HTML

Best Practices Guide
Version: 2013.11.18

This section includes best practices regarding development of HTML source code. Details on
each checklist item are discussed later in the document.

Checklist

O Always use the HTML5 declaration (<! DOCTYPE html5>) at the top of HTML
documents €

O Always use the UTF-8 character set declaration at the beginning of the <head> @
O Always use the latest IE rendering engine when applicable €

O Always set the viewport equal to the device’s width and height €

@ Do notinclude the “type” attribute on <script> and <style> tags

1 Use <link> tag to load an external stylesheet

1 Never use invalid null <script> or <div> tags

@ Do not use <script> tags to load AMD based modules
 Never have duplicate “id” attributes

a Always be consistent with element and attribute case and quoting

1 Do not use a value for boolean attributes

d Use semantic tag names where applicable €

O Use HTMLS5 features instead of JavaScript toolkit where possible €

1 Avoid deprecated elements and attributes

Copyright © 2013 International Business Machines. All rights reserved.

Accessibility Checklist
O Always validate your page to ensure its well formed €
O Use A11Y tools to ensure compliance €
O Use input tags for nodes with event handlers €
[Use linked or enclosing <1abel> tags for all input elements ©

O Use CSS for layout, not tables ©

Copyright © 2013 International Business Machines. All rights reserved.

Discussions

HTML5 Basic Template

Shown below is a basic HTML5 document template.

HTML 5 Document

Description

<!DOCTYPE html5>

Defines this as an HTML5 type document

<html>

Beginning of the document structure

<head>

General conventions for children tags
<meta> tags first

Other preamble tags (ie <title>)
e <link> tags next

e <script> tags last

<meta charset="utf-8">

UTF8 Character set declaration

<meta http-equiv="X-UA-
Compatible™
content="IE=edge,chrome=1">

Use latest IE rendering engine

<meta name="viewport"
content="width=device-width,
height=device-height">

Set device’s viewport equal to the device’s
actual width and height.

Note: device-height works properly in iOS7
but may have problems on iOS5 and iOS6.

In iOS7, when the soft keyboard is displayed,
the height of the viewport now changes to be
the remaining visible space, which is different
behavior from previous versions of iOS.

<style ..>
<script ..>

Next link to your CSS stylesheets.
Load script tags AFTER style tags.

</head>

<body>
</body>

</html>

Close out the document

Copyright © 2013 International Business Machines. All rights reserved.

Note: When dealing with html templates or other document fragments, you should not include
any of the following tags; doctype, html, head, body. You should just use a master enclosing
<div> tag to represent to top level element of your fragment.

Always use the UTF-8 character set declaration at the beginning of the <head>
The sooner the browser knows for sure what character set to use, the faster it can begin
requesting resources, and rendering the page. Always place the following as the very
first element within the <head> of the document:

<meta charset="utf-8">

References:
m Performance implications of Charset

HTML5 Enhancements

Semantic Elements
Semantic element names provide a meaning to a tag. HTML5 has improved semantic
comprehension by adding many new element names.
e Good: <header>, <nav>, etc.

e Bad:<div class="header">, or

Added Features
HTML has included many enhancements that were historically provided by 3rd party
JavaScript libraries.
e Example attributes include: autofocus, placeHolders, hidden, draggable, required
e Example input types: email, url, search
e Fall back to shims if necessary for older browsers.

Elements / Tags

Elements (or tags) make up the structure of an HTML document. All elements should be
lowercase. While the browser doesn’t care, you should be consistent to improve readability and
maintainability of your HTMI files.

Many HTML4 elements are deprecated and should be replaced by CSS in order to separate

content from presentation.
e ¢©.g., <center>, etc.

Copyright © 2013 International Business Machines. All rights reserved.

http://www.google.com/url?q=http%3A%2F%2Fwww.kylescholz.com%2Fblog%2F2010%2F01%2Fperformance_implications_of_charset.html&sa=D&sntz=1&usg=AFQjCNETJ13BgJl8pl8DqKQ3P5_-_GiV-w
http://www.kylescholz.com/blog/2010/01/performance_implications_of_charset.html

e See HTML5 Obsolete tags for a full list of deprecated tags

<div> tag

<div> tags are required to have a closing </div>. You may not use the null body syntax
on <div> tags.

e Good: <div id="myTarget”></div>

e Bad:<div id="myTarget" />

<link> tag

Used to load external resources into a document. Typically used for loading external
stylesheets.

<script> tag

Script tags are used to either include a JavaScript source file into a document (using the
src="uri” attribute), or to define inline JavaScript.

Under most circumstances, you should keep all JavaScript in external “.js” files. This
improves overall app maintainability and separation of concerns. The exception to this
rule is if you need to preset any configuration values prior to loading a script (i.e. setting
dojoConfig), or to otherwise bootstrap your app once scripts are loaded.

Care should be used as to where you place <script> tags. If they are placed in the
<head> section, then the scripts are loaded and processed prior to the rendering of the

Do not include the “type” attribute on script tags as they are no longer used in HTMLS5.
e Good: <script src="libs/myJsLib.js"></script>
e Avoid: <script type="text/javascript" src="1libs/
myJsLib.js"></script>

Script tags are required to have a closing </script> tag
e Good: <script src="./js/hello.js”></script>
e Bad: <script src="./js/hello.js” />

Use AMD require(“module”) to load built layer files and scripts, rather than <script> tags.
The exceptions include the main “loader script” (ie r.js or dojo.js), and 3rd party libraries
that are not AMD compatible.

<style> tag

Do not include the “type” attribute on style tags.
e Good: <script src="libs/myJsLib.js"></script>

Copyright © 2013 International Business Machines. All rights reserved.

http://www.w3.org/TR/html5-diff/#obsolete-elements

e Avoid: <script type="text/javascript" src="libs/
myJsLib.js"></script>

Attributes

Attributes are used to alter the definition of an element. Attributes consist of name (key), and
typically a string value. All attribute keys should be lowercase. While the browser doesn’t care,
you should be consistent to improve readability and maintainability of your HTML files.

Attributes with a value (non-boolean) should always be quoted. It is recommended that double
quotes be used to avoid having to escape apostrophe’s within the string.
e Good: <div label="It's my life"></div>

e Poor:<DIV Label='It\'s my life'></Div>

Boolean attributes (e.g. autofocus, autocomplete, required) do not have a value. Their existence
implies true. In HTMLS5 this means that required="false” is equivalent to required="true”!
e Good: <input type="email” required />
e Bad, as its still required: <input type="email” required="false”/>

“id” attribute
The “id” attribute is used to uniquely identify a single element within the DOM tree. When
used, it must be a unique string. When dealing with dynamic content and automatically
loaded content, duplicate Id’s can occur which can result in difficult to resolve bugs. The
is particularly common in portal and mashup environment.

Using “id” should be avoided when possible. Exceptions to this rule are when using the
<label> tag, as it requires a [for="id’] attribute that points to an external input field. In
widget templates, you can use the widget’s instance ID to create a “local” ID attribute.
E.g.

<label for="S${id} email">Email:</label>

<input id="${id} email"™ .../>

An alternative is to use CSS classname addressing and queries. eg.
<div class="myFirstName"></div>

var div = ${".myFirstName"} [0];

For Dojo, use “attach-points” in dijit templates, which are local to that dijit's instance. eg.
<div data-dojo-attach-point="dapFirstName"></div>

Copyright © 2013 International Business Machines. All rights reserved.

Accessibility
For a great introduction to proper accessibility in Web Apps, take Google's Introduction to Web

Accessibility course.

Always validate your page to ensure its well formed. This is the number one cause of
accessibility enabled devices failing to process a page.

Use A11Y tools to ensure compliance:
e Screen readers: ChromeVox, and others
e Rational tools

Use HTML5 semantic nodes like <nav> and <header>
Use proper input tags (eg <button> and <a>) for nodes with event handlers like “onClick’.

Use linked or enclosing <label> tags for all input elements.

Use CSS for layout, not tables
It is a hard habit to break, but many developers still fall back to using <table>’s for
layout. This causes a lot of issues for A11Y and screen readers. Tables are for
tabular content, not layout. Either use CSS positioning, or a layout based toolkit (like
backbone), or the new FlexBox CSS rules.

Reference Links
m Accessibility Programming Guide for iOS

m Android Designing for Accessibility
m Blackberry Accessibility

m Microsoft Ul Automation

Copyright © 2013 International Business Machines. All rights reserved.

https://webaccessibility.withgoogle.com/course
https://webaccessibility.withgoogle.com/course
http://validator.w3.org/
http://bit.ly/Kaaa9i
http://bit.ly/IxuFtK
http://bit.ly/VKXo37
http://bit.ly/TZdUkJ

