
IBM Software

Thought Leadership White Paper

WebSphere

Native, web or hybrid
mobile-app development

2 Native, web or hybrid mobile-app development

Contents

2 Introduction

2 Introducing the approaches

2 Native apps

3 The application programming interface (API)

4 Mobile-web apps

6 Hybrid apps

7 Comparing the different approaches

8 Choosing the right approach

8 Scenarios for the native approach

9 Scenarios for the web approach

9 Scenarios for the hybrid approach

10 Summary

Introduction
Many organizations taking their first steps to implement a
mobile strategy are facing an important decision that will
inf luence the results of this initiative. The process of choosing
a development approach for a mobile application (hereafter
referred to as an “app”), namely native, web or hybrid, entails
many parameters, such as budget, project timeframe, target

audience and app functionality to name a few. Each approach
carries inherent benefits and limitations, and finding the one
that best addresses the organization’s needs could be a
challenging task.

The purpose of this white paper is not to identify the best
development approach, as none exists, but rather to list the pros
and cons each carries and to describe the different scenarios,
or enterprise requirements, that best fit one or the other.

Introducing the approaches

Native apps
Native apps have binary executable files that are downloaded
directly to the device and stored locally. The installation process
can be initiated by the user or, in some cases, by the IT depart-
ment of the organization. The most popular way to download a
native app is by visiting an app store, such as Apple’s App Store,
Android’s Marketplace or BlackBerry’s App World, but other
methods exist and are sometimes provided by the mobile vendor.

Once the app has been installed on the device, the user launches
it like any other service the device offers. Upon initialization, the
native app interfaces directly with the mobile operating system,
without any intermediary or container. The native app is free to
access all of the APIs that are made available by the OS vendor
and, in many cases, has unique features and functions that are
typical of that specific mobile OS.

3IBM Software

To create a native app, developers must write the source code
(in human-readable form) and create additional resources, such
as images, audio segments and various OS-specific declaration
files. Using tools provided by the OS vendor, the source code is
compiled (and sometimes also linked) in order to create an
executable in binary form that can be packaged along with the
rest of the resources and made ready for distribution.

These tools, in addition to other utilities and files, are normally
called the software development kit (SDK) of the mobile OS.
Although the development process is often similar for different
operating systems, the SDK is platform-specific and each mobile
OS comes with its own unique tools. The following table pres-
ents the different tools, languages, formats and distribution
channels associated with the leading mobile operating systems.

These differences across platforms result in one of the most
critical disadvantages of the native development approach—code
written for one mobile platform cannot be used on another,
making the development and maintenance of native apps for
multiple OSs a very long and expensive undertaking.

So, why is it that in spite of this costly disadvantage, many
companies choose to develop natively? To answer that question,
we will need to better understand the role of the APIs.

The application programming interface (API)
Once the native application is installed on the mobile device
and launched by the user, it interacts with the mobile operating
system through proprietary API calls that the operating system
exposes. These can be divided into two groups: low-level APIs
and high-level APIs.

Apple iOS Android Blackberry OS Windows Phone

Languages Objective-C, C, C++ Java (some C, C++) Java C#, VB.NET and more

Tools Xcode Android SDK BB Java Eclipse Plug-in Visual Studio, Windows Phone

development tools

Packaging format .app .apk .cod .xap

App stores Apple App Store Google Play Blackberry App World Windows Phone Marketplace

4 Native, web or hybrid mobile-app development

Low-level APIs
It is through these low-level API calls that the app can interact
directly with the touch screen or keyboard, render graphics, con-
nect to networks, process audio received from the microphone,
play sounds through the speaker or headphones, or receive
images and videos from the camera. It can access the Global
Positioning System (GPS), receive orientation information and,
of course, read and write files on the solid-state disk or access
any other hardware element available today or in the future.

High-level APIs
In addition to providing the low-level hardware-access services
we just mentioned, mobile operating systems also provide
higher-level services that are important to the personal mobile
experience. Such services include processes like browsing the
web, managing the calendar, contacts, photo album and, of
course, the ability to make phone calls or send and receive text
messages.

Although most mobile OSs include a set of built-in applications
that can execute these services, a set of exposed high-level APIs
is made accessible for native apps as well, allowing them to
access many of the important services mentioned above. Other
APIs enable downloadable apps to access various cloud-based
services that are provided by the OS vendor, such as push
notifications or in-app purchases.

The graphical user interface (GUI) toolkit
Another important set of APIs that the OS provides is the GUI
toolkit. Each mobile OS comes with its own set of user interface
components, such as buttons, input fields, sliders, menus, tab
bars, dialog boxes and so on. Apps that make use of these com-
ponents inherit the features and functions of that specific mobile
OS, which normally results in a very easy and enjoyable user
experience.

It’s important to note that different mobile platforms carry
unique palettes of user interface (UI) components. As a result,
apps that are designed to work for multiple operating systems
require the designer to be familiar with the different UI
components of each OS.

Although APIs are OS-specific and add much complexity and
cost to the development of multiple native apps, these elements
are the only means of creating rich mobile applications that
make full use of all the functionality that modern mobile devices
have to offer.

Mobile-web apps
Modern mobile devices consist of powerful browsers that
support many new HTML5 capabilities, Cascading Style
Sheets 3 (CSS3) and advanced JavaScript. With recent advance-
ments on this front, HTML5 signals the transition of this
technology from a “page-definition language” into a powerful
development standard for rich, browser-based applications.

5IBM Software

A few examples of the potential of HTML5 include advanced
UI components, access to rich media types, geolocation services
and off line availability. Using these features and many more that
are under development, developers are able to create advanced
applications, using nothing but web technologies.

It is helpful to distinguish between two extreme web-app
approaches. Everyone is familiar with mobile browsing and
mobile-optimized websites. These sites recognize when they are
accessed by a smartphone and serve up HTML pages that have
been designed to provide a comfortable “touch experience” on a
small screen size. But some companies go even further and
enhance the user experience by creating a mobile website that
looks like a native app and can be launched from a shortcut that
is indistinguishable from that used to launch native apps.

There is a wide range of possibilities between these two ex-
tremes, with most websites implementing their own mix of
features. Mobile web apps are a very promising trend. To capital-
ize on this trend and help developers build the client-side UI, a
growing number of JavaScript toolkits have been created, such as
dojox.mobile, Sencha Touch and jQuery Mobile, which gener-
ate user interfaces that are comparable in appearance to native
apps. Both execute entirely within the browser of the mobile
device and make use of the newest JavaScript, CSS and HTML5
features that are available in modern mobile browsers.

One of the most prominent advantages of a web app is its multi-
platform support and low cost of development. Most mobile
vendors utilize the same rendering engine in their browsers,
WebKit—an open-source project led mainly by Google and
Apple that provides the most comprehensive HTML5

Feature Pure mobile web apps Pure mobile websites

Tools and knowledge Written entirely in HTML, CSS and JavaScript Written entirely in HTML, CSS and JavaScript

Execution “Installed” shortcut, launched like a native app Reached by navigating to a website by way of a

Uniform Resource Locator (URL)

User experience Touch-friendly, interactive UI Navigational UI between pages displaying static data

Performance UI logic resides locally, making the app responsive

and accessible offline

All code executed from a server, resulting in

network-dependent performance

6 Native, web or hybrid mobile-app development

implementation available today. Because the application code is
written in standard web languages that are compatible with
WebKit, a single app delivers a uniform experience for different
devices and operating systems, making it multiplatform by
default. However, these advantages are not without a price.

Despite the potential and promise of web technologies in the
mobile space, they still carry significant limitations. To under-
stand these limitations we need to explain how web applications
operate.

Unlike native apps, which are independent executables that
interface directly with the OS, web apps run within the browser.
The browser is in itself a native app that has direct access to the
OS APIs, but only a limited number of these APIs are exposed
to the web apps that run inside it. While native apps have full
access to the device, many features are only partially available to
web apps or not available at all. Although this is expected to
change in the future with advancements in HTML, these capa-
bilities are not available for today’s mobile users.

Hybrid apps
The hybrid approach combines native development with web
technology. Using this approach, developers write significant
portions of their application in cross-platform web technologies,
while maintaining direct access to native APIs when required.

The native portion of the application uses the operating system
APIs to create an embedded HTML rendering engine that
serves as a bridge between the browser and the device APIs.
This bridge enables the hybrid app to take full advantage of all
the features that modern devices have to offer.

App developers can choose between coding their own bridge or
taking advantage of ready-made solutions such as PhoneGap—
open-source library that provides a uniform JavaScript interface
to selected device capabilities that is consistent across operating
systems.

The native portion of the app can be developed independently,
but some solutions in the market provide this type of a native
container as part of their product, thus empowering the devel-
oper with the means to create an advanced application that
utilizes all the device features using nothing but web languages.
In some cases, a solution will allow the developer to use any
native knowledge he or she might have to customize the native
container in accordance with the unique needs of the
organization.

The web portion of the app can be either a web page that resides
on a server or a set of HTML, JavaScript, CSS and media files,
packaged into the application code and stored locally on the
device. Both approaches carry advantages and limitations.
HTML code that is hosted on a server enables developers to

7IBM Software

introduce minor updates to the app without going through the
process of submission and approval that some app stores require.
Unfortunately, this approach eliminates any off line availability,
as the content is not accessible when the device is not connected
to the network. On the other hand, packaging the web code into
the application itself can enhance performance and accessibility,
but does not accept remote updates. The best of both worlds can
be achieved by combining the two approaches. Such a system is
designed to host the HTML resources on a web server for f lexi-
bility, yet cache them locally on the mobile device for
performance.

Comparing the different approaches
To summarize, a comparison of all three development
approaches follows.

The native approach excels in performance and device access,
but suffers in cost and updates. The web approach is much
simpler, less expensive and easier to update, but is currently
limited in functionality and cannot achieve the exceptional level
of user experience that can be obtained using native API calls.
The hybrid approach provides a middle ground which, in many
situations, is the best of both worlds, especially if the developer
is targeting multiple operating systems.

As can be inferred from the table above, no single approach
delivers all the benefits all the time. Choosing the right approach
depends on the specific needs of the organization and can be
driven by many parameters, such as budget, timeframe, internal
resources, target market, required application functionality,
IT infrastructure and many others.

One thing is clear: most companies today face an obvious trad-
eoff between user experience and application functionality on
the one hand, and development costs and time to market on the
other. The challenge becomes choosing the right development
approach that will balance the organization’s requirements with
its budget and time-to-market constraints.

Native app Web app Hybrid app

Native application Mobile browser Native container

Device APIs Device APIs

Web code
Web code

8 Native, web or hybrid mobile-app development

Feature Native app Hybrid app Web app

Development language Native only Native and web or web only Web only

Code portability and optimization None High High

Access device-specific features High Medium Low

Leverage existing knowledge Low High High

Advanced graphics High Medium Medium

Upgrade flexibility Low
(Always by way of app stores)

Medium
(Usually by way of app stores)

High

Installation experience High
(From app store)

High
(From app store)

Medium
(By way of mobile browser)

Choosing the right approach
The following is a list of scenarios to help guide organizations in
the process of choosing an approach.

Scenarios for the native approach
Existing native skills. One of the main arguments against
the native approach is its lack of multiplatform support.
Organizations asking to develop an application for multiple
mobile platforms need to hire new employees or train in-house
developers in a variety of native languages. Organizations that
have such native skills in-house are able to take advantage of
them, without significant new investments.

A single mobile OS. In some cases, an organization will aim to
release a mobile application to a limited target audience—one
that is known to use a single mobile OS. For example, consider a
scenario in which an internal application is distributed within an

organization that issues a BlackBerry device to its employees. In
this case, achieving multiplatform coverage might not be a prior-
ity and, as developing a single native application requires a lim-
ited set of skills and tools, this approach can make much sense.

Native functionality. Some applications are built around a sin-
gle functionality. Take Skype, for example: Voice over Internet
Protocol (VoIP) and access to the user’s contacts are key ele-
ments of the app and, given available technologies today, can
only be developed natively. For such applications, web languages
are simply not yet sufficiently evolved and are far from capable
of achieving the desired functionality.

Rich UI requirements. For game-like applications that require
a rich UI that provides real-time responsiveness, web technolo-
gies do not yet provide an adequate solution. For applications
with such requirements, developers are still better off taking the
native approach.

9IBM Software

Scenarios for the web approach
Direct distribution. Some organizations prefer distributing
their apps in a manner that is controlled internally and is not
subjected to what can sometimes turn into a long and uncertain
approval process. In such cases, using purely web languages can
completely circumvent the app-store process and allow the orga-
nization to fully control the distribution of the app and its peri-
odical updates.

Pilot app. When comparing the costs and time to market
involved in the development of a native as opposed to a web app,
using the web approach to create a pilot version of the app can
be a compelling and cost-effective tactic. Once the concept has
been proved, the organization can choose to create a new appli-
cation from the beginning or use portions of the existing code in
a hybrid application.

Visibility. In addition to the distribution we already mentioned,
another benefit of creating a web application is its visibility in
search engine results which, in many cases, expose the applica-
tion to a larger audience than that available through the app
store alone.

Scenarios for the hybrid approach
Balancing the tradeoff. Using the hybrid approach, companies
can enjoy the best of both worlds. On the one hand, the native
bridge enables developers to take full advantage of all the differ-
ent features and capabilities that modern mobile devices have to
offer. On the other, all the portions of the code that are written
using web languages can be shared among different mobile
platforms, making the development and ongoing maintenance
process centralized, shorter and cost-effective.

In-house skills. Web development skills are very common and
can easily be found in many organizations. By choosing the
hybrid approach, supported by the right solution, web develop-
ers are able to build applications with nothing but web skills,
such as HTML, CSS and JavaScript, while delivering a native-
like user experience.

Future considerations. HTML5 is rapidly growing in both
availability and capabilities. Many analysts predict that it is likely
to become the default technology for client-side application
development. By writing most of the app in HTML, and using
native code only where needed, companies can make sure that
the investments they make today do not become obsolete
tomorrow, as HTML functionality becomes richer and addresses
a wider range of the mobile requirements of modern
organizations.

10 Native, web or hybrid mobile-app development

Summary
As mobile apps continue to take a central role in the business
landscape, organizations around the world are mobilizing a
growing number of mission-critical services. Many companies
are striving to find the optimal development approach to achieve
their goals, but what many are quickly realizing is that each
approach carries inherent limitations and no single approach can
address all the growing needs and complexity of the modern
mobile enterprise.

As this paper attempts to show, the answer lies not in one devel-
opment approach, but rather in a f lexible solution—one that can
harness the benefits that each provides and support not only the
development of a first mobile app, but of all future apps, regard-
less of their development approach.

The choice between hybrid, native and web development
approaches, although certainly a major one, is not the only one.
Companies forming their mobile strategy must also consider the
future of this market, illustrated by the following trends and
developments:

●● Further fragmentation of mobile devices and technologies,
which in turn will continue to increase the overall costs and
complexities that are associated with mobile-app development,
integration and ongoing management

●● Accelerated mobile adoption by consumers and within the
enterprise, increasing the requirements around security,
scalability and ongoing control

●● New device features and complementing technologies, such as
near-field communication, geolocation, augmented reality,
social networks and others, which will undoubtedly give rise
to new types and new use cases of mobile apps

●● New distribution channels for the apps, both public and
private, enabling organizations to easily place the apps in the
hands of the user, quickly deploy updates and manage its
entire portfolio of apps, without going through a long
submission and approval process

Taking all these parameters into consideration, companies must
choose a solution that is not only f lexible enough to support all
types of apps, but would also support the secure and scalable
integration of the apps into the IT infrastructure and enable
them to monitor and control their entire portfolio of applica-
tions from one centralized interface.

For further information, and to download a free
trial version, please visit the following website:
ibm.com/software/mobile-solutions/worklight/

http://www.ibm.com/software/mobile-solutions/worklight/

Notes

For more information
To learn more about IBM Worklight assets for mobile-app
development, please contact your IBM marketing representative
or IBM Business Partner, or visit the following website:
ibm.com/software/solutions/mobile-enterprise

Additionally, IBM Global Financing can help you acquire
the software capabilities that your business needs in the most
cost-effective and strategic way possible. We’ll partner with
credit-qualified clients to customize a financing solution to suit
your business and development goals, enable effective cash
management, and improve your total cost of ownership. Fund
your critical IT investment and propel your business forward
with IBM Global Financing. For more information, visit:
ibm.com/financing

 © Copyright IBM Corporation 2012

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
April 2012

IBM, the IBM logo, ibm.com, and WebSphere are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

It is the user’s responsibility to evaluate and verify the operation of
any other products or programs with IBM products and programs.
THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

Please Recycle

WSW14182-USEN-01

http://www.ibm.com/software/solutions/mobile-enterprise
http://www.ibm.com/financing
http://www.ibm.com/legal/copytrade.shtml

	Untitled
	Native, web or hybrid mobile-app develo
	Contents
	Introduction
	Introducing the approachesNative apps
	The application programming interface (A
	Table
	Mobile-web apps
	Feature
	Hybrid apps
	Comparing the different approaches
	Feature
	Choosing the right approach
	Scenarios for the native approach
	Scenarios for the web approach
	Scenarios for the hybrid approach
	Summary
	For more information

