
IBM Tivoli Storage Manager

Using the Application Program Interface
Version 5 Release 2

GC32-0793-01

���

IBM Tivoli Storage Manager

Using the Application Program Interface
Version 5 Release 2

GC32-0793-01

���

Note
Before using this information and the product it supports, read the general information in Appendix F, “Notices”, on
page 243.

Second Edition (April 2003)

This edition applies to version 5, release 2, modification 0 of IBM Tivoli Storage Manager (5698-ISM), IBM Tivoli
Storage Manager Extended Edition (5698-ISX), IBM Tivoli Storage Manager for Storage Area Networks (5698-SAN),
and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office that serves your locality.

Your feedback is important in helping to provide the most accurate and high-quality information. If you have
comments about this manual or any other Tivoli Storage Manager documentation, see “Contacting customer
support” on page xiii.

© Copyright International Business Machines Corporation 1993, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Who should read this manual ix
IBM Tivoli Storage Manager Web Site ix
Conventions used in this manual x
Reading syntax diagrams x
Related information xii
Downloading or ordering publications xiii
Contacting customer support xiii
Reporting a problem xiv
Internet xiv
Summary of code changes xiv

Version 5 Release 2 Level 0 April 2003 xiv
Version 5 Release 1 Level 0 March 2002 xiv
Version 4 Release 2 Level 1 November 2001 . . xvi
Version 4 Release 2 Level 0 June 2001 xvi
Version 4 Release 1 Level 0 July 2000 xvi
Version 3 Release 7 Level 0 September 1999 . . xvii
Version 3 Release 1 Level 7 May 1999 xvii
Version 3 Release 1 Level 6 January 1999 . . . xvii
Version 3 Release 1 Level 5 August 1998 . . . xviii
Version 3 Release 1 Level 3 March 1998 . . . xviii
Version 3 Release 1 Level 0 October 1997 . . . xviii

Chapter 1. Introducing the API 1
Understanding configuration files and options files . 1
Setting up the API environment 3

Chapter 2. Building and running the
sample application 5
Building the sample application 5

NetWare operating system 5
OS/400 operating system 6
UNIX operating system. 8
Windows 32–bit operating system 9
Windows 64–bit operating system 10

Running the sample application 11

Chapter 3. Using the Application
Program Interface 13
Key design recommendations 13
Determining size limits 14
Maintaining version control in the API 14
Using multi-threading 16
Using signals 17
Starting or ending a session 17

Session security 18
Using passwordaccess generate without TCA . . 21
Administrative user 22

Identifying the object 23
File space name 23

High-level and low-level names 24
Object type 24
Object ID 24

Accessing objects 25
Accessing across nodes and across owners 25
Managing file spaces 26
Associating a management class with objects . . . 28

Query management classes 30
Querying the Tivoli Storage Manager system . . . 30

An example 32
Sending data to a server 34

The transaction model 34
File aggregation 34
API performance considerations 35

Sending objects to the server 35
Understand backup and archive objects 36
Compression 37

Reading state diagrams and flowcharts 37
An example 40

File grouping 41
Receiving data from a server 43

Perform a partial object restore or retrieve . . . 43
Receive data with a restore or retrieve procedure 44
State diagrams and flowcharts 49
An example 50

Updating objects on the server 52
Deleting objects from the server 52
Logging events 52
Putting it all together 53

Chapter 4. Understanding
interoperability 55
Backup-archive client interoperability. 55

Naming your API objects 55
Using commands 56

Operating system interoperability 57

Chapter 5. Using the API with Unicode 59
Who should use Unicode 59
Setting up Unicode 59

Chapter 6. API function calls 61
dsmBeginGetData 63
dsmBeginQuery 65
dsmBeginTxn. 68
dsmBindMC 69
dsmChangePW 71
dsmCleanUp 72
dsmDeleteAccess 73
dsmDeleteFS 74
dsmDeleteObj 75
dsmEndGetData 77
dsmEndGetDataEx 78
dsmEndGetObj 79
dsmEndQuery 80

© Copyright IBM Corp. 1993, 2003 iii

||

dsmEndSendObj. 81
dsmEndSendObjEx 82
dsmEndTxn 83
dsmEndTxnEx 85
dsmGetData 87
dsmGetNextQObj 88
dsmGetObj 91
dsmGroupHandler 92
dsmInit 93
dsmInitEx 96
dsmLogEvent 100
dsmLogEventEx 101
dsmQueryAccess 103
dsmQueryApiVersion. 104
dsmQueryApiVersionEx 105
dsmQueryCliOptions 106
dsmQuerySessInfo. 107
dsmQuerySessOptions 108
dsmRCMsg 109
dsmRegisterFS 110
dsmRenameObj 111
dsmSendData 113
dsmSendObj 115
dsmSetAccess 119
dsmSetUp 121
dsmTerminate 123
dsmUpdateFS 124
dsmUpdateObj 125

Appendix A. API type definitions
source file. 127

Appendix B. API function definitions
source file. 165

Appendix C. API return codes source
file 175

Appendix D. API return codes with
explanations. 185

Appendix E. The X/Open API 221
Introduction 221
Version 3.7.2 changes 222
Setting up options files 222
Using the Tivoli Storage Manager X/Open API
sample application 222

Build the sample application 222
Using the Tivoli Storage Manager X/Open API . . 224

Data field mapping 225
Maintaining version control in the API 225
Starting or ending a session 226
Session security 227
Determining the session parameters 227
Associating a management class with objects 228
The transaction model 229
Querying the Tivoli Storage Manager system 230
Sending data to a server. 231
Receiving data from a server 234
Deleting objects from the server 236
Identifying the object 237
Setting the owner name 238

Using XOpen functions with Tivoli Storage
Manager 240
Tivoli Storage Manager Changes to the XBSA
header files 241

Changes to custom.h 241
Changes to xbsa.h 242
Changes to policy.h 242

Appendix F. Notices 243
Trademarks 245

Glossary 247

Index 255

iv IBM Tivoli Storage Manager: Using the Application Program Interface

Figures

1. An example of obtaining the version level of
the API 16

2. An example of starting and ending a session 20
3. Details of rcApiOut 21
4. An example of changing a password 21
5. An example of working with file spaces, Part 1 27
6. An example of working with file spaces, Part 2 28
7. An example of working with file spaces, Part 3 28
8. An example of associating a management class

with an object 30
9. State diagram for general queries 31

10. Flowchart for general queries 32
11. An example of performing a system query 32
12. State diagram for backup and archive

operations 38
13. Flowchart for backup and archive operations 39

14. An example of sending data to a server 40
15. Example of pseudo-code to create a group 43
16. An example of sorting objects with the restore

order fields 46
17. State diagram for restore and retrieve

operations 49
18. Flowchart for restore and retrieve operations 50
19. An example of receiving data from a server 51
20. Summary state diagram for the API 54
21. An example of BSAGetEnvironment 228
22. Flowchart for query operations 231
23. Flowchart for backup and archive operations 233
24. Flowchart for restore and retrieve operations 236
25. Flowcharts for delete archive (left) and

deactivate backup (right) operations 237

© Copyright IBM Corp. 1993, 2003 v

vi IBM Tivoli Storage Manager: Using the Application Program Interface

Tables

1. Description of syntax diagram items x
2. Tivoli Storage Manager client manuals xii
3. Configuration sources in order of decreasing

priority 2
4. API environment variables 3
5. Files that you need to build the NetWare API

sample application 5
6. Files that you need to build the OS/400 API

sample application 7
7. Files that you need to build the UNIX API

sample application 8
8. Files that you need to build the Windows 32–bit

API sample application 9
9. Files that you need to build the Windows

64–bit API sample application 10
10. Design recommendations 13
11. Platform information 14
12. Summary of user access to objects 25
13. Information returned on the dsmBindMC call 29
14. Examples of queries. 42
15. Using commands with API objects 56
16. API function calls 61
17. Return codes for dsmBeginGetData 64
18. Return codes for dsmBeginQuery 67
19. Return codes for dsmBindMC 70
20. Return codes for dsmChangePW 71
21. Return codes for dsmDeleteFS 74
22. Return codes for dsmDeleteObj 76

23. Return codes for dsmEndGetObj 79
24. Return codes for dsmEndSendObj 81
25. Return codes for dsmEndSendObjEx 82
26. Return codes for dsmEndTxn 84
27. Return codes for dsmEndTxnEx. 86
28. Return codes for dsmGetData 87
29. DataBlk pointer structure 88
30. Return codes for dsmGetNextQObj 90
31. Return codes for dsmGetObj 91
32. Return codes for dsmGroupHandler 92
33. Return codes for dsmInit 95
34. Return codes for dsmInitEx 98
35. Return codes for dsmLogEvent 100
36. Return codes for dsmLogEventEx 102
37. Return codes for dsmQuerySessInfo 107
38. Return codes for dsmRCMsg 109
39. Return codes for dsmRegisterFS 110
40. Return codes for dsmRenameObj 112
41. Return codes for dsmSendData 114
42. Return codes for dsmSendObj 118
43. Return codes for dsmSetAccess 120
44. Return codes for dsmSetUp 122
45. Return codes for dsmUpdateFS 124
46. Return codes for dsmUpdateObj 126
47. Files available to build X/Open API sample

application 222
48. Summary of user access to objects 239

© Copyright IBM Corp. 1993, 2003 vii

viii IBM Tivoli Storage Manager: Using the Application Program Interface

About this book

This manual provides information to help you perform the following tasks on your
workstation:
v Add Tivoli Storage Manager application program interface calls to an existing

application
v Write programs with general-use program interfaces that obtain the services of

Tivoli Storage Manager.

In addition to the API, the following programs are included on several operating
systems:
v A backup-archive client program that backs up and archives files from your

workstation or file server to storage, and restores and retrieves backup versions
and archived copies of files to your local file systems.

v A hierarchical storage management program that automatically migrates eligible
files to storage to maintain specific levels of free space on local file systems. It
automatically recalls migrated files when they are accessed, and permits users to
migrate and recall specific files.

v A Web backup-archive client that an authorized administrator, support person,
or end user can use to perform backup, restore, archive, and retrieve services
using a Web browser on a remote machine.

v An administrative client program that you can access from a Web browser or
from the command line. An administrator controls and monitors server
activities, defines storage management policies for backup, archive, and space
management services, and sets up schedules to perform these services at regular
intervals.

v A server program in a UNIX environment that performs either as a backup and
archive server, or as a migration server for distributed workstations and file
servers. The server program also supplies HSM services.

Who should read this manual
This manual includes instructions for a user to add API calls to an existing
application. You should be familiar with C programming language and Tivoli
Storage Manager functions.

IBM Tivoli Storage Manager Web Site
Technical support information and publications are available at the following
address:
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html

By accessing the Tivoli Storage Manager home page, you can access subjects that
interest you. You can also access current Tivoli Storage Manager product
information.

© Copyright IBM Corp. 1993, 2003 ix

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html

Conventions used in this manual
This manual uses the following typographical conventions:

Example Description

autoexec.ncf A series of lowercase letters with an extension indicates program file
names.

archive Boldface type indicates a command that you type on a command line.

dateformat Boldface italic type indicates an option.

filespec Italicized type indicates either the name of a parameter, a new term, or
a placeholder for information that you provide. Italics also are used for
emphasis in the text.

maxcmdretries Monospace type indicates fragments of a program or information as it
might appear on a display screen.

plus sign (+) A plus sign between two keys indicates that you press both keys at the
same time.

Reading syntax diagrams
This section describes how to read the syntax diagrams that are used in this
manual. To read a syntax diagram, follow the path of the line. Read from left to
right, and top to bottom.
v The ��─── symbol indicates the beginning of a syntax diagram.
v The ───� symbol at the end of a line indicates the syntax diagram continues on

the next line.
v The �─── symbol at the beginning of a line indicates a syntax diagram continues

from the previous line.
v The ───�! symbol indicates the end of a syntax diagram.

Syntax items, such as a keyword or a variable, can be:
v On the line (required element)
v Above the line (default element)
v Below the line (optional element).

Table 1 describes the syntax diagram items and provides examples.

Table 1. Description of syntax diagram items

Syntax Diagram Description Example

Abbreviations:

Uppercase letters indicate the shortest acceptable form. If an
item appears entirely in uppercase letters, you cannot shorten
it.

Type the item in any combination of uppercase or lowercase
letters. In this example, you can enter any of these choices
either in uppercase or lowercase letters: KEYWO, KEYWORD,
or KEYWOrd.

�� KEYWOrd �!

x IBM Tivoli Storage Manager: Using the Application Program Interface

Table 1. Description of syntax diagram items (continued)

Syntax Diagram Description Example

Symbols:

Enter these symbols exactly as they appear in the syntax
diagram.

* Asterisk
{ } Braces
: Colon
, Comma
= Equal sign
- Hyphen
() Parentheses
. Period

Space

Variables:

Italicized lowercase items (var_name) indicate variables.

In this example, you can specify a var_name when you enter
the KEYWOrd command.

�� KEYWOrd var_name �!

Repetition:

An arrow returning to the left indicates that you can repeat
the item.

A character or space within the arrow indicates that you must
separate repeated items with a character or space.

A footnote indicates the number of times that you can repeat
the item.

�� ' repeat �!

�� '

,

repeat �!

�� '
(1)

repeat �!

Notes:

1 Specify repeat as many as five times.

Required Choices:

When two or more items are in a stack and one of them is on
the line, you must select one item.

In this example, you must select either A, B, or C.

�� A
B
C

�!

Optional Choice:

When an item is below the line, that item is optional. In the
first example, you can select either A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In the second example, you can select A, B,
C, or nothing at all.

��
A

�!

��
A
B
C

�!

About this book xi

Table 1. Description of syntax diagram items (continued)

Syntax Diagram Description Example

Defaults:

Defaults are above the line. The default is selected unless you
override it, or you can select the default explicitly. To override
the default, include an option from the stack below the line.

In this example, A is the default. Select either B or C to
override A.

��
A

B
C

�!

Repeatable Choices:

A stack of items followed by an arrow returning to the left
indicates that you can select more than one item, or in some
cases, repeat a single item.

In this example, you can select any combination of A, B, or C.

�� ' A
B
C

�!

Syntax Fragments:

Some diagrams, because of their length, must fragment the
syntax. The fragment name displays between vertical bars in
the diagram. The expanded fragment displays between
vertical bars in the diagram after a heading with the same
fragment name.

�� The fragment name �!

The fragment name:

A

B
C

Related information
Table 2 contains a list of the manuals that are a part of the Tivoli Storage Manager
client library. Some of these manuals might be referred to in this manual.

Order manuals through your Tivoli representative or the Tivoli branch office that
serves your locality.

Table 2. Tivoli Storage Manager client manuals

Publication title Order number

IBM Tivoli Space Manager for Unix Using the Hierarchical Storage Management Clients GC32-0794

IBM Tivoli Storage Manager for Macintosh Backup-Archive Client Installation and User’s Guide GC32-0787

IBM Tivoli Storage Manager Messages GC32-0767

IBM Tivoli Storage Manager for NetWare Backup-Archive Client Installation and User’s Guide GC32-0786

IBM Tivoli Storage Manager for UNIX Backup-Archive Clients Installation and User’s Guide GC32-0789

IBM Tivoli Storage Manager for Windows Backup-Archive Clients Installation and User’s Guide GC32-0788

Tivoli Storage Manager Publications CD-ROM SK3T-8176

xii IBM Tivoli Storage Manager: Using the Application Program Interface

Downloading or ordering publications
All Tivoli publications are available for electronic download or order from the IBM
Publications Center: http://www.ibm.com/shop/publications/order/.

The Tivoli Storage Manager publications are available on the following CD-ROM:

Tivoli Storage Manager Publications Version 5.2, SK3T-8176

The format of the publications is PDF and HTML.

The International Technical Support Center (ITSC) publishes Redbooks, which are
books on specialized topics such as using Tivoli Storage Manager to back up
databases. You can order publications through your IBM representative or the IBM
branch office serving your locality. You can also search for and order books of
interest to you at the IBM Redbooks Web site at this address:
http://www.ibm.com/redbooks/

Contacting customer support
For support for this or any Tivoli product, you can contact Tivoli Customer
Support in one of the following ways:
v Visit the Tivoli Storage Manager technical support Web site at:

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html

v Submit a problem management record (PMR) electronically at
IBMSERV/IBMLINK. You can access the IBMLINK from the IBM Web site at:
http://www.ibm.com/ibmlink/

v Submit a problem management record (PMR) electronically from the Tivoli Web
site at:
http://www.ibm.com/software/support/probsub.html

Customers in the United States can also call 1-800-IBM-SERV (1-800-426-7378).

International customers should consult the Web site for customer support
telephone numbers.

Hearing-impaired customers should visit the TDD/TTY Voice Relay Services and
Accessibility Center Web site at:http://www.ibm.com/able/voicerelay.html.

You can also review the IBM Software Support Guide, which is available on our Web
site at http://techsupport.services.ibm.com/guides/handbook.html.

When you contact IBM Software Support, be prepared to provide identification
information for your company so that support personnel can readily assist you.
Company identification information is needed to register for online support
available on the Web site.

The support Web site offers extensive information, including a guide to support
services (IBM Software Support Guide); frequently asked questions (FAQs); and
documentation for all IBM Software products, including Release Notes, Redbooks,
and white papers, defects (APARs), and solutions. The documentation for some
product releases is available in both PDF and HTML formats. Translated
documents are also available for some product releases.

About this book xiii

http://www.ibm.com/shop/publications/order/.
http://www.ibm.com/redbooks/
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html
http://www.ibm.com/ibmlink/
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/able/voicerelay.html
http://techsupport.services.ibm.com/guides/handbook.html.

We are very interested in hearing about your experience with Tivoli products and
documentation. We also welcome your suggestions for improvements. If you have
comments or suggestions about our documentation, please complete our customer
feedback survey at:
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html

by selecting the Feedback link in the left navigation bar.

Reporting a problem
Please have the following information ready when you report a problem:
v The Tivoli Storage Manager server version, release, modification, and service

level number. You can get this information by entering the query status
command at the Tivoli Storage Manager command line.

v The Tivoli Storage Manager client version, release, modification, and service
level number. You can get this information by entering dsmc at the command
line.

v The communication protocol (for example, TCP/IP), version, and release number
you are using.

v The activity you were doing when the problem occurred, listing the steps you
followed before the problem occurred.

v The exact text of any error messages.

Internet
You can get additional information through an anonymous FTP server,
ftp://ftp.software.ibm.com. IBM Tivoli Storage Manager information is in the
/storage/tivoli-storage-management directory.

A newsgroup, listserv@marist.edu, is implemented by a third party. IBM supports
this newsgroup on a best-effort basis only.

Summary of code changes
The following sections contain a summary of code changes for each release.

Version 5 Release 2 Level 0 April 2003

Functional enhancements
API performance considerations

Using client options and API parameters you can enhance API
performance. See “API performance considerations” on page 35 for more
information.

Version 5 Release 1 Level 0 March 2002

Functional enhancements
LAN-free

The Tivoli Storage Manager API 4.2 and above now supports the LAN-free
function. For more information, see Tivoli Storage Manager Installation and
Using Guide for your operating system.

xiv IBM Tivoli Storage Manager: Using the Application Program Interface

http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html
ftp://ftp.software.ibm.com

Notes:

1. To use the LAN-free function, dsmSetup must be called with the
DSM_MULTITHREAD flag.

2. The API returns the existence of a LAN-free destination in the version
5.1 MC response structure.

3. The version 5.1 API returns the number of bytes that were transferred
LAN-free on the dsmEndSendObjEx call and on the
dsmEndGetDataEx call.

HACMP
Tivoli Storage Manager 5.1.0 supports HACMP. For more information, see
Tivoli Storage Manager Installation and Using Guide for your operating
system.

CRC Tivoli Storage Manager 5.1.0 supports CRC. A new server option enables
new return codes on EndTrxn. For more information, see Tivoli Storage
Manager Installation and Using Guide for your operating system.

Logical file grouping
Tivoli Storage Manager 5.1.0 supports logical file grouping. See “File
grouping” on page 41 for more information.

Cross-platform backup-restore
Tivoli Storage Manager 5.1.0 supports cross-platform backup-restores. See
Chapter 4, “Understanding interoperability”, on page 55 for more
information.

Unicode interface
Available on Windows only.

New function calls:

dsmEndGetDataEx
The dsmEndGetData function was extended to provide total LAN-free
bytes received.

dsmEndSendObjEx
The dsmEndSendObj function was extended to provide compression
information and the total of bytes sent, for both normal backup and
LAN-free.

dsmEndTxnEx
The dsmEndTxn function was extended to provide a group leader object
ID for those transactions that call dsmGroupHandler with an actionType
of DSM_GROUP_OPEN.

dsmGroupHandler
New function call to provide logical file grouping.

dsmUpdateObj
A new action has been added, DSM_BACKUPD_MC to update the
management class.

Updated structures:

dsmQueryType
Updated to include qtBackupGroups and qtOpenGroups for group queries.

DataBlk
Updated to include a new field, numBytesCompressed, to show actual
number of bytes compressed.

About this book xv

|
|
|

archDetailCG
Updated to include Boolean flags bLanFreeDest and bSrvFreeDest for LAN
and server-free destinations.

backupDetailCG
Updated to include Boolean flags bLanFreeDest and bSrvFreeDest for LAN
and server-free destinations.

qryRespArchiveData
Updated to include compressType, the compression type.

qryRespBackupData
Updated to include compression and group information.

dsmInitExIn_t
Updated to include fields used in cross platform backup and restore.

The Tivoli Storage Manager API for OS/400 has been upgraded to version 4.2.1.
The 4.2.1 OS/400 Tivoli Storage Manager API supports the OS/400 version 5.1.0
and later. The OS/400 API option processing now uses the UNIX model of dsm.sys
and dsm.opt files. These files reside in the root (/) file system. You can use
environment variables to identify them. For compatibility, the former options
processing that uses a file member in a QSYS library also are provided. However,
we recommend that your applications move their options to the dsm.sys and
dsm.opt files for more flexibility. The sample API C programs, the Include files, the
readme.api, and the sample options files are located in the root (/) file system. The
install directory is located in /usr/tivoli/tsm/client/api/bin, and the sample API
files are located in the /usr/tivoli/tsm/client/api/bin/sample directory.

Version 4 Release 2 Level 1 November 2001
The envSetUp structure was updated to include an include/exclude case-sensitive
flag.

Version 4 Release 2 Level 0 June 2001
The TCA is active only during sign-on. It does not operate during the entire
session. A non-root owner now can perform multi-threading.

To use LAN-free, use dsmSetUp mtFlag DSM_MULTITHREAD in your application.

New return code
DSM_RC_REJECT_LASTSESS_CANCELED

Last session was canceled. For use with dsmInitEx.

Updated structures
The dsmApiVersionEx function call now has a Unicode flag.

The dsmInitExOut_t structure has been updated to include server name, version,
level, release, and sublevel information.

Version 4 Release 1 Level 0 July 2000
Version 4.1 no longer supports OS/2. Please ignore any references to OS/2.

New function call
dsmRenameObj

Renames the high-level or low-level object name. To use this function, you
must have a 3.7.40 or later Tivoli Storage Manager server.

xvi IBM Tivoli Storage Manager: Using the Application Program Interface

Changed function call
The dsmDeleteObj now supports the new delType, delBackID. This delType
deletes a backup object based on object ID rather than the object name and copy
group. To use this function, you must have a 3.7.40 or later Tivoli Storage Manager
server.

Version 3 Release 7 Level 0 September 1999

Note: The Version 3.7 release of the API includes C++ code. If your application
uses this library, compile it with the appropriate C++ compiler on that
platform. See the sample makefiles for the appropriate compiler.

New function calls
dsmInitEx

Starts an API session using the additional parameters that permit extended
verification.

dsmLogEventEx
Logs a user message to the server log file, to the local error log, or to both
with additional application-specific parameters.

dsmQueryApiVersionEx
Performs a query request for the API library version with an additional
sublevel field.

Updated structures
The envSetUp structure that dsmSetUp uses has been updated to include the
logName field. This permits the application to use a different file name other than
dsierror.log. The structure version has been updated to a value of 2.

Version 3 Release 1 Level 7 May 1999

Functional enhancements
The –fromowner option now supports –fromowner=root on UNIX to permit
non-root users access to files owned by root if set access was performed.

Updated structures
The apiSessInfo structure that the dsmQuerySessInfo command uses has been
updated to include the adsmServerName field. The structure version has been
updated to a value of 2.

New function call
dsmUpdateObject

Supports update of archived objects.

Version 3 Release 1 Level 6 January 1999

Functional enhancements
The support of multi-threading in the API permits the application to have multiple
sessions with the Tivoli Storage Manager server in the same process. See “Using
multi-threading” on page 16 for more information.

Changed function calls
dsmSetUp

Permits a multithread flag.

About this book xvii

Version 3 Release 1 Level 5 August 1998

New function calls
dsmCleanUp

Use dsmCleanUp if you use dsmSetUp.

dsmSetUp
An application can override the values of environment variables. At this
level, only single-thread mode is supported.

Version 3 Release 1 Level 3 March 1998

New function calls
dsmDeleteAccess

An application can delete any defined access rule.

dsmQueryAccess
An application can query the current access rule that is defined for objects
on this node.

dsmSetAccess
An application can give access authority to other nodes or owners.

Version 3 Release 1 Level 0 October 1997
The API is not supported at the Version 3 level for the following platforms:
v Windows 3.1
v Sun 4.1

Functional enhancements

General:

v The API for OS/2 is now shipped with a 32-bit DLL. Rebuild applications on
OS/2 with this DLL.

v New typedefs are in dsmapitd.h. To pick up the definitions, include this file
before dsmapifp.h and dsmrc.h. The Version 2 typedefs will continue to work. If
your application wants to update your code with our new typedefs, comment
out the backward compatibility section in dsmapitd.h, and the compiler will
mark any usage of the old typedefs.

v The dsmapitd.h file includes a new header file, dsmapips.h for platform-specific
definitions.

v On UNIX platforms, the API library now uses the same Trusted
Communications Agent (TCA) module as the Backup-Archive client. The Version
2 file was dsmapitca. The Version 3 file is dsmtca.

v On platforms that have National Language Support (OS/2, NT, and AIX), we
support languages other than English for certain fields. The fields that can have
foreign language characters are: file space, high level, low level, and archive
description. All other fields must contain English characters.

v The default value for the compressalways option is now Yes. In Version 2, the
default was No.

Interoperability:

v In Version 3, we now support some limited interoperability between the API
applications and the Backup-Archive command-line client. See Chapter 4,
“Understanding interoperability”, on page 55 for more information.

xviii IBM Tivoli Storage Manager: Using the Application Program Interface

New function calls:

dsmLogEvent
An application can log an event message either on the client or the server.

dsmQueryCliOptions
An application can query the client options before a dsmInit call.

dsmQuerySessOptions
An application can query the client options after a dsmInit call.

dsmUpdateObj

An application can update meta data for an object.

Changed function calls:

dsmBeginQuery
Backup now has a point-in-time field, and archive now permits a Directory
objType.

dsmGetNextQObj
Backup response structure has a new restoreOrderExt field that you must
use instead of restoreOrder. Backup and Archive response structures now
have a sizeEstimate field. Only objects sent using the Version 3 library will
have this value saved and returned on the query. File space response
structure now has backStartDate fields and backCompleteDate fields.

dsmRCMsg
On platforms that have National Language Support and a choice of
language message files, the API returns a message string in the national
language.

dsmRegisterFS
Registers a new file space for the node with the server. The fsType field
includes the string, API: which displays at the beginning of the fsType
string. The maximum fsInfo area now available to applications is
DSM_MAX_USER_FSINFO_LENGTH (480).

dsmSendObj
Archive now permits a Directory objType.

dsmUpdateFS
Now has action bit maps for backStartDate and backCompleteDate.

About this book xix

xx IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 1. Introducing the API

The Tivoli Storage Manager application program interface (API) enables an
application client to use storage management functions. The API includes function
calls that you can use in an application to perform the following operations:
v Start or end a session
v Assign management classes to objects before they are stored on a server
v Back up or archive objects to a server
v Restore or retrieve objects from a server
v Query the server for information about stored objects
v Manage file spaces.

When you, as an application developer, install the API, you receive:
v The files that an end user of an application needs:

– The API shared library
– The messages file
– The dsmtca file (UNIX and OS/400 only)
– The sample client options files.

v The source code for the API header files that your application needs.
v The source code for a sample application, and the makefile to build it.

Note: When you install the API, ensure that all files are at the same level.

For information about installing the API, see the installation procedures in the
Tivoli Storage Manager Installing and Using the Backup-Archive Client for your
operating system.

Understanding configuration files and options files
Configuration files and options files set the conditions and boundaries under
which your session runs. The administrator, the end user, or you can set option
values to:
v Set up the connection to a server
v Control which objects are sent to the server and with what management class

they are associated.

On UNIX and OS/400 operating systems, the options reside in two options files:
v The client options file (dsm.opt)
v The client system options file (dsm.sys).

On other operating systems, the client options file (dsm.opt) contains all of the
options. Set up these files when you install the API on your workstation.

Note: The API does not support these backup-archive client options:
v autofsrename
v changingretries
v domain
v eventlogging
v groups
v subdir
v users
v virtualmountpoint

© Copyright IBM Corp. 1993, 2003 1

You also can specify options on the dsmInitEx function call. Use the option string
parameter, or the API configuration file parameter.

The same option can derive from more than one configuration source. When this
happens, the source with the highest priority takes precedence. See Table 3 for the
priority sequence. For more information about available options and
communication methods that the API supports, see the Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

Table 3. Configuration sources in order of decreasing priority

UNIX and OS/400 Intel Description

1. dsm.sys file (client
system options)

1.— Options that a system administrator sets (UNIX and OS/400 only).

2. Option string (client
options)

2. Option string (all
options)

Takes effect when it is passed as a parameter to a dsmInitEx call.
The list can contain client options such as compressalways,
servername (UNIX and OS/400 only), or tcpserveraddr (non-UNIX).

With the API option string, an application client can make changes
to the option values in the API configuration file and the client
options file. For example, your application might query the end user
if compression is required. Depending on the user responses, you
can construct an API option string with this option and pass it into
the call to dsmInitEx.

For information about the API option string format, see “dsmInitEx”
on page 96. You also can set this parameter to NULL. This indicates

that there is no API option string for this session.

3. API configuration file
(client options)

3. API configuration
file (all options)

The values that you set in the API configuration file override the
values that you set in the Tivoli Storage Manager client options file.
Set up the options in the API configuration file with values that you
think will be appropriate in the Tivoli Storage Manager session for
the end user. The values take effect when the API configuration file
name is passed as a parameter in the dsmInitEx call.

You also can set this parameter to NULL. This indicates that there is
no API configuration file for this session.

4. dsm.opt file (client
options)

4. dsm.opt file (all
options)

On UNIX and OS/400 operating systems, the dsm.opt file contains
the user options only. On other operating systems, the dsm.opt file
contains all options. To override the options in these files, follow the
methods that are described in this table.

2 IBM Tivoli Storage Manager: Using the Application Program Interface

Setting up the API environment
The API uses unique environment variables to locate files. You can use different
files for API applications from those that the backup-archive client uses.
Applications can use the dsmSetup function call to override the values that the
environment variables set.

Table 4 lists the API environment variables by operating system.

Table 4. API environment variables

Variables UNIX and OS/400 Intel Netware

DSMI_CONFIG The fully-qualified name for
the client options file.

The fully-qualified name for
the client options file.

There are no environment
variables. The dsm.opt, dscenu.txt,
and dsierror.log files reside in the
same directory as the dsmapi.nlm
file. This directory becomes the
search path for these files.

DSMI_DIR Points to the path that contains
the dsm.sys, dsmtca, en_US
subdirectory, and any other
national language support
(NLS) language. The en_US
subdirectory must contain
dsmclientV3.cat.

Points to the path that
contains dscenu.txt and any
NLS message file.

—

DSMI_LOG Points to the path for the
dsierror.log file.

Points to the path for the
dsierror.log file.

—

Chapter 1. Introducing the API 3

4 IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 2. Building and running the sample application

The API package includes a sample application that demonstrates the API function
calls in context. Install the sample application and review the source code to
understand how you can use the function calls. Select one of two sample
application packages:
v The interactive, single-threaded application package (dapi*)
v The multi-threaded application package (callmt*).

Building the sample application
When you build the sample application, the procedure to follow depends on the
operating system on which you run:
v NetWare (see page 5)
v OS/400 (see page 6)
v UNIX (see page 8)
v Windows (see page 9, or page 10).

The sections that follow describe each operating system.

NetWare operating system
Table 5 lists the source files and other files that you need to build the sample
application that is included with the API package.

Table 5. Files that you need to build the NetWare API sample application

File names Description

readme.api Readme file

dsmapifp.h
dsmapitd.h
dsmapips.h

dsmrc.h
release.h

Function prototype header file
Common type definitions header file
Operating system-specific type definitions

header file
Return codes header file
Release values header file

dsmapi.nlm API loadable module

dapibkup.c
dapidata.h
dapiinit.c
dapipref.c
dapiproc.c
dapiproc.h
dapipw.c
dapiqry.c
dapirc.c

dapismp.c
dapismp.lnk
dapismp.mtw
dapismp.nlm
dapitype.h
dapinwut.c
dapiutil.c
dapiutil.h

Source code files for a sample application that
demonstrates the use of the major API functions

callmt1.c
callmt2.c
callmt1.mtw
callmt2.mtw

Multi-threaded sample files

Makefiles to build multi-threaded samples for
your operating system

© Copyright IBM Corp. 1993, 2003 5

Note: Ensure that the following files are installed on your NetWare server before
you run the dapismp.nlm sample application:

acpwsaas.nlm
acpwsrvs.nlm
acpwtcps.nlm

dapismp.nlm
dscenu.txt

dsm.smp
dsmapi.nlm

Follow these steps to compile the sample application and test the installation:
1. When your makefile and Code Warrior compiler are ready, enter:

make /f dapismp.mtw

The compiler messages display until the compile completes.
2. Copy the dapismp.nlm file to the NetWare server.
3. Copy the dsm.smp file to your dsm.opt file.
4. Edit your dsm.opt file and enter values for the commmethod and nodename

options.
5. Enter values for the options that relate to the specific communication method

you are using.
6. At the NetWare console, enter:

search add sys:\adsm\api

7. To start the sample application and run dapismp, enter:
load dapismp

Continue with “Running the sample application” on page 11.

OS/400 operating system

Note: The installation instructions for OS/400 are included in this section for your
convenience. Installation instructions for other operating systems, such as
Windows, are included in the Tivoli Storage Manager Installing and Using the
Backup-Archive Client for your operating system.

If you are installing the Tivoli Storage Manager API for OS/400 product from the
CD, place the CD in the CD-ROM drive and enter the following OS/400 command
where OPT1 is the device name for the CD-ROM drive:

RSTLICPGM LICPGM(5733197) DEV(OPT1) LNG(2924)

If you are installing the Tivoli Storage Manager API for OS/400 product from a
“save file”, enter the following OS/400 command where MYLIB/MYSAVEFILE is the
name of your save file:

RSTLICPGM LICPGM(5733197) DEV(*SAVF) SAVF(MYLIB/MYSAVEFILE) LNG(2924)

Note: RSTLICPGM includes language specific arguments. By default, the current
user’s language based on the primary OS/400 language is loaded. As
languages are requested, additional languages are added as secondary
languages in OS/400.

The OS/400 command to uninstall the API product is:
DLTLICPGM LICPGM(5733197)

The files that are listed in Table 6 on page 7 include the source files and other files
that you need to build the sample application that is included with the API
package.

6 IBM Tivoli Storage Manager: Using the Application Program Interface

|
|
|
|

|

|

Table 6. Files that you need to build the OS/400 API sample application

File names Description

readme.api Readme file

crtapismp.clp A CL program file to build dapismp for your application.

dsmrc.h
dsmapitd.h
dsmapips.h

dsmapifp.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file

Function prototype header file
Release values header file

dapibkup.c
dapidata.h
dapiinit.c
dapint64.h
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.h
dapiutil.c

Source code files for a sample application that
demonstrates the use of the primary API functions

caller1.c
caller2.c

Simple example modules

callmt1.c
callmt2.c

Multi-threaded sample files

QShell program
Follow these steps to compile the sample application, and test the installation in
the QShell environment:
1. To start the QShell environment, enter QSH from the OS/400 command line.
2. To change your directory to the API sample installation directory, enter:

cd /usr/tivoli/tsm/client/api/bin/sample

3. Run the makeapi.os400.sh shell script. This shell script compiles the modules,
creates the sample application, and binds it to the API service program. The
shell script takes one optional parameter of the library in which you would like
the modules and program placed. If you do not enter a library name, the
QANSAPI library is used. For example, to compile the sample API modules
and create the program into library MYLIB, enter:

makeapi.os400.sh mylib

4. After you build the sample, set up your environment variables, your
DSMI_DIR file, and your options files. For more information, see
“Understanding configuration files and options files” on page 1 and Tivoli
Storage Manager Installing and Using the Backup-Archive Client for your operating
system. You can use the Work with Object Links (WRKLNK) and Edit File
(EDTF) commands to edit the options files.

5. To run dapismp, enter:
dapismp

The makeapi.os400.sh script creates a symbolic link from the directory to the
dapismp program.

Continue with “Running the sample application” on page 11.

Chapter 2. Building and running the sample application 7

CL program
Follow these steps to compile the sample application and test the installation in the
OS/400 command line environment:
1. Copy the crtapismp.clp CL program source into a source file. For example, if

your source file is QCLSRC in library MYLIB, enter:
CPYFRMSTMF FROMSTMF(’/usr/tivoli/tsm/client/api/bin/sample/crtapismp.clp’) \
TOMBR(’/qsys.lib/mylib.lib/qclsrc.file/crtapismp.mbr’)

2. To compile the CL program, MYLIB/QCLSRC(CRTAPISMP), enter:
CRTCLPGM PGM(MYLIB/CRTAPISMP) SRCFILE(MYLIB/QCLSRC)

3. Start CRTAPISMP. This program compiles the sample application modules,
creates the sample application, and binds it to the API service program. The
library is the only required parameter in which you want to place the modules
and program. Enter:

CALL MYLIB/CRTAPISMP PARM(MYLIB)

4. After you build the sample, set up your environment variables, your
DSMI_DIR file, and your options files. For more information, see
“Understanding configuration files and options files” on page 1 and Tivoli
Storage Manager Installing and Using the Backup-Archive Client for your operating
system. You can use the Work with Object Links (WRKLNK) and Edit File
(EDTF) commands to edit the options files.

5. Use the Add Environment Variable (ADDENVVAR) command to set the
environment variables.

6. To run dapismp, enter:
CALL MYLIB/DAPISMP

Continue with “Running the sample application” on page 11.

UNIX operating system
The files that are listed in Table 7 include the source files and other files that you
need to build the sample application that is included with the API package.

Table 7. Files that you need to build the UNIX API sample application

File names Description

readme.api Readme file

dsmrc.h
dsmapitd.h
dsmapips.h

dsmapifp.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Release values header file

dapibkup.c
dapidata.h
dapiinit.c
dapint64.h
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.h
dapiutil.c

Modules for the command line-driven sample application

makeapi.xxx Makefile to build dapismp for your operating system. The
xxx indicates the operating system.

caller1.c
caller2.c

Simple example modules

8 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 7. Files that you need to build the UNIX API sample application (continued)

File names Description

callmt1.c
callmt2.c

Multi-threaded sample files

libApiDS.xx Shared library (the suffix is platform-dependent)

For specific install and build instructions, see the README.API for your operating
system and follow these steps:
1. After you build the sample, set up your environment variables, including the

DSMI_DIR, and your options files. For more information, see “Understanding
configuration files and options files” on page 1 and Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

2. Log on as root the first time for password registration.
3. Run dapismp to start the sample application.

Continue with “Running the sample application” on page 11.

Windows 32–bit operating system

Note: For Windows NT applications that were built with the Version 3.1 API,
replace the adsmv3.dll with the adsmv3.dll and tsmapi.dll. For new
applications, build with, and use the tsmapi.dll.

We recommend that you use dynamic loading. See dynaload.c and implementation
in the sample code. For Windows operating systems, the files that are listed in
Table 8 include the source files that you need to build the sample application. This
sample application is included in the API package.

Table 8. Files that you need to build the Windows 32–bit API sample application

File names Description

api.txt Readme file

dapismp API sample program

tsmapi.dll
adsmv3.dll

API DLLs

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
dsmapidl.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Dynamically loaded function prototype header file
Release values header file

dapidata.h
dapint64.h
dapitype.h
dapiutil.h

Source code header files

tsmapi.lib Implicit library

dapibkup.c
dapiinit.c
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapiutil.c
dynaload.c

Source code files for dapismp.exe

Chapter 2. Building and running the sample application 9

Table 8. Files that you need to build the Windows 32–bit API sample application (continued)

File names Description

dapismp.mak Visual C++ makefile for API sample program

callmt1.c
callmt2.c
makemt.mak

Multi-threaded sample files
Multi-threaded sample files
Makefiles to build multi-threaded samples
for your operating system

The API\OBJ directory contains the API sample program object files. The
API\SAMPRUN directory contains the sample program. The dapismp sample
program contains the execution directory.

The DLLs (tsmapi.dll and adsmv3.dll) are all 32-bit DLLs.

Use the Microsoft Visual C++ Level 6.0 compiler and the makefile, dapismp.mak,
to compile the API sample application, dapismp. It might be necessary to adjust
the makefiles to your environment (specifically, the library or the Include
directories).

To run the sample application, enter dapismp from the api\samprun directory.

Windows 64–bit operating system
We recommend that you use dynamic loading. See dynaload.c and implementation
in the sample code. For Windows operating systems, the files that are listed in
Table 9 include the source files that you need to build the sample application. This
sample application is included in the API package.

Table 9. Files that you need to build the Windows 64–bit API sample application

File names Description

api.txt Readme file

dapismp64 API sample program

tsmapi64.dll API DLLs

dsmrc.h
dsmapitd.h
dsmapips.h
dsmapifp.h
dsmapidl.h
release.h

Return codes header file
Common type definitions header file
Operating system-specific type definitions header file
Function prototype header file
Dynamically loaded function prototype header file
Release values header file

dapidata.h
dapint64.h
dapitype.h
dapiutil.h

Source code header files

tsmapi64.lib Implicit library

dapibkup.c
dapiinit.c
dapint64.c
dapipref.c
dapiproc.c
dapiproc.h

dapipw.c
dapiqry.c
dapirc.c
dapismp64.c
dapiutil.c
dynaload.c

Source code files for dapismp.exe

dapismp64.mak Visual C++ makefile for API sample program

10 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 9. Files that you need to build the Windows 64–bit API sample application (continued)

File names Description

callmt164.c
callmt264.c
makemt64.mak

Multi-threaded sample files
Multi-threaded sample files
Makefiles to build multi-threaded samples
for your operating system

The API\OBJ directory contains the API sample program object files. The
API\SAMPRUN directory contains the sample program. The dapismp sample
program contains the execution directory.

The DLLs (tsmapi64.dll) are all 64-bit DLLs.

Use the Microsoft Visual C++ Level 6.0 compiler and the makefile, dapismp64.mak,
to compile the API sample application, dapismp. It might be necessary to adjust
the makefiles (specifically, the library or the Include directories) to fit your
environment. To run the sample application, enter dapismp64 from the
api\samprun directory.

Continue with “Running the sample application” on page 11.

Running the sample application
The sample application creates its own data streams when backing up or archiving
objects. It does not read or write objects to the machine file system. The object
name does not correspond to any file on your workstation. The “seed string” that
you enter generates a pattern that can be verified when the object is restored or
retrieved.

After you run dapismp to start the sample application, follow the instructions that
display on your screen. When you run the application, perform the following:
1. Run the sign-on action before you run other actions.
2. Prefix the file space, high-level, or low-level names with the correct path

delimiter when you enter them. This is true even if you specify the asterisk (*)
wildcard character. For example:

UNIX: Windows:

File space:
Highlevel:
Lowlevel:

/myfs
/myhl
/myll

File space:
Highlevel:
Lowlevel:

\myvol
\myhl
\myll

Chapter 2. Building and running the sample application 11

12 IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 3. Using the Application Program Interface

The API package that you receive includes a sample application. The examples that
are used in this chapter are sample program fragments that demonstrate how to
use the API functions in context. You should be familiar with this chapter before
you design or write an application that uses the API.

Note: Many of the examples in this chapter are taken from the UNIX sample
application. The program fragments on other operating systems might look
somewhat different; some of those examples are shown.

Key design recommendations
When you design your application, consider carefully the items in Table 10. Start
structures with memset. Fields might change with future releases. The stVersion
value increments with future product enhancements.

Table 10. Design recommendations

Design item Considerations

Session control Understand and follow these conditions of session control:

v The node name should be unique for an application.

v The owner name should be consistent across a backup and restore
procedure.

v The passwordaccess option affects the use of the TCA child process
(UNIX and OS/400 only), node name, session owner name, and
password management.

v Sessions for data movement should end as soon as the task completes
so that devices on the server are freed for use by other sessions.

v To permit LAN-free data transfer, use the dsmSetUp function call with
the multithread flag set to on.

Object naming
convention

When naming objects, consider the following:

v A file space is a grouping category for the server. Limit the number of
unique file spaces to help performance because several file space
queries are performed.

v The high-level and low-level object names are the specific object names.
If a unique identifier, such as a date stamp, is included in the name,
then backup objects always will be active. They will expire only when
they are intentionally marked inactive by the dsmDeleteObj function
call.

v Consider how you want the application to restore objects. This will
determine how to format the name for easy queries. If you plan to use a
partial object restore (POR), you cannot use compression. To suppress
compression, use dsmSendObj objAttr objCompressed=bTrue.

Object handling Do not store objectID values to use for future restores. They are not
guaranteed to be persistent during the life of the object.

Management
class

Consider how much control the application wants over the management
class that is associated with its objects. You can define Include statements,
or you can specify a name on the dsmSendObj function call.

Object size Tivoli Storage Manager needs to know a size estimate for each object.
Consider how your application will do this.

© Copyright IBM Corp. 1993, 2003 13

Determining size limits
Certain data structures or fields in the API have size limits. These structures are
often names or other text fields that cannot exceed a predetermined length.
Examples of fields with such limits include:
v Application type
v Archive description
v Copy group destination
v Copy group name
v File space information
v Management class name
v Object owner name
v Password.

These limits are defined as constants within the header file, dsmapitd.h. Any
storage allocation should be based on these constants rather than numbers you
enter. Refer to Appendix A, “API type definitions source file”, on page 127 for
further information and a list of the current constants.

Maintaining version control in the API
All APIs have some form of version control, and Tivoli Storage Manager is no
exception. The API version that you use in your application must be compatible
with the version of the API library that is installed on the end user workstation.

The dsmQueryApiVersionEx should be the first API call that you enter when you
use the API. This call:
v Confirms that the API library is installed and available on the end user’s system.
v Returns the version level of the API library that the application accesses.

The API is designed to be upwardly compatible. Applications that are written to
older versions or releases of the API library will operate correctly if the end user is
running a newer version. See “Summary of code changes” on page xiv for
differences between levels.

Determining the release of the API library is very important because some releases
might have different memory requirements and data structure definitions.
Downward compatibility is unlikely. See Table 11 for information about your
platform.

Table 11. Platform information

Platform Description

Intel The message files must be at the same level as the library (DLL). The
dsmtca is not used.

OS/400 The API service program (QANSAPI/QANSAPI), the Trusted
Communication Agent program (QANSAPI/DSMTCA), and the message
files must be at the same level.

UNIX The API library, the Trusted Communication Agent module (dsmtca),
and the message files must be at the same level.

The dsmQueryApiVersionEx call returns the version of the API library that is
installed on the end user workstation. You can then compare the returned value
with the version of the API that the application client is using.

14 IBM Tivoli Storage Manager: Using the Application Program Interface

The API version number of the application client is entered in the compiled object
code as a set of four constants defined in dsmapitd.h:

DSM_API_VERSION
DSM_API_RELEASE
DSM_API_LEVEL
DSM_API_SUB_LEVEL

See Appendix A, “API type definitions source file”, on page 127.

The API version of the application client should be less than, or equal to, the API
library that is installed on the user’s system. Be careful about any other condition.
You can enter the dsmQueryApiVersionEx call at any time, whether the API
session has been started or not.

Data structures that the API uses also have version control information in them.
Structures have version information as the first field. As enhancements are made to
structures, the version number is increased. When initializing the version field, use
the defined structure Version value in dsmapitd.h.

Figure 1 on page 16 demonstrates the type definition of the structure,
dsmApiVersionEx from the header file, dsmapitd.h. The example then defines a
global variable that is named apiLibVer. It also demonstrates how you can use it in
a call to dsmQueryApiVersionEx to return the version of the end user’s API
library. Finally, the returned value is compared to the API version number of the
application client.

Chapter 3. Using the Application Program Interface 15

Using multi-threading

Note: When you run applications that assume a multi-threaded API, use the
dsmQueryAPIVersionEx call and verify that the level of the API is 3.1.6 or a
higher level.

The multi-threaded API permits applications to create multiple sessions with the
Tivoli Storage Manager server within the same process. The API can be entered
again. Any calls can run in parallel from within different threads. To run the API in
multi-threaded mode, set the mtflag value to DSM_MULTITHREAD on the
dsmSetUp call. The dsmSetUp call must be the first call after the
dsmQueryAPIVersionEx call. This call must return before any thread calls the
dsmInitEx call. When all threads complete processing, enter a call to dsmCleanUp.
The primary process should not end before all the threads complete processing.
See callmt1.c in the sample.

Note: The default for the API is single-thread mode. If an application does not call
dsmSetUp with the mtflag value set to DSM_MULTITHREAD, the API
permits only one session for each process.

typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */

} dsmApiVersionEx;

dsmApiVersionEx apiLibVer;

memset(&apiLibVer,0x00,sizeof(dsmApiVersionEx));
dsmQueryApiVersionEx(&apiLibVer);

/* check for compatibility problems */
dsInt16_t appVersion= 0, libVersion = 0;

appVersion = (DSM_API_VERSION * 1000) + (DSM_API_RELEASE * 100) +
(DSM_API_LEVEL * 10) + (DSM_API_SUBLEVEL)

libVersion = (apiLibVer.version * 1000) + (apiLibVer.release * 100) +
(apiLibVer.level * 10) + (apiLibVer.subLevel);

if (libVersion < appVersion)
{

printf("\n***\n");
printf("The TSM API library is lower than the application version\n");
printf("Install the current library version.\n");
printf("***\n");
return 0;

}

printf("* API Library Version = %d.%d.%d.%d *\n",
apiLibVer.version,
apiLibVer.release,
apiLibVer.level,
apiLibVer.subLevel);

Figure 1. An example of obtaining the version level of the API

16 IBM Tivoli Storage Manager: Using the Application Program Interface

For UNIX Only: For versions 3.1.6 through version 4.1.2, you cannot use the
Trusted Communication Agent in multi-thread mode. If you want to use
passwordaccess generate, you must be a TSM-Authorized user. For version 4.2 and
beyond, this is no longer true.

Once dsmSetUp successfully completes, the application can begin multiple threads
and enter multiple dsmInitEx calls. Each dsmInitEx call returns a handle for that
session. Any subsequent calls on that thread for that session must use that handle
value. Certain values are process-wide, environmental variables (values that are set
on dsmSetUp). Each dsmInitEx call will parse options again. Each thread can run
with different options by specifying an overwrite file or an options string on the
dsmInitEx call. This enables different threads to go to different servers, or use
different node names.

Note: On Netware, we recommend setting the thread stack to 32K or greater. The
dynamic reallocation of thread stack is not reliable. The Netware server
stops a program because of errors.

To use a LAN-free session, use dsmSetUp mtFlag DSM_MULTITHREAD in your
application.

Using signals
The application handles signals from the user or the operating system. If the user
enters a ctrl-c, the application should catch the signal and send dsmTerminate calls
for each of the active threads. Then, call dsmCleanUp to exit. Failure to do this
might result in unexpected results on the server if sessions are not closed properly.

Note: We recommend that the application install signal handlers such as, SIGPIPE
and SIGUSR1, for signals that cause the application to end. The application
then receives the return code from the API.

You can use the the child process, Trusted Communication Agent (TCA) if
passwordaccess is set to generate. When the TCA is used, Tivoli Storage Manager
uses the SIGCLD signal. If you want your application to use the SIGCLD signal,
be aware of potential interference from the Tivoli Storage Manager program and
how it uses SIGCLD. See “Session security” on page 18 for more information
about using the TCA.

Starting or ending a session
The Tivoli Storage Manager program is a session-based program, and all activities
must be performed within a Tivoli Storage Manager session. To start a session, the
application starts the dsmInitEx call. This call must be performed before any other
API call other than dsmQueryApiVersionEx, dsmQueryCliOptions, or dsmSetUp.

The dsmQueryCliOptions function can only be called before the dsmInitEx call. It
returns the values of important options, such as option files, compression settings,
and communication parameters. The dsmInitEx call sets up a session with the
server as indicated in the parameters that are passed in the call or defined in the
options files.

The client node name, the owner name, and the password parameters are passed
to the dsmInitEx call. The owner name is case-sensitive, but the node name and
password are not. The application client nodes must be registered with the server
before starting a session.

Chapter 3. Using the Application Program Interface 17

Each time an API application client starts a session with the server, the client
application type is registered with the server. We recommend that the application
type value contain an operating system abbreviation because this value is entered
in the “platform” field on the server. The maximum string length is
DSM_MAX_PLATFORM_LENGTH.

The dsmInitEx function call establishes the Tivoli Storage Manager session with
the API configuration file and option list of the application client. The application
client can use the API configuration file and option list to set a number of Tivoli
Storage Manager options. These values override the values that are set in the
user’s configuration files at installation time. They can not change the options that
the Tivoli Storage Manager administrator defines. If the application client does not
have its own configuration file and option list, you can set both of these
parameters to NULL. For more information about configuration files, see
“Understanding configuration files and options files” on page 1.

The dsmInitEx function call establishes the Tivoli Storage Manager session, using
additional parameters that permit extended verification.

Check the dsmInitEx function call and the dsmInitExOut information return code.
The Tivoli Storage Manager administrator cancelled the last session if the return
code is okay (RC=ok) and the information return code (infoRC) is
DSM_RC_REJECT_LASTSESS_CANCELED. To end the current session
immediately, call dsmTerminate.

The dsmQuerySessOptions call returns the same fields as the
dsmQueryCliOptions call. It can be sent only within a session. The values reflect
the client options that are valid during that session, from option files, and from
any overrides from the dsmInitEx call.

Once a session starts, the application can send a call to dsmQuerySessInfo to
determine the server parameters that are set for this session. Items such as the
policy domain and transaction limits are returned to the application with this call.

End sessions with a dsmTerminate call. This closes any connection with the server
and frees all resources that are associated with this session.

The example in Figure 2 on page 20 defines a number of global and local variables
and then uses them in calls to dsmInitEx and dsmTerminate. The dsmInitEx call
takes a pointer to dsmHandle for one of its parameters, while the dsmTerminate
call takes the dsmHandle itself. The example in Figure 3 on page 21 displays the
details of rcApiOut. The function, rcApiOut, calls the API function dsmRCMsg,
that translates a return code into a message. The rcApiOut call then prints the
message for the user. A version of rcApiOut is included in the API sample
application. The dsmApiVersion function is a type definition that is found in the
header file, dsmapitd.h.

Session security
Tivoli Storage Manager, a session-based system, has security components that
permit applications to start sessions in a secure manner. These security measures
prohibit unauthorized access to the server and help to insure system integrity.

Every session that is started with the server must complete a sign-on process.This
sign-on process requires the use of a password. When the password is coupled

18 IBM Tivoli Storage Manager: Using the Application Program Interface

with the node name of the client, it insures proper authorization when it connects
to the server. The application client provides this password to the API to start the
session.

Two methods of password processing are available: passwordaccess prompt, or
passwordaccess generate. If you use the passwordaccess prompt option, you must
include the password value on each dsmInitEx call. Or, you can supply the node
name and owner name on the dsmInitEx call.

Passwords have expiration times associated with them. If a dsmInitEx call fails
with a password-expired return code (DSM_RC_REJECT_VERIFIER_EXPIRED), the
application client must enter the dsmChangePW call using the handle that is
returned by dsmInitEx. This will update the password before the session can be
established successfully. The example in Figure 4 on page 21 demonstrates the
procedure to change a password by using dsmChangePW. The login owner must
be root or TSM-authorized to change the password.

The second method, passwordaccess generate, encrypts and stores the password
value in a file. The node name and owner name cannot be supplied on the
dsmInitEx call, and the system default values will be used. This protects the
security of the password file. When the password expires, the generate parameter
creates a new one and updates the password file automatically.

Notes:

1. If two different physical machines have the same Tivoli Storage Manager
nodename or multiple paths are defined on one node using several server
stanzas, passwordaccess generate may only work for the stanza which is used
first after password expiration. During the first client-server contact, the user is
prompted for the same password for each server stanza separately, and for each
stanza, a copy of the password is stored separately. When the password
expires, a new password is generated for the stanza which connects the first
client-server contact. All subsequent attempts to connect via other server
stanzas will fail, because there is no logical link between their respective copies
of the old password, and the updated copy generated by the stanza used first
after password expiration. In this case, you must update the passwords prior to
expiration or after expiration as a recovery from the situation, as follows:
a. Run dsmadmc and update the password on the server.
b. Run dsmc -servername=stanza1 and use the new password to generate a

proper entry.
c. Run dsmc -servername=stanza2 and use the new password to generate a

proper entry.
2. For UNIX: Only the root user or the TSM-authorized user can change the

password when using passwordaccess prompt. Only the root user or the
TSM-authorized user can start the password file when using passwordaccess
generate. You can use the Trusted Communication Agent (TCA) child process
for password processing. The application should be aware of this because a
child process and the SIGCLD signal are used. The TCA is not used in these
situations:
v The passwordaccess option is set to prompt.
v The login user is root.
v The caller of the function must be a TSM-authorized user.

Note: Options users and groups are not recognized.

Chapter 3. Using the Application Program Interface 19

An application can restrict user access by other means, such as setting access
filters.

dsmApiVersionEx * apiApplVer;
char *node;
char *owner;
char *pw;
char *confFile = NULL;
char *options = NULL;
dsInt16_t rc = 0;
dsUint32_t dsmHandle;
dsmInitExIn_t initIn;
dsmInitExOut_t initOut;
char *userName;
char *userNamePswd;

memset(&initIn, 0x00, sizeof(dsmInitExIn_t));
memset(&initOut, 0x00, sizeof(dsmInitExOut_t));
memset(&apiApplVer,0x00,sizeof(dsmapiVersionEx));

apiApplVer.version = DSM_API_VERSION; /* Set the applications compile */
apiApplVer.release = DSM_API_RELEASE; /* time version. */
apiApplVer.level = DSM_API_LEVEL;
apiApplVer.subLevel= DSM_API_SUBLEVEL;

printf("Doing signon for node %s, owner %s, with password %s\n", node,owner,pw);

initIn.stVersion = dsmInitExInVersion;
initIn.dsmApiVersionP = &apiApplVer
initIn.clientNodeNameP = node;
initIn.clientOwnerNameP = owner ;
initIn.clientPasswordP = pw;
initIn.applicationTypeP = "Sample-API AIX";
initIn.configfile = confFile;
initIn.options = options;
initIn.userNameP = userName;
initIn.userPasswordP = userNamePswd;

rc = dsmInitEx(&dsmHandle, &initIn, &initOut);

if (rc == DSM_RC_REJECT_VERIFIER_EXPIRED)
{

printf("*** Password expired. Select Change Password.\n");
return(rc);

}
else if (rc)
{

printf("*** Init failed: ");
rcApiOut(dsmHandle, rc); /* Call function to print error message */
dsmTerminate(dsmHandle); /* clean up memory blocks */
return(rc);

}

Figure 2. An example of starting and ending a session

20 IBM Tivoli Storage Manager: Using the Application Program Interface

Note: Nodes in a cluster share a single password.

Using passwordaccess generate without TCA
TSM-Authorized User (UNIX and OS/400 Only)

The Trusted Communication Agent (TCA), a child process, normally controls access
to the protected password file. It is possible to have the passwordaccess generate
function without starting the TCA. To do this:
1. Write the application with a call to dsmSetUp which will pass argv[0]. The

argv[0] contains the name of the application that calls the API. We permit the
application to run as TSM-Authorized; however, the Tivoli Storage Manager
administrator should decide on the login name for the TSM-Authorized user.

2. Set the S bit (set the effective user ID) to On for the application executable. The
owner of that application executable can then become a TSM-Authorized user.
This permits the user to create a password file, update passwords, and run
applications. The owner of the application executable must be the same as the
User ID that runs the program. For example, “User” is User1, the name of the

void rcApiOut (dsUint32_t handle, dsInt16_t rc)
{

char *msgBuf ;

if ((msgBuf = (char *)malloc(DSM_MAX_RC_MSG_LENGTH+1)) == NULL)
{

printf("Abort: Not enough memory.\n") ;
exit(1) ;

}

dsmRCMsg(handle, rc, msgBuf);
printf("%s\n",msgBuf);
free(msgBuf) ;
return;

}

Figure 3. Details of rcApiOut

printf("Enter your current password:");
gets(current_pw);
printf("Enter your new password:");
gets(new_pw1);
printf("Enter your new password again:");
gets(new_pw2);
/* If new password entries don’t match, try again or exit. */
/* If they do match, call dsmChangePW. */

rc = dsmChangePW(dsmHandle,current_pw,new_pw1);
if (rc)
{

printf("*** Password change failed. Rc = %i\n",rc);
}
else
{

printf("*** Your new password has been accepted and updated.\n");
}
return 0;

Figure 4. An example of changing a password

Chapter 3. Using the Application Program Interface 21

application executable is applA, and User1 has read-write permissions on the
/home/user1 directory. The permissions on applA are:

-rwsr-xr-x user1 group1 applA

Note: On OS/400, there is no S bit. Set the application program to run under
owner authority so the application owner can become a TSM-authorized
user. To set, use the USRPRF(*OWNER) option of the CRTPGM (create
program) or the CHGPGM (change program) commands.

3. Instruct the users of the application to use the TSM-Authorized name to log in.
Tivoli Storage Manager verifies that the login ID matches the application
executable owner before it permits access to the protected password file.

4. Set the passworddir option in the dsm.sys file to point to a directory where this
user has read-write access. For example, under the server stanza in dsm.sys,
you would enter:

passworddir /home/user1

5. Start the password file and ensure that the TSM-authorized user owns the file.
6. Run applA logged on as User1.
7. Call dsmSetUp and pass in argv.

Note: When you are running in a multi-threaded mode and passwordaccess is
generate, only the root, or TSM-Authorized user, is permitted access. The
TCA child process, then, does not start. This is true for version 3.1.6 through
version 4.1.2.

Administrative user
An administrative user with client owner authority can set parameters on the
dsmInitEx function call to start sessions. This user can function as an
“administrative user” with backup and restore authority for the defined nodes. To
receive client owner authority, enter the following commands:
1. Define the administrative user:

REGister Admin admin_name password

Where admin_name is the “administrative user” name and password is the admin
password.

2. Define the authority level. Users with system or policy authority also have
client owner authority.
Grant Authority admin_name classes authority node

Where admin_name is the “administrative user”, classes is the node, authority
is the owner (full backup and restore authority for the node), node (single
node) or domain (group of nodes).

3. Define access to a single node.
Register Node node_name password userid

Where node_name is the client user node, password is the client user node
password, and userid is the “administrative user” name.

When the application wants to use “administrative user”, it calls the dsmInitEx
function call with the userName and userNamePswd parameters.

dsmInitEx
clientNodeName = NULL
clientOwnerName = NULL

22 IBM Tivoli Storage Manager: Using the Application Program Interface

clientPassword = NULL
userName = ’administrative user’ name
userNamePswd = ’administrative user’ password

You can set the passwordaccess option to generate or prompt. With either parameter,
the userNamePswd value starts the session. Once the session starts, any backup or
restore process can occur for that node.

Identifying the object
The Tivoli Storage Manager server, an object storage server whose primary
function is to efficiently store and retrieve named objects, has two main storage
areas, database and data storage, to meet this requirement:
v The database contains all metadata, such as name or attributes, that is associated

with an object.
v The data storage contains the actual object data. The data storage is actually a

storage hierarchy that the system administrator defines. Data is efficiently stored
and managed on either online or offline media, depending on cost and access
needs.

Each object that is stored on the server has a name associated with it. The client
controls the following key components of that name:
v File space name
v High-level name
v Low-level name
v Object type.

When making decisions about naming objects for an application, you might need
to use an external name for the full object names to the end user. Specifically, the
end user might need to specify the object in an Include or Exclude statement when
the application is run. The exact syntax of the object name in these statements is
platform-dependent. On the Windows operating system, the drive letter associated
with the file space rather than the file space name itself is used in the Include or
Exclude statement. On the Novell and OS/400 operating systems, the first
character of the low-level name must be a forward slash (/).

File space name
The file space name is one of the most important components. It can be the name
of a file system or disk drive, or any other high-level qualifier that groups related
data together. Tivoli Storage Manager uses the file space to identify the file system
or disk drive on which the data is located. In this way, actions can be performed
on all entities within a file space, such as querying all objects within a specified file
space. Because the file space is such an important component of the Tivoli Storage
Manager naming convention, Tivoli Storage Manager has special calls to register,
update, query, and delete file spaces.

The server also has administrative commands to query the file spaces on any node
in Tivoli Storage Manager storage, and delete them if necessary. All data stored by
the application client must have a file space name associated with it. Select the
name carefully to group similar data together in the system.

To avoid possible interference, an application client should select different file
space names from those that a backup-archive client would use. The application
client should publish its file space names so that end users can identify the objects
for Include and Exclude statements, if necessary.

Chapter 3. Using the Application Program Interface 23

Note: On Intel platforms, a drive letter is associated with a file space. When you
register or update a file space, you must supply the drive letter. Because the
Include-Exclude list refers to the drive letter, you must keep track of each
letter and its associated file space. In the sample program dapismp, the
drive letter is set to ‘G’ by default.

For more information, see the sample program installed on your system.

High-level and low-level names
Two other components of the object name are the high-level name qualifier and the
low-level name qualifier. The high-level name qualifier is the directory path in which
the object belongs, and the low-level name qualifier is the actual name of the object
in that directory path. When the file space name, high-level name, and low-level
name are concatenated, they must form a syntactically correct name on the
operating system on which the client runs. It is not necessary for the name to exist
as an object on the system or resemble the actual data on the local file system.
However, the name must meet the standard naming rules to be properly processed
by the dsmBindMC calls. See “Understand backup and archive objects” on page
36 for naming considerations that are related to policy management.

Object type
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data, and a directory is an object that
contains only attributes.

Following are four examples of object names. The first example displays what the
application client would code on a UNIX platform:

/myfs/highlev/lowlev

The second example displays what the application client would code on a
Windows platform:

"myvol\\highlev\\lowlev"

Note: On a Windows platform, use a double backslash because a backslash is the
escape character. The double backslashes are translated to single backslashes.
File space names start with a slash on the UNIX platform, but do not start
with a slash on the Windows platform.

The third example displays what the application client would code on a Novell
NetWare platform:

myvol:/highlev/lowlev

The fourth example displays what the application client would code on the
OS/400 operating system:

myfs/highlev/lowlev

Object ID
The object ID is unique for each object and it remains for the life of the object
except when you use export or import. The object ID value that was assigned when
you created the object might not be the same as when you perform a restore
process. Applications should save the object name and then query to obtain the
current object ID before doing a restore.

24 IBM Tivoli Storage Manager: Using the Application Program Interface

Accessing objects
Each object has an owner name associated with it. The rules determining what
objects are accessed depend on what owner name is used when a session is
started. Use this session owner value to control access to the object.

The session owner is set during the call to dsmInitEx in the clientOwnerNameP
parameter. If you start a session with dsmInitEx owner name of NULL and you
use passwordaccess prompt, that session owner is handled with session (root or
TSM-Authorized) authority. This is also true if you log in with a root ID or
TSM-authorized ID and you use passwordaccess generate. This session can
perform any action on any object that is owned by this node regardless of the
actual owner of that object.

If a session is started with a specific owner name, the session can only perform
actions on objects that have that object owner name associated with them. Backups
or archives into the system all must have this owner name associated with them.
Any queries performed return only the values that have this owner name
associated with them. The object owner value is set during the dsmSendObj call in
the Owner field of the ObjAttr structure. An owner name is case-sensitive. Table 12
summarizes the conditions under which a user has access to an object.

Table 12. Summary of user access to objects

Session owner Object owner User access

NULL (Root, system owner) “ ” (Empty string) Yes

NULL Specific name Yes

Specific name “ ” (Empty string) No

Specific name Same name Yes

Specific name Different name No

Accessing across nodes and across owners
Three function calls, dsmSetAccess, dsmDeleteAccess, and dsmQueryAccess
support cross-node, cross-owner access on the same platform. These functions,
along with the -fromnode and -fromowner string options that are passed on
dsmInitEx, permit a complete cross-node query, restore and retrieve process
through the API. For example, User A on node A uses the dsmSetAccess function
call to give access to its backups under the /db file space to User B from Node B.
The access rule is displayed as:

ID Type Node User Path

1 Backup Node B User B /db/*/*

When User B logs on at Node B, the option string to dsmInitEx is:
-fromnode=nodeA -fromowner=userA

These options are set for this session. Any queries will access the file spaces, and
files of Node A. Backups and archives are not permitted. Only query, restore, and
retrieve processes are permitted from the file spaces for which User B has access.
See the individual function calls and “dsmInitEx” on page 96 for more information.

Chapter 3. Using the Application Program Interface 25

Note: On UNIX, you can specify –fromowner=root in the option string that is
passed on the dsmInitEx function call. This permits non-root users access to
files that the root owns if a set access was performed.

Managing file spaces
Because the file space is so important to the operation of the system, a separate set
of calls is used to register, update, and delete file space identifiers. Before you can
store any objects that are associated with a file space on the system, you must first
register the file space with Tivoli Storage Manager. Use the dsmRegisterFS call to
accomplish this task. See “Identifying the object” on page 23 for more information.

The file space identifier is the top-level qualifier in a three-part name hierarchy.
Grouping related data together within a file space makes management of that data
much easier. For example, either the application client or the Tivoli Storage
Manager server administrator can delete a file space and all the objects within that
file space.

File spaces also permit the application client to provide information about the file
space to the server that the Tivoli Storage Manager administrator can then query.
This information is returned on the query in the qryRespFSData structure and
includes:

Type Definition

fstype The file space type. This field is a character string that the
application client sets.

fsAttr[platform].fsInfo A client information field used for client-specific data.

capacity The total amount of space in the file space.

occupancy The amount of space currently occupied in the file space.

backStartDate The time stamp when the latest backup started (set by sending a
dsmUpdateFS call).

backCompleteDate The time stamp when the latest backup completed (set by sending a
dsmUpdateFS call).

Using capacity and occupancy depends on the application client. Some
applications might not need information about the size of the file space, in which
case these fields can default to zero. See “Querying the Tivoli Storage Manager
system” on page 30 for more information about querying file spaces.

After a file space is registered with the system, you can back up or archive objects
at any time. We recommend that you call dsmUpdateFS to update the occupancy
and the capacity fields of the file space after a backup or archive operation. This
ensures that the values for the occupancy and capacity of the file system are
current. You can also update the fsinfo, backupstart, and backupcomplete fields.

If you want to monitor your last backup dates, enter a dsmUpdateFS call before
starting your backup. Set the update action to DSM_FSUPD_BACKSTARTDATE.
This will force the server to set the backStartDate field of the file space to the
current time. After the backup is complete for that file space, enter a dsmUpdateFS
call with the update action that is set to DSM_FSUPD_BACKCOMPLETEDATE.
This will time stamp the end of the backup.

26 IBM Tivoli Storage Manager: Using the Application Program Interface

If a file space is no longer needed, you can delete it with the dsmDeleteFS
command. On the UNIX platform, only the root user or TSM-Authorized user can
delete file spaces.

The examples in Figure 5 demonstrate how to use the three file space calls for
UNIX. For an example of how to use the three file space calls for Intel, see the
sample program code installed on your system.

/* Register the file space if it has not already been done. */

dsInt16 rc;
regFSData fsData;
char fsName[DSM_MAX_FSNAME_LENGTH];
char smpAPI[] = "Sample-API";

strcpy(fsName,"/home/tallan/text");
memset(&fsData,0x00,sizeof(fsData));
fsData.stVersion = regFSDataVersion;
fsData.fsName = fsName;
fsData.fsType = smpAPI;
strcpy(fsData.fsAttr.unixFSAttr.fsInfo,"Sample API FS Info");
fsData.fsAttr.unixFSAttr.fsInfoLength =

strlen(fsData.fsAttr.unixFSAttr.fsInfo) + 1;
fsData.occupancy.hi=0;
fsData.occupancy.lo=100;
fsData.capacity.hi=0;
fsData.capacity.lo=300;

rc = dsmRegisterFS(dsmHandle,fsData);
if (rc == DSM_RC_FS_ALREADY_REGED) rc = DSM_RC_OK; /* already done */
if (rc)
{

printf("Filespace registration failed: ");
rcApiOut(dsmHandle, rc);
free(bkup_buff);
return (RC_SESSION_FAILED);

}

Figure 5. An example of working with file spaces, Part 1

Chapter 3. Using the Application Program Interface 27

Associating a management class with objects
A primary feature of Tivoli Storage Manager is the use of policy (management
classes) to define how objects are stored and managed in Tivoli Storage Manager
storage. A management class is associated with an object when the object is backed
up or archived. This management class determines:
v How many versions of the object are kept if backed up
v How long to keep archive copies
v Where to insert the object in the storage hierarchy on the server.

Management classes consist of both backup copy groups and archive copy groups.
A copy group is a set of attributes that define the management policies for an
object that is being backed up or archived. If a backup operation is being
performed, the attributes in the backup copy group apply. If an archive operation
is being performed, the attributes in the archive copy group apply.

The backup or archive copy group in a particular management class can be empty
or NULL. If an object is bound to the NULL backup copy group, that object cannot
be backed up. If an object is bound to the NULL archive copy group, the object
cannot be archived.

/* Update the file space. */

dsmFSUpd updFilespace; /* for update FS */

updFilespace.stVersion = dsmFSUpdVersion;
updFilespace.fsType = 0; /* no change */
updFilespace.occupancy.hi = 0;
updFilespace.occupancy.lo = 50;
updFilespace.capacity.hi = 0;
updFilespace.capacity.lo = 200;
strcpy(updFilespace.fsAttr.unixFSAttr.fsInfo,

"My update for filespace") ;
updFilespace.fsAttr.unixFSAttr.fsInfoLength =

strlen(updFilespace.fsAttr.unixFSAttr.fsInfo);

updAction = DSM_FSUPD_FSINFO |
DSM_FSUPD_OCCUPANCY |
DSM_FSUPD_CAPACITY;

rc = dsmUpdateFS(handle,fsName,&updFilespace,updAction);
printf("dsmUpdateFS rc=%d\n", rc);

Figure 6. An example of working with file spaces, Part 2

/* Delete the file space. */

printf("\nDeleting file space %s",fsName);
rc = dsmDeleteFS(dsmHandle,fsName,DSM_REPOS_ALL);
if (rc)
{

printf(" FAILED!!! ");
rcApiOut(dsmHandle, rc);

}
else printf(" OK!\n");

Figure 7. An example of working with file spaces, Part 3

28 IBM Tivoli Storage Manager: Using the Application Program Interface

Because the use of policy is a very important component of Tivoli Storage
Manager, the API requires that all objects sent to the server are first assigned a
management class by using the dsmBindMC call.The Tivoli Storage Manager
product supports using an Include-Exclude list to affect management class binding.
The dsmBindMC call uses the current Include-Exclude list to perform management
class binding.

Include statements can associate a specific management class with a backup or
archive object. Exclude statements can prevent objects from being backed up but
not from being archived. For more information, see Tivoli Storage Manager
Installation and Using Guide for your operating system.

The API requires that dsmBindMC is called before you back up or archive an
object. The dsmBindMC call returns a mcBindKey structure that contains
information on management class and copy groups that are associated with the
object. Check the copy group destination before proceeding with a send. When you
send multiple objects in a single transaction, they must have the same copy group
destination. The dsmBindMC function call returns the following information:

Table 13. Information returned on the dsmBindMC call

Information Description

Management Class The name of the management class that was bound to the object. The application
client can send the dsmBeginQuery call to determine all attributes of this
management class.

Backup Copy Group Informs you if a backup copy group exists for this management class. If a
backup operation is being performed and a backup copy group does not exist,
this object cannot be sent to Tivoli Storage Manager storage. You will receive an
error code if you attempted to send it using the dsmSendObj call.

Backup Copy Destination This field identifies the Tivoli Storage Manager storage pool to which the data is
sent. If you are performing a multiple object backup transaction, all copy
destinations within that transaction must be the same. If an object has a different
copy destination than previous objects in the transaction, end the current
transaction and begin a new transaction before you can send the object. You will
receive an error code if you attempt to send objects to different copy destinations
within the same transaction.

Archive Copy Group Informs you if an archive copy group exists for this management class. If an
archive operation is being performed and an archive copy group does not exist,
this object cannot be sent to Tivoli Storage Manager storage. You will receive an
error code if you attempted to send it using the dsmSendObj call.

Archive Copy Destination This field identifies the Tivoli Storage Manager storage pool to which the data is
sent. If you are performing a multiple object archive transaction, all copy
destinations within that transaction must be the same. If an object has a different
copy destination than previous objects in the transaction, end the current
transaction and begin a new transaction before you send the object. You will
receive an error code if you attempt to send objects to different copy destinations
within the same transaction.

Backup copies of an object may be rebound to a different management class if a
subsequent back up with the same object name is done that uses a management
class different than the original. For example, if you back up ObjectA and bind it to
Mgmtclass1, and later you back up ObjectA and bind it to Mgmtclass2, the most
current backup will rebind any inactive copies to Mgmtclass2. The parameters
defined in Mgmtclass2 would now control all copies. However the data will not
move if the destination is different.

You can also rebind backup copies to a different management class by using the
dsmUpdateObj call and the DSM_BACKUPD_MC action.

Chapter 3. Using the Application Program Interface 29

Query management classes
Applications can query management classes to determine what management
classes are possible for a given node, and to determine what the attributes are
within the management class. You can only bind objects to management classes by
using the dsmBindMC call. You might want your applications to query the
management class attributes and display them to end users. See “Querying the
Tivoli Storage Manager system” on page 30 for more information.

In the example in Figure 8, a switch statement is used to distinguish between
backup and archive operations when calling dsmBindMC. The information
returned from this call is stored in the MCBindKey structure.

Querying the Tivoli Storage Manager system
The API has several queries, such as management class query, that applications can
use. All queries that use dsmBeginQuery follow the same steps that are described
below:
1. Send the dsmBeginQuery call with the appropriate query type:

v Backup
v Archive
v Active backed-up objects
v File space
v Management class.

The dsmBeginQuery call informs the API of the data format being returned
from the server. The appropriate fields can be placed in the data structures that
are passed by the dsmGetNextQObj calls. The begin query call also permits
the application client to set the scope of the query by properly specifying the
parameters on the begin query call.

Note: On the UNIX platform, only the root user can query active backed-up
objects (also known as fast path).

dsUint16_t send_type;
dsUint32_t dsmHandle;
dsmObjName objName; /* structure containing the object name */
mcBindKey MCBindKey; /* management class information */
char *dest; /* save destination value */

switch (send_type)
{

case (Backup_Send) :
rc = dsmBindMC(dsmHandle,&objName,stBackup,&MCBindKey);
dest = MCBindKey.backup_copy_dest;
break;

case (Archive_Send) :
rc = dsmBindMC(dsmHandle,&objName,stArchive,&MCBindKey);
dest = MCBindKey.archive_copy_dest;
break;

default : ;
}

if (rc)
{

printf("*** dsmBindMC failed: ");
rcApiOut(dsmHandle, rc);
rc = (RC_SESSION_FAILED);
return;

}

Figure 8. An example of associating a management class with an object

30 IBM Tivoli Storage Manager: Using the Application Program Interface

2. Enter the dsmGetNextQObj call to obtain each record from the query. This call
passes a buffer that is large enough to hold the data that is returned from the
query. Each query type has a corresponding data structure for the data
returned. For example, a backup query type has an associated
qryRespBackupData structure that is filled in when the dsmGetNextQObj call
is sent.

3. The dsmGetNextQObj call usually returns one of the following codes:
v DSM_RC_MORE_DATA. Send the dsmGetNextQObj call again.
v DSM_RC_FINISHED. There is no more data. Send the dsmEndQuery call.

4. Send the dsmEndQuery call. When all query data is retrieved or additional
query data is not needed, enter the dsmEndQuery call to end the query
process. This causes the API to flush any remaining data from the query stream
and release any resources that were used for the query.

Figure 9 displays the state diagram for performing query operations.

In Query

dsmBeginQuery dsmEndQuery

dsmGetNextQObj

Figure 9. State diagram for general queries

Chapter 3. Using the Application Program Interface 31

Figure 10 displays the flowchart for performing query operations.

An example
In the example in Figure 11, a management class query prints out the values of all
the fields in the backup and archive copy groups for a particular management
class.

Start

Yes

More
objects?

dsmBeginQuery

dsmEndQuery

dsmGetNextQObj

No

Figure 10. Flowchart for general queries

dsInt16 rc;
qryMCData qMCData;
DataBlk qData;
qryRespMCDetailData qRespMCData, *mcResp;
char *mc, *s;
dsBool_t done = bFalse;
dsUint32_t qry_item;

/* Fill in the qMCData structure with the query criteria we want */
qMCData.stVersion = qryMCDataVersion; /* structure version */
qMCData.mcName = mc; /* management class name */
qMCData.mcDetail = bTrue; /* want full details? */

/* Set parameters of the data block used to get or send data */
qData.stVersion = DataBlkVersion;
qData.bufferLen = sizeof(qryRespMCDetailData);
qData.bufferPtr = (char *)&qRespMCData;

qRespMCData.stVersion = qryRespMCDetailDataVersion;

Figure 11. An example of performing a system query (Part 1 of 2)

32 IBM Tivoli Storage Manager: Using the Application Program Interface

if ((rc = dsmBeginQuery(dsmHandle,qtMC,(dsmQueryBuff *)&qMCData)))
{

printf("*** dsmBeginQuery failed: ");
rcApiOut(dsmHandle, rc);
rc = (RC_SESSION_FAILED);

}

else
{

done = bFalse;
qry_item = 0;
while (!done)
{

rc = dsmGetNextQObj(dsmHandle,&qData);
if (((rc == DSM_RC_MORE_DATA)

|| (rc == DSM_RC_FINISHED))
&& qData.numBytes)

{
qry_item++;
mcResp = (qryRespMCDetailData *)qData.bufferPtr;
printf("Mgmt. Class %lu:\n",qry_item);
printf(" Name: %s\n",mcResp->mcName);
printf(" Backup CG Name: %s\n",mcResp->backupDet.cgName);

.

. /* other fields of backup and archive copy groups */

.
printf(" Copy Destination: %s\n",mcResp->archDet.destName);

}
else
{

done = bTrue;
if (rc != DSM_RC_FINISHED)
{

printf("*** dsmGetNextQObj failed: ");
rcApiOut(dsmHandle, rc);

}
}
if (rc == DSM_RC_FINISHED) done = bTrue;

}
rc = dsmEndQuery(dsmHandle);

}

Figure 11. An example of performing a system query (Part 2 of 2)

Chapter 3. Using the Application Program Interface 33

Sending data to a server
The API permits application clients to send data, or named objects and their
associated data, to Tivoli Storage Manager server storage.

Note: You can either back up or archive data. Perform all send operations within
a transaction.

The transaction model
All data sent to Tivoli Storage Manager storage during a backup or archive
operation is done within a transaction. This provides a high level of data integrity
for the Tivoli Storage Manager product, but it does impose some restrictions that
an application client must take into consideration.

Start a transaction by a call to dsmBeginTxn or end a transaction by a call to
dsmEndTxn. A single transaction is an atomic action. Data sent within the
boundaries of a transaction is either committed to the system at the end of the
transaction, or rolled back if the transaction ends prematurely.

Transactions can consist of either single object sends or multiple object sends. Send
smaller objects in a multiple object transaction. This greatly improves total system
performance, because transaction overhead is decreased. The application client
determines whether single or multiple transactions are appropriate.

Send all objects within a multiple object transaction to the same copy
destination. If you need to send an object to a different destination than the
previous object, end the current transaction and start a new one. Within the new
transaction, you can send the object to the new copy destination.

Note: Starting with version 5.1.0, objects that do not contain any bit data
(sizeEstimate=0) are not checked for copy destination consistency.

Tivoli Storage Manager limits the number of objects that can be sent in a multiple
object transaction. To find this limit, call dsmQuerySessInfo and examine the
maxObjPerTxn field. This field displays the value of the TXNGroupmax option
that is set on your server.

The application client must keep track of the objects sent within a transaction to
perform retry processing or error processing if the transaction ends prematurely.
Either the server or the client can stop a transaction at any time. The application
client must be prepared to handle sudden transaction ends that it did not start.

File aggregation
Tivoli Storage Manager servers use a function that is called file aggregation. With
file aggregation, all objects sent in a single transaction are stored together, which
saves space and improves performance. You can still query and restore the objects
separately.

To use this function, all of the objects in a transaction should have the same file
space name. If the file space name changes within a transaction, the server closes
the existing aggregated object and begins a new one.

Additional LAN-free information is provided. The out structure
(dsmEndGetDataExOut_t) for dsmEndGetData includes the field, totalLFBytesRecv.
This is the total number of LAN-free bytes that are recieved. The out structure

34 IBM Tivoli Storage Manager: Using the Application Program Interface

(dsmEndSendObjExOut_t) for dsmEndSendObjEx includes the field,
totalLFBytesSent. This is the total number of LAN-free bytes that were sent.

API performance considerations
You can use the following client options and API parameters to enhance API
performance:

Client Options that affect API performance

largecommbuffers
Specifies whether the client API uses increased buffers to transfer
data. We recommend setting this option to no for all platforms.

tcpbuffsize
We recommend setting this to 32 KB. The default is 31KB.

tcpnodelay
Specifies whether to send small buffers to the server rather than
holding them. We recommend setting this option to yes for all
platforms. This option is valid for Windows and AIX only.

API parameters that affect performance

dsmSendData DataBlk
The application buffer size should be 4 bytes less than specified
with the tcpbuffsize option.

Each dsmSendData call is synchronous and will not return until the data
transferred to the API in the dataBlkPtr is flushed to the network. The API adds a
4 byte overhead to each transaction buffer that is placed on the network.

For example, when the transaction buffer size is 32KB and the application dataBlk
buffer size is 31KB, then each application datablk buffer will fit in a
communications buffer and be flushed immediately. However, if the application
datablk buffer is exactly 32KB and since the API is adding a 4 byte overhead per
transaction buffer, there will be 2 flushes; one of 32KB and one of 4 bytes. Also, if
you set the tcpnodelay option to no, there could be a delay of up to 200
millseceonds until the 4 bytes are flushed.

Sending objects to the server
Attention: It is important that you try to be as accurate as possible on this size
estimate, because the Tivoli Storage Manager server uses this attribute for efficient
space allocation and object placement within its storage resources.

Application clients can send data, or named objects and their associated data, to
Tivoli Storage Manager storage by using the API backup and archive functions.
The backup and archive components of the system permit use of different
management procedures for data that is sent to Tivoli Storage Manager storage.

The size estimate attribute is an estimate of the total size of the data object to send
to the server. If the application does not know the exact object size, set the
sizeEstimate to a higher estimate. If the estimate is smaller than the actual size, the
Tivoli Storage Manager server would use extra resources to manage extra space
allocations.

Chapter 3. Using the Application Program Interface 35

|

|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

You might encounter problems if the sizeEstimate is much too large. The Tivoli
Storage Manager server might not have enough space for the estimated size, but it
does have space for the actual size. Or, the server might use slower devices.

You can back up or archive objects that are larger than two gigabytes in size. The
objects can be either compressed or uncompressed.

To start a send operation, call dsmSendObj.If you have more data than you can
send at one time, you can make repeated calls to dsmSendData to transfer the
remainder of the information. Call dsmEndSendObj to complete the send
operation.

Understand backup and archive objects
The backup component of the Tivoli Storage Manager system supports several
versions of named objects that are stored on the server. Any object backed up to
the server that has the same name as an object that is already stored on the server
from that client is subject to version control. Objects are considered to be in active
or inactive states on the server. The latest copy of an object on the server that has
not been deactivated is in the active state. Any other object with the same name,
whether it is an older version or a deactivated copy, is considered inactive.
Management class constructs define different management criteria. They are
assigned to active and inactive objects on the server. Backup copy group fields that
apply include:

VEREXISTS
The number of inactive versions if active versions exist.

VERDELETED
The number of inactive versions if active versions do not exist.

RETEXTRA
The number of days to keep inactive versions.

RETONLY
The number of days to keep the last inactive versions if active versions do
not exist.

If backup versions each have a unique name, such as using a time stamp in the
name, then versioning will not happen automatically; every object will be active.
Active objects never expire, so an application would be responsible for deactivating
these with the dsmDeleteObj call. In this situation, the application would need the
deactivated objects to expire as soon as possible. The user would define a backup
copy group with VERDELETED=0 and RETONLY=0.

The archive component of the Tivoli Storage Manager system permits objects to be
stored on the server with retention or expiration period controls instead of version
control. Each object stored is unique, even though its name might be the same as
an object already archived. Archive objects have a description field associated with
the meta data that can be used during query to identify a specific object.

Every object on a Tivoli Storage Manager server is assigned a unique object ID.
The persistence of the original value is not guaranteed during the life of an object
(specifically, after an export or import). Therefore, an application should not query
and save the original object ID for use on later restores. Rather, an application
should save the object name and insert date. You can use this information during a
restore to query objects and verify the insert date. Then, the current object ID can
be used to restore the object.

36 IBM Tivoli Storage Manager: Using the Application Program Interface

Compression
The end user’s configuration, along with the dsmSendObj objCompressed flag,
determines whether Tivoli Storage Manager will compress the object during a
send. Also, objects with a sizeEstimate less than DSM_MIN_COMPRESS_SIZE will
never be compressed.

If the object is compressed already (objCompressed=bTrue), it is not compressed
again. If it is not compressed, Tivoli Storage Manager decides whether to compress
the object, based on the values of the compression option that is set by the Tivoli
Storage Manager administrator and is set in the API configuration sources.

The Tivoli Storage Manager server administrator can affect compression behavior
with the register node command (compression=yes, no, or client-determined). If
this is client-determined, then the compression behavior is determined by the
compression option value in the configuration sources.

Some types of data, such as data that is already compressed, might actually get
bigger when processed with the compression algorithm. When this happens, the
return code DSM_RC_COMPRESS_GREW is generated. If you realize that this
might happen, but you want the send operation to continue anyway, tell the end
users to specify the following option in their options file:

COMPRESSAlways Yes

Information about the actual compression behavior during a dsmSendObj is
returned by the dsmEndSendObjEx call. objCompressed specifies if compression
was done. totalBytesSent is the number of bytes sent by the application.
totalCompressedSize is the number of bytes after compression.

Attention: If your application plans to use partial object restore or retrieve, you
cannot compress the data while sending it. To enforce this, set
ObjAttr.objCompressed to bTrue.

Reading state diagrams and flowcharts
The API is designed for straightforward logic flows and clear transitions between
the various states of the application client. This clean state transition catches logic
flaws and program errors early in the development cycle, greatly enhancing the
quality and reliability of the system. For example, you cannot make a
dsmSendObj call unless a transaction was started and a dsmBindMC call was
previously made for the object that you are backing up.

Figure 12 on page 38 displays the state diagram for performing backup or archive
operations within a transaction. The arrow pointing from “In Send Object” to
dsmEndTxn indicates that a dsmEndTxn call can be started after a call to
dsmSendObj or dsmSendData. You might want to do do this if an error condition
occurred during the send of an object and you want to stop the entire operation. In
this case, you must use a vote of DSM_VOTE_ABORT. In normal circumstances,
however, call dsmEndSendObj before you end the transaction.

Chapter 3. Using the Application Program Interface 37

|
|
|
|

Figure 13 on page 39 displays the flowchart for performing backup or archive
operations within a transaction.

In Transaction

dsmBeginTxn

dsmBindMC*

* May be inside or outside of a transaction

dsmSendData

dsmEndTxn

In Send Object

dsmEndSendObjdsmSendObj

dsmDeleteObj

Figure 12. State diagram for backup and archive operations

38 IBM Tivoli Storage Manager: Using the Application Program Interface

The primary feature in these two diagrams is the loop between the following API
calls from within a transaction:

dsmBindMC
dsmSendObj
dsmSendData
dsmEndSendObj

The dsmBindMC call is unique in that you can start it from inside or outside of a
transaction boundary. You can also start it from a different transaction, if required.
The only requirement for the dsmBindMC call is that it is made prior to backing
up or archiving an object. If the object that you are backing up or archiving is not
associated with a management class, an error code is returned from dsmSendObj.
In this situation, the transaction is ended by calling dsmEndTxn (this error
condition is not shown in the flowchart).

The flowchart illustrates how an application would use multiple object
transactions. It shows where decision points can be placed to determine if the
object that is sent fits within the transaction or whether to start a new transaction.

Start

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No Idle
State

BindMC
Done?

Send
Object?

More
data?

More
objects
in txn?

More
objects?

dsmBeginTxn

dsmBindMC

dsmSendObj

dsmSendData

dsmEndSendObj

dsmEndTxn

Figure 13. Flowchart for backup and archive operations

Chapter 3. Using the Application Program Interface 39

An example
Figure 14 demonstrates the use of the API functions that send data to Tivoli
Storage Manager storage. The dsmSendObj call appears inside a switch statement,
so that different parameters can be called depending on whether a backup or
archive operation is being performed. The dsmSendData call is called from inside
a loop that repeatedly sends data until a flag is set that permits the program
execution to exit the loop. The entire send operation is performed from within the
transaction.

The third parameter on the dsmSendObj call is a buffer that contains the archive
description. Because backup objects do not have a description, this parameter is
NULL when backing up an object.

Figure 8 on page 30 displays an example that shows the use of the dsmBindMC
function call.

if ((rc = dsmBeginTxn(dsmHandle))) /* API session handle */
{

printf("*** dsmBeginTxn failed: ");
rcApiOut(dsmHandle, rc);
return;

}

/* Call dsmBindMC if not done previously */
objAttr.sizeEstimate.hi = 0; /* estimate of */
objAttr.sizeEstimate.lo = 32000; /* object size */
switch (send_type)
{

case (Backup_Send) :
rc = dsmSendObj(dsmHandle,stBackup,
NULL,&objName,&objAttr,NULL);
break;

case (Archive_Send) :
archData.stVersion = sndArchiveDataVersion;
archData.descr = desc;
rc = dsmSendObj(dsmHandle,stArchive,

&archData,&objName,&objAttr,NULL);
break;

default : ;
}
if (rc)
{

printf("*** dsmSendObj failed: ");
rcApiOut(dsmHandle, rc);
return;

}

done = bFalse;
while (!done)
{

dataBlk.stVersion = DataBlkVersion;
dataBlk.bufferLen = send_amt;
dataBlk.numBytes = 0;
dataBlk.bufferPtr = bkup_buff;
rc = dsmSendData(dsmHandle,&dataBlk);
if (rc)
{

printf("*** dsmSendData failed: ");
rcApiOut(dsmHandle, rc);
done = bTrue;

}
/* Adjust the dataBlk buffer for the next piece to send */

}

Figure 14. An example of sending data to a server (Part 1 of 2)

40 IBM Tivoli Storage Manager: Using the Application Program Interface

File grouping

Note: This function is new in version 5.1.0 for the API and the Tivoli Storage
Manager server. It will not work for previous versions of either.

The Tivoli Storage Manager API has a logical file grouping protocol that relates
several individual objects together. You can reference and manage these groups as
a logical group on the server. A logical group requires all group members and the
group leader belong to the same node and file space on the server. Each logical
group has a group leader. If the group leader is deleted, the group is deleted. You
cannot delete a member if it is part of a group. Expiration of all members in a
group is dependent on the group leader. For example, if a member is marked for
expiration, it will not expire unless the group leader expires. However, if a member
is not marked for expiration, and the group leader is expired, then all members are
expired.

The dsmGroupHandler call groups the operations. The dsmGroupHandler must
be called from within a transaction. Most group error conditions are caught on
either the dsmEndTxn call or the dsmEndTxnEx call.

The out structure in dsmEndTxnEx includes a new field, groupLeaderObjId. This
field contains the object ID of the group leader if a group was opened in that
transaction. You can create a group across more than one transaction. A group is
not commited, or saved, on the Tivoli Storage Manager server until a close is
performed. The dsmGroupHandler is an interface that can accept five different
operations. They include:
v DSM_GROUP_ACTION_OPEN
v DSM_GROUP_ACTION_CLOSE
v DSM_GROUP_ACTION_ADD
v DSM_GROUP_ACTION_ASSIGNTO
v DSM_GROUP_ACTION_REMOVE

The dsmGroupHandler function call can perform the following actions:

OPEN Creates a new group. The next object that is sent will be the group leader.
All objects after the first object become members that are added to the
group. To create a group, open a group and pass in a unique string to
identify the group. This unique identifier allows several groups with the

rc = dsmEndSendObj(dsmHandle);
if (rc)
{

printf("*** dsmEndSendObj failed: ");
rcApiOut(dsmHandle, rc);

}
txn_reason = 0;
rc = dsmEndTxn(dsmHandle, /* API session handle */

DSM_VOTE_COMMIT, /* Commit transaction */
&txn_reason); /* Reason if txn aborted */

if (rc || txn_reason)
{

printf("*** dsmEndTxn failed: rc = ");
rcApiOut(dsmHandle, rc);
printf(" reason = %u\n",txn_reason);

}

Figure 14. An example of sending data to a server (Part 2 of 2)

Chapter 3. Using the Application Program Interface 41

same name to be opened. After the group is opened, the next object that is
sent is the group leader. All other objects that are sent are group members.

CLOSE
Commits and saves an open group. To close the group, pass in the object
name and the unique string that is used in the open operation.

Notes:

1. The application must check for open groups and, if neccessary, close or
delete them. A group is not commited or saved until a close of the
group is performed. You cannot close a new group with the same name
as an existing open group. This will cause the CLOSE action to fail.

2. A close can also fail if there is a management class incompatibility
between the current closed group and the new group to be closed of
the same name. Before issuing a close group, query the previous closed
group and if the management class of the existing closed group is
different than the management class associated with the current open
group, issue a dsmUpdteObject with type DSM_BACKUPD_MC to
update the existing group to the new management class. You can then
issue the close.

Note:

ADD Appends an object to a group. All objects that are sent after the ADD
action are assigned to the group.

ASSIGNTO
Permits the client to assign objects that exist on the server to the declared
peer group. This is similar to the ADD action except that the add applies
to objects within an in-flight transaction and the ASSIGNTO action applies
to an object that is on the server. This transaction sets up the PEER group
relationship.

REMOVE
Removes a member, or a list of members, from a group. A group leader
cannot be removed from a group. A group member must be removed
before it can be deleted.

There are two new query types for group support:
v qtBackupGroups
v qtOpenGroups

The qtBackupGroups will query groups that are closed while qtOpenGroups will
query groups that are open. The query buffer for the new types has fields for
groupLeaderObjId and objType. The query performs differently depending on the
values for these two fields. The following table includes some query possibilities:

Table 14. Examples of queries

groupLeaderObjId.hi groupLeaderObjId.lo objType Result

0 0 NULL Returns a list of all group leaders

grpLdrObjId.hi grpLdrObjId.lo 0 Returns a list for all group members that are
assigned to the specificied group leader
(grpLdrObjId).

grpLdrObjId.hi grpLdrObjId.lo objType Returns a list (using BackQryRespEnhanced3)
for each group member that is assigned to the
specificied group leader (grpLdrObjId), and
matching the object type (objType).

42 IBM Tivoli Storage Manager: Using the Application Program Interface

|
|
|
|
|
|
|
|

The response structure (qryRespBackupData) from dsmGetNextQObj includes two
fields for group support:
v isGroupLeader
v isOpenGroup

These are Boolean flags. The following example displays the creation of the group,
adding members to the group, and closing the group to commit it on the Tivoli
Storage Manager server. Refer to the sample group program (dsmgrp.c) that is
included in the API sampsrc directory for an actual code example.

Receiving data from a server
Application clients can receive data, or named objects and their associated data,
from Tivoli Storage Manager storage by using the restore and retrieve functions of
the product. The restore function accesses objects that previously were backed up,
and the retrieve function accesses objects that previously were archived.

Note: The API can only restore or retrieve objects that were backed up or archived
using API calls.

Both restore and retrieve functions start with a query operation. The query returns
different information depending on whether the data was originally backed up or
archived. For instance, a query on backup objects returns information on whether
an object is active or inactive, while a query on archive objects returns information
such as object descriptions. Both queries return object IDs that Tivoli Storage
Manager uses to uniquely identify the object on the server.

Perform a partial object restore or retrieve
The application client can receive only a portion of the object. This is called a
partial object restore or a partial object retrieve.

dsmBeginTxn
dsmGroupHandler (PEER, OPEN, leader, uniqueId)
dsmBeginSendObj
dsmSendData
dsmEndSendObj
dsmEndTxnEx (With objId of leader)

Loop for multiple txns
{
dsmBeginTxn
dsmGroupHandler (PEER, ADD, member, groupLeaderObjID)
Loop for multiple objects
{
dsmBeginSendObj
Loop for data
{
dsmSendData
}
dsmEndSendObj
}
dsmEndTxn
}

dmBeginTxn
dsmGroupHandler(CLOSE)
dsmEndTxn

Figure 15. Example of pseudo-code to create a group

Chapter 3. Using the Application Program Interface 43

Note: If your application plans to use a partial object restore or retrieve, you
cannot compress the data while sending it. To enforce this, set
ObjAttr.objCompressed to bTrue.

To perform a partial object restore or retrieve, associate the following two data
fields with each object GetList entry:

offset The byte offset into the object from which to begin returning data.

length The number of object bytes to return.

Use DSM_MAX_PARTIAL_GET_OBJ to determine the maximum number of
objects that can perform a partial object restore or retrieve for a specific
dsmBeginGetData list.

The following data fields, used on the dsmBeginGetData call, determine what
portion of the object is restored or retrieved:
v If both offset and length are zero, the entire object is restored or retrieved from

Tivoli Storage Manager storage.
v If offset is greater than zero, but length is zero, the object is restored or retrieved

from the offset to the end.
v If length is greater than zero, only the portion of the object from offset for the

specified length is restored or retrieved.

Receive data with a restore or retrieve procedure
After a query is made and a session is established with the Tivoli Storage Manager
server, the procedure to restore or retrieve data is to:
1. Query the Tivoli Storage Manager server for either backup or archive data.
2. Determine the objects to restore or retrieve from the server.
3. Sort the objects on the Restore Order field.
4. Send the dsmBeginGetData call with the list of objects that you want to access.
5. Send the dsmGetObj call to obtain each object from the system. Multiple

dsmGetData calls might be needed for each object to obtain all associated
object data. Send the dsmEndGetObj call after all data for an object is
obtained.

6. Send the dsmEndGetData call after all data for all objects is received, or to end
the receive operation.

Query the server
Before you can begin any restore or retrieve operation, first query the Tivoli
Storage Manager server to determine what objects you can receive from storage. To
send the query, the application must enter the proper parameter lists and
structures for the dsmBeginQuery call. This includes the file space that the query
will examine and pattern-match entries for the high-level and low-level name
fields. If the session was initialized with a NULL owner name, it is not necessary
to specify the owner field. However, if the session was initialized with an explicit
owner name, only objects that explicitly have that owner name associated with
them are returned.

The Point-in-time BackupQuery supplies a snapshot of the system at a given time.
By specifying a valid date, you can query all files that were backed up to that time.
Even if an object has an active backup from a later date, point-in-time overrides an

44 IBM Tivoli Storage Manager: Using the Application Program Interface

object state so that the previous inactive copy is returned. An example of this is in
“pitDate” on page 66. You must be connected to a Version 3 server to use
point-in-time BackupQuery.

A query returns all information that was originally stored with the object, in
addition to the following:

copyId
The copyIdHi and copyIdLo values provide an eight-byte number that
uniquely identifies this object for this node in Tivoli Storage Manager
storage. Use this ID to request a specific object from storage for restore or
retrieve processing.

restoreOrderExt
The restoreOrderExt value provides a mechanism for receiving objects from
Tivoli Storage Manager storage in the most efficient manner possible. Sort
the objects to restore on this value to ensure that tapes are mounted only
once and are read from front to back.

You must keep some or all of the query information for later processing. Keep the
copyId and restoreOrderExt fields because they are needed for the actual restore
operation. You must also keep any other information needed to properly open a
data file or identify a destination.

Call dsmEndQuery to finish the query operation.

Select objects to receive
Once the backup or archive query is performed, the application client must
determine which objects, if any, are to be restored or retrieved.

Sort objects by restore order
Once the objects to restore or retrieve are selected, sort them in ascending order
(low to high). This sorting is very important to the performance of the restore
operation. Sorting the objects on the restoreOrderExt fields ensures that the data is
read from the server in the most efficient order. All data on disk is restored first,
followed by data on media classes that require volume mounts (such as tape). The
restoreOrderExt field also ensures that data on tape is read in order with
processing starting at the front of a tape and progressing towards the end.

Properly sorting on the restoreOrderExt field means that duplicate tape mounts
and unnecessary tape rewinds do not occur.

Following is an example of sorting objects by using Restore Order fields.

Chapter 3. Using the Application Program Interface 45

typedef struct {
dsStruct64_t objId;
dsUint160_t restoreOrderExt;

} SortOrder; /* struct used for sorting */

===
/* the code for sorting starts from here */
dsmQueryType queryType;
qryBackupData queryBuffer;
DataBlk qDataBlkArea;
qryRespBackupData qbDataArea;
dsInt16_t rc;
dsBool_t done = bFalse;
int i = 0;
int qry_item;
SortOrder sortorder[100]; /* sorting can be done up to 100 items

only right now. Set appropriate
array size to fit your needs */

/*---+
| NOTE: Make sure that proper initializations have been done to
| queryType,
| queryBuffer, qDataBlkAre, and qbDataArea.
|
--*/

qDataBlkArea.bufferPtf = (char*) &qbDataArea;

rc = dsmBeginQuery(dsmHandle, queryType, (void *) &queryBuffer);

/*--+
| Make sure to check rc from dsmBeginQuery
+---*/
while (!done)
{

rc = dsmGetNextQObj(dsmHandle, &qDataBlkArea);

Figure 16. An example of sorting objects with the restore order fields (Part 1 of 3)

46 IBM Tivoli Storage Manager: Using the Application Program Interface

if ((rc == DSM_RC_MORE_DATA) ||
(rc == DSM_RC_FINISHED))
&&(qDataBlkArea.numBytes))

{
/**/
/* transferring restoreOrderExt and objId */
/**/
sortorder[i].restoreOrderExt = qbDataArea.restoreOrderExt;
sortorder[i].objId = qbDataArea.objId;

} /* if ((rc == DSM_RC_MORE_DATA) || (rc == DSM_RC_FINISHED)) */
else
{

done = bTrue;
/****************************/
/* take appropriate action. */
/****************************/

}

i++;
qry_item++;

} /* while (!done) */
rc = dsmEndQuery(dsmHandle);
/*check rc */
/***/
/* sorting the array using qsort. After the call, */
/* sortorder will be sorted by restoreOrderExt field */
/***/

qsort(sortorder, qry_item, sizeof(SortOrder), SortRestoreOrder);

/*---+
| NOTE: Make sure to extract sorted object ids and store them in
| any data structure you want.
--*/

Figure 16. An example of sorting objects with the restore order fields (Part 2 of 3)

Chapter 3. Using the Application Program Interface 47

Start the dsmBeginGetData Call
Once you select and sort the objects to receive, submit them to Tivoli Storage
Manager for either a restore or retrieve. The dsmBeginGetData call begins a
restore or retrieve operation. Complete the information for these two parameters in
these calls:

mountWait
This parameter tells the server whether the application client is willing to
wait for offline media to be mounted in order to obtain data for an object,
or whether that object should be skipped during processing of the restore
or retrieve operation.

dsmGetObjListP
This parameter is a data structure that contains a list of all objIds that will
be restored or retrieved. Each objId is associated with a partialObjData
structure that describes whether the entire objId or only a particular
section of the object will be retrieved.

Each objId is eight bytes in length, so a single restore or retrieve request
can contain thousands of objects. The number of objects to request in a
single call is limited to DSM_MAX_GET_OBJ or
DSM_MAX_PARTIAL_GET_OBJ.

The objects are returned to the application client in the order you requested.

/*--+
| int SortRestoreOrder(SortOrder *a, SortOrder *b)
|
| This function compares restoreOrder fields from two structures.
| if (a > b)
| return(GREATERTHAN);
|| if (a < b)
| return(LESSTHAN);
|| if (a == b)
| return(EQUAL);
|+--*/
int SortRestoreOrder(SortOrder *a, SortOrder *b)
{

if (a->restoreOrderExt.top > b->restoreOrderExt.top)
return(GREATERTHAN);

else if (a->restoreOrderExt.top < b->restoreOrderExt.top)
return(LESSTHAN);

else if (a->restoreOrderExt.hi_hi > b->restoreOrderExt.hi_hi)
return(GREATERTHAN);

else if (a->restoreOrderExt.hi_hi < b->restoreOrderExt.hi_hi)
return(LESSTHAN);

else if (a->restoreOrderExt.hi_lo > b->restoreOrderExt.hi_lo)
return(GREATERTHAN);

else if (a->restoreOrderExt.hi_lo < b->restoreOrderExt.hi_lo)
return(LESSTHAN);

else if (a->restoreOrderExt.lo_hi > b->restoreOrderExt.lo_hi)
return(GREATERTHAN);

else if (a->restoreOrderExt.lo_hi < b->restoreOrderExt.lo_hi)
return(LESSTHAN);

else if (a->restoreOrderExt.lo_lo > b->restoreOrderExt.lo_lo)
return(GREATERTHAN);

else if (a->restoreOrderExt.lo_lo < b->restoreOrderExt.lo_lo)
return(LESSTHAN);

else
return(EQUAL);

}

Figure 16. An example of sorting objects with the restore order fields (Part 3 of 3)

48 IBM Tivoli Storage Manager: Using the Application Program Interface

Receive each object to restore or retrieve
Once the dsmBeginGetData call is sent, perform the following procedure to
receive each object that is sent from the server:
1. Send the dsmGetObj call to identify the object that you requested from the

data stream and, to obtain the first block of data that is associated with the
object.

2. Send more dsmGetData calls, as necessary, to obtain the remaining object data.

The DSM_RC_MORE_DATA return code means that a buffer was returned and
you should call dsmGetData again. The DSM_RC_FINISHED return code means
that the last buffer was returned and you should call dsmEndGetObj again. Check
the DataBlk.num Bytes for the actual number of returned bytes.

When you obtain all data for an object, you must send a dsmEndGetObj call. If
more objects will be received, send the dsmGetObj call again. If you need to stop
the process (normally or abnormally), send the dsmEndGetData call.

Start the dsmEndGetData call
After all data for all requested objects is received, send the dsmEndGetData call.
You can also use this call to discard any remaining data in the restore stream for
all objects not yet received. This will flush the data from the server to the client.
However, using this method might take time to complete. If you need to end a
restore, use dsmTerminate to close the session.

State diagrams and flowcharts
Figure 17 displays the state diagram that demonstrates how to perform restore or
retrieve operations. The arrow pointing from “In Get Object” to dsmEndGetData
indicates that you can send a dsmEndGetData call after a call to dsmGetObj or
dsmGetData. You might need to do this if an error condition occurred while
getting an object from Tivoli Storage Manager storage and you want to stop the
operation. In normal circumstances, however, call dsmEndGetObj first.

In Get Data

dsmBeginGetData

dsmGetData

dsmEndGetData

In Get Object

dsmEndGetObjdsmGetObj

Figure 17. State diagram for restore and retrieve operations

Chapter 3. Using the Application Program Interface 49

Figure 18 displays the flowchart for performing restore or retrieve operations.

An example
The example in Figure 19 on page 51 demonstrates using the API functions to
retrieve data from Tivoli Storage Manager storage. The dsmBeginGetData function
call appears inside a switch statement, so that different parameters can be called
depending on whether a restore or retrieve operation is being performed. The
dsmGetData function call is called from inside a loop that repeatedly gets data
from the server until a flag is set that permits the program execution to exit the
loop.

No

Yes

Start

Idle
State

Yes

Yes

No

No

Query server to determine
objects to get

Sort desired objects
by restore order

dsmBeginGetData

dsmGetObj

More
data?

dsmGetData

dsmEndGetObj More
objects? dsmEndGetData

Another
list?

Figure 18. Flowchart for restore and retrieve operations

50 IBM Tivoli Storage Manager: Using the Application Program Interface

/* Call dsmBeginQuery and create a linked list of objects to restore. */
/* Process this list to create the proper list for the GetData calls. */
/* Set up the getList structure to point to this list. */
/* This example is set up to perform a partial object retrieve. To */
/* retrieve only complete objects, set up: */
/* getList.stVersion = dsmGetListVersion; */
/* getList.partialObjData = NULL; */

dsmGetList getList;

getList.stVersion = dsmGetListPORVersion; /* structure version */
getList.numObjId = items; /* number of items in list */
getList.objId = (ObjID *)rest_ibuff;

/* list of object IDs to restore */
getList.partialObjData = (PartialObjData *) part_ibuff;

/* list of partial object data */
switch(get_type)
{

case (Restore_Get) :
rc = dsmBeginGetData(dsmHandle,bFalse,gtBackup,&getList);
break;

case (Retrieve_Get) :
rc = dsmBeginGetData(dsmHandle,bFalse,gtArchive,&getList);
break;

default : ;
}
if (rc)
{

printf("*** dsmBeginGetData failed: ");
rcApiOut(dsmHandle, rc);
return rc;

}
/* Get each object from the list and verify whether it is on the */
/* server. If so, initialize structures with object attributes for */
/* data validation checks. When done, call dsmGetObj. */
rc = dsmGetObj(dsmHandle,objId,&dataBlk);

Figure 19. An example of receiving data from a server (Part 1 of 2)

done = bFalse;
while(!done)
{

if ((rc == DSM_RC_MORE_DATA)
|| (rc == DSM_RC_FINISHED))

{
if (rc == DSM_RC_MORE_DATA)
{

dataBlk.numBytes = 0;
rc = dsmGetData(dsmHandle,&dataBlk);

}
else

done = bTrue;
}
else
{

printf("*** dsmGetObj or dsmGetData failed: ");
rcApiOut(dsmHandle, rc);
done = bTrue;

}
} /* while */
rc = dsmEndGetObj(dsmHandle);
/* check rc from dsmEndGetObj */
/* check rc from dsmEndGetData */
rc = dsmEndGetData(dsmHandle);
return 0;

Figure 19. An example of receiving data from a server (Part 2 of 2)

Chapter 3. Using the Application Program Interface 51

Updating objects on the server
The API applications can use dsmUpdateObject to update objects that were
archived or backed up. Use this call in the session state only, updating one object
at a time.

To select an archive object, set the dsmSendType function call to stArchive. Only
the latest archive object with this assigned name is updated. For an archived object,
the application can update the following fields:
v Description
v Object information
v Owner.

To select a backup object, set dsmSendType to stBackup. For backed-up objects,
only the active copy is updated. For a backed-up object, the application can update
the following fields:
v Management class
v Object information
v Owner.

Deleting objects from the server
API applications can make calls to either delete objects that were archived or turn
off objects that were backed up. Deleting archived objects is dependent on the
node authorization that was given when the Tivoli Storage Manager administrator
registered the node. Administrators can specify that nodes can delete archived
objects. Use the dsmDeleteObj function call to delete archived objects and turn off
backup objects.Using this delType will remove the backup object from the server.
This is based on objID, deletes an object from the server database. Only an owner
of an object can delete it.You can delete any version (active or inactive) of an
object. The server reconciles the versions. If you delete an active version of an
object, the first inactive version becomes active. If you delete an inactive version of
an object, all older versions will advance. The node must be registered with
backDel permission.

An archived object is marked for deletion in storage when the system performs its
next object expiration cycle. Once you delete an archived object from the server,
you cannot retrieve it.

When you inactivate a backup object at the server, the object moves from an active
state to an inactive state. These states have different retention policies associated
with them that are based on the management class that is assigned.

Similar to the dsmSendObj call, a call to dsmDeleteObj is sent within the
boundary of a transaction. The state diagram in Figure 12 on page 38 displays how
a call to dsmDeleteObj is preceded by a call to dsmBeginTxn and followed by a
call to dsmEndTxn.

Logging events
An API application can log event messages to central locations. It can direct
logging to the Tivoli Storage Manager server, the local machine, or both. The
dsmLogEventEx function call is performed inside a session. To view messages
logged on the server, use the query actlog command through the Administrative
Client. See the Tivoli Storage Manager Administrator’s Reference for more
information.

52 IBM Tivoli Storage Manager: Using the Application Program Interface

|

We recommend that you use the Tivoli Storage Manager client option,
errorlogretention, to prune the client error log file if the application generates
numerous client messages that are written to the client log (dsmLogType either
logLocal or logBoth).

Putting it all together
Figure 20 on page 54 contains the state diagram for the API. It contains all
previously displayed state diagrams in addition to several other calls previously
not displayed. The points in this diagram include:
v Call dsmQueryApiVersionEx at any time. It has no state associated with it. See

Figure 1 on page 16 for an example.
v Call dsmQueryCliOptions before a dsmInitEx call only.
v Use dsmRegisterFS, dsmUpdateFS, and dsmDeleteFS to manage file spaces.

These calls are made from within an idle session state. Use the dsmBeginQuery
call to query file spaces. For more information about file space calls, see
“Managing file spaces” on page 26.

v Send the dsmBindMC call from within an idle session state or from within a
send object transaction state. See the example in Figure 8 on page 30.

v Send the dsmChangePW call from within an idle session state.

Note: If the dsmInitEx call returns with a password-expired return code, the
dsmChangePW call must be made before you start a valid session. See
Figure 4 on page 21 for an example that uses dsmChangePW.

v If a call returns with an error, the state remains as it was. For example, if
dsmGetObj returns with an error, the state remains In Get Data, and a call
todsmEndGetObj is a call sequence error.

Chapter 3. Using the Application Program Interface 53

dsmQueryApiVersion

dsmRegisterFS

dsmUpdateFS

dsmDeleteFS

dsmSetAccess

dsmQueryAccess

dsmDeleteAccess

dsmBeginTxn

dsmBindMc*

dsmGroupHandler

In
Transaction

In
Send Object

dsmRenameObj

dsmDeleteObj

dsmEndSendObjEx

dsmGetObjdsmSendObj

dsmSendData

* Can be inside or outside of a trsnsaction

dsmBeginGetData dsmEndGetData

dsmEndGetDataEx

dsmBeginQuery dsmEndQuery

dsmUpdateObj

dsmLogEventEX
dsmLogEvent

dsmQuerySessInfo

dsmChangePW

dsmBindMC

dsmQuerySessOptions

dsmGetData

dsmGetNextQObj

In Query

In Get Object

dsmEndGetObj

End Get Data

dsmEndSendObj

dsmEndTxn

dsmEndTxnEx

dsmQueryCliOptions (optional)

dsmTerminate

In
Session

dsmInit
or dsmInitEx

Figure 20. Summary state diagram for the API

54 IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 4. Understanding interoperability

The API has two types of interoperability:
v Between the backup-archive client and API applications
v Between different operating systems.

This chapter discusses both types.

Backup-archive client interoperability
The backup-archive command line can access API objects to provide limited
interoperability. The following command-line actions are provided:
v Delete archive
v Delete filespace
v Query
v Restore
v Retrieve
v Set access.

The path information is actual directories for backup-archive client objects. In
contrast, the API object path information might not have any relationship to
existing directories; the path might be completely contrived. Interoperability does
not change this aspect of these object types. To use this feature successfully, follow
the restrictions and conventions.

Naming your API objects
Establish a consistent naming convention for API object names that consist of the
file space name, the high-level qualifier, and the low-level qualifier. The file space
name and high-level qualifiers can refer to actual directory names, although this is
not a requirement. Each can consist of more than one directory name that applies
to the low-level qualifier. We recommend that the low-level qualifier be the name
of the object that is not prefixed with directory information. See “Identifying the
object” on page 23 for more information.

File space names must be fully qualified when they are referred from either the
API or the backup-archive command line. For example, on a UNIX operating
system, if you register file space /a and another file space, /a/b, then, when you
refer to /a, it will display objects that are related only to file space /a. To view
objects that are related to /a/b, specify /a/b as the file space name. After you
register both file spaces, if you back up object b into file space /a, then a query for
/a/b will continue to display objects that are related to file space /a/b only.

The exception to this restriction occurs in file space references when you attempt to
query or delete file spaces with the API. In both cases, it is not necessary for file
space names to be fully qualified if you use a wildcard character. For example, /a*
will refer to both /a and /a/b.

Note: If interoperability is important to you, then avoid file space names that
overlap.

On Intel-based operating systems, enclose file space names in braces { } for API
objects when you access them from the backup-archive command line. Intel-based
operating systems automatically place file space names in uppercase letters when

© Copyright IBM Corp. 1993, 2003 55

you register or refer them. However, this is not true for the remainder of the object
name specification. If you want full interoperability, place the high-level qualifier
and the low-level qualifier in uppercase letters in the application when you back
up API objects. The examples that follow demonstrate these concepts. In both
environments, it is not necessary to specify completely either the high-level or the
low-level qualifier. However, if you do not, then you must use the wildcard
character.

Platform Example

Intel To query all backed-up files in file space MYFS, enter:

dsmc q ba "{MYFS}**"

Note: There is at least one asterisk (*) for each of the high-level and
low-level qualifiers.

UNIX To query all backed-up files in file space /A, enter:

dsmc q ba "/A/*/*"

Note: There is at least one asterisk (*) for each of the high-level and
low-level qualifiers.

Using commands
To view and manage objects that other users own either on the same node or on a
different node, perform these steps:
1. Give access with the set access command.
2. Specify the owner and the node. Use the fromowner and fromnode options

from the backup-archive command line to specify the owner and the node. For
example:

dsmc q ba "/A/*/*" -fromowner=other_owner -fromnode=other_node

See “dsmInitEx” on page 96 for more information.

Table 15 describes the commands that you can use with API objects.

Table 15. Using commands with API objects

Command Description

Delete Archive Archived files that the current user owns can be deleted. The set
access command settings have no effect on this command.

Delete Filespace The delete filespace command affects API objects.

Query From the backup-archive command line, you can query backed up and
archived API objects and objects that other users own, or that reside
on other nodes. See “Naming your API objects” on page 55 for
information about querying API objects.

Use the existing –fromowner option to query objects that a different
user owns for which the set access permission has been given. Use the
existing –fromnode option to query objects that reside on another node
for which the set access permission has been given. See “dsmInitEx”
on page 96 for more information.

Restore
Retrieve

Note: Use these commands for exception situations only.

These commands return data as bit files that are created using default
file attributes. You can restore or retrieve API objects that other users
own, or that are from a different node. The set access command
determines which objects qualify.

56 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 15. Using commands with API objects (continued)

Command Description

Set Access The set access command permits users to manage API objects that
another user owns, or that are from another node.

Operating system interoperability
The Tivoli Storage Manager API supports cross-platform interoperability.
Applications on a UNIX system can operate on file spaces and objects that are
backed up from a Windows system, or from a Windows system to a UNIX system.

To achieve interoperability, perform the following setup tasks:
1. Establish a consistent naming convention. Select a character for the dir

delimiter and place it in front of the file space name, the high-level qualifier,
and the low-level qualifier.

2. When calling dsmInitEx, set the value of the dirDelimiter field to the character
that you selected; for example, /or \.

3. Set the useUnicode flag to bFalse when you use the Tivoli Storage Manager
interface, Unicode filenames and non-Unicode filenames. Do not interoperate.

Chapter 4. Understanding interoperability 57

58 IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 5. Using the API with Unicode

Note: This feature is available on Windows NT, 2000, and XP only.

The Tivoli Storage Manager API supports Unicode UCS2, a fixed length,
double-byte code page that has code points for all known code pages, such as
Japanese, Chinese, or German. It supports as many as 65,535 unique code points.
With Unicode, your application can back up and restore file names in any
character set from the same machine. For example, on an English machine, you can
back up and restore file names in any other language code page.

Who should use Unicode
Use Unicode if any of the following conditions are true.
v If your application is already compiled for Unicode and it was converting to

mbcs before calling the Tivoli Storage Manager API, you should use the tsm
Unicode interface.

v If you are writing a new application, use the tsm interface to enable your
application to support Unicode.

v If your application uses a string passed to it from the operating system or from
another application that uses Unicode, use the tsm Unicode interface.

If you do not need Unicode, it is not necessary to compile your application again.

The API continues to support the dsm interface. The API SDK contains callmtu1.c
and callmtu2.c sample programs that demonstrate how to use the Unicode API.
Use makemtu to compile these programs.

Setting up Unicode
To set up and use Unicode, perform the following procedure. When these
conditions are met, the API registers a Unicode filespace on the server and all file
names in that filespace become Unicode strings.

Note: You cannot store Unicode and non-Unicode file names in the same filespace.
1. Compile the code with the -DUNICODE flag.
2. All strings in your application must be wchar strings.
3. Follow the structures in the tsmapitd.h file, and the function definitions in the

tsmapifp.h file for calls to the API.
4. Set the useUnicode flag to bTrue on the tsmInitEx function call. Any new

filespace will be registered as a Unicode filespace.

When you send data to previously registered, non-Unicode filespaces, the API
continues to send file names as non-Unicode. Rename the old filespaces on the
server to fsname_old and start a new Unicode filespace for new data. The API
restores non-Unicode data from the old filespaces. Use the bIsUnicode field in the
tsmQryRespFSData structure that is returned on a query filespace to determine
whether or not a filespace is Unicode.

Each dsmXXX function call has a matching tsmXXX function call. The difference
between the two are the structures that are used. All tsm structures have dsChar_t

© Copyright IBM Corp. 1993, 2003 59

types for string values when they are compiled with the UNICODE flag. The
dsChar_r maps to wchar. There is no other difference between these interfaces.

Note: Use either one interface or the other. Do not mix the dsm and tsm
interfaces. Ensure that you use the tsm structures and tsm version
definitions.

Some constants continue to be defined in the dsmapitd.h file, so you will need
both the dsmapitd.h and the tsmapitd.h files when you compile.

You can use the Tivoli Storage Manager interface on other operating systems, such
as UNIX, but on these operating systems, the dsChar_t maps to char because
Unicode is supported on Windows only. You can write only one variation of the
application and compile on more than one operating system using the tsm
interface. If you are writing a new application, use the tsm interface. If you are
upgrading an existing application:
1. Convert the dsm structures and calls to the tsm interface
2. Migrate existing filespaces
3. Back up new filespaces with the useUnicode flag set to true.

Note: After you use a Unicode-enabled client to access a node, you cannot connect
to the same node name with an older version of the API, or with an API
from another operating system. If your application uses cross-platform
capability, do not use the Unicode flag. There is no cross-platform support
between Unicode and non-Unicode operating systems.

When you enable the useUnicode flag, all string structures are treated as Unicode
strings. On the server, only the following fields are true Unicode:
v Filespace name
v High level
v Low level
v Archive description.

All remaining fields convert to mbcs in the local code page before they are sent to
the server. Fields, such as nodename, are wchar strings. They must be valid in the
current locale. For example, on a Japanese machine, you can back up files with
Chinese names, but the node name must be a valid string in Japanese. The option
file remains in the current code page. If you need to create a Unicode
include-exclude list, use the inclexcl option with a file name and create a Unicode
file with Unicode patterns in it. For more information, see the Tivoli Storage
Manager Installing and Using the Backup-Archive Client for your operating system.

60 IBM Tivoli Storage Manager: Using the Application Program Interface

Chapter 6. API function calls

This chapter describes the API function calls, listed in alphabetical order. Table 16
provides an alphabetical list of the API function calls, a brief description, and the
page location. The items that follow are described for each function call.

Purpose Describes the function call.

Syntax Contains the actual C code for the function call. This code is
copied from the UNIX version of the dsmapifp.h header file. See
Appendix B, “API function definitions source file”, on page 165.

This file differs slightly on other operating systems. Application
programmers for other operating systems should check their
version of the header file, dsmapifp.h, for the exact syntax of the
API definitions.

Parameters Describes each parameter in the function call, identifying it as
either input (I) or output (O), depending on how it is used. Some
parameters are designated as both input and output (I/O). The
data types that are referenced in this section are defined in the
dsmapitd.h header file. See Appendix A, “API type definitions
source file”, on page 127.

Return codes Contains a list of the return codes that are specific to the function
call. General system errors, such as communication errors, server
problems, or user errors that might appear on any call are not
listed. The return codes are defined in the dsmrc.h header file. For
a complete list of all the return codes with explanations, see
Appendix D, “API return codes with explanations”, on page 185.

Table 16. API function calls

Function Call Description Page

dsmBeginGetData Starts a restore or retrieve operation on a list of objects in storage. 63

dsmBeginQuery Starts a query request to Tivoli Storage Manager for information. 65

dsmBeginTxn Starts one or more transactions that begins a complete action. Either all
of the actions succeed, or none succeed.

68

dsmBindMC Associates, or binds, a management class to the object that is passed. 69

dsmChangePW Changes a Storage Manager password. 71

dsmCleanUp This call is used if dsmSetUp was called. 72

dsmDeleteAccess Deletes current authorization rules for backup versions or archived
copies of your objects.

73

dsmDeleteFS Deletes a file space from storage. 74

dsmDeleteObj Turns off backup objects, or deletes archive objects in storage. 75

dsmEndGetData Ends a dsmBeginGetData session that gets objects from storage. 77

dsmEndGetDataEx Provides the total of LAN-free bytes that were sent. 78

dsmEndGetObj Ends a dsmGetObj session that obtains data for a specified object. 79

dsmEndQuery Signifies the end of a dsmBeginQuery action. 80

dsmEndSendObj Indicates the end of data that is sent to storage. 81

© Copyright IBM Corp. 1993, 2003 61

Table 16. API function calls (continued)

Function Call Description Page

dsmEndSendObjEx Provides compression information and the number of bytes that were
sent.

82

dsmEndTxn Ends a Storage Manager transaction. 83

dsmEndTxnEx Provides group leader object ID information to use with the
dsmGroupHandler function call.

85

dsmGetData Obtains a byte stream of data from Tivoli Storage Manager and place it
in the caller’s buffer.

87

dsmGetNextQObj Gets the next query response from a previous dsmBeginQuery call and
places it in the caller’s buffer.

88

dsmGetObj Obtains the requested object data from the data stream and places it in
the caller’s buffer.

91

dsmGroupHandler Performs an action on a logical file group depending on the input that
is given.

92

dsmInit Starts an API session and connects the client to storage. 93

dsmInitEx Starts an API session using the additional parameters that permit
extended verification.

96

dsmLogEvent Logs a user message to the server log file, to the local error log, or to
both.

100

dsmLogEventEx Logs a user message to the server log file, to the local error log, or to
both.

101

dsmQueryAccess Queries the server for all access authorization rules for either backup
versions or archived copies of your objects.

103

dsmQueryApiVersion Performs a query request for the API library version that the
application client accesses.

104

dsmQueryApiVersionEx Performs a query request for the API library version that the
application client accesses.

105

dsmQueryCliOptions Queries important option values in the user’s option files. 106

dsmQuerySessInfo Starts a query request to Storage Manager for information that is
related to the operation of the specified session in dsmHandle.

107

dsmQuerySessOptions Queries important option values that are valid in the specified session
in dsmHandle.

108

dsmRCMsg Obtains the message text that is associated with an API return code. 109

dsmRegisterFS Registers a new file space with the server. 110

dsmRenameObj Renames the high-level or low-level object name. 111

dsmSendData Sends a byte stream of data to Storage Manager via a buffer. 113

dsmSendObj Starts a request to send a single object to storage. 115

dsmSetAccess Gives other users, or nodes, access to backup versions or archived
copies of your objects, access to all your objects, or access to a selective
set.

119

dsmSetUp Overwrites environment variable values. 59

dsmTerminate Ends a session with the server and cleans up the Storage Manager
environment.

123

dsmUpdateFS Updates a file space in storage. 124

dsmUpdateObj Updates the objInfo information that is associated with an active
backup object already on the server, or it updates archived objects.

125

62 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmBeginGetData
The dsmBeginGetData function call starts a restore or retrieve operation on a list
of objects in storage. This list of objects is contained in the dsmGetList structure.
The application creates this list with values from the query that preceded a call to
dsmBeginGetData.

The caller first must use the restore order fields that are obtained from the object
query to sort the list that is contained in this call. This ensures that the objects are
restored from storage in the most efficient way possible without rewinding or
remounting data tapes.

When getting whole objects, the maximum dsmGetList.numObjID is
DSM_MAX_GET_OBJ. When getting partial objects, the maximum is
DSM_MAX_PARTIAL_GET_OBJ.

Follow the call to dsmBeginGetData with one or more calls to dsmGetObj to
obtain each object within the list. After each object is obtained, or additional data
for the object is not needed, the dsmEndGetObj call is sent.

When all objects are obtained, or the get is canceled, the dsmEndGetData call is
sent. You then can start the cycle again.

Syntax
dsInt16_t dsmBeginGetData (dsUint32_t dsmHandle,

dsBool_t mountWait,
dsmGetType getType,
dsmGetList *dsmGetObjListP);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsBool_t mountWait (I)
A Boolean true or false value indicates whether or not the application client is
willing to wait for offline media to be mounted if the data that is needed is
currently offline. If mountWait is true and the server device is not available,
the server option, IDLETIMEOUT, will determine how long the application
will wait.

dsmGetType getType (I)
An enumerated type consisting of gtBackup and gtArchive that indicates what
type of object to get.

dsmGetList *dsmGetObjListP (I)
The structure that contains information about the objects or partial objects to
restore or retrieve. The structure points to a list of object IDs and, in the case of
a partial object restore or retrieve, a list of associated offsets and lengths. If
your application uses the partial object restore or retrieve function, set the
dsmGetList.stVersion field to dsmGetListPORVersion. In a partial object
restore or retrieve, you cannot compress data while sending it. To enforce this,
set ObjAttr.objCompressed to bTrue.

See Figure 19 on page 51 and Appendix A, “API type definitions source file”,
on page 127 for more information on this structure.

See page 43 for more information on partial object restore or retrieve.

Chapter 6. API function calls 63

Return Codes
The return code numbers are provided in parentheses ().

Table 17. Return codes for dsmBeginGetData

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset that was specified during a partial object retrieve is
greater than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length that was specified during a partial object retrieve is
greater than the length of the object, or the offset in addition to
the length extends past the end of the object.

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_NUMOBJ_EXCEED (2029) The dsmGetList.numObjId is greater than DSM_MAX_GET_OBJ.

DSM_RC_OBJID_NOTFOUND (2063) The object ID was not found. The object was not restored.

DSM_RC_WRONG_VERSION_PARM (2065) The API version of the application client is different from the
Tivoli Storage Manager library version.

64 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmBeginQuery
The dsmBeginQuery function call starts a query request to the server for
information about one of the following items:
v Archived data
v Backed-up data
v Active backed-up data
v File spaces
v Management classes.

The query data that is returned from the call is obtained by one or more calls to
dsmGetNextQObj. When the query is complete, the dsmEndQuery call is sent.

Syntax
dsInt16_t dsmBeginQuery (dsUint32_t dsmHandle,

dsmQueryType queryType,
dsmQueryBuff *queryBuffer);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmQueryType queryType (I)
Identifies the type of query to perform. Select from one of the following:

qtArchive Queries archived objects.
qtBackup Queries backed-up objects.

qtBackupActive Queries active, backed-up objects only for the entire file space name
that you pass. This is referred to as “fast path” and is an efficient way
to query active objects from storage.
Note: You must be a root user on a UNIX operating system.

qtFilespace Queries registered file spaces.
qtMC Queries defined management classes.

qtBackupGroups Queries groups that are closed.
qtOpenGroups Queries groups that are open.

dsmQueryBuff *queryBuffer (I)
Identifies a pointer to a buffer that is mapped to a particular data structure.
This structure is associated with the query type that you pass. These structures
contain the selection criteria for each query type. Complete the fields in each
structure to specify the scope of the query that you want to perform. The first
field of each structure is stVersion, the structure version number.

The data structures and their related fields include:

qryArchiveData:
objName The complete object name. You can use a wildcard character, such as

an asterisk (*) or question mark (?), in the high- or low-level portion
of the name. See “High-level and low-level names” on page 24. An
asterisk matches zero or more characters, and a question mark
matches exactly one character. The objType field of the objName can
be DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or
DSM_OBJ_ANY_TYPE.

owner The owner name of the object.
insDateLowerBound The lower boundary for the archive insert date (the date the object

was archived). To obtain the default lower boundary, set the year
component to DATE_MINUS_INFINITE.

Chapter 6. API function calls 65

insDateUpperBound The upper boundary for the archive insert date (the date the object
was archived). To obtain the default upper boundary, set the year
component to DATE_PLUS_INFINITE.

expDateLowerBound The lower boundary for the expiration date. The default values for
both expiration date fields are the same as for the insert date fields.

expDateUpperBound The upper boundary for the expiration date.
descr The archive description. Enter an asterisk (*) to search on all

descriptions.
qryBackupData:

objName The complete object name. You can use a wildcard character, such as
an asterisk (*) or question mark (?) in the high- or low-level portion
of the name. See “High-level and low-level names” on page 24. An
asterisk matches zero or more characters, and a question mark
matches exactly one character. The objType field of objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or DSM_OBJ_ANY_TYPE.

owner The object owner name.
objState This field can have one of three values: DSM_ACTIVE,

DSM_INACTIVE, or DSM_ANY_MATCH.
pitDate The point-in-time value. A query using this field returns the latest

object that was backed up before this date and time. The objState
can be active or inactive. Objects that were deleted before the pitDate
will not be returned. For example:

Mon - backup ABC(1), DEF, GHI
Tue - backup ABC(2), delete DEF
Thr - backup ABC(3)

On Friday, call the query with a point-in-time value of Wednesday at
12:00:00 a.m. It returns the following information:

ABC(2) - an Inactive copy
GHI - an Active copy

It does not return DEF because it was deleted.
qryABackupData:

objName The complete object name. You can use a wildcard character, such as
an asterisk (*) or question mark (?) in the high- or low-level portion
of the name. See “High-level and low-level names” on page 24. An
asterisk matches zero or more characters, and a question mark
matches exactly one character. The objType field of objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or DSM_OBJ_ANY_TYPE.

qryFSData:
fsName Enter the name of a specific file space in this field, or enter an

asterisk (*) to retrieve information about all registered file spaces.
qryMCData:

mcName Enter the name of a specific management class, or enter an empty
string (“ ”) to retrieve information about all management classes.
Note: You cannot use an asterisk (*).

mcDetail This field has a value of bTrue or bFalse. The value determines
whether information on the backup and archive copy groups of the
management class is returned.

qryBackupGroup:

groupType The group type is DSM_GROUPTYPE_PEER
fsName The File Space name

owner The owner ID
groupLeaderObjId The group leader object ID

objType The object type

66 IBM Tivoli Storage Manager: Using the Application Program Interface

Return Codes
The return code numbers are provided in parentheses ().

Table 18. Return codes for dsmBeginQuery

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_FILE_SPACE_NOT_FOUND (124) The specified file space was not found.

DSM_RC_NO_POLICY_BLK (2007) Server policy information was not available.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner name.

DSM_RC_INVALID_OBJSTATE (2024) Invalid object condition.

DSM_RC_WRONG_VERSION_PARM (2065) The API version of the application client is different from the
Tivoli Storage Manager library version.

Chapter 6. API function calls 67

dsmBeginTxn
The dsmBeginTxn function call begins one or more Tivoli Storage Manager
transactions that begin a complete action; either all the actions succeed or none
succeed. An action can be either a single call or a series of calls. For example, a
dsmSendObj call that is followed by a number of dsmSendData calls can be
considered a single action. Similarly, a dsmSendObj call with a dataBlkPtr that
indicates a data area containing the object to back up is also considered a single
action.

Try to group more than one object together in a single transaction for data transfer
operations. Grouping objects results in significant performance improvements in
the Tivoli Storage Manager system. From both a client and a server perspective, a
certain amount of overhead is incurred by starting and ending each transaction.

There are limits to what you can perform within a single transaction. These
restrictions include:
v A maximum number of objects that you can send or delete in a single

transaction. This limit is located in the data that dsmQuerySessInfo returns in
the ApiSessInfo.maxObjPerTxn field. This corresponds to the TxnGroupMax
server option.

v All objects that are sent to the server (either backup or archive) within a single
transaction must have the same copy destination that is defined in the
management class binding for the object. This value is located in the data that
dsmBindMC returns in the mcBindKey.backup_copy_dest or
mcBindKey.archive_copy_dest fields.

With the API, either the application client can monitor and control these
restrictions, or the API can monitor these restrictions. If the API is monitoring
restrictions, appropriate return codes from the API calls inform the application
client when one or more restrictions are reached.

Always match a dsmBeginTxn call with a dsmEndTxn call to optimize the set of
actions within a pair of dsmBeginTxn and dsmEndTxn calls.

Syntax
dsInt16_t dsmBeginTxn (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
There are no return codes that are specific to this call.

68 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmBindMC
The dsmBindMC function call associates, or binds, a management class to the
passed object. The object is passed through the Include-Exclude list that is pointed
to in the options file. If a match is not found in the Include list for a specific
management class, the default management class is assigned. The Exclude list can
prevent objects from a backup but not from an archive.

The application client can use the parameters that are returned in the mcBindKey
structure to determine if this object should be backed up or archived, or whether a
new transaction must be started because of different copy destinations. See
dsmBeginTxn for more information.

Call dsmBindMC before you call dsmSendObj because every object must have a
management class associated with it. This call can be performed within a
transaction or outside of a transaction. For example, within a multiple object
transaction, if dsmBindMC indicates that the object has a different copy
destination than the previous object, the transaction must be ended and a new
transaction started. In this case, another dsmBindMC is not required because one
has already been performed for this object.

Syntax
dsInt16_t dsmBindMC (dsUint32_t dsmHandle,

dsmObjName *objNameP,
dsmSendType sendType,
mcBindKey *mcBindKeyP);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmObjName *objNameP (I)
A pointer to the structure that contains the file space name, high-level object
name, low-level object name, and object type.

dsmSendType sendType (I)
Identifies whether this management class bind is performed for archive or
backup sends. The possible values for this call include:

stBackup A backup object
stArchive An archive object

stBackupMountWait A backup object
stArchiveMountWait An archive object

For the dsmBindMC call, stBackup and stBackupMountWait are equivalent, and
stArchive and stArchiveMountWait are equivalent.

mcBindKey *mcBindKeyP (O)
This is the address of an mcBindKey structure where the management class
information is returned. The application client can use the information that is
returned here to determine if this object fits within a multiple object
transaction, or to perform a management class query on the management class
that is bound to the object.

Chapter 6. API function calls 69

Return Codes
The return code numbers are provided in parentheses ().

Table 19. Return codes for dsmBindMC

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

DSM_RC_INVALID_PARM (109) One of the parameters that was passed has an invalid value.

DSM_RC_TL_EXCLUDED (185) The backup object is excluded and cannot be sent.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WRONG_VERSION_PARM (2065) Application client API version is different from the Tivoli
Storage Manager library version.

70 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmChangePW
The dsmChangePW function call changes a Tivoli Storage Manager password. On
a multiple-user operating system such as UNIX, only the root user or the
TSM-authorized user can use this call.

On the Windows and Novell operating systems, you can specify the password in
the dsm.opt file. In this situation, dsmChangePW does not update the dsm.opt file.
After the call to dsmChangePW is made, you must update the dsm.opt file
separately.

This call must process successfully if dsmInitEx returns
DSM_RC_VERIFIER_EXPIRED. The session will end if the dsmChangePW call fails
in this situation.

If dsmChangePW is called for some other reason, the session will remain open
regardless of the return code.

Syntax
dsInt16_t dsmChangePW (dsUint32_t dsmHandle,

char *oldPW,
char *newPW);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

char *oldPW (I)
The old password of the caller. The maximum length is
DSM_MAX_VERIFIER_LENGTH.

char *newPW (I)
The new password of the caller. The maximum length is
DSM_MAX_VERIFIER_LENGTH.

Return Codes
The return code numbers are provided in parentheses ().

Table 20. Return codes for dsmChangePW

Return code Explanation

DSM_RC_ABORT_BAD_VERIFIER (6) An incorrect password was entered.

DSM_RC_AUTH_FAILURE (137) Authentication failure. Old password is incorrect.

DSM_RC_NEWPW_REQD (2030) A value must be entered for the new password.

DSM_RC_OLDPW_REQD (2031) A value must be entered for the old password.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NEED_ROOT (2300) The API caller must be a root user or a TSM-authorized user.

Chapter 6. API function calls 71

dsmCleanUp
The dsmCleanUp function call is used if dsmSetUp was called. The dsmCleanUp
function call should be called after dsmTerminate. You cannot make any other calls
after you call dsmCleanUp.

Syntax
dsInt16_t DSMLINKAGE dsmCleanUp

(dsBool_t mtFlag);

Parameters
dsBool_t mtFlag (I)

This parameter specifies that the API was used either in a single thread, or a
multi-thread mode. Possible values include:

DSM_SINGLETHREAD
DSM_MULTITHREAD

Return Codes
There are no return codes that are specific to this call.

72 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmDeleteAccess
The dsmDeleteAccess function call deletes current authorization rules for backup
versions or archived copies of your objects. When you delete an authorization rule,
you revoke the access a user has to any files that are specified by the rule.

When you use dsmDeleteAccess, you can only delete one rule at a time. Obtain
the rule ID through the dsmQueryAccess command.

Syntax
dsInt16_t DSMLINKAGE dsmDeleteAccess

(dsUint32_t dsmHandle,
dsUint32_t ruleNum) ;

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsUint32_t ruleNum (I)
The rule ID for the access rule that is deleted. This value is obtained from a
dsmQueryAccess function call.

Return Codes
There are no return codes that are specific to this call.

Chapter 6. API function calls 73

dsmDeleteFS

Note: On a UNIX operating system, only a root user or a TSM-authorized user can
delete a file space.

The dsmDeleteFS function call deletes a file space from storage. To delete a file
space, you must have the appropriate permissions that your Tivoli Storage
Manager administrator gave you. To determine whether you have the necessary
permissions, call dsmQuerySessInfo. This function call returns a data structure of
type ApiSessInfo, that includes two fields, archDel and backDel.

If the file space that you need to delete contains backup versions, you must have
backup delete authority (backDel = BACKDEL_YES). If the file space contains archive
copies, you must have archive delete authority (archDel = ARCHDEL_YES). If the file
space contains both backup versions and archive copies, you must have both types
of delete authority.

Syntax
dsInt16_t dsmDeleteFS (dsUint32_t dsmHandle,

char *fsName,
unsigned char repository);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

char *fsName (I)
A pointer to the file space name to delete. The wildcard character is not
permitted.

unsigned char repository (I)
Indicates whether the file space to delete is a backup repository, archive
repository, or both. The possible values for this field include:
DSM_ARCHIVE_REP /* archive repository */
DSM_BACKUP_REP /* backup repository */
DSM_REPOS_ALL /* all repository types */

Return Codes
The return code numbers are provided in parentheses ().

Table 21. Return codes for dsmDeleteFS

Return code Explanation

DSM_RC_ABORT_NOT_AUTHORIZED (27) You do not have the necessary authority to delete the file space.

DSM_RC_INVALID_REPOS (2015) Invalid value for repository.

DSM_RC_FSNAME_NOTFOUND (2060) File space name not found.

DSM_RC_NEED_ROOT (2300) API caller must be a root user.

74 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmDeleteObj
The dsmDeleteObj function call inactivates backup objects, deletes backup objects,
or deletes archive objects in storage. The dtBackup type inactivates the currently
active backup copy only. The dtBackupID type removes from the server whichever
object ID is specified. Call this function from within a transaction. See
dsmBeginTxn for more information.

Before you send dsmDeleteObj, send the query sequence that is described in
“Querying the Tivoli Storage Manager system” on page 30 to obtain the
information for delInfo. The call to dsmGetNextQObj returns a data structure
named qryRespBackupData for backup queries, or qryRespArchiveData for archive
queries. These data structures contain the information that you need for delInfo.

The value of maxObjPerTxn determines the maximum number of objects that you
can delete in a single transaction. To obtain this value, call dsmQuerySessInfo.

Note: Your node must have the appropriate permission that your Tivoli Storage
Manager administrator set. To delete archive objects, you must have archive
delete authority. You do not need backup delete authority to inactivate a
backup object.

Syntax
dsInt16_t dsmDeleteObj (dsUint32_t dsmHandle,

dsmDelType delType,
dsmDelInfo delInfo)

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmDelType delType (I)
Indicates what type of object (backup or archive) to delete. Possible values
include:

dtArchive The object to delete previously was archived.
dtBackup The object to inactivate previously was backed up.

dtBackupID The object to delete previously was backed up.

To use this delete type, you must have a Tivoli Storage Manager server,
version 3.7.04 or later.

Attention: Using this delType with objID removes the backup object
from the server. Only an owner of an object can delete it.
You can delete any version (active or inactive) of an object. The server
reconciles the versions. If you delete an active version of an object, the
first inactive version becomes active. If you delete an inactive version of
an object, all older versions will advance. The node must be registered
with backDel permission.

dsmDelInfo delInfo (I)
A structure whose fields identify the object. The fields are different, depending
on whether the object is a backup object or an archive object. The structure to
inactivate a backup object, delBack, contains the object name and the object
copy group. The structure for an archive object, delArch, contains the object ID.

The structure to remove a backup object, delBackID, contains the object ID.

Chapter 6. API function calls 75

Return Codes
The return code numbers are provided in parentheses ().

Table 22. Return codes for dsmDeleteObj

Return code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name is not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client API version is different from the Tivoli
Storage Manager library version.

76 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmEndGetData
The dsmEndGetData function call ends a dsmBeginGetData session that obtains
objects from storage.

The dsmEndGetData function call starts after all objects that you want to restore
are processed, or ends the get process prematurely. Call dsmEndGetData to end a
dsmBeginGetData session before you can continue other processing.

Depending on when dsmEndGetData is called, the API might need to finish
processing a partial data stream before the process can be stopped. The caller,
therefore, should not expect an immediate return from this call. Use dsmTerminate
if the application needs to close the session and end the restore immediately.

Syntax
dsInt16_t dsmEndGetData (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
There are no return codes that are specific to this call.

Chapter 6. API function calls 77

dsmEndGetDataEx
The dsmEndGetDataEx function call provides the total of LAN-free bytes that
were sent. It is an extension of the dsmEndGetData function call.

Syntax
dsInt16_t dsmEndGetDataEx (dsmEndGetDataExIn_t * dsmEndGetDataExInP,

dsmEndGetDataExOut_t * dsmEndGetDataExOutP);

Parameters
dsmEndGetDataExIn_t * dsmEndGetDataExInP (I)

Passes the end get object information.

dsmHandle
The handle that identifies the session and associates it with subsequent
calls.

dsmEndGetDataExOut_t * dsmEndGetDataExOutP (O)
This structure contains this input parameter:

totalLFBytesRecv
The total LAN-free bytes that are received.

Return Codes
There are no return codes that are specific to this call.

78 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmEndGetObj
The dsmEndGetObj function call ends a dsmGetObj session that obtains data for
a specified object.

Start the dsmEndGetObj call after an end of data is received for the object. This
indicates that all data was received, or more data will not be received for this
object. Before you can start another dsmGetObj call, you must call
dsmEndGetObj.

Depending on when dsmEndGetObj is called, the API might need to finish
processing a partial data stream before the process can stop. Do not expect an
immediate return from this call.

Syntax
dsInt16_t dsmEndGetObj (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
The return code numbers are provided in parentheses ().

Table 23. Return codes for dsmEndGetObj

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete the request.

Chapter 6. API function calls 79

dsmEndQuery
The dsmEndQuery function call signifies the end of a dsmBeginQuery action.

The application client sends dsmEndQuery to complete a query. This call either is
sent after all query responses are obtained through dsmGetNextQObj, or it is sent
to end a query before all data is returned.

Note: The Storage Manager continues to send the query data from the server to
the client in this case, but the API discards any remaining data.

Once a dsmBeginQuery is sent, a dsmEndQuery must be sent before any other
activity can start.

Syntax
dsInt16_t dsmEndQuery (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
There are no return codes that are specific to this call.

80 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmEndSendObj
The dsmEndSendObj function call indicates the end of data that is sent to storage.

Enter the dsmEndSendObj function call to indicate the end of data from the
dsmSendObj and dsmSendData calls. A protocol violation occurs if this is not
performed. The exception to this rule is if you call dsmEndTxn to end the
transaction. Doing this discards all data that was sent for the transaction.

Syntax
dsInt16_t dsmEndSendObj (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
The return code numbers are provided in parentheses ().

Table 24. Return codes for dsmEndSendObj

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete this request.

Chapter 6. API function calls 81

dsmEndSendObjEx
The dsmEndSendObjEx function call provides compression information and the
number of bytes that were sent. It is an extension of the dsmEndSendObj function
call.

Syntax
dsInt16_t dsmEndSendObjEx (dsmEndSendObjExIn_t *dsmEndSendObjExInP,

dsmEndSendObjExOut_t *dsmEndSendObjExOutP);

Parameters
dsmEndSendObjExIn_t *dsmEndSendObjExInP (I)

This parameter passes the end send object information.

dsmHandle
The handle that identifies the session and associates it with subsequent
calls.

dsmEndSendObjExOut_t *dsmEndSendObjExOutP (O)
This parameter passes the end send object information:

totalBytesSent The total number of bytes that are read from the application.
objCompressed A flag that displays if the object was compressed.

totalCompressedSize The total byte size after compression.
totalLFBytesSent The total LAN-free bytes that were sent.

Return Codes
The return code numbers are provided in parentheses ().

Table 25. Return codes for dsmEndSendObjEx

Return code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM remaining to complete this request.

82 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmEndTxn
The dsmEndTxn function call ends a Tivoli Storage Manager transaction. Pair the
dsmEndTxn function call with dsmBeginTxn to identify the call or set of calls that
are considered a transaction. The application client can specify on the dsmEndTxn
call whether or not the transaction should be committed or ended.

Perform all of the following calls within the bounds of a transaction:
dsmSendObj
dsmSendData
dsmEndSendObj
dsmDeleteObj

Syntax
dsInt16_t dsmEndTxn (dsUint32_t dsmHandle,

dsUint8_t vote,
dsUint16_t *reason);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsUint8_t vote (I)
Indicates whether or not the application client wants to commit all the actions
that are done between the previous dsmBeginTxn call and this call. The
possible values are listed below.

DSM_VOTE_COMMIT /* commit current transaction */
DSM_VOTE_ABORT /* roll back current transaction */

Use DSM_VOTE_ABORT only if your application has found a reason to stop the
transaction.

dsUint16_t *reason (O)
If the call to dsmEndTxn ends with an error, or the value of vote is not agreed
to, this parameter will have a reason code indicating why the vote failed.

Note: The return code for the call might be zero, and the reason code might be
non-zero. Therefore, the application client must always check for errors
on both the return code and the reason (if (rc || reason)) before you
can assume a successful completion.

If the application specifies a vote of DSM_VOTE_ABORT, the reason code will be
DSM_RS_ABORT_BY_CLIENT (3). See Appendix C, “API return codes source
file”, on page 175 for a list of the possible reason codes. Numbers 1 through 50
in the return codes list are reserved for the reason codes. If the server ends the
transaction, the return code will be DSM_RC_CHECK_REASON_CODE. In this
case, the reason value will contain more information on the cause of the abort.

Chapter 6. API function calls 83

Return Codes
The return code numbers are provided in parentheses ().

Table 26. Return codes for dsmEndTxn

Return code Explanation

DSM_RC_ABORT_CRC_FAILED (236) The CRC that was received from the server does not match the
CRC that was calculated by the client.

DSM_RC_INVALID_VOTE (2011) The value that was specified for vote is not valid.

DSM_RC_CHECK_REASON_CODE (2302) The transaction was aborted. Check the reason field.

84 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmEndTxnEx
The dsmEndTxnEx function call provides group leader object ID information for
you to use with the dsmGroupHandler function call. It is an extension of the
dsmEndTxn function call.

Syntax
dsInt16_t dsmEndTxnEx (dsmEndTxnExIn_t *dsmEndTxnExInP

dsmEndTxnExOut_t *dsmEndTxnExOutP);

Parameters
dsmEndTxnExIn_t *dsmEndTxnExInP (I)

This structure contains the following parameter:

dsmHandle
The handle that identifies the session and associates it with subsequent
Tivoli Storage Manager calls.

dsUint8_t vote (I)
Indicates whether or not the application client wants to commit all the
actions that are done between the previous dsmBeginTxn call and this call.
The possible values are listed below.

DSM_VOTE_COMMIT /* commit current transaction */
DSM_VOTE_ABORT /* roll back current transaction */

Use DSM_VOTE_ABORT only if your application has found a reason to stop the
transaction.

dsmEndTxnExOut_t *dsmEndTxnExOutP (O)
This structure contains the following parameter:

dsUint16_t *reason (O)
If the call to dsmEndTxnEx ends with an error or the value of vote is not
agreed to, this parameter will have a reason code indicating why the vote
failed.

Note: The return code for the call might be zero, and the reason code
might be non-zero. Therefore, the application client must always
check for errors on both the return code and the reason (if (rc ||
reason)) before you can assume a successful completion.

If the application specifies a vote of DSM_VOTE_ABORT, the reason code will
be DSM_RS_ABORT_BY_CLIENT (3). See Appendix C, “API return codes
source file”, on page 175 for a list of the possible reason codes. Numbers 1
through 50 in the return codes list are reserved for the reason codes. If the
server ends the transaction, the return code will be
DSM_RC_CHECK_REASON_CODE. In this case, the reason value will
contain more information on the cause of the abort.

groupLeaderObjId
The group leader object ID that is returned when the DSM_ACTION_OPEN flag
is used with the dsmGroupHandler call.

Chapter 6. API function calls 85

Return Codes
The return code numbers are provided in parentheses ().

Table 27. Return codes for dsmEndTxnEx

Return code Explanation

DSM_RC_INVALID_VOTE (2011) The value that was specified for vote is invalid.

DSM_RC_CHECK_REASON_CODE (2302) The transaction was aborted. Check the reason field.

86 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmGetData
The dsmGetData function call obtains a byte stream of data from Tivoli Storage
Manager and place it in the caller’s buffer. The application client calls dsmGetData
when there is more data to receive from a previous dsmGetObj or dsmGetData
call.

Syntax
dsInt16_t dsmGetData (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
Points to a structure that includes both a pointer to the buffer for the data that
is received and the size of the buffer. On return, this structure contains the
number of bytes that is actually transferred. See Appendix A, “API type
definitions source file”, on page 127 for the type definition.

Return Codes
The return code numbers are provided in parentheses ().

Table 28. Return codes for dsmGetData

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset that was specified during a partial object retrieve is
greater than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length that was specified during a partial object retrieve is
greater than the length of the object, or the offset in addition to
the length extends beyond the end of the object.

DSM_RC_FINISHED (121) Finished processing. The last buffer was received. Check
numBytes for the amount of data and then call dsmEndGetObj.

DSM_RC_NULL_DATABLKPTR (2001) Datablock pointer is null.

DSM_RC_ZERO_BUFLEN (2008) Buffer length is zero for datablock pointer.

DSM_RC_NULL_BUFPTR (2009) Buffer pointer is null for datablock pointer.

DSM_RC_WRONG_VERSION_PARM (2065) The application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

Chapter 6. API function calls 87

dsmGetNextQObj
The dsmGetNextQObj function call gets the next query response from a previous
dsmBeginQuery call and places it in the caller’s buffer. The dsmGetNextQObj call
is called one or more times. Each time it is called, a single query record is
retrieved. If the application client needs to end the query before retrieving all of
the data, you can send a dsmEndQuery call.

The dataBlkPtr must point to a buffer that is defined with the qryResp*Data
structure type. The context in which dsmGetNextQObj is called determines the
type of structure that is entered on the query response.

Syntax
dsInt16_t dsmGetNextQObj (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
Points to a structure that includes both a pointer to the buffer for the data to
be received and the size of the buffer. This buffer is the qryResp*Data structure
that is described below. On return, this structure contains the number of bytes
that is actually transferred. See Appendix A, “API type definitions source file”,
on page 127 for the type definition of DataBlk. The structure associated with

each type of query is:

Table 29. DataBlk pointer structure

Query Response structure Fields

qtArchive qryRespArchiveData sizeEstimate. This field contains the
value that is passed on a previous
dsmSendObj call.

mediaClass. This field can have a value
of MEDIA_FIXED if the object is on
disk, or MEDIA_LIBRARY if the object
is on tape.

qtBackup qryRespBackupData restoreOrderExt. This field is of type
dsUint16_t. Sort on this field when
restoring several objects on a
dsmBeginGetData call. An example of
sorting code for this is in the API
sample, dapiqry.c. See also Figure 16 on
page 46 for a sorting example.

sizeEstimate. This field contains the
value that is passed on a previous
dsmSendObj call.

mediaClass. This field can have a value
of MEDIA_FIXED if the object is on
disk, or MEDIA_LIBRARY if the object
is on tape.

qtBackupActive qryARespBackupData —

88 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 29. DataBlk pointer structure (continued)

Query Response structure Fields

qtFilespace qryRespFSData backStartDate. This field contains the
server’s time stamp when the file space
was updated with the backStartDate
action.

backCompleteDate. This field contains the
server time stamp when the file space was
updated with the backCompleteDate action.

qtMC qryRespMCData
qryRespMCDetailData

—

Chapter 6. API function calls 89

Return Codes
The return code numbers are provided in parentheses ().

Table 30. Return codes for dsmGetNextQObj

Return code Explanation

DSM_RC_ABORT_NO_MATCH (2) No match for the query was requested.

DSM_RC_FINISHED (121) Finished processing (start dsmEndQuery).

DSM_RC_UNKNOWN_FORMAT (122) The file that Tivoli Storage Manager attempted to restore or
retrieve has an unknown format.

DSM_RC_COMM_PROTOCOL_ERROR (136) Communication protocol error.

DSM_RC_NULL_DATABLKPTR (2001) Pointer is not pointing to a data block.

DSM_RC_INVALID_MCNAME (2025) Invalid management class name.

DSM_RC_BAD_CALL_SEQUENCE (2041) The sequence of calls is invalid.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

DSM_RC_BUFF_TOO_SMALL (2210) Buffer is too small.

90 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmGetObj
The dsmGetObj function call obtains the requested object data from the Tivoli
Storage Manager data stream and places it in the caller’s buffer. The dsmGetObj
call uses the object ID to obtain the next object or partial object from the data
stream.

The data for the indicated object is placed in the buffer to which DataBlk points. If
more data is available, you must make one or more calls to dsmGetData to receive
the remaining object data until a return code of DSM_RC_FINISHED is returned.
Check the numBytes field in DataBlk to see whether any data remains in the buffer.

Objects should be asked for in the order that they were listed on the
dsmBeginGetData call in the dsmGetList parameter. The exception is when the
application client needs to pass over an object in the data stream to get to an object
later in the list. If the object that is indicated by the object ID is not the next object
in the stream, the data stream is processed until the object is located, or the stream
is completed. Use this feature with care, because it might be necessary to process
and discard large amounts of data to locate the requested object.

Syntax
dsInt16_t dsmGetObj (dsUint32_t dsmHandle,

ObjID *objIdP,
DataBlk *dataBlkPtr);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

ObjID *objIdP (I)
A pointer to the ID of the object to restore.

DataBlk *dataBlkPtr (I/O)
A pointer to the buffer where the restored data is placed.

Return Codes
The return code numbers are provided in parentheses ().

Table 31. Return codes for dsmGetObj

Return code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset that is specified during a partial object retrieve is
greater than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length that is specified during a partial object retrieve is
greater than the length of the object, or the offset in addition to
the length extends past the end of the object.

DSM_RC_FINISHED (121) Finished processing (start dsmEndGetObj).

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

Chapter 6. API function calls 91

dsmGroupHandler
The dsmGroupHandler function call performs an action on a logical file group
depending on the input that is given. The client relates a number of individual
objects together to reference and manage on the Tivoli Storage Manager server as a
logical group. For more information, see “File grouping” on page 41.

Syntax
dsInt16_t dsmGroupHandler (dsmGroupHandlerIn_t *dsmGroupHandlerInP,

dsmGroupHandlerOut_t *dsmGroupHandlerOutP);

Parameters
dsmGroupHandlerIn_t *dsmGroupHandlerInP (I)

Passes group attributes to the API.

groupType
The type of the group. Values include:

DSM_GROUPTYPE_PEER A peer group.

actionType
The action to be executed. Values include:

DSM_GROUP_ACTION_OPEN Creates a new group.
DSM_GROUP_ACTION_CLOSE Commits and saves an open group.
DSM_GROUP_ACTION_ADD Appends to a group.
DSM_GROUP_ACTION_ASSIGNTO Assigns to another group.
DSM_GROUP_ACTION_REMOVE Removes a member from a group.

memberType.
The group type of the object. Values include:

DSM_MEMBERTYPE_LEADER Group leader.
DSM_MEMBERTYPE_MEMBER Group member.

*uniqueGroupTagP
A unique string ID that is associated with a group.

leaderObjId
The Object ID for the group leader.

*objNameP
A pointer to the object name of the group leader.

memberObjList
A list of objects to remove or assign.

dsmGroupHandlerOut_t *dsmGroupHandlerOutP (O)
Passes the address of the structure that the API completes. The structure
version number is returned.

Return Codes
The return code numbers are provided in parentheses ().

Table 32. Return codes for dsmGroupHandler

Return code Explanation

DSM_RC_ABORT_INVALID_GROUP_ACTION
(237)

An invalid operation was attempted on a group leader or
member.

92 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmInit
The dsmInit function call starts an API session and connects the client to Tivoli
Storage Manager storage. The application client can have only one active session
open at a time. To open another session with different parameters, use the
dsmTerminate call first to end the current session.

To permit cross-node query and restore or retrieve, use the -fromnode and
-fromowner string options. See “Accessing across nodes and across owners” on
page 25 for more information.

Syntax
dsInt16_t dsmInit (dsUint32_t *dsmHandle,

dsmApiVersion *dsmApiVersionP,
char *clientNodeNameP,
char *clientOwnerNameP,
char *clientPasswordP,
char *applicationType,
char *configfile,
char *options);

Parameters
dsUint32_t *dsmHandle (O)

The handle that identifies this initialization session and associates it with
subsequent Tivoli Storage Manager calls.

dsmApiVersion *dsmApiVersionP (I)
A pointer to the data structure identifying the version of the API that the
application client is using for this session. The structure contains the values of
the three constants, DSM_API_VERSION, DSM_API_RELEASE, and
DSM_API_LEVEL, that are set in the dsmapitd.h file. A previous call to
dsmQueryApiVersion must be performed to ensure that compatibility exists
between the application client API version and the version of the API library
that is installed on the user’s workstation.

char *clientNodeNameP (I)
This parameter is a pointer to the node for the Tivoli Storage Manager session.
All sessions must have a node name associated with them. The constant,
DSM_MAX_NODE_LENGTH, in the dsmapitd.h file sets the maximum size
that is permitted for a node name.

The node name is not case-sensitive.

If this parameter is set both to NULL and passwordaccess prompt, the API
attempts to obtain the node name first from the options string that was passed.
If it is not there, the API then attempts to obtain the node name from the
configuration file or options files. If these attempts to find the node name fail,
the UNIX API uses the system host name, while APIs on other operating
systems return the DSM_RC_REJECT_ID_UNKNOWN code.

This parameter must be NULL if the passwordaccess option in the dsm.sys file
is set to generate. The API uses the system host name.

char *clientOwnerNameP (I)
This parameter is a pointer to the owner of the Tivoli Storage Manager session.
If the operating system on which the session starts is a multi-user operating
system, an owner name of NULL (the root user) has the authority to back up,
archive, restore, or retrieve any objects belonging to the application, regardless
of the owner of the object.

Chapter 6. API function calls 93

The owner name is case-sensitive.

This parameter must be NULL if the passwordaccess option in the dsm.sys file
is set to generate. The API then uses the login user ID.

Note: On a multi-user operating system, if passwordaccessis set to prompt, it is
not necessary for the owner name to match the active user ID of the
session running the application.

char *clientPasswordP (I)
This parameter is a pointer to the password of the node on which the Tivoli
Storage Manager session runs. The DSM_MAX_VERIFIER_LENGTH constant in the
dsmapitd.h file sets the maximum size that is permitted for a password.

The password is not case-sensitive.

Except when the password file is first started, the value of this parameter is
ignored if passwordaccess is set to generate.

char *applicationType (I)
This parameter identifies the application that is running the session. The
application client defines the value.

Each time an API application client starts a session with the server, the
application type (or platform) of the client is updated on the server. We
recommend that the application type value contain an operating system
abbreviation because this value is entered in the platform field on the server.
The maximum string length is DSM_MAX_PLATFORM_LENGTH.

To see the current value of the application type, call dsmQuerySessInfo.

char *configfile (I)
This parameter points to a character string that contains the fully-qualified
name of an API configuration file. Options specified in the API configuration
file override their specification in the client options file. Options files are
defined when Tivoli Storage Manager (client or API) is installed.

For the description and use of configuration files, see “Understanding
configuration files and options files” on page 1 or the Tivoli Storage Manager
Installing and Using the Backup-Archive Client for your operating system.

char *options (I)
Points to a character string that can contain user options such as:
v Compressalways
v Servername (UNIX only)
v TCPServeraddr (non-UNIX)
v Fromnode
v Fromowner.

The application client can use the option list to override the values of these
options that the configuration file sets.

The format of the options is:
1. Each option that is specified in the option list begins with a dash (-) and is

followed by the option keyword.
2. The keyword, in turn, is followed by an equal sign (=) and then followed

by the option parameter.
3. If the option parameter contains a blank space, enclose the parameter with

single or double quotes.
4. If more than one option is specified, separate the options with blanks.

94 IBM Tivoli Storage Manager: Using the Application Program Interface

If options are NULL, values for all options are taken from the user options file
or the API configuration file. For a description and use of each option, see the
Tivoli Storage Manager Installing and Using the Backup-Archive Client for your
operating system

Return Codes
The return code numbers are provided in parentheses ().

Table 33. Return codes for dsmInit

Return code Explanation

DSM_RC_ABORT_SYSTEM_ERROR (1) The server has detected a system error and has notified the
clients.

DSM_RC_REJECT_VERIFIER_EXPIRED (52) Password has expired and must be updated.

DSM_RC_REJECT_ID_UNKNOWN (53) Could not find the node name.

DSM_RC_AUTH_FAILURE (137) There was an authentication failure.

DSM_RC_NO_STARTING_DELIMITER (148) There is no starting delimiter in pattern.

DSM_RC_NEEDED_DIR_DELIMITER (149) A directory delimiter is needed immediately before and after
the “match directories” meta-string (“...”) and one was not
located.

DSM_RC_UNMATCHED_QUOTE (177) An unmatched quote is in the option string.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

DSM_RC_INVALID_OPT (2013) An entry in the option string is invalid.

DSM_RC_INVALID_DS_HANDLE (2014) Invalid DSM handle.

DSM_RC_NO_OWNER_REQD (2032) Owner parameter must be NULL when passwordaccess is set
to generate.

DSM_RC_NO_NODE_REQD (2033) Node parameter must be NULL when passwordaccess is set
to generate.

DSM_RC_WRONG_VERSION (2064) The API version for the application client has a higher value
than the Tivoli Storage Manager version.

DSM_RC_PASSWD_TOOLONG (2103) The password that was specified is too long.

DSM_RC_NO_OPT_FILE (2220) A configuration file could not be located.

DSM_RC_INVALID_KEYWORD (2221) A keyword that was specified in an options string is invalid.

DSM_RC_PATTERN_TOO_COMPLEX (2222) The include-exclude pattern is too complex for Tivoli Storage
Manager to interpret.

DSM_RC_NO_CLOSING_BRACKET (2223) There is no closing bracket in the pattern.

DSM_RC_INVALID_SERVER (2225) For a multi-user environment, the server in the system
configuration file was not found.

DSM_RC_NO_HOST_ADDR (2226) Not enough information to connect to host.

DSM_RC_MACHINE_SAME (2227) The nodename that is defined in the options file cannot be
the same as the system host name.

DSM_RC_NO_API_CONFIGFILE (2228) Cannot open the configuration file.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys file or the include-exclude file was not
found.

Chapter 6. API function calls 95

dsmInitEx
The dsmInitEx function call starts an API session using the additional parameters
that permit extended verification.

Syntax
dsInt16_t dsmInitEx (dsmInitExIn_t *dsmInitExInP,
dsmInitExOut_t *dsmInitExOutP) ;

Parameters
dsmInitExIn_t *dsmInitExInP

This structure contains the following input parameters:

dsmApiVersion *dsmApiVersionP (I)
This parameter is a pointer to the data structure that identifies the version
of the API that the application client is using for this session. The structure
contains the values of the four constants, DSM_API_VERSION,
DSM_API_RELEASE, DSM_API_LEVEL, and DSM_API_SUBLEVEL that
are set in the dsmapitd.h file. A previous call to dsmQueryApiVersionEx
must be performed to ensure that compatibility exists between the API
version of the application client and the version of the API library installed
on the user’s workstation.

char *clientNodeNameP (I)
This parameter is a pointer to the node for the Tivoli Storage Manager
session. All sessions must have a node name associated with them. The
constant, DSM_MAX_NODE_LENGTH in the dsmapitd.h file sets the
maximum size that is permitted for a node name.

The node name is not case sensitive.

If this parameter is set to NULL, and passwordaccess is set to prompt, the
API attempts to obtain the node name first from the options string that
was passed. If it is not there, the API then attempts to obtain the node
name from the configuration file or options files. If these attempts to find
the node name fail, the UNIX API uses the system host name, while the
APIs from other operating systems return the code,
DSM_RC_REJECT_ID_UNKNOWN.

This parameter must be NULL if the passwordaccess option in the dsm.sys
file is set to generate. The API then uses the system host name.

char *clientOwnerNameP (I)
This parameter is a pointer to the owner of the Tivoli Storage Manager
session. If the operating system is a multi-user platform on which the
session is started, an owner name of NULL (the root user) has the
authority to back up, archive, restore, or retrieve any objects belonging to
the application, regardless of the owner of the object.

The owner name is case sensitive.

This parameter must be NULL if the passwordaccess option in the dsm.sys
file is set to generate. The API then uses the login user ID.

Note: On a multi-user platform, if passwordaccess is set to prompt, it is not
necessary for the owner name to match the active user ID of the
session running the application.

96 IBM Tivoli Storage Manager: Using the Application Program Interface

char *clientPasswordP (I)
A pointer to the password of the node on which the Tivoli Storage
Manager session runs. The DSM_MAX_VERIFIER_LENGTH constant in
the dsmapitd.h file sets the maximum size that is allowed for a password.

The password is not case sensitive.

Except when the password file is first started, the value of this parameter
is ignored if passwordaccess i set to generate.

char *userNameP;
A pointer to the administrative user name that has client authority for this
node.

char *userPasswordP;
A pointer to the password for the userName, if a value is supplied.

char *applicationType (I)
Identifies the application that is running the Tivoli Storage Manager
session. The application client identifies the value.

Each time an API application client starts a session with the server, the
application type (or operating system) of the client is updated on the
server. We recommend that the application type value contain an operating
system abbreviation because this value is entered in the platform field on
the server. The maximum string length is
DSM_MAX_PLATFORM_LENGTH.

To view the current value of the application type, call dsmQuerySessInfo.

char *configfile (I)
Points to a character string that contains the fully-qualified name of an API
configuration file. Options specified in the API configuration file override
their specification in the client options file. Options files are defined when
Tivoli Storage Manager (client or API) is installed.

For a description and use of configuration files, see “Understanding
configuration files and options files” on page 1 and the Tivoli Storage
Manager Installing and Using the Backup-Archive Client for your operating
system.

char *options (I)
Points to a character string that can contain user options such as:
v Compressalways
v Servername (UNIX and OS/400 only)
v TCPServeraddr (non-UNIX)
v Fromnode
v Fromowner.

The application client can use the options list to override the values of
these options that the configuration file sets.

The format of the options is:
1. Each option that is specified in the option list begins with a dash (-)

and is followed by the option keyword.
2. The keyword is followed by an equal sign (=) and then the option

parameter.
3. If the option parameter contains a blank space, enclose the parameter

with single or double quotes.
4. If more than one option is specified, separate the options with blanks.

Chapter 6. API function calls 97

If options are NULL, values for all options are taken from the user options
file or the API configuration file. You can find descriptions and use of each
option in the Tivoli Storage Manager Installing and Using the Backup-Archive
Client for your operating system.

dirDelimiter
The directory delimiter that is prefixed on the file space, high-level or
low-level names. You need to specify this only if the application overrides
the system defaults. In a UNIX environment, this is /. In a Windows
environment, this is \.

useUnicode
A Boolean flag that indicates if Unicode is enabled.

bCrossPlatform
A Boolean flag that indicates if cross-platform is enabled.

dsmInitExOut_t *dsmInitExOut P
This structure contains the output parameters.

dsUint32_t *dsmHandle (0)
The handle that identifies this initialization session and associates it with
subsequent API calls.

infoRC
Additional information about the return code. Check both the function
return code and infoRC. If infoRC is
DSM_RC_REJECT_LASTSESS_CANCELED (69), the Tivoli Storage
Manager administrator cancelled the last session. The application should
decide if it will cancel this session attempt by calling dsmTerminate
immediately.

Return Codes
The return code numbers are provided in parentheses ().

Table 34. Return codes for dsmInitEx

Return code Explanation

DSM_RC_ABORT_SYSTEM_ERROR (1) The Tivoli Storage Manager server has detected a system
error and has notified the clients.

DSM_RC_REJECT_VERIFIER_EXPIRED (52) Password has expired and must be updated. The next call
must be dsmChangePW with the handle returned on this
call.

DSM_RC_REJECT_ID_UNKNOWN (53) Could not find the node name.

DSM_RC_TA_COMM_DOWN (103) The communications link is down.

DSM_RC_AUTH_FAILURE (137) There was an authentication failure.

DSM_RC_NO_STARTING_DELIMITER (148) There is no starting delimiter in pattern.

DSM_RC_NEEDED_DIR_DELIMITER (149) A directory delimiter is needed immediately before and after
the “match directories” meta-string (“...”) and one was not
found.

DSM_RC_UNMATCHED_QUOTE (177) An unmatched quote is in the option string.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

DSM_RC_INVALID_OPT (2013) An entry in the option string is invalid.

DSM_RC_INVALID_DS_HANDLE (2014) Invalid DSM handle.

DSM_RC_NO_OWNER_REQD (2032) Owner parameter must be NULL when passwordaccess is set
to generate.

98 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 34. Return codes for dsmInitEx (continued)

Return code Explanation

DSM_RC_NO_NODE_REQD (2033) Node parameter must be NULL when passwordaccessis set
to generate.

DSM_RC_WRONG_VERSION (2064) Application client’s API version has a higher value than the
Tivoli Storage Manager version.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NO_OPT_FILE (2220) No configuration file could be found.

DSM_RC_INVALID_KEYWORD (2221) A keyword specified in an options string is invalid.

DSM_RC_PATTERN_TOO_COMPLEX (2222) Include-exclude pattern too complex to be interpreted by
Tivoli Storage Manager.

DSM_RC_NO_CLOSING_BRACKET (2223) There is no closing bracket in the pattern.

DSM_RC_INVALID_SERVER (2225) For a multi-user environment, the server in the system
configuration file was not found.

DSM_RC_NO_HOST_ADDR (2226) Not enough information to connect to the host.

DSM_RC_MACHINE_SAME (2227) The nodename defined in the options file cannot be the same
as the system host name.

DSM_RC_NO_API_CONFIGFILE (2228) Cannot open the configuration file.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys or the include-exclude file was not found.

Chapter 6. API function calls 99

dsmLogEvent
The dsmLogEvent function call logs a user message (ANE4991 I) to the server log
file, to the local error log, or to both. A structure of type logInfo is passed in the
call. This call must be performed while at InSession state inside a session. Do not
perform it within a send, get, or query. See Figure 20 on page 54. To retrieve
messages logged on the server, use the query actlog command through the
Administrative Client. See the Tivoli Storage Manager Administrator’s Reference for
more information.

Syntax
dsInt16_t dsmLogEvent

(dsUint32_t dsmHandle,
logInfo *logInfoP);

Parameters
dsUint32_t dsmHandle(I)

The handle that associates this call with a previous dsmInitEx call.

logInfo *logInfoP (I)
Passes the message and destination. The application client is responsible for
allocating storage for the structure.

The fields in the logInfo structure are:

message The text of the message to be logged. This must be a
null-ended string. The maximum length is
DSM_MAX_RC_MSG_LENGTH.

dsmLogtype Specifies where to log the message. Possible values include:
logServer, logLocal, logBoth.

Return Codes
The return code numbers are provided in parentheses ().

Table 35. Return codes for dsmLogEvent

Return code Explanation

DSM_RC_STRING_TOO_LONG (2120) The message string is too long.

100 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmLogEventEx
The dsmLogEventEx function call logs a user message to the server log file, to the
local error log, or to both. This call must be performed while at InSession state
inside a session. Do not perform it within a send, get, or query. See Figure 20 on
page 54.

The severity determines the Tivoli Storage Manager message number. To view
messages that are logged on the server, use the query actlog command through the
Administrative Client. Use the Tivoli Storage Manager client option,
errorlogretention, to prune the client error log file if the application generates
numerous client messages written to the client log (dsmLogType either logLocal or
logBoth). Refer to the Tivoli Storage Manager Administrator’s Reference for more
information.

Syntax
extern dsInt16_t DSMLINKAGE dsmLogEventEx(

dsUint32_t dsmHandle,
dsmLogExIn_t *dsmLogExInP,
dsmLogExOut_t *dsmLogExOutP

);

Parameters
dsUint32_t dsmHandle(I)

The handle that associates this call with a previous dsmInitEx call.

dsmLogExIn_t *dsmLogExInP
This structure contains the input parameters.

dsmLogSeverity severity;
This parameter is the event severity. The possible values are:

logSevInfo, /* information ANE4990 */
logSevWarning, /* warning ANE4991 */
logSevError, /* Error ANE4992 */
logSevSevere /* severe ANE4993 */

char appMsgID[8];
This parameter is a string to identify the specific application message. The
format we recommend is three characters that are followed by four
numbers. For example DSM0250.

dsmLogType logType;
This parameter specifies where to direct the event. The possible values
include: logServer, logLocal, or logBoth.

char *message;
This parameter is the text of the event message to log. This must be a
null-ended string. The maximum length is DSM_MAX_RC_MSG_LENGTH.

Note: Messages that go to the server should be in English. Non-English
messages will not display correctly.

dsmLogExOut_t *dsmLogExOutP
This structure contains the output parameters.

Note: Currently, there are no output parameters.

Chapter 6. API function calls 101

Return Codes
The return code numbers are provided in parentheses ().

Table 36. Return codes for dsmLogEventEx

Return code Explanation

DSM_RC_STRING_TOO_LONG (2120) The message string is too long.

102 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmQueryAccess
The dsmQueryAccess function call queries the server for all access authorization
rules for either backup versions or archived copies of your objects. A pointer to an
array of access rules is passed in to the call, and the completed array is returned. A
pointer to the number of rules is passed in to indicate how many rules are in the
array.

Syntax
dsInt16_t DSMLINKAGE dsmQueryAccess

(dsUint32_t dsmHandle),
qryRespAccessData **accessListP,
dsUint16_t *numberOfRules) ;

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

qryRespAccessData **accessListP (O)
A pointer to an array of qryRespAccessData elements that the API library
allocates. Each element corresponds to an access rule. The number of elements
in the array is returned in the numberOfRules parameter. The information that
is returned in each qryRespAccessData element includes the following:

ruleNumber The ID for the access rule. This identifies the rule for deletion.
AccessType The backup or archive type.

Node The node on which you gave access.
Owner The user to whom you gave access.

objName The high-level, or low-level file space descriptors.

dsUint32_t *numberOfRules (O)
Returns the number of rules in the accessList array.

Return Codes
There are no return codes that are specific to this call.

Chapter 6. API function calls 103

dsmQueryApiVersion
The dsmQueryApiVersion function call performs a query request for the API
library version that the application client accesses.

All updates to the API are made in an upward-compatible format. Any application
client with an API version or release less than, or equal to, the API library on the
end user’s workstation operates without change. Be aware before you proceed that
should the dsmQueryApiVersion call return a version or version release older than
that of the application clients, some API calls might be enhanced in a manner that
is not supported by the end user’s older version of the API.

The application API version number is stored in the dsmapitd.h header file as
constants DSM_API_VERSION, DSM_API_RELEASE, and DSM_API_LEVEL.

Syntax
void dsmQueryApiVersion (dsmApiVersion *apiVersionP);

Parameters
dsmApiVersion *apiVersionP (O)

This parameter is a pointer to the structure that contains the API library
version, release, and level components. For example, if the library is version
1.1.0, then, after returning from the call, the fields of the structure contain the
following values:

dsmApiVersionP->version = 1
dsmApiVersionP->release = 1
dsmApiVersionP->level = 0

Return Codes
There are no return codes that are specific to this call.

104 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmQueryApiVersionEx
The dsmQueryApiVersionEx function call performs a query request for the API
library version that the application client accesses.

All updates to the API are made in an upward-compatible format. Any application
client that has an API version or release less than or equal to the API library on the
end user’s workstation operates without change. See “Summary of Code Changes”
in the README.API file for exceptions to upward compatibility. If the
dsmQueryApiVersionEx call returns a version or version release that is different
from that of the application client, be aware before you proceed that some API
calls might be enhanced in a manner that is not supported by the end user’s older
version of the API.

The application API version number is stored in the dsmapitd.h header file as
constants DSM_API_VERSION, DSM_API_RELEASE, DSM_API_LEVEL, and
DSM_API_SUBLEVEL.

Syntax
void dsmQueryApiVersionEx (dsmApiVersionEx *apiVersionP);

Parameters
dsmApiVersionEx *apiVersionP (O)

This parameter is a pointer to the structure that contains the API library’s
version, release, level, and sublevel components. For example, if the library is
version 5.1.0.0, then, after returning from the call, the fields of the structure
contain the following values:
v ApiVersionP->version = 5
v ApiVersionP->release = 1
v ApiVersionP->level = 0
v ApiVersionP->subLevel = 0

Return Codes
There are no return codes that are specific to this call.

Chapter 6. API function calls 105

dsmQueryCliOptions
The dsmQueryCliOptions function call queries important option values in the
user’s option files. A structure of type optStruct is passed in the call and contains
the information. This call is performed before dsmInitEx is called, and it
determines the setup before the session.

For more information about options, see the Tivoli Storage Manager Installing and
Using the Backup-Archive Client for your operating system.

Syntax
dsInt16_t dsmQueryCliOptions

(optStruct *optstructP);

Parameters
optStruct *optstructP (I/O)

This parameter passes the address of the structure that the API completes. The
application client is responsible for allocating storage for the structure. On
successful return, the appropriate information is entered in the fields in the
structure.

The information returned in the optStruct structure is:

dsmiDir The value of the environment DSMI_DIR variable.
dsmiConfig The client option file as specified by the DSMI_CONFIG environment

variable.
serverName The name of the Tivoli Storage Manager server.

commMethod The communication method selected. See the #defines for DSM_COMM_*
in the dsmapitd.h file.

serverAddress The address of the server that is based on the communication method.
nodeName The name of the client’s node (machine).

passwordAccess The values are: bTrue for generate, and bFalse for prompt.

Return Codes
There are no return codes that are specific to this call.

106 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmQuerySessInfo
The dsmQuerySessInfo function call starts a query request to Tivoli Storage
Manager for information related to the operation of the specified session in
dsmHandle. A structure of type ApiSessInfo is passed in the call, with all available
session related information entered. This call is started after a successful dsmInitEx
call.

The information that is returned in the ApiSessInfo structure includes the
following:
v Server information: port number, date and time, and type.
v Client defaults: application type, delete permissions, delimiters, and transaction

limits.
v Session information: login ID, and owner.
v Policy data: domain, active policy set, and retention grace period.

See Appendix A, “API type definitions source file”, on page 127 for information
about the content of the structure that is passed and each field within it.

Syntax
dsInt16_t dsmQuerySessInfo (dsUint32_t dsmHandle,

ApiSessInfo *SessInfoP);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

ApiSessInfo *SessInfoP (I/O)
This parameter passes the address of the structure that the API enters. The
application client is responsible for allocating storage for the structure and for
completing the field entries that indicate the version of the structure that is
used. On successful return, the fields in the structure are completed with the
appropriate information. The adsmServerName is the name that is given in the
define server command on the Tivoli Storage Manager server.

Return Codes
The return code numbers are provided in parentheses ().

Table 37. Return codes for dsmQuerySessInfo

Return code Explanation

DSM_RC_NO_SESS_BLK (2006) No server session block information.

DSM_RC_NO_POLICY_BLK (2007) No server policy information available.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

Chapter 6. API function calls 107

dsmQuerySessOptions
The dsmQuerySessOptions function call queries important option values that are
valid in the specified session in dsmHandle. A structure of type optStruct is
passed in the call and contains the information.

This call is started after a successful dsmInitEx call. The values that are returned
might be different from the values returned on a dsmQueryCliOptions call,
depending on values that are passed to the dsmInitEx call, primarily optString,
and optFile. For information about option precedence, see “Understanding
configuration files and options files” on page 1.

Syntax
dsInt16_t dsmQuerySessOptions

(dsUint32_t dsmHandle,
optStruct *optstructP);

Parameters
dsUint32_t dsmhandle(I)

The handle that associates this call with a previous dsmInitEx call.

optStruct *optstructP (I/O)
This parameter passes the address of the structure that the API completes. The
application client is responsible for allocating storage for the structure. On
successful return, the fields in the structure are completed with the appropriate
information.

The information returned in the optStruct structure is:

dsmiDir The value of the DSMI_DIR environment variable.
dsmiConfig The dsm.opt file that the DSMI_CONFIG environment variable

specifies.
serverName The name of the Tivoli Storage Manager server stanza in the options

file.
commMethod The communication method that was selected. See the #defines for

DSM_COMM_* in the dsmapitd.h file.
serverAddress The address of the server that is based on the communication method.

nodeName The name of the client’s node (machine).
compression The value of the compression option (bTrue=on and bFalse=off).

compressAlways The value of the compressalways option (bTrue=on and bFalse=off).
passwordAccess Value bTrue for generate, and bFalse for prompt.

For more information about options, see Tivoli Storage Manager Installing and
Using the Backup-Archive Client for your operating system.

Return Codes
There are no return codes that are specific to this call.

108 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmRCMsg
The dsmRCMsg function call obtains the message text that is associated with an
API return code.

The msg parameter displays the message prefix return code in parentheses (),
followed by the message text. For example, a call to dsmRCMsg might return the
following:

ANS0264E (RC2300) Only root user can execute dsmChangePW or dsmDeleteFS.

Syntax
dsInt16_t dsmRCMsg (dsUint32_t dsmHandle,

dsInt16_t dsmRC,
char *msg);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsInt16_t dsmRC (I)
The API return code for which you want the associated message text. The API
return codes are listed in the dsmrc.h file. See Appendix C, “API return codes
source file”, on page 175 for more information.

char *msg (O)
This parameter is the message text that is associated with the return code,
dsmRC. The caller is responsible for allocating enough space for the message
text.

The maximum length for msg is defined as DSM_MAX_RC_MSG_LENGTH.

On platforms that have National Language Support and a choice of language
message files, the API returns a message string in the national language.

Return Codes
The return code numbers are provided in parentheses ().

Table 38. Return codes for dsmRCMsg

Return code Explanation

DSM_RC_NULL_MSG (2002) The msg parameter for dsmRCMsg call is a NULL pointer.

DSM_RC_INVALID_RETCODE (2021) Return code that was passed to dsmRCMsg call is an invalid
code.

DSM_RC_NLS_CANT_OPEN_TXT (0610) Unable to open the message text file.

Chapter 6. API function calls 109

dsmRegisterFS
The dsmRegisterFS function call registers a new file space with the Tivoli Storage
Manager server. Register a file space first before you can back up any data to it.

Application clients should not use the same file space names that a backup-archive
client would use.
v On UNIX, run the df command for these names.
v On Windows, these names are generally the volume labels that are associated

with the different drives on your system.
v On NetWare, these names are normally volume names. There is always one

called sys:, but other volume names can be almost anything.
v On OS/400, there is no backup-archive client.

Syntax
dsInt16_t dsmRegisterFS (dsUint32_t dsmHandle,

regFSData *regFilespaceP);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

regFSData *regFilespaceP (I)
This parameter passes the name of the file space and associated information
that you need to register with the Tivoli Storage Manager server.

Note: The fstype field includes the prefix, API: All file space queries will
display this string. For example, if the user passes myfstype for fstype in
dsmRegisterFS, the actual value string on the server will return
API:myfstype when queried. This prefix distinguishes API objects from

backup-archive objects.

The usable area for fsInfo is now DSM_MAX_USER_FSINFO_LENGTH.

Return Codes
The return code numbers are provided in parentheses ().

Table 39. Return codes for dsmRegisterFS

Return code Explanation

DSM_RC_INVALID_FSNAME (2016) Invalid file space name.

DSM_RC_INVALID_DRIVE_CHAR (2026) Drive letter is not an alphabetic character.

DSM_RC_NULL_FSNAME (2027) Null file space name.

DSM_RC_FS_ALREADY_REGED (2062) File space is already registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information is too long.

110 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmRenameObj

Note: The Tivoli Storage Manager server must be at the 3.7.4.0 level or higher for
this function to work.

The dsmRenameObj function call renames the high-level or low-level object name.
For backup objects, pass in the current object name and changes either for
high-level or low-level object names. For archive objects, pass in the current object
file space name and object ID, and changes either for high-level or low-level object
names. Use this function call within dsmBeginTxn and dsmEndTxn calls.

The merge flag determines whether or not a duplicate backup object name is
merged with the existing backups. If the new name corresponds to an existing
object and merge is true, the current object is converted to the new name and it
becomes the active version of the new name while the existing active object that
had that name becomes the top most inactive copy of the object. If the new name
corresponds to an existing object and merge is false, the function then returns the
return code, DSM_RC_ABORT_DUPLICATE_OBJECT.

The dsmRenameObj function call tests for these merge conditions:
v The current dsmObjName object and the new high-level or low-level object

must match on owner, copy group, and management class.
v The current dsmObjName must have been backed up more recently than the

currently active object with the new name.
v There must be only an active copy of the current dsmObjName with no inactive

copies.

Note: Only the owner of the object can rename it.

Syntax
dsInt16_t dsmRenameObj (dsmRenameIn_t *dsmRenameInP,

dsmRenameOut_t *dsmRenameOutP);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmRenameIn_t *dsmRenameInP
This structure contains the input parameters.

dsUint8_t repository (I);
This parameter indicates whether the file space to delete is in the backup
repository or the archive repository.

dsmObjName *objNameP (I);
This parameter is a pointer to the structure that contains the current file
space name, high-level object name, low-level object name, and object type.

char newHl [DSM_MAX_HL_LENGTH + 1];
This parameter specifies the new high-level name.

char newLl [DSM_MAX_LL_LENGTH + 1];
This parameter specifies the new low-level name.

Chapter 6. API function calls 111

dsBool_t merge;
This parameter determines whether or not a backup object is merged with
duplicate named objects. The values are either true or false.

ObjID;
The object ID for archive objects.

dsmRenameOut_t *dsmRnameOutP
This structure contains the output parameters.

Note: Currently, there are no output parameters.

Return Codes
The return code numbers are provided in parentheses ().

Table 40. Return codes for dsmRenameObj

Return code Explanation

DSM_RC_ABORT_MERGE_ERROR (45) Server detected a merge error.

DSM_RC_ABORT_DUPLICATE_OBJECT (32) Object already exists and merge is false.

DSM_RC_ABORT_NO_MATCH (2) Object not found.

DSM_RC_REJECT_SERVER_DOWNLEVEL (58) The Tivoli Storage Manager server must be at the 3.7.4.0
level or higher for this function to work.

112 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmSendData
The dsmSendData function call sends a byte stream of data to Tivoli Storage
Manager through a buffer. The application client can pass any type of data for
storage on the server. Usually, this data is file data, but it is not limited to such.
You can call dsmSendData several times, if the byte stream of data that you want
to send is large.

Note: The application client cannot reuse the buffer that is specified in
dsmSendData until the dsmSendData call returns.

Note: If Tivoli Storage Manager returns code 157 (DSM_RC_WILL_ABORT), start a
call to dsmEndSendObj and then to dsmEndTxn with a vote of
DSM_VOTE_COMMIT. The application should then receive return code 2302
(DSM_RC_CHECK_REASON_CODE) and pass the reason code back to the
application user. This will inform the user why the server is ending the
transaction.

Syntax
dsInt16_t dsmSendData (dsUint32_t dsmHandle,

DataBlk *dataBlkPtr);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer
from which the data is to be sent, as well as the size of the buffer. On return,
this structure contains the number of bytes that is actually transferred. See
Appendix A, “API type definitions source file”, on page 127 for the type
definition.

Chapter 6. API function calls 113

Return Codes
The return code numbers are provided in parentheses ().

Table 41. Return codes for dsmSendData

Return code Explanation

DSM_RC_NO_COMPRESS_MEMORY (154) Insufficient memory available to perform data compression or
expansion.

DSM_RC_COMPRESS_GREW (155) During compression the compressed data grew in size compared
to the original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the
transaction to halt.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different than the Tivoli
Storage Manager library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end the transaction.

DSM_RC_OBJ_EXCLUDED (2080) The include-exclude list excludes the object.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group and will not be sent to the
server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group and will not be sent to the
server.

DSM_RC_SENDDATA_WITH_ZERO_SIZE (2107) The object cannot send data with a zero byte sizeEstimate.

114 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmSendObj
The dsmSendObj function call starts a request to send a single object to storage.
Multiple dsmSendObj calls and associated dsmSendData calls can be made within
the bounds of a transaction for performance reasons.

The dsmSendObj call processes the data for the object as a byte stream passed in
memory buffers. The dataBlkPtr parameter in the dsmSendObj call permits the
application client to either:
v Pass the data and the attributes (the attributes are passed through the objAttrPtr)

of the object in a single call.
v Specify part of the object data through the dsmSendObj call and the remainder

of the data through one or more dsmSendData calls.

Alternatively, the application client can specify only the attributes through the
dsmSendObj call and specify the object data through one or more calls to
dsmSendData. For this method, set dataBlkPtr to NULL on the dsmSendObj call.

Note: For certain object types, byte stream data might not be associated with the
data; for example, a directory entry with no extended attributes.

Before dsmSendObj is called, a preceding dsmBindMC call must be made to
properly bind a management class to the object that you want to back up or
archive. The API keeps this binding so that it can associate the proper management
class with the object when it is sent to the server. If you permit the management
class that is bound on a dsmSendObj call to default for an object type of directory
(DSM_OBJ_DIRECTORY), the default might not be the default management class.
Instead, the management class with the greatest retention time will be used. If
more than one management class exists with this retention time, the first one that
is encountered will be used.

Follow all object data that is sent to storage with a dsmEndSendObj call. If you do
not have object data to send to the server, or all data was contained within the
dsmSendObj call, start a dsmEndSendObj call before you can start another
dsmSendObj call. If multiple data sends were required through the dsmSendData
call, the dsmEndSendObj follows the last send to indicate the state change.

Note: If Tivoli Storage Manager returns code 157 (DSM_RC_WILL_ABORT), start a
call to dsmEndTxn with a vote of DSM_VOTE_COMMIT. The application
should then receive return code 2302 (DSM_RC_CHECK_REASON_CODE)
and pass the reason code back to the application user. This will inform the
user why the server is ending the transaction.

If the reason code is 11 (DSM_RS_ABORT_NO_REPOSIT_SPACE), it is
possible that the sizeEstimate is too small for the actual amount of data. The
application needs to determine a more accurate sizeEstimate and send the
data again.

Syntax
dsInt16_t dsmSendObj (dsUint32_t dsmHandle,

dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
DataBlk *dataBlkPtr);

Chapter 6. API function calls 115

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmSendType sendType (I)
This parameter specifies the type of send that is being performed. Possible
values include:

stBackup A backup object that is sent to the server.
stArchive An archive object that is sent to the server.

stBackupMountWait A backup object for which you want the server to wait until the
necessary device, such as a tape, is mounted.

stArchiveMountWait An archive object for which you want the server to wait until the
necessary device, such as a tape, is mounted.

Note: Use the MountWait types if there is any possibility that your application
user might send data to a tape.

void *sendBuff (I)
This parameter is a pointer to a structure that contains other information
specific to the sendType on the call. Currently, only a sendType of stArchive
has an associated structure. This structure is called sndArchiveData and it
contains the archive description.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name,
high-level object name, low-level object name, and object type. See “Identifying
the object” on page 23 for more information.

ObjAttr *objAttrPtr (I)
This parameter passes object attributes of interest to the application. See
Appendix A, “API type definitions source file”, on page 127 for the type
definition.

The attributes are:
v owner. This attribute refers to the owner of the object. Determining whether

the owner is declared to be a specific name or an empty string is important
when getting the object back from Tivoli Storage Manager storage. See
“Accessing objects” on page 25 for more information.

v sizeEstimate. The size estimate attribute is a best estimate of the total size of
the data object to send to the server. Be as accurate as possible on this size,
because the server uses this attribute for efficient space allocation and object
placement within its storage resources.
If the size estimate that you specified is significantly smaller than the actual
number of bytes that are sent, the server might have difficulty allocating
enough space and end the transaction with a reason code of 11
(DSM_RS_ABORT_NO_REPOSIT_SPACE).

Note: The size estimate is for the total size of the data object in bytes.

Objects with a size smaller than DSM_MIN_COMPRESS_SIZE will not
compress.

If your object has no bit data (only the attribute information from this call),
the sizeEstimate should be zero.

116 IBM Tivoli Storage Manager: Using the Application Program Interface

Note: Starting with version 5.1.0, the copy destination within a transaction is
not checked for consistency on zero-length objects.

v objCompressed. This attribute is a Boolean value that states whether or not the
object data has already been compressed.
If the object is compressed (object compressed=bTrue), Tivoli Storage
Manager does not try to compress it again. If it is not compressed, Tivoli
Storage Manager decides whether to compress the object, based on the
values of the compression option set by the Tivoli Storage Manager
administrator and set in the API configuration sources.
If your application plans to use partial object restore or retrieve, you cannot
compress the data while sending it. To enforce this, set
ObjAttr.objCompressed to bTrue.

v objInfo. Use this attribute to save information about the particular object.

Note: Information is not stored here automatically. When this attribute is
used, the attribute, objInfoLength, also must be set to show the length
of objInfo.

v mcNameP. This attribute contains the name of a management class that
overrides the management class that is obtained from dsmBindMC.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer
of data that is to be backed up or archived and the size of that buffer. This
parameter applies to dsmSendObj only. If you want to begin sending data on
a subsequent dsmSendData call, rather than on the dsmSendObj call, set the
buffer pointer in the DataBlk structure to NULL. On return, this structure
contains the number of bytes that is actually transferred. See Appendix A, “API
type definitions source file”, on page 127 for the type definition.

Chapter 6. API function calls 117

Return Codes
The return code numbers are provided in parentheses ().

Table 42. Return codes for dsmSendObj

Return code Explanation

DSM_RC_NO_COMPRESS_MEMORY (154) Insufficient memory available to perform data compression or
expansion.

DSM_RC_COMPRESS_GREW (155) During compression, the compressed data grew in size
compared to the original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the
transaction to be halted.

DSM_RC_TL_NOACG (186) The management class for this file does not have a valid copy
group for the send type.

DSM_RC_NULL_OBJNAME (2000) Null object name.

DSM_RC_NULL_OBJATTRPTR (2004) Null object attribute pointer.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WILDCHAR_NOTALLOWED (2050) Wildcard characters not allowed.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end transaction.

DSM_RC_OBJ_EXCLUDED (2080) The include-exclude list excluded the object.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group, and it will not be sent to
the server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group, and it will not be sent to
the server.

DSM_RC_DESC_TOOLONG (2100) Description is too long.

DSM_RC_OBJINFO_TOOLONG (2101) Object information is too long.

DSM_RC_HL_TOOLONG (2102) High-level qualifier is too long.

DSM_RC_FILESPACE_TOOLONG (2104) File space name is too long.

DSM_RC_LL_TOOLONG (2105) Low-level qualifier is too long.

DSM_RC_NEEDTO_CALL_BINDMC (2301) dsmBindMC must be called first.

118 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmSetAccess
The dsmSetAccess function call gives other users or nodes access to backup
versions or archived copies of your objects, access to all your objects, or access to a
selective set. When you give access to another user, that user can query, restore, or
retrieve your files. This command supports wildcards for the following fields: fs,
hl, ll, node, owner.

Note: You cannot give access to both backup versions and archive copies by using
a single command. You must specify either backup or archive.

Syntax
dsInt16_t DSMLINKAGE dsmSetAccess

(dsUint32_t dsmHandle,
dsmSetAccessType accessType,
dsmObjName *objNameP,
char *node,
char *owner);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

dsmAccessType accessType (I)
This parameter specifies the type of objects for which you want to give access.
Possible values include:

atBackup Specifies that access is being set to backup objects.
atArchive Specifies that the access is being set for archive objects.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name,
the high-level object name, and the low-level object name.

Note: To specify all file spaces, use an asterisk (*) for the file space name.

char *node (I)
This parameter is a pointer to the node name for which access is given. For
any node, specify an asterisk (*).

char *owner (I)
This parameter is a pointer to the user name on the node to which you gave
access. For all users, specify an asterisk (*).

Chapter 6. API function calls 119

Return Codes
The return code numbers are provided in parentheses ().

Table 43. Return codes for dsmSetAccess

Return code Explanation

DSM_RC_INVALID_ACCESS_TYPE Invalid access type specified.

DSM_RC_FILE_SPACE_NOT_FOUND (124) Specified file space was not found on the server.

DSM_RC_QUERY_COMM_FAILURE Communication error during server query.

DSM_RC_NO_FILES_BACKUP No files were backed up for this file space.

DSM_RC_NO_FILES_ARCHIVE No files were archived for this file space.

DSM_RC_INVALID_SETACCESS Invalid formulation of set access.

120 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmSetUp
The dsmSetUp function call overwrites environment variable values. Call
dsmSetUp before dsmInitEx. The values that were passed in the envSetUp structure
will overwrite any existing environment variables or defaults. If you specify NULL
for a field, values will be taken from the environment. If you do not set a value,
the values will be taken from the defaults.

For UNIX Only: For versions 3.1.6 through version 4.1.2, you cannot use the
Trusted Communication Agent in multi-thread mode. If you want to use
passwordaccess generate, you must be a TSM-authorized user. For version 4.2 and
beyond, this is no longer true.

Note: If you use dsmSetUp, always call dsmTerminate before dsmCleanUp.

Syntax
dsInt16_t DSMLINKAGE dsmSetUp

(dsBool_t mtFlag,
envSetUp *envSetUpP);

Parameters
dsBool_t mtFlag (I)

This parameter specifies if the API will be used in a single thread, or a
multi-thread mode. Values include:

DSM_SINGLETHREAD
DSM_MULTITHREAD

Note: The multi-thread flag must be on for LAN-free data transfer to occur.

envSetUp *envSetUpP(I)
This parameter is a pointer to the structure that holds the overwrite values.
Specify NULL if you do not want to override existing environment variables.
The fields in the envSetUp structure include:

dsmiDir A fully-qualified directory path that contains a message file on UNIX. It
also specifies the dsmtca and the dsm.sys directories.

dsmiConfig The fully-qualified name of the client options file.
dsmiLog The fully-qualified path of the error log directory.

argv Pass the argv[0] name of the calling program if the application must
run as TSM-authorized. See “Using passwordaccess generate without
TCA” on page 21 for more information.

logName The file name for an error log if the application does not use
dsierror.log.

Chapter 6. API function calls 121

Return Codes
The return code numbers are provided in parentheses ().

Table 44. Return codes for dsmSetUp

Return code Explanation

DSM_RC_INVALID_OPT (-0400) An invalid option was found.

DSM_RC_NO_HOST_ADDR (-0405) The TCPSERVERADDRESS for this server is not defined in the
server name stanza in the system options file.

DSM_RC_NO_OPT_FILE (0406) The options file specified by filename cannot be found.

DSM_RC_MACHINE_SAME (0408) The NODENAME defined in the options file cannot be the same
as the system HostName.

DSM_RC_INVALID_SERVER (0409) The system options file does not contain the SERVERNAME
option.

DSM_RC_INVALID_KEYWORD (0410) An invalid option keyword was found in the dsmInitEx
configuration file, the option string, dsm.sys, or dsm.opt.

DSM_RC_PATTERN_TOO_COMPLEX (0411) The include or exclude pattern issued is too complex to be
accurately interpreted by Tivoli Storage Manager.

DSM_RC_NO_CLOSING_BRACKET (0412) The include or exclude pattern is incorrectly constructed. The
closing bracket is missing.

DSM_RC_NLS_CANT_OPEN_TXT (0610) The system is unable to open the message text file.

DSM_RC_NLS_INVALID_CNTL_REC (0612) The system is unable to use the message text file.

DSM_RC_NOT_ADSM_AUTHORIZED (0927) You must be the TSM-Authorized user to have multithreading
and passwordaccess generate.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys or the include-exclude file was not found.

122 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmTerminate
The dsmTerminate function call ends a session with the Tivoli Storage Manager
server and cleans up the Tivoli Storage Manager environment.

Syntax
dsInt16_t dsmTerminate (dsUint32_t dsmHandle);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

Return Codes
There are no return codes that are specific for this call.

Chapter 6. API function calls 123

dsmUpdateFS
The dsmUpdateFS function call updates a file space in Tivoli Storage Manager
storage. This ensures that the Tivoli Storage Manager administrator has a current
record of your file space.

Syntax
dsInt16_t dsmUpdateFS (dsUint32_t dsmHandle,

char *fs,
dsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct);

Parameters
dsUint32_t dsmHandle (I)

The handle that associates this call with a previous dsmInitEx call.

char *fs (I)
This parameter is a pointer to the file space name.

dsmFSUpd *fsUpdP (I)
This parameter is a pointer to the structure that has the proper fields
completed for the update that you want. Complete only those fields that need
updating.

dsUint32_t fsUpdAct (I)
A two-byte bit map that indicates which of the above fields to update. The bit
masks are:
v DSM_FSUPD_FSTYPE
v DSM_FSUPD_FSINFO

Note: For Intel operating systems, the drive letter value from
dsmDOSAttrib is also updated when FSINFO is selected.

v DSM_FSUPD_OCCUPANCY
v DSM_FSUPD_CAPACITY
v DSM_FSUPD_BACKSTARTDATE
v DSM_FSUPD_BACKCOMPLETEDATE

See the DSM_FSUPD definitions in Appendix A, “API type definitions source
file”, on page 127 for a description of these bit masks.

Return Codes
The return code numbers are provided in parentheses ().

Table 45. Return codes for dsmUpdateFS

Return code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name is not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client’s API version is different from the Tivoli
Storage Manager library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information is too long.

124 IBM Tivoli Storage Manager: Using the Application Program Interface

dsmUpdateObj
The dsmUpdateObj function call updates the meta information associated with an
active backup or archive object already on the server. The application bit data will
not be affected. To update an object, you must give a specific non-wildcard name.
To update an archived object, set the dsmSendType to stArchive. Only the latest
named archive object is updated.

Note: The server must be at 3.1.2.1 or a higher level.

You can only start the dsmUpdateObj call in the session state; it cannot be called
inside a transaction because it performs its own transaction. And, you can update
only one object at a time.

Note: On a UNIX operating system, if you change the owner field, you will not be
able to query or restore the object unless you are the root user.

Syntax
dsInt16_t dsmUpdateObj

(dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr, /* objInfo */
dsUint16_t objUpdAct); /* action bit vector */

Parameters
The field descriptions are the same as those in dsmSendObj, with the following
exceptions:

dsmObjName *objNameP (I)
You cannot use a wildcard.

ObjAttr *objAttrPtr (I)
The objCompressed field is ignored for this call.

Other differences are:
v owner. If you specify a new owner field, the owner will change.
v sizeEstimate. If you specify a non-zero value, we will expect this to be the

actual amount of data sent, in bytes. The value will be stored in the Tivoli
Storage Manager meta data for future use.

v objInfo. This attribute contains the new information to be placed in the
objInfo field. Set the objInfoLength to the length of the new objInfo.

dsUint16_t objUpdAct
The bit masks and possible actions for objUpdAct are:

DSM_BACKUPD_MC
Updates the management class for the object.

DSM_BACKUPD_OBJINFO
Updates objInfo, objInfoLength, and sizeEstimate.

DSM_BACKUPD_OWNER
Updates the owner of the object.

Chapter 6. API function calls 125

DSM_ARCHUPD_DESCR
Updates the Description field. Enter the value for the new description
through the SendBuff parameter. See the sample program for proper
use.

DSM_ARCHUPD_OBJINFO
Updates objInfo, objInfoLength, and sizeEstimate.

DSM_ARCHUPD_OWNER
Updates the owner of the object.

Return Codes
The return code numbers are provided in parentheses ().

Table 46. Return codes for dsmUpdateObj

Return code Explanation

DSM_RC_INVALID_ ACTION (2232) Invalid action.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_BAD_CALL_SEQUENCE (2041) Sequence of calls is invalid.

DSM_RC_WILDCHAR_NOTALLOWED (2050) Wildcard characters are not allowed.

DSM_RC_ABORT_NO_MATCH (2) Previous query does not match.

126 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix A. API type definitions source file

This appendix contains structure definitions, type definitions, and constants for the
application program interface (API). The first header files, dsmapitd.h and
tsmapitd.h, illustrate the definitions that are common to all operating systems.

The second header file, dsmapips.h, provides an example of definitions that are
specific to a particular operating system; in this example, the Windows platform.

The third header file, release.h, includes the version and release information.
/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2003 *
***/

/**
* Header File Name: dsmapitd.h
*
* Environment: **
* ** This is a platform-independent source file **
*
* **
*
* Design Notes: This file contains basic data types and constants
* includable by all client source files. The constants
* within this file should be set properly for the
* particular machine and operating system on which the
* client software is to be run.
*
* Platform specific definitions are included in dsmapips.h
*
* Descriptive-name: Definitions for Tivoli Storage manager API constants
---/

#ifndef _H_DSMAPITD
#define _H_DSMAPITD

#include "dsmapips.h" /* Platform specific definitions*/
#include "release.h"

/*=== set the structure alignment to pack the structures ===*/
#if (_OPSYS_TYPE == DS_WINNT) && !defined(_WIN64)
#pragma pack(1)
#endif

#if _OPSYS_TYPE == DS_MACOS
#pragma options align = packed
#pragma align_array_members off
#endif

typedef char osChar_t;

© Copyright IBM Corp. 1993, 2003 127

/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/* D E F I N E S */
/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/*---+
| API Version, Release, and Level to use in dsmApiVersion on dsmInit() |
+---*/
#define DSM_API_VERSION COMMON_VERSION
#define DSM_API_RELEASE COMMON_RELEASE
#define DSM_API_LEVEL COMMON_LEVEL
#define DSM_API_SUBLEVEL COMMON_SUBLEVEL

/*---+
| Maximum field lengths |
+---*/
#define DSM_MAX_CG_DEST_LENGTH 30 /* copy group destination */
#define DSM_MAX_CG_NAME_LENGTH 30 /* copy group name */
#define DSM_MAX_DESCR_LENGTH 255 /* archive description */
#define DSM_MAX_DOMAIN_LENGTH 30 /* policy domain name */
#define DSM_MAX_FSINFO_LENGTH 500 /* filespace info */
#define DSM_MAX_USER_FSINFO_LENGTH 480 /* max user filespace info*/
#define DSM_MAX_FSNAME_LENGTH 1024 /* filespace name */
#define DSM_MAX_FSTYPE_LENGTH 32 /* filespace type */
#define DSM_MAX_HL_LENGTH 1024 /* object high level name */
#define DSM_MAX_ID_LENGTH 64 /* session node name */
#define DSM_MAX_LL_LENGTH 256 /* object low level name */
#define DSM_MAX_MC_NAME_LENGTH 30 /* management class name */
#define DSM_MAX_OBJINFO_LENGTH 255 /* object info */
#define DSM_MAX_OWNER_LENGTH 64 /* object owner name */
#define DSM_MAX_PLATFORM_LENGTH 16 /* application type */
#define DSM_MAX_PS_NAME_LENGTH 30 /* policy set name */
#define DSM_MAX_SERVERTYPE_LENGTH 32 /* server platform type */
#define DSM_MAX_VERIFIER_LENGTH 64 /* password */
#define DSM_PATH_MAX 1024 /* API config file path */
#define DSM_NAME_MAX 255 /* API config file name */
#define DSM_MAX_NODE_LENGTH 64 /* node/machine name */
#define DSM_MAX_RC_MSG_LENGTH 1024 /* msg parm for dsmRCMsg */
#define DSM_MAX_SERVER_ADDRESS 1024 /* server address */

#define DSM_MAX_MC_DESCR_LENGTH DSM_MAX_DESCR_LENGTH /* mgmt class */
#define DSM_MAX_SERVERNAME_LENGTH DSM_MAX_ID_LENGTH /* server name */
#define DSM_MAX_GET_OBJ 4080 /* max objs on BeginGetData */
#define DSM_MAX_PARTIAL_GET_OBJ 1300 /* max partial objs on BeginGetData */
/*---+
| Minimum field lengths |
+---*/
#define DSM_MIN_COMPRESS_SIZE 2048 /* minimum number of bytes an object */

/* needs before compression is allowed*/

/*---+
| Values for mtFlag in dsmSetup call |
+---*/
#define DSM_MULTITHREAD bTrue
#define DSM_SINGLETHREAD bFalse

/*---+
| Values for object type in dsmObjName structure |
| Note: These values must be kept in sync with dsmcomm.h |
+---*/
#define DSM_OBJ_FILE 0x01 /*object has attrib info & data*/
#define DSM_OBJ_DIRECTORY 0x02 /*obj has only attribute info */
#define DSM_OBJ_RESERVED1 0x04 /* for future use */
#define DSM_OBJ_RESERVED2 0x05
#define DSM_OBJ_RESERVED3 0x06 /* for future use */
#define DSM_OBJ_WILDCARD 0xFE /* Any object type */
#define DSM_OBJ_ANY_TYPE 0xFF /* for future use */

128 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Type definition for compressedState in QryResp |
+---*/
#define DSM_OBJ_COMPRESSED_UNKNOWN 0
#define DSM_OBJ_COMPRESSED_YES 1
#define DSM_OBJ_COMPRESSED_NO 2

/*---+
| Definitions for "group type" field in tsmGrouphandlerIn_t |
+---*/

#define DSM_GROUPTYPE_NONE 0x00 /* Not a group member */
#define DSM_GROUPTYPE_RESERVED1 0x01 /* for future use */
#define DSM_GROUPTYPE_PEER 0x02 /* Peer group */
#define DSM_GROUPTYPE_RESERVED2 0x03 /* for future use */

/*---+
| Definitions for "member type" field in tsmGrouphandlerIn_t |
+---*/

#define DSM_MEMBERTYPE_LEADER 0x01 /* group leader */
#define DSM_MEMBERTYPE_MEMBER 0x02 /* group member */

/*---+
| Definitions for "operation type" field in tsmGrouphandlerIn_t |
+---*/
#define DSM_GROUP_ACTION_BEGIN 0x01
#define DSM_GROUP_ACTION_OPEN 0x02 /* create new group */
#define DSM_GROUP_ACTION_CLOSE 0x03 /* commit and save an open group */
#define DSM_GROUP_ACTION_ADD 0x04 /* Append to a group */
#define DSM_GROUP_ACTION_ASSIGNTO 0x05 /* Assign to a another group */
#define DSM_GROUP_ACTION_REMOVE 0x06 /* remove a member from a group */

/*---+
| Values for copySer in DetailCG structures for Query Mgmt Class response |
+---*/
#define Copy_Serial_Static 1 /*Copy Serialization Static */
#define Copy_Serial_Shared_Static 2 /*Copy Serialization Shared Static*/
#define Copy_Serial_Shared_Dynamic 3 /*Copy Serialization Shared Dynamic*/
#define Copy_Serial_Dynamic 4 /*Copy Serialization Dynamic */

/*---+
| Values for copyMode in DetailCG structures for Query Mgmt Class response |
+---*/
#define Copy_Mode_Modified 1 /*Copy Mode Modified */
#define Copy_Mode_Absolute 2 /*Copy Mode Absolute */

/*---+
| Values for objState in qryBackupData structure |
+---*/
#define DSM_ACTIVE 0x01 /* query only active objects */
#define DSM_INACTIVE 0x02 /* query only inactive objects */
#define DSM_ANY_MATCH 0xFF /* query all backup objects */

/*---+
| Boundary values for dsmDate.year field in qryArchiveData structure |
+---*/
#define DATE_MINUS_INFINITE 0x0000 /* lowest boundary */
#define DATE_PLUS_INFINITE 0xFFFF /* highest upper boundary */

/*---+
| Bits masks for update action parameter on dsmUpdateFS() |
+---*/
#define DSM_FSUPD_FSTYPE ((unsigned) 0x00000002)
#define DSM_FSUPD_FSINFO ((unsigned) 0x00000004)
#define DSM_FSUPD_BACKSTARTDATE ((unsigned) 0x00000008)
#define DSM_FSUPD_BACKCOMPLETEDATE ((unsigned) 0x00000010)

Appendix A. API type definitions source file 129

#define DSM_FSUPD_OCCUPANCY ((unsigned) 0x00000020)
#define DSM_FSUPD_CAPACITY ((unsigned) 0x00000040)
#define DSM_FSUPD_RESERVED1 ((unsigned) 0x00000100)

/*---+
| Bits mask for backup update action parameter on dsmUpdateObj() |
+---*/
#define DSM_BACKUPD_OWNER ((unsigned) 0x00000001)
#define DSM_BACKUPD_OBJINFO ((unsigned) 0x00000002)
#define DSM_BACKUPD_MC ((unsigned) 0x00000004)

#define DSM_ARCHUPD_OWNER ((unsigned) 0x00000001)
#define DSM_ARCHUPD_OBJINFO ((unsigned) 0x00000002)
#define DSM_ARCHUPD_DESCR ((unsigned) 0x00000004)

/*---+
| Values for repository parameter on dsmDeleteFS() |
+---*/
#define DSM_ARCHIVE_REP 0x0A /* archive repository */
#define DSM_BACKUP_REP 0x0B /* backup repository */
#define DSM_REPOS_ALL 0x01 /* all respository types */

/*---+
| Values for vote parameter on dsmEndTxn() |
+---*/
#define DSM_VOTE_COMMIT 1 /* commit current transaction */
#define DSM_VOTE_ABORT 2 /* roll back current transaction */

/*---+
| Values for various flags returned in ApiSessInfo structure. |
+---*/
/* Client compression field codes */
#define COMPRESS_YES 1 /* client must compress data */
#define COMPRESS_NO 2 /* client must NOT compress data */
#define COMPRESS_CD 3 /* client determined */

/* Archive delete permission codes. */
#define ARCHDEL_YES 1 /* archive delete allowed */
#define ARCHDEL_NO 2 /* archive delete NOT allowed */

/* Backup delete permission codes. */
#define BACKDEL_YES 1 /* backup delete allowed */
#define BACKDEL_NO 2 /* backup delete NOT allowed */

/*---+
Values for various flags returned in optStruct structure. |

---*/
#define DSM_PASSWD_GENERATE 1
#define DSM_PASSWD_PROMPT 0

#define DSM_COMM_TCP 1
#define DSM_COMM_PVM_IUCV 2
#define DSM_COMM_3270 3
#define DSM_COMM_IUCV 4
#define DSM_COMM_PWSCS 5
#define DSM_COMM_SNA_LU6_2 6
#define DSM_COMM_IPXSPX 7 /* For IPX/SPX support */
#define DSM_COMM_NETBIOS 8 /* NETBIOS */
#define DSM_COMM_NAMEDPIPE 9 /* Named pipes*/
#define DSM_COMM_400COMM 10
#define DSM_COMM_SHM 11 /* Shared Memory */
#define DSM_COMM_CLIO 12 /* CLIO/S */

130 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Values for userNameAuthorities in dsmInitEx for future use |
+---*/
#define DSM_USERAUTH_NONE ((dsInt16_t)0x0000)
#define DSM_USERAUTH_ACCESS ((dsInt16_t)0x0001)
#define DSM_USERAUTH_OWNER ((dsInt16_t)0x0002)
#define DSM_USERAUTH_POLICY ((dsInt16_t)0x0004)
#define DSM_USERAUTH_SYSTEM ((dsInt16_t)0x0008)

/*---+
| Definitions for mediaClass field. |
+---*/
/*
* The following constants define a hierarchy of media access classes.
* Lower numbers indicate media which can supply faster access to data.
*/

/* Fixed: represents the class of on-line, fixed media (such as
hard disks). */

#define MEDIA_FIXED 0x10

/* Library: represents the class of mountable media accessible
through a mechanical mounting device. */

#define MEDIA_LIBRARY 0x20

/* future use */
#define MEDIA_NETWORK 0x30

/* future use */
#define MEDIA_SHELF 0x40

/* future use */
#define MEDIA_OFFSITE 0x50

/* future use */
#define MEDIA_UNAVAILABLE 0xF0

/*---+
| Type definition for partial object data for dsmBeginGetData() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsStruct64_t partialObjOffset; /* offset into object to begin reading */
dsStruct64_t partialObjLength; /* amount of object to read */

} PartialObjData ; /* partial object data */

#define PartialObjDataVersion 1 /* */

/*---+
| Type definition for date structure |
+---*/
typedef struct
{

dsUint16_t year; /* year, 16-bit integer (e.g., 1990) */
dsUint8_t month; /* month, 8-bit integer (1 - 12) */
dsUint8_t day; /* day. 8-bit integer (1 - 31) */
dsUint8_t hour; /* hour, 8-bit integer (0 - 23) */
dsUint8_t minute; /* minute, 8-bit integer (0 - 59) */
dsUint8_t second; /* second, b-bit integer (0 - 59) */

}dsmDate ;

/*---+
| Type definition for Object ID on dsmGetObj() and in dsmGetList structure|
+---*/
typedef dsStruct64_t ObjID ;

Appendix A. API type definitions source file 131

/*---+
| Type definition for dsmQueryBuff on dsmBeginQuery() |
+---*/
typedef void dsmQueryBuff ;

/*---+
| Type definition for dsmGetType parameter on dsmBeginGetData() |
+---*/
typedef enum
{

gtBackup = 0x00, /* Backup processing type */
gtArchive /* Archive processing type */

} dsmGetType ;

/*---+
| Type definition for dsmQueryType parameter on dsmBeginQuery() |
+---*/
typedef enum
{

qtArchive = 0x00, /* Archive query type */
qtBackup, /* Backup query type */
qtBackupActive, /* Fast query for active backup files */
qtFilespace, /* Filespace query type */
qtMC, /* Mgmt. class query type */
qtReserved1, /* future use */
qtReserved2, /* future use */
qtReserved3, /* future use */
qtReserved4, /* future use */
qtBackupGroups, /* group leaders in a specific fs */
qtOpenGroups, /* Open groups in a specific fs */
qtReserved5 /* future use */

}dsmQueryType ;

/*---+
| Type definition sendType parameter on dsmBindMC() and dsmSendObj() |
+---*/
typedef enum
{

stBackup = 0x00, /* Backup processing type */
stArchive, /* Archive processing type */
stBackupMountWait, /* Backup processing with mountwait on */
stArchiveMountWait /* Archive processing with mountwait on */

}dsmSendType ;

/*---+
| Type definition for delType parameter on dsmDeleteObj() |
+---*/
typedef enum
{

dtArchive = 0x00, /* Archive delete type */
dtBackup, /* Backup delete (deactivate) type */
dtBackupID /* Backup delete (remove) type */

}dsmDelType ;

/*---+
| Type definition sendType parameter on dsmSetAccess() |
+---*/
typedef enum
{

atBackup = 0x00, /* Backup processing type */
atArchive /* Archive processing type */

}dsmAccessType;

132 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Type definition for API Version on dsmInit() and dsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */

}dsmApiVersion;

/*---+
| Type definition for API Version on dsmInit() and dsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */
dsBool_t unicode; /* API unicode? */

}dsmApiVersionEx;

#define apiVersionExVer 2
/*---+
| Type definition for object name used on BindMC, Send, Delete, Query |
+---*/
typedef struct S_dsmObjName
{

char fs[DSM_MAX_FSNAME_LENGTH + 1] ; /* Filespace name */
char hl[DSM_MAX_HL_LENGTH + 1] ; /* High level name */
char ll[DSM_MAX_LL_LENGTH + 1] ; /* Low level name */
dsUint8_t objType; /* for object type values, see defines above */

}dsmObjName;

/*---+
| Type definition for Backup delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsmObjName *objNameP ; /* object name */
dsUint32_t copyGroup ; /* copy group */

}delBack ;

#define delBackVersion 1

/*---+
| Type definition for Archive delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

}delArch ;

#define delArchVersion 1

/*---+
| Type definition for Backup ID delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

Appendix A. API type definitions source file 133

}delBackID;

#define delBackIDVersion 1

/*---+
| Type definition for delete info on dsmDeleteObj() |
+---*/
typedef union
{

delBack backInfo ;
delArch archInfo ;
delBackID backIDInfo ;

}dsmDelInfo ;

/*---+
| Type definition for Object Attribute parameter on dsmSendObj() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* object owner */
dsStruct64_t sizeEstimate; /* Size estimate in bytes of the object */
dsBool_t objCompressed; /* Is object already compressed? */
dsUint16_t objInfoLength; /* length of object-dependent info */
char *objInfo; /* object-dependent info */
char *mcNameP; /* mgmnt class name for override */

}ObjAttr;

#define ObjAttrVersion 2

/*---+
| Type definition for mcBindKey returned on dsmBindMC() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1];

/* Name of mc bound to object. */
dsBool_t backup_cg_exists; /* True/false */
dsBool_t archive_cg_exists; /* True/false */
char backup_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Backup copy dest. name */
char archive_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Arch copy dest.name */
}mcBindKey;

#define mcBindKeyVersion 1

/*---+
| Type definition for object list on dsmBeginGetData() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsUint32_t numObjId ; /* number of object IDs in the list */
ObjID *objId ; /* list of object IDs to restore*/
PartialObjData *partialObjData; /*list of partial obj data info */

}dsmGetList ;

#define dsmGetListVersion 2 /* default if not using Partial Obj data */
#define dsmGetListPORVersion 3 /* version if using Partial Obj data */

134 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Type definition for DataBlk used to Get or Send data |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsUint32_t bufferLen; /* Length of buffer passed below */
dsUint32_t numBytes; /* Actual number of bytes read from */

/* or written to the buffer */
char *bufferPtr; /* Data buffer */
dsUint32_t numBytesCompressed; /* on send actual bytes compressed */

}DataBlk;

#define DataBlkVersion 2

/*---+
| Type definition for Mgmt Class queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryMCData
{

dsUint16_t stVersion; /* structure version */
char *mcName; /* Mgmt class name */

/* single name to get one or empty string to get all*/
dsBool_t mcDetail; /* Want details or not? */

}qryMCData;

#define qryMCDataVersion 1

/*---+
| Type definition for Archive Copy Group details on Query MC response |
+---*/
typedef struct S_archDetailCG
{

char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Copy (archive) frequency */
dsUint16_t retainVers; /* Retain version */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsBool_t bLanFreeDest; /* Destination has lan free path? */
dsBool_t bSrvFreeDest; /* Destination has server free path? */

}archDetailCG;

/*---+
| Type definition for Backup Copy Group details on Query MC response |
+---*/
typedef struct S_backupDetailCG
{

char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Backup frequency */
dsUint16_t verDataExst; /* Versions data exists */
dsUint16_t verDataDltd; /* Versions data deleted */
dsUint16_t retXtraVers; /* Retain extra versions */
dsUint16_t retOnlyVers; /* Retain only versions */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsBool_t bLanFreeDest; /* Destination has lan free path? */
dsBool_t bSrvFreeDest; /* Destination has server free path? */

}backupDetailCG;

Appendix A. API type definitions source file 135

/*---+
| Type definition for Query Mgmt Class detail response on dsmGetNextQObj()|
+---*/
typedef struct S_qryRespMCDetailData
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /*mc description */
archDetailCG archDet; /* Archive copy group detail */
backupDetailCG backupDet; /* Backup copy group detail */

}qryRespMCDetailData;

#define qryRespMCDetailDataVersion 2

/*---+
| Type definition for Query Mgmt Class summary response on dsmGetNextQObj()|
+---*/
typedef struct S_qryRespMCData
{

dsUint16_t stVersion; /* structure version */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /* mc description */

}qryRespMCData;

#define qryRespMCDataVersion 1

/*---+
| Type definition for Archive queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryArchiveData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* Full dsm name of object */
char *owner; /* owner name */

/* for maximum date boundaries, see defines above */
dsmDate insDateLowerBound; /* low bound archive insert date */
dsmDate insDateUpperBound; /* hi bound archive insert date */
dsmDate expDateLowerBound; /* low bound expiration date */
dsmDate expDateUpperBound; /* hi bound expiration date */
char *descr; /* archive description */

} qryArchiveData;

#define qryArchiveDataVersion 1

/*---+
| Type definition for Query Archive response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespArchiveData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* Filespace name qualifier */
dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique copy id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsmDate insDate; /* archive insertion date */
dsmDate expDate; /* expiration date for object */
char descr[DSM_MAX_DESCR_LENGTH + 1]; /* archive description */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user*/
dsUint8_t compressType;

136 IBM Tivoli Storage Manager: Using the Application Program Interface

}qryRespArchiveData;

#define qryRespArchiveDataVersion 3

/*---+
| Type definition for Archive sendBuff parameter on dsmSendObj() |
+---*/
typedef struct S_sndArchiveData
{

dsUint16_t stVersion; /* structure version */
char *descr; /* archive description */

}sndArchiveData;

#define sndArchiveDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* full dsm name of object */
char *owner; /* owner name */
dsUint8_t objState; /* object state selector */
dsmDate pitDate; /* Date value for point in time restore */

/* for possible values, see defines above */
}qryBackupData;

#define qryBackupDataVersion 2

typedef struct
{

dsUint8_t reserved1;
dsStruct64_t reserved2;

} reservedInfo_t; /* for future use */

/*---+
| Type definition for Query Backup response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique object id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsUint8_t objState; /* Obj state, active, etc. */
dsmDate insDate; /* backup insertion date */
dsmDate expDate; /* expiration date for object */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user */
dsStruct64_t baseObjId;
dsUint16_t baseObjInfolen; /* length of base object-dependent info*/
dsUint8_t baseObjInfo[DSM_MAX_OBJINFO_LENGTH]; /* base object-dependent info */
dsUint160_t baseRestoreOrder; /* restore order */
dsUint32_t fsID;
dsUint8_t compressType;
dsBool_t isGroupLeader;
dsBool_t isOpenGroup;
dsUint8_t reserved1; /* for future use */
dsBool_t reserved2; /* for future use */
dsUint16_t reserved3; /* for future use */

Appendix A. API type definitions source file 137

reservedInfo_t *reserved4; /* for future use */
}qryRespBackupData;

#define qryRespBackupDataVersion 5

/*---+
| Type definition for Active Backup queryBuffer on dsmBeginQuery()
|
| Notes: For the active backup query, only the fs (filespace) and objType
| fields of objName need be set. objType can only be set to
| DSM_OBJ_FILE or DSM_OBJ_DIRECTORY. DSM_OBJ_ANY_TYPE will not
| find a match on the query.
+---*/
typedef struct S_qryABackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName *objName; /* Only fs and objtype used */

}qryABackupData;

#define qryABackupDataVersion 1

/*---+
| Type definition for Query Active Backup response on dsmGetNextQObj() |
+---*/
typedef struct S_qryARespBackupData
{

dsUint16_t stVersion; /* structure version */
dsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
char mcName[DSM_MAX_MC_NAME_LENGTH + 1];/*management class name*/
char owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsmDate insDate; /* backup insertion date */
dsUint16_t objInfolen; /* length of object-dependent info*/
char objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */

}qryARespBackupData;

#define qryARespBackupDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct qryBackupGroups
{

dsUint16_t stVersion; /* structure version */
dsUint8_t groupType;
char *fsName;
char *owner;
dsStruct64_t groupLeaderObjId;
dsUint8_t objType;

}qryBackupGroups;

#define qryBackupGroupsVersion 1
/*---+
| Type definition for WINNT and OS/2 Filespace attributes |
+---*/
typedef struct
{

char driveLetter ; /* drive letter for filespace */
dsUint16_t fsInfoLength; /* fsInfo length used */
char fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

}dsmDosFSAttrib ;

/*---+
| Type definition for UNIX Filespace attributes |
+---*/
typedef struct
{

138 IBM Tivoli Storage Manager: Using the Application Program Interface

dsUint16_t fsInfoLength; /* fsInfo length used */
char fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

}dsmUnixFSAttrib ;

/*---+
| Type definition for NetWare Filespace attributes |
+---*/
typedef dsmUnixFSAttrib dsmNetwareFSAttrib;

/*---+
| Type definition for Filespace attributes on all Filespace calls |
+---*/
typedef union
{

dsmNetwareFSAttrib netwareFSAttr;
dsmUnixFSAttrib unixFSAttr ;
dsmDosFSAttrib dosFSAttr ;

}dsmFSAttr ;

/*---+
| Type definition for fsUpd parameter on dsmUpdateFS()
+---*/
typedef struct S_dsmFSUpd
{

dsUint16_t stVersion ; /* structure version */
char *fsType ; /* filespace type */
dsStruct64_t occupancy ; /* occupancy estimate */
dsStruct64_t capacity ; /* capacity estimate */
dsmFSAttr fsAttr ; /* platform specific attributes */

}dsmFSUpd ;

#define dsmFSUpdVersion 1

/*---+
| Type definition for Filespace queryBuffer on dsmBeginQuery() |
+---*/
typedef struct S_qryFSData
{

dsUint16_t stVersion; /* structure version */
char *fsName; /* File space name */

}qryFSData;

#define qryFSDataVersion 1

/*---+
| Type definition for Query Filespace response on dsmGetNextQObj() |
+---*/
typedef struct S_qryRespFSData
{

dsUint16_t stVersion; /* structure version */
char fsName[DSM_MAX_FSNAME_LENGTH + 1]; /* Filespace name */
char fsType[DSM_MAX_FSTYPE_LENGTH + 1] ; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
dsmFSAttr fsAttr ; /* platform specific attributes */
dsmDate backStartDate; /* start backup date */
dsmDate backCompleteDate; /* end backup Date */
dsmDate reserved1; /* For future use */

}qryRespFSData;

#define qryRespFSDataVersion 3

/*---+
| Type definition for regFilespace parameter on dsmRegisterFS()
+---*/
typedef struct S_regFSData
{

Appendix A. API type definitions source file 139

dsUint16_t stVersion; /* structure version */
char *fsName; /* Filespace name */
char *fsType; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
dsmFSAttr fsAttr ; /* platform specific attributes */

}regFSData;

#define regFSDataVersion 1

/*---+
| Type definition for session info response on dsmQuerySessionInfo() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
/*--*/
/* Server information */
/*--*/

char serverHost[DSM_MAX_SERVERNAME_LENGTH+1];
/* Network host name of DSM server */

dsUint16_t serverPort; /* Server comm port on host */
dsmDate serverDate; /* Server’s date/time */
char serverType[DSM_MAX_SERVERTYPE_LENGTH+1];

/* Server’s execution platform */
dsUint16_t serverVer; /* Server’s version number */
dsUint16_t serverRel; /* Server’s release number */
dsUint16_t serverLev; /* Server’s level number */
dsUint16_t serverSubLev; /* Server’s sublevel number */

/*--*/
/* Client Defaults */
/*--*/

char nodeType[DSM_MAX_PLATFORM_LENGTH+1]; /*node/application type*/
char fsdelim; /* File space delimiter */
char hldelim; /* Delimiter betw highlev & lowlev */
dsUint8_t compression; /* Compression flag */
dsUint8_t archDel; /* Archive delete permission */
dsUint8_t backDel; /* Backup delete permission */
dsUint32_t maxBytesPerTxn; /* for future use */
dsUint16_t maxObjPerTxn; /* The max objects allowed in a txn */

/*--*/
/* Session Information */
/*--*/

char id[DSM_MAX_ID_LENGTH+1]; /* Sign-in id node name */
char owner[DSM_MAX_OWNER_LENGTH+1]; /* Sign-in owner */

/* (for multi-user platforms) */
char confFile[DSM_PATH_MAX + DSM_NAME_MAX +1];

/* len is platform dep */
/* dsInit name of appl config file */

dsUint8_t opNoTrace; /* dsInit option - NoTrace = 1 */
/*--*/
/* Policy Data */
/*--*/

char domainName[DSM_MAX_DOMAIN_LENGTH+1]; /* Domain name */
char policySetName[DSM_MAX_PS_NAME_LENGTH+1];

/* Active policy set name */
dsmDate polActDate; /* Policy set activation date */
char dfltMCName[DSM_MAX_MC_NAME_LENGTH+1];/* Default Mgmt Class */
dsUint16_t gpBackRetn; /* Grace-period backup retention */
dsUint16_t gpArchRetn; /* Grace-period archive retention */
char adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1]; /* adsm server name */

}ApiSessInfo;

#define ApiSessInfoVersion 2

140 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Type definition for Query options response on dsmQueryCliOptions() |
| and dsmQuerySessOptions() |
+---*/

typedef struct
{

char dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
char serverName[DSM_MAX_SERVERNAME_LENGTH+1];
dsInt16_t commMethod;
char serverAddress[DSM_MAX_SERVER_ADDRESS];
char nodeName[DSM_MAX_NODE_LENGTH+1];
dsBool_t compression;
dsBool_t compressalways;
dsBool_t passwordAccess;

}optStruct ;

/*---+
| Type definition for LogType used in logInfo |
+---*/
typedef enum
{

logServer = 0x00, /* log msg only to server */
logLocal, /* log msg only to local error log */
logBoth /* log msg to server and to local error log */

}dsmLogType ;

/*---+
| Type definition for logInfo parameter used on dsmLogEvent() |
+---*/

typedef struct
{

char *message; /* text of message to be logged */
dsmLogType logType; /* log type : local, server, both */

}logInfo;

/*---+
| Type definition for qryRespAccessData parameter used on dsmQueryAccess()|
+---*/

typedef struct
{

dsUint16_t stVersion ; /* structure version */
char node[DSM_MAX_ID_LENGTH+1]; /* node name */
char owner[DSM_MAX_OWNER_LENGTH+1]; /* owner */
dsmObjName objName ; /* object name */
dsmAccessType accessType; /* archive or backup */
dsUint32_t ruleNumber ; /* Access rule id */

}qryRespAccessData;

#define qryRespAccessDataVersion 1

/*---+
| Type definition for envSetUp parameter on dsmSetUp()
+---*/
typedef struct S_envSetUp
{

dsUint16_t stVersion; /* structure version */
char dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
char dsmiLog[DSM_PATH_MAX + DSM_NAME_MAX +1];
char **argv; /* for executables name argv[0] */
char logName[DSM_NAME_MAX +1];
dsBool_t inclExclCaseSensitive; /* for future use */
dsBool_t multipleInit; /* for future use */

Appendix A. API type definitions source file 141

}envSetUp;

#define envSetUpVersion 4

/*---+
| Type definition for dsmInitExIn_t
+---*/
typedef struct dsmInitExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmApiVersionEx *apiVersionExP;
char *clientNodeNameP;
char *clientOwnerNameP;
char *clientPasswordP;
char *userNameP;
char *userPasswordP;
char *applicationTypeP;
char *configfile;
char *options;
char dirDelimiter;
dsBool_t useUnicode;
dsBool_t bCrossPlatform;
dsBool_t bService;

}dsmInitExIn_t;

#define dsmInitExInVersion 3

/*---+
| Type definition for dsmInitExOut_t
+---*/
typedef struct dsmInitExOut_t
{

dsUint16_t stVersion; /* structure version */
dsInt16_t userNameAuthorities;
dsInt16_t infoRC; /* error return code if encountered */
char adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1];
dsUint16_t serverVer; /* Server’s version number */
dsUint16_t serverRel; /* Server’s release number */
dsUint16_t serverLev; /* Server’s level number */
dsUint16_t serverSubLev; /* Server’s sublevel number */

}dsmInitExOut_t;

#define dsmInitExOutVersion 2

/*---+
| Type definition for LogType used in logInfo |
+---*/
typedef enum
{

logSevInfo = 0x00, /* information ANE4991 */
logSevWarning, /* warning ANE4992 */
logSevError, /* Error ANE4993 */
logSevSevere, /* severe ANE4994 */
logSevLicense, /* License ANE4995 */
logSevTryBuy /* try Buy ANE4996 */

}dsmLogSeverity ;

/*---+
| Type definition for dsmLogExIn_t
+---*/
typedef struct dsmLogExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmLogSeverity severity;
char appMsgID[8];
dsmLogType logType; /* log type : local, server, both */

142 IBM Tivoli Storage Manager: Using the Application Program Interface

char *message; /* text of message to be logged */
char appName[DSM_MAX_PLATFORM_LENGTH];
char osPlatform[DSM_MAX_PLATFORM_LENGTH];
char appVersion[DSM_MAX_PLATFORM_LENGTH];

}dsmLogExIn_t;

#define dsmLogExInVersion 2

/*---+
| Type definition for dsmlogExOut_t
+---*/
typedef struct dsmLogExOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmLogExOut_t;

#define dsmLogExOutVersion 1

/*---+
| Type definition for dsmRenameIn_t
+---*/
typedef struct dsmRenameIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t repository; /* Backup or Archive */
dsmObjName *objNameP ; /* object name */
char newHl[DSM_MAX_HL_LENGTH + 1]; /* new High level name */
char newLl[DSM_MAX_LL_LENGTH + 1]; /* new Low level name */
dsBool_t merge; /* merge into existing name*/
ObjID objId; /* objId for Archive */

}dsmRenameIn_t;

#define dsmRenameInVersion 1

/*---+
| Type definition for dsmRenameOut_t
+---*/
typedef struct dsmRenameOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmRenameOut_t;

#define dsmRenameOutVersion 1

/*---+
| Type definition for dsmEndSendObjExIn_t
+---*/
typedef struct dsmEndSendObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */

}dsmEndSendObjExIn_t;

#define dsmEndSendObjExInVersion 1

/*---+
| Type definition for dsmEndSendObjExOut_t
+---*/
typedef struct dsmEndSendObjExOut_t
{

dsUint16_t stVersion; /* structure version */
dsStruct64_t totalBytesSent; /* total bytes read from app */
dsBool_t objCompressed; /* was object compressed */
dsStruct64_t totalCompressSize; /* total size after compress */
dsStruct64_t totalLFBytesSent; /* total bytes sent Lan Free */

}dsmEndSendObjExOut_t;

Appendix A. API type definitions source file 143

#define dsmEndSendObjExOutVersion 1

/*---+
| Type definition for dsmGroupHandlerIn_t
+---*/
typedef struct dsmGroupHandlerIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t groupType; /* Type of group */
dsUint8_t actionType; /* Type of group operation */
dsUint8_t memberType; /* Type of member: Leader or member */
dsStruct64_t leaderObjId; /* OBJID of the groupleader when manipulating a member */
char *uniqueGroupTagP; /* Unique group identifier */
dsmObjName *objNameP ; /* group leader object name */
dsmGetList memberObjList; /* list of objects to remove, assign */

}dsmGroupHandlerIn_t;

#define dsmGroupHandlerInVersion 1

/*---+
| Type definition for dsmGroupHandlerExOut_t
+---*/
typedef struct dsmGroupHandlerOut_t
{

dsUint16_t stVersion; /* structure version */
}dsmGroupHandlerOut_t;

#define dsmGroupHandlerOutVersion 1

/*---+
| Type definition for dsmEndTxnExIn_t
+---*/
typedef struct dsmEndTxnExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */
dsUint8_t vote;

}dsmEndTxnExIn_t;

#define dsmEndTxnExInVersion 1

/*---+
| Type definition for dsmEndTxnExOut_t
+---*/
typedef struct dsmEndTxnExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t groupLeaderObjId; /* groupLeader obj id returned on */

/* DSM_ACTION_OPEN */
dsUint8_t deferredVote; /* future use */
dsUint16_t deferredAbortReasonCode; /* future use */

}dsmEndTxnExOut_t;

#define dsmEndTxnExOutVersion 1

/*---+
| Type definition for dsmEndGetDataExIn_t
+---*/
typedef struct dsmEndGetDataExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t dsmHandle; /* handle for session */

}dsmEndGetDataExIn_t;

144 IBM Tivoli Storage Manager: Using the Application Program Interface

#define dsmEndGetDataExInVersion 1

/*---+
| Type definition for dsmEndGetDataExOut_t
+---*/
typedef struct dsmEndGetDataExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t totalLFBytesRecv; /* total lan free bytes recieved */

}dsmEndGetDataExOut_t;

#define dsmEndGetDataExOutVersion 1

#if (_OPSYS_TYPE == DS_WINNT) && !defined(_WIN64)
#pragma pack()
#endif

#if _OPSYS_TYPE == DS_MACOS
#pragma align_array_members reset
#pragma options align = reset
#endif
#endif /* _H_DSMAPITD */

Appendix A. API type definitions source file 145

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2003 *
***/

/**
* Header File Name: tsmapitd.h
*
* Environment: **
* ** This is a platform-independent source file **
*
* **
*
* Design Notes: This file contains basic data types and constants
* includable by all client source files. The constants
* within this file should be set properly for the
* particular machine and operating system on which the
* client software is to be run.
*
* Platform specific definitions are included in dsmapips.h
*
* Descriptive-name: Definitions for Tivoli Storage manager API constants
---/

#ifndef _H_TSMAPITD
#define _H_TSMAPITD

/*=== set the structure alignment to pack the structures ===*/
#if _OPSYS_TYPE == DS_WINNT
#ifdef _WIN64
#pragma pack(8)
#else
#pragma pack(1)
#endif
#endif

#if _OPSYS_TYPE == DS_MACOS
#pragma options align = packed
#pragma align_array_members off
#endif

/*==
Win32 applications using the tsm interface must use the
-DUNICODE flag during compilation.

==*/
#if _OPSYS_TYPE == DS_WINNT && !defined(DSMAPILIB)
#ifndef UNICODE
#error "Win32 applications using the TSM interface MUST be compiled with the -DUNICODE flag"
#endif
#endif

/*---+
| Type definition for dsmGetType parameter on tsmBeginGetData() |
+---*/
typedef enum
{

gtTsmBackup = 0x00, /* Backup processing type */
gtTsmArchive /* Archive processing type */

} tsmGetType ;

/*---+
| Type definition for dsmQueryType parameter on tsmBeginQuery() |
+---*/
typedef enum

146 IBM Tivoli Storage Manager: Using the Application Program Interface

{
qtTsmArchive = 0x00, /* Archive query type */
qtTsmBackup, /* Backup query type */
qtTsmBackupActive, /* Fast query for active backup files */
qtTsmFilespace, /* Filespace query type */
qtTsmMC, /* Mgmt. class query type */
qtReserved1 /* future use */
qtReserved2 /* future use */
qtReserved3 /* future use */
qtReserved4 /* future use */
qtTsmBackupGroups, /* All group leaders in a specific filespace */
qtTsmOpenGroups, /* All group members associated with a leader */
qtReserved5 /* future use */

} tsmQueryType ;

/*---+
| Type definition sendType parameter on tsmBindMC() and tsmSendObj() |
+---*/
typedef enum
{

stTsmBackup = 0x00, /* Backup processing type */
stTsmArchive, /* Archive processing type */
stTsmBackupMountWait, /* Backup processing with mountwait on */
stTsmArchiveMountWait /* Archive processing with mountwait on */

} tsmSendType ;

/*---+
| Type definition for delType parameter on tsmDeleteObj() |
+---*/
typedef enum
{

dtTsmArchive = 0x00, /* Archive delete type */
dtTsmBackup, /* Backup delete (deactivate) type */
dtTsmBackupID /* Backup delete (remove) type */

} tsmDelType ;

/*---+
| Type definition sendType parameter on tsmSetAccess() |
+---*/
typedef enum
{

atTsmBackup = 0x00, /* Backup processing type */
atTsmArchive /* Archive processing type */

}tsmAccessType;

/*---+
| Type definition for Overwrite parameter on tsmSendObj() |
+---*/
typedef enum
{

owIGNORE = 0x00,
owYES,
owNO

}tsmOwType;

/*---+
| Type definition for API Version on tsmInit() and tsmQueryApiVersion() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
dsUint16_t version; /* API version */
dsUint16_t release; /* API release */
dsUint16_t level; /* API level */
dsUint16_t subLevel; /* API sub level */
dsBool_t unicode; /* API unicode? */

Appendix A. API type definitions source file 147

} tsmApiVersionEx;

#define tsmApiVersionExVer 2

/*---+
| Type definition for object name used on BindMC, Send, Delete, Query |
+---*/

typedef struct tsmObjName
{

dsChar_t fs[DSM_MAX_FSNAME_LENGTH + 1] ; /* Filespace name */
dsChar_t hl[DSM_MAX_HL_LENGTH + 1] ; /* High level name */
dsChar_t ll[DSM_MAX_LL_LENGTH + 1] ; /* Low level name */
dsUint8_t objType; /* for object type values, see defines above */
dsChar_t dirDelimiter;

} tsmObjName;

/*---+
| Type definition for Backup delete info on dsmDeleteObj() |
+---*/
typedef struct tsmDelBack
{

dsUint16_t stVersion ; /* structure version */
tsmObjName *objNameP ; /* object name */
dsUint32_t copyGroup ; /* copy group */

} tsmDelBack ;

#define tsmDelBackVersion 1

/*---+
| Type definition for Archive delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

} tsmDelArch ;

#define tsmDelArchVersion 1

/*---+
| Type definition for Backup ID delete info on dsmDeleteObj() |
+---*/
typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsStruct64_t objId ; /* object ID */

} tsmDelBackID;

#define tsmDelBackIDVersion 1

/*---+
| Type definition for delete info on dsmDeleteObj() |
+---*/
typedef union
{

tsmDelBack backInfo ;
tsmDelArch archInfo ;
tsmDelBackID backIDInfo;

} tsmDelInfo ;

/*---+
| Type definition for Object Attribute parameter on dsmSendObj() |
+---*/
typedef struct tsmObjAttr

148 IBM Tivoli Storage Manager: Using the Application Program Interface

{
dsUint16_t stVersion; /* Structure version */
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* object owner */
dsStruct64_t sizeEstimate; /* Size estimate in bytes of the object */
dsBool_t objCompressed; /* Is object already compressed? */
dsUint16_t objInfoLength; /* length of object-dependent info */
char *objInfo; /* object-dependent info byte buffer */
dsChar_t *mcNameP; /* mgmnt class name for override */
tsmOwType compressOw; /* overwrite compression */
tsmOwType compressAlOw; /* overwrite compressAlways */

} tsmObjAttr;

#define tsmObjAttrVersion 3

/*---+
| Type definition for mcBindKey returned on dsmBindMC() |
+---*/
typedef struct tsmMcBindKey
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1];

/* Name of mc bound to object. */
dsBool_t backup_cg_exists; /* True/false */
dsBool_t archive_cg_exists; /* True/false */
dsChar_t backup_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Backup copy dest. name */
dsChar_t archive_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/* Arch copy dest.name */
} tsmMcBindKey;

#define tsmMcBindKeyVersion 1

/*---+
| Type definition for Mgmt Class queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryMCData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *mcName; /* Mgmt class name */

/* single name to get one or empty string to get all*/
dsBool_t mcDetail; /* Want details or not? */

} tsmQryMCData;

#define tsmQryMCDataVersion 1

/*---+
| Type definition for Archive Copy Group details on Query MC response |
+---*/
typedef struct tsmArchDetailCG
{

dsChar_t cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Copy (archive) frequency */
dsUint16_t retainVers; /* Retain version */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
dsChar_t destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsBool_t bLanFreeDest; /* Destination has lan free path? */
dsBool_t bSrvFreeDest; /* Destination has server free path? */

}tsmArchDetailCG;

/*---+
| Type definition for Backup Copy Group details on Query MC response |
+---*/
typedef struct tsmBackupDetailCG
{

Appendix A. API type definitions source file 149

dsChar_t cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /* Copy group name */
dsUint16_t frequency; /* Backup frequency */
dsUint16_t verDataExst; /* Versions data exists */
dsUint16_t verDataDltd; /* Versions data deleted */
dsUint16_t retXtraVers; /* Retain extra versions */
dsUint16_t retOnlyVers; /* Retain only versions */
dsUint8_t copySer; /* for copy serialization values, see defines */
dsUint8_t copyMode; /* for copy mode values, see defines above */
dsChar_t destName[DSM_MAX_CG_DEST_LENGTH + 1]; /* Copy dest name */
dsBool_t bLanFreeDest; /* Destination has lan free path? */
dsBool_t bSrvFreeDest; /* Destination has server free path? */

}tsmBackupDetailCG;

/*---+
| Type definition for Query Mgmt Class detail response on dsmGetNextQObj()|
+---*/
typedef struct tsmQryRespMCDetailData
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /*mc description */
archDetailCG archDet; /* Archive copy group detail */
backupDetailCG backupDet; /* Backup copy group detail */

} tsmQryRespMCDetailData;

#define tsmQryRespMCDetailDataVersion 2

/*---+
| Type definition for Query Mgmt Class summary response on dsmGetNextQObj()|
+---*/
typedef struct tsmQryRespMCData
{

dsUint16_t stVersion; /* structure version */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /* mc description */

}tsmQryRespMCData;

#define tsmQryRespMCDataVersion 1

/*---+
| Type definition for Archive queryBuffer on tsmBeginQuery() |
+---*/
typedef struct tsmQryArchiveData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* Full dsm name of object */
dsChar_t *owner; /* owner name */

/* for maximum date boundaries, see defines above */
dsmDate insDateLowerBound; /* low bound archive insert date */
dsmDate insDateUpperBound; /* hi bound archive insert date */
dsmDate expDateLowerBound; /* low bound expiration date */
dsmDate expDateUpperBound; /* hi bound expiration date */
dsChar_t *descr; /* archive description */

} tsmQryArchiveData;

#define tsmQryArchiveDataVersion 1

/*---+
| Type definition for Query Archive response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespArchiveData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* Filespace name qualifier */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */

150 IBM Tivoli Storage Manager: Using the Application Program Interface

dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique copy id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsmDate insDate; /* archive insertion date */
dsmDate expDate; /* expiration date for object */
dsChar_t descr[DSM_MAX_DESCR_LENGTH + 1]; /* archive description */
dsUint16_t objInfolen; /* length of object-dependent info*/
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user*/
dsUint8_t compressType;

} tsmQryRespArchiveData;

#define tsmQryRespArchiveDataVersion 3

/*---+
| Type definition for Archive sendBuff parameter on dsmSendObj() |
+---*/
typedef struct tsmSndArchiveData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *descr; /* archive description */

} tsmSndArchiveData;

#define tsmSndArchiveDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* full dsm name of object */
dsChar_t *owner; /* owner name */
dsUint8_t objState; /* object state selector */
dsmDate pitDate; /* Date value for point in time restore */

/* for possible values, see defines above */
} tsmQryBackupData;

#define tsmQryBackupDataVersion 2

/*---+
| Type definition for Query Backup response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /* mc name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsStruct64_t objId; /* Unique object id */
dsStruct64_t reserved; /* backward compatability */
dsUint8_t mediaClass; /* media access class */
dsUint8_t objState; /* Obj state, active, etc. */
dsmDate insDate; /* backup insertion date */
dsmDate expDate; /* expiration date for object */
dsUint16_t objInfolen; /* length of object-dependent info*/
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */
dsUint160_t restoreOrderExt; /* restore order */
dsStruct64_t sizeEstimate; /* size estimate stored by user */
dsStruct64_t baseObjId;
dsUint16_t baseObjInfolen; /* length of base object-dependent info*/
dsUint8_t baseObjInfo[DSM_MAX_OBJINFO_LENGTH]; /* base object-dependent info */
dsUint160_t baseRestoreOrder; /* restore order */
dsUint32_t fsID;

Appendix A. API type definitions source file 151

dsUint8_t compressType;
dsBool_t isGroupLeader;
dsBool_t isOpenGroup;
dsUint8_t reserved1; /* for future use */
dsBool_t reserved2; /* for future use */
dsUint16_t reserved3; /* for future use */
reservedInfo_t *reserved4; /* for future use */

} tsmQryRespBackupData;

#define tsmQryRespBackupDataVersion 5

/*---+
| Type definition for Active Backup queryBuffer on dsmBeginQuery()
|
| Notes: For the active backup query, only the fs (filespace) and objType
| fields of objName need be set. objType can only be set to
| DSM_OBJ_FILE or DSM_OBJ_DIRECTORY. DSM_OBJ_ANY_TYPE will not
| find a match on the query.
+---*/
typedef struct tsmQryABackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName *objName; /* Only fs and objtype used */

} tsmQryABackupData;

#define tsmQryABackupDataVersion 1

/*---+
| Type definition for Query Active Backup response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryARespBackupData
{

dsUint16_t stVersion; /* structure version */
tsmObjName objName; /* full dsm name of object */
dsUint32_t copyGroup; /* copy group number */
dsChar_t mcName[DSM_MAX_MC_NAME_LENGTH + 1];/*management class name*/
dsChar_t owner[DSM_MAX_OWNER_LENGTH + 1]; /* owner name */
dsmDate insDate; /* backup insertion date */
dsUint16_t objInfolen; /* length of object-dependent info*/
dsUint8_t objInfo[DSM_MAX_OBJINFO_LENGTH]; /*object-dependent info */

} tsmQryARespBackupData;

#define tsmQryARespBackupDataVersion 1

/*---+
| Type definition for Backup queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryBackupGroups
{

dsUint16_t stVersion; /* structure version */
dsUint8_t groupType;
dsChar_t *fsName;
dsChar_t *owner;
dsStruct64_t groupLeaderObjId;
dsUint8_t objType;

} tsmQryBackupGroups;

#define tsmQryBackupGroupsVersion 1

/*---+
| Type definition for WINNT and OS/2 Filespace attributes |
+---*/
typedef struct tsmDosFSAttrib
{

osChar_t driveLetter ; /* drive letter for filespace */
dsUint16_t fsInfoLength; /* fsInfo length used */

152 IBM Tivoli Storage Manager: Using the Application Program Interface

osChar_t fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */
} tsmDosFSAttrib ;

/*---+
| Type definition for UNIX Filespace attributes |
+---*/
typedef struct tsmUnixFSAttrib
{

dsUint16_t fsInfoLength; /* fsInfo length used */
osChar_t fsInfo[DSM_MAX_FSINFO_LENGTH];/*caller-determined data */

} tsmUnixFSAttrib ;

/*---+
| Type definition for NetWare Filespace attributes |
+---*/
typedef tsmUnixFSAttrib tsmNetwareFSAttrib;

/*---+
| Type definition for Filespace attributes on all Filespace calls |
+---*/
typedef union
{

tsmNetwareFSAttrib netwareFSAttr;
tsmUnixFSAttrib unixFSAttr ;
tsmDosFSAttrib dosFSAttr ;

} tsmFSAttr ;

/*---+
| Type definition for fsUpd parameter on dsmUpdateFS()
+---*/
typedef struct tsmFSUpd
{

dsUint16_t stVersion ; /* structure version */
dsChar_t *fsType ; /* filespace type */
dsStruct64_t occupancy ; /* occupancy estimate */
dsStruct64_t capacity ; /* capacity estimate */
tsmFSAttr fsAttr ; /* platform specific attributes */

} tsmFSUpd ;

#define tsmFSUpdVersion 1

/*---+
| Type definition for Filespace queryBuffer on dsmBeginQuery() |
+---*/
typedef struct tsmQryFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *fsName; /* File space name */

} tsmQryFSData;

#define tsmQryFSDataVersion 1

/*---+
| Type definition for Query Filespace response on dsmGetNextQObj() |
+---*/
typedef struct tsmQryRespFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t fsName[DSM_MAX_FSNAME_LENGTH + 1]; /* Filespace name */
dsChar_t fsType[DSM_MAX_FSTYPE_LENGTH + 1] ; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
tsmFSAttr fsAttr ; /* platform specific attributes */
dsmDate backStartDate; /* start backup date */
dsmDate backCompleteDate; /* end backup Date */
dsmDate reserved1 ; /* For future use */
dsBool_t bIsUnicode;

Appendix A. API type definitions source file 153

dsUint32_t fsID;
} tsmQryRespFSData;

#define tsmQryRespFSDataVersion 4

/*---+
| Type definition for regFilespace parameter on dsmRegisterFS()
+---*/
typedef struct tsmRegFSData
{

dsUint16_t stVersion; /* structure version */
dsChar_t *fsName; /* Filespace name */
dsChar_t *fsType; /* Filespace type */
dsStruct64_t occupancy; /* Occupancy est. in bytes. */
dsStruct64_t capacity; /* Capacity est. in bytes. */
tsmFSAttr fsAttr ; /* platform specific attributes */

} tsmRegFSData;

#define tsmRegFSDataVersion 1

/*---+
| Type definition for session info response on dsmQuerySessionInfo() |
+---*/
typedef struct
{

dsUint16_t stVersion; /* Structure version */
/*--*/
/* Server information */
/*--*/

dsChar_t serverHost[DSM_MAX_SERVERNAME_LENGTH+1];
/* Network host name of DSM server */

dsUint16_t serverPort; /* Server comm port on host */
dsmDate serverDate; /* Server’s date/time */
dsChar_t serverType[DSM_MAX_SERVERTYPE_LENGTH+1];

/* Server’s execution platform */
dsUint16_t serverVer; /* Server’s version number */
dsUint16_t serverRel; /* Server’s release number */
dsUint16_t serverLev; /* Server’s level number */
dsUint16_t serverSubLev; /* Server’s sublevel number */

/*--*/
/* Client Defaults */
/*--*/

dsChar_t nodeType[DSM_MAX_PLATFORM_LENGTH+1]; /*node/application type*/
dsChar_t fsdelim; /* File space delimiter */
dsChar_t hldelim; /* Delimiter betw highlev & lowlev */
dsUint8_t compression; /* Compression flag */
dsUint8_t archDel; /* Archive delete permission */
dsUint8_t backDel; /* Backup delete permission */
dsUint32_t maxBytesPerTxn; /* for future use */
dsUint16_t maxObjPerTxn; /* The max objects allowed in a txn */

/*--*/
/* Session Information */
/*--*/

dsChar_t id[DSM_MAX_ID_LENGTH+1]; /* Sign-in id node name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH+1]; /* Sign-in owner */

/* (for multi-user platforms) */
dsChar_t confFile[DSM_PATH_MAX + DSM_NAME_MAX +1];

/* len is platform dep */
/* dsInit name of appl config file */

dsUint8_t opNoTrace; /* dsInit option - NoTrace = 1 */
/*--*/
/* Policy Data */
/*--*/

dsChar_t domainName[DSM_MAX_DOMAIN_LENGTH+1]; /* Domain name */
dsChar_t policySetName[DSM_MAX_PS_NAME_LENGTH+1];

/* Active policy set name */
dsmDate polActDate; /* Policy set activation date */

154 IBM Tivoli Storage Manager: Using the Application Program Interface

dsChar_t dfltMCName[DSM_MAX_MC_NAME_LENGTH+1];/* Default Mgmt Class */
dsUint16_t gpBackRetn; /* Grace-period backup retention */
dsUint16_t gpArchRetn; /* Grace-period archive retention */
dsChar_t adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1]; /* adsm server name */

} tsmApiSessInfo;

#define tsmApiSessInfoVersion 2

/*---+
| Type definition for Query options response on dsmQueryCliOptions() |
| and dsmQuerySessOptions() |
+---*/

typedef struct
{

dsUint16_t stVersion;
dsChar_t dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t serverName[DSM_MAX_SERVERNAME_LENGTH+1];
dsInt16_t commMethod;
dsChar_t serverAddress[DSM_MAX_SERVER_ADDRESS];
dsChar_t nodeName[DSM_MAX_NODE_LENGTH+1];
dsBool_t compression;
dsBool_t compressalways;
dsBool_t passwordAccess;
}tsmOptStruct ;

#define tsmOptStructVersion 1

/*---+
| Type definition for qryRespAccessData parameter used on dsmQueryAccess()|
+---*/

typedef struct
{

dsUint16_t stVersion ; /* structure version */
dsChar_t node[DSM_MAX_ID_LENGTH+1]; /* node name */
dsChar_t owner[DSM_MAX_OWNER_LENGTH+1]; /* owner */
tsmObjName objName ; /* object name */
dsmAccessType accessType; /* archive or backup */
dsUint32_t ruleNumber ; /* Access rule id */

}tsmQryRespAccessData;

#define tsmQryRespAccessDataVersion 1

/*---+
| Type definition for envSetUp parameter on dsmSetUp()
+---*/
typedef struct tsmEnvSetUp
{

dsUint16_t stVersion; /* structure version */
dsChar_t dsmiDir[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiConfig[DSM_PATH_MAX + DSM_NAME_MAX +1];
dsChar_t dsmiLog[DSM_PATH_MAX + DSM_NAME_MAX +1];
char **argv; /* for executables name argv[0] */
dsChar_t logName[DSM_NAME_MAX +1];
dsBool_t inclExclCaseSensitive; /* for future use */
dsBool_t multipleInit; /* for future use */

} tsmEnvSetUp;

#define tsmEnvSetUpVersion 4

/*---+
| Type definition for dsmInitExIn_t
+---*/
typedef struct tsmInitExIn_t

Appendix A. API type definitions source file 155

{
dsUint16_t stVersion; /* structure version */
tsmApiVersionEx *apiVersionExP;
dsChar_t *clientNodeNameP;
dsChar_t *clientOwnerNameP;
dsChar_t *clientPasswordP;
dsChar_t *userNameP;
dsChar_t *userPasswordP;
dsChar_t *applicationTypeP;
dsChar_t *configfile;
dsChar_t *options;
dsChar_t dirDelimiter;
dsBool_t useUnicode;
dsBool_t bCrossPlatform;
dsBool_t bService;

} tsmInitExIn_t;

#define tsmInitExInVersion 3

/*---+
| Type definition for dsmInitExOut_t
+---*/
typedef struct tsmInitExOut_t
{

dsUint16_t stVersion; /* structure version */
dsInt16_t userNameAuthorities;
dsInt16_t infoRC; /* error return code if encountered */

/* adsm server name */
dsChar_t adsmServerName[DSM_MAX_SERVERNAME_LENGTH+1];
dsUint16_t serverVer; /* Server’s version number */
dsUint16_t serverRel; /* Server’s release number */
dsUint16_t serverLev; /* Server’s level number */
dsUint16_t serverSubLev; /* Server’s sublevel number */

} tsmInitExOut_t;

#define tsmInitExOutVersion 2

/*---+
| Type definition for dsmLogExIn_t
+---*/
typedef struct tsmLogExIn_t
{

dsUint16_t stVersion; /* structure version */
dsmLogSeverity severity;
dsChar_t appMsgID[8];
dsmLogType logType; /* log type : local, server, both */
dsChar_t *message; /* text of message to be logged */
dsChar_t appName[DSM_MAX_PLATFORM_LENGTH];
dsChar_t osPlatform[DSM_MAX_PLATFORM_LENGTH];
dsChar_t appVersion[DSM_MAX_PLATFORM_LENGTH];

} tsmLogExIn_t;

#define tsmLogExInVersion 2

/*---+
| Type definition for dsmlogExOut_t
+---*/
typedef struct tsmLogExOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmLogExOut_t;

#define tsmLogExOutVersion 1

156 IBM Tivoli Storage Manager: Using the Application Program Interface

/*---+
| Type definition for dsmRenameIn_t
+---*/
typedef struct tsmRenameIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t repository; /* Backup or Archive */
tsmObjName *objNameP ; /* object name */
dsChar_t newHl[DSM_MAX_HL_LENGTH + 1]; /* new High level name */
dsChar_t newLl[DSM_MAX_LL_LENGTH + 1]; /* new Low level name */
dsBool_t merge; /* merge into existing name*/
ObjID objId; /* objId for Archive */

} tsmRenameIn_t;

#define tsmRenameInVersion 1

/*---+
| Type definition for dsmRenameOut_t
+---*/
typedef struct tsmRenameOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmRenameOut_t;

#define tsmRenameOutVersion 1

/*---+
| Type definition for tsmEndSendObjExIn_t
+---*/
typedef struct tsmEndSendObjExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */

} tsmEndSendObjExIn_t;

#define tsmEndSendObjExInVersion 1

/*---+
| Type definition for tsmEndSendObjExOut_t
+---*/
typedef struct tsmEndSendObjExOut_t
{

dsUint16_t stVersion; /* structure version */
dsStruct64_t totalBytesSent; /* total bytes read from app */
dsBool_t objCompressed; /* was object compressed */
dsStruct64_t totalCompressSize; /* total size after compress */
dsStruct64_t totalLFBytesSent; /* total bytes sent Lan Free */

} tsmEndSendObjExOut_t;

#define tsmEndSendObjExOutVersion 1

/*---+
| Type definition for tsmGroupHandlerIn_t
+---*/
typedef struct tsmGroupHandlerIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t groupType; /* Type of group */
dsUint8_t actionType; /* Type of group operation */
dsUint8_t memberType; /* Type of member: Leader or member */
dsStruct64_t leaderObjId; /* OBJID of the groupleader */
dsChar_t *uniqueGroupTagP; /* Unique group identifier */
tsmObjName *objNameP ; /* group leader object name */
dsmGetList memberObjList; /* list of objects to remove, assign */

} tsmGroupHandlerIn_t;

Appendix A. API type definitions source file 157

#define tsmGroupHandlerInVersion 1

/*---+
| Type definition for tsmGroupHandlerExOut_t
+---*/
typedef struct tsmGroupHandlerOut_t
{

dsUint16_t stVersion; /* structure version */
} tsmGroupHandlerOut_t;

#define tsmGroupHandlerOutVersion 1

/*---+
| Type definition for tsmEndTxnExIn_t
+---*/
typedef struct tsmEndTxnExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */
dsUint8_t vote;

} tsmEndTxnExIn_t;

#define tsmEndTxnExInVersion 1

/*---+
| Type definition for tsmEndTxnExOut_t
+---*/
typedef struct tsmEndTxnExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t groupLeaderObjId; /* groupLeader obj id returned on */

/* DSM_ACTION_OPEN */
dsUint8_t deferredVote; /* future use */
dsUint16_t deferredAbortReasonCode; /* future use */

} tsmEndTxnExOut_t;

#define tsmEndTxnExOutVersion 1

/*---+
| Type definition for tsmEndGetDataExIn_t
+---*/
typedef struct tsmEndGetDataExIn_t
{

dsUint16_t stVersion; /* structure version */
dsUint32_t tsmHandle; /* handle for session */

}tsmEndGetDataExIn_t;

#define tsmEndGetDataExInVersion 1

/*---+
| Type definition for tsmEndGetDataExOut_t
+---*/
typedef struct tsmEndGetDataExOut_t
{

dsUint16_t stVersion; /* structure version */
dsUint16_t reason; /* reason code */
dsStruct64_t totalLFBytesRecv; /* total lan free bytes recieved */

}tsmEndGetDataExOut_t;

#define tsmEndGetDataExOutVersion 1

#if _OPSYS_TYPE == DS_WINNT
#pragma pack()
#endif

158 IBM Tivoli Storage Manager: Using the Application Program Interface

#if _OPSYS_TYPE == DS_MACOS
#pragma align_array_members reset
#pragma options align = reset
#endif
#endif /* _H_TSMAPITD */

Appendix A. API type definitions source file 159

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2002 *
***/

/***
* Header File Name: dsmapips.h
*
* Environment: ***
* ** This is a platform-specific source file **
* ** versioned for Windows NT **
*
* ***
*
* Design Notes: This file includes platform dependent definitions
*
* Descriptive-name: Definitions for Tivoli Storage Manager typedefs and LINKAGE
---/

#ifndef _H_DSMAPIPS
#define _H_DSMAPIPS

#ifndef _WIN64
#pragma pack(1)
#endif

/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/
/* T Y P E D E F S */
/*<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>*/

/* new typedef file for Version 3 */

#if !defined(DSMAPILIB) || defined (XOPEN_BUILD)

/* support for linkage */
#include <windows.h>
#define DSMLINKAGE WINAPI

#define DS_WINNT 22
#define _OPSYS_TYPE DS_WINNT

typedef signed char dsInt8_t;
typedef unsigned char dsUint8_t;
typedef signed short dsInt16_t;
typedef unsigned short dsUint16_t;
typedef signed long dsInt32_t;
typedef unsigned long dsUint32_t;

/*=== Character and string types ===*/
#ifdef UNICODE

typedef wchar_t dsChar_t;
#define dsTEXT(x) L##x

#else
typedef char dsChar_t;
#define dsTEXT(x) x

#endif /* !UNICODE */

/*=== Common typedefs and defines derived from dsChar_t ===*/
typedef dsChar_t *dsString_t;

/* added for the extended restore order */
typedef struct
{

160 IBM Tivoli Storage Manager: Using the Application Program Interface

dsUint32_t top;
dsUint32_t hi_hi;
dsUint32_t hi_lo;
dsUint32_t lo_hi;
dsUint32_t lo_lo;

} dsUint160_t ;

#if defined(_LONG_LONG)
typedef __int64 dsInt64_t;
typedef unsigned __int64 dsUint64_t;
/*=== A "true" unsigned 64-bit integer ===*/
typedef __int64 dsLongLong_t;

#else
typedef struct tagUINT64_t

{
dsUint32_t hi; /* Most significant 32 bits. */
dsUint32_t lo; /* Least significant 32 bits. */

} dsUint64_t;
#endif

/*---+
| Type definition for bool_t |
+---*/
/*
* Had to create a Boolean type that didn’t clash with any other predefined
* version in any operating system or windowing system.
*/
typedef enum
{

bFalse = 0x00,
bTrue = 0x01

} dsBool_t ;

/*=== for backward compatability ===*/
#define uint8 dsUint8_t
#define int8 dsInt8_t
#define uint16 dsUint16_t
#define int16 dsInt16_t
#define uint32 dsUint32_t
#define int32 dsInt32_t
#define uint64 dsStruct64_t
#define bool_t dsBool_t

typedef struct
{

dsUint32_t hi; /* Most significant 32 bits. */
dsUint32_t lo; /* Least significant 32 bits. */

}dsStruct64_t ;

#endif /* DSMAPILIB */

#ifndef _WIN64
#pragma pack()
#endif
#endif /* _H_DSMAPIPS */

Appendix A. API type definitions source file 161

/***
* Tivoli Storage Manager *
* Common Source Component *
* *
* (C) Copyright IBM Corporation 1993,2002 *
***/

/***
* Header File Name: release.h
*
* Environment: **
* ** This is a platform-independent source file **
* **
*
* Design Notes: This file contains the common information about
* the actual version.release.level.sublevel
*
* Descriptive-name: Definitions for Tivoli Storage manager version
*
* Note: This file should contain no LOG or CMVC information. It is
* shipped with the API code.
*
--/

#ifndef _H_RELEASE
#define _H_RELEASE

#define COMMON_VERSION 5
#define COMMON_RELEASE 2
#define COMMON_LEVEL 0
#define COMMON_SUBLEVEL 0
#define COMMON_DRIVER dsTEXT("e3")

#define COMMON_VERSIONTXT "5.2.0.0"

#define SHIPYEARTXT "2003"
#define SHIPYEARTXTW dsTEXT("2003")
#define TSMPRODTXT "IBM Tivoli Storage Manager"

/*==
The following string definitions are used for VERSION information
and should not be converted to dsTEXT or osTEXT. They are used
only at link time.

==*/
#define COMMON_VERSION_STR "5"
#define COMMON_RELEASE_STR "2"
#define COMMON_LEVEL_STR "0"
#define COMMON_SUBLEVEL_STR "0"
#define COMMON_DRIVER_STR "e3"

/*=== product names definitions ===*/
#define COMMON_NAME_DFDSM 1
#define COMMON_NAME_ADSM 2
#define COMMON_NAME_TSM 3
#define COMMON_NAME_ITSM 4
#define COMMON_NAME COMMON_NAME_ITSM

/*==
Internal version, release, and level (build) version. This
should be unique for every version+release+ptf of a product.
This information is recorded in the file attributes and data
stream for diagnostic purposes.

==*/
#define COMMON_BUILD_TSM_510 1
#define COMMON_BUILD_TSM_511 2
#define COMMON_BUILD_TSM_515 3
#define COMMON_BUILD_TSM_516 4

162 IBM Tivoli Storage Manager: Using the Application Program Interface

#define COMMON_BUILD_TSM_520 5
#define COMMON_BUILD COMMON_BUILD_TSM_520

#endif /* _H_RELEASE */

Appendix A. API type definitions source file 163

164 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix B. API function definitions source file

This appendix contains the function definitions for the API. It is a copy of the
dsmapifp.h header file.

Note: DSMLINKAGE is defined differently for each operating system. See the
definitions in the dsmapips.h file for your specific operating system.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2002 *
***/

/**/
/* Header File Name: dsmapifp.h */
/* */
/* Descriptive-name: Tivoli Storage Manager API function prototypes */
/**/
#ifndef _H_DSMAPIFP
#define _H_DSMAPIFP

#if defined(__cplusplus)
extern "C" {
#endif

#ifdef DYNALOAD_DSMAPI

/* function will be dynamically loaded */
#include "dsmapidl.h"

#else

/* functions will be implicitly loaded from library */

/*==*/
/* P U B L I C F U N C T I O N S */
/*==*/

extern dsInt16_t DSMLINKAGE dsmBeginGetData(
dsUint32_t dsmHandle,
dsBool_t mountWait,
dsmGetType getType,
dsmGetList *dsmGetObjListP

);

extern dsInt16_t DSMLINKAGE dsmBeginQuery(
dsUint32_t dsmHandle,
dsmQueryType queryType,
dsmQueryBuff *queryBuffer

);

extern dsInt16_t DSMLINKAGE dsmBeginTxn(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmBindMC(
dsUint32_t dsmHandle,
dsmObjName *objNameP,
dsmSendType sendType,
mcBindKey *mcBindKeyP

© Copyright IBM Corp. 1993, 2003 165

);

extern dsInt16_t DSMLINKAGE dsmChangePW(
dsUint32_t dsmHandle,
char *oldPW,
char *newPW

);

extern dsInt16_t DSMLINKAGE dsmCleanUp(
dsBool_t mtFlag

);

extern dsInt16_t DSMLINKAGE dsmDeleteAccess(
dsUint32_t dsmHandle,
dsUint32_t ruleNum

);

extern dsInt16_t DSMLINKAGE dsmDeleteObj(
dsUint32_t dsmHandle,
dsmDelType delType,
dsmDelInfo delInfo

);

extern dsInt16_t DSMLINKAGE dsmDeleteFS(
dsUint32_t dsmHandle,
char *fsName,
dsUint8_t repository

);

extern dsInt16_t DSMLINKAGE dsmEndGetData(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmEndGetDataEx(
dsmEndGetDataExIn_t *dsmEndGetDataExInP,
dsmEndGetDataExOut_t *dsmEndGetDataExOutP

);

extern dsInt16_t DSMLINKAGE dsmEndGetObj(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmEndQuery(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmEndSendObj(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmEndSendObjEx(
dsmEndSendObjExIn_t *dsmEndSendObjExInP,
dsmEndSendObjExOut_t *dsmEndSendObjExOutP

);

extern dsInt16_t DSMLINKAGE dsmEndTxnEx(
dsmEndTxnExIn_t *dsmEndTxnExInP,
dsmEndTxnExOut_t *dsmEndTxnExOutP

166 IBM Tivoli Storage Manager: Using the Application Program Interface

);

extern dsInt16_t DSMLINKAGE dsmEndTxn(
dsUint32_t dsmHandle,
dsUint8_t vote,
dsUint16_t *reason

);

extern dsInt16_t DSMLINKAGE dsmGetData(
dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

);

extern dsInt16_t DSMLINKAGE dsmGetNextQObj(
dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

) ;

extern dsInt16_t DSMLINKAGE dsmGetObj(
dsUint32_t dsmHandle,
ObjID *objIdP,
DataBlk *dataBlkPtr

);

extern dsInt16_t DSMLINKAGE dsmGroupHandler(
dsmGroupHandlerIn_t *dsmGroupHandlerInP,
dsmGroupHandlerOut_t *dsmGroupHandlerOutP

);

extern dsInt16_t DSMLINKAGE dsmInit(
dsUint32_t *dsmHandle,
dsmApiVersion *dsmApiVersionP,
char *clientNodeNameP,
char *clientOwnerNameP,
char *clientPasswordP,
char *applicationType,
char *configfile,
char *options

);

extern dsInt16_t DSMLINKAGE dsmInitEx(
dsUint32_t *dsmHandleP,
dsmInitExIn_t *dsmInitExInP,
dsmInitExOut_t *dsmInitExOutP

);

extern dsInt16_t DSMLINKAGE dsmLogEvent(
dsUint32_t dsmHandle,
logInfo *lopInfoP

);

extern dsInt16_t DSMLINKAGE dsmLogEventEx(
dsUint32_t dsmHandle,
dsmLogExIn_t *dsmLogExInP,
dsmLogExOut_t *dsmLogExOutP

);

extern dsInt16_t DSMLINKAGE dsmQueryAccess(
dsUint32_t dsmHandle,
qryRespAccessData **accessListP,
dsUint16_t *numberOfRules

);

extern void DSMLINKAGE dsmQueryApiVersion(
dsmApiVersion *apiVersionP

Appendix B. API function definitions source file 167

);

extern void DSMLINKAGE dsmQueryApiVersionEx(
dsmApiVersionEx *apiVersionP

);

extern dsInt16_t DSMLINKAGE dsmQueryCliOptions(
optStruct *optstructP

);

extern dsInt16_t DSMLINKAGE dsmQuerySessInfo(
dsUint32_t dsmHandle,
ApiSessInfo *SessInfoP

);

extern dsInt16_t DSMLINKAGE dsmQuerySessOptions(
dsUint32_t dsmHandle,
optStruct *optstructP

);

extern dsInt16_t DSMLINKAGE dsmRCMsg(
dsUint32_t dsmHandle,
dsInt16_t dsmRC,
char *msg

);

extern dsInt16_t DSMLINKAGE dsmRegisterFS(
dsUint32_t dsmHandle,
regFSData *regFilespaceP

);

extern dsInt16_t DSMLINKAGE dsmRenameObj(
dsmRenameIn_t *dsmRenameInP,
dsmRenameOut_t *dsmRenameOutP);

extern dsInt16_t DSMLINKAGE dsmSendData(
dsUint32_t dsmHandle,
DataBlk *dataBlkPtr

) ;

extern dsInt16_t DSMLINKAGE dsmSendObj(
dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
DataBlk *dataBlkPtr

);

extern dsInt16_t DSMLINKAGE dsmSetAccess(
dsUint32_t dsmHandle,
dsmAccessType accessType,
dsmObjName *objNameP,
char *node,
char *owner

);

extern dsInt16_t DSMLINKAGE dsmSetUp(
dsBool_t mtFlag,
envSetUp *envSetUpP

168 IBM Tivoli Storage Manager: Using the Application Program Interface

);

extern dsInt16_t DSMLINKAGE dsmTerminate(
dsUint32_t dsmHandle

);

extern dsInt16_t DSMLINKAGE dsmUpdateFS(
dsUint32_t dsmHandle,
char *fs,
dsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct

);

extern dsInt16_t DSMLINKAGE dsmUpdateObj(
dsUint32_t dsmHandle,
dsmSendType sendType,
void *sendBuff,
dsmObjName *objNameP,
ObjAttr *objAttrPtr,
dsUint32_t objUpdAct

);

#endif /* ifdef DYNALOAD */

#if defined(__cplusplus)
}

#endif

#endif /* _H_DSMAPIFP */

Appendix B. API function definitions source file 169

This section contains the function definitions for the API. It is a copy of the
tsmapifp.h header file.

Note: DSMLINKAGE is defined differently for each operating system. See the
definitions in the tsmapips.h file for your specific operating system.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2002 *
***/

/**/
/* Header File Name: tsmapifp.h */
/* */
/* Descriptive-name: Tivoli Storage Manager API function prototypes */
/**/
#ifndef _H_TSMAPIFP
#define _H_TSMAPIFP

#if defined(__cplusplus)
extern "C" {
#endif

#ifdef DYNALOAD_DSMAPI

/* function will be dynamically loaded */
#include "dsmapidl.h"

#else

/* functions will be implicitly loaded from library */

/*==*/
/*P U B L I C F U N C T I O N S */
/*==*/

typedef void tsmQueryBuff;

extern dsInt16_t DSMLINKAGE tsmBeginGetData(
dsUint32_t tsmHandle,
dsBool_t mountWait,
tsmGetType getType,
dsmGetList *dsmGetObjListP

);

extern dsInt16_t DSMLINKAGE tsmBeginQuery(
dsUint32_t tsmHandle,
tsmQueryType queryType,
tsmQueryBuff *queryBuffer

);

extern dsInt16_t DSMLINKAGE tsmBeginTxn(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmBindMC(
dsUint32_t tsmHandle,
tsmObjName *objNameP,
tsmSendType sendType,
tsmMcBindKey *mcBindKeyP

);

extern dsInt16_t DSMLINKAGE tsmChangePW(
dsUint32_t tsmHandle,

170 IBM Tivoli Storage Manager: Using the Application Program Interface

dsChar_t *oldPW,
dsChar_t *newPW

);

extern dsInt16_t DSMLINKAGE tsmCleanUp(
dsBool_t mtFlag

);

extern dsInt16_t DSMLINKAGE tsmDeleteAccess(
dsUint32_t tsmHandle,
dsUint32_t ruleNum

);

extern dsInt16_t DSMLINKAGE tsmDeleteObj(
dsUint32_t tsmHandle,
tsmDelType delType,
tsmDelInfo delInfo

);

extern dsInt16_t DSMLINKAGE tsmDeleteFS(
dsUint32_t tsmHandle,
dsChar_t *fsName,
dsUint8_t repository

);

extern dsInt16_t DSMLINKAGE tsmEndGetData(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmEndGetDataEx(
tsmEndGetDataExIn_t *tsmEndGetDataExInP,
tsmEndGetDataExOut_t *tsmEndGetDataExOutP

);

extern dsInt16_t DSMLINKAGE tsmEndGetObj(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmEndQuery(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmEndSendObj(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmEndSendObjEx(
tsmEndSendObjExIn_t *tsmEndSendObjExInP,
tsmEndSendObjExOut_t *tsmEndSendObjExOutP

);

extern dsInt16_t DSMLINKAGE tsmEndTxn(
dsUint32_t tsmHandle,
dsUint8_t vote,
dsUint16_t *reason

);

extern dsInt16_t DSMLINKAGE tsmEndTxnEx(
tsmEndTxnExIn_t *tsmEndTxnExInP,
tsmEndTxnExOut_t *tsmEndTxnExOutP

);

extern dsInt16_t DSMLINKAGE tsmGetData(
dsUint32_t tsmHandle,
DataBlk*dataBlkPtr

Appendix B. API function definitions source file 171

);

extern dsInt16_t DSMLINKAGE tsmGetNextQObj(
dsUint32_t tsmHandle,
DataBlk*dataBlkPtr

) ;

extern dsInt16_t DSMLINKAGE tsmGetObj(
dsUint32_t tsmHandle,
ObjID *objIdP,
DataBlk *dataBlkPtr

);

extern dsInt16_t DSMLINKAGE tsmGroupHandler(
tsmGroupHandlerIn_t *tsmGroupHandlerInP,
tsmGroupHandlerOut_t *tsmGroupHandlerOutP

);

extern dsInt16_t DSMLINKAGE tsmInitEx(
dsUint32_t *tsmHandleP,
tsmInitExIn_t *tsmInitExInP,
tsmInitExOut_t *tsmInitExOutP

);

extern dsInt16_t DSMLINKAGE tsmLogEventEx(
dsUint32_t tsmHandle,
tsmLogExIn_t *tsmLogExInP,
tsmLogExOut_t *tsmLogExOutP

);

extern dsInt16_t DSMLINKAGE tsmQueryAccess(
dsUint32_t tsmHandle,
tsmQryRespAccessData **accessListP,
dsUint16_t *numberOfRules

);

extern void DSMLINKAGE tsmQueryApiVersionEx(
tsmApiVersionEx *apiVersionP

);

extern dsInt16_t DSMLINKAGE tsmQueryCliOptions(
tsmOptStruct *optstructP

);

extern dsInt16_t DSMLINKAGE tsmQuerySessInfo(
dsUint32_t tsmHandle,
tsmApiSessInfo *SessInfoP

);

extern dsInt16_t DSMLINKAGE tsmQuerySessOptions(
dsUint32_t tsmHandle,
tsmOptStruct *optstructP

);

extern dsInt16_t DSMLINKAGE tsmRCMsg(
dsUint32_t tsmHandle,
dsInt16_t tsmRC,
dsChar_t *msg

);

extern dsInt16_t DSMLINKAGE tsmRenameObj(
tsmRenameIn_t *tsmRenameInP,
tsmRenameOut_t *tsmRenameOutP

172 IBM Tivoli Storage Manager: Using the Application Program Interface

);

extern dsInt16_t DSMLINKAGE tsmRegisterFS(
dsUint32_t tsmHandle,
tsmRegFSData *regFilespaceP

);

extern dsInt16_t DSMLINKAGE tsmSendData(
dsUint32_t tsmHandle,
DataBlk *dataBlkPtr

) ;

extern dsInt16_t DSMLINKAGE tsmSendObj(
dsUint32_t tsmHandle,
tsmSendType sendType,
void *sendBuff,
tsmObjName *objNameP,
tsmObjAttr *objAttrPtr,
DataBlk *dataBlkPtr

);

extern dsInt16_t DSMLINKAGE tsmSetAccess(
dsUint32_t tsmHandle,
tsmAccessType accessType,
tsmObjName *objNameP,
dsChar_t *node,
dsChar_t *owner

);

extern dsInt16_t DSMLINKAGE tsmSetUp(
dsBool_t mtFlag,
tsmEnvSetUp *envSetUpP

);

extern dsInt16_t DSMLINKAGE tsmTerminate(
dsUint32_t tsmHandle

);

extern dsInt16_t DSMLINKAGE tsmUpdateFS(
dsUint32_t tsmHandle,
dsChar_t *fs,
tsmFSUpd *fsUpdP,
dsUint32_t fsUpdAct

);

extern dsInt16_t DSMLINKAGE tsmUpdateObj(
dsUint32_t tsmHandle,
tsmSendType sendType,
void *sendBuff,
tsmObjName *objNameP,
tsmObjAttr *objAttrPtr,
dsUint32_t objUpdAct

);

#if _OPSYS_TYPE == DS_NETWARE
extern void dsmAbort();
#endif

#endif /* ifdef DYNALOAD */

#if defined(__cplusplus)
}

#endif

#endif /* _H_TSMAPIFP */

Appendix B. API function definitions source file 173

174 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix C. API return codes source file

The following list contains the possible return codes from the APIs. This is a copy
of the dsmrc.h header file that is used in the product. See Appendix D, “API return
codes with explanations”, on page 185 for more information.

/***
* Tivoli Storage Manager *
* API Client Component *
* *
* (C) Copyright IBM Corporation 1993,2002 *
***/

/**/
/* Header File Name: dsmrc.h */
/* */
/* Descriptive-name: Return codes from Tivoli Storage Manager APIs */
/**/
#ifndef _H_DSMRC
#define _H_DSMRC

#ifndef DSMAPILIB

#ifndef _H_ANSMACH
typedef int RetCode ;
#endif

#endif

#define DSM_RC_SUCCESSFUL 0 /* successful completion */
#define DSM_RC_OK 0 /* successful completion */

/* dsmEndTxn reason code */
#define DSM_RS_ABORT_SYSTEM_ERROR 1
#define DSM_RS_ABORT_NO_MATCH 2
#define DSM_RS_ABORT_BY_CLIENT 3
#define DSM_RS_ABORT_ACTIVE_NOT_FOUND 4
#define DSM_RS_ABORT_NO_DATA 5
#define DSM_RS_ABORT_BAD_VERIFIER 6
#define DSM_RS_ABORT_NODE_IN_USE 7
#define DSM_RS_ABORT_EXPDATE_TOO_LOW 8
#define DSM_RS_ABORT_DATA_OFFLINE 9
#define DSM_RS_ABORT_EXCLUDED_BY_SIZE 10
#define DSM_RS_ABORT_NO_STO_SPACE_SKIP 11
#define DSM_RS_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP
#define DSM_RS_ABORT_MOUNT_NOT_POSSIBLE 12
#define DSM_RS_ABORT_SIZESTIMATE_EXCEED 13
#define DSM_RS_ABORT_DATA_UNAVAILABLE 14
#define DSM_RS_ABORT_RETRY 15
#define DSM_RS_ABORT_NO_LOG_SPACE 16
#define DSM_RS_ABORT_NO_DB_SPACE 17
#define DSM_RS_ABORT_NO_MEMORY 18

#define DSM_RS_ABORT_FS_NOT_DEFINED 20
#define DSM_RS_ABORT_NODE_ALREADY_DEFED 21
#define DSM_RS_ABORT_NO_DEFAULT_DOMAIN 22
#define DSM_RS_ABORT_INVALID_NODENAME 23
#define DSM_RS_ABORT_INVALID_POL_BIND 24
#define DSM_RS_ABORT_DEST_NOT_DEFINED 25
#define DSM_RS_ABORT_WAIT_FOR_SPACE 26
#define DSM_RS_ABORT_NOT_AUTHORIZED 27

© Copyright IBM Corp. 1993, 2003 175

#define DSM_RS_ABORT_RULE_ALREADY_DEFED 28
#define DSM_RS_ABORT_NO_STOR_SPACE_STOP 29

#define DSM_RS_ABORT_LICENSE_VIOLATION 30
#define DSM_RS_ABORT_EXTOBJID_ALREADY_EXISTS 31
#define DSM_RS_ABORT_DUPLICATE_OBJECT 32

#define DSM_RS_ABORT_INVALID_OFFSET 33 /* Partial Object Retrieve */
#define DSM_RS_ABORT_INVALID_LENGTH 34 /* Partial Object Retrieve */
#define DSM_RS_ABORT_STRING_ERROR 35
#define DSM_RS_ABORT_NODE_NOT_AUTHORIZED 36
#define DSM_RS_ABORT_RESTART_NOT_POSSIBLE 37
#define DSM_RS_ABORT_RESTORE_IN_PROGRESS 38
#define DSM_RS_ABORT_SYNTAX_ERROR 39

#define DSM_RS_ABORT_DATA_SKIPPED 40
#define DSM_RS_ABORT_EXCEED_MAX_MP 41
#define DSM_RS_ABORT_NO_OBJSET_MATCH 42
#define DSM_RS_ABORT_PVR_ERROR 43
#define DSM_RS_ABORT_BAD_RECOGTOKEN 44
#define DSM_RS_ABORT_MERGE_ERROR 45
#define DSM_RS_ABORT_FSRENAME_ERROR 46
#define DSM_RS_ABORT_INVALID_OPERATION 47
#define DSM_RS_ABORT_STGPOOL_UNDEFINED 48
#define DSM_RS_ABORT_INVALID_DATA_FORMAT 49
#define DSM_RS_ABORT_DATAMOVER_UNDEFINED 50

#define DSM_RS_ABORT_INVALID_MOVER_TYPE 231
#define DSM_RS_ABORT_ITEM_IN_USE 232
#define DSM_RS_ABORT_LOCK_CONFLICT 233
#define DSM_RS_ABORT_SRV_PLUGIN_COMM_ERROR 234
#define DSM_RS_ABORT_SRV_PLUGIN_OS_ERROR 235
#define DSM_RS_ABORT_CRC_FAILED 236
#define DSM_RS_ABORT_INVALID_GROUP_ACTION 237
#define DSM_RS_ABORT_DISK_UNDEFINED 238
#define DSM_RS_ABORT_BAD_DESTINATION 239
#define DSM_RS_ABORT_DATAMOVER_NOT_AVAILABLE 240
#define DSM_RS_ABORT_STGPOOL_COPY_CONT_NO 241
#define DSM_RS_ABORT_RETRY_SINGLE_TXN 242
#define DSM_RS_ABORT_TOC_CREATION_FAIL 243
#define DSM_RS_ABORT_TOC_LOAD_FAIL 244

/* RETURN CODE */

#define DSM_RC_ABORT_SYSTEM_ERROR DSM_RS_ABORT_SYSTEM_ERROR
#define DSM_RC_ABORT_NO_MATCH DSM_RS_ABORT_NO_MATCH
#define DSM_RC_ABORT_BY_CLIENT DSM_RS_ABORT_BY_CLIENT
#define DSM_RC_ABORT_ACTIVE_NOT_FOUND DSM_RS_ABORT_ACTIVE_NOT_FOUND
#define DSM_RC_ABORT_NO_DATA DSM_RS_ABORT_NO_DATA
#define DSM_RC_ABORT_BAD_VERIFIER DSM_RS_ABORT_BAD_VERIFIER
#define DSM_RC_ABORT_NODE_IN_USE DSM_RS_ABORT_NODE_IN_USE
#define DSM_RC_ABORT_EXPDATE_TOO_LOW DSM_RS_ABORT_EXPDATE_TOO_LOW
#define DSM_RC_ABORT_DATA_OFFLINE DSM_RS_ABORT_DATA_OFFLINE
#define DSM_RC_ABORT_EXCLUDED_BY_SIZE DSM_RS_ABORT_EXCLUDED_BY_SIZE

#define DSM_RC_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP
#define DSM_RC_ABORT_NO_STO_SPACE_SKIP DSM_RS_ABORT_NO_STO_SPACE_SKIP

#define DSM_RC_ABORT_MOUNT_NOT_POSSIBLE DSM_RS_ABORT_MOUNT_NOT_POSSIBLE
#define DSM_RC_ABORT_SIZESTIMATE_EXCEED DSM_RS_ABORT_SIZESTIMATE_EXCEED
#define DSM_RC_ABORT_DATA_UNAVAILABLE DSM_RS_ABORT_DATA_UNAVAILABLE
#define DSM_RC_ABORT_RETRY DSM_RS_ABORT_RETRY
#define DSM_RC_ABORT_NO_LOG_SPACE DSM_RS_ABORT_NO_LOG_SPACE
#define DSM_RC_ABORT_NO_DB_SPACE DSM_RS_ABORT_NO_DB_SPACE
#define DSM_RC_ABORT_NO_MEMORY DSM_RS_ABORT_NO_MEMORY

176 IBM Tivoli Storage Manager: Using the Application Program Interface

#define DSM_RC_ABORT_FS_NOT_DEFINED DSM_RS_ABORT_FS_NOT_DEFINED
#define DSM_RC_ABORT_NODE_ALREADY_DEFED DSM_RS_ABORT_NODE_ALREADY_DEFED
#define DSM_RC_ABORT_NO_DEFAULT_DOMAIN DSM_RS_ABORT_NO_DEFAULT_DOMAIN
#define DSM_RC_ABORT_INVALID_NODENAME DSM_RS_ABORT_INVALID_NODENAME
#define DSM_RC_ABORT_INVALID_POL_BIND DSM_RS_ABORT_INVALID_POL_BIND
#define DSM_RC_ABORT_DEST_NOT_DEFINED DSM_RS_ABORT_DEST_NOT_DEFINED
#define DSM_RC_ABORT_WAIT_FOR_SPACE DSM_RS_ABORT_WAIT_FOR_SPACE
#define DSM_RC_ABORT_NOT_AUTHORIZED DSM_RS_ABORT_NOT_AUTHORIZED
#define DSM_RC_ABORT_RULE_ALREADY_DEFED DSM_RS_ABORT_RULE_ALREADY_DEFED
#define DSM_RC_ABORT_NO_STOR_SPACE_STOP DSM_RS_ABORT_NO_STOR_SPACE_STOP

#define DSM_RC_ABORT_LICENSE_VIOLATION DSM_RS_ABORT_LICENSE_VIOLATION
#define DSM_RC_ABORT_EXTOBJID_ALREADY_EXISTS DSM_RS_ABORT_EXTOBJID_ALREADY_EXISTS
#define DSM_RC_ABORT_DUPLICATE_OBJECT DSM_RS_ABORT_DUPLICATE_OBJECT

#define DSM_RC_ABORT_INVALID_OFFSET DSM_RS_ABORT_INVALID_OFFSET
#define DSM_RC_ABORT_INVALID_LENGTH DSM_RS_ABORT_INVALID_LENGTH

#define DSM_RC_ABORT_STRING_ERROR DSM_RS_ABORT_STRING_ERROR
#define DSM_RC_ABORT_NODE_NOT_AUTHORIZED DSM_RS_ABORT_NODE_NOT_AUTHORIZED
#define DSM_RC_ABORT_RESTART_NOT_POSSIBLE DSM_RS_ABORT_RESTART_NOT_POSSIBLE
#define DSM_RC_ABORT_RESTORE_IN_PROGRESS DSM_RS_ABORT_RESTORE_IN_PROGRESS
#define DSM_RC_ABORT_SYNTAX_ERROR DSM_RS_ABORT_SYNTAX_ERROR

#define DSM_RC_ABORT_DATA_SKIPPED DSM_RS_ABORT_DATA_SKIPPED
#define DSM_RC_ABORT_EXCEED_MAX_MP DSM_RS_ABORT_EXCEED_MAX_MP
#define DSM_RC_ABORT_NO_OBJSET_MATCH DSM_RS_ABORT_NO_OBJSET_MATCH
#define DSM_RC_ABORT_PVR_ERROR DSM_RS_ABORT_PVR_ERROR
#define DSM_RC_ABORT_BAD_RECOGTOKEN DSM_RS_ABORT_BAD_RECOGTOKEN
#define DSM_RC_ABORT_MERGE_ERROR DSM_RS_ABORT_MERGE_ERROR
#define DSM_RC_ABORT_FSRENAME_ERROR DSM_RS_ABORT_FSRENAME_ERROR
#define DSM_RC_ABORT_INVALID_OPERATION DSM_RS_ABORT_INVALID_OPERATION
#define DSM_RC_ABORT_STGPOOL_UNDEFINED DSM_RS_ABORT_STGPOOL_UNDEFINED
#define DSM_RC_ABORT_INVALID_DATA_FORMAT DSM_RS_ABORT_INVALID_DATA_FORMAT
#define DSM_RC_ABORT_DATAMOVER_UNDEFINED DSM_RS_ABORT_DATAMOVER_UNDEFINED

#define DSM_RC_ABORT_INVALID_MOVER_TYPE DSM_RS_ABORT_INVALID_MOVER_TYPE
#define DSM_RC_ABORT_ITEM_IN_USE DSM_RS_ABORT_ITEM_IN_USE
#define DSM_RC_ABORT_LOCK_CONFLICT DSM_RS_ABORT_LOCK_CONFLICT
#define DSM_RC_ABORT_SRV_PLUGIN_COMM_ERROR DSM_RS_ABORT_SRV_PLUGIN_COMM_ERROR
#define DSM_RC_ABORT_SRV_PLUGIN_OS_ERROR DSM_RS_ABORT_SRV_PLUGIN_OS_ERROR
#define DSM_RC_ABORT_CRC_FAILED DSM_RS_ABORT_CRC_FAILED
#define DSM_RC_ABORT_INVALID_GROUP_ACTION DSM_RS_ABORT_INVALID_GROUP_ACTION
#define DSM_RC_ABORT_DISK_UNDEFINED DSM_RS_ABORT_DISK_UNDEFINED
#define DSM_RC_ABORT_BAD_DESTINATION DSM_RS_ABORT_BAD_DESTINATION
#define DSM_RC_ABORT_DATAMOVER_NOT_AVAILABLE DSM_RS_ABORT_DATAMOVER_NOT_AVAILABLE
#define DSM_RC_ABORT_STGPOOL_COPY_CONT_NO DSM_RS_ABORT_STGPOOL_COPY_CONT_NO
#define DSM_RC_ABORT_RETRY_SINGLE_TXN DSM_RS_ABORT_RETRY_SINGLE_TXN
#define DSM_RC_ABORT_TOC_CREATION_FAIL DSM_RS_ABORT_TOC_CREATION_FAIL
#define DSM_RC_ABORT_TOC_LOAD_FAIL DSM_RS_ABORT_TOC_LOAD_FAIL

/* Definitions for server signon reject codes */
/* These error codes are in the range (51 to 99) inclusive. */
#define DSM_RC_REJECT_NO_RESOURCES 51
#define DSM_RC_REJECT_VERIFIER_EXPIRED 52
#define DSM_RC_REJECT_ID_UNKNOWN 53
#define DSM_RC_REJECT_DUPLICATE_ID 54
#define DSM_RC_REJECT_SERVER_DISABLED 55
#define DSM_RC_REJECT_CLOSED_REGISTER 56
#define DSM_RC_REJECT_CLIENT_DOWNLEVEL 57
#define DSM_RC_REJECT_SERVER_DOWNLEVEL 58
#define DSM_RC_REJECT_ID_IN_USE 59
#define DSM_RC_REJECT_ID_LOCKED 61
#define DSM_RC_SIGNONREJECT_LICENSE_MAX 62
#define DSM_RC_REJECT_NO_MEMORY 63
#define DSM_RC_REJECT_NO_DB_SPACE 64

Appendix C. API return codes source file 177

#define DSM_RC_REJECT_NO_LOG_SPACE 65
#define DSM_RC_REJECT_INTERNAL_ERROR 66
#define DSM_RC_SIGNONREJECT_INVALID_CLI 67 /* client type not licensed */
#define DSM_RC_REJECT_LASTSESS_CANCELED 69
#define DSM_RC_REJECT_NOT_AUTHORIZED 71
#define DSM_RC_REJECT_INVALID_NODE_TYPE 73
#define DSM_RC_REJECT_INVALID_SESSIONINIT 74
#define DSM_RC_REJECT_WRONG_PORT 75

#define DSM_RC_USER_ABORT 101 /* processing aborted by user */
#define DSM_RC_NO_MEMORY 102 /* no RAM left to complete request */
#define DSM_RC_TA_COMM_DOWN 2021 /* no longer used */
#define DSM_RC_FILE_NOT_FOUND 104 /* specified file not found */
#define DSM_RC_PATH_NOT_FOUND 105 /* specified path doesn’t exist */
#define DSM_RC_ACCESS_DENIED 106 /* denied due to improper permission */
#define DSM_RC_NO_HANDLES 107 /* no more file handles available */
#define DSM_RC_FILE_EXISTS 108 /* file already exists */
#define DSM_RC_INVALID_PARM 109 /* invalid parameter passed. CRITICAL*/
#define DSM_RC_INVALID_HANDLE 110 /* invalid file handle passed */
#define DSM_RC_DISK_FULL 111 /* out of disk space */
#define DSM_RC_PROTOCOL_VIOLATION 113 /* call protocol violation. CRITICAL */
#define DSM_RC_UNKNOWN_ERROR 114 /* unknown system error. CRITICAL */
#define DSM_RC_UNEXPECTED_ERROR 115 /* unexpected error. CRITICAL */
#define DSM_RC_FILE_BEING_EXECUTED 116 /* No write is allowed */
#define DSM_RC_DIR_NO_SPACE 117 /* directory can’t be expanded */
#define DSM_RC_LOOPED_SYM_LINK 118 /* too many symbolic links were

encountered in translating path. */
#define DSM_RC_FILE_NAME_TOO_LONG 119 /* file name too long */
#define DSM_RC_FILE_SPACE_LOCKED 120 /* filespace is locked by the system */
#define DSM_RC_FINISHED 121 /* finished processing */
#define DSM_RC_UNKNOWN_FORMAT 122 /* unknown format */
#define DSM_RC_NO_AUTHORIZATION 123 /* server response when the client has

no authorization to read another
host’s owner backup/archive data */

#define DSM_RC_FILE_SPACE_NOT_FOUND 124/* specified file space not found */
#define DSM_RC_TXN_ABORTED 125 /* transaction aborted */
#define DSM_RC_SUBDIR_AS_FILE 126 /* Subdirectory name exists as file */
#define DSM_RC_PROCESS_NO_SPACE 127 /* process has no more disk space. */
#define DSM_RC_PATH_TOO_LONG 128 /* a directory path being build became

too long */
#define DSM_RC_NOT_COMPRESSED 129 /* file thought to be compressed is

actually not */
#define DSM_RC_TOO_MANY_BITS 130 /* file was compressed using more bits

then the expander can handle */
#define DSM_RC_SYSTEM_ERROR 131 /* internal system error */
#define DSM_RC_NO_SERVER_RESOURCES 132 /* server out of resources. */
#define DSM_RC_FS_NOT_KNOWN 133 /* the file space is not known by the

server */
#define DSM_RC_NO_LEADING_DIRSEP 134 /* no leading directory separator */
#define DSM_RC_WILDCARD_DIR 135 /* wildcard character in directory

path when not allowed */
#define DSM_RC_COMM_PROTOCOL_ERROR 136 /* communications protocol error */
#define DSM_RC_AUTH_FAILURE 137 /* authentication failure */
#define DSM_RC_TA_NOT_VALID 138 /* TA not a root and/or SUID program */
#define DSM_RC_KILLED 139 /* process killed. */

#define DSM_RC_RETRY 143 /* retry same operation again */

#define DSM_RC_WOULD_BLOCK 145 /* operation would cause the system to
block waiting for input. */

#define DSM_RC_TOO_SMALL 146 /* area for compiled pattern small */
#define DSM_RC_UNCLOSED 147 /* no closing bracket in pattern */
#define DSM_RC_NO_STARTING_DELIMITER 148 /* pattern has to start with

directory delimiter */
#define DSM_RC_NEEDED_DIR_DELIMITER 149 /* a directory delimiter is needed

immediately before and after the
"match directories" metastring

178 IBM Tivoli Storage Manager: Using the Application Program Interface

("...") and one wasn’t found */
#define DSM_RC_UNKNOWN_FILE_DATA_TYPE 150 /* structured file data type is

unknown */
#define DSM_RC_BUFFER_OVERFLOW 151 /* data buffer overflow */

#define DSM_RC_NO_COMPRESS_MEMORY 154 /* Compress/Expand out of memory */
#define DSM_RC_COMPRESS_GREW 155 /* Compression grew */
#define DSM_RC_INV_COMM_METHOD 156 /* Invalid comm method specified */
#define DSM_RC_WILL_ABORT 157 /* Transaction will be aborted */
#define DSM_RC_FS_WRITE_LOCKED 158 /* File space is write locked */
#define DSM_RC_SKIPPED_BY_USER 159 /* User wanted file skipped in the

case of ABORT_DATA_OFFLINE */
#define DSM_RC_TA_NOT_FOUND 160 /* TA not found in it’s directory */
#define DSM_RC_TA_ACCESS_DENIED 161 /* Access to TA is denied */
#define DSM_RC_FS_NOT_READY 162 /* File space not ready */
#define DSM_RC_FS_IS_BAD 163 /* File space is bad */
#define DSM_RC_FIO_ERROR 164 /* File input/output error */
#define DSM_RC_WRITE_FAILURE 165 /* Error writing to file */
#define DSM_RC_OVER_FILE_SIZE_LIMIT 166 /* File over system/user limit */
#define DSM_RC_CANNOT_MAKE 167 /* Could not create file/directory,

could be a bad name */
#define DSM_RC_NO_PASS_FILE 168 /* password file needed and user is

not root */
#define DSM_RC_VERFILE_OLD 169 /* password stored locally doesn’t

match the one at the host */
#define DSM_RC_INPUT_ERROR 173 /* unable to read keyboard input */
#define DSM_RC_REJECT_PLATFORM_MISMATCH 174 /* Platform name doesn’t match

up with what the server says
is the platform for the client */

#define DSM_RC_TL_NOT_FILE_OWNER 175 /* User trying to backup a file is not
the file’s owner. */

#define DSM_RC_DBCS_IN_RANGE 176 /*DBCS character not allowed within */
#define DSM_RC_UNMATCHED_QUOTE 177 /* missing starting or ending quote */

/*---*/
/* Return codes 180-199 are reserved for Policy Set handling */
/*---*/
#define DSM_RC_PS_MULTBCG 181 /* Multiple backup copy groups in 1 MC*/
#define DSM_RC_PS_MULTACG 182 /* Multiple arch. copy groups in 1 MC*/
#define DSM_RC_PS_NODFLTMC 183 /* Default MC name not in policy set */
#define DSM_RC_TL_NOBCG 184 /* Backup req, no backup copy group */
#define DSM_RC_TL_EXCLUDED 185 /* Backup req, excl. by in/ex filter */
#define DSM_RC_TL_NOACG 186 /* Archive req, no archive copy group */
#define DSM_RC_PS_INVALID_ARCHMC 187 /* Invalid MC name in archive override*/
#define DSM_RC_NO_PS_DATA 188 /* No policy set data on the server */
#define DSM_RC_PS_INVALID_DIRMC 189 /* Invalid directory MC specified in

the options file. */
#define DSM_RC_PS_NO_CG_IN_DIR_MC 190 /* No backup copy group in directory MC.

Must specify an MC using DirMC
option. */

#define DSM_RC_WIN32_UNSUPPORTED_FILE_TYPE 280 /* File is not of
Win32 type FILE_TYPE_DISK */

/*---*/
/* Return codes for the Trusted Communication Agent */
/*---*/
#define DSM_RC_TCA_NOT_ROOT 161 /* Access to TA is denied */
#define DSM_RC_TCA_ATTACH_SHR_MEM_ERR 200 /* Error attaching shared memory */
#define DSM_RC_TCA_SHR_MEM_BLOCK_ERR 200 /* Shared memory block error */
#define DSM_RC_TCA_SHR_MEM_IN_USE 200 /* Shared memory block error */
#define DSM_RC_TCA_SHARED_MEMORY_ERROR 200 /* Shared memory block error */
#define DSM_RC_TCA_SEGMENT_MISMATCH 200 /* Shared memory block error */
#define DSM_RC_TCA_FORK_FAILED 292 /* Error forking off TCA process */
#define DSM_RC_TCA_DIED 294 /* TCA died unexpectedly */
#define DSM_RC_TCA_INVALID_REQUEST 295 /* Invalid request sent to TCA */

Appendix C. API return codes source file 179

#define DSM_RC_TCA_SEMGET_ERROR 297 /* Error getting semaphores */
#define DSM_RC_TCA_SEM_OP_ERROR 298 /* Error in semaphore set or wait */
#define DSM_RC_TCA_NOT_ALLOWED 299 /* TCA not allowed (multi thread) */

/*---*/
/* 400-430 for options */
/*---*/
#define DSM_RC_INVALID_OPT 400 /* invalid option */
#define DSM_RC_NO_HOST_ADDR 405 /* Not enuf info to connect server */
#define DSM_RC_NO_OPT_FILE 406 /*No default user configuration file*/
#define DSM_RC_MACHINE_SAME 408 /* -MACHINENAME same as real name */
#define DSM_RC_INVALID_SERVER 409 /* Invalid server name from client */
#define DSM_RC_INVALID_KEYWORD 410 /* Invalid option keyword */
#define DSM_RC_PATTERN_TOO_COMPLEX 411 /* Can’t match Include/Exclude entry*/
#define DSM_RC_NO_CLOSING_BRACKET 412 /* Missing closing bracket inc/excl */
#define DSM_RC_OPT_CLIENT_NOT_ACCEPTING 417/* Client doesn’t accept this option*/

/* from the server */
#define DSM_RC_OPT_CLIENT_DOES_NOT_WANT 418/* Client doesn’t want this value*/

/* from the server */
#define DSM_RC_OPT_NO_INCLEXCL_FILE 419 /* inclexcl file not found */
#define DSM_RC_OPT_OPEN_FAILURE 420 /* can’t open file */
#define DSM_RC_OPT_INV_NODENAME 421/* used for Windows if nodename=local

machine when CLUSTERNODE=YES */
#define DSM_RC_OPT_NODENAME_INVALID 423/* generic invalid nodename */

/*---*/
/* 600 to 610 for volume label codes */
/*---*/
#define DSM_RC_DUP_LABEL 600 /* duplicate volume label found */
#define DSM_RC_NO_LABEL 601 /* drive has no label */

/*---*/
/* Return codes for message file processing */
/*---*/
#define DSM_RC_NLS_CANT_OPEN_TXT 610 /* error trying to open msg txt file */
#define DSM_RC_NLS_CANT_READ_HDR 611 /* error trying to read header */
#define DSM_RC_NLS_INVALID_CNTL_REC 612 /* invalid control record */
#define DSM_RC_NLS_INVALID_DATE_FMT 613 /* invalid default date format */
#define DSM_RC_NLS_INVALID_TIME_FMT 614 /* invalid default time format */
#define DSM_RC_NLS_INVALID_NUM_FMT 615 /* invalid default number format */

/*---*/
/* Return codes 620-630 are reserved for log message return codes */
/*---*/
#define DSM_RC_LOG_CANT_BE_OPENED 620 /* error trying to open error log */
#define DSM_RC_LOG_ERROR_WRITING_TO_LOG 621 /* error occurred writing to

log file */
#define DSM_RC_LOG_NOT_SPECIFIED 622 /* no error log file was specified */

/*---*/
/* Return codes 900-999 */
/*---*/
#define DSM_RC_NOT_ADSM_AUTHORIZED 927 /* Must be ADSM authorized to perform*/

/* action : root user or pwd auth */
#define DSM_RC_REJECT_USERID_UNKNOWN 940 /* userid unknown on server */
#define DSM_RC_FILE_IS_SYMLINK 959 /* errorlog or trace is a symbolic

link
*/

#define DSM_RC_DIRECT_STORAGE_AGENT_UNSUPPORTED 961 /* Direct connection to SA not supported */
#define DSM_RC_FS_NAMESPACE_DOWNLEVEL 963 /* Long namespace has been removed from

from the Netware volume */

/* TCP/IP error codes */

180 IBM Tivoli Storage Manager: Using the Application Program Interface

#define DSM_RC_TCPIP_FAILURE -50 /* TCP/IP communications failure */
#define DSM_RC_CONN_TIMEDOUT -51 /* TCP/IP connection attempt timedout */
#define DSM_RC_CONN_REFUSED -52 /* TCP/IP connection refused by host */
#define DSM_RC_BAD_HOST_NAME -53 /* TCP/IP invalid host name specified */
#define DSM_RC_NETWORK_UNREACHABLE -54 /* TCP/IP host name unreachable */
#define DSM_RC_WINSOCK_MISSING -55 /* TCP/IP WINSOCK.DLL missing */
#define DSM_RC_TCPIP_DLL_LOADFAILURE -56 /* Error from LoadLibrary */
#define DSM_RC_TCPIP_LOADFAILURE -57 /* Error from GetProcAddress */
#define DSM_RC_TCPIP_USER_ABORT -58 /* User aborted while in TCP/IP layer */

/*---*/
/* Return codes (-71)-(-90) are reserved for CommTSM error codes */
/*---*/
#define DSM_RC_TSM_FAILURE -71 /* TSM communications failure */
#define DSM_RC_TSM_ABORT -72 /* Session aborted abnormally */

/*comm3270 error codes - no longer used*/
#define DSM_RC_COMM_TIMEOUT 2021 /* Communication timeout */
#define DSM_RC_EMULATOR_INACTIVE 2021 /* Emulator inactive or not responding*/
#define DSM_RC_BAD_HOST_ID 2021 /* Host session id is invalid */
#define DSM_RC_HOST_SESS_BUSY 2021 /* Another OS/2 HLLAPI appl has sess. */
#define DSM_RC_3270_CONNECT_FAILURE 2021 /* Could not startup host

session side */
#define DSM_RC_NO_ACS3ELKE_DLL 2021 /* The ACSNETB.DLL could not be loaded*/
#define DSM_RC_EMULATOR_ERROR 2021 /* Emulator error detected */
#define DSM_RC_EMULATOR_BACKLEVEL 2021 /* Emulator error detected */
#define DSM_RC_CKSUM_FAILURE 2021 /* 3270 cksum failed, pkt too big or */

/* just plain got bad data. */

/* The following Return codes are for EHLLAPI for Windows */
#define DSM_RC_3270COMMError_DLL 2021 /* no longer used */
#define DSM_RC_3270COMMError_GetProc 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_DLL 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_GetProc 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_HostConnect 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_AllocBuff 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_SendKey 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_PacketChk 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_ChkSum 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_HostTimeOut 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_Send 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_Recv 2021 /* no longer used */
#define DSM_RC_EHLLAPIError_General 2021 /* no longer used */
#define DSM_RC_PC3270_MISSING_DLL 2021 /* no longer used */
#define DSM_RC_3270COMM_MISSING_DLL 2021 /* no longer used */

/* NETBIOS error codes */
#define DSM_RC_NETB_ERROR -151 /* Could not add node to LAN */
#define DSM_RC_NETB_NO_DLL -152 /* The ACSNETB.DLL could not be loaded*/
#define DSM_RC_NETB_LAN_ERR -155 /* LAN error detected */
#define DSM_RC_NETB_NAME_ERR -158 /* Netbios error on Add Name */
#define DSM_RC_NETB_TIMEOUT -159 /* Netbios send timeout */
#define DSM_RC_NETB_NOTINST -160 /* Netbios not installed - DOS */
#define DSM_RC_NETB_REBOOT -161 /* Netbios config err - reboot DOS */

/* Named Pipe error codes */
#define DSM_RC_NP_ERROR -190

/* CPIC error codes */
#define DSM_RC_CPIC_ALLOCATE_FAILURE -201
#define DSM_RC_CPIC_TYPE_MISMATCH -202
#define DSM_RC_CPIC_PIP_NOT_SPECIFY_ERR -203
#define DSM_RC_CPIC_SECURITY_NOT_VALID -204
#define DSM_RC_CPIC_SYNC_LVL_NO_SUPPORT -205
#define DSM_RC_CPIC_TPN_NOT_RECOGNIZED -206
#define DSM_RC_CPIC_TP_ERROR -207

Appendix C. API return codes source file 181

#define DSM_RC_CPIC_PARAMETER_ERROR -208
#define DSM_RC_CPIC_PROD_SPECIFIC_ERR -209
#define DSM_RC_CPIC_PROGRAM_ERROR -210
#define DSM_RC_CPIC_RESOURCE_ERROR -211
#define DSM_RC_CPIC_DEALLOCATE_ERROR -212
#define DSM_RC_CPIC_SVC_ERROR -213
#define DSM_RC_CPIC_PROGRAM_STATE_CHECK -214
#define DSM_RC_CPIC_PROGRAM_PARAM_CHECK -215
#define DSM_RC_CPIC_UNSUCCESSFUL -216
#define DSM_RC_UNKNOWN_CPIC_PROBLEM -217
#define DSM_RC_CPIC_MISSING_LU -218
#define DSM_RC_CPIC_MISSING_TP -219
#define DSM_RC_CPIC_SNA6000_LOAD_FAIL -226 /* Can’t load SNA/6000 library*/
#define DSM_RC_CPIC_STARTUP_FAILURE -227

/*---*/
/* Return codes -300 to -307 are reserved for IPX/SPX communications */
/*---*/
#define DSM_RC_TLI_ERROR -300 /*TLI error */
#define DSM_RC_IPXSPX_FAILURE -301 /*can’t establish IPX/SPX conn*/
#define DSM_RC_TLI_DLL_MISSING -302 /*TLI.DLL missing */
#define DSM_RC_DLL_LOADFAILURE -303 /*error loading the DLL */
#define DSM_RC_DLL_FUNCTION_LOADFAILURE -304 /*err loading functions in DLL*/
#define DSM_RC_IPXCONN_REFUSED -305 /*IPX sockets conn refused */
#define DSM_RC_IPXCONN_TIMEDOUT -306 /*IPX sockets conn timed out */
#define DSM_RC_IPXADDR_UNREACHABLE -307 /*IPX server addr unreachable */

/* from IPX sockets client */
#define DSM_RC_CPIC_MISSING_DLL 2021 /* no longer used */
#define DSM_RC_CPIC_DLL_LOADFAILURE 2021 /* no longer used */
#define DSM_RC_CPIC_FUNC_LOADFAILURE 2021 /* no longer used */

/*=== Shared Memory Protocol error codes ===*/
#define DSM_RC_SHM_TCPIP_FAILURE -450
#define DSM_RC_SHM_FAILURE -451
#define DSM_RC_SHM_NOTAUTH -452

#define DSM_RC_NULL_OBJNAME 2000 /* Object name pointer is NULL */
#define DSM_RC_NULL_DATABLKPTR 2001 /* dataBlkPtr is NULL */
#define DSM_RC_NULL_MSG 2002 /* msg parm in dsmRCMsg is NULL */

#define DSM_RC_NULL_OBJATTRPTR 2004 /* Object Attr Pointer is NULL */

#define DSM_RC_NO_SESS_BLK 2006 /* no server session info */
#define DSM_RC_NO_POLICY_BLK 2007 /* no policy hdr info */
#define DSM_RC_ZERO_BUFLEN 2008 /* bufferLen is zero for dataBlkPtr */
#define DSM_RC_NULL_BUFPTR 2009 /* bufferPtr is NULL for dataBlkPtr */

#define DSM_RC_INVALID_OBJTYPE 2010 /* invalid object type */
#define DSM_RC_INVALID_VOTE 2011 /* invalid vote */
#define DSM_RC_INVALID_ACTION 2012 /* invalid action */
#define DSM_RC_INVALID_DS_HANDLE 2014 /* invalid ADSM handle */
#define DSM_RC_INVALID_REPOS 2015 /* invalid value for repository */
#define DSM_RC_INVALID_FSNAME 2016 /* fs should start with dir delim */
#define DSM_RC_INVALID_OBJNAME 2017 /* invalid full path name */
#define DSM_RC_INVALID_LLNAME 2018 /* ll should start with dir delim */
#define DSM_RC_INVALID_OBJOWNER 2019 /* invalid object owner name */
#define DSM_RC_INVALID_ACTYPE 2020 /* invalid action type */
#define DSM_RC_INVALID_RETCODE 2021 /* dsmRC in dsmRCMsg is invalid */
#define DSM_RC_INVALID_SENDTYPE 2022 /* invalid send type */
#define DSM_RC_INVALID_PARAMETER 2023 /* invalid parameter */
#define DSM_RC_INVALID_OBJSTATE 2024 /* active, inactive, or any match? */
#define DSM_RC_INVALID_MCNAME 2025 /* Mgmt class name not found */
#define DSM_RC_INVALID_DRIVE_CHAR 2026 /* Drive letter is not alphabet */
#define DSM_RC_NULL_FSNAME 2027 /* Filespace name is NULL */
#define DSM_RC_INVALID_HLNAME 2028 /* hl should start with dir delim */

#define DSM_RC_NUMOBJ_EXCEED 2029 /* BeginGetData num objs exceeded */

182 IBM Tivoli Storage Manager: Using the Application Program Interface

#define DSM_RC_NEWPW_REQD 2030 /* new password is required */
#define DSM_RC_OLDPW_REQD 2031 /* old password is required */
#define DSM_RC_NO_OWNER_REQD 2032 /* owner not allowed. Allow default */
#define DSM_RC_NO_NODE_REQD 2033 /* node not allowed w/ pw=generate */
#define DSM_RC_KEY_MISSING 2034 /* key file can’t be found */
#define DSM_RC_KEY_BAD 2035 /* content of key file is bad */

#define DSM_RC_BAD_CALL_SEQUENCE 2041 /* Sequence of DSM calls not allowed*/

#define DSM_RC_WILDCHAR_NOTALLOWED 2050 /* Wild card not allowed for hl,ll */

#define DSM_RC_FSNAME_NOTFOUND 2060 /* Filespace name not found */
#define DSM_RC_FS_NOT_REGISTERED 2061 /* Filespace name not registered */
#define DSM_RC_FS_ALREADY_REGED 2062 /* Filespace already registered */
#define DSM_RC_OBJID_NOTFOUND 2063 /* No object id to restore */
#define DSM_RC_WRONG_VERSION 2064 /* Wrong level of code */
#define DSM_RC_WRONG_VERSION_PARM 2065 /* Wrong level of parameter struct */

#define DSM_RC_NEEDTO_ENDTXN 2070 /* Need to call dsmEndTxn */

#define DSM_RC_OBJ_EXCLUDED 2080 /* Object is excluded by MC */
#define DSM_RC_OBJ_NOBCG 2081 /* Object has no backup copy group */
#define DSM_RC_OBJ_NOACG 2082 /* Object has no archive copy group */

#define DSM_RC_APISYSTEM_ERROR 2090 /* API internal error */

#define DSM_RC_DESC_TOOLONG 2100 /* description is too long */
#define DSM_RC_OBJINFO_TOOLONG 2101 /* object attr objinfo too long */
#define DSM_RC_HL_TOOLONG 2102 /* High level qualifier is too long */
#define DSM_RC_PASSWD_TOOLONG 2103 /* password is too long */
#define DSM_RC_FILESPACE_TOOLONG 2104 /* filespace name is too long */
#define DSM_RC_LL_TOOLONG 2105 /* Low level qualifier is too long */
#define DSM_RC_FSINFO_TOOLONG 2106 /* filespace length is too big */
#define DSM_RC_SENDDATA_WITH_ZERO_SIZE 2107 /* send data w/ zero est */

/*=== new return codes for dsmaccess ===*/
#define DSM_RC_INVALID_ACCESS_TYPE 2110 /* invalid access type */
#define DSM_RC_QUERY_COMM_FAILURE 2111 /* communication error during query */
#define DSM_RC_NO_FILES_BACKUP 2112 /* No backed up files for this fs */
#define DSM_RC_NO_FILES_ARCHIVE 2113 /* No archived files for this fs */
#define DSM_RC_INVALID_SETACCESS 2114 /* invalid set access format */

/*=== new return codes for dsmaccess ===*/
#define DSM_RC_STRING_TOO_LONG 2120 /* String parameter too long */

#define DSM_RC_MORE_DATA 2200 /* There are more data to restore */

#define DSM_RC_BUFF_TOO_SMALL 2210 /* DataBlk buffer too small for qry */

#define DSM_RC_NO_API_CONFIGFILE 2228 /*specified API confg file not found*/
#define DSM_RC_NO_INCLEXCL_FILE 2229 /* specified inclexcl file not found*/
#define DSM_RC_NO_SYS_OR_INCLEXCL 2230 /* either dsm.sys or inclexcl file

specified in dsm.sys not found */
#define DSM_RC_REJECT_NO_POR_SUPPORT 2231 /* server doesn’t have POR support*/

#define DSM_RC_NEED_ROOT 2300 /* API caller must be root */
#define DSM_RC_NEEDTO_CALL_BINDMC 2301 /* dsmBindMC must be called first */
#define DSM_RC_CHECK_REASON_CODE 2302 /* check reason code from dsmEndTxn */

/*=== return codes 2400 - 2410 used by lic file see agentrc.h ===*/

/*=== return codes 2410 - 2430 used by Oracle agent see agentrc.h ===*/

Appendix C. API return codes source file 183

/*===
Return codes (4600)-(4624) are reserved for clustering

===*/
#define DSM_RC_CLUSTER_INFO_LIBRARY_NOT_LOADED 4600
#define DSM_RC_CLUSTER_LIBRARY_INVALID 4601
#define DSM_RC_CLUSTER_LIBRARY_NOT_LOADED 4602
#define DSM_RC_CLUSTER_NOT_MEMBER_OF_CLUSTER 4603
#define DSM_RC_CLUSTER_NOT_ENABLED 4604
#define DSM_RC_CLUSTER_NOT_SUPPORTED 4605
#define DSM_RC_CLUSTER_UNKNOWN_ERROR 4606

#endif /* _H_DSMRC */

184 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix D. API return codes with explanations

This appendix lists the API return codes in numeric order. For each return code,
the following information is provided:
v The return code number. This number corresponds to the number in the dsmrc.h

header file. See Appendix C, “API return codes source file”, on page 175.
v The severity code. This letter indicates the severity that generated the return

code. The possible severity codes and their values include:

S Severe error Processing cannot continue.
E Error Processing cannot continue.
W Warning Processing can continue, but problems might develop later.

Use caution.
I Information Processing continues. User response is not necessary.

v The symbolic name. This name corresponds to the definition in the dsmrc.h
header file. Always use the symbolic name for a return code in your application rather
than the return code number.

v The explanation. This field explains the circumstances under which this return
code might be generated.

v The system action. This field describes the action that Tivoli Storage Manager
will take in response to the return code.

v The user response. This field describes how you should respond to the system
action.

Many of the return codes describe errors that cause processing to stop. You can
send a message to the end user that describes the problem and suggest a course of
action. To identify different messages, use these return code values, or develop
your own numbering system.

© Copyright IBM Corp. 1993, 2003 185

-452 E DSM_RC_SHM_NOTAUTH

Explanation: The user issuing the command does not have authority to connect to the shared memory segment. When the shared
memory segment is created by the server, it will be owned by the effective uid of the server process (dsmserv). Only processes running
under this uid or root will be allowed to connect to the segment (and thus to the server).

System Action: The session is rejected and processing stops.

User Response: Run the command under the uid of the processing running dsmserv, if possible. Otherwise contact your system
administrator for further help.

-451 E DSM_RC_SHM_FAILURE

Explanation: An error has occurred while reading or writing data through the Shared Memory communications protocol.

System Action: TSM cannot complete the requested operation.

User Response: Check the trace log for additional information and retry the operation. If the problem continues, see your system
administrator for further help.

-450 E DSM_RC_SHM_TCPIP_FAILURE

Explanation: An attempt to connect to the local server using the Shared Memory protocol has failed during initial TCP/IP
communications. This error can occur if the server is not listening on the correct port, or if the server is down.

System Action: Session rejected. Processing stopped.

User Response: Retry the operation, or wait until the server comes back up and retry the operation. If the problem continues, see your
system administrator for further help.

-190 E DSM_RC_NP_ERROR

Explanation: An attempt to connect to the server using Named Pipes communications failed. This might have occurred if an incorrect
NAMEDPIPENAME was specified in the options files or if your system administrator canceled a backup operation.

System Action: Processing stopped.

User Response: Retry the operation, or wait until the server comes back up and retry the operation. Ensure that the value specified on
the NAMEDPIPENAME option is the same as the one used by the server. If the problem continues, contact your system administrator
for further help.

-124 E DSM_RC_3270COMM_MISSING_DLL

Explanation: The TSM DLL dsm3270.dll cannot be found in the user's path.

System Action: Communications link is not established.

User Response: Make sure that the TSM DLL dsm3270.dll is in a directory that is included in the user's path.

-057 E DSM_RC_TCPIP_LOADFAILURE

Explanation: An error occurred while locating a function. The TCP/IP load function failed.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

-056 E DSM_RC_TCPIP_DLL_LOADFAILURE

Explanation: An error occurred while loading a library. The TCP/IP DLL load failed.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

-055 E DSM_RC_WINSOCK_MISSING

Explanation: The TCP/IP WINSOCK.DLL file cannot be found.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

186 IBM Tivoli Storage Manager: Using the Application Program Interface

-054 E DSM_RC_NETWORK_UNREACHABLE

Explanation: The TCP/IP host name specified in the TCPSERVERADDRESS statement cannot be reached.

System Action: Processing stopped.

User Response: Check your options file for the correct TCPSERVERADDRESS statement. See your administrator for the correct name
of the server.

-053 E DSM_RC_BAD_HOST_NAME

Explanation: An invalid TCP/IP host name or address was specified.

System Action: Processing stopped.

User Response: Check your options file for the correct TCPSERVERADDRESS statement. See your administrator for the correct name
of the server.

-052 E DSM_RC_CONN_REFUSED

Explanation: An attempt to establish a TCP/IP connection was rejected by the server.

System Action: Processing stopped.

User Response: The server was not fully initialized, is not currently running, was not enabled for TCP/IP communications, or an
incorrect TCP/IP port number was specified. If the problem continues, see your system administrator.

-051 E DSM_RC_CONN_TIMEDOUT

Explanation: The attempt to establish a TCP/IP connection timed out before the connection was made.

System Action: Processing stopped.

User Response: Check for a networking problem. If the problem continues, see your system administrator. API applications should
close the session with dsmTerminate.

-050 E DSM_RC_TCPIP_FAILURE

Explanation: An attempt to connect to the server using TCP/IP communications failed. This error can occur if the LAN connection
went down or if your system administrator canceled a backup operation.

System Action: Session rejected. Processing stopped.

User Response: Retry the operation, or wait until the server comes back up and retry the operation. If the problem continues, see your
system administrator for further help.

0000 I DSM_RC_OK

Explanation: The operation successfully completed.

System Action: None.

User Response: None.

0001 E DSM_RC_ABORT_SYSTEM_ERROR

Explanation: The server detected a system error and notified the clients.

System Action: Processing stopped.

User Response: See your system administrator for further information on server activity.

0002 E DSM_RC_ABORT_NO_MATCH

Explanation: No objects on the server match the query operation being performed. If this object is part of a backupset generated on a
node, and the node name is changed on the server, any backup set objects that were generated prior to the name change will not match
the new node name.

System Action: Processing stopped.

User Response: Ensure the names are properly entered. If the object is part of a backupset generated prior to a node name change,
ensure that the node name is the same as the node for which the backup set was generated.

Appendix D. API return codes with explanations 187

0003 E DSM_RC_ABORT_BY_CLIENT

Explanation: The client system ended the operation with the server and ended the current transaction.

System Action: Processing stopped.

User Response: Restart the session.

0004 W DSM_RC_ABORT_ACTIVE_NOT_FOUND

Explanation: TSM did not find an active object flagged for expiration on the server. The object is marked as expired by another TSM
operation.

System Action: None.

User Response: None.

0005 E DSM_RC_ABORT_NO_DATA

Explanation: TSM tried to do a restore or retrieve on an object that has no data associated with it.

System Action: TSM ended the current operation.

User Response: See your system administrator to verify the problem. If the problem continues, see your system administrator.

0006 E DSM_RC_ABORT_BAD_VERIFIER

Explanation: You entered an incorrect password (verifier).

System Action: Processing stopped.

User Response: Retry the session with the correct password.

0007 E DSM_RC_ABORT_NODE_IN_USE

Explanation: The node you are running on is in use by another operation on the server. This might be from another client or from
some activity on the server.

System Action: Processing stopped.

User Response: Retry the operation, or see your system administrator to see what other operations are running for your node.

0008 E DSM_RC_ABORT_EXPDATE_TOO_LOW

Explanation: Archive expiration date is too low, the date must be greater than today’s date.

System Action: TSM canceled the current operation.

User Response: Retry archiving the file with an expiration date that is higher than today’s date.

0009 W DSM_RC_ABORT_DATA_OFFLINE

Explanation: For the restore or retrieve operation, one or more of the requested files must be recalled from offline storage media
(generally tape). The wait time depends on your site’s offline storage management policies.

System Action: TSM waits for offline storage media to become available and then continues.

User Response: None.

0010 E DSM_RC_ABORT_EXCLUDED_BY_SIZE

Explanation: The object is too large. The configuration of the server does not have any data storage space that accepts the object.

System Action: File skipped.

User Response: See your system administrator to determine the maximum file (object) size for which your site’s server is configured.

0011 E DSM_RC_ABORT_NO_REPOSIT_SPACE

Explanation: The server does not have any space available to store the object.

System Action: TSM ended the current operation.

User Response: You can take any of the following actions:

188 IBM Tivoli Storage Manager: Using the Application Program Interface

v Request the system administrator to add space to the storage pool.

v For TSM client, set COMPRESSALWAYS=NO and COMPRESSIon=YES in the options file (DSM.OPT), then the file will be resent
uncompressed if it grows during compression.

v For API Applications, consult the application’s documentation for recommendations regarding compression.

v Turn off disk caching in the disk storage pool, and issue MOVE DATA commands to each disk pool volume to clear out the cached
bitfiles.

0012 E DSM_RC_ABORT_MOUNT_NOT_POSSIBLE

Explanation: Server media mount not possible. The server timed out waiting for a mount of an offline volume.

System Action: File skipped.

User Response: Retry later when server volumes can be mounted. Ensure that the MAXNUMMP (maximum number of mount points)
defined on the server for this node is greater than 0.

0013 E DSM_RC_ABORT_SIZESTIMATE_EXCEED

Explanation: The total amount of data for a backup or archive operation exceeds the estimated size originally sent to the server for
allocating data storage space. This happens when many files are growing by large amounts while the backup or archive operation is in
session.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, check what other processes are running on the client machine that are
generating large amounts of data. Disable those operations while the backup or archive operation is taking place.

0014 E DSM_RC_ABORT_DATA_UNAVAILABLE

Explanation: The file data is currently unavailable on the server. A retrieve or restore operation was attempted. Possible causes are:
v Data was corrupted at the server
v Server found a read error
v File is temporarily involved in a reclaim operation at the server
v Server requested a tape volume that was marked unavailable.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, see your system administrator to determine the problem from the
server console or the activity log. Check whether any requests were made for a tape volume that was unavailable. A tape volume may
be marked unavailable if prior read errors were encountered or the volume is checked out of the tape library.

0015 E DSM_RC_ABORT_RETRY

Explanation: Unexpected Retry request. The server found an error while writing data to the server’s data storage.

System Action: Client retries the operation.

User Response: None.

0016 E DSM_RC_ABORT_NO_LOG_SPACE

Explanation: The server ran out of recovery log space.

System Action: TSM ended the current operation.

User Response: This error is a temporary problem. Retry later or see your system administrator.

0017 E DSM_RC_ABORT_NO_DB_SPACE

Explanation: The server ran out of database space.

System Action: TSM ended the current operation.

User Response: See your system administrator.

Appendix D. API return codes with explanations 189

0018 E DSM_RC_ABORT_NO_MEMORY

Explanation: The server ran out of memory.

System Action: TSM ended the current operation.

User Response: This is a temporary problem. Retry later or see your system administrator.

0020 E DSM_RC_ABORT_FS_NOT_DEFINED

Explanation: The specified file space does not exist on the server. Your system administrator deleted the file space or another client
using your client’s node name deleted it.

System Action: TSM canceled the current operation.

User Response: Check the file space name to see if it is correct, and retry the operation.

0021 S DSM_RC_ABORT_NODE_ALREADY_DEFED

Explanation: Open registration failed because a node is defined in the server with the same name.

System Action: TSM canceled the current operation.

User Response: Retry with another node name.

0022 S DSM_RC_ABORT_NO_DEFAULT_DOMAIN

Explanation: Open registration failed because a default policy domain does not exist for you to place your node.

System Action: TSM canceled the current operation.

User Response: See your system administrator.

0023 S DSM_RC_ABORT_INVALID_NODENAME

Explanation: Open registration failed because the specified node name contains invalid characters.

System Action: TSM canceled the current operation.

User Response: Retry with another node name that does not have any invalid characters.

0024 S DSM_RC_ABORT_INVALID_POL_BIND

Explanation: Server problem. Invalid policy binding.

System Action: Processing stopped.

User Response: Have your service representative check the error log.

0025 E DSM_RC_ABORT_DEST_NOT_DEFINED

Explanation: Server problem: Destination not defined.

System Action: Processing stopped.

User Response: Have your service representative check the error log.

0026 S DSM_RC_ABORT_WAIT_FOR_SPACE

Explanation: The client received an unexpected Wait For Space message from the server.

System Action: TSM ended the current operation.

User Response: See your system administrator.

0027 E DSM_RC_ABORT_NOT_AUTHORIZED

Explanation: During a delete filespace operation, you specified a file space to which your node does not have permission to delete
archived data and/or backed up data.

System Action: Delete processing fails.

User Response: See your system administrator.

190 IBM Tivoli Storage Manager: Using the Application Program Interface

0028 E DSM_RS_ABORT_RULE_ALREADY_DEFED

Explanation: You are trying to define authorization for the specified node, which already has authorization defined.

System Action: TSM did not redefine authorization for the specified node.

User Response: Update the authorization, or delete the old rule and define a new one, or use the current authorization.

0029 S DSM_RC_ABORT_NO_STOR_SPACE_STOP

Explanation: The server does not have space available to store the object.

System Action: TSM ended the current operation.

User Response: Report to your system administrator that a storage pool on the server is full.

0032 E DSM_RC_ABORT_DUPLICATE_OBJECT

Explanation: A duplicate object was found, operation cannot complete.

System Action: The requested operation failed.

User Response: Try the operation with a different file specification.

0033 E DSM_RC_ABORT_INVALID_OFFSET

Explanation: The partialObjOffset value for partial object retrieve is invalid.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0034 E DSM_RC_ABORT_INVALID_LENGTH

Explanation: partialObjLength value for partial object retrieve is invalid.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0041 E DSM_RC_ABORT_EXCEED_MAX_MP

Explanation: All the tape mount points for this node are in use.

System Action: The system returns to the calling procedure.

User Response: Increase the number of allowed tape mounts for this node on the server.

0045 E DSM_RC_ABORT_MERGE_ERROR

Explanation: The specified objects failed the merge test, operation cannot complete.

System Action: The requested operation failed.

User Response: See documentation for the merge test parameters.

0047 E DSM_RC_ABORT_INVALID_OPERATION

Explanation: The operation is not valid.

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0048 E DSM_RC_ABORT_STGPOOL_UNDEFINED

Explanation: The storage pool is not defined.

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

Appendix D. API return codes with explanations 191

0049 E DSM_RC_ABORT_INVALID_DATA_FORMAT

Explanation: none

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0050 E DSM_RC_ABORT_DATAMOVER_UNDEFINED

Explanation: none

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0051 E DSM_RC_REJECT_NO_RESOURCES

Explanation: TSM has all available sessions in use and cannot accept a new one at this time.

System Action: TSM canceled the current operation.

User Response: Retry the operation. If the problem continues, see your system administrator to increase the number of concurrently
active sessions to the server.

0052 E DSM_RC_REJECT_VERIFIER_EXPIRED

Explanation: Your TSM password has expired.

System Action: TSM canceled the current operation. You are not allowed to connect to the server until the password is updated.

User Response: Update your password.

0053 E DSM_RC_REJECT_ID_UNKNOWN

Explanation: The node name you entered is not known by the server, or you are attempting to access a file migrated to a different
node.

System Action: TSM canceled the current operation. You are not allowed to connect to the server until your node name is registered
with the server. If attempting to access a migrated file, your nodename must be the same node which migrated the file.

User Response: Ensure that you entered your TSM node name correctly. If yes, see your system administrator. Verify that the server is
using closed registration and that your node name is registered with the server.

0054 E DSM_RC_REJECT_DUPLICATE_ID

Explanation: Another process using this node name is active with the server.

System Action: TSM cannot connect to the server. TSM canceled the current operation.

User Response: If you are running a UNIX-based system, ensure that another process is not active with TSM under the same name.
Also, ensure that your node name is unique to the server so that it cannot be used by another person. See your system administrator to
identify the owner of that node name.

0055 E DSM_RC_REJECT_SERVER_DISABLED

Explanation: The server is in a disabled state and cannot be accessed for normal activity.

System Action: TSM canceled the current operation.

User Response: Retry the operation after the server returns to an enabled state. If the problem continues, see your system
administrator.

0056 E DSM_RC_REJECT_CLOSED_REGISTER

Explanation: No authorization. Registration is required by your system administrator. The server is not configured to allow open
registration.

System Action: Session not started.

User Response: You must obtain a TSM node and password from your system administrator.

192 IBM Tivoli Storage Manager: Using the Application Program Interface

0057 S DSM_RC_REJECT_CLIENT_DOWNLEVEL

Explanation: The server version and your client version do not match. The client code is downlevel.

System Action: TSM canceled the current operation.

User Response: See your system administrator to see what version of TSM to run for your location.

0058 S DSM_RC_REJECT_SERVER_DOWNLEVEL

Explanation: The server version and your client version do not match. The server code is downlevel.

System Action: TSM canceled the current operation.

User Response: See your system administrator to see what version of TSM to run for your location.

0059 E DSM_RC_REJECT_ID_IN_USE

Explanation: The node name you specified is in use on the server.

System Action: Session was not started.

User Response: The server is probably performing a task that prevents your node from establishing a session. Retry later or check
with your system administrator.

0061 E DSM_RC_REJECT_ID_LOCKED

Explanation: The node name you specified is currently locked on the server.

System Action: Session was not started.

User Response: Check with your system administrator to find out why your node name is locked.

0062 S DSM_RC_SIGNONREJECT_LICENSE_MAX

Explanation: Adding a new enrollment will exceed the product license count for TSM.

System Action: Execution of the client enrollment or connection request ends.

User Response: See your system administrator.

0063 E DSM_RC_REJECT_NO_MEMORY

Explanation: The server does not have enough memory to allow your client to establish a connection with the server.

System Action: Session was not started.

User Response: Retry later or see your system administrator.

0064 E DSM_RC_REJECT_NO_DB_SPACE

Explanation: The server ran out of database space.

System Action: Session was not started.

User Response: See your system administrator.

0065 E DSM_RC_REJECT_NO_LOG_SPACE

Explanation: The server ran out of recovery log space.

System Action: Session was not started.

User Response: This error is a temporary problem. Retry later or see your system administrator.

0066 E DSM_RC_REJECT_INTERNAL_ERROR

Explanation: The client cannot establish a connection to the server because of an internal server error.

System Action: Session was not started.

User Response: See your system administrator immediately.

Appendix D. API return codes with explanations 193

0067 S DSM_RC_SIGNONREJECT_INVALID_CLI

Explanation: The server is not licensed for the requesting client type.

System Action: Execution of the client enrollment or connection request ends.

User Response: See your system administrator.

0068 E DSM_RC_SESSION_CANCELED

Explanation: The server administrator canceled the current client session.

System Action: Execution of the client connection request ends.

User Response: See your system administrator.

0073 E DSM_RC_REJECT_INVALID_NODE_TYPE

Explanation: The user has probably coded the node option incorrectly. For instance, the node that is registered to the TSM server
might be a type of NAS, but the node is actually a non-NAS client.

System Action: The TSM operation ends.

User Response: Ensure that the node name is correct in the client options file. Make sure to use a node of type NAS only with the
nasnodename option.

0074 E DSM_RC_REJECT_INVALID_SESSIONINIT

Explanation: The node is not allowed to initiate connections due to the configuration parameters for this node on the server. Server is
able to initiate connections to the client scheduler running in prompted mode.

System Action: The Tivoli Storage Manager operation ends.

User Response: Contact your systems administrator to enable client-initiated sessions for your node or update the
SESSIONINITIATION option and run the client scheduler.

0075 E DSM_RC_REJECT_WRONG_PORT

Explanation: You were trying to open a backup/archive client session on the server port set up for administrative sessions only.

System Action: The Tivoli Storage Manager operation ends.

User Response: Contact your systems administrator and/or use the correct values for TCP port and TCP Admin Port.

0101 W DSM_RC_USER_ABORT

Explanation: An abort signal to stop an operation was received.

System Action: Processing stopped.

User Response: Continue with normal operations.

0102 E DSM_RC_NO_MEMORY

Explanation: Tivoli Storage Manager has encountered a condition where it can not allocate any more memory. Possible reasons
include:

The system is low on memory.
The process in which the program runs has exceeded the maximum memory that it is allowed to allocate.
Some other error condition occurred that caused the program to think it is out of memory.

System Action: Processing stopped.

User Response: Stop any unnecessary programs that are running and retry the operation. Reducing the scope of queries and the
amount of data returned can also solve the problem. If the error reoccurs, contact your support representative, and be sure to provide
the entire text of this message along with detailed information about how you got this message.

194 IBM Tivoli Storage Manager: Using the Application Program Interface

0104 E DSM_RC_FILE_NOT_FOUND

Explanation: The file being processed for backup, archive or migrate no longer exists on the client. Another process deleted the file
before it could be backed up, archived or migrated by TSM.

System Action: File skipped.

User Response: None.

0105 E DSM_RC_PATH_NOT_FOUND

Explanation: You specified an incorrect directory path.

System Action: Processing stopped.

User Response: Correct the syntax specified and retry the operation.

0106 E DSM_RC_ACCESS_DENIED

Explanation: Access to the specified file or directory is denied. You tried to read from or write to a file and you do not have access
permission for either the file or the directory.

System Action: Processing stopped.

User Response: Ensure that you specified the correct file or directory name, correct the permissions, or specify a new location.

0106 E DSM_RC_ACCESS_DENIED

Explanation: The specified file is being used by another process. You tried to read from or write to a file that is currently being used
by another process.

System Action: Processing stopped.

User Response: Ensure that you specified the correct file or directory name, correct the permissions, or specify a new location.

0107 E DSM_RC_NO_HANDLES

Explanation: All file handles for your system are currently in use. No more are available.

System Action: Processing stopped.

User Response: Either free some file handles by ending other processes, or modify your system setup to allow for more files to be
open at the same time.

0108 E DSM_RC_FILE_EXISTS

Explanation: The file being restored or retrieved exists.

System Action: File is replaced or skipped depending on client options.

User Response: None.

0109 E DSM_RC_INVALID_PARM

Explanation: The system encountered an internal program error due to an invalid parameter.

System Action: The system returns to the calling procedure.

User Response: Ask your service representative to check the error log.

0110 E DSM_RC_INVALID_HANDLE

Explanation: An internal system error occurred. A file operation failed because an invalid file handle was passed.

System Action: Processing stopped.

User Response: Report the problem to your system administrator, and then retry the operation.

Appendix D. API return codes with explanations 195

0111 E DSM_RC_DISK_FULL

Explanation: No more files can be restored or retrieved because the destination disk is full.

System Action: Processing stopped.

User Response: Free up disk space, or restore or retrieve the file to another disk.

0113 E DSM_RC_PROTOCOL_VIOLATION

Explanation: A communications protocol error occurred. The communication subsystem is not properly defined or is itself in error.

System Action: TSM ended the current operation.

User Response: Verify that the communication processes are operating properly, and then retry the operation.

0114 E DSM_RC_UNKNOWN_ERROR

Explanation: An unknown error occurred. This might be a low-level system or communication error that TSM cannot handle or
recover from.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, determine where the problem exists. See your system administrator for
further help.

0115 E DSM_RC_UNEXPECTED_ERROR

Explanation: An unexpected error occurred. This might be a low-level system or communication error that TSM cannot handle or
recover from.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, determine where the problem exists. See your system administrator for
further help.

0116 E DSM_RC_FILE_BEING_EXECUTED

Explanation: The current file cannot be opened to write to because it is currently being run by another operation.

System Action: File skipped.

User Response: Stop the operation that is running the file and retry the operation, or restore or retrieve the file to a different name or
directory.

0117 E DSM_RC_DIR_NO_SPACE

Explanation: No more files can be restored or retrieved since the destination directory is full.

System Action: Processing stopped.

User Response: Free up disk space, or restore or retrieve the file to another disk.

0118 E DSM_RC_LOOPED_SYM_LINK

Explanation: While trying to resolve the file name, too many symbolic links were found.

System Action: File skipped.

User Response: Ensure that you do not have a looping symbolic link for the file.

0119 E DSM_RC_FILE_NAME_TOO_LONG

Explanation: The file name specified is too long to be handled by TSM.

System Action: File is skipped.

User Response: See the appropriate Using the Backup-Archive Client book for the particular operating system, for the file names that are
handled by TSM.

196 IBM Tivoli Storage Manager: Using the Application Program Interface

0120 E DSM_RC_FILE_SPACE_LOCKED

Explanation: File system cannot be accessed because it is locked by the system.

System Action: TSM cannot complete the operation.

User Response: See your system administrator.

0121 I DSM_RC_FINISHED

Explanation: The operation is finished.

System Action: The system returns to the calling procedure.

User Response: Proceed with next function call.

0122 E DSM_RC_UNKNOWN_FORMAT

Explanation: TSM tried to restore or retrieve a file, but it had an unknown format.

System Action: File skipped.

User Response: See your system administrator.

0123 E DSM_RC_NO_AUTHORIZATION

Explanation: The client is not authorized to restore the other node's data.

System Action: The system returns to the calling procedure.

User Response: Get authorization from the other node.

0124 E DSM_RC_FILE_SPACE_NOT_FOUND

Explanation: The specified file space (domain) is incorrect or does not exist on the machine.

System Action: Processing stopped.

User Response: Retry the operation specifying an existing domain (drive letter or file system name).

0125 E DSM_RC_TXN_ABORTED

Explanation: The current transaction between the server and the client stopped. A server, client, or communication failure cannot be
recovered.

System Action: TSM canceled the current operation.

User Response: Retry the operation. If the problem continues, see your system administrator to isolate the problem.

0126 E DSM_RC_SUBDIR_AS_FILE

Explanation: TSM tried to create a directory path, but is unable to because a file exists that has the same name as a directory.

System Action: Processing stopped.

User Response: Remove the file that has the same name as the directory. Refer to the last restore/retrieve operation and check all
directories along the path.

0127 E DSM_RC_PROCESS_NO_SPACE

Explanation: The disk space allocated for the client owner is full.

System Action: Processing stopped.

User Response: Free up disk space and retry the restore or retrieve operation.

Appendix D. API return codes with explanations 197

0128 E DSM_RC_PATH_TOO_LONG

Explanation: The path name specified plus the path name in the restored file name combine to create a name whose length exceeds
the system maximum.

System Action: Processing stopped.

User Response: Specify a destination path that, when combined, is less than the system maximum.

0129 E DSM_RC_NOT_COMPRESSED

Explanation: A file that was flagged as compressed was not compressed, and the system failed.

System Action: Processing stopped.

User Response: See your system administrator to report this problem. This error is a system failure.

0130 E DSM_RC_TOO_MANY_BITS

Explanation: You are trying to restore a file that was backed up and compressed on another client workstation that had more memory
than your client workstation. You cannot restore this file. When the file is restored, it is expanded and your workstation does not have
enough memory.

System Action: TSM canceled the operation.

User Response: Obtain a machine with more memory and retry the operation.

0131 S DSM_RC_SYSTEM_ERROR

Explanation: An unexpected program failure occurred.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, see your system administrator or your service representative.

0132 E DSM_RC_NO_SERVER_RESOURCES

Explanation: The server ran out of resources. A lack of storage or a condition does not allow any new activity.

System Action: TSM canceled the current operation.

User Response: Retry the operation at a later time. If the problem continues, see your system administrator to isolate what resource is
unavailable.

0133 E DSM_RC_FS_NOT_KNOWN

Explanation: The number defining the correspondence between drive letter or file (domain name) and volume label is not known to
the server.

System Action: Processing stopped.

User Response: Report the program error to your service representative.

0134 E DSM_RC_NO_LEADING_DIRSEP

Explanation: The objName field does not have a leading directory separator.

System Action: The system returns to the calling procedure.

User Response: Correct the value for the objName.

0135 E DSM_RC_WILDCARD_DIR

Explanation: Wildcards are not allowed in the objName directory path.

System Action: The system returns to the calling procedure.

User Response: Correct the value for the objName.

198 IBM Tivoli Storage Manager: Using the Application Program Interface

0136 E DSM_RC_COMM_PROTOCOL_ERROR

Explanation: Communications protocol error. An unexpected communications message was received by the client.

System Action: TSM canceled the current operation.

User Response: Verify that your communication path is functioning properly. If the problem continues, have your service
representative check for a possible program error.

0137 E DSM_RC_AUTH_FAILURE

Explanation: Authentication failure. You entered an incorrect password.

System Action: TSM canceled the current operation.

User Response: Enter your correct password. If you cannot remember the correct password, see your system administrator to have a
new one assigned for your node name.

0138 E DSM_RC_TA_NOT_VALID

Explanation: The trusted agent execution/owner permissions are invalid.

System Action: Processing stopped.

User Response: Have your system administrator check the installation instructions for the client to ensure that the trusted agent
permissions are set correctly.

0139 S DSM_RC_KILLED

Explanation: Processing stopped. This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0145 S DSM_RC_WOULD_BLOCK

Explanation: The trusted agent blocks the operation. This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0146 S DSM_RC_TOO_SMALL

Explanation: The area for the include/exclude pattern is too small. This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0147 S DSM_RC_UNCLOSED

Explanation: There is no closing bracket in the pattern. This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0148 S DSM_RC_NO_STARTING_DELIMITER

Explanation: The include or exclude pattern must start with a directory delimiter.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

Appendix D. API return codes with explanations 199

0149 S DSM_RC_NEEDED_DIR_DELIMITER

Explanation: The include/exclude pattern has a ’...’ without a beginning or ending directory delimiter.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

0150 S DSM_RC_UNKNOWN_FILE_DATA_TYPE

Explanation: An unknown and unexpected error code occurred within the client program. The structured file data type is unknown.
This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0151 S DSM_RC_BUFFER_OVERFLOW

Explanation: The data buffer overflowed. This is a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues, contact your system administrator.

0154 E DSM_RC_NO_COMPRESS_MEMORY

Explanation: Not enough memory is available to do data compression or expansion. For a restore or retrieve, the file cannot be
recalled from the server until more storage is made available. For a backup or archive, try running without compression if storage
cannot be made available.

System Action: Processing stopped.

User Response: Free up extra storage for the operation to continue, or run the backup or archive process without compression
enabled.

0155 T DSM_RC_COMPRESS_GREW

Explanation: The size of the file after compressesion is greater than the size of the file before compressed.

System Action: Even though the size of the file increased, the file is compressed.

User Response: None.

0156 E DSM_RC_INV_COMM_METHOD

Explanation: You specified a communication method that is not supported.

System Action: Processing stopped.

User Response: Specify a valid communication interface for the TSM client and your operating system.

0157 S DSM_RC_WILL_ABORT

Explanation: The server encountered an error and will abort the transaction.

System Action: The transaction will be aborted. The reason code is passed on the dsmEndTxn call.

User Response: Issue the dsmEndTxn with a vote of DSM_VOTE_COMMIT and examine the reason code.

0158 E DSM_RC_FS_WRITE_LOCKED

Explanation: The file or directory being restored or retrieved from the server cannot be written to because the destination is write
locked. Another operation might have the file open and will not allow it to be updated.

System Action: File skipped.

User Response: Either determine which operation has the file write locked, or restore the file to another name or location.

200 IBM Tivoli Storage Manager: Using the Application Program Interface

0159 I DSM_RC_SKIPPED_BY_USER

Explanation: A file was skipped during a restore operation because the file is off line and the application has chosen not to wait for a
tape mount.

System Action: File skipped.

User Response: Verify the application sets the mountWait value correctly on dsmBeginGetData.

0160 E DSM_RC_TA_NOT_FOUND

Explanation: TSM was unable to find the TSM Trusted Agent module in the specified directory. The name of the TSM Trusted Agent
module is dsmtca.

System Action: TSM ends.

User Response: Make sure the Trusted Agent module is in the directory specified by DSMI_DIR.

0161 E DSM_RC_TA_ACCESS_DENIED

Explanation: An attempt to access a system function has been denied.

System Action: Processing stopped.

User Response: Contact your system administrator.

0162 E DSM_RC_FS_NOT_READY

Explanation: The file system/drive was not ready for access.

System Action: Processing stopped.

User Response: Ensure that the drive is available to TSM, and then retry the operation.

0163 E DSM_RC_FS_IS_BAD

Explanation: The drive was not available for access. A directory exists that does not have either a '.' or '..' entry.

System Action: Processing stopped.

User Response: Ensure that the drive is operational, and then retry the operation. If unsuccessful, have your service representative
check the error log.

0164 E DSM_RC_FIO_ERROR

Explanation: An error was found while reading from or writing to the file.

System Action: File or file system is skipped.

User Response: Check your system to ensure that it is operating properly. For OS/2, run CHKDSK /F for the failing drive which can
be found in dsmerror.log.

0165 E DSM_RC_WRITE_FAILURE

Explanation: An error was found while writing to the file.

System Action: File skipped.

User Response: Check your system to ensure that it is operating properly.

0166 E DSM_RC_OVER_FILE_SIZE_LIMIT

Explanation: A file being restored or retrieved exceeds system set limits for this user.

System Action: File skipped.

User Response: Ensure that the system limits are set properly.

Appendix D. API return codes with explanations 201

0167 E DSM_RC_CANNOT_MAKE

Explanation: The directory path for files being restored or retrieved cannot be created.

System Action: File skipped.

User Response: Ensure that you have the proper authorization to create the directory for file being restored or retrieved. Make sure
that you have write access.

0168 E DSM_RC_NO_PASS_FILE

Explanation: The file containing the stored password for the specified server-name is unavailable.

System Action: TSM ends.

User Response: The root user must set and store a new password.

0169 E DSM_RC_VERFILE_OLD

Explanation: Either the password is not stored locally, or it was changed at the server.

System Action: TSM prompts you for the password if TSM is running in the foreground.

User Response: If TSM was running as a background process, issue any TSM command from the foreground. Enter the password in
answer to the prompt. Then try your background TSM command again.

0173 E DSM_RC_INPUT_ERROR

Explanation: Unable to read commands entered from keyboard. TSM cannot process your intended command.

System Action: Processing stopped.

User Response: Ensure that you are entering a correct command.

0174 E DSM_RC_REJECT_PLATFORM_MISMATCH

Explanation: Your node name is associated with a different type of operating system (such as OS/2 or AIX) and cannot be used on
this system.

System Action: TSM canceled the current operation.

User Response: If you need a new node name, see your system administrator to assign a new one to you. Generally, you have a
unique node name for each machine and operating system pair that requires access to the server.

0175 E DSM_RC_TL_NOT_FILE_OWNER

Explanation: The file cannot be backed up because the client is not the file owner.

System Action: TSM skips the file.

User Response: None.

0176 S DSM_RC_DBCS_IN_RANGE

Explanation: Only single-byte characters are allowed in an include/exclude list; you cannot use a double-byte character set (DBCS).

System Action: Processing stopped.

User Response: Remove the double-byte characters from the include/exclude list and retry the operation.

0177 S DSM_RC_UNMATCHED_QUOTE

Explanation: The quotes specified in the pattern are not the same and do not make a set.

System Action: Processing stopped.

User Response: Correct the pattern by using matching quotes in the syntax.

202 IBM Tivoli Storage Manager: Using the Application Program Interface

0184 E DSM_RC_TL_NOBCG

Explanation: The management class for this file does not have a backup copy group specified. This file will not be backed up.

System Action: Processing stopped.

User Response: Add a valid backup copy group to the management class, and then retry the operation.

0185 W DSM_RC_TL_EXCLUDED

Explanation: You tried to back up or migrate a file (file-name) that was specified to be excluded from backup.

System Action: TSM did not back up or migrate the file.

User Response: Specify the file using the Include option and retry the operation.

0186 E DSM_RC_TL_NOACG

Explanation: The management class for this file does not have an archive copy group specified. This file will not be archived.

System Action: Processing stopped.

User Response: Add a valid archive copy group to the management class, and then retry the operation.

0187 E DSM_RC_PS_INVALID_ARCHMC

Explanation: You entered an invalid management class.

System Action: TSM is unable to do the requested operation.

User Response: Retry the operation using a valid management class.

0188 S DSM_RC_NO_PS_DATA

Explanation: Either no Active Policy Set data was found on the server or a fromnode option contained a nodename not found on the
server.

System Action: Processing stopped.

User Response: See your system administrator.

0189 S DSM_RC_PS_INVALID_DIRMC

Explanation: An invalid management class was assigned to directories.

System Action: Processing stopped.

User Response: Have your service representative check the error log.

0190 S DSM_RC_PS_NO_CG_IN_DIR_MC

Explanation: The management class used for directories does not have a backup copy group.

System Action: Processing stopped.

User Response: Have your service representative check the error log.

0200 E DSM_RC_TCA_ATTACH_SHR_MEM_ERR

Explanation: An error has occurred while attaching the trusted agent’s shared memory.

System Action: Return to caller.

User Response: Stop application, check shared memory usage and retry the command. Read the tca.log file for the system error
number.

Appendix D. API return codes with explanations 203

0231 E DSM_RC_ABORT_MOVER_TYPE

Explanation: The specified Remote Mover type is unknown.

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0232 E DSM_RC_ABORT_ITEM_IN_USE

Explanation: A request has been made to use a data mover to perform an operation for the indicated node and filespace. Since an
operation for this node and filespace is already in progress, the new operation cannot be performed.

System Action: TSM ended the current operation.

User Response: Retry the operation at a later time.

0233 E DSM_RC_ABORT_LOCK_CONFLICT

Explanation: A required resource is in use by another command or process.

System Action: TSM ended the current operation.

User Response: Retry the operation at a later time.

0234 E DSM_RC_ABORT_SRV_PLUGIN_COMM_ERROR

Explanation: Communication between a server plugin module and a NAS filer failed.

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0235 E DSM_RC_ABORT_SRV_PLUGIN_OS_ERROR

Explanation: A plugin module detected that a NAS filer is running an unsupported operating system or operating system level.

System Action: TSM ended the current operation.

User Response: Contact your system administrator for more information.

0236E DSM_RC_ABORT_CRC_FAILED

Explanation: The server sent a CRC for a buffer. The client calculated a CRC for the same buffer. These did not match. The mismatch
indicates a communication failure.

System Action: In some cases, the client can indicate the failure to the server and retry the operation.

User Response: Check the trace log for additional information and retry the operation. If the problem persists, contact your system
administrator.

0237E DSM_RC_ABORT_INVALID_GROUP_ACTION

Explanation: An invalid operation was attempted on a logical group.

System Action: The current operation stops.

User Response: Retry a valid operation.

0238E DSM_RC_ABORT_DISK_UNDEFINED

Explanation: An operation was attempted on a remote disk that is not defined.

System Action: The current operation stops.

User Response: Define the proper remote disk.

204 IBM Tivoli Storage Manager: Using the Application Program Interface

0239E DSM_RC_ABORT_BAD_DESTINATION

Explanation: Input destination does not match expected destination.

System Action: The current operation stops.

User Response: Retry operation with proper destination.

0240E DSM_RC_ABORT_DATAMOVER_NOT_AVAILABLE

Explanation: Data mover is not available.

System Action: The current operation stops.

User Response: Retry operation with a proper Data mover.

0241E DSM_RC_ABORT_STGPOOL_COPY_CONT_NO

Explanation: Operation failed because the copy continue option was set to NO.

System Action: The current operation stops.

User Response: This abort code indicates that a store operation, like backup or archive failed because the copy continue option was
set to NO. The sysadmin will need to resolve the problem on the server end.

0242E DSM_RC_ABORT_RETRY_SINGLE_TXN

Explanation: Transaction failed because of a problem during a store operation. This error is typical when the next storage pool has a
different copy storage pool list and we switch to this pool in the middle of a transaction.

System Action: Transaction is aborted.

User Response: Resend objects in seperate txn’s.

0292 E DSM_RC_TCA_FORK_FAILED

Explanation: An error has occurred starting the Trusted Communication Agent process; specifically, the fork() function has failed.

System Action: TSM ends.

User Response: Probable system error. If the problem persists, restart the workstation.

0294 E DSM_RC_TCA_DIED

Explanation: The Trusted Communication Agent has terminated unexpectedly.

System Action: TSM ends.

User Response: Check the error log for more information. Retry the activity. If the problem persists, contact your service
representative.

0295 E DSM_RC_TCA_INVALID_REQUEST

Explanation: The Trusted Communication Agent has received an unknown request from the TSM client.

System Action: TSM ends.

User Response: Internal error. If the problem recurs, contact your service representative.

0296 E DSM_RC_TCA_NOT_ROOT

Explanation: An activity has been attempted that must be performed by the TSM administrator (for example, open registration,
filespace delete or password update).

System Action: TSM ends.

User Response: If the activity is required, the administrator for this system must perform it.

Appendix D. API return codes with explanations 205

0297 E DSM_RC_TCA_SEMGET_ERROR

Explanation: An error has occurred because the semaphores you are attempting to allocate have become insufficient.

System Action: Processing ends.

User Response: Ask your system administrator for assistance, and possibly increase the number of semaphores in your system.

0298 E DSM_RC_TCA_SEM_OP_ERROR

Explanation: An error has occurred while attempting to set or wait on a semaphore.

System Action: Processing ends.

User Response: Probable system error. If the problem persists, restart the workstation.

0400 E DSM_RC_INVALID_OPT

Explanation: An invalid option was found.

System Action: The system returns to the calling procedure.

User Response: Verify the options in dsm.opt, dsm.sys, and the options string. Check the error log for more details about the error. on
the AS/400 platform, verify the options in *LIB/QOPTTSM(APIOPT).

0405 E DSM_RC_NO_HOST_ADDR

Explanation: The TCPSERVERADDRESS for this server is not defined in the server name stanza in the system options file.

System Action: TSM initialization fails and the program ends.

User Response: See the TSM administrator for your system, and make sure that the server to which you are trying to connect, has a
valid TCPSERVERADDRESS defined in the system options file.

0406 S DSM_RC_NO_OPT_FILE

Explanation: The options file specified by file-name cannot be found.

System Action: The TSM client ends.

User Response: See if you have the environment variable DSM_CONFIG (or DSMI_CONFIG for the API) set, which explicitly
identifies the TSM options file. (You can do this by entering the SET command at your system.) If this environment variable is set,
ensure the file indicated by the variable exists. If it is not set, then TSM looks for the file dsm.opt in the current directory. If neither of
these cases is met, you receive this error message.

0408 E DSM_RC_MACHINE_SAME

Explanation: The NODENAME defined in the options file cannot be the same as the system HostName.

System Action: Initialization fails and the program ends.

User Response: See your system administrator or the root user.

0409 E DSM_RC_INVALID_SERVER

Explanation: The system options file does not contain the SERVERNAME option.

System Action: TSM initialization fails and the program ends.

User Response: See the TSM administrator for your system, and make sure that the system options file contains the server name.

0410 E DSM_RC_INVALID_KEYWORD

Explanation: An invalid option keyword was found in the dsmInit configuration file, the option string, dsm.sys, or dsm.opt.

System Action: The system returns to the calling procedure.

User Response: Correct the spelling of the option keywords. Verify that the dsmInit configuration file only has a subset of the dsm.sys
options. Check the error log for more details about the error.

206 IBM Tivoli Storage Manager: Using the Application Program Interface

0411 S DSM_RC_PATTERN_TOO_COMPLEX

Explanation: The include or exclude pattern issued is too complex to be accurately interpreted by TSM.

System Action: Processing stopped.

User Response: Recode the include or exclude pattern as shown in one of the examples in the appropriate Using the Backup-Archive
Client book for the particular operating system.

0412 S DSM_RC_NO_CLOSING_BRACKET

Explanation: The include or exclude pattern is incorrectly constructed. The closing bracket is missing.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

0600 E DSM_RC_DUP_LABEL

Explanation: The selected drive has a duplicate volume label. Because TSM uses the volume label to keep track of backup/archive
information, it cannot back up or archive files from a drive with a duplicate volume label.

System Action: TSM cannot select the drive.

User Response: If the volume needs to be available to the system, exit TSM, and assign a volume label to the drive. Restart TSM and
retry the operation.

0601 E DSM_RC_NO_LABEL

Explanation: The selected drive does not have a label.

System Action: TSM is unable to do the requested operation without a drive or label entered.

User Response: If the drive is a floppy drive, place a disk with a volume label in it and retry the operation. If the disk is a hard drive,
ensure the drive has a volume label, and retry the operation.

0610 E DSM_RC_NLS_CANT_OPEN_TXT

Explanation: The system is unable to open the message txt file (dscenu.txt or dsmclientV3.cat for AIX). On the AS/400 platform this
file is QANSAPI/QAANSENU(TXT).

System Action: The system returns to the calling procedure.

User Response: Verify that the dscenu.txt file is in the directory pointed to by DSMI_DIR. For AIX, verify that the dsmclientV3.cat file
has a symbolic link to /usr/lib/nls/msg/<locale>/dsmclientV3.cat .

0611 E DSM_RC_NLS_CANT_READ_HDR

Explanation: The system is unable to use the message text file (dscenu.txt or dsmclientV3.cat for AIX) because of an invalid header.
On the AS/400 platform this file is QANSAPI/QAANSENU(TXT).

System Action: The system returns to the calling procedure.

User Response: Install the message text file again.

0612 E DSM_RC_NLS_INVALID_CNTL_REC

Explanation: The system is unable to use the message txt file (dscenu.txt or dsmclientV3.cat for AIX) because of an invalid control
record. On the AS/400 platform this file is QANSAPI/QAANSENU(TXT).

System Action: The system returns to the calling procedure.

User Response: Install the message text file again.

0613 E DSM_RC_NLS_INVALID_DATE_FMT

Explanation: An invalid value is specified for DATEFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

Appendix D. API return codes with explanations 207

0614 E DSM_RC_NLS_INVALID_TIME_FMT

Explanation: An invalid value is specified for TIMEFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0615 E DSM_RC_NLS_INVALID_NUM_FMT

Explanation: An invalid value is specified for NUMBERFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0620 E DSM_RC_LOG_CANT_BE_OPENED

Explanation: The system is unable to open the error log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access permission. On the AS/400 platform, verify the value specified for
ERRORLOGNAME in the API options file.

0621 E DSM_RC_LOG_ERROR_WRITING_TO_LOG

Explanation: There was an error writing to the log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access permission. on the AS/400 platform, verify the value specified for
ERRORLOGNAME in the API options file.

0622 E DSM_RC_LOG_NOT_SPECIFIED

Explanation: The system is unable to open the error log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access permission. On the AS/400 platform, verify the value specified for
ERRORLOGNAME in the API options file.

0927 E DSM_RC_NOT_ADSM_AUTHORIZED

Explanation: User must be a TSM authorized user to perform this action. User is not password authorized and this action requires
authorization.

System Action: Processing stopped.

User Response: User must be root user, or user must be the owner of the executable and the set effective user id bit is set to ’on’ (’s’
bit).

961 E DSM_RC_DIRECT_STORAGE_AGENT_UNSUPPORTED

Explanation: You cannot connect directly to the Storage Agent.

System Action: Processing stopped.

User Response: To perform Lanfree operations using the Storage Agent, specify the ENABLELANFREE option in your options file,
and restart the process.

963 E DSM_RC_FS_NAMESPACE_DOWNLEVEL

Explanation: TSM has detected that the server namespace is NTW:LONG, but the local volume does not have long name support. If
you would like to back up the volume using the short names, rename the filespace on the server. If you would like to back up using
long names, add the long namespace support back to the volume in question.

System Action: Processing stopped.

User Response: Add the long namespace support to the volume or rename(remove) the corresponding server filespace.

208 IBM Tivoli Storage Manager: Using the Application Program Interface

2000 E DSM_RC_NULL_OBJNAME

Explanation: There is no value provided for the object name pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the dsmObjName structure.

2001 E DSM_RC_NULL_DATABLKPTR

Explanation: There is no value provided for the data block pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the DataBlk structure.

2002 E DSM_RC_NULL_MSG

Explanation: The message parameter for dsmRCMsg is a NULL pointer.

System Action: The system returns to the calling procedure.

User Response: Allocate enough space for the message parameter.

2004 E DSM_RC_NULL_OBJATTRPTR

Explanation: There is no value provided for the object attribute pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the ObjAttr structure.

2006 E DSM_RC_NO_SESS_BLK

Explanation: The server did not respond with the session information.

System Action: The system returns to the calling procedure.

User Response: Verify the server status.

2007 E DSM_RC_NO_POLICY_BLK

Explanation: The server did not respond with the policy information.

System Action: The system returns to the calling procedure.

User Response: Verify the server policy definitions.

2008 E DSM_RC_ZERO_BUFLEN

Explanation: The value for the dataBlk bufferLen is zero.

System Action: The system returns to the calling procedure.

User Response: Provide a non-zero value for the bufferLen.

2009 E DSM_RC_NULL_BUFPTR

Explanation: There is no value provided for the dataBlk bufferPtr.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the bufferPtr.

2010 E DSM_RC_INVALID_OBJTYPE

Explanation: The value for the objType is invalid.

System Action: The system returns to the calling procedure.

User Response: The value for dsmObjName.objType must be:

DSM_OBJ_FILE or DSM_OBJ_DIRECTORY for Backup, or

Appendix D. API return codes with explanations 209

DSM_OBJ_FILE for Archive.

2011 E DSM_RC_INVALID_VOTE

Explanation: The dsmEndTxn vote is invalid.

System Action: The system returns to the calling procedure.

User Response: The vote must be DSM_VOTE_COMMIT or DSM_VOTE_ABORT.

2012 E DSM_RC_INVALID_ACTION

Explanation: The dsmUpdateFS or dsmUpdateObj action is invalid.

System Action: The system returns to the calling procedure.

User Response: Correct the action value. Valid values are defined in dsmapitd.h and documented in our Using the API book.

2014 E DSM_RC_INVALID_DS_HANDLE

Explanation: The system encountered an error in the API internals.

System Action: The system returns to the calling procedure.

User Response: Shut down the process and retry the operation. Verify that any previous dsmInit calls were cleaned up and
terminated by a dsmTerminate call. If the problem continues, contact your system administrator or service representative.

2015 E DSM_RC_INVALID_REPOS

Explanation: The repository type is invalid.

System Action: The system returns to the calling procedure.

User Response: For dsmDeleteFS the repository must be one of the following:

v DSM_ARCHIVE_REP

v DSM_BACKUP_REP

v DSM_REPOS_ALL.

2016 E DSM_RC_INVALID_FSNAME

Explanation: The filespace name is invalid.

System Action: The system returns to the calling procedure.

User Response: Filespace name should start with the directory delimiter.

2017 E DSM_RC_INVALID_OBJNAME

Explanation: The object name is invalid because of an empty string or there is no leading delimiter.

System Action: The system returns to the calling procedure.

User Response: Verify the format of the dsmObjName full path.

2018 E DSM_RC_INVALID_LLNAME

Explanation: The low level qualifier for the object name is invalid.

System Action: The system returns to the calling procedure.

User Response: Start the low level qualifier of the object name with the directory delimiter.

2019 E DSM_RC_INVALID_OBJOWNER

Explanation: The object owner must be either the root user, or the object owner must be the same as the session owner.

System Action: The system returns to the calling procedure.

User Response: Verify the session owner and object owner.

210 IBM Tivoli Storage Manager: Using the Application Program Interface

2020 E DSM_RC_INVALID_ACTYPE

Explanation: The dsmBindMC sendType is invalid.

System Action: The system returns to the calling procedure.

User Response: The sendType must be one of the following:

stBackup

stArchive

stBackupMountWait

stArchiveMountWait

2021 E DSM_RC_INVALID_RETCODE

Explanation: The dsmRC parameter for dsmRCMsg is an unsupported return code.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

2022 E DSM_RC_INVALID_SENDTYPE

Explanation: The dsmSendObj sendType is invalid.

System Action: The system returns to the calling procedure.

User Response: The sendType must be one of the following:

stBackup

stArchive

stBackupMountWait

stArchiveMountWait

2023 E DSM_RC_INVALID_PARAMETER

Explanation: The dsmDeleteObj delType is invalid.

System Action: The system returns to the calling procedure.

User Response: The delType must be dtBackup or dtArchive.

2024 E DSM_RC_INVALID_OBJSTATE

Explanation: The query Backup objState is invalid.

System Action: The system returns to the calling procedure.

User Response: The qryBackupData.objState must be one of the following:

DSM_ACTIVE

DSM_INACTIVE

DSM_ANY_MATCH

2025 E DSM_RC_INVALID_MCNAME

Explanation: A query or send operation is unable to find the management class name.

System Action: The system returns to the calling procedure.

User Response: Verify the management class name.

2026 E DSM_RC_INVALID_DRIVE_CHAR

Explanation: The drive letter is not an alphabetic character. This return code is valid on Microsoft Windows only.

System Action: The system returns to the calling procedure.

User Response: Verify that the drive designation is an alphabetic character. The referenced field is dsmDosFSAttrib.driveLetter.

Appendix D. API return codes with explanations 211

2027 E DSM_RC_NULL_FSNAME

Explanation: There is no value provided for the Register Filespace name.

System Action: The system returns to the calling procedure.

User Response: Provide a filespace name on dsmRegisterFS.

2028 E DSM_RC_INVALID_HLNAME

Explanation: The high level qualifier for the object name is invalid.

System Action: The system returns to the calling procedure.

User Response: High level qualifier of the object name should start with the directory delimiter.

2029 E DSM_RC_NUMOBJ_EXCEED

Explanation: The number of objects (numObjId) specified on the dsmBeginGetData call exceeds DSM_MAX_GET_OBJ |
DSM_MAX_PARTIAL_GET_OBJ.

System Action: The system returns to the calling procedure.

User Response: Check the number of objects before calling dsmBeginGetData. If it is greater than DSM_MAX_GET_OBJ |
DSM_MAX_PARTIAL_GET_OBJ, then issue multiple Get call sequences.

2030 E DSM_RC_NEWPW_REQD

Explanation: There is no value provided for new password.

System Action: The system returns to the calling procedure.

User Response: Provide a new password on dsmChangePW.

2031 E DSM_RC_OLDPW_REQD

Explanation: There is no value provided for old password.

System Action: The system returns to the calling procedure.

User Response: Provide an old password on dsmChangePW.

2032 E DSM_RC_NO_OWNER_REQD

Explanation: PASSWORDACCESS=generate establishes a session with the current login user as the owner.

System Action: The system returns to the calling procedure.

User Response: When using PASSWORDACCESS=generate, set clientOwnerNameP to NULL.

2033 E DSM_RC_NO_NODE_REQD

Explanation: PASSWORDACCESS=generate establishes a session with the current hostname as the node.

System Action: The system returns to the calling procedure.

User Response: When using PASSWORDACCESS=generate, set clientNodeNameP to NULL.

2034 E DSM_RC_KEY_MISSING

Explanation: The key file for Tivoli Data Protection application client for Oracle cannot be found.

System Action: The system returns to the calling procedure.

User Response: Ensure that you have ordered the Tivoli Data Protection application client which contains TDP for Oracle, and install
the key file.

212 IBM Tivoli Storage Manager: Using the Application Program Interface

2035 E DSM_RC_KEY_BAD

Explanation: The key file content for Tivoli Data Protection application client for Oracle is invalid.

System Action: The system returns to the calling procedure.

User Response: Ensure that you have ordered the Tivoli Data Protection application client which contains the TDP for Oracle, and
install the key file.

2041 E DSM_RC_BAD_CALL_SEQUENCE

Explanation: The sequence of calls is invalid.

System Action: The system returns to the calling procedure.

User Response: Verify the transaction call sequence.

2050 E DSM_RC_WILDCHAR_NOTALLOWED

Explanation: On dsmSendObj, wildcards are not allowed for the objName.

System Action: The system returns to the calling procedure.

User Response: Provide a fs, hl, and ll on the dsmObjName.

2060 E DSM_RC_FSNAME_NOTFOUND

Explanation: The filespace to delete cannot be found.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2061 E DSM_RC_FS_NOT_REGISTERED

Explanation: On dsmSendObj, dsmDeleteObj, or dsmUpdateFS, the filespace is not registered.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2062 W DSM_RC_FS_ALREADY_REGED

Explanation: On dsmRegisterFS the filespace is already registered.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2063 E DSM_RC_OBJID_NOTFOUND

Explanation: On dsmBeginGetData, the objID is NULL.

System Action: The system returns to the calling procedure.

User Response: Verify the following:

The dsmGetList is not NULL.

Each objID is not NULL.

The dsmGetList numObjId is not zero.

2064 E DSM_RC_WRONG_VERSION

Explanation: On dsmInit the caller's API version has a higher value than the TSM library version.

System Action: The system returns to the calling procedure.

User Response: Install the latest TSM API library and trusted agent module.

Appendix D. API return codes with explanations 213

2065 E DSM_RC_WRONG_VERSION_PARM

Explanation: The caller's structure version is different than the TSM library version.

System Action: The system returns to the calling procedure.

User Response: Ensure that the stVersion field is set with the value in the header file. Recompile the application with the latest header
files.

2070 E DSM_RC_NEEDTO_ENDTXN

Explanation: This transaction must be ended and a new one must be started due to one of the following reasons:

The destination changed.

The byte limit is exceeded

The maximum number of objects is exceeded.

System Action: The system returns to the calling procedure.

User Response: Issue dsmEndTxn and start a new transaction session.

2080 E DSM_RC_OBJ_EXCLUDED

Explanation: The backup or archive object is excluded from processing.

System Action: The system returns to the calling procedure.

User Response: Verify the objName and Exclude lists.

2081 E DSM_RC_OBJ_NOBCG

Explanation: The backup object does not have a copy group.

System Action: The system returns to the calling procedure.

User Response: Verify server policy definitions.

2082 E DSM_RC_OBJ_NOACG

Explanation: The archive object does not have a copy group.

System Action: The system returns to the calling procedure.

User Response: Verify server policy definitions.

2090 E DSM_RC_APISYSTEM_ERROR

Explanation: Memory used by the TSM API has been corrupted.

System Action: The system returns to the calling procedure.

User Response: Retry the operation. If the problem continues, contact your system administrator or service representative.

2100 E DSM_RC_DESC_TOOLONG

Explanation: The sendObj Archive description is too long.

System Action: The system returns to the calling procedure.

User Response: The sndArchiveData.descr string must be less than or equal to DSM_MAX_DESCR_LENGTH.

2101 E DSM_RC_OBJINFO_TOOLONG

Explanation: The sendObj ObjAttr.objInfo is too long.

System Action: The system returns to the calling procedure.

User Response: The objInfo field must be less than or equal to DSM_MAX_OBJINFO_LENGTH.

214 IBM Tivoli Storage Manager: Using the Application Program Interface

2102 E DSM_RC_HL_TOOLONG

Explanation: The sendObj dsmObjName.hl is too long.

System Action: The system returns to the calling procedure.

User Response: The hl field must be less than or equal to DSM_MAX_HL_LENGTH.

2103 E DSM_RC_PASSWD_TOOLONG

Explanation: The dsmChangePW password is too long.

System Action: The system returns to the calling procedure.

User Response: The password field must be less than or equal to DSM_MAX_VERIFIER_LENGTH.

2104 E DSM_RC_FILESPACE_TOOLONG

Explanation: The sendObj dsmObjName.fs is too long.

System Action: The system returns to the calling procedure.

User Response: The fs field must be less than or equal to DSM_MAX_FS_LENGTH.

2105 E DSM_RC_LL_TOOLONG

Explanation: The sendObj dsmObjName.ll is too long.

System Action: The system returns to the calling procedure.

User Response: The ll field must be less than or equal to DSM_MAX_LL_LENGTH.

2106 E DSM_RC_FSINFO_TOOLONG

Explanation: On RegisterFS or UpdateFS the fsAttr's fsInfo is too long.

System Action: The system returns to the calling procedure.

User Response: The fsInfo field must be less than or equal to DSM_MAX_FSINFO_LENGTH.

2107 E DSM_RC_SENDDATA_WITH_ZERO_SIZE

Explanation: You cannot send data for an object with size estimate = 0.

System Action: The system returns to the calling procedure.

User Response: Set size estimate greater than 0 in dsmSendObj.

2110 E DSM_RC_INVALID_ACCESS_TYPE

Explanation: The dsmSetAccess accessType is invalid.

System Action: The system returns to the calling procedure.

User Response: The accessType must be one of the following:

atBackup

atArchive

2111 E DSM_RC_QUERY_COMM_FAILURE

Explanation: An unexpected communications error occurred during an object query to the server.

System Action: Processing stopped.

User Response: Verify that communications are active between the client and server machines. Server outages, processor outages, and
communication controller outages can cause this error.

Appendix D. API return codes with explanations 215

2112 E DSM_RC_NO_FILES_BACKUP

Explanation: You tried to set access to files when no files for the specified filename, drive or file system were previously backed up.

System Action: Processing stopped.

User Response: Ensure that the correct drive or file system was specified and that files are backed up for you to set access.

2113 E DSM_RC_NO_FILES_ARCHIVE

Explanation: You tried to set access to files when no files for the specified filename, drive or file system were previously archived.

System Action: Processing stopped.

User Response: Ensure that the correct drive or file system was specified and that files are archived for you to set access.

2114 E DSM_RC_INVALID_SETACCESS

Explanation: None.

System Action: Processing stopped.

User Response: Enter the SET ACCESS command using the correct syntax.

2200 I DSM_RC_MORE_DATA

Explanation: On dsmGetNextQObj or dsmGetData there is more available data.

System Action: The system returns to the calling procedure.

User Response: Call the function again.

2210 E DSM_RC_BUFF_TOO_SMALL

Explanation: The dataBlk buffer is too small for the query response.

System Action: The system returns to the calling procedure.

User Response: On dsmGetNextQObj ensure that the dataBlk buffer is at least as big as the query response structure.

2228 E DSM_RC_NO_API_CONFIGFILE

Explanation: The configuration file specified on dsmInit cannot be opened.

System Action: The system returns to the calling procedure.

User Response: Verify the file name.

2229 E DSM_RC_NO_INCLEXCL_FILE

Explanation: The Include/Exclude definition file was not found.

System Action: The system returns to the calling procedure.

User Response: Verify the file name on the Inclexcl option.

2230 E DSM_RC_NO_SYS_OR_INCLEXCL

Explanation: Either the dsm.sys file was not found, or the Inclexcl file specified in dsm.sys was not found.

System Action: The system returns to the calling procedure.

User Response: The dsm.sys file must be in the directory referenced by the environment variable DSMI_DIR. Verify the file name on
the Inclexcl option in the dsm.sys file.

2231 E DSM_RC_REJECT_NO_POR_SUPPORT

Explanation: The TSM server specified by the user does not support partial object retrieve.

System Action: The system returns to the calling procedure.

User Response: Specify a TSM server which supports the partial object retrieve function.

216 IBM Tivoli Storage Manager: Using the Application Program Interface

2300 E DSM_RC_NEED_ROOT

Explanation: Only a UNIX root user can execute dsmChangePW or dsmDeleteFS.

System Action: The system returns to the calling procedure.

User Response: Run this program as a root user.

2301 E DSM_RC_NEEDTO_CALL_BINDMC

Explanation: You must issue dsmBindMC before dsmSendObj.

System Action: The system returns to the calling procedure.

User Response: Modify your program.

2302 I DSM_RC_CHECK_REASON_CODE

Explanation: After a dsmEndTxn call, the transaction is aborted by either the server or client with a DSM_VOTE_ABORT and the
reason is returned.

System Action: The system returns to the calling procedure.

User Response: Check the reason field for the code which explains why the transaction has been aborted.

2400 E DSM_RC_ALMGR_OPEN_FAIL

Explanation: The license file was not found, or could not be opened because of permissions or the file is corrupted.

System Action: The system returns to the calling procedure.

User Response: Check permissions on file. See if the license file is in the correct place.

2401 E DSM_RC_ALMGR_READ_FAIL

Explanation: The license file was not found, or could not be opened because of permissions, or the file is corrupted.

System Action: The system returns to the calling procedure.

User Response: Check permissions on file. See if the license file is in the correct place.

2402 E DSM_RC_ALMGR_WRITE_FAIL

Explanation: The license file was not found, or could not be opened because of permissions or the file is corrupted.

System Action: The system returns to the calling procedure.

User Response: Check permissions on file. See if license file is in the correct place.

2403 E DSM_RC__ALMGR_DATA_FMT

Explanation: The license file is not valid.

System Action: The system returns to the calling procedure.

User Response: User needs to obtain a new license.

2404 E DSM_RC_ALMGR_CKSUM_BAD

Explanation: The registration string is not valid.

System Action: The system returns to the calling procedure.

User Response: User needs to obtain a new license.

2405 E DSM_RC_ALMGR_TRIAL_EXPRD

Explanation: The registration string is not valid.

System Action: The system returns to the calling procedure.

User Response: User needs to obtain a new license.

Appendix D. API return codes with explanations 217

2410 E DSM_RC_ORC_INVALID_MODE

Explanation: Invalid mode passed by Oracle.

System Action: The system returns to the calling procedure.

User Response: Contact your system administrator.

2411 E DSM_RC_ORC_NULL_FILENAME

Explanation: Null filename passed by Oracle.

System Action: The system returns to the calling procedure.

User Response: Contact your system administrator.

2412 E DSM_RC_ORC_WRONG_BLKSIZE

Explanation: Wrong Block Size

System Action: The system returns to the calling procedure.

User Response: Contact your system administrator.

2413 E DSM_RC_ORC_OBJ_EXISTS

Explanation: Backup or Restore Object already exists.

System Action: The system returns to the calling procedure.

User Response: If backing up an object, be sure to generate a unique object name.

2414 E DSM_RC_ORC_NOTSAME_HANDLE

Explanation: The handle passed from Oracle is not the same handle that TSM passed back.

System Action: The system returns to the calling procedure.

User Response: Contact your system administrator.

2415 E DSM_RC_ORC_END_OF_FILE

Explanation: End of file reached.

System Action: The system returns to the calling procedure.

User Response: None

2416 E DSM_RC_ORC_WRONG_RDSTATE

Explanation: The operation must be in READ state.

System Action: The system returns to the calling procedure.

User Response: Contact your service representative.

2417 E DSM_RC_ORC_LOWER_APIVER

Explanation: Runtime API is lower than compile time API.

System Action: The system returns to the calling procedure.

User Response: Use the WHAT command to find out the compile time API level. Obtain the same or higher level of API library.

2418 E DSM_RC_ORC_WRONG_WRTSTATE

Explanation: The operation must be in WRITE state.

System Action: The system returns to the calling procedure.

User Response: Contact your service representative.

218 IBM Tivoli Storage Manager: Using the Application Program Interface

2419 E DSM_RC_ORC_INVALID_FLAG

Explanation: Invalid flag passed from Oracle.

System Action: The system returns to the calling procedure.

User Response: Contact your system administrator.

4600 E DSM_RC_CLUSTER_INFO_LIBRARY_NOT_LOADED

Explanation: The HACMP Cluster Information Daemon must be started in order to specify the CLUSTERNODE option.

System Action: Processing ends.

User Response: Start the HACMP Cluster Information Dameon.

4601 E DSM_RC_CLUSTER_LIBRARY_INVALID

Explanation: The load library that the operating system provides to obtain the cluster name is not valid. A possible cause is an
out-of-date load library which does not contain the proper routines this product expects.

System Action: Processing ends.

User Response: Ensure that the latest cluster software is installed on the system.

4602 E DSM_RC_CLUSTER_LIBRARY_NOT_LOADED

Explanation: The load library that the operating systems provides to obtain the cluster name is not available on this system.

System Action: Processing ends.

User Response: Ensure that the cluster software is installed on the system.

4603 E DSM_RC_CLUSTER_NOT_MEMBER_OF_CLUSTER

Explanation: This machine is not a member of a cluster node. Possible causes are that the cluster service has not been configured
correctly, or that the cluster is in the process of initialization.

System Action: Processing ends.

User Response: Ensure that the cluster software is configured properly. If the cluster is in the process of initialization, retry the
operation at a later time.

4604 E DSM_RC_CLUSTER_NOT_ENABLED

Explanation: The cluster service has not been enabled on this system.

System Action: Processing ends.

User Response: Enable the cluster service on the system.

4605 E DSM_RC_CLUSTER_NOT_SUPPORTED

Explanation: This option is not supported on this system.

System Action: Processing ends.

User Response: Disable the CLUSTERNODE option in the local options file.

4606 E DSM_RC_CLUSTER_UNKNOWN_ERROR

Explanation: An unknown error occurred while the program was trying to obtain the cluster name from the cluster services.

System Action: Processing ends.

User Response: Contact your system administrator for more information.

Appendix D. API return codes with explanations 219

220 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix E. The X/Open API

The X/Open Backup Services API (XBSA) is a set of function definitions, data
structures, and return codes that the Open Group developed to present a
standardized interface between applications that need to perform backup or
archive operations, and the enterprise solutions that provide these services. Tivoli
Storage Manager is such a solution. See www.opengroup.org/publications for more
information.

Current implementation is based on the preliminary specifications, not the
Technical Standard. Compatible header files are included with the Tivoli Storage
Manager client package.

Introduction
The X/Open API enables an application client to use the Tivoli Storage Manager
storage management functions. The X/Open API consists of a set of function calls
that an application client can use to perform the following operations:
v Start or end a Tivoli Storage Manager session.
v Assign management classes to objects before storing them on a Tivoli Storage

Manager server.
v Backup or archive objects to a Tivoli Storage Manager server.
v Restore or retrieve objects from a Tivoli Storage Manager server.
v Query a Tivoli Storage Manager server for information about objects that are

stored on the server.
v Delete backed-up and archived objects from a Tivoli Storage Manager server.

When you, as an application developer, install the X/Open API, you receive the
following:
v The following files that an end user of an application would need:

The X/Open API shared library
Sample client options files
Documentation.

v The source code for the three X/Open API header files that your application
needs.

v The source code for a sample application and the makefile to build it.

The X/Open API for Tivoli Storage Manager is available on the following
platforms:
v AIX
v HP-UX
v Solaris.

See the platform README.API for specific information.

For information about installing the X/Open API, see the Tivoli Storage Manager
Installation and Using Guide for your operating system.

© Copyright IBM Corp. 1993, 2003 221

Version 3.7.2 changes
For Version 3.7.2, the BSAGetEnvironment now has three strings. The keyword
values have changed. They are:
v TSMSRVR (formerly DSMSRVR). This is the server host name.
v TSMMAXOBJ (formerly MAXOBJ). This is the number of objects that can be

created within a single transaction.
v TSMSRVRSTANZA (new). This is the Tivoli Storage Manager server stanza

name.
v BSAInit now accepts Tivoli Storage Manager options.

Setting up options files
Use the options files to set the conditions and boundaries under which your Tivoli
Storage Manager session runs. The Tivoli Storage Manager administrator, the end
user, or you can set the available options. The values of various options permit you
to:
v Set up the connection to a Tivoli Storage Manager server.
v Control which objects are sent to the server and with what management class

they are associated.

The same option can appear in more than one options file. When this happens, the
file with the highest priority takes precedence. The options files, in order of
decreasing priority, include:
1. Administrator options.Options that a Tivoli Storage Manager administrator sets,

whether on the client or the server, override any options that are set by you or
the end user. For example, the administrator can specify whether or not objects
can be compressed before being sent to a Tivoli Storage Manager server. In this
case, setting the compression option in the client options file has no effect. The
administrator can also decide that the client should decide to permit
compression. Setting the compression option in the client options file then
determines if objects are compressed before they are stored.

2. The Tivoli Storage Manager options files on the UNIX platform includethe user
options file (dsm.opt) and the system options file (dsm.sys). The end user sets
up these files when the API is first installed on the user’s workstation.

For more information on the options available, see the Tivoli Storage Manager
Installation and Using Guide for your operating system.

Using the Tivoli Storage Manager X/Open API sample application
The API package that you receive includes a sample application. This sample
application demonstrates the use of the X/Open API function calls in context.
Install the sample application and view its source code to understand how you can
use the function calls.

Build the sample application
The files listed in Table 47 comprise the source files and other files that you need
to build the sample application included with the X/Open API.

Table 47. Files available to build X/Open API sample application

File Name Description

custom.h Platform custom integer definitions header file

222 IBM Tivoli Storage Manager: Using the Application Program Interface

Table 47. Files available to build X/Open API sample application (continued)

File Name Description

xbsa.h Header file containing constants, return codes, structure and
type definitions, and function prototypes for the Data
Movement function group

policy.h Header file containing structure definitions relating to policy

dsmapitd.h Header file containing general type definitions

dsmapips.h Header file containing platform-specific type definitions

xapidata.h
xapint64.h
xapint64.c
xapipref.c
xapipref.h
xapiqry.c
xapiqry.h
xapismp.c
xapiutil.h
xapiutil.c
xapicont.c
xapidef.h
xapidel.c

xapidel.h
xapidisp.c
xapidisp.h
xapilist.c
xapilist.h
xapiour.c
xapiour.h
xapirecv.c
xapirecv.h
xapisend.c
xapisend.h
xapisess.c
xapisess.h

Modules for the command line driven sample application

libXApi.xxx Platform-specific suffix

makexapi.aix
makexapi.sol
Makexapi.hp

Makefile to build xapismp for AIX
Makefile to build xapismp for Solaris

xapismp X/Open API sample program

Follow these steps to compile the sample application and test the installation.

Note: Several steps have slight variations, depending on which UNIX platform
you are using. See the README.API file for specific information.

1. Copy the API library to the /usr/lib directory or create a symbolic link to the
file from the /usr/lib directory.

2. Copy the sample application files to the target directory.
3. Copy the header files to the target directory.
4. Copy the makefile to the target directory.
5. Compile the sample.
6. Ensure that your environment variables, especially DSMI_DIR, and options files

are set up. See “Setting up options files” on page 222 and the Tivoli Storage
Manager Installation and Using Guide for your operating system.

7. Log on as root the first time for password registration.
8. Run xapismp to start the sample application.
9. Follow the instructions that appear on the screen.

When you run the application, remember the following:
v You must run the Signon action before other actions.
v When you enter the object space name or the pathname, prefix them with the

correct path delimiter. This is true even if you are specifying the asterisk (*)
wildcard character.

v The sample application creates its own data streams when backing up or
archiving objects. The object name does not correspond to any file on your

Appendix E. The X/Open API 223

workstation. The “Seed string” you enter is used to generate a pattern that can
be verified when the object is restored or retrieved.

Using the Tivoli Storage Manager X/Open API
This section describes how to use the X/Open Application Program Interface. You
should be familiar with this section before you design or write an application that
uses the X/Open API.

The Tivoli Storage Manager X/Open API supports the functions in XBSA Data
Movement function group. These functions include the following:

BSABeginTxn BSAGetNextQueryObject1

BSAChangeToken BSAGetObject
BSACreateObject BSAInit
BSADeleteObject BSAMarkObjectInactive
BSAEndData BSAQueryApiVersion
BSAEndTxn BSAQueryObject
BSAGetData BSASendData
BSAGetEnvironment BSATerminate

The X/Open API also supports the BSAResolveLifecycleGroup. See the X/Open
Specification for detailed information on each function.

Note: The following functions are part of the XBSA Data Movement function
group, but are not currently used in the X/Open API. Calls to these
functions return the code, BSA_RC_BAD_CALL_SEQUENCE.

BSACreateObjectF
BSAGetObjectF
BSASetEnvironment

The API package that you receive includes a sample application. Review the source
code for the sample application to see examples of the X/Open API functions in
context.

1. In the X/Open Preliminary Specification , BSAGetNextQueryObject was accidentally omitted from the list of functions in XBSA’s
Data Movement function group.

224 IBM Tivoli Storage Manager: Using the Application Program Interface

Data field mapping
Included here is a mapping between the BSA data fields and the corresponding
Tivoli Storage Manager fields:

BSA Fields Tivoli Storage Manager Fields
BSAObjectOwner Node name
AppObjectOwner Session owner name
SecurityToken Password
objectspaceName Filespace name
Left part of pathname Highlevel name
Rightmost part of pathname Lowlevel name
LifecycleGroup Management class
ResourceType FileSpaceType and objInfo

Maintaining version control in the API
All APIs have some form of version control, and X/Open is no exception. Ensure
that the version of the X/Open API you are using in your application is
compatible with the version of the API library that the end users have installed on
their workstations.

The first API call that is issued when using the X/Open API should be
BSAQueryApiVersion. This call:
v Confirms that the X/Open API library is installed and available on the end

user’s system.
v Returns the version level of the API library that the application accesses.

The X/Open API is upwardly compatible. Applications written to older versions or
releases of the API library will still operate correctly if the end user is running a
newer version.

Determining the release of the API library is very important because some releases
may have different memory requirements and data structure definitions.
Downward compatibility might be possible on an individual basis. However, it is
not recommended. Downward compatibility, if a requirement, is the responsibility
of the application client.

The API library and the Trusted Communication Agent module (dsmtca) must be
at the same level.

The BSAQueryApiVersion call returns the version of the API library that is
installed on the end user’s workstation. You can then compare the returned value
with the version of the X/Open API with which the application client was built.

The version number of the application client’s API is entered in the compiled
object code as a set of three constants:

BSA_API_VERSION
BSA_API_RELEASE
BSA_API_LEVEL

These constants are defined in the header file custom.h. The application client’s
API version should usually be less than, or equal to, the API library installed on
the user’s system. Be careful with any other condition.

Appendix E. The X/Open API 225

The BSAQueryApiVersion call can be made at any time, whether the API session
has been started or not.

Starting or ending a session
Tivoli Storage Manager is a session-based product, and all activities must be
performed within a Tivoli Storage Manager session. To start a session, the
application starts the BSAInit call. This call must be performed prior to any other
API call except BSAQueryApiVersion. The BSAInit function sets up a session with
the Tivoli Storage Manager server as indicated in that are passed in the call or are
defined in the options files. Values in the environment pointer field are currently
ignored.

Note: The application client only registers new nodes with a Tivoli Storage
Manager server if the server has closed registration. If a server has open
registration, any nodes that are already registered with the server will be
accepted by the application. However, if a server has open registration and
BSAInit tries to register a new node, the return code, BSA_AUTH_FAILURE
is generated. Application designers should tell their customers about this
requirement so that customers can configure their servers accordingly.

The ObjectOwner fields are particularly important to a Tivoli Storage Manager
session. The BSAObjectOwner is used as the Tivoli Storage Manager node name.
The AppObjectOwner contains the Tivoli Storage Manager session owner name.
The node name and password are used for session authentication with the Tivoli
Storage Manager server. The session owner name is used to determine which
objects can be accessed during the session.

Two modes for handling passwords, prompt and generate, are set in the
passwordaccess option in the client options file. For the prompt mode, the
node/owner/password must be supplied in the call to BSAInit. For the generate
mode, the Tivoli Storage Manager trusted agent decides on the node and owner
name. The password is stored in a file.

If the user’s dsm.sys file sets passwordaccess prompt, then the Tivoli Storage
Manager node and password (security token) must be supplied. The session owner
can be whatever name you select. An empty string for the session owner ([0]=’\0’)
is used to mean the root owner. The application has control of the object owner
values.

If the user’s dsm.sys file sets passwordaccess generate, then a value is not supplied
for BSAObjOwner or AppObjOwner. These fields must be empty strings. The node
name that is used will be the machine name, and the session owner will be the
login user’s name. The security token field is ignored in this situation.

If an application passes either node or session owner values when the mode is
generate, it receives a return code of TSM_RC_PSWD_GEN. In this case, if your
application supports passwordaccess generate, BSAInit must be issued again with
empty ObjectOwner fields. If your application requires passwordaccess prompt,
then stop and tell the user to change the option in their dsm.sys file.

You should follow BSAInit with a call to BSAGetEnvironment to retrieve the
actual node and owner that is used for the session. If dsm.sys has passwordaccess
generate, these values will be node = hostname, and owner = login user.

226 IBM Tivoli Storage Manager: Using the Application Program Interface

When using passwordaccess generate, the root user must start the first Tivoli
Storage Manager session. This is necessary to create the file where the password is
stored.

End a session with a BSATerminate call.This causes the X/Open API to close any
connection with the Tivoli Storage Manager server and free all resources associated
with this session.

Note: Only one session can be active per call of the API. However, applications on
UNIX platforms can circumvent this restriction by running with multiple
processes, with each process owning its own Tivoli Storage Manager session.

Application design considerations
If the end user has set passwordaccess generate in the client options file, and is not
the root user, then the Trusted Communication Agent (dsmtca) child process is
forced to manage the session with the Tivoli Storage Manager server. The SIGCLD
signal is used during ending. If you set passwordaccessto prompt, then a child
process is not used.

Session security
Tivoli Storage Manager, a session-based system, has security components that
permit applications to start sessions in a secure manner. These security measures
prohibit unauthorized access to the server and help insure system integrity.

Every session that the server starts must complete a sign-on process.This sign-on
process requires a password that, when coupled with the node name of the client,
insures proper authorization when connecting to the server. The application client
is responsible for providing this password to the X/Open API for session
initialization.

Passwords have expiration periods associated with them. If a BSAInit call fails
with the password-expired return code (BSA_RC_TOKEN_EXPIRED), update the
password before you can successfully establish the session.

Only the root session owner can change the password. First, make the BSAInit call
with an empty string in the appObjectOwner field. Then, call BSAChangeToken to
update the password.

Objects stored in the system also have ownerships associated with them. See
“Identifying the object” on page 237 to understand how an application can take
advantage of this to support multi-user applications. The application client is
responsible for insuring that security and ownership rules are met once a session is
started.

Determining the session parameters
After BSAInit is called to start a session, the application can make a call to
BSAGetEnvironment to determine the parameters set for the session. The
BSAGetEnvironment call returns such items as the node, owner, and server names
used for the session, and the maximum number of objects that can be created in a
single transaction.

The objectOwner.bsaObjectOwner field contains the Tivoli Storage Manager node
name. This corresponds to the BSAObjOwner field when passwordaccess is set to
prompt. When passwordaccess is set to generate, this field contains the machine
name.

Appendix E. The X/Open API 227

The objectOwner.appObjectOwner field contains the Tivoli Storage Manager owner
name. This corresponds to the AppObjOwner field when passwordaccess is set to
prompt. When passwordaccess is set to generate, this field contains the login
name.

The calling application must allocate an array of ADSM_ENV_STRS elements with
strings of size BSA_MAX_DESC for the environment output. The application must
also allocate an array of character pointers with ADSM_ENV_STRS+1 elements.
The extra element is for the NULL termination pointer.

The format of the output is:
envStrs[0] = "TSMSRVR=xxx"
envStrs[1] = "TSMMAXOBJ=xx"
envStrs[1] = "TSMSRVRSTANZA=xx"

where:
v TSMSRVR is the Tivoli Storage Manager server name.
v TSMMAXOBJ is the number of objects that can be created within a single

transaction.
v TSMSRVRSTANZA is the adsmServerName value.

Associating a management class with objects
One of the primary features that Tivoli Storage Manager offers is the use of policy
(management classes) to define how objects are stored and managed in Tivoli
Storage Manager storage. A management class is associated with an object when
the object is backed up or archived. This management class determines the
following:
v How many versions of the object are kept if they are backed up.
v How long to keep archive copies.
v Where the object is inserted in the storage hierarchy on the server.

Management classes have two components, backup copy group, and an archive copy
group. A copy group is a set of attributes that define the management policies for
an object that is backed up or archived. If a backup operation is being performed,
the attributes in the backup copy group apply. If an archive is being performed,
the attributes in the archive copy group apply.

Because the use of policy is a very important component of Tivoli Storage
Manager, the API requires all objects that are sent to the server first be assigned to
a management class. There are two ways to do this.
v Use an include-exclude list. The Tivoli Storage Manager product uses an

include-exclude list to perform management class binding. The
BSACreateObject and BSAResolveLifecycleGroup calls check the object that is
stored against the include-exclude list.When it finds an Include statement that
matches the name of the object, the management class specified in the statement

char *envP[ADSM_ENV_STRS+1];
char envStrs[ADSM_ENV_STRS] [BSA_MAX_DESC];
for (i=0; i<ADSM_ENV_STRS; i++)

envP[i] = envStrs[i];

envP[i] = NULL;
rc = BSAGetEnvironment(bsaHandle, &objOwner, envP);

Figure 21. An example of BSAGetEnvironment

228 IBM Tivoli Storage Manager: Using the Application Program Interface

is assigned to the object. If a management class is not specified, or the object is
not explicitly listed in the include-exclude list, the object is assigned to the
default management class.

v Override the include-exclude list. The BSACreateObject call takes an
ObjectDescriptor as an input parameter. You can assign a particular management
class to an object by placing the name of the management class in the LGName
field of the ObjectDescriptor.

Note: The backup or archive copy group in a particular management class can be
empty or NULL. If an object is bound to the NULL backup copy group, then
that object cannot be backed up. If an object is bound to the NULL archive
copy group, the object cannot be archived.

The transaction model
All data sent to, received from, or deleted from Tivoli Storage Manager storage by
the X/Open API is performed within a transaction. This provides a high level of
data integrity for the Tivoli Storage Manager product, but it does impose some
restrictions that an application client must take into consideration.

Start a transaction with a call to BSABeginTxn and end it with a call to
BSAEndTxn.

A single transaction is an atomic action. Data sent or received within the bounds of
a transaction either is all committed at the end of the transaction, or all rolled back
if the transaction ends prematurely.

The Tivoli Storage Manager product supports the use of only a single operation
type within a transaction. For example, you cannot perform both a send and a get
operation within the bounds of a single transaction. The one exception is during a
get operation, where you precede the get with a query operation.

Transactions can consist of either single objects or multiple objects. Smaller objects
should be sent or received in a multiple object transaction. This greatly improves
total system performance, because transaction overhead is decreased. The
application client determines whether single or multiple transactions are
appropriate.

All objects within a multiple object transaction must be sent to, or received from,
the same copy destination. If you must send an object to, or receive it from, a
different destination than the previous object, end the current transaction and start
a new one. Within the new transaction, you can send or receive the object to the
new copy destination.

The Tivoli Storage Manager product limits the number of objects that can be sent
or received in a multiple object transaction. You can find this limit by calling
BSAGetEnvironment and examining the MAXOBJ value.

The application client must keep track of the objects sent or received within a
transaction in order to perform retry processing or error processing if the
transaction is ended prematurely. Either the server or the client can stop a
transaction at any time. The application client must be prepared to handle sudden
transaction ends that it did not start.

Appendix E. The X/Open API 229

Querying the Tivoli Storage Manager system
The X/Open API permits an application client to query a Tivoli Storage Manager
server for information on the records stored there. You can define a set of criteria
that the records on the server must meet in order to be returned by the query. All
query operations must be done within the bounds of a transaction. See “The
transaction model” on page 229.

A query operation consists of the following steps:
1. Make the BSABeginTxn call to start a transaction.
2. Define the parameters of your query.

Use the data fields in the QueryDescriptor structure to specify the parameters
of your query. Start by setting the copyType field to backup, archive, or any,
depending on whether you want to query only backup copies, only archive
versions, or both.
For all queries, you can specify an object name in the objName field, or use
wildcard characters to identify a group of objects. For backup queries, use the
status field to specify only active or inactive copies, or both. For archive
queries, specify the description in the description field and set the upper and
lower boundaries of the create and expiration times in these fields:
createTimeLB, createTimeUB, expireTimeLB, and expireTimeUB.

3. Make the BSAQueryObject call.
To start the query operation,make the BSAQueryObject call, passing in the
QueryDescriptor structure. One of the following three codes is returned:
v BSA_RC_MORE_DATA. More than one object satisfied the search

parameters. The object descriptor for the first object is returned in the
ObjectDescriptor field. Go to step 4.

v BSA_RC_NO_MORE_DATA. Only one object satisfied the search parameters.
The object descriptor for the object is returned in the ObjectDescriptor field.
Go to step 5.

v BSA_RC_NO_MATCH. There were no objects that satisfied the search
parameters. Go to step 5.

4. Make the BSAGetNextQueryObject call.
If more than one object satisfied the query parameters, then a
BSAGetNextQueryObjectcall must be made to obtain each object after the first.
The object descriptor for each object is added to the ObjectDescriptor structure.
After each object is returned, check the return code. If the
BSAGetNextQueryObject call returns the code BSA_RC_MORE_DATA, make
the BSAGetNextQueryObject call again. If there is no more data, go to the
next step.

5. Make the BSAEndTxn call to end the transaction.
When all query data has been retrieved or no further query data is needed, the
BSAEndTxn call must be made to end the transaction and stop the query
process. This causes the X/Open API to flush any remaining data from the
query stream and release any resources utilized for the query.

Flowchart
Figure 22 on page 231 displays the flowchart for performing query operations.

230 IBM Tivoli Storage Manager: Using the Application Program Interface

Sending data to a server
The X/Open API permits application clients to send data to Tivoli Storage
Manager server storage. Data can be either backed up or archived. All send
operations must be performed within the bounds of a transaction. See “The
transaction model” on page 229.

The backup component of the Tivoli Storage Manager system supports multiple
versions of named objects that are stored on the server.Any object that is backed
up to the server with the same name as an object which is already stored on the
server from that client is subject to version control. Objects are considered to be in
active or inactive states on the server. The latest copy of an object on the server
that has not been deactivated is in the active state.Any other object, whether it is an
older version or a deactivated copy, is considered to be inactive.Different
management criteria defined by the management class constructs are assigned to
active and inactive objects on the server.

The archive componentof the Tivoli Storage Manager system stores objects on the
server with retention or expiration period controls instead of version control. Each
object stored is considered to be unique, even though its name might be the same
as an object already archived. This permits an application to archive the same
object multiple times, but with different expiration times that are assigned to each
copy of the object.

Figure 22. Flowchart for query operations

Appendix E. The X/Open API 231

The value of the compression option in the end user’s dsm.sys file determines
whether Tivoli Storage Manager will compress the object during a send operation.

Some types of data (for example, data that is already compressed) might actually
grow larger when processed with the compression algorithm. When this happens,
the return code, TSM_RC_ERROR, is generated and added to the Tivoli Storage
Manager error log (dsierror.log). If you recognize that this might happen, but want
the send operation to continue anyway, tell the end users to specify the following
option in their options file before the application runs:

COMPRESSAlways Yes

A send operation consists of the following steps:
1. Make the BSABeginTxn call to start a transaction.
2. Make the BSAResolveLifecycleGroup call.

This call is optional. Use it to associate a particular management class with an
object that you are storing on the Tivoli Storage Manager server. If you do not
call BSAResolveLifecycleGroup, a management class is associated with the
object during the call to BSACreateObject. For more information, see
“Associating a management class with objects” on page 228.

3. Make the BSACreateObject call.
The BSACreateObject call takes an ObjectDescriptor structure as an input
parameter. This structure contains information about the object that is stored,
such as the name of the object, and if it will be backed up or archived.
The ObjectDescriptor.Owner.bsaObjectOwner value must match the value that
is used on the BSAInit call. The ObjectDescriptor.Owner.appObjectOwner value
must also match the one that is used on the BSAInit call, unless it was an
empty string, signifying that the session was started with the root owner. In
this case the object owner can be any value.
The sizes of the objInfo and desc fields in the ObjectDescriptor structure are set
by Tivoli Storage Manager. These sizes are determined by the constants
TSM_MAX_OBJINFO and TSM_MAX_DESC in the custom.h header file.
BSACreateObject can also send the first block of data to the Tivoli Storage
Manager server. If the object has more data, go to the next step. If there is no
more data, go to step 5.

4. Make the BSASendData call.
Repeat this call as many times as necessary until the entire object has been sent
to the Tivoli Storage Manager server.

5. Make the BSAEndData call.
The BSAEndData call signifies that there is no more data for a particular
object.

6. If you want to send more than one object to the Tivoli Storage Manager server,
repeat steps 3 through 5 for each object. Note that all objects sent within the
same transaction must be for the same objectspaceName.
Tivoli Storage Manager limits the number of objects that can be sent in one
transaction. The limit is determined by the constant MAXOBJ. You can get this
value by calling BSAGetEnvironment.

7. Make the BSAEndTxn call to end the transaction.

Flowchart
Figure 23 on page 233 displays the flowchart for performing backup or archive
operations within a transaction.

232 IBM Tivoli Storage Manager: Using the Application Program Interface

Figure 23. Flowchart for backup and archive operations

Appendix E. The X/Open API 233

The primary feature in this diagram is the loop between the following X/Open
API calls from within a transaction:

BSACreateObject
BSASendData
BSAEndData

Receiving data from a server
The X/Open API permits application clients to receive data from Tivoli Storage
Manager storage using the restore and retrieve functions of the product. Restore
accesses objects that were previously backed up, and retrieve accesses objects that
were previously archived. All restore and retrieve operations must be performed
within the bounds of a transaction. See “The transaction model” on page 229.

Note: Only the API can restore or retrieve objects that were backed up or archived
with API calls.

Once a session is established with the Tivoli Storage Manager server, use the
following procedure to restore or retrieve data:
1. Make the BSABeginTxn call to start a transaction.
2. Make the BSAQueryObject call to query the Tivoli Storage Manager server for

backup or archive data. (This step can be performed outside the transaction.)
Before beginning a restore or retrieve operation, query the Tivoli Storage
Manager server to determine what objects can be received from storage. To
issue the query, first fill in the applicable fields in the QueryDescriptor
structure with the desired search parameters. Then make the BSAQueryObject
call with the QueryDescriptor.
If the session was started with a NULL owner name, it is not necessary to
specify the owner field. If the session was started with an explicit owner name,
then only objects that explicitly have that owner name associated with them are
returned.
The query returns all information in an ObjectDescriptor structure. Different
information is returned depending on whether the object was originally backed
up or archived. For example, a query on backup objects returns information on
whether an object is active or inactive, while a query on archive objects returns
information such as the object descriptions.
All queries return all information that was originally stored with the object, in
addition to the following:

copyid
The copyid provides an eight-byte number that uniquely identifies this
object for this node in Tivoli Storage Manager storage. Use this ID to
request a specific object from storage for restore or retrieve processing.

restoreOrder
The restoreOrder provides a mechanism for receiving objects from
Tivoli Storage Manager storage in the most efficient manner possible.
Sort the objects to restore on this value to insure that tapes are
mounted only once and are read from front to back.

Keep some or all of the query information for later processing. Keep the copyid
and restoreOrder fields because they are needed for the actual restore
operation. Keep any other information that is needed to properly open a data
file or identify a destination.

3. Determine the objects to restore or retrieve from the server.

234 IBM Tivoli Storage Manager: Using the Application Program Interface

Once the backup or archive query has been performed, the application client
must determine which objects, if any, are to be restored or retrieved.

4. If more than one object is selected, sort the objects on the restore order field.
Once the objects to restore or retrieve are selected, they must be sorted in
ascending order (low to high) by the restoreOrder field. This sorting is critical
to the performance of the restore operation. Sorting the objects on the
restoreOrder field means that the data is read from the server in the most
efficient order. All data on disk is restored first, followed by data on media
classes that require volume mounts (such as tape). The restoreOrder field also
insures that data on tape is read in order with processing starting at the front
of a tape and progressing towards the end.
Properly sorting on the restoreOrder field means that duplicate tape mounts
and unnecessary tape rewinds do not occur.

5. Make the BSAGetObject call.
The BSAGetObject call uses the copyType and copyid fields of the
ObjectDescriptor to begin obtaining the first object from the system. The call
begins a restore or retrieve operation by identifying the object that is requested
from the data stream.
BSAGetObject obtains the first block of data that is associated with the object.
If the object has more data, go to the next step. If the return code is
BSA_RC_NO_MORE_DATA, go to step 7.

6. Make the BSAGetData call.
Repeat this call as many times as necessary until the object has been received
from the Tivoli Storage Manager server.

7. Make the BSAEndData call.
The BSAEndData call signifies that there is no more data for a particular
object.

8. If you want to receive more than one object from the Tivoli Storage Manager
server, repeat steps 5 through 7 for each object.

9. Make the BSAEndTxn call to end the transaction.
After all data for all requested objects has been received, the BSAEndTxn call
must be made. You can also use this call to discard any remaining data in the
restore stream for objects not yet received.

Flowchart
Figure 24 on page 236 displays the flowchart for performing restore or retrieve
operations.

Appendix E. The X/Open API 235

Deleting objects from the server
The X/Open API applications can make calls to either delete objects that were
archived or deactivate objects that were backed up. The former is dependent on
the node authorization that is given when a Tivoli Storage Manager administrator
registered the node. Administrators can specify whether nodes can delete archive
objects.

The BSADeleteObject call is used for deleting archiveobjects, and the
BSAMarkObjectInactive call is used for deactivating backup objects.

Figure 24. Flowchart for restore and retrieve operations

236 IBM Tivoli Storage Manager: Using the Application Program Interface

When deleting an archive object, the object is marked in Tivoli Storage Manager
storage for deletion when the system next performs its object expiration cycle.
Once an archive object is deleted from the server, it cannot be retrieved.

When a backup object on the Tivoli Storage Manager server is deactivated, the
object moves from an active state to an inactive state. These states have different
retention policies associated with them that are based on the management class
assigned.

Note: A call to BSAMarkObjectInactive affects all objects with the same objType
and the same name.

A call to BSADeleteObject or to BSAMarkObjectInactive is always made within
the bounds of a transaction. The flowcharts in Figure 25 show how a call to
BSADeleteObject or BSAMarkObjectInactive is preceded by a call to
BSABeginTxn and followed by a call to BSAEndTxn.

Identifying the object
The Tivoli Storage Manager server can be viewed as an object storage server whose
main goal is to efficiently store and retrieve named objects. The server has two
main storage areas to meet this requirement:
v The database contains all metadata (name, attributes, and so forth) associated

with an object.
v The data storage contains the actual object data. The data storage is actually a

storage hierarchy that the system administrator defines. Data is efficiently stored
and managed on either online or offline media, depending on cost and access
needs.

Each object stored on the server has a name associated with it. The client controls
the following key components of the name:

Object space name
Pathname
Object type.

When making decisions about naming objects for an application, remember that it
might be necessary to externalize the full object names to the end user. Specifically,
the end user might need to specify the object in an Include or Exclude statement
when the application is run.

Figure 25. Flowcharts for delete archive (left) and deactivate backup (right) operations

Appendix E. The X/Open API 237

Object space name
A very important component of the name is the object space name. This name can be
viewed as the name of a file system or disk drive, or any other high-level qualifier
that groups related data together. Tivoli Storage Manager uses the object space to
identify the file system or disk drive the data is located on. Thus, actions can be
performed on all entities within an object space with relative ease, such as
querying all objects within a specified object space.

The Tivoli Storage Manager server also has administrative commands to query the
object spaces on a given node in Tivoli Storage Manager storage, and delete them
if necessary. All data that the application client stores must have an object space
name associated with it. Select the name carefully to group similar data together in
the system.

An application client should select different object space names than the file system
names a backup-archive client would use, in order to avoid possible interference.
The application client should publish its object space names, so that end users can
identify the objects for Include and Exclude statements, if necessary.

Pathnames
Another component of the object name is the pathname. The pathname consists of
the directory path the object belongs in, and the actual name of the object in that
directory path. When the object space name and pathname are concatenated, they
must form a syntactically correct name on the operating system on which the client
is running. It is not necessary for the name to exist as an object on the system or
resemble the actual data on the local file system. However, the name must meet
the standard naming rules in order to be properly processed for management
classes.

Object type
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data. A directory is an object that contains
only attributes.

Tivoli Storage Manager also accepts the value BSAObjectType_DATABASE, but
treats it as BSAObjectType_FILE.

Example
The following example demonstrates what the application client would code on a
UNIX platform:

/myobjspace/pathname

Setting the owner name
Each object has an owner name associated with it. The rules governing what
objects can be accessed depend on what owner name is used when a session is
started. This object owner value can be used to control access to the object.

If a session is started with an empty string for the owner, that session owner is
treated with session, (or root) authority. This session can perform any action on
any object that is owned by this node regardless of the actual owner of that object.
The session owner is set during the call to BSAInit in the AppObjectOwner field
of the ObjectOwner structure.

If a session is started with a specific owner name, the session can only perform
actions on objects that have that owner name associated with them. Backups or
archives into the system all must have this owner name associated with them.Any

238 IBM Tivoli Storage Manager: Using the Application Program Interface

queries performed only return values that have this owner name associated with
them. The object owner value is set during the BSACreateObject call in the Owner
field of the ObjectDescriptor structure.

Table 48 summarizes the conditions under which a user has access to an object.

Table 48. Summary of user access to objects
Session owner Object owner User access
“ ” (empty string) (root, system owner) “ ” (empty string) Yes
“ ” (empty string) (root, system owner) specific name Yes
specific name “ ” (empty string) No
specific name same name Yes
specific name different name No

Appendix E. The X/Open API 239

Using XOpen functions with Tivoli Storage Manager
This section describes the following XOpen functions and how to use them with
Tivoli Storage Manager.
v BSAChangeToken. Only the root session owner, or TSM-Authorized session

owner can run this function.
v BSACreateObject. Multiple CreateObject calls within a single transaction must

be for the same objectspaceName. Tivoli Storage Manager considers all fields in
the ObjectDescriptor to be input fields and does not alter them.
The ObjectDescriptor.resourceType field is used as the Tivoli Storage Manager
file space fsType value, and is also stored in the Tivoli Storage Manager objInfo
area.
The ObjectDescriptor.Owner.bsaObjectOwner value must match that value that
is used on the BSAInit.
The ObjectDescriptor.Owner.appObjectOwner value must match that which was
used on the BSAInit if it was not root (blank). If BSAInit starts a session with the
root owner, then the object owner can be any value. The following fields from
the ObjectDescriptor are used:
– owner.bsaObjectOwner
– owner.appObjectOwner
– objName.objectSpaceName
– objName.pathName
– copyType
– lGName (management class)
– Size
– resourceType
– objectType (For backup, this can be FILE, DIRECTORY, DATABASE (which is

treated like FILE). For archive, this can be FILE, or DIRECTORY.
– desc
– objInfo

For CreateObject, TSM has a limit on the number of objects that can be created
in a single transaction. TSM returns the value on the BSAGetEnvironment call
with the TSMMAXOBJ keyword.

v BSADeleteObject. With Tivoli Storage Manager, this call is only meaningful for
archive objects. For backup objects, use BSAMarkObjectInactive.

v BSAGetEnvironment. Tivoli Storage Manager returns the server name and
maximum objects per transaction. See Figure 21 on page 228 for an example.

v BSAGetObject. The following fields from objectDescriptor are used:
– copyType
– copyid.

The object name fields are not used. Preceed the GetObject call with a
QueryObject call to obtain the copyid value.

v BSAInit. The BSAObjectOwner field is used as the Tivoli Storage Manager node
name. The AppObjectOwner field is used as the Tivoli Storage Manager session
owner name.
Tivoli Storage Manager has two modes, prompt or generate, to handle
passwords. For the prompt mode, the node/owner/password values must be
supplied. For the generate mode, the password is saved in a file that the root or
TSM-Authorized user must start. Thereafter, node/owner/password values
should not be passed on the BSAInit. Values passed on the environmentPtr are
ignored.

240 IBM Tivoli Storage Manager: Using the Application Program Interface

v BSAQueryObject. The ObjectDescriptor.Owner.bsaObjectOwner value must
match that which was used on the BSAInit. The
ObjectDescriptor.Owner.appObjectOwner value must match that which was
used on the BSAInit if it was not root (blank). If BSAInit started a session with
the root owner, then the object owner can be any value.
For copyType Backup, the following fields are used:
– owner.bsaObjectOwner
– owner.appObjectOwner
– objName.objectSpaceName
– objName.pathName
– objectType (DATABASE is treated as FILE)
– status

For Archive, the following fields are used:
– owner.bsaObjectOwner
– owner.appObjectOwner
– objName.objectSpaceName
– objName.pathName
– createTime
– expireTime
– objectType
– desc

Tivoli Storage Manager Changes to the XBSA header files
The X/Open API contains the header files custom.h, xbsa.h, and policy.h. Tivoli
Storage Manager uses these header files with the following changes:

Changes to custom.h
The Tivoli Storage Manager X/Open API supports the following additional
constants and return codes in custom.h:

/* Constants used
*/
#define TSM_MAX_DESC 100 /* TSM max Desc size */
#define TSM_MAX_OBJINFO 100 /* TSM max object information size*/
#define TSM_LOWEST_BOUND 0x0000 /* value for LowerBound max */
#define TSM_HIGHEST_BOUND 0xFFFF /* value for UpperBound max */
#define TSM_ENV_STRS 2 /* number of env strings */
#define ObjectDescriptorVersion 1 /* ver for ObjectDescriptor */
#define UserDescriptorVersion 1 /* ver for UserDescriptor */
#define BSAObjectType_DATABASE 4 /* ObjectType for Databases */

/* Return Codes Used
*/
#define BSA_RC_OK 0x00
#define BSA_RC_SUCCESS 0x00

#define TSM_RC_ERROR 0x60 /* see TSM error log */
#define TSM_RC_INVALID_NODE 0x61 /* BSAObjOwner not match Init*/
#define TSM_RC_INVALID_COPYTYPE 0x62 /* invalid copyType */
#define TSM_RC_INVALID_OBJTYPE 0x63 /* invalid objectType */
#define TSM_RC_INVALID_STATUS 0x64 /* invalid object status */
#define TSM_RC_INVALID_ST_VER 0x65 /* invalid structure version */
#define TSM_RC_OWNER_TOO_LONG 0x66 /* owner too long */
#define TSM_RC_PSWD_TOO_LONG 0x67 /* pswd too long */
#define TSM_RC_PSWD_GEN 0x68 /* pswd access = generate */

Appendix E. The X/Open API 241

Changes to xbsa.h
The Tivoli Storage Manager X/Open API supports the following changes to the
type definitions in xbsa.h:

Changes to policy.h
The Tivoli Storage Manager X/Open API supports the following changes to the
function prototypes in policy.h:

/* Changed tm typedef to ’struct tm’ for AIX compiler */
/* ref BSAEvent, ObjectDescriptor, QueryDescriptor, Schedule */
/* */
/* For the function prototypes, int and long have been */
/* replaced with typedefs from custom.h. */
/* */
/* Included BSAGetNextQueryObject function prototype here since it was */
/* accidentally omitted from the Data movement subset. */

/* For the function prototypes, int and long have been */
/* replaced with typedefs from custom.h. */
/* */
/* BSAGetNextQueryObject defined in xbsa.h because it should be part */
/* of the Data Movement subset. */

242 IBM Tivoli Storage Manager: Using the Application Program Interface

Appendix F. Notices

This information was developed for products and services that are offered in the
U.S.A.

IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service can be used. Any functionally equivalent product,
program, or service that does not infringe on any IBM intellectual property right
can be used instead. However, it is the user’s responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement might not apply
to you.

This information might include technical inaccuracies or typographical errors.
Changes periodically are made to the information herein; these changes will be
incorporated into new editions of the publication. IBM might make improvements
or changes in the products and the programs described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not, in any manner, serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2003 243

IBM might use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Corporation
Information Enabling Requests
Dept. M13
5600 Cottle Road
San Jose, CA 95193-0001
U.S.A.

Such information might be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

244 IBM Tivoli Storage Manager: Using the Application Program Interface

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
IBM
MVS
OpenEdition

Operating System/400
OS/390
OS/400
RISC System/6000
System/390

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Tivoli is a trademark of Tivoli Systems, Inc. in the United States, or other countries,
or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names that might be denoted with a double
asterisk (**), might be trademarks or service marks of others.

Appendix F. Notices 245

246 IBM Tivoli Storage Manager: Using the Application Program Interface

Glossary

This glossary defines important terms and
abbreviations that are used in the Tivoli Storage
Manager library of books. If you cannot find the
term that you are looking for, see the Index or the
IBM Dictionary of Computing.

This glossary might include terms and definitions
from:
v The IBM Dictionary of Computing, ZC20-1699,

copyright 1994 by McGraw-Hill.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC2/SC1).

A
absolute. A copy group mode value indicating that a
file is considered for incremental backup even though
the file has not changed since the last time it was
backed up. See mode. Contrast this with modified.

active policy set. The policy set within a policy
domain that contains the most recently activated policy.
This policy set is used by all client nodes that are
assigned to the current policy domain. See policy set.

active version. The most recent backup copy of a file
that is stored in Tivoli Storage Manager storage for a
file that currently exists on a file server or workstation.
An active version remains active and exempt from
deletion until:
v Replaced by a new backup version.
v Tivoli Storage Manager detects, during an

incremental backup, that the user has deleted the
original file from a file server or workstation.

administrative client. A program that runs on a file
server, workstation, or mainframe. This program lets
administrators monitor and control Tivoli Storage

Manager servers using the Tivoli Storage Manager
administrator commands. Contrast with backup-archive
client.

administrator. A user who is registered to the server
as an administrator. Administrators can be assigned
one or more privilege classes. Administrators can use
the administrative client to enter Tivoli Storage
Manager server commands and queries according to
their privileges.

Advanced Program-to-Program Communications
(APPC). An implementation of the SNA LU6.2
protocol permitting interconnected systems to
communicate and share the processing of programs.
See Systems Network Architecture Logical Unit 6.2 and
Common Programming Interface Communications.

aggregate data transfer rate. The data transfer rate is
calculated by dividing the total number of bytes that
are transferred by the elapsed processing time.

APPC. Advanced program-to-program
communications.

archive. A function permitting users to copy one or
more files to a long-term storage device. Archive copies
can:
v Accompany descriptive information
v Imply data compression software usage
v Be retrieved by archive date, file name, or

description.

Contrast with retrieve.

archive copy. A file or group of files that reside in an
archive storage pool in Tivoli Storage Manager storage.

archive copy group. A policy object containing
attributes that control the generation, destination, and
expiration of archived files. The archive copy group
belongs to a management class.

archive retention grace period. The number of days
Tivoli Storage Manager keeps an archived copy when
the server is unable to rebind the file to an appropriate
management class.

authentication. The process of checking and
authorizing a user’s password before permitting user
access to the Tivoli Storage Manager server.
Authentication can be turned on or off by an
administrator with system privilege.

authorization rule. A specification that permits
another user to either restore or retrieve a user’s files
from Tivoli Storage Manager storage.

© Copyright IBM Corp. 1993, 2003 247

B
backup. A function permitting users to copy one or
more files to a storage pool to protect against data loss.
Contrast with restore.

backup-archive client. A program that runs on a file
server, PC, or workstation and provides a means for
Tivoli Storage Manager users to back up, archive,
restore, and retrieve files. Contrast with administrative
client.

backup copy group. A policy object that contains
attributes that control the generation, destination, and
expiration of backup files. The backup copy group
belongs to a management class.

backup retention grace period. The number of days
Tivoli Storage Manager keeps a backup version when
the server is unable to rebind the file to an appropriate
management class.

backup version. A backed-up file, directory, or file
space that resides in a backup storage pool in Tivoli
Storage Manager storage. Although there may be more
than one backup version of a file in Tivoli Storage
Manager storage, only one is considered the active
version. See active version and inactive version.

bindery. A database that consists of three system files
for a NetWare 3.11, 3.12 server. The files contain user
IDs and user restrictions.

binding. The process of associating a file with a
management class name.

C
central scheduling. A function that permits an
administrator to schedule backup and archive
operations from a central location. The operations can
be scheduled on a periodic basis or on an explicit date.

client. A program running on a file server, PC,
workstation, or terminal that requests services of
another program called the server. There are two types
of Tivoli Storage Manager clients: administrative and
backup-archive. See administrative client and
backup-archive client.

Client Access/400. A software product that supports
advanced program-to-program communications (APPC)
in the DOS, OS/2, and Microsoft Windows
environments and provides a set of end user services.

client domain. The set of drives, file systems, or
volumes that are selected by a user for processing
during a backup or archive operation.

client node. A file server or workstation registered
with the server on which the backup-archive client
program is installed.

client polling. A client and server communication
technique where the client node queries the server for
scheduled work.

client/server. A communications network architecture
in which one or more programs (clients) request
computing or data services from another program (the
server).

closed registration. A registration process in which a
Tivoli Storage Manager administrator must register
workstations as client nodes with the server. Contrast
with open registration.

command-click (Macintosh). Click on an item while
pressing the Command key. In file and folder lists, this
deselects individual items that are embedded in a
group of selected items.

command line interface. A type of user interface
where commands are specified on the command line.
Contrast with graphical user interface.

Common Programming Interface Communications
(CPIC). A programming interface that permits
program-to-program communication by using SNA
LU6.2. See Systems Network Architecture Logical Unit 6.2.

communication method. The method by which a
client and server exchange information. For Tivoli
Storage Manager backup-archive clients, the method
can be SNA LU6.2, or TCP/IP. See Systems Network
Architecture Logical Unit 6.2, and Transmission Control
Protocol/Internet Protocol.

communication protocol. A set of defined interfaces
that permits computers to communicate with each
other.

copy group. A policy object that contains attributes
that control backup and archive file:
v Generation
v Destination
v Expiration.

Backup and archive copy groups belong to
management classes. See frequency, destination, mode,
retention, serialization, and version.

CPIC. Common Programming Interface
Communications.

D
default management class. A management class
assigned to a policy set. This class is used to govern
backed up or archived files when a user does not
explicitly associate a file with a specific management
class through the include-exclude list.

destination. A copy group attribute that specifies the
storage pool in which to back up or archive a file. At

248 IBM Tivoli Storage Manager: Using the Application Program Interface

installation, Tivoli Storage Manager provides two
storage destinations named backuppool and
archivepool.

domain. See policy domain or client domain.

drag. Move the mouse while holding down the mouse
button, thus moving the selected object.

drag-and-drop. Move (drag) an object on top of
another object and release the mouse button, thus
relocating the object.

dsm.opt file. See options file. Also called client options
file or client user options file.

dsm.sys file. See options file. Also called client system
options file.

dynamic. A copy group serialization value that
specifies Tivoli Storage Manager accept the first attempt
to back up or archive an object, regardless of any
changes made during backup or archive processing. See
serialization. Contrast with shared dynamic, shared static,
and static.

E
error log. A text file that is written on disk that
contains Tivoli Storage Manager processing error
messages. These errors are detected and saved by the
Tivoli Storage Manager server.

exclude. The process of identifying files in an
include-exclude list. This process prevents the files
from being backed up whenever a user or schedule
enters an incremental or selective backup operation.

expiration. The process in which files are identified
for deletion because their expiration date or retention
period has passed. Backed up or archived files are
marked for deletion based on the criteria that are
defined in the backup or archive copy group.

F
file access time. The user access time (atime) for file
migration eligibility and priority. The HSM root users
can preserve the atime (and ctime) of files on an HSM
active file system by using a timestamp preserve
dsmmode shell.

file server. A dedicated computer and its peripheral
storage devices connected to a local area network that
stores programs and files that are shared by users on
the network.

file space. A logical space on the Tivoli Storage
Manager server that contains a group of files. In Tivoli
Storage Manager, users can restore, retrieve, or delete
file spaces from Tivoli Storage Manager storage. A file
space for systems:

v DOS, OS/2 — Logical partition that is identified by a
volume label.

v UNIX — Logical space that contains a group of files
backed up or archived from the same file system, or
part of a file system defined with the
virtualmountpoint option in the client system options
file.

frequency. A copy group attribute that specifies the
minimum interval, in days, between incremental
backups.

fuzzy backup. A backup version of a file that might
not accurately reflect what is currently in the file
because the file was backed up at the same time as it
was being modified.

fuzzy copy. An archive copy of a file that might not
accurately reflect what is currently in the file because
Tivoli Storage Manager archived the file while the file
was being modified.

G
generate password. Processing that stores a new
password in an encrypted password file when the old
password expires. Automatic generation of a password
prevents password-prompting. Password generation
can be set in the options file (passwordaccess option).
See options file.

gigabyte (GB). (1) One billion (109) bytes. (2) When
referring to memory capacity, 1 073 741 824 in decimal
notation.

graphical user interface (GUI). A type of user
interface that takes advantage of a high-resolution
monitor. A graphical user interface includes:
v A combination of graphics
v The object-action paradigm
v Use of pointing devices, menu bars, overlapping

windows, and icons.

Contrast with command line interface. See windowed
interface.

GUI. Graphical user interface.

H
hierarchical storage management client. A program
that runs on a workstation or file server to provide
space management services. The hierarchical storage
management client automatically migrates eligible files
to Tivoli Storage Manager storage to maintain specific
levels of free space on local file systems. Automatic
recalls are made for migrated files when they are
accessed. Users are also permitted to migrate and recall
specific files.

Glossary 249

hive. On Windows NT, a registry subkey that
corresponds to a set of files in the \system32\config
directory.

HSM. Hierarchical Storage Management.

I
inactive version. A copy of a backup file in Tivoli
Storage Manager storage that, either is not the most
recent version, or the corresponding original file was
deleted from the client file system. Inactive backup
versions are eligible for expiration according to the
management class that is assigned to the file.

include-exclude file. On UNIX clients, a file that
contains statements to determine the files to back up,
and the associated management classes to use for
backup or archive. Refer to the include-exclude list.

include-exclude list. A list of include and exclude
options that include or exclude selected files for
backup. An exclude option identifies files that should
not be backed up. An include option identifies files that
are exempt from the exclusion rules or assigns a
management class to a file or a group of files for
backup or archive services. The include-exclude list is
defined either in the include-exclude file (for UNIX
clients), or in the client options file. See options file.

incremental backup. A function that permits users to
back up files or directories from a client domain. These
files or directories are not excluded in the
include-exclude list and meet the requirements for
frequency, mode, and serialization as defined by a
backup copy group of the management class assigned
to each file. Contrast with selective backup.

IPX/SPX. Internetwork Packet Exchange/Sequenced
Packet Exchange.

L
Local Area Network (LAN). A variable-sized
communications network that is placed in one location.
LAN connects servers, PCs, workstations, a network
operating system, access methods, and communications
software and links.

M
management class. A policy object that is a named
collection of copy groups. A management class is
associated with a file to specify how the server should
manage backup versions or archive copies of
workstation files. See binding and copy group.

migration. The process of copying a file from a local
file system to Tivoli Storage Manager storage and
replacing the file with a stub file on the local file
system.

mode. A copy group attribute that specifies whether a
backup file should be created for a file that was not
modified since the last time the file was backed up. See
absolute and modified.

modified. A backup copy group attribute indicating a
file is considered for backup only if the file has been
changed since the last backup. A file is considered to be
changed if the date, size, owner, or permissions have
changed. See absolute and mode.

N
Named Pipe. A type of interprocess communication
that permits message data streams to pass between
peer processes, such as between a client and a server.

NDS. NetWare Directory Services.

NETBIOS. Network Basic Input/Output System. An
operating system interface for application programs
that are used on IBM personal computers attached to
the IBM Token-Ring Network.

NetWare Directory Services (NDS). A database that is
used by Novell NetWare to organize resources for an
entire network of NetWare servers. The database itself
can be distributed across the network and accessed by
all servers. The NDS is available in NetWare Version 4.0
and later versions.

NetWare Loadable Module (NLM). Novell NetWare
software that provides extended server capability.
Support for various Tivoli Storage Manager and
NetWare platforms are examples of NLMs.

network data transfer rate. The data transfer rate
calculated by dividing the total number of bytes that
are transferred by the data transfer time. For example,
the time spent transferring data over the network.

Networking Services/DOS (NS/DOS). A software
product that supports advanced program-to-program
communications (APPC) in the DOS and Microsoft
Windows 3.1 environments. With NS/DOS,
communications applications on your workstation can
“talk to” partner applications on other systems that
support APPC.

NLM. NetWare Loadable Module.

node. See client node.

node name. A unique name used to identify a
workstation, file server, or PC to the server.

NS/DOS. Networking Services/DOS.

NTFS. The NT file system on Windows NT. A method
for managing disk storage on the Windows NT
operating system.

250 IBM Tivoli Storage Manager: Using the Application Program Interface

O
open registration. A registration process in which
users can register their own workstations or PCs as
client nodes with the server. Contrast with closed
registration.

options file. A file that contains processing options.

v dsm.opt

Non-UNIX — Identifies Tivoli Storage Manager
servers, specifies communication methods, defines
scheduling options, selects backup, archive, restore,
and retrieve options, and selects formats for date,
time, and numbers. This is also called the client
options file.

UNIX — Identifies the Tivoli Storage Manager server
to contact, specifies backup, archive, restore, and
retrieve options, and selects formats for date, time,
and number. This is also called the client users
options file.

v dsm.sys

UNIX — Contains stanzas that describe Tivoli
Storage Manager servers to contact for services.
These stanzas also specify communication methods,
backup and archive options, and select scheduling
options. This is also called the client system options
file.

owner. The owner of backup-archive files sent from a
multi-user client node, such as AIX.

P
pattern-matching character. See wildcard character.

PC Support/400. A software product that supports
advanced program-to-program communications (APPC)
in the DOS, OS/2, and Microsoft Windows
environments. PC Support/400 also provides a set of
end user services.

policy domain. A policy object that contains one or
more policy sets. Client nodes are associated with a
policy domain. See policy set, management class, and copy
group.

policy set. A policy object that contains a group of
management class definitions that exist for a policy
domain. At any one time, there can be many policy sets
within a policy domain, but only one policy set can be
active. See active policy set and management class.

progress indicator. A control used to inform a user
about the progress of a process.

R
registration. The process of identifying a client node
or administrator to the server by specifying a user ID,

password, and contact information. For client nodes, a
policy domain, compression status, and deletion
privileges are also specified.

registry. In Windows NT and Windows 95, a central
database that contains information about hardware,
applications, and operating system settings for each
machine on the network. This provides security and
control over system, security, and account settings.

restore. A function that permits users to copy a
version of a backup file from the storage pool to a
workstation or file server. The backup copy in the
storage pool is not affected. Contrast with backup.

retention. The amount of time, in days, that inactive
backed up or archived files are kept in the storage pool
before they are deleted. The following copy group
attributes define retention: retain extra versions,
retain-only version, retain version.

retrieve. A function that permits users to copy an
archived file from the storage pool to the workstation
or file server. The archive copy in the storage pool is
not affected. Contrast with archive.

root user (UNIX). The authority level for a root user
permits this user to do TSM-Authorized tasks for Tivoli
Storage Manager.

S
scheduling mode. The type of scheduling operation
for the server and client node. Tivoli Storage Manager
supports two scheduling modes: client-polling and
server-prompted.

scroll. Move through a list of items in a window by
operating the scroll bars with the mouse cursor.

select. Choose an item from a list or group of items.

selective backup. A function that permits users to
back up files from a client domain. These files are not
excluded in the include-exclude list and meet the
requirement for serialization in the backup copy group
of the management class assigned to each file. Contrast
with incremental backup.

serialization. A copy group attribute that specifies
whether a file can be modified during a backup or
archive operation. See static, dynamic, shared static, and
shared dynamic.

server. A program running on a mainframe,
workstation, or file server that provides shared services
such as backup and archive to other various (often
remote) programs (called clients).

server-prompted scheduling. A client/server
communication technique where the server contacts the
client node when tasks need to be done.

Glossary 251

session. A period of time in which a user can
communicate with a server to perform backup, archive,
restore, or retrieve requests.

shared dynamic. A Tivoli Storage Manager copy
group serialization mode. This mode specifies if a file
changes during backup or archive and continues to
change after a number of retries. The last retry commits
the file to the Tivoli Storage Manager server whether or
not the file changed during backup or archive. Contrast
with dynamic, shared static, and static.

shared static. A copy group serialization value that
specifies a file must not be modified during a backup
or archive operation. Tivoli Storage Manager attempts
to retry the operation a number of times. If the file is in
use during each attempt, the file is not backed up or
archived. See serialization. Contrast with dynamic, shared
dynamic, and static.

sharepoint. A drive or directory on Windows NT,
Windows 95, or Windows 98 whose files are available
for shared access across a network. The sharepoint
name is part of an UNC name. See Universal Naming
Convention (UNC) name.

shift-click. Click on an item while pressing the Shift
key.

SNA LU6.2. Systems Network Architecture Logical
Unit 6.2.

space management attributes. Attributes that are
contained in a management class specify:
v Whether automatic or selective migration is

permitted for a file.
v How many days must elapse since the file was last

accessed before it is eligible for automatic migration.
v Whether a backup version of a file must exist before

the file can be migrated.
v The Tivoli Storage Manager storage pool to which

files are to migrate.

static. A copy group serialization value that specifies a
file must not be modified during a backup or archive
operation. If the file is in use during the first attempt,
Tivoli Storage Manager will not back up or archive the
file. See serialization. Contrast with dynamic, shared
dynamic, and shared static.

storage pool. A named set of storage volumes that are
used as the destination of backup or archive copies.

system drive or partition. On Windows NT, the drive
or partition on which Windows NT is installed. The
Windows NT directory is usually called WINNT or
WINNT35.

Systems Network Architecture Logical Unit 6.2 (SNA
LU6.2). A set of rules for data to be transmitted in a
network. Application programs communicate with each
other using a layer of SNA called Advanced
Program-to-Program Communication (APPC).

T
TCA. Trusted Communications Agent

TCP/IP. Transmission Control Protocol/Internet
Protocol.

timeout. A time event involving:
v An event that happens at the end of a predetermined

period of time that began at the happening of
another specified event.

v A time interval that is allotted for certain operations
to happen. For example, response to polling or
addressing before system operation is interrupted
and must be restarted.

v A terminal feature that logs off a user if an entry is
not made within a specified period of time.

Tivoli Storage Manager. A client-server licensed
program product that provides storage management
and data access services to customers in a multivendor
computer environment.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A standard set of communication protocols
that supports peer-to-peer connectivity of functions for
both local and wide-area networks.

Trusted Communications Agent (TCA) (UNIX). A
program that can handle the sign-on password protocol
when password access is generated. The main process
(for example, dsm, dsmc) makes a run time decision
based on the password access option setting, the user
ID, and the executables’ access privileges to run this
program. The file that contains this program must be
owned by root with the ’s’ bit set.

TSM-Authorized user. A user who has administrative
authority for the Tivoli Storage Manager client on a
workstation. This user changes passwords, performs
open registrations, and deletes file spaces.

TSM User Preferences file. A file used on Macintosh
clients containing processing options. A sample of this
file is provided during the initial installation and setup
of Tivoli Storage Manager. A copy of the sample
defaults file can be created to set up precise processing
options. See options file.

TSM System Preferences file. An editable file used
on Macintosh clients that contains communication,
authorization, central scheduling, backup, and archive
options.

U
Universal Naming Convention (UNC) name. A name
used on Windows NT, Windows 95, or Windows 98 to
access a drive or directory that contains files shared
across a network. The UNC name includes the machine
name and a sharepoint name that represents the shared
drive or directory. See sharepoint.

252 IBM Tivoli Storage Manager: Using the Application Program Interface

V
version. The maximum number of different backup
copies of files kept for files. The following backup copy
group attributes define version criteria: versions data
exists, and versions data deleted.

W
wildcard character. An asterisk (*) or question mark
(?) character used to search for various or certain
combinations of alphanumeric and symbolic names.
These names can reflect file names or character strings
within a file.

windowed interface. A type of user interface that is
either a graphical user interface or a text-based
interface. The text-based interface maintains a close
affinity to the graphical user interface, including menu
bars, and their associated pull-down menus and
windows. See graphical user interface.

workstation. A programmable high-level workstation
(usually on a network) with its own processing
hardware such as a high-performance personal
computer. In a local area network, a personal computer
that acts as a single user or client. A workstation can
also be used as a server.

Glossary 253

254 IBM Tivoli Storage Manager: Using the Application Program Interface

Index

A
about the API 1
access to API objects

interoperability 55
access to objects

by user 25, 239
accessing across nodes 25
accessing across owners 25
accessing objects 25
active copies of objects 36, 231
administrative user 22
administrator options 2, 222
API

about 1
configuration file used by

dsmInitEx 2
environment, setting up 3
option string used by dsmInitEx 2
sample application, using 5
with Unicode 59

API configuration file
used by dsmInitEx 18

API options list
used by dsmInitEx 18

application design considerations 227
application type 18, 94, 97
archive copy group 28, 228
archiving objects 36, 231

B
backing up objects 36, 231
backup and archive objects,

understanding 36
backup copy group 28, 228
backup-archive client interoperability 55
BSABeginTxn

flow chart, in 233
general description 229

BSACreateObject
flow chart, in 233
general description 228
include-exclude list, and 228

BSADeleteObject
flow chart, in 237
general description 236

BSAEndData
flow chart, in 236
general description 231, 235

BSAEndTxn
flow chart, in 233
general description 229, 235

BSAGetData
flow chart, in 236
general description 235

BSAGetEnvironment
general description 227

BSAGetNextQueryObject
flow chart, in 231
general description 230

BSAGetObject
flow chart, in 236
general description 235

BSAInit
general description 226
session owner, set 238

BSAMarkObjectInactive
flow chart, in 237

BSAQueryApiVersion
general description 225

BSAQueryObject
example, use in 231
flow chart, in 231, 236
general description 230, 234
receiving data, use in 234

BSAResolveLifecycleGroup
flow chart, in 233
general description 228
include-exclude list, and 228
object name, and 238

BSASendData
flow chart, in 233
general description 231

BSATerminate
general description 227

building API on NetWare 5
building API on OS/400 6
building API on UNIX 8

C
callmt* sample application package

multi-threaded 5
character sets 59
CL program

OS/400 operating system 8
closed registration 226
code pages 59
compatibility

between different versions of API 14,
225

compression 37
configuration file

API 2
configuration sources

priority sequence 2
copy group

defined 28, 228
customer support

contacting xiii

D
dapi* sample application package

single-threaded 5
data structures

size limits 14
version control 15

deactivating objects on the server 236
deleting objects from the server 52, 236

design recommendations
key 13

dsmapifp.h header file 165
dsmapips.h header file 160
dsmapitd.h header file 127
dsmBeginGetData

example, use in 50
flowchart, in 50
general description 48, 63
return codes 64
state diagram, in 49, 53
syntax 63

dsmBeginQuery
example, use in 32, 34
flowchart, in 32, 50
general description 30, 44, 65
receiving data, use in 44
return codes 67
state diagram, in 31, 53
syntax 65

dsmBeginTxn
example, use in 40
flowchart, in 39
general description 34, 68
state diagram, in 38, 53
syntax 68

dsmBindMC
example, use in 30, 40
flowchart, in 39
general description 29, 39, 69
include-exclude list, and 29
information returned by 29
object name, and 24
return codes 70
state diagram, in 38, 53
syntax 69

dsmChangePW
general description 53, 71
return codes 71
state diagram, in 53
syntax 71

dsmCleanUp
general description 72

dsmDeleteAccess
general description 73

dsmDeleteFS
example, use in 27
general description 27, 74
return codes 74
state diagram, in 53
syntax 74

dsmDeleteObj
general description 52, 75
return codes 76
state diagram, in 38, 53
syntax 75

dsmEndGetData
example, use in 50
flowchart, in 50
general description 49, 77
state diagram, in 49, 53

© Copyright IBM Corp. 1993, 2003 255

dsmEndGetData (continued)
syntax 77

dsmEndGetDataEx
general description 78
syntax 78

dsmEndGetObj
example, use in 50
flowchart, in 50
general description 49, 79
return codes 79
state diagram, in 49, 53
syntax 79

dsmEndQuery
example, use in 32
flowchart, in 32
general description 31, 80
state diagram, in 31, 53
syntax 80

dsmEndSendObj
example, use in 40
flowchart, in 39
general description 36, 81
return codes 81
state diagram, in 38, 53
syntax 81

dsmEndSendObjEx
general description 82
return codes 82
syntax 82

dsmEndTxn
example, use in 40
flowchart, in 39
general description 34, 83
return codes 84
state diagram, in 38, 53
syntax 83

dsmEndTxnEx
general description 85
return codes 86
syntax 85

dsmGetData
example, use in 50
flowchart, in 50
general description 49, 87
return codes 87
state diagram, in 49, 53
syntax 87

dsmGetNextQObj
example, use in 32
flowchart, in 32
general description 31, 88
return codes 90
state diagram, in 31, 53
syntax 88

dsmGetObj
example, use in 50
flowchart, in 50
general description 49, 91
return codes 91
state diagram, in 49, 53
syntax 91

dsmGroupHandler
general description 92
return codes 92
syntax 92

dsmInit
general description 93

dsmInit (continued)
return codes 95
syntax 93

dsmInitEx
general description 17, 96
option string 2
return codes 98
session owner, set 25
specifying options on 2
state diagram, in 53
syntax 96

dsmLogEvent
general description 100
return codes 100, 102
syntax 100

dsmLogEventEx
general description 101
syntax 101

dsmQueryAccess
general description 103

dsmQueryApiVersion
general description 104
state diagram, in 53
syntax 104

dsmQueryApiVersionEx
general description 14, 105
syntax 105

dsmQueryCliOptions
general description 106
syntax 106

dsmQuerySessInfo
general description 18, 107
return codes 107
state diagram, in 53
syntax 107

dsmQuerySessOptions
general description 108
syntax 108

dsmrc.h header file 175
dsmRCMsg

general description 109
return codes 109
syntax 109

dsmRegisterFS
example, use in 27
general description 26, 110
return codes 110
state diagram, in 53
syntax 110

dsmRenameObj
general description 111
return codes 112
syntax 111

dsmSendData
example, use in 40
flowchart, in 39
general description 36, 113
return codes 114
state diagram, in 38, 53
syntax 113

dsmSendObj
copy groups, and 29
example, use in 40
flowchart, in 39
general description 36, 115
return codes 118
state diagram, in 38, 53

dsmSendObj (continued)
syntax 115

dsmSetAccess
general description 119

dsmSetUp
general description 121
return codes 122

dsmTerminate
general description 18, 123
return codes 123
state diagram, in 53
syntax 123

dsmUpdateFS
example, use in 27
general description 26, 124
return codes 124
state diagram, in 53
syntax 124

dsmUpdateObj
general description 125
return codes 126
syntax 125

E
ending a session 17

with BSATerminate 227
with dsmTerminate 18

environment
setting up the API 3

environment variables
by operating system 3

event logging 52

F
fast path 30, 65
file grouping 41
file space management 26
file space name 23
files

configuration 1
option 1

filespaces
non-Unicode 59

fromowner option 26
function calls

dsmBeginGetData 63
dsmBeginQuery 65
dsmBeginTxn 68
dsmBindMC 69
dsmChangePW 71
dsmCleanUp 72
dsmDeleteAccess 73
dsmDeleteFS 74
dsmDeleteObj 75
dsmEndGetData 77
dsmEndGetDataEx 78
dsmEndGetObj 79
dsmEndQuery 80
dsmEndSendObj 81
dsmEndSendObjEx 82
dsmEndTxn 83
dsmEndTxnEx 85
dsmGetData 87
dsmGetNextQObj 88

256 IBM Tivoli Storage Manager: Using the Application Program Interface

function calls (continued)
dsmGetObj 91
dsmGroupHandler 92
dsmInit 93
dsmLogEvent 100
dsmLogEventEx 101
dsmQueryAccess 103
dsmQueryApiVersion 104
dsmQueryApiVersionEx 105
dsmQueryCliOptions 106
dsmQuerySessInfo 107
dsmQuerySessOptions 108
dsmRCMsg 109
dsmRegisterFS 110
dsmRenameObj 111
dsmSendData 113
dsmSendObj 115
dsmSetAccess 119
dsmSetUp 121
dsmTerminate 123
dsmUpdateFS 124
dsmUpdateObj 125
overview 61

function definitions, API 165, 170

H
header files

dsmapifp.h 165
dsmapips.h 160
dsmapitd.h 127
dsmrc.h 175
tsmapifp.h 170
tsmapitd.h 146

high-level name 24

I
identifying the object 23, 237
inactive copies of objects 36, 231
include-exclude list 29, 228
installation

sample application, of 222
installing API for OS/400 6
installing the API

files you receive 1
interoperability

access to API objects 55
backup-archive client 55
commands, using 56
conventions

Intel 55
UNIX 55

naming API objects 55
operating system 57
two types 55
understanding 55

K
key design recommendations 13

L
LAN-free

data transfer 13
logging events 52
low-level name 24

M
management class

binding and rebinding to files 29
BSACreateObject, assigned by 228
BSAResolveLifecycleGroup, assigned

by 228
defined 28, 228
dsmBindMC, assigned by 29
querying 30

managing file spaces 26
metadata 23, 237
multi-threaded application package

callmt* 5
multi-threading, using 16

N
naming of objects 23, 237
NetWare operating system

source files 5
using the sample application 5

nodes, accessing across
accessing across owners 25

non-Unicode filespaces
sending data to 59

O
object ID 24
object naming

BSAResolveLifecycleGroup, and 238
description 23, 237
dsmBindMC, and 24
file space name 23
high-level name 24
low-level name 24
object space name 238
object type 24, 238
owner name 238
pathname 238

object space name 238
object type 24, 238
objects, accessing 25
operating system interoperability 57
operating systems

Netware 5
NetWare 5
OS/400 5, 6
UNIX 5, 8
Windows 5
Windows 32-bit 9
Windows 64-bit 10

option list
format 94, 97

option string
API 2
fromowner 26

options
not supported on API 1
set by administrator 2, 222
used for 1, 222

options files
user 2

options files, user 222
OS/400 operating system

CL program 8
installing API 6
QShell program 7
source files 6
using the sample application 6

owner name 238

P
partial object restore or retrieve 43
password, use of 18, 227
path information

interoperability 55
pathname 238
policy 28, 228

Q
QShell program

OS/400 operating system 7
queries, system 30, 230

R
rcApiOut

example, details 18
receiving data from a server

general description 43, 234
partial object restore or retrieve 43
procedure to follow 44, 234
sorting objects by restore order 45,

235
registration with server 226
restoring objects 43, 234
retrieving objects 43, 234
return calls

dsmInitEx 96
return codes 185
running the sample application 11

S
sample application 13

build API on NetWare 5
build API on OS/400 6
build API on UNIX 8
build API on Windows 32-bit

operating system 9
build API on Windows 64-bit

operating system 10
building 5
callmt* 5
dapi* 5
installing on UNIX platform 222
running 11, 223
using 5

Index 257

sample application packages
callmt* 5
dapi* 5

security 18, 227
sending data to a server 34, 231
server, deleting objects from 52
server, Tivoli Storage Manager

main storage areas 23, 237
session

owner 25, 238
password, use of 18, 227
security 18, 227
starting with BSAInit 226
starting with dsmInitEx 17

signals, using 17
single-threaded application package

dapi* 5
size limits

of API data structures 14
source files 5, 6, 8, 9, 10
starting a session 17, 226
stopping a session 17, 226
system queries 30, 230

T
Tivoli products and documentation

feedback survey xiii
ordering xiii

transaction model 34, 68, 229
tsmapifp.h header file 170
tsmapitd.h header file 146
turn off objects on the server 52

U
understanding backup and archive

objects 36
understanding interoperability 55
unicode

who should use 59
Unicode

and Windows 59
non-Unicode filespaces 59
setting up 59

UNIX operating system
source files 8
using the sample application 8

UNIX platform
using the sample application 222

updating objects on the server 52
using commands

delete archive 56
delete filespace 56
interoperability 56
query 56
restore 56
retrieve 56
set access 56

using the API
examples in this book 13

V
verify version 14, 225

version control
API data structures 15
BSAQueryApiVersion, using 225
dsmQueryApiVersionEx, using 14
managing backed-up copies 36, 231

W
Windows 32-bit operating system

source files 9
using the sample application 9

Windows 64-bit operating system
source files 10
using the sample application 10

X
X/Open Backup Services 221
XBSA 221
xopen changes

BSAInit 222
TSMMAXOBJ 222
TSMRVRSTANZA 222
TSMSRVR 222

258 IBM Tivoli Storage Manager: Using the Application Program Interface

����

Program Number: 5698-ISM
5698-ISX
5698-SAN

Printed in U.S.A.

GC32-0793-01

Spine information:

��� IBM Tivoli Storage Manager Using the Application Program Interface
Version 5
Release 2

	Contents
	Figures
	Tables
	About this book
	Who should read this manual
	IBM Tivoli Storage Manager Web Site
	Conventions used in this manual
	Reading syntax diagrams
	Related information
	Downloading or ordering publications
	Contacting customer support
	Reporting a problem
	Internet
	Summary of code changes
	Version 5 Release 2 Level 0 April 2003
	Functional enhancements

	Version 5 Release 1 Level 0 March 2002
	Functional enhancements

	Version 4 Release 2 Level 1 November 2001
	Version 4 Release 2 Level 0 June 2001
	New return code
	Updated structures

	Version 4 Release 1 Level 0 July 2000
	New function call
	Changed function call

	Version 3 Release 7 Level 0 September 1999
	New function calls
	Updated structures

	Version 3 Release 1 Level 7 May 1999
	Functional enhancements
	Updated structures
	New function call

	Version 3 Release 1 Level 6 January 1999
	Functional enhancements
	Changed function calls

	Version 3 Release 1 Level 5 August 1998
	New function calls

	Version 3 Release 1 Level 3 March 1998
	New function calls

	Version 3 Release 1 Level 0 October 1997
	Functional enhancements

	Chapter 1. Introducing the API
	Understanding configuration files and options files
	Setting up the API environment

	Chapter 2. Building and running the sample application
	Building the sample application
	NetWare operating system
	OS/400 operating system
	QShell program
	CL program

	UNIX operating system
	Windows 32–bit operating system
	Windows 64–bit operating system

	Running the sample application

	Chapter 3. Using the Application Program Interface
	Key design recommendations
	Determining size limits
	Maintaining version control in the API
	Using multi-threading
	Using signals
	Starting or ending a session
	Session security
	Using passwordaccess generate without TCA
	Administrative user

	Identifying the object
	File space name
	High-level and low-level names
	Object type
	Object ID

	Accessing objects
	Accessing across nodes and across owners
	Managing file spaces
	Associating a management class with objects
	Query management classes

	Querying the Tivoli Storage Manager system
	An example

	Sending data to a server
	The transaction model
	File aggregation
	API performance considerations

	Sending objects to the server
	Understand backup and archive objects
	Compression

	Reading state diagrams and flowcharts
	An example

	File grouping
	Receiving data from a server
	Perform a partial object restore or retrieve
	Receive data with a restore or retrieve procedure
	Query the server
	Select objects to receive
	Sort objects by restore order
	Start the dsmBeginGetData Call
	Receive each object to restore or retrieve
	Start the dsmEndGetData call

	State diagrams and flowcharts
	An example

	Updating objects on the server
	Deleting objects from the server
	Logging events
	Putting it all together

	Chapter 4. Understanding interoperability
	Backup-archive client interoperability
	Naming your API objects
	Using commands

	Operating system interoperability

	Chapter 5. Using the API with Unicode
	Who should use Unicode
	Setting up Unicode

	Chapter 6. API function calls
	dsmBeginGetData
	dsmBeginQuery
	dsmBeginTxn
	dsmBindMC
	dsmChangePW
	dsmCleanUp
	dsmDeleteAccess
	dsmDeleteFS
	dsmDeleteObj
	dsmEndGetData
	dsmEndGetDataEx
	dsmEndGetObj
	dsmEndQuery
	dsmEndSendObj
	dsmEndSendObjEx
	dsmEndTxn
	dsmEndTxnEx
	dsmGetData
	dsmGetNextQObj
	dsmGetObj
	dsmGroupHandler
	dsmInit
	dsmInitEx
	dsmLogEvent
	dsmLogEventEx
	dsmQueryAccess
	dsmQueryApiVersion
	dsmQueryApiVersionEx
	dsmQueryCliOptions
	dsmQuerySessInfo
	dsmQuerySessOptions
	dsmRCMsg
	dsmRegisterFS
	dsmRenameObj
	dsmSendData
	dsmSendObj
	dsmSetAccess
	dsmSetUp
	dsmTerminate
	dsmUpdateFS
	dsmUpdateObj

	Appendix A. API type definitions source file
	Appendix B. API function definitions source file
	Appendix C. API return codes source file
	Appendix D. API return codes with explanations
	Appendix E. The X/Open API
	Introduction
	Version 3.7.2 changes
	Setting up options files
	Using the Tivoli Storage Manager X/Open API sample application
	Build the sample application

	Using the Tivoli Storage Manager X/Open API
	Data field mapping
	Maintaining version control in the API
	Starting or ending a session
	Application design considerations

	Session security
	Determining the session parameters
	Associating a management class with objects
	The transaction model
	Querying the Tivoli Storage Manager system
	Flowchart

	Sending data to a server
	Flowchart

	Receiving data from a server
	Flowchart

	Deleting objects from the server
	Identifying the object
	Object space name
	Pathnames
	Object type
	Example

	Setting the owner name

	Using XOpen functions with Tivoli Storage Manager
	Tivoli Storage Manager Changes to the XBSA header files
	Changes to custom.h
	Changes to xbsa.h
	Changes to policy.h

	Appendix F. Notices
	Trademarks

	Glossary
	Index

