep-99.10:20:08 by Smith
 "My Top Level Folder."
 owner: Smith
 group: user
 title: Top
 contains folders:
 parsers
 contains projects:
252 ClearCase Product Family Documentation Supplement

rmfolder
c. Move the subfolder to a new location:

cmd-context chfolder –to RootFolder parsers
Changed folder "parsers".

d. Reissue the rmfolder command:

cmd-context rmfolder top
Remove folder "top"? [no] yes
Removed folder "top".

SEE ALSO

chfolder, lsfolder, mkfolder, rmproject
 ClearCase Reference Pages 253

rmfolder
254 ClearCase Product Family Documentation Supplement

rmproject
rmproject
Removes a UCM project

APPLICABILITY

SYNOPSIS
rmproj⋅ect [–c⋅omm ent comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–f⋅orce] project-selector ...

DESCRIPTION

The rmproject command deletes one or more UCM projects.

All streams must be removed before deleting a project. You cannot delete a project that contains

a stream.

ClearQuest-Enabled Projects

When you delete a project that uses the UCM-ClearQuest integration, the project is unlinked

from its associated ClearQuest record, but the ClearQuest record is not deleted.

RESTRICTIONS

Identities: You must be the project owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the project.

Mastership: The current replica must master the project.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 255

rmproject
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified project is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE PROJECT. Default: None.

project-selector ...
Specifies one or more projects to delete.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a project that contains a stream.

a. Issue the rmproject command:

cmd-context rmproject html_parser
Remove project "html_parser"? [no] yes
cleartool: Error: Cannot remove project that has streams.
cleartool: Error: Unable to remove project "html_parser".

b. Use lsproject –long to see a detailed description of the project, including a list of any

streams contained by the project:
256 ClearCase Product Family Documentation Supplement

rmproject
cmd-context lsproject – long html_parser
cleartool lsproject -l html_parser
project "html_parser"
 07-Sep-99.11:24:27 by Bsmith
 owner: bsmith
 group: user
 folder: parsers
 title: html_parser
 integration stream: html_parser_int
 development streams:
 html_parser_int
 modifiable components:
 default rebase promotion level: INITIAL
 recommended baselines:

c. Remove the stream. The –force option bypasses the confirmation step.

cmd-context rmstream -force html_parser_int
Removed stream "html_parser_int".

d. Reissue the rmproject command:

cmd-context rmproject -force html_parser
Removed project "html_parser".

SEE ALSO

lsproject, lsstream, mkproject, rmstream
 ClearCase Reference Pages 257

rmproject
258 ClearCase Product Family Documentation Supplement

rmstream
rmstream
Remove a UCM stream

APPLICABILITY

SYNOPSIS
rmstream [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] stream-selector ...

DESCRIPTION

The rmstream command deletes one or more UCM streams.

The following restrictions apply:

• The stream cannot contain activities.

• The stream can have no baselines other than the set of initial baselines associated with it.

• No views can be attached to the stream.

In addition, a project’s integration stream cannot be removed while other project streams exist.

RESTRICTIONS

Identities: You must be the stream owner, the project VOB owner, or

• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the stream.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 259

rmstream
Mastership: The current replica must master the stream.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified stream is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFY THE STREAM TO BE REMOVED. Default: None.

stream-selector ..
Specifies one or more streams to delete.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a stream that has a view attached to it.

a. Issue the rmstream command. You are told that the stream cannot be removed because

a view is still attached to it:

cmd-context rmstream -f html_parser_int
cleartool: Error: Cannot remove stream that has a view
("html_parser_int_view") attached to it.
260 ClearCase Product Family Documentation Supplement

rmstream
cleartool: Error: Unable to remove stream "html_parser_int".

b. Display a description of the stream to see what views are associated with it:

cmd-context describe stream:html_parser_int stream "html_parser_int"
 created 11-Sep-99.11:27:01 by JFMuggs
 owner: jfm
 group: user
 project: html_parser
 title: html_parser_int
 contains activities:
 foundation baselines:
 views:
 html_parser_int_view

 Guarding: brtype:html_parser_int@/usr1/tmp/foo_project

c. Remove the view:

cmd-context rmview -tag html_parser_int_view
Removing references from VOB "/usr1/tmp/foo_project" ...

Removed references to view "/net/propane/usr1/tmp/html_parser_int.vws"
from VOB "/usr1/tmp/foo_project".

d. Reissue the rmstream command:

cmd-context rmstream -f html_parser_int
Removed stream "html_parser_int".

SEE ALSO

lsstream, mkstream
 ClearCase Reference Pages 261

rmstream
262 ClearCase Product Family Documentation Supplement

rmtrigger
rmtrigger
Removes trigger from an element or UCM object

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Remove a trigger from an element or a UCM object:

rmtrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nin⋅herit | –nat⋅tach] [–r⋅ecurse]

trigger-type-selector { pname | ucm-object-selector } ...

• Attache only—Remove a trigger from an element:

rmtrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nin⋅herit | –nat⋅tach] [–r⋅ecurse] trigger-type-selector pname ...

DESCRIPTION

The rmtrigger command removes an attached trigger from one or more elements or UCM

objects. The specified trigger-type-selector is not affected by rmtrigger. To delete the trigger type,

use the rmtype command.

RESTRICTIONS

Identities: For each object processed, you must be one of the following: object group member,

object owner, VOB owner (for an element trigger), project VOB owner (for a UCM object trigger)

or

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows
 ClearCase Reference Pages 263

rmtrigger
• UNIX—root

• ClearCase on Windows only—a member of the ClearCase group

• ClearCase LT on Windows only—the local administrator of the ClearCase LT server host

Locks: An error occurs if any of the following objects are locked: VOB (for an element trigger),

project VOB (for a UCM object trigger), object type, object, trigger type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

MANIPULATING THE TRIGGER LISTS OF A DIRECTORY ELEMENT. Default: The trigger is removed

from both of a directory element’s trigger lists: its attached list and its inheritance list.

–nin⋅herit
(Directory element only) The trigger is removed from the directory’s attached list, but

remains on its inheritance list. The trigger does not fire when the monitored operation is

performed on the directory itself, but new elements created in that directory inherit the

trigger.

–nat⋅tach
(Directory element only) The trigger is removed from the directory’s inheritance list, but

remains on its attached list. The trigger continues to fire when the monitored operation

is performed on the directory itself, but new elements created in that directory do not

inherit the trigger.

REMOVING TRIGGERS FROM AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument names

a directory element, the trigger is removed only from the element itself, not from any of the

existing elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). UNIX VOB symbolic links are not traversed during the recursive descent into the

subtree.

SPECIFYING THE TRIGGER TYPE. Default: None.

trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

type-name Name of the trigger type
264 ClearCase Product Family Documentation Supplement

rmtrigger
SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, specifying elements from which triggers (instances of the

specified trigger type) are to be removed.

SPECIFYING THE UCM OBJECT. Default: None.

ucm-object-selector ...

The name of the UCM object. Specify ucm-object-selector in the form

[ucm-object-type:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove an attached trigger from hello.c.

cmd-context rmtrigger trig1 hello.c
Removed trigger "trig1" from attached list of "hello.c".

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

ucm-object-type Name of the UCM type

vob-selector UCM project VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the project VOB-tag

(whether or not the project VOB is

mounted) or of any file-system object

within the project VOB (if the project

VOB is mounted)
 ClearCase Reference Pages 265

rmtrigger
• Remove an attached trigger from the src directory’s attached list, but leave it in the

inheritance list.

cmd-context rmtrigger –ninherit trig1 src
Removed trigger "trig1" from attached list of "src".

• Remove an attached trigger from the release directory’s inheritance list, but leave it in the

attached list.

cmd-context rmtrigger –nattach trig1 release
Removed trigger "trig1" from inheritance list of "release".

SEE ALSO

describe, mktrigger, mktrtype, rmtype, unlock
266 ClearCase Product Family Documentation Supplement

setactivity
setactivity
Specifies the current UCM activity for your view

APPLICABILITY

SYNOPSIS
setact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

[–vie⋅w view-tag] { –none | activity-selector }

DESCRIPTION

The setactivity command sets or unsets a current activity for a view. The current activity is one

whose change set records your current work. Each view can have no more than one current

activity. When you check out an element, it is associated with the current activity.

Before resetting to another activity, the setactivity command checks on whether any elements of

the current activity are checked out in the view and, if found, issues a warning before proceeding.

You can set an activity for a view while the activity is being delivered, but the changes made to

the activity when the deliver operation is in progress are not delivered.

To clear the current activity, specify a new activity or use the –none option.

You cannot reset an integration activity that is in use as part of a deliver or rebase operation (nor

can you clear it with –none).

Behavior for ClearQuest-enabled projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

takes an activity-selector that is a ClearQuest record-ID (for example, SAMPL123456) of an

existing ClearQuest record. If the ClearQuest record is not already linked to an activity, the

command causes an activity to be created and linked to the ClearQuest record.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 267

setactivity
When you have finished working on an activity

You can stop work on an activity in these ways:

• Deliver the activity to the project’s integration stream.

• Issue another setactivity command, specifying a different activity selector.

• Use the –none option to unset the current activity in your view.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: UCM project VOB, the activity.

Mastership: (Replicated VOBs only) Your current replica must master the activity.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CHOOSING A VIEW. Default: Current view context.

–vie⋅w view-tag
Specifies a view and stream context for the command.

SPECIFYING THE ACTIVITY. Default: No default.

–none
Unsets the current activity, removing it from your work area.

activity-selector
Identifies the activity to be set.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.
268 ClearCase Product Family Documentation Supplement

setactivity
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

Unset the current activity.

cmd-context setactivity -none

Cleared current activity from view java_int.

• Set an activity to be the current activity.

cmd-context setactivity create_directories
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, mkactivity, rmactivity
 ClearCase Reference Pages 269

setactivity
270 ClearCase Product Family Documentation Supplement

setplevel
setplevel
Changes the list of promotion levels in a UCM project VOB

APPLICABILITY

SYNOPSIS
setplevel [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–inv⋅ob vob-selector] –def⋅ault default-promotion-level promotion-level ...

DESCRIPTION

The setplevel command allows you to redefine the list of baseline promotion levels for a UCM

project VOB and to designate one of these levels as the default promotion level for new baselines.

Each UCM project VOB includes an ordered set of promotion levels. Promotion levels are

ordered from lowest to highest and can be assigned to baselines to indicate the quality or degree

of completeness of the activities and versions represented by the baseline. When a project VOB

is created, it includes the following ordered set of promotion levels: REJECTED, INITIAL,

BUILT, TESTED, RELEASED. The default promotion level is INITIAL. This is the level that is

assigned to newly created baselines.

A baseline’s promotion level is used in computing a project’s list of recommended baselines. The

recommended baseline for a component is the latest baseline of that component in the project’s

integration stream that has a promotion level greater than or equal to the project’s recommended

promotion level (see the chproject reference page).

Ordered promotion levels can be used to filter lists of baselines. Promotion level is also used to

populate the default list of baselines during a rebase operation on a stream. Each project defines

a default rebase level. When a project is created, the default rebase level is set to the project VOB’s

default promotion level. See mkproject and chproject for more information.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows
 ClearCase Reference Pages 271

setplevel
When you delete a level that is in use, it is not completely removed from the project VOB. Instead,

its place in order is changed so that it is considered to be lower than the lowest defined level. You

can list information for baselines labeled with such a promotion level lsbl –level command.

The promotion levels available in a VOB can be listed by running the describe command on the

UCM project VOB object. Promotion levels can be used to filter lsbl output—see the lsbl
reference page.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB.

Mastership: The current replica must master the project VOB.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE PROJECT VOB. Default: The project VOB containing the current working directory.

–invo⋅b vob-selector
Specifies the UCM project VOB for the project whose promotion levels are being

modified.

SPECIFYING THE NEW PROMOTION LEVELS. Default: None.

–def⋅ault default-promotion-level
Specifies the new default promotion level. Project baselines are given the default

promotion level INITIAL when they are created. default-promotion-level must be one of

the specified promotion levels.

promotion-level ...
An ordered list of promotion levels that defines the promotion level set for a project

VOB. List elements are ordered from lowest to highest. All elements of the set must be

given.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.
272 ClearCase Product Family Documentation Supplement

setplevel
The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• From the project VOB directory, modify a new project VOB’s set of promotion levels by

removing the INITIAL level and adding a START level. Change the default level for new

baselines to BUILT.

cmd-context setplevel -default BUILT REJECTED START BUILT TESTED

• Replace the promotion level UNIT_TEST with U_TEST.

a. Add the new level to the current set of promotion levels:

cmd-context setplevel -default NEW NEW BUILT UNIT_TEST U_TEST

b. Find baselines that use the old promotion level:

cmd-context lsbl -level UNIT_TEST mybaseline

c. Change the promotion level from UNIT_TEST to U_TEST:

cmd-context chbl -level U_TEST the-baselines-listed-by-step-b.

d. Remove the obsolete promotion level from the project VOB:

cmd-context setplevel -default NEW NEW BUILT U_TEST

SEE ALSO

chbl, chproject, describe, lsbl, mkproject
 ClearCase Reference Pages 273

setplevel
274 ClearCase Product Family Documentation Supplement

	ClearCase Product Family Documentation Supplement
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	ClearCase�LT Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	Introduction
	1.1 UCM Information
	1.2 Administrative Information
	1.3 Build Information
	1.4 New Command to Import File-System Objects
	1.5 Snapshot View Creation Option for mkview Command

	Using Triggers to Enforce Development Policies
	2.1 Overview of Triggers
	Preoperation and Postoperation Triggers
	Scope of Triggers
	Using Attributes with Triggers
	When to Use ClearQuest Scripts Instead of UCM Triggers

	2.2 Sharing Triggers Between UNIX and Windows
	Using Different Pathnames or Different Scripts
	Using the Same Script
	Tips

	2.3 Enforce Serial Deliver Operations
	Setup Script
	Preoperation Trigger Script
	Postoperation Trigger Script

	2.4 Send Mail to Developers on Deliver Operations
	Setup Script
	Postoperation Trigger Script

	2.5 Do Not Allow Activities to Be Created on the Integration Stream
	2.6 Implementing a Role-Based Access Control System
	Preoperation Trigger Script

	2.7 Additional Uses for UCM Triggers

	Setting Up a ClearQuest User Database
	3.1 Using the Predefined UCM-Enabled Schemas
	3.2 Enabling a Schema to Work with UCM
	Requirements for Enabling Custom Record Types
	Setting State Types
	State Transition Default Action Requirements for Record Types

	3.3 Upgrading Your Schema to the Latest UCM Package
	3.4 Customizing ClearQuest Project Policies
	3.5 Associating Child Activity Records with a Parent Activity Record
	Using Parent/Child Controls

	3.6 Creating Users
	3.7 Setting the Environment on UNIX
	3.8 How MultiSite Affects the UCM-ClearQuest Integration
	Replica and Naming Requirements
	Enabling a Project to Use the UCM-ClearQuest Integration
	Transferring Mastership of the PVOB’s Root Folder
	Transferring Mastership of the Project
	Linking Activities to ClearQuest Records

	Managing the Project
	Changing Project Policy Settings
	Controlling Deliver Operations
	Changing the Project Name

	Working on Activities

	Cross-Platform File Access
	4.1 ClearCase File Server
	Enabling and Disabling CCFS on Windows�NT

	4.2 NFS Client Products
	Disabling Automatic Case Conversion
	Microsoft SFU and Intergraph DiskAccess
	Hummingbird NFS Maestro

	Setting an NFS Client’s Default Protection
	Microsoft SFU or Intergraph DiskAccess
	Hummingbird NFS Maestro

	Setting the Correct Logon Name
	Microsoft SFU or Intergraph DiskAccess
	Hummingbird NFS Maestro

	Hummingbird NFS Maestro: Disabling DOS Sharing
	Automounting and NFS Client Software
	Microsoft SFU or Intergraph DiskAccess: Setting Up the ClearCase Server Process User and ClearCas...
	Setting Up the UNIX Account
	Preparing the Windows�NT Client
	Alternative Setup: Administrative Option

	Microsoft SFU: Configuring the Default LAN

	4.3 SMB Server Products
	Installing and Configuring Samba 2.2
	Creating a Samba Username Map for clearcase_albd
	Using the Samba Web Administration Tool (SWAT)
	Configuring Samba Globals for ClearCase
	Creating Shares for VOB and View Storage
	Starting Samba Services
	Configuring ClearCase to Support Samba
	Testing the Samba Configuration on Non-ClearCase Files
	Testing the Samba Configuration with ClearCase

	Syntax TotalNET Advanced Server
	Installing TAS 6.0
	Enabling the Multiuser Kernel Driver on AIX
	Accessing the Syntax Administration Framework
	Performing Initial Setup of TAS
	General TAS Settings
	Enabling and Configuring the CIFS Realm
	Configuring TAS to Support ClearCase
	Creating a TAS Username Map for clearcase_albd
	Creating a Volume
	Configuring the File Service
	Start Services and Accept Service Connections
	Configuring ClearCase to Support TAS
	Testing the TAS Configuration on Non-ClearCase Files
	Testing the TAS Configuration with ClearCase

	chactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Baseline Labels
	Promotion Levels

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Project Titles
	Adding New Components
	Setting Required Promotion Levels for Recommended Baselines
	Project Policies

	Using Rational ClearQuest with UCM projects
	Detecting and Correcting Incorrectly Enabled Activities
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	cleardiffbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearfsimport
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearjoinproj
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLE
	SEE ALSO

	clearmake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Related Reference Pages
	View Context Required

	clearmake AND MAKEFILES
	HOW BUILDS WORK
	CONFIGURATION RECORDS AND DERIVED OBJECTS
	Configuration Record Hierarchies

	CONFIGURATION LOOKUP AND WINKIN
	The .cmake.state File
	Suppressing Configuration Lookup
	Preventing Winkin to Other Views

	MVFS FILES AND NON-MVFS OBJECTS
	UNIX Systems Only—Non-MVFS Files in Configuration Lookup and Remote Building

	BUILD OPTIONS SPECIFICATION FILE
	clearmake SLEEP
	CACHING UNAVAILABLE VIEWS
	UNIX ONLY—PARALLEL BUILDING
	UNIX Only—Remote Build Environment
	UNIX Only—Terminal Output
	UNIX Only—Enabling Parallel Building on the Local Host
	UNIX Only—Parallel Build Scheduler
	UNIX Only—Building Targets on Specified Hosts

	BUILD REFERENCE TIME AND BUILD SESSIONS
	EXIT STATUS
	OPTIONS AND ARGUMENTS
	MAKE MACROS AND ENVIRONMENT VARIABLES
	Conflict Resolution
	SHELL Environment Variable
	Specifying Command Options in an Environment Variable
	Special Environment Variables

	EXAMPLES
	FILES
	SEE ALSO

	clearprojexp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLE
	SEE ALSO

	deliver
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	The Integration Activity
	One-Step Deliver Operation
	Using deliver with MultiSite

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	diffbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lscomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for ClearQuest-enabled Projects

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Initial Baseline
	Creating a Baseline for an Unmodified Component
	Creating Baselines that Include a Set of Activities
	Creating a Baseline by Importing a Label
	Baseline Names
	Baseline Labels
	Promotion Levels

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Using Rational ClearQuest with UCM projects
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Element Trigger Inheritance

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	TRIGGER FIRING
	Interactive Trigger Action Scripts
	Multiple Trigger Firings
	Suppressing Trigger Firing
	Trigger Interoperation

	PREOPERATION AND POSTOPERATION TRIGGERS
	RESTRICTION LISTS AND INCLUSION LISTS
	TRIGGER ENVIRONMENT VARIABLES
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES
	Trigger Operations for Type Trigger Types
	Trigger Operations for Element and All-Element Trigger Types
	Trigger Operations for UCM Objects and All-UCM-Object Trigger Types
	Trigger Environment Variables

	EXAMPLES
	SEE ALSO

	mkview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DISCONNECTED USE OF SNAPSHOT VIEWS
	INTEROP TEXT MODES
	VIEWS AND UCM STREAMS
	SETTING THE CACHE SIZE FOR VIEWS
	RECONFIGURING A VIEW
	BACKING UP A VIEW
	DELETING A VIEW
	INFORMATION SPECIFIC TO PRODUCTS, VIEW TYPES AND PLATFORMS
	ClearCase and Attache Dynamic Views Only—Using Express Builds
	ClearCase and Attache Dynamic Views on UNIX Only—Marking a View for Export
	ClearCase and Attache Dynamic Views on UNIX Only—Activating a View
	ClearCase and Attache Dynamic Views on Windows Only—Activating a View
	ClearCase, Attache, and ClearCase�LT Snapshot Views Only—Activating a View
	ClearCase, Attache, and ClearCase�LT on UNIX Only—View Creator Identity and umask Permissions

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	omake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Related Reference Pages
	View Context Required

	omake AND MAKEFILES
	HOW BUILDS WORK
	CONFIGURATION RECORDS AND DERIVED OBJECTS
	Configuration Record Hierarchies

	CONFIGURATION LOOKUP AND WINKIN
	The .cmake.state File
	Suppressing Configuration Lookup
	Preventing Winkin to Other Views

	CACHING UNAVAILABLE VIEWS
	MVFS FILES AND OBJECTS OUTSIDE THE MVFS
	OPTIONS AND ARGUMENTS
	MAKE MACROS AND ENVIRONMENT VARIABLES
	Conflict Resolution

	BUILD REFERENCE TIME AND BUILD SESSIONS
	EXIT STATUS
	EXAMPLES
	FILES
	SEE ALSO

	rebase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Rules for Development Streams
	Rules for Integration Streams

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearQuest-enabled Projects

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearQuest-Enabled Projects

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for ClearQuest-enabled projects
	When you have finished working on an activity

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setplevel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

