
IBM Lotus Extended Search

White Paper on Security, Scalability, and
Performance
Version 3 Release 7

���

Seventh Edition, July 2002

This edition applies to Version 3 Release 7 of the IBM® Lotus® Extended Search product and to all subsequent
releases and modifications until otherwise indicated by new editions.

© Copyright International Business Machines Corporation 1997, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Contents

Security. 1
User authentication . 2
Authentication enforced by the Notes Client 3
Authentication enforced by the Web Client 3
No Authentication . 3
Basic Authentication . 3
Custom Authentication . 4

Authentication enforced by the broker 4
Access control . 5
Notes ACLs and impersonation 5
Web Client access control . 6
Data source filtering . 6

Link-level control. 7
Connecting to data sources. 7
Authentication enforced by an agent 7

Message encryption . 8
Encryption of message authentication data 8
Encryption through SSL . 9

Notes database control . 9
Multiple client applications . 9
Database-level access controls 10
Document- and field-level access controls 10

Scalability . 13
Assessing scalability . 13
Creating multiple client applications 14
Separating brokers from the Web server 15
Separating agents from brokers. 15
Configuring remote links . 17
Assigning unique agent names 17
Partitioning agents on a single machine 17

Setting up multiple brokers . 18
Advantages of multiple brokers 19
Partitioning the user population 19

Broker network configurations 21
Fully connected network . 22
Hub network . 22
Multi-hub network . 23

Performance . 25
Assessing performance . 25
Optimizing end-user performance 26
Replicating databases . 27
Setting timeout values . 27
Sorting search results . 27

Optimizing server performance 28
Understanding server tasks 29
Determining the optimum number of tasks 30
Localizing agents with data sources 31

iii

iv Extended Search: Security, Scalability, and Performance

Security

IBM® Lotus® Extended Search gives you the ability to access data from a wide
range of sources. In many cases, this accessibility must be controlled to ensure that
only authorized content is available to each qualified user of the system.

Lotus Domino and IBM WebSphere have proven reputations for incorporating the
industry’s best security measures, including access control, private and public key
encryption, and digital signatures. Web application server technology uses several
mechanisms that interact with each other to form the basis of a secure
environment. Genuine security is possible when these mechanisms work together
within such defended and trusted environments.

Extended Search is a linking technology that connects users to disparate data
sources that are distributed throughout the enterprise. A broad range of search
engines, each with their own security models to enforce, host these data sources.
To access data sources, an Extended Search link uses the native programming
interfaces of the search engine. This activity usually occurs outside the control of
the Web server. Overall protection against unauthorized searching is therefore a
coordinated effort between the Web server, Extended Search, and the backend data
sources.

The Extended Search product employs the following kinds of security:
v “User authentication” on page 2
v “Access control” on page 5
v “Link-level control” on page 7
v “Message encryption” on page 8
v “Notes database control” on page 9

Figure 1 on page 2 illustrates how Extended Search implements different layers of
authentication and access control throughout the system.

v The Web server provides the first level of control. Using its native authentication
mechanisms and access controls, the Web server validates each user request
and determines whether or not it can proceed.

v At the application level, additional validation is performed:

– For requests that are received through the Web Client, Extended Search
provides an exit point for enforcing enterprise-specific rules. The exit can, for
example, interact with another security system or return a different user ID for
use by the rest of the Extended Search system.

– For requests that are received through the Notes Client, Extended Search can
use normal Notes database access control lists (ACLs) for validation.

– Within the configuration database, application-specific controls can restrict
access to data sources. They also control which fields in a data source end
users are able to search, view in a hitlist, or fetch from the data source.

v An Extended Search broker provides authentication services through a user exit.
For each request received by the broker, enterprise-specific rules can validate or
alter user information.

v An additional exit point is available at the link level. Enterprise-specific rules can
validate the request, alter the request, or filter the search results. In addition, you
can configure a link so that it connects by using a specific user ID or by using
the user ID passed in on the request.

v Lastly, individual data sources may have their own mechanisms to permit or deny
users access to the data source or its contents.

1

User authentication
User authentication refers to the process by which Extended Search verifies that
users are, in fact, who or what they declare themselves to be. Depending on the
system component that is involved, Extended Search uses different methods of
user authentication:

v Authentication by the Notes Client

v Authentication by the Web Client

v Authentication by the broker

Web Browser

Can apply
normal ACLs

Domino ServerDomino, WebSphere
or other Web Server

Can validate or alter
user information

Define data source accessibility
and field usage in the CDB

Controls authentication and
access to the system, applications,

and resources

Notes Client

Some sort of
directory

Web Client Servlet
and Templates

Additional exit

Additional exit

Additional exit

ES Applications ES Applications

ES Server
(Broker)

Per request, can validate or

alter user information

May have their own access controls

to limit what data the identified user

has access to

- Can validate or alter request

- Can filter results

- Can connect with a predefined

user ID or pass the requester’s ID

Data Sources

Links

Notes Client
NSF Database

Figure 1. Authentication and access control

2 Extended Search: Security, Scalability, and Performance

Authentication enforced by the Notes Client
User authentication is very secure when users access Extended Search through
Lotus Notes client software. When used with the Notes client, the system uses
private/public key encryption, digital certificates, and passwords to provide the
highest degree of user authentication. Unless the user’s Notes UserID file has been
compromised, this level of security assures that users accessing the search
application are who they claim to be.

Authentication enforced by the Web Client
Because the Web Client is browser-based, authentication is primarily dependent on
standard Web server authentication protocols. Typically, the authentication options
configured for your Web server provide the first level of defense. Like Lotus Notes,
the Web server can use private/public key encryption, digital certificates, and
passwords to ensure that users are authorized to access Web Client applications.

The Extended Search Web Client consists of one or more HTML or JSP pages that
users view with Web browsers. An Extended Search servlet runs on the Web server
to preprocess the pages through HTTP-based requests from users. When you
configure authentication options for the Extended Search server, you can choose to
have the Web server perform no client authentication, basic authentication, or
custom authentication.

No Authentication
None is the default installation value. All users with access to the server can run
queries against Extended Search.

Basic Authentication
If you configure the server to perform basic authentication, the Web server will
challenge the user with the standard HTTP authentication prompt for a user ID, a
password and, in some cases, an authentication realm. If the user-supplied
information does not exist in the server’s directory, the server will deny the request.
Upon successful authentication, the user information is retained by the browser (for
the duration of the current browser session) so that the user does not have to
re-enter this information with each new request.

Security 3

Authentication and the Administration interface
To secure the Administration interface, you need to either physically protect
the server that hosts the configuration database or set up Web authentication
to control access to the program. If you choose to use authentication, you
must update the following environment variables to identify the Extended
Search administrator before starting the Extended Search server.

v On UNIX, update these entries in the Extended Search desStart script:
– ESAdminUserid
– ESAdminPassword

v On Windows, update these Extended Search software entries in the
Windows Registry:
– AdminUserid
– AdminPassword

If you enable user authentication in the Web server, it will impact the operation
of the Administration interface when you run it as an applet (it does not impact
the Administration application). For example, you will be challenged numerous
times to authenticate yourself when starting and running the applet.

If you want to run the applet with authentication, you should configure
separate ports on the Web server to handle different types of requests. For
example, you could use port 80 to handle search requests that require basic
authentication and use a non-standard port for the Administration applet.
Depending on your security environment, you may not be able to access this
non-standard port outside your firewall.

Custom Authentication
When authentication is set to custom, the system first performs basic authentication
activities. If Web server authentication succeeds, it then calls your custom
authentication user exit.

Custom authentication involves the enforcement of enterprise-provided
authentication rules. You encode the enterprise-specific rules by writing a custom
Java class. Information available about a request (such as the requester’s user ID
and password) gets passed into this exit.

Note that this exit can perform additional checks, such as interacting with another
security system or a database access control list. It can also return a different user
ID for use by the rest of the Extended Search system.

Extended Search does not use custom code by default:

v For information about developing a custom Java authentication class, see the
discussion of User Exits in Extended Search Programming.

v For information about configuring the server to use this code, see Extended
Search Administration.

Authentication enforced by the broker
Custom authentication can be applied at the broker level to provide additional
security checks at intermediate network nodes behind the Web server. The
activation of this custom authentication code is indicated through a setting in the
broker’s configuration data. If the code has been activated, the broker calls the
customized function prior to the execution of each request.

4 Extended Search: Security, Scalability, and Performance

despduex.htm

Note that you can apply customized broker authentication to a specific Extended
Search request type. For example, the identity of a user searching database
content might not be of concern (no authentication), but the identity of a user
retrieving documents could be.

From within the shared library, you can selectively deny or approve access to
individual data sources that are identified in the search request. You also have the
ability to provide alternative user ID and password mappings for discrete data
sources.

Extended Search does not use custom code by default:

v For information about writing a broker authentication exit, see the discussion of
User Exits in Extended Search Programming.

v For information about configuring a broker to call this exit, see Extended Search
Administration.

Access control
Access control involves limiting what users can do once they have identified
themselves. An access control list (ACL) is the most common way in which access
to computer system resources can be limited. An ACL is simply a list of user names
and group names. Each name is associated with a set of permissions that define
the user’s rights and privileges. Access control is supported through the following
methods:

v Notes database ACLs and impersonation

v Web-based access control

v Data source filtering

Notes ACLs and impersonation
Domino has a very robust set of access control features implemented through the
use of ACLs. Domino uses ACLs to protect Notes servers, databases, documents,
and even fields within a given type of Notes document.

Extended Search users can interact with the Notes Client application to submit
queries, view results, and fetch documents. As the first line of defense, you can
effectively apply Domino’s standard access control features to the Notes Client
application. For example, it is here where you can restrict initial entry into the
database, control who can submit queries, and encrypt data in the search result
documents. Each level of Notes security restricts information to an ever decreasing
group of users and cannot override a higher level.

Extended Search provides design templates for the Notes Client application
(different templates apply to different versions of Lotus Notes). After creating an
application database from a template, you can use standard Notes ACLs and other
available security features to control access to Extended Search. Typically, you will
define multiple client applications, each of which may have different access
controls.

When a user submits a query to search a Notes data source, Extended Search
does not automatically check the permissions granted to that user per the ACL
defined for that data source. You can enhance security by configuring a parameter,
Impersonate, that instructs Extended Search to compare the requesting user’s
name against the Notes ACL.

Security 5

despduex.htm

If the user is not on the ACL, access to the data source will be denied. Note that
the user will not see error messages about this denial, but the hitlist will indicate
that zero results were returned from that data source.

Before setting up impersonation, be sure you understand the following usage
guidelines:

v ACL verification may degrade performance slightly.

v The Impersonate parameter uses the full canonical user name (or distinguished
name, DN). You need to either define the DNs in the Domino address book,
which allows users to log in with their short name while the full DN gets passed
to Extended Search, or you can write an exit to handle name parsing.

v The databases for which you are setting the Impersonate parameter must exist
on the same machine with the agent that services them.

v To enable impersonation, you must also enable basic authentication on the
Extended Search server.

v Impersonation causes a user ID and password to be passed in, not a digital
credential. However, Extended Search does encrypt the password (it is not
passed in the clear from the Web server).

v If you set Impersonate as a link parameter, the system performs ACL verification
against all Notes 4.6.4 and Notes 5.0 data sources. This is the most typical
approach.

v If you set Impersonate as a data source parameter, the system performs ACL
verification only against the data source in which you configured the parameter.

ODBC and Web Source Impersonation
You can also use the Impersonate parameter to require that a user ID and
password be passed in on search requests that target ODBC sources and
Web sources. In this case, Extended Search attempts to establish a
connection by using the requesting user’s name and password. If the
information is not valid, the user cannot search the source.

Web Client access control
As discussed in “Basic Authentication” on page 3, Extended Search servlets can
also use ACLs created for Notes databases to further restrict user access through
the Web. This form of access control occurs only when the options for servlet-level
authentication specify both basic authentication and the name of the controlling
Notes database.

Data source filtering
Data source filters further restrict access to data sources. Extended Search uses
application identifiers that enable you to restrict access to particular types of users
(for example, financial applications versus personnel applications).

In the configuration database, you can define any number of applications (each
application has a unique name that serves as its unique identifier). You can then
associate these applications with any number of data sources. Extended Search
uses these associations as a filter. They allow users to access only those data
sources that belong to categories associated with a given application.

6 Extended Search: Security, Scalability, and Performance

Link-level control
The term agent refers to the software that implements the search logic for the
various data sources to which Extended Search connects. Agents exercise access
control at the link level. The amount of control depends on the type of search
engine involved and whether or not your enterprise has developed a custom shared
library to control access to data sources.

Link-level control is available through the following methods:

v Controlling how an agent connects to a data source

v Controlling how an agent authenticates access to a data source

Connecting to data sources
At startup, and whenever the configuration gets refreshed, an agent learns about
the various search engines through the broker. In general, the agent does not
perform the connection to the search engine until it receives the first query for the
target data source.

Connecting to a search engine generally involves the establishment of a session
with the backend source. The agent obtains the data it needs to establish a session
from the configuration database as either link or data source parameters.

Extended Search implements two connection models: persistent and dynamic.

Persistent Connections
Once a session is established, the agent will maintain the session for the
duration. It will not terminate the session until the server is either shut down
or instructed to refresh its configuration.

This mode of operation permits an agent to service search and retrieval
requests as quickly as possible without incurring the additional overhead of
session management. It keeps the total number of connections low. It also
reflects the number of connections relative to the number of data sources
being searched, not the total number of sources that can be searched.

In this design, it is important to realize that the agent is performing as a
proxy to its associated link on behalf of the user community. As far as the
search engine is concerned, the agent is a user that is logged on with a
unique ID (if required) as specified in the configuration database.

Dynamic Connections
For an additional level of access control, most of the links that are provided
with Extended Search also support making connections at request
processing time. These types of connections typically use the requester’s
user ID to establish the session. This approach allows the data source to
determine what data should be returned to the requesting user.

Authentication enforced by an agent
It is possible to invoke an enterprise-specific security user exit at the agent level.
This custom shared library behaves similarly to the broker’s custom authentication
function.

When enabled, the agent calls the custom library prior to the execution of each
request to perform pre-query processing. It can call the library again after
processing each request to perform post-query processing. The agent passes in all
available information needed to perform authentication or access control (such as

Security 7

user ID, password, type of request, list of data sources, and so on). Based on this
information, the shared library will either allow the request to proceed or deny the
request.

In addition to basic data source filtering, the user exit can also filter the content that
is to be returned. In return content (post-query) filtering, you must create a custom
shared library that uses query information (such as the user ID and password, the
application name, a list of document IDs, and a list of field names) to determine
whether any of the documents or fields should be hidden from an end user. When
enabled for post-query filtering, the agent calls the custom shared library after
content has been returned in response to a request.

If pre-query screening prohibits a query from proceeding, then post-query filtering is
rendered irrelevant. The shared library that contains the customized function makes
use of API calls to extract information about a query and its return content. The
library then uses other API calls to mark entire documents or individual document
fields for exclusion from a user’s view. The agent honors these API actions and
removes the indicated documents or fields from the return content.

Extended Search does not use this custom code by default:

v For information about writing an agent-controlled security exit, see the discussion
of User Exits in Extended Search Programming.

v For information about configuring an agent to call this exit, see Extended Search
Administration.

Message encryption
User actions performed in a client application result in request/response pairs being
exchanged with the server. This exchange is equivalent to messages that are
transmitted through the network. Extended Search supports message encryption
when the privacy of this message traffic is of concern. Message encryption involves
the electronic scrambling of message content to prevent unauthorized viewing of
sensitive data during transit.

Both user authentication and access control rely on the exchange of sensitive data,
such as IDs and passwords. Documents returned in response to a fetch request
can contain sensitive information, and even the results of a search can contain
sensitive data. Extended Search provides two levels of message encryption:

v Encryption of message authentication data

v Encryption through the Secure Sockets Layer (SSL) protocol

Encryption of message authentication data
The first level of message encryption encrypts only the authentication data portion
of a message. This method applies to all messages transmitted through an
Extended Search system with the exception of those passing through servlets. This
is the minimal amount of encryption provided, and it incurs the least amount of
overhead because only authentication IDs and passwords get encrypted.

This level of encryption uses a 64-bit symmetric Data Encryption Standard key to
encode the authentication data for each message.

8 Extended Search: Security, Scalability, and Performance

despduex.htm

Encryption through SSL
For Extended Search to use SSL for message encryption, you must properly
configure the Web server for SSL. Procedures for enabling SSL vary with the Web
server used. Consult the product documentation for the Web server product used in
your Extended Search system.

Remember that the SSL port number that is used by the secure Web server is
typically different from the standard Web server port number. Also, be aware that
SSL encrypts the entire message and thus will result in a slight degradation to
overall message throughput for the system.

The level of SSL support available to your applications depends on whether you
use the Web Client or Notes Client application.

v If you use the Web Client, you can use the SSL version 3 (SSLv3) protocol for
secure communications when searching data sources.

v If you use the Notes Client, Extended Search includes support for the SSL
version 2 (SSLv2) protocol. The client LotusScript Extensions (LSX) use the
HTTP protocol to communicate with the Extended Search server. This
communication passes through the Web server to the Extended Search Reflector
component.

The Reflector is a very small CGI program whose only job is to forward the client
request to the Extended Search server. An advantage to this approach is the
ability to leverage industry-standard SSLv2 message encryption between the
client LSX and the participating Web server.

The client always initiates the SSL protocol. Therefore, you must enable SSL as
a part of configuring your Notes Client applications. The Application Document
contains a check box for SSL enablement.

Note: To enable SSL with the Extended Search Notes Client application, you
need the Microsoft Internet Explorer browser and Version 4.72 or later of
Microsoft’s WinInet Dynamic Link Library.

Notes database control
When you use Extended Search to search across multiple domains and
heterogeneous data sources, you only partially realize Notes security capabilities.
This situation is because Extended Search crosses the boundaries of closed
systems to provide search results from multiple databases. To optimize Notes
security features for Notes databases that are accessed by Extended Search, you
can employ the following solutions:

v Configure multiple Notes Client applications

v Configure database-level access controls

v Configure document-level and field-level access controls

Multiple client applications
One approach for optimizing Notes security would be to create multiple instances of
the Extended Search Notes Client application. You must assign each instance a
unique application name and provide access to a specific set of Notes databases.
Extended Search can then use standard Notes ACLs to permit users to access
specific applications.

Security 9

Database-level access controls
The proxy-like behavior of agents applies to Notes databases that are managed by
Domino versions 4.6.3 or earlier. In this situation, the agent uses the ID file that is
co-resident with the agent to search version 4.6.3 Notes databases. This ID file is
usually the Server ID.

Consequently, search results may contain links to documents that the Domino
Server Administrator is authorized to view but that the requesting user is not. If the
user clicks the link in the hitlist to view the document, standard Notes ACLs and
authentication will prevent the document from being displayed.

For databases that are managed by Domino versions 4.6.4 or higher, the Notes link
can be configured to check the ACL before permitting a query against a database.
When this feature is enabled, the user’s name must appear in the ACL for the target
database. Furthermore, the user’s permission level must not be set to Depositor or
No Access.

Extended Search does not check Notes ACLs by default:

v For information about how to write a custom user exit to implement
agent-controlled access to databases, see the discussion of User Exits in
Extended Search Programming.

v For information about how to update the configuration database to enable ACL
verification for Notes databases, see Extended Search Administration.

Document- and field-level access controls
If you use Domino version 4.6.3 or earlier and need a more granular access control
method (for example, access control at the Notes document level or field level),
consider the following techniques.

v Allow all users to perform searches, but allow only selected users to retrieve
complete information.

With this approach, all users are able to see non-sensitive information in the
hitlist. However, only those users with an authorized user ID are able to retrieve
sensitive information within documents. This approach allows users to discover
the existence of documents, even if they do not have access rights to the
sensitive information within the documents. The user would presumably need to
request access from the appropriate authority.

To achieve this scenario, edit the application-specific properties for the affected
data source and ensure that only non-sensitive fields are returned in the hitlist.
You also need to ensure that the only way users can retrieve documents is
through the use of links to Notes documents that are rendered in a hitlist
abstract.

This latter step requires you to define the fields as returnable but not fetchable in
the application-specific properties for the target data source. The result is that
users will be able to see public information in the hitlist. However, they will be
able to open the complete document only through a Notes link with the
appropriate Notes security permissions.

v Configure a two-channel application.

Use this approach to enforce an even stricter access model when the Extended
Search application identifier is not adequate protection for sensitive information
within a single application instance. For example, you may have a data source
that does not contain any information that can be viewed by the public.

Using the two channel approach, two completely separate channels of
communication are established: a public channel and a secure channel. You

10 Extended Search: Security, Scalability, and Performance

despduex.htm

must create two instances (copies) of the Client application, and assign each
instance a unique application name and list of data sources.

You must set up each instance of the Client application to communicate with a
different broker and agent combination. One agent (the public channel) would
use a public Notes ID. The other agent (the secure channel) would use a Notes
ID that has access rights to secured data. In this scenario, public users would
use one communication channel while authorized users would use a second,
secured channel to access sensitive data.

When using these granular approaches, keep in mind that the agent that accesses
a Notes database is using a Notes ID. You should treat the agent’s ID as you would
any user’s ID when determining whether access to a particular document or field
should be granted.

Extended Search does not check Notes ACLs by default:

v For information about how to write a custom user exit to implement
agent-controlled access to documents and fields in a database, see the
discussion of User Exits in Extended Search Programming.

v For information about how to update the configuration database to enable Notes
ACL checking, see Extended Search Administration.

Security 11

despduex.htm

12 Extended Search: Security, Scalability, and Performance

Scalability

Extended Search has been engineered to accommodate future scalability
requirements. The following topics should provide sufficient information to help you
expand the Extended Search system as the need arises. They explore different
Extended Search topologies that take into account the size of an enterprise’s
network and user population.

Although scalability should be your primary focus, you should review this
information in conjunction with “Performance” on page 25, which examines factors
that can help you optimize searching in Extended Search. Generally, a system that
is designed to be scalable leads to a system that also performs well. A number of
factors influence both scalability and performance:

v Hardware, both the amount of memory and the number of processors.

v The number of users.

v The number, type, and speed of data sources in your domain. Keep in mind that
Extended Search can never be faster than the backend sources because it must
wait for the sources to respond. Because some of the sources, and the links to
them, contain quite a bit of overhead, you should not install too many different
types of data sources on the same server.

v Other factors beyond the control of Extended Search, such as network traffic.

Following guidelines that may help you assess your scalability needs in general,
review the following ways that you can scale an Extended Search system:

v “Creating multiple client applications” on page 14

v “Separating brokers from the Web server” on page 15

v “Separating agents from brokers” on page 15

v “Setting up multiple brokers” on page 18

To help you evaluate the changes you may want to make in your environment, you
should also review “Broker network configurations” on page 21.

Assessing scalability
In general, your first exposure to the Extended Search product is through installing
all the components on a single machine. This arrangement is useful for
demonstration purposes, exploration of Extended Search capabilities, and
workgroups of a limited size.

The base scalability option is to increase the resources available on the Extended
Search server. You can then adjust the configuration of server tasks as appropriate.
The architecture of Extended Search allows it to take advantage of available
resources to support additional workload and improve performance. However, as
your system expands, there are other options you can pursue to distribute Extended
Search across multiple servers.

The distributed component architecture of Extended Search offers the flexibility to
scale a system according to specific requirements. It also allows an enterprise to
arrange the Extended Search components in a topology that best matches its
needs.

In a full production environment, where the number of Extended Search users
number into the hundreds or thousands, it may be more practical to run the

13

Extended Search server on a different machine from the Web server machine. It
may also be desirable to have the agents be co-resident with the search engines to
which they connect. In this instance, the agents would be configured to run on the
machines that host the data sources. Some enterprises may require a distributed
processing solution to accommodate data sources or user groups that are
geographically dispersed.

The Extended Search architecture supports vertical and horizontal scalability.

v Vertically, within a single Extended Search server, you can configure any number
of broker and agent tasks. “Determining the optimum number of tasks” on
page 30 provides guidelines for this assessment.

– The number of broker tasks defines the number of simultaneous client
requests that the server can process.

– The number of agent tasks defines the number of simultaneous data source
search requests that the server can process.

v Horizontally, with multiple machines, you can set up additional Extended Search
servers and additional Web servers.

– For each Extended Search server, you decide whether you want to run only
broker tasks, only agent tasks, or both.

– By having multiple Web servers, you can distribute user load. It is
recommended that you use one Web server to run the Administration
interface, and use at least one other Web server to handle user requests.

Scalability is an advanced topic that requires a full understanding of Extended
Search concepts and components. Be sure to read the product’s Technical
Overview in Extended Search Programming before reading the following scalability
guidelines.

Creating multiple client applications
An Extended Search server can be accessed by any number of client applications,
each tending to its own user communities. When you configure Extended Search,
you can configure many different instances of client applications to support the
varied and specific needs of your user community. Each client application has it
own application-specific definition in the configuration database.

An Extended Search Web Client application consists of HTML or JSP pages. The
pages imbed easy-to-use Extended Search tags or beans that let users enter query
strings, identify various sources to be searched, and set a multitude of search
options. An Extended Search servlet translates the Extended Search-specific tags
into corresponding search functionality and submits them to the server for
execution.

The creation of multiple Web Client applications is a simple matter of creating a
different set of search forms, with imbedded Extended Search functionality, for
access by particular user groups.

If your users use the Notes Client application, you should create separate client
application databases. With separate databases, you can partition functions (such
as financial versus personnel data), enforce group filtering at the database level,
and split the application processing load.

An Extended Search Notes Client application is a Notes database created from a
template file (.nsf) provided by Extended Search. When you select the Notes Client

14 Extended Search: Security, Scalability, and Performance

desdtfrm.htm
desdtfrm.htm
desptfrm.htm

to install, the template file is copied into the Domino server’s data directory. See
Extended Search Administration for instructions on how to create a Notes
application database from the database template.

Separating brokers from the Web server
Continued growth in the use of Extended Search will eventually bring a broker to
the limits of its machine resources. When the broker shares a machine with a busy
Web server, the limits of the resources actually available to the broker are reached
much sooner. A first step in improving performance, therefore, is to place the Web
server and the broker on separate machines. Figure 2 shows a schematic of
separating the Web server and the broker.

When you installed Extended Search, you installed Web server support on the
machine that hosts your Web server. If you installed the Extended Search server on
this same machine, you need to update the configuration to specify where the
broker now resides. If you renamed the broker to be consistent with its machine
name, you also need to update configuration data for your applications. You must
ensure that each application references the correct broker name as the entry
broker. This is necessary to ensure that user requests are properly redirected from
the Web server to the broker’s server.

For instructions on how to separate a broker from the Web server and how to
configure applications to use the new broker, see Extended Search Administration.

Separating agents from brokers
The number of active agents plays a crucial role in determining the effectiveness of
Extended Search and the response time to the end user. Consider, for instance,
three users, all of whom issue queries directed at fifteen sources. Unless there are
at least 45 copies of the agent task available to process these requests, at least
one of the end users will experience an increased response time. The amount of
time is over what would occur if only one individual were accessing the system.

Resource usage studies show that it is rarely economically feasible to support a
worst case scenario. That is, you do not need to plan to have enough agents to
support all users searching all sources simultaneously. Instead, you need to decide
what level of support to provide.

Agent A

Agent B

Agent C

Broker

Web Server Host Broker Host

Web Server

Servlet

Reflector

Configuration
Database

Figure 2. Running the broker and Web server on separate hosts

Scalability 15

You need to estimate how many simultaneous requests you will need to support
along with the average number of sources that will be queried per request. The first
value indicates the desired number of Search Manager tasks that should be
running. The first value multiplied by the second value yields a value indicative of
the desired number of agent tasks.

As Table 1 on page 30 illustrates, multiple simultaneous users, and a large number
of queried sources, can cause the number of desired agents to quickly exceed the
recommended limits for a single machine. One of the scalability upgrades available
through Extended Search is that of installing agents, plus an Extended Search
server to control them, onto a separate machine. Figure 3 illustrates the schematic
of such a partitioning.

Installing some agent tasks on another machine will not help if all of the actual
sources, and their associated search engines, remain on the same broker machine.
In fact, response time might actually degrade if agents on a remote host needed to
communicate back to the broker’s host to access their associated search engines.
Accordingly, for this scaling upgrade to be effective, you should migrate or replicate
some sources, but usually not all sources, on the remote host.

You should rely on performance statistics (or best guesses) when you select the
sources to move, and decide how many to move. Moving a smaller number of
heavily searched sources to the remote machine is likely to have a greater impact
than moving a larger number of rarely searched sources.

The partitioning of agent tasks should be based on an estimate of how many
sources on each machine are likely to be queried individually by N simultaneous
requests. (N is the number of simultaneous user requests your system is configured
to support.)

The following topics discuss separating agents from brokers, moving sources to a
remote host, and adding remote agents to load balance the query effort. It is
possible to expand that approach by moving sources to multiple remote hosts and
adding agents on all of those hosts.

v Configure remote links

v Assign unique agent names

v Partition multiple agents and assign sources to each agent

Broker Host Agent Host

Agent A

Agent B

Agent C

Agent D

Agent E

Agent F
Broker

Figure 3. Running brokers and agents on separate hosts

16 Extended Search: Security, Scalability, and Performance

Configuring remote links
Agents are server tasks and thus need an Extended Search server to start them up,
handle their communications, and provide other client-server architectural needs.
Accordingly, there needs to be configuration data for the Extended Search server
and its agent tasks on the remote host.

For instructions on how to set up a remote link, see Extended Search
Administration.

Assigning unique agent names
An agent is a server task capable of dynamically linking to all of the data source
types that are supported by Extended Search. The exact set of data sources is
determined at initialization time through a configuration request made to the broker.
The name of the agent is passed along with the request. The broker responds with
a list of sources that can be serviced by an agent with that name.

Consider an example where all of the sources have been partitioned across two
machines, A and B. All of the Notes sources are on machine A, and all of the File
System sources are on machine B. Further assume that the agents do not have
unique names (both use the default name agent).

The agent on machine A receives its configuration information. It learns that it is
expected to search both Notes and File System sources, even though the actual file
system documents are on another machine. This is of little consequence because
machine A will never be sent a search request for those data sources (by way of
their network addresses). However, it is important if prerequisite software for that
type of link is not installed.

Access to data sources of a certain link type may depend on other product software
being available on the machine where the agent is to run. For example, for an
agent to access Notes data sources, then Notes software must be available on that
machine. In this example, the presence of the Notes software on machine A
satisfies this requirement (file system searching requires no additional software).

But now consider the agent on machine B. Because it was not assigned a unique
name, it will have configured itself to search both Notes and File System sources. A
problem results because machine B does not have Notes software or databases
installed. The result is typically an operating system message that identifies the
missing software (in this case Notes), and a subsequent failure of the agent to
initialize.

Partitioning agents on a single machine
Extended Search uses both the broker name and agent name to provide the agent
with information that it needs. This feature means that you can partition sources
among multiple agents on the same machine. You might decide to establish more
than one agent on a single machine for the following reasons:

v You may want to distribute resources by segregating a certain type of data
source and have those sources serviced by one agent.

v You may need to isolate a particular source. Isolation allows you to send test
queries without exposing the source to the user population.

v You may have a new type of data source that requires the development of a new
discoverer, link, and grammar. Isolating the source allows you to load and test
only the new shared libraries required by that type of data source.

Scalability 17

v You may need to dedicate an agent and direct queries to a single data source,
such as a data source that takes some time to instantiate, or that has security
restrictions and limited access. For very slow data sources, you may want to
configure a dedicated agent, start 50 copies of this agent, and allow another
agent or two to handle all other requests.

v You may want to reduce the load on a source with a fixed number of
simultaneous connections. By placing all the agents for the source in one set,
you can grant another set of agents a larger number of server task copies. This
approach may better utilize the resources of the machine.

For instructions on how to set up multiple agents on the same machine, and how to
assign data sources to each agent, see Extended Search Administration.

Setting up multiple brokers
“Separating agents from brokers” on page 15 discusses how Extended Search
supports the partitioning of sources across multiple machines. This allows the
breadth and performance of your searches to be bound only by the number of
machines that host the content to be searched.

You should note, however, that there is an increase in machine-to-machine
communication that is incurred through this scaling method. Every source being
queried, by each user, results in a separate message being sent to an agent that
resides on the machine with that source. When all sources are local, this
communications cost belongs entirely to the Extended Search server, and it is
entirely negligible.

If a search is run against eight dozen sources, the broker will send 72 queries to
the remote machines. (For example, you may have three dozen sources on one
remote host and three dozen sources on another remote host.) Presumably, the
broker will receive 72 hitlists in return. Each individual hitlist may be very large. If
each hitlist contains the maximum number of hits, then most of that data will be
discarded when the broker consolidates all of the hitlists. The broker keeps only the
top entries, up to the value configured for the maximum number of hits that can be
returned to the client application.

Another scaling approach is to configure multiple brokers on remote hosts with
remote data sources and agents. In Extended Search, the most useful and
extendable scalability method is the use of multiple brokers. Under a multiple broker
schema, sources get partitioned across all of the brokers, which keeps any one
broker from being overwhelmed with queries.

With multiple brokers, you can partition the user population and limit the number of
queries that are handled by each broker. Additionally, broker-to-broker
communication decreases the bandwidth needed (as compared to that for remote
hosts without brokers). It also spreads out, as well as decreases, the effort for hitlist
consolidation.

Figure 4 on page 19 illustrates a schematic for two networked brokers, both of
which interact with the configuration database and a Web server. Having a single
configuration database define the Extended Search domain allows system
administrators to maintain configuration data at a centralized point. This reduces
both the effort and the risk of mistakes as compared to a design wherein each
broker has its own independently maintained configuration database.

18 Extended Search: Security, Scalability, and Performance

The broker and agent tasks on each broker machine need configuration information.
In addition, each broker contains an Internal Configurator task. Furthermore, all the
other server tasks on each broker send their configuration request to the local
Configurator task. This design minimizes the configuration changes that are
necessary for scaling up to multiple brokers.

All of the individual (non-Configurator) tasks, including those for the agents, are
exempt from having to know which broker machine they are running on. They
simply ask their local Configurator task for the appropriate configuration data. The
Configurator task running on each broker knows that it needs to forward all
requests for configuration to the configuration database.

For instructions on how to set up multiple brokers, see Extended Search
Administration.

Advantages of multiple brokers
One of the most important advantages to the multi-broker environment is that the
entry broker does not have to send queries directly to every remote source. Instead,
it can send a single message to the broker on each remote machine in the broker
chain. The remote brokers then split the message into multiple requests for the
sources (fronted by links) on that machine.

There is an even greater improvement on the return path. Instead of every source’s
hitlist returning to the entry broker, each broker consolidates the hitlists from the
sources on its machine. Each broker then returns one message with a single hitlist
to the entry broker. The entry broker only needs to consolidate a final hitlist from its
own local sources, plus one hitlist from each broker in the broker chain.

Partitioning the user population
After you configure multiple brokers, you can achieve additional enhancement by
partitioning end users such that the same broker is not the entry broker for the
entire user population. An entry broker is the first broker (potentially in a chain of
brokers) that receives the query from an Extended Search Reflector or servlet.

For each query, the entry broker performs more actions than the remote brokers.
Thus, assigning all of the brokers to be entry brokers can enhance performance.
Alternatively, assigning a noticeably faster machine to be the designated entry
broker can accomplish the same objective.

The easiest means to partition users is to establish multiple Web servers. You
assign a portion of the user population to each Web server, and have each Web

Agent A

Agent B

Agent C Agent F

Agent E

Broker 2

Agent D

Configuration
Database

Web
Server

Broker 1

Figure 4. Dual brokers

Scalability 19

server point to a different entry broker. Figure 5 illustrates a schematic for this
solution with two Web servers and two brokers.

Note that adding Web servers is not likely to be economically feasible if you do so
for the sole purpose of load-balancing the brokers. However, if multiple Web servers
already exist, then pointing them at different brokers is highly advantageous.

For Notes Client users, you can set up a single Web server to distribute Extended
Search requests across a number of different brokers. This enables you to share
the entry broker’s burden across multiple brokers. To accomplish this, use the
configuration file for the Extended Search Reflector to tell the Reflector about the
existence of multiple brokers. The server sends each incoming message to a broker
that it randomly selects from the set of specified brokers.

Figure 6 on page 21 depicts the schematic for a single Web server and two brokers,
where all three entities are running on separate machines. Note that there is
nothing about this schema that prevents a Web server from running on the same
machine as one of the brokers it may select.

Reflector
or Servlet

Reflector
or Servlet

Web Server Host 2Web Server Host 1

Agent F

Agent E

Agent A

Agent B

Agent C

Broker 1 Broker 2

Agent D

Configuration
Database

Figure 5. Partitioning users across brokers

20 Extended Search: Security, Scalability, and Performance

Broker network configurations
There are many ways that you can install and configure Extended Search to satisfy
the resources available in your enterprise. Some of the network configurations you
might consider include the following:

v If you are a small shop, or running Extended Search in test mode, you might
install all the Extended Search server components on the same machine as your
Web server. In this scenario, a single broker handles all search request
processing.

v To balance some of the processing load, you could separate the broker from the
Web server. In this scenario, the server that hosts the broker handles all search
request processing, and the Web server handles all requests for Web and
configuration database processing.

v You could set up multiple brokers, and allow the same Web server to service all
of them. This scenario enables you to further balance the processing load by
configuring applications to use a particular broker as an entry broker. Each
broker handles the search request processing for the data sources for which it is
responsible. The entry broker aggregates a final hitlist for its own local sources
plus the hitlists returned from the other brokers.

v You could set up multiple Web servers, and allow them to service multiple
brokers. In this scenario, particular applications funnel requests through a
particular Web server. The Web server distributes the requests to the appropriate
entry broker, as defined in the application, and shares the workload among the
various brokers.

By separating brokers and Web servers, setting up multiple brokers, and separating
brokers and agents, you can scale Extended Search up to your existing hardware
limits. After a certain point, which varies for each enterprise, the organization of the
multiple brokers will itself become an issue that requires system administrator
action.

Reflector or Servlet

Web Server Host

Agent F

Agent E

Agent A

Agent B

Agent C

Broker 1 Broker 2

Agent D

Figure 6. Using a single Web server to load-balance multiple brokers

Scalability 21

For purposes of this discussion, Figure 7 defines a broker unit as a broker, its
co-located sources and agents, and the users for which this broker is the entry
broker. The broker unit, which is depicted as a hexagon, is the center of all normal
broker and agent activities.

As depicted in the figure, there are three different network topologies for which you
can configure a broker unit. These include a Fully Connected Network, a Hub
Network, and a Multi-Hub Network. The following topics discuss each network
configuration and the motivations for implementing each one.

To assist you as you configure brokers, the Administration interface provides tools
to display your network configuration in a graphical view. After adding a server to
the Extended Search domain, you can position it with an icon that best depicts how
the broker on that server interacts with other brokers in the domain. You can also
draw connector lines between the server icons to easily establish communication
links between them. For information about adding servers and graphically
connecting them, see Extended Search Administration.

Fully connected network
The fully connected star network, as shown in Figure 7, consists of four broker
units. An incoming query to any one of these brokers gets dispatched appropriately
(based on the settings in the configuration database) to the other remote brokers.
The remote brokers then expand the request and send individual queries to each
source’s co-resident agent.

Each remote broker consolidates the hitlists from its local sources and passes them
back as a single hitlist to the entry broker. The entry broker consolidates its local
hitlists with the hitlists returned by the remote brokers. This configuration involves a
minimal amount of administrative setup.

Hub network
Another common network is the centralized hub illustrated in Figure 7. There is one
hub broker unit that knows about all other broker units. Each of the other broker
units knows only about itself and the hub broker. This hierarchy is most appropriate
when there is one machine in the enterprise that is much more powerful than all the
others. Typically, the hub broker will have no local sources.

Fully Connected Network

Hub Network

Multi-Hub Network

Figure 7. Fully connected, hub, and multi-hub networks

22 Extended Search: Security, Scalability, and Performance

The hub network is elegant, easy to understand, and not too complicated to set up.
Its major disadvantage lies in the bottleneck of the hub broker. The hub broker must
be extremely powerful to keep from being overloaded and, consequently, slowing
down every request and response. Note that, among other things, the hub broker is
required to do the largest part of hitlist consolidation for all queries.

Multi-hub network
The multi-hub network shown in Figure 7 on page 22 consists of a star network that
comprises multiple broker units arranged as a hub. Each broker unit of that hub is
the sole entry point for a number of other rim broker units. Again, it would be
desirable to have the fastest machines constitute the hub broker. One design goal
is to have roughly as many rim broker units connected to each hub broker unit as
there are total hub broker units. The hub brokers would probably not have any local
sources.

Such a hierarchy has the advantage that load sharing is almost automatic. If a
query is directed against every single defined source, each broker would send out
roughly the same number of requests. It would receive the same number of
responses, and consolidate the same number of hitlists, as all of the other brokers.
If requests are coming in evenly across all the rim brokers, then the distribution of
messages will keep any of the brokers from becoming a bottleneck.

Scalability 23

24 Extended Search: Security, Scalability, and Performance

Performance

In an increasingly complex information technology (IT) environment, it is important
to maintain a balance between providing users with the best technology available to
help them do their jobs, and operating within the enterprise budget. The basic
ingredients of the IT budget include computer hardware and software. An enterprise
must combine these components in the right proportions to service end users.

It is important to plan hardware and software upgrades that account for future
increases in work load:

v Hardware is a deterministic resource that is easy to quantify for planning
purposes. Definitive answers include how fast the computer is, how much
memory it has, or how much disk capacity it has. It is difficult to be as definitive
about the software that runs on a computer network.

v Software performance stems, in large part, from a program’s ability to efficiently
and intelligently use a computer’s resources. Even the most efficient software
will, however, eventually exhaust computer resources as the number of users or
the amount of activity increases.

Extended Search has been engineered to accommodate an enterprise’s increased
performance requirements. The following topics should provide you with sufficient
information to optimize overall search performance. You should review this
information in conjunction with “Scalability” on page 13, which outlines approaches
that can help you expand the Extended Search system to accommodate growth.
Discovering your enterprise’s optimum settings is an iterative process, one that
involves monitoring server resources and making appropriate adjustments.

Following guidelines that may help you assess your performance needs in general,
review the following ways that you can optimize search activities in an Extended
Search system:

v “Optimizing end-user performance” on page 26

v “Optimizing server performance” on page 28

Assessing performance
Before making adjustments to your Extended Search system, obtain an estimate of
the domain’s current performance to serve as a baseline for future comparisons.

The Extended Search Monitor allows you to identify areas where system
performance can be improved. It provides a summary of search statistics that lists
all of the target data sources serviced by an Extended Search server. For each data
source, the Monitor provides the total number of search and retrieval requests. It
also shows the average overall response time for the requests to complete.

If one data source has a relatively high average response time, then it is a good
candidate for investigation. You should examine both the source database (and its
search engine) and the configuration settings that define the source and its link.

The Monitor also displays server task statistics. Each type of server task can have
one or more copies of it started by the Extended Search server. Increasing the
copies of a task increases the number of requests for service that the server can
process at the same time.

25

You can display the Server Tasks window in one of two views, Detailed or
Summary. When you view the Server Tasks window in Summary view, you see a
list of server tasks and a status light for each copy of a server task. Watching the
conditions of the status lights (text and color) for a server task can reveal
opportunities for system improvement.

If a task remains idle (gray), even under heavy system load, you may be able to
reduce demand on system resources by decreasing the copies of that task.
Conversely, if all copies of a task are busy (green), adding copies of this type of
task may eliminate bottleneck conditions.

“Optimizing server performance” on page 28 describes the precise tuning of server
tasks. For now, it is important to be aware of the significance of the statistics that
the Monitor can provide.

Optimizing end-user performance
Many factors can impact the performance of a sophisticated search tool and
application platform like Extended Search. Factors to consider include the following:

v Number of users

v Actions the users are performing

v Type and design of the client applications

v Hardware platform for both client workstations and server machines

v Operating systems for both client workstations and server machines

v Network protocols and access methods

v Server deployment topology

While search performance is, in large part, directly related to the power and
performance of the Extended Search server, there are some discretionary measures
that the end user can take to improve the overall response time of a search. There
are also steps a system administrator can take to optimize the performance of
individual servers.

When using an Extended Search client application, users may choose to submit
either simple searches or advanced searches. Simple searches provide for keyword
matching on all or some of the words contained in a search phrase. Advanced
searches allow the formation of GQL statements of varying complexity.

Complex queries consisting of deeply nested Boolean expressions can result in the
serial submission of multiple partial queries, thereby taking longer to complete than
simple queries. This occurs if the target data source does not support nested
operations. Under these conditions, the agent automatically compensates for this
deficiency by first submitting multiple partial queries. It then calculates the union or
intersection of various sets of results to create the hitlist for the entire query.

By accessing Extended Search through the Internet, users interact with servlets
through a standard Web browser. When using a Notes Client, results of the search
are stored in a Notes database. When using a Web Client, results are formatted as
HTML and displayed directly in the Web browser. Depending on options included in
the search form, users may be able to save the query and search results to share
with other users.

26 Extended Search: Security, Scalability, and Performance

The following techniques can help you optimize response time for your user
community:
v Replicating databases.
v Setting timeout values.
v Sorting search results.

Replicating databases
One optimization technique for the Notes Client is to replicate the application on the
user’s workstation. Replication is generally recommended as a way of decreasing
overall response time when maintaining a continual connection to the network is not
a concern. If users do not need to share queries and query results with others, then
using a local copy of the Notes Client application is the most efficient choice.

When a user runs a local Notes Client application, search results get stored on the
user’s workstation. Because the local application is not shared with others, the user
can be assured that all application processing is dedicated to their searches only.

Setting timeout values
Users also have the ability to set workstation timeout values. Timeout values (in
seconds) represent the limits that a user is willing to wait for a request to complete.

Take care when setting timeout values. You may set a certain value to
accommodate a database that is notoriously slow. On the other hand, unusually
long timeout values can result in very elongated response times. If you use the
Notes Client application, the longest responding database or the timeout value
determines the total response time, whichever occurs first.

Timeout Example
If a search request is made against 100 data sources, 99 of which performed
their searches within five seconds and 1 which performed its search in 20
seconds, then the total response time will be 20 seconds. If the timeout value
is 10 seconds, the results for the first 99 data sources will arrive on time. The
results for the 100th data source will never arrive because all outstanding
requests after the time limit, in this case 10 seconds, are ignored. If the
timeout value is 4 seconds, then the timeout will occur before any of the data
sources return results. The user will receive zero hits, along with a warning
that the query expired.

Sorting search results
Another time saving technique for Web-submitted queries is to have the results
returned the moment they become available. In this scenario, the user selects a
suitable, and preferably small, hitlist page size. The system returns results as soon
as one page has been filled. Thus, it is likely that the user will receive some results
quickly, even if all of the data sources do not return results within the allotted
timeout period.

By the time the user has examined the first page of hits, it is highly probable that
the next page has been filled and returned. This technique can have dramatic
effects on reduced response times when the number of sources to be searched is
very large.

Performance 27

Sorting Example
You can modify the previous example to reflect that at least 10% of the 100
data sources will return three or more hits within 1 second. Assume that the
page size for the hitlist is 5. It is likely that users will experience a 1–second
response time for the first page of results and subsequent pages thereafter.
When using a Notes Client application, users would need to wait 20 seconds
for the server to receive and sort all of the results. When using a Web Client
application, users would wait 20 seconds only if they asked for results to be
sorted instead of receiving results as they become available.

In general, it is good practice to choose as sources only those that are deemed
necessary for a search request. Blanket searches across all data sources may
result in varying, partial, or no results depending on the system workload and the
timeout values that are set for a workstation. Blanket searches also increase the
total workload on the system and, as such, degrade overall performance.

Optimizing server performance
The discussions, so far, have covered the performance optimization techniques
available to client applications and end users. The remainder of this discussion
concentrates on adjustments that you can make to a single Extended Search server
to improve overall response time. “Scalability” on page 13 describes how to use
multiple Extended Search servers to improve performance when the capacity of a
single machine has been exceeded.

In a single server installation, one host machine runs not only the Extended Search
broker, but also the agents, the Web server (and the Reflector or servlet by which it
communicates with the server), and the data sources and search engines with
which the agents communicate.

This arrangement of components is useful for demonstration purposes, exploration
of Extended Search capabilities, and small workgroups that search across a limited
number of sources. For large enterprises, where the number of users and sources
grow over time, a single server becomes overburdened as it attempts to meet the
usage demands placed on it.

The following techniques can help you optimize Extended Search server response
time:
v “Understanding server tasks” on page 29.
v “Determining the optimum number of tasks” on page 30.
v “Localizing agents with data sources” on page 31.

Servlet

Agent A

Agent B

Agent C
Broker

Configuration
Database

Web Server

Reflector

Figure 8. Components on a single host

28 Extended Search: Security, Scalability, and Performance

Understanding server tasks
The Extended Search server comprises a group of programs that work in
conjunction with one another. Figure 9 depicts the server’s internal schematics.

The individual programs are known as server tasks. A server task is an
independent program that responds to requests for service. Server tasks execute
under the control of the server. Other components contact them through an
assigned network address (host name and port number). The Server Tasks window
of the Extended Search Monitor displays the processing activity of all the tasks
operating under a given Extended Search server.

Extended Search includes the following server tasks:

v The Internal Configurator interfaces with the Extended Search configuration
database to provide configuration information to other server tasks. There should
be no more than one copy of this task per Extended Search domain.

The Configurator regulates the server tasks and ensures that the appropriate
tasks get invoked in the proper order. It also translates data source names into
network addresses. Sources targeted by a query are in names understandable to
the end user. The agent responsible for searching a designated source is
reachable through a network address. This concept of translating names to
network addresses is key to being able to make scaling upgrades.

v The Broker performs the following key functions:

– Distributes search requests to the appropriate set of agents, and then waits
for the return of responses. The broker aggregates, sorts, and prunes the
search results, and then returns them to the client application.

– Distributes fetch requests to the appropriate set of agents, and then waits for
the return of responses. It aggregates documents into a single message, and
returns it to the client application.

– Collects and consolidates messages from other server tasks, and decides
which, if any, should be reported as events. You can view Extended Search
messages through the Event Log Viewer in the Administration interface.

v The Agents perform the actual search or retrieval against a given data source.
Figure 9 depicts agents in a dotted box to reflect the fact that agents can run on
the same machine as the Extended Search broker, or run independently on a
separate machine. See “Localizing agents with data sources” on page 31 for a
discussion of running agents remotely from or co-resident with a broker.

v The Data Source Discoverer manages the data source discovery processes.
Normally, two copies of this task per Extended Search domain is sufficient.

Extended Search Server

Agent

Data Source
Discoverer

Broker

Configurator

Figure 9. Constituent parts of the server

Performance 29

Determining the optimum number of tasks
You can have more than one copy of the broker and agent tasks started by the
Extended Search server. Each copy of a server task is capable of processing a
single request for service. Additional requests will be queued and then processed in
first-in-first-out (FIFO) order. Increasing the copies of server tasks increases the
number of requests for service that the system can process at the same time.

For the broker, the settings you choose determine the overall effectiveness of a
broker’s ability to handle requests from users. In general, if the number of server
task copies increases, the number of simultaneous requests from users that a
broker can process in parallel also increases. Likewise, the greater the number of
agents, the greater the number of sources that the system can search in parallel.

Minimally, it is a good practice to have at least two copies in each type of server
task. This provides for some automatic backup and redundancy, so that an
unforeseen failure in one type of server task would not disable the entire system.
The one exception to this rule is when setting the copies for the Internal
Configurator. For this special server task, there must never be more (or less) than a
single task in each server.

Table 1 shows the recommended copy limits for each type of server task, given the
resources of the machine on which the broker is running. Note that if other full-time
running programs (such as a Web server) exist on the same machine, you may
need to reduce these numbers for most effective performance. Exceeding these
guidelines will not break the broker. However, the additional cost in operating
system overhead for each additional task will begin to interfere with overall
performance.

The first column of numbers for a single 350 MHz processor with 256 MB of
memory is the default configuration for a single server installation. The only
exception is that a single server installation has no stand-alone agents, and thus
that row is irrelevant.

Table 1. Suggested Limits on Server Task Copies

Memory 256 MB 512 MB 1 GB 2 GB
Processors 1 @ 350 MHz 1 @ 550 MHz 2 @ 350 MHz 4 @ 400 MHz

(default)
Internal Configurator 1 1 1 1
Data Source Discoverer 2 2 2 2
Broker 5 15 20 30
Agent (with Broker) 15 20 30 50
Agent (stand-alone) 30 40 50 70

The total number of broker tasks determines the practical number of simultaneous
end-user requests. When all of these tasks are busy, additional requests get
queued until an appropriate server task becomes idle.

The speed with which search tasks can finish a query is dependent on the number
of sources involved in the query. It also depends on the number of agent tasks
available to search those sources, and how long it takes the data source to
respond.

If you define five copies of the agent task, and define each end-user request to run
against fifteen sources, then the first query would tie up all of the agent tasks for up
to three search cycles before the second query could even begin to search.
Meanwhile, queries three, four, and five would be in the queue waiting for their turn.

30 Extended Search: Security, Scalability, and Performance

As the Extended Search server initializes, it starts the defined number of copies for
each type of server task, and then listens for client requests. The installation
process sets the number of copies for the respective broker tasks to default values.
For a higher powered machine, it is almost certain that you will need to adjust these
initial numbers.

For instructions on how to configure multiple copies of broker and agent tasks, see
Extended Search Administration.

Localizing agents with data sources
Extended Search agents and the data source engines they connect to are generally
the largest consumers of machine resources. Their consumption can vary widely
from enterprise to enterprise, depending on the number and type of databases to
which the agents link.

When using Extended Search to search Notes databases, it is particularly beneficial
for the Notes database and the agent to be co-resident on the same machine. The
performance improvement in this case is particularly large. To put it another way,
the performance degradation from not making the link local to the database is very
costly. Therefore, every searchable Notes database should have its associated
agent installed on the same machine. If this is not possible, then you should
replicate the Notes database onto a machine on which you can install a local agent.

Use of replicated databases can also alleviate potential problems. In an
environment where users can query against several databases, some of which are
not under your control, the owners of the databases may make changes that
prevent the agents from locating the databases. For example, an administrator may
move the database to another machine or change the name of the database. There
may also be other enterprise applications that use these same databases and
generate a lot of other activity.

You can alleviate these problems by replicating remotely hosted databases onto a
local machine. Once replicated, you can maintain local copies with a constant name
and address. If a database name and address must change, you should make the
corresponding changes in the configuration database. For example, scalability may
require you to split several replicated databases between two machines.

You can also direct the query load to these local copies. This action can improve
search performance and reduce the impact of the search on other applications.

The LNServer data source parameter tells the agent how to access a Notes
database — either locally or on a remote server. For instructions on how to
configure the LNServer parameter, see Extended Search Administration.

Performance 31

32 Extended Search: Security, Scalability, and Performance

����

Printed in U.S.A.

	Contents
	Security
	User authentication
	Authentication enforced by the Notes Client
	Authentication enforced by the Web Client
	No Authentication
	Basic Authentication
	Custom Authentication

	Authentication enforced by the broker

	Access control
	Notes ACLs and impersonation
	Web Client access control
	Data source filtering

	Link-level control
	Connecting to data sources
	Authentication enforced by an agent

	Message encryption
	Encryption of message authentication data
	Encryption through SSL

	Notes database control
	Multiple client applications
	Database-level access controls
	Document- and field-level access controls

	Scalability
	Assessing scalability
	Creating multiple client applications
	Separating brokers from the Web server
	Separating agents from brokers
	Configuring remote links
	Assigning unique agent names
	Partitioning agents on a single machine

	Setting up multiple brokers
	Advantages of multiple brokers
	Partitioning the user population

	Broker network configurations
	Fully connected network
	Hub network
	Multi-hub network

	Performance
	Assessing performance
	Optimizing end-user performance
	Replicating databases
	Setting timeout values
	Sorting search results

	Optimizing server performance
	Understanding server tasks
	Determining the optimum number of tasks
	Localizing agents with data sources

