
Progressive Transformation Approach

Adnan Şenyurt
Application Innovation Services
IBM Global Services

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

Banks will be driven to in four strategic areas as industry trends
become more pronounced and as competitive forces intensify

Marketplace Conditions Making Innovation Imperative

Growth Strategies
with Innovation FocusCustomers redefine

the rules of the game
1

Ultra-focused banks and

niche players thrive2

Changing workforce

composition dictates new

approaches

3

Regulatory burdens

intensify
4

Technology improves

inexorably

to enable breakaway value

5

Source: IBM Institute for Business Value

Industry

Mega-trends

Mega Banks

Community

Banks

Industry

Specialists

Non-Bank

Banks

Competitive

Landscape

Product/Service Innovation

Customer Intimacy and Market
Penetration Strategies

New Markets and Channels

Diversification Strategies

Banks have a number of different options to consider as they evaluate
which opportunities for innovative growth are right for them

Opportunities for Innovative Growth

P
ro

d
u

c
ts

N
e
w

Source: Adapted from The Growth Triathalon, IBM Institute for Business Value

Traditional New
Markets/Channels

• Enter new product categories

• Build services around

products

• Innovate faster/better

• Extend into new products

and new markets

simultaneously

• Increase customer loyalty

• Improve price realization

• Gain wallet share

• Attract new customers

• Refresh products/services

• Increase geographic depth

• Extend into new customer

segments

• Enter new

geographic/global markets

• Enter new channels

Product/
Service Innovation

Diversification

Customer Intimacy
& Market Penetration

New Markets
& Channels

Exploiting the full potential of
a firm’s current business is a

natural starting point,
including actions to increase

market penetration and
customer intimacy in current

markets

Most meaningful when there
is rapid change in technology

and customer needs;
succeeds most often when

backed with strong innovation
expertise and relevant

technologies

Takes firms further a field from
home ground and adds risk,
and should be considered only
when changes in buyer
behavior patterns or technology
are linking previously distinct
markets, a pool of M&A
candidates are available at
attractive valuations and the
acquiring company has strong
integration experience and
capability

Most valuable when existing
markets are saturated and
untapped customer segments and
geographies are emerging;
Channel innovation is often
necessary to serve new segments
and geographies, especially when
technology or regulatory changes
allow disintermediation of existing
channels

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

What is the definition of Core Banking Systems?

IBM’s view of “Core Banking Systems” definition includes all mission-critical application systems used by banking
institution to support transaction processing and account posting for various banking products along with

required throughput and scalability

(1) In this document “Core Banking” and “Core Systems” will be used interchangeably with the same contextual meaning

Scope of the
Definition

Degree of Complexity

Narrow

Broad

Simple Complex

Mission-critical application
systems used by a banking
institution to support
transaction processing and
account posting for various
banking products along with
required throughput and
scalability
►Banking Products e.g.

Demand Deposit, Term
Deposit, Loans, Mutual
Funds, Insurance, Fixed
Income, Brokerage etc.

Mission-critical application
systems used by a banking
institution to support
transaction processing,
account posting and
account servicing for
various banking products
along with required
throughput and scalability
►Banking Products e.g.

Demand Deposit, Term
Deposit, Loans, Mutual
Funds, Insurance, Fixed
Income, Brokerage etc.

►Servicing of Accounts
e.g. payments, fund
transfer, acct
maintenance, billing, fees
& charges, customer
communication, reporting,
clearing & settlements etc.

Mission-critical application
systems used by a banking
institution to support all of the
transaction processing,
posting, accounting,
servicing and operational
activities associated with the
banking products
►Banking Products e.g.

Demand Deposit, Term
Deposit, Loans, Mutual
Funds, Insurance, Fixed
Income, Brokerage etc.

►Servicing of Accounts
e.g. payments, fund
transfer, acct
maintenance, customer
communication, reporting,
clearing & settlements

►Operations e.g. Master
data & customer
information file (CIF),
product & price catalogue,
collections, campaign
management, cross sell,
compliance, risk
management etc.

All “Core Applications” that
are mission critical,
downtime of which will impact
the day to day operations of
the bank

►Front office applications
e.g. KYC, account
opening, multi-channel
enablement, sales
channel application, teller
& advisor desktops, CRM
etc.

►Middle office
applications e.g.
reporting, collections,
billing, statements,
rewards, fraud, AML,
clearing and settlement,
customer communication
etc.

►Back office applications
e.g. core product engines,
accounting systems,
transaction posting
systems, general ledger
(in some cases), master
data management

IBM’s Definition

Most Bank’s current view
of Core Systems based on

typical product based
application silos

Extreme View (e.g. banks
in China)

Theme: Determine the main transformation themes that applies to your
bank and express your case within the themes boundary

Technology Drivers

Product Innovation

“Aggressive Growth Vision”“Aggressive Growth Vision” “Cost / Margin Crisis”“Cost / Margin Crisis”

RegulationsRegulations
Workforce

Optimization

Workforce
Optimization

Architectural
Simplicity

Architectural
Simplicity

Drivers for Core

Systems Modernization

Commoditized
Processing

Modularity SMEs Retiring
Monitoring

Globalization

Operating Cost

Time To Market

Client Servicing

Business Drivers

Regulatory Drivers

Enterprise
Leverage

Enterprise
Leverage

Asset Rationalization Shared Services

SOA

ComplianceCompliance

Auditing Reporting
Fading Skills

Banks are looking at core systems modernization in response to specific business, technology and
regulatory drivers

Merger / Acquistion

Business Value Business Value

RTB (-) CTB (++)

So what aspects of core systems really manifests the problem?

{User Interface}
{User Interface
Management}

{Session Management}

{Business Logic}
{Business Rules}

{Computation}
{Output Formatting}

{Data Access}
{Data Parsing}
{Data Lookup}
{Data Posting}

{Application Management}
{Security}
{Logging}

{Audit}

{User Interface}
{User Interface
Management}

{Session Management}

{Business Logic}
{Business Rules}

{Computation}
{Output Formatting}

{Data Access}
{Data Parsing}
{Data Lookup}
{Data Posting}

{Application Management}
{Security}
{Logging}

{Audit}

Core Systems (e.g. Deposit)

Architecture
Impact

• Green Screens
• Need to open multiple

applications

• Limited ability to address
customer needs

• Difficult to change
application functionality
to hard coding

• Duplication of business
capability across many
applications

• Multiple point-to-point
connections

• Application code are
interconnected top to
bottom making changes
very difficult

• Code duplication

• Dead code pool

H/W, S/WH/W, S/W
• Multiple versions of

COBOL compilers

• Old Platforms

Time to Market
• Development time for new

business capabilities are long
• Difficult to address market

opportunities in timely manner

Time to Market
• Development time for new

business capabilities are long
• Difficult to address market

opportunities in timely manner

Complexity
• Difficult to manage
• High Risk
• Performance & Scalability

Issues

Complexity
• Difficult to manage
• High Risk
• Performance & Scalability

Issues

Cost
• High cost of maintenance
• High cost of development
• Longer and complex integration

testing
• More people more and time to

make change happen

Cost
• High cost of maintenance
• High cost of development
• Longer and complex integration

testing
• More people more and time to

make change happen

Revenue
• Difficult to address customer

centricity
• Difficult to increase average

revenue per customer

Revenue
• Difficult to address customer

centricity
• Difficult to increase average

revenue per customer

~
 3

0
%

~

 1
0

%

~
 5

5
%

~

 5
%

Package based core banking systems have evolved over time, but yet
to provide solutions in line with contemporary architecture principles..

• Embodied the same siloed

product based system with

little or no shared system

capabilities

• Used separate customer

information file but tightly

coupled with application

• Requires huge customer

integration and customization

effort

• Still inflexible in meeting

newer business requirements

• Still embodied the siloed product based systems

structure with little or no shared system

capabilities

• Started using single CIF across multiple product

systems (deposits, loans etc.)

• Started using proprietary message broker to ease

integration challenges

• Customization and system integration with rest of

the banking system increased with addition of

new architectural constructs

• Faced with persistent demand, package

systems are trying to become as modular as

possible

• To maximize immediate and long term

revenue, package vendors are interested in

pushing their whole package and not small

modules

• They want to maximize downstream

application enhancement, integration and

maintenance revenue stream and often will

down price their initial license and fees

1st Generation 2nd Generation 3rd Generation and Beyond

UI

Process Flow

Bus. Rules

Bus. Logic

Application Mngt.

Customer Information File (CIF)

Deposit System

Loan System

Message Broker

UI

Process Flow

Bus. Rules

Bus. Logic

Application Mngt.

Customer
Information
File (CIF)

Deposit System

UI

Process Flow

Bus. Rules

Bus. Logic

Application Mngt.

Loan System

UI

Process Flow

Application Mngt.

Rules Engine Bus. Services

Message Broker

Customer Information File (CIF)

UI

Process Flow

Application Mngt.

Deposit System Loan System

What does Core Banking Modernization mean to Banks?

Core Banking Modernization is more than just modernizing or
replacing the core systems

(1) In this document “Core Banking” and “Core Systems” will be used interchangeably with the same contextual meaning

Business
Process

Modernization

Application
Modernization

Architecture
Modernization

Platform
Modernization

To Address New /
Changed Banking

Processes &
Regulations

To Transform
Old/Legacy
Monolithic

Applications

To Exploit New
Architectural /
Technological

Constructs

To Exploit New
Hardware &

Software
Capabilities

Core Banking Modernization

When banks embark on core banking system modernization they
may include one or more areas in their modernization focus

• Cater to changing
business needs

• Consolidation across
business lines

• Accommodate new
business
requirements

• Address complexity
and efficiency
challenges

• Adopt a more
modular architecture

• Separate
architectural
concerns

• Leverage new H/W &
S/W capabilities

• Migrate platform for
cost / performance
reasons

What approaches should be pursued by banks for modernization?

Package
Implementation

Package
Implementation

Rip & ReplaceRip & Replace

Progressively
Replace

Progressively
Replace

Re-WriteRe-Write

HybridHybrid

Core Banking System Modernization Approach Key Characteristics

• Lack of knowledge, skill sets and documentation
• More than 80% business requirements met by a package solution
• Bank is willing to compromise on day 1 functionalities

• Really old systems. Lack of knowledge and skill set
• Rip and replace is not an option as bank cannot compromise

on day 1 functionality offered via package
• Package solution can meet upto 80% of business requirements

• Systems are too complex to be replaced by package solutions or
undertaking legacy modernization. Best option is to re-write again

• Lost documentation
• Legacy analysis proves too cumbersome and expensive

• A combination of other approaches
• Usually targets a contained module for package replacement e.g.

trade finance if business requirements are met in package and to
address time to market issues

• Choosing package for new markets and modernizing legacy for
core

• Tries to mix best of legacy leverage with capabilities from package

Progressively
Modernize

Progressively
Modernize

• Legacy systems old, has many cascading dependencies and
contains years of organic development and differentiated capabilities
that are not available in packages

• Package solutions can only meet upto 50% business requirements
• Banks want to undertake a step orderly modernization driven by

solving priority pain points
• Banks wants to harvest its legacy and the differentiated capabilities

Legacy
Applications

Legacy
Applications

Preferred
Choice By

Many Banks

IBM supports the progressive modernization approach - modernizing
existing assets with a well defined transformational roadmap

� Progressive Renovation is an architecture led strategy

� Integration middleware, master data and service
oriented design are key elements of progressive
renovation approach

� The modernized environment could be a mix of old and
new co-existing together

� Old legacy system codes – wrapped as services

� Old legacy code transformed into new code base

� Newly developed capabilities

� 3rd party integrated capabilities

1. Transformational Planning
► Business and application scope

► Application analysis and architecture design

► Execution roadmap

► Business case

2. Foundational Architecture
► Master data

► Integration layer

► Service oriented design

► Separation of application concerns (UI, logic, integration,

data access etc.)

3. Legacy Modernization
► Legacy harvesting of business rules, workflow abstraction

and modeling

► Data migration, code modernization

4. New Capability Development
► Model driven development

► Business service modeling to support business processes

5. Execution through a modernization factory
► Tools, assets, accelerators and methods

► Software modeling, development, and testing

6. Governance and change control
► Identify, design, develop, publish and maintain services

► Program Management

► Change and configuration management

M
a
rk

e
t

R
e
q

u
ir

e
m

e
n

ts

Months to Realize ROI

Traditional Replacement Project

Progressive Transformation

Market
gap

Progressive Renovation Focus Areas Traditional vs. progressive approach

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

Car
Loans

Cards Personal
Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

Common
Functionalities

Siloed Applications

Typical view of legacy based core banking applications: 30 years back
the view was simple and evolving

Car
Loans

Cards Personal
Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF

D-Store L-Store C-Store

Common
Functionalities

Siloed Applications

20 years back with the explosion of data, new constructs (relational
databases) were introduced to the core banking systems

Car
Loans

Cards Personal
Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF

D-Store L-Store C-Store

Common
Functionalities

OLAP

With rapid changes to the banking ecosystem, M&A, new regulations and
globalization, “Customer Centricity” and hence analytics became the new
mantra which forced banks to integrate tightly across product silos

Car
Loans

Cards Personal
Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

As cost of new system development and maintenance increased, the evolving middleware
technologies provided some initial relief in reducing point to point interfaces. However in last 10-15
years banks have seen dramatic changes resulting in increased time to market pressure forcing them
to take more short cuts to meet the rapidly changing business needs.

Car
Loans

Cards Personal

Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data
File

Data
File

Data
File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

Key Goals

• Building new business capabilities or
enhancements in timely manner to drive
growth and revenue

• Reducing point-to-point Interfaces

• Reducing development and testing time

• Reducing TCO of systems

• Enabling sharing of capabilities across
business lines at enterprise levels

• Integrating data across disparate views

• Making systems more modular

• Enforcing modular design and
standards for development

• Solving ageing workforce and skill
issues

Time to market and high cost of development and enhancements are
the two most pertinent problems that is plaguing banks IT. Over the last
5 years testing cost and time has almost increased by 4 times

As a result banks, today are saddled with poor architectural design and
need surgical interventions to keep pace with the evolving business
needs and operating models

Car
Loans

Cards Personal

Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data
File

Data
File

Data
File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

“To Be”

• Package Led Approaches
• Big Bang Approach
• Progressive Package Implementation

Approach

• Architecture Led Approaches
• Progressive transformation of legacy

applications
• Replacement of legacy with packages,

where suitable, that meet architectural
discipline

Many banks are not aware of possibilities from an architecture led
approaches due to lack of knowledge of technological capabilities and
internal will to undertake what seems to be very complex and time
consuming task

“Current”

Transforming the bank from current to “to be” architectural design is
usually done in multiple ways

“Lesson’s Learned

• Package replacement will invariably
lead to increase in point to point
interfaces

• Future development, will invariably have
to deal with both legacy and package
CIF’s and message broker architecture
resulting in more development time and
testing

• Involves some very proprietary
interfaces definitions that uses specific
message and data formats that often
prove difficult to integrate with other co-
existing systems

• Banks specific needs are customized
during package implementation usually
as one-off implementation, thereby
making the package “out of context”
from future releases

• Dependencies increase on outside
vendors to maintain and do new
capability development

• Does not solve duplication of enterprise
capabilities across business units
thereby doing little to C/I ratio at
enterprise level

Car

Loans

Cards Personal
Loans

Package
Deposit Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

P-CIF

Package Message Broker

Big Bang Method

Car

Loans

Cards Personal

Loans

Deposit Loans Cards

D-UI L-UI C-UI

D-Rules
D-Logic

L-Rules
L-Logic

C-Rules
C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF D-Store L-Store C-Store

Common
Functionalities

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

P-CIF

Package Message Broker

UI

Rules

Logic

App

Mngt

Data

File

Package
Deposit

“Lesson’s Learned”

• Progressive introduction of package
modules is no different either. The issue
with increase number of interfaces
remains

• Progressive introduction forces to
develop many throw away interim
interfaces required during integration
and progressive replacement

• Difficult to estimate the integration cost
as business requirements and system
dependencies are hard to establish

• By focusing only on the package and
not focusing on maturing the core
architectural discipline, which are
outside the package domain, such as
middleware, ESB, integrated view of
data, business rules etc. progressive
implementation of package often leads
to serious budget overrun, delay in
timeline and successful implementation

• While readily available business
capabilities might provide a welcome
change, subsequent customization and
enterprise integration is always a pain

Progressive Method

Car

Loans

Cards Personal

Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data

File

Data

File

Data

File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

• Mature the integration layer and add
enterprise services bus

• Reduce point to point interfaces

• Create Integrated View of Data
• Separate legacy application & data
• Use master data constructs like

customer, product, contract masters

• Modularize application components and
separate architectural concerns

• Extract business rules and business
logic and expose them as re-usable
services

• Use most of application management
features such as security, audit etc. from
Integration bus

• Extract embedded services from
applications out into the ESB and make
it available as a shared services

IBM’ Core Banking Transformation Framework (CBTF) provides
methods, tools, accelerators and templates for banks to do all the
above to drive their banking modernization

1
1

22

33

4
4

5

5

6 6

6

Core Modernization – Architecture Led

Car
Loans

Cards Personal

Loans

Deposits Loans Cards

D-UI L-UI C-UI

D-Rules

D-Logic

L-Rules

L-Logic

C-Rules

C-Logic

App Mngt App Mngt App Mngt

Data
File

Data
File

Data
File

CIF D-Store L-Store C-Store

Common
Functionalities

OLAP

Regulation 1 - n Compliance 1 - n

Shared Services

Message Broker

Before After

App Mngt
Customer OLAPProduct

Contract

Master Data

Operational Data Store

D-Engine L-Engine C-Engine

Role Specific - Services

Bus - Logic
Bus - Rules

Shared Business Services

ATM Branch Online Call Center Mobile Phone

Core Modernization – Architecture Led (before and after)

Many leading banks across multiple geographies are using architecture led approaches to drive
banking modernization

After

App Mngt
Customer OLAPProduct

Contract

Master Data

Operational Data Store

D-Engine L-Engine C-Engine

Role Specific - Services

Bus - Logic
Bus - Rules

Shared Business Services

ATM Branch Online Call Center Mobile Phone

“Factoids”

• Focusing on separation of “architectural
concerns” to drive modularity, simplicity
and flexibility

• Increased adoption of industry reference
models (process and data) to drive
building core architectural constructs as
the first step to transformation

• Use of middleware and ESB to achieve
following primary objectives

• Publishing services to quickly meet
the needs of the business

• Overriding underlying complexity
• Using services to mediate legacy

environment thereby allowing more
time to modernize legacy systems

• Use of master data constructs to drive
integrated view of data and aligning
applications for the use of integrated view
of data

• Big emphasis on enterprise leverage of
common shared services, business logics
and business rules

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

Business Specific Applications & Services

Analytical SystemsMaster Data

Core Transactional Systems

Demand Deposit Term Deposit

Loans

Mutual Funds

Fixed IncomeInsurance

BrokerageCards

Customer
Master

Product
Master

Contract
Master General Ledger

Data

Marts
Data

Warehouse

Role Specific Access Services (Technology Enablers)

Others

OLAP

Service
Partners

Card
Networks

Corporate
B2B

Clearing &
Settlement

Data
Partners

Credit
Bureau

Market
Data

Regulatory
Bodies

Data Services Reporting Services

Core Transactional Services

Business Applications & Services Office Productivity
Tool Services

3rd Party
Applications

Internal Operations

•Strategy Definition
•Product Design
•Banking Operations

• Account Opening
• Product Bundling
• Dynamic Pricing
• Loan Origination
• Case Management
• Single Customer View

• Customer Sales & Service
• Product Management
• Campaign Management
• Payments
• Credit & Risk Management
• Billing & Collections

Functional Roles

• Business

• e.g. Product Managers

• Operations
• e.g. Risk Managers

Bank Staff

Branch Call Center ATM/POS Internet IVR Mobile Kiosk

Assisted Channels Self Service Channels Partners

Bus. PartnersBranch Call Center ATM/POS Internet IVR Mobile Kiosk

Assisted Channels Self Service Channels Partners

Bus. Partners

Operational Data

Structured Unstructured

Enterprise Services

Billing, Finance, HR,
Statements, Reporting

Front Office

Middle Office

Back Office

Screen Interaction Mgr Personalization Services

Authentication/Authorization Role Based Desktop MgmtView Aggregation

Device Enablement Channel Interfaces

Enterprise Integration Services

Service
Registry

Service
Gateways

Information
Gateways

Enterprise Business Services
e.g. inquiries (customer, product, accounts), fees & charges, interest rates etc.

Service Mediation Process Orchestration Business Rules

Event Based Routing Integration AdaptorsLegacy Wrappers

Complex Event ProcessingUtility Services
(Logging, Security, Audit etc.)

Data Services
(ETL, real time updates etc.)

Supporting

Infrastructure

Separation of
master, transactional
and operational data

Separation of UI.
Multi-Channel
enablement for

delivering consistent
customer service
across channels

Business
Applications

retrofitted to use
new or extracted

business services in
shared environment

Bank staff can
dynamically execute
banking scenarios by

orchestrating available
services from the

architecture

Core product engines
provide transaction

posting to accounting
systems, scalability

and throughput

Integration layer
provides the glue and
brokers messages to
avoid development of

point to point
interfaces

Our design goal is the achievement of the separation of architectural concerns
for increased modularity and agility (functional & infrastructure view)

Presentation, Personalization, &
Device Enablement

Presentation, Personalization, &
Device Enablement

Extracted
Business
Services

Extracted
Business
Services

Process Orchestration / WorkflowProcess Orchestration / Workflow

Common Utility ServicesCommon Utility Services

Data Access ServicesData Access Services

Core Product Engines
(only transaction posting, scalability & throughput)

Core Product Engines
(only transaction posting, scalability & throughput)

New
Business
Services

New
Business
Services

3rd Party
Business
Services

3rd Party
Business
Services

Master DataMaster Data

Wrapped
Legacy
Code

Wrapped
Legacy
Code

In
te

g
ra

tio
n

 P
la

tfo
rm

In
te

g
ra

tio
n

 P
la

tfo
rm

Business RulesBusiness Rules Rules EngineRules Engine

H/W, S/WH/W, S/W

IBM’s PoV on Transformed Core
Banking Systems

• Better customer intimacy and centricity
with our CC&I solution framework

• Pre-defined set of business services
capabilities through our CBM/IFW

• Pre-defined solution templates to drive
key business outcomes such as account
opening, product bundling, offers
management, etc.

• Capability to externalize and centralize
all business rules in easy to use rules
engine

• Capability to externalize and centralize
all data instances through an integrated
view of master data

• Host of infrastructure capability at both
H/W and S/W level to provide improved
integration, scalability, throughput and
application management capabilities

Front End

Process Flow

Bus. Rules

Data

InfrastructureInfrastructure

Next Generation Application

Architecture with Separation
of Concerns

Our Core Banking Transformation Framework (CBTF) provides a more puritan
PoV to drive banking transformation which strongly resonates with achieving
better modularity, flexibility, agility and time to market benefits

Analysis
&

Design

Develop

Runtime

1. Process, data, & service Models
2. Master data templates for customer, product and

contract master
3. Solution templates for overarching banking processes

e.g. account opening, product bundling etc.
4. Reusable service components to aid application build

up e.g. fees & charges, rate calculation etc.
5. Reporting templates and services for analytics
6. Common application level IT foundational services
7. Integration message models
8. Legacy analysis & discovery tools
9. Architectural work products

1. Integrated banking transformation workbench
2. SOA service components development infrastructure
3. Integration tools with support for mediation &

transformation
4. Legacy extraction & transformation tools
5. Business rules development
6. Integration tools for Master Data Management

1. Runtime infrastructure and software products
2. Banking extensions and bundles
3. System management tools

The framework gives you speed,
flexibility and choice in deploying

solutions while reducing cost and risk!

Integration
Optimization

Analytics
Collaboration

Security
Resiliency

Core Banking
Transformation

Customer
Care and
Insight

Payments
and

Securities

Integrated
Risk

Management

IBM’s Core Banking Transformation Framework (CBTF) is a
combination of assets, tools, accelerators, methods and S/W products
that help banks modernize and run their core banking systems

• BDW, Infosphere

• Cognons, SPSS

• Data management server

• Reporting tools and templates

Data architecture and reporting for

operational, transactional and analytical data

• TivoliIT system management and governance

• iLog• Business rules engineBusiness rules management

• Component Business Modeler (CBM tools)

• Websphere Business Modeler & Integration Developer
• Information Framework (IFW)
• Rational Products

► Requirement Composer, Rational Asset
Manager, Rational Software Architect, Rational

Data Architect, Rational Asset Analyzer, Rational
team concert server and client

• Infosphere Business Vocabulary

• Banking Transformation WorkbenchIntegrated development environment

D
e
v
e
lo

p
m

e
n

t

• Various S/W and H/W components

• Rational Asset Analyzer, SUPA

• MDM & banking master data extensions

• Websphere

• Websphere

• IFW (preferable but not mandatory)
• Bank Specific Solution templates & 3rd party service

components
• Process Server

• CBM (Preferable but not mandatory)

• CBM-IFW

CBTF Product Set

• Industry proven reference framework for business process, data
models and service definitions

• Banking specific solution templates e.g. acct opening, product
bundling

• 3rd party service components e.g. fees & charges

Business process analysis and identification
of common business services

• Analysis tools

• Modernization methodology
• Data migration methodology

• Master data management server

• Complex event based routing
• Bank specific messaging interfaces
• Wrappers for legacy codes
• Adaptors for linking into legacy systems

• Common application management services such as audit,
security etc.

• Service registry

• Method to develop strategy, identify imperatives and define

business to IT alignment

What CBTF Provides

Run-Time Environment

D
e
p

lo
y
m

e
n

t

Legacy Asset Analysis and Modernization

Methodology

Master Data Constructs (customer, product,

contract master)

Message broker based integration
middleware

Service Oriented Design Constructs

Strategy, Imperatives, Strong Business to IT

Alignment

S
tra

te
g

y
, A

n
a
ly

s
is

 &
 P

la
n

n
in

g

What Do Banks Need To Modernize Their
Core Systems

CBTF’s assets, tools, accelerators and methods provide unique
capabilities to support all aspects of core banking modernization

Business Process Models
Use Cases

KPI Definitions

Platform Independent
Solution Design

Base Services, Composite Services, Business Entities
Message Model, Data Model, Business Rules, Business Events

Default Implementation
WPS, iLOG BRMS, MDM Server, Portal/BTT

B
a
n

k
in

g
 In

d
u

s
try

 W
o

rk
b

e
n

c
h

T
o

o
lin

g
 to

 c
re

a
te

, m
a

n
a
g

e
, a

n
d

 a
d

a
p

t S
o

lu
tio

n
 T

e
m

p
la

te
s

• Addresses a specific
business problem e.g. account
opening or product bundling

• Comes with pre-identified
process, data and services model
derived from industry standard
reference frameworks

• Can be a starting point for most of
modernization engagements

• Directly solves customer business
related pain points

• Can be harvested from one client
engagement to another thereby
enriching the library of
configurable solution components

Account Opening Solution Template Solution templates are
developed from

1. industry standard
banking business
process reference
models

2.Harvested client
engagements

Comes complete with
list of services, data
models, service
interfaces, business
rules and business
events

Is straight away
implementable on IBM
stack and platforms

Is customized, configured and implemented
using our integrated banking transformation
workbench

A key component of our CBTF are the solution templates – that
uniquely differentiates us from our competitors

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

Strategic PrioritiesStrategic Priorities
Modernized Banking

Environment

Modernized Banking

Environment

Identify new “To Be”

process models, service

components &

architectural constructs

Identify new “To Be”

process models, service

components &

architectural constructs

Determine how legacy

can be harvested and/or

migrated to support “To

Be” model

Determine how legacy

can be harvested and/or

migrated to support “To

Be” model

Implement PackageImplement Package

Re-Write / DevelopRe-Write / Develop

Legacy ModernizationLegacy Modernization

HybridHybrid

Modernization Approaches

Facilitated by CBTF

Design “To Be”

architecture for

modernization

Design “To Be”

architecture for

modernization

CBTF framework can enable banks to undertake one or more
approaches to modernization based on strongest alignment of business
needs with IT transformation efforts

Ideal Modernization Journey

Building & Maturing
Architectural Constructs

• Integrated View of Data
• Integration Layer
• Standardized methods

& tools
• Application

Rationalization
• Code Cleanup

• ESB
• Master Data
• Banking Workbench
• Model adoption to drive

transformation

Progressive
vs. Package
vs. Hybrid

Governance &
Organizational
Changes

• Stake holder Alignment
• Executive Sponsorship at

highest level
• Empowered governance

POT. POC

• Method Adoption
• Refinement
• Data for adopting

factory based
approach

Instituting an
implementation
Factory

• Resource
• Skills
• Size
• SDLC, Testing

• Repeatable and
Iterative methodology

• Risk Averse
Implementation

• Clearing back office
backlog and doing IT
optimization

• Execution of progressive
modernization

Progressive Modernization

Core Modernization – Ideal Steps in Transformation

Legacy Modernization Options

Business
Architecture

Modernized
Core

Banking
System

Technology
Architecture

Legacy
Application
Portfolio

Componentized
Business Architecture

Process &
Information Model

Service Oriented Architecture (SOA)

Master Data
Application
Architecture

Integration Infrastructure

Top Down
Approach

Bottom Up
Approach

Governance & Change Control

Remediate
The

Application

Convert The
Application

Transform
The

Application

Replace The
Application

Rewrite The
Application

Backlog of Business
Requests

IT Optimization

As-Is To-Be

Modernization paths should include both top down approach for new
business capabilities and a bottom up approach for harvesting unique
differentiated capabilities from legacy assets

IBM brings many industry tested points of views (POV’s) as the
starting point for the “To Be Architecture” as an accelerator to the
approach

Phase III: DeploymentPhase III: Deployment

Construction Deploy

Phase II: Iterative ElaborationPhase II: Iterative Elaboration

Design / Validation Manage

Design Patterns,
Component Reuse

Architecture Patterns,
Artifact/ Template Reuse

Architecture
Detail

Design

Service
Development

Testing
Services

Delivery &
Implementation

Operations
Management

Direction & Planning

Phase I:Phase I: EnvisioningEnvisioning

Strategic
Imperatives

Business
Architecture Definition

Systems &
Legacy Reuse Assessment

Business & Systems
Initiatives Formulation

Governance & Change
Control

Governance, Program and Change Management

Technical
Architecture Definition

Business Case
Justification

Business &
IT Pain
Points

Assess In-
flight

Initiatives

Application Portfolio
Analysis (Disposition Plan)

Application
Modernization Plan

Integration
Architecture

Build out

Information
Transformation

Infrastructure
Build out

Application
Modernization

Actions

System
Integration

Service
Extraction

from Legacy

10-12 weeks TBD Based on Inputs and Envisioning Phase with

predefined phased deliverables
TBD

Iterative

Detailed
Business & IT
Requirements

Process
Modeling &

Service
Identification

Detailed
Service

Specification
& Design

Detailed
Operational

Model

Capability Identification &
Fulfillment Plan

Detailed
Application

Analysis

Detailed
Business

& IT
Architecture

Execution Roadmap

PILOT

Performance
Optimization

Refine initiative list,
business case & roadmap

Systems Management

Security Architecture

Release Management

Following diagram breaks down different phases into more granular level and
provides a snapshot of various steps during a core banking transformation
initiative

Stage 1:
Core Architectural Constructs and Pilot

6 months

Pilot and Foundational Projects

C
o

m
p

le
ti

o
n

 l
e

v
e

l

High

Medium

Low

12 months 24-48 months

Stage 2:
Extend Core Architecture and Modernize Critical

Business Applications

Stage 3:
Extend Transformation to all application

landscape to achieve vision

Business Area/Country Code Deployments

Gov Bus Apa Opt Gov Bus Apa Opt Gov Bus Apa Opt

Estimate

time frame

Gov=Governance
Bus= Business improvment
Apa= Application Portf. Modern.
Opt= System Optimization

• Envision Phase
–Secure Stakeholder Commitment
–Roadmap & Business Case
–Address Infrastructure Requirements
–Address Governance Changes
–Begin Pilot Project

• Implement Application Factory
• Plan for Stage 2

• Extend pilots to critical applications
• Extend Application Factory
• Address operational constraints
• Refine Roadmap and Business Case
• Measure and communicate benefits
• Maintain Stakeholder Interest
• Plan for Stage 3

• Continue Phased Core Renewal
• Refine Roadmap
• Measure and communicate benefits
• Fully operationalize Application Factory
• Close project, continue renewal

The Execution Roadmap is the key outcome of the envisioning phase, which
will define how The Bank should execute to achieve based on CBTF approach

Topics for today’s discussion

� Market Snapshot

� Core Banking Modernization Overview

� The Need For Architectural Discipline in Banking Modernization

� IBM’s Core Banking Transformation Framework (CBTF)

� Approach and Methodology

� Case Studies

Case Study: Successful Package Implementation (Rip and Replace)

Bank : A bank in Asia

Customer Base : >8 million

Branches : >500

Objectives : 30% YoY growth

Key Focus Area : Customer Acquisition

Time to Implement : 18 months

Motive: To quickly enter into the market with a set of banking products and
focus on customer acquisition

Approach:
� Driven by CEO
� Choose package that best meets current business

requirements > 80%
� Agreement to re-engineer business processes to suite

package products and avoid costly customization
� Sales and Service processes aligned with features and

functionalities offered by the package with minimal
customization

� Early training on package features for bank staffs
� Investment in architecture and infrastructure in line to

support package implementation

Results:
� On time and on budget implementation
� Branch transformation on new systems done overnight

Reasons for Success:
� Alignment with package features agreed very early on
� Strong governance driven right from the top

Current Situation and Future Impact:
� Bank achieved its targets in customer acquisition, actively

supported by marketing blitz
� Bank is facing customer service, single customer view, new

product introduction etc. challenges
� Thin architecture, shortage of skills etc. is limiting bank’s

ability to customize and expand the package capabilities

Case Study: Package Implementation (Progressive)

Bank : A large bank in North
America

Customer Base : >36million

Branches : >3000

Objectives : YoY growth, cost

Key Focus Area : Product Innovation,
Customer Acquisition
and Customer Centricity

Time to Implement : Ongoing

Motive: To migrate from legacy systems to a package solution and drive
product innovation, customer centricity

Approach:
� Driven by CEO
� Choose package that best meet the current and future

business requirements > 50%
� Agree to customize package to suite business

requirements
� Package modules heavily customize to meet unique

product, know your customer and customer servicing
across channels

� Significant investment made in putting a robust middleware
(ESB) to connect all architectural components

Results:
� On time and slightly over budget implementation
� Branch transformation on new systems done in two phases

Reasons for Success:
� Big focus on capturing business requirements and freezing

the requirements till implementation was done
� Strong governance driven right from the top
� Great emphasis on architectural constructs
� Good integration between CIF’s during implementation

Current Situation and Future Impact:
� Bank is one the top banks in the country known for brining

new products to the markets and delivering superior
customer service

� Bank however finds itself limited by the bounds of the
package solutions and is going out of the package to
implement more complex products and achieve superior
customer centricity across channels

Case Study: Unsuccessful Package Implementation (Progressive)

Bank : A large bank in Asia

Customer Base : >10million

Branches : >1200

Objectives : 12% YoY, Cost

Key Focus Area : Product Bundling,
Single view of customer
& Dynamic pricing

Time to Implement : xxxx

Motive: To migrate from legacy systems to a package solution and deliver
new business capabilities

Approach:
� Driven by Business & IT Steering Committee
� Choose package that best meet the current and future

business requirements > 50%
� Agree to customize package by replicating capabilities from

the existing legacy systems

Results:
� Unsuccessful attempt. Hugh cost and time overrun.
� The whole program had to be put on hold after spending 3

years and burning $300 million

Reasons for Failure:
� Attempt to capture current requirement got overblown due

to complexity of the current legacy systems
� No governance or agreement to freeze BAU backlog hence

change kept happening
� Inferior integration architecture. Bank had to develop many

throw way point to point integration code and test them
� Legacy systems has cascading dependency and module

replacement always grew in scope and effort

Current Situation and Future Impact:
� Bank is one the top banks in the country known for brining

new products to the markets and delivering superior
customer service

� Bank however finds itself limited by the bounds of the
package solutions and is going out of the package to
implement more complex products and achieve superior
customer centricity across channels

Case Study: Legacy Modernization (Progressive)

Bank : A large North American
Financial Institution

Customer Base : >20 million

Branches : >6000

Objectives : CIR reduction, Share of
Wallet

Key Focus Area : Time to Market,
Efficiency, TCO
reduction, Customer
centricity

Time to Implement : Ongoing

Motive: To modernize existing legacy systems for architectural simplicity,
modularity and agility

Approach:
� Driven by Business & IT Steering Committee
� Adoption of SOA
� Legacy asset analysis and extraction / exposition of

capabilities as re-usable services
� Top down design for identifying new services
� Adoption of architectural constructs that promote modularity

and separation of architectural concerns
Results:

� Work still going. Initial architecture build out complete
� Bank saving almost 30% time on new components
� Few domain areas modernized into new environment

Reasons for Success:
� Architecture led strategy and focusing on establishing the

core architectural constructs like master data
� Focus on both top down and bottom up approaches to

modernization to accommodate BAU
� Strong governance structure to support a SOA

development environment

Current Situation and Future Impact:
� Bank is well positioned on its strategy to harvest and

enhance legacy assets and modernize them into a new
SOA environment. They are doing it right from a
componentized business architecture to drive all
downstream application development.

� Bank has committed organizationally and financially to
achieve a SOA for its banking applications

Case Study: Troublesome Legacy Modernization (Progressive)

Bank : A large North American
Cards Company

Customer Base : >40 million

Branches : XXXX

Objectives : Growth and Cost

Key Focus Area : Time to Market,
Architectural Simplicity,
SOA, Cost

Time to Implement : Ongoing

Motive: To modernize existing legacy systems for architectural simplicity,
reduced application maintenance cost and better architecture
design

Approach:
� Driven by Business & IT Steering Committee
� Adoption of SOA
� Legacy asset analysis and extraction / exposition of

capabilities as re-usable services
� Adoption of strategic architectural principles

Results:
� Adoption of SOA
� 1000’s of services exposed in the environment
� Burdensome to maintain published services

Reasons for Troubles:
� Weak governance structure around service SDLC
� Mainly IT led initiative where bank focused on extraction

and exposition of services from legacy assets
� Limited oversight on granularity of services resulting in

1000’s of fine grained services
� Unsolved issues on ownership of services and how various

applications will retrofit to use new SOA services
� Limited focus on new capability development using

modernized environment

Current Situation and Future Impact:
� Organization is re-thinking its modernization strategy and

trying to engage with business to bring the business
relevance in identification of business services

Case Study: Troublesome Re-write Modernization

Bank : A large bank in South
America

Customer Base : >20 million

Branches : >3000

Objectives : Growth and Cost

Key Focus Area : Architecture, Time to
Market, Product
innovation, Customer
centricity

Time to Implement : Ongoing

Motive: To re-write most of the systems in new Java based environment
using layered and modular application architecture

Approach:
� Driven by CIO
� Adoption of a componentized application architecture
� Legacy asset analysis and functional decomposition
� Development of sharable components (code base)
� Harvesting legacy assets for re-usable code (product

engines, business rule implementation etc.)

Results:
� Bank struggled and hugely overran time and budget

estimates
� Program was put on hold ($280 million, 3 years effort)
� Overall frustration with the approach among the application

development community

Reasons for Troubles:
� The bank used a shared component (shared code base)

model as a means to increase re-use. However as the code
base was used across applications, any changes would
require all sharing applications to go through testing
process causing big drain on effort

� Weak governance structure on component SDLC
� Functional decomposition of legacy applications was not

entirely successful because of complexity, poor
documentation and lack of qualified business analysts

Current Situation and Future Impact:
� Organization is re-thinking its modernization strategy and

trying to engage with business to bring the business
relevance in identification of business services

Case Study: Re-Write Modernization

Bank : A large global bank

Customer Base : >12 million

Branches : >1000

Objectives : Cost Reduction, Skills

Key Focus Area : Architecture, Time to
Market, Modularity,
Open Platforms

Time to Implement : Ongoing

Motive: To re-write legacy application components for better code
maintenance and change management

Approach:
� Driven by LOB’s
� Legacy asset analysis and functional decomposition
� Harvesting legacy assets for re-usable code (product

engines, business rule implementation and data access
etc.)

Results:
� Bank re-writing key loan management system in new

environment

Reasons for Troubles:
� The bank used SOA principles and conducted a detailed

process analysis to identify common business services that
can be developed as a re-usable and sharable services

� Bank developed 14 key coarse grain services and 42 fine
grained services

� Service governance was not an issue as the IT was owned
by the LOB

� Applications were retrofitted to use the new services.
Portions of code were left alone and wrapped to expose
them as services

Current Situation and Future Impact:
� Organization is thinking of creating a center of competency

around the experience and scale the approach to other
LOB’s

