
DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 1

Summary

Ascential Software and IBM participated in a benchmark of DataStage DS/390 Version 6
in the IBM Montpellier Benchmark Center during August and September, 2002. The
purpose of the benchmark was to demonstrate that DS/390 can generate highly-
performant COBOL code, enabling customers to build total end-to-end ETL solutions
involving S/390 data without requiring movement of the data to distributed systems. Our
strategy was to measure the ability of DataStage generated COBOL programs to move
and translate large data volumes (up to 1 Terabyte), demonstrate the ability to run the
COBOL programs in parallel, demonstrate the ability to incorporate the OS/390 Batch
Pipe facility into the process flows, and to provide some data points that could be used by
IBM and Ascential customers to begin to estimate DataStage DS/390 resource
requirements (equipment sizing). This benchmark was not intended to compare the
OS/390 and UNIX versions of DataStage, the IBM z-Series and p-Series hardware, or the
UNIX and OS/390 versions of DB2.

The jobs used to perform the benchmark tests are from Ascential’s Enterprise Data
Integration Benchmark and are documented on the Ascential web site
(http://www.ascentialsoftware.com/etlbenchmark). The Ascential benchmark suite is
more representative of real applications than competitive benchmarks, including
reference lookups, date reformatting, and a variety of data transformations such as
character string manipulations, mathematical operations, and data type conversion.

The results show that DataStage generated COBOL programs without transformations
can move data at roughly the same speed as the IBM IEBGENER utility. Further, the
results demonstrate that I/O considerations, such as BLOCKSIZE, BUFNO, and I/O
bandwidth can have dramatic effects on ETL throughput. The DataStage COBOL
programs exhibited linear scalability with respect to data volumes. Use of the MVS
Batch Pipes facility can have a significant positive impact on throughput. In fact, a single
DS/390 COBOL program, using the Batch Pipe facility, loaded the entire 1 TB of data
into DB/2 in less than 18 hours and 30 minutes. Finally, both DB/2 and DS/390 show
very similar performance attributes when repartitioning data.

These results support the assertion that customers with data existing on the OS/390
platform can use DS/390 generated COBOL programs to address their ETL needs
without moving the data off of the OS/390 environment. DataStage offers customers
(whether mainframe or distributed) a solution that will satisfy their requirements, and
perform extremely well. This is not to state that DS/390 is the only solution, but that
DS/390 provides customers with the option of manipulating the data in the environment
that makes most sense. Large OS/390 data volumes, OS/390 targets, or the ability to
integrate or filter (reduce) the data on the OS/390 platform before moving it are all
reasons to consider DS/390.

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 2

Configuration Details

The benchmark was performed on an IBM 2064 model 216 zSeries machine, with 16
processors providing an aggregated speed of over 3400 MIPS. Our machine was
configured with 32GB of main memory and twelve 2 Gbit FICON channels to attach to
the I/O subsystems. A FICON channel is theoretically equivalent to 3 or 4 ESCON
channels and provides a 100 MB/sec bidirectional (full duplex) data transfer rate. For our
tests we attached 3 FICON channels to each cluster on two 3+ Terabyte IBM Enterprise
Storage Subsystems (Sharks) that were used to contain the input and output data
respectively. This meant the each Shark had 6 FICON channels attached to it.

The software used for the benchmark consisted of z/OS 1.3, DB/2 V7.1, and
DataStage/XE 390 V6. DB/2 was configured with 32K pages and 16, 32, or 64
partitions, depending on the tests being run. DB/2 logging was enabled but logs were not
archived.

The ESS device (Shark) can be configured to offer a wide range of logical device
architectures, for our testing we decided to use 8 logical control units per Shark and 3390
model 9 format disks (7.8 GB/volume) to reduce the number of logical volumes
necessary to manage (one 3390 model 9 is equivalent to three 3390 model 3’s).
Configured at 2.7GB/disk (Model 3 format) we would have needed about 384 disks to
accommodate the terabyte, using mod 9s only required 128 disks - a much more
manageable number.

The Shark offers a number of other optional features– the only feature we decided to
exercise during the benchmark was the Parallel Access Volume (PAV) functionality.
PAV allows z/OS to queue multiple I/O requests for the same logical volume, reducing
job contention and improving the overall system performance for I/O constrained
workloads.

We also took advantage of the z/OS System Managed Storage (SMS) facility to control
the layout of the input data and intermediate load ready files. This facility dramatically
reduces the need to manually place the data for performance as is typically done in UNIX
benchmarks and more closely represents the way our customers would run in their
environments.

Data Generation

The first task was generating the data and DataStage was used for this phase of the
benchmark as well. The DS/390 COBOL programs were used to generate 128 datasets of
8GB each. This configuration was chosen to allow us to run both low volume tests (8,
16, and 32 GB), as well as high volume tests (512, 768, and 1024 GB [1 TB]).

The generation process performed very well with the DS/390 COBOL jobs creating a
Terabyte of input data in less than 1 hour 20 minutes. We ran the jobs in two waves of

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 3

64 simultaneous jobs each. DS/390 itself does not provide a parallelism capability such
as offered by DS PX. The jobs were run in parallel by parameterizing the input values
and using a REXX exec to point to the appropriate job parameter file and submit the job
sets. This does not match exactly the capability of the PX, but it allowed us to apply
similar concepts to the OS/390 environment. The data generation jobs stressed the
throughput of the Shark to over 240 MB/second. This same technique was used to run
many of the remaining benchmark tests.

The diagram to the left shows the
DS/390 job flow that generated the test
data. The goal of the generator is to
create a random set of input records
containing a unique primary key and a
lookup key that will yield an 80% hit
ratio during the lookup operation. Each
record contains 97 columns and consists
of character, integer, and packed
decimal fields.

Unit Testing

The benchmark environment was validated by running a number of simple data
movement jobs using the IBM utility, IEBGENER. The IEBGENER run was then
compared to various combinations of DataStage jobs to determine how data throughput
was affected by various common data movement functions. The following tables show
the results of these tests.

The first chart (below) shows the elapsed time for moving 8 Gigabytes of data between

flat files. As you move
from left to right on the
chart, additional
functionality is
continually added to the
process. For example, the
last test (w/ LR file) reads
the flat file, performs the
all required
transformations and
lookups, then finally
creates a DB2 load ready
file. As the chart shows,

Elapsed Time to move 8GB

IE
BG

EN
ER

Da
ta

St
ag

e

w
/ T

ra
ns

fo
rm

s

w
/ L

oo
ku

ps

w
/ L

R
fil

e

0

1

2

3

4

5

6

7

8

9

10

1

Tests

M
in

ut
es

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 4

DataStage performed the movement operation in roughly the same amount of time
required by the OS/390 IEBGENER utility. Also of note is that creating the DB/2 Load
Ready file (a comma separated format file) did not add significant resource requirements
to the job.

The next chart shows the same tests as before this time reporting on total CPU seconds
consumed (TCB+SRB). Here we see a different view of the situation, more telling than
simply looking at the rows/sec metric. Transformations are indeed adding a certain
amount of CPU time to the operation, demonstrating that the transformations and lookups
are not trivial – some real work is being done here. The probable reason that the elapsed
times shown in the previous chart are the same for the DS/390 straight move and the test
with the
transformations is that
the additional CPU time
is overshadowed by the
I/O time. The in-
memory lookup
operation adds another
increase in CPU usage.
As we increase the
number of COBOL
programs running
concurrently we should
expect to see the CPU
become constrained if
the I/O subsystem can
support the aggregated I/O load.

This diagram shows the results of running the DS/390 jobs at different data volumes (8,
16, and 32 GB). This chart begins to show the linear scalability of the COBOL programs
generated by DS/390. Note how the slope of the “w/ LR” line is much different than that
of the straight move test or the test involving the transformations. This is due to the extra

work done for each
row in performing
the lookup
operation.
Additional logic
was also added in
this job to populate
fields if they were
not found during
the lookup. This
was done using
IF/THEN/ELSE
logic.

CPU Time to move 8GB

IEBGENER DataStage /w Lookup w/ LR filew/ Transforms
0

1

2

3

4

5

6

7

8

9

1

Tests

CP
U

Se
co

nd
s

Elapsed time for 8, 16, and 32 GB

0

5

10

15

20

25

30

35

40

8 16 24 32
GB

El
ap

se
d

Ti
m

e

DataStage
w/ Transforms
w/ LR files
Linear (DataStage)
Linear (w/ LR files)
Linear (w/ Transforms)

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 5

The next tests done focused on the usage of the MVS Batch Pipe facility instead of
physically landing the DB/2 Load Ready file. The MVS Batch Pipe facility allows an
OS/390 job to pass data to a second job through a shared memory buffer rather than
physically landing the file. This capability is generally referred to as pipeline parallelism.
While our results show that this facility can significantly reduce elapsed time, the trade
off is the elimination of the flat file for use as a process restart point. The Batch Pipe
facility also requires the DS/390 COBOL program and the DB/2 bulk load utility to both
be running simultaneously, using an intermediate load ready file also allows operations to
split the workload and run the DS/390 COBOL program independently from the DB/2
bulk load utility – as long as the COBOL program completes prior to the DB/2 load.

Our first chart illustrates
the total CPU
(TCB+SRB)
consumption of both the
COBOL program as well
as the DB/2 bulk load
utility for data volumes
of 8, 16, and 32 GB of
data. While Batch Pipes
does use slightly more
CPU seconds, the amount
is negligible when
compared to the next
chart.

Compare the CPU
seconds used chart
above with the
throughput chart shown
to the left. Clearly the
MVS Batch Pipe
facility can be used to
significantly reduce
elapsed time of the ETL
process. A further
benefit here is that for
large volumes, we have
also eliminated the disk
space necessary to hold
the load ready file.

Comparing LR Files to Batch Pipes

0

10

20

30

40

50

60

8 GB 16 GB 24 GB 32 GB

Data Volume

CP
U

 T
im

e
(T

C
B+

S
RB

)

LR Files
Batch Pipes
Linear (LR Files)
Linear (Batch Pipes)

Comparing LR Files to Batch Pipes

0

10

20

30

40

50

60

70

8 GB 16 GB 24 GB 32 GB

Data Volume

El
ap

se
d

Ti
m

e
(M

in
s)

LR Files
Batch Pipes
Linear (LR Files)
Linear (Batch Pipes)

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 6

To demonstrate DS/390’s ability to optimize lookups we performed a small test to
illustrate the benefits of DS/390’s lookup techniques. We used 99,999 records in a fixed
width flat file (FWFF) against a lookup table consisting of the same 99,999 records.
DS/390 has the ability to load the lookup file into memory and perform all lookups
against the memory copy of the data – this facility is called a Hashed lookup since the
lookup data is loaded into memory using a hashing technique. The tests were run 3 ways,
using in-memory hashing for both a flat file and a relational table and using a direct read
to the database against an indexed column. The results are presented in the next table.

Test Description Elapsed time
Using FWFF for the reference file, Hash lookup .19 min
Using DB2 for the reference file, Hash lookup .30 min
Using Auto lookup against an indexed DB2 table .46 min

This clearly illustrates that the most efficient lookup technique is using FWFF for the
reference files and the in-memory hashing technique. Next most efficient is using DB2
as the reference, but still hashing. The least efficient is Auto lookup using the DB2
index.

A short test was also performed to demonstrate the dramatic effect that blocksize and
buffer numbers can have on run times. These tests performed all the transformations and
lookups, creating a DB/2 load ready file. The tests were run on a small test sample input
size (30,000 rows), but with the standard lookup files.

This test sequence clearly shows the dramatic effect that blocksize and buffering can
have on throughput. Keep in mind that the test input sizes used here were tiny compared
to the other runs we did. We also saw this dramatic effect when we ran the data
movement job to compare to IEBGENER described earlier. Without specifying the
blocksize the job ran in 6.8 minutes, compared to 4.8 minutes with the blocksize – a 42%
increase in elapsed time. EXCP’s also increased from 618K to 2560K – a 314%
increase! CPU time (TCB+SRB) also increased 25%.

Test Description Elapsed Time
Out of the box - no changes made 0:01:30
Increased BUFNO on the Driver and LR file for the DataStage step
to 100 0:00:44

Increase LR blocksize to 32273, decreased bufno to 50 and added
bufno 50 to sysrec in load step

0:00:47

Decreased LR file blocksize to 22974 (1/2 track blocking) to
reduce file size. Removed bufno=50 from the sysrec dd
statement.

0:00:47

Added bufno=100 to lookup file and removed bufno from the load
ready file 0:01:08

readded bufno=50 to the load ready file 0:00:47
changed blocksize to 3829 and 100 buffers on the load ready file 0:00:55

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 7

The Enterprise Data Integration Benchmark

The diagram to the right
illustrates the DS/390 process
that implements the Ascential
Enterprise Data Integration
Benchmark. The graphic
design capabilities of DS/390
make it easy to follow the flow
of the data through the process.
We can easily locate the input
and lookup files as well as the
process that implements the
lookup conditions. The
transformations are localized
to the “ConditionData” stage,
so that any changes or
questions about the process can
be easily answered by drilling into the metadata associated with that “stage”. This is the
job that was used for the volume tests, as well as that used in the “w/ LR file” tests
discussed earlier.

The next diagram shows the results of running the benchmark job at high data volumes.
This test was run reading from the flat file, performing a lookup with an 80% hit ratio,
transforming approximately 68% of the fields, and then formatting the data into DB/2
load ready format. The data was not landed in this test, but instead passed the to MVS
Batch Pipe facility, which presented it to the DB/2 bulk load utility. These tests were
conducted running 32 simultaneous COBOL programs. We did perform one further
benchmark using the same process with a single COBOL program that loaded the full
terabyte of data into DB/2 in 18 hours and 21 minutes.

Scalability over volumes

0

20

40

60

80

100

120

140

160

500GB 750GB 1024GB

Data Volumes

Tr
an

sf
or

m
 a

nd
 L

oa
d

Ti
m

e

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 8

One of the fundamental requirements for running parallel environments is the ability to
repartition the data as it flows through the process. To shed some light on this aspect of
running large volume data transformations in the OS/390 environment, we set up a test to
compare DB/2 data partitioning with DataStage partitioning. For this test DB/2 was
partitioned 16 ways and the input data was regenerated to randomize the order in which it
was read. In the DB/2 partitioning test, a single DS/390 COBOL program read the
randomized data and passed it to a single instance of the DB/2 bulk loader for
repartitioning. The DataStage repartitioning test was set up by changing the DataStage
job to read the randomized input data and separate the data stream into16 different Batch
Pipes. 16 instances of the DB/2 bulk loader were used to accept the data from the batch
pipes. This test also validated the Batch Pipe facility’s stability under moderately heavy
I/O loads.

The first chart
shows elapsed time
for data volumes of
8, 16, and 32 GB of
data. The elapsed
time for the
different
partitioning
schemes is
reasonably close
across these data
volumes and the
line indicates the
process is linearly
scalable.

Looking at total CPU
consumption the lines also
show linear scalability.
The additional CPU
consumption necessary to
support 15 additional Batch
Pipes (see our earlier
discussion) and the 15
additional DB/2 bulk load
processes begins to become
noticeable as our volumes
increase. In retrospect, it
may have been interesting
to perform this test using
load ready files as well.

Comparing DB2 and DS/390 Partitioning

0:00:00

0:10:00

0:20:00

0:30:00

0:40:00

0:50:00

8 GB 32 GB

Data Volume

M
in

ut
es

 (e
la

ps
ed

)

DB2 Partitioning
DataStage Partitioning

Comparing DB2 and DS/390 Partitioning

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

8 GB 32 GB

Data Volume

Se
co

nd
s

(T
CB

+S
RB

)

DB2 Partitioning
DataStage Partitioning

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 9

One final observation was with respect to dataset placement. We chose to initially
configure the 2 Shark I/O subsystem by creating 3 main SMS pools. Pool 1 was defined
on Shark1 and contained the input datasets, Pool 2 was defined on Shark 2 and contained
the load ready files, and finally Pool 3 was defined on Shark1 again to contain the DB/2
table space. The reason for this configuration was we felt we would be reading from
Shark1 and writing to Shark2 while the load ready files were being created; the DB/2
load would then reverse this and read from Shark2 while writing to Shark1.

We later decided to spread the data across both Sharks to determine if distributing the I/O
load would improve throughput. The input files were placed so that a maximum of 2 jobs
would be simultaneously accessing each logical control unit in each Shark. The DB/2
dataspaces were spread across both Sharks by SMS and the index spaces were placed on
Shark 2. The runtimes in the following table show the result of this test. There are two
tests represented in the table. The first 2 rows tested the effect of using the 2 different
configurations for the input datasets. The second 2 rows in the table show the effect of
the 2 different configurations for the output datasets.

This effect could be skewed somewhat by the high CPU busy times occurring during
these runs and the fact that both Sharks were saturated. However, we can still draw the
conclusion that SMS placement along with the PAV facility of the Sharks discussed
earlier should do a reasonable job of managing data placement. The massive data
volumes manipulated during this benchmark should not occur very frequently in most
customer environments.

Job Elapsed Time
Optimized input disk 2:20:38
SMS input disk 2:20:01
LR files old output layout 2:59:33
LR files new output layout 2:45:58

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 10

Conclusions

The purpose of the benchmark was to demonstrate that DS/390 can generate highly-
performant COBOL code (the COBOL jobs used throughout the benchmark were run
without modification), enabling customers to build total end-to-end ETL solutions
involving S/390 data without requiring movement of the data to distributed systems. We
believe the results shown in this document support this assertion. Our customers should
feel confident that they can experience the productivity benefits of the latest generation of
ETL technologies together with the stability and throughput of the z/OS and OS/390
environments.

Decision support is an enterprise wide effort and most enterprises continue to have a
significant investment in data stored in the z/OS and OS/390 environments. DS/390
provides the ability to collect, cleanse/manipulate, and load the data in these
environments, allowing you to perform all or some portion of these operations close to
the data source when required. Eliminating the need to move the data source across a
network connection can significantly simplify and lower the cost of building decision
support structures.

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 11

Appendix A – JCL to create 32 partition DB/2 table space

//DSTAGEL JOB ,'DATASTAGE',CLASS=A,MSGCLASS=X,
// REGION=0M,LINES=50000,NOTIFY=&SYSUID
//***
//**** DDL FOR CREATE TABLESPACES
//***
//*
//JOBLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR
// DD DSN=DSN710.DBL0.SDSNEXIT,DISP=SHR
//*
//*
//PH01S01 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DBL1)
 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) -
 LIB('DSNDBL0.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
 SET CURRENT SQLID='DSTAGE' ;
 DROP DATABASE DBDSTAGE ;
 COMMIT;
 CREATE DATABASE DBDSTAGE
 BUFFERPOOL BP32K2
 INDEXBP BP3
 STOGROUP DBDST1;
 COMMIT;
 CREATE TABLESPACE TSBENCH1
 IN DBDSTAGE
 USING STOGROUP DBDST1
 PRIQTY 7200000 SECQTY 3600000
 FREEPAGE 0 PCTFREE 0
 DSSIZE 64 G
 NUMPARTS 32
 (PART 1 USING STOGROUP DBDST1 ,
 PART 2 USING STOGROUP DBDST1 ,
 PART 3 USING STOGROUP DBDST1 ,
 PART 4 USING STOGROUP DBDST1 ,
 PART 5 USING STOGROUP DBDST1 ,
 PART 6 USING STOGROUP DBDST1 ,
 PART 7 USING STOGROUP DBDST1 ,
 PART 8 USING STOGROUP DBDST1 ,
 PART 9 USING STOGROUP DBDST1 ,
 PART 10 USING STOGROUP DBDST1 ,
 PART 11 USING STOGROUP DBDST1 ,
 PART 12 USING STOGROUP DBDST1 ,
 PART 13 USING STOGROUP DBDST1 ,
 PART 14 USING STOGROUP DBDST1 ,
 PART 15 USING STOGROUP DBDST1 ,
 PART 16 USING STOGROUP DBDST1 ,
 PART 17 USING STOGROUP DBDST1 ,
 PART 18 USING STOGROUP DBDST1 ,
 PART 19 USING STOGROUP DBDST1 ,
 PART 20 USING STOGROUP DBDST1 ,
 PART 21 USING STOGROUP DBDST1 ,
 PART 22 USING STOGROUP DBDST1 ,
 PART 23 USING STOGROUP DBDST1 ,
 PART 24 USING STOGROUP DBDST1 ,
 PART 25 USING STOGROUP DBDST1 ,
 PART 26 USING STOGROUP DBDST1 ,
 PART 27 USING STOGROUP DBDST1 ,
 PART 28 USING STOGROUP DBDST1 ,
 PART 29 USING STOGROUP DBDST1 ,
 PART 30 USING STOGROUP DBDST1 ,
 PART 31 USING STOGROUP DBDST1 ,
 PART 32 USING STOGROUP DBDST1)
 LOCKSIZE ANY

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 12

 LOCKMAX SYSTEM
 LOCKPART YES
 CLOSE NO
 COMPRESS NO;
 COMMIT;
CREATE TABLE ASCBENCH1 (
KEYCOL CHAR(12) NOT NULL ,
RAND INTEGER NOT NULL ,
LOOKUPKEY INTEGER NOT NULL,
CUSTNAME CHAR(15) NOT NULL,
CUSTCODE CHAR(15) NOT NULL,
CUSTBALANCE INTEGER NOT NULL,
CUSTLIMIT INTEGER NOT NULL,
CUSTDOB CHAR(10) NOT NULL,
CUSTAGE INTEGER NOT NULL,
CUSTADDRESS CHAR(10) NOT NULL,
CUSTSTREET CHAR(20) NOT NULL,
CUSTSTATE CHAR(15) NOT NULL,
CUSTZIP CHAR(10) NOT NULL,
CUSTCOUNTRY CHAR(10) NOT NULL,
SOCIALSECURITYNO INTEGER NOT NULL,
CUSTSTARTDATE CHAR(10) NOT NULL,
CUSTRENEWDATE CHAR(10) NOT NULL,
CHAR01 CHAR(2) NOT NULL,
CHAR02 CHAR(2) NOT NULL,
CHAR03 CHAR(2) NOT NULL,
CHAR04 CHAR(2) NOT NULL,
CHAR05 CHAR(2) NOT NULL,
CHAR06 CHAR(2) NOT NULL,
CHAR07 CHAR(2) NOT NULL,
CHAR08 CHAR(2) NOT NULL,
CHAR09 CHAR(2) NOT NULL,
CHAR10 CHAR(2) NOT NULL,
CHAR11 CHAR(4) NOT NULL,
CHAR12 CHAR(4) NOT NULL,
CHAR13 CHAR(4) NOT NULL,
CHAR14 CHAR(4) NOT NULL,
CHAR15 CHAR(4) NOT NULL,
CHAR16 CHAR(4) NOT NULL,
CHAR17 CHAR(4) NOT NULL,
CHAR18 CHAR(4) NOT NULL,
CHAR19 CHAR(4) NOT NULL,
CHAR20 CHAR(4) NOT NULL,
CHAR21 CHAR(6) NOT NULL,
CHAR22 CHAR(6) NOT NULL,
CHAR23 CHAR(6) NOT NULL,
CHAR24 CHAR(6) NOT NULL,
CHAR25 CHAR(6) NOT NULL,
CHAR26 CHAR(6) NOT NULL,
CHAR27 CHAR(6) NOT NULL,
CHAR28 CHAR(6) NOT NULL,
CHAR29NEW CHAR(6) NOT NULL,
CHAR30NEW CHAR(3) NOT NULL,
CHAR31NEW CHAR(3) NOT NULL,
INTEGER01 INTEGER NOT NULL,
INTEGER02 INTEGER NOT NULL,
INTEGER03 INTEGER NOT NULL,
INTEGER04 INTEGER NOT NULL,
INTEGER05 INTEGER NOT NULL,
INTEGER06 INTEGER NOT NULL,
INTEGER07 INTEGER NOT NULL,
INTEGER08 INTEGER NOT NULL,
INTEGER09 INTEGER NOT NULL,
INTEGER10 INTEGER NOT NULL,
INTEGER11 INTEGER NOT NULL,
INTEGER12 INTEGER NOT NULL,
INTEGER13 INTEGER NOT NULL,
INTEGER14 INTEGER NOT NULL,
INTEGER15 INTEGER NOT NULL,
INTEGER16 INTEGER NOT NULL,

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 13

INTEGER17 INTEGER NOT NULL,
INTEGER18 INTEGER NOT NULL,
INTEGER19 INTEGER NOT NULL,
INTEGER20 INTEGER NOT NULL,
INTEGER21 INTEGER NOT NULL,
INTEGER22 INTEGER NOT NULL,
INTEGER23 INTEGER NOT NULL,
INTEGER24 INTEGER NOT NULL,
INTEGER25 INTEGER NOT NULL,
 INTEGER26 INTEGER NOT NULL,
 INTEGER27 INTEGER NOT NULL,
 INTEGER28 INTEGER NOT NULL,
 INTEGER29 INTEGER NOT NULL,
 INTEGER30 INTEGER NOT NULL,
 PACKED01 DECIMAL(1) NOT NULL,
 PACKED02 DECIMAL(3) NOT NULL,
 PACKED03 DECIMAL(5) NOT NULL,
 PACKED04 DECIMAL(7) NOT NULL,
 PACKED05 DECIMAL(9) NOT NULL,
 PACKED06 DECIMAL(11) NOT NULL,
 PACKED07 DECIMAL(13) NOT NULL,
 PACKED08 DECIMAL(15) NOT NULL,
 PACKED09 DECIMAL(1) NOT NULL,
 PACKED10 DECIMAL(3) NOT NULL,
 PACKED11 DECIMAL(5) NOT NULL,
 PACKED12 DECIMAL(7) NOT NULL,
 PACKED13 DECIMAL(9) NOT NULL,
 PACKED14 DECIMAL(11) NOT NULL,
 PACKED15 DECIMAL(13) NOT NULL,
 PACKED16 DECIMAL(15) NOT NULL,
 PACKED17C CHAR(17) NOT NULL,
 PACKED18C CHAR(18) NOT NULL,
 PACKED19C CHAR(19) NOT NULL,
 PACKED20C CHAR(20) NOT NULL)
 IN DBDSTAGE.TSBENCH1
 AUDIT NONE
 DATA CAPTURE NONE;
 GRANT SELECT ON TABLE DSTAGE.ASCBENCH1 TO PUBLIC;
 COMMIT;
 CREATE UNIQUE INDEX DSTAGE.XASCBENCH1
 ON DSTAGE.ASCBENCH1
 (KEYCOL ASC)
 USING STOGROUP DBDST2
 PRIQTY 864000 SECQTY 72000
 FREEPAGE 0 PCTFREE 0
 CLUSTER
 (PART 1 VALUES('000063045392') ,
 PART 2 VALUES('000126090784') ,
 PART 3 VALUES('000189136176') ,
 PART 4 VALUES('000252181568') ,
 PART 5 VALUES('000315226960') ,
 PART 6 VALUES('000378272352') ,
 PART 7 VALUES('000441317744') ,
 PART 8 VALUES('000504363136') ,
 PART 9 VALUES('000567408528') ,
 PART 10 VALUES('000630453920') ,
 PART 11 VALUES('000693499312') ,
 PART 12 VALUES('000756544704') ,
 PART 13 VALUES('000819590096') ,
 PART 14 VALUES('000882635488') ,
 PART 15 VALUES('000945680880') ,
 PART 16 VALUES('001008726272') ,
 PART 17 VALUES('001071771664') ,
 PART 18 VALUES('001134817056') ,
 PART 19 VALUES('001197862448') ,
 PART 20 VALUES('001260907840') ,
 PART 21 VALUES('001323953232') ,
 PART 22 VALUES('001386998624') ,
 PART 23 VALUES('001450044016') ,
 PART 24 VALUES('001513089408') ,

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 14

 PART 25 VALUES('001576134800') ,
 PART 26 VALUES('001639180192') ,
 PART 27 VALUES('001702225584') ,
 PART 28 VALUES('001765270976') ,
 PART 29 VALUES('001828316368') ,
 PART 30 VALUES('001891361760') ,
 PART 31 VALUES('001954407152') ,
 PART 32 VALUES('002017452544'))
 CLOSE NO
 COPY NO ;
 COMMIT;

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 15

Appendix B – Sample JCL to run the DS/390 COBOL program

//RUN001 JOB ,'DATASTAGE',CLASS=A,MSGCLASS=X,
// REGION=0M,LINES=50000,NOTIFY=&SYSUID
//***
//**** OS390_DELETEFILE
//***
//STEPDEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTCAT ENTRIES(M9LRF1.LOAD.FILE001)
 IF LASTCC = 0 -
 THEN -
 DELETE M9LRF1.LOAD.FILE001
 ELSE -
 SET MAXCC = 0
/*
//***
//**** OS390_RUN
//***
//RUN EXEC PGM=BENCH2,TIME=1440
//STEPLIB DD DISP=SHR,DSN=DSTAGE.DS390.LOAD
//REPORT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//RTLOUT DD SYSOUT=*
//***
//**** OS390_OLDFILE (32 GB input stream)
//***
//DRIVER DD DISP=SHR,DSN=M9DRV1.DRIVER.FILE001,DCB=BUFNO=50
// DD DISP=SHR,DSN=M9DRV1.DRIVER.FILE002,DCB=BUFNO=50
//* DD DISP=SHR,DSN=M9DRV1.DRIVER.FILE003,DCB=BUFNO=50
//* DD DISP=SHR,DSN=M9DRV1.DRIVER.FILE004,DCB=BUFNO=50
//***
//**** OS390_OLDFILE
//***
//LOOKUP DD DISP=SHR,DSN=DSTAGE.LOOKUP.FILE,DCB=BUFNO=50
//***
//**** OS390_NEWFILE
//***
//DB2LOAD DD DSN=M9LRF1.LOAD.FILE001,
// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,
// SPACE=(CYL,(10000,3333),RLSE),
// DCB=(LRECL=547,BLKSIZE=27897,RECFM=FB,BUFNO=50)
//***
//**** OS390_DB2LOAD
//***
//LOAD2 EXEC PGM=DSNUTILB,
// COND=(4,LT),
// REGION=4096K,
// PARM='DBL1,RUN001'
//STEPLIB DD DISP=SHR,DSN=DSN710.SDSNLOAD
//SYSREC DD DISP=SHR,DSN=M9LRF1.LOAD.FILE001
//SYSPRINT DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,DSN=M9LRF1.RUN001.SYSUT1,
// SPACE=(CYL,(1600,50),RLSE),DISP=(,DELETE,DELETE)
//SORTOUT DD UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SORTWK01 DD UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SORTWK02 DD UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SORTWK03 DD UNIT=SYSDA,
// SPACE=(TRK,(10,10),RLSE)
//SYSIN DD *
LOAD DATA LOG NO
 INTO TABLE DSTAGE.ASCBENCH1 PART 1

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 16

 (
 KEYCOL POSITION(1) CHARACTER(12),
 RAND POSITION(13) INTEGER,
 LOOKUPKEY POSITION(17) INTEGER,
 CUSTNAME POSITION(21) CHARACTER(15),
 CUSTCODE POSITION(36) CHARACTER(15),
 CUSTBALANCE POSITION(51) INTEGER,
 CUSTLIMIT POSITION(55) INTEGER,
 CUSTDOB POSITION(59) CHARACTER(10),
 CUSTAGE POSITION(69) INTEGER,
 CUSTADDRESS POSITION(73) CHARACTER(10),
 CUSTSTREET POSITION(83) CHARACTER(20),
 CUSTSTATE POSITION(103) CHARACTER(15),
 CUSTZIP POSITION(118) CHARACTER(10),
 CUSTCOUNTRY POSITION(128) CHARACTER(10),
 SOCIALSECURITYNO POSITION(138) INTEGER,
 CUSTSTARTDATE POSITION(142) CHARACTER(10),
 CUSTRENEWDATE POSITION(152) CHARACTER(10),
 CHAR01 POSITION(162) CHARACTER(2),
 CHAR02 POSITION(164) CHARACTER(2),
 CHAR03 POSITION(166) CHARACTER(2),
 CHAR04 POSITION(168) CHARACTER(2),
 CHAR05 POSITION(170) CHARACTER(2),
 CHAR06 POSITION(172) CHARACTER(2),
 CHAR07 POSITION(174) CHARACTER(2),
 CHAR08 POSITION(176) CHARACTER(2),
 CHAR09 POSITION(178) CHARACTER(2),
 CHAR10 POSITION(180) CHARACTER(2),
 CHAR11 POSITION(182) CHARACTER(4),
 CHAR12 POSITION(186) CHARACTER(4),
 CHAR13 POSITION(190) CHARACTER(4),
 CHAR14 POSITION(194) CHARACTER(4),
 CHAR15 POSITION(198) CHARACTER(4),
 CHAR16 POSITION(202) CHARACTER(4),
 CHAR17 POSITION(206) CHARACTER(4),
 CHAR18 POSITION(210) CHARACTER(4),
 CHAR19 POSITION(214) CHARACTER(4),
 CHAR20 POSITION(218) CHARACTER(4),
 CHAR21 POSITION(222) CHARACTER(6),
 CHAR22 POSITION(228) CHARACTER(6),
 CHAR23 POSITION(234) CHARACTER(6),
 CHAR24 POSITION(240) CHARACTER(6),
 CHAR25 POSITION(246) CHARACTER(6),
 CHAR26 POSITION(252) CHARACTER(6),
 CHAR27 POSITION(258) CHARACTER(6),
 CHAR28 POSITION(264) CHARACTER(6),
 CHAR29NEW POSITION(270) CHARACTER(6),
 CHAR30NEW POSITION(276) CHARACTER(3),
 CHAR31NEW POSITION(279) CHARACTER(3),
 INTEGER01 POSITION(282) INTEGER,
 INTEGER02 POSITION(286) INTEGER,
 INTEGER03 POSITION(290) INTEGER,
 INTEGER04 POSITION(294) INTEGER,
 INTEGER05 POSITION(298) INTEGER,
 INTEGER06 POSITION(302) INTEGER,
 INTEGER07 POSITION(306) INTEGER,
 INTEGER08 POSITION(310) INTEGER,
 INTEGER09 POSITION(314) INTEGER,
 INTEGER10 POSITION(318) INTEGER,
 INTEGER11 POSITION(322) INTEGER,
 INTEGER12 POSITION(326) INTEGER,
 INTEGER13 POSITION(330) INTEGER,
 INTEGER14 POSITION(334) INTEGER,
 INTEGER15 POSITION(338) INTEGER,
 INTEGER16 POSITION(342) INTEGER,
 INTEGER17 POSITION(346) INTEGER,
 INTEGER18 POSITION(350) INTEGER,
 INTEGER19 POSITION(354) INTEGER,
 INTEGER20 POSITION(358) INTEGER,
 INTEGER21 POSITION(362) INTEGER,

DS/390 Benchmark Report
*** DRAFT ***

8/19/2002 Ascential Software and IBM Internal Use Only 17

 INTEGER22 POSITION(366) INTEGER,
 INTEGER23 POSITION(370) INTEGER,
 INTEGER24 POSITION(374) INTEGER,
 INTEGER25 POSITION(378) INTEGER,
 INTEGER26 POSITION(382) INTEGER,
 INTEGER27 POSITION(386) INTEGER,
 INTEGER28 POSITION(390) INTEGER,
 INTEGER29 POSITION(394) INTEGER,
 INTEGER30 POSITION(398) INTEGER,
 PACKED01 POSITION(402) DECIMAL PACKED,
 PACKED02 POSITION(403) DECIMAL PACKED,
 PACKED03 POSITION(405) DECIMAL PACKED,
 PACKED04 POSITION(408) DECIMAL PACKED,
 PACKED05 POSITION(412) DECIMAL PACKED,
 PACKED06 POSITION(417) DECIMAL PACKED,
 PACKED07 POSITION(423) DECIMAL PACKED,
 PACKED08 POSITION(430) DECIMAL PACKED,
 PACKED09 POSITION(438) DECIMAL PACKED,
 PACKED10 POSITION(439) DECIMAL PACKED,
 PACKED11 POSITION(441) DECIMAL PACKED,
 PACKED12 POSITION(444) DECIMAL PACKED,
 PACKED13 POSITION(448) DECIMAL PACKED,
 PACKED14 POSITION(453) DECIMAL PACKED,
 PACKED15 POSITION(459) DECIMAL PACKED,
 PACKED16 POSITION(466) DECIMAL PACKED,
 PACKED17C POSITION(474) CHARACTER(17),
 PACKED18C POSITION(491) CHARACTER(18),
 PACKED19C POSITION(509) CHARACTER(19),
 PACKED20C POSITION(528) CHARACTER(20)
)
/*

Changes to JCL to implement Batch Pipes

//BMBP32A JOB ,'DATASTAGE',CLASS=A,MSGCLASS=X,
// REGION=0M,LINES=50000,NOTIFY=&SYSUID
//***
//**** OS390_RUN
//***
//***
SAME AS IN ORIGINAL JCL
//***
//***
//**** OS390_NEWFILE
//***
//DB2LOAD DD DSN=M9LRF1.BPLOAD.FILE001,SUBSYS=BP01, - Changed
// DCB=(LRECL=547,RECFM=FB,BUFNO=254) - Changed
//*
//******** SECOND JOB *************
//*
//BMBP32B JOB ,'DATASTAGE',CLASS=A,MSGCLASS=X,
// REGION=0M,LINES=50000,NOTIFY=&SYSUID
//***
//**** OS390_DB2LOAD
//***
//LOAD1 EXEC PGM=DSNUTILB,
// COND=(4,LT),
// REGION=4096K,
// PARM='DBL1,RUN001'
//STEPLIB DD DISP=SHR,DSN=DSN710.SDSNLOAD
//SYSREC DD DISP=SHR,DSN=M9LRF1.BPLOAD.FILE001,SUBSYS=BP01, - Changed
// DCB=(LRECL=547,RECFM=FB,BUFNO=254) - Changed
//***
SAME AS IN ORIGINAL JCL
//***

