
INTRODUCTION TO CLEARCASE

R e l e a s e 4 . 0 a n d l a t e r

Windows/UNIX Edition

800-012607-000

/vobs/doc/ccase/intro/cc_introTTL.fm — November 17, 1999 2:55 pm

Introduction to ClearCase
Document Number 800-012607-000 December 1999

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 1999 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation
Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, Clear DDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

Contents

Preface ..ix

About This Manual ...ix

User Roles, the ClearCase Documentation Set, and This Manualix

ClearCase Documentation Roadmap...xi

Typographical Conventions ...xii

Online Documentation .. xiii

Technical Support .. xiv

1. ClearCase, ClearQuest, and Unified Change Management1

1.1 ClearCase...1

1.2 ClearCase MultiSite ...3

1.3 ClearQuest...4

1.4 Unified Change Management ..4

2. Planning for and Installing ClearCase ...9

2.1 Planning Issues ...9

Using Unified Change Management or Base ClearCase10

Using ClearQuest ...10

Using ClearCase MultiSite ..11

2.2 ClearCase Site Preparation ...11

See READ ME FIRST ...11

Running ClearCase Site Preparation...12

2.3 Installing ClearCase on Individual Computers ...12

3. Setting Up a Software Project in ClearCase ...13

3.1 Creating a Project in UCM ..13

Creating a Project VOB..13

Organizing Directories and Files into VOBs and Components.................14

Creating a Project ...14

Creating and Assigning Activities...14
Contents iii

/vobs/doc/ccase/intro/cc_introTOC.fm — November 16, 1999 7:04 pm

Using the ClearQuest Integration ...15

3.2 Setting Up a Project in Base ClearCase..15

Importing Directories and Files into VOBs...15

Applying a Label to the Initial Configuration..15

Deciding a Branching and Merging Strategy ...15

Creating Standard Config Specs...16

Using ClearCase Metadata to Implement Development Policy17

Using the ClearQuest-ClearCase Integration ...17

4. Developing and Building Software with ClearCase ..19

4.1 Developing Software Using UCM ...19

Joining a Project ..19

Development Work Area ...19

Integration Work Area..20

Working on Activities ..20

Finding or Creating an Activity for Your Work20

Modifying and Testing Source Files ...20

Delivering Activities ..21

Starting the Deliver Operation ..21

Testing Your Work ..21

Completing the Deliver Operation ...21

Delivering with MultiSite...21

Rebasing Your Work Area ..21

Starting the Rebase Operation...22

Testing Your Development Work Area ...22

Completing the Rebase Operation..22

4.2 Developing Software Using Base ClearCase ..22

Setting Up a View...22

Accessing and Modifying Files in Your View..23

Working on Branches...23

Using a Private Branch ...23

MultiSite Branch Mastership ...23

4.3 Using ClearCase Build Tools ..24
iv Introduction to ClearCase

/vobs/doc/ccase/intro/cc_introTOC.fm — November 16, 1999 7:04 pm

5. Managing Software Projects with ClearCase ...25

5.1 Managing Projects with UCM..25

Adding Components to Projects ..25

Integrating MultiSite Development Work into the Project26

Managing Baselines ...26

Creating New Baselines ...26

Promoting and Demoting Baselines...26

Tracking Projects ..27

Comparing Baselines ..27

Using ClearQuest to Track Work..27

5.2 Managing Projects with Base ClearCase...27

Adding VOBs to Projects...28

Integrating Work Between Branches...28

Integrating MultiSite Development Work into the Project.................28

Glossary ...29
Contents v

/vobs/doc/ccase/intro/cc_introTOC.fm — November 16, 1999 7:04 pm

vi Introduction to ClearCase

/vobs/doc/ccase/intro/cc_introTOC.fm — November 16, 1999 7:04 pm

Figures

Figure 1 Accessing a VOB Using a View ...2

Figure 2 ClearCase MultiSite VOB Family ..3

Figure 3 Using a ClearQuest To-Do List to Find UCM Activities..................................5

Figure 4 Elements, Components, and Baselines ...6

Figure 5 Delivering Activities from Development Streams to Integration Streams....7

Figure 6 Rebasing Development Streams..7

Figure 7 Branching Hierarchy in Base ClearCase...16
Figures vii

/vobs/doc/ccase/intro/cc_introLOF.fm — November 16, 1999 7:04 pm

viii Introduction to ClearCase

/vobs/doc/ccase/intro/cc_introLOF.fm — November 16, 1999 7:04 pm

Preface

Rational ClearCase and Rational ClearCase MultiSite provide a comprehensive solution for

software configuration management and distributed development.

Rational Unified Change Management (UCM) provides a best practices approach to

comprehensive change management, by tightly integrating ClearCase and ClearCase MultiSite

with Rational ClearQuest, a change request management product, and by providing an

out-of-the-box software development and change management process for using these products.

About This Manual

This manual provides basic descriptions of ClearCase, ClearCase MultiSite, ClearQuest, and

Unified Change Management. It also provides an overview of how to deploy these products in

an organization, from planning, site preparation, and installation through setting up, working

on, and managing software development projects. Where appropriate, the manual refers you to

specific locations in ClearCase, ClearCase MultiSite, and ClearQuest documentation for detailed

information about individual procedures and concepts.

User Roles, the ClearCase Documentation Set, and This Manual

The documentation for ClearCase consists of printed and online task-oriented information,

supporting ClearCase users acting in the following roles:

➤ project manager — defines, implements, and manages the objects, policies, and processes

of a software development project

➤ developer — makes changes to the software configuration (that is, the files and directories)

that belong to a software development project
Preface ix

➤ integrator (also called build engineer or release engineer) — builds and integrates the

products of a software development project

➤ administrator — configures and maintains the ClearCase infrastructure, including

ClearCase VOBs, views, servers, and clients, for part or all of your organization

The information in this manual applies to these roles as follows:

➤ Chapter 1, ClearCase, ClearQuest, and Unified Change Management, contains information of

interest to all roles.

➤ Chapter 2, Planning for and Installing ClearCase, contains information of interest to

administrators and project managers; also, the instructions for installing ClearCase on your

computer applies to all users.

➤ Chapter 3, Setting Up a Software Project in ClearCase, contains information of interest to

project managers.

➤ Chapter 4, Developing and Building Software with ClearCase, contains information of interest

primarily to developers and integrators; also, the information about the development

process in ClearCase could be of interest to project managers.

➤ Chapter 5, Managing Software Projects with ClearCase, contains information of interest

primarily to project managers.

➤ The glossary that appears at the end of this manual contains information of interest to all

roles.

The ClearCase Documentation Roadmap that appears in the next section shows how the ClearCase

documentation set is organized to support these roles.
x Introduction to ClearCase

ClearCase Documentation Roadmap

Orientation

Introduction to
ClearCase

ClearCase and
MultiSite Release
Notes

ClearCase
Tutorials

Project
Management

Managing
Projects with
ClearCase

Development

Developing
Software with
ClearCase

Build
Management

ClearCase
OMAKE Manual
(Windows)

Building
Software with
ClearCase

ClearCase
Administration

Administering
ClearCase

ClearCase
Product Family
Installation Notes

ClearCase
MultiSite Manual

More Information

ClearCase Reference
Manual

ClearCase Quick
Reference Guide

ClearCase Online Help

clearcase.rational.com
Preface xi

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this is /usr/atria on UNIX and C:\Program Files\Rational\ClearCase

on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: F1, SHIFT,

CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout
xii Introduction to ClearCase

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).

Online Documentation

The ClearCase graphical interface includes an online help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help➔Contents provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

cleartool man (display the cleartool overview page)

cleartool man man (display the cleartool man reference page)

cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

cleartool lsprivate –help
Usage: lsprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
 [-size] [-age] [-co] [-do] [-other]

Additionally, the online ClearCase Tutorial provides a step-by-step tour through ClearCase’s most

important features. To start the tutorial:

➤ On Windows, choose Tutorial from the Getting Started tab of ClearCase Home Base.

➤ On UNIX, type hyperhelp cc_tut.hlp.
Preface xiii

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xiv Introduction to ClearCase

11 ClearCase, ClearQuest, and Unified
Change Management

This chapter contains short summaries of ClearCase, ClearCase MultiSite, and ClearQuest, and

a description of how Rational Unified Change Management (UCM) integrates these products to

provide an out-of-the-box software development and change management process.

1.1 ClearCase

Rational ClearCase® is a configuration-management system designed to help software

development teams track the files and directories used to create software. ClearCase enables you

to manage the development and build process and to enforce your site-specific development

policies.

ClearCase is specifically designed to support parallel development, whether you are simply

isolating the work of one developer from others on a small team, developing multiple releases in

parallel using different teams, or sharing a source code base between multiple teams at

geographically distributed sites.

ClearCase enables you to re-create the source base from which a software system was built,

allowing it to be rebuilt, debugged, and updated—all without interfering with other

development work.

In ClearCase, files and directories, or elements, are stored in a repository called a versioned object
base or VOB. A version is a particular revision of a file or directory element.
1 - ClearCase, ClearQuest, and Unified Change Management 1

You access and change elements using a view. A VOB contains all versions of a particular set of

elements; a view selects a specific version of each element using a set of rules called a

configuration specification (or config spec). The result is that when accessed through a view, a

VOB looks just like an ordinary file-system directory tree. (See Figure 1.)

Figure 1 Accessing a VOB Using a View

Like many configuration management systems, ClearCase uses a checkout-edit-checkin model

to manage software changes. When you check out a file, ClearCase creates an editable copy, or

VOB

Config spec acts as a filter,
selecting one version of an
element, rejecting all others

Any user process can use a
view to access the version-controlled
data in any VOB, as if it were a
standard directory tree

View
2 Introduction to ClearCase

checked-out version, in your view. When you check in a file, ClearCase creates a new, permanent

version of the file in the VOB.

1.2 ClearCase MultiSite

Rational ClearCase MultiSite® extends ClearCase by supporting parallel software development

and software reuse across geographically distributed project teams.

ClearCase MultiSite enables developers at different locations to use the same VOB. Each site has

its own copy, or replica, of that VOB. The set of replicas for a particular VOB is called a VOB family.

At any time, a site can propagate the changes made in its own VOB replica to the other members

of the VOB family, using either an automatic or manual synchronization process.

Figure 2 ClearCase MultiSite VOB Family

This manual discusses ClearCase MultiSite only where it applies to a given ClearCase operation

or concept. See ClearCase MultiSite Manual for details about configuring, using, and

administering ClearCase MultiSite.

San Francisco

Paris

OsakaVOB replica

VOB replica
VOB replica
1 - ClearCase, ClearQuest, and Unified Change Management 3

1.3 ClearQuest

Rational ClearQuest® is a change request management application that allows you to track

change requests for your products. Using ClearQuest, you can submit change requests, view and

modify existing change requests, and create and run user- or site-specific queries and reports to

determine the current state of your project.

In ClearQuest, change requests are stored as records in a ClearQuest database. Each record

consists of all the data related to that record. ClearQuest supports different types of records for

different projects and uses. For example, you might have record types for enhancements, defects,

and activities, each with unique fields and data requirements.

A schema refers to all attributes that define a ClearQuest database. ClearQuest provides default

schemas and allows you to create customized schemas.

ClearQuest records move through a pattern, or lifecycle, from submission through resolution. In

ClearQuest, each stage in this lifecycle is called a state, and each movement from one state to

another is called a state transition.

This manual discusses ClearQuest only where it applies to a given ClearCase operation or

concept. See the ClearQuest documentation set for details about configuring, using, and

administering ClearQuest.

1.4 Unified Change Management

Rational Unified Change Management (UCM) combines ClearCase and ClearQuest to provide a

complete, out-of-the-box, activity-based change management process.

UCM combines ClearCase configuration management capabilities (such as version control,

parallel development, build management, and component-based management of directories and

files) with ClearQuest change request and activity management capabilities, such as (task

management, state transition support, parent/child associations, policy enforcement rules, and

extensive querying and reporting).

In UCM, development work is organized into projects, which are ClearCase objects that contain

the configuration information needed to manage a significant development effort, such as a

product release. You use a project to set the policies that govern how developers access and

update the set of files and directories used in the development effort.
4 Introduction to ClearCase

An activity is a ClearCase object that tracks the work required to complete a particular

development task.

You can associate ClearCase project and activity objects with ClearQuest records. This enables

you to attach ClearQuest information such as states and state transitions, user assignments, and

parent/child associations to ClearCase projects and activities. Developers can use ClearQuest

queries to determine which activities are assigned to them, as shown in Figure 3. Project

managers can use ClearQuest queries, reports, and charts to monitor the progress of software

development projects.

Figure 3 Using a ClearQuest To-Do List to Find UCM Activities

In UCM, a component is a group of related ClearCase directory and file elements, which you

develop, integrate, and release together. A baseline is a version of a component (see Figure 4). A

baseline typically represents a stable configuration for that component, such as a project

milestone or release.
1 - ClearCase, ClearQuest, and Unified Change Management 5

Figure 4 Elements, Components, and Baselines

A UCM project includes a single integration stream, which configures ClearCase views that select

the latest versions of a project’s shared ClearCase elements. When a developer joins a project,

ClearCase creates a development stream for that developer in the project. Development streams

configure the ClearCase views that allow developers to work on the project components in

isolation from the rest of the team.

When developers work on a particular activity, all changes to the files and directories in the

components are associated with that activity in a change set. When developers complete activities,

and build and test their work in their private work areas, they share their work with the project

team by delivering the activities from their development streams to the project’s integration

stream, as shown in Figure 5.

Element

Baseline

Version

Component

foo.c bar.c bas.c util.c

BL1
6 Introduction to ClearCase

Figure 5 Delivering Activities from Development Streams to Integration Streams

Periodically, the project manager creates new baselines for the components used by the project.

When the project manager recommends a particular baseline, the developers may choose to

rebase their development streams to use the new baseline, as shown in Figure 6. The new

baselines incorporate work that developers have delivered since the last baselines were created.

Figure 6 Rebasing Development Streams

Integration stream

Baseline BL1

Deliver

Development stream

Rebasing

Development
stream

Baseline BL1 Baseline BL2
1 - ClearCase, ClearQuest, and Unified Change Management 7

Note that using UCM or ClearQuest is optional. You can choose not to use ClearQuest for change

request and activity management and still take advantage of UCM process features. You can

choose not to use UCM process features and still associate ClearQuest records with ClearCase

versions. Or you can use ClearCase without UCM or ClearQuest.

This section provides only an overview of how UCM integrates ClearCase, ClearCase MultiSite,

and ClearQuest. See Developing Software with ClearCase, Managing Software Projects with ClearCase,

and the ClearQuest documentation set for details about the concepts and tasks summarized here.
8 Introduction to ClearCase

22 Planning for and Installing
ClearCase

This chapter summarizes the basic steps required to install ClearCase, providing a high-level

understanding of the installation process. It is not intended to be a complete installation guide.

See ClearCase Product Family Installation Notes for details about installing ClearCase at your site.

If you are a ClearCase administrator, charged with installing ClearCase at your site, read this

chapter.

If you are a project manager, Planning Issues contains information about using UCM, ClearQuest,

and MultiSite in your organization.

If you are concerned only with installing ClearCase on your client computer, start with Installing
ClearCase on Individual Computers on page 12.

2.1 Planning Issues

This section describes some of the significant decisions administrators or project managers must

make before you can begin installing ClearCase at your site.
2 - Planning for and Installing ClearCase 9

Using Unified Change Management or Base ClearCase

UCM is an optional prescribed method of using ClearCase for version control and configuration

management. Because UCM is layered on base ClearCase, it is possible to work efficiently in

UCM without having to master the details of base ClearCase.

UCM provides the convenience of an out-of-the-box solution; base ClearCase offers the

flexibility to implement virtually any configuration management solution that you deem

appropriate for your environment.

By default, UCM functionality is included when you install ClearCase. However, this does not

prevent you from using base ClearCase functionality, because you can specify that your

configuration (specifically, your VOBs and views) not use UCM features.

Chapters 3, 4, and 5 of this manual provide an overview of the differences in configuring,

working in, and managing software development projects between base ClearCase and UCM.

However, for detailed information:

➤ See Managing Software Projects with ClearCase for information about creating and managing

projects using UCM or base ClearCase, including the details about what you must consider

for each before installing ClearCase.

➤ See Developing Software with ClearCase for information about how choosing UCM or base

ClearCase affects how developers do their work in ClearCase.

Using ClearQuest

In UCM, you can use ClearQuest to provide activity management for your UCM development

work, such as assigning and transitioning states for activities, and querying and reporting on

activities based on state, user assignment, project, and so on. See Managing Software Projects with
ClearCase for details about configuring ClearQuest and ClearCase to support UCM activity

management.

If you are using base ClearCase functionality instead of UCM, you can associate ClearQuest

change requests with ClearCase versions. See the online documentation for the

ClearQuest-ClearCase Integration Configuration program for details about configuring this

integration.
10 Introduction to ClearCase

Using ClearCase MultiSite

Before installing ClearCase MultiSite, you must resolve planning issues, such as which

development artifacts to share across sites, how the various sites will access and change those

artifacts, how to synchronize sites, and so on.

See ClearCase MultiSite Manual for details about planning for and using ClearCase MultiSite.

2.2 ClearCase Site Preparation

The ClearCase administrator (possibly with advice from the ClearCase project manager) decides

how to configure the ClearCase installation for the site. The administrator creates a shared

release area from which users can install ClearCase on their individual computers. When

creating the shared release area, the administrator specifies default values for installation

parameters for the individual hosts based on the configuration decisions made for the site.

See READ ME FIRST

The READ ME FIRST chapter in ClearCase and MultiSite Release Notes contains information you

need to know before installing ClearCase at your site:

➤ Supported platforms and file systems (including Windows/UNIX file access)

➤ Hardware and software requirements

➤ Platform-specific information pertaining to installation, such as disk space required, OS

patches required, layered software packages required, and so on

➤ ClearCase and MultiSite patches incorporated into this release

➤ Issues with upgrading from a previous ClearCase release (both in general and pertaining to

this particular release)

➤ Known issues pertaining to installation
2 - Planning for and Installing ClearCase 11

Running ClearCase Site Preparation

The ClearCase Site Preparation program prepares the shared release area from which users can

install ClearCase on their computers.

ClearCase Site Preparation configures the site-wide defaults that users see when installing

ClearCase on their computers. This simplifies site-wide installation because the ClearCase

administrator defines the ClearCase installation parameters for the site only once rather than

relying on everyone making the appropriate choices when they install. It also simplifies

installation, because users can accept the default values when prompted.

On Windows, running ClearCase Site Preparation requires at least local administrator privileges

and often also requires network administrator privileges. On UNIX, running ClearCase Site

Preparation requires root privileges.

See ClearCase Product Family Installation Notes for detailed information about running ClearCase

Site Preparation.

2.3 Installing ClearCase on Individual Computers

To install ClearCase on your computer, go to the release area created by your ClearCase

administrator and run the ClearCase Installation program. (On Windows, this is setup.exe; on

UNIX, it is install_release.)

Typically, you should accept the default installation parameters. See your ClearCase

administrator before you override any default values.

See ClearCase Product Family Installation Notes for detailed information about installing

ClearCase.
12 Introduction to ClearCase

33 Setting Up a Software Project in
ClearCase

This chapter provides an overview of how a project manager sets up a software development

project in ClearCase, using either UCM or base ClearCase.

Depending on the complexity of your organization and your software configuration, you may

need to create and organize many projects. This chapter describes the basic steps required to

create a single project. See Chapter 2 for an overview of the planning issues you need to consider

before creating a project in ClearCase.

See Managing Software Projects with ClearCase for detailed information about creating and

configuring projects in ClearCase, including how to plan for, create, and manage multiple

projects.

3.1 Creating a Project in UCM

This section provides an overview how to set up a project in UCM.

Creating a Project VOB

In UCM, each project must be associated with a project VOB, or PVOB. A PVOB is a special kind

of VOB that stores UCM objects, such as projects, activities, and change sets. The PVOB must

exist before you can create the UCM objects associated with it.
3 - Setting Up a Software Project in ClearCase 13

Organizing Directories and Files into VOBs and Components

Before starting a project, the project manager or ClearCase administrator must map the existing

system architecture into UCM components. To do this, you create ClearCase VOBs that

correspond to the files and directories in the system architecture and then define UCM

components whose contents are those VOBs.

For existing ClearCase VOBs, you apply a label to the directories and files in those VOBs to define

a starting point for the UCM configuration. You then define UCM components for the existing

VOB content based on that label. See Managing Software Projects with ClearCase for details about

converting existing ClearCase VOBs into UCM components.

For existing architectures currently maintained outside ClearCase, you must import those files

and directories into VOBs and then define UCM components for those VOBs as described above.

See Administering ClearCase for details about importing existing files and directories into

ClearCase VOBs.

Creating a Project

In UCM, a project is an object in a PVOB that contains the configuration information needed to

manage a development effort. A project defines how developers access and update the

components used in a particular development effort, including:

➤ Which components and baselines are to be used for this project

➤ How developers are to work both independently of and in conjunction with each other

➤ How to group development changes into manageable pieces

➤ Whether to use the ClearQuest integration, and if so, which ClearQuest database to

associate with this project

Creating and Assigning Activities

In UCM, an activity is an object that tracks the work required to complete a particular

development task. As project manager, you decide whether to create activities and assign them

to developers as part of setting up your project, or to allow the developers to create their own

activities as they do their work.
14 Introduction to ClearCase

Using the ClearQuest Integration

If your project uses the ClearQuest integration, UCM activities can be associated with

ClearQuest records, enabling you to attach project management information such as states and

state transitions, user assignments, policy enforcement rules, parent/child associations to

ClearCase activities.

Developers can use a to-do list in ClearQuest to access activities that the project manager or other

team members assign to them.

3.2 Setting Up a Project in Base ClearCase

This section provides an overview of how to set up a project in base ClearCase.

Importing Directories and Files into VOBs

Before starting a project, the project manager or ClearCase administrator must import the files

and directories that constitute the existing system architecture into ClearCase VOBs. See

Administering ClearCase for details about importing existing files and directories into ClearCase

VOBs.

Applying a Label to the Initial Configuration

A label is a user-defined name that can be attached to a version.

After importing the system configuration into ClearCase VOBs, you can apply a label to the

directories and files in those VOBs to define a starting point for your project configuration.

Deciding a Branching and Merging Strategy

Base ClearCase uses branches directly to implement parallel development. (UCM manages

branches for you.) A branch is an object that specifies a linear sequence of versions of an element.

Every element has one main branch, which represents the principal line of development, and may

have multiple subbranches, each of which represents a separate line of development. As shown in
3 - Setting Up a Software Project in ClearCase 15

Figure 7, a project team can use many branches concurrently. In this example, the main branch

represents new development work, an alpha_port subbranch is a port to a new platform, an

r1_bugs subbranch contains fixes for bugs found in the first release, and so on.

Figure 7 Branching Hierarchy in Base ClearCase

To integrate work from one branch to another, you merge from the subbranch to the other branch.

In the example above, assume that all work must be merged to the main branch before it can be

included in a release for your product. After the fix on the bug102 branch is tested and deemed

ready for integration, you merge the work first to the r1_bugs branch. At some point, you test all

the bug-fixing work on the r1_bugs branch, and when that work is ready to be incorporated into

the main project, you merge from that branch to the main branch.

Of course, this is a very simple example of how you can define a branching strategy; the

possibilities of branching and merging combinations are almost infinite.

Creating Standard Config Specs

As a project manager in an environment in which multiple branches are used, you must ensure

that developers are working on the correct branches. To do that, you must ensure that the views

they are using access and change the appropriate directory and file versions (that is, that they are

accessing the appropriate branch).

main

r1_bugs

bug102

alpha_port

install
16 Introduction to ClearCase

The rules in the view’s config spec determine which versions to select, and thus, which branch the

developer is using. To ensure that developer views are configured properly, you can create a

standard config spec and instruct all developers to use it.

Using ClearCase Metadata to Implement Development Policy

To enforce development policies in base ClearCase, a project manager or ClearCase

administrator can create metadata to preserve information about the status of versions. To

monitor the progress of the project, you can generate a variety of reports from this data and from

the information that ClearCase captures in event records. ClearCase metadata you can use to

define project policy includes:

➤ Version labels

➤ Attributes

➤ Hyperlinks

➤ Triggers

➤ Locks

See Managing Software Projects with ClearCase for details about using ClearCase metadata.

Using the ClearQuest-ClearCase Integration

If your project uses the ClearQuest-ClearCase integration, ClearQuest records can be associated

with ClearCase versions, identifying which versions were created while making a particular

change.

See the online documentation for the ClearQuest-ClearCase Integration Configuration program

for details about this integration.
3 - Setting Up a Software Project in ClearCase 17

18 Introduction to ClearCase

44 Developing and Building Software
with ClearCase

This chapter provides an overview of how developers create, change, and build software in

ClearCase, using either UCM or base ClearCase.

See Developing Software with ClearCase for details about the development process and Building
Software with ClearCase for details about the build process.

4.1 Developing Software Using UCM

UCM structures the efforts of your software development team into a defined, repeatable

process. This section provides an overview of the workflow for developers in UCM.

Joining a Project

A developer starts work by joining a UCM project. When you join a project, ClearCase creates two

work areas: a development work area and an integration work area.

Development Work Area

A development work area allows you to work on your development activities in isolation from

the project team. It consists of a development stream and a development view.
4 - Developing and Building Software with ClearCase 19

The development stream determines which versions of elements appear in your development view

and maintains a list of your activities. You use the development view to access and change the files

and directories in the components for your project.

Integration Work Area

An integration work area allows developers to test and deliver their work when they are ready

to share it with the rest of the project team. The integration work area consists of an integration

view associated with an integration stream to use for the project. There is only one integration

stream per project, while there can be many development streams (typically, one per developer).

The integration stream determines which versions of elements appear in an integration view and

maintains the project’s baselines and activities that have been delivered from other development

work areas.

Working on Activities

All work on your development stream takes place as part of a UCM activity. An activity is an

object that tracks the work required to complete a development task.

Finding or Creating an Activity for Your Work

If your project uses Rational ClearQuest, you can use a to-do list in ClearQuest to access activities

that you, your project manager, or other team members assign to you.

You can also create and use activities when you check out files and directories.

Modifying and Testing Source Files

To modify source files, go into your development view and check them out. When you want to

keep a record of a file’s current state, check it in. Any work you check in from your development

view is not available to other team members until you deliver it.

Make sure the changes in your development view build and function properly before you deliver

them.
20 Introduction to ClearCase

Delivering Activities

When you are ready to make one or more of your activities available to the project team, you

deliver them from your development stream to the project’s integration stream.

Starting the Deliver Operation

When you start a deliver operation, ClearCase integrates the changes from your development

work area to the integration work area. At this point, the files are checked out to your integration

view.

Testing Your Work

You should build and test your work against the latest project work. To do this, use your

integration view to access both the versions you delivered from your development work area

and the latest versions delivered by the other developers working on the project.

Completing the Deliver Operation

When you are satisfied that your changes are compatible with the latest work for the project, you

complete the deliver operation. (If you are not satisfied, you can cancel it.)

The deliver operation checks in the files that were integrated from the development work area to

the integration work area at the beginning.

Delivering with MultiSite

If your project uses MultiSite to share source data with developers in other geographical

locations, you may use a different method for delivering activities.

If a different site is responsible for controlling your project’s source data, your organizational

policy may require that you notify the integrator or project manager at that site when you deliver

changes. That person merges your activities to the integration stream and tests your work.

Rebasing Your Work Area

Periodically, your project manager groups delivered activities into baselines, which are versions

of each component in the project. Some of these baselines constitute a stable and significant
4 - Developing and Building Software with ClearCase 21

source configuration; your project manager will recommend that you rebase your development

work area to the recommended configuration.

Starting the Rebase Operation

When you start the rebase operation, ClearCase integrates the versions specified by the

recommended baseline in the project’s integration stream into your development work area. At

this point, the files are checked out to your development view.

Testing Your Development Work Area

You should test your work against the latest project work. To do this, use your development view

to access both the versions you integrated from the integration stream and the latest

(undelivered) versions in your development work area.

Completing the Rebase Operation

When you are satisfied that the recommended baseline is compatible with the work you have

done in your development stream, you complete the rebase operation. (If you are not satisfied,

you can cancel it.)

The rebase operation checks in the files that were integrated from the integration stream to the

development work area at the beginning.

4.2 Developing Software Using Base ClearCase

This section provides an overview of the workflow for developers using base ClearCase

functionality.

Setting Up a View

Typically, a project manager has defined the development policies for your project, and has

implemented them using a configuration specification (or config spec).

To start working on a project, a developer creates a ClearCase view and then changes the config

spec for that view to match the project’s config spec.
22 Introduction to ClearCase

Accessing and Modifying Files in Your View

To modify source files, go into the development view and check them out. When you want to

keep a record of a file’s current state, check it in.

Working on Branches

Typically, your project manager has defined a branching strategy for your project or

organization, and has provided a standard config spec to ensure that developers are working on

the branch appropriate for the project.

Using a Private Branch

Occasionally, you might want to isolate some short-term development effort from the project

branch. For example, you may want to experiment with some changes to the product, but are not

yet sure whether to include such experimental changes in official project builds. You can do this

by creating a private branch based on the project branch. To do this, you change the rules in the

config spec for your view.

If you decide that your changes should be incorporated into the project, you can then merge the

changes on your private branch back to the project branch. If you decide to abandon your

changes, you simply do not merge the work. In either case, you change your config spec rules

back to the standard project config spec, and resume your work on the project branch.

Developing Software with ClearCase contains more information about creating private branches for

development work and merging your work back to the project branch.

MultiSite Branch Mastership

If your organization uses ClearCase MultiSite to distribute development among multiple

geographical sites, you may have to consider issues about branch control (mastership) between

sites. See ClearCase MultiSite Manual for details.
4 - Developing and Building Software with ClearCase 23

4.3 Using ClearCase Build Tools

ClearCase supports makefile-based building of software systems, and provides a software build

environment closely resembling that of the make program. make was developed for UNIX

systems, and has been ported to other operating systems. You can use ClearCase-controlled files

to build software, and use native make programs, third-party build utilities, your company’s

own build programs, or the ClearCase build tools clearmake, omake, and clearaudit.

The ClearCase build tools, clearmake and omake, provide compatibility with other make
variants, along with powerful enhancements:

➤ Build auditing, with automatic detection of source dependencies, including header file

dependencies

➤ Automatic creation of permanent bill-of-materials documentation of the build process and

its results

➤ Sophisticated build-avoidance algorithms to guarantee correct results when building in a

parallel development environment

➤ Sharing of binaries among views, saving both time and disk storage

➤ Parallel building, applying the resources of multiple processors and/or multiple hosts to

builds of large software systems

The clearaudit build tool provides build auditing and creation of bill-of-materials

documentation.

See Building Software with ClearCase for details about using ClearCase build tools.
24 Introduction to ClearCase

55 Managing Software Projects with
ClearCase

This chapter provides an overview of how project managers coordinate and track existing

projects in ClearCase, using UCM and base ClearCase functionality.

See Managing Software Projects with ClearCase for detailed information about planning, creating,

and managing software projects using ClearCase.

5.1 Managing Projects with UCM

This section summarizes the capabilities provided by UCM for managing software projects.

Adding Components to Projects

Over time, as project manager, you may need to add components to a project’s integration

stream. You do this by creating a new baseline that contains the new components. When the

developers rebase their development work areas, the new components become visible.
5 - Managing Software Projects with ClearCase 25

Integrating MultiSite Development Work into the Project

In most cases, developers complete the deliver operations that they start. However, in a MultiSite

configuration where the project’s integration stream is mastered at a different replica than the

developer’s development stream, the developer cannot complete the deliver operations.

When ClearCase detects such a stream mastership situation, it makes the deliver operation a

remote deliver operation. ClearCase starts the deliver operation but leaves it in the posted state.

The project manager is responsible for finding and completing deliver operations in the posted

state.

NOTE: Developers who have deliver operations in the posted state cannot rebase their

development streams until the project manager completes or cancels their remote deliver

operations.

See ClearCase MultiSite Manual for details about MultiSite mastership. See Managing Software
Projects with ClearCase for details about using MultiSite with UCM, including finding and

completing posted deliveries.

Managing Baselines

This section summarizes how project managers create, promote, and demote baselines.

Creating New Baselines

As developers deliver work to the integration stream, it is important that the project manager

frequently make new baselines that incorporate the changes. Developers can then rebase to the

new baselines and stay current with changes in the project.

Promoting and Demoting Baselines

As work on the project progresses, and the quality and stability of the components improve, the

project manager can change a baseline’s promotion level attribute to reflect the level of testing that

the baseline has passed.

On occasion, a project manager may need to demote a baseline by changing its promotion level

to one that is lower in the promotion level order. For example, suppose that after you create a

new baseline, you discover that it contains a major bug. To prevent developers from introducing
26 Introduction to ClearCase

this bug to their development streams by rebasing, you can demote the baseline to a Rejected

level.

Tracking Projects

UCM provides several tools to help project managers track the progress of projects.

Comparing Baselines

ClearCase enables you to display the differences between UCM baselines graphically. You can

compare baselines by the activities or versions in each baseline.

Using ClearQuest to Track Work

If you use the UCM-ClearQuest integration, developers and project managers can use

ClearQuest queries, reports, and charts to retrieve information about the state of the project. For

example:

➤ Which activities for a given project, stream, or developer are active

➤ Which activities are currently assigned to you (the to-do list)

➤ Detailed information for a particular activity, such as its state, owner, and changes made

➤ Trends in activity properties over time

You can also create custom ClearQuest queries, reports, and charts.

5.2 Managing Projects with Base ClearCase

This section summarizes the capabilities provided by base ClearCase for managing software

projects.
5 - Managing Software Projects with ClearCase 27

Adding VOBs to Projects

Over time, you may need to add VOBs to a project’s configuration. You should attach a

ClearCase label to the initial versions in the VOB to represent the initial configuration of the VOB

content.

Integrating Work Between Branches

As discussed in Deciding a Branching and Merging Strategy on page 15, base ClearCase

functionality uses branches to isolate parallel development efforts. At some point, the project

manager integrates the changes made on subbranches into a main product branch, which is

sometimes called the integration branch.

In the simplest parallel development model, the main branch is the integration branch and a

subbranch represents a separate development effort. Once the work on the subbranch is deemed

ready for integration, the project manager merges the work from that branch to the main branch.

See Managing Software Projects with ClearCase for details about integrating parallel development

using base ClearCase functionality.

Integrating MultiSite Development Work into the Project

In the standard MultiSite model, development at different sites occurs on branches of different

types, and each site-specific branch type is mastered by the replica at that site. Integration merges

occur only at the site whose replica masters the integration branch.

In a MultiSite configuration where the project’s integration branch is mastered at a different

replica than the developer’s branch, you must manage integrations from the developer branch

to the integration branch.

See ClearCase MultiSite Manual for details about managing projects and integrating development

work in ClearCase MultiSite.
28 Introduction to ClearCase

0 Glossary

ABE. (UNIX platforms only) See audited build executor.
ABSOLUTE VOB PATHNAME. (Windows platforms only) A pathname to a VOB object that begins

with the VOB-tag. (That is, the pathname does not specify a network drive or view.) For

example, \myvob\src\test.c, where the VOB-tag is \myvob.

ACCESS MODE. A three-digit octal number — 751, 644, or 777, for example. From left to right, the

three digits designate file access permissions for three classes of user: owner, group, and others.

The three bits of each of the three octal digits further define file access as read, write, or

execute with respect to the three classes of users. The command cleartool protect –chmod
controls an element’s access mode.

ACTIVATE. Make a dynamic view or VOB accessible on a particular host. See the mount reference

page. On UNIX platforms, see also the setview reference page.

ACTIVE. A VOB becomes active on a host when it is mounted with the cleartool mount command.

A dynamic view becomes active on a host when it is started with either a cleartool setview or

startview command on UNIX platform; or a Connect Network Drive, net use, or startview
command on Windows platforms. These commands establish a connection between the host’s

MVFS file system and the dynamic view’s view_server process.

ACTIVITY. A ClearCase UCM object that tracks the work required to complete a development task.

An activity includes a text headline, which describes the task, and a change set, which

identifies all versions that you create or modify while working on the activity. When you work

on a version, you must associate that version with an activity. If your project is configured to

use the UCM-ClearQuest integration, a corresponding ClearQuest record stores additional

activity information, such as the state and owner of the activity.

ADMINISTRATIVE VOB. A VOB containing global type objects, which are copied to client VOBs on

an as-needed basis when users wish to create instances of the type objects in the client VOBs.

See auto-make-type, global type, local copy.

ADMINISTRATOR. (Windows platforms only) The Administrator user, or any member of the

Administrators group. Some operations, such as stopping and starting ClearCase, require
Glossary 29

membership in the Administrators group only on the client workstation. Other operations,

such as modifying domain-wide group assignments, require membership in the

Administrators group on the domain controller for the Windows NT Server domain.

ALBD _SERVER. Atria Location Broker Daemon. This ClearCase master server runs on each

ClearCase host; it starts up, and dispatches messages to, the various ClearCase server

programs (for example, view_server, vob_server, db_server, vobrpc_server, and so on) as

necessary. See the albd_server reference page.

ALL -ELEMENT TRIGGER TYPE. A trigger type that is automatically associated with all elements in a

VOB.

ANCESTOR. In an element’s version tree, a version that is on the line of descent of another version.

In other words, a version that has contributed to the contents of another version is considered

an ancestor to the latter version.

ANNOTATION BOX . (UNIX platforms only) Part of the xcleardiff display, showing how lines of one

file differ from lines of other files, with which it is being compared or merged.

ARGUMENT. A word or quoted set of words processed by a command.

ATRIA LOCATION BROKER. See albd_server.
ATTACHE CLIENT. (Attache) The program through which you enter all commands, using the

command-line and graphical interfaces. This program, attache.exe, is located in the bin
subdirectory within the Attache installation area on your PC

(attache-home-dir\bin\attache.exe).

ATTACHE WINDOW. (Attache) The standard Microsoft Windows window in which the Attache client
program executes.

ATTACHED LIST. See trigger inheritance.

ATTRIBUTE. A meta-data annotation attached to an object, in the form of a name/value pair. Names

of attributes are specified by user-defined attribute types; values of these attributes can be set

by users. Example: a project administrator creates an attribute type whose name is QAed. A

user then attaches the attribute QAed with the value "Yes" to versions of several file

elements.

ATTRIBUTE TYPE. An object that defines an attribute name for use within a VOB. It constrains the

attribute values that can be paired with the attribute name (for example, an integer in the

range 1–10).

ATTRIBUTE VALUE . See attribute type.

AUDIT, AUDITED SHELL . See build audit.
AUDITED BUILD EXECUTOR . (UNIX platforms only) A process invoked through the UNIX

remote-shell facility, in order to execute one or more build scripts on behalf of a remote

clearmake.

AUTO-MAKE-BRANCH. ClearCase’s facility, specified in a config spec rule, for automatically creating

one or more branches when a checkout is performed.
30 Introduction to ClearCase

AUTO-MAKE-TYPE. ClearCase’s facility for automatically copying type objects from an administrative
VOB to a client VOB, when a user attempts to make an instance of the type object in the client

VOB. See global type, local copy.

AUTOMOUNTED. A file system on a remote host that has been automatically mounted on the local

host.

BACKUP REGISTRY SERVER HOST. See registry server host.
BASE CONTRIBUTOR . In ClearCase comparison and merge tools, the contributor against which all

other contributors are compared when reporting differences. For example, if you are

comparing four contributors, a through d, and contributor a is the base contributor, ClearCase

compares:

➤ Contributor a against contributor b.

➤ Contributor a against contributor c.

➤ Contributor a against contributor d.

BASELEVEL . A matched set of source versions, representing a certain milestone in a project.

Typically, a baselevel is recorded by attaching a version label to each version in the set.

BASELEVEL -PLUS-CHANGES. A software development methodology, in which the current status is

determined in relation to a recent baselevel.

BASELINE . A ClearCase UCM object that typically represents a stable configuration for one or

more components. A baseline identifies activities and one version of every element visible in

one or more components. You can create a development stream or rebase an existing

development stream from a baseline.

BIDIRECTIONAL . See hyperlink.

BITMAP FILES . Files that store bitmaps for the icons displayed by ClearCase GUI programs.

BOS FILE. A file containing rules that specify settings of make macros, which affect the way in

which a target rebuild proceeds.

BRANCH. An object that specifies a linear sequence of versions of an element. The entire set of

versions of an element is called a version tree; it always has a single main branch, and may also

have subbranches. Each branch is an instance of a branch type object.

BRANCH NAME . See branch type.

BRANCH PATHNAME . A sequence of branch names, starting with main (the name of an element’s

starting branch). Examples: /main/motif on UNIX platforms, or

\main\maintenance\bug459 on Windows platforms.

BRANCH TYPE. An object that defines a branch name for use within a VOB.

BROADCAST MESSAGE SERVER. (UNIX platforms only) A Hewlett-Packard SoftBench program that

passes messages among SoftBench applications.

BROWSER. A class of ClearCase graphical tools. The various kinds of browser —type object, vtree,

properties, history, log, VOB admin, view-tag, VOB-tag, pool, list, and so on— share a

common model: they display some kind of ClearCase data, and they include toolbar and
Glossary 31

menu commands for operating on that data. In addition, as you perform your ClearCase

work, browsers prompt you automatically for any data required to complete particular

ClearCase operations.

BROWSER WINDOW. (Attache) When the Attache window is divided into upper and lower

partitions, the upper partition is the browser window. The File Browser is displayed in the

browser window.

BUILD. The process during which a ClearCase build program (clearmake, clearaudit, or omake)

produces one or more derived objects. (NOTE: omake is supported only on Windows

platforms.) This may involve actual translation of source files and construction of binary files

by compilers, linkers, text formatters, and so on. A system build consists of a combination of

actual target rebuilds and build avoidance. See also express build.

BUILD AUDIT. The process of recording which files and directories (and which versions of them) are

read or written by the operating system during the execution of one or more programs. A

client host’s MVFS file system performs an audit during execution of a ClearCase build

program: clearmake, omake, clearaudit, or abe. (NOTE: omake is supported only on

Windows platforms, and abe is supported only on UNIX platforms.) When the build audit

ends, the build program creates one or more configuration records (CRs). An audited shell is a

UNIX shell process created by clearaudit in which all file system accesses are audited, and are

recorded in a configuration record when the shell exits.

BUILD AVOIDANCE . The ability of a ClearCase build program to fulfill a build request by using an

existing derived object, instead of creating a new derived object by executing a build script.

The build program can reuse a derived object currently in the view or wink in a derived object

that exists in another view. The process by which the build program decides how to produce

a derived object is called configuration lookup.

BUILD CONFIGURATION . The set of source versions in a view, the current build script that would be

executed, and the current build options. See also configuration lookup.

BUILD DEPENDENCY. See dependency.

BUILD HOSTS FILE . (UNIX platforms only) A file that lists hosts to be used in a parallel build.

BUILD OPTIONS SPECIFICATION FILE . See BOS file.

BUILD REFERENCE TIME. The time at which a build session (invocation of a ClearCase build program)

begins. Versions created after this time are kept out of the build.

BUILD SCRIPT. The set of shell commands that a ClearCase build program or a standard make
program reads from a makefile when building a particular target.

BUILD SERVER CONTROL FILE . (UNIX platforms only) A file on a build host that controls its

availability as a build server.

BUILD SERVER HOST. (UNIX platforms only) A host used to execute build scripts during a

clearmake parallel build.

BUILD SESSION. A top-level invocation of a ClearCase build program; during the session, recursive

invocations of clearmake, omake, or clearaudit may start subsessions. (NOTE: omake is

supported only on Windows platforms.)
32 Introduction to ClearCase

BUILD TARGET. A word, typically the name of an object module or program, that can be used as an

argument in a clearmake or omake command. (NOTE: omake is supported only on Windows

platforms.) The target must appear in a makefile, where it is associated with one or more build
scripts.

BUILT-IN RULES. Build rules defined in a system-supplied or ClearCase-supplied file, which

supplement the explicit build rules in a user’s makefiles.

BUMP. The taking away of a ClearCase license from a lower-priority user by a higher-priority

user.

CANDIDATE. A derived object that is being considered for winkin or reuse during configuration lookup.

CASCADING MENU. A menu that includes one or more sub-menus.

CATALOGED. Names of elements and VOB symbolic links that appear in a version of a directory

element are said to be cataloged in the directory version. A derived object is said to be cataloged

(and, hence, available for reuse and winkin) in a particular VOB.

CHANGE SET.

A list of related versions associated with a UCM activity. ClearCase records the versions that

you create while you work on an activity. An activity uses a change set to record the versions

of files that are delivered, integrated, and released together.

CHECKED-OUT VERSION. A placeholder object in a VOB database, created by the checkout
command. This object corresponds to the view-private object (file or directory) that you work

with after checking out the element.

CHECKING (A VOB). Finding and fixing inconsistencies between a VOB database and the VOBs

storage pools. See VOB database snapshot and the checkvob reference page.

CHECKOUT/CHECKIN. The two-part process that extends a branch of an element’s version tree with a

new version. The first part of the process, checkout, expresses your intent to create a new

version at the current end of a particular branch. (This is sometimes called checking out a

branch.) The second part, checkin, completes the process by creating the new version.

For file elements, the checkout process creates an editable version of the file in the view (and,

with Attache, in your workspace), with the same contents as the version at the end of the branch.

Typically, a user edits this file, then checks it back in.

For directory elements, the checkout process allows file elements, (sub)directory elements, and

VOB symbolic links to be created, renamed, moved, and deleted.

Performing a checkout of a branch does not necessarily guarantee you the right to perform a

subsequent checkin. Many users can checkout the same branch, as long as they are working

in different views. At most one of these can be a reserved checkout, which guarantees the user’s

right to checkin a new version. An unreserved checkout affords no such guarantee. If several

users have unreserved checkouts on the same branch in different views, the first user to

perform a checkin wins — another user must perform a merge if he wishes to save his or her

checked-out version.

CHECKOUT RECORD. The event record created by the checkout command.
Glossary 33

CLEARCASE GROUP. (Windows platforms only) A special group, usually created in the Windows

NT domain when ClearCase is installed. Only ClearCase administrative accounts and the

login account for the ClearCase ALBD Service should be members of this group.

CLEARCASE REGISTRY. A set of files on the registry server host that map logical VOB and view names

(VOB-tags and view-tags) to physical storage locations (VOB storage directories and view storage
directories). See registry_ccase, backup registry servers.

CLEARTEXT FILE . An ASCII text file that contains a whole copy of some version of an element,

having been extracted from a data container that is in compressed format or delta format. A

ClearCase type manager creates a cleartext container the first time it accesses the version.

Subsequent reads of that version access the cleartext file, for better performance.

CLEARTEXT POOL . A VOB storage pool, used for data containers that contain cleartext.
CLI. Command-line interface.

CLIENT. The programs invoked by users: cleartool, clearmake, cleardiff, and other programs

located in the ClearCase bin directory. See Attache client.
CLOCK SKEW. The discrepancies among the system clocks of several hosts.

COMMAND OPTION. In the command-line interface (CLI), a word beginning with a hyphen (–) that

affects the meaning of a command.

COMMAND PROMPT. (Attache) The character string (the name of the current working directory,

followed by “>”) that Attache displays when it is ready to execute a command.

COMMAND WINDOW. (Attache) The part of the Attache window where you type commands, and

where command output is displayed. When the Attache window is divided into upper and

lower partitions, the lower partition is the command window.

COMMAND-LINE INTERFACE. The input method in which you type a command at a command prompt.
COMMENT DEFAULT. The action taken by certain CLI commands when you do not specify a

comment-related option.

COMMON ANCESTOR. In an element’s version tree, a version that is on the line of descent of two (or

more) versions on different branches.

COMPATIBILITY MODE . A clearmake or omake execution mode, in which it emulates another make
variant. (NOTE: omake is supported only on Windows platforms.)

COMPONENT. A ClearCase object that you use to group a set of related directory and file elements

within a UCM project. Typically, you develop, integrate, and release the elements that make

up a component together. A project must contain at least one component, and it can contain

multiple components. Projects can share components.

COMPRESSED_FILE. The ClearCase element type that uses data compression on individual

versions.

COMPRESSED_TEXT_FILE. The ClearCase element type that uses both delta management and data

compression on individual versions.

CONFIG SPEC. A set of configuration rules specifying which versions of VOB elements a view

selects. The config spec for a snapshot view also specifies which elements to load into the view.
34 Introduction to ClearCase

See pattern, scope, version-selector, version-selection rule, load rule, and the config_spec reference

page.

CONFIGURATION (OF A DERIVED OBJECT). The bill-of-materials information recorded in a derived

object’s configuration record, including versions of source files used to build the object, build

script, and build options.

CONFIGURATION (OF A VIEW). The set of versions (one version of each element) selected by a view’s

config spec.

CONFIGURATION LOOKUP. The process by which a ClearCase build program determines whether to

perform a target rebuild of a derived object (execute a build script) or reuse an existing instance

of the derived object. This involves comparing the configuration records of existing derived

objects with the build configuration of the current view.

CONFIGURATION MANAGEMENT. The discipline of tracking the individual objects and collections of

objects (and the versions thereof) that are used to build systems.

CONFIGURATION RECORD (CR). A listing produced by a target rebuild, logically associated with each

derived object created during the rebuild. A configuration record is a bill of materials for a

derived object, indicating exactly which file system objects (and which specific versions of

those objects) were used by the rebuild as input data or as executable programs, and which

files were created as output. It also contains other aspects of the build configuration.

Each target rebuild typically involves the execution of a single build script, and creates a single

configuration record. If a target has subtargets that must be rebuilt, also, a separate

configuration record is created for each subtarget rebuild.

CONFIGURATION RECORD HIERARCHY. A tree structure of configuration records, which mirrors the

hierarchical structure of targets in the makefile.

CONFIGURATION RULE. See config spec.

CONFIGURATION SPECIFICATION. See config spec.

CONTAINER. See data container.
CONTEXT. See view context.
CONTRIBUTOR. A file, directory, or version considered for a comparison or merge. Typically,

contributors are multiple versions of the same ClearCase file or directory element.

CONVERSION SPECIFICATION. A code (for example, %En) that is part of the format string specification

following a –fmt option. See the fmt_ccase reference page.

CR. See configuration record.

CROSS-VOB HYPERLINK. A hyperlink that connects two objects in different VOBs. The hyperlink

always appears in a describe listing of the from object. It also appears in a listing of the to
object, unless it was created as a unidirectional hyperlink (mkhlink –unidir) . See same-VOB
hyperlink.

CURRENT WORKING DIRECTORY. (ClearCase) The context in which relative pathnames are resolved by

the operating system. This can be a location in ClearCase’s extended namespace.
Glossary 35

(Attache) The directory within your workspace (and the corresponding directory within some

VOB) with respect to which the command-line interface interprets simple file names and relative

pathnames of ClearCase data.

CURRENT WORKSPACE. (Attache) The workspace that is active in the Attache window. The workspace
name appears in the title bar.

DATA CONTAINER . A file (or directory) that contains the data produced by a build script. A data

container and a configuration record are the essential constituents of a derived object. Also, a file

in a source pool or cleartext pool, containing the data for one or more versions of a file element.
DEFAULT CONFIG SPEC. See config spec.

DEGENERATE DERIVED OBJECT. A derived object that cannot be successfully processed, because its data
container and/or associated configuration record are not available.

DELIVER. A ClearCase operation that allows developers to share their work with the rest of the

project team by merging work from their own development streams to the project’s integration
stream. If required, the deliver operation invokes the Merge Manager to merge versions.

DELTA. The incremental difference (or set of differences) between two versions of a file element.
Certain type managers (for example, text_file_delta), store all versions of an element in a

single data container, as a series of deltas.

DEPENDENCY. In a makefile, a word listed after the colon (:) on the same line as a target. A source
dependency of a target is a file whose version-ID is taken into account in a configuration lookup

of the target. A build dependency is a derived object that must be built before the target is built.

DERIVED OBJECT (DO). An MVFS file (pathname within a VOB) produced by a clearmake or

omake build or a clearaudit session. (NOTE: omake is supported only on Windows

platforms.) Each derived object is associated with the configuration record that is created by the

ClearCase build program to document the build. A shareable DO can be winked in by other

views. A nonshareable DO cannot be winked in by other views unless you explicitly make it

available.

DERIVED OBJECT SCRUBBING . The removal of data containers from view storage, of data containers

from derived object pools in a VOB, and of derived objects themselves from a VOB database.

DERIVED OBJECT SHARING . Multiple views simultaneously using the same derived object. See winkin.

DERIVED OBJECT STORAGE POOL . A storage pool for the data containers of a VOB’s derived objects. Only

those derived objects that have been winked in are stored in these pools. Data containers of

unshared and nonshareable derived objects are stored in view-private storage.

The first time a derived object is winked in, the promote_server program copies the data from

the original view, creating a data container in a derived object storage pool.

DERIVED OBJECT VERSION. See DO version.

DETECTED DEPENDENCY. A source dependency that is automatically detected by clearmake or

omake, rather than being explicitly coded in a makefile. (NOTE: omake is supported only on

Windows platforms.)
36 Introduction to ClearCase

DEVELOPMENT STREAM. A ClearCase UCM object that determines which versions of elements

appear in your development view, and maintains a list of your activities. The purpose of the

development stream is to let you work on a set of activities and corresponding versions in

isolation from the rest of the project team. The development stream configures your

development view to select the versions associated with the foundation baselines plus any

activities and versions that you create after joining the project or rebasing your development

stream.

DEVELOPMENT VIEW. A view associated with a UCM development stream.

Use a development view to work on a set of activities and corresponding versions isolated from

the rest of the project team. You then can share changes made in a development view with the

rest of the project team by delivering activities to the project’s integration stream.

A development view can be either a dynamic view or a snapshot view.

DIRECT MODE. (UNIX platforms only) A state of the hyperlink tree browser in which the browser

displays only the hyperlinks that are directly connected to the displayed objects. Compare this

to the hyperlink tree browser’s inheritance mode.
DIFFERENCE. (When comparing files, directories, or versions, a section where the content of the

base contributor is unlike that of one or more contributors.

DIRECTORY ELEMENT. An element whose versions are like directories — they catalog the names of

file elements, other directory elements, and VOB symbolic links.

DIRECTORY VERSION. A version of a directory element.
DISTRIBUTED BUILD. (UNIX platforms only) A parallel build in which execution takes place on

multiple hosts in a local area network.

DO. See derived object.
DO-ID. A unique identifier for a derived object, including a time stamp and a numeric suffix to

guarantee uniqueness. Example: the substring beginning with @@ in

hello.o@@12-May.19:15.232.

DOMAIN. (Windows platforms only) See Windows NT Server domain.

DO VERSION. A derived object that has been checked in as a version of an element.

DOWNLOADING FILES . (Attache) Copying files to your current workspace from its associated view.

DRIVE-RELATIVE PATHNAME . (Windows platforms only) A full pathname that does not include a

drive specification (for example, \project\src).

DYNAMIC VIEW. A view that is always current with the VOB (as specified by the config spec).

Dynamic views use the MVFS to create and maintain a directory tree that contains versions of

VOB elements and view-private files. Dynamic views are not supported on all ClearCase

platforms.

DYNAMIC-VIEWS DRIVE. (Windows platforms only) A drive, M: by default, that provides access to

the VOBs and dynamic views active on the current ClearCase host.
Glossary 37

DYNAMIC-VIEWS ROOT DIRECTORY. The directory maintained by the MVFS file system in which

view-tag entries appear, allowing views to be accessed. On Windows, this directory is \\view
or M:\; on UNIX, it is /view. See also viewroot directory.

ECLIPSED. Invisible, because another object with the same name is currently selected by the

current view.

ELEMENT. An object that encompasses a set of versions, organized into a version tree.

ELEMENT TRIGGER TYPE. See trigger type.

ELEMENT TYPE. A class of versioned file or directory objects. ClearCase supports predefined

element types (for example, file, text_file). Users can define additional types (for example,

c_source_file) that are refinements of the predefined types. When an element is created, it is

assigned one of the currently-defined element types in its VOB. Each user-defined element

type is implemented as a separate VOB object.

ELLIPSIS. The wildcard symbol “...”. In a version-selector, it indicates zero or more directory levels.

EMULATION MODE (OMAKE). (Windows platforms only) omake’s execution mode in which its

behavior resembles that of other build utilities, such as PolyMake. See also compatibility mode.

ENABLED. An enabled button or menu command is active and can be activated with a mouse click.

Opposite: insensitive.

ENCAPSULATOR . A program that packages the functionality of an external software system.

EPOCH NUMBER. (MultiSite) An integer associated with a ClearCase operation performed at a

replica. Each replica records the epoch numbers of operations it has performed and of

operations it has received from other replicas.

Dynamic-views drive as seen
from the Windows NT Explorer

Active dynamic view

Active VOBs
38 Introduction to ClearCase

EPOCH NUMBER MATRIX. (MultiSite) A complete set of epoch numbers, indicating the local VOB

replica’s estimate of the current state of all replicas in a VOB family. A replica’s own epoch row

within the matrix reflects its actual state.

EVENT. A ClearCase operation that is recorded by an event record in a VOB’s event history.

EVENT-ID. A numeric identifier, which can be used to specify a particular event record in the

chevent subcommand.

EVENT RECORD. An item in a VOB database that contains information about an operation that

modified that VOB.

EXCEPTION LIST. The set of users to whom a lock or trigger will not apply.

EXPIRATION PERIOD. (MultiSite) The interval after which the store-and-forward facility stops trying

to process a shipping order.
EXPORT VIEW. (UNIX platforms only) A view used to export a VOB to a non-ClearCase host.

EXPRESS BUILD. A build during which the ClearCase build program creates derived objects, but

does not write information about them into the VOB. This speeds up the build and means that

the DOs cannot be winked in by other views.

EXTENDED NAMESPACE. ClearCase’s extension of the standard Windows or UNIX pathname

hierarchy. Each host has a view-extended namespace, allowing a pathname to access VOB data

using any view that is active on that host. Each VOB has a VOB-extended namespace, allowing

a pathname to access any version of any element, independently of (and overriding)

version-selection by views.Derived objects also have extended pathnames, which include

DO-IDs. See namespace.

EXTENDED NAMING SYMBOL . A symbol (by default, @@) appended to an element name or derived

object name, signaling the MVFS file system to bypass automatic version-selection by a view.

EXTENDED PATHNAME. A VOB-extended pathname specifies a particular location in an element’s

version tree, or a particular derived object cataloged in that VOB.

If the pathname specifies a particular version, is termed a version-extended pathname.

Examples:

Windows:

foo.c@@\main\17
\myproduct\bin\xtract@@\REL_1
\myproduct@@\main\bug403\5

UNIX:

foo.c@@/main/17
/usr/myproduct/bin/xtract@@/RELEASE_1
/usr/myproduct@@/main/bug403/5

A view-extended pathname accesses a file system object in the context of a specified view. For an

element, such a pathname specifies the version of the element selected by that view’s config
spec; for a view-private file or derived object, such a pathname accesses an object in the view’s

private storage area. Examples:
Glossary 39

Windows (assuming that M: is the dynamic views root directory):

M:\akp\proj_1\foo.c
M:\archive\proj_1\foo
M:\bugfix\proj_1\to_do.list

UNIX:

/view/akp/usr/project/foo.c
/view/archive/usr/project/foo
/view/bugfix/usr/project/to_do.list

FAT FILE. (Windows platforms only) A file located in a file system of type FAT (file allocation

table).

FEATURE LEVEL . An integer that Rational increments at each ClearCase release that introduces

features that affect compatibility across VOB replicas running earlier ClearCase releases.

FIELD-WIDTH SPECIFIER. An optional part of a conversion specification, which helps in creating reports

with fixed-width columns. See the fmt_ccase reference page.

FILE BROWSER. (Attache) A directory tree browser that you can display in the upper partition of

the Attache window. The left side displays an icon for each of your workspaces, and initially,

the View and Workspace Contents for the current workspace.

FILE CONTENTS. See file system data.

FILE ELEMENT. See element.
FILE SYSTEM CONFIGURATION. The set of versions accessible through a view.

FILE SYSTEM DATA . The bytes stored in a version of a file element. A file’s contents are distinguished

from its meta-data (attributes, hyperlinks, and so on).

FILE TYPE. The identifier returned by ClearCase file typing subsystem, through a lookup in

ClearCase-supplied and/or user-supplied magic files. File types are used to select an element
type for a new element.

FILE TYPING RULE. See magic file, file type.

FILENAME PATTERN . See pattern.

FIRE A TRIGGER. The process by which ClearCase verifies that the conditions defined in a trigger
are satisfied, and causes the associated trigger action(s) to be performed.

FLAG FILE . A file whose existence/non-existence controls conditional processing in a build script.
FLAT. A non-hierarchical listing, combining information from a collection of configuration records.

FLAT FILE . A file that contains text characters only.

FORMAT STRING. In several cleartool subcommands, a character string argument to the –fmt
option. This string can combine literal text with conversion specifications, to specify how event
record data is to be formatted in the command’s output. See the fmt_ccase reference page.

FOUNDATION BASELINE . A property of a stream. Foundation baselines specify the versions and

activities that appear in your view. As part of a rebase operation, foundation baselines of the

target stream are replaced with the set of recommended baselines from the source stream.
40 Introduction to ClearCase

FROM-OBJECT. See hyperlink.

FROM TEXT. A string-valued attribute attached to a hyperlink object, conceptually at its from end.

FULL BASELINE . A baseline created by recording all versions below the component’s root directory.

Generally, full baselines take longer to create than incremental baselines; however, ClearCase

can look up the contents of a full baseline faster than it can look up the contents of an

incremental baseline.

FULL LOCAL PATHNAME . (Windows platforms only) A full pathname that includes a drive

specification (for example, D:\project\src).

FULL PATHNAME . A standard operating system pathname beginning with a “/” on UNIX or a drive

letter followed by “\” on Windows (for example, C:\ or Z:\).

FULL REMOTE PATHNAME . A full pathname indicating a location in some ClearCase VOB.

G-FILE. (UNIX platforms only) A file produced by the SCCS get command.

GENERATED COMMENT. A comment string for an event record that is created automatically by

cleartool — for example, the checkin comment for a new directory version.

GET. (Attache) The command that downloads one or more files to your workspace.

GLOBAL PATHNAME . A network-wide pathname for a ClearCase view storage directory or VOB storage
directory. Some global pathnames are valid only within a particular network region.

GLOBAL TYPE OBJECT . A type object, created with mkxxtype –global and located in an administrative
VOB. Such objects are used by the auto-make-type facility to create local copies in other VOBs

(termed client VOBs). See also: administrative VOB.

GNU MAKE. A make variant distributed by the Free Software Foundation.

GOAL TARGET. The target(s) explicitly named on a clearmake or omake command line. (NOTE:

omake is supported only on Windows platforms.)

GROUP LIST. The list of groups to which your user account belongs (in addition to the Windows

primary group name or UNIX principal group ID defined for your user account). VOBs,

views, and file system objects also have group assignments, and the interaction of these

assignments with your group memberships helps determine the outcome of VOB and view

data storage access attempts.

HARD LINK . (UNIX platforms only) An additional name for a file system object, cataloged in the

same directory or in a different directory. UNIX hard links are cataloged in standard UNIX

directories; VOB hard links are cataloged in versions of directory elements.

HELPER HOST. (Attache) See workspace helper host.
HIJACKED FILE . A version in a snapshot view that is modified but not checked out. By default, a

non-checked out version in a snapshot view is given the file attribute of read-only. If you

change this attribute and modify the file, you have hijacked the file by taking it out of direct

ClearCase control.

HISTORY. Meta-data in a VOB, consisting of event records involving that VOB’s objects. The history

of a file element includes the creation event of the element itself, the creation event of each

version of the file, the creation event of each branch, the assignment of attributes to the
Glossary 41

element and/or its versions, the attaching of hyperlinks to the element and/or its versions,

and so on.

HISTORY BROWSER. A graphical tool that enables you to examine ClearCase event records for one or

more objects.

HISTORY MODE. The state of a process whose current working directory is in the ClearCase

VOB-extended namespace (for example, hello.c@@/main on UNIX or hello.c@@\main on

Windows).

HOST-LOCAL PATHNAME . For a view storage directory or VOB storage directory, a pathname that

specifies the directory’s location in its own host’s file system. This pathname need not be valid

on any other host. Contrast this with the directory’s global pathname.

HYBRID COMMAND. (Attache) A command that affects both your workspace (on your PC) and

ClearCase storage (view and/or VOB located on one or more remote hosts).

HYPERLINK. A logical pointer between two objects. A hyperlink is implemented as a VOB object;

it derives its name by referencing another VOB object, a hyperlink type. A hyperlink can have

a from-string and/or to-string, which are implemented as string-valued attributes on the

hyperlink object.

A bidirectional hyperlink connects two objects in the same VOB or in different VOBs, and can

be navigated in either direction: from-object to to-object or to-object to from-object. A
unidirectional hyperlink connects two objects in different VOBs, and can be navigated only in

the from-object to to-object direction.

HYPERLINK TREE BROWSER . (UNIX platforms only) A graphical tool that enables you to traverse

hyperlinks connecting objects.

HYPERLINK-ID. A system-generated identifier that, in conjunction with the name of the hyperlink
type, uniquely identifies a hyperlink object. Examples: @391@/usr/hw on UNIX or

@391@\hw_vob on Windows.

HYPERLINK INHERITANCE . The ClearCase feature by which hyperlinks attached to a version can be

detected in a search for hyperlinks on a successor version.

HYPERLINK SELECTOR . A string that specifies a particular hyperlink. It consists of the name of a

hyperlink type object, followed by a (possibly abbreviated) hyperlink-ID. Examples:

DesignFor@391@/usr/hw on UNIX and DesignFor@391@\hw_vob on Windows.

HYPERLINK TYPE. An object that defines a hyperlink name for use within a VOB.

ICON. A small picture used by graphical tools.

ICON FILE. A file containing rules that map ClearCase file types to names of bitmap files.

INCREMENTAL BASELINE . A baseline created by recording the last full baseline and those versions that

have changed since the last full baseline was created. Generally, incremental baselines are

faster to create than full baselines; however, ClearCase can look up the contents of a full

baseline faster than it can look up the contents of an incremental baseline.

INCLUSION LIST. A list of type objects, defining the scope of a trigger type.
42 Introduction to ClearCase

INDIRECT FILE. (Attache) A local file containing a list of files to be used by the get, put, find, or

findmerge commands.

INHERIT, INHERITANCE LIST. See trigger inheritance.

INHERITANCE MODE. (UNIX platforms only) A state of the hyperlink tree browser in which the

browser displays both the hyperlinks that are directly connected to the displayed objects and

the hyperlinks that are connected to ancestors of the displayed objects.Compare this to the

hyperlink tree browser’s direct mode.You can switch back and forth between these modes

using the browser’s menu.

INSENSITIVE. An insensitive button or menu command is greyed out and does not respond to

pointer actions. Opposite: enabled.

INSTALLATION HOST. A host on which ClearCase has been (or is about to be) installed.

INSTALLATION METHOD . An installation-time choice, specifying which installation host(s) are to be

addressed, and whether software is to be installed or deinstalled.

INSTALLATION MODEL . An installation-time choice, specifying how the software for a ClearCase

family product is to be transferred from the network-wide release area to one or more

installation hosts.

INSTANCE. See type object.
INTEGRATION BRANCH . A branch containing versions available to all members of a team. A team

member often works in isolation on a private branch. To make private work available to others,

the team member merges versions on the private branch with versions on the integration

branch.

INTEGRATION STREAM. A ClearCase UCM object that enables access to versions of the project’s

shared elements. A project contains only one integration stream. The integration stream

maintains the project’s baselines. The integration stream configures integration views to select

the versions associated with the foundation baselines plus any activities and versions that have

been delivered to the integration stream.

INTEGRATION VIEW. A view associated with a UCM project’s integration stream.

Use an integration view to build and test the latest versions of a project’s shared elements.

An integration view can be either a dynamic view or a snapshot view.

INTERACTIVE MODE. The mode of cleartool usage in which the program prompts you (with

cleartool>) to enter a command, executes the command, then prompts you to enter another

one. See single-command mode.

LABEL . See version label.
LABEL TYPE . A type object that defines a version label for use within a VOB.

LEAF NAME . The simple file or directory name at the end of a multiple-component pathname.

LICENSE. Permission for one user to run ClearCase programs and/or use ClearCase data, using

any number of hosts in the local area network.

LICENSE DATABASE FILE . (UNIX platforms only) A file that defines a set of ClearCase licenses.
Glossary 43

LICENSE DATABASE . (Windows platforms only) A data structure in the Windows NT Registry that

defines a set of ClearCase licenses.

LICENSE PRIORITY. A slot in the scheme by which some ClearCase users can bump others, taking

their licenses.

LICENSE SERVER HOST. A host whose albd_server process controls access to the licenses defined in

its license database file.

LINE OF DESCENT. The sequence of element versions leading to a particular version. This sequence

may traverse branches.

LINK TEXT. The text string that is the contents of a VOB symbolic link. (NOTE: On UNIX platforms,

the link text can be the contents of a UNIX-level symbolic link.)

LOAD. Copy a version of an element to a snapshot view and keep track of the checkins, updates,

and other ClearCase operations affecting the element.

LOAD RULE . A statement in the config spec that specifies an element or subtree to load into a snapshot
view. Config specs can have more than one load rule. See also version-selection rule.

LOCAL COMMAND . (Attache) A command that affects only your workspace — not any ClearCase

storage (view or VOB).

LOCAL COPY. During an auto-make-type operation, the copy of a global type object (located in an

administrative VOB) that is created in a client VOB.

LOCAL FILE . (Attache) A file whose physical location is on your PC.

LOCAL SHELL . (Attache) A command shell executing on your PC.

LOCK. A mechanism that prevents a VOB object from being modified (for file system objects) or

from being instanced (for type objects). See obsolete.

LOCK MANAGER . A ClearCase server that arbitrates transaction requests to all VOB databases on

the local host. A lockmgr runs on each ClearCase host. (NOTE: On Windows NT hosts, the

lockmgr runs as a Windows NT service.)

LOG BROWSER. A graphical tool that enables you to examine ClearCase log entries on one or more

hosts in the network.

LOGICAL OPERATOR . A symbol that specifies a Boolean arithmetic operation.

LOGICAL PACKET . (MultiSite) The complete set of data required to create a new VOB replica, or to

synchronize two or more existing replicas in a VOB family. A logical packet can encompass

several physical files. See also physical packet.
LOST+FOUND. A subdirectory of a VOB’s top-level directory, to which elements are moved if they

are no longer cataloged in any version of any directory element. See orphaned element.
MAGIC FILE. A file used by the ClearCase file typing subsystem to determine the type of an existing

file, or for the name of a new file. A magic file consists of an ordered set of file-typing rules.

MAIN BRANCH . The starting branch of an element’s version tree. The default name for this branch is

main.
44 Introduction to ClearCase

MAKE MACRO. A parameter in a makefile, which can be assigned a string value within the makefile

itself, in a build options spec, on the clearmake or omake command line, or by assuming the

value of an environment variable. (NOTE: omake is supported only on Windows platforms.)

MAKEFILE . A text file, read by clearmake or omake, that associates build scripts, consisting of shell

commands (executable commands), with targets. Typically, executing a build script produces

one or more derived objects. (NOTE: omake is supported only on Windows platforms.)

Makefiles constructed for clearmake or omake need not include source-level dependencies

(for example, header file dependencies), but they must include build-order dependencies (for

example, that executable program hello is built using object module hello.o.

MAKEFILE DEPENDENCY. See dependency.

MASTER. (MultiSite) See mastering replica.

MASTERING REPLICA . (MultiSite) The mastering replica of a ClearCase object is the only replica at

which the object can be modified or instances of the object can be created.

MASTERSHIP. (MultiSite) The ability to modify an object, or to create instances of a type object.

MERGE. The combining of the contents of two or more files or directories into a single new file or

directory. Typically, when merging files, all the files involved are versions of a single file

element. When merging directories, all contributors to the merge must be versions of the same

directory element.

MERGE OUTPUT FILE OR DIRECTORY. The output of a merge operation. Once you have resolved any

conflicting differences between contributors, you can save the merged contents into the merge

output file or directory. Typically, the merge output file or directory is written to the

CHECKEDOUT version of the contributor to which you are merging.

META-DATA. Data associated with an object, supplementing the object’s file system data.

Example: The contents of a file version is a series of text characters. User-specified meta-data

annotations attached to the file version includes version labels, attributes, and hyperlinks.

ClearCase automatically maintains other meta-data for some objects, in the form of event
records and configuration records.

METHOD. A program, subroutine, or utility that implements one of the functions of a type manager.
MINOR EVENT. An event whose event record is, by default, not displayed by the history browser or

listed by the lshistory command.

MNODE. An MVFS-specific data structure, used to maintain information about an MVFS object. An

mnode is attached to an operating-system vnode, as private data.

MODE. See access mode.

MOUNTED VOB. An active VOB.

MSDOS-ENABLED MODE . An operating mode for a VOB, wherein the VOB database tracks the

number of lines in a text file, enabling correct file-size reporting on both UNIX and Windows

NT systems.

MSDOS TEXT MODE. See text mode.
Glossary 45

MULTIVERSION FILE SYSTEM (MVFS). A directory tree which, when activated (mounted as a file

system of type MVFS) implements a ClearCase VOB. To standard operating system

commands, a VOB appears to contain a directory hierarchy; ClearCase commands can also

access the VOB’s meta-data. Also, MVFS file system refers to a file system extension to the

operating system, which provides access to VOB data. The MVFS file system is not supported

on all ClearCase platforms.

MVFS CACHE. An in-memory data structure that speeds MVFS performance. Data on several

kinds of file system resources are maintained, in separate caches.

MVFS OBJECT. A file or directory whose pathname is within a VOB (that is, whose pathname is

within the directory tree beneath the top-level VOB-tag. A non-MVFS object has a pathname

that is not within a VOB.

NAMESPACE. A file/directory name hierarchy. Different views can see different namespaces,

because they can select different versions of directory elements. See extended namespace.

NETWORK PROVIDER. (Windows platforms only) A supplier — an extended file system or

Windows NT Server, for example — of a complete networking system for Windows NT hosts.

Because it functions as a network provider, the ClearCase MVFS deactivates VOBs and views

at user login time. (NOTE: For UNIX platforms, see virtual file system.)

NETWORK REGION. A logical subset of a local area network, within which all hosts refer to VOB

storage directories and view storage directories with the same network pathnames.

NOBODY. (UNIX platforms only) The username sometimes assigned to a remote process owned

by the root user on the local host.

NON-CLEARCASE ACCESS. (UNIX platforms only) Access to ClearCase data from a host on which

ClearCase has not been installed.

NONMASTERED CHECKOUT. An unreserved checkout performed on a branch that is not mastered by

the local VOB replica.

NON-MVFS OBJECT. See MVFS object.
NONSHAREABLE DERIVED OBJECT . A derived object that cannot be winked in by other views. If your

dynamic view is configured with the nonshareable DO property, the ClearCase build

programs create DOs in the view, but do not write shopping information into the VOB.

NOTICE FORWARDER. (UNIX platforms only) One of the message-passing programs in an H-P

SoftBench environment.

NULL-ENDED. A hyperlink that is connected to only one object, not two.

OBJECT. An item stored in a versioned object base— elements, versions of elements, branches, derived
objects, hyperlinks, locks, pools, and types, and so on. An object can identified by an

object-selector string, which includes a prefix indicating the kind of object, the object's name,

and a suffix indicating the VOB in which the object resides. Examples:

lbtype:REL1@/vobs/vega on UNIX and lbtype:REL1@\vega on Windows

OBJECT-ID (OID). A ClearCase-internal identifier for an object. See UUID.

OBJECT REGISTRY. A network-wide database, which records the actual storage locations of all VOB

storage directories and all view storage directories. The mktag, rmtag, mkview, rmview,
46 Introduction to ClearCase

mkvob, rmvob, register, and unregister commands add, delete, or modify registry file

entries.

OBSOLETE OBJECT. An object that has been locked with the command lock –obsolete. By default,

such objects are not listed by commands such as lstype and lslock.

OID. See object-ID.

OPLOG. (MultiSite) A list of all changes that have been made to a VOB’s database.

OPLOG ENTRY. (MultiSite) The record of a single change to a VOB. Each oplog entry includes the

identity of the originating replica and the epoch number of the operation.

ORDINARY TYPE OBJECT. A type object that is neither a global type object, nor a local copy of one. Prior

to ClearCase V3, all type objects were ordinary.

ORIGINATING REPLICA . (MultiSite) The replica at which an operation was first performed.

ORPHANED ELEMENT. An element that is no longer cataloged in any version of any directory. Such

elements are moved to the VOB’s lost+found directory.

OWNER. The user who owns a VOB, a view, or an individual object. The user who creates an object

becomes its initial owner.

OWNERSHIP-PRESERVING. (MultiSite) The subset of replicas within a VOB family whose elements

share the same user and group identities. Only one such subset is allowed per VOB family.

PACKET. See logical packet, physical packet.
PAIRWISE DIFFERENCE. How the command-line output of cleartool commands (such as diff,

cleardiff, merge, and findmerge) represent differences between contributors to the comparison

or merge. For example, if three contributors (contrib2, contrib3, and contrib4) all differ from

the base contributor (contrib1) in a particular section, the command-line output lists the

contrib1-contrib2 difference, followed by the contrib1-contrib3 difference, followed by the

contrib1-contrib4 difference.

PARALLEL BUILD . (UNIX platforms only) A build process in which multiple build scripts are

executed concurrently. See also distributed build.

PARALLEL DEVELOPMENT . The concurrent creation of versions on two or more branches of an

element.

PATHNAME. A sequence of directory names, perhaps ending with a simple filename. A pathname

that begins with a backslash (\), or with a drive letter (A:, B:, C: ...) and backslash (on

Windows) or a “/”, indicating the root directory (on UNIX), is termed a full pathname. Any

other pathname is termed a relative pathname. See extended pathname, namespace, absolute VOB
pathname.

PATTERN. A character string that specifies one or more file and/or directory names. Examples:

UNIX:

/usr/project/.../include
*.c
lib/*.[ch]
Glossary 47

Windows:

\proj_1\...\include
*.c

See scope, version selector, config spec.

PERL. A general-purpose scripting language (Practical Extraction and Report Language).

PERMISSION. Ability to perform an operation that modifies a file, directory, or other object.

PERSISTENT VOB / PERSISTENT VIEW. (Windows platforms only) A VOB or view that is automatically

activated each time you login.

PHYSICAL PACKET. (MultiSite) A file containing one part of a logical packet.
POOL. See storage pool.
POOL INHERITANCE. The feature by which a newly-created element is assigned to the same VOB

storage pools as its parent directory element.

POST-OPERATION TRIGGER. A trigger that fires after the associated operation.

PRE-OPERATION TRIGGER. A trigger that fires before the associated operation, possibly canceling the

operation itself.

PREDECESSOR VERSION / SUCCESSOR VERSION. A version of an element that immediately precedes

another version in the element’s version tree. If version X is the predecessor of version Y, then

Y is the successor of X. If there is a chain of predecessors linking two versions, one is called an

ancestor of the other.

PRIMARY GROUP. (Windows platforms only) The first group to which a user belongs. Typically, this

domain-wide group assignment is made by the administrator using the User Manager for

Domains utility. A user can belong to additional groups, as well.

PRIMARY REGISTRY SERVER HOST. See registry server host.

1

5

2

3

4

0

1

2

bugs

OSF
0

1bug417

0

1

2

0

1

bug404

0

3

main

ancestor of

shaded version

predecessor of

shaded version

successor to

shaded version
48 Introduction to ClearCase

PRINCIPAL GROUP. (UNIX platforms only) The group to which a user belongs, by virtue of being

listed in the password database. A user can belong to additional groups, as well.

PRIVATE STORAGE AREA . The directory tree (.s) in which view-private files, directories, and links are

stored. By default, this is a subtree of the view storage directory, but ClearCase supports

creation of remote private storage areas.

PRIVATE BRANCH . A branch on which a team member works in isolation from other members of the

team. The branch is usually created at a stable version identified by a label. The team member

makes private work available to others by merging versions on the private branch with

versions on an integration branch.

PRIVATE VOB-TAG. See public VOB-tag.

PROCESS OF RESTORATION. (MultiSite) The special state into which the MultiSite restorereplica
command places a VOB replica after it has been restored from backup. The replica remains in

this state until its database has been made consistent (through synchronization updates) with

the other replicas in its VOB family.

PROJECT. A ClearCase UCM object that contains the configuration information needed to manage

a significant development effort, such as a product release. Use the project to set policies that

govern how developers access and update the set of files and directories used in the

development effort. A project includes one integration stream, which configures views that

select the latest versions of the project’s shared elements, and typically multiple development
streams, which configure views that allow developers to work in isolation from the rest of the

project team.

PROJECT CONFIGURATION FILE . (Attache) A local file containing a list of files to be used by the

File➔Update Workspace command.

PROJECT VOB (PVOB). A VOB that stores UCM objects, such as projects, streams, activities, and

change sets. Every UCM project must have a PVOB. Multiple projects can share the same

PVOB.

PROMOTION. Migration of a derived object from view storage (unshared or nonshareable) to VOB

storage (shared).

PROMOTION LEVEL. A property of a UCM baseline that can be used to indicate the quality or degree

of completeness of the activities and versions represented by that baseline. You can use

promotion levels to define policy for a UCM project.

UCM provides an ordered set of default promotion levels, and also supports user-defined

promotion levels.

The action of changing the promotion level of a baseline is called promoting or demoting the

baseline.

PROPERTIES BROWSER. A graphical tool that enables you to examine the properties of a VOB

database object, including its meta-data annotations.

PROTECTION MODE. See access mode.

PRUNE. (hyperlink browser) Removing all objects to the right of the selected object.
Glossary 49

PSEUDOTARGET. A makefile target that is not a file system object.

PUBLIC VOB-TAG. All VOBs with public VOB-tags get mounted automatically by the cleartool
mount -all command. (On UNIX, the standard ClearCase scripts run this command as part

of the boot process that starts ClearCase and so all public VOBs are typically always

mounted.) Creating a VOB with a public VOB-tag requires that you know the VOB-tag

password. (See also VOB-tag password file.)

On UNIX platforms, any user can mount or unmount a public VOB by naming it explicitly

using the cleartool mount or unmount command. If a VOB’s VOB-tag is private, only the

VOB’s owner or the root user can mount or unmount the VOB.

On Windows platforms, any user can mount or unmount any VOB, public or private, by

naming it explicitly using the cleartool mount or unmount command. The private designation

means only that the VOB must be mounted explicitly by name.

PUT. (Attache) The command that uploads one or more files from your workspace to its associated

view.

PVCS. The Polytron Version Control System.

PVOB. See Project VOB (PVOB).
QUERY LANGUAGE . A collection of predicates and logical operators that allows selection of

elements, branches, and versions based on their associated meta-data. This language can be

used in config specs, in the ClearCase find command, and in the –version option to many

commands.

RCS. The Revision Control System.

REBASE. A ClearCase UCM operation that makes your development work area current with the

set of versions represented by a more recent baseline in the integration stream.

RECOMMENDED BASELINE . The set of baselines that the project team should use to rebase their

development streams. In addition, when developers join a project, their development work

areas are initialized with the recommended baselines.

The recommended baselines represent a system configuration, or set of components, that has

achieved a specified promotion level. A baseline becomes part of the set of recommended

baselines when the project manager promotes it to a certain promotion level, for example,

TESTED.

RECORD. See event record, configuration record.

RECOVERY INCARNATION. (MultiSite) A numerical value associated with a replica; it is incremented

if the replica undergoes restoration from backup. This value is attached to outgoing packets

and is used by other replicas to determine whether the packet was sent before or after the

restoration (and, therefore, if they should import it).

REFERENCE COUNT. The number of references to a derived object from multiple views. When

scrubbing, the reference count is evaluated to determine whether to delete the derived object

to free storage space.

REFERENCE TIME. See build reference time.
50 Introduction to ClearCase

REFINEMENT. See supertype.

REGION. See network region.

REGISTER. Create an entry in the tags registry and/or the object registry, for a view or a VOB.

REGISTRY REGION. See network region.

REGISTRY SERVER HOST. The host on which all ClearCase data storage areas (all VOBs and views)

in a local area network are centrally registered. ClearCase supports a primary and backup

registry server host. The backup host is used if the primary host becomes unavailable. See the

rgy_backup reference page.

RELATIVE PATHNAME . A pathname that does not begin with a “/” on UNIX or with a “\”, or with a

drive letter and backslash (Z:\).

RELEASE AREA . A directory structure, accessible by all client hosts, containing the software

distribution for one or more products in the ClearCase product family. In particular, a merged
release area holds the distributions for two or more products.

RELEASE HOST. The host on which the ClearCase software is unloaded from the distribution

medium.

RELOCATE SET. The set of file and directory elements that are actually moved by the relocate
command; a subset of the selection set.

REMOTE COMMAND. (Attache) A command that affects only ClearCase storage (view or VOB), not

your workspace.

REMOTE DELIVER. (A variation of the UCM deliver operation. UCM uses remote deliver in a

ClearCase MultiSite configuration when the project’s integration stream and individual

development stream are mastered in different replicas. When these conditions exist, a developer

starts the deliver operation at the remote site but leaves it in a posted state. The project

manager must complete the deliver operation at the integration stream’s replica site.

REMOTE STORAGE POOL. See storage pool.
REPLICA. (MultiSite) An instance of a VOB, located at a particular site. A replica consists of the

VOB’s database, along with all of the VOB’s data containers.

REPLICA-CREATION PACKET. (MultiSite) A logical packet that contains the data for creating one or

more new replicas within a VOB family.

REPLICA OBJECT. (MultiSite) The VOB database object that records the existence, name, site

location, and other details of a particular VOB replica.

REPLICA UUID. (MultiSite) See VOB family.

REPLICATED VOB. (MultiSite) A VOB for which two or more replicas currently exist.

REROOTING. (hyperlink browser) Removing all objects to the left of the selected object.

RESERVED CHECKOUT. See checkout.
RESTORATION UPDATE PACKET. (MultiSite) A packet that contains specially requested data from a

VOB replica, for use in restoring the database of another replica.

RESTRICTION LIST. A specification of which type objects are to be associated with a trigger type.
Glossary 51

RESYNCHRONIZING THE WORKSPACE. (Attache) Using a get or find –get command to ensure that your

workspace contains the same data as its associated view.

RETURN BAY. (MultiSite) A directory that holds incoming or outgoing MultiSite packets that are in

the process of being returned to their origin because they could not be delivered to all

specified destinations.

REUSE. During a build in a view, using an existing derived object in that view instead of winking

in a DO from another view or rebuilding the DO.

ROOT. (UNIX platforms only) The privileged superuser on a UNIX host.

S-FILE. (UNIX platforms only) A file in which SCCS stores all versions of a versioned file.

SAME-VOB HYPERLINK. A hyperlink that connects two objects in the same VOB.

SCHEMA. The format of a database.

SCHEME FILE. (UNIX platforms only) A file that contains a collection of X Window System

resources, which control various aspects of GUI applications.

SCOPE. The part of a config spec rule that restricts it to a particular kind of file system objects. See

config spec, pattern, version selector.
SCRUBBING. Freeing storage space by removing objects that are no longer used:

➤ Discarding data container files from cleartext pools and derived object storage pools,

performed by the scrubber utility.

➤ Discarding event records and MultiSite oplog entries from a VOB database, performed by

the vob_scrubber utility.

➤ Removing derived object containers from the view storage directory, performed by the

view_scrubber utility.

SELECTION EXPRESSION. An expression used by ClearCase’s file typing mechanism to match a file

system object (or just the name of one). The expression consists of selection operators and logical
operators.

SELECTION OPERATOR. See selection expression.

SELECTION SET. The set of file and directory elements that are candidates for processing by the

relocate subcommand, as specified by command arguments.

SELECTIVE MERGE. A merge that includes the changes contained in only a specified subset of

ancestors. For example, if you are merging a contributor version /main/bugfix/4, but do not

want the changes in the /main/bugfix/3 version of that contributor, a selective merge allows

you to include the changes in versions 1, 2, and 4 on the /main/bugfix branch, but to omit the

changes in the /main/bugfix/3 version.

SELF-MASTERING REPLICA . (MultiSite) A replica that masters its own replica object.
SEMI-LIVE BACKUP. See VOB database snapshot.
SERVER. See albd_server, view_server, vob_server, workspace helper.
52 Introduction to ClearCase

SETGID, SETUID. The UNIX facility by which the operating system process in which a program

runs gets its group-ID (setGID) or its user-ID (setUID) from the file in which the program is

stored, rather than from user who invoked the program.

SET VIEW. (noun) (UNIX platforms only) The view context of a process, established by using the

setview command. Setting a view creates a process in which all standard pathnames are

resolved in the context of a particular view. See working directory view.

SHAREABLE DERIVED OBJECT . A derived object that can be winked in by other views.

SHARED DERIVED OBJECT. A derived object whose data container is located in a VOB’s derived object
storage pool. The DO may be referenced by multiple views.

SHARED TYPE OBJECT. (MultiSite) A type object whose instances can be managed at any replica.

Creation of a new instance is controlled by the mastership of the object to which the new

instance will be attached.

SHARENAME. (Windows platforms only) The name assigned to a drive or directory that is shared

using the Sharing tab of the Properties dialog box in the Windows Explorer (or net share on

the command line). A sharename is the second component in a UNC name.

SHIPPING ORDER. (MultiSite) A file that contains information for use by the MultiSite

store-and-forward facility to deliver an update packet.

SIBLING. During a build, a derived object created by the same build script as another derived

object. In MultiSite, a replica’s siblings are the other replicas in its VOB family.

SID. (Windows platforms only) Security Identifier. A variable-length structure that uniquely

identifies a user or group across all Window NT systems. The primary datum in a SID is a

48-bit value: the first 16 bits identify the SID-issuing agency — typically a Windows NT

Server domain — and the remaining 32 bits identify a user or group within that issuing

agency.

SINGLE-COMMAND MODE. The usage mode for a CLI tool in which you specify the tool’s name (for

example, cleartool), a subcommand, options, and arguments at an operating system

command prompt. After executing that one (sub)command, the CLI tool exits.

SITE. (MultiSite) A location where one replica in a VOB family resides.

SNAPSHOT VIEW. A view that contains copies of ClearCase elements and other file system objects in

a directory tree. You use an update tool to keep the view current with the VOB (as specified

by the config spec).

SNAPSHOT VIEW UPDATE. A ClearCase operation you invoke to ensure that the versions in the view

are the same versions in the VOB selected by the config spec. When necessary, an update

operation copies files and directories from the VOB or removes or renames files and

directories in the view.

SOFTBENCH. (UNIX platforms only) An interprocess messaging system.

SOURCE CONTROL. See version control.
SOURCE DEPENDENCY. See dependency.

SOURCE POOL. A storage pool for the data containers that store versions of file elements.
Glossary 53

START-UP DIRECTORY. (Attache) The working directory of the Attache program when you start an

Attache session. The default is attache-home-dir\bin. To change the startup directory in

Windows 95: on the shortcut menu for the Attache icon, click Properties, then click the

Shortcut tab and enter a directory in the Start in box. To change the startup directory in

Windows 3.1: on the File menu for the Program Manager or File Manager, click Properties.

STORAGE BAY. (MultiSite) A directory that holds MultiSite packets and shipping orders for use by the

store-and-forward facility.

STORAGE CLASS . (MultiSite) A user-specified name that is associated with certain

information-delivery parameters by the MultiSite store-and-forward facility. For example, each

storage class is associated with a particular storage bay (or set of bays) and a particular

expiration period.

STORAGE POOL. A source pool, derived object pool, or cleartext pool. If it resides on a different host than

the VOB database, it is termed a remote storage pool.
STORAGE REGISTRY. See object registry.

STORE-AND-FORWARD. (MultiSite) The MultiSite facility for transferring packets (or other files)

among sites, either directly or through intermediate hops.

STRANDED CONFIGURATION RECORD. A configuration record (CR) that does not correspond to any

existing derived object.
STRANDED DERIVED OBJECT. A derived object that cannot be accessed, because the VOB directory in

which it was created is not currently accessible or has been deleted.

STRANDED VIEW-PRIVATE FILE. A view-private file that cannot be accessed, because it has no name in

the VOB namespace, as currently constructed by your view. The lsprivate command lists such

files; the recoverview command salvages them.

STREAM. A ClearCase UCM object that determines which versions of elements appear in any

view configured by that stream. Streams maintain a list of baselines and activities. A project

contains one integration stream and typically multiple development streams.

SUBBRANCH . A branch of an element’s version tree other than the main branch.

SUBSESSION. A build session that is started while a higher-level build session is active.

SUBTARGET. In a hierarchical build, a makefile target upon which a higher level target depends.

Subtargets must be built, reused, or winked in before higher-level targets.

SUBTRACTIVE MERGE. A merge operation that removes the contributions of one or more ancestors of

a version.

SUCCESSOR VERSION. See predecessor version.

SUPERTYPE. An element type that is used as the basis for defining another element type (said to be

a refinement of the supertype).

SYNCHRONIZATION UPDATE PACKET. (MultiSite) See update packet.
TAGS REGISTRY. A network-wide database, which records the globally-valid access paths to all

VOB storage directories (or all view storage directories), along with the VOB-tags (or

view-tags) with which users access these data structures.
54 Introduction to ClearCase

TARGET, TARGET REBUILD. A target rebuild is the execution of a build script associated with a

particular target in a makefile. Each target rebuild produces derived objects along with a

configuration record, which includes an audit of the files involved in the actual target rebuild.

TEXT_FILE. A ClearCase element type that uses delta management to combine all versions of an

element into a single data container. The associated type manager is named text_file_delta.

TEXT_FILE_DELTA. The type manager for the predefined text_file element type.

TEXT MODE. A view is assigned a text mode when it is created. The text mode determines how the

view handles line termination sequences — unix: <NL>, msdos: <CR><NL>. See mkview.

TEXT-ONLY. A hyperlink for which there is no to object, only a text annotation on the from object.

TIME RULE. A separate config spec rule that specifies a time to which the special version label

LATEST should evaluate in all subsequent rules; or, a clause that sets the LATEST time within

an individual rule.

TITLE BAR . The standard Microsoft Windows colored bar at the top of a window. For example, the

Attache window’s title bar shows the product name, along with the name of the current
workspace and the host where the workspace helper program is running.

TO-OBJECT. See hyperlink.

TO-TEXT. A string-valued attribute attached to a hyperlink object, conceptually at its to end.

TRANSCRIPT PAD. (Attache) The Command window also acts as a historical record of command

execution. In this window, the commands you enter are interspersed with the commands’

output.

TRANSLATION FILE . A file that controls the mapping of symbols, branch names, and label names to

ClearCase branch and label names during export of ClearCase, PVCS, RCS, SCCS, or

SourceSafe data. Use this file to enforce naming consistency over multiple invocations of the

exporter program. See the clearexport_ccase, clearexport_pvcs, clearexport_rcs,

clearexport_sccs, and clearexport_ssafe reference pages. (NOTE: clearexport_ssafe is

supported only on Windows platforms.)

TRANSPARENCY, TRANSPARENT ACCESS . The ClearCase feature that enables standard programs to

access versioned files and directories using standard pathnames.

TRIGGER. A monitor that specifies one or more standard programs or built-in actions to be

executed automatically whenever a certain ClearCase operation is performed. See

pre-operation trigger, post-operation trigger, trigger type.

TRIGGER INHERITANCE. The process by which triggers in the inheritance list of a directory element are

automatically attached to new elements created within the directory.

TRIGGER TYPE. An object through which triggers are defined. Instances of an “element” trigger
type can be attached to one or more individual elements (“attached trigger”). An “all-element”

trigger type is implicitly attached to all elements in a VOB. A “type” trigger type is attached

to a specified collection of type objects.

TRIVIAL MERGE. A merge in which the base contributor and the contributor to which you are merging

are the same. In this case, all differences are between the base contributor and the contributor
Glossary 55

from which you are merging. ClearCase just copies the contributor from which you are

merging to the contributor to which you are merging.

TYPE. A type object defines a ClearCase data structure. Users can create instances of these

structures: meta-data annotations are placed on objects by creating instances of label types,

attribute types, and hyperlink types. Each version-controlled file and directory is an instance

of an element type; each branch is an instance of a branch type; and so on.

TYPE OBJECT. An object that defines the characteristics of (acts as the prototype for) an entire

category, or class, of data items. ClearCase defines label types, branch types, hyperlink types,

and so on.

TYPE MANAGER. A set of routines (methods) that stores and retrieves versions of file elements from

disk storage. Some type managers include methods for other operations, such as comparison,

merging, and annotation. See the type_manager reference page.

TYPE TRIGGER TYPE. A trigger type that is associated with (and thus, monitors changes to and usage

of) one or more type objects.

UMASK. The UNIX file creation mode mask, a three-digit octal number. The three digits (each zero

by default) refer to read/write/execute permissions for owner, group, and others,

respectively. Each digit is subtracted from the corresponding digit specified by the system for

the creation of a file. (See creat(2) on UNIX platforms.) For example, umask 002 removes write

permission for others— files normally created with mode 777 become mode 775 ; files created

with mode 666 become mode 664 . Note that the default umask is 022 , but ClearCase strongly

recommends a umask of 002 (or, simply, 2); otherwise, VOB, view, and derived object sharing

can be problematical.

If you are operating in a mixed UNIX/Windows NT environment, accessing UNIX VOBs and

views via a PC-based NFS client product, configure the PC-side NFS umask to 002 .

UNC NAME. (Windows platforms only) A convention for naming shared resources. The UNC

name for a shared resource (file, directory, printer, etc.) has the following form:

\\hostname\sharename\rest-of-path

Use UNC names to specify VOB and view storage directories in mkvob, mkview, and mktag
commands. See also sharename.

UNCHECKOUT. The act of cancelling a checkout operation.

UNIDIRECTIONAL. See hyperlink.

UNIFIED CHANGE MANAGEMENT (UCM). An out-of-the-box process, layered on base ClearCase and

ClearQuest functionality, for organizing software development teams and their work

products. Members of a project team use activities and components to organize their work.

UNIVERSAL UNIQUE IDENTIFIER. See UUID.

UNIX TEXT MODE. See text mode.
56 Introduction to ClearCase

UNLOAD. Remove information about an element from a snapshot view, and delete the version

from the view. To unload a directory element, ClearCase

➤ Recursively deletes all loaded elements.

➤ Renames the directory to directory-name.unloaded, thus preserving all view-private files
and view-private directories.

UNREGISTER. See storage registry.

UNRESERVED CHECKOUT. See checkout.
UNSHARED DERIVED OBJECT. A derived object that has never been winked in to another view.

UNSHARED TYPE OBJECT. (MultiSite) A type object whose instances can be created and managed

only at its mastering replica.

UPDATE PACKET. (MultiSite) A logical packet that contains data for synchronizing some or all of the

existing replicas in a VOB family.

UPDATE A SNAPSHOT VIEW. See snapshot view update.
UPLOAD. (Attache) Transfer data from Attache to the workspace helper host.
UPLOADING FILES . (Attache) Copying files from your workspace to its associated view.

USER PROFILE. A file that stores specifications for comment handling by individual cleartool
subcommands.

UUID. Universal unique identifier. ClearCase uses UUIDs to track VOBs, views, and the objects

they contain.

VERSION. An object that implements a particular revision of an element. The versions of an element

are organized into a version tree structure. Also: checked-out version can refer to the

view-private file that corresponds to the object created in a VOB database by the checkout
command.

VERSION 0. The original version on a branch. It is automatically created when the branch is created,

and has the same contents as the version at the branch point. Version 0 on the main branch is

defined to be empty.

1

2

30

1

bugs

port1
0

1bug417

0

1

2

0

1

bug404

0

main

4

version 0 on a branch

has the same contents

as version at branch point
Glossary 57

VERSION CONTROL. The discipline of tracking the version evolution of a file or directory.

VERSION-EXTENDED NAMESPACE. See extended namespace, VOB-extended namespace.

VERSION-EXTENDED PATHNAME. A pathname that explicitly specifies a version of an element (or

versions of several elements), rather than allowing version-selection to be performed

automatically by a view.

VERSION-ID. A branch pathname and version number, indicating a version’s exact location in its

version tree. Examples:

UNIX:

/main/4
/main/rel2_bugfix/2
/main/bugs/bug405/9

Windows:

\main\4
\main\rel2_bugfix\2
\main\bugs\bug405\9

VERSION LABEL . An instance of a label type object, supplying a user-defined name for a version.

See object, meta-data.

VERSION-NUMBER. The ClearCase-assigned integer that identifies the position of a version on its

branch.

VERSION SELECTION. The process of choosing a specific version from an element’s version tree. A

view has several mechanisms that perform version selection. Users can select versions with

version-extended pathnames and with the ClearCase query language.

VERSION-SELECTION RULE. A statement in the config spec that specifies a version of an element to be

selected by the view. See also load rule.

VERSION SELECTOR. A specification (for example, /main/17 (on UNIX platforms), \main\17 on

Windows platforms), or RLS4.3-BETA (on all platforms)) that identifies particular versions of

one or more elements. See version selection, scope, pattern and configuration specification, and the

version_selector reference page.

VERSION TREE. The hierarchical structure in which all the versions of an element are (logically)

organized. When displaying a version tree, ClearCase also shows merge operations (indicated

by arrows in the illustration).
58 Introduction to ClearCase

VERSIONED OBJECT BASE (VOB). A repository that stores versions of file elements, directory elements,

derived objects, and meta-data associated with these objects. With MultiSite, a VOB can have

multiple replicas, at different sites.

VIEW. A ClearCase object that provides a work area for one or more users — to edit source

versions, compile them into object modules, format them into documents, and so on. Users in

different views can work with the same files without interfering with each other. For each

element in a VOB, a view’s config spec selects one version from the element’s version tree. Each

view can also store view-private files and view-private directories, which do not appear in other

views. There are two kinds of views: snapshot views and dynamic views.

VIEW CONTENTS. (Attache) One of the two top-level entries listed in the File Browser for the current

workspace. When expanded it shows all the VOBs currently active on the workspace helper host,
as seen through the view associated with the current workspace.

VIEW CONTEXT. The view (if any) that will be used to resolve a pathname to a particular version of

an element.
VIEW DATABASE . The database that tracks objects in a view.

VIEW-EXTENDED NAMESPACE. See extended namespace.

VIEW-EXTENDED PATHNAME. A pathname that begins with a view prefix (for example, /view/alpha on

UNIX, or M:\alpha on Windows), specifying a particular view to be used for resolving

element names to particular versions.

VIEW HOST. A host on which one or more view storage directories reside.

VIEW LOG. A log file, located on a particular machine, that records errors in accessing the view

storage areas on that machine.

VIEW OBJECT. An object stored in a view: a checked-out version of a file, an unshared derived object, a
nonshareable derived object, or a view-private file, directory, or link. No historical information is

retained for view objects. See VOB object.

1

2

30

1

bugs

port1
0

1

0

1

2

0

1

bug404

0

main

4

each version tree

has a main branch users can create

any number of

subbranches
Glossary 59

VIEW PREFIX. One or more components at the beginning of a pathname that specify a particular

dynamic view. For example, on Windows, M:\gamma (or when M: is the current drive,

simply \gamma), and on UNIX, /view/gamma. See also viewroot directory.

VIEW-PRIVATE DIRECTORY. A directory that exists only in a particular view, having been created with

the standard mkdir command. A view-private directory is not version-controlled, except

insofar as it is separate from private directories in other views.

VIEW-PRIVATE FILE. A file that exists only in a particular view. A private file is not version-controlled,

except insofar as it is separate from private files in other views.

VIEW-PRIVATE OBJECT. A file or directory that exists only in a particular view. View-private objects

are not version-controlled. See view-private directory and view-private file.

VIEW PROFILE. (Windows platforms only) A description of a ClearCase configuration that is

shared by members of a team working on a project. A view profile includes the following

information: the VOBs used by the project; the name of the administrative VOB, if any; a config
spec; a list of labels identifying stable versions from which to create private branches; and the

branch type of the integration branch. To use this shared configuration, a team member works

in a view associated with the view profile.

VIEW REGISTRY. See view storage registry, object registry, tags registry.

VIEWROOT DIRECTORY. (The portion of an absolute path to an element that precedes the view-tag of a

snapshot view. See also dynamic-views root directory and view prefix.

VIEW_SERVER. The daemon process that interprets a view’s config spec, mapping element names

into versions, and performs workspace management for the view.

VIEW STORAGE DIRECTORY. The directory tree ClearCase uses to maintain internal information

about a view. Along with other files and directories, the view storage directory contains the

config spec and the view database.

VIEW STORAGE REGISTRY. A file on the network’s registry server host that records the view storage
directory of every view in the network.

VIEW-TAG. The name with which users reference a view.

VIRTUAL FILE SYSTEM . (UNIX platforms only) An extension to the UNIX kernel, allowing

alternative file systems to be implemented without revision to the kernel itself. (NOTE: For

Windows platforms, see network provider.)
VNODE. An operating system kernel data structure, representing a file or directory. See also:

mnode.

VOB. See versioned object base.

VOB BROWSER. A graphical application that administrators use to create, maintain, and control

access to the VOBs in a local area network.

VOB DATABASE . The part of a VOB storage directory in which ClearCase meta-data and VOB objects

(elements, branches, versions, and so on) are stored. This area is managed automatically by

ClearCase’s embedded database management software. The actual file system data, by

contrast, is stored in the VOB’s storage pools.
60 Introduction to ClearCase

VOB DATABASE SNAPSHOT . A copy of a VOB database, made by the vob_snapshot utility, which

enables a VOB storage directory to be backed up without locking the VOB.

VOB-EXTENDED NAMESPACE. An extension to the operating system’s file naming scheme, which

allows any historical version of an element to be accessed directly by any program. The

extension also provides access to the meta-data (but not the file system data) of all of a VOB’s

existing derived objects.

VOB FAMILY. (MultiSite) The set of all replicas of a particular VOB. All the replicas share the same

VOB family UUID; each replica has its own VOB replica UUID.

VOB HARD LINK . A name, cataloged in a (version of a) directory element, for an element. Typically,

the first such link is called the element’s name; the term VOB hard link is used to refer to any

additional names for the element.

VOB HOST. A host on which one or more VOB storage directories reside.

VOB LINK. A VOB symbolic link or VOB hard link.

VOB MOUNT POINT. The directory on which a VOB storage directory is mounted. All UNIX

commands, and most ClearCase commands, access a VOB through its mount point. (NOTE:

For Windows platforms, see VOB-tag.)

VOB OBJECT. An object stored in a VOB: element, version of element, type, hyperlink, derived object,
and so on. See view object. Also, the object in a VOB database that records the existence and

identity of the VOB itself.

VOB OWNER. Initially, the user who created a VOB with the mkvob command. The ownership of

a VOB can be changed subsequently, with the protectvob command. Replicas at different sites

may or may not have the same owner.

VOB REGISTRY. See VOB storage registry, object registry, tags registry.

VOB REPLICA. (MultiSite) See replica.

VOB REPLICA OBJECT. (MultiSite) See replica object.
VOB ROOT DIRECTORY. The top-level directory of a VOB, accessed through the pathname of its

mount point (for example, /vobs/project_x) on UNIX platforms or through the pathname of its

VOB-tag (for example, \proj_vob) on Windows platforms.

VOB_SERVER. The process that provides access to the data containers that store versions’ file

system data.

VOB STORAGE DIRECTORY. The directory tree in which a VOB’s data is stored: elements, versions,

derived objects, CRs, event history, hyperlinks, attributes, and other meta-data.

VOB STORAGE REGISTRY. A file on the network’s registry server host that records the actual storage

locations of all the VOBs in the network.

VOB SYMBOLIC LINK . An object, cataloged in a (version of a) directory element, whose contents is a

pathname. ClearCase does not maintain a version history for a VOB symbolic link.

VOB-TAG. For UNIX platforms, this is the full pathname at which users access a VOB. The VOB

storage directory is activated by mounting it as a file system of type MVFS at the location

specified by its VOB-tag.
Glossary 61

For Windows platforms, this is the VOB’s registered name and also its root directory — the

pathname at which users access VOB data. A VOB-tag has a single component and begins

with the backslash character (\). For example, \myvob and \vob_project2 are valid

VOB-tags.

VOB-TAG PASSWORD. The password required to create a public VOB-tag. The password is

maintained on the ClearCase registry server host. (On Windows, the password is maintained in

the Windows NT Registry on the registry server host.)

VOB-TAG PASSWORD FILE . A file used to validate the password entered by a user when creating a

public VOB-tag.

VPATH. A make macro that specifies directories that will be searched for data during a build.

VTREE BROWSER. A graphical application with which you can examine the structure of an

element’s version tree.

WILDCARD. See pattern.

WINDOWS NT SERVER DOMAIN. (Windows platforms only) A group of Windows NT Server hosts

that share a common security policy and user account database. A single Windows NT Server

host acts as the primary domain controller. Each non-Server host can belong to at most one

domain.

WINKIN. Causing a shareable derived object to appear in a view, even though its file system data is

actually located in a VOB’s derived object storage pool. Also, converting a nonshareable derived

object to a shared derived object.

WORKING DIRECTORY. See current working directory.

WORKING DIRECTORY VIEW. The view context of a process, established by using the cd command to

change the current working directory to a view-extended pathname or a snapshot view. On UNIX

platforms, see set view.

WORKING DISCONNECTED. (Attache) Using data that has been downloaded to your PC using Attache,

but without having an active Attache session.

WORKSPACE. (Attache) A private directory tree on your PC, which contains local copies of data

files under ClearCase version control. The current workspace is the one active in the Attache
window. The workspace name appears in the title bar and in the command prompt.

WORKSPACE CONTENTS. (Attache) One of the two top-level entries listed in the File Browser for the

current Attache workspace. When expanded it shows the contents of the current workspace.

WORKSPACE HELPER . (Attache) A server program, running on some ClearCase host, that maintains

a TCP/IP connection to the Attache client program running on your PC.

WORKSPACE HELPER HOST. (Attache) The ClearCase host on which the workspace helper program is

running.

WORKSPACE NAME . (Attache) The name of a workspace, as specified in the mkws command

(command-line interface) or the File➔New Workspace command (graphical interface). Same

as the view-tag of its associated view.
62 Introduction to ClearCase

WORKSPACE REGISTRY. (Attache) A list, maintained by Attache, of all the workspaces that currently

exist on your PC.

WORKSPACE ROOT. The top-level directory of a workspace. All VOB-tags appear as subdirectories of

this top-level directory.

WORKSPACE STORAGE DIRECTORY. (Attache) The location on your PC where a workspace resides.

Z_TEXT_FILE_DELTA. The type manager for the predefined compressed_text_file element type. See

delta.
Glossary 63

64 Introduction to ClearCase

	Introduction to ClearCase
	Contents
	Figures
	Preface
	About This Manual
	User Roles, the ClearCase Documentation Set, and This Manual

	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	ClearCase, ClearQuest, and Unified Change Management
	1.1 ClearCase
	1.2 ClearCase MultiSite
	1.3 ClearQuest
	1.4 Unified Change Management

	Planning for and Installing ClearCase
	2.1 Planning Issues
	Using Unified Change Management or Base ClearCase
	Using ClearQuest
	Using ClearCase MultiSite

	2.2 ClearCase Site Preparation
	See READ ME FIRST
	Running ClearCase Site Preparation

	2.3 Installing ClearCase on Individual Computers

	Setting Up a Software Project in ClearCase
	3.1 Creating a Project in UCM
	Creating a Project VOB
	Organizing Directories and Files into VOBs and Components
	Creating a Project
	Creating and Assigning Activities
	Using the ClearQuest Integration

	3.2 Setting Up a Project in Base ClearCase
	Importing Directories and Files into VOBs
	Applying a Label to the Initial Configuration
	Deciding a Branching and Merging Strategy
	Creating Standard Config Specs
	Using ClearCase Metadata to Implement Development Policy
	Using the ClearQuest-ClearCase Integration

	Developing and Building Software with ClearCase
	4.1 Developing Software Using UCM
	Joining a Project
	Development Work Area
	Integration Work Area

	Working on Activities
	Finding or Creating an Activity for Your Work
	Modifying and Testing Source Files

	Delivering Activities
	Starting the Deliver Operation
	Testing Your Work
	Completing the Deliver Operation
	Delivering with MultiSite

	Rebasing Your Work Area
	Starting the Rebase Operation
	Testing Your Development Work Area
	Completing the Rebase Operation

	4.2 Developing Software Using Base ClearCase
	Setting Up a View
	Accessing and Modifying Files in Your View
	Working on Branches
	Using a Private Branch
	MultiSite Branch Mastership

	4.3 Using ClearCase Build Tools

	Managing Software Projects with ClearCase
	5.1 Managing Projects with UCM
	Adding Components to Projects
	Integrating MultiSite Development Work into the Project
	Managing Baselines
	Creating New Baselines
	Promoting and Demoting Baselines

	Tracking Projects
	Comparing Baselines
	Using ClearQuest to Track Work

	5.2 Managing Projects with Base ClearCase
	Adding VOBs to Projects
	Integrating Work Between Branches
	Integrating MultiSite Development Work into the Project

	Glossary

