
MANAGING SOFTWARE PROJECTS
WITH CLEARCASE

R e l e a s e 4 . 1 a n d l a t e r

UNIX Edition

800-023557-000

/vobs/doc/ccase/projlead/cc_proj.uxTTL.fm — July 11, 2000 5:27 pm

ClearCase and MultiSite Release Notes
Document Number 800-023557-000 August 2000

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 2000 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation
Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface .. xvii

About This Manual ... xvii

Organization ... xvii

ClearCase Documentation Roadmap.. xviii

Typographical Conventions ..xix

Online Documentation ..xx

Technical Support ..xx

1. Choosing Between UCM and Base ClearCase ...1

1.1 Differences Between UCM and Base ClearCase ..1

Branching...2

Creating and Using Baselines...3

Managing Activities...4

Enforcing Development Policies..5

1.2 Using Base ClearCase Tools with UCM..5

Part 1: Working in UCM

2. Understanding UCM ..9

2.1 The Project Management Cycle..9

2.2 Creating the Project..12

Creating a PVOB ..12

Organizing Directories and Files into Components....................................13

Shared and Private Work Areas...13

Starting from a Baseline ..14

Setting Policies..14

Setting Up the UCM-ClearQuest Integration...15

2.3 Integrating Work into the Project (MultiSite) ..16

2.4 Making a New Baseline...17
Contents iii

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

2.5 Promoting the Baseline ..18

2.6 Overview of the UCM-ClearQuest Integration..20

Associating UCM and ClearQuest Objects ...20

UCM-Enabled Schema...21

State Types...21

Queries in a UCM-Enabled ClearQuest Schema..22

3. Planning the Project ..23

3.1 Using the System Architecture as the Starting Point23

Mapping System Architecture to Components..24

Deciding What to Place Under Version Control ..24

Mapping Components to Projects..25

Size of the System..25

Amount of Integration..25

Need for Parallel Releases..25

Example ..26

Components and VOBs ..26

3.2 Organizing Components ...27

Considering VOB Capacity ...27

Identifying Additional Components ...28

Defining the Directory Structure..28

Identifying Read-Only Components ...29

3.3 Specifying a Baseline Strategy ..30

When to Create Baselines ..30

Identifying the Initial Baseline ..31

Ongoing Baselines ...31

Defining a Naming Convention ...32

Identifying Promotion Levels to Reflect State of Development32

Planning How to Test Baselines ...32

3.4 Planning PVOBs..33

Deciding How Many PVOBs to Use ..33

Understanding the Role of the Administrative VOB34

3.5 Identifying Special Element Types...35
iv Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

Nonmerging Elements...35

Nonautomerging Elements...36

Defining the Scope of Element Types ...36

3.6 Planning How to Use the UCM-ClearQuest Integration36

Mapping PVOBs to ClearQuest User Databases ...37

All Enabled Projects in a PVOB Must Link to the Same Database37

Projects Linked to Same Database Must Have Unique Names..........37

Use One Schema Repository for Linked Databases.............................38

Deciding Which Schema to Use ...38

Overview of the UnifiedChangeManagement Schema.......................39

Enabling a Schema for UCM ...40

3.7 Considering Which Development Policies to Enforce................................41

Policies Available in UCM ..41

Recommended Baselines..41

Modifiable Components ..41

Default View Types ..41

Rebase Before Deliver...42

Allow Deliveries from Stream with Pending Checkouts42

Policies Available in UCM-ClearQuest Integration43

Check Before Work On...43

Check Before ClearCase Delivery...43

Do ClearQuest Action After Delivery..43

4. Setting Up a ClearQuest User Database ..45

4.1 Using the Predefined UCM-Enabled Schemas ..45

4.2 Enabling a Schema to Work with UCM..46

Requirements for Enabling Custom Record Types.....................................49

Setting State Types ...49

State Transition Default Action Requirements for Record Types.............50

4.3 Customizing ClearQuest Project Policies ...52

4.4 Associating Child Activity Records with a Parent Activity Record52

Using Parent/Child Controls ...53

4.5 Creating Users ..53
Contents v

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

4.6 Setting the Environment..53

5. Setting Up the Project ...55

5.1 Creating a Project from Scratch ..56

Creating the Project VOB (PVOB) ..56

Creating Components ..57

Creating the Project ..58

Defining Promotion Levels ..59

Creating an Integration View ...59

Creating and Setting an Activity ..61

Creating the Directory Structure ..61

Importing Directories and Files from Outside ClearCase62

5.2 Creating a Project Based on an Existing ClearCase Configuration...........63

Creating the PVOB ...63

Making a VOB into a Component..63

Making a Baseline from a Label ...64

Creating the Project ..64

Creating an Integration View ...64

5.3 Creating a Project Based on an Existing Project...65

Reusing Existing PVOB and Components ..65

Creating the Project ..65

Creating an Integration View ...66

5.4 Enabling a Project to Use the UCM-ClearQuest Integration......................66

Migrating Activities ...67

Setting Project Policies ...68

Assigning Activities ...69

Disabling the Link Between a Project and a ClearQuest User Database..69

Fixing Projects That Contain Linked and Unlinked Activities70

Detecting the Problem ..70

Correcting the Problem ..70

5.5 Creating a Development Stream for Testing Baselines...............................71

6. Managing the Project ..73

6.1 Adding Components..73
vi Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

Updating Snapshot View Load Rules ...75

6.2 Integrating the Project ...75

Finding WorkThat is Ready to Be Delivered ...76

Completing Remote Deliver Operations ..76

Undoing a Deliver Operation...77

6.3 Creating a New Baseline ...77

Locking the Integration Stream..77

Verifying That the Code Base Is Stable ...78

Making the New Baseline ...78

Making a Baseline For a Set of Activities ..80

Unlocking the Integration Stream..80

6.4 Testing the Baseline ...80

Fixing Problems..81

6.5 Promoting or Demoting the Baseline ..82

6.6 Tracking the Project ...82

Comparing Baselines ...83

Querying ClearQuest User Databases...84

6.7 Cleaning Up the Project...85

Removing Unused Objects..85

Projects..86

Streams ...86

Components...86

Baselines ...86

Activities...87

Locking and Making Obsolete the Project and Streams.............................87

7. Managing Parallel Releases of Multiple Projects ..89

7.1 Managing a Current Project and a Follow-on Project Simultaneously89

Example ...90

Performing Interproject Rebase Operations...91

7.2 Incorporating a Patch Release into a New Version of the Project.............92

Example ...92

Merging Work to Another Project ...94

7.3 Additional Merging Scenarios ...95
Contents vii

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

Merging from a Project to a Non-UCM Branch ...95

Merging to a System Project..95

Part 2: Working in Base ClearCase

8. Managing Projects in Base ClearCase ...99

8.1 Setting Up the Project...100

Creating and Populating VOBs ..100

Planning a Branching Strategy ...100

Branch Names ..101

Branches and ClearCase MultiSite..101

Creating Shared Views and Standard Config Specs102

Recommendations for View Names ..102

8.2 Implementing Development Policies ..102

Using Labels ..103

Using Attributes, Hyperlinks, Triggers, and Locks...................................103

Global Types..104

Generating Reports...104

8.3 Integrating Changes ...105

9. Defining Project Views ..107

9.1 How Config Specs Work ...107

9.2 Default Config Spec..108

The Standard Configuration Rules ..108

Omitting the Standard Configuration Rules109

9.3 Config Spec Include Files ..109

9.4 Project Environment for Sample Config Specs ..110

9.5 Views for Project Development..111

View for New Development on a Branch ...111

Variation That Uses a Time Rule...112

View to Modify an Old Configuration ..112

Omitting the /main/LATEST Rule ..113

Variation That Uses a Time Rule...114
viii Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

View to Implement Multiple-Level Branching..114

View to Restrict Changes to a Single Directory ...115

9.6 Views to Monitor Project Status...116

View That Uses Attributes to Select Versions..116

Pitfalls of Using This Configuration for Development118

View That Shows Changes of One Developer ...119

Historical View Defined by a Version Label ..119

Historical View Defined by a Time Rule ..120

9.7 Views for Project Builds ..120

View That Uses Results of a Nightly Build ..121

Variations That Select Versions of Project Libraries122

View That Selects Versions of Application Subsystems...........................122

View That Selects Versions That Built a Particular Program...................123

Configuring the Makefile...123

Fixing Bugs in the Program ...124

Selecting Versions That Built a Set of Programs.................................124

9.8 Sharing Config Specs Between UNIX and Windows125

Pathname Separators ...125

Pathnames in Config Spec Element Rules ..126

Config Spec Compilation ..126

Example ...126

10. Implementing Project Development Policies ...129

10.1 Policy: Good Documentation of Changes Is Required129

10.2 Policy: All Source Files Require a Progress Indicator...............................130

10.3 Policy: Label All Versions Used in Key Configurations...........................131

10.4 Policy: Isolate Work on Release Bugs to a Branch.....................................132

10.5 Policy: Avoid Disrupting the Work of Other Developers........................133

10.6 Policy: Deny Access to Project Data When Necessary..............................134

10.7 Policy: Notify Team Members of Relevant Changes134

10.8 Policy: All Source Files Must Meet Project Standards135

10.9 Policy: Associate Changes with Change Orders136

10.10 Policy: Associate Project Requirements with Source Files.......................137

10.11 Policy: Prevent Use of Certain Commands ..139
Contents ix

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

10.12 Policy: Certain Branches Are Shared Among MultiSite Sites140

10.13 Sharing Triggers Between UNIX and Windows ..141

Using Different Pathnames or Different Scripts ..141

Using the Same Script ..142

Notes...142

11. Integrating Changes ..143

11.1 How Merging Works ...143

Using the GUI to Merge Elements ...145

Using the Command Line to Merge Elements ...146

11.2 Common Merge Scenarios ..146

Scenario: Selective Merge from a Subbranch..147

Scenario: Removing the Contributions of Some Versions........................148

Scenario: Merging All Project Work ..149

All Project Work Is Isolated on a Branch ...149

All Project Work Isolated In a View ...149

Scenario: Merging a New Release of an Entire Source Tree.....................150

Scenario: Merging Directory Versions...153

11.3 Using Your Own Merge Tools..154

12. Using Element Types to Customize Processing of File Elements155

12.1 File Types in a Typical Project ..155

12.2 How ClearCase Assigns Element Types ...156

12.3 Element Types and Type Managers...157

Other Applications of Element Types ...159

Using Element Types to Configure a View ...159

Processing Files by Element Type...160

12.4 Predefined and User-Defined Element Types..160

12.5 Predefined and User-Defined Type Managers...161

12.6 Type Manager for Manual Page Source Files...161

Creating the Type Manager Directory...161

Inheriting Methods from Another Type Manager.....................................162

The create_version Method..162
x Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

The construct_version Method ...164

Implementing a New compare Method..166

Testing the Type Manager ...167

Installing and Using the Type Manager ..168

12.7 Icon Use by GUI Browsers ..169

13. Using ClearCase Throughout the Development Cycle ..173

13.1 Project Overview ..173

13.2 Development Strategy ...175

Project Manager and ClearCase Administrator...175

Use of Branches ..175

Creating Project Views ..178

13.3 Creating Branch Types ..178

13.4 Creating Standard Config Specs ..179

13.5 Creating, Configuring, and Registering Views..179

13.6 Development Begins..180

Techniques for Isolating Your Work ...180

13.7 Creating Baseline 1...181

Merging Two Branches ...181

Integration and Test...182

Labeling Sources...182

Removing the Integration View...183

13.8 Merging Ongoing Development Work...183

Preparing to Merge ..184

Merging Work ..186

13.9 Creating Baseline 2...187

Merging from the r1_fix Branch...188

Preparing to Merge from the major Branch ...188

Merging from the major Branch...190

Decommissioning the major Branch ...191

Integration and Test...191

13.10 Final Validation: Creating Release 2.0...191

Labeling Sources...192

Restricting Use of the main Branch ...192
Contents xi

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

Setting Up the Test View ...193

Setting Up the Trigger to Monitor Bugfixing ...193

Fixing a Final Bug...194

Rebuilding from Labels ...194

Wrapping Up ..195

A. ClearCase-ClearQuest Integrations ..197

A.1 Understanding the Two ClearCase-ClearQuest Integrations197

Managing Coexisting Integrations...198

Schema ...198

Presentation ...198

Index ..201
xii Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxTOC.fm — July 12, 2000 2:20 pm

Figures

Figure 1 Branching Hierarchy in Base ClearCase...2

Figure 2 Branching Hierarchy Under UCM Streams ...3

Figure 3 Project Management and Development Cycles in UCM11

Figure 4 Baselines of Two Components...14

Figure 5 Rebase Operation...18

Figure 6 Promoting Baselines ..19

Figure 7 Association of UCM and ClearQuest Objects in Integration.........................20

Figure 8 Components Used by Transaction Builder Project ...26

Figure 9 Mapping Components to Projects ...27

Figure 10 Using a Read-Only Component...30

Figure 11 Related Projects Sharing One PVOB ...34

Figure 12 Projects in Multiple PVOBs Linked to the Same ClearQuest Database.......37

Figure 13 Using the Same Schema Repository for Multiple

ClearQuest Databases ...38

Figure 14 UCM Tab of Record Form for a UCM-Enabled Record Type39

Figure 15 Main Tab of Record Form for the BaseCMActivity Record Type.................40

Figure 16 Associating a User Database with a UCM-Enabled Schema.........................46

Figure 17 Adding the UCMPolicyScripts Package to a Schema.....................................47

Figure 18 Assigning State Types to a Record Type’s States..48

Figure 19 Navigating to Record Type’s State Transition Matrix....................................48

Figure 20 State Transition Diagram for UCM-enabled BaseCMActivity

Record Type..51

Figure 21 Navigating to Integration Stream in Project Explorer....................................60

Figure 22 Step 2 of New Project Wizard ..66

Figure 23 Enabling a Project to Work with a ClearQuest User Database68

Figure 24 Navigating to the UCMProjects Query ..69

Figure 25 Add Baseline Dialog Box ..74

Figure 26 Find Posted Deliveries Dialog Box..76

Figure 27 Make Baseline Dialog Box ..79

Figure 28 Comparing Baselines by Activity ..83

Figure 29 Comparing Baselines by Version...84
Figures xiii

/vobs/doc/ccase/projlead/cc_proj.uxLOF.fm — July 12, 2000 2:20 pm

Figure 30 Managing a Follow-on Release ..90

Figure 31 Incorporating a Patch Release ..93

Figure 32 Making a Change to an Old Version ...113

Figure 33 Multiple-Level Auto-Make-Branch ...115

Figure 34 Development Config Spec vs. QA Config Spec ...117

Figure 35 Checking Out a Branch of an Element ..118

Figure 36 Requirements Tracing..139

Figure 37 Versions Involved in a Typical Merge ..144

Figure 38 ClearCase Merge Algorithm...145

Figure 39 Selective Merge from a Subbranch ..147

Figure 40 Removing the Contributions of Some Versions ..148

Figure 41 Merging a New Release of an Entire Source Tree ...151

Figure 42 Data Handling: File Type, Element Type, Type Manager158

Figure 43 User-Defined Icon Display ...171

Figure 44 Project Plan for Release 2.0 Development ..174

Figure 45 Development Milestones: Evolution of a Typical Element..........................177

Figure 46 Creating Baseline 1...181

Figure 47 Updating Major Enhancements Development ..184

Figure 48 Merging Baseline 1 Changes into the major Branch186

Figure 49 Baseline 2 ...188

Figure 50 Element Structure after the Pre-Baseline-2 Merge ..190

Figure 51 Final Test and Release ...191

Figure 52 Change Sets in ClearQuest GUI ...199
xiv Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxLOF.fm — July 12, 2000 2:20 pm

Tables

Table 1 Recommended Directory Structure for Components.....................................28

Table 2 State Types in UCM-Enabled Schema ..50

Table 3 Environment Variables Required for Integration ...54

Table 4 Queries in UCM-Enabled Schema...84

Table 5 Files Used in a Typical Project ...156
Tables xv

/vobs/doc/ccase/projlead/cc_proj.uxLOT.fm — July 12, 2000 2:18 pm

xvi Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxLOT.fm — July 12, 2000 2:18 pm

Preface

ClearCase, a configuration management system, is designed to help software development teams

track the objects used in software builds. You can use base ClearCase to create a customized

configuration management environment, or you can adopt the Unified Change Management

(UCM) process. UCM is an out-of-the-box process, layered on base ClearCase and ClearQuest

functionality, for organizing software development teams and their work products.

About This Manual

This manual shows project managers how to set up and manage a configuration management

environment for their development team using either UCM or the customizable features of base

ClearCase.

Organization

The manual is divided into two parts:

➤ Part 1: Working in UCM. Read this part if you plan to use UCM to implement your team’s

development process.

➤ Part 2: Working in Base ClearCase. Read this part if you plan to use the base ClearCase

features to implement a customized development process for your team.
Preface xvii

ClearCase Documentation Roadmap

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase
ClearCase Product Family Installation Notes

ClearCase MultiSite Manual

Project
Management

Managing Software Projects with ClearCase

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes

ClearCase Tutorials

Development

Developing Software with ClearCase

Build
Management

ClearCase OMAKE Manual (Windows)
Building Software with ClearCase
xviii Managing Software Projects with ClearCase

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xix

Online Documentation

The ClearCase graphical interface includes a Microsoft Windows-like help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help➔Contents provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

% cleartool man (display the cleartool overview page)

% cleartool man man (display the cleartool man reference page)

% cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

% cleartool lsprivate –help
Usage: lsprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
 [-size] [-age] [-co] [-do] [-other]

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To

start the ClearCase Tutorial from the command line, type hyperhelp cc_tut.hlp.

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.
xx Managing Software Projects with ClearCase

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
Preface xxi

Preface xxii

11 Choosing Between UCM and Base
ClearCase

Before you can start to use ClearCase to manage the version control and configuration needs of

your development project, you need to decide whether to use the out-of-the-box Unified Change

Management (UCM) process or base ClearCase. This chapter describes the main differences

between the two methods from the project management perspective.

The rest of this manual is organized into two parts. Part 1 describes how to manage a project

using UCM. Part 2 describes how to manage a project using the various tools in base ClearCase.

1.1 Differences Between UCM and Base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in which

developers can work in parallel on a shared set of files, and project managers can define policies

that govern how developers work together.

UCM is one prescribed method of using ClearCase for version control and configuration

management. UCM is layered on base ClearCase. Therefore, it is possible to work efficiently in

UCM without having to master the details of base ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers the flexibility to

implement virtually any configuration management solution that you deem appropriate for

your environment.
1 - Choosing Between UCM and Base ClearCase 1

Branching

Base ClearCase uses branches to enable parallel development. A branch is an object that specifies

a linear sequence of versions of an element. Every element has one main branch, which represents

the principal line of development, and may have multiple subbranches, each of which represents

a separate line of development. For example, a project team may use the main branch for new

development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a subbranch for

porting a product to a different platform. The team may then decide to create a bug-fixing

subbranch off that porting subbranch. Base ClearCase allows you to create complex branch

hierarchies. Figure 1 illustrates a multilevel branch hierarchy. As a project manager in such an

environment, you need to ensure that developers are working on the correct branches. To do that,

you must tell them which rules to include in their config specs so that their views access the

appropriate set of versions.

Figure 1 Branching Hierarchy in Base ClearCase

0

1

2

3

main

0

1

2

r1_bugs

4

0

1

2

3

4

alpha_port

3

0

1

bug102
2 Managing Software Projects with ClearCase

UCM uses branches also, but you do not have to manipulate them directly because it layers

streams over the branches. A stream is a ClearCase object that maintains a list of activities and

determines which versions of elements appear in a developer’s view. In UCM, a project contains

one integration stream, which records the project’s shared set of elements, and multiple

development streams, in which developers work on their parts of the project in isolation from the

team. UCM does not allow for complex branch hierarchies. The project’s integration stream uses

one branch. Each development stream uses its own branch, which is a subbranch of the

integration stream’s branch. Development stream branches cannot have subbranches. Figure 2

illustrates the simple branching hierarchy that supports UCM streams.

As project manager of a UCM project, you need not write rules for config specs. Streams

configure developers’ views to access the appropriate versions on the appropriate branches.

Figure 2 Branching Hierarchy Under UCM Streams

Creating and Using Baselines

Both base ClearCase and UCM allow you to create baselines. UCM automates the creation

process and provides additional support for performing operations on baselines. A baseline
identifies the set of versions of files that represent a project at a particular milestone. For example,

you may create a baseline called beta1 to identify an early snapshot of a project’s source files.

0

1

2

3

0

1

2

3

main

developer_1

0

1

2

developer_2

4

1 - Choosing Between UCM and Base ClearCase 3

Baselines provide two main benefits:

➤ The ability to reproduce an earlier release of a software project

➤ The ability to tie together the complete set of files related to a project, such as source files, a

product requirements document, a documentation plan, functional and design

specifications, and test plans

In base ClearCase, you can create a baseline by creating a version label and applying that label

to a set of versions.

In UCM, baseline support appears throughout the user interface because UCM requires that you

use baselines. When developers join a project, they must first populate their work areas with the

contents of the project’s recommended baseline. This method ensures that all team members

start with the same set of shared files. In addition, UCM lets you set a property on the baseline

to indicate the quality level of the versions that the baseline represents. Examples of quality

levels include “project builds without errors,” “passes initial testing,” and “passes regression

testing.” By changing the quality-level property of a baseline to reflect a higher degree of

stability, you can, in effect, promote the baseline.

Managing Activities

In base ClearCase, you work at the version and file level. UCM provides a higher level of

abstraction: activities. An activity is a ClearCase object that you use to record the work required

to complete a development task. For example, an activity may be to change a graphical user

interface (GUI). You may need to edit several files to make the changes. UCM records the set of

versions that you create to complete the activity in a change set. Because activities appear

throughout the UCM user interface, you can perform operations on sets of related versions by

identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress of a project

more easily. For example, you can determine which activities were completed in which baselines.

If you use the UCM-ClearQuest integration, you gain additional project management control,

such as the ability to assign states and state transitions to activities. You can then generate reports

by issuing queries such as “show me all activities assigned to Pat that are in the Ready state.”
4 Managing Software Projects with ClearCase

Enforcing Development Policies

A key part of managing the configuration management aspect of a software project is

establishing and enforcing development policies. In a parallel development environment, it is

crucial to establish rules that govern how team members access and update shared sets of files.

Such policies are helpful in two ways:

➤ They minimize project build problems by identifying conflicting changes made by multiple

developers as early as possible.

➤ They establish greater communication among team members.

These are examples of common development policies:

➤ Developers must synchronize their private work areas with the project’s recommended

baseline before delivering their work to the project’s shared work area.

➤ Developers must notify other team members by e-mail when they deliver work to the

project’s shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create mechanisms to

enforce development policies. UCM includes a set of common development policies, which you

can set through the GUI or command-line interface (CLI).

1.2 Using Base ClearCase Tools with UCM

This manual is organized into two parts: Part 1 for UCM and Part 2 for base ClearCase. If you are

managing a UCM project, you may occasionally want to extend UCM by using some of the tools

in base ClearCase. In particular, you may want to use ClearCase attributes, triggers, and

hyperlinks to customize development policies.
1 - Choosing Between UCM and Base ClearCase 5

6 Managing Software Projects with ClearCase

Part 1: Working in UCM

The following chapters describe how to plan, set up, and manage a

UCM project to implement your team’s development process.

.

22 Understanding UCM

This chapter provides an overview of Unified Change Management (UCM). Specifically, it

introduces the main UCM objects and describes the tasks involved in managing a UCM project.

Subsequent chapters describe the detailed steps required to perform these tasks.

2.1 The Project Management Cycle

In UCM, your work follows a cycle that complements an iterative software development process.

Members of a project team work in a UCM project. A project is the object that contains the

configuration information needed to manage a significant development effort, such as a product

release. A project contains one shared work area and typically multiple private work areas.

Private work areas allow developers to work on activities in isolation. As project manager, you

are responsible for maintaining the project’s shared work area. Work within a project progresses

as follows:

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Create
project
2 - Understanding UCM 9

1. You create a project and identify an initial set of baselines of one or more components. A

component is a group of related directory and file elements, which you develop, integrate, and

release together. A baseline is a version of a component.

2. Developers join the project by creating their private work areas and populating them with

the contents of the project’s baselines.

3. Developers create activities and work on one activity at a time. An activity records the set of

files that a developer creates or modifies to complete a development task, such as fixing a

bug. This set of files associated with an activity is known as a change set.

4. When developers complete activities, and build and test their work in their private work

areas, they share their work with the project team by performing deliver operations. A deliver

operation merges work from the developer’s private work area to the project’s shared work

area.

5. In the shared work area, you integrate the work delivered by developers.

6. Periodically, you create new baselines in the shared work area that incorporate the delivered

work.

7. You perform quick validation tests to make sure that the new baselines build and appear to

work correctly. A team of software quality engineers performs more extensive testing.

8. Periodically, as the quality and stability of baselines improve, you adjust the promotion level

attribute of baselines to reflect appropriate milestones, such as Built, Tested, or Released.

When the new baselines pass a sufficient level of testing, you designate them as the

recommended set of baselines.

9. Developers perform rebase operations to update their private work areas to include the set of

versions represented by the new recommended baselines.

10. Developers continue the cycle of working on activities, delivering completed activities,

updating their private work areas with new baselines.

This list of UCM tasks can be seen as two cycles: project management and development. Figure 3

illustrates the connection between these cycles.
10 Managing Software Projects with ClearCase

Figure 3 Project Management and Development Cycles in UCM

Development cycle
Promote
baselines

Integrate
work

Make
baselines

Rebase
work area

Work on
activities

Deliver
activities

Project management cycle
2 - Understanding UCM 11

2.2 Creating the Project

To create and set up a project, you must perform the following tasks:

➤ Create a repository for storing project information

➤ Create components that contain the set of files the developers work on

➤ Create baselines that identify the versions of files with which the developers start their work

➤ Select the development policies you want to enforce

Creating a PVOB

ClearCase stores file elements, directory elements, derived objects, and metadata in a repository

called a versioned object base (VOB). In UCM, each project must have a project VOB (PVOB). A

PVOB is a special kind of VOB that stores UCM objects, such as projects, activities, and change

sets. A PVOB must exist before you can create a project. Check with your site’s ClearCase

administrator to see whether a PVOB has already been created. For details on creating a PVOB,

see Creating the Project VOB (PVOB) on page 56.

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Create
project

Create a
PVOB

Create
components

Create
baseline

Set
policies

Set up ClearQuest
integration
12 Managing Software Projects with ClearCase

Organizing Directories and Files into Components

As the number of files and directories in your system grows, you need a way to reduce the

complexity of managing them. Components are the UCM mechanism for simplifying the

organization of your files and directories. The elements that you group into a component

typically implement a reusable piece of your system architecture. By organizing related files and

directories into components, you can view your system as a small number of identifiable

components, rather than one large set of directories and files.

Within a component, you organize directory and file elements into a directory tree. The

component’s root directory must be the root directory of a VOB. You can convert existing VOBs

into components, or you can create a component from scratch. For details on creating a

component from scratch, see Creating Components on page 57. For details on converting a VOB

into a component, see Making a VOB into a Component on page 63.

Shared and Private Work Areas

A work area consists of a view and a stream. A view is a directory tree that shows a single version

of each file in your project. A stream is a ClearCase object that maintains a list of activities and

determines which versions of elements appear in your view.

A project contains one integration stream, which records the project’s baselines and enables access

to versions of the project’s shared elements. The integration stream and a corresponding

integration view represent the project’s shared work area.

Each developer on the project has a private work area, which consists of a development stream

and a corresponding development view. The development stream maintains a list of the

developer’s activities and determines which versions of elements appear in the developer’s

view.

When you create a project from the UCM GUI, ClearCase creates the integration stream for you.

If you create a project from the command-line interface, you need to create the integration stream

explicitly. Developers create their development streams and development views when they join

the project. See Developing Software with ClearCase for information on joining a project.
2 - Understanding UCM 13

Starting from a Baseline

After you create project components or select existing components, you must identify the

baseline or baselines that serve as the starting point for the team’s developers. A baseline

identifies one version of every element visible in a component. Figure 4 shows baselines named

BL1 and BL2 that identify versions in Component A and Component B, respectively.

The project’s integration stream records the baselines. When developers join the project, they

populate their work areas with the versions of directory and file elements represented by the

baselines. This practice ensures that all members of the project team start with the same set of

files.

Figure 4 Baselines of Two Components

Setting Policies

UCM includes a set of policies that you can set to enforce development practices among

members of the project team. By setting policies, you can improve communication among project

team members and minimize the problems you may encounter when integrating their work. For

example, you can set a policy that requires developers to update their work areas with the

Integration stream

Component A

Baseline BL1

Component B

Baseline BL2

Element

Version

Element

Version
14 Managing Software Projects with ClearCase

project’s latest recommended baseline before they deliver work to the integration stream. This

practice reduces the likelihood that developers will need to work through complex merges when

they deliver their work. For a description of all policies you can set in UCM, see Considering
Which Development Policies to Enforce on page 41.

Setting Up the UCM-ClearQuest Integration

You can use UCM without Rational ClearQuest, the change request management tool. The

integration with ClearQuest adds significant project management and activity management

capabilities. When you set up a UCM project to work with ClearQuest, the integration links all

project activities to ClearQuest records. You can then take advantage of UCM’s state transition

model and ClearQuest’s query, reporting, and charting features. These features allow you to do

the following:

➤ Assign activities to developers

➤ Assign states and state transition rules to activities

➤ Generate reports based on database queries

➤ Select additional development policies to be enforced

To set up the UCM-ClearQuest integration:

1. Enable a ClearQuest schema to work with UCM or use a predefined UCM-enabled schema.

2. Create or upgrade a ClearQuest user database to use the schema.

3. Enable your UCM project to work with ClearQuest.

See Overview of the UCM-ClearQuest Integration on page 20 for additional information about the

integration.
2 - Understanding UCM 15

2.3 Integrating Work into the Project (MultiSite)

In most cases, developers complete the deliver operations that they start. If your project uses

ClearCase MultiSite, you may need to complete some deliver operations. Many ClearCase

customers use MultiSite, a product layered on ClearCase, to support parallel software

development across geographically distributed project teams. MultiSite lets developers work on

the same VOB concurrently at different locations. Each location works on its own copy of the

VOB, known as a replica.

To avoid conflicts, MultiSite uses an exclusive-right-to-modify scheme, called mastership. VOB

objects, such as streams and branches, are assigned a master replica. The master replica has the

exclusive right to modify or delete these objects.

In a MultiSite configuration, a team of developers may work at a remote site, and the project’s

integration stream may be mastered at a different replica than the developers’ development

streams. In this situation, the developers cannot complete deliver operations to the integration

stream. As project manager, you must complete these deliver operations. UCM provides a

variation of the deliver operation called a remote deliver. When UCM detects a stream mastership

situation, it makes the deliver operation a remote deliver, which starts the deliver operation but

does not merge any versions. You then complete the deliver operation.

For details on completing remote deliver operations, see Integrating the Project on page 75.

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Create
project
16 Managing Software Projects with ClearCase

2.4 Making a New Baseline

To ensure that developers stay in sync with each other’s work, make new baselines regularly. A

new baseline includes the work developers have delivered to the integration stream since the last

baseline. To make a new baseline:

1. Lock the integration stream to prevent developers from delivering work while you create the

baseline. Developers can continue to work on activities in their development streams.

2. Verify the stability of the project by building and testing its components.

3. Make the baseline.

4. Unlock the integration stream so that developers can resume delivering work.

After your team of software quality engineers test the new baseline more extensively and

determine that it is stable, make the baseline the recommended baseline. Developers then update

their work areas with the new baseline by performing a rebase operation, which merges files and

directories from the integration stream to the development stream.

Figure 5 illustrates a rebase operation from baseline BL1 to BL2. For details on making baselines,

see Creating a New Baseline on page 77.

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Create
project
2 - Understanding UCM 17

Figure 5 Rebase Operation

2.5 Promoting the Baseline

As work on your project progresses and the quality and stability of the components improve,

change the baseline’s promotion level attribute to reflect important milestones. The promotion

level attribute typically indicates a level of testing. For example, Figure 6 shows the evolution of

baselines through three levels of testing; the BL8 baseline is ready for production.

You can use promotion levels in development policies. For example, you can set a policy to make

a baseline the recommended baseline when it reaches a particular promotion level, such as

“tested.” You can set another policy that requires developers to rebase their development

streams to the set of recommended baselines before they deliver work. These policies help to

Rebasing

Pat's development
work area

BL1 BL2

Integration stream
Pat's development
work area after rebase

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Create
project
18 Managing Software Projects with ClearCase

ensure that developers update their work areas whenever a baseline passes an acceptable level

of testing.

For details on promoting baselines, see Promoting or Demoting the Baseline on page 82.

Figure 6 Promoting Baselines

BL8

BL6

BL3

BL1

System tested

Integration tested

Production

Acceptance tested
2 - Understanding UCM 19

2.6 Overview of the UCM-ClearQuest Integration

This section describes the following UCM-ClearQuest integration concepts:

➤ Association of UCM and ClearQuest objects

➤ UCM-enabled schema

➤ Queries

➤ State types

Associating UCM and ClearQuest Objects

Setting up the integration links UCM and ClearQuest objects. Figure 7 shows the bidirectional

linking of these objects.

Figure 7 Association of UCM and ClearQuest Objects in Integration

When you enable a project to link to a ClearQuest user database, the integration stores a reference

to that database in the project’s PVOB.

Every ClearQuest-enabled project is linked to a project record of record type UCM_Project in the

ClearQuest user database.

Every activity in a ClearQuest-enabled project is linked to a record in the database. An activity’s

title is linked to the headline field in its corresponding ClearQuest record. If you change an

PVOB

Record 1

UCM_Project
Record

Activity 1

Project

ClearQuest User Database

Record 2
20 Managing Software Projects with ClearCase

activity’s title in ClearCase, the integration changes the headline in ClearQuest to match the new

title, and the reverse is also true. Similarly, an activity’s name is linked to the ID field in its

ClearQuest record.

It is possible for a ClearQuest user database to contain some records that are linked to activities

and some records that are not linked. Record 2 in Figure 7 is not linked to an activity. You may

encounter this situation is if you have a ClearQuest user database in place before you adopt

UCM. As you create activities, the integration creates corresponding ClearQuest records.

However, any records that existed in that user database before you enabled it to work with UCM

remain unlinked.

UCM-Enabled Schema

In ClearQuest, a schema is the definition of a database. To use the integration, you must create

or upgrade a ClearQuest user database that is based on a UCM-enabled schema. A UCM-enabled

schema contains certain fields, scripts, actions, and state types. ClearQuest includes two

predefined UCM-enabled schemas, which you can use. You can also enable a custom schema or

another predefined schema to work with UCM. For details on UCM-enabled schemas, see

Deciding Which Schema to Use on page 38.

State Types

ClearQuest uses states to track the progress of change requests from submission to completion.

A state represents a particular stage in this progression. Each movement from one state to another

is a state transition. The integration uses a particular state transition model. To implement this

model, the integration uses state types. A state type is a template that defines actions and other

attributes of a state. You can define as many states as you want, but all states in a UCM-enabled

record type must be based on one of the following state types:

➤ Waiting

➤ Ready

➤ Active

➤ Complete

For each state type, you can have multiple states. However, you must define at least one path of

transitions between states of state types as follows: Waiting to Ready to Active to Complete. For

details on state types, see Setting State Types on page 49.
2 - Understanding UCM 21

Queries in a UCM-Enabled ClearQuest Schema

A UCM-enabled schema includes six queries. When you create or upgrade a ClearQuest user

database to use a UCM-enabled schema, the integration installs these queries in two subfolders

of the Public Queries folder in the user database’s workspace. These queries make it easy for

developers to see which activities are assigned to them and for project managers to see which

activities are active in a particular project. For details on these queries, see Querying ClearQuest
User Databases on page 84
22 Managing Software Projects with ClearCase

33 Planning the Project

This chapter describes the issues you need to consider in planning to use one or more UCM

projects as your configuration management environment. We strongly recommend that you

write a configuration management plan before you begin creating projects and other UCM

objects. After you create your plan, see Chapter 5, Setting Up the Project for information on how

to implement it.

3.1 Using the System Architecture as the Starting Point

Essential to developing and maintaining high quality software is the definition of the system’s

architecture. The Rational Unified Process states that defining and using a system architecture is

one of the six best practices to follow in developing software. A system architecture is the highest

level concept of a system in its environment. The Rational Unified Process states that a system

architecture encompasses the following:

➤ The significant decisions about the organization of a software system

➤ The selection of the structural elements and their interfaces of which the system is

composed, together with their behavior as specified in the collaboration among those

elements

➤ The composition of the structural and behavioral elements into progressively larger

subsystems

➤ The architectural style that guides this organization, these elements, and their interfaces,

their collaborations, and their composition
3 - Planning the Project 23

A well-documented system architecture improves the software development process. It is also

the ideal starting point for defining the structure of your configuration management

environment.

Mapping System Architecture to Components

Just as different types of blueprints represent different aspects of a building’s architecture (floor

plans, electrical wiring, plumbing, and so on), a good software system architecture contains

different views to represent its different aspects. The Rational Unified Process defines an

architectural view as a simplified description (an abstraction) of a system from a particular

perspective or vantage point, covering particular concerns and omitting entities that are not

relevant to this perspective.

The Rational Unified Process suggests using five architectural views. Of these, the

implementation view is most important for configuration management. The implementation

view identifies the physical files and directories that implement the system’s logical packages,

objects, or modules. For example, your system architecture may include a licensing module. The

implementation view identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM components you

need for your system. Components are groups of related directory and file elements, which you

develop, integrate, and release together. Large systems typically contain many components. A

small system may contain one component.

Deciding What to Place Under Version Control

In deciding what to place under version control, do not limit yourself to source code files and

directories. The power of configuration management is that you can record a history of your

project as it evolves so that you can re-create the project quickly and easily at any point in time.

To record a full picture of the project, include all files and directories connected with it. These

include, but are not limited to the following:

➤ Source code files and directories

➤ Model files, such as Rational Rose files

➤ Libraries

➤ Executable files

➤ Interfaces

➤ Test scripts

➤ Project plans
24 Managing Software Projects with ClearCase

➤ System and user documentation

➤ Requirements documents

Mapping Components to Projects

After mapping your system architecture to a set of components and identifying the full set of files

and directories to place under version control, you need to determine whether to use one project

or multiple projects. In general, think of a project as the configuration management environment

for a project team. Team members work together to develop, integrate, test, and release a set of

related components. For many systems, all work can be done in one project. For some systems,

work must be separated into multiple projects. In deciding how many projects to use, consider

the following factors:

➤ Size of the system

➤ Amount of integration required

➤ Whether you need to release multiple versions of the product concurrently

Size of the System

Consider the number of developers working on the system and the number of components. For

a small system that consists of two or three components being developed by a dozen developers,

one project probably makes sense. For a large system that consists of 20 components being

developed by 100 developers, it may be wise to use several projects.

Amount of Integration

Determine the relationships between the various components. Related components that require

a high degree of integration belong to the same project. By including related components in the

same project, you can build and test them together frequently, thus avoiding the problems that

can arise when you integrate components late in the development cycle.

Need for Parallel Releases

If you need to develop multiple versions of your system in parallel, consider using separate

projects, one for each version. For example, your organization may need to work on a patch

release and a new release at the same time. In this situation, both projects use mostly the same

set of components. (Note that multiple projects can modify the same set of components.) When

work on the patch release project is complete, you integrate it with the new release project.
3 - Planning the Project 25

Example

Figure 8 shows the initial set of components planned for the Transaction Builder system. A team

of 30 developers work on the system. Because a high degree of integration between components

is required, and most developers work on several components, the project manager included all

components in one project.

Figure 8 Components Used by Transaction Builder Project

Components and VOBs

ClearCase implements components as versioned object bases (VOBs), the repositories for versions

of file elements, directory elements, derived objects, and metadata associated with them.

Figure 9 illustrates this implementation. In Figure 9, both Project1 and Project2 use Component2.

Transaction Builder Project

Customer GUI Admin GUI

Admin Security ReportingModeler
26 Managing Software Projects with ClearCase

Figure 9 Mapping Components to Projects

3.2 Organizing Components

After you map your system architecture to an initial set of components and determine which

projects will access those components, refine your plan by performing the following tasks:

➤ Ensure that your components are a suitable size for VOBs

➤ Identify any additional components

➤ Define the component directory structures

➤ Identify read-only components

➤ Identify nonmerging elements

Considering VOB Capacity

Because ClearCase implements components as VOBs, you must ensure that the contents of each

planned component do not exceed the capacity of a VOB. See Administering ClearCase for details

on VOB capacity.

PVOB

Component1

Component2

Component3

Project1

Project2

VOB

VOB

VOB
3 - Planning the Project 27

Identifying Additional Components

Although you should be able to identify nearly all necessary components by examining your

system architecture, you may overlook a few. For example:

Defining the Directory Structure

After you complete your list of components, you need to define the directory structures within

those components. We recommend that you start with a directory structure similar to the one

shown in Table 1; then modify the structure to suit your system’s needs.

In Table 1, Component_1 through Component_n refers to the components that map to the set of

logical packages in your system architecture.

System component It is a good idea to designate one component for storing

system-level files. These items include project plans,

requirements documents, and system model files and other

architecture documents.

Testing component Consider using a separate component for storing files related to

testing the system. This component includes files such as test

scripts, test results and logs, and test documentation.

Deployment component At the end of a development cycle, you need a separate

component to store the generated files that you plan to ship with

the system or deploy inhouse. These files include executable files,

libraries, interfaces, and user documentation.

Table 1 Recommended Directory Structure for Components

Component Directories Typical Contents

System plans Project plans, mission statement, and so on

requirements Requirements documents

models Rose files, other architecture documents

documentation System documentation
28 Managing Software Projects with ClearCase

Identifying Read-Only Components

When you create a project, you must indicate whether each component is modifiable in the

context of that project. In most cases, you make them modifiable. However, in some cases you

want to make a component read-only, which prevents project team members from changing its

elements. Components can be used in multiple projects. Therefore, one project team may be

responsible for maintaining a component, and another project team may use that component to

build other components.

For example, in Figure 10, Project A team members maintain a set of library files. Project B team

members reference some of those libraries when they build their components. In Project A, the

Component_1

through

Component_n

requirements Component requirements

models Component model files

source Source files for this component

interfaces Component public interfaces

binaries Executable and other binary files for this

component

libraries Libraries used by this component

tests Test scripts and related documents for this

component

Test scripts Test scripts

results Test results and logs

documentation Test documentation

Deployment binaries Deployed executable files

libraries Deployed libraries

interfaces Deployed interfaces

documentation User documentation

Table 1 Recommended Directory Structure for Components

Component Directories Typical Contents
3 - Planning the Project 29

cm_libs component is modifiable. In Project B, the same component is read-only. With respect to

the cm_libs component, Project A and Project B have a producer-consumer relationship.

Figure 10 Using a Read-Only Component

3.3 Specifying a Baseline Strategy

After you organize the project’s components, determine your strategy for creating baselines of

those components. The baseline strategy must define the following:

➤ When to create baselines

➤ How to name baselines

➤ The set of promotion levels

➤ How to test baselines

When to Create Baselines

At the beginning of a project, you must identify the baseline or baselines that represent the

starting point for new development. As work on the project progresses, you need to create new

baselines periodically.

Project A

cm_libs
modifiable

Project B

cm_libs
read-only
30 Managing Software Projects with ClearCase

Identifying the Initial Baseline

If your project represents a new version of an existing project, you probably want to start work

from the latest baselines of the existing project’s components. For example, if you are starting

work on version 3.2 of the Transaction Builder project, identify the baselines that represent the

released, or production, versions of its version 3.1 components.

If you are converting a base ClearCase configuration to a project, you can make baselines from

existing labeled versions. Check whether the latest stable versions are labeled. If they are not, you

need to create a label type and apply it to the versions that you plan to include in your project.

Ongoing Baselines

After developers start working on the new project and making changes, create baselines on a

frequent (nightly or weekly) basis. This practice has several benefits:

➤ Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private work areas

where they can work on a set of files in isolation. Yet extended periods of isolation cause

problems. Developers are unaware of each other’s work until you incorporate delivered

changes into a new baseline, and they rebase their development streams.

➤ The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve merge

conflicts between files that the new baseline selects and the work in their private work areas.

When you create baselines frequently, they contain fewer changes, and developers spend

less time merging versions.

➤ Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating the work

delivered to the integration stream since the last baseline. By creating baselines frequently,

you have more opportunities to discover any serious problems that a developer may

introduce to the project inadvertently. By identifying a serious problem early, you can

localize it and minimize the amount of work required to fix the problem.
3 - Planning the Project 31

Defining a Naming Convention

Because baselines are an important tool for managing a project, define a meaningful convention

for naming them. A useful baseline name provides this information:

➤ Project name

➤ Milestone or phase of development schedule

➤ Date created

For example: V4.0TRANS_BL2_990519

Identifying Promotion Levels to Reflect State of Development

A promotion level is an attribute of a baseline that you can use to indicate the quality or stability

of the baseline. ClearCase provides the following default promotion levels:

➤ Rejected

➤ Initial

➤ Built

➤ Tested

➤ Released

You can use some or all of the default promotion levels, and you can define your own. The levels

are ordered to reflect a progression from lowest to highest quality. You can use promotion levels

in development policies for the project. For example, you can set a policy that makes a baseline

the recommended baseline when it has a certain promotion level or a higher one. By default, when

developers join the project or rebase their development streams, they use the recommended

baselines. Determine the set of promotion levels for your project and the criteria for setting each

level.

Planning How to Test Baselines

Typically, software development teams perform several levels of testing. An initial test, known

as a validation test, checks to see that the software builds without errors and appears to work as

it should. A more comprehensive type of testing, such as regression testing, takes much longer

and is usually performed by a team of software quality engineers.
32 Managing Software Projects with ClearCase

When you make a new baseline, you need to lock the integration stream to prevent developers

from delivering additional changes. This allows you to build and test a static set of files. Because

validation tests are not exhaustive, you probably do not need to lock the integration stream for a

long time. However, more extensive testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice because it prevents

developers from delivering completed work. One solution to this problem is to create a

development stream to be used solely for extensive testing. After you create a new baseline that

passes a validation test, your testing team can rebase the designated testing development stream

to the new baseline. When the baseline passes the next level of testing, promote it. When you are

confident that the baseline is stable, make it the recommended baseline so that developers can

rebase their development streams to it.

For information on creating a testing development stream, see Creating a Development Stream for
Testing Baselines on page 71.

3.4 Planning PVOBs

ClearCase stores UCM objects such as projects, streams, activities, and change sets in project

VOBs (PVOBs). In addition to storing objects, PVOBs can function as administrative VOBs. You

need to decide how many PVOBs to use for your system and whether to take advantage of the

administrative capabilities of the PVOB.

Deciding How Many PVOBs to Use

Projects that use the same PVOB have access to the same set of components. If developers on

different projects need to work on some of the same components, use one PVOB for those

projects. For example, Figure 11 shows concurrent development of two versions of the

Webotrans product. While most members of the team work on the 4.0 release in one project, a

small group works on the 4.0.1 release in a separate project. Both projects use the same

components, so they use one PVOB.
3 - Planning the Project 33

Figure 11 Related Projects Sharing One PVOB

Consider using multiple PVOBs only when one or more of the following conditions applies:

➤ The projects do not share components and you anticipate that they will never need to share

components.

➤ The projects are so large that PVOB capacity becomes an issue. For information on VOB

capacity, see Administering ClearCase.

➤ You plan to use the UCM-ClearQuest integration, and you want to link projects to different

ClearQuest user databases. See Planning How to Use the UCM-ClearQuest Integration on

page 36 for information on the role of the PVOB in the integration.

Understanding the Role of the Administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the administrative

VOB with AdminVOB hyperlinks share the same type definitions without having to define them

in each VOB. For example, you can define element types, attribute types, hyperlink types, and so

on in an administrative VOB. Any VOB linked to that administrative VOB can then use those

type definitions to make elements, attributes, and hyperlinks.

GUI Admin

V4.0_Webotrans

GUI Admin

V4.0.1_Webotrans

Webotrans
PVOB
34 Managing Software Projects with ClearCase

If you currently use an administrative VOB, you can associate it with your PVOB when you

create the PVOB. ClearCase then creates an AdminVOB hyperlink between the PVOB and the

administrative VOB. Thereafter, when you create components, ClearCase creates AdminVOB
hyperlinks between the components and the administrative VOB so that the components can use

the administrative VOB’s global type definitions.

If you do not currently use an administrative VOB, do not create one. When you create

components, ClearCase makes AdminVOB hyperlinks between the components and the PVOB,

and the PVOB assumes the role of administrative VOB.

For details on administrative VOBs and global types, see Administering ClearCase.

3.5 Identifying Special Element Types

The concept of element types allows ClearCase to handle each class of elements differently. An

element type is a class of file elements. ClearCase includes predefined element types, such as file
and text_file, and lets you define your own. When you create an element type for use in UCM

projects, you can specify a mergetype attribute, which determines how deliver and rebase

operations handle merging of files of that element type.

When ClearCase encounters a merge situation during a deliver or rebase operation, it attempts

to merge versions of the element. ClearCase requires user interaction only if it cannot reconcile

differences between the versions. For certain types of files, you may want to impose different

merging behavior.

Nonmerging Elements

Some types of files never need to be merged. For these files, you may want to ensure that no one

attempts to merge them accidentally. For example, the deployment, or staging, component

contains the executable files that you ship to customers or install in-house. These files are not

under development; they are the product of the development phase of the project cycle. For these

types of files, you can create an element type and specify never merge behavior.

NOTE: If you do not specify never merge behavior for these elements, developers could

encounter problems when they attempt to deliver work to the project’s integration stream.

Developers create executable files when they build and test their work prior to delivering it. If

these files are under version control as derived objects, they are included in the current activity’s

change set. During a deliver operation, ClearCase attempts to merge these executable files to the
3 - Planning the Project 35

integration stream unless the files are of an element type for which never merge behavior is

specified.

Nonautomerging Elements

For some types of files, you may want to merge versions manually rather than let ClearCase

merge them. One example is a Visual Basic form file, which is a generated text file. Visual Basic

generates the form file based on the form that a developer creates in the Visual Basic GUI. Rather

than let ClearCase change the form file during a merge operation, you want to regenerate the

form file from the Visual Basic GUI.

For these types of files, you can create an element type and specify user merge behavior. For

information on creating element types, see Chapter 12, Using Element Types to Customize
Processing of File Elements, and the mkeltype reference page in ClearCase Reference Manual.

Defining the Scope of Element Types

When you define an element type, its scope can be ordinary or global. By default, the element

type is ordinary; it is available only to the VOB in which you create it. If you create the element

type in an administrative VOB and define its scope as global, other VOBs that have AdminVOB
hyperlinks to that administrative VOB can use the element type. If you want to define an element

type globally, and you do not currently use an administrative VOB, define the element type in

the PVOB.

3.6 Planning How to Use the UCM-ClearQuest Integration

Before you can set up the UCM-ClearQuest integration, you need to make some decisions, which

fall into two general categories:

➤ How to map PVOBs to ClearQuest user databases

➤ Which schema to use for the ClearQuest user databases
36 Managing Software Projects with ClearCase

Mapping PVOBs to ClearQuest User Databases

This section describes three issues that you need to consider in deciding how many PVOBs to use

for projects that link to ClearQuest user databases.

All Enabled Projects in a PVOB Must Link to the Same Database

When you enable a project to link to a ClearQuest user database, the integration stores a reference

to that database in the project’s PVOB. Any other projects in that PVOB that you enable must use

the same database. Therefore, be careful when choosing projects to store in a PVOB. If you plan

to link projects to different databases, use different PVOBs.

NOTE: If you use ClearCase MultiSite, all PVOB replicas must have access to the ClearQuest user

database.

Projects Linked to Same Database Must Have Unique Names

Although UCM allows you to create projects with the same name in different PVOBs, you cannot

link those projects to the same ClearQuest user database. Figure 12 illustrates this naming

requirement.

Figure 12 Projects in Multiple PVOBs Linked to the Same ClearQuest Database

UCM_Project1

PVOB1

PVOB2

ClearQuest User
Database

Project1

Project2

Project3

UCM_Project2

UCM_Project3
3 - Planning the Project 37

Use One Schema Repository for Linked Databases

If some developers on your team work on multiple projects, we recommend that you store the

schemas for the ClearQuest user databases that are linked to those projects in one schema

repository, as shown in Figure 13. This allows developers to switch between projects easily. If you

store the schemas in different schema repositories, developers must use the ClearQuest

Maintenance Tool to connect to a different schema repository whenever they switch projects.

Figure 13 Using the Same Schema Repository for Multiple ClearQuest Databases

Deciding Which Schema to Use

To use the integration, you must create or upgrade a ClearQuest user database that is based on

a UCM-enabled schema. A UCM-enabled schema meets the following requirements:

➤ The UnifiedChangeManagement package has been applied to the schema. A package

contains metadata, such as records, fields, and states, that define specific functionality.

Applying a package to a schema provides a way to add functionality quickly so that you do

not have to build the functionality from scratch.

PVOB1

PVOB2

ClearQuest User
Database1

Project1

ClearQuest User
Database 2

Schema Repository

Schema1

Schema2

Project2
38 Managing Software Projects with ClearCase

➤ The UnifiedChangeManagement package has been applied to at least one record type. This

package adds fields and scripts to the record type, and adds the Unified Change
Management tab to the record type’s forms. Figure 14 shows the Unified Change
Management tab.

➤ The UCMPolicyScripts package has been applied to the schema. This package contains the

scripts for three ClearQuest development policies that you can enforce.

ClearQuest includes two predefined UCM-enabled schemas, named

UnifiedChangeManagement and Enterprise. You can start using the integration right away by

using one of these schemas, or you can use the ClearQuest Designer and the ClearQuest Package

Wizard to enable a custom schema or another predefined schema to work with UCM. You can

also use one of the predefined UCM-enabled schemas as a starting point and then modify it to

suit your needs.

Figure 14 UCM Tab of Record Form for a UCM-Enabled Record Type

Overview of the UnifiedChangeManagement Schema

The UnifiedChangeManagement schema includes the following record types:

➤ BaseCMActivity
This is a lightweight record type that you can use to store information about activities that

do not require additional fields. Figure 15 shows the Main tab of the BaseCMActivity

record form. You may want to use this record type as a starting point and then modify it to

include additional fields and states.

➤ Defect
This record type is identical to the record type of the same name that is included in
3 - Planning the Project 39

ClearQuest’s other predefined schemas, with one exception: it is enabled to work with

UCM. The Defect record type contains more fields and form tabs than the Activity record

type to allow you to record detailed information.

➤ UCMUtilityActivity
This record type is not intended for general use. The integration uses this record type when

it needs to create records for itself, such as when you link a project that contains activities to

a ClearQuest user database. You cannot modify this record type.

Figure 15 Main Tab of Record Form for the BaseCMActivity Record Type

Enabling a Schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, you need to do some

additional work to enable your schema to work with UCM. Before you can do this, you need to

answer the following questions:

➤ Which record types are you enabling for UCM? You do not need to enable all record types

in your schema, but you can link only records of UCM-enabled record types to activities.

➤ For each UCM-enabled record type:

➣ Which state type does each state map to? You must map each state to one of the four

UCM state types: Waiting, Ready, Active, Complete. See Setting State Types on page 49.

➣ Which default actions are you using to transition records from one state to another? See

State Transition Default Action Requirements for Record Types on page 50.
40 Managing Software Projects with ClearCase

➣ Which policies do you want to enforce? The integration includes policies that you can

set to enforce certain development practices. You can also edit the policy scripts to

change the policies. See Policies Available in UCM-ClearQuest Integration on page 43 for

details.

3.7 Considering Which Development Policies to Enforce

UCM includes policies that you can set to enforce certain development practices within a project.

Some policies are available only if you enable the project to work with ClearQuest.

Policies Available in UCM

This section describes the policies that are available regardless of whether you enable the project

to work with ClearQuest.

Recommended Baselines

Recommended baselines are the set of baselines that project team members use to rebase their

development streams. In addition, when developers join the project, their development work

areas are initialized with the recommended baselines. Select the promotion level at which

baselines become recommended baselines.

NOTE: If a component does not contain a baseline whose promotion level is at or above the

recommended baseline promotion level, ClearCase uses the component’s foundation baseline

for the project when developers attempt to rebase their development streams or join the project.

Modifiable Components

In most cases, you want components to be modifiable. For information on when to use read-only

components, See Identifying Read-Only Components on page 29 .

Default View Types

When developers join a project, they use the Join Project Wizard to create their development

views, integration views, and development streams. They use a development view and a

development stream to work in isolation from the project team. They use an integration view to

build and test their work against the latest work delivered to the integration stream by other
3 - Planning the Project 41

developers. ClearCase provides two kinds of views: dynamic and snapshot. Decide which type

of view to use as the default for development and integration views.

Dynamic views use the ClearCase multiversion file system (MVFS) to provide immediate,

transparent access to files and directories stored in VOBs. Snapshot views copy files and

directories from VOBs to a directory on your computer.

We recommend that you use dynamic views as the default view type for integration views.

Dynamic views ensure that when developers deliver work to the integration stream, they build

and test their work against the latest work that other developers have delivered since the last

baseline was created. Snapshot views require developers to copy the latest delivered files and

directories to their computer (a snapshot view update operation), which they may forget to do.

Rebase Before Deliver

This policy requires developers to rebase their development streams to the project’s current

recommended baselines before they deliver work to the integration stream. The goal of this policy

is to have developers build and test their work in their development work areas against the work

included in the most recent stable baselines before they deliver to the integration stream. This

practice minimizes the amount of merging that developers must do when they perform deliver

operations.

Allow Deliveries from Stream with Pending Checkouts

This policy allows developers to deliver work to the integration stream even if some files remain

checked out in the development stream. If you do not set this policy, developers must check in

all files in their development streams before delivering work. You may want to require

developers to check in files to avoid the following situation:

1. A developer completes work on an activity, but forgets to check in the files associated with

that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the integration stream.

Because the files associated with the first activity are still checked out, they are not included

in the deliver operation. Even though the developer may build and test the changes

successfully in the development work area, the changes delivered to the integration may fail

because they do not include the checked-out files.
42 Managing Software Projects with ClearCase

Policies Available in UCM-ClearQuest Integration

This section describes the policies that are available only when you enable the project to work

with ClearQuest. ClearQuest uses scripts to implement these policies. You can modify a policy’s

behavior by editing its script. See Customizing ClearQuest Project Policies on page 52.

Check Before Work On

ClearQuest invokes this policy when a developer attempts to work on an activity. The default

policy script checks to see whether the developer’s user name matches the name in the

ClearQuest record’s Owner field. If the names match, the developer can work on the activity. If

the names do not match, the Work On action fails.

The intent of this policy is to ensure that all criteria are met before a developer can start working

on an activity. You may want to modify the policy to check for additional criteria.

Check Before ClearCase Delivery

This default policy script is a placeholder: it does nothing. ClearCase invokes this policy when a

developer attempts to deliver an activity in a UCM-enabled project. We recommend that you edit

the script to implement an approval process to control deliver operations. For example, you may

want to add an Approved check box to the activity’s record type and require that the project

manager select it before allowing developers to deliver activities.

Do ClearQuest Action After Delivery

ClearCase calls this policy at the end of a deliver operation for each activity included in the

deliver operation. The default policy script uses the activity’s default action to transition the

activity to a Complete type state. If the default action requires entries in certain fields of the

activity’s record, and one of those fields is empty, the script returns an error and leaves the

deliver operation in an uncompleted state. This state prevents the developer from performing

another deliver operation, but it does not affect the current one. It does not roll back changes

made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the activity’s record,

and resume the deliver operation.

The integration runs this script for each activity in the deliver operation. The script may return

success for any number of activities before returning an error on an activity. For the successful

activities, the script may change their state when it invokes the default action. When you recover

from an error and rerun the deliver operation, the script looks at all activities again. For those
3 - Planning the Project 43

that succeeded previously, the script does not attempt to change state. If you modify the script,

be sure that it adheres to this behavior. ClearQuest returns an error if you attempt to change the

state of a record to its current state.
44 Managing Software Projects with ClearCase

44 Setting Up a ClearQuest User
Database

This chapter describes how to set up a ClearQuest user database so that you can use the

UCM-ClearQuest integration for your project. The steps in this chapter are typically completed

by the ClearQuest database administrator. ClearQuest includes predefined schemas that are

ready for use with UCM. You can also enable a custom schema, or another predefined schema,

to work with UCM. See Planning How to Use the UCM-ClearQuest Integration on page 36 for

information on the decisions you need to make before setting up the integration.

4.1 Using the Predefined UCM-Enabled Schemas

The predefined UCM schemas, named UnifiedChangeManagement and Enterprise, include the

record type, field, form, state, and other definitions necessary to work with a UCM project. To set

up a ClearQuest user database to work with UCM:

1. Create a user database that is associated with one of the predefined UCM-enabled schemas.

In the ClearQuest Designer, click Database>New Database to start the New Database

Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to associate with the

new database. Scroll the list of schema names and select the new schema, as shown in

Figure 16.

3. Click Finish.
4 - Setting Up a ClearQuest User Database 45

Figure 16 Associating a User Database with a UCM-Enabled Schema

4.2 Enabling a Schema to Work with UCM

The predefined UCM schemas let you use the UCM-ClearQuest integration right away, but you

may prefer to design a custom schema to track your project’s activities and change requests, or

you may prefer to use a different predefined schema. To enable a schema to work with UCM:

1. Ensure that the schema does not contain a record type named UCM_Project, which is a

reserved name used by the UCM-ClearQuest integration.

2. In the ClearQuest Designer, click Package>Package Wizard to start the Package Wizard, as

shown in Figure 17.

3. Add the UCMPolicyScripts package to your schema. If this package is not listed in the first

page of the wizard, it has not been installed in your schema repository. To add the package

to your schema repository, click More Packages to open the Install Packages dialog box;

select the highest version of the package, and click OK. In the wizard, select the package, as

shown in Figure 17. Click Next.
46 Managing Software Projects with ClearCase

Figure 17 Adding the UCMPolicyScripts Package to a Schema

4. On the second page of the wizard, select your schema, and click Finish. To make the changes

to the schema, ClearQuest checks out the schema for you. Check in the schema by clicking

File>Check In. ClearQuest creates a new version of the schema.

5. Optionally, you can use the Package Wizard to apply the BaseCMActivity package to your

schema. The BaseCMActivity package adds the BaseCMActivity record type to your

schema. The BaseCMActivity record type is a lightweight activity record type. You may want

to use the BaseCMActivity record type as a starting point and then modify it to include

additional fields, states, and so on.

6. Apply the UnifiedChangeManagement package to the schema. Start the Package Wizard.

Select UnifiedChangeManagement, and click Next.

7. In the second page of the wizard, select your schema. Click Next.

8. The third page of the wizard prompts you to specify the schema’s record types. Select the

check boxes of the record types that you want to enable. Click Next. All selected record types

must meet the requirements listed in Requirements for Enabling Custom Record Types on

page 49.

9. In the fourth page of the wizard, you must assign state types to the states for each record type

that you choose to enable. For each state, click in the adjacent state type cell to display the

list of available state types, as shown in Figure 18, and select one. To enable another record
4 - Setting Up a ClearQuest User Database 47

type, click the arrow in the Record Type list to see the available record types. See Setting State
Types on page 49 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema.

Figure 18 Assigning State Types to a Record Type’s States

10. Before you can check in your schema, you must set default actions for the states of each

enabled record type. Default actions are state transition actions that ClearQuest takes when

a developer begins to work on an activity or delivers an activity. In the ClearQuest Designer

workspace, navigate to the record type’s state transition matrix, as shown in Figure 19.

Figure 19 Navigating to Record Type’s State Transition Matrix

Double-click State Transition Matrix to display the matrix. Right-click the state column

heading, and select Properties from its shortcut menu. Click the Default Action tab. Select
48 Managing Software Projects with ClearCase

the default action. See State Transition Default Action Requirements for Record Types on page 50

for default action requirements. Before you can set default actions, you may need to add

some actions to the record type. To do so, double-click Actions to display the Actions grid,

and then click Edit>Add Action.

11. In the ClearQuest Designer workspace, navigate to the record type’s Behaviors.

Double-click Behaviors to display the Behaviors grid. Verify that the Headline field is set to

Mandatory for all states. Verify that the Owner field is set to Mandatory for all Ready and

Active state types.

12. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File>Check In.

13. Upgrade the user database so that it is associated with the UCM-enabled version of the

schema by clicking Database>Upgrade Database.

Requirements for Enabling Custom Record Types

Before you can apply the UnifiedChangeManagement package to a custom record type, the

record type must meet the following requirements:

➤ It contains a field named Headline defined as a SHORT_STRING, and a field named

Owner defined as a REFERENCE to the ClearQuest-supplied users record type. The

Headline field must be at least 120 characters long.

➤ It does not contain fields with these names:

➣ ucm_vob_object
➣ ucm_stream
➣ ucm_stream_object
➣ ucm_view

➤ It contains an action named Modify of type Modify.

Setting State Types

The integration uses a state transition model to help you monitor the progress of activities. To

implement this model, the integration adds state types to UCM-enabled schemas. Table 2 lists

and describes the four state types. You must assign each state to a state type. You must have at
4 - Setting Up a ClearQuest User Database 49

least one state definition of state type Waiting, one of state type Ready, one of state type Active,

and one of state type Complete.

State Transition Default Action Requirements for Record Types

Record types can include numerous state definitions. However, UCM-enabled record types must

have at least one path of transitions among state types as follows: Waiting to Ready to Active to

Complete. The transition from one state to the next must be made by a default action.

For example, Figure 20 shows the actions and default actions between the states defined in the

UCM-enabled BaseCMActivity record type included in the predefined UCM schema. The

default actions are identified with an asterisk (*). The state types are in uppercase letters enclosed

in brackets. The states appear immediately above their state types.

Table 2 State Types in UCM-Enabled Schema

State Type Description

Waiting The activity is not ready to be worked on, either because it has not

been assigned or it has not satisfied a dependency.

Ready The activity is ready to be worked on. It has been assigned, and

all dependencies have been satisfied.

Active The developer has started work on the activity but has not

completed it.

Complete The developer has either worked on and completed the activity,

or not worked on and abandoned the activity.
50 Managing Software Projects with ClearCase

Figure 20 State Transition Diagram for UCM-enabled BaseCMActivity Record Type

In addition to this single path requirement, states must adhere to the following rules:

➤ All Waiting type states must have a default action that transitions to another Waiting type

state or to either a Ready or Active type state.

➤ If a Ready type state has an action that transitions directly to a Waiting type state, that

Waiting type state must have a default action that transitions directly to that Ready type

state.

➤ All Ready type states must have a default action that transitions to another Ready type state

or to an Active type state.

➤ All Ready type states must have at least one action that transitions directly to a Waiting type

state.

➤ For the BaseCMActivity record type, its initial state must be a Waiting type.

Submitted Ready Active Complete

[WAITING] [READY] [ACTIVE] [COMPLETE]

*Complete *Assign *Activate

Postpone

Postpone

Re-open
4 - Setting Up a ClearQuest User Database 51

4.3 Customizing ClearQuest Project Policies

To implement the project policies, the integration adds the following pairs of scripts to a

UCM-enabled schema:

➤ UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver_Def
➤ UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def
➤ UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

Each policy has two scripts: a base script and a default script. The default scripts have _Def
appended to their names and are installed by the UnifiedChangeManagement package. The

integration invokes the base scripts, which are installed by the UCMPolicyScripts package. The

base script calls the corresponding default script, which contains the logic for the default

behavior. To modify the behavior of a policy, remove the call to the default script from the base

script. Then add logic for the new behavior to the base script. Adhere to the rules stated in the

base script.

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts have a UCM
prefix. The Perl scripts have a UCU prefix. For ClearQuest clients on Windows NT , the

integration uses the Visual Basic scripts. For ClearQuest clients on UNIX, the integration uses the

Perl scripts. If you modify a policy’s behavior and your environment includes ClearQuest clients

on both platforms, be sure to make the same changes in both the Visual Basic and Perl versions

of the policy’s script. Otherwise, the policy will behave differently for ClearQuest clients on

UNIX and Windows NT.

For descriptions of these policies, see Policies Available in UCM-ClearQuest Integration on page 43.

4.4 Associating Child Activity Records with a Parent Activity
Record

As project manager, you may assign activities for large tasks to developers. When the developers

research their activities, they may determine that they need to perform several separate activities

to complete one large activity.

For example, an “Add customer verification functionality” activity may require significant work

in the product’s GUI, the command-line interface, and a library. To more accurately track the

progress of the activity, you can decompose it into three separate activities.
52 Managing Software Projects with ClearCase

By using the parent/child controls in ClearQuest , you can accomplish this decomposition and

tie the child activities back to the parent activity.

Using Parent/Child Controls

In ClearQuest, you use controls to display fields in record forms. A parent/child control, when

used with a reference list field, lets you link related records. By adding a parent/child control to

the record form of a UCM-enabled record type, you can provide the developers on your team

with the ability to decompose a parent activity into several child activities.

To have ClearQuest change the state of the parent activity to Complete when all child activities

have been completed, you need to write a hook. See Administering Rational ClearQuest for an

example of such a hook.

4.5 Creating Users

Before you can assign activities to the developers on your project team, you must create user

account profiles for each developer in ClearQuest. To do so:

1. In ClearQuest Designer, click Tools>User Administration.

2. Click Add.

3. Complete the User Information dialog box.

See Administering Rational ClearQuest and the ClearQuest Designer online help for details on

creating user profiles.

4.6 Setting the Environment

Before you can enable a UCM project to work with a ClearQuest user database, you must define

two environment variables as shown in Table 3. Developers who want to use the integration

must also define these variables on their machines.
4 - Setting Up a ClearQuest User Database 53

The ClearQuest installation directory includes a C shell script, cq_setup.csh, which you can

execute to set the environment variables for you. For example:

% source ClearQuest-install-directory/cq_setup.csh

In addition, if you have multiple ClearQuest schema repositories, you must set the

$SQUID_DBSET environment variable to the name of the schema repository you want to use.

Table 3 Environment Variables Required for Integration

Variable Setting

$CQ_HOME ClearQuest-install-directory/releases/ClearquestClient

$LD_LIBRARY_PATH

($SHLIB_PATH on HP-UX)

Must include:

ClearCase-install-directory/shlib and

ClearQuest-install-directory/releases/ClearquestClient/architecture/shlib
54 Managing Software Projects with ClearCase

55 Setting Up the Project

This chapter describes how to set up a project so that a team of developers can work in the

Unified Change Management (UCM) environment. Before you set up a project, be sure to plan

the project. See Chapter 3, Planning the Project, for information on what to include in a

configuration management plan.

The chapter presents five scenarios:

➤ Creating a project from scratch

➤ Creating a project based on an existing base ClearCase configuration

➤ Creating a project based on an existing project

➤ Enabling a project to use the UCM-ClearQuest integration

➤ Creating a development stream reserved for testing new baselines
5 - Setting Up the Project 55

5.1 Creating a Project from Scratch

This section describes how to create and set up a new project that is not based on an existing

project or on an existing set of ClearCase VOBs.

Creating the Project VOB (PVOB)

To create a PVOB:

1. Issue the cleartool mkvob command. For example:

% cleartool mkvob –tag /vobs/myproj_pvob –nc –ucmproject \
/usr/vobstore/myproj_pvob.vbs

The –ucmproject option indicates that you are creating a PVOB instead of a VOB. The

/usr/vobstore/myproj_pvob.vbs path specifies the location of the PVOB’s storage directory.

A PVOB storage directory is a directory tree that serves as the repository for the PVOB’s

contents. A PVOB’s storage directory contains the same subdirectories as a VOB’s storage

directory. For details about VOB storage directory structure, see Administering ClearCase.

Project
Manager

Make new
baseline

Promote
baseline

Integrate
work

Set up
project

Create a
PVOB

Create
components

Create a
project

Create
integration view

Create
directory structure
56 Managing Software Projects with ClearCase

2. Create the PVOB mount point to match the PVOB tag. For example:

% mkdir /vobs/myproj_pvob

3. Mount the PVOB. For example:

% cleartool mount /vobs/myproj_pvob

The PVOB assumes the role of administrative VOB. When you create components, ClearCase

automatically makes AdminVOB hyperlinks between the components and the PVOB.

Creating Components

To create a component:

1. Make and set a view by using the cleartool mkview and setview commands. For example:

% cleartool mkview –tag myview /net/host2/view_store/myview.vws

% cleartool setview myview

2. Create a VOB by using the cleartool mkvob command. For example:

% cleartool mkvob –public –nc –tag /vobs/testvob1 /usr/vobstore/testvob1.vbs

A component’s root directory must be the root directory of a VOB. Therefore, a VOB must

exist before you can create a component.

3. Create the VOB mount point to match the VOB-tag. For example:

% mkdir /vobs/testvob1

4. Mount the VOB. For example:

% cleartool mount /vobs/testvob1

5. Issue the cleartool mkcomp command. For example:

% cleartool mkcomp –nc –root /vobs/testvob1 testcomp1@/vobs/myproj_pvob

In this example, the mkcomp command creates a component named testcomp1 based on the

VOB named testvob1. The VOB and PVOB must be mounted before you issue the command.

All projects that use the myproj_pvob PVOB can access the testcomp1 component.
5 - Setting Up the Project 57

As an alternative to using the cleartool mkcomp command, you can convert an existing VOB

into a component by using the ClearCase Project Explorer. See Making a VOB into a
Component on page 63 for details.

Creating the Project

To create a project:

1. On the command line, type clearprojexp. The Project Explorer appears. The Project Explorer

is the graphical user interface (GUI) through which you create, manage, and view

information about projects.

2. The left pane of the Project Explorer lists root folders for all PVOBs in the local ClearCase

domain. Each PVOB has its own root folder. ClearCase creates the root folder using the name

of the PVOB.

ClearCase also creates a folder called Components, which contains entries for each

component in the PVOB. Folders can contain projects and other folders. Select the root folder

for the PVOB that you want to use for storing project information.

3. Click File>New>Folder to create a project folder. You do not need to create a project folder,

but it is a good idea. As the number of projects grows, project folders are helpful in

organizing related projects.

4. In the left pane, select the project folder or root folder. Click File>New>Project. The New

Project Wizard appears.

5. In Step 1 of the New Project Wizard, enter a descriptive name for the project in the Project
Title box. Enter a comment in the Description box to describe the purpose of this project.

6. Step 2 asks whether you want to create the project based on an existing project. Because you

are creating a project from scratch, click No.

7. Step 3 asks you to choose the baselines that the project will use. These baselines are known

as foundation baselines because they are the foundation upon which all work within the

project is built.

Click Add to open the Add Baseline dialog box. In the Component list, select one of the

components that you previously created. The component’s initial baseline appears in the

Baselines list. Select the baseline. Be sure that the Allow project to modify the component
check box is selected unless you want the component to be read-only. See Identifying
Read-Only Components on page 29 for information on when you may want to use read-only
58 Managing Software Projects with ClearCase

components. Click OK. The baseline now appears in the list in Step 3. Continue to use the

Add Baseline dialog box until the project contains its full set of foundation baselines.

8. Step 4 prompts you to specify the development policies to enforce for this project. Select the

check boxes for the policies you want to enforce. See Considering Which Development Policies
to Enforce on page 41 for information about each policy.

9. Step 5 asks whether to configure the project to work with the ClearQuest integration. To

enable the project to work with ClearQuest, click Yes, and select a ClearQuest user database

from the list. See Enabling a Project to Use the UCM-ClearQuest Integration on page 66 for

details about the integration.

Defining Promotion Levels

ClearCase provides five baseline promotion levels. You can keep some or all of them, and you

can define your own promotion levels. To define the promotion levels that your project uses:

1. In the Project Explorer, select the PVOB root folder that contains your project, and then click

Tools>Define Promotion Level. All projects that use that PVOB have access to the same set

of promotion levels.

2. The Define Promotion Levels dialog box appears. To remove an existing promotion level,

select it and click Remove. To change the order of promotion levels, select a promotion level

and use the Move Up or Move Down buttons.

3. To add a new promotion level, click Add. The Add Promotion Level dialog box appears.

Enter the name of the new promotion level and click OK. The new promotion level appears

in the list of promotion levels in the Define Promotion Levels dialog box. Move it to the

desired place in the order.

4. When you finalize the set and order of promotion levels, select one to be the initial promotion

level for new baselines. The initial promotion level is the level assigned by default when you

create a baseline.

Creating an Integration View

When you create a project, ClearCase creates the project’s integration stream for you. To see and

make changes to the project’s shared elements, you need an integration view. To create an

integration view:
5 - Setting Up the Project 59

1. In the Project Explorer, navigate to the integration stream by moving down the object

hierarchy:

a. Root Folder

b. Project Folder

c. Project

d. Stream

Figure 21 illustrates this hierarchy.

Figure 21 Navigating to Integration Stream in Project Explorer

2. Select the integration stream and click File>New>View.

3. The Create View dialog box appears. Accept the default values to create an integration view

associated with the integration stream. By default, the Create View dialog box uses this

convention for the integration view name: username_Integration.

ClearCase supports two kinds of views:

➣ Dynamic views, which use the ClearCase multiversion file system (MVFS) to provide

immediate, transparent access to files and directories stored in VOBs.

➣ Snapshot views, which copy files and directories from VOBs to a directory on your

computer.

We recommend that you make the integration view a dynamic view to ensure that you

always see the correct version of files and directories that developers deliver to the
60 Managing Software Projects with ClearCase

integration stream. With a snapshot view, you have to perform an update operation to copy

the latest delivered files and directories to your computer. For more information about

dynamic and snapshot views, see Developing Software with ClearCase.

Creating and Setting an Activity

Before you can add elements to the integration stream, you need to create and set an activity.

1. Set your integration view. For example:

% cleartool setview kmt_Integration

2. Issue the cleartool mkactivity command. For example:

% cleartool mkactivity –headline “Create Directories” create_directories

The ClearCase GUI tools use the name specified with –headline to identify the activity. The

last argument, create_directories, is the activity-selector. Use the activity-selector when you

issue cleartool commands.

3. By default, when you make an activity with the cleartool mkactivity command, ClearCase

sets your view to that activity. ClearCase does not set your view to an activity if you create

multiple activities in the same command line or if you specify a stream with the –in option.

If you need to set your integration view to the activity, use the cleartool setactivity
command. For example:

% cleartool setactivity create_directories

Creating the Directory Structure

Because you are creating the project from scratch, you need to create the directory elements

within the project’s components to implement the directory structure that you define during the

planning phase. See Defining the Directory Structure on page 28. To add a directory element to a

component:

1. With your integration view set to an activity, navigate to the component. For example:

% cd /vobs/testcomp1

2. Check out the component’s root directory. For example:
5 - Setting Up the Project 61

% cleartool co –nc .

3. Issue the cleartool mkelem command. For example:

% cleartool mkelem –nc –eltype directory design

This example creates a directory element called design. By default, the mkelem command

leaves the element checked out. To add elements, such as subdirectories, to the directory

element, you must leave the directory element checked out.

4. When you finish adding elements to the new directory, check it in. For example:

% cleartool ci –nc design

5. When you finish creating directory elements, check in the component’s root directory. For

example:

% cleartool ci –nc .

For additional information about creating directory and file elements, see Developing Software
with ClearCase and the mkelem reference page.

Importing Directories and Files from Outside ClearCase

If you have a large number of files and directories that you want to place under ClearCase

version control, you can speed the process by using the clearexport and clearimport
command-line utilities. These two utilities allow you to migrate an existing set of directories and

files from another version control software system, such as RCS or PVCS, to ClearCase. You can

also use clearexport and clearimport to place directories and files that are not currently under

any version control under ClearCase control.

To migrate source files into a component:

1. Create and set a non-UCM view by using the cleartool mkview and setview commands.

2. From within the view, run clearexport to generate a data file from your source files.

3. From within the view, run clearimport to populate the component with the files and

directories from the data file.
62 Managing Software Projects with ClearCase

4. In the component, create a baseline from a labeled set of versions. If the versions that you

want to include in the baseline are not labeled, create a label type and apply it to the versions.

See Making a Baseline from a Label on page 64 for details.

As an alternative, you can use clearexport and clearimport on VOBs, and then convert the VOBs

to components. See Creating a Project Based on an Existing ClearCase Configuration on page 63 for

details on converting VOBs into components.

For details on using clearexport and clearimport, see Administering ClearCase and the clearexport
and clearimport reference pages.

5.2 Creating a Project Based on an Existing ClearCase
Configuration

If you have existing VOBs, you may want to convert them into components so that you can

include them in projects. This section describes how to set up a project based on existing VOBs.

Creating the PVOB

Use the cleartool mkvob command as described in Creating the Project VOB (PVOB) on page 56.

If you currently use an administrative VOB, use the cleartool mkhlink command to create an

AdminVOB hyperlink between the PVOB and the administrative VOB. When you create

components, they then use the existing administrative VOB.

Making a VOB into a Component

To make a VOB into a component:

1. In the Project Explorer, select the PVOB. Click Tools>Import VOB. The Import VOB dialog

box appears.

2. In the Available VOBs list, select the VOB that you want to make into a component. Click

Add to move the VOB to the VOBs to Import list. You can add more VOBs to the VOBs to
Import list. If you change your mind, you can select a VOB in the VOBs to Import list and

click Remove to move it back to the Available VOBs list. When you are finished, click

Import.
5 - Setting Up the Project 63

Making a Baseline from a Label

After you convert an existing VOB into a component, to access the directories and files in that

component, you must create a baseline from the set of versions identified by a label type. To

create the baseline:

1. If the set of versions that you want to use are not already labeled, use the cleartool mklbtype
and mklabel commands to create and apply a label type. For example:

% cleartool mklbtype –c “label for release 2” REL2
Created label type “REL2”.

% cleartool mklabel -recurse REL2 .
Created label “REL2” on “.” version “/main/5”.
Created label “REL2” on “./src” version “/main/6”.
Created lable “REL2” on “./src/Makefile” version “/main/2”.

The –recurse option directs ClearCase to apply the label to all versions at or below the

current working directory.

2. In the Project Explorer, select the PVOB. Click Tools>Import Label. Step 1 of the Import

Label Wizard appears.

3. In the Available Components list, select the component that contains the label from which

you want to create a baseline. Click Add to move that component to the Selected
Components list. If you change your mind, select a component in the Selected Components
list and click Remove to move the component back to the Available Components list.

4. InStep #2, select the label type that you want to import, and enter the name of the baseline

that you want to create for the versions identified by that label type. Then select the

baseline’s promotion level.

Creating the Project

Use the New Project Wizard to create the project as described in Creating the Project on page 58.

Creating an Integration View

Create an integration view as described in Creating an Integration View on page 59.
64 Managing Software Projects with ClearCase

5.3 Creating a Project Based on an Existing Project

As you create new projects, you may need to create new versions of existing projects. For

example, suppose you have released Version 3.0 of the Webotrans project and are planning for

Version 3.1. You anticipate that Version 3.1 will use the same components as Version 3.0.

Therefore, you want to use the latest baselines in the Version 3.0 components as the foundation

baselines for Version 3.1 development.

Reusing Existing PVOB and Components

Because your project is a new version of an existing project and uses the same components as the

existing project, do not create a new PVOB for this project. Continue to use the existing PVOB.

Creating the Project

Start the New Project Wizard, as described in Creating the Project on page 58, to create the project.

In Step 2 of the wizard, select Yes to indicate that the project begins from the baselines in an

existing project. Then navigate to the project that contains those baselines. Figure 22 shows that

the new project is based on the baselines in mytestproj.
5 - Setting Up the Project 65

Figure 22 Step 2 of New Project Wizard

Step 3 lists the latest baselines in the project that you select in Step 2. You can add baselines from

components that are not part of the existing project by clicking Add to open the Add Baseline
dialog box. Similarly, you can remove a baseline by selecting it and clicking Remove.

Finish the remaining steps in the wizard as described in Creating the Project on page 58.

Creating an Integration View

When you create a new project, ClearCase creates a new integration stream for you. Therefore,

you need to create a new integration view to access elements in the integration stream. Create an

integration view as described in Creating an Integration View on page 59.

5.4 Enabling a Project to Use the UCM-ClearQuest Integration

Before you can connect a project to a ClearQuest user database, you must set up the database to

use a UCM-enabled schema. See Chapter 4, Setting Up a ClearQuest User Database.

To enable a project to work with a ClearQuest user database:
66 Managing Software Projects with ClearCase

1. In the left pane of the Project Explorer, right-click the project to display its shortcut menu.

Click Properties to display its property sheet.

2. Click the ClearQuest tab and then select the Project is ClearQuest-enabled check box. Select

the user database from the list, as shown in Figure 23. The first time that you enable a project,

ClearQuest opens its Login dialog box. Enter your user name, password, and the name of

the database to which you are linking the project.

3. Select the development policies that you want to enforce. See Policies Available in
UCM-ClearQuest Integration on page 43 for a description of these policies. Click OK when

you are finished.

If you are creating a new project, you can enable the project to work with ClearQuest by selecting

Project is ClearQuest-enabled and selecting the user database in Step 5 of the New Project

Wizard.

ClearCase does not require you to enable all projects in the PVOB to work with ClearQuest.

However, all enabled projects in the same PVOB must use the same ClearQuest database.

Therefore, give careful consideration to choosing the ClearQuest database. See Mapping PVOBs
to ClearQuest User Databases on page 37 for details.

After you enable a UCM project to work with a ClearQuest user database, you may decide to link

the project to a different user database. You can switch databases by selecting a different one on

the ClearQuest tab of the project’s property sheet if no other project in the same PVOB is

ClearQuest-enabled, and no activities have been created.

Migrating Activities

If your project contains activities when you enable it to work with a ClearQuest database, the

integration creates records for each of those activities by using the UCMUtilityActivity record

type. If you want to store all of your project’s activities in records of some other record type,

enable the project when you create it, before team members create any activities. After the

migration is complete, any new activities that you create can link to records of any UCM-enabled

record type.
5 - Setting Up the Project 67

Figure 23 Enabling a Project to Work with a ClearQuest User Database

Setting Project Policies

A UCM-enabled schema includes three policies that you can set from either ClearCase or

ClearQuest.

In ClearCase, set the policies by selecting check boxes on the ClearQuest tab of the project’s

property sheet, as shown in Figure 23.

To set policies from ClearQuest:

1. Start the ClearQuest client by entering clearquest at the shell prompt. In the ClearQuest

client workspace, navigate to the UCMProjects query, as shown in Figure 24.

2. Double-click the query to display all UCM-enabled projects.

3. Select a project from the Results set. The project’s form appears.

4. On the form, click Actions and select Modify. Select the check boxes for the policies you

want to set.
68 Managing Software Projects with ClearCase

See Policies Available in UCM-ClearQuest Integration on page 43 for descriptions of the policies.

Figure 24 Navigating to the UCMProjects Query

Assigning Activities

To create and assign activities in ClearQuest:

1. Start the ClearQuest client, and log in to the user database connected to the project.

2. Click Actions>New. The Choose a record type dialog box appears. Select a UCM-enabled

record type, and click OK.

3. The Submit form appears. Fill in the boxes on each tab. On the Main tab, you must fill in at

least the Headline and Owner boxes. On the Unified Change Management tab, select the

project. When you finish filling in the boxes, click OK. ClearQuest creates the record.

User account profiles must exist in ClearQuest for the developers to whom you assign activities.

See Creating Users on page 53 for details on creating user account profiles.

Disabling the Link Between a Project and a ClearQuest User Database

There may be times when you want to disable the link between a project and a ClearQuest user

database. If another project in the same PVOB is ClearQuest-enabled or if activities have been
5 - Setting Up the Project 69

created, you must first disable the link between each ClearQuest-enabled project in the PVOB

and the user database. To disable the links:

1. On the ClearQuest tab of the project’s property sheet, clear the Project is
ClearQuest-enabled check box.

2. Click OK on the ClearQuest tab. The integration disables the link between the project and

the ClearQuest database. The integration also removes any existing links between activities

and their corresponding ClearQuest records.

3. Display the project’s property sheet again, select the Project is ClearQuest-enabled check

box, and select another user database if you want to link the project to a different user

database.

NOTE: If you select the same user database that you just unlinked, the integration creates new

ClearQuest records for the project’s activities; it does not link the activities to the ClearQuest

records with which they were previously linked.

Fixing Projects That Contain Linked and Unlinked Activities

It is possible that after you enable a project to work with ClearQuest, some of the project’s

activities remain unlinked to ClearQuest records. Similarly, when you disable the link between

a project and ClearQuest, some activities may remain linked. Two scenarios can cause your

project to be in this inconsistent state:

➤ A network failure or a general system crash occurs during the enabling or disabling

operation and interrupts the activity migration.

➤ The project’s PVOB is in a ClearCase MultiSite configuration, and unlinked activities were

added by a MultiSite synchronization operation to the local PVOB’s project, which is

enabled to work with ClearQuest.

Detecting the Problem

If a developer attempts to take an action, such as modifying an unlinked activity in an enabled

project, the integration displays an error and disallows the action.

Correcting the Problem

To restore the project to a consistent state:
70 Managing Software Projects with ClearCase

1. In the Project Explorer, display the project’s property sheet, and click the ClearQuest tab.

2. Click Ensure all Activities are Linked. The integration checks all the project’s activities. If

the project is enabled, the integration links any unlinked activities. The integration then

displays the following summary information:

➣ Number of activities that had to be linked.

➣ Number of activities that were previously linked.

➣ Number of activities that could not be linked because they are not mastered in the

current PVOB replica. In this case, the integration also displays a list of replicas on which

you must run the Ensure all Activities are Linked operation again to correct the

problem.

5.5 Creating a Development Stream for Testing Baselines

When you make a new baseline, we recommend that you lock the integration stream so that you

can build and test a static set of files. Otherwise, developers can inadvertently cause confusion

by delivering changes while you are building and testing. Locking the integration stream for a

short period of time is acceptable; locking the integration stream for several days can result in a

backlog of completed but undelivered activities. To avoid locking out developers for a long

period of time, you may want to create a development stream and use it for extensive testing of

baselines.

To create a development stream:

1. In ClearCase Project Explorer, select the project, and click File>New Stream.

The Create a Development Stream dialog box appears.

2. Enter a name and description for the new stream. Be sure that the Prompt me to create a
View for this stream check box is selected. Click OK.

The Create View dialog box appears.

3. Fill in the fields of the Create View dialog box to create a development view for the stream.

By default, ClearCase uses the set of recommended baselines when creating a development stream.

Because the new baseline has not been tested extensively, you probably have not yet promoted
5 - Setting Up the Project 71

it to the level associated with recommended baselines. Therefore, you need to change the

development stream’s foundation baseline to be the one that you want to test:

1. In ClearCase Project Explorer, select the new development stream, and click File>Properties
to display the stream’s property sheet.

2. Click the Configuration tab. Select the component whose foundation baseline you want to

change. Click Change.

The Change Baseline dialog box appears.

3. Select the baseline that you want to test. Click OK.

4. If you want to change the foundation baseline of another component, select it from the

Configuration tab, and repeat the process. When you are finished, click OK to dismiss the

property sheet.

Now the development stream is configured so that you can build and test the new baselines, and

developers can deliver changes to the integration stream without being concerned about

interfering with the building and testing process.
72 Managing Software Projects with ClearCase

66 Managing the Project

After you create and set up a project, developers join the project, work on activities, and deliver

completed activities to the integration stream. As project manager, you need to maintain the

project so that developers do not get out of sync with each other’s work. This chapter describes

the following maintenance tasks:

➤ Adding components

➤ Integrating work delivered by the remote deliver model

➤ Making new baselines

➤ Testing baselines

➤ Promoting and demoting baselines

➤ Tracking the progress of the project

➤ Cleaning up the project

6.1 Adding Components

Over time, the scope of your project typically broadens, and you may need to add components.

To add a component to a project’s integration stream:

1. Enter clearprojexp to start ClearCase Project Explorer.

2. In the left pane, select the project.

3. In the right pane, select the integration stream. Click File>Properties to open the integration

stream’s Properties dialog box.
6 - Managing the Project 73

4. Click the Configuration tab, and then click Add. The Add Baseline dialog box appears.

5. In the Component list, select the component that you want to add. The component’s

baselines appear in the Baselines list. Figure 25 shows the baselines available in the

testcomp3 component.

Figure 25 Add Baseline Dialog Box

6. In the Baselines list, select the baseline that you want to add to the project.

7. Click OK. The Add Baseline dialog box closes, and the baseline that you chose appears on

the Configuration tab.

8. Click OK to close the integration stream’s Properties dialog box.

The Rebase Stream Preview dialog box appears. To modify the integration stream’s

configuration to include the new foundation baseline, UCM needs to rebase the integration

stream.

9. Click OK in the Rebase Stream Preview dialog box.

10. Click Complete to finish the rebase operation.
74 Managing Software Projects with ClearCase

Updating Snapshot View Load Rules

If your integration view is a snapshot view, you need to edit the view’s load rules to include the

components that you add to the integration stream. A snapshot view’s load rules specify which

components ClearCase loads into the view. To edit the integration view’s load rules:

1. In the Project Explorer, select the integration stream, and click File>Properties to display the

integration stream’s property sheet.

2. In the property sheet, click the Load Rules tab.

3. Select the component or components that you added to the integration stream.

4. Click Add. Click OK to dismiss the property sheet.

In addition, you need to know whether any developers working on the project use snapshot

views for their development views. When a developer who uses a snapshot view rebases to a

baseline that contains a new component, ClearCase updates the snapshot view’s config spec, but

it does not update the view’s load rules. When you add a component, notify developers who use

snapshot views that they need to update the load rules for their development views after they

rebase their development streams to the new baseline.

6.2 Integrating the Project

In most cases, developers complete the deliver operations that they start. However, in a MultiSite

configuration where the project’s integration stream is mastered at a different replica than the

developer’s development stream, the developer cannot complete deliver operations. When

ClearCase detects such a stream mastership situation, it makes the deliver operation a remote
deliver operation.

In a remote deliver operation, ClearCase starts the deliver operation but leaves it in the posted

state. It is up to you, as project manager, to find and complete deliver operations in the posted

state. Developers who have deliver operations in the posted state cannot deliver from, or rebase,

their development streams until you complete or cancel their deliver operations.
6 - Managing the Project 75

Finding WorkThat is Ready to Be Delivered

To find all deliver operations that are in the posted state:

1. In the Project Explorer, select the project.

2. Click Tools>Find Posted Deliveries. The Find Posted Deliveries dialog box appears, as

shown in Figure 26, and lists all development streams within the project that contain deliver

operations in the posted state.

Figure 26 Find Posted Deliveries Dialog Box

Completing Remote Deliver Operations

To complete remote deliver operations for a development stream:

1. Select the development stream from the list in the Find Posted Deliveries dialog box.

2. Click Deliver. The Deliver dialog box appears. Click Resume to resume the deliver

operation. Click Cancel to cancel the deliver operation. See Developing Software with ClearCase
for details on completing the deliver operation.
76 Managing Software Projects with ClearCase

Undoing a Deliver Operation

In addition to the remote deliver scenario, there is another case where you may need to help

developers with their deliver operations. At any time before completing the deliver operation,

developers can back out of the deliver operation and undo any changes made during the

operation. However, if developers check in their versions to the integration view, they cannot

easily undo the changes. When this happens, you may need to remove the checked in versions

by using the cleartool rmver –xhlink command.

NOTE: The rmver command erases part of your organization’s development history, and it may

have unintended consequences. Therefore, be very conservative in using this command,

especially with the –xhlink option. See the rmver reference page in ClearCase Reference Manual
for details.

Note that removing a version does not guarantee that the change is really gone. If a successor

version was created or if the version was merged before you removed the version, the change

still exists. You may need to check out the file, edit it to remove the change, and check the file

back in.

6.3 Creating a New Baseline

As developers deliver work to the integration stream, it is important that you frequently make

new baselines that record the changes. Developers can then rebase to the new baselines and stay

current with each other’s changes.

Locking the Integration Stream

Before you make a new baseline, lock the integration stream to prevent developers from

delivering work. This ensures that you are dealing with a static set of files. To lock the integration

stream:

1. In the Project Explorer, select the integration stream.

2. Click File>Properties to display the integration stream’s property sheet.

3. Click the Lock tab.
6 - Managing the Project 77

4. Click Locked and then click OK.

Verifying That the Code Base Is Stable

After you lock the integration stream, we recommend that you build and test the project’s

executable files to make sure that the changes delivered by developers since the last baseline do

not contain any bugs. For information on performing builds, see Building Software with ClearCase.

Because you lock the integration stream when you build and test in it, we recommend that you

use a separate development stream for extensive testing of new baselines. Perform only quick

validation tests in the integration stream so that it is not locked for an extended period of time.

See Testing the Baseline on page 80 for information about using a development stream for testing

new baselines.

Making the New Baseline

To make a new baseline:

1. In the Project Explorer, select the project’s integration stream.

2. Click Tools>Make Baseline. The Make Baseline dialog box appears, as shown in Figure 27.
78 Managing Software Projects with ClearCase

Figure 27 Make Baseline Dialog Box

3. Enter a name in the Baseline Title box. By default, ClearCase names the baseline by

appending the date to the project’s name.

4. Choose the type of baseline to create.

An incremental baseline is a baseline that ClearCase creates by recording the last full baseline

and those versions that have changed since the last full baseline was created.

A full baseline is a baseline that ClearCase creates by recording all versions below the

component’s root directory.

Generally, incremental baselines are faster to create than full baselines; however, ClearCase

can look up the contents of a full baseline faster than it can look up the contents of an

incremental baseline.

5. Specify which components to include in the baseline. By default, ClearCase applies the

baseline to all project components. If a component has not changed since the current

baseline, ClearCase does not create a new baseline for it.
6 - Managing the Project 79

Making a Baseline For a Set of Activities

By default, all activities modified since the last baseline was made are included in the new

baseline. There might be times when you want to create a baseline that includes only certain

activities. To do so, use the cleartool mkbl command and specify the activities parameter. See

the mkbl page in ClearCase Reference Manual for details.

Unlocking the Integration Stream

After you create a new baseline, unlock the integration stream so that developers can resume

delivering work to the integration stream. To unlock the integration stream:

1. In the Project Explorer, select the integration stream.

2. Click File>Properties to display the integration stream’s property sheet.

3. Click the Lock tab.

4. Click Unlocked and then click OK.

6.4 Testing the Baseline

To avoid locking the integration stream for an extended period of time, we recommend that you

use a separate development stream for performing extensive testing, such as system, regression,

and acceptance tests, on new baselines. See Creating a Development Stream for Testing Baselines on

page 71 for information on creating a development stream.

After you create a new baseline and verify that it builds and passes an initial validation test in

the integration stream, rebase the development stream:

1. In the Project Explorer, select the development stream and click Tools>Rebase Stream.

The Rebase Stream Preview dialog box appears.

2. By default, ClearCase rebases your development stream to the recommended baselines.

Because the new baseline has not been tested extensively, you probably have not yet

promoted it to the level associated with recommended baselines. To rebase to the baseline,

or baselines, you want to test, click Change.
80 Managing Software Projects with ClearCase

The Change Rebase Configuration dialog box appears.

3. Select a component that contains a baseline you want to test. Click Change.

The Change Baseline dialog box appears, listing all baselines for the component.

4. Select the baseline that you want to test, and click OK.

5. Select another component in the Change Rebase Configuration dialog box and repeat the

process. When you finish selecting baselines, click OK to dismiss the Change Rebase
Configuration dialog box.

6. Click OK in the Rebase Stream Preview dialog box to continue the rebase operation. See

online help or Developing Software with ClearCase for details on rebasing a development

stream. When you finish rebasing the development stream, you are ready to begin testing the

new baselines.

Fixing Problems

If you discover a problem with a baseline while testing it, fix the affected files and deliver the

changes to the integration stream as follows:

1. From the development view attached to the development stream, check out the files you

need to fix. When you check out a file, you need to specify an activity.

2. Make the necessary changes to the files and check them in.

3. Build and test the changes in the development view.

4. When you are confident that the changes work, deliver the activity to the integration stream.

5. In the Project Explorer, make a new baseline that includes the fixes you delivered plus

changes that other developers have delivered since you created the last baseline. See Creating
a New Baseline on page 77.
6 - Managing the Project 81

6.5 Promoting or Demoting the Baseline

As work on your project progresses, and the quality and stability of the components improve,

change the baseline’s promotion level attribute to reflect a level of testing that the baseline has

passed.

To promote a baseline’s promotion level to the level specified for recommended baselines:

1. In the Project Explorer, select the integration stream.

2. Click Tools>Recommend Baselines.

To change a baseline’s promotion level to something other than the level specified for

recommended baselines:

1. In the Project Explorer, select the project’s integration stream. Click File>Properties to open

the integration stream’s Properties dialog box.

2. Click the Baselines tab.

3. In the Components list, select the component that contains the baseline you want to

promote. In the Baselines list, select the baseline. Click Properties. The baseline’s Properties
dialog box appears.

4. Click the arrow in the Promotion Level list to display all available promotion levels. Select

the new promotion level.

On occasion, you may need to demote a baseline by changing its promotion level to one that is

lower in the promotion level order. For example, suppose that after you create a new baseline,

you discover that it contains a major bug. To prevent developers from introducing this bug to

their development streams by rebasing, you can demote the baseline to a Rejected level.

6.6 Tracking the Project

ClearCase provides several tools to help you track the progress of your project. This section

describes how to use those tools.
82 Managing Software Projects with ClearCase

Comparing Baselines

ClearCase allows you to display the differences between two baselines graphically. To compare

two baselines, use the cleardiffbl command. For example:

% cleardiffbl newproject2_08_23_99.195 newproject2_latest.195

This command opens the Compare Baselines dialog box, as shown in Figure 28. You can also

bring up the Compare Baselines dialog box from within the baseline’s property sheet:

1. In ClearCase Project Explorer, select the integration stream, and click File>Properties to

display the integration stream’s property sheet.

2. Click the Baselines tab and then select the component that contains the baseline you wish to

compare.

3. Select the baseline; then right-click it and select Compare with Previous Baseline or

Compare with Another Baseline.

Figure 28 Comparing Baselines by Activity
6 - Managing the Project 83

The Compare Baselines window in Figure 28 shows the results of a comparison of the

newproject2_08_23_99.195 and newproject2_latest.195 baselines. The more recent baseline

contains the Fix copyright dates activity. The Compare Baselines window also lists the

integration activity that ClearCase created during the deliver operation.

To see the change sets associated with the activities, click Versions. Figure 29 shows the versions

associated with the Fix copyright dates and integration activities.

Figure 29 Comparing Baselines by Version

Querying ClearQuest User Databases

If you use the UCM-ClearQuest integration, you can use ClearQuest queries to retrieve

information about the state of your project. When you create or upgrade a ClearQuest user

database to use a UCM-enabled schema, the integration installs six queries in two subfolders of

the Public Queries folder in the user database’s workspace. These queries make it easy for

developers to see which activities are assigned to them and for project managers to see which

activities are active in a particular project. Table 4 lists and describes the queries.

Table 4 Queries in UCM-Enabled Schema

Query Description

ActiveForProject For one or more specified projects, selects all activities in an active

state type.

ActiveForStream For one or more specified streams, selects all activities in an active

state type.

ActiveForUser For one or more specified developers, selects all assigned

activities in an active state type.
84 Managing Software Projects with ClearCase

You can also create your own queries by clicking Query>New Query within the ClearQuest

client. In the Choose a record type dialog box that appears, select All_UCM_Activities if you

want the query to search all UCM-enabled record types.

6.7 Cleaning Up the Project

When your team finishes work on a project and releases or deploys the new software, you should

clean up the project environment before creating the next version of the project. Cleaning up

involves removing any unused objects, and locking and hiding the project and its streams. This

process reduces clutter and makes it easier to navigate in the Project Explorer.

Removing Unused Objects

During the life of the project, you or a developer might create an object and then decide not to

use it. Perhaps you decide to use a different naming convention and you create a new object

instead of renaming the existing one. To avoid confusion and reduce clutter, remove these

unused objects.

To delete a project, stream, component, or activity, select the object in the Project Explorer, and

click File>Delete. To delete a baseline, use the cleartool rmbl command.

MyToDoList Selects all activities in an active or ready state type assigned to the

developer running the query.

UCMProjects Selects all projects linked to the ClearQuest user database.

UCMCustomQuery1 This query is not intended to be used by users; the integration

uses it. When a developer checks out or checks in a file, or adds a

file to source control and is prompted to select an activity, the

integration calls this query to display the list of activities

available in the stream associated with the developer’s view.

Table 4 Queries in UCM-Enabled Schema

Query Description
6 - Managing the Project 85

Projects

You can delete a project only if it does not contain any streams. When you create a project with

the Project Creation Wizard, the wizard also creates an integration stream. Therefore, you can

delete a project only if you created it with the cleartool mkproject command, or if you first delete

the integration stream. For more information on removing projects, see the rmproject reference

page in ClearCase Reference Manual.

Streams

You can delete a development stream or an integration stream only if all of the following

conditions are true:

➤ The stream contains no activities.

➤ No baselines have been created in the stream.

➤ No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any development

streams. For more information on removing streams, see the rmstream reference page in

ClearCase Reference Manual.

Components

You can delete a component only if all of the following conditions are true:

➤ No baselines of the component other than its initial baseline exist.

➤ The component’s initial baseline does not serve as a foundation baseline for another stream.

For more information on removing components, see the rmcomp reference page in ClearCase
Reference Manual.

Baselines

You can delete a baseline only if all of the following conditions are true:

➤ The baseline does not serve as a foundation baseline.

➤ The baseline is not a component’s initial baseline.

➤ A stream has not made changes to the baseline.

➤ The baseline is not used as the basis for an incremental baseline.

For more information on removing baselines, see the rmbl reference page in ClearCase Reference
Manual.
86 Managing Software Projects with ClearCase

Activities

You can delete an activity only if both of the following conditions are true:

➤ The activity has no versions in its change set.

➤ No view is currently set to the activity.

For more information on removing activities, see the rmactivity reference page in ClearCase
Reference Manual.

Locking and Making Obsolete the Project and Streams

To prevent a project or a stream from appearing in the Project Explorer, lock the object and use

the obsolete option. The obsolete option hides the object.

1. In the Project Explorer, select the stream or project that you want to hide, and click

File>Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.

To see objects that you have made obsolete, click View>Show Obsolete Items in the Project

Explorer.
6 - Managing the Project 87

88 Managing Software Projects with ClearCase

77 Managing Parallel Releases of
Multiple Projects

The previous chapters describe how to manage a single project. However, you may need to

manage multiple releases of a project simultaneously. To do so, you need to merge changes from

one project to another. This chapter describes how to accomplish that merging in two common

scenarios:

➤ Managing a current project and a follow-on project simultaneously

➤ Incorporating a patch release into a new release of the project

This chapter also describes other scenarios in which you can use these merging techniques

between projects.

7.1 Managing a Current Project and a Follow-on Project
Simultaneously

Given the tight software development schedules that most organizations operate within, it is

common practice to begin development of the next release of a project before work on the current

release is completed. The next release may add new features, or it may involve porting the

current release to a different platform.
7 - Managing Parallel Releases of Multiple Projects 89

Example

Figure 30 illustrates the flow of a current project, Webotrans 4.0, and a follow-on project,

Webotrans 4.1.

Figure 30 Managing a Follow-on Release

Create project

Project Webotrans 4.0

Project Webotrans 4.1

BL1

FCS

Beta

BL2

Beta

FCS

Rebase
integration stream

Activity

Integration stream
90 Managing Software Projects with ClearCase

In this example:

➤ The project manager for the follow-on project created the Webotrans 4.1 project based on

the Beta baselines of the components used in the Webotrans 4.0 project. Developers on both

project teams then continued to make changes, and the 4.0 and 4.1 project managers

continued to create new baselines that incorporate those changes.

➤ When the 4.0 team completed its work, the project manager created the final baselines,

named FCS. The 4.1 project manager then rebased the 4.1 integration stream to the FCS

baselines.

Performing Interproject Rebase Operations

To rebase an integration stream to a set of baselines in another project’s integration stream:

1. Navigate to an integration view attached to the integration stream that you want to rebase.

2. For each component, issue the cleartool rebase command, specifying the component’s

baseline. For example:

% cleartool rebase –baseline FCS.195 –gmerge
Changed config spec for view “webotrans4.1_integration” to reflect its
stream’s new configuration.
Build and test are necessary to ensure that the merges were completed
correctly.

When build and test are confirmed, run “cleartool rebase —resume —
complete”.

3. ClearCase merges nonconflicting changes automatically. You must resolve the changes that

ClearCase cannot merge automatically. The –gmerge option directs ClearCase to start its Diff

Merge graphical tool to help you resolve conflicting changes. For details on using Diff Merge,

see the Diff Merge online help and Developing Software with ClearCase.

4. When you finish the merge, build and test the changes before completing the rebase

operation.

5. Complete the rebase operation. For example:

% cleartool rebase –resume –complete

In the example shown above, FCS.195 is the full name of the baseline for one of the components

in the Webotrans 4.0 integration stream. To determine a baseline’s full name:
7 - Managing Parallel Releases of Multiple Projects 91

1. In the Project Explorer, select the integration stream.

2. Click File>Properties. The integration stream’s property sheet appears.

3. Click the Baselines tab.

4. In the Components list, select the component that contains the desired baseline.

5. In the Baselines list, select the root name of the baseline. Click Properties. The baseline’s

property sheet appears. The Name box identifies the full baseline name.

Note that you can rebase your project’s integration stream only if the baseline to which you are

rebasing is a successor of your integration stream’s current foundation baseline. In the above

example, the FCS baseline is a successor to the Beta baseline, which is the current foundation

baseline for the Webotrans 4.1 integration stream.

7.2 Incorporating a Patch Release into a New Version of the Project

Another common parallel development scenario involves working on a patch release and a new

release of a project at the same time. This section describes this scenario.

Example

Figure 31 illustrates the flow of a patch release and a new release. In this example:

➤ Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines of the

components in the Webotrans 3.0 project as their foundation baselines. The purpose of the

patch release is to fix a problem detected after Webotrans 3.0 was released. Webotrans 4.0

represents the next major release of the Webotrans product.

➤ Development continues in both the 3.0 Patch and 4.0 projects, with the project managers

creating baselines periodically.

➤ The developers working on the 3.0 Patch project finish their work, and the project manager

incorporates the final changes in the BL2 baseline. The project manager then needs to merge

those changes from the 3.0 Patch integration stream to the 4.0 integration stream so that the

4.0 project contains the fix.
92 Managing Software Projects with ClearCase

Figure 31 Incorporating a Patch Release

Create projects
Project Webotrans 3.0

Project Webotrans 3.0
Patch

Project Webotrans 4.0

FCS

BL1

BL2

FCS

merge

FCS

BL1

BL2
7 - Managing Parallel Releases of Multiple Projects 93

Merging Work to Another Project

UCM does not support interproject deliver operations. However, you can simulate a deliver

operation by running a script such as the one shown here, which uses base ClearCase

functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to another,
or to a nonUCM project. Run this script while set to the integration
view of the destination project.
#
Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = '–print';
my $project = shift @ARGV;
my $pvob = shift @ARGV;
my $bl;

chdir ($pvob) or die("can’t cd to project VOB '$pvob'");

print("######## Getting recommended baselines for project '$project'\n");

my @recbls = split(' ', ‘cleartool lsproject –fmt "%[rec_bls]p" $project‘);

foreach $bl (@recbls) {

my $comp = ‘cleartool lsbl –fmt "%[component]p" $bl‘;
my $vob = ‘cleartool lscomp –fmt "%[root_dir]p" $comp‘;

print("######## Merging changes from baseline '$bl' of $vob\n");

my $st = system("cleartool findmerge $vob –fver $bl $mergeopts");
$st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which you are

merging. It then uses the cleartool findmerge command to find differences between the versions

represented by those recommended baselines and the latest versions in the target integration

stream. For details on findmerge, see the findmerge reference page.
94 Managing Software Projects with ClearCase

We recommend that you add error handling and other logic appropriate for your site to this

script before using it.

7.3 Additional Merging Scenarios

This section describes two additional scenarios for which you may want to use a script similar to

the one shown in Merging Work to Another Project on page 94.

Merging from a Project to a Non-UCM Branch

You may be in a situation in which part of the development team works in a project, and the rest

of the team works in base ClearCase. If you are a longtime ClearCase user, you may decide to use

UCM initially on a small part of your system. This approach would allow you to migrate from

base ClearCase to UCM gradually, rather than all at once.

In this case, you need to merge work periodically from the project’s integration stream to the

branch that serves as the integration branch for the system. To do so, use a script similar to the

one shown in Merging Work to Another Project on page 94.

Merging to a System Project

If you have a very large system, you may decide to use multiple projects with each project team

working on a different part of the system. In this scenario, you would typically create an

additional project to serve as the system project. The system project is the integration location for

the system. When project managers for each of the projects create stable baselines, the system’s

project manager merges those baselines to the system project’s integration stream.

To do this merging, use the script as shown in Merging Work to Another Project on page 94.
7 - Managing Parallel Releases of Multiple Projects 95

96 Managing Software Projects with ClearCase

Part 2: Working in Base ClearCase

The following chapters describe how to use base ClearCase features to

set up and manage a customized development environment for your

project team.

88 Managing Projects in Base
ClearCase

As a project manager, you are responsible for planning, staffing, and managing the technical

aspects of a software development project. You decide what will be worked on, assign work to

the project’s team members, establish the work schedule, and perhaps the policies and

procedures for doing the work.

When development is underway, you monitor progress and generate project status reports. You

may also approve the specific work items included in a build and subsequently a baseline.

You may also be the project integrator, responsible for incorporating work that each developer

completes into a deliverable and buildable system. You create the project’s baselines and

establish the quality level of those baselines.

Base ClearCase offers many features to make this work easier. Before development begins, you

need to complete several planning and setup tasks:

➤ Setting up the project environment

➤ Implementing development policies

➤ Defining and implementing an integration policy

This chapter introduces these topics. The remaining chapters cover the implementation details.

Chapter 13, Using ClearCase Throughout the Development Cycle, follows a project throughout the

development cycle to show how you can use ClearCase.

Before reading this part of the manual, read Developing Software with ClearCase to become familiar

with the concepts of VOBs, views, and config specs.
8 - Managing Projects in Base ClearCase 99

8.1 Setting Up the Project

This section describes the planning and setup work you need to do before development begins.

Creating and Populating VOBs

If your project is migrating to ClearCase from another version control product or is adopting a

configuration and change management plan for the first time, you must populate the VOBs for

your project with an initial collection of data (file and directory elements). If your site has a

dedicated ClearCase administrator, he or she may be responsible for creating and maintaining

VOBs, but not for importing data into them.

Administering ClearCase includes detailed information on these topics.

Planning a Branching Strategy

ClearCase uses branches to enable parallel development. A branch is an object that specifies a

linear sequence of versions of an element. Every element has one main branch, which represents

the principal line of development, and may have multiple subbranches, each of which represents

a separate line of development. For example, a project team can use two branches concurrently:

the main branch for new development work and a subbranch to fix a bug. The aggregated main
branches of all elements constitutes the main branch of a code base.

Subbranches can have subbranches. For example, a project team designates a subbranch for

porting a product to a different platform; the team then decides to create a bug-fixing subbranch

off that porting subbranch. ClearCase allows you to create complex branch hierarchies. See

Figure 1 for an illustration of a multilevel branching hierarchy. As a project manager in such an

environment, you need to ensure that developers are working on the correct branches. To do that,

you must tell them which rules to include in their config specs so that their views access the

appropriate set of versions.

Chapter 9, Defining Project Views, describes config specs and branches in detail. Before you read

it, a little background on branching strategies may be helpful.

Branching policy is influenced by the development objectives of the project and provides a

mechanism to control the evolution of the code base. There are as many variations of branching

policy as organizations that use ClearCase. But there are also similarities that reflect common

adherence to best practices. Some of the more common branch types and uses are presented here.
100 Managing Software Projects with ClearCase

Task branches are short-lived, typically involve a small percentage of files, and are merged into

their parent branch after the task is completed. Task branches promote accountability by leaving

a permanent audit trail that associates a set of changes with a particular task; they also make it

easy to identify the task artifacts, such as views and derived objects, that can be removed when

they are no longer needed. If individual tasks don’t require changes to the same files, it is easy to

merge a task branch to its parent.

Private development branches are useful when a group of developers need to make a more

comprehensive set of changes on a common code base. By branching as much of the main branch

as needed, developers can work in isolation as long as necessary. Merging back to the main
branch can be simplified if, before merging, each developer merges the main branch to the

private branch to resolve any differences there before checking in the changed files.

Integration branches provide a buffer between private development branches and the main
branch and can be useful if you delegate the integration task to one person, rather than making

developers responsible for integrating their own work.

Branch Names

It’s a good idea to establish naming conventions that indicate the work the branch contains. For

example, rel2.1_main is the branch on which all code for Release 2.1 ultimately resides,

rel2.1_feature_abc contains changes specific to the ABC feature, and rel2.1_bl2 is the second

stable baseline of Release 2.1 code. (If necessary, branch names can be much longer and more

descriptive, but long branch names can crowd a version tree display.)

NOTE: Make sure that you do not create a branch type with the same name as a label type. This

can cause problems when config specs use labels in version selectors. For example, make all

branch names lowercase, and make all label names uppercase.

Branches and ClearCase MultiSite

Branches are particularly important when your team works in VOBs that have been replicated to

other sites with the ClearCase MultiSite product. Developers at different sites work on different

branches of an element. This scheme prevents collisions—for example, developers at two sites

creating version /main/17 of the same element. In some cases, versions of files cannot or should

not be merged, and developers at different sites must share branches. For more information, see

Policy: Certain Branches Are Shared Among MultiSite Sites on page 140.
8 - Managing Projects in Base ClearCase 101

Creating Shared Views and Standard Config Specs

As a project manager, you want to control the config specs that determine how branches are

created when developers check out files. There are several ways to handle this task:

➤ Create a config spec template that each developer must use. Developers can either paste the

template into their individual config specs or use the ClearCase include file facility to get

the config spec from a common source.

➤ Create a view that developers will share. This is usually a good way to provide an

integration view for developers to use when they check in work that has evolved in

isolation on a private branch.

NOTE: Working in a single shared view is not recommended because doing so can degrade

system performance.

➤ To ensure that all team members configure their views the same way, you can create files

that contain standard config specs. For example:

➣ /public/config_specs/ABC contains the ABC team’s config spec

➣ /public/config_specs/XYZ contains the XYZ team’s config spec

Store these config spec files in a standard directory outside a VOB, to ensure that all developers

get the same version.

Recommendations for View Names

You may want to establish naming conventions for views for the same reason that you do for

branches: it is easier to associate a view with the task it is used for. For example, you can require

all view names (called view-tags) to include the owner’s name and the task (bill_V4.0_bugfix)

or the name of the machine hosting the view (platinum_V4.0_int).

8.2 Implementing Development Policies

To enforce development policies, you can create ClearCase metadata to preserve information

about the status of versions. To monitor the progress of the project, you can generate a variety of

reports from this data and from the information that ClearCase captures in event records.
102 Managing Software Projects with ClearCase

Using Labels

A label is a user-defined name that can be attached to a version. Labels are a powerful tool for

project managers and system integrators. By applying labels to groups of elements, you can

define and preserve the relationship of a set of file and directory versions to each other at a given

point in the development lifecycle. For example, you can apply labels to these versions:

➤ All versions considered stable after integration and testing. Use this baseline label as the

foundation for new work.

➤ All versions that are partially stable or contain some usable subset of functionality. Use this

checkpoint label for intermediate testing or as a point to which development can be rolled

back in the event that subsequent changes result in regressions or instability.

➤ All versions that contain changes to implement a particular feature or that are part of a

patch release.

Using Attributes, Hyperlinks, Triggers, and Locks

Attributes are name/value pairs that allow you to capture information about the state of a

version from various perspectives. For example, you can attach an attribute named

CommentDensity to each version of a source file, to indicate how well the code is commented.

Each such attribute can have the value unacceptable, low, medium, or high.

Hyperlinks allow you identify and preserve relationships between elements in one or more

VOBs. This capability can be used to address process-control needs, such as requirements

tracing, by allowing you to link a source file to a requirements document.

Triggers allow you to control the behavior of cleartool commands and ClearCase operations by

arranging for a specific program or executable script to run before or after the command

executes. Virtually any operation that modifies an element can fire a trigger. Special environment

variables make the relevant information available to the script or program that implements the

procedure.

Preoperation triggers fire before the designated ClearCase command is executed. A preoperation

trigger on checkin can prompt the developer to add an appropriate comment. Postoperation

triggers fire after a command has exited and can take advantage of the command’s exit status.

For example, a postoperation trigger on the checkin command can send an e-mail message to the

QA department, indicating that a particular developer modified a particular element.
8 - Managing Projects in Base ClearCase 103

Triggers can also automate a variety of process management functions. For example:

➤ Applying attributes or attaching labels to objects when they are modified

➤ Logging information that is not included in the ClearCase event records

➤ Initiating a build and/or source code analysis whenever particular objects are modified

For more information on these mechanisms, see Chapter 10, Implementing Project Development
Policies.

A lock on an element or directory prevents all developers (except those included on an exception

list) from modifying it. Locks are useful for implementing temporary restrictions. For example,

during an integration period, a lock on a single object—the main branch type—prevents all users

who are not on the integration team from making any changes.

The effect of a lock can be small or large. A lock can prevent any new development on a particular

branch of a particular element; another lock can apply to the entire VOB, preventing developers

from creating any new element of type compressed_file or using the version label RLS_1.3.

Locks can also be used to retire names, views, and VOBs that are no longer used. For this

purpose, the locked objects can be tagged as obsolete, effectively making them invisible to most

commands.

Global Types

The ClearCase global type facility makes it easy for you to ensure that the branch, label, attribute,

hyperlink, and element types they need are present in all VOBs your project uses. The manual

Administering ClearCase has more information about creating and using global types.

Generating Reports

ClearCase creates and stores an event record each time an element is modified or merged. Many

ClearCase commands include selection and filtering options that you can use to create reports

based on these records. The scope of such reports can cover a single element, for a set of objects,

or for entire VOBs.

Chapter 10, Implementing Project Development Policies, provides more detail on using event

records and metadata to implement project policies. Event records and other metadata can also
104 Managing Software Projects with ClearCase

be useful if you need to generate reports on activities managed by ClearCase (for example, the

complete history of changes to an element). ClearCase provides a variety of report-generation

tools. For more information on this topic, see the fmt_ccase reference page in the ClearCase
Reference Manual.

8.3 Integrating Changes

During the lifetime of a project, the contents of individual elements diverge as they are branched

and usually converge in a merge operation. Typically, the project manager periodically merges

most branches back to the main branch to ensure that the code base maintains a high degree of

integrity and to have a single “latest” version of each element from which new versions can

safely branch. Without regular merges, the code base quickly develops a number of dangling

branches, each with slightly different contents. In such situations, a change made to one version

must be propagated by hand to other versions, a tedious process that is prone to error.

As a project manager, you must establish merge policies for your project. Typical policies include

the following:

➤ Developers merge their changes to the main branch. This can work well when the number

of developers and/or the number of changed files is small and the developers are familiar

with the mechanics of merging. Developers must also understand the nature of other

changes they may encounter when the merge target is not the immediate predecessor of the

version being merged, which happens when several developers are working on the same

file in parallel.

➤ Developers merge their changes to an integration branch. This provides a buffer between

individual developers’ merges and the main branch. The project manager or system

integrator then merges the integration branch to the main branch.

➤ Developers must merge from the main branch to their development branch before merging

to the main branch or integration branch. This type of merge promotes greater stability by

forcing merge-related instability to the developers’ private branches where problems can be

resolved before they affect the rest of the team.

➤ The project manager designates “slots” for developer merges to the main branch. This is a

variation on several of the mechanisms already described. It provides an additional level of

control in situations where parallel development is going on.

There are other scenarios as well. Chapter 11, Integrating Changes, describes merging in detail.
8 - Managing Projects in Base ClearCase 105

106 Managing Software Projects with ClearCase

99 Defining Project Views

This chapter explains how config specs work and provides sample config specs useful for project

development work, for nondevelopment tasks such as monitoring progress and doing research,

and for running project builds. It also explains how to share config specs between Windows and

UNIX systems.

9.1 How Config Specs Work

When you create views for your project, you must prepare one or more config specs (configuration

specifications). Config specs allow you to achieve the degree of control that you need to have

over project work by controlling which versions developers see and what operations they can

perform in specific views. You can narrow a view to a specific branch or open it to an entire VOB.

You can also disallow checkouts of all selected versions or restrict checkouts to specific branches.

A config spec contains a series of rules that ClearCase uses to select the versions that appear in

the view. When team members use a view, they see the versions that match at least one of the

rules in the config spec. ClearCase searches the version tree of each element for the first version

that matches the first rule in the config spec. If no versions match the first rule, ClearCase

searches for a version that matches the second rule. If no versions of an element match any rule

in the config spec, no versions of the element appear in the view.

The order in which rules appear in the config spec determine which version of a given element

is selected. The various examples in this chapter examine this behavior in different contexts. For

details about preparing config specs, see the config_spec reference page.
9 - Defining Project Views 107

9.2 Default Config Spec

This config spec defines a dynamic configuration, which selects changes made on the main
branch of every element throughout the entire source tree, by any developer:

This is the default config spec, to which each newly created view is initialized. When you create a

view with the mkview command, the contents of file default_config_spec (located in

ccase-home-dir) become the new view’s config spec.

A view with this config spec provides a private work area that selects your checked-out versions

(Rule 1). By default, when you check out a file, you check out from the latest version on the main
branch (Rule 2). While an element is checked out to you, you can change it without affecting

anyone else’s work. As soon as you check in the new version, the changes are available to

developers whose views select /main/LATEST versions.

The view also selects all other elements (that is, all elements that you have not checked out), on

a read-only basis. If another user checks in a new version on the main branch of such an element,

the new LATEST version appears in this dynamic view immediately.

By default, snapshot views also include the two version-selection rules shown above. In addition,

snapshot view config specs include load rules, which specify which elements or subtrees to load

into the snapshot view. See Developing Software with ClearCase for details on creating snapshot

views.

The Standard Configuration Rules

The two configuration rules in the default config spec appear in many of this chapter’s examples.

The CHECKEDOUT rule allows you to modify existing elements. If you try to check out

elements in a view that omits this rule, you can do so, but cleartool generates this warning:

(1)
(2)

element * CHECKEDOUT
element * /main/LATEST
108 Managing Software Projects with ClearCase

% cleartool checkout –nc cmd.c
cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep": Read-only
filesystem.
cleartool: Error: Checked out version, but could not copy to "cmd.c": File
exists.
Correct the condition, then uncheckout and re-checkout the element.
cleartool: Warning: Copied checked out version to "cmd.c.checkedout".
cleartool: Warning: Checked-out version is not selected by view.
Checked out "cmd.c" from version "/main/7".

In this example, the config spec continues to select version 7 of element cmd.c, which is

read-only. A read-write copy of this version, cmd.c.checkedout, is created in view-private

storage. (This is not a recommended way of working.)

The /main/LATEST rule selects the most recent version on the main branch to appear in the view.

In addition,a /main/LATEST rule is required to create new elements in a view. If you create a new

element when this rule is omitted, your view cannot “see” that element. (Creating an element

involves creating a main branch and an empty version, /main/0).

Omitting the Standard Configuration Rules

It makes sense to omit one or both of the standard configuration rules only if a view is not going

to be used to modify data. For example, you can configure a historical view, to be used only for

browsing old data. Similarly, you can configure a view in which to compile and test only or to

verify that sources have been labeled properly.

9.3 Config Spec Include Files

ClearCase supports an include file facility that makes it easy to ensure that all team members are

using the same config spec. For example, the configuration rules in this config spec can be placed

in file /public/c_specs/major.csp. Each developer then needs a one-line config spec:

NOTE: If you are sharing config specs between UNIX and Windows NT computers where the

VOB-tags are different, you must have two sources, or you must store the config spec in a UNIX

directory that is accessible from both machines.

(1) include /public/c_specs/major.csp
9 - Defining Project Views 109

If you want to modify this config spec (for example, to adopt the no-directory-branching policy),

only the contents of major.csp need to change. You can use this command to reconfigure your

view with the modified config spec:

% cleartool setcs –current

9.4 Project Environment for Sample Config Specs

You can use different config specs for different kinds of development and management tasks.

The three sections that follow present sample config specs useful for various aspects of project

development, project management and research, and project builds. This section presents the

development environment that these config specs are based on.

Developers use a VOB whose VOB-tag is /vobs/monet, which has this structure:

For the purposes of this chapter, suppose that the lib directory has this substructure:

Sources for libraries are located in subdirectories of lib. After a library is built in its source

directory, it can be staged to /vobs/monet/lib. The build scripts for the project’s executable

programs can instruct the link editor, ld(1), to use the libraries in this directory (the library

staging area) instead of a more standard location (for example, /usr/local/lib).

/vobs/monet (VOB-tag, VOB mount point)
src/ (C language source files)
include/ (C language header files)
lib/ (project’s libraries)

lib/
libcalc.a (checked-in staged version of library)
libcmd.a (checked-in staged version of library)
libparse.a (checked-in staged version of library)
libpub.a (checked-in staged version of library)
libaux1.a (checked-in staged version of library)
libaux2.a (checked-in staged version of library)
libcalc/ (sources for calc library)
libcmd/ (sources for cmd library)
libparse/ (sources for parse library)
libpub/ (sources for pub library)
libaux1/ (sources for aux1 library)
libaux2/ (sources for aux2 library)
110 Managing Software Projects with ClearCase

The following labels are assigned to versions of monet elements.

These version labels have been assigned to versions on the main branch of each element. Most

project development work takes place on the main branch. For some special tasks, development

takes places on a subbranch.

9.5 Views for Project Development

The config specs in this section are useful for project development because they enforce various

branching policies.

View for New Development on a Branch

You can use this config spec for work to be isolated on branches named major:

In this scheme, all checkouts occur on branches named major (Rule 2).

major branches are created at versions that constitute a consistent baseline: a major release, a

minor release, or a set of versions that produces a working version of the application. In this

config spec, the baseline is defined by the version label BASELINE_X.

Version Labels Description

R1.0 First customer release

R2_BL1 Baseline 1 prior to second customer release

R2_BL2 Baseline 2 prior to second customer release

R2.0 Second customer release

Subbranches Description

major Used for work on the application’s graphical user interface, certain

computational algorithms, and other major enhancements

r1_fix Used for fixing bugs in Release 1.0

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * .../major/LATEST
element * BASELINE_X –mkbranch major
element * /main/LATEST –mkbranch major
9 - Defining Project Views 111

Variation That Uses a Time Rule

Sometimes, other developers check in versions that become visible in your view, but are

incompatible with your own work. In such cases, you can continue to work on sources as they

existed before those changes were made. For example, Rule 2 in this config spec selects the latest

version on the main branch as of 4:00 P.M. on November 12:

Note that this rule has no effect on your own checkouts.

View to Modify an Old Configuration

This config spec allows developers to modify a configuration defined with version labels:

Note the following:

➤ Elements can be checked out (Rule 1).

➤ The checkout command creates a branch named r1_fix at the initially selected version (the

auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in every modified

element. The only administrative overhead is the creation of a single branch type, r1_fix, with the

mkbrtype command.

This config spec is efficient: two rules (Rules 2 and 3) configure the appropriate versions of all

elements:

➤ For elements that have been modified, this version is the most recent on the r1_fix
subbranch (Rule 2).

➤ For elements that have not been modified, this version is the one labeled R1.0 (Rule 3).

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * /major/LATEST –time 12-Nov.16:00
element * BASELINE_X –mkbranch major
element * /main/LATEST –mkbranch major

(1)
(2)
(3)

element * CHECKEDOUT
element * .../r1_fix/LATEST
element * R1.0 –mkbranch r1_fix
112 Managing Software Projects with ClearCase

Figure 32 illustrates these elements. The r1_fix branch is a subbranch of the main branch. But

Rule 2 handles the more general case, too: the ... wildcard allows the r1_fix branch to occur

anywhere in any element’s version tree, and at different locations in the version trees of different

elements.

Figure 32 Making a Change to an Old Version

Omitting the /main/LATEST Rule

The config spec in View to Modify an Old Configuration on page 112 omits the standard

/main/LATEST rule. This rule is not useful for work with VOBs in which the version label R1.0
does not exist. In addition, it is not useful in situations where new elements are created. If your

development policy is to not create new elements during maintenance of an old configuration,

the absence of a /main/LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a fourth configuration

rule:

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * /main/r1_fix/LATEST
element * R1.0 –mkbranch r1_fix
element * /main/LATEST –mkbranch r1_fix

R1.0

0

1

2

3

4

main

0

1

2

3

0

1

r1_fix

main

2
Rule 2:
most recent modification
to the old version

Rule 3:
version that was
labeled R1.0

element that has not been
modified in this configuration

element that has been
modified in this configuration
9 - Defining Project Views 113

When a new element is created with mkelem, the –mkbranch clause in Rule 4 causes the new

element to be checked out on the r1_fix branch (which is created automatically). This rule

conforms to the scheme of localizing all changes to r1_fix branches.

Variation That Uses a Time Rule

This baseline configuration is defined with a –time rule.

View to Implement Multiple-Level Branching

This config spec implements and enforces consistent multiple-level branching.

A view configured with this config spec is appropriate in the following situation:

➤ All changes from the baseline designated by the BASELINE_X version label must be made

on a branch named major.

➤ Moreover, you are working on a special project, whose changes are to be made on a

subbranch of major, named autumn.

Figure 33 shows what happens in such a view when you check out an element that has not been

modified since the baseline.

(1)
(2)
(3)

element * CHECKEDOUT
element * /main/r1_fix/LATEST
element * /main/LATEST –time 4-Sep:02:00 –mkbranch r1_fix

(1)
(2)
(3)
(4)
(5)

element * CHECKEDOUT
element * .../major/autumn/LATEST
element * .../major/LATEST –mkbranch autumn
element * BASELINE_X –mkbranch major
element * /main/LATEST –mkbranch major
114 Managing Software Projects with ClearCase

Figure 33 Multiple-Level Auto-Make-Branch

For more on multiple-level branching, see the config_spec and checkout reference pages.

View to Restrict Changes to a Single Directory

This config spec is appropriate for a developer who can make changes in one directory only,

/vobs/monet/src:

The most recent version of each element is selected (Rules 2 and 3), but Rule 3 prevents checkouts

to all elements except those in the directory specified.

(1)
(2)
(3)

element * CHECKEDOUT
element src/* /main/LATEST
element * /main/LATEST –nocheckout

0

1

2
0

1

main

major

before checkout
Rule 4 selects
baseline version,
labeled
BASELINE_X

0

1

2

main

0

1

major

0

1

2

main

0

1

autumn

checkout creates
branch -mkbranch
clause in Rule 4
creates major branch at
BASELINE_X version

create another branch
Rule 3 now applies;
-mkbranch clause creates
autumn branch at
\main\major\0

complete checkout
Rule 2 now applies;
its most recent version,
\main\major\autumn\0
is checked out

0

1

2
0

1

main

major

0

autumn
9 - Defining Project Views 115

Note that Rule 2 matches elements in any directory named src, in any VOB. The pattern

/vobs/monet/src/* restricts matching to only one VOB.

This config spec can be extended easily with additional rules that allow additional areas of the

source tree to be modified.

9.6 Views to Monitor Project Status

The config specs presented here are useful for views used for research and monitoring project

status.

View That Uses Attributes to Select Versions

Suppose that the QA team also works on the major branch. Individual developers are

responsible for making sure that their modules pass a QA check. The QA team builds and tests

the application, using the most recent versions that have passed the check.

The QA team can work in a view that uses this config spec:

To make this scheme work, you must create an attribute type, QAOK. Whenever a new version

that passes the QA check is checked in on the major branch, an instance of QAOK with the value

Yes is attached to that version. (This can be done manually or with a ClearCase trigger.)

If an element in the /src directory has been edited on the major branch, this view selects the

branch’s most recent version that has been marked as passing the QA check (Rule 1). If no

version has been so marked or if no major branch has been created, the most recent version on

the main branch is used (Rule 2).

NOTE: Rule 1 on this config spec does not provide a match if an element has a major branch, but

no version on the branch has a QAOK attribute. This command can locate the branches that do

not have this attribute:

% cleartool find . –branch '{brtype(major) && \! attype_sub(QAOK)}' –print

(1)
(2)

element –file src/* /main/major/{QAOK=="Yes"}
element * /main/LATEST
116 Managing Software Projects with ClearCase

The backslash (\) is required in the C shell only, to keep the exclamation point (!) from

indicating a history substitution.

The attype_sub primitive searches for attributes on an element’s versions and branches, as well

as on the element itself.

This scheme allows the QA team to monitor the progress of the rest of the group. The

development config spec always selects the most recent version on the major branch, but the QA

config spec may select an intermediate version (Figure 34).

Figure 34 Development Config Spec vs. QA Config Spec

0

1

2

3

4

0

1

2

3

main

major

QA config spec selects version using
attributes—it may be an intermediate version:

\main\major\{QAOK=="Yes"}

Development config spec selects most
recent version on branch:

\main\major\LATEST
9 - Defining Project Views 117

Pitfalls of Using This Configuration for Development

You may be tempted to add a CHECKEDOUT rule to the above config spec, turning the QA

configuration into a development configuration:

It may seem desirable to use attributes, or other kinds of metadata, in addition to (or instead of)

branches to control version selection in a development view. But such schemes introduce

complications. Suppose that the config spec above selects version /main/major/2 of element

.../src/cmd.c. (See Figure 35.)

Figure 35 Checking Out a Branch of an Element

Performing a checkout in this view checks out version /main/major/3, not version

/main/major/2:

cleartool: Warning: Version checked out is different from version previously
selected by view.
Checked out "cmd.c" from version "/main/major/3".

This behavior reflects the ClearCase restriction that new versions can be created only at the end

of a branch. Although such operations are possible, they are potentially confusing to other team

members. And in this situation, it is almost certainly not what the developer who checks out the

element wants to happen.

(0)
(1)
(2)

element * CHECKEDOUT
element –file src/* /main/major/{QAOK=="Yes"}
element * /main/LATEST

intermediate version selected
by config spec rule:

\main\major\{QAOK=="Yes"}

0

1

2

3

major

checkout command
always checksout most recent
version on branch
118 Managing Software Projects with ClearCase

You can avoid this problem by modifying the config spec and creating another branching level

at the version that the attribute selects. This is the new config spec:

View That Shows Changes of One Developer

This config spec makes it easy to examine all changes a developer has made since a certain

milestone:

A particular date, April 25, is used as the milestone. The configuration is a snapshot of the main

line of development at that date (Rule 2), overlaid with all changes that user jackson has made

on the main branch since then (Rule 1).

The output of the cleartool ls command distinguishes jackson’s files from the others: each entry

includes an annotation as to which configuration rule applies to the selected version.

This is a research view, not a development view. The selected set of files may not be consistent:

some of jackson’s changes may rely on changes made by others, and those other changes are

excluded from this view. Thus, this config spec omits the standard CHECKEDOUT and

/main/LATEST rules.

Historical View Defined by a Version Label

This config spec defines a historical configuration:

This view always selects the set of versions labeled R1.0. In this scenario, all these versions are

on the main branch of their elements. If the R1.0 label type is one-per-element, not one-per-branch,

(0)
(0a)
(1)
(2)

element * CHECKEDOUT
element * /main/major/temp/LATEST
element –file src/* /main/major/{QAOK=="Yes"} –mkbranch temp
element * /main/LATEST

(1)
(2)

element * '/main/{created_by(jackson) && created_since(25-Apr)}'
element * /main/LATEST –time 25-Apr

NOTE: Rule 1 must be contained on a single physical text line.

(1) element * R1.0 –nocheckout
9 - Defining Project Views 119

this config spec selects the R1.0 version on a subbranch. (For more information, see the mklbtype
reference page.)

The –nocheckout qualifier prevents any element from being checked out in this view. (It also

prevents creation of new elements, because the parent directory element must be checked out.)

Thus, there is no need for the CHECKEDOUT configuration rule.

NOTE: The set of versions selected by this view can change, because version labels can be moved

and deleted. For example, using the command mklabel –replace to move R1.0 from version 5 of

an element to version 7 changes which version appears in the view. Similarly, using rmlabel
suppresses the specified elements from the view. (The cleartool ls command lists them with a [no

version selected] annotation.) If the label type is locked with the lock command, the

configuration cannot change.

You can use this configuration to rebuild Release 1.0, verifying that all source elements have been

labeled properly. You can also use it to browse the old release.

Historical View Defined by a Time Rule

This config spec defines a frozen configuration in a slightly different way than the previous one:

This configuration selects the version that was the most recent on the main branch on September

4 at 2 A.M. Subsequent checkouts and checkins cannot change which versions satisfy this

criterion; only deletion commands such as rmver or rmelem can change the configuration. The

–nocheckout qualifier prevents elements from being checked out or created.

This configuration can be used to view a set of versions that existed at a particular point in time.

If modifications must be made to this source base, you must modify the config spec to “unfreeze”

the configuration.

9.7 Views for Project Builds

The config specs in this section are useful for running the various types of builds required for a

project.

(1) element * /main/LATEST –time 4-Sep.02:00 –nocheckout
120 Managing Software Projects with ClearCase

View That Uses Results of a Nightly Build

Many projects use scripts to run unattended software builds every night. The success or failure

of these builds determine the impact of any checked-in changes on the application. In layered

build environments, they can also provide up-to-date versions of lower-level software (libraries,

utility programs, and so on).

Suppose that every night, a script does the following:

➤ Builds libraries in various subdirectories of /vobs/monet/lib
➤ Checks them in as DO versions in the library staging area, /vobs/monet/lib
➤ Labels the versions LAST_NIGHT

You can use this config spec if you want to use the libraries produced by the nightly builds:

The LAST_NIGHT version of a library is selected whenever such a version exists (Rule 2). If a

nightly build fails, the previous night’s build still has the LAST_NIGHT label and is selected. If

no LAST_NIGHT version exists (the library is not currently under development), the stable

version labeled R2_BL2 is used instead (Rule 3).

For each library, selecting versions with the LAST_NIGHT label rather than the most recent

version in the staging area allows developers to stage new versions the next day, without

affecting developers who use this config spec.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element lib/*.a LAST_NIGHT
element lib/*.a R2_BL2
element * /main/LATEST
9 - Defining Project Views 121

Variations That Select Versions of Project Libraries

The scheme described above uses version labels to select particular versions of libraries. For

more flexibility, the LAST_NIGHT version of some libraries may be selected, the R2_BL2
version of others, and the most recent version of still others:

(Rule 3b is not required here, because Rule 4 handles all other libraries. It is included for clarity

only.)

Other kinds of metadata can also be used to select library versions. For example, lib_selector
attributes can take values such as experimental , stable , and released . A config spec can mix

and match library versions like this:

View That Selects Versions of Application Subsystems

This config spec selects specific versions of the application’s subsystems:

In this situation, a developer is making changes to the application’s source files on the main
branch (Rule 4). Builds of the application use the libraries in directory /lib that were used to build

Baseline 1, and the header files in directory /include that were used to build Baseline 2.

(1)
(2a)
(2b)
(3a)
(3b)
(4)

element * CHECKEDOUT
element lib/libcmd.a LAST_NIGHT
element lib/libparse.a LAST_NIGHT
element lib/libcalc.a R2_BL2
element lib/*.a /main/LATEST
element * /main/LATEST

(1)
(2)
(3)
(4)
(5)
(6)

element * CHECKEDOUT
element lib/libcmd.a {lib_selector=="experimental"}
element lib/libcalc.a {lib_selector=="experimental"}
element lib/libparse.a {lib_selector=="stable"}
element lib/*.a {lib_selector=="released"}
element * /main/LATEST

(1)
(2)
(3)
(4)
(5)

element * CHECKEDOUT
element /vobs/monet/lib/... R2_BL1
element /vobs/monet/include/... R2_BL2
element /vobs/monet/src/... /main/LATEST
element * /main/LATEST
122 Managing Software Projects with ClearCase

View That Selects Versions That Built a Particular Program

This config spec defines a view that selects only enough files required to rebuild a particular

program or examine its sources:

All elements that were not involved in the build of monet appear in the output of ClearCase ls
with a [no version selected] annotation.

This config spec selects the versions listed in the config record (CR) of a particular derived object

(and in the config records of all its build dependencies). It can be a derived object that was built

in the current view, or another view, or it can be a DO version.

In this config spec, monet is a derived object in the current view. You can reference a derived

object in another view with an extended pathname that includes a DO-ID:

But typically, this kind of config spec is used to configure a view from a derived object that has

been checked in as a DO version.

Configuring the Makefile

By default, a derived object’s config record does not list the version of the makefile that was used

to build it. Instead, the CR includes a copy of the build script itself. (Why? When a new version

of the makefile is created with a revision to one target’s build script, the configuration records of

all other derived objects built with that makefile are not rendered out of date.)

But if the monet program is to be rebuilt in this view using clearmake (or even standard make),

a version of the makefile must be selected somehow. You can have clearmake record the makefile

version in the config record by including the special clearmake macro invocation $(MAKEFILE)
in the target’s dependency list:

monet: $(MAKEFILE) monet.o ...
cc –o monet ...

clearmake always records the versions of explicit dependencies in the CR.

Alternatively, you can configure the makefile at the source level: attach a version label to the

makefile at build time, and then use a config spec like the one in Historical View Defined by a

(1) element * –config /vobs/monet/src/monet

(1) element * –config /vobs/monet/src/monet@@09-Feb.13:56.812
9 - Defining Project Views 123

Version Label on page 119 or View to Modify an Old Configuration on page 112 to configure a view

for building. You can also use the special target .DEPENDENCY_IGNORED_FOR_REUSE; for

more information, see Including a Makefile Version in a Configuration Record in Building Software
with ClearCase.

Fixing Bugs in the Program

If a bug is discovered in the monet program, as rebuilt in a view that selects only enough files

required to rebuild a particular program, it is easy to convert the view from a build configuration

to a development configuration. As usual, when making changes in old sources, follow this

strategy:

➤ Create a branch at each version to be modified

➤ Use the same branch name (that is, create an instance of the same branch type) in every

element

If the fix-up branch type is r1_fix, this modified config spec reconfigures the view for performing

the fix:

Selecting Versions That Built a Set of Programs

It is easy to expand the config spec that selects only enough files required to rebuild a particular

program to configure a view with the sources used to build a set of programs, rather than a single

program:

There can be version conflicts in such configurations, however. For example, different versions

of file params.h may have been used in the builds of monet and xmonet. In this situation, the

version used in monet is configured, because its configuration rule came first. Similarly, there can

be conflicts when using a single –config rule: if the specified derived object was created by

actually building some targets and using DO versions of other targets, multiple versions of some

source files may be involved.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * .../r1_fix/LATEST
element * –config /vobs/monet/src/monet –mkbranch r1_fix
element * /main/LATEST –mkbranch r1_fix

(1)
(2)
(3)

element * –config /proj/monet/src/monet
element * –config /proj/monet/src/xmonet
element * –config /proj/monet/src/monet_conf
124 Managing Software Projects with ClearCase

You can modify this config spec as described in Fixing Bugs in the Program on page 124, to change

the build configuration to a development configuration.

9.8 Sharing Config Specs Between UNIX and Windows

You can, in principle, share config specs between UNIX and Windows systems. That is, users on

both systems, using views whose storage directories reside on either platform, can set and edit

the same set of config specs.

We recommend that you avoid sharing config specs across platforms. If possible, maintain

separate config specs for each platform. However, if you must share config specs, adhere to the

following requirements:

➤ Use slashes (/), not backslashes (\) in pathnames.

➤ Use relative, not full, pathnames whenever possible, and do not use VOB-tags in

pathnames. You can ignore this restriction if your UNIX and Windows VOB-tags both use

single, identical pathname components that differ only in their leading slash characters—

\src and /src, for example.

➤ Always edit and set config specs on UNIX.

The following sections describe these requirements in detail.

Pathname Separators

When writing config specs to be shared by Windows and UNIX computers, you must use slash

(/), not backslash (\), as the pathname separator. ClearCase on UNIX recognizes slashes only.

(Note that cleartool recognizes both slashes and backslashes in pathnames; clearmake is less

flexible. See clearmake Makefiles and BOS Files in Building Software with ClearCase for more

information.)
9 - Defining Project Views 125

Pathnames in Config Spec Element Rules

Windows and UNIX network regions often use different VOB-tags to register the same VOBs.

Only single-component VOB-tag names, such as \proj1, are permitted on Windows computers;

multiple-component VOB-tags, such as /vobs/src, are common on UNIX.

When VOB-tags differ between regions, any config spec element rules that use full pathnames

(which include VOB-tags) can be resolved when the config spec is compiled (cleartool edcs and

setcs commands) but only by computers in the applicable network region. This implies a general

restriction regarding shared config specs: a given config spec must be compiled only on the

operating system for which full pathnames in element rules make sense. That is, a config spec

with full pathnames is shareable across network regions, even when VOB-tags disagree, but it

must be compiled in the right place.

The restrictions do not apply if either of the following is true (see Example on page 126):

➤ The config spec’s element rules use only relative pathnames, which do not include

VOB-tags.

➤ Shared VOBs are registered with identical, single-component VOB-tags in both Windows

and UNIX network regions. (The VOB-tags \r3vob and /r3vob are treated as if they were

identical because they differ only in the leading slashes.)

Config Spec Compilation

A config spec that is in use exists in both text file and compiled formats. A config spec’s compiled
form is portable. The restriction is that full VOB pathnames in element rules must be resolvable

at compile time. A config spec is compiled when you edit or set it (with the cleartool edcs or

cleartool setcs command or a ClearCase GUI). If a user on the other operating system recompiles

a config spec (by issuing the edcs or setcs command or causing the GUI to execute one of these

commands) the config spec becomes unusable by any computer using that view. If this happens,

recompile the config spec on the original operating system.

Example

This config spec element rule may cause problems:

element \vob_p2\abc_proj_src* \main\rel2\LATEST
126 Managing Software Projects with ClearCase

If the VOB is registered with VOB-tag \vob_p2 on a Windows network region, but with VOB-tag

/vobs/vob_p2 on a UNIX network region, only Windows computers can compile the config spec.

To address the problem, do one of the following:

➤ Use relative pathnames that do not include VOB-tags, for example:

element ...\abc_proj_src* \main\rel2\LATEST

➤ On UNIX, change the VOB-tag so that it has a single component, /vob_p2.
9 - Defining Project Views 127

128 Managing Software Projects with ClearCase

1010 Implementing Project Development
Policies

This chapter presents brief scenarios that show how you can implement and enforce common

development policies with ClearCase. The scenarios use various combinations of these functions

and metadata:

➤ Attributes

➤ Labels

➤ Branches

➤ Triggers

➤ Config specs

➤ Locks

➤ Hyperlinks

Sharing Triggers Between UNIX and Windows on page 141 describes how to define triggers for use

on UNIX and Windows computers.

10.1 Policy: Good Documentation of Changes Is Required

Each ClearCase command that modifies a VOB creates one or more event records. Many such

commands (for example, checkin) prompt for a comment. The event record includes the user

name, date, comment, host, and description of what was changed.

To prevent developers from subverting the system by providing empty comments, you can

create a preoperation trigger to monitor the checkin command. The trigger action script analyzes
10 - Implementing Project Development Policies 129

the user’s comment (passed in an environment variable), disallowing unacceptable ones (for

example, those shorter than 10 words).

Trigger Definition:

% cleartool mktrtype –element –all –preop checkin –c "must enter descriptive comment" \
–exec /public/scripts/comment_policy.sh CommentPolicy

Trigger Action Script:

#!/bin/sh
#
comment_policy
#
ACCEPT=0
REJECT=1
WORDCOUNT=‘echo $CLEARCASE_COMMENT | wc -w‘

if [$WORDCOUNT -ge 10] ; then
exit $ACCEPT

else
exit $REJECT

fi

10.2 Policy: All Source Files Require a Progress Indicator

You may want to monitor the progress of individual files or determine which or how many files

are in a particular state. You can use attributes to preserve this information and triggers to collect

it.

In this case, you can create a string-valued attribute type, Status, which accepts a specified set of

values.

Attribute Definition:

% cleartool mkattype –c "standard file levels" \
–enum ' "inactive","under_devt","QA_approved" ' Status
Created attribute type "Status".

Developers apply the Status attribute to many different versions of an element. Its value in early

versions on a branch is likely to be inactive and under_devt ; on later versions, its value is
130 Managing Software Projects with ClearCase

QA_approved . The same value can be used for several versions, or moved from an earlier version

to a later version.

To enforce conscientious application of this attribute to versions of all source files, you can create

a CheckStatus trigger whose action script prevents developers from checking in versions that do

not have a Status attribute.

Trigger Definition:

% cleartool mktrtype –element –all –preop checkin \
–c "all versions must have Status attribute" \
–exec 'Perl /public/scripts/check_status.pl' CheckStatus

Trigger Action Script:

$pname = $ENV{’CLEARCASE_PN’};
$val = "";
$val = ‘cleartool describe -short -aattr Status $pname‘;

if ($val eq "") {
exit (1);
} else {

exit (0);
}

10.3 Policy: Label All Versions Used in Key Configurations

To identify which versions of which elements contributed to a particular baseline or release, you

can attach labels to these versions. For example, after Release 2 is built and tested, you can create

label type REL2, using the mklbtype command. You can then attach REL2 as a version label to

the appropriate source versions, using the mklabel command.

Which are the appropriate versions? If Release 2 was built from the bottom up in a particular

view, you can label the versions selected by that view:

% cleartool mklbtype –c "Release 2.0 sources" REL2

% cleartool mklabel –recurse REL2 top-level-directory

Alternatively, you can use the configuration records of the release’s derived objects to control the

labeling process:
10 - Implementing Project Development Policies 131

% clearmake vega

... sometime later, after QA approves the build:
% cleartool mklabel –config vega@@17-Jun.18:05 REL2

Using configuration records to attach version labels ensures accurate and complete labeling,

even if developers have created new versions since the release build. Development work can

continue while quality-assurance and release procedures are performed.

To prevent version label REL2 from being used again, you must lock the label type:

% cleartool lock –nusers vobadm lbtype:REL2

The object is locked to all users except those specified with the –nusers option, in this case,

vobadm.

10.4 Policy: Isolate Work on Release Bugs to a Branch

You may want to fix bugs found in the released system on a named bugfix branch, and to begin

this work with the exact configuration of versions from that release.

This policy reflects the ClearCase baseline-plus-changes model. First, a label (REL2, for example)

must be attached to the release configuration. Then, you or any team member can create a view

with the following config spec to implement the policy:

element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element * REL2 -mbranch rel2_bugfix

If all fixes are made in one or more views with this configuration, the changes are isolated on

branches of type rel2_bugfix. The –mkbranch option causes such branches to be created, as

needed, when elements are checked out.

This config spec selects versions from rel2_bugfix branches, where branches of this type exist; it

creates such a branch whenever a REL2 version is checked out.
132 Managing Software Projects with ClearCase

10.5 Policy: Avoid Disrupting the Work of Other Developers

To work productively, developers need to control when they see changes and which changes

they see. The appropriate mechanism for this purpose is a view. Developers can modify an

existing config spec or create a new one to specify exactly which changes to see and which to

exclude.

To implement this policy, you can also require developers to write and distribute the config spec

rule that filters out their checked-in changes. Some sample config specs:

➤ To select your own work, plus all the versions that went into the building of Release 2:

element * CHECKEDOUT
element * REL2

➤ To select your own work, plus the latest versions as of Sunday evening:

element * CHECKEDOUT
element * /main/LATEST -time Sunday.18:00

➤ To select your own work, new versions created in the graphics directory, and the versions

that went into last night’s build:

element * CHECKEDOUT
element graphics/* /main/LATEST
element * -config myprog@@12-Jul.00:30

➤ To select your own work, the versions either you (jones) or Mary has checked in today, and

the most recent quality-assurance versions:

element * CHECKEDOUT
element * ’/main/{ created_since(06:00) && (created_by(jones) ||
created_by(mary)) }’
element * /main/{QAed=="TRUE"}

➤ You can also use the config spec include facility to set up standard sets of configuration

rules for developers to add to their own config specs:

element * CHECKEDOUT
element msg.c /main/18
include /usr/cspecs/rules_for_rel2_maintenance
10 - Implementing Project Development Policies 133

10.6 Policy: Deny Access to Project Data When Necessary

Occasionally, you may need to deny access to all or most project team members. For example,

you may want to prevent changes to public header files until further notice. The lock command

is designed to enforce such temporary policies:

➤ Lock all header files in a certain directory:

% cleartool lock src/pub/*.h

➤ Lock the header files for all users except Mary and Fred:

% cleartool lock –nusers mary,fred src/pub/*.h

➤ Lock all header files in the VOB:

% cleartool lock eltype:c_header

➤ Lock an entire VOB:

% cleartool lock vob:/vobs/myproj

10.7 Policy: Notify Team Members of Relevant Changes

To help team members keep track of changes that affect their own work, you can use

postoperation triggers to send notifications of various events. For example, when developers

change the GUI, an e-mail message to the doc group ensures that these changes are documented.

To enforce this policy, create a trigger type that sends mail, and then attach it to the relevant

elements.

Trigger Definition:

% cleartool mktrtype –nc -element –postop checkin \
–exec /public/scripts/informwriters.sh InformWriters

Created trigger type "InformWriters".

Trigger Action Script:
134 Managing Software Projects with ClearCase

#!/bin/sh
#
#Init
tmp=/tmp/checkin_mail

construct mail message describing checkin

cat > $tmp <<EOF
Subject: Checkin $CLEARCASE_PNAME by $CLEARCASE_USER
$CLEARCASE_XPNAME
Checked in by $CLEARCASE_USER.

Comments:
$CLEARCASE_COMMENT
EOF

send the message

mail docgrp <$tmp

clean up

#rm -f $tmp

To attach triggers to existing elements:

1. Place the trigger on the inheritance list of all existing directory elements within the GUI source

tree:

% cleartool find /vobs/gui_src –type d \
–exec 'cleartool mktrigger –nattach InformWriters $CLEARCASE_PN'

2. Place the trigger on the attached list of all existing file elements within the GUI source tree:

% cleartool find /vobs/gui_src –type f \
–exec 'cleartool mktrigger InformWriters $CLEARCASE_PN'

10.8 Policy: All Source Files Must Meet Project Standards

To ensure that developers are following coding guidelines or other standards, you can evaluate

their source files. You can create preoperation triggers to run user-defined programs, and cancel

the commands that trigger them.
10 - Implementing Project Development Policies 135

For example, you may want to disallow checkin of C-language files that do not satisfy quality

metrics. You may have your own metrics program, or you can run lint(1). Suppose that you have

defined an element type, c_source, for C language files (*.c).

Trigger Definition:

% cleartool mktrtype –element –all –eltype c_source \
–preop checkin –exec '/public/scripts/apply_metrics.sh $CLEARCASE_PN' ApplyMetrics

This trigger type ApplyMetrics applies to all elements; it fires when any element of type

c_source is checked in. (When a new c_source element is created, it is monitored.) If a developer

attempts to check in a c_source file that fails the apply_metrics.sh test, the checkin fails.

NOTE: The apply_metrics.sh script can read the value of CLEARCASE_PN from its environment.

Having it accept a file-name argument provides flexibility because the script can be invoked as

a trigger action, and developers can also use it manually.

10.9 Policy: Associate Changes with Change Orders

To keep track of work done in response to an engineering change order (ECO), you can use

attributes and triggers. For example, to associate a version with an ECO, define ECO as an

integer-valued attribute type:

cleartool mkattype –c "bug number associated with change" –vtype integer ECO
Created attribute type "ECO".

Then, define an all-element trigger type, EcoTrigger, which fires whenever a new version is

created and runs a script to attach the ECO attribute:

Trigger Definition:

cleartool mktrtype –element –all –postop checkin –c "associate change with bug number" \
–execunix 'Perl /public/scripts/eco.pl' –execwin 'ccperl \\neon\scripts\eco.pl' EcoTrigger
Created trigger type "EcoTrigger".

Trigger Action Script:
136 Managing Software Projects with ClearCase

$pname = $ENV{’CLEARCASE_XPN’};

print "Enter the bug number associated with this checkin: ";
$bugnum = <STDIN>;
chomp ($bugnum);
$command = "cleartool mkattr ECO $bugnum $pname";

@returnvalue = ‘$command‘;
$rval = join "",@returnvalue;
print "$rval";

exit(0);

When a new version is created, the attribute is attached to the version. For example:

cleartool checkin –c "fixes for 4.0" src.c
Enter the bug number associated with this checkin: 2347
Created attribute "ECO" on "/vobs/dev/src.c@@/main/2".
Checked in "src.c" version "/main/2".

cleartool describe src.c@@/main/2
version "src.c@@/main/2"
...

Attributes:
ECO = 2347

10.10 Policy: Associate Project Requirements with Source Files

You can implement requirements tracing with hyperlinks, which associate pairs of VOB objects.

The association should be at the version level (rather than the branch or element level): each

version of a source code module must be associated with a particular version of a related design

document.

For example, the project manager creates a hyperlink type named DesignDoc, which is used to

associate source code with design documents:

cleartool mkhltype –c "associate code with design docs" \
DesignDoc@/vobs/dev DesignDoc@/vobs/design
Created hyperlink type "DesignDoc".
Created hyperlink type "DesignDoc".

The hyperlink inheritance feature makes the implementation of requirements tracing easy:
10 - Implementing Project Development Policies 137

➤ When the source module, hello.c, and the design document, hello_dsn.doc, are updated,

the project manager creates a new hyperlink connecting the two updated versions:

cleartool mkhlink -c "source doc" DesignDoc hello.c /vobs/design/hello_dsn.doc
Created hyperlink "DesignDoc@90@/vobs/dev".

➤ When either the source module or the design document incorporates a minor update, no

hyperlink-level change is required: the new version inherits the hyperlink connection of its

predecessor.

cleartool checkin -c "fix bug" hello.c
Checked in "hello.c" version "/main/2".

To list the inherited hyperlink, use the –ihlink option to the describe command:

➤ When either the source module or the design document incorporates a significant update,

which renders the connection invalid, the project manager creates a null-ended hyperlink to

sever the connection:

cleartool mkhlink -c "sever connection to design doc" DesignDoc hello.c
Created hyperlink "DesignDoc@94@/vobs/dev".

Figure 36 illustrates the hyperlinks that connect the source file to the design doc.

version that
inherits hyperlink->

% cleartool describe –ihlink DesignDoc hello.c@@/main/2
hello.c@@/main/2

version to which ->
hyperlink is explicitly
attached

Inherited hyperlinks: DesignDoc@90@/vobs/dev
/vobs/dev/hello.c@@/main/1 ->
/vobs/doc/hello_dsn.doc@@/main/1
138 Managing Software Projects with ClearCase

Figure 36 Requirements Tracing

10.11 Policy: Prevent Use of Certain Commands

To control which users can execute certain commands on ClearCase objects, you can create a pair

of trigger types. One of the types controls use of the command on element-related objects, and

the other controls use of the command on type objects. Both trigger types use the –nuser flag to

specify the users who are allowed to use the command.

NOTE: You cannot use triggers to prevent a command being used on an object that is not

element-related or a type object. For example, you cannot create a trigger type to prevent

operations on VOB objects or replica objects.

For a list of commands that can be triggered, see the events_ccase and mktrtype reference pages.

For example, the following commands create two trigger types that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects and

type objects in the current VOB:

0

1

2

3

4

hello.c

source module design document

0

1

2

3

hello_dsn.c

DesignDoc

DesignDoc

DesignDoc
10 - Implementing Project Development Policies 139

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma \
–execunix 'Perl –e "exit –1;"' –execwin 'ccperl –e "exit (–1);"' \
–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma \
–execunix 'Perl –e "exit –1;"' –execwin 'ccperl –e "exit (–1);"' \
–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all \
–c "ACL for chmaster" type_chmaster_ACL

When user tony tries to run the chmaster command on a restricted object, the command fails. For

example:

cleartool chmaster –c "give mastership to london" london@/vobs/dev \
/vobs/dev/acc.c@@/main/lex_dev
cleartool: Warning: Trigger "elem_chmaster_ACL" has refused to let chmaster
proceed.
cleartool: Error: Unable to perform operation "change master" in replica "lex"
of VOB "/vobs/dev".

10.12 Policy: Certain Branches Are Shared Among MultiSite Sites

If your company uses ClearCase MultiSite to support development at different sites, you must

tailor your branching strategy to the needs of the different sites. The standard MultiSite

development model is that a replica of the VOB is at each site. Each replica controls (masters) a

site-specific branch type, and developers at one site cannot work on branches mastered at

another site. (See Introduction to MultiSite in ClearCase MultiSite Manual for more information on

MultiSite mastership.)

However, sometimes you cannot, or may not want to, branch and merge an element. For

example, some file types cannot be merged, so development must occur on a single branch. In

this scenario, all developers must work on a single branch (usually, the main branch). MultiSite

allows only one replica to master a branch at any given time. Therefore, if a developer at another

site needs to work on the element, mastership of the branch must be transferred to that site.

MultiSite provides two models for transferring mastership of a branch:

➤ The push model, in which the administrator at the replica that masters the branch uses the

chmaster command to give mastership to another replica.
140 Managing Software Projects with ClearCase

This model is not efficient in a branch-sharing situation, because it requires communication

with an administrator at a remote site. For more information about this model, see ClearCase
MultiSite Manual.

➤ The pull model, in which the developer who needs to work on the branch uses the

reqmaster command to request mastership of the branch.

This model requires the MultiSite administrators to enable requests for mastership in each

replica, and to authorize individual developers to request mastership. If you decide to

implement this model, you must provide the following information to your MultiSite

administrator:

➣ Replicated VOBs that should be enabled to handle mastership requests

➣ Identities (domain names and user names) of developers who should be authorized to

request mastership

➣ Branch types and branches for which mastership requests should be denied; (for

example, branch types that are site specific, or branches that must remain under the

control of a single site)

Implementing Requests for Branch Mastership in ClearCase MultiSite Manual describes the

process of enabling the pull model and a scenario in which developers use the pull model.

Working On a Team in Developing Software with ClearCase describes the procedure developers

use to request mastership.

10.13 Sharing Triggers Between UNIX and Windows

You can define triggers that fire correctly on both UNIX and Windows computers. The following

sections describe two techniques. With one, you use different pathnames or different scripts;

with the other, you use the same script for both platforms.

Using Different Pathnames or Different Scripts

To define a trigger that fires on UNIX, Windows, or both, and that uses different path names to

point to the trigger scripts, use the –execunix and –execwin options with the mktrtype
command. These options behave the same as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). On the other platform, they do nothing. This technique allows
10 - Implementing Project Development Policies 141

a single trigger type to use different paths for the same script or to use completely different

scripts on UNIX and Windows computers. For example:

cleartool mktrtype –element –all –nc –preop checkin \
–execunix /public/scripts/precheckin.sh –execwin \\neon\scripts\precheckin.bat \
pre_ci_trig

On UNIX, only the script precheckin.sh runs. On Windows, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers that specify only

–execunix always fail on Windows. Likewise, triggers that specify only –execwin fail on UNIX.

Using the Same Script

To use the same trigger script on both Windows and UNIX platforms, you must use a batch

command interpreter that runs on both operating systems. For this purpose, ClearCase includes

the ccperl program. On Windows, ccperl is a version of the Perl program available on UNIX.

The following mktrtype command creates sample trigger type pre_ci_trig and names

precheckin.pl as the executable trigger script.

% cleartool mktrtype –element –all –nc –preop checkin \
–execunix 'Perl /public/scripts/precheckin.pl' \
–execwin 'ccperl \\neon\scripts\precheckin.pl' \
pre_ci_trig

Notes

➤ To conditionalize script execution based on operating system, use environment variables in

Perl scripts.

➤ To collect or display information interactively, you can use the clearprompt command.

➤ For more information on using the –execunix and –execwin options, see the mktrtype
reference page.
142 Managing Software Projects with ClearCase

1111 Integrating Changes

In a parallel development environment, the opposite of branching is merging. In the simplest

scenario, merging incorporates changes on a subbranch into the main branch. However, you can

merge work from any branch into any other branch. This chapter describes techniques and

scenarios for merging versions of elements and branches. ClearCase includes automated merge

facilities for handling almost any scenario.

11.1 How Merging Works

A merge combines the contents of two or more files or directories into a single new file/directory.

The ClearCase merge algorithm uses the following files during a merge (see Figure 37):

➤ Contributors, which are typically one version from each branch you are merging. (You can

merge up to 15 contributors.) You specify which versions are contributors.

➤ The base contributor, which is typically the closest common ancestor of the contributors.

(For selective merges, subtractive merges, and merges in an environment with complex

branch structures, the base contributor may not be the closest common ancestor.) ClearCase

determines which contributor is the base contributor.

➤ The target contributor, which is typically the latest version on the branch that will contain

the results of the merge. You determine which contributor is the target contributor.

➤ The merge output file, which contains the results of the merge and is usually checked in as a

successor to the target contributor. By default, the merge output file is the checked-out

version of the target contributor, but you can choose a different file to contain the merge

output.
11 - Integrating Changes 143

Figure 37 Versions Involved in a Typical Merge

To merge files and directories, ClearCase takes the following steps:

1. It identifies the base contributor.

2. It compares each contributor against the base contributor. (See Figure 38.)

3. For any line that is unchanged between the base contributor and any other contributor, it

copies the line to the merge output file.

4. For any line that has changed between the base contributor and one other contributor, it

accepts the change in the contributor; depending on how you started the merge operation,

ClearCase may copy the change to the merge output file. However, you can disable the

4

5

6

7

Contributor

8

4

5

6

0

1

2

3

Base contributor

Target contributor

Merge output
file

element: opt.c

merge

/main

/r1_fix
144 Managing Software Projects with ClearCase

automated merge capability for any given merge operation. If you disable this capability,

you must approve each change to the merge output file.

5. For any line that has changed between the base contributor and more than one other

contributor, ClearCase requires that you resolve the conflicting difference.

Figure 38 ClearCase Merge Algorithm

To merge versions, you can use the GUI tools, described briefly in the next section, or the

command-line interface, described in Using the Command Line to Merge Elements on page 146.

Using the GUI to Merge Elements

ClearCase provides three graphical tools to help you merge elements:

➤ Merge Manager

➤ Diff Merge

➤ Version Tree Browser

The Merge Manager manages the process of merging one or more ClearCase elements. It

automates the processes of gathering information for a merge, starting a merge, and tracking a

merge. It can also save and retrieve the state of a merge for a set of elements.

You can use the Merge Manager to merge from many directions:

➤ From a branch to the main branch

➤ From the main branch to another branch

➤ From one branch to another branch

To start the Merge Manager, type clearmrgman at a command prompt.

▲ (b, c1)

B

C1 C2

▲ (b, c2)

Destination version = B + ▲ (b, c1) + ▲ (b, c2)

Base
contributor

Source
contributors
11 - Integrating Changes 145

The Diff Merge utility shows the differences between two or more versions of file or directory

elements. Use this tool to compare up to 16 versions at a time, navigate through versions, merge

versions, and resolve differences between versions.

To start the Diff Merge utility, type xcleardiff or use the cleartool merge –graphical command at

a command prompt.

The Version Tree Browser displays the version tree for an element. The version tree is useful

when merging to do the following::

➤ Locate versions or branches that have contributed to or resulted from a merge

➤ Start a merge by clicking on the appropriate symbol

The merge can be recorded with a merge arrow, which is implemented as a hyperlink of type

Merge.

To start the Version Tree Browser, use one of these methods:

➤ At a command prompt, type cleartool lsvtree –graphical
➤ In the ClearCase File Browser, click an element and click Versions>Show version tree

Using the Command Line to Merge Elements

Use the following commands to perform merges from the command line:

➤ cleartool merge
➤ cleartool findmerge
➤ cleardiff

For more information on these commands, see the ClearCase Reference Manual.

11.2 Common Merge Scenarios

The following sections present a series of merge scenarios that require work on one branch of an

element to be incorporated into another branch. Each scenario shows the version tree of an

element that requires a merge and indicates the appropriate command to perform the merge.
146 Managing Software Projects with ClearCase

Scenario: Selective Merge from a Subbranch

In this scenario, you want to incorporate the changes in version /main/r1_fix/4 into new

development. To perform the merge, you specify which versions on the r1_fix branch to include.

See Figure 39.

Figure 39 Selective Merge from a Subbranch

In a view configured with the default config spec, enter these commands to perform the selective

merge:

% cleartool checkout opt.c
% cleartool merge –to opt.c –insert –version /main/r1_fix/4

You can also specify a range of consecutive versions to be merged. For example, this command

merges only the changes in versions /main/r1_fix/2 through /main/r1_fix/4:

merge

4

5

6

7

8

4

5

6

0

1

2

3

element: opt.c

Exclude changes
in these versions
from merge

/r1_fix

Exclude changes
in these versions
from merge

Include changes
in this version only

QA_APPROVED

/main
11 - Integrating Changes 147

% cleartool merge –to opt.c –insert –version /main/r1_fix/2 /main/r1_fix/4

No merge arrow is created for a selective merge.

Scenario: Removing the Contributions of Some Versions

A new feature, implemented in versions 14 through 16 on the main branch, will not be included

in the product. You must remove the changes made in those versions. See Figure 40.

Figure 40 Removing the Contributions of Some Versions

Enter these commands to perform this subtractive merge:

% cleartool checkout opt.c
% cleartool merge –to opt.c –delete –version /main/14 /main/16

No merge arrow is created for a subtractive merge.

17

18

13

14

15

16

element: opt.c

These versions'
contributions to
be removed

/main
148 Managing Software Projects with ClearCase

Scenario: Merging All Project Work

Your team has been working on a branch. Now, your job is to merge all the changes into the main
branch.

The findmerge command can handle most common cases easily. It can accommodate the

following schemes for isolating the project’s work.

All Project Work Is Isolated on a Branch

The standard approach to parallel development isolates all project work on the same branch.

More precisely, all new versions of source files are created on like-named branches of their

respective elements (that is, on branches that are instances of the same branch type). This makes

it possible for a single findmerge command to locate and incorporate all the changes. Suppose

the common branch is named gopher. You can enter these commands in a view configured with

the default config spec:

% cd root-of-source-tree
% cleartool findmerge . –fversion .../gopher/LATEST –merge –graphical

The –merge –graphical syntax causes the merge to take place automatically whenever possible,

and to start the graphical merge utility if an element’s merge requires user interaction. If the

project has made changes in several VOBs, you can perform all the merges at once by specifying

several pathnames, or by using the –avobs option to findmerge.

All Project Work Isolated In a View

Some projects are organized so that all changes are made in a single view (typically, a shared

view). For such projects, use the –ftag option to findmerge. Suppose the project’s work has been

done in a view whose view-tag is goph_vu. These commands perform the merge:

% cd root-of-source-tree
% cleartool findmerge . –ftag goph_vu –merge –graphical

NOTE: Working in a single shared view is not recommended because doing so can degrade

system performance.
11 - Integrating Changes 149

Scenario: Merging a New Release of an Entire Source Tree

Your team has been using an externally supplied source-code product, maintaining the sources

in a VOB. The successive versions supplied by the vendor are checked in to the main branch and

labeled VEND_R1, VEND_R2, and VEND_R3. Your team’s fixes and enhancements are created

on subbranch enhance. The views that your team works in are configured to branch from the

VEND_R3 baseline:

element * CHECKEDOUT
element * .../enhance/LATEST
element * VEND_R3 -mkbranch enhance
element * /main/LATEST -mkbranch enhance

The version trees in Figure 41 show various likely cases:

➤ An element that your team started changing at Release 1 (enhance branch created at the

version labeled VEND_R1)

➤ An element that your team started changing at Release 3

➤ An element that your team has never changed
150 Managing Software Projects with ClearCase

Figure 41 Merging a New Release of an Entire Source Tree

Release 4 has arrived, and you need to integrate this release with your team’s changes.

To prepare for the merge, add the new release to the main branch and label the versions

VEND_R4. Merging the source trees involves merging from the version labeled VEND_R4 to the

most recent version on the enhance branch; if an element has no enhance branch, nothing is

merged.

This procedure accomplishes the integration:

1. Load the vendor’s Release 4 media into a standard directory tree:

%cd /usr/tmp
% tar –xv

previous
merges

0

1

2

3

4

0

1

2

3

VEND_R1

main

enhance

VEND_R3

VEND_R2

5

'main' branch used
for vendor's releases,
not for development

'enhance' branch used
for your organization's
changes

0

1

2

3

0

1

2

3

VEND_R1

main

enhance

VEND_R3

VEND_R2

0

1

2

3

VEND_R1

main

VEND_R3

VEND_R2
11 - Integrating Changes 151

The directory tree created is mathlib_4.0.

2. As the VOB owner, run clearexport_ffile, to create a datafile containing descriptions of the

new versions.

% cd ./mathlib_4.0
% clearexport_ffile
 . (lots of output)
 .

3. In a view configured with the default config spec, start clearimport on the file

clearexport_ffile created. This creates Release 4 versions on the main branches of elements

(and creates new elements as needed).

% cleartool setview mainline

% cd /vobs/proj/mathlib
% clearimport /usr/tmp/mathlib_4.0/cvt_data

4. Label the new versions:

% cleartool mklbtype –c "Release 4 of MathLib sources" VEND_R4
Created label type "VEND_R4".
% cleartool mklabel –recurse VEND_R4 /vobs/proj/mathlib
 . (lots of output)
 .

5. Set to a view that is configured with your team’s config spec and selects the versions on the

enhance branch:

% cleartool setview enh_vu

6. Merge from the VEND_R4 configuration to your view:

% cleartool findmerge -nback /vobs/proj/mathlib –fver VEND_R4 –merge –graphical

The –merge –graphical syntax instructs findmerge to merge automatically if possible, but if

not, start the graphical merge tool.

7. Verify the merges, and check in the modified elements.

You have now established Release 4 as the new baseline. Developers on your team can update

their view configurations as follows:

element * CHECKEDOUT
element * .../enhance/LATEST
152 Managing Software Projects with ClearCase

Elements that have been active continue to evolve on their enhance branches. When elements are

revised for the first time, their enhance branches are created at the VEND_R4 version.

Scenario: Merging Directory Versions

One of the most powerful features of ClearCase is versioning of directories. Each version of a

directory element catalogs a set of file elements, directory elements, and VOB symbolic links. In

a development project, directories change are as often as files do. Merging the changes to another

branch is as easy merging files.

Take a closer look at the source tree scenario from the previous section. Suppose you find that the

vendor has made several changes in directory /vobs/proj/mathlib/src:

➤ File elements Makefile, getcwd.c, and fork3.c have been revised.

➤ File elements readln.c and get.c have been deleted.

➤ A new file element, newpaths.c, has been created.

When you use findmerge to merge the changes made in the VEND_R4 sources to the enhance
branch, the changes to both the files and the directory are handled automatically. The following

findmerge excerpt shows the directory merge activity:

If you have changes to merge from both files and directories, it may be a good idea to run

findmerge twice: first to merge directories, and then to merge files. Using the –print option to a

findmerge command does not report everything that is merged, because findmerge does not see

element * VEND_R4 –mkbranch enhance
element * /main/LATEST –mkbranch enhance

(change from VEND_R3 to VEND_R4)

<<< directory 1: /vobs/proj/mathlib/src@@/main/3
>>> directory 2: .@@/main/enhance/1
>>> directory 3: .

-------[removed directory 1]-------|----------[directory 2]------------
get.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
-----------[directory 1]-----------|--------[added directory 2]---------

-| newpaths.c 08-Mar.21:49 drp
*** Automatic: Applying ADDITION from directory 2
-------[removed directory 1]-------|-----------[directory 2]------------
readln.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
Recorded merge of ".".
11 - Integrating Changes 153

new files or subdirectories in the merge-from version of a directory until after the directories are

merged. To report every merge that takes place, use findmerge to merge the directories only, and

then use findmerge –print to get information about the file merges needed. Afterward, you can

cancel the directory merges by using the uncheckout command on the directories.

11.3 Using Your Own Merge Tools

You can create a merged version of an element manually or with any available analysis and

editing tools. Check out the target version, revise it, and check it in. Immediately before (or after)

the checkin, record your activity by using the merge command with the –ndata (no data) option:

% cleartool checkout nextwhat.c
Checkout comments for "nextwhat.c":
merge enhance branch
.
Checked out "nextwhat.c" from version "/main/1".

% <invoke your own tools to merge data into checked-out version>

% cleartool merge –to nextwhat.c –ndata –version .../enhance/LATEST
Recorded merge of "nextwhat.c".

This form of the merge command does not change any file system data; it merely attaches a

merge arrow (a hyperlink of type Merge) to the specified versions. After you’ve made this

annotation, your merge is indistinguishable from one performed with ClearCase tools.
154 Managing Software Projects with ClearCase

1212 Using Element Types to Customize
Processing of File Elements

Most projects involve many different file types. For example, in a typical software release,

developers may work on C-language source files, C-language header files, document files in

binary format, and library files.

Every file that is stored in a ClearCase VOB is associated with an element type. ClearCase

provides predefined element types for various kinds of file types, and every element type has an

associated type manager, which handles the operations performed on versions of the element.

For some file types in your project, you may want to create your own element types so that you

can customize the handling of the files. You can also create your own type managers.

This chapter describes how ClearCase uses element types and type managers to classify and

manage files. It also describes how you can customize file classification and management.

12.1 File Types in a Typical Project

Table 5 lists the files used in a typical development project.
12 - Using Element Types to Customize Processing of File Elements 155

12.2 How ClearCase Assigns Element Types

In various contexts, ClearCase determines one or more file types for an existing file-system object,

or for a name to be used for a new object. When you create a new element and do not specify an

element type, ClearCase determines the file type for the element.

The file-typing routines use predefined and user-defined magic files, as described in the cc.magic
reference page. A magic file can use many different techniques to determine a file type, including

file-name pattern-matching, stat(2) data, and standard UNIX magic numbers.

Table 5 Files Used in a Typical Project

Type of File Identifying Characteristic

Source Files

C-language source file .c file-name extension

C-language header file .h file-name extension

FrameMaker® binary file .doc or .mif file-name extension, first line

of file begins with <Maker

manual page source file .1 – .9 file-name extension

Derived Files

ar(1) archive (library) .a file-name extension

compiled executable <varies with system architecture>file-name

extension
156 Managing Software Projects with ClearCase

For example, the following magic file specifies several file types for each kind of file listed in

Table 5.

12.3 Element Types and Type Managers

ClearCase can handle different classes of files differently because it uses element types to

categorize elements. Each file element in a VOB must have an element type. An element gets its

type when it is created; you can change an element’s type subsequently, with the chtype
command. (An element is an instance of its element type, in the same way that an attribute is an

instance of an attribute type and a version label is an instance of a label type.)

Each element type has an associated type manager, a suite of programs that handle the storage and

retrieval of versions from storage pools. (See the type_manager reference page for information

on how type managers work.) Thus, the way in which a file element’s data is handled depends

on its element type.

NOTE: Each directory element also has an element type. But directory elements do not use type

managers; the contents of a directory version are stored in the VOB database itself, not in storage

pools.

Figure 42 shows how an element type is assigned to a newly created element.

Sample Magic File

(1)
(2)
(3)
(4)
(5)
(6)

c_src src_file text_file file: -name "*.c" ;
hdr_file text_file file: -name "*.h" ;
frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;
manpage src_file text_file file: -name "*.[1-9]" ;
archive derived_file file: -magic 32, "archive" ;
sunexec derived_file file: -magic 40,"SunBin" ;
12 - Using Element Types to Customize Processing of File Elements 157

Figure 42 Data Handling: File Type, Element Type, Type Manager

For example, a new element named monet_adm.1 is assigned an element type as follows:

1. A developer creates an element:

% cleartool mkelem monet_adm.1

name for new
file element

mkelem command
without -eltype option

element type for
new file element

rule from the
magic file that

matches file name

mkelem command
with -eltype option

magic file(s) and
file-typing routines

type manager for
element type

use first file type in
matching rule that

 names an existing
element type

use specified
element type
158 Managing Software Projects with ClearCase

2. Because the developer did not specify an element type (–eltype option), mkelem uses one or

more magic files to determine the file types of the specified name.

NOTE: ClearCase supports a search path facility, using the environment variable

MAGIC_PATH. See the cc.magic reference page for details.

Suppose that the magic file shown in Sample Magic File on page 157 is the first (or only) one

to be used. In this case, rule (4) is the first to match the name monet_adm.1, yielding this list

of file types:

manpage src_file text_file file

3. This list is compared with the set of element types defined for the new element’s VOB.

Suppose that text_file is the first file type that names an existing element type; in this case,

monet_adm.1 is created as an element of type text_file.

4. Data storage and retrieval for versions of element monet_adm.1 are handled by the type

manager associated with the text_file element type; its name is text_file_delta:

% cleartool describe eltype:text_file
element type "text_file"
...

type manager: text_file_delta
supertype: file
meta-type of element: file element

File-typing mechanisms are defined on a per-user or per-site basis; element types are defined on

a per-VOB basis. (To ensure that element types are consistent across VOBs, the ClearCase

administrator can use global types.) In this case, a new element, monet_adm.1, is created as a

text_file element; in a VOB with a different set of element types, the same magic file may have

created it as a src_file element.

Other Applications of Element Types

Element types allow differential and customized handling of files beyond the selection of type

managers. Following are some examples.

Using Element Types to Configure a View

Creating all C-language header files as elements of type hdr_file allows flexibility in configuring

views. Suppose that one developer has reorganized the project header files, working on a branch
12 - Using Element Types to Customize Processing of File Elements 159

named header_reorg to avoid disrupting the team’s work. To compile with the new header files,

another developer can use a view reconfigured with one additional rule:

element * CHECKEDOUT
element -eltype hdr_file * /main/header_reorg/LATEST
element * /main/LATEST

Processing Files by Element Type

Suppose that a coding-standards program named check_var_names is to be executed on each

C-language source file. If all such files have element type c_src, a single cleartool command runs

the program:

% cleartool find –avobs –visible –element 'eltype(c_src)' \
–exec 'check_var_names $CLEARCASE_PN'

12.4 Predefined and User-Defined Element Types

Some of the element types described in this chapter (for example, text_file) are predefined.

Others (for example, c_src and hdr_file) are not; the previous examples work only if user-defined

element types with these names are created with the mkeltype command.

When a new VOB is created, it contains a full set of the predefined element types. Each is

associated with one of the type managers provided with ClearCase. The mkeltype reference

page describes the predefined element types and their type managers.

When you create a new element type with mkeltype, you must specify an existing element type

as its supertype. By default, the new element type uses the same type manager as its supertype;

in this case, the only distinction between the new and old types is for the purposes described in

Other Applications of Element Types on page 159. For differential data handling, use the –manager
option to create an element type that uses a different type manager from its supertype.

Directory ccase-home-dir/examples/clearcase/mkeltype contains shell scripts that create a

hierarchy of element types.
160 Managing Software Projects with ClearCase

12.5 Predefined and User-Defined Type Managers

ClearCase provides predefined type managers. The type managers are described in the

type_manager reference page. Each type manager is implemented as a suite of programs in a

subdirectory of ccase-home-dir/lib/mgrs; the name of the subdirectory is the name of the type

manager.

The mkeltype –manager command creates an element type that uses an existing type manager.

You can further customize ClearCase by creating new type managers and creating new element

types that use them. Architecturally, type managers are mutually independent, but new type

managers can use symbolic links to inherit some of the functions of existing ones.

The type_manager reference page describes the basic components of a type manager, and

outlines the process of creating a new one. The file ccase-home-dir/lib/mgrs/mgr_info.h provides

comprehensive information on type managers. Before proceeding to the following sections,

which present an extended example of creating and using a new type manager, read the

type_manager reference page and the mgr_info.h file.

12.6 Type Manager for Manual Page Source Files

One kind of file listed in Table 5 is a manual page source file, a file coded in nroff(1) format. A

type manager for this kind of file may have these characteristics:

➤ It stores all versions in compressed form in separate data containers, like the z_whole_copy
type manager.

➤ It implements version-comparison (compare method) by running diff on formatted manual

pages instead of the source versions.

The basic strategy is to use most of the z_whole_copy type manager’s methods. The compare

method uses nroff(1) to format the versions before displaying their differences.

Creating the Type Manager Directory

The name mp_mgr (manual page manager) is appropriate for this type manager. The first step is

to create a subdirectory with this name in the ccase-home-dir/lib/mgrs directory. For example:
12 - Using Element Types to Customize Processing of File Elements 161

mkdir /usr/atria/lib/mgrs/mp_mgr

Inheriting Methods from Another Type Manager

Most of the mp_mgr methods are inherited from the z_whole_copy type manager, through

symbolic links. You can enter the following commands as the root user in a Bourne shell:

MP=$ATRIAHOME/lib/mgrs/mp_mgr
for FILE in create_element create_version construct_version \

create_branch delete_branches_versions \
merge xmerge xcompare get_cont_info

> do
> ln –s ../z_whole_copy/$FILE $MP/$FILE
> done
#

Any methods that the new type manager does not support can be omitted from this list. The lack

of a symbolic link causes ClearCase to generate an Unknown Manager Request error.

The following sections describe two of these inherited methods, create_version and

construct_version, which can serve as models for user-defined methods. Both are actually

implemented as scripts in the same file, ccase-home-dir/lib/mgrs/z_whole_copy/Zmgr.

The create_version Method

The create_version method is invoked when a checkin command is entered. The create_version

method of the z_whole_copy type manager does the following:

1. Compresses the data in the checked-out version

2. Stores the compressed data in a data container located in a source storage pool

3. Returns an exit status to the calling process, indicating what to do with the new data

container

The file ccase-home-dir/lib/mgrs/mgr_info.h lists the arguments passed to the method from the

calling program (usually cleartool or xclearcase):
162 Managing Software Projects with ClearCase

/**
 * create_version
 * Store the data for a new version.
 * Store the version's data in the supplied new container, combining it
 * with the predecessor's data if desired (e.g for incremental deltas).
 *
 * Command line:
 * create_version create_time new_branch_oid new_ver_oid new_ver_num
 * new_container_pname pred_branch_oid pred_ver_oid
 * pred_ver_num pred_container_pname data_pname

The only arguments that require special attention are new_container_pname (fifth argument),

which specifies the pathname of the new data container, and data_pname (tenth argument),

which specifies the pathname of the checked-out file.

The file ccase-home-dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and provides a

symbolic name for the create_version method:

Any unexpected value is treated as failure
MGR_FAILED=1

Return Values for store operations
MGR_STORE_KEEP_NEITHER=101
MGR_STORE_KEEP_JUST_OLD=102
MGR_STORE_KEEP_JUST_NEW=103
MGR_STORE_KEEP_BOTH=104
 .
 .
MGR_OP_CREATE_VERSION="create_version"

The example here is the code that implements the create_version method.
12 - Using Element Types to Customize Processing of File Elements 163

The Bourne shell allows only nine command-line arguments. The shift 1 in Line 1 discards the

first argument (create_time), which is unneeded. Thus, the pathname of the checked-out version

(data_pname), originally the tenth argument, becomes $9 .

In Line 6, the contents of data_pname are compressed, then appended to the new, empty data

container: new_container_pname, originally the fifth argument, but shifted to become $4 . (Lines 2

through 5 verify that the new data container is, indeed, empty.)

Finally, the exit status of the gzip command is checked, and the appropriate value is returned

(Lines 7 through 11). The exit status of the create_version method indicates that both the old data

container (which contains the predecessor version) and the new data container (which contains

the new version) are to be kept.

The construct_version Method

An element’s construct_version method is invoked when standard UNIX software reads a

particular version of the element (unless the contents are already cached in a cleartext storage

pool). For example, the construct_version method of element monet_admin.1 is invoked by the

view_server when a user enters these commands:

It is also invoked during a checkout command, which makes a view-private copy of the most

recent version on a branch.

The construct_version method of the z_whole_copy type manager does the following:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

shift 1
if [-s $4] ; then

echo '$0: error: new file is not of length 0!’
exit $MGR_FAILED

fi
if $gzip < $9 > $4 ; ret=$? ; then : ; fi
if ["$ret" = "2" -o "$ret" = "0"] ; then

exit $MGR_STORE_KEEP_BOTH
else

exit $MGR_FAILED
fi

% cp monet_admin.1 /usr/tmp (read version selected by view)
% cat monet_admin.1@@/main/4 (read a specified version)
164 Managing Software Projects with ClearCase

1. Uncompresses the contents of the data container

2. Returns an exit status to the calling process, indicating what to do with the new data

container

The file ccase-home-dir/lib/mgrs/mgr_info.h lists the arguments passed to the method.

/**
 * construct_version
 * Fetch the data for a version.
 * Extract the data for the requested version into the supplied pathname, or
 * return a value indicating that the source container can be used as the
 * cleartext data for the version.
 *
 * Command line:
 * construct_version source_container_pname data_pname version_oid

The file ccase-home-dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and provides a

symbolic name for the construct_version method:

Any unexpected value is treated as failure
MGR_FAILED=1

Return Values for construct operations
MGR_CONSTRUCT_USE_SRC_CONTAINER=101
MGR_CONSTRUCT_USE_NEW_FILE=102
 .
 .
MGR_OP_CONSTRUCT_VERSION="construct_version"

This example is the code that implements the construct_version method.

In Line 1, the contents of source_container_pname are uncompressed and stored in the cleartext

container, data_pname. The remaining lines return the appropriate value to the calling process,

depending on the success or failure of the gzip command.

construct_version Method

(1)
(2)
(3)
(4)
(5)

if $gzip -d < $1 > $2 ; then
exit $MGR_CONSTRUCT_USE_NEW_FILE

else
exit $MGR_FAILED

fi
12 - Using Element Types to Customize Processing of File Elements 165

Implementing a New compare Method

The compare method is invoked by a cleartool diff command. This method does the following:

1. Formats each version using nroff(1), producing a pure-ASCII text file

2. Compares the formatted versions, using cleardiff or xcleardiff

The file ccase-home-dir/lib/mgrs/mgr_info.h lists the arguments passed to the method from

cleartool or xclearcase.

/**
 * compare
 * Compare the data for two or more versions.
 * For more information, see man page for cleartool diff.
 *
 * Command line:
 * compare [-tiny | -window] [-serial | -diff | -parallel] [-columns n]
 * [pass-through-options] pname pname ...

This listing shows that a user-supplied implementation of the compare method must accept all

the command-line options that the ClearCase diff command supports. The strategy here is to

pass the options to cleardiff, without attempting to interpret them. After all options are

processed, the remaining arguments specify the files to be compared.

The file ccase-home-dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and provides a

symbolic name for the compare method.

Return Values for COMPARE/MERGE Operations
MGR_COMPARE_NODIFFS=0
MGR_COMPARE_DIFF_OR_ERROR=1
 .
 .
MGR_OP_COMPARE="compare"

The Bourne shell script listed in Script for compare Method implements the compare method. (You

can modify this script to implement the xcompare method as a slight variant of compare.)
166 Managing Software Projects with ClearCase

Testing the Type Manager

You can test a new type manager only by using it on some ClearCase host. This process need not

be obtrusive. Because the type manager has a new name, no existing element type—and

therefore, no existing element—uses it automatically. To place the type manager in service, create

a new element type, create some test elements of that type, and run some tests.

Script for compare Method

#!/bin/sh -e
MGRDIR=${ATRIAHOME:-/usr/atria}/lib/mgrs

read file that defines methods and exit statuses
. $MGR_DIR/mgr_info.sh

process all options: pass them through to cleardiff
OPTS=""
while (expr $1 : '\-' > /dev/null) ; do
 OPTS="$OPTS $1"
 if ["$1" = "$MGR_FLAG_COLUMNS"] ; then
 shift 1
 OPTS="$OPTS $1"
 fi
 shift 1
done
all remaining arguments ($*) are files to be compared
first, format each file with NROFF
COUNT=1
TMP=/usr/tmp/compare.$$
for X in $* ; do
 nroff -man $X | col | ul -Tcrt > $TMP.$COUNT
 COUNT=‘expr $COUNT + 1‘
done

then, compare the files with cleardiff
cleardiff -quiet $OPTS $TMP.*

cleanup and return appropriate exit status
if [$? -eq MGR_COMPARE_NODIFFS] ; then
 rm -f $TMP.*
 exit MGR_COMPARE_NODIFFS
else
 rm -f $TMP.*
 exit MGR_COMPARE_DIFF_OR_ERROR
fi
12 - Using Element Types to Customize Processing of File Elements 167

The following testing sequence continues the mp_mgr example.

Creating a Test Element Type. To make sure that an untested type manager is not used

accidentally, associate it with a new element type, manpage_test, of which you are the only user.

% cleartool mkeltype –nc –supertype compressed_file \
–manager mp_mgr manpage_test

% cleartool lock –nusers $USER eltype:manpage_test

Creating and Using a Test Element. These commands create a test element that uses the new

type manager, and tests the various data-manipulation methods:

% cd directory-in-test-VOB
% cleartool checkout –nc . (tests create_element method)
% cleartool mkelem –eltype manpage_test –nc –nco test.1
% cleartool checkout –nc test.1 (tests construct_version method)
% vi test.1 (edit checked-out version)
% cleartool checkin –c "first" test.1 (tests create_ version method)
% cleartool checkout –nc test.1 (tests construct_ version method)
% vi test.1 (edit checked-out version)
% cleartool checkin –c "second" test.1 (tests create_ version method)
% cleartool diff test.1@@/main/1 test.1@@/main/2 (tests compare method)

Installing and Using the Type Manager

After a type manager has been fully tested, you can make it available to all users with the

following procedure.

1. Install the type manager.

A VOB is a networkwide resource; it can be mounted on any ClearCase host. But a type

manager is a host resource: a separate copy must be installed on each host where ClearCase

client programs run. If the copy is not installed, elements of the new type cannot be used. (It

need not be installed on hosts that serve only as repositories for VOBs and/or views.)

To install the type manager on a particular host, create a subdirectory in

ccase-home-dir/lib/mgrs, and populate it with the programs that implement the methods. You

can create symbolic links across the network to a master copy on a server host.

2. Create element types.

Create one or more element types that use the type manager, just as you did in Testing the
Type Manager (do not include “test” in the name of the element type). For example, you can

name the element type manpage or nroff_src.
168 Managing Software Projects with ClearCase

3. Convert existing elements.

You’ll probably want to have at least a few existing elements use the new type manager. The

chtype command changes an element’s type:

% cleartool chtype –force manpage pathname ...

Permission to change an element’s type is restricted to the element’s owner, the VOB owner,

and the root user.

4. Revise magic files.

If you want the new element types to be used automatically for certain newly created

elements, create (or update) a local.magic file in each host’s ccase-home-dir/config/magic
directory:

manpage src_file text_file file: -name "*.[1-9]" ;

5. Inform the project team (and other teams, if appropriate).

Advertise the new element types to all team members, describing the features and benefits

of the new type manager. Be sure to provide directions on how to gain access to the new

functionality automatically (through file names that match magic-file rules) and explicitly

(with mkelem –eltype).

12.7 Icon Use by GUI Browsers

An xclearcase browser can display file-system objects either by name or graphically. In the latter

case, xclearcase selects an icon for each file-system object as follows:

1. The object’s name or its contents determines a list of file types, as described in How ClearCase
Assigns Element Types on page 156.

2. One by one, the file types are compared to the rules in predefined and user-defined icon files,

as described in the cc.icon reference page. For example, the file type c_source matches this

icon file rule:

c_source : -icon c ;

When a match is found, the search ends. The token that follows –icon names the file that

contains the icon to be displayed.
12 - Using Element Types to Customize Processing of File Elements 169

3. xclearcase searches for the file, which must be in bitmap(1) format, in directory

$HOME/.bitmaps, or ccase-home-dir/config/ui/bitmaps, or the directories specified by the

environment variable BITMAP_PATH.

4. If a valid bitmap file is found, xclearcase displays it; otherwise, the search for an icon

continues with the next file type.

The name of an icon file must include a numeric extension, which need not be specified in the

icon file rule. The extension specifies how much screen space xclearcase must allocate for the

icon. Each bitmap supplied with ClearCase is stored in a file with a .40 suffix (for example,

lib.40), indicating a 40x40 icon.

This procedure causes xclearcase to display manual page source files with a customized icon. All

manual pages have file type manpage.

1. Add a rule to your personal magic file (in directory $HOME/.magic) that includes manpage
among the file types assigned to all manual page source files:

manpage src_file text_file file: -name "*.[1-9]" ;

2. Add a rule to your personal icon file (in directory $HOME/.icon) that maps manpage to a

user-defined bitmap file:

manpage : -icon manual_page_icon ;

3. Create a manpage icon in your personal bitmaps directory ($HOME/.bitmaps) by revising one

of the standard icon bitmaps with the standard X bitmap utility:

% mkdir $HOME/.bitmaps
% cd $HOME/.bitmaps
% cp $ATRIAHOME/config/ui/bitmaps/c.40 manual_page_icon.40
% bitmap manual_page_icon.40

4. Test your work by having an xclearcase graphical directory browser display a manual page

source file (Figure 43).
170 Managing Software Projects with ClearCase

Figure 43 User-Defined Icon Display

checkin.1 clearmake.1

lookup of file name
in magic file yields
manpage file type

lookup of manpage in icon
file yields customized

manpage_icon bitmap
12 - Using Element Types to Customize Processing of File Elements 171

172 Managing Software Projects with ClearCase

1313 Using ClearCase Throughout the
Development Cycle

The previous chapters describe various aspects of managing a project with ClearCase. This

chapter presents one way in which you can use ClearCase to organize the work throughout a

development project. During this cycle, developers create a new release and maintain the

previous release.

This chapter describes concepts and methods to address typical organizational needs. There are

many other approaches that ClearCase supports.

13.1 Project Overview

Release 2.0 development of the monet project includes the following kinds of work:

➤ Patches. Several high-priority bug fixes to Release 1.0 are needed.

➤ Minor enhancements. Some commands need new options; some option names need to be

shortened (–recursive becomes –r); some algorithms need performance work.

➤ Major new features. A graphical user interface is required, as are many new commands and

internationalization support.

These three development efforts can proceed largely in parallel (Figure 44), but critical

dependencies and milestones must be considered:

➤ Several Release 1.0 patch releases will ship before Release 2.0 is complete.

➤ New features take longer to complete than minor enhancements.
13 - Using ClearCase Throughout the Development Cycle 173

➤ Some new features depend on the minor enhancements.

Figure 44 Project Plan for Release 2.0 Development

The plan uses a baseline-plus-changes approach. Periodically, developers stop writing new code,

and spend some time integrating their work, building, and testing. The result is a baseline: a

stable, working version of the application. ClearCase makes it easy to integrate product

enhancements incrementally and frequently. The more frequent the baselines, the easier the tasks

of merging work and testing the results.

After a baseline is produced, active development resumes; any new efforts begin with the set of

source versions that went into the baseline build.

You define a baseline by assigning the same version label (for example, R2_BL1 for Release 2.0,

Baseline 1) to all the versions that go into, or are produced by, the baseline build.

Release
2.0

Release
1.0 FreezeFreeze

Release
1.0.1

Baseline
1

MAJ Team

MIN Team

FIX Team

major
development

minor
development

Release 1
bugfixing

Freeze Freeze

integration:
merge bugfixes
with minor
enhancements

integration:
merge Baseline 1
work with major
enhancements

integration:
merge major
enhancements,
minor enhancements,
and further bugfixes

Baseline
2

Release
1.0.2
174 Managing Software Projects with ClearCase

The project team is divided into three smaller teams, each working on a different development

effort: the MAJ team (new features), the MIN team (minor enhancements), and the FIX team

(Release 1.0 bug fixes and patches).

NOTE: Some developers may belong to multiple teams. These developers work in multiple views,

each configured for the respective team’s tasks.

The development area for the monet project is shown here. At the beginning of Release 2.0

development, the most recent versions on the main branch are labeled R1.0.

13.2 Development Strategy

This section describes the ClearCase issues to be resolved before development begins.

Project Manager and ClearCase Administrator

In most development efforts, the project manager and the system administrator are different

people. The user name of the project manager is meister. The administrator is the vobadm user,

who creates and owns the monet and libpub VOBs.

Use of Branches

In general, different kinds of work is done on different branches. The Release 1.0 bug fixes, for

example, are made on a separate branch to isolate this work from new development. The FIX

team can then create patch releases that do not include any of the Release 2.0 enhancements or

incompatibilities.

Because the MIN team will produce the first baseline release on its own, the project manager

gives the main branch to this team. The MAJ team will develop new features on a subbranch,

and will not be ready to integrate for a while; the FIX team will fix Release 1.0 bugs on another

subbranch and can integrate its changes at any time.

/vobs/monet (project top-level directory)
src/ (sources)
include/ (include files)
lib/ (shared libraries)
13 - Using ClearCase Throughout the Development Cycle 175

Each new feature can be developed on its own subbranch, to better manage integration and

testing work. For simplicity, this chapter assumes that work for new features is done on a single

branch.

The project manager has created the first baseline from versions on the main branches of their

elements. But this is not a requirement; you can create a release that uses versions on any branch,

or combination of branches.

Figure 45 shows the evolution of a typical element during Release 2.0 development, and

indicates correspondences to the overall project plan (Figure 44).
176 Managing Software Projects with ClearCase

Figure 45 Development Milestones: Evolution of a Typical Element

 1. (All branches) Start minor and major
 enhancements, along with R1.0 bug fixing

 2. (main) Freeze minor enhancements work

 3. (main) Merge bug fixes from Release 1.0.1
 into minor enhancements

 4. (main) Baseline 1 release

 5. (major) Freeze major enhancements work

 6. (major) Merge Baseline 1 changes into
 major enhancements

 7. (main) Freeze minor enhancements work

 8. (main) Merge additional bugfixes into
 minor enhancements

 9. (major) Freeze major enhancements work

10. (main) Merge major enhancements work
 with minor enhancements work

11. (main) Baseline 2 release

12. (main) Final testing period

13. (main) Release 2.0

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

6

7

8

9

2

3

R2_BL2

R2.0

(R1.0.1)

4(R1.0.2) 6

merge

merge

merge

10
13 - Using ClearCase Throughout the Development Cycle 177

Creating Project Views

The MAJ team works on a branch named major and uses this config spec:

The MIN team works on the main branch and uses the default config spec:

The FIX team works on a branch named r1_fix and uses this config spec:

For the MAJ and FIX teams, use of the auto-make-branch facility in Rule (3) and Rule (4) enforces

consistent use of subbranches. It also relieves developers of the task of creating branches

explicitly and ensures that all branches are created at the version labeled R1.0.

13.3 Creating Branch Types

The project manager creates the major and r1_fix branch types required for the config specs in

Creating Project Views on page 178:

cleartool mkbrtype –c "monet R2 major enhancements" \
major@/vobs/libpub major@/vobs/monet
Created branch type "major".
Created branch type "major".

cleartool mkbrtype –c "monet R1 bugfixes" r1_fix@/vobs/libpub r1_fix@/vobs/monet
Created branch type "r1_fix".
Created branch type "r1_fix".

NOTE: Because each VOB has its own set of branch types, the branch types must be created

separately in the monet VOB and the libpub VOB.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * .../major/LATEST
element * R1.0 –mkbranch major
element * /main/LATEST –mkbranch major

(1)
(2)

element * CHECKEDOUT
element * .../main/LATEST

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * .../r1_fix/LATEST
element * R1.0 –mkbranch r1_fix
element * /main/LATEST –mkbranch r1_fix
178 Managing Software Projects with ClearCase

13.4 Creating Standard Config Specs

To ensure that all developers in a team configure their views the same way, the project manager

creates files containing standard config specs:

➤ /public/config_specs/MAJ contains the MAJ team’s config spec.

➤ /public/config_specs/FIX contains the FIX team’s config spec.

These config spec files are stored in a standard directory outside a VOB, to ensure that all

developers get the same version.

13.5 Creating, Configuring, and Registering Views

Each developer creates a view under his or her home directory. For example, developer arb
enters these commands:

% mkdir $HOME/view_store
% cleartool mkview –tag arb_major $HOME/view_store/arb_major.vws
Created view.
Host-local path: phobos:export/home/arb/view_store/arb_major.vws
Global path: /net/phobos/export/home/arb/view_store/arb_major.vws
It has the following rights:
User : arb : rwx
Group: user : rwx
Other: : r-x

A new view has the default config spec. Thus, developers on the MAJ and FIX teams must

reconfigure their views, using the standard file for their team. arb edits her config spec with the

cleartool edcs command, deletes the existing lines, and adds the following line:

/public/config_specs/MAJ

If the project manager changes the standard file, arb must enter the command cleartool setcs
–current to pick up the changes.
13 - Using ClearCase Throughout the Development Cycle 179

13.6 Development Begins

To begin the project, a developer sets a properly configured view, checks out one or more

elements, and starts work. For example, developer david on the MAJ team enters these

commands:

% cleartool setview david_major
% cd /vobs/monet/src
% cleartool checkout –nc opt.c prs.c
Created branch "major" from "opt.c" version "/main/6".
Checked out "opt.c" from version "/main/major/0".
Created branch "major" from "prs.c" version "/main/7".
Checked out "prs.c" from version "/main/major/0".

The auto-make-branch facility causes each element to be checked out on the major branch (see

Rule (4) in the MAJ team’s config spec in Creating Project Views on page 178). If a developer on

the MIN team enters this command, the elements are checked out on the main branch, with no

conflict.

ClearCase is fully compatible with standard development tools and practices. Thus, developers

use the editing, compilation, and debugging tools they prefer (including personal scripts and

aliases) while working in their views.

Developers check in work periodically to make their work available to other team members (that

is, those whose views select the most recent version on the team’s branch). This allows intrateam

integration and testing to proceed throughout the development period.

Techniques for Isolating Your Work

Individual developers may need or prefer to isolate their work from the changes made by other

team members. To do so, they can use these techniques to configure their views:

➤ Time rules. When someone checks in an incompatible change, a developer can reconfigure

the view to select the versions at a point before those changes were made.

➤ Private subbranches. A developer can create a private subbranch in one or more elements

(for example, /main/major/anne_wk). The config spec must be changed to select versions

on the /main/major/anne_wk branch instead of versions on the /main/major branch.

➤ Viewing only their own revisions. Developers can use a ClearCase query to configure a

view that sees only their own revisions to the source tree.
180 Managing Software Projects with ClearCase

13.7 Creating Baseline 1

The MIN team has implemented and tested the first group of minor enhancements, and the FIX

team has produced a patch release, whose versions are labeled R1.0.1. It is time to combine these

efforts, to produce Baseline 1 of Release 2.0 (Figure 46).

Figure 46 Creating Baseline 1

Merging Two Branches

The project manager asks the MIN developers to merge the R1.0.1 changes from the r1_fix branch

to their own branch (main). All the changes can be merged by using the findmerge command

once. For example:

% cleartool findmerge /vobs/libpub /vobs/monet/src \
–fversion .../r1_fix/LATEST –merge –graphical

.

. <lots of output>

.

Release
1.0

Freeze

Release
1.0.1

Baseline
1

MIN Team

FIX Team

minor
development

Release 1
bugfixing
13 - Using ClearCase Throughout the Development Cycle 181

Integration and Test

After the merges are complete, the /main/LATEST versions of certain elements represent the

efforts of the MIN and FIX teams. Members of the MIN team now compile and test the monet
application to find and fix incompatibilities in the work of both teams.

The developers on the MIN team integrate their changes in a single, shared view. The project

manager creates the view storage area in a location that is accessible from all developer hosts:

% umask 2
% mkdir /netwide/public
% cleartool mkview –tag base1_vu /netwide/public/base1_vu.vws
Created view.
Host-local path: infinity:/netwide/public/base1_vu.vws
Global path: /net/infinity/netwide/public/base1_vu.vws.
It has the following rights:
User : meister : rwx
Group: mon : rwx
Other: : r-x

The umask value of 2 allows all members of the MIN team to use the view. Any member of the

mon group can use the following command to begin working in this view:

% cleartool setview base1_vu

Because all integration work takes place on the main branch, there is no need to change the

configuration of the new view from the ClearCase default. MIN developers set this view

(cleartool setview base1_vu) and coordinate builds and tests of the monet application. Because

they are sharing a single view, the developers are careful not to overwrite each other’s

view-private files. Any new versions created to fix inconsistencies (and other bugs) go onto the

main branch.

Labeling Sources

The monet application’s minor enhancements and bug fixes are now integrated, and a clean

build has been performed in view base1_vu. To create the baseline, the project manager assigns

the same version label, R2_BL1, to the /main/LATEST versions of all source elements. He begins

by creating an appropriate label type:
182 Managing Software Projects with ClearCase

% cleartool mklbtype –c "Release, Baseline 1" R2_BL1@/vobs/monet R2_BL1@/vobs/libpub
Created label type "R2_BL1".
Created label type "R2_BL1".

He then locks the label type, preventing all developers (except himself) from using it:

% cleartool lock –nusers meister lbtype:R2_BL1@/vobs/monet lbtype:R2_BL1@/vobs/libpub
Locked label type "R2_BL1".
Locked label type "R2_BL1".

Before applying labels, he verifies that all elements are checked in on the main branch (checkouts

on other branches are still permitted):

% cleartool lscheckout –all /vobs/monet /vobs/libpub

No output from this command indicates that all elements for the monet project are checked in.

Now, the project manager attaches the R2_BL1 label to the currently selected version

(/main/LATEST) of every element in the two VOBs:

% cleartool mklabel –recurse R2_BL1 /vobs/monet /vobs/libpub
Created label "R2_BL1" on "/vobs/monet" version "/main/1".
Created label "R2_BL1" on "/vobs/monet/src" version "/main/3".

<many more label messages>

Removing the Integration View

The view registered as base1_vu is no longer needed, so the project manager removes it:

% cleartool rmview –force –tag base1_vu

13.8 Merging Ongoing Development Work

After Baseline 1 is created, the MAJ team merges the Baseline 1 changes into its work (Figure 47).

The team now has access to the minor enhancements it needs for further development. Team

members also have an early opportunity to determine whether any of their changes are

incompatible.
13 - Using ClearCase Throughout the Development Cycle 183

Figure 47 Updating Major Enhancements Development

Accordingly, the project manager declares a freeze of major enhancements development. MAJ

team members check in all elements and verify that the monet application builds and runs,

making small source changes as necessary. When all such changes have been checked in, the

team has a consistent set of /main/major/LATEST versions.

NOTE: Developers working on other major enhancements branches can merge at other times,

using the same merge procedures described here.

Preparing to Merge

1. The project manager makes sure that no element is checked out on the major branch:

% cleartool lscheckout –all /vobs/monet /vobs/libpub

NOTE: Any MAJ team members who want to continue with nonmerge work can create a

subbranch at the “frozen” version (or work with a version that is checked out as unreserved).

2. The project manager performs any required directory merges:

Release
1.0

Freeze Baseline
1

MAJ Team

MIN Team

major
development

minor
development

Freeze
184 Managing Software Projects with ClearCase

% cleartool setview major_vu (use any MAJ team view)

% cleartool findmerge /vobs/monet /vobs/libpub –type d \
–fversion /main/LATEST –merge
Needs merge /vobs/monet/src [automatic to /main/major/3 from /main/LATEST]

.

. <lots of output>

.
Log has been written to “findmerge.log.04-Feb-99.09:58:25”.

3. After checking in the files, the project manager determines which elements need to be

merged:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/LATEST –print
.
. <lots of output>
.

A 'findmerge' log has been written to
"findmerge.log.04-Feb-99.10:01:23"

This last findmerge log file is in the form of a shell script: it contains a series of cleartool
findmerge commands, each of which performs the required merge for one element:

% cat findmerge.log.04-Feb-99.10:01:23
cleartool findmerge /vobs/monet/src/opt.c@@/main/major/1 -fver /main/LATEST –merge
cleartool findmerge /vobs/monet/src/prs.c@@/main/major/3 -fver /main/LATEST –merge

.

.
cleartool findmerge /vobs/libpub/src/dcanon.c@@/main/major/3 -fver /main/LATEST -merge
cleartool findmerge /vobs/libpub/src/getcwd.c@@/main/major/2 -fver /main/LATEST -merge
cleartool findmerge /vobs/libpub/src/lineseq.c@@/main/major/10 -fver /main/LATEST -merge

4. The project manager locks the major branch, allowing it to be used only by the developers

who are performing the merges:

cleartool lock –nusers meister,arb,david,sakai brtype:major@/vobs/monet \
brtype:major@/vobs/libpub
Locked branch type "major".
Locked branch type "major".
13 - Using ClearCase Throughout the Development Cycle 185

Merging Work

Because the MAJ team is not contributing to a baseline soon, it is not essential to merge work (and

test the results) in a shared view. MAJ developers can continue working in their own views.

Periodically, the project manager sends an excerpt from the findmerge log to an individual

developer, who executes the commands and monitors the results. (The developer can send the

resulting log files back to the project manager, as confirmation of the merge activity.)

A merged version of an element includes changes from three development efforts: Release 1.0

bug fixing, minor enhancements, and new features (Figure 48).

Figure 48 Merging Baseline 1 Changes into the major Branch

Development here when
BL1 complete

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

2(R1.0.1)

6

merge

Development Freeze
186 Managing Software Projects with ClearCase

The project manager verifies that no more merges are needed, by entering a findmerge command

with the –whynot option:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/LATEST –whynot –print
.
.

No merge "/vobs/monet/src" [/main/major/4 already merged from /main/3]
No merge "/vobs/monet/src/opt.c" [/main/major/2 already merged from /main/12]

.

.

The merge period ends when the project manager removes the lock on the major branch:

% cleartool unlock brtype:major@/vobs/monet brtype:major@/vobs/libpub
Unlocked branch type "major".
Unlocked branch type "major".

13.9 Creating Baseline 2

The MIN team is ready to freeze for Baseline 2, and the MAJ team will be soon (Figure 49).

Baseline 2 will integrate all three development efforts, thus requiring two sets of merges:

➤ Bug fix changes from the most recent patch release (versions labeled R1.0.2) must be

merged to the main branch.

➤ New features must be merged from the major branch to the main branch. (This is the

opposite direction from the merges described in Merging Ongoing Development Work on

page 183.)
13 - Using ClearCase Throughout the Development Cycle 187

Figure 49 Baseline 2

ClearCase supports merges from more than two directions, so both the bug fixes and the new

features can be merged to the main branch at the same time. In general, though, it is easier to

verify the results of two-way merges.

Merging from the r1_fix Branch

The first set of merges is almost identical to those described in Merging Two Branches on page 181.

Preparing to Merge from the major Branch

After the integration of the r1_fix branch is completed, the project manager prepares to manage

the merges from the major branch. These merges are performed in a tightly controlled

environment, because the Baseline 2 milestone is approaching and the major branch is to be

abandoned.

NOTE: It is probably more realistic to build and verify the application, and then apply version

labels before proceeding to the next merge.

The project manager verifies that everything is checked in on both the main branch and major
branches:

Freeze

Freeze

Baseline
2

Release
1.0.2
188 Managing Software Projects with ClearCase

% cleartool lscheckout –brtype main –recurse /vobs/monet /vobs/libpub
% cleartool lscheckout –brtype major –recurse /vobs/monet /vobs/libpub
%

No output from these commands indicates that no element is checked out on either its main
branch or its major branch.

Next, the project manager determines which elements require merges:

% cleartool setview minor_vu (use any MIN team view)

% cleartool findmerge /vobs/monet /vobs/libpub –fversion .../major/LATEST –print
.
. <lots of output>
.

A 'findmerge' log has been written to
"findmerge.log.26-Feb-99.19:18:14"

All development on the major branch will stop after this baseline. Thus, the project manager

locks the major branch to all users, except those who are performing the merges; locking allows

ClearCase to record the merges with a hyperlink of type Merge:

% cleartool lock –nusers arb,david brtype:major@/vobs/monet brtype:major@/vobs/libpub
Locked branch type "major".
Locked branch type "major".

Because the main branch will be used for Baseline 2 integration by a small group of developers,

the project manager asked vobadm to lock the main branch to everyone else:

% cleartool lock –nusers meister,arb,david,sakai \
brtype:main@/vobs/monet brtype:main@/vobs/libpub
Locked branch type "main".
Locked branch type "main".

(To lock the branch, you must be the branch creator, element owner, VOB owner, or root user. See

the lock reference page.)
13 - Using ClearCase Throughout the Development Cycle 189

Merging from the major Branch

Because the main branch is the destination of the merges, developers work in a view with the

default config spec. The situation is similar to the one described in Preparing to Merge on

page 184. This time, the merges take place in the opposite direction, from the major branch to the

main branch. Accordingly, the findmerge command is very similar:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/major/LATEST \
–merge –graphical

.

. <lots of output>

.
A 'findmerge' log has been written to
"findmerge.log.23-Mar-99.14:11:53"

After checkin, the version tree of a typical merged element appears as in Figure 50.

Figure 50 Element Structure after the Pre-Baseline-2 Merge

0

1

2

3

4

4

0

1

2

3

R2_BL1

R2_BL2 merge

main

major

5

merge

merge

1R1.0.2
190 Managing Software Projects with ClearCase

Decommissioning the major Branch

After all data has been merged to the main branch, development on the major branch will stop.

The project manager enforces this policy by making the major branch obsolete:

% cleartool lock –replace –obsolete brtype:major@/vobs/monet brtype:major@/vobs/libpub
Locked branch type "major".
Locked branch type "major".

Integration and Test

Structurally, the Baseline 2 integration-and-test phase is identical to the one for Baseline 1 (see

Integration and Test on page 182). At the end of the integration period, the project manager

attaches version label R2_BL2 to the /main/LATEST version of each element in the monet and

libpub VOBs. (The Baseline 1 version label was R2_BL1.)

13.10 Final Validation: Creating Release 2.0

Baseline 2 has been released internally, and further testing has found only minor bugs. These

bugs have been fixed by creating new versions on the main branch (Figure 51).

Figure 51 Final Test and Release

Before it is shipped to customers, the monet application goes through a validation phase:

➤ All editing, building, and testing is restricted to a single, shared view.

➤ All builds are performed from sources with a particular version label (R2.0).

➤ Only the project manager has permission to make changes involving that label.

Baseline
2

Release
2.0

minor bugfixes
13 - Using ClearCase Throughout the Development Cycle 191

➤ All labels must be moved by hand.

➤ Only high-priority bugs are fixed, using this procedure:

a. The project manager authorizes a particular developer to fix the bug, by granting her

permission to create new versions (on the main branch).

b. The developer’s checkin activity is tracked by a ClearCase trigger.

c. After the bug is fixed, the project manager moves the R2.0 version label to the fixed

version and revokes the developer’s permission to create new versions.

Labeling Sources

In a view with the default config spec, the project manager creates the R2.0 label type and locks it:

cleartool mklbtype –c "Release 2.0" R2.0@/vobs/monet R2.0@/vobs/libpub
Created label type "R2.0".
Created label type "R2.0".

cleartool lock –nusers meister lbtype:R2.0@/vobs/monet lbtype:R2.0@/vobs/libpub
Locked label type "R2.0".
Locked label type "R2.0".

The project manager labels the /main/LATEST versions throughout the entire monet and libpub
development trees:

cleartool mklabel –recurse R2.0 /vobs/monet /vobs/libpub
<many label messages>

During the final test phase, the project manager moves the label forward, using mklabel
–replace, if any new versions are created.

Restricting Use of the main Branch

At this point, use of the main branch is restricted to a few users: those who performed the merges

and integration leading up to Baseline 2 (see Merging from the major Branch on page 190). Now,

the project manager asks vobadm to close down the main branch to everyone except himself,

meister:
192 Managing Software Projects with ClearCase

% cleartool lock –replace –nusers meister brtype:main
Locked branch type "main".

The main branch is opened only for last-minute bug fixes (see Fixing a Final Bug on page 194.)

Setting Up the Test View

The project manager creates a new shared view, r2_vu, that is configured with a one-rule config

spec:

% umask 2
% cleartool mkview –tag r2_vu /public/integrate_r2.vws
% cleartool edcs –tag r2_vu

This is the config spec:

element * R2.0

This config spec guarantees that only properly labeled versions are included in final validation

builds.

Setting Up the Trigger to Monitor Bugfixing

The project manager places a trigger on all elements in the monet and libpub VOBs; the trigger

fires whenever a new version of any element is checked in. First, he creates a script that sends

mail (for an example script, see Policy: Notify Team Members of Relevant Changes on page 134).

Then, he asks vobadm to create an all-element trigger type in the monet and libpub VOBs,

specifying the script as the trigger action:

% cleartool mktrtype –nc -element –all –postop checkin –brtype main \
–exec /public/scripts/notify_manager.sh \
r2_checkin@/vobs/monet r2_checkin@/vobs/libpub
Created trigger type "r2_checkin".
Created trigger type "r2_checkin".

Only the VOB owner or root user can create trigger types.
13 - Using ClearCase Throughout the Development Cycle 193

Fixing a Final Bug

This section demonstrates the final validation environment in action. Developer arb discovers a

serious bug and requests permission to fix it. The project manager grants her permission to create

new versions on the main branch, by having vobadm enter this command.

% cleartool lock –replace –nusers arb,meister brtype:main
Locked branch type "main".

arb fixes the bug in a view with the default config spec and tests the fix there. This involves

creating two new versions of element prs.c and one new version of element opt.c. Each time arb
uses the checkin command, the r2_checkin trigger sends mail to the project manager. For

example:

Subject: Checkin /vobs/monet/src/opt.c by arb
/vobs/monet/src/opt.c@@/main/9
Checked in by arb.

Comments:
fixed bug #459: made buffer larger

When regression tests verify that the bug has been fixed, the project manager revokes arb’s

permission to create new versions. Once again, the command is executed by vobadm:

% cleartool lock –replace –nusers meister brtype:main
Locked branch type "main".

The project manager then moves the version labels to the new versions of prs.c and opt.c, as

indicated in the mail messages. For example:

% cleartool mklabel –replace R2.0 /vobs/monet/src/opt.c@@/main/9
Moved label "R2.0" on "prs.c" from version "/main/8" to "/main/9".

Rebuilding from Labels

After the labels have been moved, developers rebuild the monet application again, to verify that

a good build can be performed using only those versions labeled R2.0.
194 Managing Software Projects with ClearCase

Wrapping Up

When the final build in the r2_vu passes the final test, Release 2.0 of monet is ready to ship. After

the distribution medium has been created from derived objects in the r2_vu, the project manager

asks the ClearCase administrator to clean up and prepare for the next release:

➤ The ClearCase administrator removes the checkin triggers from all elements by deleting the

all-element trigger type:

cleartool rmtype trtype:r2_checkin@/vobs/monet trtype:r2_checkin@/vobs/libpub
Removed trigger type "r2_checkin".
Removed trigger type "r2_checkin".

➤ The ClearCase administrator reopens the main branch:

cleartool unlock brtype:main
Unlocked branch type "main".
13 - Using ClearCase Throughout the Development Cycle 195

196 Managing Software Projects with ClearCase

AA ClearCase-ClearQuest Integrations

A.1 Understanding the Two ClearCase-ClearQuest Integrations

The integration of ClearQuest and ClearCase associates one or more ClearQuest records with one

or more ClearCase versions allowing you to use features of each product. ClearCase supports

two separate integrations with ClearQuest:

➤ The base ClearCase-ClearQuest integration

➤ The UCM-ClearQuest integration

Online help that describes the base ClearCase-ClearQuest integration is available from within

the ClearQuest Integration Configuration GUI on Windows. To open the GUI, click

Start>Programs>ClearCase Administration>Integrations>ClearQuest Integration
Configuration. Note that this integration cannot be used with UCM projects.

For further information on the UCM-ClearCase integration, see Part 1 of this book.

In general, we recommend that you use the base ClearCase and UCM integrations separately,

and avoid using a common ClearQuest user database. However, it is possible for both

integrations to use the same ClearQuest user database. This can be useful if you are moving a

project to UCM and have a substantial amount of information in a ClearQuest user database that

was created with the base ClearCase-ClearQuest integration. You may want the new work in

UCM to be reflected in new ClearQuest records in the same ClearQuest user database.

The remainder of this appendix discusses considerations in managing the coexistence of the base

ClearCase-ClearQuest integration and the UCM-ClearQuest integration.
A - ClearCase-ClearQuest Integrations 197

Managing Coexisting Integrations

When a ClearQuest user database that had been integrated with ClearCase previously is

configured for integration with UCM, the existing change sets are preserved intact in the

ClearQuest user database, but cannot be migrated to the UCM integration.

Change sets of existing records in the ClearQuest user database are preserved, and you can

access them from ClearQuest. To continue work on a task in a project that has been migrated to

UCM, create a new, corresponding, UCM activity and continue work there.

See Planning How to Use the UCM-ClearQuest Integration on page 36 for related information.

Schema

A ClearQuest schema can contain modifications from both the base ClearCase-ClearQuest

integration and the UCM-ClearQuest integration. A record type in such a schema would include

both the ClearCase package and the Unified Change Management package.

An individual record of that record type can store either ClearCase or UCM change set

information, but not both.

Presentation

The form for a record type that uses both integrations includes two tabs to show the change set

information associated with each integration, as shown in Figure 52. The Unified Change
Management tab lists the change set for a UCM activity. The ClearCase tab shows the change set

associated with a ClearQuest record.
198 Managing Software Projects with ClearCase

Figure 52 Change Sets in ClearQuest GUI
A - ClearCase-ClearQuest Integrations 199

200 Managing Software Projects with ClearCase

Index

A

activities
about 10
creating and assigning in ClearQuest (procedure) 69
creating and setting in new project (procedure) 61
decomposing in ClearQuest 52
fixing ClearQuest links 70
migrating to ClearQuest integration 67
state transition after delivery 43
verifying owner of 43

administrative VOBs and PVOBs 34

assignments, verifying 22

attache-home-dir directory xix

attributes
about 103
change request policy 136
use in config specs 116
use in monitoring project status 130

B

base ClearCase and UCM, compared 1

baselines in base ClearCase
creating, extended example 181, 187
labeling policy 131

baselines in UCM
about 14
benefits of frequent 31
comparing (procedure) 83
creating 17
creating for imported files (procedure) 64
creating new (procedures) 77
creating streams for testing (procedure) 71
fixing problems (procedure) 81
foundation 58
naming convention 32
promoting and demoting (procedure) 82
promotion levels 18
recommended, promotion policy 41
strategy for 30
test planning 32
when to delete 86
Index

/vobs/doc/ccase/projlead/cc_proj.u
branch types, example 178

branches
about 100
bug-fix policy 132
config spec rules for 111–112, 114
controlling creation of 102
example of project strategy 175
in MultiSite 101
mastership transfer models 140
merge policies 105
merging elements from UCM projects 95
merging to main 149
multiple levels, config specs for 114
naming conventions 101
stopping development on 191

building software, view configurations 120

C

ccase-home-dir directory xix

change requests
tracking in base ClearCase 136
tracking states 21

change sets 10

ClearQuest integration
about 15, 20
customizing policies 52
database, setting up 45
decomposing activities 52
disabling links to project 69
enabling custom schema (procedure) 46
enabling projects to use (procedure) 66
environment variables 53
planning issues 36
policies available 43
querying database 84
recommended use of 197
setting up 15
setting up UCM schemas (procedure) 45

components
about 13
adding to integration stream (procedure) 73
ancillary 28
201

xIX.fm — July 12, 2000 2:18 pm

candidates for read-only 29
conversion of VOBs (procedure) 63
creating new (procedure) 57
design considerations 24
importing files for (procedure) 62
mapping to projects 25
organizing for project 27
recommended directory structure 28
when to delete 86

config specs
about 102, 107
default, standard rules in 108
examples for builds 120
examples for development tasks 111
examples for one project 178
examples of time rules 112, 114, 119–120
examples to monitor project 116
include file facility 109
project environment for samples 110
restricting changes to one directory 115
selecting library versions 122
sharing across platforms 125
use of element types in 159

conventions, typographical xix

D

deliver operations
between projects 94
element types and merging 35
finding posted work (procedure) 76
MultiSite and 16, 75
pending checkouts policy 42
rebase policy 42
remote deliver 75
remote, completing (procedure) 76
state transition policy 43

development policies
See policies in base ClearCase; policies in UCM

development streams 13
creating for testing (procedure) 71
rebasing (procedure) 80
when to delete 86

directories, merging 153

directory structure
creating new (procedure) 61
recommended, for UCM components 28

documentation
online help description xx

E

element types
customizing 155
how assigned 156
predefined and user-defined 160

element types in UCM 35

environment variables for ClearQuest 53

event records 104

F

foundation baselines 58

G

global types 34, 104

H

hyperlinks
about 103
requirements tracking mechanism 137

I

importing files and directories 62

include file facility 109

integration streams
about 13
adding components (procedure) 73
locking 71
locking (procedure) 77
locking considerations 33
merging multiple 95
merging to base ClearCase branch 95
rebasing between projects (procedure) 91
unlocking (procedure) 80
updating development view load rules 75
when to delete 86

integration views
creating for UCM project (procedure) 59
recommended view type 42
202 Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxIX.fm — July 12, 2000 2:18 pm

J

Join Project Wizard 41

L

labels
about 103
baselines in base ClearCase 131
use in config specs 119, 121

load rules, updating for integration stream 75

locks
about 104
examples 134

M

main branch 100

makefiles and config specs 123

mastership
about 16
models of transfer 140

merging files
how it works 143

merging in base ClearCase
about 105
commands for 146
directory versions 153
entire source tree 150
extended example 183, 188
GUI tools for 145
how it works 143
non-ClearCase tools 154
removing merged changes 148
selective merge 147
to main branch 149

merging in UCM
See deliver operations; rebase operations

MultiSite
branches and 101
ClearQuest links in PVOBs 70
mastership transfer models 140
remote deliver 75
use in UCM 16

N

naming conventions
branches 101
ClearQuest schema 37
UCM baselines 32
views in base ClearCase 102

O

online help, accessing xx

P

parallel development
base ClearCase mechanisms 100
extended example in base ClearCase 173
UCM scenarios 89

parent/child controls in ClearQuest 52

patch release in UCM project 92

policies in base ClearCase
access to project files 134
bug-fixing on branches 132
change requests 136
coding standards 135
documenting changes 129
enforcement mechanisms 102, 129
labeling baselines 131
monitoring state of sources 130
notification of new work 134
on merging 105
requirements tracking 137
restricting changes visible 133
restricting use of commands 139
transfer of branch mastership 140

policies in UCM
about 14
approval before delivery 43
customizing ClearQuest 52
default view types 41
delivery transition state 43
delivery with pending checkouts 42
modifiable components 41
promotion levels 18
rebase before deliver 42
recommended baselines 41
setting ClearQuest (procedure) 68
verify activity owner before checkout 43

Project Explorer 58

projects in base ClearCase
branching strategy 100
config specs 102
development policies 102
extended example of lifecycle 173
generating reports 104
merging policies 105
planning and setup 100
views to monitor progress 116

projects in UCM
about 9
cleanup tasks 85
concurrent, managing 89
Index 203

/vobs/doc/ccase/projlead/cc_proj.uxIX.fm — July 12, 2000 2:18 pm

creating 12
creating from existing configuration 63
creating from existing projects 65
creating new (procedure) 58
disabling links to ClearQuest database 69
factors in gauging scope 25
fixing ClearQuest activity links 70
importing components 62
incorporating patch release 92
maintenance tasks 73
mapping components to 25
merging multiple 95
merging to base ClearCase branches 95
planning issues 23
setting up new 56
tools to monitor progress 82

promotion levels
about 18
changing (procedure) 82
default 32
defining in new project (procedure) 59
policy for recommended baselines 41

PVOBs
about 12
as administrative VOBs 34
ClearQuest links and MultiSite 70
creating from existing configuration 63
creating new (procedure) 56
mapping to ClearQuest database 37
number needed 33
requirements of ClearQuest database 67

Q

querying ClearQuest database 22, 84

R

Rational Unified Process 23–24

rebase operations
between projects (procedure) 91
element types and merging 35
policy for deliver operations 42
updating development view load rules 75

recommended baselines 41

record types for schemas, custom 49

remote deliver operations 75–76

reports
ClearQuest queries 84
for base ClearCase projects 104

S

schemas (ClearQuest)
about 21
enabling custom for UCM 40
enabling custom for UCM (procedure) 46
predefined, using 45
queries 22
requirements for UCM 38
storage issues 38

selective merge 147

smoke tests 32

state types
about 21
default transition requirements 50
setting for custom schemas 49

streams 13

subtractive merge 148

system architecture 23

T

technical support xx

time rules in config specs 112, 114, 119–120

triggers
about 103
checkin command example 129
example script for 134
sharing in mixed environments 141
to disallow checkins 135
to notify team of new work 134
to restrict use of commands 139

type managers
about 157
creating directory for 161
how they work 161
implementing compare method 166
inheriting methods 162
predefined 161
testing 167
user defined 161

typographical conventions xix

U

UCM and base ClearCase, compared 1

UCMPolicyScripts package 38

UnifiedChangeManagement package 38–39

user accounts
creating ClearQuest profiles (procedure) 53
204 Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxIX.fm — July 12, 2000 2:18 pm

V

version control, candidates for 24

views
config specs 107
configuring for builds 120
configuring for development tasks 111
configuring historical 119–120
configuring to monitor project 116
naming conventions in base ClearCase 102
policy for default types in UCM 41
restricting changes visible in 133
sharing for merges 149

VOBs
converting to UCM components (procedure) 63
creating and populating in base ClearCase 100

W

work areas 13
Index 205

/vobs/doc/ccase/projlead/cc_proj.uxIX.fm — July 12, 2000 2:18 pm

206 Managing Software Projects with ClearCase

/vobs/doc/ccase/projlead/cc_proj.uxIX.fm — July 12, 2000 2:18 pm

	Managing Software Projects with ClearCase
	Contents
	Figures
	Tables
	Preface
	About This Manual
	Organization

	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support
	Choosing Between UCM and Base ClearCase
	1.1 Differences Between UCM and Base ClearCase
	Branching
	Creating and Using Baselines
	Managing Activities
	Enforcing Development Policies

	1.2 Using Base ClearCase Tools with UCM

	Part 1: Working in UCM
	Understanding UCM
	2.1 The Project Management Cycle
	2.2 Creating the Project
	Creating a PVOB
	Organizing Directories and Files into Components
	Shared and Private Work Areas
	Starting from a Baseline
	Setting Policies
	Setting Up the UCM-ClearQuest Integration

	2.3 Integrating Work into the Project (MultiSite)
	2.4 Making a New Baseline
	2.5 Promoting the Baseline
	2.6 Overview of the UCM-ClearQuest Integration
	Associating UCM and ClearQuest Objects
	UCM-Enabled Schema
	State Types
	Queries in a UCM-Enabled ClearQuest Schema

	Planning the Project
	3.1 Using the System Architecture as the Starting Point
	Mapping System Architecture to Components
	Deciding What to Place Under Version Control
	Mapping Components to Projects
	Size of the System
	Amount of Integration
	Need for Parallel Releases
	Example
	Components and VOBs

	3.2 Organizing Components
	Considering VOB Capacity
	Identifying Additional Components
	Defining the Directory Structure
	Identifying Read-Only Components

	3.3 Specifying a Baseline Strategy
	When to Create Baselines
	Identifying the Initial Baseline
	Ongoing Baselines

	Defining a Naming Convention
	Identifying Promotion Levels to Reflect State of Development
	Planning How to Test Baselines

	3.4 Planning PVOBs
	Deciding How Many PVOBs to Use
	Understanding the Role of the Administrative VOB

	3.5 Identifying Special Element Types
	Nonmerging Elements
	Nonautomerging Elements
	Defining the Scope of Element Types

	3.6 Planning How to Use the UCM-ClearQuest Integration
	Mapping PVOBs to ClearQuest User Databases
	All Enabled Projects in a PVOB Must Link to the Same Database
	Projects Linked to Same Database Must Have Unique Names
	Use One Schema Repository for Linked Databases

	Deciding Which Schema to Use
	Overview of the UnifiedChangeManagement Schema
	Enabling a Schema for UCM

	3.7 Considering Which Development Policies to Enforce
	Policies Available in UCM
	Recommended Baselines
	Modifiable Components
	Default View Types
	Rebase Before Deliver
	Allow Deliveries from Stream with Pending Checkouts

	Policies Available in UCM-ClearQuest Integration
	Check Before Work On
	Check Before ClearCase Delivery
	Do ClearQuest Action After Delivery

	Setting Up a ClearQuest User Database
	4.1 Using the Predefined UCM-Enabled Schemas
	4.2 Enabling a Schema to Work with UCM
	Requirements for Enabling Custom Record Types
	Setting State Types
	State Transition Default Action Requirements for Record Types

	4.3 Customizing ClearQuest Project Policies
	4.4 Associating Child Activity Records with a Parent Activity Record
	Using Parent/Child Controls

	4.5 Creating Users
	4.6 Setting the Environment
	Setting Up the Project
	5.1 Creating a Project from Scratch
	Creating the Project VOB (PVOB)
	Creating Components
	Creating the Project
	Defining Promotion Levels

	Creating an Integration View
	Creating and Setting an Activity
	Creating the Directory Structure
	Importing Directories and Files from Outside ClearCase

	5.2 Creating a Project Based on an Existing ClearCase Configuration
	Creating the PVOB
	Making a VOB into a Component
	Making a Baseline from a Label
	Creating the Project
	Creating an Integration View

	5.3 Creating a Project Based on an Existing Project
	Reusing Existing PVOB and Components
	Creating the Project
	Creating an Integration View

	5.4 Enabling a Project to Use the UCM-ClearQuest Integration
	Migrating Activities
	Setting Project Policies
	Assigning Activities
	Disabling the Link Between a Project and a ClearQuest User Database
	Fixing Projects That Contain Linked and Unlinked Activities
	Detecting the Problem
	Correcting the Problem

	5.5 Creating a Development Stream for Testing Baselines
	Managing the Project
	6.1 Adding Components
	Updating Snapshot View Load Rules

	6.2 Integrating the Project
	Finding WorkThat is Ready to Be Delivered
	Completing Remote Deliver Operations
	Undoing a Deliver Operation

	6.3 Creating a New Baseline
	Locking the Integration Stream
	Verifying That the Code Base Is Stable
	Making the New Baseline
	Making a Baseline For a Set of Activities

	Unlocking the Integration Stream

	6.4 Testing the Baseline
	Fixing Problems

	6.5 Promoting or Demoting the Baseline
	6.6 Tracking the Project
	Comparing Baselines
	Querying ClearQuest User Databases

	6.7 Cleaning Up the Project
	Removing Unused Objects
	Projects
	Streams
	Components
	Baselines
	Activities

	Locking and Making Obsolete the Project and Streams

	Managing Parallel Releases of Multiple Projects
	7.1 Managing a Current Project and a Follow-on Project Simultaneously
	Example
	Performing Interproject Rebase Operations

	7.2 Incorporating a Patch Release into a New Version of the Project
	Example
	Merging Work to Another Project

	7.3 Additional Merging Scenarios
	Merging from a Project to a Non-UCM Branch
	Merging to a System Project

	Part 2: Working in Base ClearCase
	Managing Projects in Base ClearCase
	8.1 Setting Up the Project
	Creating and Populating VOBs
	Planning a Branching Strategy
	Branch Names
	Branches and ClearCase MultiSite

	Creating Shared Views and Standard Config Specs
	Recommendations for View Names

	8.2 Implementing Development Policies
	Using Labels
	Using Attributes, Hyperlinks, Triggers, and Locks
	Global Types
	Generating Reports

	8.3 Integrating Changes
	Defining Project Views
	9.1 How Config Specs Work
	9.2 Default Config Spec
	The Standard Configuration Rules
	Omitting the Standard Configuration Rules

	9.3 Config Spec Include Files
	9.4 Project Environment for Sample Config Specs
	9.5 Views for Project Development
	View for New Development on a Branch
	Variation That Uses a Time Rule

	View to Modify an Old Configuration
	Omitting the /main/LATEST Rule
	Variation That Uses a Time Rule

	View to Implement Multiple-Level Branching
	View to Restrict Changes to a Single Directory

	9.6 Views to Monitor Project Status
	View That Uses Attributes to Select Versions
	Pitfalls of Using This Configuration for Development

	View That Shows Changes of One Developer
	Historical View Defined by a Version Label
	Historical View Defined by a Time Rule

	9.7 Views for Project Builds
	View That Uses Results of a Nightly Build
	Variations That Select Versions of Project Libraries
	View That Selects Versions of Application Subsystems
	View That Selects Versions That Built a Particular Program
	Configuring the Makefile
	Fixing Bugs in the Program
	Selecting Versions That Built a Set of Programs

	9.8 Sharing Config Specs Between UNIX and Windows
	Pathname Separators
	Pathnames in Config Spec Element Rules
	Config Spec Compilation
	Example

	Implementing Project Development Policies
	10.1 Policy: Good Documentation of Changes Is Required
	10.2 Policy: All Source Files Require a Progress Indicator
	10.3 Policy: Label All Versions Used in Key Configurations
	10.4 Policy: Isolate Work on Release Bugs to a Branch
	10.5 Policy: Avoid Disrupting the Work of Other Developers
	10.6 Policy: Deny Access to Project Data When Necessary
	10.7 Policy: Notify Team Members of Relevant Changes
	10.8 Policy: All Source Files Must Meet Project Standards
	10.9 Policy: Associate Changes with Change Orders
	10.10 Policy: Associate Project Requirements with Source Files
	10.11 Policy: Prevent Use of Certain Commands
	10.12 Policy: Certain Branches Are Shared Among MultiSite Sites
	10.13 Sharing Triggers Between UNIX and Windows
	Using Different Pathnames or Different Scripts
	Using the Same Script
	Notes

	Integrating Changes
	11.1 How Merging Works
	Using the GUI to Merge Elements
	Using the Command Line to Merge Elements

	11.2 Common Merge Scenarios
	Scenario: Selective Merge from a Subbranch
	Scenario: Removing the Contributions of Some Versions
	Scenario: Merging All Project Work
	All Project Work Is Isolated on a Branch
	All Project Work Isolated In a View

	Scenario: Merging a New Release of an Entire Source Tree
	Scenario: Merging Directory Versions

	11.3 Using Your Own Merge Tools
	Using Element Types to Customize Processing of File Elements
	12.1 File Types in a Typical Project
	12.2 How ClearCase Assigns Element Types
	12.3 Element Types and Type Managers
	Other Applications of Element Types
	Using Element Types to Configure a View
	Processing Files by Element Type

	12.4 Predefined and User-Defined Element Types
	12.5 Predefined and User-Defined Type Managers
	12.6 Type Manager for Manual Page Source Files
	Creating the Type Manager Directory
	Inheriting Methods from Another Type Manager
	The create_version Method
	The construct_version Method

	 Implementing a New compare Method
	Testing the Type Manager
	Installing and Using the Type Manager

	12.7 Icon Use by GUI Browsers
	Using ClearCase Throughout the Development Cycle
	13.1 Project Overview
	13.2 Development Strategy
	Project Manager and ClearCase Administrator
	Use of Branches
	Creating Project Views

	13.3 Creating Branch Types
	13.4 Creating Standard Config Specs
	13.5 Creating, Configuring, and Registering Views
	13.6 Development Begins
	Techniques for Isolating Your Work

	13.7
Creating Baseline 1
	Merging Two Branches
	Integration and Test
	Labeling Sources
	Removing the Integration View

	13.8 Merging Ongoing Development Work
	Preparing to Merge
	Merging Work

	13.9 Creating Baseline 2
	Merging from the r1_fix Branch
	Preparing to Merge from the major Branch
	Merging from the major Branch
	Decommissioning the major Branch
	Integration and Test

	13.10 Final Validation: Creating Release 2.0
	Labeling Sources
	Restricting Use of the main Branch
	Setting Up the Test View
	Setting Up the Trigger to Monitor Bugfixing
	Fixing a Final Bug
	Rebuilding from Labels
	Wrapping Up

	ClearCase-ClearQuest Integrations
	A.1 Understanding the Two ClearCase-ClearQuest Integrations
	Managing Coexisting Integrations
	Schema
	Presentation

	Index

