IBM UrbanCode Deploy

Middleware Configuration for WebSphere
Application Server plug-in

<|ll

Version 7 This information is under development and can change at any time; the released version

will be available on tbm.com.

Note
FBefore using this information and the product it supports, read the information in[“Notices,” on page 23/

This edition applies to version 7 of Middleware Configuration for Websphere Application Server plug-in for IBM
UrbanCode Deploy and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2011, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Middleware Configuration for

WebSphere plug-in1

Deploying WebSphere configurations and

applications. .3
1. Set up plug—ms in UrbanCode Deploy .4
2. Create a component for the configuration
template . . .4
3. Model a WebSphere cell in Resources .5
4. Map the desired resource to the configuration
template component . . . 6
5. Associate the component w1th an apphcatlon . 6
6. Associate other needed components with the
application . .6
7. Associate the resources w1th an apphcatlon
environment . .7
8. Generate a Conﬁguratlon template .7
9. Deploy the configuration template .8

Specifying multiple profiles with the

websphere.profilePath property .

Using custom properties when deploymg WebSphere

configurations and applications . .9
Using XPath to specify property Values . 10

© Copyright IBM Corp. 2011, 2014

Comparing WebSphere configurations . .15
Comparing a conflguratlon template to a hve
scope . .15
Comparing two hve scopes . . .16
Enabling distributed management using layered
templates . .16
Setting up deployments to use layered templates 17
Customizing layered templates . . 20
Process steps in the IBM Middleware Conflguratlon
for WebSphere plug-in. .21
Aggregate Template Sn1ppet .21
Compare configuration .21
Compare server configuration. .21
Generate configuration . .21
Generate Template . .21
Manage configuration. . .22
Manage Configuration Layers . .22
Manage server configuration . .22
Appendix. Notices . . 23
Trademarks . 25
iii

iV IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Middleware Configuration for WebSphere plug-in

The Middleware Configuration for WebSphere® plug-in includes steps that deploy
configuration templates of WebSphere Application Server that you generate from
an existing cell.

Requirements

This plug-in requires the following software environments:
* UrbanCode Deploy version 6.1 or later (unless a task specifies another version).
* WebSphere Application Server 6.1 or later

Overview

This plug-in allows you to automate the process of deploying WebSphere
configurations and applications to different environments (for example,
development, test, and production environments. The following steps provide an
overview of the deployment process you follow.

1. Set up UrbanCode Deploy to support the process. Load plug-ins and install an
agent on the host where the WebSphere installation resides.

2. Create a component using the configuration template.

3. Capture topology information from an existing WebSphere installation and
model it in Resources. A resource tree represents scopes in the installation.

4. Map the resources (scopes) to manage to the configuration template
component.

5. Associate the component with an application.

6. Associate other components needed for deployment, for example components
containing EAR or WAR files (application binaries)

7. Associate the resources with an application environment.
8. Generate the configuration template
9. Deploy the configuration template to create new instances.

The process for using the plug-in is designed to support one application per scope
(cell, cluster, server, or node). The process is not designed to support use cases
where multiple applications are deployed within the same cell scope or the same
cluster scope.

Optional features

Additional sections describe the following features.

Specifying multiple profiles
Specifying multiple profiles enables you collect information for multiple
cells, either for the top-level group or for the agent. You use a special
property, websphere.profilePath, to specify the paths.

You must use this property if your WebSphere Application Server
installation is in a non-default location.

See [“Specifying multiple profiles with the websphere.profilePath property’]
on page 8]

© Copyright IBM Corp. 2011, 2014 1

2

Using custom properties

You can use custom properties on the component to differentiate resources
across environments. The custom properties are used to generate tokens
when you generate the templates. Tokens are used like variables to
substitute values in configuration information that varies depending on
environment. For example, you may use a different database or a different
DBC resource in each of the deployment environments. See |“Using customl
properties when deploying WebSphere configurations and applications” on|

page 9

Comparing WebSphere configurations
Comparing configurations allows you to see how a deployed cell needs to
be adjusted to fit a norm defined in a configuration template. You can also
compare two live scopes of the same type (cell, node, cluster, or server).
Comparing configurations is helpful to detect configuration drift.

See [“Comparing WebSphere configurations” on page 15.|

Layered templates
Use layered templates to organize configuration objects that are managed
in multiple applications and managed by multiple teams.

See [“Enabling distributed management using layered templates” on page]

Limitations

OnDemand Router servers and clusters not supported

This plug-in cannot manage OnDemand Router servers and clusters, due
to a known issue with WebSphere Application Server.

If you attempt to work with this type of server, you get the following
message.

[exec] WASX7017E: Exception received while running file "<MCWAS-plugin-root>/product/actions,
[exec] java.lang.ArrayIndexOutOfBoundsException: java.lang.ArrayIndexOutOfBoundsException:

Compare does not work with layered templates
Workaround: Generate a template from the layered-template
implementation, then use that template as a snapshot to compare.
Release History
Features and fixes have been provided for each release.

Version 7

Version 7 is supported with version 6.1 of UrbanCode Deploy.

* Compare scopes: you can now compare live WebSphere scopes of the same type
(cell, node, cluster or server).

Version 6

Version 6 is supported with version 6.0.1.4 of UrbanCode Deploy.

* Layered templates: a method to support distributed management of
configurations (requires version 6.0.1.4 of UrbanCode Deploy)

¢ Defect fixes

Version 5

IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Various defects were fixed for Version 5 of the plug-in, which is supported in
UrbanCode Deploy 6.0.1.

Version 4

Version 4 of the plug-in is supported in UrbanCode Deploy 6.0.1.

¢ Support for multiple profiles on the same host. Support was added for multiple
profiles for top-level resource group properties and multiple profiles for agent
properties.

* Use of XPath to create tokens. The previous method of using name-value pairs
in a promote.properties file is still supported.

¢ Updated method for importing information from a configuration: The method is
called QuickCapture and is enabled by default. It can be disabled for debugging
purposes. An example usage would be that generating the configuration
template does not work after upgrading to this version of the Middleware
Configuration for WebSphere plug-in

* Base template specification: If the SkipConfigCapture flag is enabled when you
import the a template, an existing WebSphere Application Server configuration is
used as a base template. Normally this flag is enabled in order to tokenize an
existing template.

Version 3

The updates for Version 3 were internal and did not require documentation
changes. Version 3 is supported with version 6.0.1 of UrbanCode Deploy.

Version 2

* Requirements: version 2 is supported with version 6.0.1 of UrbanCode Deploy. It
is not supported in prior versions of Urbancode Deploy.

* Additional scopes: Support for the node and server scopes was added to the
existing support for cell and cluster scopes.

¢ Automated generation of configuration templates: The automated process
requires less connection setup and fewer steps than the previous manual,
script-based process in version 1.0.

* Compare configurations: You can now compare a component (configuration
template) to a live cell. This is useful for detecting when a live cell's
configuration "drifts," or departs from the desired configuration. See
[“Comparing WebSphere configurations” on page 15)

Deploying WebSphere configurations and applications

To deploy WebSphere configurations and applications, you use plug-ins to read
information about a live deployment into a model in Resources. You then define
components, applications, environments, and processes to automate deployments
that create new instantiations of the modeled WebSphere environment.

Before you begin

The following setup and preparation is required.

* Select or set up a WebSphere cell to use. The configuration template you create
will use its configuration.

* Install an UrbanCode Deploy agent on the appropriate WebSphere host. Note
that you need the agent name during the procedures.

Middleware Configuration for WebSphere plug-in 3

— For ND deployments, install the agent where DMGR is running.
— For server deployments, install the agent where Base is running.

* Determine what tokens you need. Tokens are used to represent information that
is different among deployment environments. For example, you might specify a
different database server or JDBC resource in each of a development, test, and
production environment. For each token, you need a name and an initial value.
You are prompted to enter the names and values at the end of the process. See
“Using custom properties when deploying WebSphere configurations and|
applications” on page 9|

1. Set up plug-ins in UrbanCode Deploy
About this task

In this task you prepare the required UrbanCode Deploy resources.

Procedure
1. Install the Middleware Configuration for Websphere plug-in.
a. In UrbanCode Deploy, go to Settings > Automation Plugins.
b. Click Load Plugin.
c. In the dialog, click Choose File, then choose the MCWASPTugin-<version>.zip
d. Click Submit.
2. Install the Application Deployment for WebSphere plug-in.
a. In UrbanCode Deploy, go to Settings > Automation Plugins.
b. Click Load Plugin.

. In the dialog, click Choose File, then choose the
AppTlicationDeploymentForWebSphere-<version>.zip file.

d. Click Submit.
During installation a component template is automatically created for
Middleware Configuration for WebSphere. It is placed in the following file:

<plugin_home>/imports/componenttemplates/Middleware Configuration for
WebSphere. json.

2. Create a component for the configuration template
About this task

The component is at the center of the deployment process. It is associated with a
configuration template and with resources so that it holds a configuration
definition to be deployed.

Procedure

Create a component if one does not exist.

1. Click the Components tab.

2. Click Create New Component. Provide the following information:
¢ Name: Enter a name for the component.
* Template: select Middleware Configuration for WebSphere.

3. Click Save.

4 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

3. Model a WebSphere cell in Resources
About this task

Using autodiscovery, you locate a WebSphere cell through the agent that is
installed on the host where it is running. Using auto-configure, you populate the
resource tree with data about the WebSphere cell. For non-ND environments, you
model a server resource. The resource tree is the centralized source of
configuration data. Multiple processes in UrbanCode Deploy can include
components that contain resources selected from the resource tree.

Procedure
1. In Urbancode Deploy, go to Resources.

2. Click Create Top-Level Group to create a group.

3. Optional: if you need to specify multiple profiles for the group or WebSphere
Application Server is installed in a non-default location, add
websphere.profilePath as a property on the group and specify the appropriate
paths. See [“Specifying multiple profiles with the websphere.profilePath|

[property” on page 8| for details.

4. Add one or more agents, as required.

a.

Hover over the row for the resource group, click Actions, and select Add
agent.

Select the agent to add. Use the agent that is installed on the host for the
WebSphere environment you are going to model.

Wait 10 to 30 seconds, then click Refresh. A twisty is now next to the agent.
When you expand it, there is a sub-resource cell, WebSphereCell.

d. Hover over the row, then click Edit.

e. Enter values for the following properties.

f.

If you want to use soap.properties to provide the values, you must leave
the WebSphere User and WebSphere Password properties blank.

¢ WebSphere Profile Path

* WebSphere User

* WebSphere Password

Leave the Cell Name property blank.
Click Save.

5. Set Auto configure options for WebSphereCell.

a.

Hover over the row for WebSphereCell, click Actions, then click Auto
Configure.

b. Click No auto configure for resource.

c. Check Websphere Topology Discovery box.
d.
e
f.

Click OK.

. Click Save.

Wait 30-60 seconds, then click Refresh. A twisty is now next to
WebSphereCell. Expand it and make sure the resource tree matches your
WebSphere Application Server topology.

On the WebSphereCell entry, click Edit. Check that Cell Name was filled in
and is correct.

Middleware Configuration for WebSphere plug-in 5

4. Map the desired resource to the configuration template
component
About this task

During mapping you choose a scope from the resource tree to be used for
deployments. Note that a captured scope configuration can be applied only to a
like scope. For example, if you capture configuration information for a cluster
scope, it can only be used to deploy a cluster configuration.

Procedure
1. Click Resources to view the resource tree for the desired WebSphere cell.

2. Add a component to the scope or scopes you want to use: cell, cluster, node, or
server.

a. Select the scope you want to manage. Hover over a row to select a single
scope to show a menu, then click Add component in the menu.

b. Select the component to use. You created it above.
c. Click Save.

5. Associate the component with an application
About this task

Create the application if it does not exist. The application is the container for
deployment data.

Procedure
1. In the Dashboard, click Applications.
2. Create the application if it does not exist.
a. Click Create New Application.
b. Enter an application name, then click Save.
3. Add the component to the application.
a. In the Dashboard, click Applications.
b. Click the application to use.

c. Click the Components tab, then add the component that you created for the
configuration template.

6. Associate other needed components with the application
About this task

To deploy applications, you need to have components configured for the WAR or
EAR files. Add them to the application.

Procedure

1. In the Dashboard, click Applications.

2. Click the application to use.

3. Click the Components tab, then add the desired component.
4. Repeat for all necessary components.

6 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

7. Associate the resources with an application environment
About this task

The resources define the configuration data to be deployed with the application.

Procedure

1.
2.
3.

In the Dashboard, click the Applications tab.
Click the application you created.

Create an application environment.

a. Click Create New Environment.

b. Enter an environment name, then click Save.
Add the resource group to the environment.

a. In the application, click Environments.

b. Click the environment name.

c. Click Add Base Resource. Choose the group for your exemplar cell and
environment.

Optional: view the environment properties for the component.
a. In the Dashboard, click Components.

b. Click the component.

c. Click Configuration.

d. Click Environment Property Definitions.

8. Generate a configuration template
About this task

Run an application process to generate the configuration template.

Procedure

1.
2.

In the application you created, click the Processes tab.
Define the process as follows.

a. In the process design page, locate each component that you have added to
the application.

b. Click the component to show a Generate Template process step.

c. Drag the Generate Template step to the process editor, then give the
process a name.

d. Click Save.
Run the application process to generate the template.
Enter information for the following fields.

* New Component Version: Specify a new version to use. The configuration
template files are associated with that version.

¢ SkipConfigCapture: If this flag is enabled, an existing WebSphere
Application Server configuration is used as a base template. Normally this
flag is enabled in order to tokenize an existing template.

¢ UseQuickCapture: Enabled by default. Leave it enabled unless there are
problems generating the template. You may uncheck it to debug problems
with generating the template.

Click Submit.
Wait for the process to finish running before continuing.

Middleware Configuration for WebSphere plug-in

9. Deploy the configuration template
About this task

Create an application process of type Deployment for configuration and
deployment, then run the process to test it.

Procedure

1. In the Dashboard, click the Applications tab.
2. Click the application you created.

3. Click the Processes tab.

4. Define the process.

a. Drag and drop the Install Component step onto the process editor. Choose
the Configure WebSphere Application Server component process.

b. Select the component you created

c. Choose the Configure WebSphere Application Server (Template)
component process

5. Click Save.
6. Run the process to test the newly created component template.

Specifying multiple profiles with the websphere.profilePath property

Specifying multiple profiles enables you collect information for multiple cells,
either for the top-level group or for the agent.

You specify multiple profiles during deployment. You specify them in a
websphere.profilePath property in one of two places:

* Top-level group: Set the websphere.profilePath here to collect profiles from
multiple cells deployed across multiple hosts. All hosts must use the same
installation directory for the cell.

e Agent: Set the websphere.profilePath here to collect profiles for multiple profiles
on the same host.

Values for the websphere.profilePath property

Specify one or more paths as the property value. Separate multiple paths with a
comma. The paths can be one of the following;:

 path to a profile. The path does not have to specify /bin/wsadmin.sh, but
autodiscovery works with paths that do.

* path to a container directory of profiles. In this case the autodiscovery code
loops over each first-level directory. It registers base and nd profiles. It skips
node and server profiles.

When you specify multiple profiles, the following values are read during
autodiscovery:

e SOAP port (read from portdef.properties)
e profile path
* install path

Example value with two container directories and one profile path:
"/opt/IBM/WebSphere/Profiles/,/opt/WAS/Profiles,/opt/IBM/profiles/dmgr"

8 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Restriction: If you specify multiple container directories, there should be no
duplicates in the profile names they contain. If autodiscover finds the
same profile name, it overwrites the previously found profile name.

Example: /opt/IBM/WebSphere/Profiles and /opt/WAS/Profiles both
contain a dmgr profile. A resource is created only for the second dmgr
resource, because the first profile is overwritten.

If you encounter this situation, you can work around it by creating a
separate top-level group and segregate the profile directories.

Using custom properties when deploying WebSphere configurations
and applications

Use custom properties on a component to differentiate configurations between
environments.

Before you begin

* Understand the process for deploying WebSphere configurations and
applications. See [“Deploying WebSphere configurations and applications” on|

Set up and deploy WebSphere configurations and applications without custom
properties. Examine the deployment to determine where you need to differentiate
deployment environments.

About this task

Typically multiple environments are used in a staged software development
process. The environments are segregated, for example into Development, Test, and
Production areas. Code is promoted from one area to the next after exit criteria are
met.

Configuration data for a deployed WebSphere instance may need to vary according
to the environment where it is deployed. For example, a different database may be
used for backing a JDBC resource in each environment. Defining custom properties
allows you to customize deployment into each environment.

You define custom properties on the component you create for the deployment.
When you generate the template, the custom properties are scanned and tokens are
created in the configuration template. The tokens are substituted with values from
the environment during deployment.

Property values can be either an explicit value or an XPath expression. You
typically use XPath if the value could be confused with another value or part of a
value if you used a simple value. For example, specifying 80 (HTTP port) could be
confused with another value (9080) and result in an incorrect token. Note that only
some XPath functionality is available for this purpose.

Procedure
1. Click Components.

2. Click on the component, then the Configuration tab, then Enviroment Property
Definitions.

Middleware Configuration for WebSphere plug-in 9

10

3. Add custom tokens prefixed with websphere. You can assign values directly
(using key-value pairs) or you can use an XPath expression. You can also add
default values to be substituted for the tokens during the configuration process
for the environment.

Note: These properties should be for values in your configuration that you

know need to be different between your different websphere cells.

a. Add properties using key-value pairs. These properties are ones that can

use an explicit, unambiguous value. See [“Using XPath to specify property|

for a full example in the context of IBM” UrbanCode Deploy.

For example, the database port may be different for your development and
production environment. In this case you would create a property with the
following name:

websphere.dbport.value=50000

The string 50000 is extracted from the configuration when it is read. It is
replaced with the token @dbport@. The token is later replaced during
deployment with the value for the environment where you are applying the
configuration data.

Add properties that require an XPath expression for a value.

For example, the following XPath expression locates and updates a value in
the jdbc.xml data file. It looks for a DataSource with the name widgetDB
and updates the J2EEResourceProperty attribute to 50000 where the name
attribute is portNumber.

websphere.dbport.xpath=//DataSource[@name="widgetDB']/J2EEResourcePropertySet/J2EEResourcePro|
[@name="portNumber']/@value

Why use XPath?

The token creation process uses a simple string substitution method. In
some cases tokens can be created incorrectly because one property is
represented as a property that is itself a substring of another property.

A common case for this is in defining multiple HTTP ports within a
configuration. The following custom property could be encountered during
configuration.

port='80"

The property is converted into the token @port@.

However, if another assignment to the port is encountered during
configuration, the token is formed improperly. The following custom
property could be encountered.

port="'9080"

When it is scanned, the previous token creation causes an incorrect token to
be created: 90@port@.

Using XPath to specify property values

Use XPath expressions to specify custom property values.

Use XPath expressions to locate values that are otherwise difficult to specify with
name-value pairs.

XPath expression

An XPath expression locates and assigns the specified value to all instances
of the value in the data file that have the location specified by the XPath
expression.

XPath expressions work for values that

IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

* are not unique within the data file, for example, the values true and
false might be assigned to several variables

* cannot be replaced everywhere in the data file with the same value

For information about XPath expressions, see the XML Path Language|
|(XPath) Version 1.0| produced by the World Wide Web Consortium (WC3).

XPath expression syntax

The syntax of a generic XPath expression is as follows:

value_name .value

value_name .xpath=/XmINode/Child[@attrName="value"]/XmINode/@matchAttrName

The table provides descriptions of the XPath expression elements and are
provided as a guide to create a basic XPath expression.

See the WC3 documentation on XPath language: [World Wide Web|

Consortium (WC3),

XPath expression element

Description

value_name.value

Assigns a value_name to the value that you
want to locate in a data file.

value_name .xpath

Assigns the same value_name to the XPath
expression.

.xpath Query to locate that attribute whose value is
to be replaced by value_name

/Xm1Node/ Selects an element node named XmINode in
the XML data file.

/Xm1Node/Child Selects an element node named Child with a

parent named XmlINode.

/Xm1Node[@attrName="value"]

Selects an element node of type XmINode
with an attribute of attrName that has a
specific value.

Rules for XPath expressions used in promote.properties files

* Do not select an element node with your XPath query.

¢ The XPath expression must point to an attribute that you want to
update, not to an element node in the XML file.

¢ XPath queries should always end with /@attrName to target an attribute

and not the node element.

* When you configure datasources, do not use absolute paths. Specify
paths that are relative to container nodes.

Example of XPath expressions in promote.properties files

The following is an example of an XPath expression that locates and
updates a value in the jdbc.xml data file.

The example XPath expression looks for a DataSource with the name
widgetDB and updates the J2EEResourceProperty attribute to 50000 where

the name attribute is portNumber.

dbport.value=50000

dbport.xpath=//DataSource[@name="widgetDB']/J2EEResourcePropertySet/J2EEResourceProperty

[@name="portNumber']/@value

The XML data file in the following example shows an excerpt from the
jdbc.xml file with the updated port number value.

Middleware Configuration for WebSphere plug-in 11

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/
http://www.w3.org/

12

<jdbc>

<RAFW_JDBCDataSources>

<DataSource
name="widgetDB"

>
<J2EEResourcePropertySet
WASKey="propertySet"
>

<J2EEResourceProperty
WASKey="resourceProperties"
name="portNumber"
required="false"
type="java.lang.Integer"
value="50000"
>
</J2EEResourceProperty>
</J2EEResourcePropertySet>
</DataSource>
</RAFW_JDBCDataSources>
</jdbc>

Example of relative paths to datasources in XPath expressions

When you run the action was_common_configure_jdbc_datasources in
promote mode, the starting point for the XPath expression must be the
relative path to the container node. You must therefore omit the absolute
path declarations /jdbc/RAFW_JDBCDataSources from the expression and
start with /DataSource. For example,

<DataSource
name="widgetDB"
>

<J2EEResourcePropertySet
WASKey="propertySet"
>

<J2EEResourceProperty
WASKey="resourceProperties"
name="portNumber"
required="false"
type="java.lang.Integer"
value="50000"
>

</J2EEResourceProperty>
</J2EEResourcePropertySet>
</DataSource>

Example of using an XPath expression
The following example is set in an IBM UrbanCode Deploy environment.

The example uses a WebSphere Application Server configuration file, cache.xml.
1. Original cache.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
- «CacheProviders xmins="http:/ /raf.rational.ibm.com/xml/ns/websphere/cache" xmins:xsi="http:/ fwww.w3.0rg/ 2001 /XML
xsi:schemalocation="http:/ /raf.rational.ibm.com/xml/ns/websphere/cache http:/ /raf.rational.ibm.com/xml/ns/webs|
- <RAFW_cachelnstance>
- <ObjectCachelnstance cacheSife- '2000" defaltPriority="1" disableDependencyld="false" diskCacheCleanupFrequency="0" disk!
diskCacheSizeInEntries="0" di ="D" enableCacheReplication="false" enableDiskOffload="false" flushToDiskOnStc
pushFrequency="1" replicationType="NONE" uselistenerContext="false">
«<CacheProvider RAFW_TYPE="reference" WASKey="provider" name="CacheProvider" />
<DiskCacheCustomPerformanceSettings WaASKey="diskCacheCustomPerformanceSettings" maxBufferedCacheldsPermMetaEn
<DiskCacheEvictionPolicy WASKey="diskCacheEvictionPolicy" algorithm="NONE" highThreshold="80" lowThreshold="70" />
</ObjectCachelnstance >
- =ServletCachelnstance cacheSize="4000" defaultPriority ="1" diskCacheCleanupFrequency="0" diskCacheEntrySizeInMB="0" disk(
enableCacheReplication="false" enableDiskOffload="false" flushToDiskonStop="false" hashSize="1024" jndiName="jndi2" mem:
uselistenerContext="false">
<CacheProvider RAFW_TYPE="reference" WASKey="provider"' name="CacheProvider" />
<DiskCacheCustomPerformanceSettings WASKey="diskCacheCustomPerformanceSettings" maxBufferedCacheldsPerMeta
<DiskCacheEvictionPalicy WASKey="diskCacheEvictionPolicy" algorithm="NONE" highThreshold="80" lowThreshdid="70" /=
=/ServletCachelnstances>
«/RAFW_cachelnstance>
</CacheProviders>

2. Cache resources as seen in the WebSphere Application Server console:

IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Object cache instances

#n object cache instance is a lacation. in addition to the default shared dynamic cache, where Java(TM) Platform, Enterprise Edition (Java EE) applications can
store, distribute, and share data. This gives applications greatar flexibility and balter buning of the cache rescurces. Use the DistributedObjectCache pragramming

ln:_erfuce to accass this cache instance. See the DistributedObjectCache APL documentation in the WebSphare(R) Application Server APL documentation for mare
infarmatian.

= Scopa: Calizcall. Clustar=clustery
[#] show scope selection drog-dowm list vith the all scopes option

Scopa spacifies the laval at which the resource definition is visible. For datailed information on what scope is and
haws it worko. ngy helg.

=]

| Clustar=clustarl

B Oraferancas
M., Celete

lact| Name & INDL name 3 Scope Cache size
You can administer tha following resourcas:
] 'w jredis Cluster=clustary zo0o
T

Servlet cache instances

A zendet cache instance iz a lacation, In addition to the default shared dynamic cache, where dynamic cache can store, distribute, and sh:
applications greater flaxibility and better tuning of the cache resources. The Java(TM] Haming and Disectery Intarface (JNDD) name that
instance is mapped to name attribute in the cathe-instance tag. in the cachespec.xml configuration file.

= Scoper Cell=cell, Cluster=clusterl

. Thiz givasz
d for the cache

[showscope

etian drep-dewn list with the all scopes eptian

Srope spedifies the level at which the razsurce definition is vislble. For datalled infarmation on what zcope iz and
e it works, sse the scope settings halp.

cell
=]
Hode - = Cluster .
| _Brevss Hadas |elustart | _Brewsa Clustars
Browse Servars
"

E Prafarances

| Haw... || Delate

atact | Hame 2 & | Scope | Cache size 3
You can administer the following resaurcefl

sanvdetCache jndiz | Cluster=clustery 4000

3. In IBM UrbanCode Deploy, the resources are expressed as environment
property definitions on the component.

Environment Property Definitions

Define properties here to be given values on each environment the component is used in.

Add Property

Version 5 of 5

<

Hame Label Pattern Required Default Value

websphere.objCacheSize.xpath websphere.objCacheSize.xpath false NObjeciC: 1ame="objCache’
websphere.objCacheSize.value websphere.objCacheSize.value false 2000
websphere.servietDiskCacheEvictionPolicyLTxpath websphere.senvletDiskCacheEvictionPolicyLT.xpath false ;g:?g;g:gg;g;‘:gzﬁgn@a‘r:;;ﬁg::‘:ﬁamﬂ
websphere servietDiskCacheEvictionPolicyl Tvalue websphere.senvletDiskCacheEvictionPolicyl Tvalue false 70

grecords - Refresh Print |

4. When you generate the template, tokens are inserted into the file to represent

the locations for the cache resources.

Middleware Configuration for WebSphere plug-in 13

1g="UTF-8" 2>
tp:/ /raf.rational.ibm.com/xml/ns/websphere/cache" xmins:xsi="http:/ /www.w3.0org/2001/XMLSchema-instance"
3/ fraf.rational.ibm.com/xml/ns/websphere/cache http:/ /raf.rational.ibm.com/xml/ns/websphere/cache.xsd">

ultPriority="1" disableDependencyld="false" diskCacheCleanupFrequency="0" diskCacheEntrySizeInMB="0"
4 lication="false" enableDiskOffload="false" flushToDiskOnStop="false" hashSize="1024" jndiName="jndi1

splicationType="NONE" uscListenerContext="false">

|_TYPE="reference" WASKey="provider" name="CacheProvider" />

rformanceSettings WASKey="diskCacheCustomPerformanceSettings" maxBufferedCacheldsPerMetaEntry="1000" maxBufferedDependencylds="10

licy WaSKey="diskCacheEvictionPolicy" algorithm="NONE" highThreshold="80" lowThreshold="70" />

b

cacheSize="4000" defaultPriority="1" diskCacheCleanupFrequency="0" diskCacheEntrySizeInMB="0" diskCachePerformancelLevel="BALANCED" diskCz

n="false" enableDiskOffload="false" flushToDiskOnStop="false" hashSize="1024" jndiName="jndi2" memoryCacheSizeInMB="0" name="servletCache

false">

|_TYPE="reference" WASKey="provider" name="CacheProvider" />

rformanceSettings WASKey="diskCacheCustomPerformanceSettings" maxBufferedCacheldfPerMetaEntry="1000" maxBufferedDependencylds="8#D

licy WASKey="diskCacheEvictionPolicy" algorithm="NONE" highThreshold="80" lowThresholg="@ser i h icti icyLT.value@" /|

g5

5. Run the Configure step to apply the template to a live cell. You can specify
values for the properties. In the following dialog, 5000 is specified for objCache
and 75 is specified for servletCache.

Refresh
Component Environment Properties

websphere. objCacheSize value
was85Comp 5000

websphere objCacheSize xpath

was85Comp | lIObjectCachelnstance[@name="objCache }@cact

websphere servietDiskCacheEvictionPolicyLT value

was85Comp 75

websphere. servietDiskCacheEvictionPolicyLT xpath

wasB5Comp | lisendetCachelnstance[@name="senletCache VDi

Save

The changes produced by running the configuration process are shown in the
WebSphere Application Server console, as the following example shows for
objCache.

Cibject cache instances FE

Object cache instances

An object cache instance iz a location. in addition to the default shared dynamic cache, where Java{TM} Fatform. Enterprize Edition (Java EE} applications can
store, distribute, and share data. This gives apalications greater flaxibility and bettar tuning of the cache resources. Use tha DistributedObjactCache programming
intmrface to access this cache instance, See the DistributedObjactCache 421 documentation in the WebSphera{ft) Application Server ARl dotumentation for more
information.

= Scogel Cell=cell, Cluster=clusterl

7] Shewszops selastion drap-gown list vith the =il seopes aption

Scopa spacifi
haw it works,

ha laval at which tha resource definition is visible. For detailed information on what scopa is and
as the scope settings help.

[Slustar=clustars =

Preferances

HNaw... Dalata
B [

| MO name 2 | seope o Cache size

You can administer the following resourclls|

[| obicache |sndin Clustersdusterl | sono

14 1BM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

You can also import the configuration data from the cell to see the changed
contents of cache.xml. Note the highlighted changes.

<?xml version="1.0" encoding="UTF-8" ?=
- <CacheProviders xmins="http:/ /raf.rational.ibm.com/xml/ns/websphere/cache" xmins:xsi="http:/ /www.w3.0rg/2001 /XML
xsi:schemalocation="http:/ /raf.rational.ibm.com/xml/ns/websphere/cache http:/ /raf.rational.ibm.com/xml/ns/webs
- <RAFW_cachelnstance>
- <0ObjectCachelnstance cacheQYze="5000" defafltPriority="1" disableDependencyld="false" diskCacheCleanupFrequency="0" disk
diskCacheSizelnEntries="0" diak Lyssizal ="0" enableCacheReplication="false" enableDiskOffload="false" flushToDiskOnSt
pushFrequency="1" replicationType="NONE" uselistenerContext="false">
<CacheProvider RAFW_TYPE="reference" WASKey="provider" name="CacheProvider" />
<DiskCacheCustomPerformanceSettings WASKey="diskCacheCustomPerformanceSettings" maxBufferedCacheldsPerMetaEr
<DiskCacheEvictionPolicy WASKey="diskCacheEvictionPolicy" zlgorithm="NONE" highThreshold="80" lowThreshold="70" /=
</ObjectCachelnstance>
- <ServletCachelnstance cacheSize="4000" defaultPriority="1" diskCacheCleanupFrequency="0" diskCacheEntrySizeInMB="0" disks
enableCacheReplication="false" enableDiskOffload="false" flushToDiskOnStop="false" hashSize="1024" jndiName="jndi2" mem
uselistenerContext="false">
<CacheProvider RAFW_TYPE="reference" WASKey="provider" name="CacheProvider" />
<DiskCacheCustomPerformanceSettings WASKey="diskCacheCustomPerformanceSettings" maxBufferedC =
<DiskCacheEvictionPolicy WASKey="diskCacheEvictionPolicy" algorithm="NONE" highThreshold="80" \chh
<fServletCachelnstance>
</RAFW_cachelnstance>
«/CacheProviders:

Comparing WebSphere configurations

Comparing configurations allows you to see how a deployed cell needs to be
adjusted to fit a norm defined in a configuration template. You can also compare
two live scopes.

About this task

You can perform two types of compare:
* Compare a configuration template to a live scope.
* Compare two live scopes of the same type (cell, node, cluster, or server).

Comparing a configuration template to a live scope
Before you begin

You need a configuration template for this procedure. See [‘Deploying WebSphere]
lconfigurations and applications” on page 3|for information on how to create one.

Procedure

Create an application process.

View the application.

Click the Processes tab for the application.
Click Create New Process, then save.

Edit the process.

o ok w2

Drag and drop the Run Process for Each Version... step onto the process editor.
a. Enter a name for the step.

b. Select the template component to use (from the template generation
process).

c. Choose the Compare WebSphere Configuration (template) component
process.

7. Click Save.
8. Save the process.

Note: You can create custom processes to compare subsets of the configuration
data.

Middleware Configuration for WebSphere plug-in 15

Comparing two live scopes

Comparing two live scopes in the resource tree gives you a tool to detect
configuration drift.

Before you begin

This task is available for UrbanCode Deploy version 6.1 or later.
About this task

You can compare two live WebSphere scopes using the IBM Middleware
Configuration for WebSphere plug-in. You can compare the following scopes:

e cells
e clusters
¢ nodes

¢ servers

You set up a resource scope in the resource tree, then compare it to a target scope that
is also modeled in the resource tree. You can compare only like scopes. For
example, you can compare a cell only to a cell.

Procedure
1. Set up the resource tree.
2. Determine the scopes to compare.

3. Copy the resource path. The path consists of the top level group, agent name,
and the file path to the resource scope. You can copy it from a child resource
settings page next to Parent Resource.

4. Go to the Processes tab for generic processes.
5. Click the Run link for Compare WebSphere Configuration.
a. Enter the target scope resource path into the first field.
b. Select the source scope to use in the Resource selection field.
c. Click Submit.
6. Wait for the process to finish.
7. Check status.
* Success status means that no differences were detected between the scopes.
* Failure status means differences were detected.

8. Expand the step named Run Comparison. Look in the Compare Configuration
and Compare Server Configuration substeps for logs.

Results
If the step status is Failure, check the output properties. The data types that

differed are listed. A list of line numbers in the log indicates where to find details.
The log contains full information on the configuration difference.

Enabling distributed management using layered templates

Use layered templates to organize configuration objects that are managed in
multiple applications and managed by multiple teams.

16 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Overview

A layered template is a full or partial set of WebSphere configuration objects, such as
a data source or cluster variable. It allows you to organize configuration objects
across multiple applications and multiple teams. The capability reflects the reality
of WebSphere configurations having multiple owners for various parts and allows
configuration to be segregated for individual applications.

The configurations are set up and managed in a distributed manner. An
UrbanCode Deploy process can run a single transaction that collects the distributed
configuration information, merges it into a single template, and applies it. The
single transaction configures all of the objects defined. If there is a failure, the
transaction is rolled back. The rollback feature prevents problems with taking the
WebSphere cell down or creating mismatched data.

Features

* Multiple objects of the same parent type can be grouped together in the same
file, but the file does not necessarily have to contain a full set of configuration.
While all objects can be defined in one file, sometimes it is easier to organize
across multiple.

* Multiple configuration types can be grouped in a component, allowing for
intuitive grouping of configuration and application objects.

¢ The objects are defined in a file.

* Multiple layers of the same type can be spread across multiple components. The
file naming scheme allows the plug-in to find and merge all the configuration
objects into a final template, which is then used to configure a scope in the
WebSphere topology. For example, one application binary might need a data
source definition, while another needs a completely separate data source. These
object definitions could in different components. Each component can then be
mapped to the application, and the processes from the plugin will aggregate and
configure WebSphere with each layer in a single transaction.

* Base templates can be used to create a standard scope configuration across
multiple topologies, while also using layered templates to add any specific
configuration.

 All configuration files can be tokenized such that values for each application
environment can be replaced independently.

Customization

The Jython code provided by the Middleware Configuration for WebSphere can be
extended to meet the needs of your organization and your processes. Hooks are
provided for calling custom jython code during the import and export of
WebSphere configuration (in a step). See |“Customizing layered templates” on page|

Setting up deployments to use layered templates

To deploy WebSphere configurations and applications, you use plug-ins to read
information about a live deployment into a model in Resources. You then define
components, applications, environments, and processes to automate deployments
that create new instantiations of the modeled WebSphere environment.

Before you begin

The following setup and preparation is required.

Middleware Configuration for WebSphere plug-in 17

* Install the Middleware Configuration for WebSphere plug-in if it is not yet
installed.

¢ Install the Application Deployment for WebSphere plug-in if it is not yet
installed.

* Determine what tokens you need. Tokens are used to represent information that
is different among deployment environments. For example, you might specify a
different database server or JDBC resource in each of a development, test, and
production environment. For each token, you need a name and an initial value.
You are prompted to enter the names and values at the end of the process. See
“Using custom properties when deploying WebSphere configurations and|
applications” on page 9|

About this task

Setting up deployments to use layered templates that you perform the following

tasks:

1. Create a tokenized object definition file

2. Create a component to use the object definition file.
3. Create an application and application environment
4. Create an application process

1. Create a tokenized object definition file
About this task

In this task you prepare the required UrbanCode Deploy resources.

Procedure
1. Create a tokenized object definition file using one of the three following
methods.

Use a previously generated configuration template

a. View the template files in a selected version of a selected
component. Go to Components > <ComponentName> > Versions >
<Version>.

Select the file for the object type you want to layer.

c. Copy one or more XML dom object for the desired configuration
object.

Paste the objects into a new file.
Save the file. Use a file name that matches the template.

Generating a configuration template
To generate a new configuration template, follow the instructions in
[“Deploying WebSphere configurations and applications” on page 3,
then use the instructions above for a previously generated
configuration template.

Modify an example file
See the basic example files provided in the downloaded plug-in.

Most of the files provided are tokenized sufficiently to use without
modification. For more complicated configurations, use a previously
generated configuration template or generate a new one, using the
directions above.

18 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

2. Add the tokenized object definition files to a source repository. You can also
add the files to a location to be used as a files system repository. See
UrbanCode Deploy documentation for more information.

2. Create a component
About this task

In this task you prepare the required UrbanCode Deploy resources.

Procedure
1. Choose Components > Create New Component. Set the following properties:
* Set the component template to Middleware Configuration for WebSphere.

* Set the source configuration to the source repository or location where you
copied the object definition file.

2. Add component properties.

a. In the component, go to Configuration > Environment Property
Definitions.

b. Add properties that correspond to the tokens in the object definition file.
Name the property the same as the token name.

3. Add a tag
a. Go to Components.

b. Next to the component name, hover on the row, then click the tag icon. The
icon is to the right of the name. Choose the MCWAS tag. Create it if it does
not exist.

3. Create an application and application environment
About this task

In this task create an application and an application environment.

Procedure
1. Create an application. Choose Application > Create New Application
2. Add the component that you created to the application.
3. Create an application environment.
a. Go to Components.

b. Next to the component name, hover on the row, then click the tag icon. The
icon is to the right of the name. Choose the MCWAS tag. Create it if it does
not exist.

4. Set properties for the application environment.

a. Go to Applicationa > <ApplicationName>, click the Configuration subtab,

then click Environment Properties.

b. Under Component Environment Properties, provide values for each
property. The values are substituted for the tokens in the object definition
files during deployment.

3. Create an application process
About this task

In this task you create an application process and provide property values for the
steps in the process.

Middleware Configuration for WebSphere plug-in 19

Procedure

1. Create an application process. Go to Applications > <ApplicationName> >
Processes, then click Create New Process.

2. Drag the Install Multiple Components step to the process. Provide values for
the properties as follows, then click Save.

¢ Name: Aggregate Layered Templates
¢ Component Tag: MCWAS (you provided this tag on the component earlier)
e Component Process: Aggregate Layered Templates

3. Drag the Run Process for Each Version step to the process. Provide values for
the properties as follows, then click Save.

¢ Name: Configure WebSphere
e Component: (any WebSphere configuration layer component)

¢ Component Process: Configure WebSphere Application Server (layered
templates)

 Data set (optional). If this value is not set, then you are prompted for the
value at run time. Choose one of these values:

— All: manages all configuration object types
— Server: manages only server object types (JVM settings)
— Non-server: all non-server object types

4. Drag the Install Multiple Components step to the process. Provide values for
the properties as follows, then click Save.

* Name: Synchronize Component Inventories
* Tag: MCWAS
* Process: Synchronize Component Inventories

5. Connect the steps. Drag lines between each step. The steps should appear in
the order you dragged them in the steps above.

Customizing layered templates
Use Jython files to provide customization of layered templates.

To customize processing in layered templates, provide a custom Jython file along
with the tokenized object definition files in the source repository or file system
location you use. The file is included in the artifacts in CodeStation.

Any custom Jython file must define the two methods shown below. If either is not
included, the transaction fails and no data is applied.

def preProcess(dictionary):
print "Running preprocess code."
print str(dictionary)

#endDef

def postProcess(dictionary):
print "Running postprocess code."
print str(dictionary)

#endDef

During execution messages are printed to the output log for both sections.

CRWWA40371 Executing all custom scripts in preProcess mode
CRWWA40361 Calling custom jython file <file name>
CRWWA4039I Completed execution of custom scripts

Running preprocess code.

{'WAS_HOME': <and other variable definitions>}

20 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Running postprocess code.

{'WAS_HOME': <and other variable definitions>}

CRWWA4038I Executing all custom scripts in postProcess mode
CRWWA40361 Calling custom jython file <file name>
CRWWA4039I Completed execution of custom scripts

Running preprocess code.

Saving Config...

Synchronizing Nodes...

The save and synchronization steps occur only after the post-processing functions

are run. There may be some interleaving of log output from the MCWAS plug-in,
which uses Java" loggers, and print statements from the Jython code.

Limitations

* Only individual Jython files can be included and run. The Jython code should
not rely on external Java classes in custom JAR files. There is no way for those
JAR files to be included in the run-time class path or otherwise be available at
run time.

Process steps in the IBM Middleware Configuration for WebSphere
plug-in

Aggregate Template Snippet

Aggregates individual pieces of layered configuration templates into a composite
template.

There are no input properties for this step.

Compare configuration

Compares the configuration from the mapped component to the configuration of
the corresponding resource

Table 1. Input properties for the Compare configuration step

Name Type Description Required

Options String Not supported. No

Compare server configuration

Compares the server configuration from the mapped component to the
configuration of the corresponding resource

Table 2. Input properties for the Compare server configuration sfep

Name Type Description Required

Options String Not supported. No

Generate configuration
Generates the configuration representation using tokenized values

Generate Template

Generates the configuration template and creates a component version

Middleware Configuration for WebSphere plug-in

21

Manage configuration

Manages the configuration for the corresponding resource

Table 3. Input properties for the Manage configuration step

Name Type Description Required

Options String Not supported. No

Manage Configuration Layers

Compares the configuration from the mapped component to the configuration of
the corresponding resource

Table 4. Input properties for the Manage Configuration Layers step

Name Type Description Required

Options String Format: No
NAME=VALUE,[NAME=VALUE].
Supply a name value
pair to be used by
actions. This
argument can be
supplied multiple
times for all of the
additional parameters
used by actions.

Manage server configuration

Manages the server configuration for the corresponding resource

Table 5. Input properties for the Manage server configuration step

Name Type Description Required

Options String Not supported. No

22 IBM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamoto-shi
Kanagawa, 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011, 2014 23

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, MA 01886

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

24 1BM UrbanCode Deploy: Middleware Configuration for WebSphere Application Server plug-in

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright
IBM Corp. 2003, 2014.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

Windows is a registered trademark of Microsoft Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 25

	Contents
	Middleware Configuration for WebSphere plug-in
	Deploying WebSphere configurations and applications
	1. Set up plug-ins in UrbanCode Deploy
	2. Create a component for the configuration template
	3. Model a WebSphere cell in Resources
	4. Map the desired resource to the configuration template component
	5. Associate the component with an application
	6. Associate other needed components with the application
	7. Associate the resources with an application environment
	8. Generate a configuration template
	9. Deploy the configuration template

	Specifying multiple profiles with the websphere.profilePath property
	Using custom properties when deploying WebSphere configurations and applications
	Using XPath to specify property values

	Comparing WebSphere configurations
	Comparing a configuration template to a live scope
	Comparing two live scopes

	Enabling distributed management using layered templates
	Setting up deployments to use layered templates
	1. Create a tokenized object definition file
	2. Create a component
	3. Create an application and application environment
	3. Create an application process

	Customizing layered templates

	Process steps in the IBM Middleware Configuration for WebSphere plug-in
	Aggregate Template Snippet
	Compare configuration
	Compare server configuration
	Generate configuration
	Generate Template
	Manage configuration
	Manage Configuration Layers
	Manage server configuration

	Appendix. Notices
	Trademarks

