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Chapter 1. Welcome to CP Optimizer Extensions

This is the CP Optimizer Extensions User’s Manual.

Overview
CP Optimizer is a software library which provides a constraint programming
engine.

The CP Optimizer feature of the IBM® ILOG® CPLEX® Optimizers is a software
library which provides a constraint programming engine targeting both constraint
satisfaction problems and optimization problems. This engine, designed to be used
in a “model & run” development process, contains powerful methods for finding
feasible solutions and improving them. The strength of the optimizer generally
removes the need for you to write and maintain a search strategy.

CP Optimizer is based on IBM ILOG Concert Technology. Concert Technology
offers a library of classes and functions that enable you to define models for
optimization problems. Likewise, CP Optimizer offers a library of classes and
functions that enable you to find solutions to the models. Though the CP
Optimizer defaults will prove sufficient to solve most problems, CP Optimizer
offers a variety of tuning classes and parameters to control various algorithmic
choices.

IBM ILOG Concert Technology and CP Optimizer provide application
programming interfaces (APIs) for Microsoft .NET languages, C++ and Java™. The
CP Optimizer part of an application can be completely integrated with the rest of
that application (for example, the graphical user interface, connections to databases
and so on) because it can share the same objects.

The recommended development path for solving an optimization problem with CP
Optimizer is to use IBM ILOG Concert Technology for modeling, together with the
CP Optimizer search engine tuned with parameters and search phases. In this way,
you benefit from all future improvements to the CP Optimizer propagation and
search strategies.

While the modeling objects provided by IBM ILOG Concert Technology and the
algorithms provided by the CP Optimizer engine will generally be sufficient to
model and solve your problem, in some situations you may need the full flexibility
of writing and maintaining the solution process in various ways, such as writing
custom constraints and custom constructive search by means of goals. The
extensions portion of CP Optimizer is not available in all APIs.

About this manual
The CP Optimizer Extensions User’s Manual provides conceptual information about
the advanced features of CP Optimizer.

This is the CP Optimizer Extensions User’s Manual. It offers explanations of how to
use the advanced features of CP Optimizer effectively. All of the CP Optimizer
functions and classes used in this manual are documented in the CP Optimizer
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Reference Manuals. As you study this manual, you will probably consult the
appropriate reference manual from time to time, as it contains precise details on
classes and their members.

Prerequisites
The CP Optimizer Extensions User’s Manual assumes that you have a working
knowledge of one of the programming languages of the available APIs and have
installed CP Optimizer. The manual also assumes that you have a working
knowledge of CP Optimizer.

CP Optimizer requires a working knowledge of the .NET Framework, C++ or Java.
However, it does not require you to learn a new language since it does not impose
any syntactic extensions on your programming language of choice.

Before using this manual, you should have some experience using CP Optimizer.
You should have CP Optimizer and IBM ILOG Concert Technology installed in
your development environment before starting to use this manual. Moreover, you
should be able to compile, link and execute a sample program provided with CP
Optimizer.

Related documentation
The CP Optimizer Extensions User’s Manual is part of a collection of manuals. You
will likely need to refer to the other manuals in the collection as you use this
manual.

The following documentation ships with CP Optimizer and will be useful for you
to refer to as you use this manual.
v The Getting Started with CP Optimizer Manual introduces CP Optimizer with

tutorials that lead you through describing, modeling and solving problems.
v The CP Optimizer User’s Manual explains the topics covered in the Getting Started

with CP Optimizer Manual in greater depth, with individual chapters about
modeling, solving and tuning the CP Optimizer search process.

v The CP Optimizer Reference Manuals document the IBM ILOG Concert
Technology and CP Optimizer classes and functions used in the CP Optimizer
Extensions Manual. The reference manuals also explain certain concepts more
formally. There are three reference manuals; one for each of the available APIs.

v The Release Notes® for CP Optimizer list new and improved features, changes in
the library and documentation and issues addressed for each release.

Installing CP Optimizer
The installation instructions for CP Optimizer are in the Electronic Product
Delivery package.

In this manual, it is assumed that you have already successfully installed the IBM
ILOG Concert Technology and CP Optimizer libraries on your platform (that is, the
combination of hardware and software you are using). If this is not the case, you
will find installation instructions in your IBM ILOG Electronic Product Delivery
package. The instructions cover all the details you need to know to install IBM
ILOG Concert Technology and CP Optimizer on your system.
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Typographic and naming conventions
The typographic and naming conventions used in the CP Optimizer Extensions
User’s Manual follow the standard practices of the programming language being
used.

Important ideas are italicized the first time they appear.

In this manual, the examples are given in C++ and Java. In the C++ API, the
names of types, classes and functions defined in the IBM ILOG Concert
Technology and CP Optimizer libraries begin with Ilo.

The name of a class is written as concatenated words with the first letter of each
word in upper case (that is, capital). For example,

IloIntVar

A lower case letter begins the first word in names of arguments, instances and
member functions. Other words in the identifier begin with an uppercase letter. For
example,

IloIntVar aVar;
IloIntVarArray::add;

Names of data members begin with an underscore, like this:
class Bin {
public:

IloIntVar _type;
IloIntVar _capacity;
IloIntVarArray _contents;
Bin (IloModel model,

IloIntArray capacity,
IloInt nTypes,
IloInt nComponents);

void display(const IloCP cp);
};

Generally, accessors begin with the key word get. Accessors for Boolean members
begin with is. Modifiers begin with set.

Names of classes, methods and symbolic constants in the Java API correspond
very closely to those in the C++ API; however in the Java API, the namespaces
ilog.cp and ilog.concert are used.

To make porting easier from platform to platform, IBM ILOG Concert Technology
and CP Optimizer isolate characteristics that vary from system to system.

For that reason, you are encouraged to use the following identifiers for basic types
in C++:
v IloInt stands for signed long integers;
v IloNum stands for double precision floating-point values ;
v IloBool stands for Boolean values: IloTrue and IloFalse.

You are not obliged to use these identifiers, but it is highly recommended if you
plan to port your application to other platforms.
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Chapter 2. Using constraint propagators

A constraint propagator is a simple way to define a custom constraint, that is, one
where you define the domain reduction rules.

Overview
A constraint propagator is a simple way to define a custom constraint, that is, one
where you define the domain reduction rules.

CP Optimizer offers a wide range of predefined constraints, together with
powerful logical operators for combining them. These facilities usually suffice for
expressing even the most specific model requirements. However, when modeling
and solving your problem, you may find that it is necessary or useful to write a
constraint propagator. A constraint propagator is a simple way to define a custom
constraint, that is, one where you define the domain reduction rules via some C++
or Java code.

Some cases in which you might find it useful to write a constraint propagator are
when a predefined constraint which implements your knowledge of the problem
does not exist, when using a constraint propagator may provide the opportunity to
perform stronger inferences (domain reductions within the propagation engine)
than CP Optimizer would typically perform, or when running time needs
improvement.

Before writing a constraint propagator in these cases, you should attempt to model
the problem using the compatibility constraints (such as IloAllowedAssignments) or
to use an alternate formulation. If these options are not practical or are inefficient,
then you may find it useful to write a constraint propagator.

When you write a new constraint propagator to link certain decision variables, you
must implement the inference algorithm that eliminates from the domains of those
variables the values that could not participate in a solution. These reductions are
carried out by means of elementary modifiers on the domains of these decision
variables.

This chapter explains what you must do if you decide to implement a new
constraint using constraint propagators. and contains the following sections.

Simplest propagator: writing a checker
A checker checks that the values assigned to the decision variables values are
consistent.

When a constraint is added to a model in CP Optimizer, its purpose is to limit the
possible combinations of values that can be assigned to the decision variables. A
constraint propagator is intended to have the same effect. The simplest form of a
propagator is a checker. Once all of the decision variables have been assigned
values, the checker checks that the assigned values are consistent.

For example, a checker written to enforce the relation x <= y must ensure that the
value assigned to the decision variable x is not greater than the value assigned to
the decision variable y.

© Copyright IBM Corp. 1987, 2013 5



To define a new class of constraint propagator in CP Optimizer, you implement a
subclass of a predefined class. In the C++ API, this is done by defining a subclass
of the IloPropagatorI class and a virtual member function, execute. In the Java
API, this is done by defining a subclass of the IloCustomConstraint class and a
member function, execute. In both cases the function execute performs the
checking, ensuring that the values assigned to the decision variables are consistent
in regards to the constraint. In addition, you must explicitly indicate which
decision variables are involved in the propagator. Whenever the domain of one of
the indicated variables changes, the execute method of the propagator is called.
The data members of the propagator subclass include the decision variables
involved in the propagator.

Consequently, the definition of a new class of constraint propagator in the C++ API
follows the form:

class MyConstraintI : public IloPropagatorI {
private:

// data members for the constraint
public:

MyConstraintI(... args ...); // constuctor
void execute();
IloPropagatorI * makeClone(IloEnv env) const;

};

A new class of constraint propagator in the Java API follows the form:
class MyConstraint extends IloCustomConstraint {

// data members for the constraint
public MyConstraint(IloCP cp, ... args ... ) throws IloException { ... }
public void execute() { ... }

}

To illustrate how to define a checker by writing a new class of constraint
propagator, consider the relation x <= y. The arguments of the propagator are
obviously the decision variables x and y themselves. In the C++ API, the class
declaration is:
class LEConstraintI : public IloPropagatorI {
private:

IloIntVar _x;
IloIntVar _y;

public:
LEConstraintI(IloIntVar x, IloIntVar y);
void execute();
IloPropagatorI * makeClone(IloEnv env) const;

};

In the Java API, the class declaration is:
class LEConstraintI extends IloCustomConstraint {

private IloIntVar _x;
private IloIntVar _y;
// ...

The role of the constructor is to initialize the data members and inform the
constraint propagation engine upon which variables this propagator must work. To
inform the engine that a decision variable is incident on the constraint, you call the
method IloPropagatorI::addVar in the C++ API and
IloCustomConstraint::addVar in the Java API with the variable as the argument.
The constructor for the LEConstraintI in the C++ API is:

6 CP Optimizer Extensions User’s Manual



LEConstraintI::LEConstraintI(IloIntVar x, IloIntVar y)
: IloPropagatorI(x.getEnv()), _x(x), _y(y) {
addVar(x);
addVar(y);

}

and in the Java API is:
public LEConstraintI(IloCP cp, IloIntVar x, IloIntVar y) throws IloException {

super(cp);
_x = x;
_y = y;
addVar(x);
addVar(y);

}

In the method execute for the checker, you specify to the inference engine the logic
for determining whether or not the assigned values satisfy the constraint.

For the constraint x <= y, this logic is easy to determine:
v if x and y are fixed to values, the value assigned to x must not exceed the value

assigned to y. If the values are inconsistent, then the propagation must be forced
to fail.

In the case that the values are inconsistent, you can force the propagation to
produce a failure by setting the value of a decision variable to a value other than
that to which it is fixed.

The virtual member function execute implements the value checker; in the C++
API, the method is:
void LEConstraintI::execute () {

if (isFixed(_x) && isFixed(_y))
if (getValue(_x) > getValue(_y))

setValue(_x, getValue(_x)+1);
}

and in the Java API, the method is
public void execute() {

if (isFixed(_x) && isFixed(_y))
if (getValue(_x) > getValue(_y))

setValue(_x,getValue(_x)+1);
}

In the C++ API, when subclassing the IloPropagatorI class to create a propagator,
you also need to define the method that will clone the propagator for use in the
CP Optimizer engine during parallel search.
IloPropagatorI* LEConstraintI::makeClone(IloEnv env) const {

return new (env) LEConstraintI(_x, _y);
}

To be able to use the propagator as a constraint in a C++ API model, you create a
function using IloCustomConstraint that returns an IloConstraint.
IloConstraint LEConstraint(IloIntVar x, IloIntVar y){

return IloCustomConstraint(x.getEnv(),
new (x.getEnv()) LEConstraintI(x, y));

}

While writing a checker is an interesting introductory exercise, it is generally not
an efficient manner in which to create a new constraint. When writing a constraint
propagator, it is important to eliminate inconsistent values as soon as possible.
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Invariants: what to propagate?
A propagator must eliminate inconsistent values from the domains of the decision
variables.

When a constraint is added to a model in CP Optimizer, its purpose is to limit the
possible combinations of values that can be assigned to the decision variables. A
constraint propagator is intended to have the same effect; however, when you
define a propagator, you must provide the logic to enable the inference algorithm
to eliminate inconsistent values from the domains of the variables that are involved
in that constraint propagator.

For example, a propagator written to enforce the constraint x <= y must ensure
that the values in the domains of x and y satisfy the constraint. From a working
point of view, that propagator must eliminate values from the domains of the
variables, values that are definitely inconsistent.

When you are writing a propagator, it is a good idea to start by defining the
invariant of the constraint propagator before you implement it. (The term invariant
is used here in the usual sense of software engineering.)

Consider the example of x <= y in this context. Its invariant is easy to determine
and can be expressed this way:
v the values in the domain of x must be less than or equal to the maximum of the

values in the domain of y;
v the values in the domain of y must be greater than or equal to the minimum of

the values in the domain of x.

More complicated relationships between decision variables require more
complicated invariants. In general, it is best to eliminate as many values as
possible from the domains of the decision variables.

Elementary modifiers for variables
Elementary modifiers for decision variables are used to remove inconsistent values
from domains.

A propagator reduces the domains of the variables involved in the constraint
propagator. In the C++ API, the modifiers for the domains of decision variables are
available as member functions of IloPropagatorI. In the Java API, the modifiers
for the domains of integer variables are available as member functions of
IloCustomConstraint. In both APIs, these functions are removeValue, setMax,
setMin, setRange and setValue. You can use these elementary modifiers to
implement the inference algorithm for your constraint propagator.

For example, consider how setValue, one of these predefined modifiers, behaves
when called on a decision variable x with current domain [0..1]. In the C++ API,
the code fragment:
setValue(x,1);

reduces the domain of x to a singleton (a single element) with the value 1. This
behavior literally involves a domain reduction, and this behavior is consistent
throughout CP Optimizer.
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For example, consider the following constraint propagator written using the C++
API:
void ModConstraintI::execute () {

setValue(_x,1);
}

Adding this constraint propagator to the model and propagating:
IloIntVar x(env, 1, 3, "x");
model.add(ModConstraint(x));
IloCP cp(model);
if (cp.propagate())

cp.out() << cp.domain(x) << std::endl;
else

cp.out() << "No solution." << std::endl;
cp.end(); cp.end();

produces output that contains:
x[1]

If you attempt to set the value of a constrained variable to a value that is not in
the current domain, this action leads to a failure in the search. Assume that the
decision variable x has the domain of [2..3] and you set the value to 1. This leads
to a failure, and the optimizer will no longer investigate the subtree of the current
node. The output produced contains
No solution.

In the C++ API, the elementary modifiers used in a propagator are member
functions of the class IloPropagatorI. In the Java API, the elementary modifiers
are member functions of the class IloCustomConstraint which implements the
interface IloPropagator.

In both APIs, the modifiers are:
v setValue(IloIntVar x, IloInt value) tries to make x equal to value;
v setMin(IloIntVar x, IloInt min) tries to make x greater than or equal to min;
v setMax(IloIntVar x, IloInt max) tries to make x less than or equal to max;
v setRange(IloIntVar x, IloInt min, IloInt max) tries to make x stay between

min and max, inclusive;
v removeValue(IloIntVar x, IlcInt value) tries to make the current domain of x

not contain value.

Elementary modifiers only reduce domains: they do not enlarge domains. For that
reason, the following code does not modify the domain [0..1] of the decision
variable and, in particular, it does not make the variable’s upper bound equal to 2:

setMax(x,2);

The next section shows how to take an implementation of an invariant and write a
constraint propagator.

Defining a new class of constraint propagator
Defining a new class of constraint propagator involves writing methods to
implement the logic regarding the reduction of the domains.

Chapter 2. Using constraint propagators 9



When defining a new class of constraint propagator, the function execute performs
the required domain reductions, updating the domains to make the domains
consistent in regards to the constraint. For the constraint x <= y, this logic is easy
to determine:
v the values in the domain of x must be less than or equal to the maximum of the

values in the domain of y;
v the values in the domain of y must be greater than or equal to the minimum of

the values in the domain of x.

The invariant of the constraint x <= y can be enforced using elementary modifiers.
The virtual member function execute implements the logic regarding the reduction
of the domains. For example, the function would look like this in the C++ API:
void LEConstraintI::execute () {

setMax(_x, getMax(_y));
setMin(_y, getMin(_x));

}

and like this in the Java API:
public void execute() {

setMax(_x,(int)getMax(_y));
setMin(_y,(int)getMin(_x));

}

Putting all the pieces together, the propagator in the C++ API looks like:
class LEConstraintI : public IloPropagatorI {
private:

IloIntVar _x;
IloIntVar _y;

public:
LEConstraintI(IloIntVar x, IloIntVar y);
void execute();
IloPropagatorI * makeClone(IloEnv env) const;

};

LEConstraintI::LEConstraintI(IloIntVar x, IloIntVar y)
: IloPropagatorI(x.getEnv()), _x(x), _y(y) {
addVar(x);
addVar(y);

}

void LEConstraintI::execute () {
setMax(_x, getMax(_y));
setMin(_y, getMin(_x));

}
IloPropagatorI* LEConstraintI::makeClone(IloEnv env) const {

return new (env) LEConstraintI(_x, _y);
}
IloConstraint LEConstraint(IloIntVar x, IloIntVar y){

return IloCustomConstraint(x.getEnv(),
new (x.getEnv()) LEConstraintI(x, y));

}

In the Java API, the full propagator is:
class LEConstraintI extends IloCustomConstraint {

private IloIntVar _x;
private IloIntVar _y;
// ...

public LEConstraintI(IloCP cp, IloIntVar x, IloIntVar y) throws IloException {
super(cp);
_x = x;
_y = y;
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addVar(x);
addVar(y);

}
public void execute() {

setMax(_x,(int)getMax(_y));
setMin(_y,(int)getMin(_x));

}
}

Example of a propagator
An example of a propagator is provided for illustrative purposes.

While the example in the previous section illustrates the mechanics of writing a
propagator, the example is not realistic. As a more realistic example of a
propagator, consider the case in which the model contains an array of decision
variables and a decision variable that needs to be constrained to take the value of
the index of any element that has been assigned a value that is the minimal value
of the elements in the array. First, the propagator must be informed of the array of
decision variables and the decision variable that is constrained to be an
appropriate index of the array. Thus the constructor is:
ArgMinI::ArgMinI(IloIntVar y, IloIntVarArray x) :

IloPropagatorI(y.getEnv()), _y(y), _x(x) {
addVar(y);
for (IloInt i=0; i< x.getSize(); i++)

addVar(x[i]);
}

The execute method of the propagator first ensures that the domain of the decision
variable representing the index is within the range of indices of the array. The
method then examines the decision variables in the array and determines the
minimal upper bound of the domains of all the elements of the array. It also
determines, for those elements whose indices are in the domain of _y, the minimal
value of the currently possible values, called the minimal active lower bound.

If there is any decision variable in the array whose domain is strictly greater than
the calculated minimal upper bound, then it cannot be an element that takes the
minimal value in the array. In this case, the value of the index is removed from the
domain of the decision variable _y.

Then, if there is an index that is not in the domain of the decision variable _y, the
decision variable at that index cannot take values smaller than the minimal active
lower bound, and the minimum of the domain of that variable is set to the
minimal active lower bound.

Putting together the pieces, the execute method is:
void ArgMinI::execute() {

IloInt i;
setRange(_y, 0, _x.getSize()-1);
IloInt minUpperBound = IloIntMax;
IloInt minActiveLowerBound = IloIntMax;
for (i = 0; i < _x.getSize(); i++) {

if (minUpperBound > getMax(_x[i]))
minUpperBound = getMax(_x[i]);

if (isInDomain(_y, i) && minActiveLowerBound > getMin(_x[i]))
minActiveLowerBound = getMin(_x[i]);

}
for (i = 0; i < _x.getSize(); i++)

if (minUpperBound < getMin(_x[i]))
removeValue(_y,i);

Chapter 2. Using constraint propagators 11



for (i=0; i < _x.getSize(); i++)
if (!isInDomain(_y, i))

setMin(_x[i],minActiveLowerBound);
}

Programming tips
Tips for writing efficient constraint propagators are provided.

All modifications made to decision variables inside a propagator are buffered. This
means that the changes you make to variable domains are not visible inside the
propagator, but are recorded and applied when the propagator exits. Your code
needs be aware of this if it examines the domain of a variable after modifying it.
For example, the following code will not cause the assertion to fail, but the lower
bound of the decision variable will be set to one greater than its current value
when the execute function of the propagator exits.
void BufferConstraintI::execute () {

IloInt min = getMin(_x);
setMin(_x, min + 1);
assert(getMin(_x) == min);

}
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Chapter 3. Using engine extensions

Before a model is solved, the optimizer engine extracts the modeling objects into
engine objects. These engine objects contain the necessary elements for the
optimization.

Overview
Engine extensions provide flexibility for writing custom constraints and custom
constructive search.

The recommended development path for solving an optimization problem with CP
Optimizer is to use IBM ILOG Concert Technology for modeling, together with the
CP Optimizer search engine tuned with parameters and search phases. In this way,
you benefit from all future improvements to the CP Optimizer propagation and
search strategies.

While the modeling objects provided by IBM ILOG Concert Technology and the
algorithms provided by the CP Optimizer engine will generally be sufficient to
model and solve your problem, in some situations you may need the full flexibility
of writing and maintaining the solution process in various ways, such as writing
custom constraints and custom constructive search by means of goals.

Currently, the engine extensions API is available in C++ only.

When to use engine extensions
Engine extensions should be used only after determining that the predefined
constraints and search strategies do not fit your needs.

When designing your application, you may discover that there is no predefined
constraint that fits your needs and that writing a constraint propagator does not
provide the flexibility that you need to write an inference algorithm which
performs the most efficient domain reductions. Or, you may decide that a search
technique more complex than search phases with custom evaluators and choosers
would perform better for your particular problem. Or you may need to create
portions of the model during the search process itself. To implement a custom
search, you must also take full control of the search process.

The engine extensions API for CP Optimizer allows you much more flexibility in
terms of defining new constraints and constructive search; however, the drawback
is that these customizations are generally more difficult to maintain and update
than the predefined constraints and search strategies provided in CP Optimizer.

Model extraction
A model is extracted to the to the optimizer before search begins.

Overview
The process of extracting a model to the optimizer is explained.
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The first step in understanding how to use the engine extensions API is to
understand more about what happens when a call to IloCP::extract is made.

Extraction process
A model is extracted to the engine recursively.

When an instance of IloCP extracts a model, it iterates over each extractable added
to the model and works on extracting it. This mechanism is recursive in the sense
that the extraction of an object may lead to the extraction of another object. For
instance, the extraction of the model:

IloIntVar x(env, 0, 1);
IloIntVar y(env, 0, 10);
IloIntVar z(env, -1, 3);
IloModel model(env);
model.add(z);
model.add(x + 2 * y <= 3);

involves the extraction of the variable z and the constraint x + 2 * y <= 3. The
extraction of the constraint in turn involves the extraction of variables x and y.

The purpose of extraction is to create engine objects from the extractables of the
model. Theses objects can be constraints, variables or expressions.

In particular, it creates:
v one engine variable for each decision variable in the model and
v an engine constraint for a constraint or a group of constraints in the model.

These engine objects are usually prefixed with Ilc.
v The engine object of a decision variable is an instance of IlcIntVar.
v The engine object of a constraint is an instance of IlcConstraint.
v The engine object of an expression is an instance of IlcIntExp or IlcFloatExp

depending on the type of the expression.
v Other types of extractables generally have counterparts in the engine. For

instance, an instance of IloIntTupleSet is extracted to an instance of
IlcIntTupleSet.

Engine representation of variables
Decision variables in the engine can be accessed via a method of the optimizer
object.

You can access to the engine variables (IlcIntVar) for each IloIntVar extracted
from a model by using the method IloCP::getIntVar(IloIntVar). For instance,
running the code:

IloIntVar x(env, 0, 10, "x");
IloIntVar y(env, 0, 50, "y");
IloModel model(env);
model.add(x*x >= y);
IloCP cp(env);
cp.extract(model);
cp.out() << "The engine variable of " << x << " is " << cp.getIntVar(x) << std::endl;
cp.out() << "The engine variable of " << y << " is " << cp.getIntVar(y) << std::endl;

produces the output:
The engine variable of x[0..10] is x[0..10]
The engine variable of y[0..50] is y[0..50]
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The instances of IloIntVar contain just the domain information for that variable.
The instances of IlcIntVar contains the same information plus some additional
data structures to handle constraint propagation.

Engine representation of constraints
Constraints in the engine are built using the decision variables in the engine.

The engine object for a constraint is an instance of IlcConstraint. Basically, a
model constraint or group of constraints is extracted to an instance of
IlcConstraint. To illustrate constraint extraction, consider the following model:

IloIntVar x(env, 0, 3);
IloIntVar y(env, 0, 3);
IloModel model(env);
model.add(x < y);

The code:
IloCP cp(env);
cp.extract(model);

extracts the model to the IloCP instance. First, it takes the constraint x < y and
starts extracting it. In order to extract this constraint, it extracts the two variables x
and y. The extraction of these variables creates two IlcIntVar objects: ix and iy.
Then, the extraction of the constraint continues. The instance of IloCP takes the
two IlcIntVar objects and creates the equivalent IlcConstraint: ix < iy. This
inequality constraint is then added to the instance of IloCP.

The extraction creates an equivalent of the following code:
IlcIntVar ix(cp, 0, 3);
IlcIntVar iy(cp, 0, 3);
cp.add(ix < iy);

Preprocessing
CP may preprocess a model during extraction.

CP Optimizer preprocessing can aggregate expressions, constraints or decision
variables in order to provide faster constraint propagation, more domain reduction
or both.

As an example, a set of IloCount expressions operating on the same array of
decision variables are extracted to a single instance of IlcDistribute constraint.

Variables can also be aggregated. For instance, in the following model:
IloIntVar x(env, 0, 10,"x");
IloIntVar y(env, 0, 50,"y");
IloModel model(env);
model.add(x == y + 2);

the variables x and y are aggregated. Running the code:
IloCP cp(env);
cp.extract(model);
cp.out() << "The engine variable of " << x << " is " << cp.getIntVar(x) << std::endl;
cp.out() << "The engine variable of " << y << " is " << cp.getIntVar(y) << std::endl;

produces the output:
The engine variable of x[0..10] is (y[0..50] + 2)
The engine variable of y[0..50] is y[0..50]
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Engine extension API classes
When using the engine extensions API of CP Optimizer, you will need to use the
internal engine object classes instead of only the modeling classes. These internal
classes are prefixed with Ilc.

Overview
The internal engine object classes are needed to use the engine extensions API.

When using the engine extensions API of CP Optimizer, you will need to use the
internal engine object classes instead of only the modeling classes. These internal
classes are prefixed with Ilc.

Implementation classes and handles
An object of the handle class points to an object of the corresponding
implementation class.

Throughout this chapter, it has been taken for granted that the major entities of CP
Optimizer are simply objects in the full sense of C++. In fact, CP Optimizer entities
depend on two classes: a handle class and an implementation class, where an
object of the handle class points to an object of the corresponding implementation
class. As documented in the CP Optimizer C++ API Reference Manual, handles are
passed by value, and they are created as automatic objects, where “automatic” has
the usual C++ meaning.

When using CP Optimizer, you will mostly work with handles, that is, the objects
that are really pointers to corresponding implementation objects on the CP
Optimizer heap. CP Optimizer takes care of all the allocation, memory-
management and de-allocation of these internal implementation objects, keeping
the details of these implementation classes “out of sight.” However, if for some
reason, you need to define new subclasses of CP Optimizer objects, you need to do
so in a two-step process: you'll have to define the underlying implementation class
plus the corresponding handle class.

For example, consider the predefined CP Optimizer extensions class,
IlcConstraintI. For this class implementing an object with its own data members
and virtual functions, CP Optimizer defines the handle class IlcConstraint.
Essentially, such a handle class contains objects that are really only pointers to
instances of the corresponding implementation class IlcConstraintI.

This has the practical effect of elevating the idea of a pointer to the level of an
object itself. A number of advantages derive from this; for one thing, it provides
greater certainty about how pointers are used. In particular, there is no longer any
risk that the compiler will mistakenly interpret the expression x+1 as a pointer and
apply pointer arithmetic to it. Instead, pointers are consistently and systematically
treated as objects.

However, the fundamental precepts of CP Optimizer that there are “No more
pointers” and that “Everything is an object” mean that when you extend CP
Optimizer by defining a new implementation class, you must also define a
function that returns a handle.

Variables and expressions
Engine decision variables and expressions are used in the search.
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When the model is extracted to an instance of IloCP, generally an instance of
IlcIntVar is automatically created for each IloIntVar in the model. If no
IloExtractable uses the decision variable, it will not be extracted. In this case, you
can force a model to use the variable by directly adding it to the model.

Once an IloIntVar is extracted in an instance of IloCP, you can access the
IlcIntVar from the modeling object IloIntVar using the accessors of the optimizer.
The following code returns the IlcIntVar from an IloIntVar x:

IlcIntVar cpx = cp.getIntVar(x);

The second way of introducing search decision variables in CP Optimizer is to
create them directly. Here is one constructor to do so:
IlcIntVar(IloCP cp, IlcInt min, IlcInt max, char* name=0);

The constructor declares a search decision variable that can take a value between
min and max (its lower and upper boundaries). In other words, the lower and upper
boundaries define the domain of the search decision variable that is being
constructed. The character string name is displayed whenever the variable is
printed. It is an optional argument.

This constructor is intended to be used for creation of search decision variables
inside instances of other computation objects. It should not be used to declare
variables that are part of the problem statement in the modeling layer. That should
be done with the constructor for IloIntVar.

Domains of decision variables

In the CP Optimizer User’s Manual, domains of decision variables are introduced as
well as the manner in which domains are reduced in the inference algorithms
called by the constraint propagation engine. It is important to note that the domain
reductions are in fact, not performed on the modeling objects themselves, but on
the corresponding internal engine objects, instances of IlcIntVar.

Constraints and constraint propagation
Engine constraints are used in the search.

When the model is extracted to an instance of IloCP, generally an instance of
IlcConstraint is automatically created for each IloConstraint in the model.

When a constraint is added to the CP Optimizer engine and the search is active,
the constraint is used immediately to reduce the domains of the decision variables
that it involves. CP Optimizer reduces a domain by removing those values that
cannot satisfy the constraint and thus cannot participate in a solution.

Posting a constraint is reversible: the constraint is removed when CP Optimizer
backtracks to choice points set before that constraint was posted. If constraint
propagation causes a domain to be reduced to a single value, then the decision
variable will be bound to that remaining value.

In addition, when you post a constraint, the constraint is saved so that whenever
any of the variables to which it applies is modified, the constraint will be
activated, and the modification will be transmitted to the other variables that the
constraint involves. This activity is called constraint propagation.
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The algorithm used for constraint propagation in CP Optimizer is straightforward
in principle. CP Optimizer maintains a queue of variables, called the constraint
propagation queue. When a constrained variable is modified, that variable is put at
the end of that queue if it is not already in the queue. As long as there are
variables in that queue, the algorithm takes the first variable from the queue. This
particular variable is said to be in process.

When a variable is processed, it is first removed from the propagation queue. Then
each constraint posted on that variable is examined. For one such constraint, all the
variables on which it is posted are in turn examined: their domains are reduced by
removing those values that are inconsistent with it. If a variable is already in
process, then this domain reduction will be deferred until it is no longer in process.
If some of these variables are modified during this activity, they, too, are put into
the queue if they are not yet in the queue. The algorithm continues as long as there
is a variable in the queue to process. The algorithm automatically reduces domains
as necessary and halts in either of two situations: when all domains contain only
values consistent with the constraints, or when a domain becomes empty. For
performance considerations, it does not carry out all the reductions theoretically
possible.

This algorithm has several important properties:
v This algorithm always halts.
v It lets you use constraints (such as arithmetic constraints, for example) on more

than two variables at a time.
v It lets you handle problems dynamically; that is, you can solve problems where

new constraints can be added during the search for a solution.
v Regardless of the order in which the constraints are considered, the domains will

always be the same at the end of the execution of the propagation.

Goals
Engine goals are used in the search.

Goals are the building blocks used to implement search algorithms in CP
Optimizer. Both predefined search algorithms and user-defined search algorithms
can be expressed in CP Optimizer through goals.

Like other CP Optimizer entities, a goal is implemented by two objects: a handle
(an instance of the class IlcGoal) that contains a data member (the handle pointer)
that points to an implementation object (an instance of the class IlcGoalI allocated
on the CP Optimizer heap).

Among other member functions, the class IlcGoalI has a virtual member function,
execute, which implements the execution of the goal. The execute member
function must return another goal: the subgoal of the goal under execution. If the
execute member function returns 0 (zero), then no subgoal has to be executed.

A goal can either succeed or fail. A goal fails if a fail member function (such as
IlcGoalI::fail, for example) is called during its execution. A goal succeeds if it
does not fail.

Goal execution is controlled by the member functions IloCP::next or IloCP::solve
and implemented by a goal stack. The first time this member function is called, it
pushes all the goals that have been added to the invoking optimizer onto the goal
stack. Then it pops the top of the stack, and if there is a goal there, it executes that
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goal. When the execution of the current goal is complete, its subgoal is executed (if
the current goal has any subgoals). If there are no remaining subgoals, then the
next goal on top of the stack is popped. The member function next stops when the
goal stack is empty.
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Chapter 4. Writing complex custom constraints

New, custom constraints can be written using engine extensions.

Overview
Before writing a custom constraint, predefined constraints and constraint
propagators should be investigated. If these do not provide the necessary
flexibility, then custom constraints can be used to link specific decision variables.

CP Optimizer offers a wide range of predefined constraints, together with
powerful logical operators for combining them. These facilities usually suffice for
expressing even the most specific constraints. However, when you are modeling
your problem, a predefined constraint which implements your knowledge of the
problem may not exist. In this case, you may find it useful to write a constraint
propagator. A constraint propagator is a simple way to define a custom constraint,
that is, one where you define the domain reduction rules via some C++ or Java
code. Constraint propagators are discussed in detail in Chapter 2, “Using constraint
propagators,” on page 5.

However, there may be cases in which a constraint propagator does not provide
enough flexibility. For instance, it may be that you need to solve a subproblem
within the execution of the inference algorithm of your constraint.

Or it may be that be that you want to have different operations which depend on
how the domain of the triggering variable has been modified; you may not want to
call the propagator for each modification but only when the decision variable is
fixed.

Or it may be that you may want to be able to implement an efficient algorithm in
a incremental way, so you need to know which are the values that have been
currently modified; these values are known as the delta domains).

When you write a new constraint class to link certain decision variables, you must
implement the inference algorithm that eliminates from the domains of the
variables the values that could not participate in a solution. These reductions are
carried out by means of elementary modifiers on the domains of these variables.

Understanding constraints
Constraints link specified decision variables.

As indicated in the CP Optimizer User’s Manual, CP Optimizer offers a wide range
of predefined constraints, together with powerful logical operators for combining
them. These facilities usually suffice for expressing even the most specific
constraints.

However, when CP Optimizer treats a group of heterogeneous constraints together
as a set, it generally still must deal with each of them locally. One way to offset
this “localness” about the way constraints are treated is to use catalyzing
constraints. Another--more radical approach--is to write a new constraint. This
alternative may at times be somewhat more difficult.
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When you write a new constraint to link certain decision variables, you must
implement reductions of the domains of these variables by eliminating any values
that could not participate in a solution. These reductions are carried out by means
of elementary modifiers on the domains of these variables.

Elementary modifiers for decision variables
Elementary modifiers for engine decision variables are used to reduce the domain
of a decision variable within the domain reduction algorithm.

In a custom constraint, the domain reduction algorithm is implemented on the
internal computation (search) decision variables, the IlcIntVar equivalents of the
IloIntVar model decision variables. Besides the accessors such as getMin, getMax
or getValue, defined for integer expressions, there are also predefined elementary
modifiers. You use these modifiers to implement custom constraints.

Consider how setValue(IlcInt c), one of these predefined modifiers of IlcIntExp,
behaves when called on a search decision variable x with a current domain of
[0..1]:
x.setValue(1);

This fragment of code effectively reduces the domain of the decision variable to a
singleton (a single element) with the value 1. This behavior literally involves a
domain reduction, and this behavior is consistent throughout CP Optimizer: if the
value 1 were not in the initial domain, CP Optimizer would have raised an error.

For example, consider the following contrasting piece of code called on a decision
variable x with a current domain of [0..1]. It raises an error, a fail.

x.setValue(2); // LEADS TO FAILURE

It is also important to note that modifiers are volatile; if a modifier does not have
an immediate effect, it will have no later effect. This volatility is a way in which
elementary modifiers differ from constraints. Consider the following code applied
to the search decision variables x and y with current domains of [0..1] :

IlcIntVar x(cp,0,1), y(cp,0,1);
(x + y).setValue(1); // NO EFFECT

That code has no effect because all the values of the domains can participate in a
solution. If later the domain of x is reduced to [0], this previously applied modifier
will have no effect. If the modifier is reapplied, then the domain of y will be
reduced to the value 1.

Of course, if you instead use constraints and add them to the model, those hazards
can be avoided.

IloIntVar x(env,0,1), y(env,0,1);
model.add(x + y == 1);

This code will not directly modify any domains, but during the search for
solutions, only the two solutions where the sum is equal to 1 appear. CP Optimizer
stores the extracted constraint so that at each modification of the domain of either
of the decision variables, the optimizer engine executes the appropriate domain
modifier.

For the class IlcIntExp, the modifiers are:
v setValue(IlcInt value) which tries to make the expression equal to value;
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v setMin(IlcInt min) which tries to make the expression greater than or equal to
min;

v setMax(IlcInt max) which tries to make the expression less than or equal to max;
v setRange(IlcInt min, IlcInt max) which tries to make the expression stay

between min and max, inclusive;

For the class IlcIntVar, which inherits from IlcIntExp the modifiers are:
v setRange(IlcIntArray array) which tries to make the expression include only

those values in the array;
v removeValue(IlcInt value) which tries to make the variable different from

value;
v removeInterval(IlcInt min, IlcInt max) which tries to make the variable

strictly less than min or strictly greater than max. In other words, it tries to make
the variable stay outside the interval defined by min and max, inclusive.

Before leaving the topic of modifiers, it must be emphasized again that they only
reduce domains: they do not enlarge domains. For that reason, the following code,
when applied to a search decision variable x with a current domain of [0..1]
modifies nothing in the domain of x and, in particular, it does not make the upper
boundary of x equal to 2.
x.setMax(2); // DOES NOTHING!

Invariants: what to propagate?
Understanding the invariants is necessary in irder to understand what to
propagate.

A constraint that links decision variables is an object with a task: that of reducing
the domains of those variables in terms of the semantics of those variables. For
example, once you have added the constraint x <= y on the search decision
variables x and y, that constraint must ensure that the values in the domains of x
and y satisfy the constraint. From a working point of view, that constraint must
eliminate values from the domains of the variables, values that are definitely
inconsistent.

When you are writing a constraint, it is a good idea to start by defining the
invariant of that constraint before you implement it by means of elementary
modifiers. (The term invariant is used here in the usual sense of software
engineering.)

Consider the example of x <= y in this context. Its invariant is easy to determine,
and can be expressed this way:
v the values in the domain of x must be less than or equal to the maximum of the

values in the domain of y;
v the values in the domain of y must be greater than or equal to the minimum of

the values in the domain of x.

With elementary modifiers, this invariant can be translated this way:
x.setMax(y.getMax());
y.setMin(x.getMin());
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The constraint propagation algorithm
The constraint propagation algorithm is straightforward in principle. When the
domain of a decision variable is modified, the constraints containing that variable
are examined to determine whether any values in the domains of other decision
variables are now inconsistent.

To see how the propagation algorithm works with constraints, consider the
constraint x <= y, written with the following fragment of code:

IlcIntVar x(cp,0,3), y(cp,0,2);
cp.add( x <= y );

When this constraint is added to the optimizer, the invariant expressed in the
previous section becomes active and reduces the domain of x by removing the
value 3. For the moment, that is all that can be deduced from the constraint. Since
the constraint has to be taken into account by CP Optimizer every time one of the
variables in it is modified, the constraint itself is physically attached to these two
variables.

CP Optimizer has been designed to automate and to optimize the reduction of the
domains of decision variables. The CP Optimizer propagation algorithm for that
purpose is straightforward in principle. When the domain of a decision variable is
modified, the constraints containing that variable are examined to determine
whether any values in the domains of other decision variables are now
inconsistent. If this is the case, necessary domain reductions are carried out in turn.

The examination of the constraints incident on a variable is triggered by any
modification of that variable. There are several different kinds of modifications,
depending on the class of variable under consideration. Those modifications are
referred to as propagation events.

For the class of decision variables, there are, in fact, these propagation events:
v value means that a value has been assigned to the decision variable, that is, the

variable has been fixed;
v range indicates that the minimum of the domain has increased or the maximum

of the domain has decreased;
v domain indicates that the domain of the decision variable has been modified.

When you define a new class of constraint, you must also define the propagation
events for that class of constraint. You do so by means of the pure virtual member
function, post.

Sometimes more than one event can be triggered after a variable modification.
Specifically, the value event is always accompanied by the range and domain
events. Likewise, a range event is always accompanied by a domain event.

Consider a search decision variable, var, with a domain containing only two
values, value1 and value2, where value1 < value2. If you add a constraint that var !=
value1, three events are triggered:
v the domain event is triggered since value1 is actually removed from the domain

of var;
v the range event is triggered since the minimal boundary of the domain of var

has been increased;

24 CP Optimizer Extensions User’s Manual



v the value event is triggered since the variable is fixed by the reduction of its
domain to a single value.

Writing your own constraint
A custom constraint can be written using engine extensions.

Overview
A custom constraint can be written using engine extensions.

Obviously, a constraint is an object in CP Optimizer. More precisely, a constraint in
CP Optimizer is an instance of a class with two pure virtual functions, propagate
and post. The virtual function propagate implements the invariant of the
constraint; the function post defines on which events propagate executes.

To define a new class of constraint, you define a subclass of IlcConstraintI. The
data members of this subclass include, among others, the search decision variables
on which the constraint is posted.

Consequently, the definition of a new class of constraint looks something like this:
class MyConstraintI : public IlcConstraintI {

... // data members of the constraint
public :

MyConstraintI(IloCP cp, ... args ...); // constructor
~MyConstraintI(){} // destructor; usually empty
void post();
void propagate();

}

To clarify how to define a new class of constraint, consider the constraint x != y.
The arguments of this constraint are the search decision variables x and y.
class DiffConstraintI : public IlcConstraintI {

IlcIntVar _x, _y;
public:

DiffConstraintI(IloCP cp, IlcIntVar x, IlcIntVar y);
~DiffConstraintI(){}; // empty destructor

virtual void propagate ();
virtual void post();

};

The role of the constructor is to initialize the data members, like this:
DiffConstraintI::DiffConstraintI(IloCP cp,

IlcIntVar x,
IlcIntVar y)

: IlcConstraintI(cp), _x(x), _y(y) {}

The invariant of x != y is easy to determine:
v if x is bound to a value, the domain of y does not contain this value;
v likewise, if y is bound to a value, the domain of x does not contain this value.

The virtual member function propagate implements the reduction of the domains.
Using what you've already written, you would get this:
void DiffConstraintI::propagate () {

if (_x.isFixed()) _y.removeValue(_x.getValue());
if (_y.isFixed()) _x.removeValue(_y.getValue());

}
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The second virtual member function to write is post. It connects the constraint to
its arguments by specifying the events that have triggered the constraint. For
search decision variables, there are three kinds of attachments, one kind for each
type of event.

For the class IlcIntVar, these member functions are as follows: (The class
IlcConstraintI derives from the class IlcDemonI.)
v whenValue(IlcDemon ct) attaches the demon ct to the value event of the variable

under consideration. Every time the variable takes a unique value, the execute
function for ct is called.

v whenRange(IlcDemon ct) attaches the demon ct to the range event of the
variable under consideration. Every time the domain of the expression gets a
new boundary, the execute function for ct is called.

v whenDomain(IlcDemon ct) attaches the demon ct to the domain event. Every
time the domain of the variable is modified, the execute function for ct is
called.

For a constraint, the execute member function calls propagate.

In the example of the constraint x != y, you want to propagate the constraint every
time x or y is fixed. Here is the code for doing that:
void DiffConstraintI::post(){

_x.whenValue(this);
_y.whenValue(this);

}

Implementation classes and handles
A handle class contains an object that is a pointer to an instance of the
corresponding implementation class.

For a predefined CP Optimizer class, IlcConstraintI, implementing an object with
its own data members and virtual functions, CP Optimizer defines the handle class
IlcConstraint. Essentially, such a handle class contains objects that are simply
pointers to instances of the corresponding implementation class IlcConstraintI.
When you extend CP Optimizer by defining a new implementation class, you must
also define a function that returns a handle.

This rule applies particularly to the definition of new classes of constraints.
Handles for constraints are instances of the class IlcConstraint. This class
provides an instance of an implementation class, or more precisely,
IlcConstraintI*. You must define a function that returns a handle, and the
minimal service that the handle provides is to manage the memory allocation of
instances in your implementation class. The form that it generally takes looks like
this:
IlcConstraint MyConstraint( /* arguments for the constraint */){

// get the optimizer from a variable
return new (cp.getHeap()) MyConstraintI(cp, /* ...args... */);

}

The body of that function builds an instance of MyConstraintI by calling the
constructor and allocates a place on the CP Optimizer heap by calling the
overloaded operator, new (cp.getHeap() ... ). When you use this CP Optimizer
new, you get an efficient allocator that automatically manages how memory is
recovered in case of backtracking.
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In the example, x != y, you write a function DiffConstraint which creates the
constraint. Here's the code for it:
IlcConstraint DiffConstraint(IlcIntExp x, IlcIntExp y){

IloCP cp = x.getCP();
return new (cp.getHeap()) DiffConstraintI(cp, x, y);

}

That definition, of course, has two parts: the implementation and the handle. To
use this new constraint within the search, you simply write:

cp.add(DiffConstraint(x, y));

This statement informs CP Optimizer to take the constraint into account within
such mechanisms as propagation, backtracking and so forth. In general, it can be
said that a call to DiffConstraint as written builds an instance of DiffConstraintI
and returns a handle for that object (in other words, an encapsulation of the object)
to post by means of the post member function. The instance of the implementation
class is connected to the value events of the two decision variables. Every time
these variables are fixed, the propagate member function is executed.

Using ILOCPCONSTRAINTWRAPPERn to wrap constraints
A macro is used to wrap a constraint for use in a model.

You can use the macro ILOCPCONSTRAINTWRAPPERn to wrap an existing instance of
IlcConstraint when you want to use it within IBM ILOG Concert Technology
modeling objects.

This macro defines a constraint class named _thisI with n data members. When n
is greater than zero, the types and names of the data members must be supplied as
arguments to the macro. Each data member is defined by its type ti and a name
ai.

ILOCPCONSTRAINTWRAPPER0(_this, cp)

ILOCPCONSTRAINTWRAPPER1(_this, cp, t1, a1)

ILOCPCONSTRAINTWRAPPER2(_this, cp, t1, a1, t2, a2)

ILOCPCONSTRAINTWRAPPER3(_this, cp, t1, a1, t2, a2, t3, a3)

ILOCPCONSTRAINTWRAPPER4(_this, cp, t1, a1, t2, a2, t3, a3, t4, a4)

In order to use an instance of IlcConstraint in the modeling layer, you need to
follow these steps:
v Use the macro to wrap the instance of IlcConstraint in an instance of

IloConstraint.
v You must use the following IloCPConstraintI member functions to force

extraction of an extractable or an array of extractables that are used in the
constraint:
void use(const IloSolver cp, const IloExtractable ext)const;
void use(const IloSolver cp, const IloExtractableArray extArray)const;

For more information on wrapping constraints for use with IBM ILOG Concert
Technology, see the documentation for the macro ILOCPCONSTRAINTWRAPPER and the
class IloCPConstraintI in the CP Optimizer C++ API Reference Manual.
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Writing your own logical constraint
Additional virtual functions must be defined to use a custom constraint in a logical
constraint.

If you want to be able to use a custom constraint in a logical constraint, you will
need to define additional virtual functions (besides those you just defined for a
new constraint: propagate and post). These additional virtual functions are
isViolated, makeOpposite and metaPostDemon. This section shows you how to
define these functions.

In order to express the idea that the variable x is different from some other
variable, y, or that y is different from z, you can write that very simply by using
the logical-OR operator provided by CP Optimizer.

cp.add(DiffConstraint(x, y) || DiffConstraint(y, z));

Once one of those two constraints proves false, CP Optimizer makes the other one
true. To do so, CP Optimizer needs to know the truth value of these constraints. In
fact, CP Optimizer needs only to know when one of these constraints is violated.
You need to define under what conditions DiffConstraint is definitely not
satisfied. In our example, x != y is violated if, and only if, variables x and y are
fixed to the same value. Hence, the definition of isViolated:
IlcBool DiffConstraintI::isViolated() const {

return (_x.isFixed() && _y.isFixed() &&
_x.getValue()==_y.getValue());

}

To detect a violation, the disjunctive constraint has to be posted on the variables
that are involved. This is the task of the metaPostDemon member function.
void DiffConstraintI::metaPostDemon(IlcDemonI * ct) {

_x.whenValue(ct);
_y.whenValue(ct);

}

Now, if you write:
cp.add(DiffConstraint(x, y) || DiffConstraint(y, z));

the metaPostDemon is called with the disjunctive constraint as its argument. Thus,
you get the effect that once one of the two constraints proves false (that is,
isViolated returns IlcTrue), CP Optimizer invokes the propagate function of the
other one, insuring that the disjunctive constraint is taken into account.

There's still one more point to consider. Assume that you want to affirm that the
constraint DiffConstraint(x, y) is false; in other words, that x == y is true. You
can use the negation operator to write this:
cp.add(!DiffConstraint(x, y));

But if you do so, how will CP Optimizer know that you want to impose the
negation of a specific constraint? You have to tell CP Optimizer explicitly what the
opposite constraint is, and that is the work of the member function makeOpposite.

In our example, the opposite constraint of x != y is obviously x == y. Remember
that the constraint x == y is a handle. Indeed, it is an instance of the class
IlcConstraint. With CP Optimizer, you get the object implementation from the
getImpl member function of the handle class. For example, (x == y).getImpl()
returns the pointer to the implementation of x == y.
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Thus, the code is:
IlcConstraintI* DiffConstraintI::makeOpposite() const {

return (_x == _y).getImpl();
}

Finally, here is the complete code of the custom constraint DiffConstraint. (First,
you'll see the definitions of the appropriate class and its member functions; then
DiffConstraint itself near the end.)
class DiffConstraintI : public IlcConstraintI {

IlcIntVar _x, _y;
public:

DiffConstraintI(IloCP cp, IlcIntVar x, IlcIntVar y);
~DiffConstraintI(){}; // empty destructor

virtual void propagate ();
virtual void post();
virtual IlcBool isViolated() const;
virtual IlcConstraintI * makeOpposite() const;
virtual void metaPostDemon(IlcDemonI* ct);

};

DiffConstraintI::DiffConstraintI(IloCP cp,
IlcIntVar x,
IlcIntVar y)

: IlcConstraintI(cp), _x(x), _y(y) {}
void DiffConstraintI::propagate () {

if (_x.isFixed()) _y.removeValue(_x.getValue());
if (_y.isFixed()) _x.removeValue(_y.getValue());

}
void DiffConstraintI::post(){

_x.whenValue(this);
_y.whenValue(this);

}
IlcBool DiffConstraintI::isViolated() const {

return (_x.isFixed() && _y.isFixed() &&
_x.getValue()==_y.getValue());

}

IlcConstraintI* DiffConstraintI::makeOpposite() const {
return (_x == _y).getImpl();

}
void DiffConstraintI::metaPostDemon(IlcDemonI * ct) {

_x.whenValue(ct);
_y.whenValue(ct);

}

All the predefined constraints of CP Optimizer are defined like this, as constraints
that can be used in logical constraints.

Using demons to propagate selectively
Using demons to propagate selectively can improve performance.

Consider the DiffConstrantI example; each time one of its variables is fixed,
isFixed is checked against the two variables. As another example, consider an
IloAllDifferent constraint which strives to make every decision variable in an
array be assigned a different value. If the propagate function was written similarly
to the one above, it would have to check to see if each variable in the array has
been fixed, which would not be efficient. You can avoid these redundant tests by
using intermediate demons, that is, by posting different demons on the different
variables.
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You add two member functions to the class DiffConstraintI, each of them
responsible for the propagation of the constraint on one variable when the other is
fixed. Here is the modification.
class DiffConstraintI : public IlcConstraintI {

IlcIntVar _x, _y;
public:

DiffConstraintI(IloCP cp, IlcIntVar x, IlcIntVar y);
~DiffConstraintI(){}; // empty destructor

virtual void propagate ();
virtual void post();
virtual IlcBool isViolated() const;
virtual IlcConstraintI * makeOpposite() const;
virtual void metaPostDemon(IlcDemonI* ct);
void xDemon(){

_y.removeValue(_x.getValue());
}
void yDemon(){

_x.removeValue(_y.getValue());
}

};

Now you need to define intermediate demons on variables that call the new
member functions. You do that in this way.
ILCCTDEMON0(DiffConstraintI_xDemon,DiffConstraintI,xDemon);
ILCCTDEMON0(DiffConstraintI_yDemon,DiffConstraintI,yDemon);

Finally, you change the post member function to take this modification into
account, like this:
void DiffConstraintI::post(){

_x.whenValue(DiffConstraintI_xDemon(getCP(),this));
_y.whenValue(DiffConstraintI_yDemon(getCP(),this));

}

This new version of the DiffConstraintI is faster that the previous one since the
isFixed tests in propagate are avoided. The price to pay for this efficiency is the
memory used by the two intermediate demons.

Using delta-domains to propagate efficiently
Using delta-domains in propagation can improve performance.

When a propagation event is triggered for a decision variable, the variable is
pushed into the propagation queue if it was not already in the queue. Moreover,
the modifications of the domain of the decision variable are stored in a special set
called the domain-delta. This domain-delta can be accessed during the propagation
of the constraints posted on that variable. When all the constraints posted on that
variable have been processed, then the domain-delta is cleared. If the decision
variable is modified again, then the whole process begins again. The state of the
domain-delta is reversible.

The domain-delta is a special set where the modifications of the domain of a
constrained variable are stored. This domain-delta can be accessed (by means of
member functions of the class of the decision variable) during the propagation of
the constraints posted on that variable. When all the constraints posted on that
decision variable have been processed, then the domain-delta is cleared. If the
variable is modified again, then the whole process starts over again. The state of
the domain-delta is reversible.
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The methods of IlcIntVar that you might use when examining the domain-delta
are listed in the CP Optimizer C++ API Reference Manual and include isInProcess,
getMaxDelta, getMinDelta, getOldMax, getOldMin and isInDelta. The domain-delta
can be traversed by an iterator, an instance of IlcIntVarDeltaIterator.

To illustrate the use of the domain-delta and these functions, consider a custom
constrain to implement the constructive disjunction ( x==y || x==z) where x, y and
z are decision variables. A declaration for this class using demons is:
class DeltaConstraintI : public IlcConstraintI {

IlcIntVar _x, _y, _z;
public:

DeltaConstraintI(IloCP cp, IlcIntVar x, IlcIntVar y, IlcIntVar z);
~DeltaConstraintI(){}; // empty destructor

virtual void propagate ();
virtual void post();
void xDemon();
void yDemon(IlcIntVar y, IlcIntVar z);

};

with the demon declarations:
ILCCTDEMON0(DeltaConstraintI_xDemon,DeltaConstraintI,xDemon);
ILCCTDEMON2(DeltaConstraintI_yDemon,DeltaConstraintI,yDemon,

IlcIntVar,y,IlcIntVar,z);

Considering the constructive disjunction, you can see that until the decision
variable x is fixed, no values can be removed for the domains of y and z. [Note
that more complete domain reduction would include a test for a null intersection
of the domains of x and y (or x and z).]

In this custom constraint, the method xDemon is called only when the value of x is
fixed. In this demon, you check if the value of x is in the domain of both y and z.
If it is, then nothing can be deduced. If the value of x is in the domain of only one,
then you set the value of that variable to the value of x. If the value of x is in the
domain of neither, then the constraint is violated.
void DeltaConstraintI::xDemon(){

assert(_x.isFixed());
IlcInt xval = _x.getValue();
IlcInt iny = _y.isInDomain(xval);
IlcInt inz = _z.isInDomain(xval);
if (iny && inz)

return;
if (iny)

_y.setValue(xval);
if (inz)

_z.setValue(xval);
if (!iny && !inz)

fail();
}

When the domain of y changes, then for each of the values that have been
removed from the domain of y, you check that the removed value is in z. If it is
not, then that value should be removed from x. To determine what values have
been removed from the domain of y, you can use the IlcIntVarDeltaIterator.
void DeltaConstraintI::yDemon(IlcIntVar y, IlcIntVar z){

assert(y.isInProcess());
for (IlcIntVarDeltaIterator iter(y); iter.ok(); ++iter) {

IlcInt val = *iter;
IlcInt inz = z.isInDomain(val);
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if (!inz)
_x.removeValue(val);

}
}

Since this relationship is similar for x and z, the same demon gets called when the
domain of z changes, but the arguments are reversed. Thus the post function for
the custom constraint is:
void DeltaConstraintI::post(){

_x.whenValue(DeltaConstraintI_xDemon(getCP(),this));
_y.whenDomain(DeltaConstraintI_yDemon(getCP(),this,_y,_z));
_z.whenDomain(DeltaConstraintI_yDemon(getCP(),this,_z,_y));

}

The propagate function, which will be executed when the constraint is posted
could be:
void DeltaConstraintI::propagate () {

if (_x.isFixed()) {
xDemon();
return;

}
for (IloInt i = _x.getMin(); i == _x.getNextHigher(i); _x.getNextHigher(i)) {

IlcInt iny = _y.isInDomain(i);
IlcInt inz = _z.isInDomain(i);
if (iny + inz == 0)

_x.removeValue(i);
}

}

Programming tips
Programming tips for writing constraints are provided.

Exhaustive propagation
Exhaustive propagation should be used in order to have an efficient custom
constraint.

In order to write an efficient custom constraint, it is important to follow the
following basic steps:
v The constraint must fail when there is no solution.
v The constraint must not remove values that are consistent with the definition.
v The constraint should be propagated in all directions.
v It is usually better to reduce the domain of variables as early as possible.
v A direct consequence of the previous rule is: it is usually better to reduce the

domains as much as possible.

In order to reduce the domains of constrained variables as quickly as possible, you
have to carry out all domain reductions that are possible. You do so by
propagating constraints in every direction. Another way of looking at this issue is
to see that constraints are not directed, but must be seen as equations in the widest
sense of the term. The final results of the search for a solution must be the same,
regardless of the order in which constraints are posted, even user-defined
constraints.

Consider the constraint x + y == z. The domain of z must be modified when the
domain of x or of y is modified. At the same time, you must not forget that the
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domain of x must be modified when the domain of y or of z is modified. A similar
rule applies for y as well. This is what is meant by propagating in all directions.

More generally, when designing a new constraint class, you must not overlook any
direction of propagation.

Pushing constraints
Pushing constraints makes it possible that a constraint is not propagated after each
modification of each decision variable; rather, it is propagated after all its variables
have been propagated.

Suppose that there is a constraint C involving the decision variables x, y, z and t.
Suppose that x is modified, then C is propagated. Now if the modification of x
leads to a modification of y, z and t, then these decision variables will be
propagated and each of those variables will propagate C again, even if these
variables have not been modified by constraints other than C.

Imagine that you want to avoid these repeated propagations because you know
that the propagate member function of C is costly. Also imagine that you want to
propagate C once for all the modifications of the variables involved in C but not
for the modifications of each variable individually.

There is a mechanism in CP Optimizer that meets these aims. It is possible to have
constraints that are not propagated within demons. Such a constraint is not
propagated after each modification of each decision variable; rather, it is
propagated after all its variables have been propagated.

In fact, in CP Optimizer there are two mechanisms for propagating the
modifications of variables.
v First Level: When a decision variable is modified, all the demons linked to this

variable are called. This mechanism is repeated while there is a variable for
which all the demons have not yet been called.

v Second Level: The propagate function of some constraint known as a global
constraint is called.

If, after the termination of a propagate member function, a variable has been
modified, then constraint propagation immediately return to the first level. This
means that the process at the first level has greatest priority.

In the second level, a global constraint (say, ct) is pushed by a call to the push
member function.

This member function indicates to CP Optimizer that ct is a global constraint and
must be propagated by the second level mechanism. This member function must
be called within a demon.

Consider the following example simplified for illustration: you want to define the
constraint x + y = s without considering modifications of s.

The code of that constraint could be something like this:
class MySumConstraintI : public IlcConstraintI {

IlcIntVar _x, _y, _s;
public:

MySumConstraintI(IloCP cp, IlcIntVar x, IlcIntVar y, IlcIntVar s);
~MySumConstraintI(){}; // empty destructor
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virtual void propagate ();
virtual void post();
void pushDemon();

};

void MySumConstraintI::propagate () {
IlcInt m;
// compute the min of s
m =_x.getMin() + _y.getMin();
_s.setMin(m);
// compute the max of s
m=_x.getMax() + _y.getMax();
_s.setMax(m);

}

A demon for each variable x and y is added and that demon is triggered when the
boundary of either variable is modified (that is, when a range event occurs).
void MySumConstraintI::post(){

_x.whenRange(MySumConstraintI_pushDemon(getCP(),this));
_y.whenRange(MySumConstraintI_pushDemon(getCP(),this));

}

Now here is the code for the demon:
ILCCTDEMON0(MySumConstraintI_pushDemon, MySumConstraintI, pushDemon);
void MySumConstraintI::pushDemon() {

push();
}

How does this tactic differ from the conventional propagation mechanism? In this
case, the demon will be called, but the propagate member function of
MySumConstraintI will not be called immediately. Rather, ct is pushed. When there
are no more demons to trigger, then the constraints that have been pushed will be
called. Furthermore, in this way, a constraint will be propagated only once even if
it has been pushed several times.

If you want to refine the propagation mechanism, for example, if you want to treat
the variables that have been modified in a special way, you have to manage that
treatment by using internal data structures within the constraint. For example,
suppose that if x is modified, you want to call your own function propagateX()
and if y has been modified, you want to call your own propagateY(). To do so,
you add reversible Boolean data members to MySumConstraintI, like this:

IlcRevBool _xIsModified;
IlcRevBool _yIsModified;

Now you define special demons for x and for y, like this:
ILCCTDEMON0(MySumConstraintI_xDemon, MySumConstraintI, xDemon);
ILCCTDEMON0(MySumConstraintI_yDemon, MySumConstraintI, yDemon);
void MySumConstraintI::xDemon() {

memorizeThatXisModified();
push();

}
void MySumConstraintI::yDemon() {

memorizeThatYisModified();
push();

Now the propagate member function will look like this:
void MySumConstraintI::propagateX () {

IlcInt m;
// compute the min of s
m =_x.getMin() + _y.getMin();
_s.setMin(m);

34 CP Optimizer Extensions User’s Manual



// compute the max of s
m=_x.getMax() + _y.getMax();
_s.setMax(m);

}
void MySumConstraintI::propagateY () {

IlcInt m;
// compute the min of s
m =_x.getMin() + _y.getMin();
_s.setMin(m);
// compute the max of s
m=_x.getMax() + _y.getMax();
_s.setMax(m);

}
void MySumConstraintI::propagate(){

if (_xIsModified){
propagateX();
_xIsModified.setValue(getCP(),IlcFalse);

}
if (_yIsModified){

propagateY();
_yIsModified.setValue(getCP(),IlcFalse);

}
}

Thus you have created a global constraint that will be propagated only once and
propagated only after the propagation of variables in that constraint.
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Chapter 5. Writing goals

Customized constructive search can be implemented using search goals.

Overview
A custom search algorithm can be implemented by implementing the decision
making logic using goals.

CP Optimizer offers a wide range of predefined search techniques, together with
powerful tools such as search phases and custom evaluators and selectors that can
be used with these techniques. These facilities usually suffice for solving the vast
majority of problems. However, when you are developing an optimization
application, there may be special circumstances in which search phases do not
provide you with the flexibility to solve your specific problem. In this case, you
may find it useful to write a custom search algorithm by implementing the
decision making logic using goals.

This chapter explains what you must do if you decide to implement a custom
search by subclassing the IlcGoalI class in the CP Optimizer engine extensions
API.

Understanding goals
Customizable search goals enable you to write your own search strategy.

Overview
Customizable search goals enable you to write your own search strategy.

Goals are the building blocks used to implement search strategies in CP Optimizer,
and the availability of customizable goals enables you to write your own search
strategy. Goals implement algorithms where the exact sequence of operations to
follow is not known in advance. This kind of programming is often called
non-deterministic. To help with the task of writing a custom search, some simple
strategies are provided as pre-defined goals, such as IlcInstantiate, which works
to fix one decision variable, and IlcGenerate, which works to fix an array of
variables.

When executed, a goal generally analyzes some information based on the current
domains of the decision variables and then determines a division that would
dichotomize the search space. To split the space, the goal creates two alternatives
in the search. The goal will specify to the optimizer to try one alternative and save
the other to try if the first choice leads to a failure. Along with trying an
alternative, the goal execution generally calls another goal, perhaps itself again, to
continue dichotomizing the search space.

Goals, as they are represented in Concert Technology, depend on two classes:
IloGoal and IloGoalI. An instance of the class IloGoal (a handle) contains a data
member (the handle pointer) that points to an instance of the class IloGoalI (its
implementation object). Likewise, goals, as they are represented in CP Optimizer
search, depend on two classes: IlcGoal and IlcGoalI. An instance of the class
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IlcGoal (a handle) contains a data member (the handle pointer) that points to an
instance of the class IlcGoalI (its implementation object) which is allocated on the
CP Optimizer heap.

To define a new class of goals, you can use the macro ILCGOALn. If you want to use
a new class of goals in a Concert Technology model, you can wrap it using the
macro ILOCPGOALWRAPPERn.

A goal is executed by a call to IloCP::solve or an IloCP::startNewSearch/
IloCP::next pair. A goal can either succeed or fail. A goal fails if a fail member
function (such as IlcGoalI::fail or IloCP::fail, for example) is called during its
execution. Such a call may happen automatically when the domain of a decision
variable becomes empty through domain reduction. A goal succeeds if it does not
fail.

Using macros to create a simple goal
A custom search goal can be implemented by using a macro.

To illustrate the implementation of custom goals, consider a simple goal called
HelloWorld. This goal, when executed, creates the output “Hello World” and
succeeds. The easiest way to implement the “Hello World” goal is to use the macro
ILCGOAL0:
ILCGOAL0(HelloWorld){

IloCP cp = getCP();
cp.out() << "Hello World" << std::endl;
return 0;

}

This macro, when expanded, generates code similar to the following code:
class HelloWorldI : public IlcGoalI {

public:
HelloWorldI(IloCP cp);
IlcGoal execute();

};
HelloWorldI::HelloWorldI(IloCP cp)

:IlcGoalI(cp){}
IlcGoal HelloWorld(IloCP cp){

return new (cp.getHeap()) HelloWorldI(cp.getImpl());
}
IlcGoal HelloWorldI :: execute() {

IloCP cp = getCP();
cp.out() << "Hello World" << std::endl;
return 0;

}

With this example, you see that defining a goal using the ILCGOAL0 macro creates
a subclass of IlcGoalI and an execution function:
v The subclass contains a virtual function used to execute the goal. Its name is

execute. Its body is the body of the macro. When this function is called, the goal
is executed.

v The function creates an instance of the goal. The name of this function is the
name used as the argument to the macro.

To use this new class of goals in a Concert Technology model, you must wrap it
using the macro ILOCPGOALWRAPPERn. To wrap the “Hello World” goal, you write:
ILOCPGOALWRAPPER0(HelloWorldConcert,cp) {

return HelloWorld(cp);
}

38 CP Optimizer Extensions User’s Manual



This macro, when expanded, generates code similar to the following code:
class HelloWorldConcertI : public IloGoalI {
public:

HelloWorldConcertI (IloEnvI*);
~HelloWorldConcertI ();
virtual IlcGoal extract(const IloCP) const;
virtual IloGoalI* makeClone(IloEnvI*) const;

};

HelloWorldConcertI::HelloWorldConcertI(IloEnvI* env) :
IloGoalI(env) {}

HelloWorldConcertI::~HelloWorldConcertI () {}

IloGoalI* HelloWorldConcertI::makeClone(IloEnvI* env) const {
return new (env) HelloWorldConcertI(env);

}

IloGoal HelloWorldConcert (IloEnv env) {
return new (env) HelloWorldConcertI (env.getImpl());

}

IlcGoal HelloWorldConcertI::extract(const IloCP cp) const {
return HelloWorld(cp);

}

With this example, you see that wrapping a goal using the
ILOCPGOALWRAPPER0 macro creates a subclass of IloGoalI and an extraction
function:
v The subclass contains a virtual function used to extract the goal. Its name is

extract. Its body is the body written in the macro. When this function is called,
the goal is extracted.

v The function creates an instance of the modeling layer goal. The name of this
function is the name used as the argument to the macro.

At the Concert Technology level, an IloGoal is passed as an argument to the
member functions IloCP::solve or IloCP::startNewSearch. The following code
executes the “Hello World” goal from the main program:

IloModel model(env);
IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity,IloCP::Quiet);
if (cp.solve(HelloWorldConcert(env)))

cp.out() << "Success" << std::endl;
else

cp.out() << "Fail" << std::endl;
cp.end();

The execution of the goal succeeds and produces the output:
Hello World
Success

Composing goals
A goal can be defined as a sequence of goals that must all succeed.

A goal can be defined as a sequence of goals that must all succeed. At the Concert
Technology level, goals can be composed using the operator&& function. For
example, consider a custom goal “Greetings”:
ILCGOAL0(Greetings){

IloCP cp = getCP();
cp.out() << "Greetings" << std::endl;
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return 0;
}
ILOCPGOALWRAPPER0(GreetingsConcert,cp) {

return Greetings(cp);
}

If this goal is composed with the custom “Hello World” goal from the previous
section, calling the CP Optimizer search with the code:

IloModel model(env);
IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity,IloCP::Quiet);
if (cp.solve(HelloWorldConcert(env) && GreetingsConcert(env)))

cp.out() << "Success" << std::endl;
else

cp.out() << "Fail" << std::endl;
cp.end();

produces the following results:
Hello World
Greetings
Success

Goals can be composed at the search level using the function IlcAnd. This function
defines a goal composed of several subgoals. The subgoals are executed from left
to right. For example, the previous goal composition could alternatively be written
as:
ILOCPGOALWRAPPER0(ComposedGoalConcert,cp) {

return IlcAnd(HelloWorld(cp), Greetings(cp));
}

The return type of the execute function of a subclass of IlcGoalI is an IlcGoalI,
which provides yet another way to compose goals. Changing the final line of code
of the function HelloWorldI::execute to be

return Greetings(cp);

produces the same results as composing the goals with the IlcAnd function.

For a goal that is a conjunction of subgoals, every subgoal must succeed in order
for the goal to succeed. If one of the subgoals in the conjunction fails, then the goal
fails.

Goal stack
The goal stack determines the order of execution of the goals.

The member functions IloCP::solve and IloCP::next control the execution of
goals. The first time one of these member functions is called, it creates a stack of
goals, called the goal stack.

Note:

Goals must be called by IloCP::solve, a IloCP::startNewSearch/IloCP::next pair,
or by other goals. Otherwise, they are not executed.

At the Concert Technology level, an instance of an IloGoal is passed as an
argument to the member functions IloCP::solve or IloCP::startNewSearch. The
function IloCP::solve pushes the corresponding search layer goal onto the goal
stack of the invoking IloCP optimizer object and then executes the subgoal at the
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top of the stack. The function IloCP::startNewSearch pushes the corresponding
search layer goal onto the goal stack of the invoking IloCP optimizer object, but
does not execute it immediately. The member function IloCP::next pops the goal
which is on top of the goal stack, if any, and executes it. In both cases, when the
current goal execution is finished, the goal at the top of the stack is popped and
executed. Thus goals are executed in the order first in, last out. If the goal stack is
empty, the call to solve or next terminates and returns IloTrue.

Note:

For goals composed of conjunctions (subgoals joined with IlcAnd or operator&&),
they subgoals are pushed onto the goal stack starting with the rightmost goal in
the sequence.

Choice points
A choice point is a choice between two subgoals of a goal.

A goal can be defined as a choice between subgoals; this choice of subgoals is
referred to as a choice point and is the mechanism with which CP Optimizer can
try alternatives in the search. In order for the goal to succeed, only one of the
subgoals of the choice point must succeed. At the Concert Technology level, a
choice point can be created using the operator|| function. For example, a choice
point between the custom goals “Hello World” and “Greetings”:

IloModel model(env);
IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity,IloCP::Quiet);
if (cp.solve(HelloWorldConcert(env) || GreetingsConcert(env)))

cp.out() << "Success" << std::endl;
else

cp.out() << "Fail" << std::endl;
cp.end();

produces the following results:
Hello World
Success

Because the “Hello World” subgoal is executed first and succeeds, the “Greetings”
subgoal is not pushed onto the goal stack and is not executed.

At the search level, choice points are implemented by the function IlcOr.

The member function IloCP::next produces, if possible, one successful execution
of a given goal and stops. To continue to try the other choices, you should place
IloCP::next within a loop.

Backtracking
Backtracking occurs when there is a failure in a goal and goal execution resumes at
the most recent choice point with untried subgoals.

Within CP Optimizer search, the implicit generation of combinations of values for
decision variables uses constructive search strategies. A constructive strategy attempts
to build a solution by choosing a non-fixed decision variable and a value for this
variable. The chosen variable is then fixed to the chosen value and constraint
propagation is triggered. This operation is called branching, and the fixing is also
called a “branch”. Constraint propagation then reduces the domains of variables
and, consequently, the currently possible combinations. After propagation
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terminates, another non-fixed variable, if one exists, is chosen, and the process
repeats until all decision variables are fixed. However, if a fixing fails because it
cannot lead to a solution, the constructive strategy backtracks and chooses another
value for the variable.

The fixing of a decision variable must be seen as a guess: if it leads to
inconsistencies, it should be undone, and another value should be tried. CP
Optimizer implements these guesses and “undos” by using choice points. Choice
points are implemented at the search level in CP Optimizer by the function IlcOr.
A choice point defines a goal in terms of a choice between subgoals.

CP Optimizer executes a choice point between two or more subgoals like this:
v The state of CP Optimizer (including the state of all variables and constraints

and the state of the goal stack) is saved, so that it can be restored if needed. This
is called setting the choice point.

v The first subgoal is pushed onto the top of the goal stack.
v The other subgoals are saved as untried subgoals for the choice point.
v Then the first subgoal is popped from the goal stack and executed. If this

subgoal fails, the state of CP Optimizer is restored, and the first untried choice is
pushed onto the goal stack. This activity is called backtracking, and it continues
until a subgoal is found that succeeds.

v If all subgoals fail, the choice point itself fails.

When the function IloCP::fail is called, goal execution resumes at the most recent
choice point with untried subgoals. It is possible to make goal execution resume at
an earlier choice point if you associate labels with choice points. Then the function
IloCP::fail can be called with a label. In such a case, goal execution resumes at
the most recent choice point having the same label.

Subgoals
When writing a new class of goals, you must determine what the goal will return.

The return value of the execute function of a subclass of IlcGoalI is an IlcGoalI.
When writing a new class of goals, you must determine what the goal will return.
If there are no subgoals of the goal, then you can specify a return value of 0. This
indicates that the goal has succeeded.

Otherwise, the goal must return a goal, a conjunction of goals, a choice point or
some combination of these. It is important to note that the subgoal specified can be
a constraint. If a constraint is specified as a subgoal, CP Optimizer adds the
constraint to the optimizer. This constraint addition is reversible; when the
optimizer backtracks over this subgoal, the constraint is removed.

Although the most common forms of constraint added are == and !=, you can also
dichotomize with other more general constraints.

Writing your own goal
A custom goal can be written using a macro.

Overview
A custom goal can be written using a macro.
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You can use the macro ILCGOALn to define a new class of goals. If you want to use
this new class of goals in a Concert Technology model, you must first wrap them
using the macro ILOCPGOALWRAPPERn.

Using ILCGOALn to define a new class of goals
A macro can be used to define a new class of goals.

You define a goal using the macro ILCGOALn. The definition consists of three parts:
v a name for the goal,
v a list of typed parameters, n being the number of parameters and
v a body which defines how to execute the goal.

For example, the following goals merely print something, but they are valid goal
definitions:
ILCGOAL0(Print){

IloCP cp = getCP();
cp.out() << "Print: executing a goal without parameters\n";
return 0;

}
ILCGOAL1(PrintX, IlcInt, x){

IloCP cp = getCP();
cp.out() << "PrintX: executing a goal with one parameter\n";
cp.out() << x << std::endl;
return 0;

}
ILCGOAL2(PrintXY, IlcInt, x, IlcFloat, y){

IloCP cp = getCP();
cp.out() << "PrintXY: executing a goal with two parameters\n";
cp.out() << x << std::endl;
cp.out() << y << std::endl;
return 0;

}

The macro for creating a goal class also generates a function for creating an
instance of the goal. For example, the following statements are valid calls in the
search layer to create instances of the goals just defined:

IlcGoal goal = Print(cp);
IlcGoal goalX = PrintX(cp, 2);
IlcGoal goalXY = PrintXY(cp, 1, 2.);

The goal creation function can be declared in a header file. Its signature has the
same name and arguments as the goal, and it returns a pointer to an object of the
type IlcGoal. It does not execute the goal.

Note:

Such pointers must not be stored since goals are automatically de-allocated by CP
Optimizer after they have been executed. They can be passed as arguments as long
as the goal has not yet been executed.

For example, the following declarations are valid declarations of these same goals:
IlcGoal Print(IloCP cp);
IlcGoal PrintX(IloCP cp, IlcInt x);
IlcGoal PrintXY(IloCP cp, IlcInt x, IlcFloat y);

You can also define a goal using subgoals. The following goal has three subgoals:
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ILCGOAL0(PrintAll){
IloCP cp = getCP();
return IlcAnd(Print(cp), PrintX(cp, 2), PrintXY(cp, 1, 2.));

}

The execution of the goal PrintAll produces the following output:
Print: executing a goal without parameters
PrintX: executing a goal with one parameter
2
PrintXY: executing a goal with two parameters
1
2

Using ILOCPGOALWRAPPER to wrap the goals
A custom goal must be wrapped to be used in a model.

There are several situations in which you might need to wrap a goal in an instance
of IloGoal:
v You want to use the goal as an argument of IloCP::solve.
v You want to use the goal as an argument of IloCP::startNewSearch.

Any time a goal is to be used within the Concert Technology layer, it must be
wrapped. In such situations, use the macro ILOCPGOALWRAPPERn to wrap your goal.

For example, you can wrap the PrintAll goal in an instance of IloGoal in this
way:
ILOCPGOALWRAPPER0(PrintAllConcert,cp) {

return PrintAll(cp);
}

To create an instance of this goal you write:
IloGoal goal = PrintAllConcert(env);

The IloGoal object returned can then be passed as an argument to the
IloCP::solve and IloCP:startNewSearch functions. Both of these functions extract
the instance of the IloGoalI to the optimizer. In the body of the macro
ILOCPGOALWRAPPERn, you must take the arguments to the modeling layer goal and
determine the extracted counterparts of these objects in order to create the search
layer counterpart of the goal. For example, if the modeling layer goal takes a
decision variable as an argument, then in the body of the macro you must
determine the engine object extracted by the optimizer and pass this search
decision variable to the search layer goal.

For example, if the goal takes a decision variable as an argument:
ILCGOAL1(MycGoal, IlcIntVar, var) {

...
return 0;

}

Then in the macro to wrap the goal you need to determine the search decision
variable that has been extracted from the model decision variable:
ILOCPGOALWRAPPER1(MyoGoal, cp, IloIntVar, x){

return MycGoal(cp, cp.getIntVar(x));
}
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The extraction of a goal does not extract and must not extract its arguments.
Therefore, when using a goal you must make sure that the arguments will be
extracted by the model. A good way to ensure this is to add an object to the model
before using it as an argument to a goal.

Example of writing your own goal: implementing IlcInstantiate
The instantiation goal is used as an example of writing your own goal.

As an example of goal programming, you are going to look closely at how the
function IlcInstantiate is implemented. This function takes a decision variable as
its argument and fixes it. More precisely, this function selects a value in the
domain of the decision variable and assigns that value to the decision variable. The
CP Optimizer engine automatically propagates the constraints incident on this
decision variable.

With the ideas about choice points and backtracking that you have just learned in
mind, now you can implement a goal that is similar to IlcInstantiate.

To do so, you will use the following algorithm:
v If the decision variable is fixed (that is, it has already been assigned a value), do

nothing and succeed.
v Otherwise, set a choice point between two subgoals. If a selector is specified, the

first subgoal assigns a valued based on the selection criteria. Otherwise, the
minimum value of the current domain of the decision variable is assigned to it.

v If a contradiction is detected (the domain of a decision variable is reduced to the
empty set), execute the second subgoal of the choice point. The second subgoal
removes the tried and failed value from the domain of the constrained variable
and executes the goal again. Indeed, this execution will try another value from
the domain of the decision variable and repeat the process.

Assigning a value to (or removing a value from the domain of) a decision variable
is straightforward. To do so, use the CP Optimizer constraint operators == and !=.

The CP Optimizer code corresponding to IlcInstantiate for decision variables is
quite simple. You will see a couple versions of it to clarify a few points about
goals.

To define a goal, you use a macro of the form ILCGOALn, where n is the number of
arguments of the goal. The arguments of ILCGOALn are the name of the goal,
followed by the types and names of the goal's arguments. Then the macro is
followed by the body of a C++ function. This body defines how to execute the
goal. The return value of that function is the subgoal of the goal defined by the
macro itself. When there are no such subgoals, the function must return 0.

Now you can define MycInstantiate as a choice point between two goals.

Before setting a choice point, CP Optimizer checks whether the decision variable
has been fixed, and if not, CP Optimizer selects a value in its domain. The second
subgoal recursively calls IlcInstantiate.

Here is a first version of MycInstantiate:
ILCGOAL1(MycInstantiate, IlcIntVar, var) {

if (var.isFixed())
return 0;

IlcInt value = var.getMin();
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return IlcOr( var == value,
IlcAnd( var != value,

MycInstantiate(getCP(), var)));
}

As the ILCGOALn macros define classes of IlcGoalI, you can use the standard C++
keyword this to refer to the current goal. With that possibility in mind, here is a
second version of MycInstantiate:
ILCGOAL1(MycInstantiate, IlcIntVar, var) {

if (var.isFixed())
return 0;

IlcInt value = var.getMin();
return IlcOr( var == value,

IlcAnd( var != value,
this));

}

(The actual implementation of the predefined goal IlcInstantiate is slightly
different since the choice of the value can be indicated by a parameter, but these
two versions indicate the substance of the implementation.)

If you want to have an IloGoal object that can then be passed as an argument to
the IloCP::solve and IloCP:startNewSearch functions, use the macro
ILOCPGOALWRAPPER1.

For example, you can define MyoInstantiate this way:
ILOCPGOALWRAPPER1(MyoInstantiate, cp, IloIntVar, x){

return MycInstantiate(cp, cp.getIntVar(x));
}

To create an instance of this modeling layer goal you write:
IloGoal goal = MyoInstantiate(env, x);

Programming tips
Programming tips are provided to help with writing efficient custom goals.

Arguments to goals
arguments to goals are computed immediately, even though goals are not executed
immediately.

Goals are not executed immediately when they are created. However, their
arguments are computed immediately, and these arguments are saved together
with the goal on the goal stack. Those arguments and computations are used when
the goal is executed.

Note:

For that reason, arguments should not contain pointers to automatic objects, where
automatic objects are objects allocated on the C++ stack, that is, without using the
new operator.

Consider the following goals:
ILCGOAL1(PrintI, IlcInt*, i){

IloCP cp = getCP();
cp.out() << *i << std::endl;
return 0;
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}
ILCGOAL1(CallPrintI, IlcInt*, i){

IlcInt i = 0;
return PrintI(getCP(), &i); // error here: i is an automatic

}

If the goal CallPrintI is executed, an instance of PrintI is created. This (among
other effects) stores the address of i. Then the function executing the body of
CallPrintI returns. Thus the address of i is no longer a valid address. Finally, the
goal PrintI may be executed, causing an error since the address of i is no longer
valid.

Another subtle point is that arguments are computed before goal execution
actually takes place. That fact can lead to some problems. A simple example
requires the use of a decision variable.

Consider the following incorrect code:
ILCGOAL1(WrongGoal, IlcIntVar, x){

return IlcAnd(IlcInstantiate(x),
PrintX(getCP(), x.getValue())); // error: x is not fixed

}

The goal was intended to be executed as: the decision variable should be fixed by
the execution of the goal IlcInstantiate; then the execution of the goal PrintX
should print its value. However, the argument of PrintX is computed before
IlcInstantiate is executed. That order of events causes an error since x is not yet
fixed. Indeed, IlcInstantiate is pushed onto the goal stack, but it is not executed
immediately.

Here is the correct way to pass x as an argument (instead of passing its value):
ILCGOAL1(PrintVar, IlcIntVar, x){

IloCP cp = getCP();
cp.out() << x.getValue() << std::endl;
return 0;

}
ILCGOAL1(RightGoal, IlcIntVar, x){

return IlcAnd(IlcInstantiate(x),
PrintVar(getCP(), x)); // no error here

}

As indicated in this lesson the macros ILCGOALn define subclasses of the class
IlcGoalI. Arguments to the macro are data members of the new class. The most
significant consequence of that fact is that modifications of those arguments in the
body of the macro are saved. Such modifications often have unfortunate results,
and you are strongly advised not to make such modifications.

Reversible data
Reversible data objects can be used to return data to its previous state upon
backtracking.

Consider an object, such as a goal, that has a data member with a value that is
modified during the search for a solution. The value assigned to this data member
depends on the choices and the hypotheses made before this assignment.

If those choices fail to find a solution further on, the optimizer backtracks, and the
computed value for this data member is no longer valid. For that reason, this data
member must be a reversible data member. That is, the modifier of this data
member must save the initial value of the data member before any modification, so
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the optimizer is able to restore the value of the data member to its value before
modification if any failure occurs later. CP Optimizer provides you with the
predefined class IlcRevInt, the class of reversible integers, for just such a purpose.

In this example is a custom goal that works to assign values to the variables in an
array, starting at the smallest index. Each time the goal is executed, the index is
incremented. However, when the optimizer backtracks, this integer is not
decremented, leading to a situation in which some decision variables are not fixed.
For example, the following goal will not ensure that all decision variables in the
array are fixed when the search terminates:
ILCGOAL2(MycBadGenerate, IlcIntVarArray, x,int,index){

IloCP cp = getCP();
index++;
if (index > x.getSize())

return 0;
return IlcAnd(IlcInstantiate(x[index-1]),this);

}

ILOCPGOALWRAPPER1(MyoBadGenerate,cp,IloIntVarArray,x) {
IlcInt index=0;
return MycBadGenerate(cp,cp.getIntVarArray(x),index);

}

In order for the state of the index to be restored when the optimizer backtracks,
you can use an instance of an IlcRevInt, as in the following code segment:
ILCGOAL2(MycGoodGenerate, IlcIntVarArray, x, IlcRevInt *, revIndex){

IloCP cp = getCP();
revIndex->setValue(cp,revIndex->getValue()+1);
if (revIndex->getValue() > x.getSize())

return 0;
return IlcAnd(IlcInstantiate(x[revIndex->getValue()-1]),this);

}

ILOCPGOALWRAPPER1(MyoGoodGenerate,cp,IloIntVarArray,x) {
IlcRevInt* revIndex = new (cp.getHeap()) IlcRevInt(cp);
revIndex->setValue(cp,0);
return MycGoodGenerate(cp,cp.getIntVarArray(x),revIndex);

}

Fixing all decision variables
All decision variables must be fixed as necessary.

When you use a custom goal, the optimizer may solve the problem and leave some
variables not fixed. If you choose to use a custom goal, it is your responsibility to
ensure that the decision variables are fixed as necessary.
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Chapter 6. Writing custom scheduling constraints and goals

Custom constraints and goals for scheduling can be written using engine
extensions.

Overview
Custom constraints and goals for scheduling can be written using engine
extensions.

This chapter illustrates how to use the scheduling extension classes of CP
Optimizer to:
v write new constraints;
v write new search strategies and, more particularly, implement chronological

schedule building.

The aim of the samples is not to be more efficient than the automatic search
procedures of CP Optimizer. Instead, the aim of the samples is to provide the user
advice for deciding whether custom algorithmic development is necessary, and, if
so, to provide search procedure heuristics principles, design implementation hints,
and source code for building blocks. The source code of the examples discussed in
this chapter can be found in the directory examples/src/cpp of your CP Optimizer
distribution.

Working with interval variables
Scheduling constraints in the engine are built using the interval variables in the
engine.

The primary reason for developing a custom search goal is the recognition of
global knowledge of the model which allows for an efficient search to be built:
v The requirements of the problem do not fit with the automatic search, for

example, in the sample schedsearch_greedyrelax.cpp, the objective is to build
the schedule greedily at each step of the relaxation.

v The automatic search does not find a good enough solution to efficiently start
the automatic optimization procedure. The solution the user-defined goal is then
used as starting point for the optimization.

v You want to write a sophisticated search procedure. Examples of this, given in
an academic context, are studies of search procedures which take advantage of
the propagation algorithm, the reversibility properties and the search tree
traversal delivered by CP Optimizer.

The basic principles useful in writing a goal involving instances of IlcIntervalVar
include:
v building a chronological schedule by fixing the starting point and, eventually,

the end point after candidate selection at the frontier of the partial schedule and
v interleave a goal that raises precedences or extends sequences with a

chronological schedule decision.
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An important point when writing a user-defined search procedure is fixing the
presence of an interval. A general strategy is to decide its presence value before
scheduling it (or making any actual decision that affects the interval domain).

In a model, there exist instances of interval (or integer) variables whose fixing
depend on the fixing of some other interval and integer variables. The classic
example of this dependence in CP Optimizer is the master interval of a spanning
or alternative constraint; a master interval is fixed whenever the spanned or
alternative intervals are fixed. Chronological schedule building decisions should
not be made on this type of master interval. Eventually, due to specific knowledge
of the problem, you are aware that there are some intervals whose fixing heavily
depends upon some dominant intervals. In schedule building, it is best to wait for
the dominant intervals to be fixed before making any (residual) decisions on the
dominated interval.

The function IlcGoal IlcSimpleCompletionGoal(IloCP cp); returns a goal that
fixes all variables of the model. This goal should be used whenever the user-define
goal terminates with some variables remaining unfixed. Using this goal is
mandatory whenever the model contains state functions (instances of
IloStateFunction).

Writing a goal with interval variables
Custom search goals enable you to write your own search strategy.

The basic principles involved in writing a goal involving instances of
IlcIntervalVar include:
v building a chronological schedule by fixing the start point and, eventually the

end point after candidate selection at the frontier of the partial schedule;
v interleave a goal that raises precedences or extends sequences with a

chronological schedule decision.

The primary reason for developing your own search goal is the recognition of
global knowledge of the model which allows you to build an efficient search. In
practice, there generally exist instances of interval variables whose fixing depend
on the fixing of some other interval variables. The classic example of this
dependence in CP Optimizer is the master interval of a spanning or alternative
constraint; a master interval is fixed whenever the spanned or in alternative
intervals are fixed. Chronological schedule building decisions should not be made
on this type of master interval. The master intervals are dominated for decision
building, and the spanned or alternative intervals are dominant in decision
building. Due to specific knowledge of your problem, you will be aware that there
are some intervals whose fixing heavily depends upon some dominant intervals;
that is, they are essentially dominated. In schedule building, you should wait for
the dominant intervals to be fixed before making any (residual) decisions on the
dominated interval.

Note:

Note that when the presence of an interval is not fixed, a general strategy is to
decide its presence value before scheduling it.

Writing a constraint with interval variables
Constraints link specified decision variables.
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Writing a new constraint involving instances of IlcIntervalVar involves the
complications of managing the presence status of interval variables. All constraint
conditions must support the notion that “An absent interval does not belong to the
schedule solution.” In other words, discovering an absent interval cannot result in
a filtering algorithm raising a failure.

Consider a set of constraints defined by a condition C on an interval variable v. If,
given the actual ranges of the start, end or length of the interval, the condition C is
violated, you must set the interval to be absent. The demon of event on the
interval domain of v should look like.
if (v.isAbsent())

return;
else if (isViolatedC(v))

v.setAbsent();
else

updateIntervalDomainUnderC(v);

where isViolatedC(v) and updateIntervalDomainUnderC(v) are member functions
of the constraint class, where the latter method updates the start, end and length
ranges of v.

Now, consider a set of constraints defined by a condition C on a pair of interval
variables v1 and v2. The change in the interval domain of v1 has consequences on
v2 if and only if presence of v2 implies presence of v1 (that is the case in particular
if v1 is present). As a consequence, when this pairwise condition is violated, it can
be concluded that v1 and v2 cannot be both present. For optional intervals, you
generally know from the model the relationship between the presence statuses of
the intervals in the pair; it is important to store this information in the constraint
data structure. The demon of event on the interval domain of v1 would look like:

if (isDone())
return;

else if (v1.isAbsent() || v2.isAbsent())
markDone();

else if (isViolatedC(v1, v2)) {
IlcPresenceImpliesNot(v1, v2);
markDone();

} else if (presenceImplies(v1, v2))
updateIntervalDomainUnderCFrom1(v1, v2);

where isDone() and presenceImplies(v1, v2) are member functions of the
constraint class.

The update of the interval domain must support hypothetical reasoning. That is, if
the presence of v1 implies the presence of v2, a change in the domain interval of v2
may affect the domain interval of v1.

Writing a greedy search
A simple example is used to illustrate custom search for scheduling.

The example schedsearch_greedandrelax.cpp illustrates the design aspects of
writing your own search by showing you how to:
v write a search that builds a chronological schedule with a very simple search

that does not have a branch and bound tree traversal;
v write a dynamic selector for chronological list scheduling of the interval

variables which only considers variables that are the actual decision variables;
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v use the internal solve method of the instance of IloCP to iterate on schedule
building procedures. This is a key point as writing an iterative improvement
method follows the same principle.

To define a new search, you will have to create at least two separate sets of data.
The first set of data, the model context, collects the information you need from the
model, such as the instances of IloIntervalVar that need to be fixed, as well as all
the structural and invariant information that may be needed to build the search.
This set of data should be allocated on the IloEnv instance or by your own
allocator. The second set of data, the engine context, contains all of the information
that is used by the search algorithm to define the tree traversal and, eventually, the
constraints that you may add to the solving engine. The engine context contains
the counterparts of the model variables that are needed during the search (for
example instances of IlcIntervalVar), a local copy of all structural and invariant
information you may need to build the search and that may change during the
search as well as reversible data (instances of IlcRevInt and IlcRevAny). This data
set is allocated on the heap of the optimizer, the IloCP instance. The model context
should never be used in the search, since the model environment data is not under
the control of the solving engine. Conversely, the engine context must never point
to data allocated outside of heap of the instance of IloCP. An instance of IloGoal
in the model context should be wrapped in a goal wrapper that returns an instance
of IlcGoal. The instance of the IlcGoal is created in the engine context and can be
used to launch the search tree traversal. This design is strongly recommended as it
clearly separates the data from the model declaration and the data structure of the
solving procedure.

Writing a chronological scheduling goal
Custom goals on interval variables can be written using engine extensions.

In resource scheduling, the number of time points is often quite large, generally
much larger than the number of interval variables. Any part of the problem
manipulation, from modeling to solving and displaying, should avoid enumerating
the time dimension. IBM ILOG Concert Technology and CP Optimizer allow a user
to formally describe a scheduling problem without time enumeration by providing
classes of interval variables and the resource description framework as sequences
of functions defined on consecutive integer intervals. For solving, the same practice
must also hold. Other than some very specific cases like proving optimality, the
predefined algorithms of CP Optimizer, such as propagation, variable selection,
decision making, search tree traversal or cost improvement methods, enumerate
only the intervals. Two samples based on classical academic problems named the
Resource Constraint Project Scheduling Problem (RCPSP) are provided, these
examples illustrate how to build such a chronological schedule for two cases. The
first example, schedsearch_settimes.cpp, illustrates the case in which all interval
variables are constrained by the model to be present in the solution. In the other
example, schedsearch_optionalsettimes.cpp, there are optional interval variables
in the model. The interval variables are constrained by precedences and cumul
function constraints (with alternative of cumul for the second sample). The samples
present several variants of Set Times Chronological Schedule building, from the
less generic and efficient to the most generic and efficient. In particular, the second
sample illustrates managing non-scheduling decisions, specifically presence fixing,
in a set times algorithm.
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Writing a chronological scheduling goal on sequence variable
Custom constraints on interval sequence variables can be written using engine
extensions.

When solving scheduling problems, the main difficulty is often fixing sequence
variables with no overlap constraints. For these types of problems, a good practice
is to build the subsequences before scheduling the sequenced interval variables. An
advantage of this practice is that the decisions to make are fixing the presence of
the intervals and fixing the immediate successor of the intervals in the sequence;
that is, the decisions depend only on the number of intervals and are enumerable.
To build a chronological schedule, the Head-Tail graph of sequence variables is
perfectly suited. The example schedsearch_sequencing.cpp illustrates how to
interleave sequencing decisions and schedule building. This sample is based on the
classical academic problem called the Job Shop Scheduling Problem (JSSP); it is a
simple example for which a greedy scheduling algorithm is enough to build the
schedule. Each interval variable is constrained by precedences and belongs to a
sequence (with alternative of sequence). The sample shows how to use the
Head-Tail Graph of a sequence to implement a sequencing algorithm and how to
interleave non-scheduling decisions (here sequencing) and partial scheduling
completion.

Writing a custom constraint on a sequence variable
Custom constraints on interval sequence variables can be written using engine
extensions.

Sequencing of non-overlaping intervals is an important concept in scheduling
applications. To model a scheduling problem, the specific topology of a sequence
of intervals or between sequences of intervals may need to be constrained. In some
cases, a complex assembly of constraints may be used to express the constraint. For
example, the sample sched_pflowshop.cpp illustrates modeling a permutation flow
shop problem. This practice has limitations in expressivity and performance; in
sched_pflowshop.cpp, a constraint per interval variable is added to the model, and
these expressions are quite complex. The model for sched_pflowshop.cpp is limited
to a perfect permutation. Supporting stronger conditions or relaxing conditions on
the permutation is difficult. For example, this model does not work if some
interval variables are optional and may be absent in the solution.

An interval sequence variable in the engine of CP Optimizer is an instance of the
class IlcIntervalSequenceVariable. The internal data structure specialized for
chronological scheduling is the head-tail graph. The sample
schedsearch_permutation.cpp illustrates writing a permutation constraint that
allows some interval variables to be absent in the solution.

Following the design in the example, you can write your own constraint on
sequence variables. The events on the head-tail graph include changes in presence
in the sequence of an interval variable, head and tail extensions, and the global
update of the set of not sequenced intervals.

The filtering algorithms associated with head or tail extensions or changes in
presence of an interval in the head or tail include:
v a filtering algorithm that processes the “last interval in head” changes that

extend the head or remove a candidate for the head;

Chapter 6. Writing custom scheduling constraints and goals 53



v a filtering algorithm that processes the “last interval in tail” changes that extend
of the tail or remove of a candidate for the tail;

v a filtering algorithm that processes the “last interval in tail” or “last interval in
head” changes when the sequence variable is sequenced by propagating the next
relationship between the last interval in head and the last interval in tail;

v the maintenance of incremental support on an interval in head for which the
condition of the constraint is bound before it in the head: the head boundary;

v the maintenance of incremental support on an interval in tail for which the
condition of the constraint is bound after it in the tail: the tail boundary;

v an algorithm that propagates the change of an interval variable in head after the
head boundary that considers the neighboring in head of this interval.

v an algorithm that propagates the change of an interval variable in tail after the
tail boundary that considers the neighboring in tail of this interval;

v If possible, associated with the non sequenced event change set, a filtering
algorithm that tries to remove candidate head and tail based on knowledge of
the last present intervals in head and tail.
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