
DB2 for OS/390 Version 5

Preview of SQL Procedures
October 5, 1999

IBM

DB2 for OS/390 Version 5

Preview of SQL Procedures
October 5, 1999

IBM

First Edition (September 1999)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for OS/390), 5655-DB2, and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note
Before using this information and the product it supports, read the information
in “Notices” on page 55.

Contents

Chapter 1. Introduction . 1
Who should read this book . 1
How this book is organized . 1
Other books you might need . 1
Product terminology and citations 2
How to read the syntax diagrams 2

Chapter 2. Installing the SQL procedures code 5

Chapter 3. Writing an SQL procedure 7
Comparison of an SQL procedure and an external procedure 7
Statements that you can include in a procedure body 8
Declaring variables in an SQL procedure 9
Parameter style for an SQL procedure 10
Terminating statements in an SQL procedure 10
Handling errors in an SQL procedure. 10
Examples of SQL procedures 12

Chapter 4. Statements for SQL procedures 15
CREATE PROCEDURE (SQL procedure) 16
The SQL procedure body . 23

Procedure body . 24
Assignment statement . 25
CASE statement . 26
Compound statement . 28
IF statement . 32
LEAVE statement . 33
LOOP statement . 34
REPEAT statement . 35
WHILE statement . 36
SQL procedure statement . 37

Chapter 5. Preparing and running an SQL procedure 39
Using JCL to prepare an SQL procedure 39
Using the DB2 for OS/390 SQL procedure processor to prepare an SQL

procedure . 40
Environment for calling and running DSNTPSMP 40
Authorization to execute DSNTPSMP 42
Writing and preparing an application that calls DSNTPSMP 42

Sample programs to help you prepare and run SQL procedures 46

Appendix A. DB2 objects required by the SQL procedure processor . . . 47
Table spaces and indexes . 47
The SQL procedure source table (SYSIBM.SYSPSM) 47
The SQL procedure options table (SYSIBM.SYSPSMOPTS) 48

Appendix B. SQL statements allowed in SQL procedures 49

Appendix C. SQL reserved words 51

Appendix D. Messages for SQL procedures 53

Notices . 55

© Copyright IBM Corp. 1999 iii

Programming interface information. 56
Trademarks . 57

Index . 59

iv DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Chapter 1. Introduction

This document describes DB2 for OS/390 support for the SQL procedure language.
The SQL procedure language is an implementation of SQL/PSM, which is part 4 of
the ANSI/ISO SQL full level standard of 1992.

The contents of this document will be incorporated into future editions of the
following DB2 for OS/390 documentation:
v Application Programming and SQL Guide
v Installation Guide
v SQL Reference

Who should read this book
This book is for DB2 application developers who are familiar with Structured Query
Language (SQL) and stored procedures and want to learn about writing stored
procedures in the SQL procedure language.

How this book is organized
This book is organized as follows:

v “Chapter 1. Introduction” describes this book and gives general information that
you need to know when you read it.

v “Chapter 2. Installing the SQL procedures code” on page 5 tells you how to install
the SQL procedures code on your DB2 for OS/390 system.

v “Chapter 3. Writing an SQL procedure” on page 7 describes SQL procedures and
shows examples of how to write them.

v “Chapter 4. Statements for SQL procedures” on page 15 describes the syntax of
the CREATE PROCEDURE statement for an SQL procedure and the elements of
the SQL procedure language.

v “Chapter 5. Preparing and running an SQL procedure” on page 39 describes how
to prepare and run an SQL procedure.

v The appendixes contain supplemental information on:
– DB2 tables that are used by SQL procedures
– SQL statements that are valid in SQL procedures
– SQL reserved words
– Messages that DB2 can generate during SQL procedure program preparation

Located at the end of this book are:
v Legal notices
v An index

Other books you might need
DB2 for OS/390 is one of several relational database management systems
developed by IBM®. Each of these systems understands its own variety of SQL.
This book discusses only the variety used by DB2 for OS/390. Other IBM books
describe the other varieties. For a list of these books, see the bibliography at the
end of this book.

© Copyright IBM Corp. 1999 1

If DB2 is the only product you plan to use, you should have available SQL
Reference, which is an encyclopedic reference to the syntax and semantics of
every statement in DB2 SQL. For SQL fundamentals and concepts, see Chapter 2
of SQL Reference.

If you intend to develop applications that adhere to the definition of IBM SQL, see
IBM SQL Reference for more information.

When preparing programs for execution, you will want to refer to the list of options
for BIND and REBIND PLAN and PACKAGE, in Command Reference.

Product terminology and citations
In this book, DB2 Server for OS/390 is referred to as "DB2 for OS/390." In cases
where the context makes the meaning clear, DB2 for OS/390 is referred to as
"DB2." When this book refers to other books in this library, a short title is used. (For
example, "See SQL Reference" is a citation to IBM DATABASE 2 Server for OS/390
SQL Reference.)

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

MVS Represents the MVS/Enterprise Systems Architecture (MVS/ESA) element
of OS/390.

How to read the syntax diagrams

The following rules apply to the syntax diagrams that are used in this book:

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The ÊÊ─── symbol indicates the beginning of a statement.

The ───Ê symbol indicates that the statement syntax is continued on the next
line.

The Ê─── symbol indicates that a statement is continued from the previous line.

The ───ÊÍ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the Ê───
symbol and end with the ───Ê symbol.

v Required items appear on the horizontal line (the main path).

ÊÊ required_item ÊÍ

v Optional items appear below the main path.

ÊÊ required_item
optional_item

ÊÍ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

2 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

ÊÊ
optional_item

required_item ÊÍ

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ required_item required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the main
path.

ÊÊ required_item
optional_choice1
optional_choice2

ÊÍ

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

ÊÊ required_item
default_choice

optional_choice
optional_choice

ÊÍ

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

ÊÊ required_item »

.

repeatable_item ÊÍ

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

ÊÊ required_item »

,

repeatable_item ÊÍ

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Chapter 1. Introduction 3

4 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Chapter 2. Installing the SQL procedures code

The SQL procedures code for DB2 Version 5 is shipped as zip file sqlproc1.zip,
which you can download from
http://www.ibm.com/software/db2os390/sqlproc

After you download the zip file to your PC and unzip it, follow the instructions in
sqlproc1.readme to install SQL procedures support.

© Copyright IBM Corp. 1999 5

6 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Chapter 3. Writing an SQL procedure

An SQL procedure is a stored procedure in which the source code for the
procedure is in an SQL CREATE PROCEDURE statement. The part of the CREATE
PROCEDURE statement that contains the code is called the procedure body.

Creating an SQL procedure involves writing the source statements for the SQL
procedure, creating the executable form of the SQL procedure, and defining the
SQL procedure to DB2. There are two ways to create an SQL procedure:

v Use the IBM DB2 Stored Procedure Builder product to specify the source
statements for the SQL procedure, define the SQL procedure to DB2, and
prepare the SQL procedure for execution.

v Write a CREATE PROCEDURE statement for the SQL procedure. Then use one
of the methods in “Chapter 5. Preparing and running an SQL procedure” on
page 39 to define the SQL procedure to DB2 and create an executable
procedure.

This chapter discusses how to write a CREATE PROCEDURE statement for an
SQL procedure. The following topics are included:
v “Comparison of an SQL procedure and an external procedure”
v “Statements that you can include in a procedure body” on page 8
v “Terminating statements in an SQL procedure” on page 10
v “Handling errors in an SQL procedure” on page 10
v “Examples of SQL procedures” on page 12

For information on the syntax of the CREATE PROCEDURE statement and the
procedure body, see “Chapter 4. Statements for SQL procedures” on page 15.

Comparison of an SQL procedure and an external procedure
Like an external stored procedure, an SQL procedure consists of a stored
procedure definition and the code for the stored procedure program.

An external stored procedure definition and an SQL procedure definition specify the
following common information:

v The procedure name.

v Input and output parameter attributes.

v The language in which the procedure is written. For an SQL procedure, the
language is SQL.

v Information that will be used when the procedure is called, such as run-time
options, length of time that the procedure can run, and whether the procedure
returns result sets.

An external stored procedure and an SQL procedure differ in the way that they
specify the code for the stored procedure. An external stored procedure definition
specifies the name of the stored procedure program. An SQL procedure definition
contains the source code for the stored procedure.

For an external stored procedure, you define the stored procedure to DB2 by
inserting a row into SYSIBM.SYSPROCEDURES. For an SQL procedure, you
define the stored procedure to DB2 by preprocessing a CREATE PROCEDURE

© Copyright IBM Corp. 1999 7

statement, then inserting a row into SYSIBM.SYSPROCEDURES. See “Chapter 5.
Preparing and running an SQL procedure” on page 39 for more information on
defining an SQL procedure to DB2.

Figure 1 shows a definition for an external stored procedure that is written in
COBOL. The stored procedure program, which updates employee salaries, is called
UPDSAL.

Figure 2 shows a definition for an equivalent SQL procedure.

Notes to Figure 1:

«1¬ The stored procedure name is UPDATESALARY1.
«2¬ The two parameters have data types of CHAR(10) and DECIMAL(6,2). Both are

input parameters.
«3¬ LANGUAGE COBOL indicates that this is an external procedure, so the code for

the stored procedure is in a separate, COBOL program.
«4¬ The name of the load module that contains the executable stored procedure

program is UPDSAL.

Notes to Figure 2:

«1¬ The stored procedure name is UPDATESALARY1.
«2¬ The two parameters have data types of CHAR(10) and DECIMAL(6,2). Both are

input parameters.
«3¬ LANGUAGE SQL indicates that this is an SQL procedure, so a procedure body

follows the other parameters.
«4¬ The procedure body consists of a single SQL UPDATE statement, which updates

rows in the employee table.

Statements that you can include in a procedure body
A procedure body consists of a single simple or compound statement. The types of
statements that you can include in a procedure body are:

INSERT INTO SYSIBM.SYSPROCEDURES
(PROCEDURE,
PARMLIST,
LANGUAGE,
LOADMOD,
COLLID, IBMREQD, RUNOPTS)
VALUES('UPDATESALARY1', «1¬
'EMPNUMBR CHAR(10) IN, RATE DECIMAL(6,2) IN', «2¬
'COBOL', «3¬
'UPDSAL', «4¬
' ', 'N', ' ');

Figure 1. Example of an external stored procedure definition

CREATE PROCEDURE UPDATESALARY1 «1¬
(IN EMPNUMBR CHAR(10), «2¬
IN RATE DECIMAL(6,2))
LANGUAGE SQL «3¬
UPDATE EMP «4¬
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPNUMBR

Figure 2. Example of an SQL procedure definition

8 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Assignment statement
Assigns a value to an output parameter or to an SQL variable, which is a
variable that is defined and used only within a procedure body.

CASE statement
Selects an execution path based on the evaluation of one or more conditions.
This statement is similar to the CASE expression, which is described in Chapter
3 of SQL Reference.

IF statement
Selects an execution path based on the evaluation of a condition.

LEAVE statement
Transfers program control out of a loop or a block of code.

LOOP statement
Executes a statement or group of statements multiple times.

REPEAT statement
Executes a statement or group of statements until a search condition is true.

WHILE statement
Repeats the execution of a statement or group of statements while a specified
condition is true.

Compound statement
Can contain one or more of any of the other types of statements in this list. In
addition, a compound statement can contain SQL variable declarations,
condition handlers, or cursor declarations.

The order of statements in a compound statement must be:

1. SQL variable and condition declarations

2. Cursor declarations

3. Handler declarations

4. Procedure body statements (CASE, IF, LOOP, REPEAT, WHILE, SQL)

SQL statement
A subset of the SQL statements that are described in Chapter 6 of SQL
Reference. Certain SQL statements are valid in a compound statement, but not
valid if the SQL statement is the only statement in the procedure body. Table 4
on page 49 lists the SQL statements that are valid in an SQL procedure.

See “The SQL procedure body” on page 23 for detailed descriptions and syntax of
each of these statements.

Declaring variables in an SQL procedure
To store data that you use only within an SQL procedure, you can declare SQL
variables. SQL variables can have the same data types and lengths as SQL
procedure parameters. For a discussion of data types and lengths, see “CREATE
PROCEDURE (SQL procedure)” on page 16.

The general form of an SQL variable declaration is:
DECLARE SQL-variable-name data-type;

SQL variables have these restrictions:

Chapter 3. Writing an SQL procedure 9

v Because DB2 folds all SQL variables to uppercase, you cannot declare two SQL
variables that are the same except for case. For example, you cannot declare
two SQL variables named varx and VARX.

v If you refer to an SQL procedure parameter in the procedure body, you cannot
declare an SQL variable with a name that is the same as that parameter name.

v Do not use an SQL reserved word as an SQL variable name.

v When you use an SQL variable in an SQL statement, do not precede the variable
with a colon.

You can perform any operations on SQL variables that you can perform on host
variables in SQL statements.

If you specify a label for a compound statement, you can qualify the SQL variable
name with that label name. Qualifying SQL variable names and other object names
is a good way to avoid ambiguity. Use the following guidelines to determine when to
qualify variable names:

v When you use an SQL procedure parameter in the procedure body, qualify the
parameter name with the procedure name.

v Qualify SQL variable names with the label of the compound statement in which
the SQL variables appear.

v Qualify column names with the associated table or view names.

Parameter style for an SQL procedure
DB2 supports only the SIMPLE WITH NULLS linkage convention for SQL
procedures. This means that when you call an SQL procedure, you must include an
indicator variable with each parameter in the CALL statement. See Section 6 of
Application Programming and SQL Guide See for more information on stored
procedure linkage conventions.

Terminating statements in an SQL procedure
The way that you terminate a statement in an SQL procedure depends on the use
of the statement in that procedure:

v A procedure body has no terminating character. Therefore, if an SQL procedure
statement is the outermost of a set of nested statements, or if the statement is
the only statement in the procedure body, that statement does not have a
terminating character.

v If a statement is nested within other statements in the procedure body, that
statement ends with a semicolon.

Handling errors in an SQL procedure
If an SQL error occurs when an SQL procedure executes, the SQL procedure ends
unless you include statements called handlers to tell the procedure to perform some
other action. Handlers are similar to WHENEVER statements in external SQL
application programs. Handlers tell the SQL procedure what to do when an SQL
error or SQL warning occurs, or when no more rows are returned from a query. In
addition, you can declare handlers for specific SQLSTATEs. You can refer to an
SQLSTATE by its number in a handler, or you can declare a name for the
SQLSTATE, then use that name in the handler.

The general form of a handler declaration is:
DECLARE handler-type HANDLER FOR condition SQL-procedure-statement;

10 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

In general, the way that a handler works is that when an error occurs that matches
condition, SQL-procedure-statement executes. When SQL-procedure-statement
completes, DB2 performs the action that is indicated by handler-type.

There are two types of handlers:

CONTINUE
Specifies that after SQL-procedure-statement completes, execution continues
with the statement after the statement that caused the error.

EXIT
Specifies that after SQL-procedure-statement completes, execution continues at
the end of the compound statement that contains the handler.

Example: CONTINUE handler: This handler sets flag at_end when no more rows
satisfy a query. The handler then causes execution to continue after the statement
that returned no rows.
DECLARE CONTINUE HANDLER FOR NOT FOUND SET at_end=1;

Example: EXIT handler: This handler places the string 'Table does not exist' into
output parameter OUT_BUFFER when condition NO_TABLE occurs. NO_TABLE is
previously declared as SQLSTATE 42704 (name is an undefined name). The
handler then causes the SQL procedure to exit the compound statement in which
the handler is declared.
DECLARE NO_TABLE CONDITION FOR '42704';...

DECLARE EXIT HANDLER FOR NO_TABLE
SET OUT_BUFFER='Table does not exist';

Referencing the SQLCODE and SQLSTATE values: When an SQL error or
warning occurs in an SQL procedure, you might need to reference the SQLCODE
or SQLSTATE values in your SQL procedure or pass those values to the procedure
caller. Before you can reference SQLCODE or SQLSTATE values, you must declare
the SQLCODE and SQLSTATE as SQL variables. The definitions are:
DECLARE SQLCODE INTEGER;
DECLARE SQLSTATE CHAR(5);

If you want to pass the SQLCODE or SQLSTATE values to the caller, your SQL
procedure definition needs to include output parameters for those values. After an
error occurs, and before control returns to the caller, you can assign the value of
SQLCODE or SQLSTATE to the corresponding output parameter. For example, you
might include assignment statements in an SQLEXCEPTION handler to assign the
SQLCODE value to an output parameter:
CREATE PROCEDURE UPDATESALARY1
(IN EMPNUMBR CHAR(6),
OUT SQLCPARM INTEGER)

LANGUAGE SQL...

BEGIN:
DECLARE SQLCODE INTEGER;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET SQLCPARM = SQLCODE;...

Chapter 3. Writing an SQL procedure 11

Handling truncation errors in an SQL procedure: Truncation during any of the
following assignments in an SQL procedure causes the SQL procedure to end
unless a CONTINUE handler is defined:
v Assignment of a value to an SQL variable or parameter
v Specification of a default value in a DECLARE statement

You can declare a general CONTINUE for SQLEXCEPTION, or you can declare the
specific CONTINUE handlers for the following SQLSTATE values:

22001 For character truncation

22003 For numeric truncation

Examples of SQL procedures
This section contains examples of how to use each of the statements that can
appear in an SQL procedure body.

Example: CASE statement: The following SQL procedure demonstates how to use
a CASE statement. The procedure receives an employee's ID number and rating as
input parameters. The CASE statement modifies the employee's salary and bonus,
using a different UPDATE statement for each of the possible ratings.
CREATE PROCEDURE UPDATESALARY2
(IN EMPNUMBR CHAR(6),
IN RATING INT)

LANGUAGE SQL

CASE RATING
WHEN 1 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.10, BONUS = 1000
WHERE EMPNO = EMPNUMBR;

WHEN 2 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.05, BONUS = 500
WHERE EMPNO = EMPNUMBR;

ELSE
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.03, BONUS = 0
WHERE EMPNO = EMPNUMBR;

END CASE

Example: Compound statement with nested IF and WHILE statements: The
following example shows a compound statement that includes an IF statement, a
WHILE statement, and assignment statements. The example also shows how to
declare SQL variables, cursors, and handlers for classes of error codes.

The procedure receives a department number as an input parameter. A WHILE
statement in the procedure body fetches the salary and bonus for each employee in
the department, and uses an SQL variable to calculate a running total of employee
salaries for the department. An IF statement within the WHILE statement tests for
positive bonuses and increments an SQL variable that counts the number of
bonuses in the department. When all employee records in the department have
been processed, the FETCH statement that retrieves employee records receives
SQLCODE 100. A NOT FOUND condition handler makes the search condition for
the WHILE statement false, so execution of the WHILE statement ends. Assignment
statements then assign the total employee salaries and the number of bonuses for
the department to the output parameters for the stored procedure.

12 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

If any SQL statement in the procedure body receives a negative SQLCODE, the
SQLEXCEPTION handler receives control. This handler sets output parameter
DEPTSALARY to NULL and ends execution of the SQL procedure. When this
handler is invoked, the SQLCODE and SQLSTATE are set to 0.
CREATE PROCEDURE RETURNDEPTSALARY
(IN DEPTNUMBER CHAR(3),
OUT DEPTSALARY DECIMAL(15,2),
OUT DEPTBONUSCNT INT)

LANGUAGE SQL

P1: BEGIN
DECLARE EMPLOYEE_SALARY DECIMAL(9,2);
DECLARE EMPLOYEE_BONUS DECIMAL(9,2);
DECLARE TOTAL_SALARY DECIMAL(15,2) DEFAULT 0;
DECLARE BONUS_CNT INT DEFAULT 0;
DECLARE END_TABLE INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = DEPTNUMBER;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET END_TABLE = 1;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPTSALARY = NULL;

OPEN C1;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
WHILE END_TABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;
IF EMPLOYEE_BONUS > 0 THEN
SET BONUS_CNT = BONUS_CNT + 1;

END IF;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;

END WHILE;
CLOSE C1;
SET DEPTSALARY = TOTAL_SALARY;
SET DEPTBONUSCNT = BONUS_CNT;

END P1

Example: Compound statement with dynamic SQL statements: The following
example shows a compound statement that includes dynamic SQL statements.

The procedure receives a department number (P_DEPT) as an input parameter. In
the compound statement, three statement strings are built, prepared, and executed.
The first statement string executes a DROP statement to ensure that the table to be
created does not already exist. This table is named DEPT_deptno_T, where deptno
is the value of input parameter P_DEPT. The next statement string executes a
CREATE statement to create DEPT_deptno_T. The third statement string inserts
rows for employees in department deptno into DEPT_deptno_T. Just as statement
strings that are prepared in host language programs cannot contain host variables,
statement strings in SQL procedures cannot contain SQL variables or stored
procedure parameters. Therefore, the third statement string contains a parameter
marker that represents P_DEPT. When the prepared statement is executed,
parameter P_DEPT is substituted for the parameter marker.
CREATE PROCEDURE CREATEDEPTTABLE (IN P_DEPT CHAR(3))
LANGUAGE SQL
BEGIN
DECLARE STMT CHAR(1000);
DECLARE MESSAGE CHAR(20);
DECLARE TABLE_NAME CHAR(30);
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET MESSAGE = 'ok';

SET TABLE_NAME = 'DEPT_'||P_DEPT||'_T';
SET STMT = 'DROP TABLE '||TABLE_NAME;

Chapter 3. Writing an SQL procedure 13

PREPARE S1 FROM STMT;
EXECUTE S1;
SET STMT = 'CREATE TABLE '||TABLE_NAME||
'(EMPNO CHAR(6) NOT NULL, '||
'FIRSTNME VARCHAR(6) NOT NULL, '||
'MIDINIT CHAR(1) NOT NULL, '||
'LASTNAME CHAR(15) NOT NULL, '||
'SALARY DECIMAL(9,2))';

PREPARE S2 FROM STMT;
EXECUTE S2;
SET STMT = 'INSERT INTO '||TABLE_NAME ||
'SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY '||
'FROM EMPLOYEE '||
'WHERE WORKDEPT = ?';

PREPARE S3 FROM STMT;
EXECUTE S3 USING P_DEPT;

END

14 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Chapter 4. Statements for SQL procedures

An SQL procedure consists of a CREATE PROCEDURE statement with a
procedure body. This chapter contains the syntax and parameter descriptions for
the CREATE PROCEDURE statement in “CREATE PROCEDURE (SQL procedure)”
on page 16 and the syntax and parameter descriptions for the procedure body in
“The SQL procedure body” on page 23.

© Copyright IBM Corp. 1999 15

CREATE PROCEDURE (SQL procedure)
The CREATE PROCEDURE statement specifies the source statements for an SQL
procedure.

Invocation
This statement cannot be embedded in an application program or dynamically
prepared. This statement can appear in the following places:

v As the only statement in a partitioned data set member that is input to the DB2
precompiler or the SQL procedure processor

v As the only statement in a character string that is an input parameter for the SQL
procedure processor

For more information on preparing SQL procedures for execution, see “Chapter 5.
Preparing and running an SQL procedure” on page 39.

Authorization
None required.

Syntax

ÊÊ CREATE PROCEDURE procedure-name »

,

()
parameter-declaration

option-list ÊÍ

option-list:

ÊÊ
RESULT SET 0

RESULT SET integer
SETS

LANGUAGE SQL
NO COLLID

COLLID collection-id
Ê

Ê
WLM ENVIRONMENT name

(name ,*)
NO WLM ENVIRONMENT

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
Ê

Ê
PROGRAM TYPE MAIN SECURITY DB2

SECURITY USER RUN OPTIONS run-time-options
Ê

Ê
COMMIT ON RETURN NO

COMMIT ON RETURN YES
procedure-body ÊÍ

parameter-declaration:

ÊÊ
IN

parameter-name parameter-type
OUT
INOUT

ÊÍ

16 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Description
procedure-name

Names the stored procedure. The name is an unqualified long SQL identifer
that must not identify an existing stored procedure at the current server.

The first eight bytes of the SQL procedure name form the default name for the
SQL procedure load module. If you use the default load module name, the SQL
procedure name must conform to MVS naming conventions for partitioned data
set members.

(parameter-declaration,...)
Specifies the number of parameters of the stored procedure and the data type
of each parameter. A parameter for a stored procedure can be used only for
input, only for output, or for both input and output. You must give each
parameter a name.

IN Identifies the parameter as an input parameter to the stored procedure. The
parameter does not contain a value when the stored procedure returns
control to the calling SQL application.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
stored procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
stored procedure.

parameter-type:

ÊÊ built-in-data-type ÊÍ

built-in-data-type:

ÊÊ SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
GRAPHIC

(integer)
VARGRAPHIC (integer)
DATE
TIME
TIMESTAMP

ÊÍ

Chapter 4. Statements for SQL procedures 17

parameter-name
Names the parameter. parameter-name is a short SQL identifier, which can
include only the characters A through Z, 0 through 9, or characters that
correspond to the EBCDIC code points X’5B’, X’7B’, and X’7C’, which
correspond to $, #, and @ in code page 37 or 500. A parameter name
cannot be an SQL reserved word. For a list of SQL reserved words, see
“Appendix C. SQL reserved words” on page 51.

data-type
Specifies the data type of the parameter.

built-in-data-type
The data type of the parameter is a built-in data type. You can use the
same built-in data types as for the CREATE TABLE statement except
LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

The NUMERIC, DATE, TIME, and TIMESTAMP data types are valid in
a CREATE PROCEDURE statement, but they are not valid data types
for the PARMLIST column of SYSIBM.SYSPROCEDURES. When you
define your SQL procedure to DB2 by inserting a row into
SYSIBM.SYSPROCEDURES, you need to make the following
substitutions:

Table 1. Substitutions for NUMERIC, DATE, TIME, and TIMESTAMP in
SYSIBM.SYSPROCEDURES

For this data type in CREATE
PROCEDURE

Substitute this data type in
SYSPROCEDURES

NUMERIC DECIMAL

DATE VARCHAR(10)1

TIME VARCHAR(8)2

TIMESTAMP VARCHAR(26)

Notes:

1. If a date exit is installed on the DB2 subsystem, specify VARCHAR(n), where n is the
length value from field LOCAL DATE LENGTH on installation panel DSNTIP4.

2. If a time exit is installed on the DB2 subsystem, specify VARCHAR(n), where n is the
length value from field LOCAL TIME LENGTH on installation panel DSNTIP4.

For more information on the data types, including the subtype of
character data types (the FOR subtype DATA clause), see
“built-in-data-type” Chapter 6 of SQL Reference.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

Although an input parameter with a character data type has an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the value that is actually
passed in the input parameter can have any subtype. Therefore, conversion
of the input data to the subtype of the parameter might occur when the

18 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

procedure is called. An error occurs if mixed data that actually contains
DBCS characters is used as the value for an input parameter that is
declared with an SBCS subtype.

RESULT SET integer or RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The default is RESULT SETS 0, which indicates that there are no
result sets.

LANGUAGE
Specifies the application programming language in which the stored procedure
is written.

SQL
The stored procedure is written in DB2 SQL procedure language.

NO COLLID or COLLID collection-id
Identifies the package collection that is used when the stored procedure is
executed. This is the package collection into which the DBRM that is associated
with the stored procedure is bound.

NO COLLID
The package collection for the stored procedure is the same as the
package collection of the calling program. If the calling program does not
use a package, the package collection is set to the value of special register
CURRENT PACKAGESET.

NO COLLID is the default.

COLLID collection-id
The package collection for the stored procedure is the one specified.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is a long identifier that
must not contain an underscore.

If you do not specify WLM ENVIRONMENT, the stored procedure runs in the
default WLM-established stored procedure address space specified at
installation time.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different MVS address space.

(name,*)
When an SQL application program directly calls a stored procedure, the
WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To define a stored procedure that is to run in a specified WLM environment, you
must have appropriate authority for the WLM environment. For an example of a

Chapter 4. Statements for SQL procedures 19

RACF command that provides this authorization, see the discussion of CREATE
PROCEDURE in Chapter 6 of SQL Reference.

NO WLM ENVIRONMENT
Indicates that the stored procedure is to run in the DB2-established stored
procedure address space.

Do not specify NO WLM ENVIRONMENT if you implicitly or explicitly define the
stored procedure with the SECURITY USER clause.

To define a stored procedure that is to run in the DB2-established stored
procedure address space, you must have appropriate authority for the address
space. For an example of a RACF command that provides this authorization,
see the discussion of CREATE PROCEDURE in Chapter 6 of SQL Reference.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column of the resource limit specification table.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on service
units, see OS/390 MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2 GB.
If the stored procedure uses more service units than the specified value,
DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module remains resident in
memory when the stored procedure ends.

NO
The load module is deleted from memory after the stored procedure ends.
NO is the default.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

MAIN
The stored procedure runs as a main routine. Only PROGRAM TYPE MAIN
is allowed for an SQL procedure.

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space. DB2 is the default.

20 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the stored
procedure. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
stored procedure.

NO
DB2 does not issue a commit when the stored procedure returns. NO is the
default.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined as WITH HOLD to be usable
after the commit.

procedure-body
Specifies the source code for an SQL procedure. See “The SQL procedure
body” on page 23 for information on how to write a procedure body.

Notes
The following restrictions apply to the use of parameters in SQL procedures:

v If IN is specified for a parameter in an SQL procedure, the parameter cannot be
modified within the SQL procedure body.

v If OUT is specified for a parameter in an SQL procedure, the parameter can be
used only as the target of an assignment in the SQL procedure body. The
parameter cannot be checked or used to set other variables. If the parameter is
not set, DB2 returns the null value to the caller.

See the description of the CREATE PROCEDURE statement in Chapter 6 of SQL
Reference for information about:
v Choosing data types for parameters
v Specifying the encoding scheme for parameters
v Environments for running stored procedures

Chapter 4. Statements for SQL procedures 21

Examples
Example 1: Create the definition for an SQL procedure. The procedure accepts an
employee number and a multiplier for a pay raise as input. The following tasks are
performed in the procedure body:
v Calculate the employee's new salary.
v Update the employee table with the new salary value.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Example 2: Create the definition for the SQL procedure described in example 1, but
specify that the procedure has these characteristics:
v The procedure runs in a WLM environment called PARTSA.
v The same input always produces the same output.
v SQL work is committed on return to the caller.
v The Language Environment run-time options to be used when the SQL

procedure executes are 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
WLM ENVIRONMENT PARTSA
COMMIT ON RETURN YES
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

For more examples of SQL procedures, see “The SQL procedure body” on page 23.

22 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

The SQL procedure body
The procedure body in an SQL stored procedure definition contains the source
statements for the stored procedure.

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the statements that constitute the procedure body.

Chapter 4. Statements for SQL procedures 23

Procedure body
The procedure body contains the source code for an SQL stored procedure.

Syntax

Notes
See Table 4 on page 49 for a list of valid values for SQL-statement.

ÊÊ SQL-statement
assignment-statement
case-statement
compound-statement
if-statement
leave-statement
loop-statement
repeat-statement
while-statement

ÊÍ

24 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Assignment statement
The assignment statement assigns a value to an output parameter or to an SQL
variable.

Syntax

Description
SQL-parameter-name

Identifies the parameter that is the assignment target. The parameter must be
specified in parameter-declaration in the CREATE PROCEDURE statement and
must be defined as OUT or INOUT.

SQL-variable-name
Identifies the SQL variable that is the assignment target. An SQL variable must
be declared before it is used. For information on declaring SQL variables, see
“Compound statement” on page 28.

expression or NULL
Specifies the expression or value that is the assignment source. See Chapter 3
of SQL Reference for information on expressions.

Notes
Assignments statements in SQL procedures must conform to the SQL assignment
rules. See Chapter 3 of SQL Reference for assignment rules.

The data type of the target and source must be compatible.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with the
necessary number of single-byte or double-byte blanks.

When a string is assigned to a variable and the string is longer than the length
attribute of the variable, a negative SQLCODE is set.

If truncation of the whole part of the number occurs on assignment to a numeric
variable, a negative SQLCODE is set.

If an assignment statement is the only statement in the procedure body, the
statement cannot end with a semicolon. Otherwise, the statement must end with a
semicolon.

Examples
Increase the SQL variable p_salary by 10 percent.
SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value.
SET p_salary = NULL

ÊÊ SET SQL-parameter-name = expression
SQL-variable-name NULL

ÊÍ

Chapter 4. Statements for SQL procedures 25

CASE statement
The CASE statement selects an execution path based on the evaluation of one or
more conditions. A CASE statement operates in the same way as a CASE
expression, which is discussed in Chapter 3 of SQL Reference.

Syntax

Description
CASE

Begins a case-expression.

searched-case-statement-when-clause
Specifies a search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.

simple-case-statement-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is
tested for equality with the value of each expression that follows the WHEN
keyword. Specifies the result for each WHEN keyword when the expressions
are equal.

The expression prior to the first WHEN keyword is tested for equality with the
value of the expression that follows the WHEN keyword. The data type of the
expression prior to the first WHEN keyword must be comparable to the data
types of each expression that follows the WHEN keywords.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement
must be one of the statements listed under “SQL procedure statement” on
page 37. It specifies the result of a searched-case-statement-when-clause or a
simple-case-statement-when-clause that is true, or the result if no case is true.

ÊÊ CASE searched-case-statement-when-clause
simple-case-statement-when-clause

»ELSE SQL-procedure-statement ;

Ê

Ê END CASE ÊÍ

searched-case-statement-when-clause:

ÊÊ » »WHEN search-condition THEN SQL-procedure-statement ; ÊÍ

simple-case-statement-when-clause:

ÊÊ expression » »WHEN expression THEN SQL-procedure-statement ; ÊÍ

26 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data. The search condition cannot contain a subselect.

END CASE
Ends a case-statement.

Notes
If none of the conditions specified in the WHEN are true, and an ELSE is not
specified, an error is issued when the statement executes and the execution of the
CASE statement is terminated.

CASE statements that use a simple case statement when clause can be nested up
to three levels. CASE statements that use a searched statement when clause have
no limit to the number of nesting levels.

If a CASE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a simple case statement when clause to update column DEPTNAME in table
DEPT, depending on the value of SQL variable v_workdept.
CASE v_workdept
WHEN 'A00'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 1';

WHEN 'B01'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 2';

ELSE UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 3';

END CASE

Use a searched case statement when clause to update column DEPTNAME in
table DEPT, depending on the value of SQL variable v_workdept.
CASE
WHEN v_workdept = 'A00'
THEN UPDATE department SET
deptname = 'DATA ACCESS 1';
WHEN v_workdept = 'B01'
THEN UPDATE department SET
deptname = 'DATA ACCESS 2';
ELSE UPDATE department SET
deptname = 'DATA ACCESS 3';
END CASE

Chapter 4. Statements for SQL procedures 27

Compound statement
A compound statement contains a group of statements and declarations for SQL
variables, cursors, and condition handlers.

Syntax

Description
label

Defines the label for the code block. If the beginning label is specified, it can be
used to qualify SQL variables declared in the compound statement and can
also be specified on a LEAVE statement. If the ending label is specified, it must
be the same as the beginning label.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

ÊÊ
label:

BEGIN
NOT ATOMIC

» SQL-variable-declaration ;
condition-declaration

Ê

Ê

» DECLARE-CURSOR-statement ; » handler-declaration ;

Ê

Ê » SQL-procedure-statement ; END
label

ÊÍ

SQL-variable-declaration:

ÊÊ DECLARE »

,

SQL-variable-name data-type
DEFAULT NULL

DEFAULT constant
ÊÍ

condition-declaration:

ÊÊ DECLARE condition-name CONDITION FOR string-constant
SQLSTATE

VALUE

ÊÍ

handler-declaration:

ÊÊ DECLARE CONTINUE
EXIT

HANDLER FOR »

,
VALUE

SQLSTATE string
condition-name
SQLEXCEPTION
SQLWARNING
NOT FOUND

Ê

Ê SQL-procedure-statement ÊÍ

28 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

NOT ATOMIC
NOT ATOMIC indicates that an error within the compound statement does not
cause the compound statement to be rolled back.

SQL-variable-declaration
Declares variable that is local to the compound statement.

SQL-variable-name
Specifies the name of a local variable. The name cannot be the same as
another SQL variable within the same compound statement and cannot be the
same as a parameter name or an SQL reserved word. DB2 folds all SQL
variable names to uppercase. SQL variable names should not be the same as
column names. If an SQL statement contains an SQL variable or parameter and
a column reference with the same name, DB2 interprets the name as an SQL
variable or parameter name. To refer to the column, qualify the name with the
table name.

data-type
Specifies the data type and length of the variable. SQL variables follow the
same rules for default lengths and maximum lengths as SQL procedure
parameters. See “CREATE PROCEDURE (SQL procedure)” on page 16 for a
description of SQL data types and lengths.

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable is initialized when the
SQL procedure is called. If a default value is not specified, the variable is
initialized to NULL.

If the SQL variable name is SQLCODE and the data type is INT, the variable is
used as a stand-alone SQLCODE in the procedure and can be checked to
determine whether SQL statements are successful. Similarly, if the SQL variable
name is SQLSTATE and the data type is CHAR(5), the variable is used as a
stand-alone SQLSTATE in the procedure. After the SQLCODE and SQLSTATE
variables are declared, they can be referenced anywhere in the procedure. The
SQLCODE and SQLSTATE variables cannot be set to NULL. An SQLCODE or
SQLSTATE variable should not be used on the left side of an assignment
statement.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name is a long SQL identifier
that must be unique within the procedure body and can be referenced only
within the compound statement in which it is declared.

string-constant
Specifies the SQLSTATE that is associated with the condition. The string must
be specified as five characters enclosed in single quotes, and cannot be
'00000'.

declare-cursor-statement
Declares a cursor. Each cursor in the procedure body must have a unique
name. The cursor can be referenced only from within the compound statement.
For more information on declaring a cursor, see Chapter 6 of SQL Reference.

handler-declaration
Specifies a set of statements to execute when an exception or completion
condition occurs in the compound statement. SQL-procedure-statement is the

Chapter 4. Statements for SQL procedures 29

set of statements that execute when the handler receives control. See “SQL
procedure statement” on page 37 for information on SQL-procedure-statement.

A handler is active only within the compound statement in which it is declared.

The actions that a handler can perform are:

CONTINUE
After the handler is invoked successfully, control is returned to the SQL
statement that follows the statement that raised the exception. If the error
that raised the exception is an IF, CASE, or WHILE statement, control
returns to the statement that follows END IF, END CASE, END WHILE, or
END REPEAT.

EXIT
After the handler is invoked successfully, control is returned to the end of
the compound statement.

The conditions that can cause the handler to gain control are:

SQLSTATE string
Specifies an SQLSTATE for which the handler is invoked. The SQLSTATE
cannot be '00000'.

condition-name
Specifies a condition name for which the handler is invoked. The condition
name must be previously defined in a condition declaration.

The conditions under which the handler is invoked are:

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An
SQLEXCEPTION is an SQLSTATE in which the class code is a value other
than "00", "01", or "02". For more information on SQLSTATE values, see
Appendix C of Messages and Codes.

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An
SQLWARNING is an SQLSTATE value with a class code of "01".

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs.
NOT FOUND corresponds to an SQLSTATE value with a class code of "02".

Notes
The order of statements in a compound statement must be:

1. SQL variable and condition declarations

2. Cursor declarations

3. Handler declarations

4. Procedure body statements (CASE, IF, LOOP, REPEAT, WHILE, SQL)

Compound statements cannot be nested.

Unlike host variables, SQL variables are not preceded by colons when they are
used in SQL statements.

Datetime arithmetic operations cannot be performed on SQL variables.

The following rules apply to handler declarations:

30 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

v A handler declaration that contains SQLEXCEPTION, SQLWARNING, or NOT
FOUND cannot contain additional SQLSTATE or condition names.

v Handler declarations within the same compound statement cannot contain
duplicate conditions.

v A handler declaration cannot contain the same condition code or SQLSTATE
value more than once, and cannot contain an SQLSTATE value and a condition
name that represent the same SQLSTATE value.

v If an error occurs for which there is no handler, execution of the compound
statement is terminated.

If a compound statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Create a procedure body with a compound statement that performs the following
actions:

v Declares SQL variables, a condition for SQLSTATE '02000', a handler for the
condition, and a cursor

v Opens the cursor, fetches a row, and closes the cursor
CREATE PROCEDURE PROC1(OUT NOROWS INT) LANGUAGE SQL
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE v_edlevel SMALLINT;
DECLARE v_salary DECIMAL(9,2);
DECLARE at_end INT DEFAULT 0;
DECLARE not_found
CONDITION FOR '02000';

DECLARE c1 CURSOR FOR
SELECT FIRSTNME, MIDINIT, LASTNAME,
EDLEVEL, SALARY
FROM EMP;

DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;
OPEN c1;
FETCH c1 INTO v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;

CLOSE c1;
END

Chapter 4. Statements for SQL procedures 31

IF statement
The IF statement selects an execution path based on the evaluation of a condition.

Syntax

Description
search-condition

Specifies a search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement
must be one of the statements listed under “SQL procedure statement” on
page 37.

Examples
Assign a value to the SQL variable new_salary based on the value of SQL variable
rating.
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);

ELSEIF rating = 2
THEN SET new_salary =
new_salary + (new_salary * .05);

ELSE SET new_salary =
new_salary + (new_salary * .02);

END IF

ÊÊ IF search-condition THEN » SQL-procedure-statement ; Ê

Ê »

»ELSEIF search-condition THEN SQL-procedure-statement ;

Ê

Ê

»ELSE SQL-procedure-statement ;

END IF ÊÍ

32 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

LEAVE statement
The LEAVE statement transfers program control out of a loop or a block of code.

Syntax

Description
label

Specifies the label of the block or loop to exit.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

Notes
When a LEAVE statement transfers control out of a compound statement, all open
cursors in the compound statement, except cursors that are used to return result
sets, are closed.

If a LEAVE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a LEAVE statement to transfer control out of a LOOP statement when a
negative SQLCODE occurs.
ftch_loop: LOOP
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;

IF SQLCODE=100 THEN LEAVE ftch_loop;
END IF;

END LOOP

ÊÊ LEAVE label ÊÍ

Chapter 4. Statements for SQL procedures 33

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

Description
label

Specifies the label for the LOOP statement. If the ending label is specified, the
beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed in the loop.

Notes
If a LOOP statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a LOOP statement to fetch rows from a table.
ftch_loop: LOOP
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;

IF SQLCODE<>0 THEN SET badsql=1;
END IF;

END LOOP

ÊÊ
label:

LOOP » SQL-procedure-statement ; END LOOP
label

ÊÍ

34 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

Description
label

Specifies the label for the REPEAT statement. If the ending label is specified,
the beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed.

search-condition
Specifies a condition that is evaluated after each execution of the SQL
procedure statement. If the condition is true, the SQL procedure statement is
not executed again.

Notes
If a REPEAT statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a REPEAT statement to fetch rows from a table.
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

UNTIL
SQLCODE <> 0

END REPEAT fetch_loop

ÊÊ
label:

REPEAT » SQL-procedure-statement ; UNTIL search-condition END REPEAT Ê

Ê
label

ÊÍ

Chapter 4. Statements for SQL procedures 35

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Syntax

Description
label

Specifies the label for the WHILE statement. If the ending label is specified, it
must be the same as the beginning label.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the
condition is true, the SQL procedure statement in the loop is executed.

SQL-procedure-statement
Specifies the statements to be executed in the loop.

Notes
If a WHILE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a WHILE statement to fetch rows from a table while SQL variable at_end,
which indicates whether the end of the table has been reached, is 0.
WHILE at_end = 0 DO
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;

IF SQLCODE=100 THEN SET at_end=1;
END IF;

END WHILE

ÊÊ
label:

WHILE search-condition DO » SQL-procedure-statement ; END WHILE Ê

Ê
label

ÊÍ

36 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

SQL procedure statement

Syntax

Notes

See Table 4 on page 49 for a list of valid values for nested-SQL-statement.

If an SQL procedure statement is the only statement in the procedure body, the
statement cannot end with a semicolon. Otherwise, the statement must end with a
semicolon.

ÊÊ assignment-statement
case-statement
if-statement
leave-statement
loop-statement
repeat-statement
while-statement
nested-SQL-statement

ÊÍ

Chapter 4. Statements for SQL procedures 37

38 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Chapter 5. Preparing and running an SQL procedure

After you create the source statements for an SQL procedure, you need to prepare
the procedure to run. This process involves two basic tasks:
v Creating an executable load module and a DB2 package from the SQL

procedure source statements

This task includes the following steps:

– Preprocessing the CREATE PROCEDURE statement to generate a C
language source program

– Precompiling the C language source program to generate a DBRM and a
modified C source program

– Binding the DBRM to generate a DB2 package
v Defining the stored procedure to DB2

This is done by inserting a row into the SYSIBM.SYSPROCEDURES catalog
table that describes the SQL procedure. If you prepare an SQL procedure
through the SQL procedure processor or the IBM DB2 Stored Procedure Builder,
this task is performed for you.

There are three methods available for preparing an SQL procedure to run:
v Using IBM DB2 Stored Procedure Builder, which runs on Windows NT, Windows

95, or Windows 98.
v Using JCL. See “Using JCL to prepare an SQL procedure”.
v Using the DB2 for OS/390 SQL procedure processor. See “Using the DB2 for

OS/390 SQL procedure processor to prepare an SQL procedure” on page 40

To run an SQL procedure, you must call it from a client program, using the SQL
CALL statement. See the description of the CALL statement in Chapter 6 of SQL
Reference for more information.

Using JCL to prepare an SQL procedure
Use the following steps to prepare an SQL procedure using JCL.

1. Preprocess the CREATE PROCEDURE statement.

To do this, execute program DSNHPSM, with the file that contains the CREATE
PROCEDURE statement as input. The output from this step is:
v A C language source program
v An INSERT statement for defining the stored procedure in

SYSIBM.SYSPROCEDURES

2. Precompile the C language source program that was generated in step 1.

This process produces a DBRM and modified C language source statements.

You need to ensure that the DBRM name is the same as the name of the load
module for the SQL procedure.

3. Compile and link-edit the modified C source statements that were produced in
step 2.

This process produces an executable C language program.

The default name for the C language program is the first eight bytes of the SQL
procedure name. You can override the default name, but you must ensure that
the new name matches the name of the DBRM that is produced in step 2.

4. Bind the DBRM that was produced in step 2 into a package.

5. Define the stored procedure to DB2.

© Copyright IBM Corp. 1999 39

To do this, first modify the INSERT statement that was was produced in step 1
to match the characteristics of the SQL procedure. For example, if you change
the load module name for the SQL procedure, you must change the LOADMOD
value in the INSERT statement. Then execute the INSERT statement to add a
row for the SQL procedure to SYSIBM.SYSPROCEDURES.

Using the DB2 for OS/390 SQL procedure processor to prepare an SQL
procedure

The SQL procedure processor, DSNTPSMP, is a REXX stored procedure that you
can use to prepare an SQL procedure for execution. You can also use DSNTPSMP
to perform selected steps in the preparation process or delete an existing SQL
procedure. The following sections contain information on invoking DSNTPSMP.

Environment for calling and running DSNTPSMP
You can invoke DSNTPSMP only through an SQL CALL statement in an application
program or through IBM DB2 Stored Procedure Builder.

Before you can run DSNTPSMP, you need to perform the following steps to set up
the DSNTPSMP environment:

1. Install the PTFs for DB2 APARs PQ24199 and PQ29706.

2. Install DB2 for OS/390 REXX Language Support feature.

Contact your IBM service representative for more information.

3. If you plan to call DSNTPSMP directly, write and prepare an application program
that executes an SQL CALL statement for DSNTPSMP.

See “Writing and preparing an application that calls DSNTPSMP” on page 42 for
more information.

If you plan to invoke DSNTPSMP through the IBM DB2 Stored Procedure
Builder, see the following URL for information on installing and using the IBM
DB2 Stored Procedure Builder.
http://www.software.ibm.com/data/db2/os390/spb

4. Define DSNTPSMP to DB2.

Customize and run job DSNTIJSQ to perform this task.

5. Create DB2 tables and indexes that are used by DSNTPSMP. Job DSNTIJSQ
performs this task. See “Creating tables that are used by DSNTPSMP” on
page 42.

6. Set up a WLM environment in which to run DSNTPSMP. See Section 5 (Volume
2) of Administration Guide for general information on setting up WLM application
environments for stored procedures and “Setting up a WLM application
environment for DSNTPSMP” for specific information for DSNTPSMP.

Setting up a WLM application environment for DSNTPSMP
You must run DSNTPSMP in a WLM-established stored procedures address space.
You should run only DSNTPSMP in that address space, and you should not run
multiple copies of DSNTPSMP concurrently.

Figure 3 on page 41 shows sample JCL for a startup procedure for the address
space in which DSNTPSMP runs.

40 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Notes to Figure 3:

«1¬ APPLENV specifies the application environment in which DSNTPSMP runs. To
ensure that DSNTPSMP always uses the correct data sets and parameters for
preparing each SQL procedure, you can set up different application environments
for preparing different types of SQL procedures. For example, if all payroll
applications use the same set of data sets during program preparation, you could
set up an application environment called PAYROLL for preparing only payroll
applications. The startup procedure for PAYROLL would point to the data sets that
are used for payroll applications.

DB2SSN specifies the DB2 subsystem name.

NUMTCB specifies the number of programs that can run concurrently in the
address space. You should always set NUMTCB to 1 to ensure that executions of
DSNTPSMP occur serially.

«2¬ STEPLIB specifies the Language Environment run-time library that DSNTPSMP
uses when it runs.

«3¬ SYSEXEC specifies the library that contains DSNTPSMP.
«4¬ SQLSRC specifies the library into which DSNTPSMP puts the SQL procedure

source code if the source code is passed to DSNTPSMP in an input string.
«5¬ DBRMLIB specifies the library into which DSNTPSMP puts the DBRM that it

generates when it precompiles your SQL procedure.
«6¬ SQLCIN specifies the library into which DSNTPSMP puts the C source code that

DB2 generates for the SQL procedure.
«7¬ SQLLMOD specifies the library into which DSNTPSMP puts the load module that it

generates when it compiles and link-edits your SQL procedure.
«8¬ SQLLIBC specifies the library that contains standard C header files. This library is

used during compilation of the generated C program.
«9¬ SQLLIBL specifies the following libraries, which DSNTPSMP uses when it link-edits

the SQL procedure:
v Language Environment run-time library
v DB2 application load library
v DB2 exit library
v DB2 load library

//DSNWLM PROC RGN=0K,APPLENV=WLMTEST,DB2SSN=DSN,NUMTCB=1 «1¬
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=DSN510.RUNLIB.LOAD «2¬
// DD DISP=SHR,DSN=CBC.SCBCCMP
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN510.SDSNLOAD
//SYSEXEC DD DISP=SHR,DSN=DSN510.SDSNCLST «3¬
//SYSTSPRT DD SYSOUT=A
//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSABEND DD DUMMY
//SQLSRC DD DSN=USER.PSMLIB.DATA,DISP=SHR «4¬
//SQLDBRM DD DISP=SHR,DSN=DSN510.DBRMLIB.DATA «5¬
//SQLCIN DD DISP=SHR,USER.SRCLIB.C «6¬
//SQLLMOD DD DISP=SHR,DSN=DSN510.RUNLIB.LOAD «7¬
//SQLLIBC DD DISP=SHR,DSN=CEE.SCEEH.H «8¬
//SQLLIBL DD DISP=SHR,DSN=CEE.SCEELKED «9¬
// DD DISP=SHR,DSN=DSN510.RUNLIB.LOAD
// DD DISP=SHR,DSN=DSN510.SDSNEXIT
// DD DISP=SHR,DSN=DSN510.SDSNLOAD
//SYSMSGS DD DSN=EDC.SEDCDMSG(EDCMSGE),DISP=SHR «10¬

Figure 3. Startup procedure for a WLM address space in which DSNTPSMP runs

Chapter 5. Preparing and running an SQL procedure 41

«10¬ SQLMSGS specifies the library that contains messages that are used by the C
prelink-edit utility.

Creating tables that are used by DSNTPSMP
DSNTPSMP uses two DB2 tables and and three indexes:

v Table SYSIBM.SYSPSM holds the source code for SQL procedures that
DSNTPSMP prepares.

v Table SYSIBM.SYSPSMOPTS holds information about the program preparation
options that you specify when you invoke DSNTPSMP.

v Index SYSIBM.DSNPSMX1 is an index on SYSIBM.SYSPSM.

v Index SYSIBM.DSNPSMX2 is a unique index on SYSIBM.SYSPSM.

v Index SYSIBM.DSNPSMOX1 is a unique index on SYSIBM.SYSPSMOPTS.

Before you can run DSNTPSMP, SYSIBM.SYSPSM, SYSIBM.SYSPSMOPTS, and
SYSIBM.DSNPSMOX1 must exist on your DB2 subsystem. “Appendix A. DB2
objects required by the SQL procedure processor” on page 47 shows the format of
these objects. To create the objects, customize job DSNTIJSQ according to the
instructions in its prolog, then execute DSNTIJSQ.

Authorization to execute DSNTPSMP

The program that invokes DSNTPSMP must have the following authorizations:

v Authorization to execute the CALL statement. See the description of the CALL
statement in Chapter 6 of SQL Reference for more information.

v The BIND privilege for any stored procedure packages that DSNTPSMP binds.

Writing and preparing an application that calls DSNTPSMP
DSNTPSMP must be invoked through an SQL CALL statement in an application
program. This section contains information that you need to write and prepare the
calling application.

DSNTPSMP Syntax

ÊÊ CALL DSNTPSMP (function , SQL-procedure-name , SQL-procedure-source ,
empty-string

Ê

Ê bind-options ,
empty-string

compiler-options ,
empty-string

precompiler-options ,
empty-string

Ê

Ê prelink-edit-options ,
empty-string

link-edit-options ,
empty-string

run-time-options ,
empty-string

Ê

Ê source-data-set-name ,
empty-string

) ÊÍ

bind-options, compiler-options, precompiler-options, prelink-edit-options, link-edit options, or
run-time-options:

ÊÊ »

,

' option ' ÊÍ

42 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

DSNTPSMP parameters
function

A VARCHAR(20) input parameter that identifies the task that you want
DSNTPSMP to perform. The tasks are:

BUILD
Creates a load module, DBRM, package, and definition for an SQL
procedure.

If you choose the create function, and an SQL procedure with name
SQL-procedure-name already exists, DSNTPSMP issues a warning
message and terminates.

DESTROY
Deletes the load module, DBRM, package, stored source code, and
definition for an SQL procedure.

For the DESTROY function to execute successfully, the current SQL ID of
the application that calls DSNTPSMP must match the value of
BUILDOWNER in the row for the SQL procedure in the
SYSIBM.SYSPSMOPTS table.

REBUILD
Replaces the load module, package, and definition for an SQL procedure.

REBIND
Rebinds an SQL procedure package.

ALTER_RUNOPTS
Changes the run-time options for an SQL procedure.

SQL-procedure-name
A VARCHAR(8) input parameter performs the following meanings:

v Specifies the SQL procedure name for the DESTROY, REBIND, or
ALTER_RUNOPTS function

v Specifies the name of the SQL procedure load module for the BUILD or
REBUILD function

SQL-procedure-source
A VARCHAR(37675) input parameter that contains the source code for the SQL
procedure. If you specify an empty string for this parameter, you need to specify
the name of a data set that contains the SQL procedure source code, in
source-data-set-name.

bind-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for binding the SQL procedure package. For a list of valid bind options,
see Chapter 2 of Command Reference.

You must specify the PACKAGE bind option for the BUILD, REBUILD, and
REBIND functions.

compiler-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for compiling the C language program that DB2 generates for the SQL
procedure. For a list of valid compiler options, see IBM C/C++ for OS/390
User's Guide.

precompiler-options
A VARCHAR(255) input parameter that contains the options that you want to

Chapter 5. Preparing and running an SQL procedure 43

specify for precompiling the C language program that DB2 generates for the
SQL procedure. For a list of valid precompiler options, see Section 5 of
Application Programming and SQL Guide.

prelink-edit-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for prelink-editing the C language program that DB2 generates for the
SQL procedure. For a list of valid prelink-edit options, see IBM C/C++ for
OS/390 User's Guide.

link-edit-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for link-editing the C language program that DB2 generates for the SQL
procedure. For a list of valid link-edit options, see DFSMS/MVS: Program
Management.

run-time-options
A VARCHAR(254) input parameter that contains the Language Environment
run-time options that you want to specify for the SQL procedure. For a list of
valid Language Environment run-time options, see OS/390 Language
Environment for OS/390 & VM Programming Reference.

source-data-set-name
A VARCHAR(80) input parameter that contains the name of an MVS sequential
data set or partitioned data set member that contains the source code for the
SQL procedure. If you specify an empty string for this parameter, you need to
provide the SQL procedure source code in source-procedure-source.

return-codes
A VARCHAR(255) output parameter in which DB2 puts the return codes from all
steps of the DSNTPSMP invocation.

Result sets that DSNTPSMP returns
When you invoke DSNTPSMP, DB2 returns a result set that contains messages
and listings from each step that DSNTPSMP performs. To obtain the information
from the result set, you can write your client program to retrieve information from
one result set with known contents. However, for greater flexibility, you might want
to write your client program to retrieve data from an unknown number of result sets
with unknown contents. Both techniques are shown in Section 6 of Application
Programming and SQL Guide.

Each row of the result set contains the following information:

Processing step
The step in the function process to which the message applies.

ddname
The ddname of the data set that contains the message.

Sequence number
The sequence number of a line of message text within a message.

Message
A line of message text.

Rows in the message result set are ordered by processing step, ddname, and
sequence number.

Examples of DSNTPSMP invocation
DSNTPSMP BUILD function: Call DSNTPSMP to build an SQL procedure. The
information that DSNTPSMP needs is:

44 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Function BUILD
Source location String in variable procsrc
Bind options SQLERROR(NOPACKAGE), VALIDATE(RUN), ISOLATION(RR),

RELEASE(COMMIT)
Compiler options SOURCE, LIST, MAR(1,80), LONGNAME, RENT
Precompiler options HOST(SQL), SOURCE, XREF, MAR(1,72), STDSQL(NO)
Prelink-edit options None specified
Link-edit options AMODE=31, RMODE=ANY, MAP, RENT
Run-time options MSGFILE(OUTFILE), RPTSTG(ON), RPTOPTS(ON)

The CALL statement is:
EXEC SQL CALL DSNTPSMP('BUILD','',procsrc,
'SQLERROR(NOPACKAGE),VALIDATE(RUN),ISOLATION(RR),RELEASE(COMMIT)',
'SOURCE,LIST,MAR(1,80),LONGNAME,RENT',
'HOST(SQL),SOURCE,XREF,MAR(1,72),STDSQL(NO)',
'',
'AMODE=31,RMODE=ANY,MAP,RENT',
'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)',
'');

DSNTPSMP DESTROY function: Call DSNTPSMP to delete an SQL procedure
definition and the associated load module. The information that DSNTPMSP needs
is:

Function DESTROY
SQL procedure name OLDPROC

The CALL statement is:
EXEC SQL CALL DSNTPSMP('DESTROY','OLDPROC','',
'','','','','','','');

DSNTPSMP REBUILD function: Call DSNTPSMP to recreate an existing SQL
procedure. The information that DSNTPMSP needs is:

Function REBUILD
Source location Member PROCSRC of partitioned data set DSN510.SDSNSAMP
Bind options SQLERROR(NOPACKAGE), VALIDATE(RUN), ISOLATION(RR),

RELEASE(COMMIT)
Compiler options SOURCE, LIST, MAR(1,80), LONGNAME, RENT
Precompiler options HOST(SQL), SOURCE, XREF, MAR(1,72), STDSQL(NO)
Prelink-edit options MAP
Link-edit options AMODE=31, RMODE=ANY, MAP, RENT
Run-time options MSGFILE(OUTFILE), RPTSTG(ON), RPTOPTS(ON)

The CALL statement is:
EXEC SQL CALL DSNTPSMP('REBUILD','','',
'SQLERROR(NOPACKAGE),VALIDATE(RUN),ISOLATION(RR),RELEASE(COMMIT)',
'SOURCE,LIST,MAR(1,80),LONGNAME,RENT',
'HOST(SQL),SOURCE,XREF,MAR(1,72),STDSQL(NO)',
'MAP',
'AMODE=31,RMODE=ANY,MAP,RENT',
'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)',
'DSN510.SDSNSAMP(PROCSRC)');

DSNTPSMP REBIND function: Call DSNTPSMP to rebind the package for an
existing SQL procedure. The information that DSNTPMSP needs is:

Function REBIND
SQL procedure name SQLPROC

Chapter 5. Preparing and running an SQL procedure 45

Run-time options VALIDATE(BIND), ISOLATION(RR), RELEASE(DEALLOCATE)

The CALL statement is:
EXEC SQL CALL DSNTPSMP('REBIND','SQLPROC','',
'VALIDATE(BIND),ISOLATION(RR),RELEASE(DEALLOCATE)',
'','','','','','');

DSNTPSMP ALTER_RUNOPTS function: Call DSNTPSMP to change Language
Environment run-time options for an existing SQL procedure. The information that
DSNTPMSP needs is:

Function ALTER_RUNOPTS
SQL procedure name SQLPROC
Run-time options POSIX(ON), TEST(,,,VADTCPIP&9.63.51.17:*)

The CALL statement is:
EXEC SQL CALL DSNTPSMP('ALTER_RUNOPTS','SQLPROC','',
'','','','','',
'POSIX(ON),TEST(,,,VADTCPIP&9.63.51.17:*)','');

Preparing a program that invokes DSNTPSMP
To prepare the program that calls DSNTPSMP for execution, you need to perform
the following steps:

1. Precompile, compile, and link-edit the application program.

2. Bind a package for the application program.

3. Bind the package for DB2 REXX support, DSNTRXCS.DSNTREXX, and the
package for the application program into a plan.

Sample programs to help you prepare and run SQL procedures
Table 2 lists the sample jobs that DB2 provides to help you prepare and run SQL
procedures. All samples are in data set DSN510.SDSNSAMP. Before you can run
the samples, you must customize them for your installation. See the prolog of each
sample for specific instructions.

Table 2. SQL procedure samples shipped with DB2

Member that
contains
source code

Contents Purpose

DSNHSQL JCL procedure Preprocesses, precompiles, compiles, prelink-edits, and
link-edits an SQL procedure

DSNTEJ63 JCL job Invokes JCL procedure DSNHSQL to prepare SQL
procedure DSN8ES1 for execution

DSN8ES1 SQL procedure A stored procedure that accepts a department number
as input and returns a result set that contains salary
information for each employee in that department

DSNTEJ64 JCL job Prepares client program DSN8ED3 for execution

DSN8ED3 C program Calls SQL procedure DSN8ES1

46 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Appendix A. DB2 objects required by the SQL procedure
processor

The SQL procedure processor (DSNTPSMP) uses the tables and indexes that are
described in the following sections. It is recommended that you create the tables
and indexes in their own database and table space. You can these objects by
customizing and running job DSNTIJSQ.

Table spaces and indexes
47 shows the table spaces to which the SQL procedure tables are assigned, and
which indexes are defined on the tables.

Table 3. Table spaces and indexes for SQL procedure tables

TABLE SPACE
DSNDPSM. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

DSNSPSM SYSPSM 47 DSNPSMX1 PROCEDURENAME

DSNPSMX2 SCHEMA
PROCEDURENAME
SEQNO

SYSPSMOPTS 47 DSNPSMOX1 SCHEMA
PROCEDURENAME

The SQL procedure source table (SYSIBM.SYSPSM)

SYSIBM.SYSPSM is used by the SQL procedure processor and IBM DB2 Stored
Procedure Builder to hold the source code for a stored procedure.
SYSIBM.SYSPSM contains at least one row for each SQL procedure that is
prepared by the SQL procedure processor or SQL Procedure Builder. The number
of rows that represent an SQL procedure is
CEILING(n/3800)

n is the number of bytes in the SQL procedure source statement.

Column Name Data Type Description Use

SCHEMA CHAR(8) Schema of the SQL procedure. Blank for SQL
procedures created before DB2 Version 6.

G

PROCEDURENAME CHAR(18)
NOT NULL

Name of the SQL procedure. G

SEQNO SMALLINT
NOT NULL

Number of the SQL statement piece in
PROCCREATESTMT. SEQNO is between 1 and
CEILING(n/3800), where n is the number of bytes in the
SQL procedure source statement.

G

PSMDATE DATE
NOT NULL

The date on which the SQL procedure was created. G

PSMTIME TIME
NOT NULL

The time at which the SQL procedure was created. G

PSMTIME TIME
NOT NULL

The time at which the SQL procedure was created. G

© Copyright IBM Corp. 1999 47

Column Name Data Type Description Use

PROCCREATESTMT VARCHAR(3800)
NOT NULL

All or part of an SQL procedure source statement. If the
SQL procedure statement is more than 3800 bytes, this
field contains the portion of the source statement
indicated by SEQNO.

G

The SQL procedure options table (SYSIBM.SYSPSMOPTS)

SYSIBM.SYSPSMOPTS is used by the SQL procedure processor and IBM DB2
Stored Procedure Builder to hold the program preparation options for an SQL
procedure. SYSIBM.SYSPSMOPTS contains one row for each SQL procedure that
is prepared by the SQL procedure processor or SQL Procedure Builder.

Column Name Data Type Description Use

SCHEMA CHAR(8) Schema of the SQL procedure. Blank for SQL
procedures created before DB2 Version 6.

G

PROCEDURENAME CHAR(18)
NOT NULL

Name of the SQL procedure. G

BUILDSCHEMA CHAR(8) The schema name that is the qualifier for the procedure
name that is specified in the BUILDNAME column. The
schema name is SYSPROC.

G

BUILDNAME CHAR(18) A procedure name that is associated with stored
procedure DSNTPSMP. Users of DSNTPSMP might
create several stored procedure definitions for
DSNTPSMP so that they can run DSNTPSMP in
different WLM environments. The caller specifies the
environment in which DSNTPSMP runs by specifying the
procedure name that is associated with that environment
in the SQL CALL statement.

G

BUILDOWNER CHAR(8) The authorization ID that was used to create the SQL
procedure.

G

PRECOMPILE_OPTS VARCHAR(256) The options that were specified in the
precompiler-options parameter in the most recent
invocation of DSNTPSMP for the SQL procedure
specified in this row.

G

COMPILE_OPTS VARCHAR(256) The options that were specified in the compiler-options
parameter in the most recent invocation of DSNTPSMP
for the SQL procedure specified in this row.

G

PRELINK_OPTS VARCHAR(256) The options that were specified in the prelink-edit-options
parameter in the most recent invocation of DSNTPSMP
for the SQL procedure specified in this row.

G

LINK_OPTS VARCHAR(256) The options that were specified in the link-edit-options
parameter in the most recent invocation of DSNTPSMP
for the SQL procedure specified in this row.

G

BIND_OPTS VARCHAR(1024) The options that were specified in the bind-options
parameter in the most recent invocation of DSNTPSMP
for the SQL procedure specified in this row.

G

SOURCEDSN VARCHAR(255) If the SQL procedure source code that is input to
DSNTPSMP is stored in a data set, the name of that
data set.

G

48 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Appendix B. SQL statements allowed in SQL procedures

Table 4 lists the SQL statements that are valid in an SQL procedure body. The table
lists the SQL statements that can be used as the only statement in the SQL
procedure and the statements that can be nested in a compound statement.

Table 4. Valid SQL statements in an SQL procedure body

SQL statement

SQL statement is...

The only
statement in the

procedure
Nested in a

compound statement

ALLOCATE CURSOR

ALTER Y Y

ASSOCIATE LOCATORS

BEGIN DECLARE SECTION

CALL

CLOSE Y

COMMENT ON Y Y

COMMIT

CONNECT (Type 1 and Type 2)

CREATE Y Y

DECLARE CURSOR

DECLARE STATEMENT

DECLARE TABLE

DELETE Y Y

DESCRIBE

DESCRIBE CURSOR

DESCRIBE INPUT

DESCRIBE PROCEDURE

DROP Y Y

END DECLARE SECTION

EXECUTE Y

EXECUTE IMMEDIATE Y Y

EXPLAIN

FETCH Y

FREE LOCATOR

GRANT Y Y

HOLD LOCATOR

INCLUDE

INSERT Y Y

LABEL ON Y Y

LOCK TABLE Y Y

OPEN Y

© Copyright IBM Corp. 1999 49

Table 4. Valid SQL statements in an SQL procedure body (continued)

SQL statement

SQL statement is...

The only
statement in the

procedure
Nested in a

compound statement

PREPARE FROM Y

RELEASE

RENAME Y Y

REVOKE Y Y

ROLLBACK

SELECT

SELECT INTO Y Y

SET Assignment

SET CONNECTION

SET special register

UPDATE Y Y

WHENEVER

50 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Appendix C. SQL reserved words

Table 5 lists the words that cannot be used as ordinary identifiers in some contexts
because they might be interpreted as SQL keywords. For example, ALL cannot be a
column name in a SELECT statement. Each word, however, can be used as a
delimited identifier in contexts where it otherwise cannot be used as an ordinary
identifier. For example, if the quotation mark (") is the escape character that begins
and ends delimited identifiers, “ALL” can appear as a column name in a SELECT
statement. In addition, some sections of this book might indicate words that cannot
be used in the specific context that is being described.

Table 5. SQL reserved words

ADD
AFTER
ALL
ALLOW
ALTER
AND
ANY
AS
ASUTIME
AUDIT
AUX
AUXILIARY
BEFORE
BEGIN
BETWEEN
BUFFERPOOL
BY
CALL
CAPTURE
CASCADED
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLOSE
CLUSTER
COLLECTION
COLLID
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTINUE
CREATE
CURRENT
CURRENT_DATE
CURRENT_LC_CTYPE
CURRENT_PATH

CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR
DATA
DATABASE
DAY
DAYS
DBINFO
DB2SQL
DECLARE
DEFAULT
DELETE
DESCRIPTOR
DETERMINISTIC
DISALLOW
DISTINCT
DO
DOUBLE
DROP
DSSIZE
EDITPROC
ELSE
ELSEIF
END
END-EXEC1

ERASE
ESCAPE
EXCEPT
EXECUTE
EXISTS
EXIT
EXTERNAL
FENCED
FETCH
FIELDPROC
FINAL
FOR
FROM
FULL
FUNCTION
GENERAL
GENERATED
GO
GOTO
GRANT

GROUP
HANDLER
HAVING
HOUR
HOURS
IF
IMMEDIATE
IN
INDEX
INNER
INOUT
INSERT
INTO
IS
ISOBID
JOIN
KEY
LABEL
LANGUAGE
LC_CTYPE
LEAVE
LEFT
LIKE
LOCAL
LOCALE
LOCATOR
LOCATORS
LOCK
LOCKMAX
LOCKSIZE
LONG
LOOP
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MODIFIES
MONTH
MONTHS
NAME
NO
NOT
NULL
NULLS
NUMPARTS

OBID
OF
ON
OPEN
OPTIMIZATION
OPTIMIZE
OR
ORDER
OUT
OUTER
OVERRIDING
PACKAGE
PARAMETER
PART
PATH
PIECESIZE
PLAN
PRECISION
PREPARE
PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM
PSID
QUERYNO
READS
REFERENCES
RELEASE
RENAME
REPEAT
RESTRICT
RESULT
RETURN
RETURNS
REVOKE
RIGHT
ROLLBACK
RUN
SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SECQTY
SECURITY

SELECT
SET
SIMPLE
SOME
SOURCE
SPECIFIC
STANDARD
STAY
STOGROUP
STORES
STYLE
SUBPAGES
SYNONYM
SYSFUN
SYSIBM
SYSPROC
SYSTEM
TABLE
TABLESPACE
THEN
TO
TRIGGER
TYPE
UNDO
UNION
UNIQUE
UNTIL
UPDATE
USER
USING
VALIDPROC
VALUE
VALUES
VARIANT
VCAT
VIEW
VOLUMES
WHEN
WHERE
WHILE
WITH
WLM
YEAR
YEARS

Note: 1COBOL only

© Copyright IBM Corp. 1999 51

IBM SQL has additional reserved words that DB2 for OS/390 does not enforce.
Therefore, we suggest that you do not use these additional reserved words as
ordinary identifiers in names that have a continuing use. See IBM SQL Reference
for a list of the words.

52 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Appendix D. Messages for SQL procedures

The following messages are generated when errors occur during program
preparation of SQL procedures.

DSNH20060I E csectname LINE nnnn COL cc
UNSUPPORTED DATA TYPE data-type
ENCOUNTERED IN SQL object-type
object-name

Explanation: data-type was specified in the definition
of object-name. object-type is an SQL procedure
parameter or variable. data-type is not supported for
SQL procedure parameters or variables.

You can use the same built-in data types for SQL
procedure parameters or variables that you can use for
the CREATE TABLE statement, except these:
v LONG VARCHAR
v LONG VARGRAPHIC
v CLOB
v DBCLOB
v BLOB
v ROWID
v distinct type

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Change the syntax to specify one of
the supported data types. Instead of a LONG
VARCHAR or CLOB data type, use a VARCHAR data
type with an explicit length. Instead of a LONG
VARGRAPHIC or DBCLOB data type, use a
VARGRAPHIC data type with an explicit length.

DSNH20061I E csectname LINE nnnn COL cc
UNEXPECTED ERROR RETURNED
FROM LANGUAGE ENVIRONMENT:
REASON CODE reason-code, RETURN
CODE return-code module-name

Explanation: An Language Environment error
occurred while the DB2 precompiler was processing an
SQL procedure. The reason codes and associated
return codes are:

Reason code Meaning and associated return
code

1 No PIPI token. return-code is the
return code from the
CEEPIPI(init_sub) call.

2 CEE could not be loaded. return-code
is the return code from the
CEEPIPI(add_entry) call.

3 PIPI would not terminate. return-code
is the return code from the
CEEPIPI(term) call.

4 Call to module-name failed.
return-code is the return code from
the CEEPIPI(call_sub) call.

5 Bad response from PIPI. return-code
is the return code from module-name.

See the explanation of return codes for the appropriate
CEEPIPI call in OS/390 Language Environment for
OS/390 & VM Programming Guide for explanations of
the Language Environment return codes.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Correct the condition that is
described by reason-code.

DSNH4775I E csectname LINE nnnn COL cc
STATEMENT NOT ALLOWED IN A
COMPOUND SQL STATEMENT

Explanation: In an SQL procedure, a compound
statement contains an SQL procedure statement that is
not allowed.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Remove the incorrect statement from
the compound statement. See “The SQL procedure
body” on page 23 for the correct syntax for a compound
statement in an SQL procedure.

DSNH4776I E csectname LINE nnnn COL cc
CURSOR cursor-name SPECIFIED IN
FOR STATEMENT NOT ALLOWED

Explanation: In an SQL procedure, a FOR statement
contains an OPEN, FETCH, or CLOSE statement for
cursor cursor-name. Cursor operations are not allowed
in the FOR statement.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Remove the incorrect statement from
the compound statement.

DSNH4777I E csectname LINE nnnn COL cc
NESTED COMPOUND STATEMENTS
NOT ALLOWED

Explanation: An SQL procedure contains nested
compound statements, which are not allowed.

© Copyright IBM Corp. 1999 53

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Rewrite the SQL procedure body so
that it does not contain nested compound statements.

DSNH4778I E csectname LINE nnnn COL cc END
LABEL label-name NOT SAME AS
BEGIN LABEL

Explanation: An SQL procedure statement cantains
an ending label and a beginning label that do not
match.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Change the ending label in the
statement to match the beginning label.

DSNH4779I E csectname LINE nnnn COL cc LABEL
label-name SPECIFIED ON LEAVE
STATEMENT IS NOT VALID

Explanation: In an SQL procedure, the label on a
LEAVE statement does not match the label for a block
of code or loop that contains the LEAVE statement.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Change the label in the LEAVE
statement to match a label in the loop or block of code
that contains the LEAVE statement.

DSNH4780I E csectname LINE nnnn COL cc UNDO
SPECIFIED FOR A HANDLER AND
ATOMIC NOT SPECIFIED

Explanation: In an SQL procedure, a compound
statement is defined as NOT ATOMIC, but the
compound statement contains an UNDO handler. An
UNDO handler can be used only for a compound
statement that is defined as ATOMIC.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Define the compound statement as
ATOMIC, or change the UNDO handler to a CONTINUE
or EXIT handler.

DSNH4781I E csectname LINE nnnn COL cc
CONDITION condition-name SPECIFIED
IN HANDLER NOT DEFINED

Explanation: In an SQL procedure, a handler is
declared for condition condition-name, but the SQL
procedure does not contain a condition declaration
statement that defines condition-name.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Include a condition declaration
statement in the SQL procedure that relates
condition-name to an SQLSTATE value.

DSNH4782I E csectname LINE nnnn COL cc
CONDITION VALUE value SPECIFIED IN
HANDLER NOT VALID

Explanation: In an SQL procedure, a condition
handler is not valid for one of the following reasons:

v The handler specifies an SQLSTATE value that is not
valid.

v The handler specifies duplicate conditions.

v The handler specifies SQLWARNING,
SQLEXCEPTION, or NOT FOUND with other
conditions.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Specify a valid condition in the
handler. Ensure that a handler specifies a condition only
once.

DSNH4785I E csectname LINE nnnn COL cc USE OF
SQLCODE OR SQLSTATE NOT VALID

Explanation: In an SQL procedure, the name
SQLCODE or SQLSTATE is used in one of the following
invalid ways:

v An SQLCODE is declared as an SQL variable with a
data type other than INTEGER.

v An SQLSTATE is declared as an SQL variable with a
data type other than CHAR(5).

v An SQLCODE or SQLSTATE is declared as an SQL
variable with DEFAULT NULL.

v An SQLCODE or SQLSTATE is assigned the value
NULL in an assignment statement.

v An SQLCODE or SQLSTATE is the name of an SQL
procedure parameter.

Severity: 8 (error)

System Action: The statement cannot be executed.

User Response: Correct the declaration or
assignment of the SQLCODE or SQLSTATE.

54 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

© Copyright IBM Corp. 1999 55

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming interface information
This book is intended to help the customer write applications that use REXX to
access IBM DB2 for OS/390 servers. This book documents General-use
Programming Interface and Associated Guidance Information provided by
DATABASE 2 for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

56 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AD/Cycle
AIX
APL2
AS/400
BookManager
CICS
CICS/ESA
CICS/MVS
COBOL/370
C/370
DATABASE 2
DataPropagator
DB2
DB2 Extenders
DB2 Universal Database
DFSMSdfp
DFSMShsm
DFSMS/MVS
Distributed Relational

Database Architecture

DRDA
IBM
IMS
IMS/ESA
Language Environment
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
Parallel Sysplex
QMF
RACF
SQL/DS
System/370
System/390
VTAM

Lotus and Notes are trademarks of Lotus Development Corporation in the United
States, or other countries, or both

Microsoft™, Windows™, Windows NT™, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

NetView™ is a trademark of Tivoli Systems Inc. in the United States, or other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 57

58 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

Index

A
ASUTIME clause

CREATE PROCEDURE statement 20

B
BIND_OPTS

column of SYSPSMOPTS table 48
BUILDNAME

column of SYSPSMOPTS table 48
BUILDOWNER

column of SYSPSMOPTS table 48
BUILDSCHEMA

column of SYSPSMOPTS table 48

C
CCSID

clause of CREATE PROCEDURE statement 18
COLLID clause

CREATE PROCEDURE statement 19
COMMIT ON RETURN clause

CREATE PROCEDURE statement 21
COMPILE_OPTS

column of SYSPSMOPTS table 48
CREATE PROCEDURE (SQL procedure) statement

description 16
CREATE PROCEDURE statement

assignment statement 25
SQL procedure body 24

D
DB2 system tables

SYSPSM 47
SYSPSMOPTS 48

DSNTPSMP stored procedure
authorization required 42

I
IN

clause of CREATE PROCEDURE statement 17
INOUT clause

CREATE PROCEDURE statement 17

K
keywords, reserved 51

L
LANGUAGE

clause of CREATE PROCEDURE statement 19
LINK_OPTS

column of SYSPSMOPTS table 48

N
NO WLM ENVIRONMENT clause

CREATE PROCEDURE statement 20
NOCOLLID clause

CREATE PROCEDURE statement 19
notices, legal 55

O
OUT clause of CREATE PROCEDURE statement 17

P
PRECOMPILE_OPTS

column of SYSPSMOPTS table 48
PRELINK_OPTS

column of SYSPSMOPTS table 48
PROCEDURENAME

column of SYSPSM table 47
column of SYSPSMOPTS table 48

PROGRAM TYPE clause
CREATE PROCEDURE statement 20

PSMDATE
column of SYSPSM table 47

PSMTIME
column of SYSPSM table 47

R
reserved keywords 51
RESULT SET clause

CREATE PROCEDURE statement 19
RUN OPTIONS clause

CREATE PROCEDURE statement 21

S
SCHEMA column

SYSPSM table 47
SYSPSMOPTS table 48

SECURITY clause
CREATE PROCEDURE statement 20

SEQNO
column of SYSPSM table 47

SOURCEDSN
column of SYSPSMOPTS table 48

SQL (Structured Query Language)
keywords, reserved 51

SQL procedure
preparation using DSNTPSMP procedure 40
program preparation 39
referencing SQLCODE and SQLSTATE 11
statements allowed 49

SQL statements
CREATE PROCEDURE 16

SQLCODE
referencing in SQL procedure 11

© Copyright IBM Corp. 1999 59

SQLSTATE

referencing in SQL procedure 11

STAY RESIDENT clause

CREATE PROCEDURE statement 20

stored procedure

creating
CREATE PROCEDURE statement 16

syntax diagrams, how to read 2

T
truncation

SQL variable assignment 12

W
WLM ENVIRONMENT clause

CREATE PROCEDURE statement 19

60 DB2 for OS/390 V5: Preview of SQL Procedures—October 5, 1999

IBMR

Program Number: 5655-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Chapter 1. Introduction
	Who should read this book
	How this book is organized
	Other books you might need
	Product terminology and citations
	How to read the syntax diagrams

	Chapter 2. Installing the SQL procedures code
	Chapter 3. Writing an SQL procedure
	Comparison of an SQL procedure and an external procedure
	Statements that you can include in a procedure body
	Declaring variables in an SQL procedure
	Parameter style for an SQL procedure
	Terminating statements in an SQL procedure
	Handling errors in an SQL procedure
	Examples of SQL procedures

	Chapter 4. Statements for SQL procedures
	CREATE PROCEDURE (SQL procedure)
	The SQL procedure body
	Procedure body
	Assignment statement
	CASE statement
	Compound statement
	IF statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	WHILE statement
	SQL procedure statement

	Chapter 5. Preparing and running an SQL procedure
	Using JCL to prepare an SQL procedure
	Using the DB2 for OS/390 SQL procedure processor to prepare an SQLprocedure
	Environment for calling and running DSNTPSMP
	Setting up a WLM application environment for DSNTPSMP
	Creating tables that are used by DSNTPSMP

	Authorization to execute DSNTPSMP
	Writing and preparing an application that calls DSNTPSMP
	DSNTPSMP Syntax
	DSNTPSMP parameters
	Result sets that DSNTPSMP returns
	Examples of DSNTPSMP invocation
	Preparing a program that invokes DSNTPSMP

	Sample programs to help you prepare and run SQL procedures

	Appendix A. DB2 objects required by the SQL procedureprocessor
	Table spaces and indexes
	The SQL procedure source table (SYSIBM.SYSPSM)
	The SQL procedure options table (SYSIBM.SYSPSMOPTS)

	Appendix B. SQL statements allowed in SQL procedures
	Appendix C. SQL reserved words
	Appendix D. Messages for SQL procedures
	Notices
	Programming interface information
	Trademarks

	Index

