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Chapter 1. Welcome to the CP Optimizer User’s Manual

This is the CP Optimizer User's Manual.

Overview
CP Optimizer is a software library which provides a constraint programming
engine.

The CP Optimizer feature of the IBM® ILOG® CPLEX® Optimizers is a software
library which provides a constraint programming engine targeting both constraint
satisfaction problems and optimization problems, including problems involving
scheduling. This engine, designed to be used in a “model & run” development
process, contains powerful methods for finding feasible solutions and improving
them. The strength of the optimizer removes the need for you to write and
maintain a search strategy.

CP Optimizer is based on IBM ILOG Concert Technology. Concert Technology
offers a library of classes and functions that enable you to define models for
optimization problems. Likewise, CP Optimizer offers a library of classes and
functions that enable you to find solutions to the models. Though the CP
Optimizer defaults will prove sufficient to solve most problems, CP Optimizer
offers a variety of tuning classes and parameters to control various algorithmic
choices.

IBM ILOG Concert Technology and CP Optimizer provide application
programming interfaces (APIs) for Microsoft .NET Framework languages, C++ and
Java™. The CP Optimizer part of an application can be completely integrated with
the rest of that application (for example, the graphical user interface, connections
to databases and so on) because it can share the same objects.

About this manual
The CP Optimizer User’s Manual provides conceptual information about the features
of CP Optimizer.

This is the CP Optimizer User’s Manual. It offers explanations of how to use CP
Optimizer effectively. All of the CP Optimizer functions and classes used in this
manual are documented in the CP Optimizer Reference Manuals. As you study this
manual, you will probably consult the appropriate reference manual from time to
time, as it contains precise details on classes and their members.

Prerequisites
The CP Optimizer User’s Manual assumes that you have a working knowledge of
one of the programming languages of the available APIs and have installed CP
Optimizer.

CP Optimizer requires a working knowledge of the Microsoft .NET Framework,
C++ or Java. However, it does not require you to learn a new language since it
does not impose any syntactic extensions on your programming language of
choice.

© Copyright IBM Corp. 1987, 2013 1



If you are experienced in constraint programming or operations research, you are
probably already familiar with many concepts used in this manual. However, no
experience in constraint programming or operations research is required to use this
manual. The Getting Started with CP Optimizer manual provides a tutorial
introduction to many of the topics covered in this manual.

You should have IBM ILOG Concert Technology and CP Optimizer installed in
your development environment before starting to use this manual. Moreover, you
should be able to compile, link and execute a sample program provided with CP
Optimizer.

Related documentation
The CP Optimizer User’s Manual is part of a collection of manuals. You will likely
need to refer to the other manuals in the collection as you use this manual.

The following documentation ships with CP Optimizer and will be useful for you
to refer to as you use this manual.
v The Getting Started with CP Optimizer Manual introduces CP Optimizer with

tutorials that lead you through describing, modeling and solving problems.
v The CP Optimizer Extensions User’s Manual explains how to use the advanced

features, such as propagators, custom constraints and custom search, of CP
Optimizer effectively.

v The CP Optimizer Reference Manuals document the IBM ILOG Concert
Technology and CP Optimizer classes and functions used in the CP Optimizer
User’s Manual. The reference manuals also explain certain concepts more
formally. There are three reference manuals; one for each of the available APIs.

v The Release Notes for CP Optimizer list new and improved features, changes in the
library and documentation and issues addressed for each release.

Installing CP Optimizer
The installation directions for CP Optimizer are in the Electronic Product Delivery
package.

In this manual, it is assumed that you have already successfully installed the IBM
ILOG Concert Technology and CP Optimizer libraries on your platform (that is, the
combination of hardware and software you are using). If this is not the case, you
will find installation instructions in your IBM ILOG Electronic Product Delivery
package. The instructions cover all the details you need to know to install IBM
ILOG Concert Technology and CP Optimizer on your system.

Typographic and Naming Conventions
The naming conventions used in CP Optimizer User’s Manual manual follow the
standard practices of the programming language being used.

Important ideas are italicized the first time they appear.

In this manual, the examples are given in C++. In the C++ API, the names of
types, classes and functions defined in the IBM ILOG Concert Technology and CP
Optimizer libraries begin with Ilo.

The name of a class is written as concatenated words with the first letter of each
word in upper case (that is, capital). For example,
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IloIntVar

A lower case letter begins the first word in names of arguments, instances and
member functions. Other words in the identifier begin with an uppercase letter. For
example:

IloIntVar aVar;
IloIntVarArray::add;

Names of data members begin with an underscore, like this:
class Bin {
public:

IloIntVar _type;
IloIntVar _capacity;
IloIntVarArray _contents;
Bin (IloModel model,

IloIntArray capacity,
IloInt nTypes,
IloInt nComponents);

void display(const IloCP cp);
};

Generally, accessors begin with the key word get. Accessors for Boolean members
begin with is. Modifiers begin with set.

Names of classes, methods and symbolic constants in the C# and the Java APIs
correspond very closely to those in the C++ API with these systematic exceptions:
v In the C# API and the Java API, namespaces are used. For Java, the namespaces

are ilog.cp and ilog.concert. For C#, the namespaces are ILOG.CP and
ILOG.Concert.

v In the C++ API and the Java API, the names of classes begin with the prefix Ilo
whereas in the C# API they do not.

v In the C++ API and the Java API, the names of methods conventionally begin
with a lowercase letter, for example, startNewSearch, whereas in the C# API, the
names of methods conventionally begin with an uppercase letter, for example,
StartNewSearch, according to Microsoft practice.

To make porting easier from platform to platform, IBM ILOG Concert Technology
and CP Optimizer isolate characteristics that vary from system to system.

For that reason, you are encouraged to use the following identifiers for basic types
in C++:
v IloInt stands for signed long integers;
v IloNum stands for double precision floating-point values ;
v IloBool stands for Boolean values: IloTrue and IloFalse.

You are not obliged to use these identifiers, but it is highly recommended if you
plan to port your application to other platforms.

Chapter 1. Welcome to the CP Optimizer User’s Manual 3
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Chapter 2. Using CP Optimizer

Solving constraint programming problems with CP Optimizer can be broken into
three steps: describing the problem, modeling the problem and finding solutions to
the model of the problem. A basic constraint programming problem model consists
of decision variables and constraints on those variables. Finding a solution to a
model involves constraint propagation and search.

Overview of CP Optimizer
CP Optimizer is a software library which provides constructs for modeling and
solving constraint programming problems.

The CP Optimizer feature of the IBM ILOG CPLEX Optimizers is a software library
which provides a constraint programming engine targeting both satisfiability
problems and optimization problems. This engine, designed to be used in a “model
& run” development process, contains powerful search methods for finding
feasible solutions and improving them. The strength of the optimizer removes the
need for you to write and maintain a search strategy.

CP Optimizer is based on IBM ILOG Concert Technology. Concert Technology
offers a library of classes and functions that enable you to define models for
optimization problems. Likewise, CP Optimizer offers a library of classes and
functions that enable you to find solutions to the models. Though the CP
Optimizer defaults will prove sufficient to solve most problems, CP Optimizer
offers a variety of tuning classes and parameters to control various algorithmic
choices.

The three-stage method
The three-stage method of constraint programming using CP Optimizer involves
describing, modeling and solving.

To find a solution to a problem using CP Optimizer, you use a three-stage method:
describe, model and solve.

The first stage is to describe the problem in natural language. For more information,
see the section “Describe” on page 6.

The second stage is to use Concert Technology classes to model the problem. The
model is composed of decision variables and constraints. Decision variables are the
unknown information in a problem. Each decision variable has a domain of possible
values. The constraints are limits or restrictions on combinations of values for these
decision variables. The model may also contain an objective, an expression that can
be maximized or minimized. For more information, see the section “Model” on
page 6.

The third stage is to use CP Optimizer classes to solve the problem. Solving the
problem consists of finding a value for each decision variable while simultaneously
satisfying the constraints and maximizing or minimizing an objective, if one is
included in the model. The CP Optimizer engine (also called “the optimizer”) uses
two techniques for solving optimization problems: search strategies and constraint
propagation. For more information, see the section “Solve the problem” on page 7.

© Copyright IBM Corp. 1987, 2013 5



In this section, the three stages of describe, model and solve are executed on a
simple problem to underscore the basic concepts in constraint programming.

The problem is to find values for x and y given the following information:
v x + y = 17

v x - y = 5

v x can be any integer from 5 through 12
v y can be any integer from 2 through 17

Describe
The first stage in solving a constraint programming problem with CP Optimizer is
to describe the problem using natural language.

The first stage is to describe the problem in natural language.

What is the unknown information, represented by the decision variables, in this
problem?
v The values of x and y, where x is an integer between 5 and 12 inclusive and y is

as integer between 2 and 17 inclusive.

What are the limits or restrictions on combinations of these values, represented by
the constraints, in this problem?
v x + y = 17

v x - y = 5

Though the describe stage of the process may seem trivial in a simple problem like
this one, you will find that taking the time to fully describe a more complex
problem is vital for creating a successful program. You will be able to code your
program more quickly and effectively if you take the time to describe the model,
isolating the decision variables and constraints.

Model
The second stage in solving a constraint programming problem with CP Optimizer
is to model the problem. The model is composed of decision variables and
constraints. The model may also contain an objective.

Decision variables
Decision variables represent the unknown information in a constraint
programming problem.

Decision variables represent the unknown information in a problem. Decision
variables differ from normal programming variables in that they have domains of
possible values and may have constraints placed on the allowed combinations of
theses values. For this reason, decision variables are also known as constrained
variables. In this example, the decision variables are x and y.

Each decision variable has a domain of possible values. In this example, the
domain of decision variable x is [5..12], or all integers from 5 to 12. The domain of
decision variable y is [2..17], or all integers from 2 to 17.

Note:
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In CP Optimizer and Concert Technology, square brackets denote the domain of
decision variables. For example, [5 12] denotes a domain as a set consisting of
precisely two integers, 5 and 12. In contrast, [5..12] denotes a domain as a range of
integers, that is, the interval of integers from 5 to 12, so it consists of 5, 6, 7, 8, 9,
10, 11 and 12.

Constraints
Constraints in a model represent the limit on the combinations of values for
decision variables.

Constraints are limits on the combinations of values for variables. There are two
constraints on the decision variables in this example: x + y = 17 and x - y = 5.

Solve the problem
The third stage in solving a constraint programming problem with CP Optimizer is
to search for a solution and solve the problem.

Solution
A solution to a constraint programming problem is a set of value assignments to
the constrained variables.

A solution is a set of value assignments to the constrained variables such that each
variable is assigned exactly one value from its domain and such that together these
values satisfy the constraints. If there is an objective in the model, then an optimal
solution is a solution that optimizes the objective function. Solving the problem
consists of finding a solution for the problem or an optimal solution, if an objective
is included in the model. The CP Optimizer engine uses efficient algorithms for
finding solutions to constraint satisfaction and optimization problems.

Search space
The search space of a constraint programming problem is all combinations of the
values in the domains of the decision variables.

The CP Optimizer engine explores the search space to find a solution. The search
space is all combinations of values. One way to find a solution would be to
explicitly study each combination of values until a solution was found. Even for
this simple problem, this approach is obviously time-consuming and inefficient.
For a more complicated problem with many variables, the approach would be
unrealistic.

The optimizer uses two techniques to find a solution: search heuristics and
constraint propagation. Additionally, the optimizer performs two types of
constraint propagation: initial constraint propagation and constraint propagation during
search.

Initial constraint propagation
Constraint propagation is a powerful technique used by CP Optimizer in the
search for solutions to constraint programming problems. The initial constraint
propagation removes values from domains that will not take part in any solution.

First, the CP Optimizer engine performs an initial constraint propagation. The
initial constraint propagation removes values from domains that will not take part
in any solution. Before propagation, the domains are:
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D(x) = [5 6 7 8 9 10 11 12]
D(y) = [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]

To get an idea of how initial constraint propagation works, consider the constraint
x + y = 17. If you take the smallest number in the domain of x, which is 5, and
add it to the largest number in the domain of y, which is 17, the answer is 22. This
combination of values (x = 5, y = 17) violates the constraint x + y = 17. The only
value of x that would work with y = 17 is x = 0. However, there is no value of 0
in the domain of x, so y cannot be equal to 17. The value y = 17 cannot take part
in any solution. The domain reduction algorithm employed by the constraint
propagation engine removes the value y = 17 from the domain of y. Similarly, the
propagation engine removes the following values from the domain of y: 13, 14, 15
and 16.

Likewise, if you take the largest number in the domain of x, which is 12, and add
it to the smallest number in the domain of y, which is 2, the answer is 14. This
combination of values (x = 12, y = 2) violates the constraint x + y = 17. The only
value of x that would work with y = 2 is x = 15. However, there is no value of 15
in the domain of x, so y cannot be equal to 2. The value of y = 2 cannot take part
in any solution. the propagation engine removes the value y = 2 from the domain
of y. For the same reason, the domain reduction algorithm employed by the
propagation engine removes the following values from the domain of y: 2, 3 and 4.

After initial propagation for the constraint x + y = 17, the domains are:
D(x) = [5 6 7 8 9 10 11 12]
D(y) = [5 6 7 8 9 10 11 12]

Now, examine the constraint x - y = 5. If you take the value 5 in the domain of x,
you can see that the only value of y that would work with x = 5 is y = 0.
However, there is no value of 0 in the domain of y, so x cannot equal 5. The value
x = 5 cannot take part in any solution. The propagation engine removes the value
x = 5 from the domain of x. Using similar logic, the propagation engine removes
the following values from the domain of x: 6, 7, 8 and 9. Likewise, the domain
reduction algorithm employed by the propagation engine removes the following
values from the domain of y: 8, 9, 10, 11 and 12.

Returning to the other constraint, there are no further values that can be removed
from the variables. After initial propagation, the search space has been reduced in
size. The domains are now:
D(x) = [10 11 12]
D(y) = [5 6 7]

Constructive search
Along with constraint propagation, constructive search strategies are used by CP
Optimizer in the search for solutions to constraint programming problems.

After initial constraint propagation, the search space is reduced. CP Optimizer uses
a constructive search strategy to guide the search for a solution in the remaining
part of the search space. It may help to think of the strategy as one that traverses a
search tree. The root of the tree is the starting point in the search for a solution; each
branch descending from the root represents an alternative in the search. Each
combination of values in the search space can be seen as a leaf node of the search
tree.

The CP Optimizer engine executes a search strategy that guides the search for a
solution. The optimizer “tries” a value for a variable to see if this will lead to a
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solution. To demonstrate how the optimizer uses search strategies to find a
solution, consider a search strategy that specifies that the optimizer should select
variable x and assign it the lowest value in the domain of x. For the first search
move in this strategy, the optimizer assigns the value 10 to the variable x. This
move, or search tree branch, is not permanent. If a solution is not found with
x = 10, then the optimizer can undo this move and try a different value of x.

Constraint propagation during search
Constraint propagation is combined with a constructive search strategy is used by
CP Optimizer in the search for solutions to constraint programming problems.

The CP Optimizer engine performs constraint propagation during search. This
constraint propagation differs from the initial constraint propagation. The initial
constraint propagation removes all values from domains that will not take part in
any solution. Constraint propagation during search removes all values from the
current domains that violate the constraints. You can think of constraint
propagation during search in the following way. In order to “try” a value for a
variable, the optimizer creates “test” or current domains. When constraint
propagation removes values from domains during search, values are only removed
from these “test” domains.

To continue the same example, suppose that, based on the search strategy, the
optimizer has assigned the value 10 to the decision variable x. Working with the
constraint x + y = 17, constraint propagation reduces the domain of y to [7].
However, this combination of values (x = 10, y = 7) violates the constraint
x - y = 5. The optimizer removes the value y = 7 from the current domain of y.
At this point, the domain of y is empty, and the optimizer encounters a failure. The
optimizer can then conclude that there is no possible solution with the value of 10
assigned to x.

When the optimizer decides to try a different value for the decision variable x, the
domain of y is at first restored to the values [5 6 7]. It then reduces the domain of
y based on the new value assigned to x.

This simple example demonstrates the basic concepts of constructive search and
constraint propagation. To summarize, solving a problem consists of finding a
value for each decision variable while simultaneously satisfying the constraints.
The CP Optimizer engine uses two techniques to find a solution: constructive
search with search strategies and constraint propagation. Additionally, the
optimizer performs two types of constraint propagation: initial constraint
propagation and constraint propagation during search.

The initial constraint propagation removes values from domains that will not take
part in any solution. After initial constraint propagation, the search space is
reduced. This remaining part of the search space, where the CP Optimizer engine
will use constructive search with a search strategy to search for a solution, is called
the search tree. Constructive search is a way to “try” a value for a variable to see if
this will lead to a solution. The optimizer performs constraint propagation during
search. Constraint propagation during search removes all values from the current
or “test” domains that violate the constraints. If the optimizer cannot find a
solution after a series of choices, these can be reversed and alternatives can be
tried. The CP Optimizer engine continues to search using the constructive search
and constraint propagation during search until a solution is found.
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Scheduling in CP Optimizer
CP Optimizer offers classes and functions specially adapted to modeling and
solving problems in scheduling.

Basic building blocks of scheduling models
The basic building blocks of scheduling include time intervals and the constraints
amongst those intervals.

In addition to constrained integer variables, CP Optimizer provides a set of
modeling features for applications dealing with scheduling over time. Although in
CP Optimizer, time points are represented as integers, time is effectively
continuous because the range of time points is potentially very wide.

A consequence of scheduling over effectively continuous time is that the evolution
of some known quantities over time (for instance the instantaneous
efficiency/speed of a resource or the earliness/tardiness cost for finishing an
activity at a given date) needs to be compactly represented in the model.

Most of the scheduling applications consist of scheduling in time a set of activities,
tasks or operations that have a start and an end time. In CP Optimizer, this type of
decision variable is captured by the notion of interval decision variable.

Several types of constraints are expressed on and between interval decision
variables:
v to limit the possible positions of an interval decision variable (forbidden

start/end or “extent” values),
v to specify precedence relations between two interval decision variables and
v to relate the position of an interval variable with one of a set of interval

decision variables (such as with spanning, synchronization, or alternative
constraints).

An important characteristic of scheduling problems is that intervals may be
optional and whether to execute an interval or not may be a decision variable. In
CP Optimizer, this is captured by the notion of a Boolean presence status
associated with each interval decision variable. Logical relations can be expressed
between the presence of interval variables, for instance to state that whenever
interval a is present then interval b must also be present.

Another aspect of scheduling is the allocation of limited resources to time intervals.
The evolution of a resource over time can be modeled by three types of decision
variables and expressions:
v The evolution of a disjunctive resource over time can be described by the

sequence of intervals that represent the activities executing on the resource. CP
Optimizer introduces the notion of an interval sequence variable. Constraints and
expressions are available to control the sequencing of a set of interval variables.

v The evolution of a cumulative resource often needs a description of how the
resource accumulated usage evolves over time. CP Optimizer provides cumul
function expressions that can be used to constrain the evolution of resource usage
over time.

v The evolution of a resource of infinite capacity, the state of which can vary over
time is captured in CP Optimizer by state functions. The dynamic evolution of a
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state function can be controlled using transition distances and constraints for
specifying conditions on the state function that must be satisfied during fixed or
variable intervals.

Some classical cost functions in scheduling are earliness/tardiness costs, makespan
and activities execution/non-execution costs. CP Optimizer generalizes these
classical cost functions and provides a set of basic expressions that can be
combined together to express a large spectrum of scheduling cost functions that
can be efficiently exploited by the CP Optimizer search.

Search space for scheduling models
The search space for scheduling models is usually independent from the size of the
domain

For interval variables, the search does not enumerate the values in the domain, and
the size of the search space is usually independent from the size of the domain.
The search space is estimated as the number of possible permutations of the n
interval variables of the problem whose log (base 2) is estimated as n.log2(n).

This estimation is slightly adjusted. For an optional interval variable, there is an
additional Boolean decision to be made on its presence status. In addition, the
interval dependencies induced by an alternative constraints need to be taken into
account; the selected interval bi in an alternative constraint alternative(a,{b1,...,bn})
has the same start and end values as the alternative master interval variable a.

Using search parameters
It is possible to set parameters on the CP Optimizer object to control the output, to
control the constraint propagation, to limit the search and to control the search
engine. It is important to observe that any parameter change from its default is
displayed at the head of the search log

Setting parameters
The parameters in CP Optimizer can be set using a method of the class
representing the optimizer.

In the C++ API of CP Optimizer, you set a parameter on the optimizer with a call
to IloCP::. The first argument to this function is either IloCP::IntParam or
IloCP::NumParam. The second argument is a value of type IloInt, IloNum or the
enumerated type IloCP::ParameterValues. To set a parameter on the optimizer in
the C++ API, you use the method IloCP::setParameter, for example:

IloCP cp(model);
cp.setParameter(IloCP::SearchType, IloCP::DepthFirst);
cp.solve();

In the Java API of CP Optimizer, you set a parameter on the optimizer with a call
to IloCP.setParameter. The first argument to this function is either IloCP.IntParam
or IloCP.DoubleParam. The second argument is a value of type int or double or an
instance of a subclass of IloCP.ParameterValues. To set a parameter on the
optimizer in the Java API, you use the method IloCP.setParameter, for example:

IloCP cp = new IloCP();
// add variables and constraints
cp.setParameter(IloCP.IntParam.SearchType,

IloCP.ParameterValues.DepthFirst);
cp.solve();
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Likewise, in the C# API of CP Optimizer, you set a parameter on the optimizer
with a call to CP.SetParameter. The first argument to this function is either
CP.IntParam or CP.DoubleParam. The second argument is a value of type Int32 or
Double or an instance of a subclass of CP.ParameterValues. To set a parameter on
the optimizer in the C# API, you use the method CP.SetParameter, for example:

CP cp = new CP();
// add variables and constraints
cp.SetParameter(CP.IntParam.SearchType,

CP.ParameterValues.DepthFirst);
cp.Solve();

Some parameters may not be changed while there is an active search, such as
between calls to the optimizer methods startNewSearch and endSearch. You can
change any limit, such as ChoicePoinLimit, BranchLimit, TimeLimit, SolutionLimit
and FailLimit during search.

The appropriate values are detailed in the CP Optimizer Reference Manuals. Most of
the search parameters available for use in CP Optimizer are discussed in more
detail throughout this manual.

Time mode parameter
The time mode parameter defines the manner in which CP Optimizer measures
time.

CP Optimizer uses time for both display purposes and for limiting the search.
These timings can be measured either by CPU time or by elapsed time, and the
time mode parameter defines how time is measured in CP Optimizer.

When multiple processors are available and the number of workers is greater than
one, then the CPU time can be greater than the elapsed time by a factor up to the
number of workers.

In the C++ API of CP Optimizer, the time mode is controlled with the parameter
IloCP::TimeMode. A value of IloCP::CPUTime indicates that time should be
measured as CPU time, IloCP::ElapsedTime indicates that time should be
measured as elapsed time. The default is IloCP::ElapsedTime.

In the Java API of CP Optimizer, the time mode is controlled with the parameter
IloCP.IntParam.TimeMode. A value of IloCP.ParameterValues.CPUTime indicates
that time should be measured as CPU time, IloCP.ParameterValues.ElapsedTime
indicates that time should be measured as elapsed time. The default is
IloCP.ParameterValues.ElapsedTime.

Likewise, in the C# API of CP Optimizer, the time mode is controlled with the
parameter CP.IntParam.TimeMode. A value of CP.ParameterValues.CPUTime indicates
that time should be measured as CPU time, CP.ParameterValues.ElapsedTime
indicates that time should be measured as elapsed time. The default is
CP.ParameterValues.ElapsedTime.
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Chapter 3. Modeling a problem with Concert Technology

After describing your constraint satisfaction or optimization problem, you use
Concert Technology classes to model the problem. A Concert Technology model
consists of a set of objects, known as modeling objects. Each decision variable, each
constraint and the objective function in a model are all represented by objects of
the appropriate class.

Using the environment
The environment manages internal modeling issues.

Creating the environment
The environment, which handles communication channels and memory
management, must be created before the modeling objects are created.

The first step in an IBM ILOG Concert Technology application using the C++ API
is to create the environment, an instance of the class IloEnv.

The environment manages internal modeling issues; it handles output, memory
management for modeling objects and termination of search algorithms. In the
Microsoft .NET Framework languages and Java APIs, issues regarding the
environment are handled internally.

Normally an application needs only one environment, but you can create as many
environments as you want. Typically, the environment is created early in the main
part of an application, like this:

IloEnv env;

In the C++ API, every Concert Technology model and every optimizer object must
belong to an environment. In programming terms, when you construct a model,
you must pass one instance of IloEnv as an argument to that constructor.

In the Java API, the Concert Technology functions for creating modeling objects are
defined in the interface IloModeler and implemented in the class IloCP.

Likewise, in the C# API, the functions for creating modeling objects are defined in
the interface IModeler, and the class CP inherits them.

Environment and communication channels
The communication channels provided in the environment include output channels
for different types of information.

In the C++ API, an instance of IloEnv in your application initializes its default
output channels for general information, for warnings and for error messages.

Each environment maintains its own channels. The channels associated with an
environment are IloEnv::out, IloEnv::warning and IloEnv::error. By default,
these output streams are defined as std::cout. You can redirect these streams by
calling IloEnv::setOut(ostream &) and other related member functions of IloEnv.
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In the Microsoft .NET Framework languages and Java APIs, the native streams are
used directly. To redirect output generated by the optimizer, you use the method
IloCP.setOut in the Java API and the method CP.SetOut in the C# API. For
example, in the C# API, the output from the optimizer can be redirected to the
native error stream using the following code:

CP cp = new CP();
cp.SetOut(Console.Error);

Environment and memory management
The environment handles memory management of the model and algorithm
objects.

When your C++ application deletes an instance of IloEnv, Concert Technology will
automatically delete all models, algorithms (optimizers) and other objects
depending on that environment as well.

To allocate on the environment memory pool in C++, you must pass the
environment as an argument to the new operator:

MyObject* myobject = new (env) MyObject();

Memory allocated in the environment is reclaimed when the environment is
terminated by the member function IloEnv::end. You must not use the delete
operator for objects allocated on the environment memory pool. The destructor of
these objects will be called when the memory is reclaimed.

To free memory used by a model in the Java API, you use the method IloCP.end.
To free memory used by a model in the C# API, you use the method CP.End.

Note:

Environment

An instance of the class IloEnv manages the internal modeling issues, which
include handling output, memory management for modeling objects and
termination of search algorithms.

This instance is typically referred to as the environment. Normally an application
needs only one environment, but you can create as many environments as you
want.

In the C# and Java APIs, the environment object is not public. To free memory
used by a model in the Java API, you use the method IloCP.end. To free memory
used by a model in C# API, you use the method CP.End.

Managing data
Concert Technology provides classes that simplify the management of data.

Arrays
Arrays are used extensively in modeling with Concert Technology.

The data for an IBM ILOG Concert Technology model is often presented in terms
of arrays.
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In the Microsoft .NET Framework languages and the Java APIs, the native array
classes are used to store data in arrays and are passed as arguments to many
Concert Technology functions. In the C++ API, objects of the class IloIntArray can
be used to store integer data in arrays.

Elements of the class IloIntArray can be accessed like elements of standard C++
arrays, but the class also offers a wealth of additional functions. For example,
Concert Technology arrays are extensible; in other words, they transparently adapt
to the required size when new elements are added using the method add.
Conversely, elements can be removed from anywhere in the array with the method
remove. Concert Technology arrays also provide debugging support when compiled
in debug mode by using assertion statements to ensure that no element beyond the
array bounds is accessed. Input and output operators (that is, operator<< and
operator>>) are provided for arrays. For example, the code produces the following
output:
[1, 2, 3]

This output format can be read back in with the operator>>, for example:
std::cin >> data;

When you have finished using an array and want to reclaim its memory, call the
method end; for example, data.end. When the environment ends, all memory of
arrays belonging to that same environment is returned to the system as well. Thus,
in practice you do not need to call end on an array (or any other Concert
Technology object) just before calling IloEnv::end.

Note:

Array of integer values

Arrays of integer values are represented by the class IloIntArray in the C++ API
of Concert Technology. These arrays are extensible.

When you use an array, you can access a value in that array by its index, and the
operator[] is overloaded for this purpose.

In the C# and Java APIs, the native arrays are used.

Finally, the C++ API of Concert Technology provides the template class
IloArray<X> to create array classes for your own type X. This technique can be
used to generate multidimensional arrays. All the functions mentioned here are
supported for IloArray classes except for input/output, which depends on the
input and output operator being defined for type X.

Note:

Extensible array

In the C++ API, Concert Technology provides the template class IloArray which
makes it easy for you to create classes of arrays for elements of any given class. In
other words, you can use this template to create arrays of Concert Technology
objects; you can also use this template to create arrays of arrays (that is,
multidimensional arrays).

When you use an array, you can access a value in that array by its index, and the
operator[] is overloaded for this purpose.
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The classes you create in this way consist of extensible arrays. That is, you can add
elements to the array as needed.

In the Java API, arrays used by a CP Optimizer method might be created as such:
int[] fixedCost ={ 1, 2, 4, 3 };
IloIntVar[] open = cp.intVarArray(4,0,1);
IloIntExpr obj = cp.prod(open, fixedCost);

In the C# API, arrays used by a CP Optimizer method might be created as:
int[] fixedCost ={ 1, 2, 4, 3 };
IIntVar[] open = cp.IntVarArray(4,0,1);
IIntExpr obj = cp.Prod(open, fixedCost);

Sets of tuples
Sets of tuples can be used to model data that is related.

In many constraint applications, it is necessary to process a huge quantity of data.
For instance, the features of some products can be described as a relation in a
database or in text files. In this case, a useful data modeling object is a tupleset, or a
set of tuples.

A tuple is an ordered set of values represented by an array. Tuples are useful for
representing allowed combinations of data in a model. A set of integer tuples in a
model is represented by an instance of a tupleset.

The elements of a tupleset are tuples of integer values, represented by arrays. The
number of values in a tuple is known as the arity of the tuple, and the arity of the
tuples in a set is called the arity of the set. (In contrast, the number of tuples in the
set is known as the cardinality of the set.)

In the C++ API of CP Optimizer, the class IloTupleSet represents tuplesets.

In the Java API of CP Optimizer, the interface IloTupleset represents tuplesets.

In the C# API of CP Optimizer, the interface ITupleSet represents tuplesets.

Note:

Set of tuples

An integer tuple is an ordered set of values represented by an array. A set of integer
tuples in a model is represented by a tupleset.

The number of values in a tuple is known as the arity of the tuple.

Consider as an example a bicycle factory that can produce thousands of different
models. For each model of bicycle, a relation associates the features of that bicycle
such as size, weight, color and price. This information can be used in a constraint
programming application that allows a customer to find the bicycle that most
closely fits a specification.

Then the tupleset bicycleSet defines the set of possible combinations of features.
In the C++ API, the tupleset is created and built as follows:

IloIntTupleSet bicycleSet(env, 5);
bicycleSet.add(IloIntArray(env, 5, 1, 57, 12, 3, 1490));
bicycleSet.add(IloIntArray(env, 5, 2, 57, 13, 5, 1340));
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bicycleSet.add(IloIntArray(env, 5, 3, 60, 14, 3, 1790));
bicycleSet.add(IloIntArray(env, 5, 4, 65, 14, 7, 1550));
bicycleSet.add(IloIntArray(env, 5, 5, 67, 15, 2, 2070));
bicycleSet.add(IloIntArray(env, 5, 6, 70, 15, 2, 1990));

In the Java API, the tupleset is created using the method IloCP.intTable and built
as follows:

IloIntTupleSet bicycleSet = cp.intTable(5);
int[][] tuples = {{1, 57, 12, 3, 1490},

{2, 57, 13, 5, 1340},
{3, 60, 14, 3, 1790},
{4, 65, 14, 7, 1550},
{5, 67, 15, 2, 2070},
{6, 70, 15, 2, 1990}};

cp.addTuple(bicycleSet, tuples[0]);
cp.addTuple(bicycleSet, tuples[1]);
cp.addTuple(bicycleSet, tuples[2]);
cp.addTuple(bicycleSet, tuples[3]);
cp.addTuple(bicycleSet, tuples[4]);
cp.addTuple(bicycleSet, tuples[5]);

In the C# API, the tupleset is created using the method CP.IntTable and built as
follows:

IIntTupleSet bicycleSet = cp.IntTable(5);
int[][] tuples = { new int [] {1, 57, 12, 3, 1490},

new int [] {2, 57, 13, 5, 1340},
new int [] {3, 60, 14, 3, 1790},
new int [] {4, 65, 14, 7, 1550},
new int [] {5, 67, 15, 2, 2070},
new int [] {6, 70, 15, 2, 1990}};

cp.AddTuple(bicycleSet, tuples[0]);
cp.AddTuple(bicycleSet, tuples[1]);
cp.AddTuple(bicycleSet, tuples[2]);
cp.AddTuple(bicycleSet, tuples[3]);
cp.AddTuple(bicycleSet, tuples[4]);
cp.AddTuple(bicycleSet, tuples[5]);

A tupleset can be used as an argument to a compatibility constraint in order to
enforce the possible combinations allowed for a solution.

Piecewise linear functions
Piecewise linear functions are typically used in scheduling models to model a
known function of time.

In CP Optimizer, piecewise linear functions are typically used in modeling a
known function of time, for instance the cost that is incurred for completing an
activity after a known date. A piecewise linear function is a function defined on an
interval [xmin, xmax) which is partitioned into segments such that over each
segment, the function is linear.

When two consecutive segments of the function are colinear, these segments are
merged so that the function is always represented with the minimal number of
segments.

In the C++ API of CP Optimizer, the interface IloNumToNumSegmentFunction
represents piecewise linear functions.

In the Java API of CP Optimizer, the class IloNumToNumSegmentFunction represents
piecewise linear functions.
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In the C# API of CP Optimizer, the interface INumToNumSegmentFunction represents
piecewise linear functions.

Note:

Piecewise linear function

A piecewise linear function is a function that is defined on an interval that is
partitioned into segments such that over each segment, the function is linear.

Each interval [x1, x2) on which the function is linear is called a segment.

When two consecutive segments of the function are colinear, these segments are
merged so that the function is always represented with the minimal number of
segments.

Step functions
Step functions are typically used in scheduling models to model the efficiency of a
resource over time.

In CP Optimizer, stepwise functions are typically used to model the efficiency of a
resource over time. A stepwise function is a special case of piecewise linear
function where all slopes are equal to 0 and the domain and image of the function
are integer.

When two consecutive steps of the function have the same value, these steps are
merged so that the function is always represented with the minimal number of
steps.

In the C++ API of CP Optimizer, the class IloNumToNumStepFunction represents
step functions.

In the Java API of CP Optimizer, the interface IloNumToNumStepFunction represents
step functions.

In the C# API of CP Optimizer, the interface INumToNumStepFunction represents
step functions.

Note:

Step function

Step functions are a special case of piecewise linear function where all slopes are
equal to 0 and the domain and image of the function are integer.

Each interval [x1, x2) on which the function has the same value is called a step.

When two consecutive steps of the function have the same value, these steps are
merged so that the function is always represented with the minimal number of
steps.

Defining decision variables and expressions
Decision variables represent the unknown information in a problem. Expressions
are built using decision variables, constants and other expressions.
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Integer decision variables
Integer decision variables represent unknown information in a problem.

Integer decision variables represent unknown information in a problem and differ
from normal programming variables in that they have domains of possible values
and may have constraints placed on the allowed combinations of theses values.

These decision variables are defined by the lower bound and upper bound for the
variable. In the C++ API, the following constructor creates a constrained integer
variable with bounds -1 and 10:

IloIntVar myIntVar(env, -1, 10);

In the Java API, you create a constrained integer variable with bounds -1 and 10
with the method IloCP.intVar:

IloIntVar myIntVar = cp.intVar(-1, 10);

In the C# API, you create a constrained integer variable with bounds -1 and 10
with the method CP.IntVar:

IIntVar myIntVar = cp.IntVar(-1, 10);

In any solution, the value assigned by the optimizer to an integer decision variable
must be between the lower and upper bounds, inclusive, of that variable. During
the modeling stage, you may also modify the lower and upper bounds of a
variable.

In the C++ API of CP Optimizer, the class IloIntVar represents integer decision
variables.

In the Java API of CP Optimizer, the interface IloIntVar represents integer
decision variables.

In the C# API of CP Optimizer, the interface IIntVar represents integer decision
variables.

Note:

Integer decision variable

Integer decision variables represent unknown information in a problem.

Typically, the possible values are represented as a domain of integers with an
upper bound and a lower bound. These variables are said to be constrained
because constraints can be placed on them.

An interval variable can be specified as being optional, meaning that the interval
can be absent from the solution schedule

Interval decision variables
Interval decision variables represent intervals of time whose positions in time are
unknown.

An interval decision variable represents an unknown of a scheduling problem, in
particular an interval of time during which something happens (an activity is
carried out) whose position in time is unknown. An interval is characterized by a
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start value, an end value and a size. The start and end of an interval variable must
be in [IloIntervalMin..IloIntervalMax]. An important feature of interval decision
variables is that they can be optional, that is, it is possible to model that an interval
variable can be absent from the solution schedule.

Sometimes the intensity of “work” is not the same during the whole interval. For
example, consider a worker who does not work during weekends (his work
intensity during weekends is 0%) and on Friday he works only for half a day (his
intensity during Friday is 50%). For this worker, 7 man-days work will span for
longer than just 7 days. In this example 7 man-days represent what is called the
size of the interval: that is, the length of the interval would be if the intensity
function was always at 100%. To model such situations, a range for the size of an
interval variable and an integer stepwise intensity function can be specified. The
length of the interval will be at least long enough to cover the work requirements
given by the interval size, taking into account the intensity function.

In the C++ API of CP Optimizer, the class IloIntervalVar represents interval
decision variables.

In the Java API of CP Optimizer, the interface IloIntervalVar represents interval
decision variables.

In the C# API of CP Optimizer, the interface IIntervalVar represents interval
decision variables.

The domain of an interval variable is displayed as shown in this example:
A1[0..1: 10..990 -- (5..10)5..990 --> 25..1000]

After the name of the interval decision variable (here A1), the first range (here
0..1) represents the domain of the Boolean presence status of the interval variable.
The presence range 0..1 represents an optional interval variable whose status has
still not been fixed, 0 an absent interval variable and 1 a present interval variable.
An absent interval variable is displayed as:

A1[0]

When the interval variable is possibly present, the remaining fields describe the
position of the interval variable:
v the first range in the remaining fields represents the domain of the interval start,
v the second range (between parenthesis) represents the domain of the interval

size,
v the third range represents the domain of the interval length and
v the fourth and last range represents the domain of the interval end.

Note that the second range may be omitted in case the size and length of the
interval variable are necessarily equal. When the values are fixed, the ranges
min..max are replaced by a single value. For instance, the following display
represents a fixed interval variable of size 5 that is present, starts at 10 and ends at
35:

A1[1: 10 -- (5)25 --> 35]

Note:

Interval decision variable
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Interval decision variables represent unknowns of a scheduling problem

An interval has a start time, an end time, a size and a length. An interval variable
allows for these values to be variable in the model.

Interval sequence decision variables
Interval decision sequence variables represent the orderings of sets of interval
variables.

An interval sequence decision variable is defined on a set of interval variables The
value of an interval sequence variable represents a total ordering of the interval
variables of the set. Any absent interval variables are not considered in the
ordering.

The sequence alone does not enforce any constraint on the relative position of
interval end points. For instance, an interval variable a could be sequenced before
an interval variable b in a sequence p without any impact on the relative position
between the start/end points of a and b (a could still be fixed to start after the end
of b). Different semantics can be used to define how a sequence constrains the
positions of intervals. For instance, the no overlap constraint on a sequence
variable specifies that the interval variables in the set do not overlap and that their
start and end values are ordered according to the total ordering of the sequence.

In the C++ API of CP Optimizer, the class IloIntervalSequenceVar represents
integer sequence decision variables.

In the Java API of CP Optimizer, the interface IloIntervalSequenceVar represents
integer sequence decision variables.

In the C# API of CP Optimizer, the interface IIntervalSequenceVar represents
integer sequence decision variables.

Note:

Interval sequence variable

Interval sequence decision variables represent a sequences of interval variables. A
sequence can contain a subset of the variables or be empty. In a solution, the
sequence will represent a total order over all the intervals in the set that are
present in the solution. The assigned order of interval variables in the sequence
does not necessarily determine their relative positions in time in the schedule.

Expressions
Expressions are constructed from decision variables and expressions.

Decision variables are most often used to build expressions, which in turn are used
to create the objective and constraints of the model.

In the C++ API of IBM ILOG Concert Technology, expressions are generally
represented by the class IloExpr and its subclasses IloIntExpr, representing
integer expressions, and IloNumExpr, representing numeric (floating-point)
expressions. Note that the parent classes IloIntExprArg and IloNumExprArg are
used internally by Concert Technology to build expressions. You should not use
IloIntExprArg or IloNumExprArg directly.
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In the Java API of Concert Technology, expressions are generally represented by
the interfaces IloIntExpr, representing integer expressions, and IloNumExpr,
representing numeric expressions.

In the C# API of Concert Technology, expressions are generally represented by the
interfaces IIntExpr, representing integer expressions, and INumExpr, representing
numeric expressions.

An integer expression can be written explicitly; for example, using the C++ API:
1*x[1] + 2*x[2] + 3*x[3]

where x is assumed to be an array of decision variables. Using the Java API, the
same expression could be written as:

cp.sum(cp.sum(cp.prod(1,x[1]),cp.prod(2,x[2])), cp.prod(3,x[3]))

Using the C# API, the same expression could be written as:
cp.Sum(cp.Sum(cp.Prod(1,x[1]),cp.Prod(2,x[2])), cp.Prod(3,x[3]))

Expressions can also be created incrementally, with a loop; for example using the
C++ API:

IloIntExpr expr(env);
for (int i = 0; i < x.getSize(); ++i)

expr += data[i] * x[i];

Using the Java API, the same expression could be written as:
IloIntExpr expr = cp.constant(0);
for (int i = 0; i < x.length; ++i)

expr = cp.sum(expr, cp.prod(data[i], x[i]));

Using the C# API, the same expression could be written as:
IIntExpr expr = cp.Constant(0);
for (int i = 0; i < x.Length; ++i)

expr = cp.Sum(expr, cp.Prod(data[i], x[i]));

In the C++ API, when you have finished using an expression (that is, you created
a constraint or objective with it) you can delete it by calling its method end, for
example:

expr.end();

Many Concert Technology functions return expressions. You can build even more
complicated expressions by using the Concert Technology functions representing
absolute value, integer division, maximum, minimum and others. For example,
IloAbs(x) - IloMax(y,z) is a valid expression representing the difference between
the absolute value of x and the maximum of y and z.

Note:

Expression

Values may be combined with decision variables and other expressions to form
expressions.

To combine values, variables and other expressions to form an expression, you can
use, among other functions, the operators:
v addition (+),
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v subtraction (-),
v multiplication (*),
v division (/),
v self-assigned addition (+=) and
v self-assigned subtraction (-=).

Expressions are discussed in more detail in Chapter 4, “Constraints and
expressions in CP Optimizer,” on page 29.

Domains of variables and expressions
The set of possible values of a decision variable or expression is known as its
domain.

An integer decision variable is typically created with a lower bound and an upper
bound.

The initial domain of the variable contains precisely the values from the lower
bound to the upper bound, inclusive. It is important to declare the initial domains
to be as small as possible, in order to keep the search space as small as possible.
As the optimizer works to find a solution for the problem, it will temporarily
remove values from the domain of each decision variable. The search algorithms
are discussed in detail in Chapter 6, “Search in CP Optimizer,” on page 61.

During search, expressions have domains of possible values like decision variables.
Unlike variables, these domains are not stored but instead calculated as needed
from the basic elements of the expression.

Note:

Declaring a domain

Domains for integer decision variables are declared as part of the model. In order
for the search to perform efficiently, it is important that the domains be as tight, or
small, as possible.

Declaring the objective
An objective function is used to express the cost of each potential solution.

An objective function is used to express the cost of each potential solution. When an
objective is added to a model, the problem is considered to be an optimization
problem. The CP Optimizer search handles models with at most one objective
function, though the modeling API provided by Concert Technology does not
impose this restriction.

In the C++ API and the Java API, objective functions are represented by
IloObjective. In the C# API, objectives are represented by IObjective. An
objective function can be specified by creating an objective instance directly;
however, it is common to use the functions which return an instance of
IloObjective. In the C++ API, the functions are IloMinimize and IloMaximize. In
the Java API, these functions are IloModeler.minimize and IloModeler.maximize.
In the C# API, these functions are IModeler.Minimize and IModeler.Maximize. For
example, in the C++ API, the following code defines an objective to minimize the
expression x[1] + 2*x[2] + 3*x[3]:
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IloObjective obj
= IloMinimize(env,

x[1] + 2*x[2] + 3*x[3]);

Using the Java API, the same objective could be written using the method
IloCP.minimize:

IloObjective obj
= cp.minimize(cp.sum(cp.sum(x[1],cp.prod(2,x[2])),cp.prod(3,x[3])));

Using the C# API, the same objective could be written using the method
CP.Minimize:

IObjective obj
= cp.Minimize(cp.Sum(cp.Sum(x[1],cp.Prod(2,x[2])),cp.Prod(3,x[3])));

Note:

Objective

An objective expresses the cost of possible solutions. The optimal solution to an
optimization problem is the feasible solution that, depending on the problem type,
minimizes or maximizes the cost.

After you create an objective, you must explicitly add it to the model in order for it
to be taken into account by the optimizer.

Adding constraints
Various types of constraints are available in Concert Technology for use in CP
Optimizer.

Constraint classes
Arithmetic and more complex constraints are available in Concert Technology.

IBM ILOG Concert Technology allows you to express constraints on decision
variables and expressions. In the C++ API and the Java API, constraints are
represented by IloConstraint. In the C# API, constraints are represented by the
IConstraint interface.

Arithmetic constraints
Arithmetic constraints are created by using arithmetic operators between
expressions and decision variables.

Arithmetic constraints can be created in a variety of ways.

In the C++ API, you can express constraints between expressions using the
following operators:
v equality (==),
v less than or equal to (<=),
v less than (<),
v greater than or equal to (>=),
v greater than (>) and
v not equal to (!=).
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For example, you can write a constraint that one expression is not equal to another
in the C++ API:

x[1] + 2*x[2] + 3*x[3] != 4*x[1]*x[2]

Using the Java API, the constraint could be written as:
cp.neq(cp.sum(x[1],

cp.sum(cp.prod(2,x[2]), cp.prod(3,x[3]))) ,
cp.prod(4,cp.prod(x[1],x[2])))

Likewise, using the C# API, the constraint could be written as:
cp.Neq(cp.Sum(x[1],

cp.Sum(cp.Prod(2,x[2]), cp.Prod(3,x[3]))) ,
cp.Prod(4,cp.Prod(x[1],x[2])))

Explicitly, this constraint enforces that the values the CP Optimizer search assigns
to the decision variables x[1], x[2] and x[3] must be such that the expression
x[1] + 2*x[2] + 3*x[3] does not equal the expression 4*x[1]*x[2].

After you create a constraint, you must explicitly add it to the model in order for it
to be taken into account by the optimizer.

For more details on expressing constraints, refer to the section “Arithmetic
constraints and expressions” on page 29.

Specialized constraints
Specialized constraints make it possible to express complicated relationships
between variables.

One of the most powerful features of CP Optimizer is its provision for different
kinds of constraints.

You have already seen arithmetic constraints that enable you to combine decision
variables with the usual arithmetic operators (such as addition, subtraction,
multiplication, division) to create linear and nonlinear expressions. In addition, CP
Optimizer supports constraints on expressions that are not arithmetic: absolute
value, minimum, maximum.

Specialized constraints make it possible to express complicated relations between
variables, for example, relations that would require an exponential number of
arithmetic constraints or relations that could not be expressed at all in arithmetic
terms. Specialized constraints enter into such considerations as counting values,
maintaining load weights and other critical activities.

Specialized constraints prove useful in a great many fields, in such mathematical
puzzles as magic sequences and magic squares, but also in very practical
real-world problems of allocation and scheduling. For example, the predefined “all
different” constraint states that the value assigned to each variable in an array
must be different from the values assigned to every other variable in that array.

Also, the single specialized all different constraint on n variables is logically
equivalent to (n-1)n/2 instances of the “not equal” constraint (!=), but in terms of
performance, that single constraint is much more efficient. In short, a specialized
constraint such as is highly useful, both in terms of ease of expression and
computational performance.
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For detailed information on the specialized constraints that are available in CP
Optimizer, refer to the section “Specialized constraints on integer decision
variables” on page 33 and “Constraints and expressions on interval decision
variables” on page 37 in Chapter 4, “Constraints and expressions in CP Optimizer,”
on page 29.

Combining constraints
Complex constraints may be created by combining simpler constraints using
arithmetic or logical operators.

CP Optimizer provides a simple yet powerful way to define a constraint by
combining other constraints.

This facility is based on the basic idea that constraints have value. The value of a
constraint is true (IloTrue in C++) if the constraint is satisfied and false (IloFalse)
if the constraint is not satisfied. Not only are they treated as if they have a Boolean
value, such as true or false, but effectively as if the value is 0 or 1.

Note:

Logical constraint

A logical constraint is created by combining constraints or placing constraints on
other constraints. Logical constraints are based on the idea that constraints have
value. CP Optimizer handles constraints not only as if they have a Boolean value,
such as true or false, but effectively as if the value is 0 or 1. This allows you to
combine constraints into expressions or impose constraints on constraints.

You can use the following logical operators and constraints to combine constraints:
v not (!),
v and (&&),
v or (||),
v equivalence (==),
v exclusive or (!=) and
v implication (IloIfThen) (An instance of IloIfThen represents a condition

constraint.).

Furthermore, constraints can be combined using arithmetic operators.

Some of the specialized constraints cannot be used in logical constraints.

For more details on expressing logical constraints, please refer to the section
“Logical constraints” on page 32.

Note:

Constraint

Constraints specify the restrictions on the values that may be assigned to decision
variables. To create a constraint for a model, you can:
v use an arithmetic operator between decision variables and expressions to return

a constraint,
v use a function that returns a constraint,
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v use a specialized constraint or
v use a logical operator between constraints which returns a constraint.

After you create a constraint, you must explicitly add it to the model in order for it
to be taken into account by the CP Optimizer engine.

Constraints are discussed in more detail in Chapter 4, “Constraints and expressions
in CP Optimizer,” on page 29.

Formulating a problem
Modeling objects, such as objectives, variables and constraints, are contained in a
model.

A model is a container of modeling objects, such as objectives, variables and
constraints. You must explicitly add a constraint to the model or the CP Optimizer
search engine will not use it in the search for a solution.

In the C++ API of CP Optimizer, a model is an instance of the class IloModel.
Decision variables, objectives and constraints can be added to the model with the
method IloModel::add.

In the Java API of CP Optimizer, the methods for adding object to the model are
defined in the interfaces IloModel and IloModeler and implemented in the class
IloCP. In particular, IloCP.add is one function for adding objects to the model.

Likewise, in the C# API of CP Optimizer, the methods for adding object to the
model are defined in the interface IModeler and IModelImpl and implemented in
the class CP. In particular, CP.Add is one function for adding objects to the model.

To create a model using the C++ API, the first step is to create an instance of the
class IloEnv:

IloEnv env;

(Note that creating an environment is not necessary in the C# and the Java APIs.)

The initialization of the environment creates internal data structures to be used in
the rest of the code. Once this is done, you can create model objects; here
illustrated in the C++ API:

IloIntVar x(env, 0, 10);
IloConstraint ct = (x != 0);

In the Java API, you must create the IloCP object before creating the modeling
objects:

IloCP cp = new IloCP();
IloIntVar x = cp.intVar(0, 10);
IloConstraint ct = cp.neq(x, 0);

Likewise in the C# API, you must create the CP object before creating the modeling
objects:

CP cp = new CP();
IIntVar x = cp.IntVar(0, 10);
IConstraint ct = cp.Neq(x, 0);

Once this is done, you can create model and fill it with modeling objects; here
illustrated in the C++ API:
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IloModel model(env);
model.add(ct);

In the Java API, you have already created the IloCP object before creating the
modeling objects, so adding the constraint to the model is simply:

cp.add(ct);

Likewise in the C# API, you have already created the CP object before creating the
modeling objects, so adding the constraint to the model is simply:

cp.Add(ct);

As soon as the model is completed, you are ready to solve the problem. The
processes for searching for solutions to a model are introduced in Chapter 6,
“Search in CP Optimizer,” on page 61.

When your problem solving is finished, you can reclaim memory for all modeling
objects and clean up internal data structures by calling IloEnv::end for every
environment you have created. This should be always be done before you exit
your application.

To free memory used by a model in the Java API, you use the method IloCP.end.
To free memory used by a model in the C# API, you use the method CP.End.

Note:

Model

A model is a container for modeling objects such as decision variables, objectives
and constraints.
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Chapter 4. Constraints and expressions in CP Optimizer

Constraints and expressions are building blocks that can be used to create models
in CP Optimizer applications.

Arithmetic constraints and expressions
Arithmetic constraints and expressions may consist of linear and nonlinear
arithmetic terms.

Arithmetic expressions
Arithmetic expressions consist of arithmetic terms combined by arithmetic
operations.

An arithmetic expression consists of arithmetic terms, such as x, x2, xy, or 3xy2,
combined by arithmetic operations, such as addition, subtraction, multiplication
and division.

Arithmetic expressions can appear in arithmetic relations, such as equality and
inequality. Arithmetic expressions may be linear (such as x < z + 3y) or nonlinear
(such as x < z2 + y*z + 3y). CP Optimizer supports arithmetic constraints over
integer decision variables. It also supports integer or numeric (floating-point)
expressions.

Note:

CP Optimizer supports integer decision variables. Moreover, it is possible to
constrain floating-point expressions. It is also possible to use a floating-point
expression as a term in an objective function. For example, a floating-point cost
function can be calculated from expressions using integer decision variables, like
this: cost = x/1000 + y/3.

There are no inherent restrictions on the magnitude of arithmetic operations that
you can perform with CP Optimizer expressions and decision variables. The only
limitation that you must bear in mind in your CP Optimizer application is any
possibility of overflow due to the size and configuration of your platform (that is,
limits on hardware and operating system). For example, if you multiply the largest
possible integer available on your platform by the largest possible integer, you risk
overflow because of limitations of your platform.

In the C++ API of CP Optimizer, there are overloaded operators for building
arithmetic expressions and stating constraints over them. For many arithmetic
operations, such as addition, exponentiation or modular arithmetic, there are global
functions offering a variety of signatures that accommodate many combinations of
decision variables and integer or numeric values in expressions.

In the Java API of CP Optimizer, there are methods to enable you to build
arithmetic expressions to state constraints. Many such methods are defined in the
interface IloModeler, implemented in the class IloCP.
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Likewise, in the C# API of CP Optimizer, there are similar methods for building
arithmetic expressions and stating constraints over them. The interface IModeler
defines these methods, and the class CP inherits them.

An arithmetic constraint involves one or more decision variables in an arithmetic
expression.

Table 1 summarizes the methods that support arithmetic operations to create
expressions to use in constraints. Table 2 summarizes the methods and functions
that return expressions for use in constraints. Table 3 on page 31 summarizes the
methods that implement arithmetic constraints. The reference manuals of the
application programming interfaces (APIs) document each method, operator or
global function more fully.

In those tables, the names of applications where the expressions or constraints are
used appear in parentheses, like this (sports.cpp). The applications are part of the
product, available in the appropriate subdirectory of the examples directory of your
installation.

Table 1. Arithmetic operations for use in constraints

Arithmetic operation C++ API Java API C# API

addition operator+

IloSum

(sports.cpp)

IloModeler.sum

(Facility.java)

IModeler.Sum

(Steelmill.cs)

subtraction operator-

IloDiff

IloModeler.diff

(Sports.java)

IModeler.Diff

(Sports.cs)

multiplication operator* IloModeler.prod

(Facility.java)

IModeler.Prod

(Facility.cs)

scalar product IloScalProd

(facility.cpp)

IloModeler.scalProd IModeler.ScalProd

integer division IloDiv

(sports.cpp)

IloCP.div

(Sports.java)

CP.Div

(Sports.cs)

floating-point
division

operator/ IloCP.quot CP.Quot

modular arithmetic operator%

(sports.cpp)

IloCP.modulo

(Sports.java)

CP.Modulo

(Sports.cs)

Table 2. Arithmetic expressions for use in constraints

Expression C++ API Java API C# API

standard deviation IloStandardDeviation IloCP.standardDeviationCP.StandardDeviation

minimum IloMin

(talent.cpp)

IloModeler.min

(Sports.java)

IModeler.Min

(Sports.cs)

maximum IloMax IloModeler.max IModeler.Max

counting IloCount

(teambuilding.cpp)

IloCP.count

(Facility.java)

CP.Count

(Sports.cs)
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Table 2. Arithmetic expressions for use in constraints (continued)

Expression C++ API Java API C# API

absolute value IloAbs

(sports.cpp)

IloModeler.abs

(Sports.java)

IModeler.Abs

(Sports.cs)

element or index IloElement IloCP.element

(Facility.java)

CP.Element

(Steelmill.cs)

Table 3. Arithmetic constraints

Arithmetic constraint C++ API Java API C# API

equal to operator== IloModeler.eq IModeler.Eq

not equal to operator!= IloCP.neq CP.Neq

strictly less than operator< IloCP.lt CP.Lt

strictly greater than operator> IloCP.gt CP.Gt

less than or equal to operator<= IloModeler.le IModeler.Le

greater than or equal
to

operator>= IloModeler.ge IModeler.Ge

Element expressions
Element expressions index arrays by decision variables.

An element expression indexes an array of values by a decision variable. In other
words, it allows you to treat the index into an array as a decision variable, as
something that can be constrained.

This kind of constrained indexing is conventionally expressed in other disciplines
by a very large number of binary (0-1) or Boolean variables. However, in CP
Optimizer this indirect relation can be stated straight forwardly and efficiently as
an expression that can appear in constraints.

For example, in a logistics model you might use an element expression in a
constraint to index products available in warehouses. Or in a sports scheduling
application, your model might include two arrays, both listing all teams. An
element expression might appear in constraints between the two arrays to enforce
which teams play each other.

In the C++ API of CP Optimizer, the global function IloElement has many
signatures that enable you to build element expressions. The index operator,
operator[], allows you to index an array of integers or constrained integer
variables using a constrained integer variable.

In the Java API of CP Optimizer, the methods IloCP.element allow you to build
element expressions. See the example Steelmill.java for a sample of this
expression in an application.

Likewise, in the C# API of CP Optimizer, the methods CP.Element represent
element expressions. For samples of this expression, see Teambuilding.cs,
Facility.cs, or Steelmill.cs.
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Division expression examples
Both integer division and floating-point division expressions can be modeled in
arithmetic expressions.

Both integer division and floating-point division can be modeled in arithmetic
expressions. To clarify the distinction between integer division and floating-point
division of decision variables in constraints, consider these brief examples.

Let x be a decision variable that can assume the value 9:
v In the C++ API, IloIntVar x(env, 9, 9, "x");

v In the Java API, IloIntVar x = cp.intVar(9, 9);

v In the C# API, IIntVar x = cp.IntVar(9, 9);

Then integer division with IloDiv, or IloCP.div or CP.Div of x divided by 10
results in the value 0 (zero).
v Consequently, a constraint stating "IloDiv(x, 10) == 0" is true.
v In contrast, a constraint stating "IloDiv(x, 10) >= 0.5" is false.

However, floating-point division with operator/, or IloCP.quot or CP.Quot of x
divided by 10 results in the value 0.9.
v Consequently, a constraint stating "x/10 == 0" is false.
v A constraint stating "x/10 >= 0.5" is true.

Logical constraints
Logical constraints make it possible to model complicated logical relations.

Logical constraints enforce logical relations. Logical relations include:
v logical-and (conjunction); for example, a warehouse in a logistics application

must be in the same region and stock the product;
v logical-or (disjunction); for example, a crew in a rostering application must

include a nurse or an emergency medical technician;
v logical-not (negation); for example, total cost must not exceed budget;
v if-then (implication); for example, if inventory is below threshold, then re-order.

A logical constraint makes it possible to express complicated relations between
decision variables, relations that would require an impractical number of arithmetic
constraints or relations that could not be expressed at all in arithmetic terms.
Table 4 summarizes the logical constraints available in CP Optimizer.

Table 4. Logical constraints in CP Optimizer

Logical constraint C++ API Java API C# API

logical-and
(conjunction)

IloAnd

operator&&

(facility.cpp)

IloModeler.and IModeler.And

logical-or
(disjunction)

IloOr

operator||

(teambuilding.cpp)

IloModeler.or

(Teambuilding.java)

IModeler.Or

(Teambuilding.cs)
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Table 4. Logical constraints in CP Optimizer (continued)

Logical constraint C++ API Java API C# API

logical-not (negation) operator!

IloNot

(talent.cpp)

IloModeler.not IModeler.Not

logical if-then
(implication)

IloIfThen

(ppp.cpp)

IloModeler.ifThen

IloCP.ifThenElse

IModeler.IfThen

(Ppp.cs)

Compatibility constraints
Compatibility constraints enforce allowed or forbidden combinations of values
among decision variables.

CP Optimizer offers two predefined constraints that enforce compatibility among
decision variables. These compatibility constraints make it easier for you to declare
allowed or forbidden values that a decision variable or a group of decision
variables may assume. These constraints can apply to any number of variables
simultaneously.

You use a tuple (that is, an ordered set, such as an array) to declare allowed or
forbidden values. This tuple has arity equal to the number of decision variables
under consideration. That is, the number of fields in the tuple is the same as the
number of decision variables that the constraint applies to. Each tuple declares an
allowed or forbidden combination.

In the C++ API of CP Optimizer, the global functions IloAllowedAssignments and
IloForbiddenAssignments return compatibility constraints. For samples of these
constraints, see teambuilding.cpp or sports.cpp.

In the Java API of CP Optimizer, the methods IloCP.allowedAssignments and
IloCP.forbiddenAssignments represent compatibility constraints. For samples of
these constraints, see Teambuilding.java or Sports.java.

In the C# API of CP Optimizer, the methods CP.AllowedAssignments and
CP.ForbiddenAssignments represent compatibility constraints. For samples of these
constraints, see Teambuilding.cs or Sports.cs.

Specialized constraints on integer decision variables
Specialized constraints on integer decision variables are designed and implemented
to reduce domains of variables efficiently during a search.

Overview
Specialized constraints on integer decision variables are designed and implemented
to reduce domains of variables efficiently during a search.

Theoretically, these constraints can be written from elementary arithmetic
constraints and expressions, but CP Optimizer offers you these specialized
constraints, ready to use in your application. They have been designed and
implemented to reduce domains of variables efficiently during a search.
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All different constraint
The all different constraint is a specialized constraint which forces every decision
variable in a given group to assume a value different from the value of every other
decision variable in that group.

An all different constraint forces every decision variable in a given group to
assume a value different from the value of every other decision variable in that
group. In other words, no two of those decision variables will have the same
integer value when this constraint is satisfied.

For example, if the decision variables x, y and z share the domain of integers from
1 through 10, inclusive, then an all different constraint applied to x, y and z could
return such solutions as 1, 2, 3 or 4, 6, 8 or 9, 5, 2. However, 1,1, 2 would not be a
solution to an all different constraint over those three variables.

In the C++ API of CP Optimizer, the class IloAllDiff represents all different
constraints. For samples of this constraint, see teambuilding.cpp or sports.cpp.

In the Java API of CP Optimizer, the method IloCP.allDiff represents all different
constraints. For samples of this constraint, see Teambuilding.java or Sports.java.

In the C# API of CP Optimizer, the method CP.AllDiff represents all different
constraints. For samples of this constraint, see Teambuilding.cs or Sports.cs.

Minimum distance constraint
The minimum distance constraint is a specialized constraint which forces every
decision variable in a given group to assume values which differ by at least the
specified amount.

A minimum distance constraint resembles an all different constraint in that it
accepts a group of decision variables (such as an array of integer decision
variables) and ensures that they differ from each other. In fact, it makes sure that
they differ from one another by a given amount, so that they are at least a certain
distance apart from each other.

For example, the decision variables x, y and z share the domain of integers from 1
through 10, inclusive, and the minimum distance between them should be 3, then
a minimum distance constraint applied to x, y and z with distance 3 could return
such solutions as 1, 4, 8 or 7, 10, 4. However, 2, 4, 6 would not be an acceptable
solution because y would be closer to x or z than the stipulated distance.

In the C++ API of CP Optimizer, the class IloAllMinDistance represents a
minimum distance constraint.

In the Java API of CP Optimizer, the method IloCP.allMinDistance represents a
minimum distance constraint.

In the C# API of CP Optimizer, the method CP.AllMinDistance represents a
minimum distance constraint.

Packing constraint
The packing constraint is a specialized constraint which maintains the load of a
group of containers or bins, given a group of weighted items and an assignment of
items to containers.
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A packing constraint maintains the load of a group of containers or bins, given a
group of weighted items and an assignment of items to containers.

To understand what a packing constraint can do, consider n items and m
containers. Suppose the containers are numbered consecutively from zero. Each
item i has an integer weight wi. Each item can go in only one container, and each
item has associated with it a constrained integer variable pi to specify in which
container item i is placed. Associated with each container j is an integer variable lj
representing the load in that container. The load is the sum of the weights of the
items which have been assigned to that container. A container is used if at least
one item is placed in that container.

Given this scenario, you can use a packing constraint to:
v You can set the capacity of each container. In other words, you can place an

upper bound on the load variable.
v With a packing constraint, you can also make sure that the total sum of the

loads of the containers is equal to the sum of the weights of the items being
placed.

v You can specify the number of containers used. In fact, you can specify a
particular group of containers to use.

In the C++ API of CP Optimizer, the class IloPack returns a packing constraint.
For samples of this constraint, see ppp.cpp or steelmill.cpp.

In the Java API of CP Optimizer, the method IloCP.pack represents a packing
constraint. For samples of this constraint, see Ppp.java or Steelmill.java.

In the C# API of CP Optimizer, the method CP.Pack represents a packing
constraint. For samples of this constraints, see Ppp.cs or Steelmill.cs.

Inverse constraint
The inverse constraint is a specialized constraint which forces two groups of
decision variables to be in strict correspondence with each other.

An inverse constraint forces two groups of decision variables to be in strict
correspondence with each other. The two groups of decision variables are
conventionally represented by two arrays. An inverse constraint makes sure that
the i-th item of one array is the inverse of the i-th item of the other array, and vice
versa.

In formal terms, if the length of the array f is n, and the length of the array invf is
m, then the inverse constraint guarantees that:
v for all i in the interval [0,n-1], if f[i] is in [0,m-1], then invf[f[i]]==i;
v for all j in the interval [0,m-1], if invf[j] is in [0,n-1], then f[invf[j]]==j.

In the C++ API of CP Optimizer, the class IloInverse represents inverse
constraints. For samples of this constraint, see sports.cpp or talent.cpp.

In the Java API of CP Optimizer, the method IloCP.inverse represents inverse
constraints. For a sample of this constraint, see Sports.java.

Likewise, in the C# API of CP Optimizer, the method CP.Inverse represents
inverse constraints. For a sample of this constraints, see Sports.cs.
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Lexicographic constraint
The lexicographic constraint is a specialized constraint which maintains order
between two groups of expressions.

A lexicographic constraint maintains order between two groups of expressions. The
two groups of expressions are conventionally specified in two arrays that must be
the same length. A lexicographic constraint compares the expressions, index by
index, to see which is greater in lexicographic terms.

Informally, you might think of a lexicographic constraint as putting two arrays in
alphabetic order relative to each other.

In formal terms, a lexicographic constraint over two arrays x and y maintains that
x is less than or equal to y in the lexicographical sense of the term. That is, either
both arrays are equal, index by index, or there exists an index i strictly less than
the length of the array x such that for all j < i, x[j] = y[j] and x[i] < y[i].

In the C++ API of CP Optimizer, the global function IloLexicographic returns a
lexicographic constraint.

In the Java API of CP Optimizer, the method IloCP.lexicographic returns a
lexicographic constraint.

Likewise, in the C# API of CP Optimizer, the method CP.Lexicographic returns a
lexicographic constraint.

Distribution constraint
The distribution constraint is a specialized constraint which counts the number of
occurrences of several values among the decision variables in an array of decision
variables.

A distribution constraint is a counting constraint used to count the number of
occurrences of several values among the constrained variables in an array of
constrained variables. You can also use an instance of this class to force the
constrained variables of an array to assume values in such a way that only a
limited number of the constrained variables assume each value.

To understand what a distribution constraint can do, consider an array of decision
variables, called vars. Given an array of integers values of length n called values
and an array of the same length of decision variables called cards. The i-th
element of the array cards represents the number of times the i-th element of
values appears in the array of decision variables vars.

When an instance of this class is created by a constructor with no “values”
argument), then the array of values that are being counted must be an array of
consecutive integers starting with 0 (zero). In that case, for each i, the i-th element
of cards is equal to the number of occurrences of i in the array vars.

In the C++ API of CP Optimizer, the class IloDistribute represents distribution
constraints.

In the Java API of CP Optimizer, the method IloCP.distribute represents
distribution constraints.
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Likewise, in the C# API of CP Optimizer, the method CP.Distribute represents
distribution constraints.

Constraints and expressions on interval decision variables
CP Optimizer provides specialized expressions and constraints on interval decision
variables.

Expressions on interval decision variables
CP Optimizer provides specialized expressions on interval decision variables.

Numerical expressions can be created from interval decision variables. These
expressions can be used to:
v define a term for the cost function and
v connect interval variables to integer and floating point expressions.

CP Optimizer provides access to the integer expressions that represent the start of,
end of, length of and size of an interval variable. Special care must be taken in the
case of optional intervals: in this case an integer value absVal must be specified
which represents the value of the expression when the interval is absent. If this
value is omitted, it is assumed to be 0.

Numerical expressions are also provided that allow you to evaluate a piecewise
linear function on these four attributes of an interval variable. A numerical value
absVal can be specified that represents the value of the expression when the
interval is absent. If this value is omitted, it is assumed to be 0.

In the C++ API of CP Optimizer, the global functions IloStartOf, IloEndOf,
IloLengthOf and IloSizeOf return integer expressions representing the various
attributes of an interval decision variable. The global functions IloStartEval,
IloEndEval, IloLengthEval and IloSizeEval return numerical expressions
representing the value of the given function evaluated on the appropriate attribute
the given of interval variable whenever the interval variable is present.

In the Java API of CP Optimizer, the methods IloCP.startOf, IloCP.endOf,
IloCP.lengthOf and IloCP.sizeOf return integer expressions representing the
various attributes of an interval decision variable. The global functions
IloCP.startEval, IloCP.endEval, IloCP.lengthEval and IloCP.sizeEval return
numerical expressions representing the value of the given function evaluated on
the appropriate attribute the given of interval variable whenever the interval
variable is present.

In the C# API of CP Optimizer, the methods CP.StartOf, CP.EndOf, CP.LengthOf
and CP.SizeOf return integer expressions representing the various attributes of an
interval decision variable. The global functions CP.StartEval, CP.EndEval,
CP.LengthEval and CP.SizeEval return numerical expressions representing the
value of the given function evaluated on the appropriate attribute the given of
interval variable whenever the interval variable is present.

Forbidden values constraints
Interval variables can be constrained to not start, end or overlap a set of fixed
dates
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It may be necessary to state that an interval cannot start, cannot end or cannot
overlap a set of fixed dates. CP Optimizer provides constraints for modeling these
requirements. Given an interval variable and an integer stepwise function, the
forbidden start constraint states that whenever the interval is present, it cannot
start at a point where the function evaluates to zero. Given an interval variable a
and an integer stepwise function F, the forbidden end constraint states that
whenever the interval is present, it cannot end at a value t where F(t-1) = 0. Given
an interval variable and an integer stepwise function, the forbidden extent
constraint states that whenever the interval is present, it cannot overlap a point
where the function evaluates to zero.

In the C++ API of CP Optimizer, the global functions IloForbidStart,
IloForbidEnd and IloForbidExtent return constraints representing restrictions on
when an interval can start, end or be placed.

In the Java API of CP Optimizer, the methods IloCP.forbidStart, IloCP.forbidEnd
and IloCP.forbidExtent return constraints representing restrictions on when an
interval can start, end or be placed.

In the C# API of CP Optimizer, the methods CP.ForbidStart, CP.ForbidEnd and
CP.ForbidExtent return constraints representing restrictions on when an interval
can start, end or be placed.

Precedence constraints on interval variables
Interval variables can be constrained to have relative temporal position.

This section describes common constraints in scheduling, namely, precedence
constraints. These constraints restrict the relative temporal position of interval
variables in a solution. For instance a precedence constraint can model the fact that
a given activity must end before another given activity starts (optionally with some
minimum delay). If one or both of the interval variables of the precedence
constraint is absent, then the precedence is systematically considered to be true
and thus, it does not impact the schedule.

Note:

Precedence constraint

Precedence constraints are used to specify when one interval variable must start or
end with respect to the start or end time of another interval. The following types
of precedence constraints are available; if a and b denote interval variables, both
interval variables are present and delay is a number or integer expression (0 by
default), then:
v endBeforeEnd(a, b, delay) constrains that at least the given delay should elapse

between the end of a and the end of b. It imposes the inequality end(a) + delay
<= end(b)

v endBeforeStart(a, b, delay) constrains that at least the given delay should
elapse between the end of a and the start of b. It imposes the inequality end(a)
+ delay <= start(b).

v endAtEnd(a, b, delay) constrains the given delay to separate the end of a and
the end of b. It imposes the equality end(a) + delay == end(b).

v endAtStart(a, b, delay) constrains the given delay to separate the end of a and
the start of b. It imposes the equality end(a) + delay == start(b).
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v startBeforeEnd(a, b, delay) constrains that at least the given delay should
elapse between the start of a and the end of b. It imposes the inequality
start(a) + delay <= end(b).

v startBeforeStart(a, b, delay) constrains that at least the given delay should
elapse between the start of a and the start of b. It imposes the inequality
start(a) + delay <= start(b).

v startAtEnd(a, b, delay) constrains the given delay to separate the start of a
and the end of b. It imposes the equality start(a) + delay == end(b).

v startAtStart(a, b, delay) constrains the given delay to separate the start of a
and the start of b. It imposes the equality start(a) + delay == start(b).

If either interval a or b is not present in the solution, the constraint is automatically
satisfied, and it is as if the constraint was never imposed.

In the C++ API of CP Optimizer, the global functions IloEndBeforeEnd,
IloEndBeforeStart, IloEndAtEnd, IloEndAtStart, IloStartBeforeEnd,
IloStartBeforeStart, IloStartAtEnd and IloStartAtStart return precedence
constraints.

In the Java API of CP Optimizer, the methods IloCP.endBeforeEnd,
IloCP.endBeforeStart, IloCP.endAtEnd, IloCP.endAtStart, IloCP.startBeforeEnd,
IloCP.startBeforeStart, IloCP.startAtEnd and IloCP.startAtStart return
precedence constraints.

In the C# API of CP Optimizer, the methods CP.EndBeforeEnd, CP.EndBeforeStart,
CP.EndAtEnd, CP.EndAtStart, IloCP.startBeforeEnd, IloCP.startBeforeStart,
IloCP.startAtEnd and IloCP.startAtStart return precedence constraints.

Logical constraints on interval variables
Logical constraints on interval variables may be modeled using presence
constraints.

The presence status of interval variables can be restricted by logical constraints.
The presence constraint states that a given interval variable must be present. Of
course, this constraint may be used in logical constraints. For example, given two
optional intervals a and b, a logical constraint could be that if interval a is present
then b must be present too. This can be modeled using the presence constraint.

In the C++ API of CP Optimizer, the global function IloPresenceOf returns a
constraint that states that a given interval must be present.

In the Java API of CP Optimizer, the method IloCP.presenceOf returns a
constraint that states that a given interval must be present.

In the C# API of CP Optimizer, the method CP.PresenceOf returns a constraint that
states that a given interval must be present.

Isomorphism constraints on interval variables
The isomorphism constraint constrains two arrays of interval variables.

The isomorphism constraint "synchronizes" the presence of each index pair of
interval variables in the two arrays. The isomorphism constraint is used when a set
of operations is subject to two independent scheduling models.
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Consider two sets of interval variables, A and B. This constraint states that, in a
solution, there is a 1-to-1 correspondence between the present intervals of A and
the present intervals of B; two intervals in correspondence have the same start and
end values. The isomorphism constraint is useful to enforce some patterns of
constraints on a set of interval variables

In the C++ API of CP Optimizer, the class IloIsomorphism represents an
isomorphism constraint between two interval variable arrays.

In the Java API of CP Optimizer, the method IloCP.isomorphism returns an
isomorphism constraint between two interval variable arrays.

In the C# API of CP Optimizer, the method CP.Isomorphism returns an
isomorphism constraint between two interval variable array.

Constraints on groups of interval variables
CP Optimizer provides specialized constraints on groups of interval variables.

Constraints over groups of intervals allow hierarchical creation of the model by
“encapsulating” a group of interval variables by one “high level” interval.

The spanning constraint states that a given interval spans over all present intervals
from a given set. That is, the given interval starts together with the first present
interval from the set and ends together with the last one.

In the C++ API of CP Optimizer, the class IloSpan represents a spanning
constraint.

In the Java API of CP Optimizer, the method IloCP.span returns a spanning
constraint.

In the C# API of CP Optimizer, the method CP.Span returns a spanning constraint.

The alternative constraint models an exclusive alternative among a set of intervals.
If a given interval a is present then exactly one of the intervals of the set is present
and interval a starts and ends together with this chosen one.

In the C++ API of CP Optimizer, the class IloAlternative represents an alternative
constraint.

In the Java API of CP Optimizer, the method IloCP.alternative returns an
alternative constraint.

In the C# API of CP Optimizer, the method CP.Alternative returns an alternative
constraint.

The synchronization constraint makes the intervals in the given set start and end
together with an interval a, if a is present.

In the C++ API of CP Optimizer, the class IloSynchronize represents a
synchronization constraint.

In the Java API of CP Optimizer, the method IloCP.synchronize returns a
synchronization constraint.
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In the C# API of CP Optimizer, the method CP.Synchronize returns a
synchronization constraint.

Sequence constraints on interval variables and interval
sequence variables

Groups of interval variables may be constrained to have relative positions of the
start and end points of the interval variables.

An interval sequence variable alone does not enforce any constraint on the relative
position of the end points of the interval variables. For instance, an interval
variable a could be sequenced before an interval variable b in a sequence p without
any impact on the relative position between the start/end points of a and b (a
could still be fixed to start after the end of b). Different semantics can be used to
define how a sequence constrains the positions of intervals.

There are four sequencing constraints available on sequence variables. The first in
sequence constraint on an interval variable and an interval sequence variable states
that if the interval variable is present, then it will be the first interval of the
sequence. The last in sequence constraint on an interval variable and an interval
sequence variable states that if an interval variable is present, it will be the last
interval of the sequence. The before constraint on an interval sequence variable and
two interval variable states that if both interval variables are present, then the first
interval variable will appear in the sequence before the other interval. The
previous constraint on an interval sequence variable and two interval variable
states that if both interval variables are present then the first interval variable will
be just before the other in the sequence, that is, it will appear before the second
and no other interval will be sequenced between the two intervals.

In the C++ API of CP Optimizer, the functions IloFirst, IloLast, IloBefore and
IloPrev represent the sequencing constraints.

In the Java API of CP Optimizer, the methods IloCP.first, IloCP.last,
IloCP.before and IloCP.prev represent the sequencing constraints.

In the C# API of CP Optimizer, the methods CP.First, CP.Last, CP.Before and
CP.Prev represent the sequencing constraints.

The no overlap constraint on an interval sequence variable p states that the
sequence defines a chain of non-overlapping intervals, any interval in the chain
being constrained to end before the start of the next interval in the chain. This
constraint is typically useful for modeling disjunctive resources.

A transition distance matrix can be specified, which defines the minimal distance
that must separate two consecutive intervals in the sequence.

In the C++ API of CP Optimizer, the class IloNoOverlap represents a no overlap
constraint.

In the Java API of CP Optimizer, the method IloCP.noOverlap returns a no overlap
constraint.

In the C# API of CP Optimizer, the method CP.NoOverlap returns a no overlap
constraint.
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Constraints and expressions on cumulative (cumul) function
expressions

Cumulative usage of renewable resources can be represented by cumulative
function expressions.

Cumul function expressions
Cumulative function expressions represent the cumulative usage of renewable
resources. .

In scheduling problems involving cumulative resources (also known as renewable
resources), the cumulated usage of the resource by the activities is usually
represented by a function of time. An activity usually increases the cumulated
resource usage function at its start time and decreases it when it releases the
resource at its end time (pulse function). For resources that can be produced and
consumed by activities (for instance the content of an inventory or a tank), the
resource level can also be described as a function of time, production activities will
increase the resource level whereas consuming activities will decrease it. In these
type of problems, the cumulated contribution of activities on the resource can be
represented by a function of time and constraints can be posted on this function,
for instance a maximal or a safety level.

CP Optimizer introduces the notion of cumulative (cumul) function expression
which is a function that represents the sum of individual contributions of intervals.
A family of elementary cumul function expressions describes the individual
contribution of an interval variable (or a fixed interval of time). These expressions
cover the main use-cases mentioned above: pulse for usage of a cumulative
resource, step for resource production/consumption. When the elementary cumul
functions that define a cumul function are fixed (and thus, so are their related
intervals), the expression is fixed. CP Optimizer provides several constraints over
cumul functions. These constraints allow restriction of the possible values of the
function over the complete horizon or over some fixed or variable interval. For
applications where the actual quantity of resource that is used, produced or
consumed by intervals is an unknown of the problem, expressions are available for
constraining these quantities.

In the C++ API of CP Optimizer, the class IloCumulFunctionExpr represents a
cumul function expression.

In the Java API of CP Optimizer, the method IloCP.cumulFunctionExpr returns a
cumul function expression.

In the C# API of CP Optimizer, the method CP.CumulFunctionExpr returns a cumul
function expression.

Elementary cumul function expressions
Elementary cumul functions represent the effects of an interval variable on a cumul
function.

The effects of an interval variable on a cumul function are modeled using
elementary cumul functions. An elementary pulse function increases or decreases
the level of the function by a given amount for the length of a given interval
variable or fixed interval. An elementary step function increases or decreases the
level of the function by a given amount at a given time. An elementary step at
start function increases or decreases the level of the function by a given amount at
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the start of a given interval variable. An elementary step at end function increases
or decreases the level of the function by a given amount at the end of a given
interval variable.

In the C++ API of CP Optimizer, the functions IloPulse, IloStep, IloStepAtStart
and IloStepAtEnd return elementary cumul functions.

In the Java API of CP Optimizer, the methods IloCP.pulse, IloCP.step,
IloCP.stepAtStart and IloCP.stepAtEnd return elementary cumul functions.

In the C# API of CP Optimizer, the methods CP.Pulse, CP.Step, CP.StepAtStart
and CP.StepAtEnd return elementary cumul functions.

Expressions on cumul function expressions
The height of cumul functions is represented by a family of integer expressions.

The actual height of a cumul function may be an unknown of the problem. CP
Optimizer provides a family of integer expressions to control this height. Some of
these expressions define a range of possible values for the actual height of the
function when a given interval variable is present. The actual height is an
unknown of the problem, and some integer expressions to control this height are
provided.

The height at start expression returns the value of the contribution of the given
interval a to the given cumul function evaluated at the start of a that is, it
measures the contribution of interval a to the cumul function at its start point.
Similarly, the height at end expression returns the value of the contribution of the
given interval a to the given cumul function evaluated at the end of a. An
additional integer value absVal can be specified at the construction of the
expression in which case that will be the value returned by the expression when
the interval is absent otherwise, if no value is specified, the expression will be
equal to 0 when the interval is absent.

In the C++ API of CP Optimizer, the functions IloHeightAtStart and
IloHeightAtEnd return integer expressions representing the total contribution of the
start or and of an interval variable to a cumul function.

In the Java API of CP Optimizer, the methods IloCP.heightAtStart and
IloCP.heightAtEnd return integer expressions representing the total contribution of
the start or and of an interval variable to a cumul function.

In the C# API of CP Optimizer, the methods CP.HeightAtStart and CP.HeightAtEnd
return integer expressions representing the total contribution of the start or and of
an interval variable to a cumul function.

Constraints on cumul function expressions
Cumul functions can be constrained to evaluate within a certain range of values
for a fixed interval or an interval variable.

Cumul functions can be constrained to evaluate within a certain range of values
for a fixed interval or an interval variable. A simple less than or equal constraint
on inequality constraint on a cumul function states that the domain of values of
the cumul function cannot exceed the given value anywhere along the temporal
axis. An “always equal” range constraint on a cumul function states that the cumul
expression function must evaluate to a given value everywhere on a fixed interval
or from the start to end of a given interval variable. An “always in” range
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constraint on a cumul function states that the domain of the cumul expression
function must evaluate to within a certain range at each point within a fixed
interval or from the start to end of a given interval variable.

Range constraints on cumul functions cannot be used in logical constraints of CP
Optimizer, because any logical constraint involving interval variables must be
captured via the presence Boolean value on the interval handled by the presence
constraint.

In the C++ API of CP Optimizer, the functions IloAlwaysIn, IloAlwaysEqual,
operator<= and operator>= return range constraints on cumul functions.

In the Java API of CP Optimizer, the methods IloCP.alwaysIn, IloCP.alwaysEqual,
IloCP.le and IloCP.ge return range constraints on cumul functions.

In the C# API of CP Optimizer, the methods CP.AlwaysIn, CP.AlwaysEqual, CP.Le
and CP.Ge return range constraints on cumul functions.

Constraints on state functions
The evolution of a state function may be constrained using specialized constraints.

A state function is a decision variable whose value is a set of non-overlapping
intervals over which the function maintains a particular non-negative integer state.
In between those intervals, the state of the function is not defined, typically
because of an ongoing transition between two states.

A set of constraints is available to restrict the evolution of a state function. These
constraints allow you to specify that:
v the state of the function must be defined and should remain equal to a given

state everywhere over a given fixed or variable interval.
v the state of the function must be defined and should remain constant (no matter

its value) everywhere over a given fixed or variable interval.
v intervals requiring the state of the function to be defined cannot overlap a given

fixed or variable interval.
v everywhere over a given fixed or variable interval, the state of the function, if

defined, must remain within a given range of states.

In the C++ API of CP Optimizer, the functions IloAlwaysIn, IloAlwaysEqual,
IloAlwaysConstant and IloAlwaysNoState return state constraints.

In the Java API of CP Optimizer, the methods IloCP.alwaysIn, IloCP.alwaysEqual,
IloCP.alwaysConstant and IloCP.alwaysNoState return state constraints.

In the C# API of CP Optimizer, the methods CP.AlwaysIn, CP.AlwaysEqual,
CP.AlwaysConstant and CP.AlwaysNoState return state constraints.
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Chapter 5. Constraint propagation in CP Optimizer

CP Optimizer solves a model using constraint propagation and constructive search
with search strategies.

Overview
CP Optimizer solves a model using constraint propagation and constructive search
with search strategies.

CP Optimizer solves a model using constraint propagation and constructive search
with search strategies. There may be multiple algorithms available for reducing
domains for decision variables incident on a specific constraint type.

The examples in this section are for illustrating the effect of different propagation
levels and have been written using the C++ API.

The term constraint propagation refers to two distinct processes, domain reduction
and communicating these reductions amongst the constraints. These two processes
are described in a general sense first, then the details of domain reduction for each
type of constraint follow the general description.

Domain reduction
Constraint propagation reduces the domains of decision variables.

Each decision variable in an IBM ILOG Concert Technology model has a domain
that is the set of its possible values.

For instance, the domain of the decision variable
IloIntVar x(env, -1, 2);

is the set of values {-1, 0, 1, 2} , represented as [-1..2].

Note:

In IBM ILOG Concert Technology and CP Optimizer, square brackets denote the
domain of decision variables. For example, [5 12] denotes a domain as a set
consisting of precisely two integers, 5 and 12. In contrast, [5..12] denotes a domain
as a range of integers, that is, the interval of integers from 5 to 12, so it consists of
5, 6, 7, 8, 9, 10, 11 and 12.

A constraint is stated over one or more decision variables and restricts the possible
assignments of values to these variables. The possible assignments are the
solutions of the constraint. For instance, the constraint x <= y allows the
assignments x = 0, y = 1 or x = 2, y = 2 but not x = 3, y = 2.

A constraint can perform domain reduction on its decision variables to eliminate
from their domains values that do not belong to a solution of the constraint. When
the domain reduction algorithm is such that it removes all the values that do not
belong to a solution, the process is called full domain reduction. Full domain
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reduction sometimes can be very costly in terms of computation time, so, in
practice, the domain reduction performed by a constraint does not necessarily
eliminate all inconsistent values.

As an example, consider the variables x and y, each of which has the initial
domain [1..10] and the constraint x + y <= 5.

The domain of each variable is the set of integer values from 1 to 10. A solution to
the constraint x + y <= 5 is the assignment to x and y any combination of values
from the set {1, 2, 3, 4}. The assignment x = 5 does not lead to a solution for this
constraint as there is no value in the domain of y that satisfies the constraint when
x = 5. A full domain reduction for this constraint eliminates all values greater than
4 from the domains of x and y, and thus the domains of x and y are reduced to the
interval [1..4].

Constraint propagation
Constraint propagation is the process of communicating the domain reduction of a
decision variable to all of the constraints that are stated over this variable.

Constraint propagation is the process of communicating the domain reduction of a
decision variable to all of the constraints that are stated over this variable. This
process can result in more domain reductions. These domain reductions, in turn,
are communicated to the appropriate constraints. This process continues until no
more variable domains can be reduced or when a domain becomes empty and a
failure occurs. An empty domain during the initial constraint propagation means
that the model has no solution.

For example, consider the decision variables y with an initial domain [0..10], z with
an initial domain [0..10] and t with an initial domain [0..1], and the constraints

y + 5*z <= 4
t != z
t != y

over these three variables.

The domain reduction of the constraint y + 5*z <= 4 reduces the domain of y to
[0..4] and z to [0]. The variable z is thus fixed to a single value. Constraint
propagation invokes domain reduction of every constraint involving z. Domain
reduction is invoked again for the constraint y + 5*z <= 4, but the variable domains
cannot be reduced further. Domain reduction of the constraint t != z is invoked
again, and because z is fixed to 0, the constraint removes the value 0 from the
domain of t. The variable t is now fixed to the value 1, and constraint propagation
invokes domain reduction of every constraint involving t, namely t != z and t != y.
The constraint that can reduce domains further is t != y. Domain reduction
removes the value 1 from the domain of y.

Constraint propagation is performed on constraints involving y; however, no more
domain reduction can be achieved and the final domains are:
v y = [0 2..4],
v z = [0] and
v t = [1].

To invoke the constraint propagation process in CP Optimizer, the propagate
function of the optimizer object is called. In the C++ API, this function is
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IloCP::propagate; in the Java API, this function is IloCP.propagate; and in the C#
API, this function is CP.Propagate. This function invokes domain reduction on
every constraint of the model and propagates the domain reductions. It returns
true (IloTrue in the C++ API) if propagation succeeds; in other words, if no empty
domains result. It returns false (IloFalse in the C++ API) otherwise.

As an example using the C++ API, a code that invokes propagation on the model
above is;

IloIntVar y(env, 0, 10);
IloIntVar z(env, 0, 10);
IloIntVar t(env, 0, 1);
IloModel model(env);
model.add(y + 5*z <= 4);
model.add(t != z);
model.add(t != y);
IloCP cp(model);
if (cp.propagate()){

cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of y = " << cp.domain(y) << std::endl;
cp.out() << " Domain of z = " << cp.domain(z) << std::endl;
cp.out() << " Domain of t = " << cp.domain(t) << std::endl;

}else{
cp.out() << " Model has no solution." << std::endl;

}

The call to the method IloCP::domain(IloIntVar x) is directed to an output
stream to display the current domain of the decision variable x. Running this code
produces the output:
Domains reduced:
Domain of y = [0 2..4]
Domain of z = [0]
Domain of t = [1]

Propagation of arithmetic constraints
Propagation of arithmetic constraints works to reduce the bounds of the incident
decision variables.

In the C++ API, CP Optimizer can handle arithmetic expressions created with the
operators +, -, * and /. Arithmetic constraints are created with arithmetic
expressions and operators like ==, <=, >=, < and >.

For example, the constraint 17*p*q + x/y <= 100, where p, q, x and y are decision
variables, can be handled by CP Optimizer. These operators are discussed in more
detail in the section “Arithmetic constraints and expressions” on page 29. The Java
API and C# API equivalents of the operators are listed there as well.

Apart from a few cases that are described below, arithmetic constraints do not
achieve full domain reduction because there does not always exist an efficient
algorithm for full domain reduction. Thus, domain reduction is mostly applied to
bounds of decision variables and is called bound reduction. Bound reduction is
considered as a good trade-off between the number of values removed and the
efficiency of the domain reduction algorithm.

For example, consider the model:
IloIntVar x(env, -7, 7);
IloIntVar y(env, -7, 7);
IloModel model(env);
model.add(0.5*x + 3*y == 5);
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The two solutions of this model are x = -2, y = 2 and x = 4, y = 1. Full constraint
propagation would give the domain of x as [-2 4] and the domain of y as [1 2].
However, CP Optimizer does not perform this domain reduction. The constraint
propagation engine does not create “holes” in the domain of x. The reduced
domain of x is [-2..4].

There are exceptions to this behavior. These are binary constraints of the form y ==
a*x + b, where y and x are variables and a and b are numerical values. In this case,
full domain reduction is achieved.

For instance consider the constraint y == 2*x over the variables x with domain
[1..3] and y with domain [0..10]. This constraint forces y to be even. Full domain
reduction is performed and reduces the domain of y to [2 4 6]. The main reason for
achieving full domain reduction in this case is that it does not hurt the efficiency of
constraint propagation, and it can be effective to propagate holes in domains from
a constraint to another when there are linking constraints like x == y in a model.

Another case is that of linear inequalities such as x + 3y - 4z <= 10. Achieving
bound reduction for these constraints is sufficient to achieve full domain reduction.

CP Optimizer provides bound reduction for expressions such as absolute value,
minimum, maximum and piecewise linear functions. On these expressions,
achieving bound reduction is sufficient to maintain full domain reduction.

In the C++ API, an absolute value expression is created with the function IloAbs.
Consider the following code:

IloIntVar x(env, -10, 20);
IloIntVar y(env, -3, 4);
IloModel model(env);
model.add(y == IloAbs(x));
IloCP cp(model);
if (cp.propagate()){

cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of x = " << cp.domain(x) << std::endl;
cp.out() << " Domain of y = " << cp.domain(y) << std::endl;

}else{
cp.out() << " Model has no solution." << std::endl;

}

Running this code, the domains of both x and y are reduced. The domain of y is
reduced so that it is positive and the domain of x is reduced to take into account
the maximum value of y:
Domains reduced:
Domain of x = [-4..4]
Domain of y = [0..4]

In the C++ API, minimum and maximum values expressions over a set of variables
are created with the IloMin and IloMax expressions. For example consider the
model:

IloIntVar x(env, 0, 10);
IloIntVar y(env, 4, 6);
IloIntVar u(env, 2, 10);
IloModel model(env);
model.add(u == IloMin(x, y));
IloCP cp(model);

if ( cp.propagate() ) {
cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of x = " << cp.domain(x) << std::endl;
cp.out() << " Domain of y = " << cp.domain(y) << std::endl;
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cp.out() << " Domain of u = " << cp.domain(u) << std::endl;
}else{

cp.out() << " Model has no solution." << std::endl;
}

The value of u cannot exceed the smallest upper bound of x and y, that is 6.
Moreover, x nor y cannot have a value smaller than the lower bound of u, which is
2. The domains of the variables after running this code are:
Domains reduced:
Domain of x = [2..10]
Domain of y = [4..6]
Domain of u = [2..6]

Propagation of logical constraints
Domain reduction of decision variables incident on logical constraints are
propagated using the truth values of the subconstraints.

CP Optimizer can process logical constraints. Logical constraints are stated over
arithmetic constraints and also over some specialized constraints.

The connectors for creating logical constraints are described in detail in “Logical
constraints” on page 32.
v negation (!),
v conjunction (&&),
v disjunction (||),
v implication (IloIfThen),
v equivalence (==) and
v exclusive or (!=).

The semantics of these connectors are the usual logical semantics. The arguments
of these connectors are constraints that, in turn, possibly could be logical
constraints. For instance, consider two tasks whose durations are represented by
the integer values dx and dy and whose starting dates are represented by the
decision variables x and y. To model the constraint that the two tasks do not
overlap, you can state the disjunction:

(x >= y + dy) || (y >= x + dx)

To impose this constraint only when another condition is true (for example when z
== 3), you can write the logical constraint (shown here using the C++ API):

IloIfThen(env, z == 3, (x >= y + dy) || (y >= x + dx))

To understand the domain reduction achieved by these constraints, it is important
to observe that a constraint has a truth value. Depending on the domains of the
variables, the truth value of a constraint is true when the constraint is definitely
satisfied. The truth value is false when the constraint is definitely violated.
Otherwise, both values are possible.

Consider, for instance, the constraint z == 3. It has a truth value of false when the
domain of z is [0..2], that is, when it does not contain 3. It has a truth value of true
when z is fixed to 3. The truth value of this constraint is not yet determined when
the domain of z contains the value 3 and at least one other value. The truth value
is undetermined if the domain of z is [2..3]; it is not yet known if the constraint z
== 3 will be satisfied (z = 3) or violated (z = 2).
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In practice, each constraint appearing in a logical expression is associated with a
Boolean decision variable whose value is the truth value of the constraint. These
Boolean variables are mentioned in the search log as additional variables.

Here is an example of a logical model using the C++ API:
IloIntVar x(env, 0, 5);
IloIntVar y(env, 7, 20);
IloIntVar z(env, -10, 20);
IloModel model(env);
model.add(x >= y || z < 7);
model.add(IloIfThen(env, z != 10, y == 10));
IloCP cp(model);

if (cp.propagate()) {
cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of x = " << cp.domain(x) << std::endl;
cp.out() << " Domain of y = " << cp.domain(y) << std::endl;
cp.out() << " Domain of z = " << cp.domain(z) << std::endl;

}else{
cp.out() << " Model has no solution." << std::endl;

}

In the first disjunction, the constraint x >= y is obviously violated. To satisfy this
disjunction, the constraint z < 7 is imposed. This forces the maximum of the
domain of z to be 6. The domain reduction of the implication (IloIfThen)
constraint is invoked since the domain of z has changed. The left member of the
implication (z != 10) is now satisfied and the constraint imposes the constraint y ==
10 which reduces the domain of y. No more domain reduction can be done at this
point and this code produces the output:
Domains reduced:
Domain of y = [10]
Domain of z = [-10..6]

This manner of reducing domains by imposing constraints is very efficient, but it
has some limitations. It reacts only to violation or satisfaction of constraints. For
instance, the domain reduction of the constraint

(x == 2) || (x == 3)

will not reduce the domain of x to [2..3]. It waits for one of the constraints to be
violated before imposing the other one.

Since any arithmetic or logical constraint can have a truth value, these constraints
can appear where any other expression can appear. In particular, such a constraint
can be combined in an arithmetic expression. An expression such as

1 + (x < 7)

is a valid expression and can be handled by CP Optimizer. Constraints can be
created over these expressions. For instance, recall the disjunction

(x >= y + dy) || (y >= x + dx)

It can be expressed by the constraint

(x >= y + dy) + (y >= x + dx) >= 1

Since only one of the disjunction members can be true, it can also be stated as
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(x >= y + dy) + (y >= x + dx) == 1

Similarly, the implication (here in the C++ API)

IloIfThen(env, z == 3, (x >= y + dy) || (y >= x + dx))

can be expressed by

(z == 3) <= ((x >= y + dy) || (y >= x + dx))

or by

(z == 3) <= (x >= y + dy) + (y >= x + dx)

A typical application of such constraints are cardinality constraints. When among a
set of constraints at least two of them must be true, one can state a constraint like

(x >= y[0]) + (x >= y[1]) + (x >= y[2]) + (x >= y[3]) + (x >= y[4]) >= 2

The statement of this constraint with only logical connectors is possible but would
need a large number of disjunctions.

Propagation of specialized constraints and expressions
CP Optimizer provides tailored constraint propagation algorithms for specialized
constraints and expressions.

Overview
CP Optimizer provides tailored constraint propagation algorithms from specialized
constraints and expressions.

A fundamental and powerful feature of CP Optimizer are the predefined
specialized constraints. In theory, basic constraints like arithmetic and logical ones
can model any kind of constraint. A specialized constraint is equivalent to a set of
arithmetic or logical constraints. In most of the cases, the specialized constraint
achieves more domain reduction than the equivalent set of basic constraints and
performs domain reduction more efficiently.

Specialized constraints prove useful in the practical real-world problems of
allocation and scheduling. These constraints make it possible to express
complicated relations between decision variables, for example, relations that would
require a huge number of arithmetic constraints. Specialized constraints enter into
such considerations as counting values, maintaining load weights and other such
critical activities.

A typical example of the gain specialized constraints can provide is illustrated with
the following model implemented using the C++ API:

IloIntVar x(env, 1, 2);
IloIntVar y(env, 1, 2);
IloIntVar z(env, 1, 2);
IloModel model(env);
model.add(x != y);
model.add(x != z);
model.add(y != z);
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Each decision variable has the values 1 and 2 in its domain, and the constraints
state that the variables must be all assigned different values. This model clearly has
no solution. However, no constraint can perform domain reduction. Examining the
constraint x != y, both x = 1, y = 2 and x = 2, y = 1 are solutions. Therefore, no
value can be removed from domains of x or y if the constraints are considered
independently.

To achieve more domain reduction by having a more global view on this model,
the three constraints need to be replaced by the all different constraint:

model.add(IloAllDiff(env, IloIntVarArray(env, 3, x, y, z)));

In order to achieve full domain reduction, the inference level of this constraint, that
is the strength of its domain reduction, must be set to the extended level by
changing the parameter IloCP::AllDiffInferenceLevel:

cp.setParameter(IloCP::AllDiffInferenceLevel, IloCP::Extended);

Invoking propagation by running the code:
IloCP cp(model);
cp.setParameter(IloCP::AllDiffInferenceLevel, IloCP::Extended);
if (cp.propagate()){

cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of x is " << cp.domain(x) << std::endl;
cp.out() << " Domain of y is " << cp.domain(y) << std::endl;
cp.out() << " Domain of z is " << cp.domain(z) << std::endl;

}else{
cp.out() << " Model has no solution." << std::endl;

}

produces the output:
Model has no solution.

because the domain reduction has now created an empty domain for one the
variables x, y, or z.

Inference levels
CP Optimizer provides tuning parameters which are used to adjust the constraint
propagation inference levels.

The inference level of a constraint, that is, the strength of the domain reduction is
achieves, is controlled by tuning parameters. There is a parameter for each
specialized constraint whose inference level can be changed.

In the C++ API, these parameters are:
v IloCP::AllDiffInferenceLevel,
v IloCP::DistributeInferenceLevel,
v IloCP::CountInferenceLevel,
v IloCP::SequenceInferenceLevel,
v IloCP::AllMinDistanceInferenceLevel,
v IloCP::ElementInferenceLevel,
v IloCP::PrecedenceInferenceLevel,
v IloCP::IntervalSequenceInferenceLevel,
v IloCP::NoOverlapInferenceLevel,
v IloCP::CumulFunctionInferenceLevel and
v IloCP::StateFunctionInferenceLevel.
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For the Java API, the inference level parameter for the all different constraint is
IloCP.IntParam.AllDiffInferenceLevel. For the C# API, the inference level for the
all different constraint is CP.IntParam.AllDiffInferenceLevel. The parameters in
the C# API and the Java API for the other specialized constraints are similarly
formed.

The effects of changing the values of these inference level parameters will be
described in the following sections.

In the C++ API, the possible values of these parameters are:
v IloCP::Default,
v IloCP::Low,
v IloCP::Basic,
v IloCP::Medium and
v IloCP::Extended.

For the Java API, the default value is IloCP.ParameterValues.Default. For the C#
API, the default inference level is CP.ParameterValues.Default.

The strength of the domain reduction increases as the parameter value moves from
the low value to the extended value. Consider the following model written in the
C++ API where the variables of an array must be all different:

IloIntVarArray x(env);
x.add(IloIntVar(env, 1, 2));
x.add(IloIntVar(env, 1, 2));
x.add(IloIntVar(env, 0, 2));
x.add(IloIntVar(env, IloIntArray(env, 4, 1, 2, 4, 6, 8)));
x.add(IloIntVar(env, IloIntArray(env, 4, 1, 2, 4, 6, 8)));
x.add(IloIntVar(env, 1, 9));
x.add(IloIntVar(env, 8, 8));
IloModel model(env);
model.add(IloAllDiff(env, x));

Setting the inference level of the all different constraints to the basic level and
propagating:

IloCP cp(model);
cp.setParameter(IloCP::AllDiffInferenceLevel, IloCP::Basic);
if ( cp.propagate() )

cp.out() << " Domains of x are " << cp.domain(x) << std::endl;
else

cp.out() << " Model has no solution." << std::endl;

produces the output:
Domains of x are [[1..2] [1..2] [0..2] [1..2 4 6] [1..2 4 6] [1..7 9] [8]]

The basic level of the all different constraint reduces the domain of variables by
eliminating the value of fixed variables (here x[6]) from the domain of other
variables (here x[3], x[4] and x[5]).

When the inference level is set to the medium level, the bounds of the decision
variables are reduced further:
Domains of x are [[1..2] [1..2] [0] [4 6] [4 6] [3..7 9] [8]]
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The values 1 and 2 are shared by the two decision variables x[0] and x[2] and
thus cannot appear in the domains of any other variables. This reasoning is
applied to reduce bounds of the decision variables. Finally, the extended inference
level achieves full domain reduction:
Domains of x are [[1..2] [1..2] [0] [4 6] [4 6] [3 5 7 9] [8]]

More domain reduction involves more computation time, thus there is a trade-off
when solving a problem.

By default, the value of each of inference level is the default level. This level forces
the inference level of the constraints to be the value of the parameter (in the C++
API) IloCP::DefaultInferenceLevel. Changing the value of this parameter is a
way to change the inference level of several constraint types at the same time. The
possible values of this parameter are all of the inference levels except for the
default level. Its default value is the basic level.

In the C++ API, the code:
cp.setParameter(IloCP::DefaultInferenceLevel, IloCP::Extended);

specifies that the inference level of any constraint type whose inference level is
unchanged (or set to the default level) is the extended level.

In the Java API, the code for setting the default inference level to the extended
level is:

cp.setParameter(IloCP.IntParam.DefaultInferenceLevel,
IloCP.ParameterValues.Extended);

In the C# API, the code for setting the default inference level to the extended level
is:

cp.SetParameter(CP.IntParam.DefaultInferenceLevel,
CP.ParameterValues.Extended);

In the following sections, information about the domain reduction achieved by
specialized constraints with respect to their inference levels is provided.

The element expression
The constraint propagation algorithm for element expressions reduces domains
efficiently.

The element expression indexes an array of values with a decision variable. This
expression is used to associate a cost or a distance to the value of a variable, for
example.

Suppose there is a decision variable x that chooses a delivery customer and
suppose that the distances to the customers are:
v 7 for customer 1,
v 12 for customer 2,
v 5 for customer 3 and
v 21 for customer 4.

If the variable y is to be equal to the distance of the chosen customer, you can
write:

IloIntArray distance(env, 4, 7, 12, 5, 21);
model.add(y == IloElement(distance, x));
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This constraint states that y is equal to the x-th element of the distance array. In the
C++ API, another way to state the same constraint is to write:

model.add(y == distance[x]);

This constraint achieves full domain reduction. In other words, after domain
reduction, for each value of x there is a value for y that satisfies the constraint and
vice-versa.

Here is an example of a model with one element expression:
IloIntVar x(env, 0, 3);
IloIntVar y(env, 0, 20);
IloModel model(env);
model.add(y == IloElement(IloIntArray(env, 4, 7, 12, 5, 21), x));
IloCP cp(model);
if ( cp.propagate() ) {

cp.out() << " Domains reduced: " << std::endl;
cp.out() << " Domain of x is " << cp.domain(x) << std::endl;
cp.out() << " Domain of y is " << cp.domain(y) << std::endl;

} else
cp.out() << " Model has no solution." << std::endl;

Running this code produces the output:
Domains reduced:
Domain of x is [0..2]
Domain of y is [5 7 12]

The value 3 is removed from the domain of x because the fourth element in the
array is 21, which does not belong to the domain of y. The domain of y is reduced
to the set of values that are indexed by values of x, that is 5, 7 and 12.

The counting expression
Inference levels can be used to adjust the propagation of the counting expression.

The specialized counting expression counts the number of times a value appears in
the domain of a set of variables. This is useful to count or to constrain the number
of times an object or a feature is selected or used.

For instance, assume there are 5 customers, and for each customer, a supplier
needs to be chosen. For each customer, there is a list of compatible suppliers.
Supplier 1 must not supply more than 2 customers, and the expensive Supplier 2
must not supply more than one customer.

To model the compatibility between suppliers and customers, a decision variable is
introduced for each customer that will be fixed to the value of the supplier that
supplies it:

IloIntVarArray cust(env);
cust.add(IloIntVar(env, 1, 2));
cust.add(IloIntVar(env, 1, 2));
cust.add(IloIntVar(env, 1, 2));
cust.add(IloIntVar(env, 0, 5));
cust.add(IloIntVar(env, 1, 3));

The constraints can then be expressed the following way:
IloModel model(env);
model.add(IloCount(cust, 1) <= 2);
model.add(IloCount(cust, 2) <= 1);

To propagate the constraints of the model add:
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IloCP cp(model);
if (cp.propagate())

cp.out() << " Domains of cust are " << cp.domain(cust) << std::endl;
else

cp.out() << " Model has no solution." << std::endl;

Running this program produces the output:
Domains of cust are [[1..2] [1..2] [1..2] [0..5] [1..3]]

Using the default inference level of the constraint does not result in any domain
reduction. To get the highest level of domain reduction on this example, the
inference level can be set to the extended level by adding:

cp.setParameter(IloCP::CountInferenceLevel, IloCP::Extended);

The output becomes:
Domains of cust are [[1..2] [1..2] [1..2] [0 3..5] [3]]

Since values 1 and 2 are the only values in the domain of cust[0], cust[1] and
cust[3], the counting constraints impose that one of these variables will have the
value 2 and two of them will have the value 1. Therefore these values are removed
from the domains of cust[3] and cust[4].

Setting the inference level of the counting expression to the basic or the low level
provides basic but efficient domain reduction. Setting the inference level to the
medium level provides a stronger reduction but on bounds only. Finally, setting
the inference level to the extended level provides full domain reduction.

The distribution constraint
Inference levels can be used to adjust the propagation of the distribution
constraint.

The specialized distribution constraint is an aggregation of counting expressions.

This constraint operates on an array of decision variables varArray, an array of
values valueArray and an array of cardinality variables cardArray.

In the C++ API, the constraint is written:
IloDistribute(env, cardArray, valueArray, varArray);

It constrains the number of occurrences of a value valueArray[i] in the array
varArray to be equal to cardArray[i].

For instance, reconsidering the example for the counting expression, the model:
IloModel model(env);
model.add(IloCount(cust, 1) >= 3);
model.add(IloCount(cust, 2) >= 1);

is equivalent to the model:
IloIntVarArray cardArray(env);
cardArray.add(IloIntVar(env, 3, IloIntMax));
cardArray.add(IloIntVar(env, 1, IloIntMax));
IloIntArray valueArray(env, 2, 1, 2);
IloModel model(env);
model.add(IloDistribute(env, cardArray, valueArray, cust));

56 CP Optimizer User’s Manual



Then, setting the inference level to the default level gives the same domain
reduction as counting expressions:
Domains of cust are [[1..2] [1..2] [1..2] [0..5] [1..3]]

Constraints using the counting expression are aggregated to distribution
constraints and thus provide a more global view than otherwise.

The compatibility and incompatibility constraints
Compatibility and incompatibility constraints can be used to model difficult
constraints and to improve solving efficiency.

The compatibility constraint is a specialized constraint that is defined by explicitly
specifying the set of assignments that are solutions to the constraint.

Compatibility constraints are used frequently in constraint programming
applications. There are two broad categories of use:
1. when external data defines a constraint, and such a constraint is difficult to

state with arithmetic or logical constraints, and
2. when you want to improve the efficiency of the solving process by modeling a

subproblem by assignments.

External data as constraints

In many constraint applications, it is necessary to process a huge quantity of data.
For instance, the features of some products can be described as a relation in a
database or in text files.

Consider as an example a bicycle factory that can produce thousands of different
models. For each model of bicycle, a relation associates the features of that bicycle
such as size, weight, color, price. This information can be used in a constraint
programming application that allows a customer to find the bicycle that most
closely fits a specification.

In the bicycle example, illustrated here using the C++ API, an array of decision
variables x is defined, where x[0] represents the identifier of the bicycle, x[1] its
size, x[2] its weight, x[3] its color and x[4] its price:

IloIntVarArray x(env, 5);

A compatibility constraint on x forces the values of x to be one of the combinations
defined in the tupleset:

model.add(IloAllowedAssignments(env, x, bicycleSet));

where bicycleSet defines the set of solutions to the constraint as an
IloIntTupleSet:

IloIntTupleSet bicycleSet(env, 5);
bicycleSet.add(IloIntArray(env, 5, 1, 57, 12, 3, 1490));
bicycleSet.add(IloIntArray(env, 5, 2, 57, 13, 5, 1340));
bicycleSet.add(IloIntArray(env, 5, 3, 60, 14, 3, 1790));
bicycleSet.add(IloIntArray(env, 5, 4, 65, 14, 7, 1550));
bicycleSet.add(IloIntArray(env, 5, 5, 67, 15, 2, 2070));
bicycleSet.add(IloIntArray(env, 5, 6, 70, 15, 2, 1990));

Another bicycle variable can be created by construction another array of variables:
IloIntVarArray y(env, 5);
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The same compatibility constraint can be placed on y:
model.add(IloAllowedAssignments(env, y, bicycleSet));

It is important to note that tuplesets can be large, and thus they are shared over
compatibility constraints that use the same tupleset.

Here is a full example for illustrating domain reduction achieved by this
constraint:

IloIntVarArray x(env, 5);
x[0] = IloIntVar(env, 0, 10);
x[1] = IloIntVar(env, 40, 60);
x[2] = IloIntVar(env, 10, 20);
x[3] = IloIntVar(env, 5, 6);
x[4] = IloIntVar(env, 1000, 5000);

IloIntTupleSet bicycleSet(env, 5);
bicycleSet.add(IloIntArray(env, 5, 1, 57, 12, 5, 1490)); // tuple 0
bicycleSet.add(IloIntArray(env, 5, 2, 57, 13, 1, 1340)); // tuple 1
bicycleSet.add(IloIntArray(env, 5, 3, 60, 14, 5, 1790)); // tuple 2
bicycleSet.add(IloIntArray(env, 5, 4, 65, 14, 4, 1550)); // tuple 3
bicycleSet.add(IloIntArray(env, 5, 5, 67, 15, 2, 2070)); // tuple 4
bicycleSet.add(IloIntArray(env, 5, 6, 70, 15, 5, 1990)); // tuple 5

IloModel model(env);
model.add(IloAllowedAssignments(env, x, bicycleSet));

IloCP cp(model);
if (cp.propagate())

cp.out() << " Domains of vars = " << cp.domain(x) << std::endl;
else

cp.out() << " Model has no solution." << std::endl;

Running this code produces the output:
Domains of vars = [[1 3] [57 60] [12 14] [5] [1490 1790]]

There are only two possible solutions to the constraint due to the domains of the
variables in the array x. With the domain of x[3], only tuples 0, 2 and 5 are
possible. The domain of x[1] eliminates the tuple 5. Thus the final domains are the
union of the possible values in the two remaining solutions.

The forbidden assignments constraint plays a symmetrical role: the tupleset
represents the set of non-solutions of the constraint. This is useful when there are
fewer non-solutions than solutions.

Both constraints achieve full domain reduction and do not support inference levels.

Improving efficiency: a compatibility constraint for a subproblem

A modeling trick that may dramatically reduce the computation time needed to
solve a problem consists in identifying a difficult subproblem, computing all the
solutions of the subproblem and storing them in a tuple set and then creating a
compatibility constraint.

This approach is not restricted to constraint programming but is a general
approach: facing a difficult problem, it can be easier to solve it by:
v decomposing the problem into subproblems,
v solving the different subproblems and
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v connecting the solutions of the subproblems to produce a solution to the whole
problem.

An allowed assignments constraint forces the values of the variables of the
problem to be one of the solutions of the subproblem. Thus the connection of the
solution of the subproblem with the remainder of the problem is automatically
handled. The advantage of this approach is that when searching for a solution of
the whole problem, instead of always retrieving the solutions of the subproblem in
the search, the allowed assignments constraint forces values to one of these
solutions. In other terms, the work of solving the subproblem is factored and done
only once, before the search, and not several times during the search (which is
potentially a huge number of times).

This approach also has a drawback: the solutions of the subproblem must be found
first so this must be practical (the solutions should not be too numerous). Allowed
assignment constraints with several hundreds of thousands of tuples can be
handled, but subproblems with billions of solutions cannot be handled in this way.
Nevertheless, it is possible to set a bound on the number of solutions of the
subproblem to precompute and store in the tupleset. In this case, the problem
solved is a restriction of the initial problem, but this may be useful in practice.

An example of such an approach is available in the file teambuilding.cpp in the
examples/src/cpp directory.

Constraint aggregation
CP Optimizer may aggregate constraints to improve the efficiency of propagation.

The CP Optimizer engine may sometimes preprocess the model in order to
improve the efficiency of the propagation engine.

The optimizer may aggregate constraints by reducing some groups of basic
constraints into less basic ones. By doing this, the propagation algorithm may be
able to achieve more domain reduction. For example, if the model has a set of
inequality constraints, the engine may work to combine some of these into an all
different constraint.

The constraint aggregator is on by default. It can be turned off by setting the value
of the aggregator parameter to “Off”.

In the C++ API, the parameter is IloCP::ConstraintAggregation and the value
IloCP::Off.

For the Java API, the aggregator parameter is
IloCP.IntParam.ConstraintAggregation and the value is
IloCP.ParameterValues.Off.

For the C# API, the aggregator parameter is CP.IntParam.ConstraintAggregation
and the value is CP.ParameterValues.Off.
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Chapter 6. Search in CP Optimizer

CP Optimizer uses constructive search strategies to find a solution to a constraint
programming problem.

Overview
CP Optimizer uses constructive search strategies to find a solution to a constraint
programming problem.

A methodical approach to developing an application using CP Optimizer begins
with a verbal description of the problem and moves directly to the model or
representation. Once the model is created, you are ready to solve it using the
optimizer. For most problems, using the basic solve function is all that is needed
for solving the model. Nonetheless, CP Optimizer offers a variety of controls that
allow you to tailor the solution process for your specific needs.

The CP Optimizer engine searches for an optimal solution or, if the problem is a
satisfiability one, a solution of a model. A solution is an assignment of values to
variables such that every constraint in the model is satisfied.

A naive way to find a solution would be to explicitly study each possible
combination of values for decision variables until a solution is found. The CP
Optimizer search implicitly generates such combinations but in a very efficient
manner using constraint propagation. It produces an optimal solution for
optimization problems and at least one solution for satisfiability problems.

The implicit generation of combinations uses constructive search strategies. A
constructive strategy attempts to build a solution by choosing a non-fixed decision
variable and a value for that variable. The chosen variable is then fixed to the
chosen value, and constraint propagation is triggered. This operation is called
branching, and the fixing is also called a “branch”. Constraint propagation reduces
the domains of variables and, consequently, the currently possible combinations.
After propagation terminates, another non-fixed variable, if one exists, is chosen,
and the process repeats until all decision variables are fixed. However, if a fixing
fails because it cannot lead to a solution, the constructive strategy backtracks and
chooses another value for the variable.

The CP Optimizer constructive search strategies are guided towards optimal
solutions in order to converge rapidly. The CP Optimizer search uses a variety of
guides and uses the most appropriate one depending on the model structure and
on constraint propagation. This section explains the standard search algorithms
used.

Searching for solutions
CP Optimizer uses constructive search strategies to find a solution to a constraint
programming problem.
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Overview
CP Optimizer uses constructive search strategies to find a solution to a constraint
programming problem. While the built-in algorithm will generally be sufficient, it
may be helpful for you to know about the other algorithms in the case that you
need to tune the optimizer.

CP Optimizer provides a number of search strategies for you to use. While the
built-in algorithm will generally be sufficient, it may be helpful for you to know
about the other algorithms in the case that you need to tune the optimizer.

In the C++ API of CP Optimizer, you use the class IloCP, which is a subclass of
IloAlgorithm, to execute and control the search. The constructor for IloCP takes an
IloModel as its argument. As with the environment, once you are finished with the
optimizer, you call the method IloCP::end to reclaim the memory used by the
optimizer.

In the Java API of CP Optimizer, you use the class IloCP to execute and control
the search.

Likewise, in the C# API of CP Optimizer, you use the class CP to execute and
control the search to find a solution to a problem expressed in a model.

Note:

CP optimizer

The class IloCP in the C++ API and the Java API and the class CP in the C# API
can be used to employ different algorithms for solving problems modeled with
Concert Technology modeling classes.

An object of this class is sometimes referred to as the optimizer.

Solving an optimization problem
The basic search strategy in CP Optimizer can be used to solve optimization
problems.

The basic algorithm for solving a model is invoked by calling the method solve, a
member function of the optimizer object. (For example, in the C++ API, this is
IloCP::solve. In the Java API, this method is IloCP.solve. In the C# API, this
method is CP.Solve.) This function returns true (IloTrue in the C++ API) when the
engine has found an optimal solution. If the model has no objective function, then
this call returns true when a solution is found. The function returns false (IloFalse
in the C++ API) when the problem has no solution.

Consider the following model with 3 integer variables, written in the C++ API:
IloIntVar x(env, 0, 7, "x");
IloIntVar y(env, 0, 7, "y");
IloIntVar z(env, 0, 7, "z");
IloIntVarArray all(env, 3, x, y, z);
model.add(IloMinimize(env, IloSum(all)));
model.add(IloAllDiff(env, all));
model.add(y == IloElement(IloIntArray(env, 7, 3, 7, 8, 8, 0, 1, 4), x));

To solve the problem represented by this model, you can call the method
IloCP::solve, like this:
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IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
if (cp.solve()){

cp.out() << " An optimal solution has been found"
<< ", objective value = " << cp.getObjValue()
<< ", x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

} else {
cp.out() << " The problem has no solution " << std::endl;

}

In this example, the search log output is deactivated for the sake of brevity.
Information regarding the search log is presented in the section “The search log”
on page 65. The method getValue, a member function of the optimizer object, takes
a decision variable as an argument and returns the value of that variable in the
solution that was found. The method getObjValue, a member function of the
optimizer object, returns the value of the objective for this solution.

Running this code produces the output:
An optimal solution has been found, objective value = 4, x = 0, y = 3, z = 1

In the C++ API of CP Optimizer, you use the class IloCP and the methods
IloCP::solve, IloCP::getValue and IloCP::getObjValue.

In the Java API of CP Optimizer, you use the class IloCP and the methods
IloCP.solve, IloCP.getValue and IloCP.getObjValue.

In the C# API of CP Optimizer, you use the class CP and the methods CP.Solve
and CP.GetValue and the member CP.ObjValue.

Accessing intermediate solutions
As CP Optimizer searched for an optimal solution to an optimization problem, the
search will generally encounter a sequence of solutions that improve the objective
function.

As the CP Optimizer engine solves an optimization problem, a sequence of
solutions that improve the objective function are produced until an optimal
solution is found. In some cases, you may want to have access to this sequence of
intermediate solutions. CP Optimizer provides a simple interface that provides this
access via member functions of the optimizer object.

To prepare the optimizer for search, you call the member function startNewSearch,
a member function of the optimizer object. To instruct the optimizer to find a
solution, you call the method next. This method returns true (IloTrue in the C++
API) if the optimizer finds a solution (not necessarily an optimal one) and false
(IloFalse in the C++ API) if the problem is infeasible. To find the next solution,
you again call the method next. If the method returns true, then the optimizer has
found a new solution with a strictly better objective value than the previous one. If
the optimizer does not find another solution, the value returned by this method is
false. When you have finished searching, you can call the method end to free the
memory and reset the state of the optimizer. A typical code using these methods of
the optimizer object in the C++ API would be similar to:

IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
cp.startNewSearch();
while(cp.next()){

cp.out() << "objective value = " << cp.getObjValue()
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<< ", x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

}
cp.end();

Running this code produces the output:
objective value = 5, x = 4, y = 0, z = 1
objective value = 4, x = 0, y = 3, z = 1

This run finds two solutions, one with an objective value of 5 and then one with
an objective value of 4, which is the optimum.

In the C++ API of CP Optimizer, you use the class IloCP and the methods
IloCP::startNewSearch and IloCP::next.

In the Java API of CP Optimizer, you use the class IloCP and the methods
IloCP.startNewSearch and IloCP.next.

In the C# API of CP Optimizer, you use the class CP and the methods
CP.StartNewSearch and CP.Next.

Solving a satisfiability problem
The basic search strategy in CP Optimizer can be used to solve satisfiability
problems.

The process for finding solutions to constraint satisfaction problems is similar to
the process for finding solutions to optimization problems.

Consider this satisfiability problem, written in the C++ API:
IloIntVar x(env, 0, 7, "x");
IloIntVar y(env, 0, 7, "y");
IloIntVar z(env, 0, 7, "z");
IloIntVarArray all(env, 3, x, y, z);
model.add(IloAllDiff(env, all));
model.add(y == IloElement(IloIntArray(env, 7, 3, 7, 8, 8, 0, 1, 4), x));

A typical code for finding a solution to this model would look like:
IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
if (cp.solve()){

cp.out() << " A solution has been found"
<< ", x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

} else {
cp.out() << " The problem has no solution " << std::endl;

}

Running this code produces the output:
A solution has been found, x = 4, y = 0, z = 1

For constraint satisfaction problems, the search stops at the first solution
encountered, thus there are no intermediate solutions found. However, it is
possible to produce all solutions to a constraint satisfaction problem. For the model
at the start of this section, running the code:
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IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
cp.startNewSearch();
while(cp.next()){

cp.out() << "x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

}
cp.end();

produces the 30 distinct solutions of the model:
x = 4, y = 0, z = 1
x = 4, y = 0, z = 2
x = 4, y = 0, z = 3
x = 4, y = 0, z = 5
x = 4, y = 0, z = 6
x = 4, y = 0, z = 7
x = 0, y = 3, z = 1
x = 0, y = 3, z = 2
x = 0, y = 3, z = 4
x = 0, y = 3, z = 5
x = 0, y = 3, z = 6
x = 0, y = 3, z = 7
x = 5, y = 1, z = 0
x = 5, y = 1, z = 2
x = 5, y = 1, z = 3
x = 5, y = 1, z = 4
x = 5, y = 1, z = 6
x = 5, y = 1, z = 7
x = 1, y = 7, z = 0
x = 1, y = 7, z = 2
x = 1, y = 7, z = 3
x = 1, y = 7, z = 4
x = 1, y = 7, z = 5
x = 1, y = 7, z = 6
x = 6, y = 4, z = 0
x = 6, y = 4, z = 1
x = 6, y = 4, z = 2
x = 6, y = 4, z = 3
x = 6, y = 4, z = 5
x = 6, y = 4, z = 7

In the C++ API of CP Optimizer, you use the class IloCP and the methods
IloCP::getValue, IloCP::getObjValue, IloCP::startNewSearch, IloCP::next and
IloCP::end.

In the Java API of CP Optimizer, you use the class IloCP and the methods
IloCP.solve, IloCP.getValue, IloCP.getObjValue, IloCP.startNewSearch,
IloCP.next and IloCP.end.

In the C# API of CP Optimizer, you use the class CP and the methods CP.Solve,
CP.GetValue, CP.GetObjValue, CP.StartNewSearch, CP.Next and CP.End.

The search log
During search, information regarding the progress of the optimizer is displayed to
the output channel of the optimizer; this information is called the search log or
simply the log.
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Reading a search log
The search log provides detailed information of the model and the search.

A sample of the search log looks like:
! ----------------------------------------------------------------------------
! Minimization problem - 1408 variables, 15805 constraints, 1 phase
! Presolve : 42 extractables eliminated, 42 constraints generated
! Workers = 2
! TimeLimit = 500
! Initial process time : 0.25s (0.00s extraction + 0.25s propagation)
! . Log search space : 4408.7 (before), 4235.2 (after)
! . Memory usage : 5.7 MB (before), 8.3 MB (after)
! . Variables fixed : 42
! Using parallel search with 2 workers.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed W Branch decision

1000 664 1 9 = _int280
1000 773 2 5 != _int291
2000 664 1 2 != _int250
2000 523 2 3 = _int942
3000 577 1 8 = _int146

* 24 2523 2.81s 2 -
24 4000 577 1 10 = _int290
24 3000 274 2 0 = _int1169

* 14 3274 5.60s 2 -
14 5002 573 1 1 != _int164
14 6000 573 1 10 = _int164
14 4001 737 2 6 != _int211
14 7001 573 1 10 = _int152
14 5000 347 2 0 = _int971
14 8002 573 1 1 != _int164
14 9000 573 1 19 = _int164
14 6000 1 2 1 = _int217
14 10000 573 1 4 != _int266
14 11000 573 1 1 = _int218
14 7000 1 2 2 = _int209

! Time = 21.76s, Explored branches = 18536, Memory usage = 9.0 MB
! Best Branches Non-fixed W Branch decision

14 8000 1 2 1 = _int985
14 12000 573 1 16 = _int218

* 13 8531 12.57s 2 -
! ----------------------------------------------------------------------------
! Search terminated normally, 3 solutions found.
! Best objective : 13 (optimal - effective tol. is 0)
! Number of branches : 20722
! Number of fails : 8155
! Total memory usage : 10.4 MB (9.0 MB CP Optimizer + 1.4 MB Concert)
! Time spent in solve : 24.79s (24.79s engine + 0.00s extraction)
! Search speed (br. / s) : 1735.7
! ----------------------------------------------------------------------------

The first line of the log indicates the type of problem, along with the number of
decision variables and constraints in the model. In this case, there is an objective
included in the model, so the problem is reported to be a “Minimization problem”.
When the model does not include an objective, the problem type is reported as a
“Satisfiability problem”. The number of search phases, if any, is also displayed in
the first line.

The second line of the log shows the result of presolve. The number of model
objects (extractables) eliminated is displayed along with the number of constraints
generated to improve the formulation of the eliminated extractables.
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Any parameter change from its default is displayed after the preprocessing
information.

The next three lines of the log provide information regarding the initial constraint
propagation. The “Initial process time” is the time in seconds spent at the root
node of the search tree where the initial propagation occurs. This time
encompasses the time used by the optimizer to load the model, called extraction,
and the time spent in initial propagation. The value for “Log search space”
provides an estimate on the size of the depth-first search tree; this value is the log
(base 2) of the products of the domains sizes of all the decision variables of the
problem. Typically, the estimate of the size of the search tree should be smaller
after the initial propagation, as choices will have been eliminated. However, this
value is always an overestimate of the log of the number of remaining leaf nodes
of the tree because it does not take into account the action of propagation of
constraints at each node. The memory used by the optimizer during the initial
propagation is reported.

The log then display the type of search used, sequential or parallel; in the latter
case, the number of workers used is also displayed.

In order to interpret the remainder of the log file, you may want to think about the
search as a binary tree. The root of the tree is the starting point in the search for a
solution; each branch descending from the root represents an alternative choice or
decision in the search. Each of these branches leads to a node where constraint
propagation during search will occur. If the branch does not lead to a failure and a
solution is not found at a node, the node is called a choice point. The optimizer
can make an additional decision and create two new alternative branches from the
current node, or it can jump in the tree and search from another node.

The lines in the next section of the progress log are displayed periodically during
the search and describe the state of the search. The display frequency of the
progress log can be controlled with parameters of the optimizer.

The progress information given in a progress log update includes:
v Best: the value of the best solution found so far, in the case of an optimization

problem;
v Branches: the number of branches explored in the binary search tree;
v Non-fixed: the number of uninstantiated (not fixed) model variables, or the

elapsed time;
v W: the id of the worker at the branch currently under consideration by the

optimizer;
v Branch decision: the decision made at the branch currently under consideration

by the optimizer.

The final lines of the log provide information about the entire search, after the
search has terminated.

Whenever a solution is found, the time is displayed in place of the non-fixed
value, which is always zero in this case.

This information about the search includes:
v Termination status line: the conditions under which the search terminated and

the number of solutions found during search;
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v Best objective: the value of the best solution found during search along with the
effective optimality tolerance;

v Number of branches: the number of branches explored in the binary search tree;
v Number of fails: the number of branches that did not lead to a solution;
v Total memory usage: the memory used by IBM ILOG Concert Technology and

the CP Optimizer engine;
v Time spent in solve: the elapsed time from start to the end of the search

displayed in hh:mm:ss.ff format;
v Search speed: average time spent per branch.

Note:

The CP Optimizer search log is meant for visual inspection only, not for
mechanized parsing. In particular, the log may change from version to version of
CP Optimizer in order to improve the quality of information displayed in the log.
Any code based on the log output may have to be updated when a new version of
CP Optimizer is released.

Search log parameters
Search log parameters control what and how much information is displayed.

The amount of information displayed by the log can be controlled with the log
verbosity parameter. The display frequency of the progress information is
controlled with the log period parameter.

In the C++ API of CP Optimizer, you set a parameter with a call to
IloCP::setParameter. Log verbosity is controlled with the parameter
IloCP::LogVerbosity. A value of IloCP::Quiet will suppress the log altogether.
Suppressing the log is done with a line of code (here in the C++ API):
cp.setParameter(IloCP::LogVerbosity,IloCP::Quiet);

The display frequency of the progress information is controlled with the parameter
IloCP::LogPeriod. By setting this parameter to a value of k, the log is displayed
after every k search decisions.

In the Java API of CP Optimizer, you set a parameter with a call to
IloCP.setParameter. Log verbosity is controlled with the parameter
IloCP.IntParam.LogVerbosity. A value of IloCP.ParameterValues.Quiet will
suppress the log altogether. The display frequency of the progress information is
controlled with the parameter IloCP.IntParam.LogPeriod. By setting this parameter
to a value of k, the log is displayed after every k search decisions.

Likewise, in the C# API of CP Optimizer, you set a parameter with a call to
CP.SetParameter. Log verbosity is controlled with the parameter
CP.IntParam.LogVerbosity. A value of CP.ParameterValues.Quiet will suppress the
log altogether. The display frequency of the progress information is controlled with
the parameter CP.IntParam.LogPeriod. By setting this parameter to a value of k,
the log is displayed after every k search decisions.

Retrieving a solution
CP Optimizer provides objects to represent the solution of a problem. These objects
allow for easy retrievability of the solution.
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When the CP Optimizer engine has found a solution, you can examine the values
that have been assigned to the model variables by using the method getValue, a
member function of the optimizer object, with the argument being the model
variable.

In some cases, you may want to save all or part of a solution for use later. IBM
ILOG Concert Technology provides a solution class that is useful for transferring
stored values from or to the active model objects associated with a solution.

In the C++ API of CP Optimizer, you use the class IloSolution, which is created
on the environment.

In the Java API of CP Optimizer, you use the interface IloSolution to store and
transfer values.

Likewise, in the C# API of CP Optimizer, you use the interface ISolution to store
and transfer values.

You must use the methods add, member functions of the solution class to inform
the solution that it should store the decision variable or those in the array of
decision variables that is passed as an argument to the method. When the
optimizer has found a solution that you want to store, you use the method store
to store the solution.

Note:

Solution class

The class IloSolution in the C++ API, the interface IloSolution in the Java API
and the interface ISolution in the C# API makes it possible to store the values
from decision variables and also to fix those variables with stored values.

To illustrate using the C++ API, the optimal solution found for the optimization
model from the section “Solving an optimization problem” on page 62 can be
stored like this:

IloCP cp(model);
IloSolution solution(env);
solution.add(all);
if (cp.solve()) {

solution.store(cp);
cp.out() << "An optimal solution is " << solution << std::endl;

}

Running this code produces the output:
An optimal solution is IloSolution[ x[0] y[3] z[1] ]

In the C++ API of CP Optimizer, you use the class IloSolution and the methods
IloSolution::add and IloSolution::store.

In the Java API of CP Optimizer, you use the interface IloSolution and the
methods IloSolution.add and IloSolution.store.

In the C# API of CP Optimizer, you use the interface ISolution and the methods
ISolution.Add and ISolution.Store.
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Retrieving search information
Information about the search can be retrieved from the search log as well as by
using functions provided by CP Optimizer.

There are several ways to obtain information regarding the search. One way is by
examining the search log as discussed in the section “The search log” on page 65.
Information about the search can also be obtained using the method
printInformation, a member function of the optimizer object.

For the optimization example in the section “Solving an optimization problem” on
page 62, adding a call to the printInformation method produces the output:
Number of branches : 3
Number of fails : 9
Number of choice points : 10
Number of variables : 5
Number of constraints : 5
Total memory usage : 345.5 Kb (331.8 Kb CP + 13.7 Kb Concert)
Time in last solve : 0.00s (0.00s engine + 0.00s extraction)
Total time spent in CP : 0.00s

This output contains the number of branches (decisions) made by the constructive
strategy and the number of fails (decisions that produced an inconsistent state). On
this example there are more failures than branches because the CP Optimizer
engine has made a few extra decisions to better guide the constructive search. The
information reported also includes the number of variables (additional variables
are those added to the optimizer to help with the search) and the number of
constraints in the problem. These values can be greater than the number of
variables and constraints in the model because additional variables and constraints
may have been added internally when the optimizer loaded the model. Finally, the
memory consumption and some timings are reported.

A third way of retrieving information about the search is to use the method
getInfo, a member function of the optimizer object. You can have access to search
information such as the solving time, the number of branches, the number of
failures and the memory usage.

In the C++ API of CP Optimizer, you use the method IloCP::getInfo. This
function takes one argument, either of type IloCP::NumInfo or IloCP::IntInfo. For
example, to have access to the solving time, use the argument IloCP::SolveTime.

In the Java API of CP Optimizer, you use the method IloCP.getInfo. This function
takes one argument, either of type IloCP.DoubleInfo or IloCP.IntInfo. For
example, to have access to the solving time, use the argument
IloCP.DoubleInfo.SolveTime.

Likewise, in the C# API of CP Optimizer, you use the method CP.GetInfo. This
function takes one argument, either of type CP.DoubleInfo or CP.IntInfo. For
example, to have access to the solving time, use the argument
CP.DoubleInfo.SolveTime.

For an exhaustive list of information that can be accessed, see the method
IloCP::getInfo in the C++ API reference manual, IloCP.getInfo in the Java API
reference manual, or CP.GetInfo in the .NET languages API reference manual.
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Setting parameters on search
Parameters can be set on the search to limit the search as well as adjust the
tolerance on optimality.

Search parameterization is an important feature of CP Optimizer. One use of
parameters is to limit the search. The parameter TimeLimit sets a time limit on the
time spent in search. The parameter BranchLimit limits the total number of
branches (decisions) that are performed by the optimizer.

When a limit is set on the search process of an optimization problem, the call to
the optimizer object member function solve terminates when the limit is reached.
The function returns true when a solution is available and false otherwise. Note
that the number of branches and the time limit can go slightly beyond the
specified limit because the best solution found gets "replayed" (regenerated), and
this can produce some extra time or branches.

In general, to obtain information on the reason the search ended, you can query
the engine using the getInfo member function of the optimizer object
(IloCP::getInfo in the C++ API, IloCP.getInfo in the Java API and CP.GetInfo in
the C# API). with the argument FailStatus (IloCP::FailStatus in the C++
API, IloCP.IntInfo.FailStatus in the Java API, and CP.IntInfo.FailStatus in
the C# API). The meanings of the return values of this function are listed in the CP
Optimizer reference manuals.

Another important search parameterization is the one that defines optimality. A
solution is considered optimal if there does not exist a solution with a better
objective function with respect to an optimality tolerance. This tolerance can be
absolute and is controlled with the search parameter OptimalityTolerance. The
relative optimality tolerance is controlled with the search parameter
RelativeOptimalityTolerance.

For instance, if you consider that an improvement of 10 on your objective function
is negligible, you can set this tolerance using the C++ API with the call:

cp.setParameter(IloCP::OptimalityTolerance, 10);

With this tolerance set, if an optimal solution of a minimization problem is found
with an objective value of 900, then there does not exists a solution with an
objective value of 890. There may exist solutions with objective values of 891 and
higher, but these have been missed due to the tolerance. The default value for this
tolerance is 1e-9.

Another example: if you want to find a solution within 3% of the optimal, you set
the relative optimality tolerance using the C++ API with the call:

cp.setParameter(IloCP::RelativeOptimalityTolerance, 0.03);

With this tolerance set, if an optimal solution of a minimization problem is found
with an objective value of 900, then there does not exists a solution with an
objective value of 873 (= 900 - 900 *0.03). There may exist solutions with objective
values of 874 and higher. The default value for this tolerance is 0.0001.

It is important to note that when both a relative and an absolute optimality
tolerance are set, they act similarly to constraints, that is only the strongest applies.
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Chapter 7. Tuning the CP Optimizer search

CP Optimizer provides a variety of search algorithms for solving constraint
programming problems.

Overview
CP Optimizer provides a variety of search algorithms for solving constraint
programming problems.

The performance of search is crucial for rapid convergence towards good solutions.
CP Optimizer guides the search towards good solutions by examining model
structure and observing constraint propagation and then choosing an adapted
strategy.

In some cases, tuning the search may provide better performance than the built-in
strategy. Tuning the search is possible by setting parameters for selecting other
search types and by using tuning objects to provide additional structural
information to the search. The latter is done by specifying search phases. Search
phases provide a simple way to specify important variables, hierarchy between
groups of variables and also the strategy for selecting decision variables to fix and
the values to which the variables should be fixed. This section discusses how to set
parameters on the optimizer, define evaluators for use in the search phase tuning
objects and use multi-point search algorithms.

Using alternative search types
The alternative search types include depth-first search, restart search and
multi-point search.

Overview
CP Optimizer using constructive search to build a solution along with other
heuristics to improve search.

The CP Optimizer search is based on constructive search, which is a search
technique that attempts to build a solution by fixing decision variables to values.
While the built-in CP Optimizer search is based on this technique, the optimizer
also uses other heuristics to improve search.

Three types of search are available in CP Optimizer: “restart”, “depth-first” and
“multipoint”. The default search is “restart”; however, the type of the search can be
changed either to improve performance or to debug a model or a strategy. The
search type parameter controls the type of search applied to a problem.

In the C++ API of CP Optimizer, you use the method IloCP::setParameter to set
the parameter IloCP::SearchType. This parameter has a default value of
IloCP::Restart. Other values of this parameter are IloCP::DepthFirst and
IloCP::MultiPoint.

In the Java API of CP Optimizer, you use the method IloCP.setParameter to set
the parameter IloCP.IntParam.SearchType. This parameter has a default value of
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IloCP.ParameterValues.Restart. Other values of this parameter are
IloCP.ParameterValues.DepthFirst and IloCP.ParameterValues.MultiPoint.

Likewise, in the C# API of CP Optimizer, you use the method CP.SetParameter to
set the parameter CP.IntParam.SearchType. This parameter has a default value of
CP.ParameterValues.Restart. Other values of this parameter are
CP.ParameterValues.DepthFirst and CP.ParameterValues.MultiPoint.

Depth-first search
Depth-first search is a tree search algorithm such that each fixing, or instantiation,
of a decision variable can be thought of as a branch in a search tree.

The depth-first search type applies constructive search directly. Depth-first search is
a tree search algorithm such that each fixing, or instantiation, of a decision variable
can be thought of as a branch in a search tree. The optimizer works on the subtree
of one branch until it has found a solution or has proven that there is no solution
in that subtree. The optimizer will not move to work on another section of the tree
until the current one has been fully explored.

This type of search is quite useful while debugging your model and tuning the
search, but generally will be less efficient than restart search because it does not
easily recover from poor branching decisions.

Consider the optimization model implemented with the C++ API of Concert
Technology:

IloIntVar x(env, 0, 7, "x");
IloIntVar y(env, 0, 7, "y");
IloIntVar z(env, 0, 7, "z");
IloIntVarArray all(env, 3, x, y, z);
model.add(IloMinimize(env, IloSum(all)));
model.add(IloAllDiff(env, all));
model.add(y == IloElement(IloIntArray(env, 7, 3, 7, 8, 8, 0, 1, 4), x));

Depth-first search can be applied to this problem with the following code:
IloCP cp(model);
cp.setParameter(IloCP::SearchType, IloCP::DepthFirst);
if (cp.solve()){

cp.out() << " An optimal solution has been found"
<< ", objective value = " << cp.getObjValue()
<< ", x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

}

Running this code produces the output:
! ----------------------------------------------------------------------------
! Minimization problem - 3 variables, 2 constraints
! SearchType = DepthFirst
! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)
! . Log search space : 8.8 (before), 7.6 (after)
! . Memory usage : 319.2 kB (before), 319.2 kB (after)
! Using parallel search with 2 workers.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed W Branch decision
* 4 4 0.00s 1 -
! ----------------------------------------------------------------------------
! Search terminated normally, 1 solution found.
! Best objective : 4 (optimal - effective tol. is 0)
! Number of branches : 8
! Number of fails : 3
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! Total memory usage : 989.1 kB (983.7 kB CP Optimizer + 5.5 kB Concert)
! Time spent in solve : 0.00s (0.00s engine + 0.00s extraction)
! Search speed (br. / s) : 800.0
! ----------------------------------------------------------------------------
An optimal solution has been found, objective value = 4, x = 0, y = 3, z = 1

Restart search
Restart search is the default search. The constructive search is restarted from time
to time and guided towards an optimal solution.

The default search is called “restart”; in this type of search, the constructive search
is restarted from time to time and guided towards an optimal solution.

In restart search, a depth-first search is restarted after a certain number of failures.
The parameter RestartGrowthFactor controls the increase of this number between
restarts. If the last fail limit was f after a restart, then, for next run, the new fail
limit will be f times the value of this parameter. The initial fail limit can be
controlled with the parameter RestartFailLimit.

In the C++ API of CP Optimizer, you use the method IloCP::setParameter and
the values IloCP::RestartGrowthFactor and IloCP::RestartFailLimit.

In the Java API of CP Optimizer, you use the method IloCP.setParameter and the
values IloCP.DoubleParam.RestartGrowthFactor
and IloCP.IntParam.RestartFailLimit.

In the C# API of CP Optimizer, you use the method CP.SetParameter and the
values CP.DoubleParam.RestartGrowthFactor and CP.IntParam.RestartFailLimit.

Multi-point search
Multi-point search creates a set of solutions and combines the solutions in the set
in order to produce better solutions.

The third value for the search type parameter is for “multi-point” search. This
search creates a set of solutions and combines the solutions in the set in order to
produce better solutions.

Multi-point search is more diversified than depth-first or restart search, but it does
not necessarily prove optimality or the inexistence of a solution. The search runs
until the optimizer considers that the best solution found cannot be improved.
Therefore it is recommended to set up a limit when using multi-point search.

For instance, to use multi-point search on the model above, you can write:
IloCP cp(model);
cp.setParameter(IloCP::SearchType, IloCP::MultiPoint);
cp.setParameter(IloCP::BranchLimit, 10000);
if (cp.solve()){

cp.out() << " A solution has been found"
<< ", objective value = " << cp.getObjValue()
<< ", x = " << cp.getValue(x)
<< ", y = " << cp.getValue(y)
<< ", z = " << cp.getValue(z) << std::endl;

}

Running this code produces the output:

Chapter 7. Tuning the CP Optimizer search 75



! ----------------------------------------------------------------------------
! Minimization problem - 3 variables, 2 constraints
! SearchType = MultiPoint
! BranchLimit = 10000
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
! . Log search space : 9.0 (before), 7.6 (after)
! . Memory usage : 331.4 KB (before), 331.4 KB (after)
! Using parallel search with 2 workers.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed W Branch decision
* 15 22 0.03s 2 -
* 8 23 0.03s 1 -
* 5 46 0.03s 1 -
* 4 201 0.03s 2 -
! ----------------------------------------------------------------------------
! Search terminated normally, 4 solutions found.
! Best objective : 4 (optimal - effective tol. is 0)
! Number of branches : 464
! Number of fails : 225
! Total memory usage : 336.4 KB (331.4 KB CP Optimizer + 5.0 KB Concert)
! Time spent in solve : 0.03s (0.03s engine + 0.00s extraction)
! Search speed (br. / s) : 14848.0
! ----------------------------------------------------------------------------
An solution has been found, objective value = 4, x = 0, y = 3, z = 1

For more information on multi-point search, refer to “Using multi-point search
algorithms” on page 82.

Setting parameters for directing the search
CP Optimizer provides parameters that can be set in order to direct the search.

You can set parameters to choose the search strategy and to tune the optimizer.

For example, to switch the search strategy from the default search to depth-first
search, you set the SearchType parameter to DepthFirst.

The search uses randomization in some strategies. The parameter RandomSeed sets
the seed of the random generator used by these strategies.

Parameters may not be changed while there is an active search.

Ordering variables and values
Decision variables and their possible values can be ordered so that the optimizer
can fix the key decision variables early in the process.

Grouping variables
Decision variables and their possible values can be ordered so that the optimizer
can fix the key decision variables early in the process.

In many applications, there exists a group of key decision variables, such that once
these variables are fixed, it is easy to extend the partial solution to the remaining
variables.

Information about key variables can be given to the search by way of tuning
objects called search phases. An instance of IloSearchPhase (ISearchPhase in the
C# API) is created with an array of decision variables and passed to the search as
argument to the search methods solve and startNewSearch.
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Assume that in a model the decision variables in the array x are key variables. In
the C++ API, you can pass this information to the search the following way:

cp.solve(IloSearchPhase(env,x));

This search phase forces the search to fix (instantiate) the decision variables from
the array x before instantiating any other variable in the model.

Instantiation of groups of decision variables can be ordered by using several search
phases. The search phases are passed to the search using a search phase array. The
decision variables in the first phase are instantiated before the variables in the
second one and so on.

Consider for instance, the two phases:
IloSearchPhase xPhase(env, x);
IloSearchPhase yPhase(env, y);

If we solve a model by calling:
IloSearchPhaseArray phaseArray(env);
phaseArray.add(xPhase);
phaseArray.add(yPhase);
cp.solve(phaseArray);

Decision variables in x will be instantiated before variables in y that in turn will be
instantiated before any variables that are not in x and y.

It is important to observe that when using search phases, the phases do not need
to cover all variables of the model. The CP Optimizer search will instantiate all
variables, and those that do not appear in any search phase will always be
instantiated last.

Defining a constructive strategy
A constructive strategy can be defined using search phases. A search phase
specifies the criteria for the order in which variables and values are chosen in the
search.

In addition to variables, a search phase can be used to tune a search strategy by
specifying the criteria for the order in which decision variables are chosen to be
fixed and to which values these variables should be fixed. This strategy is then
used as a constructive strategy to instantiate the decision variables of the phase.

In the C++ API, the constructor of a complete phase is:
IloSearchPhase(IloIntVarArray x,

IloIntVarChooser varChooser,
IloIntValueChooser valueChooser);

The variable chooser (IloIntVarChooser in the C++ API and the Java
API, IIntVarChooser in the C# API) defines how the next decision variable to fix
in the search is chosen.

The value chooser (IloIntValueChooser in the C++ API and the Java
API, IIntValueChooser in the C# API) defines how values are chosen for
instantiating decision variables.

Note:

Search phase
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A search phase an object that is used to define instantiation strategies to help the
CP Optimizer search. A search phase is composed of
v an array of decision variables to instantiate (or fix),
v a variable chooser that defines how the next variable to instantiate is chosen
v a value chooser that defines how values are chosen when instantiating variables.

Simple variable selection
To chose decision variables, you evaluate the variables with an evaluator.

To chose decision variables, you evaluate the variables with an evaluator.

In the C++ API, a decision variable evaluator is an instance of IloIntVarEval. This
class implements the function:

IloNum IloIntVarEval::eval(IloCP cp, IloIntVar x);

that returns the evaluation of the variable x.

Several predefined evaluators exist in CP Optimizer. For instance, the evaluator
returned by the C++ API function call IloDomainSize(env) returns the current size
of the domain of the variable that is being evaluated. Another example is the
evaluator returned by IloVarIndex(env, vars) that returns the index in the array
vars of the evaluated variable.

In order to select a decision variable with an evaluator, an instance of a variable
selector needs to be created with the evaluator as an argument. Here are two
functions in the C++ API that can create such selectors:

IloVarSelector IloSelectSmallest(IloIntVarEval e);
IloVarSelector IloSelectLargest(IloIntVarEval e);

The selector created by IloSelectSmallest(IloDomainSize(env)) will select the
variable in the search phase that has the smallest domain. The selector returned by
IloSelectRandomVar(env) chooses a variable randomly. This selector is useful for
breaking ties.

In the C++ API of CP Optimizer, you use the classes IloIntVarEval and
IloVarSelector and the functions IloDomainSize, IloVarIndex, IloSelectSmallest
and IloSelectRandomVar.

In the Java API of CP Optimizer, you use the interfaces IloIntVarEval and
IloVarSelector and the methods IloCP.domainSize,
IloCP.varIndex, IloCP.selectSmallest and IloCP.selectRandomVar.

In the C# API of CP Optimizer, you use the interfaces IIntVarEval and
IVarSelector and the methods CP.DomainSize, CP.VarIndex, CP.SelectSmallest
and CP.SelectRandomVar.

Simple value selection
To chose the value at which you fix a decision variable, you evaluate the values
with an evaluator.

As with decision variables, values are evaluated with an evaluator.

In the C++ API, a value evaluator is an instance of IloIntValueEval. This class
implements the function:
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IloNum IloIntValueEval::eval(IloCP cp, IloIntVar x, IloInt v)

that returns the evaluation of assigning the value v to the variable x.

Several predefined value evaluators exist in CP Optimizer. For instance, the
evaluator returned by the C++ API function call IloValue(env) returns the value
itself. Another example is the evaluator returned by IloExplicitValueEval(env,
valueArray, evalArray) that returns the evaluation evalArray[i] when evaluating
valueArray[i].

In order to select a value with an evaluator, an instance of a value selector needs to
be created with the evaluator as argument. Here are two functions in the C++ API
that can create such selectors:

IloValueSelector IloSelectSmallest(IloIntValueEval e);
IloValueSelector IloSelectLargest(IloIntValueEval e);

The selector created by IloSelectLargest(IloValue(env)) will select the largest
value in the domain of the selected variable. The selector returned by
IloSelectRandomValue(env) chooses a value randomly. This selector is useful for
breaking ties.

In the C++ API of CP Optimizer, you use the classes IloIntValueEval and
IloValueSelector and the functions IloValue,
IloExplicitValueEval, IloSelectLargest and IloSelectRandomValue.

In the Java API of CP Optimizer, you use the interfaces IloIntValueEval and
IloValueSelector and the methods IloCP.value,
IloCP.explicitValueEval, IloCP.selectLargest and IloCP.selectRandomValue.

In the C# API of CP Optimizer, you use the interfaces IIntValueEval and
IValueSelector and the methods CP.Value,
CP.ExplicitValueEval, CP.SelectLargest and CP.SelectRandomValue.

Multi-criteria selection
To break ties in selecting values or variables, a multi-criteria selector is needed.

If it appears that several decision variables have the same smallest or largest
evaluation, the one with the smallest index in the array given to the search phase
is selected. Similarly for the selection of domain values, ties are broken by
choosing the smallest value. To break ties using a different criteria, you need to use
multi-criteria selection.

Assume you want to select the decision variable having the smallest domain and
break ties with another selector by selecting the variable having the smallest
minimum value in its domain.

For this purpose, you can select variables with an array of selectors. To implement
the selection above in the C++ API, you need to create the array:

IloVarSelectorArray varSelArray(env);
varSelArray.add(IloSelectSmallest(IloDomainSize(env)));
varSelArray.add(IloSelectSmallest(IloDomainMin(env)));

Then a search phase whose variable chooser is the array of selectors is:
IloSearchPhase phase(env, varSelArray, IloSelectSmallest(IloValue(env)));
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Furthermore, you can force the creation of ties by selecting several decision
variables at the selection stage. For instance, the following selector array selects at
least five variables among those having the smallest domain and break ties
randomly:

IloVarSelectorArray varSelArray(env);
varSelArray.add(IloSelectSmallest(5, IloDomainSize(env)));
varSelArray.add(IloSelectRandomVar(env));

Multi-criteria selection can also be applied to value selection. For instance, the
following array of value selectors selects the 5 smallest values in the domain of the
decision variable and then chooses randomly among those values:

IloValueSelectorArray valueSelArray(env);
valueSelArray.add(IloSelectSmallest(5, IloValue(env)));
valueSelArray.add(IloSelectRandomValue(env));

Search phases with selectors
A selector can be used with a search phase to indicate which variable should be
instantiated to which value.

A search phase that instantiates the decision variables in the array x by choosing
the variable having the smallest domain size and by assigning it to the largest
value of its domain can be defined like this in the C++ API:

IloSearchPhase phase(env, x,
IloSelectSmallest(IloDomainSize(env)),
IloSelectLargest(IloValue(env)));

A search phase or an array of search phases defined with selectors can be given to
an instance of the optimizer by invoking the method solve or startNewSearch:

cp.solve(phase);

Defining your own evaluator
CP Optimizer provides an API to define custom evaluators.

CP Optimizer lets you control the order in which the values in the domain of a
decision variable are tried during the search for a solution through the use of
search phases.

In that way, you can exploit strategic information that you have about the problem
to guide the search for a solution. There are a few predefined evaluators for the
variable chooser and value chooser. However, you may encounter problems for
which you would like to define your own evaluators.

An evaluator of integer variables is an object that is used by selectors of variables
to define instantiation strategies. In the C++ API, an evaluator of integer variables
is defined by implementing the pure virtual member function IloNum
IloIntVarEvalI::eval(IloCP cp, IloIntVar x) that returns a floating-point
evaluation of the integer variable x.

An evaluator of integer values is an object that is used by selectors of values to
define instantiation strategies. In the C++ API, an evaluator of integer value
assignments is defined by implementing the pure virtual member function IloNum
IloIntValueEvalI::eval(IloCP cp, IloIntVar x, IloInt value) that returns an
evaluation of fixing the decision variable x to value.
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For example, assume that you want to control the order in which values are
assigned to constrained integer variables, and in particular, you want the order of
values chosen to be 0, -1, +1, -2, +2 and so forth. The following code uses an
evaluator and value chooser to implement that approach.
class AbsValI : public IloIntValueEvalI {
public:

AbsValI(IloEnv env) : IloIntValueEvalI(env) { }
IloNum eval(IloCP cp, IloIntVar x, IloInt value) {

return IloAbs(value);
}

};

IloIntValueEval AbsVal(IloEnv env) {
return new (env) AbsValI(env);

}

It is a good idea then to test that code in a program like this:
IloEnv env;
try {

IloModel model(env);
IloIntVarArray x(env, 2, -2, 4);
model.add(x);

IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity,IloCP::Quiet);
IloVarSelectorArray varSel(env);
varSel.add(IloSelectRandomVar(env));
IloValueSelectorArray valSel(env);
valSel.add(IloSelectSmallest(AbsVal(env)));
IloSearchPhase phase(env, x, varSel, valSel);
cp.startNewSearch(phase);
while (cp.next()) {

cp.out() << cp.getValue(x[0]) << " " << cp.getValue(x[1]) << std::endl;
}
cp.end();

} catch (IloException & ex) {
env.out() << "Caught " << ex << std::endl;

}
env.end();

In the C++ API of CP Optimizer, you use the classes IloIntVarEvalI and
IloIntValueEvalI and the functions IloIntVarEvalI::eval and
IloIntValueEvalI::eval.

In the Java API of CP Optimizer, you use you use the classes IloCustomIntVarEval
and IloCustomIntValueEval and the functions IloCustomIntVarEval.eval and
IloCustomIntValueEval.eval.

At this time, custom evaluators are not available in the C# API of CP Optimizer.

Search phases for scheduling
Search phases can be used on interval variables as well as on sequence variables.

Two types of search phases are available for scheduling: search phases on interval
variables and search phases on sequence variables.

A search phase on interval variables works on a unique interval variable or on an
array of interval variables. During this phase CP Optimizer fixes the value of the
specified interval variable(s): each interval variable will be assigned a presence
status and for each present interval, a start and an end value. This search phase
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fixes the start and end values of interval variables in an unidirectional manner,
starting to fix first the intervals that will be assigned a small start or end value.

A search phase on sequence variables works on a unique sequence variable or on
an array of sequence variables. During this phase CP Optimizer fixes the value of
the specified sequence variable(s): each sequence variable will be assigned a totally
ordered sequence of present interval variables. Note that this search phase also
fixes the presence statuses of the intervals involved in the sequence variables. This
phase does not fix the start and end values of interval variables. It is recommended
to use this search phase only if the possible range for start and end values of all
interval variables is limited (for example by some known horizon that limits their
maximal values).

Using multi-point search algorithms
Multi-point search is based on a pool of points. This pool can be managed via
parameters.

One search technique available in CP Optimizer is a multi-point search algorithm.
This algorithm is based on a pool of search points. A search point is a collection of
decision variable assignments that may lead to either feasible or partial solutions (a
partial solution has some variables which are still not fixed). The multi-point
method starts with an initial pool of search points whose candidate assignments
are generated with constructive search. It then produces new search points by
learning new variable assignments from search points maintained in the pool. On
an optimization problem, the multi-point search method is able to learn from
partial solutions in order to produce feasible solutions.

Multi-point search produces solutions by first performing variable assignments
proposed by each of the generated search points. It then attempts to complete the
solution by invoking a tree-search based completion procedure. If no feasible
solution can be produced, a solution with a maximal number of instantiated
decision variable is retained.

The completion procedure used is basically the same as the one used by the restart
method. If you have specified search phases, the multi-point search completion
procedure will use the search phases as well. In addition, phase priorities will be
respected when interpreting search point assignments. That is, if you have
specified phases A, B and C, then, for each search point, assignments involving
variables of A will be performed at first, followed by those of phase B, ending with
those of phase C.

The search parameter MultiPointNumberOfSearchPoints controls the number of
(possibly partial) solutions manipulated by the multi-point search algorithm. The
default value is 30. A larger value will diversify the search, with possible
improvement in solution quality at the expense of a longer run time. A smaller
value will intensify the search, resulting in faster convergence at the expense of
solution quality. Note that memory consumption increases proportionally to this
parameter, for each search point must store each decision variable domain.

To use multipoint search in the C++ API of CP Optimizer, you use the method
IloCP::setParameter and the values IloCP::SearchType, IloCP::MultiPoint and
IloCP::MultiPointNumberOfSearchPoints.

To use multipoint search in the Java API of CP Optimizer, you use the method
IloCP.setParameter and the values IloCP.IntParam.SearchType,
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IloCP.ParamterValues.MultiPoint and
IloCP.IntParam.MultiPointNumberOfSearchPoints.

To use multipoint search in the C# API of CP Optimizer, you use the method
CP.SetParameter and the values CP.IntParam.SearchType,
CP.ParamterValues.MultiPoint and CP.IntParam.MultiPointNumberOfSearchPoints.

Solving lexicographic multi-objective problems
Providing a starting point can sometimes help the optimizer produce solutions
more quickly.

There are cases where better solutions can be produced more quickly by providing
a starting point, an instance of IloSolution, to the optimizer. In goal
programming, the multi-objective optimization problem may involve a lexically
ordered set of objective functions (f1,f2,...,fn). It could be, for example, a detailed
scheduling problem for which the main objective, f1, is to minimize resource
allocation costs whereas a secondary objective, f2, is to minimize the makespan of
the schedule given an optimal or good resource allocation cost. In this case, the
problem can be solved in n successive steps: first, minimize objective f1 to produce
a solution sol1, then, add a constraint to avoid deteriorating f1 and solve the
problem with objective function f2 using sol1 as a starting point to produce a
solution sol2, etc. The solution to a given step is a feasible solution for the next
step. Setting a starting point may improve the performance of the optimizer
engine. A typical code in the C++ API for implementing a multi-objective problem
using starting points would be similar to:
IloEnv env;
IloModel model(env);
IloInt n = ...;
IloIntervalVarArray activities(env, n);
// ...

IloIntExpr f1 = ...;
IloIntExpr f2 = ...;
IloObjective obj1 = IloMinimize(env, f1);
IloObjective obj2 = IloMinimize(env, f2);
IloCP cp(model);

// Minimize f1
model.add(obj1);
cp.solve();

// Store solution
IloSolution sol1(env);
for (IloInt i=0; i<n; ++i) {

// For illustration purpose, we only save start values
sol1.setStart(activities[i], cp.getStart(activities[i]));

}

// Change objective
model.remove(obj1);
model.add(f1 <= cp.getValue(f1)); // f1 should not worsen
model.add(obj2);

// Minimize f2 using sol1 as starting point
cp.setStartingPoint(sol1);
cp.solve();

The starting point provided to the engine does not have to specify a value for each
decision variable (it can specify a range of values or no information at all) and
does not have to be a feasible solution for the problem being solved. If the starting
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point provides a fixed value for each decision variable of the problem and if it is
feasible, the CP Optimizer search will first visit this solution when traversing the
search space. In all other cases, the information contained in the starting point is
used as a guideline for the search but there is no guarantee that the solutions
traversed by the search will be "close" to the starting point solution.

Note: the starting point information is used by the restart and multi-point search
types only. It is not used by the depth-first search.

To set a starting point in the C++ API of CP Optimizer, you use the method
IloCP::setStartingPoint.

To set a starting point in the Java API of CP Optimizer, you use the method
IloCP.setStartingPoint.

To set a starting point in the C# API of CP Optimizer, you use the method
CP.SetStartingPoint.
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Chapter 8. Designing models

While developing models for CP Optimizer can be straightforward, there are some
principles that you should consider while working on a model.

Overview
Considering some design principles while creating a model for CP Optimizer can
help the optimizer run more efficiently.

The principles described are meant to help you avoid the errors often made by
new users of CP Optimizer when they design a model for a problem. Of course,
not every problem benefits from a mechanical application of every principle
mentioned here, but in general these principles should help you develop robust
and efficient CP Optimizer programs.

Decrease the number of variables
Decreasing the number of variables, and thus reducing the size of the search space,
is one model design principle to consider.

The unknowns of a given problem are typically represented in the model by
decision variables. There are practical ways of decreasing the number of variables
and thus reducing the size of the model and its search space.

Problems best solved with constraint-based programming are generally subject to
intrinsic combinatorial growth. Even if reducing the domains of variables by
propagating constraints makes it possible to reduce the search space, the initial size
of this search space still remains a weighty factor in the execution time.

Principle

Consequently, good practice in designing a model should attempt to minimize the
size of the search space in the first place. This size increases exponentially with the
number of variables. Thus, limiting the number of such variables (even at the
expense of enlarging their domains) can reduce the combinatorial complexity.

Example

This principle of reducing the number of decision variables can often be applied
advantageously to resource allocation problems. For example, assume that C
consumers must choose among R resources where:
v all the resources are available to every consumer;
v if consumer i chooses resource j, he or she incurs cost[i,j];
v each consumer uses at most one resource.

First model

This problem is often represented in the following way:
v Create C*R constrained integer variables supplieri,j with domain [0, 1] such that

supplieri,j = 1 if consumer i uses resource j.
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v The constraints stating that each consumer uses at most one resource are

represented this way: for each i,

v The goal is to maximize

To evaluate the combinatorial complexity of the problem, consider the maximum
number of configurations, called the apparent complexity of the problem. This figure
is the size of the search space, that is, the worst case complexity of a generate and
test algorithm.

In this model, the apparent complexity is 2R*C, which is around 1030 if R=C=10.

Second model: using fewer variables

With CP Optimizer, a more efficient model can be represented. The alternate model
can be written this way:
v Create a fake resource numbered 0.
v Create C constrained integer variables supplieri with domain [0..R] so that

supplieri = 0 if consumer i uses no resource,

supplieri = j if consumer i uses resource j.

The constraints stating that each consumer uses at most one resource are
necessarily satisfied, since a constrained integer variable can be fixed with only one
value.

v The goal is to maximize .

The maximum number of solutions of this representation is (R+1)C, which is 1110 if
R=C=10. This value is much smaller than 1030 from the first model.

Use dual representation
Using dual representation to consider the problem for a different view is a model
design principle to consider.

Object programming and straightforward object manipulation in CP Optimizer
often make it possible to design a direct and very intuitive model of a problem.
Nevertheless, it is important not to get stuck in this apparent simplicity if that
model gives rise to a disproportionate amount of propagation or outright
inefficiency.

Principle

Dual representation consists of looking at a problem “from the other side,” so to
speak. This technique assumes that the designer knows enough about the problem
to step back and consider its essence and thus extract conceptual symmetries
inherent in it.
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Example

Allocating resources offers a good example of this phenomenon. Assume that C
consumers must choose among R resources; to make it simple, consider the case
where:
v all the resources are available to every consumer;
v each consumer uses at most one resource;
v each resource may be used by at most one consumer.

The apparent complexity of the problem depends on the kind of model. In
practice, there are two possible models:
v The consumers choose resources.
v The resources choose consumers.

In the first case, if a constrained variable representing the chosen resource is
associated with each consumer, there are C variables with a domain of size R+1,
where R is the number of possible resources. The apparent complexity of the
problem in this model is thus (R+1)C.

The second case is, of course, analogous to the first: associate a constrained
variable with each resource such that the variable represents the chosen consumer,
so there are R variables with a domain of size C+1, where C is the number of
possible consumers. The apparent complexity of the problem in this model is thus
(C+1)R.

When the difference in apparent complexity is great, it is important to consider the
magnitude of C and R very carefully.

Remove symmetries
Removing symmetries is one model design principle to consider. There are
multiple ways in which to remove symmetries.

Overview
Removing symmetries is one model design principle to consider. There are
multiple ways in which to remove symmetries. By removing symmetries, parts of
the search space can be safely ignored.

The apparent complexity of a problem can often be reduced to a much smaller
practical complexity by detecting intrinsic symmetries. Parts of the search space
can then be safely ignored.

Group by type
One way to remove symmetries is to group by type.

When two or more variables have identical characteristics, it is pointless to
differentiate them artificially.

Principle

Rather, it is preferable to design a model that takes into account not simply the
elementary entities but instead the types into which the elementary entities can be
meaningfully grouped. Each such type, of course, quantitatively handles the
elementary entities that belong to it.
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Example

For example, consider the problem of plugging electronic cards into racks. Assume
that there are five types of cards. Each rack may contain only a finite number of
cards according to some constraints. The objective is to minimize the number of
racks used. This problem may be formulated in two different ways:
v first model: for each card, the problem is to find the rack where it is to be

plugged;
v second model: for each rack, the problem is to find the number of cards of a

given type plugged into it.

In the first model, there is one variable per card. Once a solution has been found,
any permutation of two cards of the same type defines a “new” solution. The
search space is consequently large and contains many such symmetrical solutions
that are not of interest.

In the second model, the number of cards of a given type is manipulated, rather
than the cards themselves. This model suppresses the symmetries introduced by
the previous one and thus reduces the search space.

Introduce order among variables
One method for removing symmetries is to introduce order among variables.

In some cases, there is really no point in examining all the possible solutions for
variables and their values.

This is the case when two or more constrained variables satisfy the following
conditions:
v the initial domains of these constrained variables are identical;
v these variables are subject to the same constraints;
v the variables can be permuted without changing the statement of the problem.

In fact, the permutations give rise to sets of solutions that are identical as far as the
physical reality of the problem is concerned. This idea can be exploited to
minimize the size of the search space.

Principle

If these domains are reduced by introducing a supplementary constraint, such as
order, or by imposing a special feature on each of these variables, the size of the
search space can be markedly reduced.

Example

Assume, for example, that there is the following system of equations:

x1 + x2 + x3 = 9

x1 × x2 × x3 = 12

For the ordered triple (x1, x2, x3), there are six solutions:

(1, 2, 6) (1, 6, 2) (2, 1, 6) (2, 6, 1) (6, 1, 2) (6, 2, 1)
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If the variables are permuted, the problem is not changed. For instance, if x1 and
x2are swapped, the problem becomes:

x2 + x1 + x3 = 9

x2 × x1 × x3 = 12

That problem is obviously the same as the first one. In this case, it is a good idea
to introduce a supplementary constraint to enforce order among the variables. This
order can be introduced in this manner:

x1 <= x2 <= x3

The additional constraint on the order among the variables greatly reduces the
combinatorial possibilities without removing any real solutions.

In fact, only one solution can be returned under these conditions:

(x1, x2, x3 ) = (1, 2, 6)

While removing possibilities wherever possible is a good idea, you should guard
against adding a supplementary constraint that inadvertently suppresses solutions
that you would like to see.

Introduce surrogate constraints
One method for removing symmetries is to introduce surrogate constraints.

Since constraint propagation decreases the size of the search space by reducing the
domains of variables, it is obviously important to express all necessary constraints.
In some cases, it is even a good idea to introduce implicit constraints to reduce the
size of the search space by supplementary propagation.

Processing supplementary constraints inevitably slows down execution. However,
this slowing down may be negligible in certain problems when it is compared with
the efficiency gained from reducing the size of the search space.

Principle

A surrogate constraint makes explicit a property that satisfies a solution implicitly.
Such a constraint should not change the nature of the solution, but its propagation
should delimit the general shape of the solution more quickly.

Of course, there is no need to express grossly obvious redundant constraints since
the highly optimized algorithms that CP Optimizer uses to ensure arc consistency
already work well enough. For example, given this system of equations:

x = y + z

z = a + b

no efficiency whatsoever is gained by adding this constraint:

x = y + a + b
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However, in any case where an implicit property makes good sense, or derives
from experience, or satisfies formal computations, its explicit implementation as a
surrogate constraint can be beneficial.

Example

Consider the problem of the magic sequence. Assume that there are n+1
unknowns, namely, x0, x1, . . . , xn. These xi must respect the following constraints:

0 appears x0 times in the solution.

1 appears x1 times.

In general, i appears xi times.

n appears xn times.

The constraint of this problem can easily be written, using the specialized
distribute constraint. However, the search for a solution can be greatly accelerated
by introducing the following surrogate constraint that expresses the fact that n+1
numbers are counted.

1*x1 + 2*x2 + . . . + n*xn = n+1.
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Chapter 9. Designing scheduling models

Although developing scheduling models for CP Optimizer can be straightforward,
there are some principles that you should consider while working on a model.

Specifying interval bounds
Though there are various methods for restricting bounds on interval variables,
specifying the bounds in the declaration of the interval variable is recommended.

If you have to specify a minimal start time, a maximal end time or a range of
possible values for the size of an interval, it is recommended specify these values
in the declaration of the interval itself rather than through expressions IloStartOf,
IloEndOf, and IloSizeOf.

Specifying the values at the time of declaration avoids difficulties related to the
optionality of intervals variables. For instance, the following code segments are not
equivalent:
IloIntervalVar a(env, 10, 20, IloTrue);

and
IloIntervalVar a(env);
a.setOptional();
m.add(IloSizeOf(a) >= 10);
m.add(IloSizeOf(a) <= 20);

The first sample specifies a range for the size of the interval variable if the interval
is present. In particular, the model will be consistent even if a is absent. The
second sample will be inconsistent if a is absent because the default value of
IloStartOf(a) will be 0 if a is absent. An equivalent model would be something
like:
IloIntervalVar a(env);
a.setOptional();
m.add(IloSizeOf(a,10) >= 10);
m.add(IloSizeOf(a,0) <= 20);

Additionally, specifying the range at the declaration of the interval is more
effective in the optimizer.

Specifying precedence relations between interval variables
Though there are various methods for modeling a precedence between two interval
variables, using a precedence constraint is recommended.

When modeling a precedence between two intervals, it is always better to use a
precedence constraint (e.g. IloEndBeforeStart) rather than an arithmetical
constraint (<=,<,==) between end and start expressions.

Using a precedence constraint avoids difficulties related with the optionality of
intervals variables. For instance, IloEndBeforeStart(env,a,b) is generally not
equivalent to IloEndOf(a) <= IloStartOf(b). Given the precedence constraint
IloEndBeforeStart(env,a,b), if b is absent, then the constraint will be always true
and have no impact on a, which is what is usually needed. Given the constraint
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IloEndOf(a) <= IloStartOf(b), if b is absent, then the constraint IloEndOf(a) <= 0
will be enforced, as 0 is the default value for IloSstartOf(b) when b is absent. The
form of a constraint using expressions that is equivalent to the precedence
constraint would be IloEndOf(a,IloIntervalMin) <=
IloStartOf(b,IloIntervalMax).

Additionally, using a precedence constraint is more effective in the optimizer.
IloIntervalVar a(env);
a.setOptional();
IloIntervalVar b(env);
b.setOptional();
m.add(IloEndBeforeStart(env,a,b));

This model is not equivalent to:
IloIntervalVar a(env);
a.setOptional();
IloIntervalVar b(env);
b.setOptional();
m.add(IloEndOf(a) <= IloStartOf(b));

Modeling resource calendars
Resource calendars can be modeled using a stepwise function that describes the
intensity of "work" over time.

Many scheduling problems, especially in project scheduling, involve calendars for
resources.

These calendars specify periods of time such that:
1. the resource is not available and suspends a task it is working on,
2. the resource works with a limited efficiency so that a task requiring this

resource will take more time during these periods,
3. the resource cannot start or finish executing a task during such a period,
4. a task requiring the resource cannot overlap such a period or
5. a task can overlap these periods but the total overlap must be retrieved as an

integer expression (typically to be minimized as part of the cost).

In CP Optimizer, this notion of a resource calendar is represented by a stepwise
function that describes the intensity of "work" over time. An interval variable can
be associated with an integer stepwise intensity function with possible values
expressed as a percentage in [0,100]. The intensity function represents an
instantaneous ratio between the size and the length of an interval variable. Cases
(1) and (2) can be represented by an intensity function. Case (1) is a special case
with the intensity function being equal to 0 on the time periods the resource
suspends the execution of tasks. Other constraints can be modeled using the
constraints IloForbidStart and IloForbidEnd (for case 3) and IloForbidExtent (for
case 4).

The sample below defines an intensity function equal to 100% except for the
weekends (intervals [5+7i,7+7i]) for which the intensity is 0%, that is, the
resource suspends its tasks on weekends.

Task task1 will be suspended during weekends.

Task task2 will be suspended during weekends and cannot start during a
weekend.
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Task task3 will be suspended during weekends and cannot start or end during a
weekend.

Task task4 must be completely executed during a week so that it cannot overlap a
weekend.

Task task5 of length 7 days can overlap weekends but the total duration of the
task performed during weekends (ov5) is to be minimized.
IloNumToNumStepFunction we(env, 0, 364, 100);
for (IloInt w=0; w<52; ++w)

we.setValue(5+(7*w), 7+(7*w), 0);
IloIntervalVar task1(env,10);
task1.setIntensity(we);
IloIntervalVar task2(env,10);
task2.setIntensity(we);
IloIntervalVar task3(env,10);
task3.setIntensity(we);
IloIntervalVar task4(env,4);
IloIntervalVar task5(env);
task5.setIntensity(we);
task5.setEndMax(365);
IloIntExpr ov5 = 7-IloSizeOf(task5);
m.add(IloForbidStart(env, task2, we));
m.add(IloForbidStart(env, task3, we));
m.add(IloForbidEnd(env, task3, we));
m.add(IloForbidExtent(env, task4, we));
m.add(IloLengthOf(task5)==7);
m.add(IloMinimize(env, ov5));

Chains of optional intervals
Though there are various methods for modeling a chains of optional interval
variables, an efficient method is recommended.

Sometimes it is necessary to model a chain of n optional intervals for which, only
the first k (k<=n) will be present where k is an implicit decision of the problem.

For instance, this is useful for modeling a preemptive activity that can be split into
at most n parts. In the sample below, there are the additional constraints that each
“part” of the activity has specified a minimal (pmin) and a maximal duration (pmax)
and that the total duration (size) of the parts must equal the processing time pt of
the preemptive activity. Note that when the part i is absent, the value returned by
IloSizeOf(part[i]) will be 0 (this is the default value when no argument is
passed to the expression), thus it will not be counted in the sum.
IloIntExpr totalSize(env);
IloIntervalVarArray part(env,n);
part[0] = IloIntervalVar(env, pmin, pmax, IloTrue);
totalSize += IloSizeOf(part[0]);
for (IloInt i=1; i < n-1; i++) {

part[i] = IloIntervalVar(env, pmin, pmax,IloTrue);
totalSize += IloSizeOf(part[i]);
m.add(IloIfThen(env,IloPresenceOf(env,part[i]),IloPresenceOf(env,part[i-1])));
m.add(IloEndBeforeStart(env,part[i-1],part[i]);

}
m.add(totalSize == pt);

Another example is a set of at most n flexible shifts for a worker with specific
constraints on the shift duration and minimal resting time between shifts (see
“Different uses of the alternative constraint” on page 94).
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Different uses of the alternative constraint
The alternative constraint between interval variables should be used when an
interval variable represents a set of alternative possibilities.

The alternative constraint between interval variables should be used when an
interval variable represents a set of alternative possibilities, such as an activity that
can be executed in a number of possible modes, or a discrete set of possible
positions in time.

A common case is an activity a that requires a resource among a set of candidate
resources R={r_1,...,r_m}. An optional interval a_i, 1<=i<=m can be defined that
represents the possible selection of resource r_i in the alternative resource set, R.
Then, an alternative constraint IloAlternative(env,a,[a_i]) will enforce that if a
is present, then one and only one of the a_i will be present. This case is illustrated
here with disjunctive resources (for more details on how to model disjunctive
resources, see “Modeling classical finite capacity resources” on page 97).
IloInt nbMachines = 5;
IloInt nbActivities = 10;
IloIntArray2 ptime = ...; // data from file
IloIntervalVarArray activity(env,nbActivities);
IloIntervalVarArray2 actOnMach(env,nbActivities);
for (IloInt i=0; i < nbActivities; i++) {

activity[i] = IloIntervalVar(env);
actOnMach[i] = IloIntervalVarArray(env, actOnMach);
for (IloInt j=0; j < nbMachines; j++) {

actOnMach[i][j] = IloIntervalVar(env,ptime[i][j]);
actOnMach[i][j].setOptional();

}
m.add(IloAlternative(env,activity[i], actOnMach[i]));

}
IloIntervalVarArray2 machHasAct(env,nbMachines);
for (IloInt j=0; j < nbMachines; j++){

machHasAct[j] = IloIntervalVarArray(env, nbActivities);
for (IloInt i=0; i < nbActivities; i++)

machHasAct[j][i] = actOnMach[i][j];
m.add(IloNoOverlap(env,machHasAct[j]));

}

Note:

In this sample, the processing time of the activity depends on the machine. A more
complex use-case is the one of alternative resource modes where a resource mode
specifies a conjunctive set of resources to be used, this case is illustrated in the
delivered example on Multi-Mode Resource Constrained Project Scheduling
(sched_rcpcpmm). In some situations, it may be useful to add redundant constraints
in the model so as to increase inference on alternative constraints (see Increasing
inference on alternative constraints in the engine).

Another use of the alternative constraint is to state that an activity must execute
within a set of alternative time windows. Consider a worker that can perform its
activities in a set of at most n flexible shifts with specific constraints on the shift
duration and minimal resting time between two consecutive shifts. Each shift of
the worker can be modeled as an (optional) interval variable. The set of n shifts
forms a chain of n optional interval variables (see “Chains of optional intervals” on
page 93) and each activity is an alternative among a set of n optional activities, one
for each possible shift. Each shift spans the set of all possible activities executing in
this shift. This type of model must be used with care because it multiplies the
number of interval variables. It is useful when the time-windows where the
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activities must be placed are not fixed. If the time-windows are fixed, it is better to
use an IloForbidExtent constraint when it makes sense (see “Modeling resource
calendars” on page 92).
IloInt nbActivities = 100;
IloInt nbShifts = 5;
IloInt maxShiftDuration = 600;
IloInt minInterShiftRest = 480;
IloIntervalVarArray activity(env,nbActivities);
IloIntervalVarArray2 actInShift(env,nbActivities);
for (IloInt i=0; i<nbActivities; i++) {

activity[i] = IloIntervalVar(env,10);
actInShift[i] = IloIntervalVarArray(env,nbShifts);
for (IloInt s=0; s<nbShifts; s++) {

actInShift[i][s] = IloIntervalVar(env);
actInShift[i][s].setOptional();

}
m.add(IloAlternative(env,activity[i],actInShift[i]));

}
IloIntervalVarArray shifts(env,nbShifts);
IloIntervalVarArray2 shiftActs(env,nbShifts);
for (IloInt s=0; s<nbShifts; s++) {

shifts[s] = IloIntervalVar(env,0,maxShiftDuration,IloTrue);
shiftActs[s] = IloIntervalVarArray(env,nbActivities);
for (IloInt i=0; i<nbActivities; i++)

shiftActs[s][i] = actInShift[i][s];
m.add(IloSpan(env, shift[s], shiftActs[s]));
if (s>0) {

m.add(IloEndBeforeStart(env, shift[s-1], shift[s], minInterShiftRest));
m.add(IloIfThen(env, IloPresenceOf(env,shift[s]), IloPresenceOf(env,shift[s-1])));

}
}

Modeling hierarchical models and “Work Breakdown Structures”
Hierarchical models and Work Breakdown Structures can be used to model task
decompositions.

Hierarchical models in which a high-level task decomposes into a set of lower-level
ones are common in scheduling. For instance, it may correspond to the Work
Breakdown Structure of a project in project scheduling. Many variants are possible:
the depth of the hierarchy may be constant or dependent on the tasks, some tasks
in the hierarchy may be optional and there may be different way to decompose a
given task.

Consider a task T in the hierarchy. In the simplest case, task T decomposes into a
set of subtasks ST1,...,STn. This can be modeled using a span constraint between T
and its set of subtasks STs = {ST1,...,STn}; task T will be constrained to start at the
start time of the first subtask in the set ST1,...,STn and to end at the end of the last
subtask in this set.
IloIntervalVar T(env);
IloIntervalVar STs(env,n);
for (i=0; i<n; i++)

STs[i] = IloIntervalVar(env);
m.add(IloSpan(env,T, STs);

Suppose now that some subtasks of a task T in the hierarchy are non-compulsory.
In other words, even if T is executed, these subtasks may be left unperformed,
perhaps incurring an additional cost. Reciprocally, if a subtask ST of a task T is
compulsory, then if task T is executed, subtask ST will have to be executed as well.
Of course, T may be non-compulsory. This notion can be modeled by using
optional interval variables in the hierarchy. If subtask ST is compulsory, we simply
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add the constraint IloIfThen(env,IloPresenceOf(env,T),IloPresenceOf(env,ST)).
If the top-level task of the hierarchy is compulsory, it must not be defined as
optional but as a necessarily present interval variable.
IloBoolArray compulsory(env,n); //compulsory populated
IloIntervalVar T(env);
T.setOptional();
IloIntervalVar STs(env,n);
for (i=0; i<n; i++) {

STs[i] = IloIntervalVar(env);
STs[i].setOptional();
if (compulsory[i])
m.add(IloIfThen(env,IloPresenceOf(env,T),IloPresenceOf(env,STs[i])));

}
m.add(IloSpan(env,T, STs);

In some applications, there are several alternative ways T1,...,Tm to decompose a
given task T. A given decomposition Ti is described by a set of subtasks
STi1,...,STij,...,STin that will be executed if decomposition Ti is selected. This can be
modeled by an alternative constraint between T and the set of alternatives T1,...,Tm
(each decomposition is modeled by an optional interval variable) and by
representing each decomposition Ti with a span constraint between Ti and its
subtasks STi1,...,STij,...,STin.
IloIntArray nSubTasks(env,m);
// populated with number of subtasks of each Ts[i]
IloIntervalVar T(env);
IloIntervalVarArray Ts(env,m);
for (IloInt i=0; i<m; i++) {

Ts[i] = IloIntervalVar(env);
Ts[i].setOptional();
IloIntervalArray subTasks(env,nSubTasks[i]);
for (j=0;j<nSubTasks[i]; j++) {

subTasks[j] = IloIntervalVar(env);
subTasks[j].setOptional();

}
m.add(IloSpan(env,Ts[i], subTasks));

}
m.add(IloAlternative(env,T,Ts));

The final case illustrates a more complex situation that mixes the elementary cases
above: it models a complete task hierarchy with non-compulsory subtasks and
alternative decompositions. Each possible task in the hierarchy is indexed by an
integer i in 0..n-1. The possible decompositions of a task i are described by two
arrays containing the decomposed task and the set of subtasks induced by this
decomposition. A Boolean integer array compulsory tells whether or not a task i is
compulsory in the hierarchy. The number of possible decompositions of a taskiis
represented by taskDecompositions[i].getSize(). This is used to detect leaf tasks
that cannot be decomposed further (taskDecompositions[i].getSize()=0). The
array taskNbParents[] counts the number of times a given task is contained in the
subtasks of a decomposition. This is used to detect top-level tasks in the hierarchy
(taskNbParents[i]=0). Each task and each possible decomposition is represented as
an optional interval variable. Each compulsory top level task is constrained to be
present. If a task i is not a leaf task, then task i is constrained to be the alternative
of all its possible decompositions and each decomposition of task i is constrained
to span the decomposition subtasks. Finally, each compulsory subtask of a
decomposition is constrained to be present if the decomposition is selected.
// Data defining the work-breakdown structure
IloInt n=...;
IloInt totalNbDecompositions=...;
IloBoolArray compulsory(env,n); // populated
IloIntArray decomposedTask(env,totalNbDecompositions); // populated
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IloIntArray2 decompositionSubtasks(env,totalNbDecompositions); // populated

IloIntervalVarArray tasks(env,n);
IloIntArray taskNbParents(env,n);
IloIntervalVarArray2 taskDecompositions(env,n);
for (IloInt i=0; i<n; i++) {

tasks[i] = IloIntervalVar(env);
tasks[i].setOptional();
taskNbParents[i] = 0;
taskDecompositions[i] = IloIntervalVarArray(env);

}

for (IloInt d=0; d<totalNbDecompositions; d++) {
IloIntervalVar dec(env);
dec.setOptional();
IloInt i = decomposedTask[d];
taskDecompositions[i].add(dec);
IloIntervalVarArray subtasks(env);
for (IloInt s=0; s<decompositionSubtasks[d].getSize(); s++) {

IloInt j = decompositionSubtasks[d][s];
taskNbParents[j]++;
subtasks.add(tasks[j]);
if (compulsory[j])

m.add(IloIfThen(env,IloPresenceOf(env,dec), IloPresenceOf(env,tasks[j])));
}
m.add(IloSpan(env,dec, subtasks));

}

for (IloInt i=0; i<n; i++) {
if (taskNbParents[i]==0 && compulsory[i])

m.add(IloPresenceOf(env, tasks[i]));
if (taskDecompositions[i].getSize()>0) {

m.add(IloAlternative(env,tasks[i], taskDecompositions[i]));
}

}

Modeling classical finite capacity resources
Classical finite capacity resources such as disjunctive/unary resources,
non-renewable/discrete resources, and renewable/producible/consumable
resources can be modeled efficiently in CP Optimizer.

Disjunctive resources are resources that can only process one activity at a time and
thus enforce a total order over the set of activities processed on the resource. There
are two ways to model disjunctive resources in CP Optimizer: using a no overlap
constraint or a cumulative function with a maximal level of 1:
v If the disjunctive resource is associated with a sequence dependent setup time,

the model using a no overlap constraint should be chosen because the cumul
function does not allow the expression of transition distances.
IloInt n = ...; // nActivities
IloInt m = ...; // nTypes
IloTransitionDistance setups(env, m);
for (IloInt i=0; i<m; ++i)

for (IloInt j=0; j<m; ++j)
setups.setValue(i, j, IloAbs(i-j));

IloIntArray type(env,n); // populate
IloIntArray ptime(env,n); // populate
IloIntervalVarArray act(env,n);
for (i=0; i<n; i++)

act[i] = IloIntervalVar(env,ptime[i]);
IloIntervalSequenceVar res(env,act,type);
m.add(IloNoOverlap(env,res,setups));
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v If the disjunctive resource is associated with a minimal capacity profile
(specifying that the resource should be in use over some time windows, then a
cumulative Function should be used specifying a constraint
IloAlwaysIn(env,s,e,1,1) over each time-window [s,e) where the resource
must be in use.
IloInt n = ...;
IloIntArray ptime(env,n); // populate
IloInt nMustBeInUse = ...;
IloIntArray start(env,nMustBeInUse); // populate
IloIntArray end(env,nMustBeInUse); // populate
IloIntervalVarArray act(env,n);
IloCumulFunctionExpr res(env);
for (i=0; i<n; i++) {

act[i] = IloIntervalVar(env,ptime[i]);
res += IloPulse(act,1);

}
m.add(res <= 1);
for (IloInt w=0;w<nMustBeInUse; w++)

m.add(IloAlwaysIn(env,res, start[w], end[w], 1, 1);

v If the resource is unavailable over some time-windows, it is preferable to use a
cumul function with a set of “always in” constraints, such as
IloAlwaysIn(env,s,e,0,0), over each time-window [s,e) where the resource is
unavailable unless the number of unavailability time windows is small enough
in which case, adding fake fixed interval variables in the no overlap could make
sense if there are specific reasons to use the no overlap constraint.

Non-renewable resources are resources with a finite capacity Q such that the total
resource usage by all activities executing at a time point t do not exceed Q. Each
activity executing on the resource requires a given amount of resource from its
start time to its end time. In CP Optimizer, non-renewable resources are modeled
using a cumul function defined as a sum of elementary pulse functions.
Constraints <=, >= or IloAlwaysIn are used to constrain the maximal or minimal
amount of resource used over time.
IloInt nSteps = ...;
IloIntArray start(env,nSteps); // populate
IloIntArray end(env,nSteps); // populate
IloIntArray capmax(env,nSteps); // populate
IloInt n = ...;
IloIntArray ptime(env,n); // populate
IloIntArray qty(env,n); // populate
IloIntervalVarArray act(env,n);
IloCumulFunctionExpr res(env);
for (IloInt i=0; i<n; i++) {

act[i] = IloIntervalVar(env,ptime[i]);
res += IloPulse(act,qty[i]);

}
for (IloInt s=0; s<nSteps; s++)
m.add(IloAlwaysIn(env,res, start[s], end[s], 0, capmax[s]));

Renewable resources are resources that can be produced and consumed by
activities. In CP Optimizer a renewable resource can be modeled as a cumul
function defined as a sum of elementary step functions or their opposite. Resource
production can be modeled as a +IloStepAtStart (if the activity produces at its
start time) or a +IloStepAtEnd function (if the activity produces at its end time).
Resource consumption can be modeled as a -IloStepAtStart (if the activity
consumes at its start time) or a -IloStepAtEnd function (if the activity consumes at
its end time). Constraints <=, >= or IloAlwaysIn are used to constrain the maximal
or minimal amount of resource over time. The following sample illustrates a
renewable resource representing a tank with a maximal capacity and a safety level
with activities producing or consuming material stored in the tank.
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IloInt Horizon = ...;
IloInt Capacity = ...;
IloInt SafetyLevel = ...;
IloInt StartLevel = ...;
IloInt NProd = ...;
IloInt NCons = ...;
IloIntArray QProd(env,NProd); // populate
IloIntArray QCons(env,NCons); // populate
IloCumulFunctionExpr level(env);
level += IloStep(env,0,StartLevel);
IloIntervalVarArray AProd(env,NProd);
for (IloInt i=0; i<NProd; i++) {

AProd[i]=IloIntervalArray(env,1);
level += IloStepAtEnd(AProd[i], QProd[i])

}
for (i=0; i<NCons; i++) {

ACons[i]=IloIntervalArray(env,1);
level -= IloStepAtStart(ACons[i], QCons[i]);

}
m.add(IloAlwaysIn(env,level, 0, Horizon, SafetyLevel, Capacity));

Modeling classical scheduling costs
Classical scheduling costs such as makespan, earliness/tardiness, resource
allocation costs and activity execution costs can be modeled efficiently in CP
Optimizer.

Non-execution costs

An activity non-execution cost K is modeled by an expression K * presenceOf(a) if a
is the optional interval variable representing the activity.

Makespan

A makespan cost is modeled as the maximal value of the end of a set of interval
variables. In the case of an optional interval variable, the value of expression
IloEndOf(a) is 0 when interval a is absent.
dvar interval act[i in 1..n];
dexpr int makespan = max(i in 1..n) endOf(act[i]);
minimize makespan;
subject to { // ... }

IloIntervalVarArray act(env,n);
IloIntExprArray end(env);
for (IloInt i=0; i<n; i++ ) {

act[i] = IloIntervalVar(env);
ends.add(IloEndOf(act[i]);

}
m.add(IloMinimize(env,IloMax(ends)));

Earliness/tardiness costs

An earliness/tardiness cost can be modeled by a set of piecewise linear functions f
that represent the cost f(t) of finishing (or starting) an activity at a date t. Integer
expressions IloStartEval and IloEndEval are used to evaluate the function on the
start or end point of an interval variable. An example of earliness/tardiness cost
where the cost of an activity is expressed as a V-shaped function evaluated at the
activity end time follows. This sample combines the earliness/tardiness cost with a
non-execution cost: in the example, activities are supposed to be optional and
leaving the activity unperformed incurs a cost.
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pwlFunction etcost[i in 1..n] = piecewise{-earliW[i]->targetEnd[i]; tardiW[i]}(targetEnd[i],0); dexpr float cost = sum(i in 1..n) endEval(act[i], etcost

IloIntArray targetEnd(env,n); // populate
IloNumArray earliW(env,n); // populate
IloNumArray tardiW(env,n); // populate
IloNumArray nonExecCost(env,n); // populate
IloNumExpr cost(env);
IloIntervalArray act(env,n);
IlNumExpr cost(env);
for (IloInt i=0; i<n; i++ ) {

act[i] = IloIntervalVar(env);
act[i].setOptional();
IloNumToNumSegmentFunction etcost = IloPiecewiseLinearFunction(env,

IloNumArray(env,1, targetEnd[i]),
IloNumArray(env,2,-earliW[i],tardiW)
targetEnd[i],0);

cost += IloEndEval(act[i],etcost,nonExecCost[i]);
}
m.add(IloMinimize(env,cost));

When the function is very simple such as a pure tardiness cost and the activity is
not optional, it is slightly more efficient to use a IloMax expression rather than a
piecewise linear function as illustrated.
IloIntArray dueDate(env,n); // populate
IloNumArray tardiW(env,n); // populate
IloIntervalVarArray act(env,n);
IloNumExpr cost(env);
for (IloInt i=0; i<n; i++ ) {

act[i] = IloIntervalVar(env);
cost += tardiw[i]*IloMax(0,IloEndOf(act[i])-dueDate[i]);

}
m.add(IloMinimize(env,cost));

Resource allocation costs

A resource or mode allocation cost specifying a cost K incurred by an activity
executing on a particular resource or in a particular mode is modeled by an
expression K * IloPresenceOf(a) if a is the optional interval variable representing
the execution of the activity on the resource or in the specified mode (see
“Different uses of the alternative constraint” on page 94). The following sample
illustrates a simple resource allocation cost for an activity executing on a set of
alternative resources.
IloInt nbMachines = 5;
IloInt nbActivities = 10;
IloIntArray ptime(env,nbActivities); // populate
IloIntArray2 allocCost(env,nbActivities);
IloIntervalVar activity(env,nbActivities);
IloIntervalVarArray2 actonMach(env,nbActivities);
for (IloInt i=0; i<nbActivities;i++) {

activity[i] = IloIntervalVar(env,ptime[i]);
allcost[i] = IloIntArray(env,nbMachines); // ppulate
actOnMach[i] = IloIntervalVarArray(env,nbMachines);
for (IloInt j=0; j< nbMachines; j++) {

actOnMach[i][j] = IloIntervalVar(env);
actOnMach[i][j].setOptional();

}
m.add(IloAlternative(env,activity[i],actOnMach[i]));

}

IloIntervalVarArray2 resOnAct(env,nbMachines);
for (IloInt j=0; j<nbMachines; j++) {

resHasAct[j] = IloIntervalVarArray(env,nbActivities);
for (IloInt i=0; i<nbActivities;i++) {

resHasAct[j][i] = actOnMach[i][j];
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}
m.add(IloNoOverlap(env, resOnAct[j]));

}

IloIntExpr cost(env);
for (i=0; i<n; i++ )

for (IloInt j=0; j<m; j++)
cost += allocCost[i][m]*IloPresenceOf(env,actOnMach[i][m]);

m.add(IloMinimize(env,cost));

Sequence-dependent setup costs

A sequence-dependent setup cost on a machine is usually expressed as a cost
matrix M[ti][tj] that gives the setup cost for the machine to switch from an
activity of type ti to an activity of type tj. Such a setup cost can be modeled by
using expressions typeOfNext and typeOfPrev on the sequence variable representing
the machine as illustrated in the following sample. A complete example modeling a
total setup cost is available in the delivered example <Install_dir>/cpoptimizer/
examples/src/cpp/sched_tcost.cpp.
IloEnv env;
IloModel model(env);
IloInt m = ...; // Number of types { 0, 1, ..., m-1 }
IloInt last = m; // Type of next for the last activity on the machine
IloInt abs = m+1; // Type of next for a non-executed activity on the machine

IloIntArray2 M(env, m);
for (IloInt ti=0; ti<m; ++ti) {

M[ti]= IloIntArray(env, m+2);
for (IloInt tj=0; tj<m; ++tj) {

M[ti][tj] = ...; // Setup cost between types ti and tj
}
M[ti][last] = ...; // Cost if an activity of type ti is last
M[ti][abs] = ...; // Cost if an activity of type ti is not executed

}

IloInt n = ...; // Number of activities on the machine
IloIntervalVarArray act(env, n); // Activities on the machine
IloIntArray type(env, n); // Activity types

// ...

IloIntervalSequenceVar machine(env, act, type);
model.add(IloNoOverlap(env, machine));

IloIntExpr totalCost(env);
for (IloInt i=0; i<n; ++i)

totalCost += M[type[i]][IloTypeOfNext(machine, act[i], last, abs)];
model.add(IloMinimize(env, totalCost));

IloCP cp(model);
cp.solve();
env.end();

Modeling sequence-dependent setup times
Setup times on disjunctive resources can be modeled by a no-overlap constraint
with a transition distance.

It is quite common that a certain minimal amount of time must elapse between the
execution of two successive operations on a resource (e.g. a machine), and, often,
this amount of time depends on the types of the two successive operations. This is
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the notion of sequence-dependent setup time and can be captured in CP Optimizer
by a no-overlap constraint with transition distance.

Operations on the machine are represented by interval variables a[i] and a
sequence variable seq is created on these interval variables to model the sequence
of operations on the machine. The type of the different operations (used to compute
the setup time) are specified when building the sequence variable.

A transition distance is represented by a transition distance class and stored as a
matrix of setup times. A no-overlap constraint must be posted with the sequence
variable and the transition distance to state that interval variables of the sequence
do not overlap and that the sequence-dependent setup time of the transition
distance applies to the intervals of the sequence.

CP Optimizer distinguishes two kinds of behavior of the no-overlap constraint
with respect to transition distances: (1) transition distance between immediate
successors and (2) transition distances between all successors.

A transition distance between immediate successors is generally useful for
modeling the duration of a setup activity to switch the state of the resource from
one interval to the next interval in the sequence. Here, the state of the resource is
represented by the type of the interval in the sequence. This is illustrated in
Sample 1; the Boolean flag passed at the construction of the no-overlap constraint
specifies if the transition distance must only be applied between immediate
successors on the sequence variable. A complete example of transition distance
between immediate successors is available in the delivered example
<Install_dir>/cpoptimizer/examples/src/cpp/sched_setup.cpp. In some more
complex cases, the setup activity will have to be explicitly modeled as an interval
variable because, for instance, it requires some additional resource. In this case,
you can use the expressions typeOfNext and typeOfPrev on the sequence variable to
constrain the length of the setup activity as illustrated in Sample 2. See “Modeling
classical scheduling costs” on page 99 for modeling sequence-dependent setup
costs.

In some specific cases, the transition distance must be applied between all pairs of
intervals succeeding each other on the sequence, no matter if there are other
intervals in between. For example, consider a set of movies to be scheduled on a
TV channel. If a movie of type ti is scheduled after a movie of type tj (no matter
which other movies are shown in between), depending on the types ti,tj, one
would like a minimal amount of time to elapse between the two occurrences to
avoid showing movies of similar types too close to each other. Sample 3 illustrates
such a use-case using a minimal delay separationTime[ti] between movies of type
ti; the Boolean flag passed at the construction of the no-overlap constraint
specifies that the transition distance must be applied between all successors on the
sequence variable.

SAMPLE 1: Sequence-dependent setup time on immediate successors
IloEnv env;
IloModel model(env);
IloInt m = ...; // Number of types { 0, 1, ..., m-1 }

IloTransitionDistance setupTimes(env, m);
for (IloInt ti=0; ti<m; ++ti)

for (IloInt tj=0; tj<m; ++tj)
setupTimes.setValue(ti,tj, ...); // Setup time between types ti and tj

IloInt n = ...; // Number of activities on the machine
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IloIntervalVarArray act(env, n); // Activities on the machine
IloIntArray type(env, n); // Activity types
// ...

IloIntervalSequenceVar machine(env, act, type);
// Transition distance applies between immediate successors
model.add(IloNoOverlap(env, machine, setupTimes, IloTrue));

SAMPLE 2: Sequence-dependent setup activities
IloEnv env;
IloModel model(env);
IloInt m = ...; // Number of types { 0, 1, ..., m-1 }

IloInt n = ...; // Number of activities on the machine
IloIntervalVarArray act (env, n); // Activities on the machine
IloIntervalVarArray setup(env, n); // Setup activities on the machine
IloIntervalVarArray cover(env, n); // Covering activities on the machine
IloIntArray type (env, n); // Activity types

// ...
for (IloInt i=0; i<n; ++i) {

act [i] = ...;
type [i] = ...;
cover[i] = IloIntervalVar(env);
setup[i] = IloIntervalVar(env);
IloIntervalVarArray dec(env); dec.add(act[i]); dec.add(setup[i]);
model.add(IloSpan(env, cover[i], dec));
model.add(IloEndBeforeStart(env, act[i], setup[i]));

}

IloIntervalSequenceVar machine(env, cover, type);
model.add(IloNoOverlap(env, machine)); // Setup activities

IloIntArray2 setupDuration(env, m);
IloInt last = m; // Type of next for the last activity on the machine
for (IloInt ti=0; ti<m; ++ti) {

setupDuration[ti]= IloIntArray(env, m+1);
for (IloInt tj=0; tj<m; ++tj)

setupDuration[ti][tj] = ...; // Length of setup activity between types ti and tj
setupDuration[ti][last] = 0; // Length of last setup activity
}
for (IloInt i=0; i<n; ++i)
model.add(IloLengthOf(setup[i])==setupDuration[type[i]][IloTypeOfNext(machine,cover[i],last)]);

SAMPLE 3: Sequence-dependent setup time on all successors
IloEnv env;
IloModel model(env);
IloInt m = ...; // Number of types { 0, 1, ..., m-1 }

IloTransitionDistance separationTimes(env, m);
for (IloInt ti=0; ti<m; ++ti)

separationTimes.setValue(ti,ti, ...); // Separation time between two movies of type ti

IloInt n = ...; // Number of movies
IloIntervalVarArray movie(env, n); // Movies
IloIntArray type(env, n); // Types
// ...

IloIntervalSequenceVar movieSequence(env, movie, type); // Transition distance applies between all successors
model.add(IloNoOverlap(env, movieSequence, separationTimes, IloFalse));
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Modeling stochastic scheduling problems on disjunctive resources
Stochastic programming problems on disjunctive resources can be modeled using
same sequence constraints.

Scheduling problems often involve some uncertainty in the data and require
computing a schedule that is, in a certain sense, robust with respect to these
uncertainties. Data can be uncertain for several potential reasons such as activities
taking more or less time than originally estimated, resource availability that is
subject to variability (machine breakdowns, manpower absenteeism) or different
unexpected delays (materials arriving later than planned, weather conditions), etc.

When facing a scheduling problem with uncertainties two important questions
should be answered first:
1. Can I solve the deterministic version of the problem? Modeling and solving a

stochastic scheduling problem is more complex than modeling and solving the
deterministic variant of the problem where all uncertainties have been ruled
out. Being capable of efficiently solving the deterministic version of the
problem is always a prerequisite.

2. What is a solution to the robust scheduling problem? This question is often
harder than it seems. The traditional solution to a scheduling problem, in the
form of fixed start and end dates for activities is in general too rigid and too
brittle to be considered as robust. One generally looks for a more flexible
solution that implicitly represents a set of fully fixed schedules. The decision of
which fixed schedule to use, that is, the selection of actual start and end dates
for activities, is usually performed at schedule execution time. Stated otherwise,
a solution to a robust scheduling problem is in general a particular execution
policy computed off-line that will be used for on-line execution.

When the scheduling problem is dominated by disjunctive resources, like
machines, tools or workers that can only perform one activity at a time, a natural
representation of a flexible schedule is the sequence of activities on the resource. In
this context, finding a robust schedule boils down to finding a robust allocation
and sequencing of activities on resources.

The objective function of stochastic scheduling problems is often related with the
expectation of a certain performance criterion. Typical examples include
minimizing the expected project makespan or project cost or maximizing the
probability that a given level of service can be satisfied.

Most of the existing approaches for stochastic scheduling implement a
scenario-based framework, in which the uncertainty is modeled through the use of
a number of n scenarios. Each scenario is a deterministic sub-problem that
represents a particular realization of the uncertainties. In practical applications,
these scenarios may be given by a selection of representative past execution of the
system or they may be computed by sampling the probability distributions of the
random variables related with uncertainties.

A global model is built by aggregating these n scenarios. Some constraints are
added to ensure that the decisions taken off-line in order to build a robust
schedule (for instance allocation and sequencing decisions) are consistent across all
scenarios. The global objective function is a combination of the individual objective
function of each scenario.
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CP Optimizer provides a specific constraint sameSequence to state that two
sequence variables should be ordered in the same way. This constraint is
particularly useful in stochastic scheduling problems involving the creation of
robust sequences on disjunctive resources. It will be used to state that, for a given
disjunctive resource, the same sequencing of activities should be used across all n
scenarios. This is illustrated in Sample 1.

SAMPLE 1: Scenario-based model for a single disjunctive resource
IloEnv env;
IloModel model(env);
IloInt n = ...; // Number of scenarios
IloInt m = ...; // Number of activities on the machine
IloIntArray2 dur = ...; // dur[i][j]: duration of activity j in scenario i

IloIntervalVarArray2 act(env, n); // act[i][j]: activity j in scenario i
IloIntervalSequenceVarArray seq(env, n); // seq[i]: sequence of activities for scenario i
for (IloInt i=0; i<n; ++i) {

// Scenario i
act[i] = IloIntervalVarArray(env, m);
for (IloInt j=0; j<m; ++j) {

act[i][j] = IloIntervalVar(env, dur[i][j]);
}
seq[i] = IloIntervalSequenceVar(env, act[i]);
model.add(IloNoOverlap(env, seq[i]));
if (0<i) {

// Same sequence across all scenarios
model.add(IloSameSequence(env, seq[0], seq[i]));

}
}

A complete example of stochastic scheduling problem is available in the delivered
example <Install_dir>/cpoptimizer/examples/src/cpp/
sched_stochastic_jobshop.cpp. This problem is a stochastic version of the classical
job-shop scheduling problem where the duration of activities is uncertain and the
objective is to minimize the expected makespan.

Increasing inference on alternative constraints in the engine
Adding redundant cumul functions can increase the inference of the optimizer on
alternative constraints.

There may be situations where stronger inference on alternative constraints will
help the optimizer to find a solution or to converge quicker. Given a pool of m
alternative resources, some activities act[i], i in 0..n–1 in the schedule need to
select one resource from this pool. As described in the section “Different uses of
the alternative constraint” on page 94, this can be modeled by a set of m optional
interval variables actOnRes[i][k] for each possible resource k in 0..m—1 and an
alternative constraint between act[i] and these actOnRes[i][k]. The resource pool
can also be seen, globally, as a renewable resource of capacity m, each activity
act[i] requiring one unit of this resource. This additional redundant constraint
will provide the engine a more global view on the number of resources
simultaneously used at each time point, independently from the actual resource
that is being allocated to each activity. This redundant constraint can be modeled
as a cumul function with maximal level as illustrated on the sample below.

Note:

Sometimes, although the description of the problem in natural language mentions
the allocation of individual resources to an activity, it is not necessary to use a fine
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grained model and the decomposition of the activities as an alternative of optional
interval variable on each resource will not be necessary. A cumul function with
maximal level will be sufficient for these cases where resources from a resource
pool do not have individual characteristics. When possible, this will result in a
much lighter and efficient model.
IloIntervalVarArray act(env,n);
IloIntervalVarArray2 actOnRes(env,n);
for (IloInt i=0; i<n; i++ ) {

act[i] = IloIntervalVar(env,pt[i]);
actOnRes[i] = IloIntervalVarArray(env,m);
for (IloInt j=0; j<m; j++) {

actOnRes[i][j] = IloIntervalVar(env);
actOnRes.setOptional();

}
m.add(IloAlternative(env,act[i], actOnRes[i]));

}

IloIntervalVarArray2 ResHasAct(env,m);
for (IloInt j=0; j<m; j++) {

resHasAct[j] = IloIntervalVarArray(env,n);
for (IloInt i=0; i<n; i++ )

resHasAct[j][i] = actOnRes[i][j];
m.add(IloNoOverlap(env,resHasAct[j]);

}

cumulFunction nbUsed(env);
nbused += IloPulse(act[i], 1);

// Redundant constraint
m.add(nbUsed <= m);
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Chapter 10. Debugging applications

CP Optimizer offers debugging features including exception handling, logging and
tracing.

Overview
CP Optimizer offers debugging features including exception handling, logging and
conflict refining.

When you are debugging an application that employs CP Optimizer, this library
offers several features, such as logging and conflict refining, to make the task
easier in whatever development environment you prefer. “The search log” on page
65 introduces the search log of CP Optimizer. In the search log, you can see the
effectiveness of propagation, the progress of the search and the status of a solution.
This section documents other features of CP Optimizer that facilitate debugging.

Catching exceptions
Exception handling for managing anomalies is a good programming practice when
using CP Optimizer.

When programming an application, it is a good programming practice to enclose
parts of your application in try-catch statements. In that way, when anomalies arise
during execution, they can be managed as exceptions, so that your application can
recover as cleanly as possible. You will find samples of try-catch statements in the
examples distributed with CP Optimizer.

If you use try-catch statements, it is possible to distinguish exceptions raised by CP
Optimizer from exceptions raised by the rest of the application. Specifically, when
an error condition is encountered, CP Optimizer raises an exception of type
IloException. Your application can catch these exceptions within try-catch
statements, and you can thus determine directly whether the anomaly arises within
the CP Optimizer part of your application or in another part of your application.
Here’s the conventional way to catch an error exception from CP Optimizer in the
C++ API:
catch (IloException& e) {

...
e.end();

}

The reference manual documents exceptions specific to IBM ILOG Concert
Technology and CP Optimizer.

Note:

Catch exceptions by reference

Catch exceptions by reference, not by value, to avoid losing information and to
prevent leaks from expressions or arrays.

In the C++ API, exception classes are not handle classes. Thus, the correct type of
an exception is lost if it is caught by value rather than by reference (that is, using
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catch(IloException& e) {...}). This is one reason that catching IloException
objects by reference is a good idea, as demonstrated in all the examples distributed
with CP Optimizer. Some derived exceptions may carry information that would be
lost if caught by value. So if you output an exception caught by reference, you may
get a more precise message than when outputting the same exception caught by
value.

There is a second reason for catching exceptions by reference. Some exceptions
contain arrays to communicate the reason for the failure to the calling function. If
this information were lost by calling the exception by value, the method end could
not be called for such arrays, and their memory would be leaked (until env.end is
called). After catching an exception by reference, calling the end method of the
exception will free all the memory that may be used by arrays (or expressions) of
the actual exception that was thrown.

You can also control where warnings and error messages of the CP Optimizer part
of your application are displayed. For example, during debugging, you might want
all warning or error messages directed to your monitor, whereas when your
application goes into production for use by customers, for example, you might
want to direct warnings and error messages to a log file or some other discreet
channel.

In the C++ API of Concert Technology, the class IloEnv initializes output streams
for general information, for error messages and for warnings. The class
IloAlgorithm supports these communication streams and the class IloCP inherits
its methods. For general output, there is the method IloAlgorithm::out. For
warnings and nonfatal conditions, there is the method IloAlgorithm::warning. For
errors, there is the method IloAlgorithm::error.

In the C++ API, an instance of IloEnv defines the output stream referenced by the
method out as the system cout in the C++ API, but you can use the method setOut
to redefine it as you prefer. For example, to suppress output to the screen in a C++
application, use this method with this argument:
setOut(IloEnv::getNullStream())

Likewise, you can use the methods IloAlgorithm::setWarning and setError to
redefine those channels as you prefer.

In the Microsoft .NET Framework languages and Java APIs, the native streams are
used directly.

Using the conflict refiner
The conflict refiner is used to find an explanation for the infeasibility of a model.

In the process of developing a model it often happens that, by nature of the model
or because some errors slipped in the model or in the data, the problem is
infeasible. In this case, you can use the conflict refiner functionality to identify a
minimal infeasible subset of constraints.

Consider for instance the following map-coloring problem in which there are two
available colors (blue, white) and six contiguous countries (Belgium, Denmark,
France, Germany, Luxembourg, Netherlands).
#include <ilcp/cp.h>

const char* Names[] = {"blue", "white"};
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int main(){
IloEnv env;
try {

IloModel model(env);
IloIntVar Belgium (env, 0, 1, "Belgium "),

Denmark (env, 0, 1, "Denmark "),
France (env, 0, 1, "France "),
Germany (env, 0, 1, "Germany "),
Netherlands(env, 0, 1, "Netherlands"),
Luxembourg (env, 0, 1, "Luxembourg ");

// Constraints
model.add(Belgium != France);
model.add(Denmark != Germany );
model.add(France != Germany);
model.add(Belgium != Netherlands);
model.add(Germany != Netherlands);
model.add(France != Luxembourg);
model.add(Luxembourg != Germany);
model.add(Luxembourg != Belgium);
IloCP cp(model);
// Search for a solution
if (cp.solve()) {

cp.out() << cp.getStatus() << " Solution" << std::endl;
cp.out() << "Belgium :" << Names[(IloInt)cp.getValue(Belgium)] << std::endl;
cp.out() << "Denmark :" << Names[(IloInt)cp.getValue(Denmark)] << std::endl;
cp.out() << "France :" << Names[(IloInt)cp.getValue(France)] << std::endl;
cp.out() << "Germany :" << Names[(IloInt)cp.getValue(Germany)] << std::endl;
cp.out() << "Netherlands:" << Names[(IloInt)cp.getValue(Netherlands)] << std::endl;
cp.out() << "Luxembourg :" << Names[(IloInt)cp.getValue(Luxembourg)] << std::endl;

} else {
// If the problem was shown to be infeasible, find a minimal explanation for infeasibility
if (cp.refineConflict()) {

cp.writeConflict(cp.out());
}

}
} catch (IloException& ex) {

env.error() << "Error: " << ex << std::endl;
}
env.end();
return 0;

}

This problem is infeasible. Running the conflict refiner on this model provides the
following explanation:
// ------ Conflict members: ---------------------------------------------------

Belgium [0..1] != France [0..1]
France [0..1] != Luxembourg [0..1]
Luxembourg [0..1] != Belgium [0..1]

The explanation is that it is not possible to color Belgium, France and Luxembourg
with only two colors. At least three different colors are required as these countries
are contiguous. This explanation is minimal in the sense that if one removes any of
these three constraints, the two remaining ones are feasible.

For more information on the conflict refiner, please refer to the concept “Conflict
Refiner in CP Optimizer” in the CP Optimizer C++ API Reference Manual.

Another example of the use of the conflict refiner for a scheduling problem is
available in the delivered example <Install_dir>/cpoptimizer/examples/src/cpp/
sched_conflict.cpp.
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In this example you will learn how to use constraint weights to select a preferred
explanation and how the conflict refiner can be used to iterate over several
explanations.

Testing with a known solution
Using an instance of the problem with a known solution is a useful method for
debugging.

Chapter 8, “Designing models,” on page 85 explains how to design good models
for various problems. However, if errors slip in when you implement the
constraints of the problem, it can be very difficult to understand why the
application finds wrong answers, even though the model is very good.

There is a simple way to address such cases: use an instance of the problem with a
known solution to test the constraints. For testing a solution, you assign the values
corresponding to a solution before adding the constraints to the model. Then no
failure should happen within this function. If a failure occurs with the known
solution, you know there is a problem among the constraints.

To see how to test with a known solution, consider a map-coloring problem in
which there are four available colors (blue, white, red, green) and six contiguous
countries (Belgium, Denmark, France, Germany, Luxembourg, Netherlands). One
known solution is to color Belgium and Germany blue; Denmark, France and the
Netherlands white; and Luxembourg red.

This C++ sample tests a known solution of the map-coloring problem.
#include <ilcp/cp.h>
const char* Names[] = {"blue", "white", "red", "green"};
int main(){

IloEnv env;
try {

IloModel model(env);
IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3),

France(env, 0, 3), Germany(env, 0, 3),
Netherlands(env, 0, 3), Luxembourg(env, 0, 3);

// Test a known solution
model.add(Belgium == 0);
model.add(Denmark == 1);
model.add(France == 1);
model.add(Germany == 0);
model.add(Netherlands == 1);
model.add(Luxembourg == 2);
// Constraints
model.add(Belgium != France);
model.add(Denmark != Germany );
model.add(France != Germany);
model.add(Belgium != Netherlands);
model.add(Germany != Netherlands);
model.add(France != Luxembourg);
model.add(Luxembourg != Germany);
model.add(Luxembourg != Belgium);
IloCP cp(model);
// Search for a solution
if (cp.solve()) {

cp.out() << cp.getStatus() << " Solution" << std::endl;
cp.out() << "Belgium:" << Names[(IloInt)cp.getValue(Belgium)] << std::endl;
cp.out() << "Denmark:" << Names[(IloInt)cp.getValue(Denmark)] << std::endl;
cp.out() << "France:" << Names[(IloInt)cp.getValue(France)] << std::endl;
cp.out() << "Germany:" << Names[(IloInt)cp.getValue(Germany)] << std::endl;
cp.out() << "Netherlands:" << Names[(IloInt)cp.getValue(Netherlands)] << std::endl;
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cp.out() << "Luxembourg:" << Names[(IloInt)cp.getValue(Luxembourg)] << std::endl;
}

}
catch (IloException& ex) {

env.error() << "Error: " << ex << std::endl;
}
env.end();
return 0;

}

If the solution turns out not to be feasible for the constraints of the model, you can
use the conflict refiner to identify which constraints are violated in the solution as
described in “Using the conflict refiner” on page 108.
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Chapter 11. Developing an application with CP Optimizer

Developing an application with CP Optimizer involves data preparation, modeling
and solving.

Overview
Developing an application with CP Optimizer involves data preparation, modeling
and solving.

This section offers a few guidelines for creating an application that exploits CP
Optimizer. Recognizing that the translation from a specification to an application
can be challenging, this section covers topics regarding data preparation, modeling
and solving.

Preparing data
Preparing data for use in a CP Optimizer application involves ensuring that you
have realistic, representative data and that the format is specified.

Start with clean, realistic data. If you don't have access to real data, you should
consider fabricating realistic data for this purpose.

For example, imagine that you are developing a rostering application for nurses in
a hospital, where the roster covers six months for 30 nurses with different levels of
skill; six nurses are highly qualified, 20 have standard qualifications, four are
beginners. The data set does not need to represent the nurses individually in
detail, but it needs to satisfy the number of nurses per day for each service and the
level of qualification of the nurses. Realistic data for this rostering application must
involve the same proportion of qualified nurses, the same type of service requests
and so on.

Realistic data must also be representative even when you are testing a reduced
data set on a smaller version of the problem. This principle means that some data
in a smaller version of a problem can simply be reduced, but other data must be
reduced only in ways that respect the proportions of the original problem because
changing the proportions among those data would effectively change the problem
to solve. To understand this difference between data that can be reduced arbitrarily
and representative data that must respect proportions when it is reduced, consider
the nurse rostering example again. One way to reduce the size of the problem is
simply to consider a shorter period of time, for example, one month instead of six
months. In other words, from a constraint programming point of view, the period
of time can be reduced almost arbitrarily. In contrast, if you reduce the number of
nurses in your test data in order to work with a smaller problem, your test data
must still respect the proportions among their levels of skill. For example, if you
decide to test your application on half the number of nurses (15 instead of 30),
then a representative data set must still include three highly qualified, ten with
standard qualifications and two beginners in order to respect the proportions of
the original problem.

The solution of a combinatoric problem is quite sensitive to variations in data, so
you need to run, test and optimize an CP Optimizer application with respect to
multiple sets of data to have a reliable effect. In fact, the robustness of your
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application will depend heavily on tests run over several sets of data. This point
about using multiple sets of data to test your program is so important that if the
client for your application cannot supply multiple sets of real data, then you
should consider generating multiple sets of realistic data, for example, by random
variation.

Early in development, you should also settle the format of data. If, for example, it
is straightforward and quick to sort an array by posing a few constraints, it will be
even quicker to use a conventional sorting technique instead. This guideline can be
generalized: most ordinary preprocessing of data (unrelated to constraint
programming) can be handled more efficiently in your chosen programming
language rather than in CP Optimizer.

Use multiple sets of clean, valid, realistic data to validate the model that you
design. After you have validated it, your first model itself will play the role of a
reference. It will enable you to test new solutions that you get from the
implementations you develop.

Later, multiple sets of data may also help you tune performance, as variations
between data sets can highlight different aspects of your application that may
allow improvement.

Clarifying the cost function
A good cost function accurately represents which solutions are preferable.

Overview
A good cost function accurately represents which solutions are preferable.

Clarifying the cost function may be a truly difficult step in developing your
application if the cost function provided to you is not really representative of a
good solution for the client.

The client may be mainly interested in a good solution, but as a programmer, you
need a good cost function accurately representing what a good solution is. Even if
your client supplies a cost function as part of the specification, you may need to
look more closely at it or modify it in some respect.

Dissect the cost function
It is important to separate distinct types of costs so that each aspect of the cost
function can be appropriately studied while the model is being built.

It is important to have a clear definition of the cost function (or objective) to
optimize. Often this function will contain diverse components or terms to optimize,
each relating to a different part of the business.

Only part of this cost function may be a measure of monetary profit or cost. Other
parts may be related to subjective criteria or perceived inconvenience to the
business. For example, some parts of the cost function may depend on work
practices, labor conventions, customary habits of employees. Parts of the cost
function corresponding to these optimizations can often change quite dramatically
during the course of a project.

It is important to separate distinct types of costs so that each aspect of the cost
function can be appropriately studied while the model is being built. Such a
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separation will also help you represent the problem more accurately in your
model. A good representation of the cost function will also help you communicate
effectively with your client.

Approximate the cost function
In some cases, it may be best to approximate the cost function.

The client for your application may supply, as part of the specification, a cost
function that takes into account various complex measures of solution quality from
a business point of view. Since it is familiar and business-like, your client may
expect to see results in terms of this cost function, as he or she already
understands this measure.

However, cost functions coming from clients may not necessarily be the best way
to get good solutions to an optimization problem. In such situations, a proxy for
the cost function supplied by the client may be a better way to proceed.

The idea behind this advice is that the proxy approximates the cost function
supplied by the client. The proxy should correspond closely to the client-supplied
cost function, but it should be significantly more amenable to optimization with
constraint programming. CP Optimizer will optimize the proxy to produce a good
solution. However, the client need never see this proxy, as you can write code in
your application to calculate his or her preferred cost function from the solution
produced by the proxy.

As an example of a good place to use a proxy instead of a client-supplied cost
function, consider the nursing roster again. In order to limit the number of times
that a given nurse must work at night, it is conventional in some rostering
applications to use a Big-M formulation, where a counting variable with a very
large maximal value is introduced as part of the cost function. A better approach is
to add a constraint that limits the maximum value of this counting variable,
instead of adding this parameter in the cost function.

Defining a solution
A solution satisfies the constraints of the problem.

In CP Optimizer, a solution can never violate a constraint. By definition, a solution
satisfies the constraints of the problem, and any problem in which a constraint is
violated has no solution in constraint programming terms.

In contrast, when a client specifies the requirements of a problem, the client may
have loose or vague ideas about ways in which an acceptable solution might
violate a constraint just a little bit; or a solution might ignore certain restrictions
sometimes; or a solution could overlook a requirement if necessary.

To cope with this difference between how constraint programming construes a
solution and what your client expects as a solution, you must first understand
what the client regards as a solution. One approach to this task is to ask your
client for a sample solution.

If the known solution fails in your application, then you know that your model
does not correspond to the client’s idea of an acceptable solution. Your next task,
then, is to agree with the client about what really constitutes a solution to the
problem. A first step toward this agreement is to identify which constraints can
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never be violated in the client’s mind. For example, security regulations might be
such: no solution acceptable to the client should violate a security regulation. In
such a problem, security regulations will consequently be expressed as constraints.

Identifying the constraints
It is important to identify all of the constraints, to understand which ones are real
ones and which have been used in the past for tuning, and to know which ones
may be relaxed.

Overview
It is important to identify all of the constraints, to understand which ones are real
ones and which have been used in the past for tuning, and to know which ones
may be relaxed.

When you consider the aspects of a specification that involve constraints, there are
a number of important points to keep in mind.
v You need a complete and exhaustive statement of all the constraints, as a

minimal part of the problem description. “Define all constraints” offers an
example of this point.

v You need a way to identify those conditions that your client would like to
satisfy but that you may relax or drop altogether if the problem proves
intractable. Your client helps you identify those conditions. “Distinguish
constraints from preferable conditions” on page 117 suggests ways to do so.

v You must clearly separate the real constraints from any ad hoc rules of thumb
used to solve the problem in the past. Make the real constraints part of the
model, but consider whether the ad hoc rules of thumb are still necessary.
Perhaps they can be replaced by constraint programming techniques.

Define all constraints
A model must contain all of the constraints.

Technically satisfying the constraints in a specification may not always meet the
client’s expectation.

For example, in the design of a telecommunication network, the problem
description might demand that every pair of nodes in the network must have at
least two paths between those nodes for robustness and reliability.

To meet that demand, one might design a model, taking into account that
constraint on every pair of nodes. In a first-cut of that model, CP Optimizer could
find a solution that is quite logical: the solution consists of a huge loop, passing
through every node. Since a such a loop can be traversed in both directions, this
first-cut solution technically contains two paths to between every pair of nodes,
though the paths between some pairs may be rather long. When the solution is
shown to the client, however, the designer learns, alas, that solution is not
acceptable in practice, so the designer goes back to the phase of describing the
problem again and adds constraints on the length of paths between pairs of nodes.
In consequence of this change in the problem description, the model and the
implementation must change as well.

A better problem description in the first place (one that included all the
constraints, especially those on the lengths of paths between pairs of nodes) might
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have avoided this repetition. Certainly a sound initial problem description is the
surest safeguard against the infamous encroachments of an incremental
specification.

Distinguish constraints from preferable conditions
A model must distinguish constraints from preferable conditions.

Sometimes a specification includes conditions that the client would like to satisfy,
but that might be relaxed or dropped if the problem proves intractable. These are
the conditions that might lead to the elimination of potential solutions if the
application insists on imposing them. At the same time, if the application fails to
take these conditions into account, the application will come up with a "solution"
that is not satisfactory in reality because these conditions embody some
fundamental and practical aspect of the problem.

Separating these conditions from the hard constraints of the problem accomplishes
two tasks: to qualify acceptable solutions; and to measure the quality of proposed
solutions.

This work (separating constraints from other conditions so that the adequacy of
various solutions can be compared) is often very difficult, especially when the
conditions represent social rules, accumulated and elaborated over time, such
social rules as customary working hours, conventional combinations of tasks,
habitual job assignments and so forth. If the model ignores such conditions, the
application is likely to find unacceptable solutions; yet if the application enforces
such conditions as constraints, there may be no solution at all. In any case, the
nature of such conditions has an impact on the model and implementation since
they influence the cost function.

These kinds of conditions (social rules, customs, conventions, habits) depend
strongly on the type of problem you are solving. Consequently, there are few or no
general guidelines that always apply. As you consider how to manage such
conditions in your application, keep in mind the fact that CP Optimizer performs
well when constraints are tight and accurately represent conditions that cannot be
violated. (Tight constraints are those that limit the possible combinations of values
of variables.) Consequently, an approach that consists of adding quantities of terms
in the objective function is generally not a good idea.

There are, however, various effective ways of managing these conditions in an
application of CP Optimizer.
v In some applications, it is appropriate to represent these conditions as slack

which can be pushed into the cost function.
v In some models, it is practical to start with all possible constraints, including

these conditions. If no solution can be found, then remove the conditions one by
one, until a solution is possible.

v In other models, it is more practical to start with a minimal set of hard
constraints. Find a solution to this minimal set of constraints. Then add
conditions as constraints, one by one, until failure occurs. Remove that last
condition, the constraint that led to failure.

Abstracting a miniproblem
A representative miniproblem I useful for validation and testing.
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Before you actually embark on the total application with a final model, it's a good
idea to experiment with small-scale models. In that way, you'll acquire useful
knowledge about the problem, and you'll get this information early enough in
development to be useful later.

In the model-prototype, the first decision to make is how to identify a miniproblem
from the overall problem. The miniproblem provides the basis for a first-cut model
of the whole problem. In practice, it's important to get a first-draft model as early
as possible. That model serves two purposes: as a validation field for the
specifications and as an experimental domain for the feasibility of the project.

It's thus critical to choose a representative miniproblem along the same lines as the
choice of representative data discussed in “Preparing data” on page 113. If the
miniproblem that you identify is too simple, it won't show you how the
application will perform. If it's too complicated, it will demand too much work
and very possibly wasted effort if the model reveals a flaw in the design. In other
words, the choice of a miniproblem has serious consequences. Your general
experience and your knowledge of similar applications will greatly facilitate your
choice. One fallback choice (sometimes the only choice) is to use a small-scale
instance of the entire problem.

This small-scale instance of the entire problem can help you identify any difficult
subproblems. After you identify a difficult subproblem, you can focus on
resolution of this subproblem and on communication between this subproblem
and the rest of the problem. In this context, communication between a subproblem
and the rest of a greater problem can be expressed through constraints between the
variables in the subproblem and variables in the rest of the problem as a whole.

Designing the model
As you design a model for your application, there are several principles to guide
you.

Overview
As you design a model for your application, there are several principles to guide
you.

There are practical ways to make designing your CP Optimizer application easier,
as suggested in the following sections.

Decompose the model
Decomposing the model can lead to faster solution times.

If the model can be logically decomposed, you should do so. You can decompose
the model in the same way that you partition the variables into subsets with few
constraints linking the variables of different subsets. It is really important to find
such a decomposition and to carry it out because the decomposition may save an
exponential factor in the solution time.

In fact, if you identify subproblems that are independent of one another, CP
Optimizer will take into account their independence. For example, consider a
problem consisting of subproblems A, B and C, where B and C are independent of
each other. If you inform CP Optimizer about the independence of subproblem B
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from subproblem C, and in addition, CP Optimizer finds a solution of subproblem
A that renders subproblem C unsatisfiable, then CP Optimizer will not waste time
attempting to solve subproblem B.

Determine precision
Determining the degree of precision that represents a reasonable trade-off between
numeric accuracy in the solution and acceptable performance in your application is
important.

Clearly, the degree of precision (that is, the granularity of the definition and
solution) needs to be adapted to the aims of the application. There is no point in
counting seconds if your problem works in terms of years. In short, choose an
appropriate unit, both for the problem representation and for the solution.

High precision may mean slower performance. You may need to experiment to
determine the degree of precision that represents a reasonable trade-off between
numeric accuracy in the solution and acceptable performance in your application.

Validate the model with data and constraints
Validating the model with data and constraints helps you to check the constraints.

As mentioned in “Preparing data” on page 113, you need to validate your model
with clean, realistic data. In fact, it is a good idea to validate your model with
multiple sets of data, as combinatoric problems are notoriously sensitive to slight
variations in data.

Validation is greatly simplified if a solution is already available to you. With a
known solution, you can check the way that your constraints have been written so
that you will be alerted to any errors in interpretation or any bug in translation
between the specification and the implementation. You can also check the global
coherence of your initial constraints, their coherence as a set. That is, when you
have a known solution already, you can use it as a reference point in testing and
verification.

Experiment with variant models
experimenting with variant models may help you in finding a good fit.

In spite of these common sense rules, there are many ways to design the model
and create the prototype for any given problem. You'll need to try more than one
model to find the best fit for your problem, but don't think of these trials as
wasted effort. The time that you spend in designing the model, even time spent
"playing around" with it, is time well spent since that time will be saved later.

“Consider symmetry” on page 121 offers an example where experimentation is a
good idea.

Tuning Performance
Tuning the performance of the optimizer is useful.

Overview
Tuning the performance of the optimizer is useful.

Chapter 11. Developing an application with CP Optimizer 119



There are practical ways to make your CP Optimizer application more efficient, as
suggested in the following sections.

Use multiple data sets for tuning
Using multiple data sets for tuning is important.

As suggested in “Preparing data” on page 113, you will need multiple data sets.
Not only are these multiple data sets useful for validation of your model, but they
are also practical for tuning aspects of your application. Different data sets
highlight different aspects of performance.

Optimize propagation and search
CP Optimizer offers features for optimizing propagation and search.

With respect to CP Optimizer, the areas to optimize in your application are the
constraint propagation and the solution search. Improvements in those two areas
are interdependent, and the greatest gains in efficiency come about when you work
simultaneously on both aspects.

To optimize propagation and search, CP Optimizer provides several features for
you to consider:
v Inference levels, introduced in Chapter 5, “Constraint propagation in CP

Optimizer,” on page 45
v Search phases, documented in “Ordering variables and values” on page 76

Look at changes
The search and propagation log may point out weaknesses in propagation and
search.

To help you see what you're doing, it's a good idea to look hard at the search log
and at the trace.

“The search log” on page 65 introduces this log and explains how to read it.

The trace lets you rapidly distinguish which variables to take into account early in
the solution search. It also shows you the areas where propagation is weakest,
areas that you should re-enforce with surrogate constraints.

Use expertise from the problem domain
Using expertise from the problem domain may help you tune the search.

At some point in developing your application with CP Optimizer, you'll need to
think about the criteria for choosing variables and values. These choices are so
specific to the problem under consideration, sometimes even specific to the
end-user, that there are no "canned" rules ready to use "off-the-shelf." You really
must exploit professional expertise from the problem domain.

Professional knowledge about the problem itself proves useful in tuning the search.
In real-world problems (unlike purely theoretical problems) the hardest parts are
actually often confined to one sole part of the model. In consequence, you have to
start searching for a partial solution in that region in order to minimize the
exponential factor.
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For example, when you're building a schedule, you have to assign the most
difficult or the most critical items first. The easier parts fall into place around them.
A domain expert helps you identify the difficult or critical items of a scheduling
application.

This kind of solution clearly shows that the procedure for solving a problem
depends very much on the instance of the problem under consideration, not
strictly on its formal statement.

Reconsider what makes a solution optimal
Examining the tolerance of the objective function is important in tuning the
performance.

CP Optimizer treats optimization problems by enforcing the idea that the current
solution must be better than the preceding solution at each iteration in terms of a
cost. Parameters, such as OptimalityTolerance and RelativeOptimalityTolerance,
enable you to control how much better the following solution must be.

The essential factor is in the propagation of the cost variable. At every moment, its
boundaries must be the best evaluation possible of the cost of the solution partially
examined.

“Optimality at all costs” is frequently unrealistic or even impossible. The behavior
that you, as a developer, want from an optimization application is to achieve
significantly better solutions very fast. With such an aim, it may be relevant to
impose a rule such as, “the next solution must be 10% better than the current one.”
Or, for example, it may be a good idea to eliminate once and for all the solutions
close to the one already obtained by removing the values near the value belonging
to the most recent solution.

Consider symmetry
Considering whether removing symmetry helps in the search for a solution is
important in tuning the performance.

Very often, real-world problems have symmetries. Consequently, a direct model of
the real-world problem will also have symmetries. Examples of such symmetries
are a fleet of identical trucks, a set of identical containers, engineers with identical
skills and so on.

Eliminating symmetries in your models by adding constraints can be beneficial,
especially if the aim is to prove the optimality or non-existence of a solution. For
example, given a fleet of identical trucks or containers, it is conventional to impose
an arbitrary order among them simply by numbering them. In that way, they are
no longer technically identical, and symmetries arising from their original
interchangeability are thus eliminated.

However, eliminating symmetries does not always accelerate the speed at which
good solutions are found with CP Optimizer. There are problems in which
eliminating symmetry can force the search to look in a less productive area of the
solution space than it might have pursued had all the possible paths remained
available.

In other words, while it may be a good idea to eliminate symmetry in some
problems, it is also necessary to check whether symmetry serves a useful purpose
in others. Consequently, you may need to experiment, to test whether eliminating
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symmetry is a good idea in your model. The best way to do so is to group all
symmetry constraints in one easily identifiable place in your model so that each
one can be activated or deactivated as you carry out these experiments.
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