2 OBJECTIME™

Porting Guide

Product Release: ObjecTime Developer 5.2
Document Version: 1.0

Release Date: October 1998

Part Number: OT-R520-PK G009

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada

Porting Guide

Important Notice

Copyright 1991-1998 ObjecTime Limited. All rights reserved.

The license management portion of this product is based on:

Elan License Manager 0 1989-1998 Elan Computer Group, Inc. All rights reserved.

Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.

ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.

ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.

ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the Development
License Agreement associated with your purchase.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.
The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario
Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:

(A) Title to and ownership of the software and documentation shall remain with the Contractor.

(B) User of the software and documentation shall be limited to the facility for which it is acquired.

(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.

(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and docu3mentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).

(c)(2) The restricted computer software may be —

(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred,;

(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;

(iii) Reproduced for safekeeping (archives) or backup purposes;

(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.

The following are trademarks or registered trademarks of their respective companies or organizations:

VxWorks, Tornado / Wind River Systems Inc. pSOS / Integrated Systems Inc. QNX / QNX Software Systems Ltd. LynxOS / Lynx Real
Time Systems Inc. VRTX, MRI C++ / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus C++ / Cygnus Support. Watcom
C++ | Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX System Laboratories, Inc.
FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard Company. SGI R3000,
R4000, IRIX / Silicon Graphics Inc. AlX, IBM, PowerPC, RISC System/6000 / International Business Machines Corporation. Win-
dowsNT, VisualC++ / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWindows, Solaris, SunView, SPARC, SPARC-
station / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Technology. Smalltalk-80, ObjectWorks/Smalltalk
/ ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify / Rational Software Corporation. All other brand
names are trademarks of their respective holders.

About this document

This guide is divided into the following four parts:

e Part 1: Portingthe TargetRTSfor C workbook leads you through the steps necessary to port the
TargetRTS for C. Print this chapter so that you can capture information that you need to reference.
The workbook begins with a simple model execution and moves progressively to more complex ar-
eas, including debugging, target observability, threading, error parsing, and timers.

e Part 2: Porting guide reference complements the first section. It provides reference material on
how to port the TargetRTS to a new computing platform. This may involve a totally new compiler
and target environment or may be a port to a newer version of the compiler/linker/debugger tool
chain. Part 2 includes the following chapters:

e Thelntroduction describes the purpose and audience for this document.
« Beforestarting the port describesvhat you need to do before starting the port.

e Portingthe TargetRT S describes the common features of the TargetRTS and the requirements
needed to port the TargetRTS to a new platform.

e Portingthe TargetRTS for C++ describes porting the C++ version of the TargetRTS.
e Portingthe TargetRTS for C describes porting the C version of the TargetRTS.

« Moadifyingtheerror parser describes how to modify the error parser.

e Testing the TargetRTS describes how to test the TargetRTS.

e Tuningthe TargetRTS describes how to improve the performance of the TargetRTS.

e« Common problems and pitfalls provides information on common problems and pitfalls
encountered when performing ports.

e Part 3: Appendices provides the following porting examples:
e TargetRTSfor C++ porting example
e TargetRTSfor C Porting example

e Part 4: Index

Note: It isintended that the next version of this guide will contain a Porting the TargetRTS for C++
workbook.

Porting Guide iii

ObjecTime support

Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime.
ObjecTime support hotline: (613) 591-3400

ObjecTimefax: (613) 591-3784

ObjecTime email: support@objectime.com

Porting Guide

Table of Contents

Part 1: TargetRTS for C porting workbook 1
Porting the TargetRTS for Cworkbook 3
1.0 Simple model executionphase 3
L1Environmentsetup i, 3
1.2Ch00SE NAMESttt 4

1.3 Createdirectories 6

1.4 Create and edit Perl scripts 7

1.5 Create and edit makefiles 7

1.6 Create and edit C source and header files 8

1.7 Compile the TargetRTS for yourtarget 10

1.8 Compile and run the C_HelloWorld model for your target .10
20Debugphase 13
2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h . .13
2.2Debugrun-timetesting 13

3.0 Target Observability phase 13
3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h . .13

3.2 Target Observability run-time testing 14

40 Threadedphase 15
4.1 Creating the multi-threaded libraries 15

4.2 Threaded phase run-timetesting 16

5.0 Porting the error parserphase 16
5.1 If the compilation platform does not have Perl 16

6.0 Porting timersphase i 17
6.1Localtimers 18

6.2 ACtOr timerst 19

Porting Guide Table of Contents v

Part 2: Porting guide reference 21

Introduction 23
Before startingtheport 25
OS knowledge and experience 25
Tool chain functionality 25
OS capabilities 25
Simple non-ObjecTime program ontarget 27
TCP/IP functionality 28
Floating point operations 28
Standard input/output functionality 28
Debugging 28
Training 28
What to do before calling ObjecTime support 28
Porting the TargetRTS e 31
Phasesofaport 31
Choose a platformname 31
Targetname 32
Libsetname 33
Create asetup script 33
TargetRTS makefiles 34
Porting the TargetRTSfor C++ i 45
TargetRTS configuration definitions 45
Platform-specific implementation 48
Adding new files to the TargetRTS 52
Porting the TargetRTS for C i 55
C TargetRTS configuration definitions 55
Platform-specific implementation 61
Adding new files to the C TargetRTS 66
C TargetRTS run-time semantics 66
Implementing timer services in the C TargetRTS 77
Modifying the error parser i 91
Setting the compiler vendor in the libset.mk file 91
Reusing an existing error parser 91
Creating a New error Parseroeouueeennn.. 91
Testing the TargetRTS e 95
Testing the TargetRTSfor C++ 95
Testing the TargetRTSforC 95

Vi

Table of Contents

Porting Guide

Tuning the TargetRTS e 97

Disabling TargetRTS features for performance 97

Target compiler optimizations 97

Target operating system optimizations 97
Specific TargetRTS performance enhancements 98
Common problems and pitfalls 99
Problems and pitfalls with target toolchains 99
Problems and pitfalls with TargetRTS/RTOS interaction .. 100
Problems and pitfalls with target TCP/IP interfaces 102

Part 3: Appendices 103
TargetRTS for C++ portingexample. 105
Introduction 105
Choosing the platformname 105

Create setup SCript 105

Create makefiles 106
TargetRTS configuration definitions 109

Code changes to TargetRTS classes 110
Building the new TargetRTS 111
TargetRTS for C Portingexample., 113
Introduction 113
Choosing the platformname 113

Create setup SCript i i e 113

Create makefiles 114
TargetRTS configuration definitions 117

Code changes to TargetRTS classes 119
Building the new TargetRTS 119

Part 4: Index 121
INAEX oo 123

Porting Guide Table of Contents vii

viii Table of Contents Porting Guide

Part 1

Porting theTargetRTS
for C workbook

Chapter 1

Porting the TargetRTS for C
workbook

1.0 Simple model execution phase

This chapter |eads you through the steps required to create a simple, single-threaded, executable. Source
code will most likely not need modification as this process primarily focuses on setting up compiler
flags, link options, and creating your first C TargetRTS library. Print this chapter so that you capture the
information you will need to reference.

1.1 Environment setup

1.1.1 Create target-specific environment variables

1 Confirm that basic environment variables specific to your target platform already exist on your host
platform. If not, create them.

ex: Use the Wndows NT Control Panel to create an envi ronnment
variabl e called USR MRI.

1.1.2 Note the values of existing environment variables

YOBJECTI ME_HOVE% =

YRTS_HOVE% =

Y%OBJECTI ME_HOVE% C\ Tar get RTS

Note that “RTS_HOVEYis a conceptual and internal environment variable that is used in this docu-
ment. It does not need to be formally created as an operating system environment variable.

To find the value of %OBJECTIME_HOME% on Windows NT, open an ObjecTime Developer com-
mand prompt and type “set OB”.

Porting Guide Porting the TargetRTSfor C workbook 3

1.1.3 Install all required target OS software on the host and target
Install and configure the target OS software on both the host and target platforms.

1.1.4 Compile and run hello.c for your target

D 1. Confirm that all the required host tools are present and properly configured by compiling and linking
the following hello.c program. This should be done with out the use of ObjecTime Developer.

D 2. Confirm that all the required target tools are present and properly configured by loading the hello exe-
cutable onto the target, and running it there. This should be done without the use of ObjecTime Devel-

oper.

#i ncl ude <stdio. h>
main printf (“Hello World\n")

printf (“Hello World\n™)
}

For more information see “Simple non-ObjecTime program on target” on page 27.

1.2 Choose names

1.2.1 Choose atarget name and target base name

<CSnane> + <QOSversi on> = <Target BaseNane>
SorT
<OSnane> + <OSversion> + <RTSconfi g> = <Tar get Nane>
ex: SUN + 5 = SUN5
SUN +5 + S = SUN5S
TORNADO + 101 = TORNADOL01
TORNADA + 101 + S = TORNADOLO1S

For more information, see “Target name” on page 32.

Note: By ObjecTime convention, ‘S’ denotes a single-threaded executable while ‘T’ denotes a
multi-threaded executable. For more information about multi-threaded run-time systems see
“Threaded phase” on page 15.

4 Porting the TargetRT S for C wor kbook Porting Guide

1.2.2 Choose alibset name

<Processor> + <Conpi |l er Name> + <Conpi |l er Ver si on> = <Li bset Nanme>

ex:sparc+“"+gnu +“"+27.1 = sparc-gnu-2.7.1
ppc + cygnus +2.7.2-960126 = ppc-cygnus-2.72-960126

For more information, see “Libset name” on page 33.

1.2.3 Determine the platform name

)_

ex: SUN5SS +*“”+ sparc-gnu-2.7.1 = SUN5S.sparc-gnu-2.7.1
TORNADO101S + ppc-cygnus-2.7.2-960126
= TORNADO101S.ppc-cygnus-2.7.2-960126

For more information, see “Choose a platform name” on page 31.

Porting Guide Porting the TargetRT S for C workbook 5

1.3 Create directories

1. Open an ObjecTime Developer command prompt.

2. Create the following directories:

D‘%RTS_HOVE% confi g\

<Pl at f or mNane>

[]oRTS_HOVE% I i b\

<P| at f or mNane>

[|9RTS HOVE% | i bset \

<Li bset Name>

D‘%RTS_I—DVE%src\target\

<Tar get BaseNane>

[RS _HOVE% t ar get \

<Tar get Nane>

3. If you need to override any of the standard source code, replicate the directory structure in
%RTS_HOVE\ sr ¢ under “RTS HOVE% src\t ar get\ <Tar get BaseNane>.

For example:
URTS HOVE% src\t ar get\ <Tar get BaseNarme>\ MAI N\ nai n. ¢
overrides

URTS _HOVE% src\ MAI N\ nai n. ¢

You will most likely find it unnecessary to make modifications or additions to the source code for
the simple model execution phase.

6 Porting the TargetRT S for C wor kbook Porting Guide

1.4 Create and edit Perl scripts

1.4.1 Create an environment variable setup script

\:I Create and edit the following file:
URTS _HOVE% conf i g\ <Pl at f or mNanme>\ set up. pl

1. Edit the path environment variable in setup.pl.
ex: $usr_mri = SENV{'USR_MRI'};
SENV(PATH’) = “$usr_mri/bin;$ENV{’PATH'}";

2. Create the preprocessor environment variable.

ex: $preprocessor = “cccppc -E >MANIFEST.i";

3. Create the supported environment variable.
ex: $supported ='Yes’;

4. Create other new environment variables required by the target.
ex: $include_opt ='J;
$target_base = 'VRTX3’;

For more information, see “Create a setup script” on page 33.

1.4.2 Make copies of Perl scripts

If the compiler does not have options that correspond to the regular -L and -l options, it will probably be
necessary to copy and then modifgt. pl from %RTS HOVE% | | bset \ x86- Vi sual C++-
5. 0to%RTS HOVE% | i bset\ <Li bset Nane>.

In addition, if your system does not provide a suitable ar command aopyp! from

URTS HOVE% t ool s to ¥RTS_HOME% | i bset \ <Li bset Nane> and modify as neces-
sary.

1.5 Create and edit makefiles
For more information, see “TargetRTS makefiles” on page 34.

1.5.1 Create the config makefile

D URTS_HOVE% confi g\ <Pl at f or mNanme>\ confi g. nk

For more information, see “Config makefile” on page 39.

Porting Guide Porting the TargetRTSfor C workbook 7

1.5.2 Create the libset makefile

D URTS HOVE% | i bset\ <Li bset Nane>\| i bset . nk

For more information, see “Libset makefile” on page 39.

1.5.3 Create the target makefile

D URTS HOVE% t ar get \ <Tar get Nane>\t ar get . nk

For more information, see “Target makefile” on page 38.

1.6 Create and edit C source and header files

1.6.1 Create RTTarget.h

D Create and edit the following file:

URTS HOVE% t ar get \ <Tar get Nane>\ RTTarget . h

#i fndef _ RTTarget _h_
#define _ RTTarget _h__ incl uded

#def i ne USE_THREADS 0

#defi ne RSLMJULTI THREADED RSLFALSE
#define RSLTO RSLFALSE

#defi ne RSLDEBUG RSLFALSE

#endif // _ RTTarget _h

For the simple model execution phase, disable Multi-threading (RSLMULTITHREADED), Target
Observability (RSLTO) and Debugging (RSLDEBUG).

1.6.2 Creating platform-specific source files

If there is a need to override a portion of the standard code for the port, contained in the
$RTS HOVE/ sr c directory, copy the file that you want to override to the corresponding directory in
$RTS _HOVE/ src/target.

8 Porting the TargetRT S for C wor kbook Porting Guide

For example:

On Unix:

$RTS_HOVE/ src/ t arget/ <Tar get BaseNane>/ MAI N mai n. ¢
overrides
$RTS_HOVE/ src/ MAI N mai n. c

Then when the compilation of the libraries is performed, the Perl scripts will choose the target specific
source file rather than the standard source file.

1.6.3 Creating platform-specific include files

To override include files, such as RT_Ti ne. h, contained inthe $RTS_HOVE/ sr ¢/ i ncl ude
directory, copy them to SRTS_HOVE/ sr ¢/ t ar get / <Tar get BaseNane> and then modify
them.

Porting Guide Porting the TargetRTSfor C workbook 9

1.7 Compile the TargetRTS for your target

[]

1. Open an ObjecTime Developer Command Prompt.
2. Change to directory YRTS_HOME% sr ¢\
3. Compile the TargetRTS by entering the following command:

make
nnmake CONFI G=

<Pl at f or mNanme>

ex: make SUN5S. sparc-gnu-2.7.1
nmake CONFI G=NT40S. x86- Vi sual C++-5. 0
4. This creates a set of object and library files in the following directory:

URTS HOVE% | i b\ <Pl at f or MNane>
ex: |f <PlatfornmName> = SUN5S. sparc-gnu-2.7.1, then the fol-
lowing files should be created in directory
URTS _HOVE% | i b\ SUNSS. sparc-gnu-2.7.1 :

i bObj ecTi neC. a

i bObj ecTi neCTransport. a

mai n. o

1.8 Compile and run the C_HelloWorld model for your target

1.8.1 Activate C_HelloWorld within ObjecTime

Start an ObjecTime session. Do NOT Enable Target Observability.

Open the Workspace Browser.

Open aDirectory Browser on %OBJECTIME_HOM E%\M odel Examples\C.

Drag C_HelloWorld.update from the Directory Browser to the Workspace Browser.
Open aModel Browser on C_HelloWorld.

g A W DN P

10 Porting the TargetRT S for C workbook Porting Guide

1.8.2 Create a new configuration

1. Right-click on Configuration in the Model Browser. Select New Configuration...

2. Name the new configuration - _config

ex: SUN5S config Tar get Nane

3. Double-click on the name of the new configuration.
Activate the C Target TargetRTS version.
5. Right-click on Language Options. Select New Language Option...

P

6. Name the new language option

-

ex: SUNS Tar get BaseNane

7. Select C as the type. Press the OK button.
8. Activate the new language option.

9. Double-click on the name of the new language option.
Set the Library to

-

ex: sparc-gnu-2.7.1 -
Li bset Nane
10. If necessary, edit the various other values in the language options window, and then close it.
11. Close the Configuration Browser.
12. Activate the new configuration.

1.8.3 Edit the threads configuration

1 Right-click on the Update menu in the Model Browser. Select Open Threads Browser.
2 Activate the SingleThread threads configuration.

3 Closethe Threads Browser.

1.8.4 Compile and run

1 Compile the HelloST actor. This will create an executable

9PVWD% C_Hel | oWor | d\ bui | d\ <Tar get Name>_confi g\ Hel | oST. exe.

2 Runthe model on the target using the same approach that you used in step 1.1.4 when you compiled

andranhel | 0. ¢ onthetarget.

3 Confirmthat it ran correctly by observing the output in the target consol e window. The output should

look like:

C Hel | oworl d-v1. 0- OT5. 2x- st art ed:
Hello World

Porting Guide Porting the TargetRT S for C workbook 11

C Hell oWworl d v1. 0- OT5. 2x-fi ni shed!

Compilation of the update is usually performed by compiling an actor in the ObjecTime toolset; how-
ever, an update can also be compiled from the SUPDATE_DI R by issuing the mak e command.

The sections that follow provide detail on additional procedures to create threaded executables, as well
as more complex areas such as debugging, target observability, compiler/linker error parsing and timers.

Note: Perl needsto beinstalled or the use of Perl disabled to avoid compilation failurein thissimple
model execution phase. For more information, please refer to section “If the compilation platform
does not have Perl” on page 165.

12 Porting the TargetRT S for C workbook Porting Guide

2.0 Debug phase

2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
[]

1. Modify SRTS_HOVE\ t ar get \ <Tar get Nane>\ RTTar get . h to have the following
define:

#def i ne RSLDEBUG RSLTRUE

2. Compile the libraries again and see if any further code modifications are required. If standard
Unix-like I/O capabilities are available on your target, it is likely that no modifications are required.

2.2 Debug run-time testing

[]

1. Compile the C_Hel | oWr | d model against the new libraries.

2. Run it from the command line, type stats, and then ‘info 0" and ‘info 1’, and then verify the
information is sane.
3. Optional: If the stats and info commands are working correctly, it's most likely that all the

debugging features will be functional. However, you may want to test them at this point. See
the debugging test plan.

3.0 Target Observability phase

3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
[]

1. Modify $RTS_HOVE\ t ar get \ <Tar get Nanme>\ RTTar get . h to have the following
define:

#define RSLTO RSLTRUE

2. Compile the libraries again and see if any further code modifications are required. If your OS
supports BSD-style sockets, it is likely that no modifications are required.

Porting Guide Porting the TargetRT S for C workbook 13

3.2 Target Observability run-time testing

[]

[EnY

. Compile the C_StateChanger update against the new libraries.
2. Start up the executable to connect with Target Observability.
You can use any of the provided connection methods, such as manual or basic. It might also be
necessary to embed the connection arguments as default arguments if the target does not accept
arguments upon process startup.
For more information on how to connect to a C target with Target Observability, please refer to the
C Language Guide.
3. Open up a behavior editor on the top-level actor.
4. Click Run and ensure the animation works correctly when you inject a message with the port probe.
5. Optional: If the animation is working correctly, it is most likely that all the Target Observability (TO)
features will be functional. However, you may want to test them at this point. See the TO test plan.

14 Porting the TargetRT S for C workbook Porting Guide

4.0 Threaded phase

4.1 Creating the multi-threaded libraries

Essentially, you will be completing most of the steps from the “Simple model execution phase” on
page 3; however, you will be choosing a multi-threaded target. To save time, the steps you need to redo
are included below.

[]

1. Consider that the new <Tar get Nanme> will be <Tar get BaseNanme>T
2. Since the other files will be similar, you will only have to create:

$RTS_HOVE\ confi g\ <Tar get Nane>. <Li bset Nane>\ confi g. nk
$RTS_HOVE\ conf i g\ <Tar get Nanme>. <Li bset Nane>\ set up. pl

$RTS_HOVE\t ar get \ <Tar get Nane>\ RTTar get . h
$RTS_HOWVE\'t ar get \ <Tar get Nane>\t ar get . nk

3. Copy your single-threaded files and modify them to include the thread information described
below:

a.Modify $RTS_HOME\ t ar get \ <Tar get Nane>\t ar get . nK to include the thread
library names in the TARGETLI BS macro.

For example, the line might look like the one below before the modification:

TARGETLI BS = $(LI B_TAG) posi x4
and like the one below after the modification:
TARGETLI BS = $(LI B_TAG posi x4 $(LI B _TAGt hread

b. Modify $RTS_HOVE\ t ar get \ <Tar get Name>\ RTTar get . h to have the
following define:

#defi ne RSLMJLTI THREADED RSLTRUE
c. As well you will probably have to create
$RTS_HOWVE\ src\t ar get\ <Tar get BaseNane>\ THREAD\ RTThr ead. ¢

4. Compile the new threaded libraries and see if any further code modifications are required.

Porting Guide Porting the TargetRT S for C workbook 15

4.2 Threaded phase run-time testing

]

1. Compile the C_Multithreads model against the threaded TargetRTS.
2. Run it and observe the output to see if it is processing inter-thread messages.

5.0 Porting the error parser phase

The majority of the concepts involved in this section are explained in detail in “Modifying the error
parser” on page 91. Using the concepts from that section, you should do the following:

(]

1. Determine if the compiler output for the new target’s libset is similar to the output for a
reference port.

For example, sparc-gnu-2.7.1 and sparc-gnu-2.8.1 have similar error formatting rules.

2. If yes, just set the VENDOR make macro inthe | i bset . nK file to reference the

existing vendor, and the error parsing port is done.
3. If no, see “Creating a new error parser” on page 89.

5.1 If the compilation platform does not have Perl

If the compilation platform does not have Perl, the following solutions are available:

5.1.1 Short-term solutions

(Both the following solutions disable the use of Perl for the compilation phase, and consequently, error
parsing. You will, however, be able to compile without getting a fatal error indicating Perl is not
present.)

Solution 1: Make use of a make overrides file, as described in the chapter “Makefiles” GnlLidre
guage Guide. Set the following variables to nil within that file:

. OTCOWPI LE_CVD =
« OTLINK_CMD =

16 Porting the TargetRT S for C workbook Porting Guide

Solution 2: Modify the BRTS_HOME/ t ar get / <Tar get Nane>/ t ar get . nk file to set the
following variables to nil:

« OICOWPI LE_CMD =
* OTLINK_CMD =

5.1.2 Long Term Solution

Download and compile Perl for the compilation platform.

6.0 Porting timers phase

The majority of the concepts involved in this section are explained in “Implementing timer services in
the C TargetRTS” on page 77.

Using the concepts from this section, you should decide what type of timers you want to implement—
local timers or actor timers. It is suggested that for RTOS applications, local timers be used; otherwise,
actor timers can be used.

Porting Guide Porting the TargetRT S for C workbook 17

6

.1 Local timers

]

1. In $RTS_HOWE/ t ar get / <Tar get Name>/ RTTar get . h define the following:

#defi ne RSLTI MERS RSLTRUE
#defi ne RSLACTOR_TI MERS RSLFALSE

2. Compile the TargetRTS.
3. Decide whether to use Integrated timers, or Integrated IPC and timers. Integrated IPC’s use another

task for the timing function calls.

6

.1.1 Integrated timers

]

Take an existing example of an update with integrated timers
(such as C_TornadoQueuesWithTimers, Sender and Replyer Actors)
and modify it to use the OS specific functionality for the new OS.

Specifically, re-implement in the timer actor:

1. The signalling function
2. Externalinterface (timer) function.
3. Initialize transition code for an actor in each thread that requires timer services. This initialization

transition registers the functions and creates the data structures they will use.
4. Once the existing modified example is working, insert this functionality into an actor in each of

your target threads.

6.1.2 Integrated IPC and timers

D Take an existing example of an update with integrated IPC timers

(such as C_TornadoQueuesWithTimers, Behavior and Responder actors)
and modify it to use the OS specific functionality for the new OS.
Specifically, re-implement in the timer actor:
1. Externallnterface (Timer) function.
2. Initialize transition code for an actor in each thread that requires timer services. This initialization

transition registers the functions and creates the data structures they will use. It also creates a
message queue object and stores the handle to this in an actor ESV.
3. Once the existing modified example is working, insert this functionality into an actor in each of

your target threads.

18 Porting the TargetRT S for C workbook Porting Guide

6.2 Actor timers

[]

1. In $RTS_HOWVE/ t ar get / <Tar get Nane>/ RTTar get . h define the following:

#define RSLTI MERS RSLTRUE
#defi ne RSLACTOR_TI MERS RSLTRUE

2. Compile the TargetRTS

3. Take an existing example of an actor timer, for example, Timer Solaris MT, from the Model
Model Exanpl e/ ¢ C_Ti nmer s update.
Merge it into another blank update, rename it, and merge it back into the C_Ti nmer update.
Modify it to use the OS specific functionality for the new OS.
Specifically re-implement in the actor timer:

a. External interface (Timer) function.
b. Signalling function.

c. Initialize transition code that creates a condition variable and stores it as an actor ESV.
d. Initialize transition code that registers this actor as the provider of all timing services.
4. Drag the new actor timer into the top level actor of any update you want to provide timing

services for.

Porting Guide Porting the TargetRT S for C workbook 19

Part 2
Porting guide reference

Chapter 2

Introduction

The TargetRTS is the set of run-time services that provide a virtual machine on which an ObjecTime
model can run. It provides the run-time implementation of the ROOM constructs used in the model.
Figure 1 shows the context of the TargetRTS in building an executable program.

This guide describes the steps required to port the TargetRTS to a new target environment. The new tar-
get may simply be a new version of an operating system or compiler on a UNIX host. In more compli-
cated cases it may be a new operating system, compiler and target hardware. The latter scenario is of
more interest to this guide, although all the information required for the former scenario is provided.

Thisguideis specifically designed for ObjecTime staff and consultants. It is assumed that the reader has
significant knowledge and experience with the devel opment environment, operating system, and target
hardware.

Figure 1 The TargetRTS in context

ObjecTime Developer %
..... o

make is .
C / C++ compiler
| ™>1. ObjecTime ~ controlled by, "\ e
invokes a makefile invokes
External compiler 3. compiler
Generate/Compile compiles
C / C++ source files

|

class

Subject of this Porting Guide ©

class Dgf
(&
C/C++
source files :

class Kyz
4. ...and ‘ /

links with
RTS Iibrary‘\/

UNIX: TopLevelActor
WinNT: TopLevelActor.exe

Executable program

Porting Guide Introduction 23

24 Introduction Porting Guide

Chapter 3

Before starting the port

This chapter describes what you need to do before starting the port.

OS knowledge and experience

Knowledge and experience with the target operating system is key to a successful port. This knowledge
should extend to development environment and target hardware. The type of knowledge required
includes such details as synchronization mechanisms, thread creation, memory management, timing,
device drivers, board support packages, memory maps, TCP/IP support, priority and scheduling
schemes, and so forth. See “OS capabilities” on page 25 for a list of OS capabilities required by the
TargetRTS.

Experience with porting the TargetRTS to other platforms will aid greatly as the ports tend to follow a
pattern. For each development environment and operating system there are bound to be a few surprises.
See “Common problems and pitfalls” on page 99.

Tool chain functionality

A functioning development environment must be in place before porting can begin. This includes the
correct installation of tools such as linkers, compilers, assemblers and debuggers. To build the
TargetRTS you must have working version of Perl for your development host (version 5.002 or greater).
Perl is used extensively in the makefiles for the TargetRTS.

It is also important to initialize environment variables for inclusion of header files and location of
library files. An easy way to test this is the creation of simple program, such as “Hello World”, which is
compiled and run on the target. This step is described in “Simple non-ObjecTime program on target” on
page 27.

OS capabilities

The target operating system must have a set of services that satisfy the requirements of the TargetRTS.
In general, most commercial real-time operating systems (RTOS) have these services. Before starting a
port, check for these basic capabilities in the target RTOS. Table 1 lists the TargetRTS feature and its

corresponding RTOS service.

Porting Guide Before starting the port 25

Table 1 Required Operating System Services for C++

TargetRTS Feature

Operating System Service

RTSyncObject

Semaphore, mailbox, signal, condition variable — service m
provide infinite and timed blocking.

ust

RTTimespec::getclock

A function is required to return the current time. The more
sion the better. In general, RTOS will return time with precis
of its internal timer.

preci-
on

ead

7]

RTThread Task creation function — must be able to create task or thr
with specified stack size and priority. Be aware of priority
scheme — some RTOS use 0 as highest priority while othe
may use 0 for lowest priority.

RTMutex Semaphore, mutex, etc. — a mutual exclusion mechanism.

Some RTOS provide optimized mutex service along with se
phores.

ma-

RTDiagStream (output to console)

Standard input and output — this may not be provided o
the-box. For embedded targets, device drivers added to the |
support package may be required. Output is generally route
external serial ports but TCP/IP or UDP/IP may be used inst

It-of-
poard
d to

ead.

RTDebuggerlnput (input from console

As above. This can be removed from the C++ TargetRTS|
configuration options. For more information, see “Customizi
the Target Services Library” on page 47 of @ie+ Target
Guide.

via
ng

Target Observability & External Layer

TCP/IP support is required. This includes device drivers i
board support package for the ethernet hardware on the targ
not provided this is a substantial do-it-yourself project. This
be removed from the TargetRTS via configuration options. H
more information, see “Customizing the Target Services
Library” on page 47 of th€++ Target Guide.

n the
et. If
can
or

new, delete

RTOS must support some sort of memory management. In
eral, this is hidden from the user by the compiler as the RTQ
resolves the new and delete symbol.

gen-
S

main function

Some RTOS have their own main function defined. If so, th
the main function in the TargetRTS must be redefined.

26 Before starting the port

Porting Guide

Table 2 Required Operating System Services for a Multi-threaded C TargetRTS
TargetRTS Feature Operating System Service

RSL_semaphore Semaphore, condition variable — service must provide infinite
and timed blocking.

RSL thr_create Task creation function — must be able to create task or thread
with specified stack size and priority. Be aware of priority
scheme — some RTOS use 0 as highest priority while othe
may use 0 for lowest priority.

2]

RSL_mutex Semaphore, mutex, etc. — a mutual exclusion mechanism
Some RTOS provide optimized mutex service along with sema-
phores.

RSL_nextChar (input from console) Standard character input. This can be removed from the C
TargetRTS via configuration options.

Target Observability TCP/IP support is required. This includes device drivers in/the
board support package for the ethernet hardware on the target. If
not provided this is a substantial do-it-yourself project. This can
be removed from the TargetRTS via configuration options.

malloc, free RTOS should support some sort of memory management. If it is
not supported, it may be possible to write your own.

main function Some RTOS have their own main function defined. If so, then
the main function in the TargetRTS must be redefined

Simple non-ObjecTime program on target

An easy way to test the tool chain functionality is to create a simple program that prints out “Hello
World” on the console.

This program should not use any TargetRTS code or libraries. Compile, link, and download the program
to the target. If it executes successfully, then your development environment is ready.

Further testing is strongly recommended. This would include some basic RTOS services such as thread
creation in the program. Again, no TargetRTS code or libraries should be used. Many RTOS provide
example programs to compile and run. Try these out and verify the functionality. If you are using a
source-level debugger, verify that you can step through the source code and examine variables. If the
debugger is aware of operating system data structures, then check to see if this functions. Another
important test for C++ compilers is to include a static constructor in the test program. This will ensure
that proper initialization is performed. The purpose of this testing to ensure that all of the required oper-
ating system features are operational and understood before attempting the port of the TargetRTS.

Porting Guide Before starting the port 27

TCP/IP functionality

In order to support target observability for the new port, the target operating system must provide a
compatible TCP/IP stack. In general, the TCP/IP layer must support BSD sockets interface, that is, the
creation and deletion of sockets, functions such asopen(), connect (),bi nd(),listen(),
sel ect (), and so forth. Typically, RTOSs try to provide a BSD-compliant TCP/IP stack. Thisis a
common source of problems with new ports. See “Common problems and pitfalls” on page 99.

If a TCP/IP stack is not provided, then you must implement one, which requires significant effort. The
lack of ethernet hardware may require the use of SLIP or PPP over a serial port, although this will
severely affect the performance of target observability.

Floating point operations

Some of the C++ TargetRTS classes (for example, RTReal) require the use of floating point operations.
Investigate the support for floating point on your target system. It is possible to configure the support
for RTReal from the TargetRTS via configuration options. For more information, see “Customizing the
Target Services Library” on page 47 of e+ Target Guide.

Standard input/output functionality

The TargetRTS needs standard input and output to a console for log messages, panic messages, and
debugger input/output. This may already be provided by the target development or operating system.
Some embedded RTOS and development tools may not provide standard input and output. This requires
the addition of serial port device drivers to the board support package. The use of TCP/IP or UDP/IP to
provided standard input/output is also an option.

Debugging

The use of a source-level debugger that provides some sort of operating system awareness is the best
development tool for the port. This is the easiest way to examine source code, memory, variables, regis-
ters, stacks, and so forth.

Training

Training is an important component of a successful port. ObjecTime offers training courses to help users
understand, use, and port the TargetRTS. Your RTOS vendor may also offer training and this is recom-
mended as well.

What to do before calling ObjecTime support

The following steps should be followed before calling ObjecTime support for help with a custom port of
the TargetRTS.

1 Getto know your compiler/linker/debugger tool chain. Be sure it is installed correctly and programs
can be compiled, linked, downloaded to the target hardware and run successfully.

28 Before starting the port Porting Guide

2 Get to know your target operating system. Be sure that an example multithreaded program that ex-
ercises the various features of the RTOS is compiled, linked and downloaded to the target hardware
and runs successfully. Do not use ObjecTime Developer for this example program. This should be
produced independently to verify toolchain and RTOS functionality.

3 Readthisguide and, if you are porting to a C++ target, the C++ Target Guide that is included with
ObjecTime Developer to understand the required capabilities of the RTOS needed to support the
TargetRTS.

4 Ensurethat the TCP/IP stack for your target platform is operational. In particular the sockets inter-
face must be working and additional utilities such asget host bynane() and get host by-
addr () must be functioning.

5 Test the functionality of the standard input and output for your target. Thiswill probably be verified
in earlier steps.

Learn how to use the target debugger. Thiswill be a useful tool when doing the port.
7 Get asmuch training on ObjecTime Devel oper, the RTOS, and tool chain as possible.

Porting Guide Before starting the port 29

30 Before starting the port Porting Guide

Chapter 4

Porting the TargetRTS

The most common customization to the TargetRTS s porting it to anew platform. A platform is defined
by the TargetRTS as the combination of the operating system, target hardware and the compiler/linker
tool chain. A new operating system requires the most work since it often requires implementation
changes. However, a new compiler may also require changes, in particular, to the configuration files.

The ports supported by ObjecTime Ltd. and shipped with the TargetRTS source are a good place to
begin considering design alternatives for a new port. Theroot directory for the TargetRTS source will be
referred to from this point forward using the environment variable RTS_HOVE. Itisusually a subdi-
rectory of $OBJECTI ME_HOME ($OBJECTI ME_HOME/ C++/ Tar get RTS or
$OBJECTI ME_HOVE/ C/ Tar get RTS). In the sections that follow, examples are extracted from
this source.

Phases of a port

The major steps for implementing the port are as follows:

Performing pre-port steps as outlined in section “Before starting the port” on page 25.
Naming the platform (see “Choose a platform name” on page 31).

Defining the setup script (see “Create a setup script” on page 33).

Defining the platform-specific makefiles (see “TargetRTS makefiles” on page 34).

Defining the platform-specific header files (see “Porting the TargetRTS for C++" on page 45).

Defining the platform-specific implementation of TargetRTS features (see Table 5, “TargetRTS con-
stants/macros and their default values,” on page 46).

Building the new TargetRTS and fix compile and link problems (see “Building the new TargetRTS”
on page 111).

Testing the new TargetRTS using test model updates (see “Testing the TargetRTS” on page 95).
Tuning the performance of the TargetRTS, if required (see “Tuning the TargetRTS” on page 97).

Choose a platform name

The first step in implementing a port is picking the name for the platform. This name and parts of it are
used by the various loadbuild tools to find the files needed to build the TargetRTS for that platform. Itis
also used during compilation of the ObjecTime models. There are two parts to theangeteandlib-

Porting Guide Porting the TargetRTS 31

set. The resulting names for TargetRTS configurations are defined as combinations of the target and lib-

set names in the following pattern:
<platform> ::= <target>.<libset>

Examples are given in Table 3.

Table 3 Example platform names used by the TargetRTS

Name

Description

SUMS. sparc-gnu-2.7.1

SunOS 4.x SingleThreaded on a Sparc processor
using Free Software Foundation gnu version 2.7.1

SUNST. sparc-gnu-2.7.1

Solaris 2.x MultiThreaded on a Sparc processor
using Free Software Foundation gnu version 2.7.1

SUNSS. spar c- SunC++- 4. 2

Solaris 2.x SingleThreaded on a Sparc processor
using Sun Microsystems SPARCULtils C++ version 4.2

HPUX09S. hppa- HPC++- 3. 76

HPUX 9.x SingleThreaded on an HPPA processor
using Hewlett Packard HPC++ version 3.76

PSOS2T. n68040- Green-1. 8. 7B

pSOS 2.x MultiThreaded on a Motorola 68040 processo
using GreenHills C++ version 1.8.7B

[

Target name

The target name presents the implementation-specific components of the TargetRTS. These components
are generally specific to a given configuration, of a given version, of a given operating system. The tar-
get name is also used to name the configuration of the target, for example, single versus multi-threaded.

The target name is defined as follows:

<target>::= <OS name><O0OS version><RTS config>

For example: SUNST. The components of <tar get> are defined as follows:
+ <OSname> identifies the operating system (for exam@eN)

e <OSversion> identifies the major version of that operating system (for exafapteganing SunOS
5.x, that is, Solaris 2.x). Do not use periods in the OS version as this will confuse the make utility

when trying to build the TargetRTS.

« <RTSconfig> is a single letter to identify the configuration. Currently only ‘S’ or ‘T’ are supported,
which denote single-threaded and multi-threaded configurations, respectively. (for exBmple,

32 Porting the TargetRTS

Porting Guide

Libset name

Although the actual libset names can be chosen arbitrarily, by convention those defined by ObjecTime
are defined as follows:

<libset> ::= <processor>-<compiler name>-<compiler version>

For example: spar c- gnu- 2. 7. 1. The components of <libset> are defined as follows:
e <processor> identifies processor architecture name
e <compiler name> identifies the compiler product name or the vender for the compiler

e <compiler version> identifies the compiler version. It is appropriate to use periods in the compiler
version text.

Create a setup script

The setup script is a filset up. pl) containing Perl commands that set up the environment for the
compilation of the TargetRTS to the platform. This file is contained ii$(H8TS HOVE) / con-

fi gl <target>. <libset > directory. If the target tool chain environment variables are part of a
user’s standard environment, then the variables ist@teup. pl file may not be necessary. These
environment variables defined in thet up. pl file are not available when using the toolset to build
user models.

The commands in theet up. pl file are executed before any of the compilation tools are invoked.
Typically, definitions for locations of files on the host platform are included in this file. This usually
includes setting the shell environment variable PATH to point to the appropriate tools. Two variables
must be defined for all targets, namely fiteepr ocessor variable and theuppor t ed variable.

Thepr epr ocessor variable defines the C++ preprocessor command appropriate for the compila-
tion environment. The preprocessor command is used to automatically generate source code dependen-
cies for the TargetRTS. Theuppor t ed variable defines whether this target is supported by
ObjecTime Limited. Valid values faupport ed are 'Yes’ and ‘No’. Another variable to note is

t ar get _base. This variable indicates that the implementation of the target-specific features of the
TargetRTS are rooted in the same source directory dsathget _base target. For example, for the
VRTXA4T target, thd ar get _base is set to VRTX3'. Therefore, VRTX4 specific implementations

of TargetRTS classes are found in the same source directory as those of the VRTX3 target, that is,
$(RTS_HOVE) / src/ t ar get / VRTX3.

The example file$(RTS_HOME) / confi g/ VRTX4T. ppc603-M crotec-1. 4/
set up. pl , includes

$os
$os

$ENV{’ CS' };
"default’ unless defined($os);

if($os eq ' Wndows_NT')

{
$usr_nri = $ENV{’ USR_MRI ' };

Porting Guide Porting the TargetRTS 33

$ENV{’ PATH} = "“S$usr_mri/bin;$ENV{ PATHY}";

}
else
{
$usr_mri =
“SENV{ OS_HOVE'}/spectra/solaris-ppc603-4.AB”;
$ENV{ USR MRI'} =“$usr_mri’;
$ENV{ SPECTRA} =*“$usr_mri/spappc”;
$ENV{ MRl _PPC_BI N} = “$usr_mri/bin”;
SENV{ MRl _PPC LI B} = “$usr_mri/lib”;
$ENV{ MRI _PPC_| NC} = “$usr_mri/finclude/mccppc”;
$ENV{ PATH} =“$usr_mri/bin:$ENV{’ PATHY";
}
$preprocessor = “cceppc -E SMANIFEST.I”;
$include_opt =" -J;
$target _base = 'VRIX3;
$support ed = 'Yes’;

Note: The setup fileis not used when compiling generated updates. The environment variables de-

fined in the setup file must instead be defined in the user’s environment before executing the Objec-
Time toolset. In the given example, the setup file assumes that the user’s environment has the
variables USR_MRI and OS_HOME already defined. This is platform-specific.

TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS: compilation of the TargetRTS
libraries and compilation of the generated code. The platform-specific definitions are required by both
and are thus placed in separate files. The sequencing of the makefiles for the two paths are shown in
Figure 2, “Sequencing of Makefiles,” on page 35.

34 Porting the TargetRTS Porting Guide

Figure 2 Sequencing of Makefiles

@ generated Makefile from

@ COMMON MAKEFILE:

Compile model from ObjecTime
(example: for target SUNST with
libset sparc-gnu-2.8.1)

Compile TargetRTS source code

toolset @ Source Makefile:
$RTS_HOME/src/Makefile

* includes *

$RTS_HOME/TARGET/COMMON.MK @
main compilation Makefile:
includes $RTS_HOME/src/main.mk
V includes
defaults Makefile:
@ $RTS_HOME/libset/default.mk - i cludes

libset Makefile: P —

includes $RTS_HOME/libset/sparc-gnu-2.8.1/libset.mk

config Makefile: <
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1/config.mk

target Makefile: -
i f ; $RTS_HOME/target/SUN5T/target.mk

As shown, there is a makefile for each of the following:

The generated makefile for the update being compiled. S&&-thé.anguage Guide or theC Lan-
guage Guide for more details on how this makefile is generated.

$RTS_HOVE/ t ar get / conmon. nk is the main definition for compiling an update. This
makefile cannot be customized and is not discussed further in this document.

$RTS_HOVE/ sr c/ Makef i | e is the root makefile for the TargetRTS libraries that selects the
host to compile the libraries. See “TargetRTS makefiles” on page 36.

$RTS_HOVE/ sr ¢/ mai n. nk is the main definition for compiling the TargetRTS libraries. This
makefile cannot be customized and is not discussed further in this document.

$RTS HOVE/ | i bset/ def aul t. nk, the default macro definitions that may be overridden
by the platform specific makefiles. See “Default makefile” on page 36.

$RTS _HOWE/ | i bset/ <l i bset>/1ibset. nk is the definition specific to the compiler.
See “Libset makefile” on page 39.

Porting Guide Porting the TargetRTS 35

« S$RTS_HOVE/t arget/ <t arget >/t arget. nk is the definition specific to the target op-
erating system and TargetRTS configuration. See “Target makefile” on page 38.

« S$RTS_HOVE/ confi g/ <target>. <libset>/config.nk is the definition specific
to the combination of the operating system, TargetRTS configuration, and compiler. See “Config
makefile” on page 39.

Note: Thet ar get, | i bset, andconf i g makefiles are used to compile both the update and
TargetRTS libraries.

Compilation of the update is usually performed by compiling an Actor in the ObjecTime Toolset; how-
ever, an update can also be compiled fronf®PDATE_DI R by issuing therake command.

Compilation of the TargetRTS is performed from $I8TS_ HOVE/ sr ¢ directory by issuing the
command:

make <target>.<libset>
for example in Unix:
make SUNST. sparc-gnu-2.8.1

for example in Windows NT:
nmake CONFI G=NT40S. x86- Vi sual C++-5. 0

TargetRTS makefiles

The$SRTS _HOVE/ src/ Makefi | e contains a default target that invokes a Perl script called

Bui | d. pl . This script checks the dependencies for the TargetRTS source code and generates a make-
file calleddepend. nk in the$(RTS_HOME) / bui | d- <t ar get >. <l i bset > directory. It

then builds the TargetRTS from this directory.

Default makefile

Thet arget, | i bset, andconfi g makefiles are expected to override defaults defined in
$RTS_HOWE/ | i bset / def aul t. nk. The defaults are as follows:

CONFI G = $(TARGET) . $(LI BRARY_SET)

Defaults for macros which nmay be nodified by
l'i bset/ $(LI BRARY_SET) /| i bset. nk

target/$(TARGET)/t ar get. nk

or config/ $(CONFI G/ confi g. nk

FEEDBACK = $(PERL) “$(RTS_HOME)/tools/feedback.pl”

NOP = $(PERL) “$(RTS_HOME)/tools/nop.pl”
PERL = perl

PRELINK =ld-r-o

RM = $(PERL) “$(RTS_HOME)/tools/rm.pl”
RMF = $(RM) -f

36 Porting the TargetRTS Porting Guide

TOUCH = $(PERL) “$(RTS_HOME)/tools/touch.pl”

default pre-compile command, can be modified by libset.mk
PRECC = $(NOP)

Macros used when creating an object file from a C++ source file

CcC = $(FEEDBACK) -fail \

CC should be defined by libset.mk or generated makefile
DEBUG_TAG =g
DEFINE_TAG =-D
INCLUDE_TAG =-
LIBSETCCEXTRA =
LIBSETCCFLAGS =
OBJECT_OPT -C
OBJOUT_OPT -0
OBJOUT_TAG
SHLIBCCFLAGS =
SOURCE_TAG =
TARGETCCFLAGS =

-PIC

Macros used when creating an object library from a set of object files

AR_CMD =$(PERL) “$(RTS_HOME)/tools/ar.pl”
LIBOUT OPT =

LIBOUT TAG =

RANLIB =$(NOP)

Macros used when creating an shared library from a set of object files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT =-0
SHLIBOUT_TAG =

Macros used when creating an executable from a set of object files, li-
braries

LD = $(CC)
DIR_ TAG =-L
LIBSETLDFLAGS =
LIB_TAG =-I
OT_LIB_TAG =-I
TARGETLDFLAGS =
TARGETLIBS =
EXEOUT_OPT
EXEOUT_TAG

-0

Porting Guide Porting the TargetRTS 37

Macros used to construct nanmes of various kinds of files

EXEC_EXT =

LI B_PFX =1lib

LI B_EXT = .a

CPP_EXT = .ccC

OBJ_EXT =.0

SHLI B_PFX =1lib

SHLI B_EXT = .so0

#

RTS_LIBRARY = $(RTS_HOVE)/ | i b/ $(CONFI G

EXTERNAL_LIBS = $(DIR_TAG)"$(RTS_LIBRARY)” \
$(OT_LIB_TAG)ObjecTimeTransport \
$(OT_LIB_TAG)ObjecTimeTypes

SYSTEM_LIBS = $(DIR_TAG)'$(RTS_LIBRARY)"\
$(OT_LIB_TAG)ObjecTime \
$(OT_LIB_TAG)ObjecTimeTransport \
$(OT_LIB_TAG)ObjecTimeTypes

SYSTEM_DIRECTORY = $(LOCAL_DIRECTORY)/$(UPDATE)/C++/system
SYSTEM_DEPENDENCY = $(SYSTEM_DIRECTORY)/RTSystem.h \
$(SYSTEM_DIRECTORY)/initData.h

ALL_ACTORS_LIST = $(ALL_ACTORS)
Target makefile

The $RTS_HOME/ t ar get / <t ar get >/ t ar get . mk makefile provides definitions specific to
the operating system and TargetRT S configuration. The definitionsin this makefile override the defaults
in$(RTS_HOME) / t ar get/ common. nk. An example target makefile template file,
RTS HOVE/ t arget/ SUNST/ t ar get . nk, isasfollows:

Define the _REENTRANT macro to enforce thread safety
TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT

Add in the nsl and socket libraries and to pass on the RTS

library directory to the run-time linker

TARGETLDFLAGS = $(LIB_TAG)ns| $(LIB_TAG)socket -R$(RTS_LIBRARY)
Add in the posix4 and thread libraries

TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread

38 Porting the TargetRTS Porting Guide

Libset makefile

The $RTS _HOVE/ | i bset/ <l i bset >/ i bset . nk makefile provides definitions specific to
the compiler. The definitions in this makefile override the defaults in $(RTS_HOMVE) / t ar get /
def aul t. k. An example libset makefile template file, SRTS_HOVE/ | i bset/ spar c-
gnu-2.7.1/1i bset. nk,isasfollows:

C++ conpiler name and comon argunents
CcC = g++ -V2.7.1

Command to nmake shared libraries
SHLI B_CMVD = $(CC) -shared -z text -o

Use pragmas to specify interface and inplenentation
LI BSETCCFLAGS = - DPRAGVA

More c++ flags to turn on optinization, specify processor version
and tune warni ngs
LI BSETCCEXTRA = -O4 -finline -finline-functions \

-mv8 -Wall -Wnline -Wwite-strings

C conpiler flags for building shared libraries
SHLI BCCFLAGS = -fPIC

If SHLIBS is set to nothing,shared libraries will not be built
SHLI BS =

Config makefile

The $RTS_HOME/ confi g/ <t ar get >. <l i bset >/ conf i g. mk makefile provides defini-
tions specific to the combination of the operating system, TargetRTS configuration, and the compiler.
This makefileis empty for most target/libset combinations. Usually thisfile will only be needed to work
around problems that may not appear in either the target or libset alone. In the C++ TargetRTS, an
example use of thisfileisasfollows:

$RTS_HOVE/ confi g/ VRTX4T. ppc603- M crot ec- 1. 3C/ confi g. nk:
EXEC EXT = .x

TARGETLI BS

$(USR_MRI)/1ibl/cppch.lib

Table 4 defines which make macros can be redefined and where they are set.

Porting Guide Porting the TargetRTS 39

Table 4 Make macro definitions

TARGET Defined in RTUpdate.mk as Redefinition not recommended.
“$(PLATFORM)$(THREADED)"
CONFIG Defined in default.mk as Redefinition not recommended.

“$(TARGET).$(LIBRARY)"

OTCODEGEN_HOME

Defined in default.mk.

Redefinition not recommended.

VENDOR

Defined in default.mk as “generic”
and intended to be overridden in li
set.mk.

During porting, this may be left as

D-“generic”. However, you should prg

vide an error-parser script eventu-
ally. Since error formats are
typically vendor-specific (indepen-
dent of the version of the compiler
or of the compilation host-type),
scripts are identified by the vendor
name in libset.mk.

()

OTCOMPILE Defined in default.mk. Redefinition not recommended.

OTLINK Defined in default.mk. Redefinition not recommended.

FEEDBACK Defined in default.mk. Redefinition not recommended.

MERGE Defined in default.mk. Redefinition not recommended.

NOP Defined in default.mk. Redefinition from Per| scripts to
(faster) OS-dependent commandsi|is
possible.

PERL Defined in default.mk as “perl” Some compilation hosts may require
an explicit path; if necessary, rede
fine in libset.mk or config.mk.

RM Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commandsi|is
possible.

RMF Defined in default.mk. Redefinition from Per| scripts to
(faster) OS-dependent commandsl|is
possible.

TOUCH Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commandsi|is
possible.

PRECC Defined in default.mk.

MAKEFILE Defined in default.mk.

CcC Defined in default.mk to cause com-Must be redefined in libset.mk

pile-time error, must be redefined i
libset.mk.

n before porting.

40 Porting the TargetRTS

Porting Guide

DEBUG TAG Default defined in default.mk. Redefine in libset.mk if necessary
for acompiler.

DEFINE_TAG Default defined in default.mk. Redefinein libset.mk if necessary
for acompiler.

INCLUDE_TAG Default defined in default.mk. Redefine in libset.mk if necessary

for acompiler.

LIBSETCCEXTRA

Default defined in default.mk.

Add compiler-specific compilation
flagsin libset.mk, if necessary.

LIBSETCCFLAGS

Default defined in default.mk.

Add compiler-specific compilation
flagsin libset.mk, if necessary.

OBJECT_OPT Default defined in default.mk. Redefinein libset.mk if necessary
for acompiler.

OBJOUT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for acompiler.

OBJOUT_TAG Default defined in default.mk. Redefinein libset.mk if necessary

for acompiler.

SHLIBCCFLAGS

Default defined in default.mk.

SOURCE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for acompiler.

TARGETCCFLAGS Default defined in default.mk. Add target-specific compilation
flagsin target.mk, if necessary.

AR _CMD Default defined in default.mk.

LIBOUT_OPT Default defined in default.mk.

LIBOUT_TAG Default defined in default.mk.

RANLIB Default defined in default.mk.

SHLIB_CMD Default defined in default.mk.

SHLIBOUT_OPT

Default defined in default.mk.

SHLIBOUT_TAG

Default defined in default.mk.

LD

Default defined in default.mk.

Redefinein libset.mk if linker must
be different from compiler (most
compilers can invoke the linker any-
how), or if apreprocessing script is
necessary.

DIR_TAG

Default defined in default.mk.

Redefine in libset.mk if necessary
for alinker.

LIBSETLDFLAGS

Default defined in default.mk.

Redefine in libset.mk if necessary
for alinker.

LIB_TAG

Default defined in default.mk.

Redefine in libset.mk if necessary
for alinker.

Porting Guide

Porting the TargetRTS 41

OT _LIB_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for alinker.

TARGETLDFLAGS Default defined in default.mk.

TARGETLIBS Default defined in default.mk.

EXEOUT_OPT Default defined in default.mk. Redefinein libset.mk if necessary
for alinker.

EXEOUT_TAG Default defined in default.mk. Redefinein libset.mk if necessary
for alinker.

EXEC EXT Default defined in default.mk. Redefinein target.mk or libset.mk if
necessary.

LIB_PFX Default defined in default.mk.

LIB_EXT Default defined in default.mk.

CPP_EXT Default defined in default.mk.

OBJ EXT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler/linker.

SHLIB_PFX Default defined in default.mk.

SHLIB_EXT Default defined in default.mk.

RTSYSTEM_INCPATHS Defined in default.mk. Redefinition not recommended.

RTS LIBRARY Defined in default.mk. Redefinition not recommended.

EXTERNAL_LIBS Defined in default.mk. Redefinition not recommended.

SYSTEM_LIBS Defined in default.mk. Redefinition not recommended.

OTLINK_CMD Defined in default.mk. Redefine to “” while Perl is not
available on the compilation host.

LD_HEAD Default defined in default.mk. May be used to redefine link com

mand if necessary.

ALL_OBJS_LIST

Default defined in default.mk as th
concatenation of all object files in
the update.

eRedefine to

“%$(ALL_OBJS_LISTFILE)” to
pass list of object files to linker (or
linker script), if line length limita-
tions forbid passing list via shell.

LD_TAIL

Default defined in default.mk.

May be used to redefine link com
mand if necessary.

OTCOMPILE_OPTS

Defined in default.mk.

Redefinition not recommended.

OTCOMPILE_CMD

Defined in default.mk.

Redefine to “” while Perl is not
available on the compilation host.

CC_HEAD

Default defined in default.mk.

May be used to redefine compilg
command if necessary.

42 Porting the TargetRTS

Porting Guide

CC_TAIL

Default defined in default.mk.

May be used to redefine compile
command if necessary.

MAKEDEPEND_CMD

Defined in default.mk.

Redefine to “echo makedepend”
while Perl is not available on the
compilation host.

MAKEDEPEND_HEAD

Defined in default.mk.

May be redefined to add
RTSYSTEM_INCPATHS to
updates’ dependency discovery. It
likely only makes sense to do this
when porting requires changes to
RTS include files.

USER_CC

From toolset, defined in
RTUpdate_Compile.mk

Redefinition not recommended.

Porting Guide

Porting the TargetRTS 43

44 Porting the TargetRTS Porting Guide

Chapter 5

Porting the TargetRTS for C++

TargetRTS configuration definitions

Much of the configurability of the TargetRTS is done at the source codefile level: target-specific source

files override common source files. Thisis illustrated in the next section on platform-specific imple-

mentations. However, configurability is also available within a source file using C preprocessor defini-

tions. The configuration is set in two C++ header files:

- $RTS HOVE/t arget/ <t arget>/ RTTar get . h for specifying operating system specif-
ic definitions

« S$RTS_HOWE/ |i bset/ <l ibset >/ RTLi bSet . h for specifying compiler specific defini-
tions; this does not exist by default

These files override macros whose defaults appe®RRS_HOVE/ i ncl ude/ RTConfi g. h.
The macros and their default values are listed in Table 5.

Table 4, “Make macro definitions,” on page 40 defines which make macros can be redefined and where
they are set.

Porting Guide Porting the TargetRTSfor C++ 45

Note: In Table 5, in general, defining a symbol with the value 1 enables the feature the symbol rep-
resents and defining it with the value O disables the feature.

Table 5 TargetRTS constants/macros and their default values

Symbol

Default Value

Possible Values

Description

USE_THREADS

none, must be defined
in the platform head-
ers (usually

RTTar get . h)

Oorl

Determines whether the sin-
gle-threaded or multi-threaded
version of the TargetRTSis
used. If USE_THREADSIsO0,
the TargetRTSis single-
threaded. If USE_THREADS
is1, the TargetRTS is multi-
threaded.

RTS_COUNT

Oorl

If thisflagis1, the TargetRTS
will keep track of the number
of messages sent, the number
of actorsincarnated, and other
statistics. Naturally, keeping
track of statistics adds over-
head.

DEFER_IN_ACTOR

Oorl

If thisflag is defined, the defer
queues will be kept in each
actor. If not, al deferred mes-
sages will be kept in one
queue. Thisis asize/speed
trade-off. Separate queues for
each actor uses more memory
but resultsin better perfor-
mance.

EXTERNAL_LAYER

Oorl

If thisflagis1, the TargetRTS
has the capability to support
layer connections over sockets
with other processes. Required
for target observability.

INTEGER_POSTFIX

Oorl

Sets whether the compiler
understandsthe post increment
operator on classes. i.e.

Class x; X++;

LOG_MESSAGE

Oorl

Sets whether the debugger will
log the contents of messages.

46 Porting the TargetRT S for C++

Porting Guide

Table 5 TargetRTS constants/macros and their default values

Symbol

Default Value

Possible Values

Description

OBJECT_DECODE

Oorl

Enables the conversion of
strings to objects, needed for
the external layer. Thiswill
always be enabled if the
EXTERNAL_LAYER==1.

OBJECT_ENCODE

Oorl

Enables the conversion of
objects to strings. Needed for
the external layer, and log ser-
vice. Thiswill always be
enabled if the
EXTERNAL_LAYER==1.

OTRTSDEBUG

DEBUG_VERBOSE

DEBUG_VERBOSE

Enables the TargetRTS debug-
ger. It will make it possible to
log all important internal
events such as the delivery of
messages, the creation and
destruction of actors, and so
on. Thisis necessary for the
target debug feature.

DEBUG_TERSE

Reduces the size of the result-
ing executable at the expense
of limiting the amount of
debug information.

DEBUG_NONE

Further reduces the executable
size, while increasing perfor-
mance. However, the RTS
debugger will not be available.

RTREAL_INCLUDED

Oorl

If 1, thisflag allows the use of
the RTReal class.

PURIFY

Oor1l

If 1, thisflag indicates that the
Purify tool is being used. This
tells the TargetRTS to disable
all object caching, which
degrades performance but
allows Purify to monitor
RTMessage objects.

RTS_INLINES

Oorl

Controls whether TargetRTS
header files define any inline
functions.

Porting Guide

Porting the TargetRTSfor C++ 47

Table 5 TargetRTS constants/macros and their default values

Symbol Default Value Possible Values Description

RTS_TYPES 1 Oorl Indicates whether the
TargetRTS should use the
ObjecTime type structures.
This flag must be set to 1 for
the current release of the Tar
getRTS.

RTStateld short any scalar type Allows for the type definition
of the RTActor state identifier,
A smaller type may decrease
the memory footprint of an
executable. (e.g. unsigned
char)

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chaing
for better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS inline inline or <blank> Inlines actor methods for be
ter performance at the expense
of potentially largest execut-
able memory size.

Platform-specific implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/ sr ¢ directory. In this direc-
tory, there is a subdirectory for each class. In general, within each subdirectory there is one source file
for each method in the class. Wherever possible, the name of the source file matches the name of the
method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these methods. Addi-
tionally, some of the methods that do not have default behaviors must be provided. The target-specific

source is placed in a subdirectory of SRTS_HOME/ src/ t ar get/ <t ar get _base>, where

<t ar get _base> is the target name without the ‘S’ or ‘T". For the remainder of this section, the tar-
get directory is referred to &TARGET _SRC. For example, the target source directory<ftar get>
PSOS2T is SRTS_HOME/ src/t ar get/ PSQOS2. This directory provides an overlay to the
$RTS_HOVE/ sr ¢ directory. When the TargetRTS loadbuild tools search for the source for a method,
it searches first in th8 TARGET _SRC directory then irRTS_HOVE/ sr C.

Note: There is only a single source directory for all configurations of the TargetRTS for a given plat-
form. C++ preprocessor macros, sucHJ&E THREADS, may be used to differentiate code for
specific configurations.

There is a sample port in ts@npl e subdirectory to use as a template for a port to a new target. These
implementations can be incorporated into a target implementation by copying or creating soft links for

48 Porting the TargetRT S for C++ Porting Guide

the contents of these subdirectories into the $TARGET _SRC directory. You may also want to search
the other target subdirectories to verify that the implementation of various TargetRTS classes resembles
your target RTOS. You can copy any required code to the new $TARGET _SRC directory.

Table 6 on page 49 shows the classes and functions that must be provided in any port of the TargetRTS.
These are the minimum requirements for a new port, as most ports will include changes to more classes
than those listed.

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and
Functions

RTTimespec::getclock()
RTThread::RTThread()
RTMutex
RTSyncObject

The remainder of this section discusses the most common required implementation code required for a
new target.

Main function

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMai n: : entryPoint(int argc, const char * const * argv) passingin
the arguments to the program. This code is placed in the file $TARGET _SRC/ MAI N/ mai n. cc.
See the description of the RTMAI n classin the C++ Target Guide for more informationonent r y-
Poi nt .

On many platforms, thisis the code for the mai n function, which simply passes ar gc and ar gv
directly. However, on other platforms, these parameters must be constructed. For example, with
VxWorks, the arguments to the program are placed on the stack. An array of strings containing the argu-
ments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to an executable, the arguments for
ent r yPoi nt can be defined in the tool set. These arguments are made available by the code genera-

tor in the global variablesdef aul t _ar gv and def aul t _ar gc. The codein nai n. cc must
explicitly pass these valuesto ent r yPoi nt . For more information, see “Application-specific com-
mand line arguments” on page 115 of @we+ Language Guide.

Class RTMain

RTMai n: : ent ryPoi nt () calls a number of methods for target-specific initialization and shut-
down. For a more detailed discussion of cB$#&/hi n, see the description of th€TMai n class in
theC++ Target Guide. These methods are as follows:

« targetStartup() — provided in file $TARGET_SRC/ RTMai n/target Start -
up. cc, itinitializes the target in preparation for execution of the model. This includes things such

Porting Guide Porting the TargetRTSfor C++ 49

as setting the priority of the main thread, calling static constructors, and initializing devices, for ex-
ample, timers and consoles.

« target Shutdown() — provided in file $TARGET_SRC/ RTMai n/ t ar get Shut -
down. cc, it generally undoes the initialization that was performetiam get St art up(),
for example, calling static destructor and cleaning up operating resources such as file descriptors.

« install OneHandl er () — provided in file $TARGET_SRC/ RTMai n/ i nst al -
| OneHandl er. cc, it may also need to be overridden. In addition to target start-up and shut-
down, ent r yPoi nt also installs Unix style signal handlers, where available. These signal
handlers are used by the single threaded TargetRTS for timer and I/O interrupts. If a platform does
not implement signals, ti€TMai n: : i nst al | OneHandl er () method must be overridden.

Method RTTimespec::getclock()

To implement the Timing service, the TargetRTS uses the time of day clock. The method
RTTi mespec: : get cl ock(), found in the file3TARGET_SRC/ RTTi nespec/ get -

cl ock. cc, gets the time of day from the operating system. There is no default implementation of this
method and it must be provided by the target. The format of this time of day is the POSIX-style
struct ti mespec which contains two fields: the number of seconds and the number of nanosec-
onds from some fixed point of time. This fixed point is usually the Universal Time reference point of
January 1, 1970. This does not need to be the case. However, to support absolute time-outs, the
TargetRTS assumes that the reference time is midnight of some day.

Class RTThread constructor

To support multi-threading, the TargetRTS provides the &d3shr ead. See the description of the
RTThr ead class in the€C++ Target Guide for more informationThe target implementation must pro-
vide the constructor for this class in the #i@#ARGET_SRC/ RTThr ead/ ct . cc.

Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes implemented by the

classRTMUt ex. See the description of th& MUt ex class in theC++ Target Guide for more infor-

mation. There is no default declaration or implementatioRTd¥lit ex that must be supplied by the

target. The header file for th€TMut ex class should be placed in the i@ ARGET_SRC/ RTMu-

t ex. h. There are four methods RTMut ex:

« RTMut ex() — the constructor, provided BTARGET _SRC/ RTMut ex/ ct . cc, performs
any initialization of the mutex.

« ~RTMut ex() — the destructor, provided $iTARGET SRC/ RTMut ex/ dt . cc, performs
any clean up when the mutex is no longer required.

« enter() — provided in$TARGET_SRC/ RTMut ex/ ent er . cc, locks the mutex if it is
available or blocks the current thread until it is available.

 leave() — provided inTARGET_SRC/ RTMut ex/ | eave. cc, frees the mutex and un-
blocks the first thread waiting on teat er .

50 Porting the TargetRTSfor C++ Porting Guide

Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by class RTSy n-

cObj ect . See the description of the RTSyncObj ect classin the C++ Target Guide for more
information. Many operating systems provide what is known as a ‘binary semaphore’. A synchroniza-
tion object is essentially the same thing. Many implementations of a semaphore, however, do not pro-
vide a wait (or ‘pend’) with time-out. The lack of this time-out feature requires the use of a more
heavyweight implementation using a mutex and a condition variable (POSIX condition variables have a
‘timedwait’ feature). A description of each method can be found iB¢(HTS_HOVE) / src/ t ar -

get/ sanpl e/ RTSyncCbj ect directory. There is no default declaration or implementation. The
header file for thd&RTSyncObj ect should be in the fil§ TARGET _SRC/ RTSyncObj ect . h.

The implementation of five methods is required:

« RTSyncObj ect () — the constructor, ifBfTARGET _SRC/ RTSyncObj ect/ ct. cc,
performs any initialization required.

« ~RTSyncOhj ect () — the destructor, iffTARGET SRC/ RTSyncOhj ect/ dt. cc,
performs any clean up given that the condvar is no longer required.

« signal () —in$TARGET_SRC/ RTSyncObj ect / si gnal . cc. See the description of
theRTSyncObj ect class in theC++ Target Guide.

« wait() —in$TARGET_SRC RTSyncOhj ect/wait. cc. See the description of the
RTSyncCbj ect class in theC++ Target Guide.

« timedwait () —in $TARCET_SRC/ RTSyncCbj ect/ti medwai t . cc. See the de-
scription of theRTSyncObj ect class in theC++ Target Guide.

Note: TheRTMut ex andRTSyncChj ect classes do not implement any type of priority inher-
itance protocol. If priority inheritance is supported by the target operating system then this may be
added by modifying the implementationRTMut ex andRTSyncObj ect .

Class RTDiagStream

TheRTDi agSt r eamclass handles output of diagnostic messages to the standard output. If your tar-
get does not support thigoput s() function then you must supply a replacement forRi®i ag-
Stream : write() function. This function outputs a string to the standard output device.

Class RTDebuggerlnput

The RTDebugger | nput class handles the input to the TargetRTS debugger. If your target system
does not support thfeget c() function, then you must supply a replacement forRi®ebug-

ger | nput: : next Char () function. This function reads individual characters from the standard
input device.

Class RTTcpSocket

TheRTTcpSocket class provides an interface from the TargetRTS to the sockets library of the target
operating system. Many operating systems provide the familiar BSD sockets interface. If this is the case
then little modification is necessary. Typically, small changes to data types are needed to satisfy the
sockets interface.

Porting Guide Porting the TargetRTSfor C++ 51

Class RTIOMonitor

The RTI Ovbni t or classis used to monitor activity on a set of TCP/IP sockets. This class makes use
of file descriptor setsand the sel ect () function. There may be differencesin the way these sets are
implemented on your target operating system.

Class RTIOController

The RTI OCont r ol | er isthe class used by the ioController thread in the external layer. It makes
use of several TCP sockets calls. Problems encountered here will be similar to those described in “Class
RTTcpSocket” on page 51.

File main.cc

The file main.cc contains th&ai n function for the TargetRTS and therefore the entire application.
Some operating systems already havea n function defined. This file must be modified to take this
into account. A typical solution is to create a root thread, which in turn calls the entry point to the
TargetRTSRTMai n: : ent r yPoi nt).

Adding new files to the TargetRTS

If you create a new file for an existing class or you are adding a new class to the TargetRTS then you
must add the new file names to a manifest file for the TargetRTS. This must be done in order for the
dependency calculations to include the new files and thus include them into the TargetRTS.

The MANIFEST.cpp file

This file lists all the elements of the run-time system. There is one entry per line. Each entry has three or
more fields separated by whitespace. The first names a make variable, which will include the name of
the object file for that entry. The second field is a directory name. The third field is the base name of a
file. By convention the directory name and file name typically correspond to the class nhame and mem-
ber name, respectively. The fourth and subsequent fields, if present, give an expression that evaluates to
zero when the element should be excluded. Note that the expression is evaluated by Perl and so should
be of a form that it can handle.

If you have added a new file to the TargetRTS, you must have an entryMAMIeFEST. cpp file

for the file. By convention, the entry should be placed next to the other files for the specific class that
you have modified. If you are adding a class then place the entries next to the super class if it exists or
next to similar classes in the manifest file.

Regenerating make dependencies

If a file has been overridden $(RTS_HOVE) / t ar get / src/ <t ar get _nane> directory or

a new file has been added to NI FEST. cpp you must regenerate the make dependencies in
order for the modification to be included in the new TargetRTS. This is done by removing the
depend. nk file in the build directory$(RTS_HOVE) / bui | d- <pl at f or m_nane>). This

will cause the dependencies to be recalculated and depend. nk file to be created.

52 Porting the TargetRTSfor C++ Porting Guide

Note that include statements should not normally be put in areas considered conditional by the pre-pro-
cessor (that is, between #if/#endif pairs). The dependency discovery script does not evaluate expres-
sions used in preprocessor #if statements, and assumes these expressions to be true. Consequently, the
dependency discovery script may capture more include statements than the preprocessor. However,
although it may calculate more dependencies than the optimal amount, the dependency discovery script
does detect and avoid endless loops of #include statements.

Porting Guide Porting the TargetRTSfor C++ 53

54 Porting the TargetRTSfor C++ Porting Guide

Chapter 6

Porting the TargetRTS for C

This chapter has been split into several major sections, including
e C TargetRTS configuration definitions

« Platform-specific implementation

e Adding new files to the C TargetRTS

e C TargetRTS run-time semantics

e Implementing timer services in the C TargetRTS

C TargetRTS configuration definitions

Much of the configurability of the C TargetRTS is done with compilation dependencies by having tar-
get-specific source files override common source files. This is illustrated in “Platform-specific imple-
mentation” on page 61. However, configurability is also available within source files using C
preprocessor definitions. The configuration is set in two C header files:

« S$RTS _HOWE/t arget/ <target>/ RTTarget. h for specifying the operating system
specific definitions

« $RTS HOVE/li bset/<libset>/ RTLi bSet . h for specifying compiler specific defini-
tions; this does not exist by default

These files override macros whose defaults appe®RRS_HOVE/ i ncl ude/ RTConf i g. h.
The macros and their default values are listed in Table 7.

Table 7 C TargetRTS constants/macros and their default values

Symbol Default Possible Values Description
Value

RSLMULTI- RSLFALSE RSLFALSE or Determines whether the single-threaded

THREADED RSLTRUE or multi-threaded version of the C
TargetRTS is used.

RSLDEBUG RSLFALSE RSLFALSE or If this flag is set to RSLTRUE, the C

RSLTRUE TargetRTS will be compiled with the

debugger option (this option is also
required for target observability).

Porting Guide Porting the TargetRTSfor C 55

Table 7 C TargetRTS constants/macros and their default values

Default

Symbol Value Possible Values Description
RSLDEBUG_LEVEL 0 0,1,20r3 Thisflag isfor internal ObjecTime use
only (it defines to what level internal
progress messages are displayed).
RSLTO RSLFALSE RSLFALSE or Indicates whether the C TargetRTS will
RSLTRUE support target observability. If RSLTO is
set to RSLTRUE, RSLDEBUG will
forced to RSLTRUE.
RSLMEMORYALLO- | RSLTRUE RSLFALSE or If thisflag is set to RSLTRUE, the C
CATION RSLTRUE TargetRTS will perform all dynamic
memory allocations by allocating smaller
segmentsfrom larger segments. Thisuses
memory more efficiently than other tech-
niques.
RSLMEMORY - 1024 64+ If RSLMEMORYALLOCATION isset to
BLOCKSIZE RSLTRUE, thisisthe size of the memory
block that the C TargetRTS will sub-
allocate smaller segments from.
RSLMEMORY - 4 1,2,4,8, etc. If RSLMEMORYALLOCATION issetto
WORDBOUNDARY RSLTRUE, thisisthe size, in number of
bytes, which all new memory allocation
reguests must be aligned to.
RSLDEBUGGER- 20480 (Positive Integer) If RSLMULTITHREADED and RSLDE-
STACK BUG are set to RSLTRUE, thisisthe
stack size of the debugger thread.
RSLTOSTACK 20480 (Positive Integer) If RSLMULTITHREADED and RSLTO
are set to RSLTRUE, thisisthe stack size
of the target observability thread.
RSLNUM_FREE_GL 50 (Positive Integer) Specifies, in amulti-threaded TargetRTS,
OBAL_MSGS the number of free messages shared
amongst all threads that are used for all
thread inter-communication.
RSLTHRESHOLD_EX | 10 (Positive Integer) Specifies at which point amulti-threaded
TERNAL_MSGS C TargetRTS will automatically move
free external messages from the thread
back to the global pool of free global
messages.
RSLMESSAGE _ RSLTRUE RSLFALSE or I ndicates whether message deferral rou-
DEFERRAL RSLTRUE tines and queues are to be supported by

the C TargetRTS.

56 Porting the TargetRTSfor C

Porting Guide

Table 7 C TargetRTS constants/macros and their default values

Default

Symbol Value Possible Values Description
RSLNUM_FREE INT | 50 (Positive Integer) I ndicates the number of messages allo-
ERNAL_MESSAGES cated to the primary/top thread for a
FOR_PRIMARY_THR multi-threaded C TargetRTS. Requires
EAD RSLMULTITHREADED to be set to
RSLTRUE.

RSLNUM_FREE INT | 5 (Positive Integer) Indicates the number of timer control

ERNAL_TCBS FOR _ blocks allocated to the primary/top thread

PRIMARY_THREAD for amulti-threaded C TargetRTS.
Requires RSLMULTITHREADED to be
set to RSLTRUE.

RSLNUM_TCBS 5 (Positive Integer) Indicates the number of timer control
blocks allocated for the C TargetRTS.
Only used if RSLMULTITHREADED to
be set to RSLFAL SE.

RSLTIMERS RSLTRUE RSLFALSE or Indicates whether timers are required in

RSLTRUE the C TargetRTS.
RSLACTOR _TIMERS | RSLTRUE RSLFALSE or Indicates whether timer services are
RSLTRUE implemented via an application-level

actor. If set to RSLTRUE then RSLTIM-
ERS must also be set to RSLTRUE.

RSLINTERNAL_LAY | RSLTRUE RSLFALSE or Indicates whether the internal layer ser-

ER_SERVICE RSLTRUE vice is supported in the C TargetRTS.

RSLMAX_SPPS 10 (Positive Integer) If RSLINTERNAL_LAYER_SERVICE
is set to RSLTRUE, indicates the maxi-
mum number of SAP/SPP registrations
supported by the C TargetRTS.

RSLERROR(x) X x or nil Indicates C TargetRTS errors to be
printed.

RSLDEBUG2(x) X X or nil Indicates Level 2 C TargetRTS progress
messages are to be printed (internal
ObjecTime use only).

RSLDEBUGL(x) X x or nil Indicates Level 1 C TargetRTS progress
messages are to be printed (internal
ObjecTime use only).

RSLDEBUGO(X) X X or nil Indicates Level O C TargetRTS progress

messages are to be printed (internal
ObjecTime use only).

Porting Guide

Porting the TargetRTSfor C 57

Table 7 C TargetRTS constants/macros and their default values

Default

Symbol Value Possible Values Description
RSLMemorySize unsigned long | (any scalar type) Indicates the storage type used to store
the maximum memory storage size of
actor instance data.
RSLTimeoutSize unsigned long | (any scalar type) Indicates the storage type of an Informin
timeout request.
RSL Portlndex unsigned short | (any unsigned Indicates the storage type of a port index
scalar type) inthe C TargetRTS.
RSLMaxPort 65535 maximum value of | Indicates the maximum value for a port
RSL Portlndex index in the C TargetRTS.
RSL ActorIndex unsigned short | (any unsigned Indicates the storage type of an Actorln-
scalar type) dex in the C TargetRTS.
RSLMaxActor 65535 maximum value of | Indicatesthe maximum valuefor an actor
RSL ActorIndex index in the C TargetRTS.
RSLThreadlndex unsigned short | (any unsigned Indicates the storage type of a ThreadIn-
scalar type) dex in the C TargetRTS.
RSLMaxThreads 65535 maximum value of | Indicatesthe maximum valuefor athread
RSLThreadl ndex index in the C TargetRTS.
RSL M essagel ndex unsigned short | (any unsigned Indicates the storage type of a Message-
scalar type) Index in the C TargetRTS.
RSLMaxM essages 65535 maximum valueof | Indicatesthe maximum value for ames-
RSLMessagelndex | sageindex inthe C TargetRTS.
RSLTCBIndex unsigned short | (any unsigned Indicates the storage type of a TCBIndex
scalar type) inthe C TargetRTS.
RSLMaxTCBs 65535 maximum value of | Indicates the maximum value for aTCB
RSLTCBIndex index in the C TargetRTS.
RSLBool unsigned short | (any unsigned Indicates the storage type of aBooleanin
scalar type) the C TargetRTS.
RSLFlags unsigned short | (any unsigned Indicates the storage type of aflagsfield
scalar type of at inthe C TargetRTS.
least 4 hits)
RSLMessagePriority unsigned short | (any unsigned Indicates the storage type for a message
scalar type) priority in the C TargetRTS.
RSLMaxMessagePrior- | 65535 maximum value of | Indicates the maximum number of prior-
ity RSLMessagelndex | ity levelsinthe C TargetRTS.
RSL Signallndex unsigned short | (any unsigned Indicates the storage type for asignal
scalar type) number in the C TargetRTS.

58 Porting the TargetRTSfor C

Porting Guide

Table 7 C TargetRTS constants/macros and their default values

Default

Symbol Value Possible Values Description
RSLSignalEvent 65535 maximum value ofIndicates the maximum number of dis-
RSLSignallndex | tinct signals supported in the C
TargetRTS.
RSLActorType unsigned short (any unsigned | Indicates the storage type for an actor
scalar type) class index in the C TargetRTS.
RSLMaxActorClasses 65535 maximum value pindicates the maximum number of actoyr
RSLActorType classes supported in the C TargetRTS.
RSLStatelndex unsigned shont (any unsigned | Indicates the storage type for a state
scalar type) index in the C TargetRTS.
RSLMaxStates 65535 maximum value oflndicates the maximum number of state
RSLStatelndex indices in the C TargetRTS.
RSLPortType unsigned short (any unsigned | Indicates the storage type for a port class
scalar type) in the C TargetRTS.
RSLMaxPortClasses 65535 maximum value |ofndicates the maximum number of port
RSLPortType classes in the C TargetRTS.
RSLFieldType unsigned shor (any unsigned | Indicates the storage type for a field
scalar type) description in the C TargetRTS.
RSLMaxFieldTypes 65535 maximum value ofindicates the maximum number of field

RSLFieldType types supported in the C TargetRTS.

RSLObjectName char * char * Indicates the storage type for all object
names in the C TargetRTS.

Makefile fragments

Some of the TargetRTS configuration is done at the makefile level. When a developer compiles an
update, the generated compilation makefile requires two files:

« $(RTS_HOME)/target/‘common.mk !

* $(OVERRIDESFILE)

The OVERRI DESFI LE can be specified by the developer within the update’s active configuration and
is typically intended for temporary overrides of make macros. The definitiddeRRI DESFI LE is
provided in RTUpdate.mk and defaultsRoRTS_HOVE) / t ar get / enpt y. nk, which is itself an
empty file.

1. conmon. nnk is required when using Microsofterake utility. Slight formatting differences exist between this utility and
most other make utilities. Specifically, when a make macro must be evaluated in order to process a makefile include statement,
nmake requires the included file's filename to be enclosed in angle brackets. Herdeyde $(Fl LE_MK) becomes
i ncl ude <$(FI LE_MK) >. Structurallycommon. nk andconmon. nk are intended to be equivalent, and this document
refers to the latter for brevity. No other makefile fragments are dependent upon which make utility you are using.

Porting Guide Porting the TargetRT Sfor C 59

The makefile fragment conmon. ik is really intended as a common entry point independent of the
value of $(RTS_HOME) . It typically includes four other makefile fragments:

$(RTS_HOVE) / | i bset/ def aul t. nk

$(RTS_HOVE) /| i bset/$(LI BRARY_SET) /i bset. nk
$(RTS_HOVE) / t ar get / $(TARGET) / t ar get . nk
$(RTS_HOVE) / confi g/ $(CONFI G / confi g. nk

The make macro TARGET is defined by:

TARGET=$(PLATFORM $(THREADED)
The make macro CONFI Gis defined by:

CONFI G=$(LI BRARY_SET) . $(TARGET)

LI BRARY_SET, PLATFORMand THREADED are all defined from within the update’s active con-
figuration.

Default.mk

This makefile fragment defines some common make macros. These macros are interpreted first and
may be overridden in any of the three RTS-specific makefile fragments or even the update-specific
Make Overrides file that will be included later. Consequently, these macros may serve one of several
purposes:

« common definitions that should always work (for example, PERL=perl, CONFIG=$(TAR-
GET).$(LIBRARY))

« common definitions that work in a majority of cases, but can be overridden depending on the com-
piler/library-set, target or configuration

« definitions that can suffice temporarily but are intended to be overridden depending on compiler/li-
brary-set, target or configuration (for example, VENDOR=generic)

+ definitions that are intended to be overridden and will fail otherwise

In many cases, default definitions are provided that may only be appropriate for a subset of compiler/
library-sets, targets or configurations.

For more information, see Table 4, “Make macro definitions,” on page 40.

Libset.mk

This file is intended to list items specific to correctly linking with a particular library, and/or typically
configuring the compiler. These configuration items include

e the name of (and possibly the path to) your compiler/linker

» compilation flags specific to this compiler/linker

+ the vendor’'s name

e linker flags

60 Porting the TargetRTSfor C Porting Guide

Target.mk

Some targets will require further configuration without respect to which compiler is being used. For
example Wind River System’s Tornado targets require their linkers to be invoked with the —r option (to
facilitate run-time linking).

Config.mk

In cases where a configuration item should only affect a particular library-set/target pairing, configura-
tions can be put inthe conf i g. mk makefile fragment.

Availability of Perl on compilation host

If the compilation host does not have Perl (version 5.002 or greater), it is highly recommended to obtain
and compile the source from http://www.perl.com.

Since obtaining Perl may take some time, some limited functionality will still be available on the com-
pilation host:

« Dependency discovery (s&\KEDEPEND _CIVD) must be disabled.
e Error parsing (se®TCOMVPI LE_CNMD andOTLI NK_CWVD) must be disabled.

« The definition for NOP may need to be redefined to use an OS-dependent alternative instead of Perl
scripts (RM, RMF and TOUCH are not typically required during compilation).

Platform-specific implementation

The implementation of the C TargetRTS is contained infkiR&éS_HOME/ sr ¢ directory. In this
directory, there is a subdirectory for each major run-time area. For example, the sub-directory C
TargetRTS contains all of the standard run-time library functions. Other sub-directories, for example,
TCP,MONI TOR, | NI TSTOP, andTRANSPRT contain target observability functionality.

To port the C TargetRTS to a new platform, it may be necessary to update or replace some of these files.
The target specific source is placed in a subdirector§RTS_HOME/ src/ t ar get/

<t ar get _base>, where<t ar get _base> is the target name without the ‘S’ or ‘T". For the
remainder of this section, the target directory is referred $T&8GET _SRC. For example, the target

source directory for an exampt¢ar get> PSOS2T is$RTS_HOME/ src/ t ar get / PSOS2. This

directory provides an overlay to tBdRTS_HOME/ sr ¢ directory. When the C TargetRTS loadbuild

tools search for a source file, it searches first iffMARGET_SRC directory then irRTS_HOVE/

src.

Note: There is only a single source directory for all configurations of the C TargetRTS for a given
platform. C preprocessor macros, suctR&. MULTI THREADED, may be used to differentiate
code for specific configurations.

For a single-threaded port without target observability, it is entirely conceivable that no source code
modifications would be required, as the intent was to make the C TargetRTS completely portable to any
ANSI C compiler, which should compile single-threaded C code without modification.

Porting Guide Porting the TargetRTSfor C 61

However, if the target is multi-threaded, modifications will be required to specify how certain RTOS
services (for example, semaphore creation) are performed in that target environment. The remainder of
this section discusses the most common required implementation code required for a new multi-
threaded target.

Main function

In order for the execution of the C TargetRTS to begin, code must be provided to call
cRSL_entryPoint(int argc, const char * const * argv) passinginthe
arguments to the program. This codeis placed in the file STARGET_SRC/ MAI N/ mai n. c.

The default codeis likely to be suitable for a new target platform.

Target observability startup and shutdown

If any special initialization and/or shut-down code is required for target observability, the files
TGTinit.c, TGIstop.c,TO nit.c,and TOst op. ¢ which are located in the directory
$TARGET_SRC/ | NI TSTOP contain code to perform these functions, in conjunction with the C
TargetRT S initialization and shutdown.

The default codeis likely to be suitable for a new target platform.

Memory management

All memory allocation performed by the C TargetRTS (this does not apply to any dynamic memory
allocation performed by the application) is performed through a single routine:

voi d *RSLAI | ocat eMenory(RSLMenorySi ze si ze)

The C TargetRTS only allocates dynamic memory during its initialization phase. Thus, once the system
has initialized, the C TargetRTS will not perform any dynamic memory allocations. Since the C
TargetRTS does not support any implicit recovery capabilities, the C TargetRTS does not support the
freeing of any dynamically allocated memory, which was allocated by it. Thus, users must exercise cau-
tion when using this memory management routine at an application level.

The default implementation of this routine is to invoke the standard C “malloc” run-time routine, to
allocate a large chunk of memory, whereupon requests are serviced efficiently from within this block
(this works particularly efficiently in certain RTOS environments where there are minimal sizes, for
example, 64 bytes fany malloc request). If standard C run-time malloc support is not available—or
alternatively, you want to have the C TargetRTS allocate memory from a specific memory region—you
should modify this routine (in fileenor y. c) as appropriate for your target environment.

Multi-threaded RTOS interface
All of the RTOS interface mapping routines used by the C TargetRTS should be contained in the
RTThr ead. c file located in the director TARGET SRC/ t ar get / <t ar get >/ THREAD.

Figure 3 shows the relationships between an application, the C TargetRTS, and underlying RTOS prim-
itives required to support a multi-threaded C TargetRTS.

62 Porting the TargetRTSfor C Porting Guide

Figure 3 Required relationships

Application

#

cRSL

t Mutex, Semaphore, Thread Create

cRSL Thread I/F

t Function Function

POSIX-Compliant I/F

#

RTOS 1 |---| RTOSN RTOS A |:+s| RTOS Z

RTThread.

c contents

Thisfileis split into three general sections:

» target header file include statements

« type definitions for base RTOS types

« defines for C TargetRTS macro mappings to TargetRTS

Target header filesinclude statements

This section should specify the list of header files that are required for compilation for the TargetRTS
(specifically, those header files that are required for the multi-threaded RTOS interface). An example

follows:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<stdi 0. h>
<stdlib. h>
<uni std. h>
<semaphor e. h>

Type definitions for base RTOS types

This section specifies RTOS-equivalent types for three C TargetRTS base types:
¢ RSL_mutex

Porting Guide

Porting the TargetRTSfor C 63

RSL_semaphore
RSL_thread_id

If the RTOS does not support mutexes, a mutex can be constructed via a semaphore.

typedef SEM_ID RSL_mutex;
typedef SEM I D RSL_semraphor e;
typedef int RSL_thread._id;

C TargetRTS function mappings to TargetRTS

Thefina sectioninthe RTThread.c fileisused to define a set of C TargetRTS functions providing
adirect interface from the C TargetRTS to the underlying RTOS capability.

These functions are organized as:

3 functions related to mutex creation, locking, and unlocking:

« RSLmut ex_init (1l ock) . Given a pointer to the address “X” of a lock, create a lock, and
set the address “X” to be the address of the newly created lock.

« RSLnut ex_I ock(| ock) . Given the address of a lock, lock the lock.

« RSLmut ex_unl ock(| ock) . Given the address of a lock, unlock the lock.

3 functions related to semaphore creation, waiting and posting:

« RSLsemaphore_init(semaphore). Given a pointer to the address “X” of a
semaphore, create a semaphore as initially signalled (or with a count of 1), and set the address
“X" to be the address of the newly created semaphore.

« RSLsemaphore_wai t (senmaphor e) . Given the address of a semaphore, wait for the
semaphore to be available (signalled, or count >= 1).

« RSLsemaphore_post (semaphore) . Given the address of a semaphore, post the
semaphore as signalled, or increment the semaphore count.

1 function related to thread creation:

« RSLt hr _creat e (index,priority,stack,stackSize,entryPoint,args). Given the task/thread
instance integer number (0 through n-1 threads), task/thread priority, task/thread stack address,
task/thread stack size, task/thread entry point, and task/thread arguments, create a thread and
assign the returned thread id to the C TargetRTS thread description array
RSLRTThr eadl nst ances[i ndex] . t hreadl d.

A suitable definition of a complete RTThread.c file for a Tornado 1.0.1 target might appear as shown in
the extract below:

#i ncl ude <RTThr ead. h>

#i

#i
#i
#i
#i

ncl ude <crsl. h>

ncl ude <stdi o. h>

ncl ude <stdlib. h>
ncl ude <uni std. h>
ncl ude <senaphore. h>

64 Porting the TargetRTSfor C Porting Guide

typedef SEM I D RSL_nmut ex;
typedef SEM I D RSL_semraphor e;
typedef int RSL_thread._id;

ext ern RSLRTThr eadl nstanceDescri ption *RSLRTThr eadl nst ances;
i nt
RSLnutex_init(void **lockptr_ptr) {

*l ockptr_ptr = senCCreate(SEMQFIFO, 1);

return 1,

}
i nt
RSLnut ex_| ock(void *lockptr) {
return senfake(lockptr , WAIT_FOREVER);
}

i nt

RSLnut ex_unl ock(void *lockptr) {
return senG ve(|ockptr);

}

i nt

RSLsemaphore_init(void **semaphoreptr_ptr) {
*semaphoreptr_ptr = senBCreate(SEM Q FIFO, SEM FULL);
return 1;

}
i nt
RSLsemaphore_wai t (void *senmaphoreptr) {
return senTake(semaphoreptr , WAIT_FOREVER);
}

i nt
RSLsemaphore_post (void *senaphoreptr) {
return senG ve(senaphoreptr);

}

i nt

RSLt hr _create(int index , int priority , void *stack , int stackSize ,

void *entryPoint , void *args) {
RSLRTThr eadl nst ances[i ndex] .threadld =
taskSpawn(NULL , priority, O, (stackSize) , entryPoint , args,
o,0,0,0,0, 0,0, 0, 0);
}

Porting Guide Porting the TargetRTSfor C 65

Adding new files to the C TargetRTS

If you create a new file for the C TargetRTS, then you must add the new file name to a manifest file for
the C TargetRTS. This must be done in order for the dependency cal culations to include the new file and
thusinclude it into the C TargetRTS.

The MANIFEST.c file

Thisfile lists all the elements of the run-time system. There is one file entry per line. Each entry has
three or more fiel ds separated by whitespace. The first field names a make variable that specifies which
library to associate the file with. The second field isa directory name. Thethird field is the base name of
afile. The fourth and subsequent fields, if present, give an expression that evaluates to zero when the
element should be excluded. Note that the expression is evaluated by Perl and so should be of aform
that it can handle.

Regenerating make dependencies

If afile has been overriddenin $(RTS_HOVE) / t ar get / sr ¢/ <t ar get _nane> directory or
anew file has been added to the MANI FEST. ¢ you must regenerate the make dependencies in order
for the modification to be included in the new TargetRTS. This is done by removing the depend. nk
file in the build directory ($(RTS_HOME) / bui | d- <pl at f or m_namne>). This causes the
dependencies to be recalculated and anew depend. nk fileto be created. Note that include files must
not be enclosed in #i f def / #endi f or similar macros because the preprocessor may not have the
needed definitions to satisfy these macros. Consequently, the include file may be ignored during depen-
dency checking.

C TargetRTS run-time semantics

Tasks, processes, and threads

The C TargetRTS does not distinguish between a task, process, or thread. In fact, some RTOSs—which
support multiple tasks—represent a thread task. Instead, the C TargetRTS requires the simple
notion of a “thread of execution”, which (depending upon the customer RTOS capability) might be a
thread, a task, or a process. However, the C TargetRTS does require that if multiple threads of execution
are required, they share a common “shared” memory space.

If multiple threads are supported in the target environment, the C TargetRTS, in conjunction with the
ObjecTime toolset, provides the customer with the ability to split up an application into multiple
threads. The decision to split the application into multiple threads of execution is an important architec-
tural decision. The C TargetRTS provides simple capabilities to define which top-most ObjecTime
actors are to be assigned to which threads. Thus it is possible to “code-generate” different thread topol-
ogieseasily, without necessarily modifying any user code in the ObjecTime model.

The mainloop

Currently, most systems are comprised of one or more separate threads of execution. Each of these
threads typically has a main routine that is responsible for servicing the IPC (Inter-Process Communica-

tion) messages or signals that are received by that system. These IPC routines are usually blocking
RTOS IPC calls; that is, they do not return execution to the main routine until a message/signal has been

66 Porting the TargetRTSfor C Porting Guide

received. When a message/signal is received, an appropriate subroutine is invoked to handle the actual
processing associated with the arrival of that particular message/signal. This message processing occurs
for the duration of the execution of the system.

Similarly, each thread of execution in the C TargetRTS also has a “mainloop”. This is in recognition of
the fact that the main C TargetRTS routine processes many IPC messages, in a serial fashion, via a loop-
ing mechanism. After receiving each external message, it processes it, that is, it “walks’ the state
machines of one or more actors.

The following pseudo-code describes this notion of a main-loop:

<Ilnitialize | PC

<Do Forever>

{
<Process Actor Messages>
<Bl ock for |PC Message>

To support user-defined messaging interfaces, each of these threads of execution requires a application-
specified routine, which in conjunction with the C TargetRTS mainloop, implements how that particular
task is to interface to the user’s IPC. It is possible to have many different interface routines—a different
one for every thread. It is also possible for different threads tdiffegent IPC mechanisms. Note that

a thread blocked waiting for external messages from the IPGatilinblock to process actor mes-

sages.

RSLThreadMap

In an ObjecTime design, the top-most actor is assigned its own thread; in fact, by defaufirogram
that is run has at least one thread of execution. Unless directed otherwise by that top-most actor, all con-
tained actors will also “run” on that same thread.

However, if the user application is multi-threaded (that is, at least two or more threads of execution),
then these additional threads aoetained by this top-level actor. These contained actors are assigned a
different thread at run-time through the top-level actor’s function RSLThreadMap, which is a “special”
function, with a non-C specification syntax; that is, it cannot be compiled by a C compiler. It is called a
“special” function, since there is special code-generation handling the particular function name of
“RSLThreadMap”.

This RSLThreadMap function specifies the run-time characteristics of each of the threads, except the
top-thread. The top-thread’s characteristicsrattedefined by the C TargetRTS, as the user's RTOS
specifies how the first thread of the C TargetRTS is to be started (and with which characteristics, for
example, priority, stack size, and so forth).

The RSLThreadMap, in conjunction with the logical/physical thread configuration stipulated in the
ObjecTime toolset (see tlizLanguage Guide for additional information), specify which logical threads

are mapped to which physical threads. In those instances where multiple logical threads are mapped to a
single physical thread, the resource requirements of the physical thread are determined by summing all

Porting Guide Porting the TargetRTSfor C 67

of the resource requirements of each of the logical threads together, that is, the number of internal mes-
sages and the number of timer control blocks. Each logical thread name specified in the RSLThreadM ap
must have a corresponding logical thread definition in the thread configuration browser in the Objec-
Time tool set.

The characteristics that can be specified, on a per thread basis (for more information see “C TargetRTS
constants/macros and their default values” on page 55), include

* Number of Internal Messages (Optional)

The maximum requirements for inter-actor messageswigkish the thread. If not specified, it de-
faults to 0, which implies that the thread intends to do no internal messaging between actors in the
same thread (probably unlikely).

e Number of Timer Control Blocks (Optional)

The maximum number of active timers that can be active at onetiiia the thread. If not spec-
ified, it defaults to 0, which implies that no actors contained in that thread intend to start any timers.

Finally, the RSLThreadMap serves to provide an association between an actor reference in the top actor
(that is, the name of an actor in the structure diagram of the top actor in the system), and the logical
thread name, as specified in the ObjecTime toolset in the Threads Browser.

For example, in the example RSLThreadMap below, two threads are defined. ‘sender’ and ‘replyer’ are
the names of two actor references contained in the top-most actor. Each of these actor references are
associated with their respective logical threads (which, in turn, are mapped to physical threads within
the toolset). In addition, each thread has been defined to be created with five internal messages and no
TCBs (Timer Control Blocks).

/*

t hread Sender Logi cal Thread {
Number O | nt er nal Messages 5;
Nunmber Of TCBs 0;

} sender;

t hread Repl yerLogi cal Thread {
Nurmber O | nt er nal Messages 5;
Nunmber Of TCBs 0;

} replyer;

*/

Message priority
The C TargetRTS message priority, defines six RSL levels of priority (from highest to lowest):
e RSLDEBUGGER (internal C TargetRTS use only)

* RSLPANIC

* RSLHIGH

» RSLGENERAL
* RSLLOW

68 Porting the TargetRTSfor C Porting Guide

* RSLBACKGROUND

These message priorities are used by the internal C TargetRTS scheduler to dispatch the highest priority
messages (for example, Panic) before lower priority messages (for example, General) are processed.
Without the use of message priority, all messages are treated equally, in that all messages are processed
FIFO (First-In, First-Out).

Often, indiscriminate use of message priority unnecessarily increases the complexity of actor behavior,
since the sequence of events now also depends on message priority.

Message queues

Each thread of execution has six incoming internal message queues (five to be used by customers), one
for each message priority, as defined in the previous section.

At run-time, based on the specified SAP/Endport in a message send request, the C TargetRTS deter-
mines whether the recipient of a message is within the same thread as the sender, or alternatively, is in a
different thread. Once this is known, the C TargetRTS automatically selects an appropriate message

enqueueing technique for the message send.

Single-threaded C TargetRTS

In the single-threaded C TargetRTS, there is no distinguishing run-time characteristic made between
“internal” and “external” C TargetRTS messages, since there is only one thread of execution.

Thus, in a single-threaded C TargetRTS, there is
e one set of internal message queues
* one free message queue/free-list

The C TargetRTS mainloop will process the messages that are on the internal message queues (more
about this in a subsequent section).

When an actor transition is fired that contains one or more requests to send messages to another actor, as
indicated in Figure 4, the following steps are performed for each such message send:

1 A‘“free” message is allocated from the free message queue (also referred to as the ‘free list’).

If no message is available, a false result (a value of 0) is returned by the send function. Under the
assumption that the port has been bound, this is the only error that the C TargetRTS can detect on a
send.

2 The message’s structure fields are populated with the parameters passed in the send request (the
‘flags’ and ‘dest SAP’ fields are set automatically by the C TargetRTS send routine).

3 The message is enqueued for internal processing at the appropriate priority.

Porting Guide Porting the TargetRT Sfor C 69

Figure 4 Intra-thread inter-actor send
ROOM_PrioritizedPortSendData(myl ntraT hreadPort, mySignal, myPriority, myM sgData)

C TargetRTS Thread

Panic

o
i

High

Gen . ~ |_signal P
Low . 7 priority |

data ptr
Bkgd dest SAP v
N es ~____—

N
) ‘ N [flags

Multi-threaded C TargetRTS

In the multi-threaded C TargetRTS, the C TargetRTS distinguishes between “internal” and “external’ C
TargetRTS messages. Internal messages are inter-actor intra-thread messages, where each actor runs in
the same thread of execution. External messages are inter-actor inter-thread messages, where the send-
ing and receiving actors run irdéferent thread of execution.

In the multi-threaded C TargetRTS, each thread has

* one external incoming message queue (for receiving inter-actor, inter-thread messages)
e one set of internal message queues

* one internal free message queue (for inter-actor, intra-thread)

e one external free message queue (for inter-actor, inter-thread—one actor in one thread)

In addition, in the multi-threaded C TargetRTS, there is a global free message queue.

As discussed in “Message processing” on page 72, the multi-threaded C TargetRTS:
* moves messages from the external incoming queue to the internal queue

« invokes the behaviors associated with the arrival of those messages (which may involve the process-
ing of both external and internally generated messages)

« eventually returns external messages to the external message queue (global) and internal message
queue (local)

The previous section described the C TargetRTS implementation of an intra-thread inter-actor send. In
the multi-threaded C TargetRTS, all intra-thread sends are performed in the same manner.

Inter-thread sends, however, are substantially different, in that they require processing as indicated in
Figure 5, with the following numbered steps:

1 Afree message is popped from the intended receiver’s external free queue/list, if available (1A).

70 Porting the TargetRTSfor C Porting Guide

If none are available, a free message is popped from the sender’s external free queue (1B).
Once again, if not available, a free message is popped from the global free queue (1C).

If that also fails, the C TargetRTS will then move all free external messages from every thread and
put them on the global free queue (then it tries to pop from the global queue again).

Finally, if no message is available, a false result (a value of 0) is returned by the send function. Under
the assumption that the port has been bound, this is the only error that the C TargetRTS can detect
on an inter-thread send.

2 The message data fields are filled in with the passed parameters in the send request.

3 The message is enqueued on the receiving thread’s external incoming message queue, the receiving
thread’s ‘InPriority’ is checked and updated to the current message priority (if used, and if the cur-
rent message priority ligher than the current posted ‘InPriority’), and the thread’s semaphore is
posted ‘ready to run’.

4 TargetRTS then processes a message in its internal queue, and dispatches the appropriate actor be-
havior.

Figure 5 Inter-thread sends
ROOM_PrioritizedPortSendData(myl nter ThreadPort, mySignal, myPriority, myM sgData)

Sender /@/ Receiver
C TargetRTS Thread C TargetRTS Thread
Panic Panic

N

EII

High High
Gen signal en
ow (] a4 a
data ptr
Bkgd Bkgd
9 dest SAP

freeList

freeList .

nPriorit

IncomeQ O
Extrree >

nPriorit

T
:
g

|

Porting Guide Porting the TargetRTSfor C 71

The C TargetRTS ensures system integrity by locking a global mutex prior to accessing any global
shared data (shared amongst multiple threads), and releasing the lock once the shared data updates have
been completed.

The ‘InPriority’ field is used by a thread to determine at what point an external incoming message is of
higher priority than that which is currently being processed internally. Thus, this allows the C

TargetRTS to “interrupt” normal actor message processing (on a per-message basis) and service a higher
priority actor message. Note, however, that this does not mean that the processing of one or more user
code transitions is interrupted, as new messages are selected for processftgrahly processing of

the behavior of the current message has been completed.

Message processing

Single-threaded C TargetRTS message processing

As indicated below, in Figure 6, single-threaded C TargetRTS actor message processing is implemented
by:

1 Selecting the highest priority queued message.

2 Invoking the actor behavior associated with the arrival of that signal and data.

3 “Returning” the used message frame to the free message Queue.

Figure 6 Single-threaded C TargetRTS message processing

C TargetRTS Thread

| @
- 4 priority
l:[data ptr A
T [destsAPl g
RETNED

If the invocation of actor behavior causes one or more messages to be sent to other actors, the C
TargetRTS mainloop may continue to invoke actor behaviors until there are no further messages to be
processed. By default, all of these messages are processed prior to the C TargetRTS directing the invo-
cation of the user-registered external interface (IPC) routine.

72 Porting the TargetRTSfor C Porting Guide

Multi-threaded C TargetRTS message processing

Asindicated in Figure 7, multi-threaded C TargetRTS actor message processing is implemented by:

1 Checkingif a higher-priority (as compared to internal messages) externally queued message exists,
all external messages are dequeued from the external message queue and enqueued on the internal
message queue.

2 Selecting the highest priority queued internal message.

Invoking the actor behavior associated with the arrival of that signal and data.

4 “Returning” the used message frame to the free message Queue. If the message was internal, it is put
back onto the internal free queue (4a). If the message was external, it is put back on its external free
gueue (4b), and if a certain message count threshold is exceeded, it (along with other freed messages)
may be put back (4c) on the global external free message queue. (See “C TargetRTS constants/mac-
ros and their default values” on page55 for the definition of
RSLTHRESHHOLD_EXTERNAL_MSGS.)

Figure 7 Multi-threaded C TargetRTS message processing

C TargetRTS Thread

Panic

Hgn) @
Gen . . \ ~ | signal
@ Low . 7 priority
l:[data ptr Actor
dest SAP} - Behavior
flags @

(Giovarresd) o} o)

If the initial invocation of actor behavior causes one or more messages to be sent to other intra-thread
actors, the C TargetRTS mainloop may continue to invoke actor behaviors until there are no further
messages to be processed. By default, if both intra-thread and inter-thread messages are enqueued, all of
these messages are processed prior to the C TargetRTS invoking the user-registered external interface/
IPC routine.

Porting Guide Porting the TargetRTSfor C 73

Run-to-completion

This default “run-to-completion” C TargetRTS message scheduling policy is implemented in the C
TargetRTS mainloop as

whi | e(RSLDi spat ch(RSLBACKGROUND)) ;

where “RSLBACKGROUND” represents thewest priority message to be processed. The RSLDis-

patch routine is responsible for invoking the behavior associated with the single highest-priority mes-
sage on the input queue. It returns true if a message was processed, or false if no internal messages were
available for processing at the specified, or higher priority.

Thus, the “while” clause causes the C TargetRTS to continue processing these “internally” queued mes-
sages, until no further messages are enqueued, at which point, the C TargetRTS will call the user-
defined IPC interface routine to block for external stimuli (for example, IPC messages, timeouts, and so
forth). If the C TargetRTS is multi-threaded, the C TargetRTS will also check the incoming external
queue for higher priority messages than those in the internal message queue. If there are higher priority
external messages, these messages are moved to the internal queue, and C TargetRTS actor message
processing continues.

If no user-defined IPC routine was specified, the multi-threaded C TargetRTS will wait until its ‘ready-
to-run’ semaphore has been signalled by another thread (for example, an inter-thread inter-actor mes-
sage send). In the single-threaded C TargetRTS, if there is no other source of potential inputs, the thread
will exit.

Also, in the multi-threaded C TargetRTS, an external C TargetRTS message is moved from the thread'’s
external incoming message queue to its internal message queue (based on priority). At that point, mes-
sage processing within the thread proceeds in a similar fashion in both the single and multi-threaded C
TargetRTS.

RSLRegisterExternalinterface

The C TargetRTS was designed so that it requires no inherent notion of how customers’ IPC mecha-
nisms work. Instead, it provides the “internal” C TargetRTS actor message processing portion of the
mainloop, and allows customers to register their own IPC external interface routines, which are invoked
by the C TargetRTS once no further internal message processing is possible. Note that a blocked thread
waiting for external messages from the IPC will unblock to process any new actor messages.

It is possible to have many different interface routines—a different one for every thread—and it is pos-
sible for different threads to usiéferent IPC mechanisms.

The C TargetRTS provides support for each thread to register its own interface function by using the fol-
lowing routine to dynamically perform this registration, an example of which might appear as

RSLRegi st er Ext ernal I nterface(_actor, MyActor| PCl nterface);

The first parameter ‘_actor’ of tyg@SLAct or | ndex should be set to the internal C TargetRTS
variable automatically defined for all actor transitions. ‘MyActorIPClinterface’ would be the name of
the user-defined actor function, which implements how the thread interfaces to IPC and/or timers.

74 Porting the TargetRTSfor C Porting Guide

Alternative implementations can be contemplated whereby an actor implements the IPC interface
directly in the actor behavior, but this technique would likely require that this IPC actor run with the
lowest priority messaging to ensure that all internal actor messages have been processed before the IPC
actor blocks on an IPC call.

RSLRegi st er Ext er nal | nt er f ace isused for al IPC and timer implementations. For exam-

ple, the code fragment shown below was taken from an actor’s initialization transition. Once this initial-
ization transition is executed, the thread that the actor is executing in will have a registered external
interface routine called 'ExternalinterfaceRoutine’.

RSLRegi st er Ext ernal | nterface(_actor, External | nterfaceRoutine);
printf("Exanple thread: Alive!\n");

RSLRegisterMessageSignallinglnterface

The C TargetRTS was designed to support different types of IPC and timing mechanisms, suitable for a

particular target environment. In some instances, it may be necessary to have the C TargetRTS signal
another C TargetRTS thread that it is in the process of sending that thread a message (for example, to
interrupt a blocking RTOS function called from within a registered external interface function).

The C TargetRTS provides support for each thread to register a signalling function via the following
example:

RSLRegi st er MessageSi gnal | i ngl nterface(_actor,
&WCV, WySi gnal | i ngl nterface);

The first parameter *_actor’ of type RSLActorIndex should be set to the internal C TargetRTS variable
automatically defined for all actor transitions. The second parameter is the address of the RTOS object
to be signalled. “MySignallinginterface” is the name of a user-defined actor function, which would be
responsible for signalling the passed RTOS object MyCV.

At run-time, when an inter-thread message is delivered to a thread that had previously registered a sig-
nalling interface routine, the C TargetRTS calls the specified procedure, along with the address of the
specified RTOS object, via the pre-registered procedure variable.

Enqueueing external events

To allow customer-registered external interface/IPC routines to enqueue messages that represent the
arrival of an external IPC message or a timeout event (discussed later), the C TargetRTS provides the
following routine:

RSLMessage *RSLPort Enqueue(RSLAct or | ndex _actor,
RSLPort | ndex portOffset,
RSLSi gnal | ndex signal,
RSLMessagePriority priority,
void *data);

Porting Guide Porting the TargetRTSfor C 75

e ' actor’ is automatically defined and passed for every application code transition, and this value
should be passed to this routine without modification.

« ‘portOffset’ is the name of the actor end-port or SAP that you want to receive the message on.

e ‘signal’ is the desired signal name from the protocol SAP for the end-port or SAP. If the signal is a
timeout, ‘RSLTIMEOUT’ should be used (this signal name is automatically defined). An input sig-
nal is required since it is an un-bound port/SAP, and the message is being received (as input), as op-
posed to being sent (as output) from what typically would be the other end of a port binding.

e ‘priority’ (if used) defines the message priority (for example, RSLGENERAL).

e ‘data’ is a 32- or 16-bit value (depending on the size of an int for the processor), which is used to
identify the accompanying data (if any) with that signal.

Once a message is enqueued in this manner, control should be returned from the registered external
interface routine to the C TargetRTS, which is responsible for dispatching the message. In fact, if there
is no message enqueued after the registered external interface function returns, it is likely that the thread
will suspend indefinitely (or if single-threaded, possibly exit).

RSLPortEnqueue is used for all IPC and timer implementations.

RSLGetFirstTimeout

This C TargetRTS function is used to get the RTTimerld (same as RSLTimerReference) of the first timer
control block on the sorted list of timers for the thread associated with the specified actor. An example
follows:

RSLTi ner Ref erence RSLGet Fi rst Ti neout (_act or)
RSLGetFirstTimeout is used for all timer implementations (RSLTIMERS set to RSLTRUE).

RSLCancelTimer

This C TargetRTS function is used to cancel a pending timer request by marking the timer control block
associated with that timer reference as cancelled. Thus, at a later time, the timer control block could be
released and reused.

RSLBool RSLCancel Ti ner (RSLAct or | ndex, RSLTi ner Ref er ence) ;
RSLCancelTimer is used for all timer implementations (RSLTIMERS set to RSLTRUE).

RSLDequeueTimer

Since the TCBs are managed by one or more actors or registered actor functions (as opposed to auto-
matic control via the C TargetRTS), the C TargetRTS also provides a routine to dequeue a timer, and
possibly free the timer control block:

RSLDequeueTi ner (_act or, &Ti ner Cont r ol Bl ock, Fr ee)
The first parameter ‘_actor’ indicates which context we are executing. The second parameter supplies

the address of the timer control block. The final parameter is a Boolean value that instructs the C
TargetRTS to return the timer control block to the original user thread.

76 Porting the TargetRTSfor C Porting Guide

RSLRegisterTimerServices

The C TargetRT S supports actor-based implementations of timing services via the following routine:

RSLRegi st er Ti ner Servi ces(_actor, sap,
&WCV, MySi gnal li ngl nterface);

The first parameter ‘_actor’ of type RSLActorIndex should be set to the internal C TargetRTS variable
automatically defined for all actor transitions. The second parameter is the SAP upon which service
requests are to be received. The third parameter is the address of the RTOS object to be signalled.
“MySignallingInterface” is the name of a user-defined actor function, which would be responsible for
signalling the passed RTOS object MyCV.

RSLRegisterTimerServices is only used for actor timer implementations (RSLTIMERS set to RSL-
TRUE; RSLACTOR_TIMERS set to RSLTRUE).

RSLGetTimerServiceActor

This C TargetRTS function is used to get the run-time actor Id of the timer actor that has registered as
the provider of all timing services for the C TargetRTS. An example invocation follows:

RSLAct or I ndex RSLGet Ti ner Ser vi ceAct or (_act or)

RSLGetTimerServiceActor is used for timer actor implementations (RSLTIMERS set to RSLTRUE;
RSLACTOR_TIMERS set to RSLTRUE).

Implementing timer services in the C TargetRTS

Often, timing events are required by system tasks to determine that some function was not completed in
a timely manner, or to schedule activities. Depending upon the customer’s application requirements and
RTOS timing capabilities, two different timer implementation approaches can be considered:

* Local timers, where each thread implements their timing funcltomaHly within that thread, in con-
junction with an application registered external interface routine. This is the simplest and most effi-
cient implementation of timers, and should be considered for all RTOS implementations. No special
timing actors/packages are required.

e Actor timers, where one actor registers that it is the provider of timing services for all other C
TargetRTS actors. Note that you may not have multiple “timer” actors. In a multi-threaded C
TargetRTS, this “timer” actor must be assigned its own thread of execution. This is the approach
used for C TargetRTS implementations in all of the toolset development environments. A special
timing actor/package is required.

These two approaches are independent implementations, and the techniques used in one approach are
not compatible with the other. Hybrid solutions should be avoided. Once again, primarily for efficiency

and size considerations, it is recommended that all C TargetRTS users use integrated timers in an RTOS
environment.

Local timers

Local timers implement timing services on a per-thread basis by using an RTOS capability to block for
some sort of a signal/messdgea specified period of time. Thus, once the RTOS primitive returns exe-

Porting Guide Porting the TargetRTSfor C 77

cution, a return code can be checked to see if either a signal/message was received or the RTOS call
timed out.

Typically, the blocking RTOS call that forms the basis for implementation for local timersis either a
message read request (for example, on a message queue), or a signal wait request (for example, on a
semaphore). By specifying an appropriate timeout parameter each time this RTOS function isinvoked, a
simple and efficient timing mechanism can be implemented. Since this same approach can be used in
multiple threads, each thread is responsible for managing its external interface (message queue, sema-
phore, and so forth) and timer requests.

By using the RSLRegisterExternalInterface C TargetRTS API function, it is possible to define an
RTOS-specific actor interface function, which is registered by an actor executing in each thread. These
registered functions would be responsible for implementing timer services for all actorsin that thread,
and possibly interfacing to a proprietary RTOS IPC (Inter-Process Communication) mechanism.

Since the C TargetRTS provides an efficient inter-thread inter-actor messaging mechanism via port

bindings, if an actor provides aproprietary RTOS IPC interface, it islikely that it will interfere with nor-

mal C TargetRTS inter-thread communication. Thisis becauseit is not possible to service multiple com-

muni cation mechanisms simultaneously (proprietary C TargetRTS communication and RTOS | PC),

unless you consider the use of a signalling function. For more information, see “RSLRegisterMessageS-
ignallinginterface” on page 75.

With the local timer approach, there are two inter-thread messaging alternatives:

* Inthose instances where it is desirable that the C TargetRTS handle all inter-thread message com-
munication via actor port bindings, the external interface routine enlyshandle timing requests,
unless you consider the use of a signalling function. This approach is called the “Integrated Timers”
implementation, and it is described in “Integrated timers” on page 79. For more information, see
“RSLRegisterMessageSignallingInterface” on page 75.

« Inthose instances where it is desirable that inter-thread native RTOS messaging be used (not using
actor port bindings), the external interface function must handle both the proprietary RT@®i{IPC
timing requests. This approach is called the “Integrated IPC and Timers”, and it is described in “In-
tegrated IPC and timers” on page 83.

Since there is a tremendous advantage in having the C TargetRTS manage all inter-thread inter-actor
messaging—that is, you can change thread topologies easily and the software is likely to be more porta-
ble—the first alternative “Integrated Timers” is recommended. However, if there is a requirement to
service different types of IPC (for example, in a legacy system), it is still possible to provide actor inter-
face functions to these threads, which are responsible for providing the proprietary RTOS IPC interface
and forwarding requests (via port bindings) on to other C TargetRTS threads. Thus, in some system
environments, it is possible thatrix of approaches may be needed to satisfy all requirements.

An example of both of these types of implementations can be found under
$(OBJECTI ME_HOME) / Model Exampl es/ C, in an update called
“C_TornadoQueuesWithTimers”. A detailed description of this update can be found in “Compliance
Suite & Examples” on page 219 of tlelLanguage Guide. This update should be used as a basis for
implementing either Integrated Timers or Integrated IPC and Timers.

78 Porting the TargetRTSfor C Porting Guide

I ntegrated timers

RTTar get . h should specify that RSLTIMERS s set to RSLTRUE; RSLACTOR_TIMERS s set to
RSLFALSE.

No special timing actor/packages are required.

Two actor functions must be implemented.

« Asignalling function, which is passed a pointer to an RTOS object (for example, a semaphore), and
will signal it in a suitable manner (for example, posting a semaphore).

« An external interface function, which is passed a pointer to the object instance data and the current
executing actor Id.

At initialization time, an actor in each thread that requires the use of integrated timers must:

« Register the external interface (timing routine) function via the RSLRegisterExternallnterface C
TargetRTS API function (an example pseudo-code for this function appears below).

« Create and initialize a suitable RTOS object (for example, semaphore, or possibly an unused mes-
sage queue/mailbox), storing the handle to this RTOS object as an actor ESV.

« Register the signalling function with the C TargetRTS via the RSLRegisterMessageSignalling-
Interface C TargetRTS API function, which the C TargetRTS will invoke whenever it is about to de-
liver an inter-thread inter-actor message to that thread.

An example of this type of timer implementation can be found u&{€&BJECTI ME_HOME) /
Model Exanpl es/ C, in an update called “C_TornadoQueuesWithTimers”. Specifically, the actors
“Sender” and “Replyer” in this update implement this form of timer. A detailed description of this
update can be found in “Compliance Suite & Examples” on page 219 6fltheguage Guide.

The relevant transitions and functions which adhere to the above guidelines are shown below for the
sender actor:

/* Sender -- Initialize transition */

t hi s- >MySemaphor e=sentCCr eat e(0, 0) ;
RSLRegi st er Ext ernal I nt erface(_act or, Sender Mai nl oop) ;
RSLRegi st er MessageSi gnal | i ngl nterface(_actor,

(voi d*) t hi s->MySemaphor e, Sender Si gnal Routi ne) ;
printf("Sender thread: Alive!\n");
ROOM I nf orm n(MyTi mer, RSLTARGET_TI ME(100)) ;
ROOM Port Send(i nQut, | nQut Si gnal) ;

/* Sender Functions */
/* Signalling Function */

voi d Sender Si gnal Routi ne(SEM | D semaphore) {
sentG ve(semaphore);
}

Porting Guide Porting the TargetRTSfor C 79

/* External Interface Routine */
voi d Sender Mai nl oop(Sender _I nst anceData *t hi s,
RSLAct or I ndex _actor) {
unsi gned | ongcurrent;
i nt MsgQRecei veResult;
RSLTi mer Cont r ol Bl ock*t cb;
RSLTi mer Ref erencetr;

/* Get the current tinme and check to see if the |owest tiner
val ue has already expired */
current=tickGet();
tr=RSLGet Fi r st Ti meout (_actor);
tcb=tr.tcb;
i f((tch)&&(current>=tch->timeout NSec)) {
t cb->ti meout Message=RSLPor t Enqueue(_act or,
My Ti mer, RSLTI MEOUT, RSLGENERAL, (void *)O0);
RSLCancel Ti ner(_actor,tr);
return;

}

/* Block for any nessage on the queue with a tinmeout
(# clock ticks fromnow) */
if(tch)
MsgQRecei veResul t =senifake(t hi s- >MySenaphor e,
tcb->ti meout NSec-current);
el se
MsgQRecei veResul t =nsgQRecei ve(
t hi s- >MySenmaphor e, WAI T_FOREVER) ;
i f((MsgQRecei veResul t ==ERROR) &&
(errno=S objLib OBJ TIMEQUT)) { /* Tinmeout */
RSLPor t Enqueue(_act or, MyTi ner,
RSLTI MEQUT, RSLGENERAL, (void *)0);
RSLCancel Ti ner(_actor,tr);

}
}
Therelevant transitions and functionsthat adhere to the above guidelines are shown bel ow for the replyer
actor:
/* Replyer -- Initialize Transition */

t hi s- >MySemaphor e=sentCCr eat e(0, 0) ;
RSLRegi st er Ext ernal I nterface(_act or, Repl yer Mai nl oop) ;
RSLRegi st er MessageSi gnal | i ngl nterface(_actor,

(void *)this->My/Senaphor e, Repl yer Si gnal Routi ne) ;

80 Porting the TargetRTSfor C Porting Guide

printf("Replyer thread: Alivel\n");
ROOM_| nf or M n(MyTi ner, RSLTARGET_TI ME(100)) ;

/* Replyer -- Functions */

/* Signalling Function */
voi d Repl yer Si gnal Routi ne(SEM I D semaphore) ({
senG ve(semaphore);

}

/* External Interface Function */

d Repl yer Mai nl oop(Repl yer I nstanceData *this,
RSLAct orl ndex _actor) {

unsi gned | ongcurrent;

int MsgQRecei veResul t;

RSLTi mer Cont r ol Bl ock*t cb;

RSLTi ner Ref erencetr;

VO

/* Get the current time and check to see if the |lowest tinmer
val ue has already expired */
current=tickGet();
tr=RSLGet Fi r st Ti meout (_actor);
tcb=tr.tcb;
i f((tch)&&(current>=tch->timeout NSec)) {
t cb->ti meout Message=RSLPor t Enqueue(_act or,
MyTi mer, RSLTI MEQUT, RSLGENERAL, (voi d *)0);
RSLCancel Ti ner(_actor,tr);
return;

}

/* Block for any nmessage on the queue with a tinmeout
(# clock ticks fromnow) */
if(tch)
MsgQRecei veResul t =senifake(t hi s- >MySenaphor e,
tcb->ti meout NSec-current);
el se
MsgQRecei veResul t =msgQRecei ve(t hi s- >MySenmaphor e,
WAl T_FOREVER) ;
i f((MsgQRecei veResul t ==ERROR) &&
(errno=S objLib OBJ TIMEQUT)) { /* Tinmeout */
RSLPor t Enqueue(_act or, MyTi ner,
RSLTI MEQUT, RSLGENERAL, (void *)0);
RSLCancel Ti ner(_actor,tr);

Porting Guide Porting the TargetRTSfor C 81

The external interface function pseudo-code for the two actors’ code fragments (sender and replyer)
would be defined as:

<Cet Fi r st Ti neout >
<Cet Current Ti me>
<If (ValidTiner && TimerHasTi medQut) > {
<EnqueueTi neout Event >
<RenoveTi ner Request >
return;
}
<If ValidTiner>
<Bl ockFor Si gnal Wt hTi meout >
el se
<Bl ockFor Si gnal Wt hl nfiniteTi neout >
<I fTi medQut > {
<EnqueueTi neout Event >
<RenoveTi ner Request >

The first block of pseudo code determines if (during the intervening period of time while the system
was processing) any timeouts would have occurred. If timeouts have occurred, timeout events are gen-
erated, and the time requests are removed from the timer list.

If no timeout occurred, the next block of code will await for an external RTOS signal while specifying a
timeout value (which is our next shortest time to a timeout). Once control is returned to the user’s IPC
routine, a check is then done to determine if the blocking RTOS request timed-out (at which point, a
timeout event is enqueued, and the timer request is removed from the timer list).

These timers require the use of relative time (for the informIn request), and absolute time to determine
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example,
RSLTarget_Time) might be used to ensure compatibility between SimulationRTS and the C TargetRTS
running on a target. Specifically, the target versioRSETar get _Ti me should be defined to add

the current number of clock ticks to the relative time to create a future absolute time, which is used by
the external interface routine.

e.g. #define RSLTarget Time(x) (clockTicks() +x)

Timers are started when an actor in that thread starts a tinlRO@sl | nf or m n. Inthe C

TargetRTS, the timer start routine will allocate a local thread TCB, populate it with appropriate data,
and then insert it into the list of active timers for that thread, in sorted order. Once enqueued, the regis-
tered external interface for that routine will process the timeout requests, as described in the above
pseudo-code.

If a thread is currently blocked, waiting for a timeout to occur, and if another thread sends a message to
that thread, the thread will be interrupted, since the sending thread will invoke the previously registered

82 Porting the TargetRTSfor C Porting Guide

signalling function in the receiving thread. Once that message is processed, the external interface func-
tion will once again be invoked by the C TargetRTS.

Timers are cancelled via ROOM_Cancel Ti mer . In the C TargetRTS, the timer cancel routine will
mark the RTTimerID (which points to atimer control block) as cancelled, and thus will be ignored by
external interface function, when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top thread,
the number of timers to be created at initialization time should be configured in RTTar get . h, over-
riding the defaultsin RTConf i g. h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amongst
threads, and are to be modified by the C TargetRTS only.

Also, each thread has alinked-list of active TCBs, which are purposely stored in sorted order. That isto
say, when you start a timer, the timeout is checked and inserted in order into the linked-list, where the
smallest timeout values appear at the front of the queue, and the largest timeout val ues appear at the end
of the queue. By inserting these items into the queue in sorted order, it is possible to quickly determine
the next timeout value by simply reviewing the first entry on the timer queue.

Integrated | PC and timers

RTTar get . h should specify that RSLTIMERS is set to RSLTRUE; RSLACTOR_TIMERS is set to
RSLFALSE.

No special timing actor/packages are required.

One actor function must be implemented.

e An external interface function, which is passed a pointer to the object instance data and the current
executing actor Id.

At initialization time, an actor in each thread that requires the use of integrated IPC and timers must

* Reqgister the external interface (timing routine) function via the RSLRegisterExternallnterface C
TargetRTS API function (an example pseudo-code for this function appears below).

e Create/initialize (or locate) a suitable RTOS object (for example, message queue/mailbox), storing
the handle to this RTOS object as an actor ESV.

An example of this type of timer implementation can be found u&{€&BJECTI ME_HOME) /

Model Exanpl es/ C, in an update called “C_TornadoQueuesWithTimers”. Specifically, the actors
“Behavior” and “Responder” in this update implement this form of timer. A detailed description of this
update can be found in “Compliance Suite & Examples” on page 219 6fltheguage Guide.

The relevant transitions and functions that adhere to the above guidelines are shown below for the Be-
havior actor. Note that the behavior external interface function is not registered until it has received a cor-
responding Sync signal (with identifying Queue ID information).

Porting Guide Porting the TargetRT Sfor C 83

/* Behavior -- initialize transition */

thi s- >MyQ=nmsgQCr eat e(2, 256, M5G_Q FI FO) ;
ROOM Por t SendDat a(i ds, Request, (void *)this->WQ;
printf("Behavior: Sending QD Info (0Ox%) of nmy Qn",this->WQ;

/* Behavior -- Sync transition */

t hi s- >ot her Q=(M5G_Q _| D) nsg- >dat a;

printf("Behavior: Received other QID (0Ox%)\n",this->otherQ;
RSLRegi st er Ext ernal I nt erface(_act or, Behavi or Mai nl oop) ;
printf("Behavior: Starting Tiner for 1 Second\n");

ROOM I nform n(tinmer, RSLTARGET Tl ME(100));

/* Behavior -- tineout transition */

printf("Behavior: Got expected tinmeout!\n");
nmeg@Send(t hi s->otherQ "Hello!",7, NO WAIT, 0);
printf("Behavior: Starting Tiner for 1 Second\n");
ROOM I nform n(tinmer, RSLTARGET Tl ME(100));

/* Behavi or -- Functions */

voi d Behavi or Mai nl oop(Behavi or _|I nstanceData *this,
RSLAct orl ndex _actor) {
static char copyData[256], * newCopy;
unsi gned | ongcurrent;
int MsgQReceiveResult;
RSLTi mer Cont r ol Bl ock*t cb;
RSLTi mer Ref erencet r;

/* Get the current tine and check to see if the |owest tinmer
val ue has already expired */
current=tickGet();
tr=RSLGet Fi r st Ti meout (_actor);
tcb=tr.tcb;
i f((tch)&&(current>=tch->timeout NSec)) {
t cb->ti meout Message=RSLPor t Enqueue(_actor, ti ner,
RSLTI MEQUT, RSLGENERAL, (void *)0);
RSLCancel Ti ner(_actor,tr);
return;

}

/* Block for any nmessage on the queue with a tinmeout
(# clock ticks fromnow) */
if(tch)

84 Porting the TargetRTSfor C Porting Guide

MsgQRecei veResul t =msgQRecei ve(t hi s- >MyQ copyDat a,
256, t cb->ti meout NSec-current);

el se

MsgQRecei veResul t =msgQRecei ve(t hi s- >MyQ copyDat a,
256, WAl T_FOREVER) ;

i f((MsgQRecei veResul t ==ERROR) &&
(errno=S_objLib_OBJ_TIMEQUT)) { /* Tinmeout */
RSLPor t Enqueue(_actor, ti nmer, RSLTI MEOUT, RSLGENERAL,

(void *)0);
RSLCancel Ti ner (_actor,tr);

el se i f(MsgQRecei veResult>0) { /* Received a Message! */
newCopy=(char *)nall oc(256);
mentpy(newCopy, copyDat a, 256) ;
RSLPor t Enqueue(_act or, i ds, SoneEvent , RSLGENERAL, newCopy) ;
}
el se {
[* ??? Error */
}

Since this actor supports both timers and proprietary 1PC (Tornado message queues), the external inter-
face function pseudo-code would be defined as:

<Cet Fi r st Ti neout >

<Cet Current Ti me>

<If (ValidTinmer && TimerHasTi medQut) > {
<EnqueueTi neout Event >
<RenoveTi ner Request >
return;

}

<If WValidTiner>
<Bl ockFor | PCW t hTi meout >
el se
<Bl ockFor | PCW t hl nfi ni t eTi meout >
<I f Ti medQut > {
<EnqueueTi nmeout Event >
<RenoveTi ner Request >
}
el se
<Enqueuel PC\essage>

Porting Guide Porting the TargetRTSfor C 85

Thefirst block of pseudo code determines if (during the intervening period of time while the system
was processing) any timeouts would have occurred. If timeouts have occurred, timeout events are gen-
erated, and the time requests are removed from the timer list.

If no timeout occurred, the next block of code will await for an external IPC message/stimulus while

specifying atimeout value (which is our next shortest time to atimeout). Once control is returned to the

user’s IPC routine, a check is then done to determine if the IPC request timed-out (at which point, a tim-
eout event is enqueued, and the timer request is removed from the timer list), or a real IPC message or
external stimulus was received. In that instance, an appropriate message event is enqueued for subse-
guent execution by the actor.

These timers require the use of relative time (for the informIn request), and absolute time to determine
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example,
RSLTar get _Ti ne) might be used to ensure compatibility between the SimulationRTS and the C
TargetRTS running on a target. Specifically, the target versid®SbfTar get _Ti me should be
defined to add the current number of clock ticks to the relative time to create a future absolute time,
which is used by the external interface routine.

e.g. #define RSLTarget Tine(x) (clockTicks()+x)

Timers are started when an actor in that thread starts a tirleO@&1 | nf or m n. In the C

TargetRTS, the timer start routine will allocate a local thread TCB, populate it with appropriate data,
and then insert it into the list of active timers for that thread, in sorted order. Once enqueued, the regis-
tered external interface for that routine will process the timeout requests, as described in the above
pseudo-code.

If a thread is currently blocked, awaiting for a timeout to occur, and if another thread sends a message to
that thread, the thread wilbt be interrupted (assuming that the RTOS IPC is incompatible with the pro-
prietary C TargetRTS inter-thread inter-actor messaging implementation). Thus the ObjecTime message
will be deferred until after that thread’s interface routine returns.

Timers are cancelled vieOOM _Cancel Ti ner. In the C TargetRTS, the timer cancel routine will
mark theRTTi ner | D (which points to a timer control block) as cancelled, and thus will be ignored
by the external interface function, when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top thread,
the number of timers to be created at initialization time should be configuRdTiar get . h, over-
riding the defaults iliRTConf i g. h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amongst
threads, and are to be modified by the C TargetRTS only.

Also, each thread has a linked-list of active TCBs, which are purposely stored in sorted order. That is to
say, that when you start a timer, the timeout is checked, and inserted in order into the linked-list, where
the smallest timeout values appear at the front of the queue, and the largest timeout values appear at the
end of the queue. By inserting these items into the queue in sorted order, it is possible to quickly deter-
mine the next timeout value by simply reviewing the first entry on the timer queue.

86 Porting the TargetRTSfor C Porting Guide

The relevant transitions and functions that adhere to the above guidelines are shown below for the Re-
sponder actor. Note that the behavior external interface function is not registered until it has received a
corresponding Sync signal (with identifying Queue ID information).

/* Responder -- initial transition */

t hi s->sti nmul at or =nmsgQCr eat e(2, 256, M5G_Q FI FO ;

printf("Responder: Sending QD Info (0Ox%) of my Qn",
this->stinulatorQ;

ROOM Por t SendDat a(i ds, Request, (void *)this->stimlatorQ;

/* Responder -- Sync transition */

t hi s- >ot her Q=(M5G_Q I D) nsg- >dat a;
printf("Responder: Received other QID (0x%)\n",this->otherQ;
RSLRegi st er Ext ernal I nt erface(_act or, Responder Mai nl oop) ;

/* Responder -- ExtMsg transition */

printf("Responder: Received Q msg '%s’\n",(char *)msg->data);
msgQSend(this->otherQ,"There!",7,NO_WAIT,0);

/* Responder -- Functions */

void ResponderMainloop(Responder_InstanceData *this,
RSLActorIndex _actor) {
static charcopyData[256];

/* Get a Tornado message for the queue and enqueue it

for the cRSL */
msgQReceive(this->stimulatorQ,copyData,256,WAIT _FOREVER);
RSLPortEnqueue(_actor,ids,SomeEvent,RSLGENERAL,©Data);

Since this actor supports only proprietary |PC (Tornado message queues), the external interface func-
tion pseudo-code would be defined as:

<BlockForExternalMessage>
<EnqueueMessage>

Actor timers

RTTar get . h should specify that RSLTIMERS is set to RSLTRUE; RSLACTOR_TIMERS is set to
RSLTRUE.

Porting Guide Porting the TargetRT Sfor C 87

A special timers package should be used as a basis for implementation. An example of thistype of timer
implementation can be found under $(OBJECTI ME_HOME) / Model Exanpl es/ C, inan
update called “C_Timers”. A detailed description of this update can be found in “Compliance Suite &
Examples” on page 219 of the C Language Guide.

In this approach, a timer actor registers itself as the provider of timing services for all timing requests in
the C TargetRTS. If multi-threaded, this actor should be configured to run on its own thread. The C
TargetRTS will handle all inter-actor inter-thread and intra-thread messaging to and from the timing
actor.

At least two timing actor functions must be implemented. They are as follows:

« An external interface function, which is passed a pointer to the object instance data and the current
executing actor Id.

« A signalling function, which passed a pointer to a RTOS object (for example, condition variable)
will signal it in a suitable manner.

At initialization time, an actor in each thread that requires the use of integrated timers must

* Reqgister the external interface (timing routine) function via the RSLRegisterExternallnterface C
TargetRTS API function (an example pseudo-code for this function appears below).

e Create/initialize (or locate) a suitable RTOS object (for example, condition variable), storing the
handle to this RTOS object as an actor ESV.

* Reqgister itself with the C TargetRTS as the providellofiming services (single- or multi-thread-
ed), providing the address of the signalling variable and signalling function via the RSLRegisterTim-
erService C TargetRTS API function. The C TargetRTS will invoke the signalling function (passing
the address of the signaling variable) whenever it is about to deliver a new timing request to that
thread.

The external interface function pseudo-code would be defined as

<Cet Fi r st Ti neout >

<Cet Current Ti me>

<If (ValidTiner && TinerHasTi medQut)> {
<EnqueueTi neout Event >
<RenoveTi ner Request >
return;

}

<If WValidTiner>

<Bl ockFor Si gnal Wt hTi meout >
el se

<Bl ockFor Si gnal Wt hl nfiniteTi meout >
<I f Ti medQut > {

<EnqueueTi neout Event >

<RenoveTi ner Request >

88 Porting the TargetRTSfor C Porting Guide

Thefirst block of pseudo code determines if (during the intervening period of time while the system
was processing) any timeouts would have occurred. If timeouts occurred, timeout events are generated,
and the time requests are removed from the timer list.

If no timeouts occurred, the next block of code waits for an external signal while specifying a timeout
value (which is our next shortest time to a timeout). Once control is returned to the timer actor’s exter-
nal interface routine, a check is then done to determine if the blocking RTOS request timed-out (at
which point, a timeout event is enqueued, and the timer request is removed from the timer list).

These timers require the use of relative time (for the informIn request), and absolute time to determine
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example,
RSLTar get _Ti nme) might be used to ensure compatibility between SimulationRTS and the

C TargetRTS running on a target. Specifically, the target versi®ohfTar get _Ti me should be
defined to add the current number of clock ticks to the relative time to create a future absolute time,
which is used by the external interface routine.

e.g. #define RSLTarget Tine(x) (clockTicks()+x)

Timers are started when an actor in a thread starts a tim@O@&1 | nf or i n. In the C TargetRTS,

the timer start routine will allocate a local thread TCB, populate it with appropriate data, and then
engueue it via an inter-thread message to be delivered to the registered timing actor. When the timing
actor receives the new request, it will insert it into the list of active timers for the timing thread, in sorted
order. Once enqueued, the registered external interface for the timing thread will process the timeout
requests, as described in the above pseudo-code.

If the timing thread is currently blocked, waiting for a timeout to oocdor new timing requests, and

if another thread sends a timing request message to the timing thread, the thread will be interrupted.
Thus, once the ObjecTime timeout request message is processed, the timing threads interface routine
will be re-invoked.

Timers are cancelled vieOOM _Cancel Ti ner. In the C TargetRTS, the timer cancel routine will
mark the RTTimerID (which points to a timer control block) as cancelled, and thus will be ignored by
external interface function when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top thread,
the number of timers to be created at initialization time should be configuRdTiar get . h, over-
riding the defaults iliRTConf i g. h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amongst
threads, and are to be modified only by the C TargetRTS or the timers. In the multi-threaded C Targe-
tRTS, timer control blocks are moved back and forth between the requesting and timing threads.

Also, each thread has a linked-list of active TCBs, which are purposely stored in sorted order. That is to
say, that when you start a timer, the timeout is checked, and inserted in order into the linked-list, where
the smallest timeout values appear at the front of the queue, and the largest timeout values appear at the
end of the queue. By inserting these items into the queue in sorted order, it is then possible to quickly
determine the next timeout value by simply reviewing the first entry on the timer queue.

Porting Guide Porting the TargetRT Sfor C 89

90 Porting the TargetRTSfor C Porting Guide

Chapter 7

Modifying the error parser

Setting the compiler vendor in the libset.mk file

Each libset references its associated error parser viathe VENDOR make macrointhel i bset . nk
file. The toolset will execute scripts in the $OBJECTI ME_HOME/ codegen/ conpi | er s/
$VENDOR/ directory to perform the conversion from the raw error stream to the Generic Error Stream
(GES) format.

Reusing an existing error parser

If you are porting to a new libset, but using an existing compiler vendor, just set the VENDOR make
macrointhel i bset . nk fileto reference the existing vendor, and the error parsing port is done.

Creating anew error parser

If you are porting to a new vendor, you will need to pick a vendor acronym ($VENDOR) and create the
directory $OBJECTI ME_HOVE/ codegen/ conpi | er s/ $VENDOR. You will need to create
two filesin this directory, ot conpi | e. pl andot | i nk. pl , which you can copy from another
vendor. These Perl files contain the following:

1 Inclusion of common code that performs all the error parsing functions.

2 Setting the errormode variable to indicate whether the file is parsing compiler errorsor linker errors.
Errormode is set to compilation by default.

3 Setting arrays of regular expressions and other information the common code will use to parse the
raw error stream. There will be one set of variables per error expression handled. There will also be
one set of variables for each expression that isignored.

4 A call to the common code once array initializations are done to start parsing input.

To complete the ports, delete the variables that deal specifically with the error expressions that are han-
died. You will then need to figure out what error expressions your compiler and linker generate and pop-
ulate ot conpi | e. pl orot | i nk. pl appropriately with new variables. There are a couple ways
to efficiently determine what errors your compiler generates.

1 Thereisan error parser update available at http://www.objectime.com/support/restricted-dir/docu-
mentation.html, which contains a good number of common compilation errors. You can compile it
and look at the compilation detailsfile (Jupdat e_di r/ conpi | e. out put) for the errorsit

Porting Guide Modifying theerror parser 91

generates. Add expressions one at atime and recompile until you have successfully captured all the
errors.

2 Useprograms that search the actual compiler or linker executable for strings. Then manually exam-
ine the output and intelligently determine which of the strings look like error statements.

Each regular expression used is a Perl regular expression. If you are not familiar with Perl regular
expressions it is suggested that you get a Perl book or find an equivalent reference online. Below is an
explanation of how each variable can be used for error expression number X.

The expression @oterr::start_error[X] indicates what pattern to look for to indicate that the current line
being parsed is the beginning of the type of error expression X.

@terr::start_error[X] = '2.*:\d*: warning: .*’;

The expression @oterr::end_error[X] indicates which pattern to look for to indicate that the current line
being parsed is the end of the type of error expression X. If the error isasingle line error, it can be set to
empty string. If the end of the error istoo difficult to determine viaaregular expression, it can be set to
UNKNOWN. For the unknown case, it will consider every line part of the current error being parsed
until it finds the beginning of another error, or alineit is supposed to ignore.

@terr::end_error[X] "o
@terr::end_error[X " UNKNOVW' ;

@terr::end_error[X] ".*then contact your l|ocal service provid-
er.*’;

Once the error has been isolated, the lines that compose it are concatenated into one string and the
expression @oterr::regexps X] is used to extract useful information from it. The parentheses in the reg-
ular expression pick out the filename, line number and error text respectively. Note that the Perl script is
set up so that its wildcard characters can include newlines.

@t err::regexps|[X ='"A(.*):(\d*): warning: (.*);

Each error type has to report to the toolset the severity of the error. Errors will cause the compilation to
report afailure, while warnings will allow other steps, such as linking, to proceed.

@terr::severity[X]
@terr::severity[X]

Optionaly, if aweird error turns up that does not have the filename argument first, then the line number,
then the error text, you can include the expression @oterr::argorder[X] to change the order in which the
program extracts the arguments from the parentheses in the @oterr::regexps[X] expression. By default
this variable is set for all error types to be ‘FNE’.

"war ni ng’ ;
error’;

@t err::argorder[X] = "EFN ;

You can tell the error parser to ignore lines that the compiler or linker generate but are actually not any-
thing you want to display in the error browser or map back to the toolset. There is one set of variables
for each ignore statement that work very much like the variables for parsing a specific error type. Below
is an explanation of how each variable can be used to ignore a specific type of expression Y.

92 Modifying the error par ser Porting Guide

The @oterr::start_ignore[Y] statement indicates the beginning of a statement to ignore.

@terr::start_ignore[Y] = 'Copyright \(Q) .* Corp.*’;

The expression @oterr::end_ignore[Y] indicates which pattern to look for to indicate that the current
line being parsed is the end of the type Y of expression that is being ignored. If the expression to be

ignored is only one line, it can be set to empty string. Note that an ‘UNKNOWN' end of ignore state-
ment is not supported.

@terr::end_i gnorel[Y] T
@terr::end_i gnorel[Y] "\'s*Version \d*.*’;

Porting Guide Modifying theerror parser 93

94 Modifying the error par ser Porting Guide

Chapter 8

Testing the TargetRTS

A port to a new platform requires testing the TargetRTS. There are some standard ObjecTime updates
that can be used to test the functionality of the TargetRTS. These tests are not comprehensive but pro-
vide some assurance that the port was successful. The C++ models are available for download by cus-
tomers only from our support webpage (start from http://www.objectime.com). These models are
provided asis and ObjecTime Limited provides no warranty expressed or implied for their use.

Testing the TargetRTS for C++

HelloWorld update

The HelloWorld update is a single actor model that simply outputs “Hello World” on the target console.
It makes use of the Log service to output the message. The HelloWorld model, if functional, validates
the TargetRTS initialization and startup, log service and console output and basic actor functionality.

Performance update

The Performance update is a suite of tests that provides measurements of basic TargetRTS functions.
This model is also useful for testing the functionality of the TargetRTS since many features are testing
during the performance measurements. Test results are sent to the standard output and correct function-
ality can easily be determined by observing the output.

FiveStates update

The FiveStates update is a model that tests the functionality of the target observability feature of the
TargetRTS. This test provides a model with a state machine consisting of five states. The transitions
between these states can be monitored from the behavior monitor in the ObjecTime Developer Model
Execution Browser. If target observability is functioning then the Model Execution Browser will be able
to connect to the application running on the target via TCP/IP and provide debugging and execution
monitoring via the Model Execution Browser.

Testing the TargetRTS for C

The CRSL Compliance Tests

The TargetRTS for C ships a set of compliance test models that can be compiled and run on a new target
platform to ensure the functionality of the newly ported C TargetRTS.

Porting Guide Testing the TargetRTS 95

These models are part of the %0BJECTI ME_HOVE\ Model Exanpl es\ Cfolder and are fully
described in “Compliance Suite & Examples” on page 219 ofthanguage Guide.

96 Testing the TargetRTS Porting Guide

Chapter 9

Tuning the TargetRTS

This section briefly describes areas in the TargetRTS that can be tuned to improve performance. The
Performance update described in “Performance update” on page 95 can be used to verify the success of
performance enhancements.

Disabling TargetRTS features for performance

The TargetRTS can be modified to exclude many of its features to provide a minimum high perfor-
mance feature set. The section “TargetRTS Customization Example”@+ th&@arget Guide describes

how to create such a version of the TargetRTS. For C Language usage, please refer to “Recommended
Configurations” on page 213 in tiizLanguage Guide for suggested optimizations. The so-called “min-

imum TargetRTS” disables the external layer (and target observability), logging service and the RTS
debugger. The minimum TargetRTS should provide significant performance gains over the fully fea-
tured version.

Target compiler optimizations

Most compilers provide optimizations at the code generation stage that can produce faster running code.
In general, if your compiler supports such optimizations, they should be used. Be sure to remove all
debug options at the same time since they may cancel out certain or all optimizations. Some optimiza-
tions may come at the cost of code size. If application code size is a factor for your target then the bene-
fit of optimization versus code size will have to analyzed. Many compilers may have different levels of
optimization, which may produce differing degrees of code size and performance enhancements. It is
hard to predict the outcome of such optimizations in C++. Using the Performance update may prove
useful. See “Performance update” on page 95. For C usage, please refer to “Compliance Suite & Exam-
ples” on page 219 of the Language Guide.

Optimizations can cause errors in the running application that were not present before optimizations
were enabled. Be sure to fully test the TargetRTS after enabling any optimizations.

Target operating system optimizations

The Target operating system may provide optimizations. For example, it may be possible to link in a
non-debug version of the OS with the application. These optimizations are specific to each RTOS. Refer
to the documentation for your specific RTOS.

Porting Guide Tuning the TargetRTS 97

Specific TargetRTS performance enhancements

In C++, one key areathat can improve performance in the TargetRTS is in inter-thread message passing.
The TargetRTS make use of two synchronization mechanisms for much of its message passing, namely,
the RTMut ex and RTSyncCbj ect class. Some operating systems provide heavy-weight and light-
weight synchronization mechanisms. The light-weight version has less features but higher performance;
whereas, the heavy-weight version may have more features but poorer performance. Your choice of
implementation for the RTMut ex and RTSyncObj ect may affect the performance of inter-thread
message passing, so be sure to investigate and determine the lightest-weight mechanism necessary to
satisfy the requirements of these classes.

98 Tuning the TargetRTS Porting Guide

Chapter 10

Common problems and pitfalls

This section contains common problems and pitfalls that we have encountered with previous ports. The
TargetRTS is supported on approximately 71 platforms and has been verified on each of these plat-
forms. In general, the problems and pitfalls encountered are due to RTOS and tool chain oddities and
bugs. Other problems arise from lack of support for certain features required by the TargetRTS and thus
require a custom workaround to satisfy the TargetRTS.

Problems and pitfalls with target toolchains

Compiler optimizations

Compiler optimizations, in general, help speed up the application. Some optimizations can cause errors
in the application. One such problem occurs when the compiler optimizes references to a memory loca-
tion that is not modified by the application. It assumes that because the application does not modify the
contents of the address, it is never modified. This can cause problems when a memory location is used
to store a RTOS primitive, such as a semaphore. The operating system modifies the contents of the
semaphore variable but the application does not. The compiler optimizes the references to the sema-
phore and consequently removes proper access to the semaphore.

Optimizations vary from compiler to compiler, so refer to the documentation for your specific tool

chain. Review the optimizations that are available and be aware that some may cause errorsin the appli-

cation. Running a test suite such as the one described in section “Testing the TargetRTS” on page 95 is a
good way to ensure the optimizations have not broken the TargetRTS.

Linking problems

Linker configuration file

When linking an application to a embedded target, there is usually some sort of linker configuration file
that defines where in memory each section of the application will go. Many default linker configuration
files are included without the user’s knowledge and may cause strange linking errors as applications
grow larger. Be sure to define your own linker configuration file appropriate for your target.

Duplicate references with global signal names

In ObjecTime the signals are defined globally. Many of these standard signal names may be duplicates
of names used in RTOS libraries. This can cause duplicate reference errors at link time. One approach is
to recompile the TargetRTS with these signal names redefined. This can be done by globally replacing

Porting Guide Common problems and pitfalls 99

<si gnal nane> during compile time using the compile option
"-D<si gnal _nane>=rt <si ghal _name>".

System include files

The structure and content of include files can be a challenge when moving to a new tool chain. In the
TargetRTS an attempt is made to isolate the nuances of include files for each RTOS into a few specific
include files that can be used by all the target-specific code. In general, all RTOS-specific definitions
should be combined into afile called RT<os_name>. hinthe $(RTS_HOVE) / src/ t ar get/

<t ar get _nane> directory. This way al include files needed to access OS functions can be found
in this onefile. In the C++ TargetRTS, for TCP/IP specific include files, afile called RTt ¢p. h should
be created inthe $(RTS_HOME) / src/ t ar get / <t ar get _nane> directory. This file should
contain all the necessary include files required for TCP/IP functions. For RTOSs that provide a POSIX
interface to OS functions then afile called RTPosi xDef i nes. h should be used to encapsulate all
POSIX header files. Other, more specific, header files may be required to isolate unique interfaces for
your RTOS. These may be added to the $(RTS_HOME) / src/ t ar get / <t ar get _nane>
directory as needed, and are typically prefixed by “RT".

Problems and pitfalls with TargetRTS/RTOS interaction

Synchronization primitives

Return codes for POSI X function calls

Even though POSIX is a standard, there are still some discrepancies in the implementation of the inter-
face. Some implementations of the POSIX function calls return an error code, while others return -1 and
store the result in global variabds r no. Check your specific RTOS to see how error conditions are
reported.

Priority inversion

The TargetRTS provides no specific mechanism to prevent priority inversion. Some RTOSs, such as
Tornado, support a priority inheritance mechanism for synchronization primitives such as mutexes and
semaphores. The C++ TargetRTS for Tornado 1.0.1 enables this option f&f M& ex and
RTSyncObj ect classes. If your RTOS supports this then enable this option when creating a mutex
or semaphore.

Thread creation

Thread creation has caused problems in the past. One specific problem is the lack of free space on the
heap to allocate the stack for the new thread. This causes a system crash with no error message or
exception raised. Other potential pitfalls arise with thread priorities. Do not alter the relative priorities

of the C++ TargetRTS threads (main thread, external layer thread, timer thread and debugger thread).
Incorrect priorities may effect the functioning of the external layer, timers, debugger or even the Objec-
Time application.

100 Common problems and pitfalls Porting Guide

Real-time clock

Most RTOSs provide a function to retrieve the current system time. Typically it may return clock ticks,
milliseconds or even nanoseconds. In the C++ TargetRTS, a conversion from the RTOS time to
RTTi mespec istypically required in order to satisfy the requirements of the
RTTi mespec: : get cl ock function. Some RTOSs may provide amacro or function to resolve the
number of ticks per second and thus make conversion to RTTi nespec straightforward. Others may
reguire hard-coded conversion based on the known tick rate for the RTOS. If thisrate is later changed
then the conversion will fail. Thisresultsin incorrect behavior for al timersin the ObjecTime model.

In the C++ TargetRTS, when changing the system clock, note that if the time returned by the
RTTi mespec: : get cl ock() function is affected by changes in the system clock, the function
call that adjusts the time must be between the RTTi mer SAP: : adj ust Ti neBegi n() and
RTTi mer SAP: : adj ust Ti neEnd() functions. If, however, system clock changes do not
affect the RTTi mespec: : get ¢l ock() function, do not use the RTTi ner SAP: : adj ust -
Ti meBegi n and RTTi nmer SAP: : adj ust Ti meEnd() functions. Timers will fail in this case
and cause unwanted behavior in your ObjecTime application.

For example:

voi d Adj ust Ti meAct or: : setcl ock(const RTTi nespec & new_tine)

{
RTTi mespec ol d_ti ne;
RTTi mespec delta;

timer.adjustTineBegin();//stop ObjecTine tiner service

sys_getcl ock(old_tinme);//an OS-specific function
sys_getcl ock(new tine);//an OS-specific function

delta = new_ ti ne;
delta -= old_tiner;

timer.adjust Ti neEnd(delta);//resune Objectine timer service

}

Signal handlers

Many RTOSs do not use signalsthat are typical of UNIX operating systems. If your RTOS does not pro-
vide signals then be sure to override the C++ TargetRTS code in RTMai n: : i nst al | Han-
dlers() andRTMai n::install OneHandl er ().

RTOS supplies main() function

The TargetRT S assumes that it definesthe i n() f unct i on for an application. Some RTOSs may
provide there own nai n() function, which causes a duplicate reference error at link time. If thisisthe
case for your RTOS, you have to modify the code in $(RTS_HOME) / src/ t ar get /

Porting Guide Common problemsand pitfalls 101

<target _nanme>/ MAIN main.cc (/main.c for the C TargetRTS). Typicaly,
you haveto start athread that contains the mai n() function for the ObjecTime application. The docu-
mentation for the RTOS will describe how to start your application in this manner.

Application command line arguments

Embedded targets do not usually have access to command line arguments, so RTOSs rarely provide a
way to pass command line arguments to arunning application. If your RTOS does not support command
line arguments, use two globally defined variablesdef aul t _ar gc anddef aul t _ar gv, defined

in the generated code from the toolset, which contain command line arguments from the ObjecTime
toolset. In the C and C++ TargetRTS, you can pass these variables to the RTMai n: : entry-

Poi nt () function fromyour modified mai n() functi on. See section “RTOS supplies main()
function” on page 101. Default arguments can be specified in the toolset via the Update Boaser's
figuration>Language Options>Targets menu.

Exiting application

In the C++ TargetRTS, theTDi ag: : pani c¢() function requires a way to terminate the applica-
tion. This is generally achieved by exiting the application. If your RTOS does not suppxi thé)
function, you have to override the codébihRTS_HOVE) / src/ t ar get / <t ar get _nanme>/
RTDi ag/ pani c. cc to use the exit function specific to your RTOS.

Problems and pitfalls with target TCP/IP interfaces

Select() statement

Some implementations of tisel ect () statement do not correctly use the value set in the width
parameter. Consequently the function thinks the file descriptor sets are larger than they really are. This
can cause memory corruption and, consequently, serious failures in the running application. To over-
come this problem in the C++ TargetRTS, some targets (CLASSIX, OSE3, VRTX3) overrlEl the
OMonitor::mn_size() function in $(RTS_HOME) / src/target/

<t arget name>/ RTI Ovbni t or/ m n_si ze. cc. In these cases, the minimum size is
assumed to be the maximum file descriptor set size.

gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to usgétehost bynane() function

in a multi-threaded application. The call was replaced with a call tgéttehost bynanme_r ()

function, which is re-entrant and multi-thread safe. If this is the case for your target OS then replace the
call RTTcpSocket::lookup() iB(RTS_HOMVE) / src/ t arget/ <t ar get _nane>/ RTTcp-

Socket /| ookup. cc inthe C++ TargetRTS

102 Common problems and pitfalls Porting Guide

Part 3
Appendices

Appendix A

TargetRTS for C++ porting
example

Introduction

This section provides an example of porting the TargetRTS for C++ to anew platform. Thisis an exam-
ple port rather than customization of an existing port. See the C++ Target Guide for a customization
example. This porting example should help implement the information presented in previous sections.
The target platform for this example is the VRTX 4.0 real-time operating system using the Microtec
Research C++ Compiler Version 4.5T for Motorola 68040 microprocessors. Thisis a currently sup-
ported platform, but it is assumed that no previous version of the TargetRTS for this platform exists.

Choosing the platform name

The platform name is an important identifier of the TargetRTS. It identifies the operating system, hard-
ware architecture and (cross) compiler. In this example, the operating system is VRTX4. The hardware
architecture is Motorola 68040 (m68040). The compiler is the Microtec Research C++ Compiler Ver-
sion 4.5T. For this example we will only consider the multi-threaded version of the TargetRTS since this
provides the most interesting porting challenges. The resulting platform nameis as follows:

<0S> = VRTX4T

<LI BSET> = n68040- M crotec-4.5T

<0S>. <LI BSET> = VRTX4T. n68040- M crotec-4.5T

Create setup script

The setup script isin the file $(RTS_HOME) / conf i g/ VRTX4T. n68040- M cr ot ec-
4. 5T/ set up. pl . Thisfileisa Perl script that defines environment variables for the compilation
of the TargetRTS. The contents of the setup script are as follows:

$0S_HOME = $ENV{'OS_HOMEY;

$USR_MRI = “$0S_HOME/spectra/solaris-68k-4.AAA”;
$ENV{'USR_MRI'} =“$USR_MRI";

$ENV{'SPECTRA’} =“$USR_MRI/spa68k”;

$ENV{'MRI_68K_BIN’} = “$USR_MRI/bin’”;

Porting Guide TargetRTSfor C++ porting example 105

Introduction

$ENV{'MRI_68K_LIB} = “SUSR_MRI/lib”;
$SENV{'MRI_68K_INC‘} = “$USR_MRI/include/mcc68K”;
$ENV{'PATH? =“$USR_MRI/bin:3ENV{PATHY}";

$preprocessor = “ccc68k -E >MANIFEST.i";
$include_opt ="-J';

$target_base = ‘VRTX3';

$supported = ‘Yes';

The setup script must contain the mandatory definitions for the pr epr ocessor and support ed

flags. The tool chain environment variables are usually required for cross compiler tools such as Micro-

tec, since it is not typically part of a user's command path and the environment variable definitions are
probably not already defined in most users’ environments. Note thaathget _base variable is

set to VRTX3. This means the VRTXA4T target uses the same code base for the TargetRTS classes as the
VRTX3T target. In a TargetRTS port to a native compiler tool chain these definitions are probably not
required.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build the TargetRTS for
the platform and to build ObjecTime models on this new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The command line interface
for C++ compilers differs significantly, particularly for cross-compilers such as the Microtec C++ com-
piler. It is in this file that we make definitions for command line options for the compiler and linker and
override other definitions made $(RTS HOVE) / | i bset/ def aul t . nk. See “Default
makefile” on page 36 for details. In any port of the TargetRTS there are certain commands required in
the tool chain in order to support the building of the TargetRTS. Table 8 illustrates these required com-
mands, the Unix equivalent, and the Microtec variant.

Table 8 Compiler tool chain requirements

Command Unix Microtec
library archive ar microtec_ar (script)
C++ Compiler CcC ccc68k
Linker Id -r Ink68k -r
Pre-linker Id-r-o Ink68k -r -0
Shared library builder CC-G -z text -0 ccc68k -G -z text -0
VENDOR n/a Microtec

The library archive command@() for the Microtec tool chain requires the use of a script to work the
way the TargetRTS build requires. The Microtec development environment does not sugplyan-

106 TargetRTSfor C++ porting example Porting Guide

Introduction

mand. Instead it providesal i b command that behaves differently than thear command. A script file,
m cr ot ec_ar was written to provide a wrapper around the lib command. This is an exception to
other supported TargetRTS platforms but illustrates a possible pitfall when moving to a new platform.
The libset makefile must define the VENDOR variable that instructs the error parser which type of com-
piler isbeing used. The error parser uses thisinformation to decode error messages returned by the com-
piler to aformat compatible with the ObjecTime Devel oper toolset.

Another important role of the libset makefile is the definition of command line options. Table 9 illus-
trates the typical subset of command line options, the Unix equivalent, and the Microtec variant.

Table 9 C++ Command line options

Option Unix Microtec

DEBUG_TAG

-9

-g -Gf

LIBSETCCEXTRA

-p68040 -c -Qms0401
Qs -Xp -Mca -Md&

LIBSETCCFLAGS -0 -0 -Ob -Oe -Ot -Qfs -
NM$(@F:.0=

INCLUDE_TAG - -J

DIR_TAG - -

LIB_EXT a lib

a. The -Qms0401 option suppresses the 0401 error message “destructor
for base class is not virtual”. The -Qs option suppresses the summary
message. The -Xp allocates space for global variables that have not been

explicitly initialized.

b. The -Qfs option suppresses the display of the source file line number
for diagnostic messages. The -NM options sets the module name.

The compiler options may vary greatly from one platform to another, but must support some basic fea-
tures. Read the compiler documentation carefully and review some of thel i bset . mk for other
TargetRTS platforms for guidance. A list of required features follows:

« to compile source files into object files only (that is, not to the link phase), typically the ‘-c’ option
« to place the object file in a desired directory and file name, typically the ‘-0’ option
e to produce shared libraries, typically the -G’ option

« tolink and place the executable in a desired directory and file name, typically the ‘-0’ option for the

link phase

e to turn on debugging instructions in the compiled code, typically the ‘-g’ option
» to specify the pathname of include files, typically the ‘-I' option

« to specify the pathname of libraries, typically the ‘-L’ option

» to specify the libraries to link, typically the ‘-I' option

e toturn on code optimization, typically ‘-O’ option and sub-options

Porting Guide

TargetRTSfor C++ porting example 107

Introduction

The contents of the libset makefile, $(RTS_HOVE) / | i bset / n68040- M cr ot ec-4. 5T/
| i bset. nk, for Microtec compiler is as follows:

AR _CMD = $(RTS_HOME)/targets/microtec_ar |ib68k
CC = ccc68k

LD = I nk68k -r

PRELI NK = cat >

SHLI B_CMD = $(CC -G-z text -0

#VENDOR is used in definition of OTCOVPI LE and OTLINK i n defaul t. nk
VENDOR = Mcrotec

#overri de the extension for executables
EXEC _EXT = . X

LI BSETCCFLAGS
LI BSETCCEXTRA

-p68040 -c -Qrs0401 - -Xp -Ma -Ma
-O-0b -0 -O -Q@s -NMB(@:.09)

SHLI BS

LI B_EXT = .lib
DEBUG_TAG =-g -G
DI R_TAG =

I NCLUDE_TAG = -J

Target makefile

The target makefile is used to make definitions specific to the target operating system and the
TargetRTS configuration. These are usually specific command line options for the compiler and linker
to define such things as include directories for the target OS and libraries and their pathnames. These
definitions must be common to all VRTX targets. The contents of the target makefile,
$(RTS_HOMVE) / t ar get / VRTXAT/ t ar get . nk, isasfollows:

TARGETCCFLAGS = $(| NCLUDE_TAG) $(SPECTRA) / t ar get /i ncl ude \
$(DEFI NE_TAG) t i neout =ot Ti neout

Configuration makefile

The configuration makefile is used to make definitions required by the operating system and compila
tion environment together. In the case of VRTX, the definitions for libraries are made here since they
are specific to the compiler and operating system combination. Therefore these definitions are not
appropriate in the target makefile. The content of the configuration makefile, $(RTS_HOVE) / con-

fi g/l VRTX4T. n68040- M crot ec-4. 5T/ confi g. nk, isasfollows:

EXEC EXT = .X

SYSTEM LI BS = $(RTS_LI BRARY) /1 i bObj ecTi me$(LI B_EXT) \

108 TargetRTSfor C++ porting example Porting Guide

Introduction

$(RTS_LI BRARY) /| i bObj ecTi neTransport $(LI B_EXT) \
$(RTS_LI BRARY) /| i bObj ecTi neTypes$(LI B_EXT)

TARGETLIBS = $(USR _MRI)/1ib/ccc68kab040.1ib

TargetRTS configuration definitions

The configuration definitions for the TargetRTS are found in the include file $(RTS_HOME) /

i ncl ude/ RTConf i g. h. The definitions in this file are overridden by $(RTS_HOVE) / t ar -

get/ VRTX4T/ RTTar get . h and possibly $(RTS_HOME) / | i bset / n68040- M cr o-

tec-4. 5T/ RTLi bSet . h. These definitions are used to enable and disable various features in the
TargetRTS. By default all of the TargetRTS features are enabled (for exampl e, target observability). The

porting effort may be made easier if these features are disabled. See section “TargetRTS Customization
Example” in theC++ Target Guide for instructions on how to build a minimized TargetRTS. The con-

tent of the files(RTS_HOME) / t ar get / VRTX4T/ RTTar get . h is as follows:

#ifndef _ RTTarget_h__
#define _ RTTarget_h__ incl uded

#defi ne TARGET_VRTX 4
#defi ne TARGET pl at VRTX

#defi ne USE_THREADS 1
#defi ne EXTERNAL_LAYER 1

#defi ne DEFAULT_MAIN PRICRITY 75
#defi ne DEFAULT_LAYER PRIOCRITY 73
#defi ne DEFAULT_TI MER_ PRIOCRITY 70
#defi ne DEFAULT_I OMON_PRI ORI TY 72
#defi ne DEFAULT_DEBUG PRI ORI TY 60

#define CLOCK TI CKS_PER SEC 100
#def i ne NSECS_PER Tl CK 10000000

#define __ READY_EXTENSI ONS__

#ifdef _SIZE T

#i fndef _ size t
#define _ size t

#endi f

typedef _SIZE T size_t;
#endi f

#endif // __ _RTTarget_h__

Porting Guide TargetRTSfor C++ porting example 109

Introduction

Code changes to TargetRTS classes

Most ports to new targets require some minor changes to the TargetRTS code. These changes typically
apply to operating system features for thread (task) creation and destruction, mutual exclusion and syn-
chronization and time services. A description of TargetRTS classes that may require changes is aready
given in Table 5, “TargetRTS constants/macros and their default values,” on page 46.

The required changes to the TargetRTS source for VRTX 4 and the Microtec compiler are located in the
$(RTS_HOME) / src/ t ar get/ VRTX3 directory. These files override the versions in

$(RTS_HOVE) / sr c. To override a definition from the source directory a new subdirectory is cre-
ated in$(RTS_HOME) / src/target/VRTX3 (thatis, a new definition for

RTTi mespec: : get cl ock requires a subdirectoi(RTS_HOVME) / src/t arget/

VRTX3/ RTTi mespec). The new file containindgRTTi mespec: : get cl ock would be
$(RTS_HOVE) / src/ target/ VRTX3/ RTTi mespec/ get cl ock. cc.

The required changes to the TargetRTS are too large to include in this document. Table 10 contains a
summary of the required changes to each file.

Table 10 Required changes to TargetRTS source

Class File Change
main function | main.cc This change was required due to a bug in the Microtec compiler with
respect to static constructors. Normally changes are required for operat-
ing systems that already providerai n function.
RTDebugger- | nextChar.cc
Input
RTDiagStream| flush.cc fif | ush is not supported, implement a flush empty method
Is_string << operator overridden with code to output stfiqgut S not sup-
ported)
RTIOMonitor | min_size.cc | m n_si ze method changed to use FD_SETSIZE.
RTMain targetStar- t ar get St art up method overridden with code to perform VRTX
tup.cc specific startup code.
installOne- i nst al | OneHandl er empty method
Handler.cc
installHan- i nst al | Handl er s empty method
dlers.cc
RTMutex ct.cc constructor fdRTMuUt ex defined for VRTX mutex creation
(sc_nctreate)
dt.cc destructor foRTMUt ex defined for VRTX mutex destruction
(sc_ndel et e)
enter.cc ent er method created to use VR®¢_npend function
leave.cc | eave method created to use VRT®C_npost function

110 TargetRT Sfor C++ porting example Porting Guide

Introduction

Table 10 Required changes to TargetRTS source

Class File Change
RTSyncObject | ct.cc constructor for RTSync Cbj ect
dt.cc destructor for RTSync Cbj ect
signal.cc si ghal method for RTSyncQbj ect created to use VRTX
Sc_post function.
wait.cc wai t method defined to use VRTX sc__pend function with no time-
out.
timedwait.cc t i medwai t method defined to use VRTX sc__pend function with
time-out specified. NOTE: In VRTX the mailbox feature is used — |t
behaves much like a binary semaphore and provides a time-out o]
sc_pend function — this greatly simplifies the implementation of
theRTSynchj ect
RTTcpSocket | getPrimary.cc| get Pri mary method overridden to support different method of
establishing host name.
lookup.cc | ookup method overridden due to differencegiat host -
bynan®e function
set_nonblocki | set _nonbl ocki ng method overridden due to differences in
ng.cc i oct | function.
RTThread ct.cc constructor fRTThr ead overridden to use VRTX-specific thread
creation functiongc_t ecr eat e)
RTTimespec getclock.cc | get ¢l ock method overridden to use VRTX-specific clock function
(sc_gcl ock).

Building the new TargetRTS

Once the setup script, makefiles and source are complete the TargetRT S is ready to be built. To build the
TargetRTS for the VRTX-Microtec target, type the following in the $(RTS_HOVE) / st ¢ directory:

make VRTX4T. n68040-M crotec-4.5T

This will create adirectory $(RTS_HOVE) / bui | d- VRTX4T. n68040- M crot ec-4. 5T
which will contain the dependency file and object files for the TargetRTS. If the build compl etes suc-
cessfully the resulting ObjecTime libraries will be placed inthe $(RTS_HOVE) / | i b directory.

Porting Guide

TargetRTSfor C++ porting example 111

the

Introduction

112 TargetRT Sfor C++ porting example Porting Guide

Appendix B

TargetRTS for C Porting example

Introduction

This section provides an example of porting the TargetRTS for C to a new platform. This is an example
port rather than customization of an existing port. This porting example should help implement the
information presented in previous sections. The target platform for this example is the VRTX 4.0 real-
time operating system using the Microtec Research C Compiler Version 1.3C for Motorola PowerPC
603 microprocessors. It is assumed that no previous version of the TargetRTS for this platform exists.

Choosing the platform name

The platform name is an important identifier of the TargetRTS. It identifies the operating system, hard-
ware architecture and (cross) compiler. In this example, the operating system is VRTX4. The hardware
architecture is Motorola PowerPC 603 (ppc603). The compiler is the Microtec Research C Compiler
Version 1.3C. For this example we will only consider the multi-threaded version of the TargetRTS since
this provides the most interesting porting challenges. The resulting platform nameis as follows:

<0S> = VRTX4T
<LI BSET> = ppc603-M crotec-1.3C
<0S>. <LI BSET> = VRTX4T. ppc603-M crotec-1. 3C

Create setup script

The setup script isin the file $(RTS_HOVE) / conf i g/ VRTX4T. ppc603- M crot ec- 1. 3C/
set up. pl . Thisfileisa Perl script that defines environment variables for the compilation of the
TargetRTS. The contents of the setup script are as follows:

$os = SENV{’' OS' };

$os = 'default’ unless defined($os);
if($os eq 'Wndows_NT')
{

$usr_nri $ENV{’ USR_MRI " };

SENV{’ PATH } "$usr_nri/bin; $ENV{’ PATH }";
}
el se
{
$o0s_nane = ‘uname -s'; ## get the flavor of unix

chonp($os_nane);

Porting Guide TargetRTSfor C Porting example 113

Introduction

if($os_nane eq 'SunCS) ## if the flavor of unix is solaris

{ $usr_nri = "$ENV{’' OS_HOWE' }/ spectra/ sol ari s- ppc603-4. AB";

];I sif($os_nanme eq 'HP-UX) ## if the flavor of unix is HP-UX

{ $usr_nri = "$ENV{’' CS_HOWE' }/ spectra/ hp- ppc603-4. AB";

];I se ## this flavor of unix is not a supported flavor

{ printf "This'%’is not a supported flavor of unix\n",
$os_nane;

}

$ENV{’ USR_MRI ' }
$ENV{’ SPECTRA }
$ENV{’ MRl _PPC BIN }
$ENV{’ MRl _PPC LIB'}
$ENV{’ MRl _PPC_I NC }

"Susr_nri";
"$usr_nri/spappc”;
"$usr_nri/bin";
"Susr_nri/lib";
"$usr_nri/include/ nccppe”;

$ENV{’ PATH } "$usr_nvi/bin: SENV{’ PATH }";
}

$preprocessor = "nceppc -E >MANI FEST. i ";

$include_opt ='-7";

$target _base = 'VRTX4';

$supported = 'Yes’;

The setup script must contain the mandatory definitions for the pr epr ocessor and support ed

flags. The tool chain environment variables are usually required for cross compiler tools such as Micro-

tec, since it is not typically part of a user's command path and the environment variable definitions are
probably not already defined in most users’ environments. Note thaathget _base variable is

set to VRTX4. The value VRTX4 fdrar get _base implies that the name of the directory for the
VRTX code base i$(RTS_HOVE) / src/ t ar get / VRTX4. In a TargetRTS port to a native com-

piler tool chain these definitions are probably not required.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build the TargetRTS for
the platform and to build ObjecTime models on this new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The command line interface
for C compilers differs significantly, particularly for cross-compilers such as the Microtec C compiler. It
is in this file that we make definitions for command line options for the compiler and linker and over-
ride other definitions made #®(RTS_HOME) / | i bset/ def aul t. nk. See “Default make-

file” on page 36 for details. In any port of the TargetRTS there are certain commands required in the tool

114 TargetRT Sfor C Porting example Porting Guide

Introduction

chain in order to support the building of the TargetRTS. Table 11 illustrates these required commands,
the Unix equivalent, and the Microtec variant.

Table 11 Compiler tool chain requirements

Command Unix Microtec
library archive ar ar.pl (aperl script)
C++ Compiler cC mccppe
Linker Id-r Inkppc -i
Pre-linker Id-r-o Inkppc -i -0
Shared library builder CC-G-ztext-o mecppc -G -z text -0
VENDOR n/a Microtec

The library archive command (ar) for the Microtec tool chain requires the use of a script to work the
way the TargetRTS build requires. The Microtec development environment does not supply anar com-
mand. Instead it providesal i b command that behaves differently than thear command. A Perl script
file,ar . pl that residesin the directory $(RTS_HOME) / | i bset / ppc603- M cr ot ec-
1. 3C, was written to provide a wrapper around the | i b command. Thisis an exception to other sup-
ported TargetRTS platforms but illustrates a possible pitfall when moving to a new platform. Another
Perl script file, | d. pl that resides in the directory $(RTS_HOME) / | i bset / ppc603-
M cr ot ec- 1. 3C, was written to provide awrapper around the | nkppc -i command. This
script takes | nkppc -1 asargumentsand is invoked to link an ObjecTime Developer update. The
libset makefile must define the VENDOR variable that instructs the error parser which type of compiler
is being used. The error parser uses this information to decode error messages returned by the compiler
to aformat compatible with the ObjecTime Developer tool set.

Another important role of the libset makefile is the definition of command line options. Table 12 illus-
trates the typical subset of command line options, the Unix equivalent, and the Microtec variant.

Table 12 C++ Command line options

Option Unix Microtec
DEBUG _TAG -g -g -Gd -Gf -Gm -Gs
LIBSETCCFLAGS -p603 -DPPC
LIBSETCCEXTRA -0 -0 -Qf
INCLUDE_TAG -l -J
DIR_TAG -l -l
LIB_EXT .a lib

a. The -Qfs option suppresses the display of the source file line number
for diagnostic messages.

Porting Guide TargetRTSfor C Porting example 115

Introduction

The compiler options may vary greatly from one platform to another, but must support some basic fea-
tures. Read the compiler documentation carefully and review some of thel i bset . mk for other
TargetRTS platforms for guidance. A list of required features follows:

« to compile source files into object files only (that is, not to the link phase), typically the ‘-c’ option
« to place the object file in a desired directory and file name, typically the ‘-0’ option
e to produce shared libraries, typically the -G’ option

« tolink and place the executable in a desired directory and file name, typically the ‘-0’ option for the
link phase

e to turn on debugging instructions in the compiled code, typically the ‘-g’ option
« to specify the pathname of include files, typically the ‘-I' option

« to specify the pathname of libraries, typically the ‘-L’ option

« to specify the libraries to link, typically the ‘-I' option

e toturn on code optimization, typically ‘-O’ option and sub-options

The contents of the libset makefi®(RTS_HOME) / | i bset / ppc603- M crotec-1. 3C/
|'i bset. nk , for Microtec compiler is as follows:

VENDCR = Mcrotec

AR _CMD = $(PERL) $(RTS_HOVE)/li bset/ $(LI BRARY_SET)/ ar. pl

CcC = nccppc

LD = $(PERL) $(RTS_HOVE) / | i bset/ $(LI BRARY_SET)/Id. pl \
| nkppc -i

SHLIB CMD = $(CC) -G -z text -0
LI BSETCCFLAGS = -p603 - DPPC
LI BSETCCEXTRA = -0 - s

SHLI BS =
Of LIB.TAG = -11lib

LIBEXT =.lib

| NCLUDE_TAG = -J

ALL_OBJS LI ST = 9(ALL_OBJS_LI STFI LE)
DEBUG_TAG =-g-& -& -Gn-Gs

Target makefile

The target makefile is used to make definitions specific to the target operating system and the
TargetRTS configuration. These are usually specific command line options for the compiler and linker
to define such things as include directories for the target OS and libraries and their pathnames. These
definitions must be common to all VRTX targets. The contents of the target makefile,
$(RTS_HOVE) / t ar get / VRTXAT/ t ar get . nk, is as follows:

TARGETCCFLAGS = $(| NCLUDE_TAG) $(SPECTRA) / target /i ncl ude \
$(DEFI NE_TAG) ti meout =ot Ti meout

116 TargetRT Sfor C Porting example Porting Guide

Introduction

Configuration makefile

The configuration makefile is used to make definitions required by the operating system and compila-
tion environment together. In the case of VRTX, the extension to be used at the end of the filename for
the final executable is defined here. The content of the configuration makefile, $(RTS_HOME) /
confi g/ VRTX4T. ppc603- M crot ec-1. 3C/ confi g. nk, isasfollows:

EXEC EXT = .X

TargetRTS configuration definitions

The configuration definitions for the TargetRTS are found in the include file $(RTS_HOME) /
i ncl ude/ RTConf i g. h. The definitions in this file are overridden by $(RTS HOVE) / t ar -
get / VRTX4T/ RTTar get . h. These definitions are used to enable and disable various features in
the TargetRTS. The content of the file $(RTS_HOME) / t ar get / VRTX4AT/ RTTar get . h isas
follows:

#ifndef _ RTTarget _h_
#define _ RTTarget _h__ included
#def i ne USE_THREADS 1
#defi ne RSLMULTI THREADED RSLTRUE
/* Following definitionis due to PR 7890 */
#i f def RSLTHREAD_ RETURNVAL
#undef RSLTHREAD RETURNVAL
#endi f
#def i ne RSLTHREAD_ RETURNVAL
#defi ne RSLTO RSLTRUE
#def i ne RSLDEBUG RSLTRUE
#defi ne RSLTI MERS RSLTRUE
#defi ne RSLACTOR_TI MERS RSLFALSE
#define DEFAULT_MAIN_ PRIORITY 75
#defi ne DEFAULT_LAYER PRIORITY 73
#defi ne DEFAULT_TI MER PRICRITY 70
#def i ne DEFAULT_DEBUG PRI ORI TY 60
#define __ READY_EXTENSI ONS__
#def i ne RSL_OVERRI DE_BASI C_SI ZES
/ *

*

* typically long

*/
t ypedef unsigned | ong RSLMenorySi ze;
t ypedef unsigned | ong RSLTi neout Si ze;

/*

* typically short or int

* -- each actor may only have 64k-1 of |ocal data
*/

Porting Guide TargetRTSfor C Porting example 117

Introduction

typedef unsigned short RSLDat aSi ze;
*

iypedef unsi gned short RSLFi el dOf f set ;

*

t;pedef unsi gned | ong RSLFi el dOf f set ; /* for VRTX-MRI C conpiler */
*

/* typically unsigned short

* -- there may only be 64k-2 ports

* -- there may only be 64k-2 actors

* -- there may only be 64k-2 threads

*/

/* override RSLPortlndex definition for VRTX - PR7804, PR7808 */
typedef short RSLPor t | ndex;

#defi ne RSLMaxPort 32767

typedef unsigned short RSLActorl ndex;

#defi ne RSLMaxAct or 65535

typedef unsigned short RSLThreadl ndex;

#defi ne RSLMaxThread 65535

typedef unsigned short RSLMessagel ndex;

#def i ne RSLMaxMessages 65535

typedef unsigned short RSLTCBI ndex;

#defi ne RSLMaxTCBs 65535

/*

* typically char

-- there may only be 255 events per protocol
-- there may only be 255 ports references per actor
-- there may only be 255 Actor C asses

-- there may only be 255 states in each actor
-- there may only be 255 port cl asses

* % Xk * X

/

typedef unsigned short RSLBool;

t ypedef unsigned short RSLFI ags;

#def i ne RSLMaxMessagePriority 65535
typedef unsigned short RSLMessagePriority;
#def i ne RSLSi gnal Event 65535

typedef unsigned short RSLSi gnal |l ndex;
#defi ne RSLMaxAct or Cl asses 65535
typedef unsigned short RSLActor Type;
typedef unsigned short RSLStat el ndex;
#defi ne RSLMaxPortd asses 65535

typedef unsigned short RSLPort Type;
#def i ne RSLMaxFi el dTypes 65535

typedef unsigned short RSLFi el dType;
#endi f /* #ifndef _ RTTarget _h__ */

118 TargetRT Sfor C Porting example Porting Guide

Introduction

Code changes to TargetRTS classes

Most ports to new targets require some minor changes to the TargetRTS code. These changes typically
apply to operating system features for thread (task) creation and destruction, mutual exclusion and syn-

chronization and time services.

The required changes to the TargetRTS source for VRTX 4 and the Microtec compiler are located in the
$(RTS_HOME) / src/ t ar get/ VRTX4 directory. These files override the versions in various
directoriesin $(RTS_HOVE) / sr c. To override a definition from the source directory a new subdi-
rectory is created in $(RTS_HOME) / src/ t ar get / VRTXA4.

The required changes to the TargetRTS are too large to include in this document. Table 13 contains a
summary of the required changes to each file.

Table 13 Required changes to TargetRTS source

Class File Change and Description

MAIN main.c

DEBUG debugio.c RSL_next Char function is overridden to support getting the next
character from Input stream

INITSTOP TGTinit.c RSL_Tar get _St ar t up function isoverridden to support relevant
initialization during startup

TCP lookup.c cRSL_| ookup function is overridden due to differencesin
get host bynane function

THREAD RTThread.c The functions RSLnut ex_i ni t, RSLnut ex_1 ock,
RSLmut ex_unl ock, RSLsemaphore_init,
RSLsenaphor e_wai t, RSLsenaphor e_post,
RSLt hr _cr eat e are overridden.

Building the new TargetRTS

Once the setup script, makefiles and source are complete the TargetRTS is ready to be built. To build the
TargetRTS for the VRTX-Microtec target, type the following in the $(RTS_HOME) / sr ¢ directory:

make VRTXAT. ppc603-M crotec-1.3C

This will create a directory $(RTS_HOME) / bui | d- VRTX4T. ppc603-M crotec-1. 3C
which will contain the dependency file and object files for the TargetRTS. If the build compl etes suc-
cessfully the resulting ObjecTime libraries will be placed in the $(RTS_HOME) / | i b/

VRTX4T.ppc603-Microtec-1.3C directory.

Porting Guide

TargetRTSfor C Porting example 119

Introduction

120 TargetRTSfor C Porting example Porting Guide

Part 4
Index

A

actor classes, C++ 25

actor timers 19, 87

adding new filesto the C TargetRTS 66
adding new filesto the TargetRTS 52
application command line arguments 102
arguments 49

availability of Perl on compilation host 61

B
before starting the port 25
building the new TargetRTS 111, 119

C
C source and header files, creating and editing 8
C TargetRTS
adding new files 66
configuration definitions 55
implementing timer services 77
run-time semantics 66
C TargetRTS configuration definitions 55
C++ Actor Classes 25
C_HelloWorld within ObjecTime, activating 10
C_HelloWorld, compiling and running for your target
10
Classes
RTCondVar
extending the Mutex 51
RTDebuggerinput 51
RTDiagStream 51
RTIOController 52
RTIOMonitor 52
RTMain 49
target-specific methods 49

RTMutex 50
protecting shared resources 50
RTSyncObject 51
RTTcpSocket 51
RTThread
supporting multi-threading 50
RTThread Constructor 50
RTThread constructor 50
code changesto TargetRTS classes 110, 119
common overrides required for anew target 49, 62
common problems and pitfalls 99
compileand run 11
compile and run hello.c for your target 4
compileand runthe C_HelloWorld model for your tar-
get 10
compile the TargetRTS for your target 10
compiler optimizations 99
compiling and running hello.c for your target 4
compiling and running the C_HelloWorld model for
your target 10
config makefile 39
config makefile, creatinga 7
configuration makefile 108, 117
COUNT 46, 55
CRSL Compliance Tests 95

D

Debug phase 13

Debug run-timetesting 13
Debugger 47

Debugger statistics 46
Debugging 28

Default makefile 36
DEFER_IN_ACTOR 46
definitions, platform-specific 45

Porting Guide

A 123

Index

directories, creating and editing 6
disabling TargetRTS features for performance 97

E

engueueing external events 75

entryPoint function 50

environment setup 3

environment variable setup script, creatingan 7
environment variables, creating target-specific 3
environment variables, noting the value of existing 3
exampl e platform names used by the TargetRTS 32
exiting application 102

external events, enqueueing 75
EXTERNAL_LAYER 46

F
Filemain.cc 52
FiveStates update 95
floating point operations 28
functions
entryPoint 50
gethostbyname() reentrancy 102
Main 49, 62
RSLCancelTimer 76
RSLDequeueTimer 76
RSLGetFirstTimeout 76
RSLGetTimerServiceActor 77
RSL RegisterExternalInterface 74
RSL RegisterMessageSignallinginterface 75
RSLRegisterTimerServices 77
RSLThreadMap 67
RTOS suppliesmain() 101
targetShutdown 50
targetStartup 49

G

generated code
compilation supported by makefiles 34
gethostbyname() reentrancy 102

H
hello.c, compiling and running for your target 4
HellowWorld update 95

I
Implementaion
platform-specific 46, 55
implementing timer servicesinthe C TargetRTS 77
install all required target OS software on the host and
target 3
INTEGER_POSTFIX 46
Integrated IPC and timers 18
Integrated timers 18

libset
makefiles 39
name, componentsof 5, 33
platform name, part of 31
libset makefile 39, 106, 114
libset makefile, creating the 8
libset name 5, 33
libset name, choosinga 5
linking problems 99
local timers 18, 77
LOG_MESSAGE 46

M
Main function 49, 62
mainloop 66
makefile fragments 59
makefiles 34
config, template 39
libset,template 39
sequencing of 35
target 38
TargetRTS, changes 36
typical target, template 38
makefiles, creating 106, 114
makefiles, creating and editing 7
MANIFEST.cfile 66
MANIFEST.cpp File 52
MANIFEST.cppfile 52, 66
memory management 62
message priority 68
message processing 72
message queues 69
Method RT Timespec::getclock() 50
modify $RTS HOME\target\<TargetName>\RTTar-

124 E

Porting Guide

Index

geth 13

modifying the error parser 91
multi-threaded C TargetRTS 70
multi-threaded C TargetRTS message processing 73
multi-threaded libraries, creating 15
multi-threaded mode

support for 50
multi-threaded RTOS interface 62
Mutex

methods to protect shared resources 50

N

names, choosing 4

new configuration, creatinga 11

new error parser, creatinga 91

new files, adding to the C TargetRTS 66
new files, adding to the TargetRTS 52

@)
OBJECT_DECODE 47
OBJECT_ENCODE 47
ObjecTime -How to Contact
Support Hotline, Fax, E-mail iv
ObjecTime support, what to do before calling 28
OS capabilities 25
OS knowledge and experience 25
OTRTSDEBUG 47

P
PATH variable 33
Performance update 95
Perl scripts, creating and editing 7
Perl scripts, making copiesof 7
Perl, availability on acompilation host 61
Perl, if the compilation platform does not have 16
phases of aport 31
platform

example names 32

two-part name

target and libset 5, 27, 31

platform name, choosinga 5, 31, 105, 113
platform name, determining the 5
platform-specific

definitions 45

implementation 46, 55

platform-specific implementation 48, 61

platform-specific includefiles, creating 9

platform-specific sourcefiles, creating 8

port, major steps for implementing the 31

porting the error parser phase 16

porting the TargetRTS 31

porting the TargetRTSfor C 3, 55

porting the TargetRTS for C++ 45

porting timers phase 17

problems and pitfalls with target TCP/IP interfaces
102

problems and pitfalls with target toolchains 99

problems and pitfalls with TargetRTS/RTOS interac-
tion 100

R

Real-time clock 101

regenerating make dependencies 52, 66
reusing an existing error parser 91
RSLCancelTimer 76
RSLDequeueTimer 76

RSL GetFirstTimeout 76
RSLGetTimerServiceActor 77

RSL RegisterExternalInterface 74

RSL RegisterMessageSignallinginterface 75
RSLRegisterTimerServices 77
RSLThreadMap 67

RTOS supplies main() function 101
RTREAL_INCLUDED 47

RTTarget.h, creating 8

RTThread.c contents 63
Run-to-completion 74

S
Select() statement 102
setting the compiler vendor in the libset.mk file 91
setup script

TargetRTS compilation to the platform 7, 33
setup script, creatinga 7, 33, 105, 113
signal handlers 101
simple model execution phase 3
simple non-ObjecTime program on target 27
single-threaded C TargetRTS 69
single-threaded C TargetRTS message processing 72
standard input/output functionality 28
synchronization primitives 100

Porting Guide

N 125

Index

system include files 100 threaded phase 15

threaded phase run-timetesting 16
T threads configuration, editing the 11
target Tool chain functionality 25

Training 28

name, components of 32 X
tuning the TargetRTS 97

platform name, part of 31
target compiler optimizations 97
Target makefile 38 U
target makefile 38, 108, 116 USE THREADS 46
target makefile, creating the 8
target name 32
target name and target base name, choosinga 4
Target Observability phase 13
Target Observability run-timetesting 14
Target Observability startup and shutdown 62
target operating system optimizations 97
TargetRTS

adding new files 52

constants/macros and their default values 46, 55

exampl e platform names used by the 32

libraries

compilation supported by makefiles 34

porting it to anew platform 31

porting the 31

specific performance enhancements 98

testing 95

tuning 97
TargetRTS classes, code changesto 110, 119
TargetRTS configuration definitions 45, 109, 117
TargetRTS features, disabling for performance 97
TargetRTSfor C

porting the 3

testing 95
TargetRTS for C++

porting the 45

testing 95
TargetRTS makefiles 34, 36
targetShutdown function 50
target-specific environment variables, creating 3
targetStartup function 49
tasks, processes, and threads 66
TCP/IP functionality 28
testing the TargetRTS 95
testing the TargetRTSfor C 95
testing the TargetRTS for C++ 95
thread creation 100

126 T Porting Guide

OBRJECIIME"

www.objectime.com

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

	About this document
	ObjecTime support

	Porting theTargetRTS for C workbook
	Porting the TargetRTS for C workbook
	1.0 Simple model execution phase
	1.1 Environment setup
	1.2 Choose names
	1.3 Create directories
	1.4 Create and edit Perl scripts
	1.5 Create and edit makefiles
	1.6 Create and edit C source and header files
	1.7 Compile the TargetRTS for your target
	1.8 Compile and run the C_HelloWorld model for your target

	2.0 Debug phase
	2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
	2.2 Debug run-time testing

	3.0 Target Observability phase
	3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
	3.2 Target Observability run-time testing

	4.0 Threaded phase
	4.1 Creating the multi-threaded libraries
	4.2 Threaded phase run-time testing

	5.0 Porting the error parser phase
	5.1 If the compilation platform does not have Perl

	6.0 Porting timers phase
	6.1 Local timers
	6.2 Actor timers

	Porting guide reference
	Introduction
	Before starting the port
	OS knowledge and experience
	Tool chain functionality
	OS capabilities
	Simple non-ObjecTime program on target
	TCP/IP functionality
	Floating point operations
	Standard input/output functionality
	Debugging
	Training
	What to do before calling ObjecTime support

	Porting the TargetRTS
	Phases of a port
	Choose a platform name
	Target name
	Libset name
	Create a setup script
	TargetRTS makefiles

	Porting the TargetRTS for C++
	TargetRTS configuration definitions
	Platform-specific implementation
	Adding new files to the TargetRTS

	Porting the TargetRTS for C
	C TargetRTS configuration definitions
	Platform-specific implementation
	Adding new files to the C TargetRTS
	C TargetRTS run-time semantics
	Implementing timer services in the C TargetRTS

	Modifying the error parser
	Setting the compiler vendor in the libset.mk file
	Reusing an existing error parser
	Creating a new error parser

	Testing the TargetRTS
	Testing the TargetRTS for C++
	Testing the TargetRTS for C

	Tuning the TargetRTS
	Disabling TargetRTS features for performance
	Target compiler optimizations
	Target operating system optimizations
	Specific TargetRTS performance enhancements

	Common problems and pitfalls
	Problems and pitfalls with target toolchains
	Problems and pitfalls with TargetRTS/RTOS interaction
	Problems and pitfalls with target TCP/IP interfaces

	Appendices
	TargetRTS for C++ porting example
	Introduction
	Choosing the platform name
	Create setup script
	Create makefiles
	TargetRTS configuration definitions
	Code changes to TargetRTS classes
	Building the new TargetRTS

	TargetRTS for C Porting example
	Introduction
	Choosing the platform name
	Create setup script
	Create makefiles
	TargetRTS configuration definitions
	Code changes to TargetRTS classes
	Building the new TargetRTS

	Index
	Index

