
Images
Best Practices Guide

Version: 2013.11.20

This section includes best practices to consider during development and build phases that are 
related to optimizations possible when using image resources. Details on each checklist item 
are discussed later in the document.

Checklist

❏ Use less images �

❏ Provide proper images sizes for target devices �

❏ Reduce image sizes �

❏ Scan for and remove unused images �

❏ Use CSS image sprites �

❏ Use CSS3 instead of images where possible �

❏ Use CSS media queries to only load the proper size image for device �

❏ Use font icons instead of small image files �

❏ Consider using JPEG instead of PNG �

❏ Consider using Progressive JPEGs �

❏ Consider inlining SVG graphics in HTML as a build step �

❏ Consider converting animated SVG to Canvas �

Copyright © 2013 International Business Machines. All rights reserved.



❏ Use Google NinePatch image type for splash screens �

Discussion

Use less Images
Images typically are the most costly items to render on a page. It is ok to push back 
some when the design relies too heavily on images for the overall look of the page. 
Images are good, as they convey a general feeling and tone for a page. Too many 
images slow the page down and often feel cluttered.

Provide proper images sizes for target devices
Having the browser scale images is expensive, especially for mobile devices.  
Performing a build time resizing of images at specific sizes will result in much better 
performance at runtime. See also the media queries discussion below.

References:
➠ Why responsive Images is so hard

Reduce image sizes
Reduce image quality where practical. 75% quality is not usually noticeable, but can 
make a large file size reduction.

References:
➠ Image Optimization Tools, by Addi Osmani
➠ HTML5 Image Compression Article

Scan for and remove unused images
Image directories are often like a junk drawer. Without periodic review, unused images 
commonly start to accumulate and rarely get cleaned up. For each image file, scan for 
its use within the code base, and if its not being referenced, remove it from the project.

For hybrid mobile projects, this is very important. Unused images can add considerable 
bloat to deployed application sizes which can increase application install, update and 
first-time startup initialization times in some environments.

Use CSS Sprites
Use image sprites and CSS image offsets rather than linking to many smaller image files 
for things like button states.

Copyright © 2013 International Business Machines. All rights reserved.

http://css-tricks.com/responsive-images-hard/
http://addyosmani.com/blog/image-optimization-tools/
http://www.html5rocks.com/en/tutorials/speed/img-compression/


Typically, background-image and background-position are used to create css sprites, 
and thus the images are background images. In some cases, you may want to create 
foreground image sprites, for example, when you want to keep the images shown even 
in the high contrast mode. In such cases, you can use the CSS clip property for the 
<img> element.

Other tips:
● Use lossless compression for CSS sprite images.
● Clever arrangement of image tiles when developing sprite images can result in 

additional image file size reduction during lossless compression
● Consider the option to inline sprite images into a data-uri’s as a build step to 

further minimize the number of resource requests.

Typically, background-image and background-position are used to create css sprites, 
and thus the images are background images. In some cases, you may want to create 
foreground image sprites, for example, when you want to keep the images shown even 
in the high contrast mode. In such cases, you can use the CSS clip property for the 
<img> element.

Dealing with sprites can be a major pain as if you need to update an image, you 
must then rebuild the sprite, and likely update all the image offsets in the CSS rules. 
Using Compass for Sass can automatically create sprites for you. This can be a huge 
productivity booster, but comes at the costs of learning how to use Sass/Compass.

References:
➠ A List Apart, Issue# 173, CSS Sprites 
➠ Sprites in Compass Video - The whole LevelUpTuts video series on Compass is 
worth watching
➠ Foreground <img> Sprites – High Contrast Mode Optimization

Use CSS3 instead of images where possible
The old way of providing visual effects for buttons and styling of regions such as 
rounded corners and gradients used to be done with images. Use CSS3’s capabilities 
for this  type of styling. This also reduces resource loading dependencies. Things like 
gradients, shadows, and rounded corners are faster through CSS than using discrete 
images.

References:
➠ Smashing Magazine: CSS3 Instead of Images

Use CSS media queries to only load the proper size image for device

Copyright © 2013 International Business Machines. All rights reserved.

http://compass-style.org/
http://sass-lang.com/
http://alistapart.com/article/sprites
https://www.youtube.com/watch?v=Tl6bceyTjFw&list=PL45DD77A4CCA76ED3
http://www.artzstudio.com/2010/04/img-sprites-high-contrast/
http://mobile.smashingmagazine.com/2013/04/03/build-fast-loading-mobile-website/


Media queries are a CSS technique that permit for conditional loading of CSS files, 
as well as conditional setting of discrete CSS rules. These are a cornerstone of good 
responsive design, and can drastically reduce the number of rules to support multiple 
browser sizes and orientations. Images can be specified based on device widths and/or 
orientation.

Loading specific images through media queries can be done at the file level like this:

<link rel='stylesheet' media='screen and (min-width: 800px)' 

href='tablet_images.css' />

Using media queries inline in a common CSS file, can be done like this:

.logo {

    background-repeat: no-repeat;

}

@media screen and (max-width: 799px) {

    .logo { background-image:url('logo_small.png'); }

}

@media screen and (min-width: 800px and max-width: 1199px) {

    .logo { background-image:url('logo_medium.png'); }

}

@media screen and (min-width: 1200px) {

    .logo { background-image:url('logo_large.png'); }

}

References:
➠ Best Practice document on Responsive Design
➠ W3C Media Queries
➠ CSS Media Queries

Review image and SVG data-uri’s use in HTML and CSS when targeting mobile 
devices

Data URI’s have known performance issues on mobile browsers. The referenced article 
includes additional guidelines when using data-uri’s.

References:
➠ CSS Sprites vs. Data URI’s: Which is faster on mobile? 

Use font icons instead of small image files

Copyright © 2013 International Business Machines. All rights reserved.

http://www.w3.org/TR/css3-mediaqueries/
http://cssmediaqueries.com/
http://www.mobify.com/blog/css-sprites-vs-data-uris-which-is-faster-on-mobile/


Font icons can be used effectively for things like bullets, navigation arrows, action 
indicators, and more. If your design includes many of these small image styles, font 
icons may be appropriate. These are defined using the @font-face rule in CSS. 

References:
➠  Font Awesome has a great collection of icons defined this way.

Use proper image types
Different image types should be used for both performance and size. (ie. JPEG for 
photos, PNG for graphics/screen shots, WebP for anything). 

JPEG images render marginally faster than PNG, especially in older browsers. This is 
probably only a worthwhile exercise if you are using a lot of discreet images. Also, PNG 
is still recommended if you need transparency.

Consider using Progressive JPEGs
Progressive JPEGs can typically improve render times of JPEG images by up to 7% 
over normal “Baseline” JPEG images. Progressive JPEGS render by displaying a low 
resolution version of the image and then progressively enhancing it as more data is 
returned. Baseline JPEGs render the full resolution image from top to bottom. The 
progressive fill in may (or may not) enhance the user experience. The overall image size 
does not change from these two types, but typically progressive rendering completes 
faster. One caveat is that you should not use progressive for small JPEG images (eg 
<16K).

Many image manipulation tools provide save options to produce progressive JPEGS. 
Other command line tools that can convert files in batch include:

● jpegtran - Available for most operating systems.
● Adept - the adaptive JPG Compressor
● Kraken.io - Image optimizer

References:
➠ Performance Matters - Progressive JPEGs FTW!
➠ YUI - Image Optimization, Part 4: Progressive JPEG…Hot or Not?

Consider inlining SVG graphics in HTML as a build step
Benefit: Reduces the number of resource requests by inlining SVG linked file content 
directly into HTML.

Drawbacks: Inline SVG is more costly to maintain and update if not done as an 
automated build step.

Copyright © 2013 International Business Machines. All rights reserved.

http://fortawesome.github.io/Font-Awesome/
http://jpegclub.org/
https://github.com/technopagan/adept-jpg-compressor
https://kraken.io/
http://blog.patrickmeenan.com/
http://blog.patrickmeenan.com/2013/06/progressive-jpegs-ftw.html
http://www.yuiblog.com/blog/2008/12/05/imageopt-4/


Caution: If the SVG is not used throughout the application, or on frequently visited views, 
this technique should be avoided.

Consider converting animated SVG to Canvas
Animated SVG can be slow when you have a lot of data points. Canvas usually faster. 
It is easy to change from SVG to canvas in D3, but you have to handle mouse events 
yourself. 

Use Google’s NinePatch image type for splash screens
Google’s 9-Patch image format permits for clean scaling of images. This is very useful 
when used as splash screens for hybrid applications. The resulting image is a special 
PNG image that scales in nine different cells, without core image distortion.

References:
● Google’s Draw 9-Patch tool

Copyright © 2013 International Business Machines. All rights reserved.

http://developer.android.com/tools/help/draw9patch.html

