
Installation Guide
Rational Rose RealTime

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Portions Copyright ©2000-2001, Compaq Computer Corporation. All rights reserved.

Portions Copyright ©1992-2000, Summit Software, Inc. All rights reserved.

Part Number: 800-024514-000

Version Number: 2001A.04.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE
OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED,
COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL
SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY
MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company, ClearCase, ClearCase
Attache, ClearCase MultiSite, ClearDDTS, ClearQuest, ClearQuest MultiSite, DDTS, Object Testing,
Object-Oriented Recording, ObjecTime & Design , Objectory, PerformanceStudio, ProjectConsole,
PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite, RequisitePro,
RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The Rational Watch, AnalystStudio,
ClearGuide, ClearTrack, Connexis, e-Development Accelerators, ObjecTime, Rational Dashboard,
Rational PerformanceArchitect, Rational Process Workbench, Rational Suite AnalystStudio, Rational
Suite ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational Unified
Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or registered trademarks
of Rational Software Corporation in the United States and/or in other countries. All other names are
used for identification purposes only, and are trademarks or registered trademarks of their respective
companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active Directory,
ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum,
BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf, ClearType, CodeView, DataTips,
Developer Studio, Direct3D, DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ,
DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, Mapbase,
MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft eMbedded Visual Tools logo,
the Microsoft Internet Explorer logo, the Microsoft Office Compatible logo, Microsoft Press, the
Microsoft Press logo, Microsoft QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo,
Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne,
Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Virtual Basic, the Virtual Basic
logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, among others,
are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or
in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java, Java
3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and SunPCi, among others, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc.
Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any
product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Portions of this product incorporate the expat XML parser 1.0 under the Mozilla 1.1 license available
at http://www.mozilla.org/MPL/MPL-1.1.txt. The source code version of the expat XML parser is available
at http://www.jclark.com/xml/expat.html.
ii Installation Guide, Rational Rose RealTime

http://www.mozilla.org/MPL/MPL-1.1.txt
http://www.jclark.com/xml/expat.html
http://www.jclark.com/xml/expat.html

PATENT

Portions covered by U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701 and
5,574,898 and 5,649,200 and 5,675,802.

U.S. Patents Pending.

International Patents Pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the
applicable Rational Software Corporation license agreement and as provided in DFARS 277.7202-1(a)
and 277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR
52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license
agreement. Rational Software Corporation expressly disclaims all other warranties, express or
implied, with respect to the media and software product and its documentation, including without
limitation, the warranties of merchantability or fitness for a particular purpose or arising from a
course of dealing, usage, or trade practice.
Installation Guide, Rational Rose RealTime iii

iv Installation Guide, Rational Rose RealTime

Contents

Chapter 1 Introduction 1
Welcome to Rational Rose RealTime 1
Release Notes 1
Installation Guide Updates 1

Overview of Rose RealTime Capabilities 2

What’s New? 3

How to Get Help 3
Contacting Rational Technical Support Through the Help Menu 3
Contacting Rational Technical Support by Email or Telephone 4
License Support Contact Information 5
Evaluation and Ordering Information 7
Rational Web Site 7

Directory Contents 7

Accessing the Online Help System 9

Chapter 2 Platform and Toolchain Requirements 11

Platform Requirements — Windows NT 11

Platform Requirements — Windows 2000 11

Platform Requirements — UNIX 12

Toolchain Requirements 12
Help Viewer (Windows Platforms Only) 12
Installation Guide, Rational Rose RealTime v

Compiler 13
Real-time Operating System 13

Supported Host Platforms 13
Creating Executables for Hosts without Toolset Support 16

Generating an executable without a common file system 17

Adding a Printer on UNIX 18

Chapter 3 Installing Rational Rose RealTime on Windows 21

Upgrade Information 21

Installation Instructions 21
Installing on a Network Drive 24

Testing your Environment 25

Chapter 4 Installing Rational Rose RealTime on UNIX 27

Upgrade Information 27

Installation Instructions 28
To Install Rational Rose RealTime on UNIX: 28

Setting Up a User Workstation 30
Environment variables 30
Additional settings 31

Chapter 5 Understanding Rose RealTime Licenses 33

How Licenses Work 33

FLEXlm License Server 34
FLEXlm components 34
License manager daemon (lmgrd) 34
Vendor daemon 35
License key file 35
Application program 36
License activation process 36

Licensing on UNIX 37
Running the LMGRD from a Command Prompt 37

Example 37
vi Installation Guide, Rational Rose RealTime

Administration commands 38

The License File 38
Format 39

Chapter 6 Installing License Keys 41

Installing a Startup or Permanent License on Windows 41
Installing a Permanent License on Windows 43
Installing the License Key 44
Installing a Floating License Key on a UNIX server 44

Installing a Startup or Permanent License on UNIX 45
Installing a Startup License on UNIX 45
Installing a Permanent License on UNIX 46
Installing the License Key 47

Integration With Rational Suites Licensing 48

Troubleshooting 48
Windows 48
UNIX server 49
UNIX 50

Chapter 7 Migration 53

Migrating from Rational Rose 53
User Interface Differences 53
New Modeling Language Elements 55
Code Generation, Building, and Running 56
Opening Models from Rational Rose 56
List of Importation Log Messages 57
Limitations and Restrictions 57
Importing Rational Rose Generated Code 58

Limitations and restrictions 59

Migrating from ObjecTime Developer 5.2/5.2.1 59
Terminology 59
User Interface Differences 61
Compilation 62
Installation Guide, Rational Rose RealTime vii

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1 62
File Format Changes 63
Source Control Migration 63

Migrating customized CM scripts 64
Language Add-in Changes 65
Running Two Different Releases of Rose RealTime 65
Workspace Files 65
RRTEI Changes 66

C Language Migration 68
Converting a C++ Model to C 68
ObjecTime Developer for C Migration 69

Importing models 69
Converting global signals to local signals 70
Timing service 71

C++ Language Migration 71
Backwards Compatibility Mode 71

Migrating in two steps 72
What does backwards compatibility do? 72
Compiler will find all errors 73
Building a model in backwards compatibility mode 73
Full migration 76

Changes 76
C++ UML Services Library 76
Code generation and compilation 76
New classes for protocols, signals, and ports 77
Type safety explained 77
How has this been changed? 77
API changes summary 78
Asynchronous sends 79
Synchronous sends 80
Message reply 80
Defer, recall, and purge 81
Port indexes 82
Discriminating in code the signal of a received message 82
Forwarding 83
RTPortRef operations 85
RTTimespec parameters 86
RTSignalNames 87
Macros 87
viii Installation Guide, Rational Rose RealTime

External Layer Service (ELS) 87
Code Generation 87

Components 88
Directory structure 88
Parameters available in transition code 88
Port cardinality cannot be unspecified 89
Makefile overrides changes 89

Model Properties 89
Advanced property editors 90

Chapter 8 Integration Notes 91

Configuration Management (CM) Tools Integration 91
ClearCase on a UNIX Server and Clients on both NT and UNIX 92
Migrating from Rational Rose and ObjecTime Developer 92

Requirements Management Tools Integration 92
Rational SoDA for Word 93
Rational RequisitePro 93

Unit Testing Tools Integration 93
Rational Purify 93

Adding options to Purify on UNIX 94

Microsoft Development Environment 94

Integration with Rational Robot 94

Naming Directories 95

Chapter 9 Starting Rational Rose RealTime 97

Starting Rose RealTime under Windows 97

Starting Rose RealTime on UNIX 97
Start-up options for UNIX 98

Rose RealTime for UNIX and the X Window System 99
X clients 99
X servers 99
X window managers 99
Input focus (active window) policy 100
Window order policy 100
Installation Guide, Rational Rose RealTime ix

Automating Rose RealTime 101

Command Line Options 101

Chapter 10 Add-ins 103

Web Publisher 103
Description 103
Suggested workflow 104
Limitations 104

Model Integrator 105
Description 105
Suggested workflow 106

Rose C++ Analyzer 107
Description 107
Suggested workflow 107
Limitations 109

Chapter 11 Uninstalling Rational Rose RealTime 111

Windows 111

UNIX 111
x Installation Guide, Rational Rose RealTime

Chapter 1

Introduction

Welcome to Rational Rose RealTime

Rational Rose RealTime is a comprehensive visual development
environment that delivers a powerful combination of notation,
processes, and tools to meet the challenges of real-time software
development. Through the industry-standard Unified Modeling
Language (UML), real-time design constructs, code generation, and
model execution capabilities, Rational Rose RealTime addresses the
complete lifecycle of a project: from early use case analysis, through to
design, implementation, and testing.

Rational Rose RealTime is designed for simple insertion into your
software development environment, processes, and workflows. Rose
RealTime includes seamless integration with other Rational products
and support for a variety of commercial real-time operating systems.

This guide provides the necessary information to install Rational Rose
RealTime in your environment.

Release Notes

See the Rational Rose RealTime Release Notes for information on
system requirements, known limitations, documentation updates, and
troubleshooting information.

Installation Guide Updates

For the latest documentation updates, please refer to the Rational Rose
RealTime web site:

http://www.rational.com/support/
Installation Guide, Rational Rose RealTime 1

Chapter 1 Introduction
Navigate to the Documentation link.

Overview of Rose RealTime Capabilities

Modeling:

� Use Case Modeling

� Class Modeling

� Collaboration (role) Modeling

� Interaction Modeling (sequence diagrams)

� Component Modeling

� Deployment Modeling

Application Generation:

� C++ Language Support

� Java Language Support

� C Language Support

� Data Class Code Generation

Visual Execution:

� Host Execution

� Target Execution

� Model Visualization (Animation)

� Model Debugging (Tracing, Injection, Inspection)

Tools Interworking:

� Rational ClearCase

� Microsoft Visual SourceSafe (Windows only)

� SCCS (UNIX only)

� RCS (UNIX only)

� Rational SoDA (requires Rational Rose RealTime domain)

� Rational RequisitePro

� Rational Purify
2 Installation Guide, Rational Rose RealTime

What’s New?
Model Documentation:

� Report Generation (Windows only)

� Web Publisher

What’s New?

These are the new features included in this release of Rose RealTime.

� Support for Automated Testing

❑ Rational Quality Architect - RealTime

� Support for Additional platforms and languages

❑ now includes Java language support

❑ new host support

– Solaris 2.8

� Team Development Improvements

❑ Model Integrator improvements

❑ enhanced model sharing with shared interface packages

� Usability Improvements

❑ improved start-up with a customizable frameworks wizard

❑ runs in English, supports non-English data on German,
French, Italian, Swedish, and Japanese operating systems

How to Get Help

This section describes procedures for interacting with Rational
Software Corporation's technical support services.

Contacting Rational Technical Support Through the Help Menu

With Rational Rose RealTime, you can email problem reports, feature
requests, or support requests to the Rational Software Technical
Support department that services your location, directly from the Rose
RealTime application’s Help menu.

For details on how to use this feature, see the Technical Support
chapter of the Rational Rose RealTime Release Notes.
Installation Guide, Rational Rose RealTime 3

Chapter 1 Introduction
Contacting Rational Technical Support by Email or Telephone

When contacting Rational Technical Support by email or by telephone,
please be prepared to supply the following information:

� Name, telephone number, and company name

� Product name and version number

� Operating system and version number (for example, Windows NT
4.0, Windows 2000, Solaris 2.6/2.7/2.8, or HP-UX 10.20)

� Computer make and model

� Your case id (if you're calling about a previously reported problem)

� A summary description of the problem, related errors, and how it
was made to occur

If your organization has a designated, on-site support person, please
try to contact that person before contacting Rational Technical
Support.

You can obtain technical assistance by sending electronic mail to the
appropriate e-mail address. Electronic mail is acknowledged
immediately and is usually answered within one working day of its
arrival at Rational. When sending an email place “Rational Rose
RealTime” in the subject line, and in the body of your message include
a description of your problem.

When sending email concerning a previously-reported problem, please
include in the subject field: “CaseID: v0XXXXX”, where XXXXX is the
caseid number of the issue. For example:

CaseID: v0176528 New data on rational rose realtime install issue

Sometimes Rational technical support engineers will ask you to fax
information to help them diagnose problems. You can also report a
technical problem by fax if you prefer. Please mark faxes “Attention:
Technical Support” and add your fax number to the information
requested above.

Telephone and fax numbers for Rational Technical Support are
contained in the following table. If you have problems or questions
regarding licensing, please see “License Support Contact Information”
on page 5.
4 Installation Guide, Rational Rose RealTime

How to Get Help
Table 1 Support Telephone and Fax

Email addresses for Rational Technical Support are listed in the
following table.

Table 2 Support Email

License Support Contact Information

If you have a problem or questions regarding the licensing of your
Rational Software products, please contact the Licensing Support
office nearest you.

Telephone numbers for license support are listed in the following table.
Ask for, or select, Licensing Support.

Region Telephone
Number

Fax Number

Americas 800-433-5444 408-863-4300

Asia Pacific (includes support
for Japan, China, India,
Korea, Taiwan)

+61-2-9419-0111 +61 2 9419 0123

Europe, Middle East, and
Africa (includes support for
Israel)

31 (0)20 4546 200 +31 23 569 4302

Other worldwide locations 408-863-5000

Region Email Address

Americas and other worldwide
locations

support@rational.com

Asia Pacific (includes support
for Japan, China, India,
Korea, Taiwan)

support@apac.rational.com

Europe, Middle East, Africa
(includes support for Israel),
and Scandinavia

support@europe.rational.com
Installation Guide, Rational Rose RealTime 5

Chapter 1 Introduction
Table 3 License Support Telephone and Fax

Email addresses for license support are listed in the following table.

Table 4 License Support Email

Region Telephone Number Fax Number

Americas 800-433-5444 781-676-2510

Europe, Israel, and Africa +31 23 554 10 62 +31 23 554 10 69

North Asia Pacific
(Mainland China,
Hong Kong, Taiwan)

+852 2143 6382 +852 2143 6018

Korea +82 2 556 9420 +82 2 556 9426

South Asia Pacific Australia,
New Zealand, Malaysia,
Singapore, Indonesia,
Thailand, The Philippines,
Vietnam, Guam and India

+612 9419 0100 +612 9419 0160

Japan +81 3 5423 3611 +81 3 5423 3622

Region Email Address

Americas lic_americas@rational.com

Europe, Israel, and Africa lic_europe@rational.com

North Asia PacificMainland
China, Hong Kong, Taiwan,
and Korea

lic_apac@rational.com

South Asia Pacific Australia,
New Zealand, Malaysia,
Singapore, Indonesia,
Thailand, The Philippines,
Vietnam, Guam and India

lic_apac@rational.com

Japan lic_japan@rational.com
6 Installation Guide, Rational Rose RealTime

Directory Contents
Evaluation and Ordering Information

United States and Canada

Rosebud@rational.com

1-800-728-1212

Other Worldwide locations

Rosebud@rational.com

+1-408-863-9900

Rational Web Site

You can contact technical support and obtain the latest product
information through our web site at:

http://www.rational.com/support

Directory Contents

After installation of the main Rose RealTime files has been completed,
the directory structure should be as follows. Please ensure that the
installation directory $ROSERT_HOME on UNIX and
%ROSERT_HOME% on Windows NT and all its associated files are
readable, and not writable, by all users of Rose RealTime. The directory
and its sub-directories contain all the individual files that comprise the
particular release. Some of the files and directories are:

ROSERT_HOME

This is the top level directory.

Help

This directory and its subdirectories contains the online Help.

bin

This directory contains the Rose RealTime executable and various
scripts. The bin directory also contains subdirectories for each of the
supported workstation platforms ROSERT_HOST.
Installation Guide, Rational Rose RealTime 7

Chapter 1 Introduction
license

This directory contains various files containing encrypted information
and is used by the License Manager in order to ensure that Rose
RealTime is being executed according to the End-User License
Agreement.

Scripts

This directory contains various Rose RealTime scripts.

C++ or C

This directory contains the libraries, header files, scripts relating to
code generation, and source files for the Services Library. For more
information regarding the Services Library see the Toolset Guide and
the programmer's guides.

RTJava

This directory contains the classes and scripts relating to code
generation in Java, See the Java Reference for more information.

AddIns

This directory contains the configuration information required by Rose
RealTime Add-ins.

Note: For the latest integration information and line-up details, please
consult the Rational Rose RealTime Release Notes.
8 Installation Guide, Rational Rose RealTime

Accessing the Online Help System
Accessing the Online Help System

Online Help and documentation for Rational Rose RealTime is provided
in Microsoft HTML Help format. You can load the online Help Viewer
from the Rose RealTime toolset.

Figure 1 Help menu and Welcome screen

The Help Viewer requires that Microsoft Internet Explorer (version 3.02
or later) be set up on a user’s computer. It is not required that Internet
Explorer be used as the system’s default browser, or that the Internet
Explorer icon be visible on the user’s desktop.

If you choose not to have Internet Explorer as the default browser, you
will need to run Hhupd.exe (in redist). This file is the distribution
executable that installs the run-time components needed for an HTML
Help Project, such as Hh.exe, Hhctrl.ocx, Itss.dll, and Itircl.dll.
Hhupd.exe is in the Redist folder of the HTML Help Workshop folder.

PDF versions of all the guides are available in the
ROSERT_HOME/Help directory.
Installation Guide, Rational Rose RealTime 9

Chapter 1 Introduction
10 Installation Guide, Rational Rose RealTime

Chapter 2

Platform and Toolchain Requirements

This section describes the platform and toolchain requirements for
running Rational Rose RealTime.

Note: Rational Rose RealTime is not supported on Windows 95 or
Windows 98.

Platform Requirements — Windows NT

The minimum supported configuration for running Rose RealTime on
Windows NT is:

� Windows NT 4.0, with service pack 6a

� Minimum Pentium 150 MHz. We recommend 500 MHz or faster
CPU

� Minimum 128 MB of RAM. We recommend 256 MB of RAM

� Minimum 325 MB of disk space for the Rose RealTime installation

� Minimum display 1024 X 768. We recommend 1280 X 1024 or
better

� Postscript printer for printing

� Browser requirement — Internet Explorer 5.01 or 5.5 or Netscape
Navigator 4.7 or 6.0. We recommend Internet Explorer 5.01 or 5.5

Platform Requirements — Windows 2000

The minimum supported configuration for running Rose RealTime on
Windows 2000 is:

� Windows 2000 Professional, with service pack 1
Installation Guide, Rational Rose RealTime 11

Chapter 2 Platform and Toolchain Requirements
� Minimum Pentium 150 MHz. We recommend 500 MHz or faster
CPU

� Minimum 128 MB of RAM. We recommend 256 MB of RAM

� Minimum 325 MB of disk space for the Rose RealTime installation

� Minimum display 1024 X 768. We recommend 1280 X 1024 or
better

� Postscript printer for printing

� Browser requirement — Internet Explorer 5.01 or 5.5 or Netscape
Navigator 4.7 or 6.0. We recommend Internet Explorer 5.01 or 5.5

Platform Requirements — UNIX

The minimum supported configuration for running Rose RealTime on
UNIX is:

� Solaris 2.6, Solaris 2.7, Solaris 2.8, or HPUX 10.20

❑ For Solaris operation, the minimum workstation is an
UltraSparc 10 with 500 MB or RAM. We recommend an
UltraSparc 60 with 600 MB or RAM. We recommend the Solaris
2.8 operating system.

❑ For HPUX operation, we support installation of the HP 700
series architecture

❑ Please see the Rational Rose RealTime website
(http://www.rational.com/support) for a list of the required
UNIX patches applicable to your operating system.

� The minimum is 500 MB or RAM. We recommend 600 MB of RAM

� Minimum 370 MB of disk space for the Rose RealTime installation

� Postscript printer for printing

Toolchain Requirements

Help Viewer (Windows Platforms Only)

The Help Viewer requires that Microsoft Internet Explorer (version 3.02
or later) be set up on your computer. For details, see “Accessing the
Online Help System” on page 9.
12 Installation Guide, Rational Rose RealTime

http://www.rational.com/products/rosert

Supported Host Platforms
Compiler

You must have a C++ compiler installed on your system to make use of
the code generation and execution capabilities for Rose RealTime.
Different compilers are required for host workstation and for embedded
system targets. The list of supported compilers and targets is provided
in “Supported Host Platforms” on page 13.

Real-time Operating System

If you are planning to deploy your model on a real-time operating
system, your operating system, hardware and tool lineup must be one
of the supported lineups listed in “Supported Host Platforms” on
page 13. If you do not have a supported lineup, you may be able to get
support for your lineup from a Rational RoseLink partner, or by
customizing the Rose RealTime Services Library for your target. For
instructions on customizing the Services Library and compiling for new
target platforms, see the C++, C, or Java Reference .

Supported Host Platforms

Table 5 shows the supported host platforms for this release of Rational
Rose RealTime.

Table 5 Host platforms

Note: Java generation on HPUX is not supported.

Toolset Host

Solaris 2.6

Solaris 2.7

Solaris 2.8

Windows NT 4.0

Windows 2000

HPUX 10.20
Installation Guide, Rational Rose RealTime 13

Chapter 2 Platform and Toolchain Requirements
A pre-defined set of the Rose RealTime UML Services Libraries are
delivered as part of the Rational Rose RealTime product. The UML
Services Library is what allows standalone executable models to be
executed on target operating systems. These ports are fully tested by
Rational, and are covered by standard Rational support. A standard
port can be used to facilitate a port to your environment of choice.

Note: For a more detailed description of the Services Library, refer to the
programmer’s guides, or online Help.

A port is based on the following specifications (often called the
toolchain line-up):

� OS version

� Compiler version

� Processor type

If you are using a line-up other than the one tested by Rational and
listed in this guide, standard support will cover problems encountered
by customers only to the extent that the problem is reproducible on the
line-up listed in this guide.
14 Installation Guide, Rational Rose RealTime

Supported Host Platforms
Table 6 shows the supported platforms and targets.

Table 6 Supported platforms and targets

Host Platform(s) Target RTOS Compiler/Processor RTS DCS

Solaris Same Gnu 2.95.1, sparc
Gnu 2.8.1, sparc
Gnu 2.7.2.3, sparc
Sun C++ 5.0, sparc
Sun C 5.0, sparc

C++
C & C++
C++
C++
C

C++
C++
-
C++
-

HPUX Same Gnu 2.8.1, hppa
HP C++ 10.11, hppa

C & C++
C++

C++
-

Windows Same Visual C++ 5.0. x86
Visual C++ 6.0, x86

C & C++
C & C++

C+
+C++

Solaris pSOS 2.5 Diab 4.2b, ppc C++ C++

Solaris, HPUX C++ Microtec 1.3C, ppc C++ n/a

Windows VRTX 4.Baa Microtec 1.4, ppc C++ n/a

Solaris, Windows OSE 4.1.1 Diab 4.3f, ppc
GreenHills 1.8.9, ppc
GreenHills 2.0, ppc

C & C++
C
C

C++
-
-

Solaris OSE 4.1.1
SoftKernel

Gnu 2.95.1, sparc C & C++ n/a

Windows OSE 4.1.1
SoftKernel

Visual C++ 6.0, x86 C -

Solaris, Windows,
HPUX

Tornado 1.0.1
(VxWorks 5.3.1)

Cygnus 2.7.2.960126, M68040,
Cygnus 2.7.2.960126, ppc,
Cygnus 2.7.2.960126, x86

C & C++
C & C++
C & C++

-
C++
-

Windows Tornado 1.0.1 Cygnus 2.7.2.960126, I960 C++ -

Solaris, Windows,
HPUX

Tornado
2.0(VxWorks 5.4)

Cygnus 2.7.2.960126, M68040
Cygnus 2.7.2.960126, ppc
Cygnus 2.7.2.960126, x86
GreenHills 1.8.9, ppc
GreenHills 2.0, ppc

C & C++
C & C++
C & C++
C & C++
C & C++

-
C++
-
C++
C++

Solaris Tornado 2.0 Sim Cygnus 2.7.2.960126, sparc C++ C++

Windows Tornado 2.0 Sim egcs 2.90.29, x86 C++ C++

Solaris, Windows LYNX 3.1.0a gnupro-2.9-98r2, ppc C++ C++
Installation Guide, Rational Rose RealTime 15

Chapter 2 Platform and Toolchain Requirements
Creating Executables for Hosts without Toolset Support

For hosts without toolset support, create an executable on the host
target.

Note: The following steps assume that you are using a common file
system hierarchy and that paths are equivalent on both machines.

To produce an executable for a host without toolset support:

1. Select Tools > Options and click the C++ Compilation tab. Click Select in
the TargetConfiguration area.

2. In the Target Configuration dialog, select the appropriate target
configuration and click OK.

3. On the C++ Generation tab, ensure that CodeGenMakeType and
CodeGenMakeCommand are appropriately set for the toolset host.

Solaris LYNX 3.0.1 Cygnus 2.7.97r1, x86
Cygnus 2.7.97r1, ppc

C++
C++

C++
C++

Solaris Chorus Classix
4.0

egcs-2.91.66, ppc C++ -

Windows Windows CE sh3 eMbedded Visual C++ 3.0, sh3 C++ C++

N/C - native
compilation only

AIX 4.2.1 gnu 2.8.1 C++ -

N/C - native
compilation only

IRIX 6. gnu 2.8.1 C++ -

N/C - native
compilation only

Nucleus 1.1 Diab 4.2b C++ -

N/C - native
compilation only

Red Hat Linux 6.1 Egcs 2.91.66 C++ C++

N/C - native
compilation only

QNX 4.2.2 Watcom C++ 10.6 C++ -

N/C - native
compilation only

UnixWare 7.0.1 SDK 3.0 C++ C++

Table 6 Supported platforms and targets

Host Platform(s) Target RTOS Compiler/Processor RTS DCS
16 Installation Guide, Rational Rose RealTime

Supported Host Platforms
4. On the C++ Compilation tab, ensure that CompilationMakeCmd and
CompilationMakeType are appropriately set for the compilation
host.

5. Build the component with a build level set to “Generate”.

This creates the source files and makefiles, required for
compilation on the target host.

Note: If the computer that you are using to compile does not have a
common file system with the generated host, see “Generating an
executable without a common file system” on page 17.

6. From the build directory on the target host, set the environment
variables for the compilation line-up.

7. Invoke the appropriate make command for the line-up.

Note: If you build the source files on Windows NT and compile on
UNIX, see the steps below about converting Windows files to UNIX
type.

Generating an executable without a common file system

If you build the source files on Windows NT and are compiling on UNIX,
you must convert your files to UNIX type before you compile and
generate an executable.

To generate an executable without a common file system:

1. On the target host, a visible copy of the TargetRTS must be
available.

2. Copy the component directory into the target host file system.

3. Edit the build/makefile so RTS_HOME is set to location of the
TargetRTS.

4. If the source was generated on Windows NT, convert all files in the
component directory to UNIX type, using a utility such as
dos2unix.

This is especially important, if the target host does not support
CRLF (Carriage Return Line Feed) line terminators.

Note: It may be necessary to convert files in the TargetRTS directory,
especially if some files were edited on Windows NT.

5. From the build directory, set your environment variables
appropriately for the compilation line-up.

6. Invoke the appropriate make command for this line-up.
Installation Guide, Rational Rose RealTime 17

Chapter 2 Platform and Toolchain Requirements
Note: You can access a ClearCase server on UNIX with Rose RealTime
clients running on both Windows NT and UNIX workstations.

Adding a Printer on UNIX

Rose RealTime on UNIX uses MainWin (a Mainsoft product that allows
Windows applications to run in a UNIX environment). Special printer
specification is necessary to support the PSCRIPT.

MainWin uses the PSCRIPT keyword in win.ini to specify PostScript
support under UNIX, using syntax similar to the way one would use the
PSCRIPT driver in Windows. Below is a typical printer-related section
of a win.ini file. The win.ini entries are more or less the same for
MainWin as they are for Windows. An explanation of each section
follows the win.ini file lines.

[windows]
device=Apple LaserWriter II NT,PSCRIPT,LPT1
...

The device entry in this win.ini [windows] section defines the default
printer. It takes the following syntax:

device=outputdevicename,devicedriver,portconnection

The keyword PSCRIPT is used in place of the devicedriver.

[ports]
LPT1:=lp -c "%s"
LPT2:=lp -c -dps1700 "%s"
LPT3:=
...

The win.ini [ports] section lists available communication and printer
ports. Under MainWin, the Windows LPTn keywords are mapped to
UNIX commands. In this example, LPT1 and LPT2 are mapped to the
print command lp. MainWin sends all print job output to a file. The
output file is then sent to the printer. The term %s tells the system to
substitute the name of the PostScript intermediate output file. The
term -dps1700 in the example refers to a UNIX printer named ps1700.
The printer should be defined in the UNIX printcap file.
18 Installation Guide, Rational Rose RealTime

Adding a Printer on UNIX
[PrinterPorts]
Apple LaserWriter II NT=PSCRIPT,LPT1:,15,90
Postscript Printer QMS=PSCRIPT,LPT2:,15,90

The win.ini [PrinterPorts] section is included for compatibility with
applications that require this section. Entries are similar to those for
the [Devices] block listed below. In [PrinterPorts], PostScript timeout
values are appended after the device name. The timeout values are not
used by MainWin.

[Devices]
Apple LaserWriter II NT=PSCRIPT,LPT1:
Postscript Printer QMS=PSCRIPT,LPT2:

The [Devices] block lists the active and inactive output devices that can
be accessed by device drivers and specifies the ports to which these
devices are connected. In this example, Apple LaserWriter II
NT=PSCRIPT,LPT1: specifies that the printer is connected to the
PSCRIPT queue connected to LPT1.
Installation Guide, Rational Rose RealTime 19

Chapter 2 Platform and Toolchain Requirements
20 Installation Guide, Rational Rose RealTime

Chapter 3

Installing Rational Rose RealTime on
Windows

Upgrade Information

Ensure that past releases of Rational Rose RealTime are removed from
your system prior to installation. For details on your specific platform,
see “Uninstalling Rational Rose RealTime” on page 111 for your
specific platform.

Models created in earlier versions of Rose RealTime can be loaded
directly into version 6.3. Rational Rose and ObjecTime Developer
models should be converted as described in “Migrating from ObjecTime
Developer 5.2/5.2.1” on page 59.

Note: Do not attempt to load workspaces created in earlier versions of
Rose RealTime, as they are not compatible with the new release.

License keys installed with Rose RealTime releases 6.0, 6.0.1 and 6.0.2
are not valid for release 6.3. However, license keys installed with Rose
RealTime release 6.1, 6.1.1, or 6.2 are valid for 6.3.

Installation Instructions

Before you install Rose RealTime, make sure that you have a supported
system configuration. The system requirements are listed in “Platform
and Toolchain Requirements” on page 11. A setup program is provided
to facilitate installing Rational Rose RealTime on Windows NT or
Windows 2000. You must have administrator privileges to install this
software.
Installation Guide, Rational Rose RealTime 21

Chapter 3 Installing Rational Rose RealTime on Windows
In order to perform a network install, you must have the Rational Suite
installed. Refer to the Installing Rational Suite guide for instructions on
the network install.

To install Rational Rose RealTime, follow these steps:

1. Load the Rational Rose RealTime CD into your CD-ROM drive.

The Setup dialog box appears, followed by the Welcome dialog.

2. The Choose Product screen appears. Choose Rational Rose RealTime as
the product to install.

Note: If you are planning on using floating licenses, the FlexLM
license manager needs to be installed before you install Rational. If
you do not have FlexLm installed, select Install FlexLm and follow the
prompts.

3. Click Next.

Note: If you have not configured a license for Rational Rose
RealTime, a dialog box appears. To install Rose RealTime without
licensing configured, click OK. To configure the licensing, click Cancel
and then click Configure Licenses. You can configure licenses after
installing Rose RealTime. For details, see “Installing License Keys” on
page 41.

The license agreement appears.

4. Click Yes to accept the terms and conditions of the license
agreement,

Note: You must accept the license agreement to proceed. If you do not
agree with the terms of the license agreement, the installation should
be aborted. All software and documentation should be returned to
Rational Software.

5. Choose either Typical, Custom, or Compact install.
22 Installation Guide, Rational Rose RealTime

Installation Instructions
Note: The network configuration option is not offered with the Rose
RealTime point product installation.

6. Click Next.

An information summary of the shared components appears.

Update Shared Components

The Update Shared Components dialog box appears if the Setup program
needs to update shared files or components on your system. Click
Next to have the Setup program install these files for you or Cancel to
install these files yourself. For additional information, see the
online Help.

The Setup wizard does not recalculate the disk space required for
your updated selections.

Table 3-1 Installation Types

Type Description

Typical � Installs the most commonly used features for a
product.

� Use this option for standard installations.

Custom � Allows you to add or remove product features for
installation.

� Defaults to all features in a Typical installation.

Compact � Installs a subset of the standard configuration. May
omit optional files, including online documentation
or online Help. To find out which files will be
installed, read the product’s release notes.

� Use this option for installations on systems with
limited disk space.

Network � Installs the required files on your system to run the
program from a network location.

� Use this option to run a program from a centrally
managed location.

� This installation type is available to users when you
copy and decompress the product files to a target
directory. To set up a target location for network
installations, see Overview of Network Installations
in the Installing Rational Suite manual.
Installation Guide, Rational Rose RealTime 23

Chapter 3 Installing Rational Rose RealTime on Windows
Upgrade Compatibility

The Upgrade Compatibility dialog box appears if you have older
Rational products installed on your system. For each of the older
products listed, we strongly recommend that you do one of the
following:

� Upgrade it: Complete this installation, and then restart the
Setup program to upgrade the listed products.

� Remove it: Complete this installation, and then remove the
listed products from the system.

7. Click Next.

A confirmation dialog box appears, listing your selected settings
and options.

8. Click Next.

The installation begins.

Note: If any errors occur during installation, such as insufficient disk
space or inadequate permissions, an error summary dialog is
displayed.

9. When the installation is finished, the Setup Complete dialog box
appears, prompting you to restart your computer. We strongly
recommend you click Yes, I want to restart my computer now.

10. Click Restart.

11. The installation dialog appears, indicating that your computer has
been restarted.

12. Click Finish.

If you have not configured your product license, the License Key
Administrator appears.

13. Install the License Key if required. For details, see “Installing
License Keys” on page 41.

Installing on a Network Drive

If you want to install on a network drive (mounted not using UNC
names), just select it as though it is a local drive.
24 Installation Guide, Rational Rose RealTime

Testing your Environment
Testing your Environment

Note: If you only want to construct UML models and not execute them,
you do not need to read the remainder of this chapter.

You must have Microsoft Visual C++ 5.0 or 6.0 installed on your system
and configured to be run from the DOS prompt to make use of the code
generation and execution capabilities of Rose RealTime.

The following instructions will help you to determine whether you have
Visual C++ properly installed and configured on your system.

To perform testing on your environment:

1. From the Windows Start menu:

� In Windows NT, choose Start > Programs > Command Prompt

� In Windows 2000, choose Start > Programs > Accessories > Command
Prompt

2. Type nmake and press ENTER.

3. Type cl and press ENTER.

If your environment is correct, then you should see the following report
errors:

Command Prompt
Microsoft ® Windows NT ™
© Copyright 1985-1996 Microsoft Corp.

C:\>nmake

Microsoft ® Program Maintenance Utility Version 6.00.8168.0
Copyright © Microsoft Corp 1988-1998. All rights reserved.

NMAKE = fatal error B1864: MAKEFILE not found and no target
specified
Stop.

C:\>cl
Microsoft ® 32-bit C/C++ Optimizing Compiler Version 12.00.8168
for 80x86
Copyright © Microsoft Corp 1984-1998. All rights reserved.

Usage = cl { option... } filename... { /link linkoption... }
Installation Guide, Rational Rose RealTime 25

Chapter 3 Installing Rational Rose RealTime on Windows
If your environment is NOT properly configured, then you will see an
error similar to this one:

Command Prompt
C:\> nmake
The name specified is not recognized as an internal or external
command, operable program or batch file.

Note: If you get this error message, your compiler environment setup is
improperly configured. There is a vcvars32.bat file located in the
installation directory for Microsoft Visual Studio (for example, \\Program
Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat) that lists the environment
variables that need to be configured.
26 Installation Guide, Rational Rose RealTime

Chapter 4

Installing Rational Rose RealTime on
UNIX

Upgrade Information

Ensure that past releases of Rational Rose RealTime are removed from
your system prior to installation. Please see “Uninstalling Rational
Rose RealTime” on page 111 for your specific platform.

Models created in earlier versions of Rose RealTime can be loaded
directly into 6.3. Rational Rose and ObjecTime Developer models
should be converted as per “Migrating from ObjecTime Developer
5.2/5.2.1” on page 59.

Note: Do not attempt to load workspaces created in earlier versions of
Rose RealTime, as they are not compatible with the new release.

License keys installed with Rose RealTime releases 6.0, 6.0.1 and 6.0.2
are not valid for release 6.3. However, license keys installed with Rose
RealTime release 6.1, 6.1.1, or 6.2 are valid for 6.3.

If you are upgrading Rose RealTime on any of the UNIX platforms, you
must do one of the following:

� Manually delete your ~/.registry directory before you run the new
version for the first time

or

� Add the “-recreate_registry” command line option the first time you
run the new version.
Installation Guide, Rational Rose RealTime 27

Chapter 4 Installing Rational Rose RealTime on UNIX
Installation Instructions

The procedure for installing Rational Rose RealTime on UNIX is
described in the following sections.

Note: Unless specified otherwise, your system administrator will
generally carry out these steps.

For environments where there are more than one user of Rose
RealTime, we strongly recommend that the main Rose RealTime files
be installed on a centralized file server.

To Install Rational Rose RealTime on UNIX:
1. Insert the Rose RealTime CD into your CD-ROM drive.

2. Mount the CD-ROM device.

You are usually required to be a system administrator (root or
super-user) to be able to do this. See the instructions for your
particular CD-ROM drive and operating system for details.

HP-UX:
mount -rt cdfs /dev/dsk/c201d5l1 /cdrom

Solaris:

mount -rF hsfs /dev/sr1 /cdrom

where

/dev/sr1

is the CD-ROM device.

Note: In Solaris the CD-ROM may be automatically mounted.

3. From a shell window, change directory to the mounted CD-ROM
device.

For example:
cd /cdrom

4. Type cd /cdrom0

and press ENTER

5. Run the setup script.

./setup.sh

On HP-UX, it may be necessary to use the following command
(including the quotes):

sh './SETUP.SH;1'
28 Installation Guide, Rational Rose RealTime

Installation Instructions
The Welcome Script appears.

6. Press Enter.

The license agreement appears and you are prompted to accept or
reject the license agreement. You must accept the license
agreement to proceed:
“Enter Y<ENTER> to Accept, R<ENTER> to Read again, or
Q<ENTER> to Quit:” Y<ENTER>

If you do not agree with the terms of the license, the installation
should be aborted. All software and documentation should be
returned to Rational Software.

7. Specify the platforms to be supported by the Rose RealTime
installation.

Select all platforms to be supported by this installation. The default
is no and in the example, only SUN5 was selected by typing
“Y<ENTER>” at the SUN5 prompt.

“Which platforms would you like to be supported?
HP10 Y/N [n]?
SUN5 Y/N [n]? Y<ENTER>
Platforms to be supported:
SUN5”

8. Confirm the platform settings.

You are asked to confirm the platforms selected.

Type M <ENTER> to modify platform settings or Y<ENTER> to
accept platform settings:” Y<ENTER>

9. Specify the installation directory.

The script prompts you for a directory that it will copy the Rose
RealTime files into. The directory name must be specified as an
absolute path name. A RoseRT sub-directory will be appended in
the directory that you specify. You must have write permissions for
the installation directory. If the directory does not exist, you will be
asked if you would like to create it.

“Enter absolute installation directory path:”
/testing<ENTER>

10. Confirm the Rose RealTime Packages to Install.

You are asked to confirm the packages and installation directory.

The following 5 packages are selected for installation in
the directory '/home/tester/myname/RoseRT':
Installation Guide, Rational Rose RealTime 29

Chapter 4 Installing Rational Rose RealTime on UNIX
 Size
Package description in kB I
== ===== =
Rose RealTime Platform Independent Code 11590
 Generic On-line Documentation and HELP 43225
 Rose RealTime Unix Platform Independent Code 2245
 HP-UX 10 Toolset binaries 204194
 Solaris Toolset binaries 179834
==
Selected size: 441088 kB
Free disk space: 2786616 kB

Type M<ENTER> to Modify installation directory path, or
Y<ENTER> to Begin installing the selected packages: Y

The installation takes several minutes. You will be prompted with
the following message:

Installation complete

11. Install the License Key. For details, see “Installing License Keys” on
page 41.

Setting Up a User Workstation

Environment variables

With Rose RealTime, you need to specify environment variables. Set
the environment variable $ROSERT_HOME to the new installation
directory and add $ROSERT_HOME/bin to your path.

These lines can be added to your shell initialization file, so that they
are available each time you log on.

Bourne shell (sh or ksh):
ROSERT_HOME=/disk/apps/Rational/RoseRT
export ROSERT_HOME //for hpux10 host replace sun5 with hpux10
ROSERT_HOST=sun5
export ROSERT_HOST
PATH=$PATH:$ROSERT_HOME/bin
export PATH
30 Installation Guide, Rational Rose RealTime

Setting Up a User Workstation
C shell (csh):
setenv ROSERT_HOME /disk/apps/Rational/RoseRT
setenv ROSERT_HOST sun5 //for hpux10 host replace sun5 with

//hpux10
set path=($path $ROSERT_HOME/bin)

Either logout and then login again, or perform the rest of the upgrade
from a new command shell.

Additional settings

For additional environment variables and startup options, see the
Rational Rose RealTime Toolset Guide .
Installation Guide, Rational Rose RealTime 31

Chapter 4 Installing Rational Rose RealTime on UNIX
32 Installation Guide, Rational Rose RealTime

Chapter 5

Understanding Rose RealTime Licenses

This chapter describes:

� How Licenses Work

� FLEXlm License Server

� Licensing on UNIX

� The License File

When you buy Rational Rose RealTime, you purchase a number of
node-locked and/or floating licenses. A node-locked license allows you
to use Rose RealTime on a specific workstation. Floating licenses allow
anyone on your network to use Rose RealTime as long as a floating
license is available. Thus, the number of licenses that you purchase
determines the maximum number of users who can use Rose RealTime
simultaneously.

For example, if you purchased five licenses and three users are
currently using Rose RealTime, then two more users can use Rose
RealTime.

How Licenses Work

Licenses are controlled by a license manager FLEXlm (software
delivered as part of Rose RealTime) that runs on a license server (one
of your workstations or a dedicated machine depending on
configuration and license types purchased). The license manager
monitors license access.
Installation Guide, Rational Rose RealTime 33

Chapter 5 Understanding Rose RealTime Licenses
When you start Rose RealTime, you are initially unlicensed. If a license
is available, the license manager gives you a license. You retain the
license as long as you are using Rose RealTime. When you exit Rose
RealTime, your license is returned to the license manager and becomes
available for another user.

If no license is available, you are unable to use Rose RealTime until a
license is returned by another user. An “Unable to obtain a license”
message is displayed.

Note: The inability to obtain a license may also be caused by a
corrupted license file, a change to the host id (network card, IP address)
or a hard disk drive replacement when a node-locked license is used on
NT. Please ensure you are able to communicate with the license server
through a simple ping command.

FLEXlm License Server

The following sections provide information about the FLEXlm license
server, including descriptions of the license daemons running on the
server systems.

FLEXlm components

The FLEXlm license configuration includes these major components,
which are described in the following sections:

� License manager daemon

� Vendor daemon

� License key file

� Application program

License manager daemon (lmgrd)

The license manager daemon (lmgrd) handles the initial contact with
the client application programs, passing the connection on to the
appropriate vendor daemon. It also starts, stops, and restarts the
vendor daemons.
34 Installation Guide, Rational Rose RealTime

FLEXlm License Server
Vendor daemon

In FLEXlm, licenses are granted by running processes. There is one
process for each vendor who has a FLEXlm-licensed product on the
network. This process is called the vendor daemon. The vendor daemon
keeps track of how many licenses are checked out, and who has them.
If the vendor daemon terminates for any reason, all users lose their
licenses. (This does not mean that the applications suddenly stop
running. Users can save their work and exit safely.) Users normally
regain their license automatically when lmgrd restarts the vendor
daemon, although the applications may exit if the vendor daemon
remains unavailable.

Client programs communicate with the vendor daemon usually
through TCP/IP network communications. The client application and
the daemon processes (the license server) can run on separate nodes
on your network across any size wide-area network. Also, the format of
the traffic between the client and the vendor daemon is machine
independent allowing for heterogeneous networks. This means that the
license server and the computer running an application can be on
different hardware platforms or even different operating systems (for
example, Windows NT as a server system and UNIX as a client or UNIX
as a server and Windows NT as a client).

License key file

Licensing data is stored in a text file called the license key file. The
license key file is created by the software vendor and is edited and
installed by the License Key Administrator. It contains information
about the server nodes and vendor daemons, and at least one line of
data (called FEATURE or INCREMENT lines) for each licensed product.
Each FEATURE line contains a license key based on the data in that
line, the hostids specified in the SERVER lines, and other vendor
specific data.

In some environments, you can combine the licensing information for
several vendors into a single license key file. The FLEXlm default
location is:

/usr/local/flexlm/licenses/license.dat (Unix)
Installation Guide, Rational Rose RealTime 35

Chapter 5 Understanding Rose RealTime Licenses
You will not typically need to set the LM_LICENSE_FILE variable in
order to use Rational software products. We strongly recommend that
you keep a copy of the license key file in the vendor’s ‘default’ location,
or that users do not need to set LM_LICENSE_FILE to run their
applications. The LM_LICENSE_FILE variable is used on UNIX systems
and on systems with multiple license key files.

Application program

The application program using FLEXlm is linked with the program
module (called the FLEXlm client library) that provides communication
with the license server. On Windows, this module is called
LMGRxxx.DLL, where xxx indicates the FLEXlm version. During
execution, the application program communicates with the vendor
daemon to request a license.

License activation process

When you run a ‘counted’ FLEXlm-licensed application, such as a
Rational Suite product that uses a floating license, the following
occurs:

1. The license module in the client application finds the license key
file, which includes the host name of the license server node and
port number of the license manager daemon, lmgrd.

2. The client establishes a connection with the license manager
daemon (lmgrd) and specifies the appropriate vendor daemon.

3. lmgrd determines which machine and port correspond to the
master vendor daemon and returns that information to the client.

4. The client establishes a connection with the specified vendor
daemon and sends its license request.

5. The vendor daemon checks in its memory to see if any licenses are
available and sends a grant or denial back to the client.

6. The license module in the application grants or denies use of the
feature, as appropriate.

‘Uncounted’ features, where the number of licenses is ‘0’ (zero), do
not require a server and the FLEXlm client library routines in the
application grant or deny usage based solely upon the license
contents. Node-locked licenses, for example, set the license
number to 0 (zero).
36 Installation Guide, Rational Rose RealTime

Licensing on UNIX
Licensing on UNIX

Running the LMGRD from a Command Prompt

From a command prompt execute:

lmgrd -c <licenseFileList> -l <logfile>

Note: lmgrd can be found in $ROSERT_HOME/bin/<arch>, where
<arch> is the host that Rose RealTime is installed on (sun5 or hpux10).

� licenseFileList is the path to the license file or a list of license
files. If the FLEXlm daemon is only being used to provide Rose
RealTime licenses, use -c $ROSERT_LICENSE_FILE. Otherwise,
include the $ROSERT_LICENSE_FILE environment variable in a
semicolon (“;”) separated list.

� logfile is the path to a log file. $ROSERT_HOME/license/log is
recommended if lmgrd is only providing Rose RealTime licenses.

For convenience, you will probably want to augment a system
initialization script on your license server to automatically start the
license daemon each time the license server boots.

The names, locations, organization, and contents of system
initialization scripts varies from UNIX system to UNIX system. You
might begin by looking at the following files:

� HP-UX: /sbin/init.d/SlmRational.sh

� Solaris: /etc/rc2.d/SlmRational.sh

To verify that your license manager is operational, you can enter these
commands on your license server to see if its daemons are running:

% ps axw | grep -v grep | egrep "lmgrd|rational"

or

% ps -e | grep -v grep | egrep "lmgrd|rational"

Example
setenv ROSERT_LICENSE_FILE /apps/licenses/rrt6.0/license.dat
lmgrd -c $ROSERT_LICENSE_FILE -l /apps/logs/logRRT

or

lmgrd -c $ROSERT_LICENSE_FILE;$LM_LICENSE_FILE -l
/apps/logs/current_log
Installation Guide, Rational Rose RealTime 37

Chapter 5 Understanding Rose RealTime Licenses
Administration commands

The license manager supports several system-administration
commands.

Note: These commands can be found in $ROSERT_HOME/bin/<arch>,
where <arch> is the host that Rose RealTime is installed on (sun5 or
hpux10).

The License File

The FLEXlm license files are the same format for UNIX and Windows.

The default UNIX Rose RealTime license file is:

$ROSERT_HOME/license/license.dat

When users start Rose RealTime, the startup script automatically
defines the environment variable ROSERT_LICENSE_FILE for them.

However, as you install Rational products, you can merge the Rational
license data into another license file that you have already set up for
another product, as long as you change the ROSERT_LICENSE_FILE
environment variable to point to the new file.

FLEXlm uses this variable to locate the license file.

Command Description

lmdiag Allows you to diagnose problems when you cannot checkout
a license.

lmdown Shuts down license and vendor daemons.

lmhostid Reports license manager host ID of workstation

lmremove Returns specific licenses to license pool (for example, after a
workstation crashes).

lmreread Rereads license file, starts new vendor daemons.

lmstat Reports status on daemons and feature usage.

exinstal Reports on licenses in license file you specify on the
command line.
38 Installation Guide, Rational Rose RealTime

The License File
Format

The license file is a text file that you can edit with any text editor. Your
license file will contain lines similar to:

SERVER garcon 1874350 1706
DAEMON rational
FBE669014E142A4CF37 " "

In general, one or three server lines are followed by one or more vendor
daemon lines, which are followed by one or more feature lines. Rose
RealTime requires only one of each, but your license file may include
data for other products.

Each server line contains:

� Keyword SERVER

� Host name of the license server, from hostname

� License manager host ID of the license server, from lmhostid

� TCP port number to use

Each vendor daemon line contains:

� Keyword DAEMON

� Name of the vendor daemon (always rational for Rose RealTime)

� Pathname to the directory that contains the executable code for
this daemon

� Pathname to your options files for this daemon (optional)

Each feature line contains:

� Keyword FEATURE

� Name of the feature

� Name of the vendor daemon, previously defined on a DAEMON line,
that serves this feature (always rational for Rational products)

� Latest (that is, highest number) version of this feature that is
supported (5.000) for the current release of Rose RealTime

� Expiration date. This is specified as ‘dd-mmm-yy’ or as ‘dd-mmm-
yyyy’, where ‘yy’ is the last 2 digits of the year and ‘yyyy’ is the
unabbreviated year. You must specify 4 digits for the year 2000
and beyond. You must specify '00' to indicate a license which does
not expire.

� Number of licenses
Installation Guide, Rational Rose RealTime 39

Chapter 5 Understanding Rose RealTime Licenses
� Encryption code (obtained from Rational for Rose RealTime)

� Vendor string, enclosed in double quotes, contains node-locked
information when licensing Rose RealTime as node-locked

� License manager host ID, supplied only when this feature is bound
to a specific host (that is, node-locked)

Note: You cannot combine floating and node-locked licenses for the
same product in a single license file.

The tokens on each line can be separated by any amount of white space
(spaces or tabs). You can edit only four kinds of tokens in the license
file:

� Host names on SERVER lines

� TCP port numbers on SERVER lines

� Pathnames to vendor daemons on DAEMON lines

� Pathnames to options files on DAEMON lines

All other tokens are included as input to the encryption algorithm that
produces the encryption codes on the FEATURE lines.

Note: A DEMO FEATURE Line (includes “DEMO” at the end of the
FEATURE Line) is a special temporary license which does not require
running lmgrd or start_lm. Licensing is activated when the DEMO
FEATURE Line is placed in the license file.
40 Installation Guide, Rational Rose RealTime

Chapter 6

Installing License Keys

For specific information on license keys please refer to the Installation
Instructions and License Certificate that accompany the product
shipment. If either of these two documents is missing, please contact
Rational License Support for replacement information. See “License
Support Contact Information” on page 5.

Note: If you are installing licenses on a UNIX platform, do not follow the
instructions on the Rational Start-up License Certificate or on the
envelope in which the certificate is delivered to you.

Before you begin, ensure that you know the name of your license
server. You will be prompted for the server name during the
installation.

You can install Rational license keys before or after you install a
Rational product. If you want to install a license key before you install
a Rational product, open the Rational License Key Administrator by
clicking the Configure Licenses button in the Choose Product dialog box. Use
the Rational License Key Administrator Help or see the Administering
Licenses for Rational Software manual for information about
requesting and installing license keys.

Installing a Startup or Permanent License on Windows

The License Key Administrator (LKAD) lets you install startup or
permanent license keys, as required. The startup license keys are time-
limited and allow you to start using Rational Rose RealTime
immediately.
Installation Guide, Rational Rose RealTime 41

Chapter 6 Installing License Keys
After the Rational Rose RealTime product installation is complete, the
LKAD wizard appears.

Figure 2 License Key Administrator (LKAD) Wizard

To obtain a license key:

1. Do one of the following:

� To install a temporary license key, select the Enter a Temporary or
Evaluation License Key option.

� To obtain a permanent license key, select one of the other
options.

2. Follow the prompts in the wizard after you have chosen your
option.
42 Installation Guide, Rational Rose RealTime

Installing a Startup or Permanent License on Windows
If you choose Request a license using Rational AccountLink on the World Wide Web,
your web browser opens and takes you to the AccountLink web site:

http://www.rational.com/accountlink

We recommend that you bookmark this site. You will need to access
AccountLink when you are ready to obtain a permanent license.

Installing a Permanent License on Windows

To install a permanent license key:

1. Open the Rational Rose RealTime AccountLink web site:

www.rational.com/accountlink

2. Click Get License Key(s).

AccountLink prompts you to enter your account information.

3. View your company’s License Key Certificate and enter your
Rational account number found on this certificate.

Note: If you are unable to find your Rational account number, contact
Rational License Support. See “License Support Contact Information”
on page 5

4. Click Next.

AccountLink prompts you to specify the license type.

5. To Select a license type, do one of the following:

� Click NodeLocked to obtain a license for a client install.

� Click Floating to obtain a license for a server install.

6. Select the product line Rose RealTime.

7. Select the product name Rational Rose RealTime for Windows.

8. Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be “1”.

9. Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10. Enter your Host Name and Host ID.

11. If you do not know this information, you can request it from
AccountLink:

� Select Windows operating system from the scroll down list.

� Click Download.
Installation Guide, Rational Rose RealTime 43

Chapter 6 Installing License Keys
The File Download dialog box appears, prompting you to open the
file from its current location or to save the file. We recommend
that you open the file, to import it to disk automatically.

� Click OK.

� A dialog box appears containing the Host Name and Host ID.

� Copy the Host Name and Host ID from the dialog box.

� Paste the contents into the Host Name and Host ID fields.

12. Select the platform on which the toolset will be running.

13. Click Next.

14. Enter the contact information.

15. Click Next.

16. Verify the information:

� If the information is correct, click Submit.

� If the information is NOT correct, click Modify email. Correct the
information as required, then click Submit.

Note: An email message will be sent to the inbox for the email
address which you submitted.

Installing the License Key

To install the license key:

1. Double-click the attached .upd file.

A dialog box appears prompting you to save the file to disk or open
the file.

2. Click Open and then click OK.

The LKAD Confirm Import dialog box appears.

3. Click Import, then click OK.

Installing a Floating License Key on a UNIX server

To install a floating license key on a UNIX server:

1. Obtain the license key as outlined in “Installing a Permanent
License on Windows” on page 43.

2. Set the Host Name and Host ID to be the UNIX license server.

3. Save the .upd file as license.dat in a directory on your UNIX system
where you would like to maintain your licensing information.
44 Installation Guide, Rational Rose RealTime

Installing a Startup or Permanent License on UNIX
We recommend you save this file to the $ROSERT_HOME/license
directory.

Note: Do not overwrite any existing license.dat files you may currently
have in this directory.

4. FLEXlm v6.0i or greater and the rational daemon are both required
on the UNIX machine. If either of these is not available, they can
be downloaded from our ftp site at:

ftp://ftp.rational.com/public/tools/flexlm

5. Activate the new licenses with the FLEXlm software. For
information about the FLEXlm license manager, see “FLEXlm
License Server” on page 34, or refer to the FLEXlm documentation.

6. Using the License Key Administrator, set your license server using
the Settings - Service Configuration menu.

Installing a Startup or Permanent License on UNIX

The startup license keys are time-limited and allow you to start using
Rose RealTime immediately.

Installing a Startup License on UNIX

To install a startup license on UNIX:

1. Go to the $ROSERT_HOME/bin directory.

2. Type RoseRT -startuplicense.

The Startup License Key Administration form appears.

Locate the Startup License Key certificate that accompanied your
product shipment.
Installation Guide, Rational Rose RealTime 45

Chapter 6 Installing License Keys
3. Based on the license type and product name indicated on this
certificate, copy the appropriate information into the Startup
License Key Administration form, and click OK.

Note: A floating license requires you to start the license server. See
“Understanding Rose RealTime Licenses” on page 33.

Your startup license is created. Remember that your Startup license
will expire on the date listed on the certificate. You will have to request
and install permanent license keys before this expiry date.

Now you are ready to start Rose RealTime.

Installing a Permanent License on UNIX

Licenses are obtained from the Rational website, using AccountLink.
After obtaining the license(s), they need to be installed on Rational
Rose RealTime.

To install a permanent license on UNIX:

1. Visit the Rational Rose RealTime AccountLink web site:

www.rational.com/support/accountlink

2. Click Get License Key(s).

AccountLink prompts you to enter your account information.

3. View your company’s License Key Certificate and enter your
Rational account number found on this certificate.

Note: If you are unable to find your Rational account number, contact
Rational License Support. See “License Support Contact Information”
on page 5.

4. Click Next.

AccountLink prompts you to specify the license type.

5. To select a license type, do one of the following:

� Click NodeLocked to obtain a license for a client install

� Click Floating to obtain a license for a server install

6. Select the product line Rose RealTime.

7. Select the product name Rational Rose RealTime for UNIX.

8. Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be “1”.
46 Installation Guide, Rational Rose RealTime

Installing a Startup or Permanent License on UNIX
9. Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10. Enter your Host Name and Host ID.

11. If you do not know this information, you can request it from
AccountLink:

� Select UNIX operating system from the scroll down list.

� Click Download.

The File Download dialog box appears, prompting you to open the
file from its current location or to save the file. We recommend
that you open the file, to import it to disk automatically.

� Click OK.

� A dialog box appears containing the Host Name and Host ID.

� Copy the Host Name and Host ID from the dialog box.

� Paste the contents into the Host Name and Host ID fields.

12. Select the platform on which the toolset will be running.

13. Click Next.

14. Enter the contact information.

15. Click Next.

16. Verify the information:

� Click Submit if the information is correct.

� Click Modify email if the information is NOT correct, . Correct the
information as required and then click Submit.

Note: An email message will be sent to the inbox for the email
address which you submitted.

Installing the License Key

To install the License Key:

1. Save the attached .upd file as:
$ROSERT_HOME/license/license.dat

2. Do one of the following:

� To integrate Rose RealTime with other Rational products, see
“Integration With Rational Suites Licensing” on page 48.
Installation Guide, Rational Rose RealTime 47

Chapter 6 Installing License Keys
� To not integrate Rose RealTime with any other Rational
products, see “FLEXlm License Server” on page 34, to initially
set up FLEXlm and activate your new keys.

Integration With Rational Suites Licensing

If you are using other Rational products with Rose RealTime, the
license.upd file that you receive from Rational in response to a license
request will contain the keys for all the Rational products. If you are
using floating licenses, you will already be using the FlexLM lmgrd
daemon and the rational vendor daemon.

Rose RealTime assumes that the ROSERT_LICENSE_FILE variable
points to a valid FlexLM license file that contains a valid Rose RealTime
license. If you follow the instructions provided, the existence of the
additional license keys will not cause any problems.

Note: Only one instance of the rational daemon can be executed at any
given time for floating licenses. Your project’s license administrator
should ensure that only one instance of the rational command exists
and/or all paths are set correctly so that only one instance of the rational
command is used.

For additional information on integration with Rational Suites
Licensing, see the Installing Rational Suite Guide.

Troubleshooting

Windows

Problem 1

If a FlexLM License Manager dialog appears indicating that “Your
application was unable to obtain a license because...”, do the following:

1. Click Cancel.

You will get a Rose RealTime message stating “Unable to obtain a
license”.

2. Click OK.

3. Run the LMTools application, located in:

C:/Program Files/Rational/CommonLM
48 Installation Guide, Rational Rose RealTime

Troubleshooting
4. Verify that FlexLM is pointing to the correct license file.

Problem 2

If you receive an “Unable to obtain a license message” message after the
splash screen is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a
license, verify that the license daemon is running. See “Installing a
Floating License Key on a UNIX server” on page 44.

UNIX server

Note: This section applies only if you are installing a floating license on
a UNIX server.

Problem 1

If a FLEXlm License Manager dialog appears indicating that “Your
application was unable to obtain a license because...”:

1. Ensure that your Windows setup is correct.

2. Ensure that your UNIX server is set up correctly. For information
on setting up your UNIX server, see “Understanding Rose RealTime
Licenses” on page 33, or refer to the FLEXlm documentation.

Problem 2

If you receive an “Unable to obtain a license message” message after the
splash screen is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a
license, verify that the license daemon is running. “Installing a Floating
License Key on a UNIX server” on page 44.
Installation Guide, Rational Rose RealTime 49

Chapter 6 Installing License Keys
UNIX

Problem 1

If a FlexLM License Manager dialog appears indicating that “Your
application was unable to obtain a license because...”, do the following:

1. Click Cancel.

You will get a Rose RealTime message stating “Unable to obtain a
license”.

2. Click OK.

3. Verify the location and naming of the license file:

� If you do have the ROSERT_LICENSE_FILE variable set, verify
that the variable set matches the actual location and file name,
by typing the following in a command prompt:

echo $ROSERT_LICENSE_FILE

� If you do NOT have the ROSERT_LICENSE_FILE variable set,
the default location of the license file is
$ROSERT_HOME/license/license.dat. Ensure that you have
named this file correctly.

� If you are incorporating this file into an existing FLEXlm license
file, see “Understanding Rose RealTime Licenses” on page 33, or
refer to the FLEXlm documentation, to ensure that the setup
and key activation was done correctly.

4. If both the name and location are correct, verify that the install
process has set the ROSERT_LICENSE_FILE environment variable
to the location of the file. This variable points to the license.dat
file, not just the directory in which it is located.

To verify that the environment variable is correctly set, type echo
$ROSERT_LICENSE_FILE at a command prompt.

If the environment variable is not set or set incorrectly, add or
modify as appropriate.

Problem 2

If you receive an “Unable to obtain a license” message after the splash
screen is displayed, check the expiration date of your license.
50 Installation Guide, Rational Rose RealTime

Troubleshooting
Problem 3

If you have received a floating license file and are unable to obtain a
license, verify that the license daemon is running. See the “Installing a
Floating License Key on a UNIX server” on page 44.
Installation Guide, Rational Rose RealTime 51

Chapter 6 Installing License Keys
52 Installation Guide, Rational Rose RealTime

Chapter 7

Migration

This section provides help for users wanting to migrate models from
Rational Rose, ObjecTime Developer, or previous releases of Rational
Rose RealTime.

� “Migrating from Rational Rose” on page 53

� “Migrating from ObjecTime Developer 5.2/5.2.1” on page 59

� “Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1” on page 62

Migrating from Rational Rose

The Rose RealTime interface is similar to Rose; however, there are
some subtle differences that Rose users should understand before
using Rose RealTime.

User Interface Differences

If you are familiar with Rose, you should not have too much trouble
understanding the Rose RealTime user interface. Rose RealTime has
maintained the same architecture as Rose and has preserved the main
toolset features: a model browser, diagrams, model properties, add-ins,
and an extensibility interface (RRTEI).

Note: Some of the icons have been modified but they have remained
intuitive.
Installation Guide, Rational Rose RealTime 53

Chapter 7 Migration
However, to support modeling real-time systems, to allow full code
generation, and to provide an executable interface, you will notice the
following main changes to the Rose RealTime interface. (For a complete
description of the Rose RealTime user interface please refer the
Rational Rose RealTime Toolset Guide available from the online Help.)

Multiple model browsers

The model browsers in Rose RealTime have three views: the Model
View, the Containment View, and the Inheritance View. Each view
displays the elements in your model from different perspectives.

In addition, you can create multiple model browser windows by
selecting View > Browsers > Create New Browser.

Output windows

In Rose, the log is in an undockable window that cannot be dragged
onto another section or window. In Rose RealTime, the output window
is dockable, and contains a set of windows that show different kinds of
output from the toolset.

Code editors

In Rose, code is added to operations outside the toolset; in Rose
RealTime, code is added in the tool. Code is added to model elements
through their specification dialogs. For example, the Details tab of an
Operation specification contains a Code window in which you can write
the body source code of the operation.

Code can also be added to capsule state diagrams.

Code browser

During the development of a model, you spend considerable time
writing source code. In Rose RealTime, you can edit the code for the
currently selected element in the code window, rather than having to
open the element’s specification dialog.
54 Installation Guide, Rational Rose RealTime

Migrating from Rational Rose
Layout tools and line styles

Rose RealTime allows you to perform advanced layout operations on
diagrams. For example, you can align, change the view spread, and
make elements the same size. You can also configure the way lines are
drawn:

Figure 3 Layout menu — right-click on any diagram

Figure 4 Line attributes menu - Edit > Line Attributes

New Modeling Language Elements

Rose RealTime introduces new modeling elements—capsules,
protocols, and ports— and a new diagram—the structure diagram. The
Rational Rose RealTime Modeling Language Guide contains
information about the new modeling elements, as well as a summary
of the real-time specializations to the UML.

You can also review the Concept Tutorials.
Installation Guide, Rational Rose RealTime 55

Chapter 7 Migration
Code Generation, Building, and Running

An important difference between Rose and Rose RealTime is the
support for building and executing models from within the toolset. Note
the following:

� Rose RealTime is not meant to be used in a round trip process. The
model contains all the information required to generate, build, and
run elements in the model.

� Rose RealTime does not ship with a compiler for your target
environment. You must install and configure a compiler for your
target. Rose RealTime will use that compiler to build the model.

For more information, see the Rational Rose RealTime Toolset Guide,
available through the online Help.

Opening Models from Rational Rose

Rose RealTime can open files saved with Rational Rose 98, 98i, and
Rose 2000 (.mdl files).

Fixing unresolved references

When importing a model from Rose 98, 98i, or Rose 2000 into Rose
RealTime, you should fix any model errors in Rose (Tools > Check Model)
before trying to import the model. In particular, it is important to
resolve any unresolved references. Rose is not concerned with
unresolved references; however, they are very important in Rose
RealTime as they can result in incomplete code generation and
compilation errors.

For more information, see “Model Validation” in the Guide to Team
Development.

Tasks

To open a Rational Rose model in Rose RealTime:

1. Select File > Open and choose Rose Model (.mdl) from the Files of Type
pull-down menu.

2. Select a file and click Open.

Files from Rose versions older than Rose 98 have to be opened in Rose
98 and saved first.
56 Installation Guide, Rational Rose RealTime

Migrating from Rational Rose
Note: Opening a new model discards any existing model that you have.
The tool prompts you to save changes first.

List of Importation Log Messages

The following messages may appear in the Log after a Rose98 model
has been imported.

Message: Warning: Renamed elementClass “oldElementName” to
“newElementName”.

Description: A loaded model element has been renamed to conform
with Rose RealTime's naming requirements. Double-clicking on the
warning in the log, this may display the renamed element.

Message: Error: Unresolved reference from ... to ... by ...

Description: The toolset was unable to resolve a reference between two
model elements. This is usually the result of loading an incomplete
model, for example, when the user has updated only part of a model
from CM. The rest of the model needs to be loaded in order for the
reference to be resolved. However, in some cases, the unresolved model
element is removed from the model and the deletion is recorded in the
log window.

Message: Error: Error reading file fileName at line lineNumber or Error
message detail.

Description: The error message detail may contain validation errors
originating from the internal meta-model. Possible error message
details that originate from the petal reader are listed below.

Message: Invalid syntax.

Description: The file contents cannot be read by the toolset. The user
should send the file to customer support with a description of what
they were doing when the file was created. For example, if you import
a Rose98 model and make some changes to the Component View, the
file will not reload in Rose RealTime.

Limitations and Restrictions

When a Rose model is opened in Rose RealTime, the following elements
are not converted:

� State diagrams and Activity diagrams
Installation Guide, Rational Rose RealTime 57

Chapter 7 Migration
The model opens, but the state diagrams and activity diagrams are
not present in Rose RealTime.

� Importing Rose models containing controllable units is not
supported.

If the Rose model file contains controllable units, you should
export the model from Rose98 into a single .ptl petal file (File > Export
Model), that can then be opened with Rose RealTime (File > Open, and
select All Files... in the combo box to display .ptl files).

� Three-tier class diagrams are not supported in Rose RealTime.

If the Rose model file contains a three-tier class diagram, you
should create a copy of the Rose model that does not contain a
three-tier diagram to import into Rose RealTime.

Note: The conversion of models is supported in one direction only: once
models are brought into Rose RealTime, if they are converted back to
Rose, the additional Rose RealTime functionality will not appear in Rose.
Working in a mixed Rose RealTime/Rose environment is not supported.
Generated code is not compatible between the two tools.

Importing Rational Rose Generated Code

Source code that has been generated from a Rose model and has been
edited within the preserved regions may be imported.

To import Rose generated code:

1. Verify that the Rose .mdl file is not newer than the generated code.
If so, regenerate the code.

2. Open the Rose model.

For details, see “Opening Models from Rational Rose” on page 56.

3. Choose Tools > Import Code....

If code was generated from this model using Rational Rose and the
model was saved after the code generation was performed, a “Rose
Code Import” window appears. Otherwise, a “There are no cpp or h
files available for import” message is displayed.

The Rose Code Import Window lists all the .cpp and .h files that
were generated from the model and lets you select all or a subset of
the files. It also displays the classes that will be affected by each
file that is selected. Once a file has been imported it will not be
listed if code importation is repeated.
58 Installation Guide, Rational Rose RealTime

Migrating from ObjecTime Developer 5.2/5.2.1
4. After you have complete importation and are satisfied with the
results, save the model.

Limitations and restrictions
� No action will be taken on empty preserved regions. As a result,

constructors, destructors and operators that are generated by Rose
and have empty preserved regions, will not be added to the model.

� Use of the Code Name properties for classes and operations can
cause inconsistent naming in the generated code. The
inconsistencies can cause compile time errors, which can be
resolved manually.

Migrating from ObjecTime Developer 5.2/5.2.1

Users migrating from ObjecTime Developer can open their models in
Rose RealTime. First, see the ObjecTime Developer Conversion Guide to
get your ObjecTime Developer model loaded and built in Rose
RealTime.

Terminology

The modeling language and toolset terminology in Rose RealTime is
different than that used in ObjecTime. This section provides an
overview of the changes.

Actor/binding/protocol class

Rose RealTime supports the UML modeling language. Therefore,
certain modeling elements are referred to by UML standards differently
than they are in ROOM (Real-Time Object-Oriented Modeling). For
detailed information regarding the UML modeling elements supported
in Rose RealTime, see the Modeling Language Guide.

Table 7 Terminology mappings from ROOM to UML

ROOM UML

actor class capsule

actor reference capsule role

protocol class protocol
Installation Guide, Rational Rose RealTime 59

Chapter 7 Migration
Context/update

In ObjecTime Developer, contexts contain a group of related actors,
protocols, and data classes. In Rose RealTime, models are stored in
controlled units that can vary in granularity. For example, the whole
model can be stored as a single controlled unit (default) or each
element can be stored individually. If a model is stored as one
controlled unit, then the model file (.rtmdl) contains all information
about a model. If the model file is read-only, then when the model is
opened in Rose RealTime it is also read-only.

Activation/passivation

These terms have been replaced by more commonly used open and
save. You open a model into Rose RealTime, and save it to disk.

For more information, see the Toolset Guide.

Workspace browser

In ObjecTime Developer, workspace browsers showed all activated
contexts and updates. Since Rose RealTime only supports one model
loaded at a time, there is no equivalent concept.

The workspace in Rose RealTime is associated with a specific model
and is saved as such. The workspace can be stored under
Configuration Management, if desired.

Model browser

Rose RealTime still has a model browser. You can, however, have more
than one browser for a model, and each browser shows the model from
three different views: the Model View, the Containment View, and the
Inheritance View.

For more information, see the Toolset Guide.

port port

SAP/SPP unwired ports

binding connector

ROOM UML
60 Installation Guide, Rational Rose RealTime

Migrating from ObjecTime Developer 5.2/5.2.1
Project files

Project files do not exist in Rose RealTime. An equivalent concept is the
model file (.rtmdl) that contains references to a set of packages, but
does not contain version information. Rose RealTime does not manage
versions of files. Instead the model file loads the packages it finds on
disk. It is up to the developer, through their configuration management
process, to ensure that the files on disk are the correct version.

Library browser

Library browsers do not exist in Rose RealTime. Because of the
changed underlying model representation, the configuration
management integration has changed significantly in Rose RealTime.

It is highly recommended that you read the Guide to Team Development
for a detailed introduction to using source control with Rose RealTime.

User Interface Differences

For a complete description of the Rose RealTime user interface, please
refer to the Toolset Guide. Rose RealTime looks very different than
ObjecTime Developer. Although you can accomplish almost everything
you can in ObjecTime Developer, the steps and mechanics are very
different. For this reason, it is recommended that you review the
tutorials to become familiar with the interface.

Note: When using Rose RealTime, everything is right-click-centric,
meaning that you can right-click on every element in the toolset to show
a context-menu that contains actions that you can perform.

Property editors

Property editors have been replaced by specification dialogs. Every
modeling element has a specification dialog that contains a non-
graphical view of its properties. To access an element’s specification,
right-click on the element (in either the browser or on a diagram) and
select Open Specification.
Installation Guide, Rational Rose RealTime 61

Chapter 7 Migration
List headers

In ObjecTime Developer, every window has a list header in which you
can access menu items specific to that window. In Rose RealTime,
these have been replaced by right-click menus and the main
application menu.

State and structure diagrams

To open a state or structure diagram, right-click a capsule, and click
Open Structure Diagram or Open State Diagram. The state and structure
diagram editors appear in the same window. You can switch between
one and the other using the tabs at the bottom of the window. If you
want to see the structure and state diagrams simultaneously, click and
drag one of the tabs away from the window. This undocks the diagram
and creates a new window containing only the selected diagram. You
can redock the diagrams by dragging one of the tabs into the other.

For more information, see the ObjecTime Developer Conversion Guide.

Compilation

In ObjecTime Developer 5.2/5.2.1, data classes were compiled one
package at a time. In Rose RealTime, data classes are compiled one
class at a time.

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1

Models from these previous versions of Rose RealTime are compatible
with this version. However, there are some changes in team
development and language add-ins that require you to plan some
changes to your model.

Note: Beta customers must uninstall before installing the new release.
62 Installation Guide, Rational Rose RealTime

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1
File Format Changes

When opening a Rose RealTime 6.0 model, a dialog warns you that the
next time the model is saved the files will be saved in the new file
format. To prevent the original model from being overwritten, on the File
menu, click Save As.

Figure 5 Warning dialog

For this reason, when working with a model under source control, you
must check out all controlled units so that they can be saved in the
new format.

Source Control Migration

If your model is in source control, you need to load it into the new
release of Rose RealTime.

To save a file in the new file format:

1. In the 6.0 toolset, all files should be checked in, and the model
should build and test successfully.

2. The source control administrator/model converter checks out all
files from 6.0 toolset.

3. Install and start the new release of Rose RealTime.

4. Open the .rtmdl file in Rose RealTime.

Note: Do not open the workspace (.rtwks).

5. Save the model.

6. Configure the source control settings.

7. Save the Workspace.

8. Submit all changes.
Installation Guide, Rational Rose RealTime 63

Chapter 7 Migration
Note: Migration from 6.0 is one-way. After you have migrated a model ,
you cannot successfully reload a controlled unit in 6.0 format. Although
the toolset lets you attempt to reload a controlled unit, several errors will
be reported. A mixed model is not supported.

ClearCase integration

Rose RealTime models currently stored in a ClearCase VOB should be
converted to use the type manager in order to take advantage of the
new integration features. A script, cc_chtype.pl, has been included to
help in the conversion process. The script, located in
$ROSERT_HOME/bin/$ROSERT_HOST/cc, produces a log of commands
that will convert the existing model files from the default “text_file” type
to the supplied “rosert_unit” type.

After following the setup directions detailed in the “Source Control
Tools” chapter of the Guide to Team Development, use the following
invocation from the root of your VOB to produce a batch file, which
when executed will convert any Rose RealTime files to the rosert_unit
type:

rtperl cc_chtype.pl -cmdfile chcmds.bat -recurse *

After examining the chcmds.bat file and verifying that the commands
contained within it are the commands you want to perform, execute
the batch file.

If you do not want to be queried to convert each file, add “-chargs -f” to
the cc_chtype.pl command line before the -recurse argument.

rtperl cc_chtype.pl -cmdfile chcmds.bat -chargs -f -recurse *

This will generate commands that force the type change without
querying.

For ClearCase users who want to use clearmake, there is a problem
with filenames with spaces in them. For help with this, contact
Technical support at:

http://www.rational.com/support

Migrating customized CM scripts

For complete information on library scripts and what scripts may
require modification to meet your specialized CM needs, see the Guide
to Team Development f.
64 Installation Guide, Rational Rose RealTime

http://www.rational.com/products/rosert

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1
Language Add-in Changes

The C and C++ Language Add-Ins have changed, it is very important to
read “C Language Migration” on page 68 and “C++ Language
Migration” on page 71 for instructions on migrating existing models to
either of these Language Add-Ins.

Note: Rational Rose RealTime version 2001A.04.00 now also supports
the Java language.

Running Two Different Releases of Rose RealTime

Windows NT

If you need to run both versions of the tool while your are converting
your models to the new release, you need to start the 6.02 release with
a batchfile to reset your environment settings to the 6.02 defaults. This
script is available on the Rose RealTime support website in the patches
and updates section:

http://www.rational.com/support

Note: Add-Ins and other product integrations may not work with the
6.0.2 release after you have installed the new release on your
workstation because of the new registry settings. We recommend that
you remove the 6.0.2 release from your workstation as soon as your
6.0.2 model has been converted to the new release.

UNIX

You can set up your environments to run both releases of Rose
RealTime, but do not run them from the same machine at the same
time. This is a MainWin limitation.

Workspace Files

Version 6.0.x workspace files are not supported. You must open the
model without the workspace. The unsupported workspace is backed
up to a file.
Installation Guide, Rational Rose RealTime 65

http://www.rational.com/products/rosert

Chapter 7 Migration
RRTEI Changes

If you have previously used any of the following classes or functions in
your scripts, they have to be removed in order for your scripts to be
compatible with this new release:

� ComponentAggregationCollection class

� ComponentAggregation class

� Component::GetComponentAggregation()

� Component::AddComponentAggregation()

� Component::DeleteComponentAggregation()

� ComponentPackage::GetObject()

� RSSchedule enumeration

� Schedule rich type

If you have previously used any of the following classes or functions in
your scripts, they have to be replaced in order for your scripts to be
compatible with this new release. Use the model element’s tool’s
properties. For example, The old Component::OutputPath property can
now be retrieved by the “C++ Generation” OutputDirectory property
from the component.

� Component::OutputPath

� Component::TopCapsule

� Component::RTSType

� Component::TargetLibrary

� Component::RTSDescription

� Component::CompilerName

� Component::CompilerLibrary

� Component::CompilerFlags

� Component::CompilerDescription

� Component::Inclusions

� Component::UserObjectFiles

� Component::InclusionPaths

� Component::LinkerName

� Component::LinkerFlags

� Component::LinkerDescription

� Component::ExecutableFileName
66 Installation Guide, Rational Rose RealTime

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1
� Component::Platform

� Component::MultiThreaded

� Component::DefaultArgs

� Component::TargetDescription

� Component::CodeGenMakeName

� Component::CodeGenMakeFlags

� Component::CodeGenMakeOverridesFile

� Component::CodeGenMakeDescription

� Component::CompilationMakeName

� Component::CompilationMakeType

� Component::CompilationMakeFlags

� Component::CompilationMakeOverridesFile

� Component::CompilationMakeDescription

� Component::UserLibraries

� Component::UserSourceFiles

� Component::UserLibraryPaths

� Component::CodeGenMakeType

� Component::AddInclusion()

� Component::DeleteInclusion()

� Component::AddUserLibrary()

� Component::RemoveUserLibrary()

� Component::AddUserObjectFile()

� Component::DeleteUserObjectFile()

� Component::AddInclusionPath()

� Component::DeleteInclusionPath()

� Component::GetInclusionPathFlag()

� Component::AddUserLibraryPath()

� Component::DeleteUserLibraryPath()
Installation Guide, Rational Rose RealTime 67

Chapter 7 Migration
C Language Migration

The following section provides details on migration issues specific to
the C Language Add-in.

For more information on the C Language Add-in, refer to the Rational
Rose RealTime C Reference .

Converting a C++ Model to C

You can convert a C++ model to C, however, the process is not as
simple as changing the language of each model element. First, the C
Services Library’s API is different than that of the the C++ Services
Library, meaning that all the Services Library references in the detail
code must be changed. Secondly, the C Services Library does not
support dynamic structure (import/deport), which may require you to
re-design you model. In addition, all issues regarding conversion from
regular C++ to C still apply to the conversion (for example,
polymorphism is not supported in C, encapsulation is not enforced, all
fields in a struct are public, and so on...).

You should decide early in the development cycle whether your project
will be developed in C or C++ because changing languages in the
middle of development requires a lot of work.

To convert an existing Rose RealTime model based on the C++
language:

1. Make a backup copy of the C++ model that you are trying to
convert.

2. Change the language of each model element. The language setting
is on the General tab of each element’s specification dialog.

Note: When model elements change languages, all the C++ language
properties are replaced by C language properties. Therefore, any
properties that have been modified are lost when the language is
changed.

3. Review the Rational Rose RealTime C Reference for descriptions of
the new C properties and how these are to be used in your model.

4. All attribute and operations should be made public. The model will
still build with them as private or protected, but the code generator
will output many warnings in this regard.
68 Installation Guide, Rational Rose RealTime

C Language Migration
5. If your C++ model depends on dynamic structure and importation,
you can mimic this behavior in a C model by combining the static
linkage of ports between capsules and the dynamic linkage of
unwired ports. With some re-design, you can replace importation
from your C++ model to use unwired ports and the
RTPort_registerAs() and RTPort_deregister() functions to bind and
unbind dynamically ports.

6. Convert all timing ports to C Timing, and then add a timing
capsule to your model.

7. Remove all Log ports and all Exception ports.

8. When your design can be supported by C Services Library features,
you can convert the syntax in your detail code.

Note: We recommend that you start converting a small set of
capsules that can be built and tested separately before trying to
convert the whole model. Iteratively modify detail code, build, and
test.

9. Update your components to C components.

10. Configure any of the build properties that are required.

ObjecTime Developer for C Migration

ObjecTime Developer for C models can be imported into Rose
RealTime, compiled, and run with only minor modifications to the
model. Functional updates (like a proper recall mechanism and data
integration) was not provided via the ObjecTime Developer for C
interface and thus will only be available via the new C UML Services
Library API.

Importing models

Prior to importing a model, you should read the ObjecTime Developer
Conversion Guide to understand important issues involved with
migrating ObjecTime Developer models to Rose RealTime.

To import an ObjecTime Developer for C model into Rational Rose
RealTime:

1. Set the default language to C.

2. Set the default environment to C TargetRTS through Tools > Options >
Language/Environment Tab. This will ensure that protocol classes
import as C Protocols.
Installation Guide, Rational Rose RealTime 69

Chapter 7 Migration
3. Export and import your OTD for C model. For details, see the
ObjecTime Developer Conversion Guide.

4. When the model has been imported, replace all ports of type
Timing with type CTiming in your model.

Note: Your triggers (on timeout) will remain valid.

5. Update your timing service. If you have a simple timing service, to
get you started, replace whatever timing capsule you had with the
one available in Logical
View::RTCClasses::TimerPackage::Timer. You can override this
later with a custom timer after you get your model working.

6. Build your target.

Note: If you receive a signal is undefined build error, replace signal
with ROOM_Signal(port, signal) for the given port.

Converting global signals to local signals

A common update that may be required to some imported models
involves the way the signals are now represented. In order to provide
local signals, and thus the ability to build libraries without global
system knowledge, more macro operations are necessary.

The only supported way of creating signals with the backwards
compatible interface is with these primitives:

� ROOM_Signal(port, signal), where port is the name of the port
(unqualified with respect to the this pointer) and signal is the name
of the signal.

� ROOM_InSignal(port, signal), where the parameters are specified
identically to the previous case.

In ObjecTime Developer, these macros unfortunately returned signal.
You may have tried to optimize out the use of these macros, and used
the signal name when sending messages through these services.
However, this will no longer work because these macros now create a
local signal (relative to the protocol class of the port). As a result, you
will find compile errors when you go to build your model indicating that
the signal is undeclared. Do the following:

Every call of

ROOM_PortSend(port, signal)

needs to be replaced with
70 Installation Guide, Rational Rose RealTime

C++ Language Migration
ROOM_PortSend(port, ROOM_Signal(port, signal))

This change applies to all signals used in ROOM_ macros.

Timing service

The global signal timeout no longer exists. You need to use
Timing_rt_timeout or use the ObjecTime Developer RSL_Timeout()
macro that has been mapped towards Timing_rt_timeout.

Also, remember that these macro operations de-references the pointer
for you, so all you have to do is provide the names.

C++ Language Migration

The following section provides details on migration issues specific to
the C++ Language Add-in.

For more information on the C Language Add-in, refer to the C++
Reference.

If you are upgrading from a previous release of either ObjecTime
Developer or Rose RealTime, to build and run your model in
“Backwards Compatibility Mode” on page 71. Then, you can convert to
the new syntax described in “Changes” on page 76.

See the ObjecTime Developer to Rational Rose RealTime Conversion
Guide, that is available as part of the online Help system.

Backwards Compatibility Mode

An essential requirement of the C++ Language Add-in is that it allows
models from previous releases to be loaded, compiled, and run with
only small syntax changes to the model. Because of the scope of the
changes required to the Language Add-in, most models will contain
constructs that still will not compile even in backwards compatibility
mode because of the increased send type checking and removal of
global signals.

Note: Global signals have been replaced by a signal number local to
each protocol class defining the signal. Signals with the same name in
different protocols do not share the same integer value.
Installation Guide, Rational Rose RealTime 71

Chapter 7 Migration
Migrating in two steps

You can plan your conversion in two steps:

1. Build your model in backwards compatibility.

2. Convert to the new syntax.

Since you retain the benefits of type safety even in backwards
compatibility mode, one option would be to keep active projects in
backwards compatibility and only use the new syntax on new projects.

Advantages of backwards compatibility versus changing all syntax

� Only small changes to user code is required.

� There are no run-time penalties.

� You can optionally benefit from the new message send type safety.

Disadvantages

� There are stubs generated for each protocol to allow backwards
compatibility. More code is therefore generated in backwards
compatibility mode.

� Compilation times are longer because there is more code to
compile.

What does backwards compatibility do?

Protocols can be marked as backwards compatible (see the C++ Target
RTS tab of the Protocol Specification). This will tell the code generator
to create stub code in the protocol classes to allow use of the old
Communication Services syntax.
72 Installation Guide, Rational Rose RealTime

C++ Language Migration
Compiler will find all errors

Many errors in existing models will be discovered by the compiler. After
a build, the Build Errors pane of the output window will have a list of
all compile errors. Double-click on the error and the code section
containing the error appears.

Figure 6 Sample output window showing build errors

Building a model in backwards compatibility mode

Follow these steps to build and run a model loaded into Rose RealTime
to be built and run in backwards compatibility mode.

Step 1: Optional type checking

A flag has been added to the C++ TargetRTS tab for protocols called
TypeSafeSignals. By default this property is turned on. Turning off
the flag causes the code generator to ignore the types for all signals in
the protocol class. This is the same as setting them all to blank (i.e.
any). This sets the type of the data to be sent to void * and allows
SEND_SCALAR to work without change. This is considered a true
backwards compatibility mode with the added advantage that it affects
the new send syntax as well (i.e. you can turn off backwards
compatibility and turn off type safe signals).

If you want to continue to use the SEND_SCALAR macro you should
turn off the TypeSafeSignals property on these protocols.
Installation Guide, Rational Rose RealTime 73

Chapter 7 Migration
Step 2: Enable BackwardsCompatible protocol property

� Press F12 or select Tools > Options from the main menu, and in
the options tab and select the C++ Target RTS tab. Then set the
Type to Protocol and ensure that the BackwardsCompatible
checkbox is checked.

This will ensure that all protocols default to backwards
compatibility mode.

Note: On loading of ObjecTime Developer models all protocols will
automatically be set to backwards compatibility mode.

Step 3: Clean up unsafe sends

Most models contain unsafe sends and sends that are not used as
defined in the associated protocol. You should fix these constructs so
that you do not need to debug bugs caused by these kinds of errors.

The compiler will find these errors. However if you know where you
have signal-type incompatibilities, you can manually fix them.
74 Installation Guide, Rational Rose RealTime

C++ Language Migration
Previous versions of the C++ UML Services Libraries allowed sending a
signal, defined in the protocol to have a data class, to be sent without
data. Because of the new tightened type safety of sends, this is no
longer allowed and will result in compilation errors. To compile in
backards compatibility mode you will have to modify all errors of this
type.

This is an example of a typical compile error for a signal-data class
mismatch:

int __thiscall NewProtocol1::base::send(const struct
RTSignal_start &,const class AClass1 &,int)' : cannot
convert parameter 2 from 'int' to 'const class AClass1 &

Step 4: Remove unspecified ‘*’ replication values

You can search your model for unspecified replication values by using
the find tool and searching Cardinality/Multiplicity fields for the value
‘*’.

Step 5: Investigate remaining syntax changes

� The first step is to identify if you use message forwarding or if you
access signal names in user code. You will have to convert these
constructs as described in “Forwarding” on page 83 and
“Discriminating in code the signal of a received message” on
page 82.

Example compile error message when using old forwarding syntax:

int __thiscall NewProtocol1::base::send(const struct
RTSignal_start &,const class AClass1 *,const struct
RTObject_class *,int)' : cannot convert parameter 1 from
'int' to 'const struct RTSignal_start &'

Example compile error message when using signal name in user
code:

binary '==' : no operator defined which takes a left-hand
operand of type 'int' (or there is no acceptable conversion)

Note: If you still have compilation problems, review “Changes” on
page 76 to ensure that you are not using classes that have been removed
from the Services Library.
Installation Guide, Rational Rose RealTime 75

Chapter 7 Migration
Full migration

When your model is compiling and running in backwards compatibility
mode, the next step for full migration is a communication service
syntax change. You will have to find and replace occurrences of old
syntax with the new syntax and individually turn off the
BackwardsCompatibility flag on a per protocol basis. For a complete
listing of the change communication service primitives, see “Changes”
on page 76 section.

Changes

This section explores all the changes affecting users of the C++
Language Add-in who will be migrating their existing models to this
new version.

C++ UML Services Library

Adding support for libraries and type safety required changing the
Communication Service API. Review these sections to understand the
new C++ Services Library changes.

� “Type safety explained” on page 77

� “New classes for protocols, signals, and ports” on page 77

� “API changes summary” on page 78

� “Macros” on page 87

� “External Layer Service (ELS)” on page 87

No attempt will be made to describe changes made to the private or
undocumented features of the C++ Services Library. We recommend
that you always use only the documented interfaces.

Note: For minor problems migrating customizations or configurations of
the C++ UML Services Library contact Rational Technical Support. For all
other problems migrating your custom changes contact your sales
representative to arrange for consulting services to assist in the
migration.

Code generation and compilation

Components have been expanded to allow building libraries and model
external libraries.
76 Installation Guide, Rational Rose RealTime

C++ Language Migration
New classes for protocols, signals, and ports

In previous versions of the Services Library RTEndPort and
RTEndPortRef classes were used to represent port instances and port
references. These classes have been replaced by RTProtocol,
RTOutSignal, RTInSignal, and RTSymmetricalSignal classes.

For each protocol in a model a structure is generated. Contained in the
structure are a Base and Conjugate class which are subclasses of
RTProtocol. For each signal defined in the protocol an operation is
generated in the Base and Conjugate classes. The introduction of the
new classes has changed the syntax of communication service
operations.

Type safety explained

In a protocol specification, a signal may be defined with an associated
data class. Previously, it was optionally up to the software designer
whether or not to actually send data along with such signals. In
addition you were able to send signals that were not defined on the port
on which they were sent.

In summary, there has never been any support for compile-time
validation that user code conformed to a protocol specification.
Consequently all errors of this type could only be caught at run-time,
resulting in developers having to track down “unexpected message
warnings” and run-time exceptions.

How has this been changed?

In the new UML Services Library, you must send data if the signal has
an associated data type. The data must be of the type, or a subclass of
the type, specified for that signal. Alternatively, the data may be of type
void or left empty. A data class type left empty (that is, no type
specified) implies that you can send anything with the signal. In
addition you can only send signals that have been defined on the
protocol role associated with the port.

Note: Backwards compatibility mode allows previous release syntax to
be used in models compiled with the current release of the C++ Services
Library.
Installation Guide, Rational Rose RealTime 77

Chapter 7 Migration
The TypeSafeSignals flag on protocols can be used to force the code
generator to ignore the data class value of all signals defined in a
protocol. The code generator treats the signal’s data class as being
empty, thus allowing any type of data class to be sent with the signal.

API changes summary

The changes affecting the communication service interface can be
grouped into the following usage scenarios:

� “Asynchronous sends” on page 79 (to one or all port instances)

� “Synchronous sends” on page 80 (to one or all port instances)

� “Message reply” on page 80

� “Defer, recall, and purge” on page 81 (one or all signals to one or all
port instances)

� “Port indexes” on page 82

� “Discriminating in code the signal of a received message” on
page 82

� “Forwarding” on page 83 (potentially from one protocol to another
and to one or all port instances)

� “RTPortRef operations” on page 85

In addition to the changes in the communication service review these
issues that may impact your conversion:

� RTTimespec parameters

All examples in this section assume that a replicated port called aPort
of type aProtocol is defined on a capsule. The protocol is symmetric (in
and out signals are the same) and is defined as:

Note: The examples show sending RTInteger (a type of RTDataObject
with which ObjecTime Developer 5.2 users will be familiar), and regular
classes created using Rose RealTime 6.0, AClass1.

Signal Data Class

start AClass1

stop int

reset RTInteger
78 Installation Guide, Rational Rose RealTime

C++ Language Migration
Asynchronous sends

5.2/6.0

port.send(signal, rtdataobject, priority);
port.send(signal, data, type, priority);
port[index]->send(signal, rtdataobject, priority);
port[index]->send(signal, data, type, priority);

New syntax

port.signal(rtdataobject).send(priority);
port.signal(data).send(priority);
port.signal(rtdataobject).sendAt(index, priority);
port.signal(data).sendAt(index, priority);

New syntax example

RTInteger level(15); // RTDataObject
AClass1 mdata(49, 1.23);

aPort.reset(level).send(); // broadcast
aPort.start(mdata).send(); // broadcast
aPort.reset(level).sendAt(1); // single port
aPort.start(mdata).sendAt(1); // single port
Installation Guide, Rational Rose RealTime 79

Chapter 7 Migration
Synchronous sends

5.2/6.0

port.invoke(repbufs, signal, rtdataobject);
port[index]->invoke(repbuf, signal, rtdataobject);
port.invoke(repbufs, signal, data, type);
port[index]->invoke(repbuf, signal, data, type);

New syntax

port.signal(rtdataobject).invoke(repbufs);
port.signal(data).invoke(repbufs);
port.signal(rtdataobject).invokeAt(index, repbuf);
port.signal(data).invokeAt(index, repbuf);

New syntax example

RTInteger level(5); // RTDataObject
AClass1 mdata(49, 1.23);
RTMessage replyBuffers[5];
RTMessage replyBuffer;

aPort.reset(level).invoke(replyBuffers); // broadcast
aPort.start(level).invokeAt(1, &replyBuffer); // single port
aPort.reset(mdata).invoke(replyBuffers); // broadcast
aPort.start(mdata).invokeAt(1, &replyBuffer); // single port

Message reply

5.2/6.0

msg->sap()->send(signal, rtdataobject);
msg->sap()->send(signal, data, type);
msg->reply(signal, rtdataobject);
msg->reply(signal, data, type);

New syntax

rtport->signal(rtdataobject).reply();
rtport->signal(data).reply();

New syntax example

RTInteger level(5); // RTDataObject
AClass1 mdata(49, 1.23);

rtport->reset(level).reply();
rtport->start(mdata).reply();
80 Installation Guide, Rational Rose RealTime

C++ Language Migration
Note: rtport is an argument passed to each transition code segment. It
is a pointer to the port on which the triggering signal was received. For
more information see “Parameters available in transition code” on
page 88.

If a transition is triggered by signals arriving from different ports with
different protocols, then the rtport argument cannot be used to reply.
In these cases you will have to either explicitly cast the port or create
a separate transition to reply to signals arriving on a specific port.

((AProtocol::Base *)msg->sap())->Ack().Send();

The difference between rtport and msg->sap() is that rtport is coerced
to the correct protocol type by the code generator whereas msg->sap()
is a pointer to the a generic RTProtocol object.

Defer, recall, and purge

5.2/6.0

port.purge(signal);
port[index]->purge(signal);
port.recall(signal, front);
port[index]->recall(signal, front);
port.recallAll(signal, front);
port[index]->recallAll(signal, front);
port.recallAll();
port.recallAll(0, front);

New syntax

port.signal().purge();
port.signal().purgeAt(index);
port.signal().recall(front);
port.signal().recallAt(index, front);
port.signal().recallAll(front);
port.signal().recallAllAt(index, front);
port.recall();
port.recallFront();
port.recallAt(index);
port.recallAll();
port.recallAllFront();
port.recallAllAt(index);
port.purge();
port.purgeAt(index);

New syntax example
Installation Guide, Rational Rose RealTime 81

Chapter 7 Migration
// a signal must have already been deferred
// using a call to msg->defer().

// purge all deferred messages on all port instances
aPort.purge();

// recall all deferred bye signals
aPort.bye().recall();

Port indexes

5.2/6.0

msg->sap()->getIndex(); // 0-based
msg->sap()->index(); // 1-based
msg->sap()->at(index) // 1-based

New syntax

msg->sapIndex0(); // 0-based
msg->sapIndex(); // 1-based

Note: The at() , and getIndex() operations are no longer supported.

New syntax example

AClass1 mdata(1, 4.56);
int index = msg->sapIndex0();

// send back to same port instance on
// which we just received a message.
rtport->start(mdata).sendAt(index);

Discriminating in code the signal of a received message

You may have code that used a signal outside the scope of a message
send. For example:

AClass1 mdata(1,4.56);
int index = msg->sap()->getIndex();

if(msg->getSignal() == hello)
{

aPort.start(mdata).sendAt(index);
}

82 Installation Guide, Rational Rose RealTime

C++ Language Migration
Since these signal values are not global you have to use the
enumeration values for the signals defined in their respective protocol
role. For example, you would have to change the above code fragment
to:

AClass1 mdata(1,4.56);
int index = msg->sapIndex0();

if(msg->getSignal() == NewProtocol1::Base::rti_hello)
{

aPort.start(mdata).sendAt(index);
}

Note: The signal value in the protocol will always be called
rti_<signalname>. You can easily reference it by using the following
syntax: Protocol::<ProtocolRole>::rti_<signalname>, as shown above.
ProtocolRole will be either Base or Conjugate.

Forwarding

In previous versions of the C++ UML Services Library, you were
permitted to blindly forward signals out other port instances. Because
signal numbers are no longer global (that is, a signal with the same
name and data class in two protocols won’t have the same signal
number) this will no longer work.

5.2/6.0 forwarding syntax:

port.send(msg->signal, msg->data);
port.send(msg->signal, msg->data, msg->type);

Static forwarding pattern

In most cases, you can implement simple forwarding behavior by
discriminating the received signal then explicitly sending a signal out
another port. The outgoing signal doesn’t necessarily have to be the
same name as the incoming signal. Static forwarding requires signal
discrimination in a transition (for example, using a switch statement)
or adding transitions for each signal being forwarded.

Examples

// using one transition to route all
// incoming messages to other ports.

switch(msg->getSignal())
{

Installation Guide, Rational Rose RealTime 83

Chapter 7 Migration
case NewProtocol1::Base::rti_start:
outport.start(*rtdata).send();
break;

case NewProtocol1::Base::rti_stop:
outport.stop(*rtdata).send();
break;

default:
log.log(“Unexpected message”);

}

// or you could have one transition per
// signal. In this case each transition
// would forward one signal.

outport.start(*rtdata).send();

Dynamic forwarding

Some routing capsules are designed so that they won’t know the exact
protocols for the forwarding ports at design time (that is, they could be
overridden at run-time). In these cases, the switch statement described
in the static forwarding pattern does not provide a good solution.

Dynamic forwarding provides run-time mapping from one protocol to
another. It works by creating a signal map table to map signal numbers
from one protocol to another based on the signal name and the data
class. This provides constant signal lookup. In addition, signals that
don’t have compatible data classes are not added to the signal map.

Dynamic forwarding support has not been added to the UML Services
Library. Instead a set of classes has been created that can be used in
any model that requires this level of forwarding. To use dynamic
forwarding please refer to the Dynamic Forwarding model example in
the Examples. The example model contains the forwarding classes, or
adaptors, and sample usage of these classes. In general capsules
requiring dynamic forwarding will have to do the following:

1. For each port pair where forwarding will be used, an adaptor object
is created to initialize and encapsulate the signal map. If you have
forwarding from port A to B and A to C you will need 2 adaptor
objects.

2. Each adaptor is initialized at run-time with the in and out
protocols. This will create the signal map.
84 Installation Guide, Rational Rose RealTime

C++ Language Migration
3. When forwarding is required in a transition, pass the message to
be forwarded to the adaptor.

The example model that contains the forwarding classes (adaptors and
signal maps) can be found in:

$ROSERT_HOME/Examples/Models/C++/DynamicForwarding

RTPortRef operations

The RTPortRef class is no longer part of the UML C++ Services Library.
Operations that used to be available on this class have been moved to
the RTProtocol class. This is a summary of the operations that have
changed going from the RTPortRef to the RTProtocol class:

RTEndPort ** RTPortRef::incarnations()

This was last present in ObjecTime Developer 5.2. You will have to use
a port (RTProtocol) paired with an index wherever a pointer to
RTEndPort appeared previously. For example, before you would have:

RTEndPort ** ports = portref.incarnations();
for(int i = 0; i < portref.size(); i++)

(*ports)[i]->send(ack);

This has to be converted to:

for(int i = 0; i < portref.size(); i++)
portref.ack().sendAt(i);

The valid indices are from 0 to (port.size()-1), inclusive.

RTEndPort ** RTPortRef::incarnationsTo()

There is no direct replacement for this. Users will have to base their
loop on the port index rather than an index into the returned array of
pointers. Within that loop you will want to use

int RTProtocol::isIndexTo(int, RTActor *) const

to discover the replication indices which correspond to incarnations
that would previously have been included in the array. This new
interface is more efficient because it avoids the need to allocate and
release a block of memory.
Installation Guide, Rational Rose RealTime 85

Chapter 7 Migration
RTEndPort * RTPortRef::incarnationTo():

This operation is replaced by RTProtocol::indexTo(). For example, here
is a common use of incarnationTo and how it can be converted to use
indexTo:

RTActorId aid = frame.incarnate(role1);
RTEndPort * port = (RTEndPort *)0;
if(aid.isValid()) {
 port = replicatedportref.incarnationTo(aid);
 if(port != (RTEndPort *)0)
 port->send(Signal);
}
Is replaced with RTProtocol::indexTo(),
RTActorId aid = frame.incarnate(role1);
int port_index;
if(aid.isValid()) {
 port_index = replicatedportref.indexTo(aid);
 if(port_index != -1)
 port.Signal().sendAt(port_index);
}

RTTimespec parameters

ObjecTime Developer (OTD) models which used the RTTimespec
constructor with only one parameter, as in the following code:

timer.informIn(RTTimespec(2));

will result in a compile error after conversion of the model to Rose
RealTime. The compile error will appear something like:

..\rtg\Driver.cpp(67) : error C2440: 'type cast' : cannot
convert from 'const int' to 'struct RTTimespec'
No constructor could take the source type, or constructor
overload resolution was ambiguous.

The reason is that in OTD, the RTTimespec constructor included
default arguments, that is, RTTimespec (long=0, long=0). The default
constructor values are not supported on RTTimespec in Rose
RealTime. Any code that made use of the default arguments needs to
be changed to supply both constructor arguments. For example:

RTTimespec(2);

must be changed to:

RTTimespec(2, 0);
86 Installation Guide, Rational Rose RealTime

C++ Language Migration
RTSignalNames

Some users have accessed this private structure to find signal names.
Support for accessing this structure was never supported and has
been removed from the UML Services Library. If you have referenced
this structure look at replacing this functionality with the
RTMessage::getSignalName() operation which returns the name of
the signal received in the current message.

Macros

The following pre-defined macros will continue to be backards
compatible.

SEND_PTR(ptr)
RECEIVE_PTR(type)
SEND_SCALAR(value)
RECEIVE_SCALAR(type)
SEND_EXT(value)
RECEIVE_EXT(type)

External Layer Service (ELS)

In version 6.0 of the C++ Services Library the ELS was included in the
pre-compiled C++ UML Services Libraries. However source code was
not shipped. In the current release of Rose RealTime the ELS is not
provided for use, nor supported with the release. Please refer to the IPC
Application Note and Example for information on how the ELS can be
replaced. The External Layer has been replaced by Rational Connexis.
Further information on Add-ins, including Connexis, can be found on
the Rose RealTime product web site:

http://www.rational.com/products

Code Generation

To support scalable build environments the C++ Language Add-in now
supports the ability to break systems into a number of independently
buildable components. You can now use components to build libraries,
executables, and model external libraries. See “Components” on
page 88. To support different component types and provide an
extensible interface for components several Model Properties have been
added to components.
Installation Guide, Rational Rose RealTime 87

Chapter 7 Migration
Components

Components are collections of references to model elements that are
used to build something. In Rose RealTime, there are three kinds of
components:

� C++ Executable: produces an executable.

� C++ Library: produces a library file containing the object files for
the classes referenced by the component.

� C++ External Library: does not actually produce a build output,
but represents a pre-built and packaged component within a
model.

The build options for each component type are stored in a set of model
properties. In Rose RealTime 6.0 a component’s build options were
hard-coded attributes of the component. See the Rational Rose
RealTime C++ Reference for more information about how to use the
new component types.

Directory structure

The code generation directory structure has changed, it is now:

<component name>
<build>
capsule1.exe
capsule1.obj
...
<src>

Makefile
capsule1.dep
capsule2.dep
capsule1.cpp
capsule1.h

...

Parameters available in transition code

Within each transition code segment there are two new parameters
that are available.

Note: The msg variable is still available in transition code and capsule
operations.
88 Installation Guide, Rational Rose RealTime

C++ Language Migration
rtdata: This is the equivalent of the RTDATA macro. It is the data sent
with the message cast to the data type specified in the protocol for the
incoming signal. The rtdata parameter is cast to the lowest common
superclass of the possible data classes for the given code segment.

int level = *rtdata;

Note: Models which used RTDATA do not have to change. RTDATA and
rtdata are equivalent.

If a transition is triggered by multiple signals with different data
classes, you will have to cast msg->data yourself.

int level = *(const int *)msg->data;

rtport: This is a pointer to the port cast to the appropriate protocol
type, on which the message that triggered the transition was received.
You can use this parameter to reply to messages. See “Message reply”
on page 80.

Port cardinality cannot be unspecified

Because there is no way to resolve unspecified cardinalities between
libraries, capsule role replication cardinalities cannot be left
unspecified as ‘*’. You should use constants to specify replication
values..

Makefile overrides changes

Previously the makefile override property was set to a file name which
contained a makefile fragment which was to be included into the main
makefiles with an include statement. Now the makefile overrides
property is added, as is, to the makefile. That means that you don’t
have to create a separate file outside of the toolset to contain any
additional makefile commands.

Previous models which contain makefile overrides are converted by
adding the include statement to the property.

Model Properties

Component build settings are now stored in model properties. This
allows easy extensibility and sharing of build options. Although the
actual build properties have not changed much, they have been re-
arranged. Build options now exist for each component type and for
generic generation and compilation settings.
Installation Guide, Rational Rose RealTime 89

Chapter 7 Migration
Component type properties: C++ Executable, C++ Library, C++
External Library.

Generic build settings: C++ Generation, C++ Compilation

See the Rational Rose RealTime C++ Reference for descriptions of the
component model properties.

Advanced property editors

A number of properties introduced in this release require more than
simply a true or false value. Instead some properties represent a set of
parameters. To assist configuring properties that have several
parameters that can be set, graphical editors have been added to
property sheets to allow editing of these complex properties. If a
property has an advanced property editor you will notice an Edit... or
Select... button beside the property. Press the button to access the
extended property editor window.
90 Installation Guide, Rational Rose RealTime

Chapter 8

Integration Notes

Rational Rose RealTime can coexist on the same workstation with any
Rational or ObjecTime product. In addition Rational Rose RealTime is
shipped with “out-of-the-box” integrations with several popular
development tools. It will simplify tool-chain complexity by providing
teams with seamless integration to leading real-time operating
systems, compilers, symbolic debuggers, and other market-leading
Rational Software products. For a list of supported platform ‘line-ups’,
see “Supported Host Platforms” on page 13.

Configuration Management (CM) Tools Integration

The following CM tools are supported with integration for Rose
RealTime. For more information on integrating these tools, see the
Guide to Team Development.

Tools Version

Rational ClearCase (Base and UCM) 3.2.1 (requires patch 10), 4.0,
4.1

Microsoft Visual SourceSafe (NT only) 5.0 and 6.0

RCS (UNIX only) 5.7

SCCS (UNIX only) 5.6 on Solaris
76.1.1.1 on HPUX

PVCS Integration 6.5
Installation Guide, Rational Rose RealTime 91

Chapter 8 Integration Notes
ClearCase on a UNIX Server and Clients on both NT and UNIX

You can access a ClearCase server on UNIX with Rose RealTime clients
running on both NT and UNIX workstations. For more information on
integrating these tools, see the Guide to Team Development.

Migrating from Rational Rose and ObjecTime Developer

In order to migrate models into Rose RealTime from either Rational
Rose or ObjecTime Developer where models were previously stored in
a configuration management system, the model must be brought into
the Rational Rose or the ObjecTime Developer tool and written to a
single file. Please refer to “Migration” on page 53.

When importing a model from Rose into Rose RealTime, you are
encouraged to resolve any model errors in Rose (Tools > Check Model)
before trying to import the model. It is important to fix unresolved
references. In general, Rose is not concerned with unresolved
references; however, they are very important in Rose RealTime as they
can result in incomplete code generation and compilation errors.

In order to export the ObjecTime model in a format that is readable by
Rose RealTime, a patch must be applied to the 5.2 or 5.2.1 toolset to
format the file in a single linear form file with all the required
information. The patch is available from Rational Customer Support
for both the 5.2 and 5.2.1 product release only. Please contact the
Rational Customer Support group for further information.

Once the model has been imported into Rose RealTime, it can then be
stored in the configuration management system.

Requirements Management Tools Integration

The following tools are supported for integration with Rose RealTime.

Tools Version

Rational SoDA for Word (NT
only)

2000.02.10 and later

Rational RequisitePro 2000.02.10 and later
92 Installation Guide, Rational Rose RealTime

Unit Testing Tools Integration
Rational SoDA for Word

SoDA and Rose RealTime will work together out of the box if installed
from the Suite. Rose RealTime offers the same level of SoDA integration
as Rose. For information on how SoDA and Rose RealTime integrate,
see the Rose integration section in the SoDA documentation.

Please refer to the product support page at

http://www.rational.com/support

for the latest updates on SoDA integration.

Note: In order to generate a report using SoDA, the Rose RealTime
model must have been saved at least once. If the Rose RealTime model
has never been saved, it will be untitled. An untitled model will cause
SoDA to generate errors.

Rational RequisitePro

RequisitePro and Rose RealTime will work together out of the box if
installed from the Suite. Rose RealTime offers the same level of
RequisitePro integration as Rose. For information on how RequisitePro
and Rose RealTime integrate, see the Rose integration section in the
RequisitePro documentation.

Note: The Rose RealTime Requisite Pro integration does not support the
association of a Rose RealTime package with a RequisitePro project. Use
Case and Model association is supported.

Unit Testing Tools Integration

The following tools are supported for integration with Rose RealTime.

Rational Purify

Once a component is built and a component instance has been
created, the instance can then be run and observed. Purify detects
errors in your own code as well as the components your software uses.
For information, see the Running and Debugging section in the
Rational Rose RealTime Toolset Guide.

Tools Version

Purify for UNIX and Windows NT 2001.03.00 and later
Installation Guide, Rational Rose RealTime 93

http://www.rational.com/products/rosert

Chapter 8 Integration Notes
Adding options to Purify on UNIX

The toolset looks for an installation of Purify by checking for an
environment variable named PURE_HOME. This environment variable
is not set up by installing Rational Purify.

You must set this environment variable manually. The variable need
not point to a directory containing Purify, nor is it required to point to
a directory. The variable may contain anything, but must be set.

Occasionally, you may need to add options during a Purify’d build on
UNIX. For example, Purify on HP needs to know the name of the linker
or collector used by Gnu g++.

Options can be added by changing PURIFY_OPTIONS in the
CompilationMakeInsert field of the executable component.

The default value of PURIFY_OPTIONS (generated in the Makefile by
the code generator) is:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -windows=no

To accommodate using g++ on HP, you can add the following:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -
windows=no -collector=/usr/lib/gcc-ld -g++=yes

Where the path of to the collector, gcc-ld in most cases, should be
the path that is specific to your environment.

For proper integration of Purify when running the Purify’d executable
from the toolset, you should preserve the default options.

For an explanation of Purify options, see Running a component instance
with Purify in the Toolset Guide.

Microsoft Development Environment

We recommend that you install the latest service packs available from
Microsoft for Visual Studio or Visual C++.

Integration with Rational Robot

Installing the 2001A.04.00 release of Rational Rose RealTime will
interfere with the operation of the 6.1 release of Rational Robot.

We recommend that you upgrade to the 6.3 release of Rational Robot.
94 Installation Guide, Rational Rose RealTime

Naming Directories
Naming Directories

Avoid using spaces in directory names if you plan to integrate with
Tornado, OSE or VRTX embedded operating systems. For additional
information, see the Technical Notes in the Technical Support section
on our web site at:

http://www.rational.com/support
Installation Guide, Rational Rose RealTime 95

http://www.rational.com/products/rosert

Chapter 8 Integration Notes
96 Installation Guide, Rational Rose RealTime

Chapter 9

Starting Rational Rose RealTime

This section describes:

� “Starting Rose RealTime under Windows” on page 97

� “Starting Rose RealTime on UNIX” on page 97

� “Rose RealTime for UNIX and the X Window System” on page 99

� “Automating Rose RealTime” on page 101

� “Command Line Options” on page 101

Starting Rose RealTime under Windows

To start Rose RealTime on Windows, on the Start menu, choose Programs
> Rational Rose RealTime.

Note: You must first install license keys before running Rose RealTime.

Temporary license keys can be found in the product package.
Instructions on how to request permanent license keys, see “Installing
License Keys” on page 41.

Starting Rose RealTime on UNIX

Before starting Rose RealTime on UNIX, ensure your environment is
set up correctly according to the instructions provided in “Installing
Rational Rose RealTime on UNIX” on page 27. If not, your path may not
be defined properly and the various programs required to run Rational
Rose RealTime will not be found.
Installation Guide, Rational Rose RealTime 97

Chapter 9 Starting Rational Rose RealTime
Rose RealTime is started from a UNIX command shell prompt by
typing:

RoseRT

Start-up options for UNIX

-regedit

Edits the internal registry that maintains mappings of directory names
and other information required by the Rose RealTime tool. This registry
mimicks the function of the WindowsNT registry, except that on UNIX
the registry is maintained directly by Rose RealTime.

-startuplicense

Creates a startup license.

-recreate_registry

Creates a default registry, throwing away any changes made through
the -regedit option.

-q | -quiet

Limits the output of the tool on startup.

-v | -verbose

Provides verbose output on startup.

-cleanup

Kills all running applications using MainWin and then cleans up the x-
server resources.

You should be very careful with this command as it will kill all MainWin
applications running under your Id.
98 Installation Guide, Rational Rose RealTime

Rose RealTime for UNIX and the X Window System
Rose RealTime for UNIX and the X Window System

When running on UNIX platforms, Rose RealTime relies on the X
Window System to provide basic user interface services. Rose RealTime
supports the most common versions of the X Window System: Version
11 Release 5 and Version 11 Release 6.

The following topics provide background information on how Rose
RealTime interacts with the X Window System and highlights any
specific requirements.

X clients

The X Window System employs a network-enabled client-server
architecture. Rose RealTime is a client application within this
architecture. X clients interact with the user via an X server which may
or may not be running on the same system as the client application. If
the server and client are not running on the same system, the X client
is said to be using a remote display.

X servers

The X server is a program that controls interaction between the user
and an X client application via the keyboard, mouse and graphical
display screen. The X server runs locally on the system where the
display is attached.

On UNIX workstations the X server is normally provided by the system
vendor. If you want to run Rose RealTime on a UNIX workstation and
remotely display it on a Windows workstation, a third-party X server
(such as, Hummingbird Exceed) is required. Rose RealTime has been
qualified to be used with Hummingbird Exceed 6.1.

X window managers

The X window manager is a special X application that facilitates
running multiple X clients within separate windows on a single X
server. The window manager provides mechanisms for resizing and
moving windows and designating which X client has input focus at a
given time.
Installation Guide, Rational Rose RealTime 99

Chapter 9 Starting Rational Rose RealTime
Most X environments include a window manager. Rose RealTime
supports most commonly used window managers including:

� Common Desktop Environment (CDE)

� Motif (MWM)

� Exceed native window manager

When available, the CDE window manager is recommended.

Input focus (active window) policy

The X window manager often allows the user to specify a policy for
delegating input focus. This window is also referred to as the active
window. There are two common settings:

� Click to focus. In this mode, the user must click on a window with
the mouse to give it input focus. This is most consistent with the
Windows focus policy and is the recommended configuration.

� Point to focus. In this mode, the user points to a window with the
mouse to give it input focus.

Window order policy

The user can also often specify with the window manager whether the
active window must be the top-most window displayed. Under CDE
this option is called “Raise Window When Made Active”. This option
should be enabled for consistency with the Windows user interface.

Notes

� CDE's window manager option “Allow Primary Windows On Top”
should also be enabled.

� Exceed’s Native Window Manager does not display a button for
Rose RealTime in the Windows Taskbar. For this reason it is
recommended that a remote CDE window manager be used instead
of Exceed's native window manager. If you prefer to use Exceed's
native window manager, you can use the ALT+TAB shortcut key to
switch from another application to Rose RealTime.
100 Installation Guide, Rational Rose RealTime

Automating Rose RealTime
Automating Rose RealTime

Rose RealTime can be programmed to automatically perform a wide
variety of tasks through the Rose RealTime Extensibility Interface
(RRTEI). The RRTEI is accessible through basic scripts and from COM
automation clients. This interface can be used to create add-ins and
scripts. Rose RealTime also supports the Rose Extensibility Interface
(REI) for compatibility with Rose. The complete documentation for the
RRTEI is included in the Rose RealTime Online Help System.

Running Rose RealTime as an automation server consumes a license
when the application is made visible.

Command Line Options

The following are command line options for Rose RealTime on UNIX:

<filename>

A user option to load a model on startup.

-nologo

A user option to suppress the logo screen on startup.

-emulateREI

A user option to enable the Rose Extensibility Interface (REI). Overrides
the settings in tools/options.

Note: The Rose RealTime Extensibility Interface (RRTEI) is still
available.

-noEmulateREI

A user option to disable the Rose Extensibility Interface (REI).
Overrides the settings in tools/options.

Note: The Rose RealTime Extensibility Interface (RRTEI) is still
available.

-register or -regserver

Enters the applications registry settings into the registry.
Installation Guide, Rational Rose RealTime 101

Chapter 9 Starting Rational Rose RealTime
-unregister or -unregserver

Removes the applications registry settings from the registry.

-runScriptAndQuit

Use in conjunction with a compiled script passed as parameter. When
the toolset is launched with this command line option, the toolset
starts hidden, runs the script and quits. All of this is done without
consuming a license. This is particularly useful to allow batch mode
builds.
102 Installation Guide, Rational Rose RealTime

Chapter 10

Add-ins

This section provides an overview of the following add-ins:

� Web Publisher

� Model Integrator

� Rose C++ Analyzer

Web Publisher

Description

Web Publisher enables you to create a web-based (HTML)
representation of a Rose RealTime model, that others can view using a
standard browser such as Netscape Navigator or Microsoft’s Internet
Explorer.

Unlike sequential formats (such as paper or text files), Web Publisher
lets you non-sequentially browse, search, and navigate your design.
You can publish successive iterations of an evolving model for review
or for sharing information. Another potential use is to publish
documentation for a frozen API or framework.

Web Publisher recreates model elements, including diagrams, classes,
packages, relationships, attributes, and operations. After published,
hypertext links enable you to traverse the model much as you would in
Rose RealTime.
Installation Guide, Rational Rose RealTime 103

Chapter 10 Add-ins
You can control what Web Publisher includes by setting a variety of
options. For example, you can select which packages of a model are
published, the amount of detail to include, the notation to use, and the
graphics format for diagrams. The View feature lets you launch your
default browser and view the published model directly from Web
Publisher.

Suggested workflow

To generate the files needed to create a web-based version of a Rose
RealTime model:

1. Open the model you want to publish.

2. Choose Tools > Web Publisher.

3. From the Web Publisher dialog, select the publishing options you
need.

Note that the dialog displays the options that were selected the last
time a model was published.

4. Click Publish when you are ready to publish the model.

5. Click View to open your default web browser and view the published
model. Remember that in the future you can open the published
model in the browser by opening the root file name you specified on
the Web Publisher dialog.

6. Click Close to close the dialog.

Limitations

The following browsers are supported:

� Microsoft's Internet Explorer 4.0 or later. (www.microsoft.com)

� Netscape's Communicator 4.06 or later.
(http://www.netscape.com/download) If you want to publish the
images in PNG format you need to add PNG support to Netscape
Communicator. PNG Live
(http://codelab.siegelgale.com/solutions/pnglive2.html) is a plug-
in that provides PNG support for Netscape Communicator.
Netscape Communicator 4.5 or better has built-in support for PNG
and therefore does not require any special plug-in to view web
pages created by Web Publisher. (www.netscape.com/download)
104 Installation Guide, Rational Rose RealTime

Model Integrator
� Only eight colors are directly supported in published diagrams.
Other colors are obtained by dithering. If you want to avoid
dithering, set up Rose RealTime to use line and fill colors that are
among the eight available.

The following table includes the eight available colors and their
RGB values.

� In published diagrams, you can normally click on a model element
to go to that model element's specification information. This does
not work for some model elements. These include aggregation
relationships on the class diagram, transitions on the state
diagram, association roles on the collaboration diagram, and
connections on the deployment diagram.

For more information, see the Web Publisher online Help.

Model Integrator

Description

The Rose RealTime Model Integrator add-in allows you to compare up
to seven units/models—called contributors—to a common root
model/units—called the base contributor.

The add-in exists as a separate executable that can be launched stand-
alone or from the toolset using Tools > Model Integrator. It is launched by
the toolset when using the Source Control > Show Differences.

Colour Red Green Blue

Red 255 0 0

Green 0 255 0

Blue 0 0 255

White 255 255 255

Black 0 0 0

Yellow 255 255 0

Magenta 255 0 255

Light Blue 0 255 255
Installation Guide, Rational Rose RealTime 105

Chapter 10 Add-ins
Model Integrator is capable of acting as a ClearCase Type Manager,
meaning that ClearCase uses Model Integrator for showing differences
and merging Rose RealTime units/models.

Suggested workflow

Merging two branches of a model

Assume a base model B and two models C1 and C2 and B is their
common historical ancestor.

From Rose RealTime, select Tools > Model Integrator to launch Model
Integrator.

To merge two branches from Model Integrator:

1. Select File > Contributors to open the Contributors dialog box.

2. Enter the base contributor B, then the two other contributors C1
and C2.

3. Click Merge.

For each contributor, Model Integrator loads the first level of
subunits and brings up the Subunits dialog box.

4. Click OK to load all subunits.

Model Integrator shows the merged model potential conflicts.

5. Resolve each conflict by selecting the contributor to use for that
conflict.

Note: To see model differences, select Options > Compare Mode.

6. When all conflicts are resolved, select File > Save As and choose a file
name.

7. The subunits dialog box appears. Click OK.

Comparing local unit with the one in source control database

From Rose RealTime, select the unit to compare in the browser. Open
the context menu and select Source Control > Show Differences.

For more information, see the Model Integrator online Help.
106 Installation Guide, Rational Rose RealTime

Rose C++ Analyzer
Rose C++ Analyzer

Description

The Rose C++ Analyzer is an executable bundled with Rational Rose
2000’s Rose C++ add-in. Used in conjunction with the Tools > Import
menu command, it provides a way to import legacy C++ systems into
Rose RealTime.

Rose RealTime only supports the initial reverse engineering since the
code is embedded within its model. Full target observability from the
toolset is supported, thus eliminating the need to update code outside
the toolset environment.

Note: The online Help for the Rose C++ Analyzer contains Rose specific
information that may not be applicable to Rose RealTime. We
recommend that you limit your use of the add-in to the Suggested
Workflow described below.

Suggested workflow

From Rose RealTime, select Tools > C++ Analyzer to launch Analyzer.

From Rose C++ Analyzer

1. Create Project.

2. Set compiler settings.

3. Add Files.

4. Analyze.

5. Code Cycle.

6. Export to Rose.

From Rose RealTime

1. Select File > Open to load the Rose Model.

2. Select Tools > Import Code to import code from source files.
Installation Guide, Rational Rose RealTime 107

Chapter 10 Add-ins
Notes

� When you create a Rose C++ Analyzer project for the first time, the
following message prompts you to define the $DATA/Rose pathmap
symbol:

1. Click OK. The Virtual Path Map dialog box appears.

2. In the Actual Path field, enter an existing path where the Rose C++
Analyzer will store information about analyzed source files.

3. Click Add and then OK.

� Windows NT users: You may not get this dialog if Rational Rose is
already installed on your machine. In this case, the Import Code
window appears.
108 Installation Guide, Rational Rose RealTime

Rose C++ Analyzer
� UNIX users: The default pathmap symbol $DATA/ must be
replaced with $DATA.

Limitations
� C++ capabilities are limited by Rose RealTime’s code generator’s

own limitation, for example, C++ templates, namespaces

� Round-trip engineering is not supported (and not required).

� Pathmap functionality is not supported (and not required).

For more information, consult the Rose C++ Analyzer online Help.
Installation Guide, Rational Rose RealTime 109

Chapter 10 Add-ins
110 Installation Guide, Rational Rose RealTime

Chapter 11

Uninstalling Rational Rose RealTime

Windows

To uninstall Rose RealTime from a Windows machine:

1. Click Start > Settings > Control Panel.

2. Double-click Add/Remove Programs.

3. Select Rational Rose RealTime and click Change/Remove.

Follow the instructions on your screen to remove Rose RealTime.

Note: We recommend that you also remove the Rose RealTime
directories and registry settings from your system after uninstalling
Rational Rose RealTime.

UNIX

To uninstall Rose RealTime from a UNIX machine:

1. Save any user data files in another location before removing the
installation directory.

2. Remove the installation directory and all of its contents.
Installation Guide, Rational Rose RealTime 111

Chapter 11 Uninstalling Rational Rose RealTime
112 Installation Guide, Rational Rose RealTime

	Installation Guide Rational Rose RealTime
	Introduction
	Welcome to Rational Rose RealTime
	Release Notes
	Installation Guide Updates
	Overview of Rose RealTime Capabilities
	What’s New?
	How to Get Help
	Contacting Rational Technical Support Through the Help Menu
	Contacting Rational Technical Support by Email or Telephone
	License Support Contact Information
	Evaluation and Ordering Information
	Rational Web Site

	Directory Contents
	Accessing the Online Help System

	Platform and Toolchain Requirements
	Platform Requirements — Windows NT
	Platform Requirements — Windows 2000
	Platform Requirements — UNIX
	Toolchain Requirements
	Help Viewer (Windows Platforms Only)
	Compiler
	Real-time Operating System

	Supported Host Platforms
	Creating Executables for Hosts without Toolset Support
	Generating an executable without a common file system

	Adding a Printer on UNIX

	Installing Rational Rose RealTime on Windows
	Upgrade Information
	Installation Instructions
	Installing on a Network Drive

	Testing your Environment

	Installing Rational Rose RealTime on UNIX
	Upgrade Information
	Installation Instructions
	To Install Rational Rose RealTime on UNIX:

	Setting Up a User Workstation
	Environment variables
	Additional settings

	Understanding Rose RealTime Licenses
	How Licenses Work
	FLEXlm License Server
	FLEXlm components
	License manager daemon (lmgrd)
	Vendor daemon
	License key file
	Application program
	License activation process

	Licensing on UNIX
	Running the LMGRD from a Command Prompt
	Example
	Administration commands

	The License File
	Format

	Installing License Keys
	Installing a Startup or Permanent License on Windows
	Installing a Permanent License on Windows
	Installing the License Key
	Installing a Floating License Key on a UNIX server

	Installing a Startup or Permanent License on UNIX
	Installing a Startup License on UNIX
	Installing a Permanent License on UNIX
	Installing the License Key

	Integration With Rational Suites Licensing
	Troubleshooting
	Windows
	UNIX server
	UNIX

	Migration
	Migrating from Rational Rose
	User Interface Differences
	New Modeling Language Elements
	Code Generation, Building, and Running
	Opening Models from Rational Rose
	List of Importation Log Messages
	Limitations and Restrictions
	Importing Rational Rose Generated Code
	Limitations and restrictions

	Migrating from ObjecTime Developer 5.2/5.2.1
	Terminology
	User Interface Differences
	Compilation

	Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1
	File Format Changes
	Source Control Migration
	Migrating customized CM scripts

	Language Add-in Changes
	Running Two Different Releases of Rose RealTime
	Workspace Files
	RRTEI �Changes

	C Language Migration
	Converting a C++ Model to C
	ObjecTime Developer for C Migration
	Importing models
	Converting global signals to local signals
	Timing service

	C++ Language Migration
	Backwards Compatibility Mode
	Migrating in two steps
	What does backwards compatibility do?
	Compiler will find all errors
	Building a model in backwards compatibility mode
	Full migration

	Changes
	C++ UML Services Library
	Code generation and compilation
	New classes for protocols, signals, and ports
	Type safety explained
	How has this been changed?
	API changes summary
	Asynchronous sends
	Synchronous sends
	Message reply
	Defer, recall, and purge
	Port indexes
	Discriminating in code the signal of a received message
	Forwarding
	RTPortRef operations
	RTTimespec parameters
	RTSignalNames
	Macros
	External Layer Service (ELS)

	Code Generation
	Components
	Directory structure
	Parameters available in transition code
	Port cardinality cannot be unspecified
	Makefile overrides changes

	Model Properties
	Advanced property editors

	Integration Notes
	Configuration Management (CM) Tools Integration
	ClearCase on a UNIX Server and Clients on both NT and UNIX
	Migrating from Rational Rose and ObjecTime Developer

	Requirements Management Tools Integration
	Rational SoDA for Word
	Rational RequisitePro

	Unit Testing Tools Integration
	Rational Purify
	Adding options to Purify on UNIX

	Microsoft Development Environment
	Integration with Rational Robot
	Naming Directories

	Starting Rational Rose RealTime
	Starting Rose RealTime under Windows
	Starting Rose RealTime on UNIX
	Start-up options for UNIX

	Rose RealTime for UNIX and the X Window System
	X clients
	X servers
	X window managers
	Input focus (active window) policy
	Window order policy

	Automating Rose RealTime
	Command Line Options

	Add-ins
	Web Publisher
	Description
	Suggested workflow
	Limitations

	Model Integrator
	Description
	Suggested workflow

	Rose C++ Analyzer
	Description
	Suggested workflow
	Limitations

	Uninstalling Rational Rose RealTime
	Windows
	UNIX

