
Net.Data

Administration and Programming Guide
for OS/390
Version 2 Release 2

IBM

Note
Be sure to read the information in “Appendix D. Notices” on page 123 before using this information and the product it
supports.

Fifth Edition (November 1998)

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . v
About Net.Data . v
What’s New? . v

What’s New in Version 2? v
What’s New in Version 2.2? vi

About This Book . vii
Who Should Read This Book vii
About Examples in This Book vii

Chapter 1. Introduction . 1
What is Net.Data? . 1
Why Use Net.Data?. 2

Chapter 2. Installing and Configuring Net.Data 5
About the Net.Data Initialization File 5
Installing the Net.Data Initialization File 6
Customizing the Net.Data Initialization File 6

Configuration Variable Statements 7
Path Configuration Statements. 14
Environment Configuration Statements 17

Setting Up the Language Environments 19
IMS Web Language Environment 19
SQL and ODBC Language Environments 20

Managing Connections to DB2. 21
Workload Management Considerations. 21
Configuring Net.Data for Use with CGI 22
Configuring Net.Data for Use with ICAPI or GWAPI 23
Configuring Net.Data for Use with Java Servlets 25
Enabling the Message Catalog. 26
Granting Access Rights to Files and Data Sets Accessed by Net.Data 27

Chapter 3. Keeping Your Assets Secure 29
Using Firewalls . 29
Encrypting Your Data on the Network 30
Using Authentication . 30
Using Authorization . 31
Using Net.Data Mechanisms 31

Net.Data Configuration Variables 31
Macro Development Techniques 32

Chapter 4. Invoking Net.Data 37
Invoking Net.Data using CGI, ICAPI, or GWAPI 37

Invoking Net.Data with a Macro (Macro Request) 38
Invoking Net.Data without a Macro (Direct Request) 41

Invoking Net.Data with Java Servlets 46
Invoking Net.Data using MacroServlet 46
Invoking Net.Data using FunctionServlet 47

Chapter 5. Developing Net.Data Macros 49
Anatomy of a Net.Data Macro 50

The DEFINE Block . 51
The FUNCTION Block . 51
HTML Blocks . 52

© Copyright IBM Corp. 1997, 1998 iii

||

||

||
||
||

Net.Data Macro Variables . 54
Identifier Scope . 54
Defining Variables . 55
Referencing Variables . 57
Variable Types. 57

Net.Data Functions . 64
Defining Functions . 65
Calling Functions. 69
Calling Net.Data Built-in Functions 69

Generating Web Pages in a Macro 72
HTML Blocks . 73
Report Blocks . 74

Conditional Logic and Looping in a Macro 78
Conditional Logic: IF Blocks 79
Looping Constructs: WHILE Blocks 81

Chapter 6. Using Language Environments 83
Overview of Net.Data-Supplied Language Environments 84

Calling a Language Environment 84
Data Language Environments 85

Relational Database Language Environments 85
Flat File Interface Language Environment. 93
IMS Web Language Environment 94

Programming Language Environments 95
Java Applet Language Environment 96
Perl Language Environment 102
REXX Language Environment 105
System Language Environment 107

Chapter 7. Improving Performance 111
Using the Web Server APIs . 111
Net.Data Caching of Macros 111

Guidelines and Restrictions 111
Enabling Macro Caching . 112

Suppressing DB2 for OS/390 Messages 113
Optimizing the Language Environments 113

REXX Language Environment 113
SQL Language Environment 114
System and Perl Language Environments 114

Appendix A. Bibliography . 115
Net.Data Technical Library . 115
Related Documentation . 115

Appendix B. Configuring Net.Data for OS/390 to Access DataJoiner . . . 117

Appendix C. Net.Data Sample Macro 119

Appendix D. Notices . 123
Trademarks . 124

Glossary . 127

Index . 129

iv Net.Data: Administration and Programming Guide for OS/390

||
||
||
||
||
||

Preface

Thank you for selecting Net.Data Version 2.2, IBM’s development tool for creating
dynamic Web pages! With Net.Data, you can rapidly develop Web pages with
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSs),
including DB2, IMS, and ODBC-enabled databases, and using applications written
in programming languages such as Java, JavaScript, Perl, C, C++, and REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that Net.Data
interprets to create dynamic Web pages with customized content based on input
from the user, the current state of your databases, other data sources, existing
business logic, and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape Navigator or Internet Explorer, to a Web server that forwards the
request to Net.Data for execution. Net.Data locates and executes the macro and
builds a Web page that it customizes based on functions that you write. These
functions can:

v Encapsulate business logic within Perl scripts, C and C++ applications, or REXX
programs.

v Access databases such as DB2

Net.Data passes this Web page to the Web server, which in turn forwards the page
over the network for display at the browser. Other members of the Net.Data family
of products provide similar capabilities on machines executing the Windows NT,
AIX, OS/2, AS/400, HP-UX, Sun Solaris, LINUX, and Santa Cruz Operating System
(SCO) operating systems.

Net.Data can be used in server environments that are configured to use interfaces
such as HyperText Transfer Protocol (HTTP) and Common Gateway Interface
(CGI). HTTP is an industry-standard interface for interaction between a browser and
Web server, and CGI is an industry-standard interface for Web server invocation of
gateway applications like Net.Data. These interfaces allow you to select your
favorite browser or Web server for use with Net.Data. Net.Data also supports a
variety of Web server Application Programming Interfaces (APIs) for improved
performance. In adddition, Net.Data can be executed as a servlet.

What’s New?

The following sections describe the new enhancements for Net.Data.

What’s New in Version 2?

Net.Data for OS/390 Version 2 includes performance and scalability features to
meet your application’s requirements, including:

© Copyright IBM Corp. 1997, 1998 v

|
|
|
|
|

|

v Reuse of DB2 for OS/390 connections established through the SQL language
environment when using ICPAPI or GWAPI

v Integration with Work Load Manager for OS/390 in ICAPI environments

v Invocation of Net.Data without a macro (direct request)

v Minimization of extraneous white space within generated Web pages

v Ability to bypass DB2 for OS/390 message text lookups

Net.Data Version 2 also includes a number of functional enhancements:

v Language environment enhancements include the ability to execute stored
procedures using the ODBC language environment.

v Macro language enhancements include:

– Ability to place comments anywhere

– Nested IF blocks

– WHILE blocks

– Ability to receive a single result set from a stored procedure

– DBCS-enabled string and word functions

– Support for the SQL decimal datatype in parameter lists for stored procedures

v The ability to construct a Web page by integrating database data that is encoded
in one code page with data from a macro that is encoded in another code page.

What’s New in Version 2.2?

Net.Data Version 2.2 provides the following enchancements:

v Performance and scalability enchancements include:

– Ability to cache macros and include files

– Improved processing of table variables for large result sets

– Reuse of DB2 for OS/390 connections created by the ODBC language
environment

– Reuse of DB2 for OS/390 connections created by the SQL and ODBC
language environments when using Net.Data servlets

– Improved performance with the Net.Data built-in functions

– Improved scalability of table variables having large result sets

v Macro Language enhancements include:

– Ability to receive multiple result sets from stored procedures using the SQL
and ODBC language environment

– New built-in functions for table processing

– Built-in functions that allow Net.Data applications to get and set HTTP cookies

– Support for START_ROW_NUM, DTW_SET_TOTAL_ROWS, and
TOTAL_ROWS to reduce result set sizes

– Ability to exit the macro immediately using the DTW_EXIT built-in function

– Ability to generate and send e-mail messages from the macro using the
DTW_SENDMAIL built-in function

– Support for INCLUDE_URL statements in WHILE blocks

– Support for functions consisting only of Net.Data macro language statements,
using the MACRO_FUNCTION language construct

– Ability to include period (.) in the HTML section name

– Ablility to place comments in the Net.Data initialization file

– Changed scope of variables created within functions to local

vi Net.Data: Administration and Programming Guide for OS/390

|
|

|

|

|

|

|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|

|
|

|

|

|

– Support for variable references in literal strings within function call parameter
lists

– Ability to interpret two double quotes as a single double quote within all literal
strings

v Support for the Eurocurrency symbol

v Ability to invoke Net.Data using Java servlets

v Ability to disable the SHOWSQL variable with the DTW_SHOWSQL configuration
variable (default is disabled)

v Ability to disable Net.Data direct request with the DTW_DIRECT_REQUEST
configuration variable (default is disabled)

About This Book

This book discusses administration and programming concepts for Net.Data, as well
as how to configure Net.Data and its components, plan for security, and improve
performance.

Building on your knowledge of programming languages and database, you learn
how to use the Net.Data macro language to develop macros. You learn how to use
Net.Data-provided language environments that access DB2 databases, and IMS
transactions using IMS Web, as well as use Java, REXX, Perl, and other
programming languages to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest copy of
this book, is available from the following World Wide Web site:

http://www.software.ibm.com/data/net.data

Who Should Read This Book

This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should be
familiar with how a Web server works, understand simple SQL statements, and
know HTML tags, including HTML form tags.

SMP/E installation information is provided in Program Directory for Net.Data for
OS/390 Version 2 Release 2.

The Net.Data macro language, variables, and built-in functions, as well as operating
system differences are described in Net.Data Reference.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

Preface vii

|
|

|
|

|

|

|
|

|
|

|

|
|
|
|

|
|

|
|

viii Net.Data: Administration and Programming Guide for OS/390

Chapter 1. Introduction

Most Web pages on the Internet are static Web pages; in other words, pages that
do not change unless you edit them. To put “live” data and applications on the Web
(such as current sales statistics), Web site developers usually write programs that
execute as middleware at the Web server to dynamically build Web pages. Writing
these types of programs is not easy.

Net.Data simplifies the writing of interactive Web applications through macros.

This chapter describes Net.Data and the reasons why you might want to use it for
your Web applications.

v “What is Net.Data?”

v “Why Use Net.Data?” on page 2

What is Net.Data?

Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro is a
text file containing Net.Data macro language constructs, HTML tags, Javascript, and
language environment statements, such as SQL and Perl. Net.Data processes the
macro to produce output that can be displayed by a Web browser. Macros combine
the simplicity of HTML with the dynamic functionality of Web server programs,
making it easy to add live data to static Web pages. The live data can be extracted
from local or remote databases and from flat files, or be generated by applications
and system services.

Figure 1 on page 2 illustrates the relationship between Net.Data for OS/390, the
Web server, and supported data and programming language environments.

© Copyright IBM Corp. 1997, 1998 1

|
|

|

|

|

The Web server invokes Net.Data using CGI or a Web server application
programming interface (API) when it receives a URL that requests Net.Data
services. The URL includes Net.Data-specific information, including either the macro
that is to be processed or the SQL statement or program that is to be directly
invoked. When Net.Data finishes processing the request, it sends the resulting Web
page to the Web server. The server passes it on to the Web client, where it is
displayed by the browser.

Why Use Net.Data?

Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications and
because Net.Data lets you use languages that you already know, such as HTML,
SQL, Perl, REXX, and JavaScript. In addition, changes to a macro can be seen
instantaneously on a browser.

Net.Data complements the extensive data management capabilities that already
exist on the OS/390 operating sytem by enabling both data and related business
logic for the Web. More specifically, Net.Data:

v Provides a simple, yet powerful macro language that allows for rapid
development of Internet and Intranet applications. The Net.Data Web application
environment provides the following features:

v Permits the separation of data generation logic from presentation logic within
your Web applications. Net.Data does not impose any restrictions on the method
with which the data is presented (such as HTML or Javascript). This separation
allows users to easily change the presentation of data using the latest
presentation techniques.

v Allows you to use existing skills and business logic to generate Web pages by
providing the ability to interface with programs written in C, C++, REXX, Java or
other languages.

Figure 1. The Relationship between Net.Data for OS/390, the Web Server, and Supported
Data and Program Sources

2 Net.Data: Administration and Programming Guide for OS/390

v Provides the ability to develop complex Internet applications quickly, using a
simple macro language and existing programming skills.

v Provides high-performance access to data that is managed by local DB2
subsystems and by remote DRDA-enabled data sources.

v Provides easy migration of macros between all operating systems supported by
the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When Net.Data is
invoked to process a macro, Net.Data directly interprets each language
statement in a sequential fashion, starting from the top of the file. Using this
approach, any changes you make to a macro can be immediately seen
when you next specify the URL that executes the macro. No recompilation
is required.

Direct Requests
Simple requests that require the execution of a single SQL statement, DB2
stored procedure, REXX program, C or C++ program, or Perl script do not
require the creation of a macro. These requests can be specified directly
within the URL that flows from the browser to the Web server.

Free Format

The Net.Data macro language has only a few rules about programming
format. This simplicity provides programmers with freedom and flexibility. A
single instruction can span many lines, or multiple instructions can be
entered on a single line. Instructions can begin in any column. Spaces or
entire lines can be skipped. Comments can be used anywhere.

Variables Without Type

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents a valid
number, including those in exponential formats. Macro language variables
are discussed in detail in “Net.Data Macro Variables” on page 54.

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers. Other
built-in functions provide formatting capabilities and arithmetic calculations.

Error Handling

When Net.Data detects an error, messages with explanations are returned
to the client. You can customize the error messages before they are
returned to a user at a browser. See Net.Data Reference for more
information.

Chapter 1. Introduction 3

4 Net.Data: Administration and Programming Guide for OS/390

Chapter 2. Installing and Configuring Net.Data

Net.Data for OS/390 is installed by using SMP/E. The Program Directory for
Net.Data for OS/390 Version 2 Release 2 describes the SMP/E installation process
and accompanies the installation tape for Net.Data.

After using SMP/E to install Net.Data, you must configure Net.Data and modify your
configuration for the Web server. Configuration tasks include:

v Installing and customizing the Net.Data initialization (INI) file

v Configuring Net.Data for use with CGI, ICAPI, GWAPI, or Net.Data Servlets

v Customizing the Web server configuration and environment variable files

v Setting up the Net.Data language environments

v Specifying access rights

v Enabling the message catalog

This chapter describes how to configure Net.Data and how to modify your
configuration of the Web server for use with Net.Data.

v “Installing the Net.Data Initialization File” on page 6

v “Customizing the Net.Data Initialization File” on page 6

v “Setting Up the Language Environments” on page 19

v “Managing Connections to DB2” on page 21

v “Workload Management Considerations” on page 21

v “Configuring Net.Data for Use with CGI” on page 22

v “Configuring Net.Data for Use with ICAPI or GWAPI” on page 23

v “Configuring Net.Data for Use with Java Servlets” on page 25

v “Enabling the Message Catalog” on page 26

v “Granting Access Rights to Files and Data Sets Accessed by Net.Data” on
page 27

About the Net.Data Initialization File

Net.Data uses its initialization file to establish the settings of various configuration
variables and to configure language environments and search paths. The settings of
configuration variables control various aspects of Net.Data operation, such as the
following:

v The encoding of character data within DB2

v Whether string and word functions are DBCS enabled

v The selection of the default subsystem ID and plan name for access to DB2 and
DRDA-enabled data

The language environment statements define the Net.Data language environments
that are available and identify special input and output parameter values that flow to
and from the language environments. The language environments enable Net.Data
to access different data sources, such as DB2 databases and system services. The
path statements specify the directory paths to HFS files that Net.Data uses, such as
macros, REXX programs, and Perl scripts.

© Copyright IBM Corp. 1997, 1998 5

|
|
|

|

|

|

|
|

To document the Net.Data initialiation file entries, you can use Net.Data comments.
See the comment block section in the language element chapter of Net.Data
Reference.

Installing the Net.Data Initialization File

The SMP/E install process creates the sample Net.Data initialization file named
db2www.ini in the directory /usr/lpp/netdata/pub. (The SMP/E install process is
described in Program Directory for Net.Data for OS/390 Version 2 Release 2.)

To install the Net.Data initialization file:
1. Copy the sample Net.Data initialization file to the Web server’s document root

directory. (The Web server’s document root directory is specified in the Web
server’s configuration file, /etc/httpd.conf, by the Pass directive with request
template “/*”. The Web server’s default document root directory is
/usr/lpp/internet/server_root/pub, but this might have been changed when
the Web server was installed. If your Web server’s document root directory is
different than internet/server_root/pub, then substitute your choice as
appropriate in these instructions.)

If you installed Net.Data in the directory /usr/lpp/netdata, then you can copy
the initialization file by executing the following shell command under OMVS:
cp /usr/lpp/netdata/pub/db2www.ini /usr/lpp/internet/server_root/pub

2. Ensure that the permissions for the Net.Data initialization file are 644.

Customizing the Net.Data Initialization File

The information contained in the initialization file is specified using three types of
configuration statements, described in the following sections:

v “Configuration Variable Statements” on page 7

v “Path Configuration Statements” on page 14

v “Environment Configuration Statements” on page 17

The sample initialization file shown in Figure 2 on page 7 contains examples of
these statements.

The text of each individual configuration statement must all be on one line. (An
ENVIRONMENT statement is shown on several lines for readability.) Ensure that
the INI file contains an ENVIRONMENT statment for each LE that you call from
your macros.

6 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|
|
|

The following sections describe how to customize the configuration statements in
the initialization file.

Migration Note: If you are migrating from a previous version of Net.Data, check
each of the configuration statement sections for a complete description of changes
that you might need to make when moving to a new release of Net.Data.

v “Configuration Variable Statements”

v “Path Configuration Statements” on page 14

The following ENVIRONMENT statement changes are required:

v Remove the RETURN_CODE variable from the parameter list of any
ENVIRONMENT statement in which it appears.

v Remove the DTW_DEFAULT ENVIRONMENT statement.

The following changes should be considered because the Net.Data initialization file
has new configuration variable default values:

v If your applications require the use of the variable SHOWSQL, then change the
DTW_SHOWSQL configuration variable to YES. See “DTW_SHOWSQL: Enable
or Disable SHOWSQL Configuration Variable” on page 13 for syntax and
examples.

v If your applications require the use of direct request invocation, then change the
DTW_DIRECT_REQUEST configuration variable to YES. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 11 for
syntax and examples.

Configuration Variable Statements

Net.Data configuration variable statements set the values of configuration variables.
Configuration variables are used for various purposes. Some variables are required
by a language environment to work properly or to operate in an alternate mode.
Other variables control the character encoding or content of the Web page being
constructed. Additionally, you can use configuration variable statements to define
application-specific variables.

1 %(changes: removed RETURN_CODE parm and DTW_DEFAULT
ENVIRONMENT statement %)

2 DB2SSID DBNC
3 DB2PLAN DTWGAV22
4 DTW_DIRECT_REQUEST NO
5 DTW_SHOWSQL NO
6 MACRO_PATH /usr/lpp/netdata/macros;
7 EXEC_PATH /usr/lpp/netdata/testcmd;
8 FFI_PATH /usr/lpp/netdata/file-data;
9 ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION, DB2SSID,

DB2PLAN, TRANSACTION_SCOPE)
10 ENVIRONMENT (DTW_ODBC) odbcdll (IN LOCATION, TRANSACTION_SCOPE)
11 ENVIRONMENT (DTW_PERL) perldll ()
12 ENVIRONMENT (DTW_REXX) rexxdll ()
13 ENVIRONMENT (DTW_FILE) filedll ()
14 ENVIRONMENT (DTW_APPLET) appldll ()
15 ENVIRONMENT (DTW_SYSTEM) sysdll ()

v Line 1 contains a
comment

v Lines 2 - 5 define
configuration
variables

v Lines 6 - 8 define
paths to HFS files

v Lines 9 - 15 define
the environment
statements that are
available.

Figure 2. The Net.Data initialization file

Chapter 2. Installing and Configuring Net.Data 7

|
|
|

|

|

|

|
|

|

|
|

|
|
|
|

|
|
|
|

|

The configuration variables you use depend on the language environments, and
DB2 subsystems, you are using, as well as other factors that are specific to the
application.

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are required for
your application. A configuration variable has the following syntax:
NAME[=]value-string

The equal sign is optional, as denoted by the brackets.

The following sub-sections describe the configuration variables statements that you
can specify in the initialization file:

v “DB2MSGS: DB2 Message Text Variable”

v “DB2PLAN: DB2 Plan Variable” on page 9

v “DB2SSID: DB2 Subsystem ID Variable” on page 9

v “DefaultDBCp: Default Database Code Page Variable” on page 10

v “DSNAOINI: DB2 CLI Initialization File Variable” on page 10

v “DTW_CACHE_MACRO” on page 11

v “DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 11

v “DTW_DO_NOT_CACHE_MACRO” on page 12

v “DTW_MBMODE: Native Language Support Variable” on page 12

v “DTW_REMOVE_WS: Variable for Removing Extra White Space” on page 13

v “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration Variable” on
page 13

v “DTW_SMTP_SERVER: E-mail SMTP Server Variable” on page 13

Configuration variable assumptions: The sample Net.Data initialization file makes
several assumptions about customizing the setting of Net.Data configuration
variables. These assumptions may not be correct for your environment:

v The DB2 subsystem ID specification uses DBNC; replace this value using the
DB2SSID configuration variable for your application.

v The DB2 plan specification uses DTWGAV22; replace this value using the
DB2PLAN configuration variable for your application.

v If your applications require the use of the variable SHOWSQL, then change the
DTW_SHOWSQL configuration variable to YES. See “DTW_SHOWSQL: Enable
or Disable SHOWSQL Configuration Variable” on page 13 for syntax and
examples.

v If your applications require the use of direct request invocation, then change the
DTW_DIRECT_REQUEST configuration variable to YES. See
“DTW_DIRECT_REQUEST: Enable Direct Request Variable” on page 11 for
syntax and examples.

DB2MSGS: DB2 Message Text Variable

Specifies whether Net.Data loads DB2-provided message text for SQLCODES
when using the SQL language environment to access DB2 for OS/390.

8 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|

|
|
|
|

This variable does not affect MESSAGE blocks.

Syntax:
DB2MSGS [=] message_level

Where message_level indicates the level of DB2-provided messages that Net.Data
displays. message_level can be set to the following values:

NONE Specifies that Net.Data displays no message text.

ERRORONLY Specifies that Net.Data displays message text only
for negative SQLCODE values

ALL Specifies that Net.Data displays message text for
all SQLCODE values. This is the default. If a value
is provided for DB2MSGS other than one of the
valid values listed above, Net.Data uses the default
value of ALL.

Example: Sets the DB2 message text level
DB2MSGS NONE

Performance tip: When the display of DB2 message text at the browser is not
required, specifying NONE can improve performance. When the display of DB2
warning message text at the browser is not required, specifying ERRORONLY can
improve performance.

DB2PLAN: DB2 Plan Variable

Specifies the default DB2 plan to be used by the SQL language environment when
accessing DB2 for OS/390.

Syntax:
DB2PLAN [=] plan_name

Example: Sets the default DB2 plan name
DB2PLAN DTWGAV22

To override the initialization file setting in the macro:
1. Add the DB2PLAN variable as a parameter of the DTW_SQL ENVIRONMENT

statement in initialization file as shown in the following example:
ENVIRONMENT (DTW_SQL) dtwsql (IN DB2PLAN)

2. In the macro, set the variable DB2PLAN to the value required for the
application.

DB2SSID: DB2 Subsystem ID Variable

Specifies the default DB2 subsystem ID used by the SQL language environment
when accessing DB2 for OS/390.

Syntax:
DBS2SSID [=] subsystem_id

Example: Sets the default DB2 subsystem ID
DB2SSID DBNC

Chapter 2. Installing and Configuring Net.Data 9

To override the initialization file setting in the macro:
1. Add the DB2SSID variable as a parameter of the DTW_SQL ENVIRONMENT

statement in initialization file as shown in the following example:
ENVIRONMENT (DTW_SQL) dtwsql (IN DB2SSID)

2. In the macro, set the variable DB2SSID to the value required for the application.

DefaultDBCp: Default Database Code Page Variable

Specifies the default code page that Net.Data uses when accessing database data.
Net.Data uses the setting of this variable to:

v Convert SQL statement text and the values of input variables for stored
procedure calls from the default file system code page to the default database
code page

v Convert the values of output variables from stored procedure calls and result
tables from the default database code page to the default file system code page

The Web server’s configuration file (/etc/httpd.conf) specifies the default code
page environment through DefaultFsCp and DefaultNetCp directives. The
DefaultFsCp directive specifies the default file system code page on the server. This
code page is the EBCDIC code page in which the Web server expects to receive
text streams from Net.Data. The DefaultNetCp directive specifies the default
network code page. This code page is the ASCII code page used to encode text
streams that are served by the Web server.

Performance tip: Do not configure the code page variable DefaultDBCp unless
your application requires it. When you define this variable, Net.Data assumes a
special conversion is necessary.

If DefaultDBCp is not specified within the initialization file, then Net.Data assumes
that the code page for the data in the database is equivalent to the default file
system code page and no conversions take place.

Syntax:
DefaultDBCp [=] code_page

DSNAOINI: DB2 CLI Initialization File Variable

Specifies the name of the DB2 CLI initialization file. The value of this configuration
variable can either be a sequential dataset or a member of a partitioned dataset.

If you want to use the Net.Data ODBC language environment, use this variable to
specify the name of your DB2 CLI initialization file. If you plan to use the ODBC
language environment with ICAPI, set the MVSATTACHTYPE variable in the DB2
CLI initialization file to RRSAF. Also, set the PLANNAME variable to the same plan
name as the one specified by DB2PLAN.

Syntax:
DSNAOINI [=] CLI_initialization_file_name

Example 1: A sequential dataset CLI initialization file name
DSNAOINI DBNC.DSNAOINI

Example 2:
DSNAOINI DBNC.CLI(DSNAOINI)

10 Net.Data: Administration and Programming Guide for OS/390

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|

|

|

|

|

|

|

DTW_CACHE_MACRO

Specifies macros that are to be cached by Net.Data. This variable works with the
DTW_DO_NOT_CACHE_MACRO configuration variable. See
“DTW_DO_NOT_CACHE_MACRO” on page 12 for description, syntax, and
examples.

Guidelines:

v If the Net.Data inititialization file does not contain either this variable or the
DTW_DO_NOT_CACHE_MACRO variable, then no macros are cached.

v If both DTW_CACHE_MACRO and DTW_DO_NOT_CACHE_MACRO specify the
same macro, then the macro is not cached by Net.Data.

v If the Net.Data initialization file contains only DTW_DO_NOT_CACHE_MACRO
with specified macro files, then all other macro files at the server are cached.

Syntax:
DTW_CACHE_MACRO [=] file_name1|path_template1;...;file_name(n)|path_template(n)

Where:

file_name
Is a fully qualifed name of a macro file. For example:
/u/user1/macros/custqord.d2w

path_template
Is a path template for one or more directories containing macro files. A path
template must contain the suffix /*. Net.Data caches all macro files contained
within the directory or directories that match the path template. For example:
/u/user1/macros/*

Example 1: Caches all macro requests within the directory /u/user1/macros/myapps

DTW_CACHE_MACRO /u/user1/macros/myapps/*

Example 2: Caches all macro requests
DTW_CACHE_MACRO /*

DTW_DIRECT_REQUEST: Enable Direct Request Variable

Enables or disables Net.Data direct request invocation. By default, direct request is
disabled.

The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly within a URL.
When direct request is disabled, the user must invoke Net.Data using the macro
request method, allows users to execute only those SQL statements and functions
defined or called in a macro. See “Using Net.Data Mechanisms” on page 31 for
security-related recommendations when using DTW_DIRECT_REQUEST.

Syntax:
DTW_DIRECT_REQUEST YES|NO

Where:

YES Enables Net.Data direct request.

NO Disables Net.Data direct request. NO is the default.

Chapter 2. Installing and Configuring Net.Data 11

|

|
|
|
|

|

|
|

|
|

|
|

|

|

|

|
|
|

|
|
|
|
|

|

|

|

|

|

DTW_DO_NOT_CACHE_MACRO

Specifies macros that are not to be cached by Net.Data; all other macros are
cached. This variable works with the DTW_CACHE_MACRO configuration variable.
See “DTW_CACHE_MACRO” on page 11 for description, syntax, and examples.

Guidelines:

v If the Net.Data initialization file contains only the
DTW_DO_NOT_CACHE_MACRO variable with specified macro files, then all
other macro files at the server are cached.

v If the Net.Data inititialization file does not contain either this variable or the
DTW_CACHE_MACRO variable, then no macros are cached.

v If both DTW_CACHE_MACRO and DTW_DO_NOT_CACHE_MACRO specify the
same macro, then the macro is not cached by Net.Data.

Syntax:
DTW_DO_NOT_CACHE_MACRO [=] file_name1|path_template1;...;file_name(n)|path_template(n)

Where:

file_name
Is a fully qualifed name of a macro file. For example:
/u/user1/macros/custqord.d2w

path_template
Is a path template for one or more directories containing macro files. A path
template must contain the suffix /*. Net.Data caches all macro files contained
within the directory or directories that match the path template. For example:
/u/user1/macros/*

Example 1: Caches all macro requests except those within the directory
/u/user1/macros/myapps

DTW_DO_NOT_CACHE_MACRO /u/user1/macros/myapps/*

Example 2: Caches all macro requests except for the macro, custqord.d2w
DTW_DO_NOT_CACHE_MACRO /u/user1/macros/myapps/custqord.d2w

DTW_MBMODE: Native Language Support Variable

Activates national language support for word and string functions. When the value
of this variable is YES, all string and word functions correctly process DBCS
characters within strings by treating strings as mixed data (that is, as strings that
potentially contain characters from both single-byte character sets and double byte
character sets). The default value is NO. You can override the value set in the
initialization file by setting the DTW_MBMODE variable in a Net.Data macro.

Syntax:
DTW_MBMODE [=] NO|YES

Example: Activating national language support
DTW_MBMODE YES

You can override this variable in the macro by using the DEFINE statement.

12 Net.Data: Administration and Programming Guide for OS/390

|

|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

DTW_REMOVE_WS: Variable for Removing Extra White Space

Reduces the size of a dynamically generated Web page by removing superfluous
white space consisting of tabulators, blanks, and new-line characters. When this
variable is set to YES, Net.Data compresses a sequence of two or more white
spaces to one new-line character, generating shorter HTML result pages. By
compressing white space, this variable reduces the amount of data sent to the Web
browser, thereby improving performance. The default is NO.

You can override this variable in the macro by using the DEFINE statement.

Tip: Defining this variable to YES affects the amount and type of white space that is
displayed. Although the browser ignores extra white space in most cases, it is
advised that this variable should be set to NO (or left undefined) for any macros
that make use of <PRE></PRE> tags or those that set DTW_PRINT_HEADER to
NO, as the resulting page might display differently.

Syntax:
DTW_REMOVE_WS [=] YES|NO

Example : Compressing white space
DTW_REMOVE_WS YES

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable

Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL YES|NO

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is set
to YES. NO is the default.

Table 1 describes how the settings in the Net.Data initialization file and the macro
determine whether the SHOWSQL variable is enabled or disabled for a particular
macro.

Table 1. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of
DTW_SHOWSQL

Setting SHOWSQL SQL statement is
displayed

NO NO NO

NO YES NO

YES NO NO

YES YES YES

DTW_SMTP_SERVER: E-mail SMTP Server Variable

Specifies the SMTP server to use for sending out e-mail messages. The value of
this variable can be the name of the SMTP server if it is on the local system, or it

Chapter 2. Installing and Configuring Net.Data 13

|
|
|
|
|

|
|

|

|

|

|

||

||
|

|
|
|

|
|
|
|

|
|
||
|

|||

|||

|||

|||

|

|
|

can be the node and name of the SMTP server if it is on a remote system. If this
variable is not set, Net.Data uses the value SMTP as the name of the server and
assumes it is on the local system.

Syntax:
DTW_SMTP_SERVER server_name

Where server_name is one of the following values:

name Specifies the name of the SMTP server running on the local system. The
default name is SMTP.

node.name
Specifies the node and name on which the SMTP server is running.

Example:
DTW_SMTP_SERVER mynode.myserver

Path Configuration Statements

Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:

v “MACRO_PATH” on page 15

v “EXEC_PATH” on page 15

v “INCLUDE_PATH” on page 16

v “FFI_PATH” on page 17

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executables, HFS files, and include files. The
path statements that you need depend on the Net.Data capabilities that your
macros use.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data search paths. These assumptions might not be
correct for your environment and require that you modify the path configuration
statements:

v If your Net.Data macro directory path is different than /usr/lpp/netdata/macros,
then replace it with your macros directory path in the MACRO_PATH statement.

The files contained in the Net.Data /usr/lpp/netdata/macros directory are under
SMP/E control and cannot be modified. If you modify any of these files, make the
modifications to copies of the files stored in directories that you create. You must
instruct Net.Data to search for these files in your private directories prior to
searching the SMP/E-created directories. To do this, add your private directories
in front of the SMP/E-created directories in the path statements of the db2www.ini
file. For example, if you customize a macro that is provided during the SMP/E
installation and place the macro in the directory /u/user1/macros, replace the
default MACRO_PATH statement with:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros;

v If your Net.Data external program directory path is different than
/usr/lpp/netdata/testcmd, then replace it with your external program directory
path in the EXEC_PATH statement.

14 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|

|

|

||
|

|
|

|

|

|

v If your Net.Data flat file directory path is different from /usr/lpp/netdata/file-
data, then replace it with your flat file directory path in the FFI_PATH statement.

Update guidelines:

Several general guidelines apply to all path statements.

v Each specified directory ends with a semicolon (;).

v Each path statement can specify multiple paths. Paths are searched from left to
right in the order specified. This multiple-path capability lets you organize your
files within multiple directories. For example, you can place each of your Web
applications in its own directory.

v It is recommended to use absolute path statements.

The following sections describe the purpose and syntax of each path statement and
provide examples of valid path statements.

MACRO_PATH

The MACRO_PATH configuration statement identifies the directories that Net.Data
searches for Net.Data macros. For example, specifying the following URL requests
the Net.Data macro with the path and file name /macro/sqlm.d2w:
http://server/netdata-cgi/db2www/macro/sqlm.d2w/report

Syntax:
MACRO_PATH [=] path1;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Net.Data appends the path /macro/sqlm.d2w to the paths in the MACRO_PATH
configuration statement, from left to right until Net.Data finds the macro or searches
all paths. See “Chapter 4. Invoking Net.Data” on page 37 for information on invoking
Net.Data macros.

Example: The following example shows the MACRO PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/user1/macros;/usr/lpp/netdata/macros;

HTML link:
Submit another query.

If the file query.d2w is found in the directory /u/user1/macros, then the
fully-qualified path is /u/user1/macros/query.d2w.

EXEC_PATH

The EXEC_PATH configuration statement identifies one or more directories that
Net.Data searches for an external program that is invoked by the EXEC statement
or an executable variable. If the program is found, the external program name is
appended to the path specification, resulting in a fully qualified file name that is
passed to the language environment for execution.

Syntax:

Chapter 2. Installing and Configuring Net.Data 15

EXEC_PATH [=] path1;path2;...;pathn

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an external
program.

Net.Data initialization file:
EXEC_PATH /u/user1/prgms;/usr/lpp/netdata/prgms;

Net.Data macro:
%FUNCTION(DTW_REXX) myFunction() {
%EXEC{ myFunction.cmd %}

%}

If the file myFunction.cmd is found in the /usr/lpp/netdata/prgms directory, the
qualified name of the program is /usr/lpp/netdata/prgms/myFunction.cmd.

INCLUDE_PATH

The INCLUDE_PATH configuration statement identifies one or more directories that
Net.Data searches to find a file specified on an INCLUDE statement in a Net.Data
macro. When it finds the file, Net.Data appends the include file name to the path
specification to produce the qualified include file name.

Syntax:
INCLUDE_PATH [=] path1;path2;...;pathn

Tip: If you are including HTML files from a local Web server, use the
INCLUDE_URL construct as shown in the local Web server example for
INCLUDE_URL in Net.Data Reference. By using the demonstrated syntax, you do
not need to update the INCLUDE_PATH to specify directories that are already
known to the Web server.

Example 1: The following example shows both the INCLUDE_PATH statement in
the initialization file and the INCLUDE statement that specifies the include file.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes;

Net.Data macro:
%INCLUDE "myInclude.txt"

If the file myInclude.txt is found in the /u/user1/includes directory, the
fully-qualified name of the include file is /u/user1/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and an
INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/user1/includes;/usr/lpp/netdata/includes;

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

16 Net.Data: Administration and Programming Guide for OS/390

The include file is searched for in the directories /u/user1/includes/OE and
/usr/lpp/netdata/includes/OE. If the file is found in
/usr/lpp/netdata/includes/OE, the fully qualified name of the include file is
/usr/lpp/netdata/includes/OE/oeheader.inc.

FFI_PATH

The FFI_PATH configuration statement identifies one or more directories that
Net.Data searches for an HFS file that is referenced by a flat file interface (FFI)
function.

Syntax:
FFI_PATH [=] path1;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the initialization
file.

Net.Data initialization file:
FFI_PATH /u/user1/ffi;/usr/lpp/netdata/ffi;

When the FFI language environment is called, Net.Data looks in the path specified
in the FFI_PATH statement.

Because the FFI_PATH statement is used to provide security to those files not in
directories in the path statement, there are special provisions for FFI files that are
not found. See the FFI built-in functions section in Net.Data Reference.

Environment Configuration Statements

An ENVIRONMENT statement configures a language environment. A language
environment is a component of Net.Data that Net.Data uses to access a data
source such as a DB2 database or to execute a program written in a language such
as REXX. Net.Data provides a set of language environments, as well as an
interface that allows you to create your own language environments. These
language environments are decribed in “Chapter 6. Using Language Environments”
on page 83 and the language environment interface is described in Net.Data

Language Environment Interface Reference.

Net.Data requires that an ENVIRONMENT statement for a particular language
environment exist before you can invoke that language environment.

Net.Data specifies several variables that affect the way in which Net.Data language
environments interpret calls to functions that are defined in FUNCTION blocks. The
settings of these variables must be passed to a language environment to have an
effect.

For example, a macro can define a LOCATION variable to specify the location
name of the remote DBMS at which an SQL statement within a DTW_SQL function
is to be executed. The value of LOCATION must be passed to the SQL language
environment (DTW_SQL) so that the SQL language environment can connect to the
designated remote DBMS. To pass the variable to the language environment, you
must add the LOCATION variable to the parameter list of the environment
statement for DTW_SQL.

There are also variables that you set as configuration variables in the initialization
file, and that you can override in a macro. For example, if you want a macro to

Chapter 2. Installing and Configuring Net.Data 17

override the default settings of the DB2PLAN and DB2SSID variables when the
SQL language environment is invoked, include them on the ENVIRONMENT
statement for DTW_SQL.

ENVIRONMENT statement changes: If you are migrating from a previous version
of Net.Data, make the following changes in the ENVIRONMENT statement section:

v Remove the RETURN_CODE variable from the parameter list of any
ENVIRONMENT statement in which it appears.

v Remove the DTW_DEFAULT ENVIRONMENT statement.

v If you plan to use DB2 for OS/390 V6 for your applications, change the
ENVIRONMENT statement for DTW_SQL from ENVIRONMENT (DTW_SQL) dtwsql
() to ENVIRONMENT (DTW_SQL) dtwsqlv6 ().

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements. These
assumptions may not be correct for your environment. Modify the statements
appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT(type) library_name (parameter_list, ...)

Parameters:

v type

The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the type
of the language environment on a FUNCTION block definition to identify the
language environment that Net.Data should use to execute the function.

v library_name

The name of the DLL containing the language environment interfaces that
Net.Data calls.

The DLL name is specified without the .dll extension.

v parameter_list

The list of parameters that are passed to the language environment on each
function call, in addition to the parameters that are specified in the FUNCTION
block definition.

To set and pass the variables in the parameters list, define the variable in the
macro.

You must define these parameters as configuration variables or as variables in
your macro before executing a function that will be processed by the language
environment. If a function modifies any of its output parameters, the parameters
keep their modified value after the function completes. The following list specifies
which variables the ENVIRONMENT statements can pass:

DTW_SQL: TRANSACTION_SCOPE, LOCATION, DB2SSID, DB2PLAN

DTW_ODBC: TRANSACTION_SCOPE, LOCATION

When Net.Data processes the initialization file, it does not load the language
environment DLLs . Net.Data loads a language environment DLL when it first
executes a function that identifies that language environment. The DLL then
remains loaded for as long as Net.Data is loaded.

18 Net.Data: Administration and Programming Guide for OS/390

|
|

|
|

|

|
|
|

|

|
|
|
|
|

||

||

|

Example: ENVIRONMENT statements for Net.Data-provided language
environments

When customizing the ENVIRONMENT statements for your application, add the
variables on the ENVIRONMENT statements that need to be passed from your
initialization file to a language environment or that Net.Data macro writers need to
set or override in their macros.
ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION, DB2SSID, DB2PLAN,
TRANSACTION_SCOPE)

ENVIRONMENT (DTW_ODBC) odbcdll (IN LOCATION, TRANSACTION_SCOPE)
ENVIRONMENT (DTW_APPLET) appldll ()
ENVIRONMENT (DTW_PERL) perldll ()
ENVIRONMENT (DTW_FILE) filedll ()
ENVIRONMENT (DTW_REXX) rexxdll ()
ENVIRONMENT (DTW_SYSTEM) sysdll ()

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up the Language Environments

After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly. The
following sections describe the steps necessary to set up the language
environments:

v “IMS Web Language Environment”

v “SQL and ODBC Language Environments” on page 20

IMS Web Language Environment

To use the IMS Web language environment, you must complete the following steps:

1. Install the IMS Web Runtime component on the Web server running Net.Data.
For information about installing and using the IMS Web Runtime component,
see IMS Web User’s Guide:
http://www.software.ibm.com/data/ims/about/imsweb/document/

2. Install IMS TCP/IP OTMA Connection (IMS TOC) on your host system. For
information about installing and using IMS TCP/IP OTMA Connection, see:
http://www.software.ibm.com/data/ims/about/imstoc/document/index.html

3. Create the transaction DLL.

a. Generate the C++ code, makefile (DTWproj.mak), and Net.Data macros
(DTWproj.d2w) files from the HFS source for your transaction with the IMS
Web Studio tool.

b. Build the executable form of the transaction DLL using the generated make
file.

4. Copy the transaction DLL file (DTWproj.dll) and Net.Data macro file
(DTWproj.d2w) to your Web server.

a. Place the macro in a directory from which Net.Data retrieves macros. (See
“MACRO_PATH” on page 15 for more information.)

b. Place the transaction DLL or shared library in a directory from which the
Web server retrieves DLLs.

Chapter 2. Installing and Configuring Net.Data 19

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|

|

|

|
|
|

|
|

|
|

|
|

|
|

5. Use the link in the sample file that is generated by the IMS Web Studio tool,
DTWproj.htm, to modify an HTML file in your Web server’s HTML tree. You can
then use the link to invoke Net.Data and display the input HTML form to invoke
the IMS Web language environment. The IMS Web language environment then
calls the IMS transaction DLL, which uses the services proved by the IMS Web
Runtime DLLs to run the transaction and return its output to the Web browser.

The IMS Web Runtime DLLs formulate and send a request message through
IMS TOC to OTMA, which in turn causes the appropriate transaction to be
queued. The output of the transaction is then returned by OTMA through IMS
TOC to IMS Web. The transaction os then passed back through the IMS Web
language environment to Net.Data for display on the Web browser.

SQL and ODBC Language Environments

The SQL language environment (DTW_SQL) and the ODBC language environment
(DTW_ODBC) use the DB2 load module library SDSNLOAD. The Net.Data SQL
and ODBC language environments require that this library reside in LINKLIST or
that it be specified in the STEPLIB DD statement of the Web server start-up
procedure. The name and location of the Web server start-up procedure depends
on your system configuration.

Required:

v Create a plan for Net.Data before using the Net.Data SQL and ODBC language
environments to call stored procedures or to execute other types of SQL
statements. The binds required for creating this plan depend on the language
environments that you plan to use and the version of DB2 you are using.

v The SQL and ODBC Language Environments require RRS Attach Facility when
using Net.Data with ICAPI, GWAPI, and Net.Data Servlets. Make sure the RRS
Attach Facility is installed for DB2 and OS/390 RRS is installed and configured
properly.

Use one of the following approaches to bind the Net.Data DBRM into a package.

v Use the sample JCL for binding the Net.Data. The samples bind DBRM into a
package, create a Net.Data plan that supports the use of the SQL language
environment, and grant EXECUTE authority on the plan to PUBLIC. The sample
JCL can be found in one of the following jobs:

DTWBIND For the use of the SQL language environment with DB2 V5

DTWBIND6 For the use of the SQL language environment with DB2 V6

DTWOBIND For the use of the ODBC language environment, or both the
ODBC language environment and the SQL language
environment, with DB2 V5

DTWOBND6 For the use of the ODBC language environment, or both the
ODBC language environment and the SQL language
environment, with DB2 V6

v If you plan to use both the SQL and ODBC language environments, bind the
DBRMs for DB2 CLI into the same plan as the Net.Data DBRM. Sample JCL for
binding the Net.Data DBRM and the DB2 CLI DBRMs into a package, for
creating a Net.Data plan that supports the use of the SQL and ODBC language
environments, and for granting EXECUTE authority on the plan to PUBLIC can
be found in DTW220.SDTWBASE(DTWOBIND).

20 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

||

||

||
|
|

||
|
|

|

|

You might need to make some minor changes to the sample JCL in order to
successfully execute the JCL within your environment:

v The prefix of the SDSNEXIT and SDSNLOAD dataset names specified in the
STEPLIB DD statement depend on the version of DB2 that you are using and
might be incorrect for your installation.

v The values specified by the SYSTEM option of the DSN command and the PLAN
option of the RUN command might also be incorrect for your installation. The
SYSTEM option of the DSN command specifies the name of the DB2 subsystem
and should be identical to the subsystem ID used for your applications.

v The PLAN option of the RUN command specifies the name of the application
plan for the DSNTIAD program. If you plan to use stored procedures, you might
also need to bind the packages for the stored procedures into the Net.Data plan.

Make whatever modifications are appropriate and submit the JCL.

Managing Connections to DB2

Application programs like Net.Data must connect to DB2 for OS/390 to access
DB2-managed data or to execute DB2 stored procedures. When using ICAPI,
GWAPI or Net.Data Servlets, Net.Data accomplishes this objective by using the
Resource Recovery Services Attachment Facility (RRSAF), which is provided as
part of the DB2 product. Because establishing a connection to a DB2 subsystem
involves significant overhead, the reuse of existing connections is an attractive
alternative to recreating a new connection for each user request.

Net.Data supports the reuse of connections that are used by the SQL and ODBC
language environments when Net.Data is configured for use with ICAPI, GWAPI, or
Net.Data servlets. When a Web server thread processes a Net.Data user request
that requires access to DB2, Net.Data connects to DB2 and creates a DB2 thread.
The DB2 thread remains as long as the Web server is running. When the Web
server assigns subsequent requests to this Web server thread, and access to DB2
is needed, Net.Data reuses the existing DB2 thread. Net.Data modifies the DB2
plan name and user ID, and switches to a new subsystem ID as needed to match
the requirements of the request. The number of DB2 threads created increases until
the number of DB2 threads matches the number of Web server threads. At this
point, the steady state operation of the server is reached. Net.Data reuses the
existing DB2 threads, and no new DB2 threads are created.

No configuration of Net.Data is required for the use of connection management
facilities. However, if you want to use Work Load Manager (WLM) to manage the
Web server address spaces that process Net.Data requests, some additional WLM
configuration is needed.

Workload Management Considerations

Work Load Management (WLM) is a component of the OS/390 operating system
that provides facilities to define, implement, and monitor system performance
against business goals. WLM allocates resources for processing work by using
policies that you define, in order to better ensure that the performance and
scalability of your applications meets your requirements.

When you configure Net.Data for use with ICAPI or GWAPI, either IBM Internet
Connection Server or Lotus Domino Go Webserver let you use WLM to establish
policies to manage your Net.Data workload. You can establish these policies by

Chapter 2. Installing and Configuring Net.Data 21

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

specifying application environments and WLM transaction classes for processing
URL requests that match a given template.

An added advantage of using WLM is that you can make changes to the Net.Data
initialization file (db2www.ini) and have them take effect without having to stop and
restart the Web server, by using the WLM REFRESH or WLM QUIESCE
commands.

For more information about WLM, refer to OS/390 MVS Planning: Workload
Management, GC28-1761.

For further information about configuring IBM Internet Connection Server and Lotus
Domino Go Webserver for use with WLM, refer to:

v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2
for OS/390, GC31-8490

v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390,
SC31-8643

Configuring Net.Data for Use with CGI

The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGI lets you use Net.Data with your favorite Web server.

Unless you modified the directory structure or name when you created the
hierarchical file system (HFS) directory for Net.Data, the SMP/E install process
installed the Net.Data executable files and DLLs in the directory
/usr/lpp/netdata/cgi-bin. Because /usr/lpp/netdata is not your Web server’s
root directory, the Web server cannot process client requests for Net.Data unless
you make some additional modifications to the Web server’s configuration.

To modify the Web server:
1. Stop the Web server.

2. Use either of the following approaches to complete the installation of the
executable files and DLLs.

v Using Net.Data Directories

a. Add an Exec directive to the Web server’s configuration file,
/etc/httpd.conf, that redirects Net.Data requests to the
/usr/lpp/netdata/cgi-bin directory. For example:
Exec /netdata-cgi/* /usr/lpp/netdata/cgi-bin/*

b. Add your Net.Data cgi-bin directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your
Net.Data cgi-bin directory is /usr/lpp/netdata/cgi-bin, then your
LIBPATH statement should be similar to the following statement:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/cgi-bin

v Using Web Server Directories

a. Move the executables and DLLs (appldll, db2www, dtwle, dtwlei,
dtwsql, dtwsqlv6. filedll, odbcdll, perldll, rexxdll, sysdll) to the
Web server’s cgi-bin directory. The Web server default cgi-bin directory
is /usr/lpp/internet/server_root/cgi-bin.

The Web server’s default root directory is specified by the ServerRoot
directive in the Web server’s configuration file, /etc/httpd.conf, and

22 Net.Data: Administration and Programming Guide for OS/390

|
|

might have been changed when the Web server was installed. The Web
server’s default cgi-bin directory is specified by an Exec directive in the
Web server’s configuration file and might also have been changed when
the Web server was installed. If your Web server’s root directory is
different than /usr/lpp/internet/server_root, or if your Web server’s
cgi-bin directory is different than /usr/lpp/internet/server_root/cgi-
bin, substitute your choices as appropriate in these instructions.

b. Add the Web server’s cgi-bin directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your Web
server cgi-bin directory is /usr/lpp/internet/server_root/cgi-bin, your
LIBPATH statement should be similar to the following statement:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/internet/server_root/cgi-bin

3. Ensure that the permissions for the Net.Data executables and DLLs and for
each directory in the path to the executables and DLLs are 755.

4. Restart the Web server

Restriction: Do not specify more than one of the following directories in the
LIBPATH statement of the Web server’s environment variables file.

v cgi-bin

v icapi-lib

v servlet-lib

For more detail on installing the Web server and on Web server configuration file
directives, refer to the following publications:

v IBM Internet Connection Secure Server Planning for Installation Version 2
Release 2 for OS/390, GC31-8489-00

v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2
for OS/390, GC31-8490-00

v Lotus Domino Go Webserver Planning for Installation Version 4.6.1 for OS/390,
SC31-8642

v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390,
SC31-8643

Configuring Net.Data for Use with ICAPI or GWAPI

Using a Web server application programming interface (API) rather than CGI can
improve the performance of Net.Data considerably. With these APIs, Net.Data
reuses connections to DB2. Net.Data creates DB2 threads and keeps them active
for the life of the process.

Any macro that executes successfully using CGI will execute successfully using
ICAPI or GWAPI. No modifications need to be made to these macros.

Unless you modified the directory structure or name when you created the HFS
directory for Net.Data, the SMP/E install process installed the Net.Data executables
and DLLs in the directory /usr/lpp/netdata/icapi-lib. Because /usr/lpp/netdata
is not your Web server’s root directory, the Web server cannot handle client
requests for Net.Data unless you make some additional modifications to the Web
server’s configuration.

To modify the Web server:
1. Stop the Web server.

Chapter 2. Installing and Configuring Net.Data 23

|
|
|
|

2. Use either of the following approaches to complete the installation of the
executables and DLLs.

v Using Net.Data Directories

a. Add a ServerInit directive to the Web server’s configuration file,
/etc/httpd.conf, that instructs the Web server to perform
Net.Data-specific initialization when the Web server executes its
initialization routines. One possible ServerInit directive is:
ServerInit /usr/lpp/netdata/icapi-lib/db2www:dtw_init

b. Add a Service directive to the Web server’s configuration file,
/etc/httpd.conf, that redirects Net.Data requests to the
/usr/lpp/netdata/icapi-lib directory. One possible Service directive is:
Service /netdata-cgi/db2www* /usr/lpp/netdata/icapi-lib/db2www:dtw_icapi*

c. Add your Net.Data icapi-lib directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your
Net.Data icapi-lib directory is /usr/lpp/netdata/icapi-lib, then your
LIBPATH statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/icapi-lib

v Using Web Server Directories

a. Move the executables and DLLs (appldll, db2www, dtwle, dtwlei,
dtwsql, dtwsqlv6, filedll, odbcdll, perldll, rexxdll, sysdll) to the
Web server’s cgi-bin directory. The Web server default cgi-bin directory
is /usr/lpp/internet/server_root/cgi-bin.

b. Add a ServerInit directive to the Web server’s configuration file,
/etc/httpd.conf, that instructs the Web server to perform
Net.Data-specific initialization when the Web server executes its
initialization routines. One possible ServerInit directive is:
ServerInit /usr/lpp/internet/server_root/cgi-bin/db2www:dtw_init

c. Add a Service directive to the Web server’s configuration file,
/etc/httpd.conf, that redirects Net.Data requests to the
/usr/lpp/internet/server_root/cgi-bin directory. One possible Service
directive is:
Service /cgi-bin/db2www* /usr/lpp/internet/server_root/cgi-bin/db2www:dtw_icapi*

d. Add the Web server’s cgi-bin directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your Web
server cgi-bin directory is /usr/lpp/internet/server_root/cgi-bin, your
LIBPATH statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/internet/server_root/cgi-bin

Restriction: Do not specify more than one of the following directories in the
LIBPATH statement of the Web server’s environment variables file:

– cgi-bin

– icapi-lib

– servlet-lib

3. Ensure that the permissions are 755 for the Net.Data executables and DLLs
and for each directory in the path to the executables and DLLs.

4. Restart the Web server.

For more detail on installing the Web server and on Web server configuration file
directives, refer to the following publications:

v IBM Internet Connection Secure Server Planning for Installation Version 2
Release 2 for OS/390, GC31-8489

24 Net.Data: Administration and Programming Guide for OS/390

|
|

v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2
for OS/390, GC31-8490

v Lotus Domino Go Webserver Planning for Installation Version 4.6.1 for OS/390,
SC31-8642

v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390,
SC31-8643

Configuring Net.Data for Use with Java Servlets

Servlets are Java classes that perform a role similar to that of CGI programs or
Web server API plug-ins. Servlets run on a Java servlet-enabled Web server and
extend the server’s capabilities, much like the way Java applets run on a browser
and extend the browser’s capabilities. Use the following steps to configure your
environment to invoke Net.Data through this Java servlet interface.

Unless you modified the directory structure or name when you created the HFS
directory for Net.Data, the SMP/E install process installed the Net.Data DLLs and
NetDataServlets.jar file in the directory /usr/lpp/netdata/servlet-lib. Because
/usr/lpp/netdata is not your Web server’s root directory, the Web server cannot
handle client requests for Net.Data unless you make some additional modifications
to the Web server’s configuration.

To modify the Web server:
1. Enable the Web server to run servlets. (See your Web server documentation for

instructions on registering and using servlets.)

2. Use either of the following approaches to complete the installation of the
executables and DLLs.

v Using Net.Data Directories

a. Add your Net.Data servlet-lib directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your
Net.Data servlet-lib directory is /usr/lpp/netdata/servlet-lib, then
your LIBPATH statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/netdata/servlet-lib

b. Add the NetDataServlets.jar file to the CLASSPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If the
Net.Data servlet-lib directory is /usr/lpp/netdata/servlet-lib, then
your CLASSPATH statement should be similar to the following statement:
CLASSPATH=/usr/lpp/JDK1.1/lib/classes.zip:/usr/lpp/netdata/servlet-lib/

NetDataServlets.jar

v Using Web Server Directories

a. Move the Net.Data DLLs (libdtwndapi.so, appldll, dtwle, dtwlei,
dtwsql, dtwsqlv6, filedll, odbcdll, perldll, rexxdll, sysdll) and
the NetDataServlets.jar file to the Web server’s cgi-bin directory. The
Web server default cgi-bin directory is
/usr/lpp/internet/server_root/cgi-bin.

b. Add the NetDataServlets.jar file to the CLASSPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. Your
CLASSPATH statement should be similar to the following statement:
CLASSPATH=/usr/lpp/JDK1.1/lib/classes.zip:/usr/lpp/internet/server_root/cgi-bin/

NetDataServlets.jar

c. Add the Web server’s cgi-bin directory to the LIBPATH statement of the
Web server’s environment variables file, /etc/httpd.envvars. If your Web

Chapter 2. Installing and Configuring Net.Data 25

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|

server cgi-bin directory is /usr/lpp/internet/server_root/cgi-bin, your
LIBPATH statement should be similar to:
LIBPATH=/usr/lpp/internet/bin:/usr/lpp/internet/server_root/cgi-bin

3. Ensure that the permissions are 755 for the Net.Data executables and DLLs
and for each directory in the path to the executables and DLLs.

4. Restart the Web server.

Restriction: Do not specify more than one of the following directories in the
LIBPATH statement of the Web server’s environmet variables file:

v cgi-bin

v icapi-lib

v servlet-lib

For more detail on installing the Web server and on Web server configuration file
directives, refer to the following publications:

v Lotus Domino Go Webserver Planning for Installation Version 5.0 for OS/390,
SC31-8690-00

v Lotus Domino Go Webserver Webmaster’s Guide Version 5.0 for OS/390,
SC31-8691-00

Enabling the Message Catalog

Net.Data for OS/390 provides English, Japanese, and Korean message catalogs.
You enable and specify these message catalogs in the Web server’s environment
variables file.

Unless you modified the directory structure or name when you created the
hierarchical file system (HFS) directory for Net.Data, you have already installed the
Net.Data English, Japanese, and Korean message catalogs in the files
/usr/lpp/netdata/C/d2w.cat, /usr/lpp/netdata/Ja_JP/d2w.cat, and
/usr/lpp/netdata/Ko_KR/d2w.cat, respectively.

If you did modify the directory structure or name, substitute your choice for
/usr/lpp/netdata in the following steps:

1. To enable the use of Net.Data message catalogs, add /usr/lpp/netdata/%L/%N
to the NLSPATH statement in the Web server’s environment variables file. Your
NLSPATH statement should be similar to:
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:/usr/lpp/netdata/%L/%N

2. To select the specific catalog that Net.Data uses, specify the value of the LANG
statement in the Web server’s environment variables file, /etc/httpd.envvars.
The syntax of the statement is
LANG = locale

Use Table 2 to specify the correct value for locale.

Table 2. LANG statement values

English Japanese Korean

LANG = C Ja_JP Ko_KR

26 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|

|

Granting Access Rights to Files and Data Sets Accessed by Net.Data

Before using Net.Data, you need to ensure that the user IDs under which Net.Data
executes have the appropriate access rights to files and datasets that are
referenced in a Net.Data macro and to the macro that a URL references. This
means that these files must be in MVS datasets or HFS files and directories to
which these user IDs have explicit access rights.

More specifically, ensure that the user IDs under which Net.Data executes have the
following authorizations:

v To read the DB2 CLI initialization file specified by the DSNAOINI configuration
variable

v To read the Net.Data initialization file, db2www.ini

v To execute the Net.Data executables and DLLs, and to search the directories in
the paths to the executables and DLLs

v To read the appropriate Net.Data macro files and search the appropriate
directories identified by the MACRO_PATH path configuration statement

v To execute the appropriate files and to search the appropriate directories
identified by the EXEC_PATH path configuration statement

v To read the appropriate files and to search the appropriate directories identified
by the INCLUDE_PATH path configuration statement

v To read and write the appropriate files, and to search the appropriate directories
identified by the FFI_PATH path configuration statement

v To read, write, and execute files in the /tmp HFS directory

Chapter 2. Installing and Configuring Net.Data 27

28 Net.Data: Administration and Programming Guide for OS/390

Chapter 3. Keeping Your Assets Secure

Internet security in an OS/390 environment is provided through a combination of
firewall technology, operating systems features, Web server features, Net.Data
mechanisms, and the access control mechanisms that are part of your data
sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and also
provides references to additional resources you can use to plan for the security of
your Web site.

The following sections contain guidelines for protecting your assets. The security
mechanisms described include:

v “Using Firewalls”

v “Encrypting Your Data on the Network” on page 30

v “Using Authentication” on page 30

v “Using Authorization” on page 31

v “Using Net.Data Mechanisms” on page 31

Using Firewalls

Firewalls are collections of hardware, software, and policies that are designed to
limit access to resources in a networked environment.

Firewalls:

v Protect the internal network from infiltration or intrusion

v Protect the internal network from data and programs that are brought in by
internal users

v Limit internal user access to external data

v Limit the damage that can be done if the firewall is breached

Net.Data can be used with OS/390 Firewall Technologies or equivalent firewall
products that execute in the OS/390 environment.

OS/390 Firewall Technologies is a tool kit that you can use to implement various
security architectures and strategies. It includes the following tools:

v IP filters

v Proxy servers

v Socks servers

v Domain name service (DNS)

v Virtual private networks

For more detail on how to install and configure your firewall in a secure manner,
refer to IBM Firewall Toolkit for OS/390 Guide and Reference, SC24-5835.

© Copyright IBM Corp. 1997, 1998 29

Encrypting Your Data on the Network

You can encrypt all data that is sent between a client system and your Web server
when you use a Web server that supports Secured Sockets Layer (SSL). This
security measure supports the encryption of login IDs, passwords, and all data that
is transmitted through HTML forms from the client system to the Web server and all
data that is sent from the Web server to the client system.

Using Authentication

Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is the
process of matching the user ID with a password to validate that the request comes
from a valid user ID. The Web server associates a user ID with each Net.Data
request that it processes. The process or thread that is handling the request can
then access any resource to which that user ID is authorized.

In an OS/390 environment, a user ID can become associated with the thread or
process that is handling a Net.Data request in one of three ways:

Client-based authentication
The user is prompted for a local OS/390 user ID and password at the client.
The Web server then invokes the local security subsystem (such as RACF)
to authenticate the user. If successfully authenticated, the supplied user ID
is associated with the request. Use of the special Web server
%%CLIENT%% access control user ID enables this type of authentication.

Server-based authentication
The user ID of the Web server is associated with each request and the user
is not prompted for a user ID or password. This choice is not recommended
because of the level of authority usually associated with the Web server’s
user ID. Use of the special Web server %%SERVER%% access control
user ID enables this type of authentication.

Surrogate authentication
A surrogate user ID that has the authority to access some predefined
collection of resources is associated with the client request. This type of
authentication requires the creation of surrogate user IDs with access
authority that is appropriate for a group of users or class of requests.

The approach that the Web server uses for associating a user ID with a client
request is specified when the Web server is configured. For additional detail on
access control user IDs, on installing the Web server, and on using the Protect,
Protection, DefProt, and UserId directives to configure the Web server, refer to:

v IBM Internet Connection Secure Server Planning for Installation Version 2
Release 2 for OS/390, GC31-8489

v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2
for OS/390, GC31-8490

v Lotus Domino Go Webserver Planning for Installation Version 4.6.1 for OS/390,
SC31-8642

v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390,
SC31-8643

30 Net.Data: Administration and Programming Guide for OS/390

Using Authorization

Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 and HFS provide their own
authorization mechanisms to protect the information that they manage. These
authorization mechanisms assume that the user ID associated with the process that
is executing the Net.Data request has been properly authenticated, as explained in
“Using Authentication” on page 30. The existing access control mechanisms for
these data sources then either permit or deny access based on the authorizations
that are held by the authenticated user ID.

Using Net.Data Mechanisms

In addition to the methods described above, you can use Net.Data configuration
variables or macro development techniques to limit the activities of end users, to
conceal corporate assets such as the design of your database, and to validate
user-provided input values within production environments.

Net.Data Configuration Variables

Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used by
Net.Data macros. These path statements identify one or more directories
that Net.Data searches when attempting to locate macro files, executable
files, include files, or other HFS files. By selectively including directories on
these path statements, you can explicitly control the files that are accessible
by users at browsers. Refer to “Chapter 2. Installing and Configuring
Net.Data” on page 5 for additional detail about path statements.

You should also use authorization checking as described in “Using
Authorization” and verify that file names cannot be changed in INCLUDE
statements as described in “Macro Development Techniques” on page 32.

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data display the
SQL statements specified within Net.Data functions at a Web browser. This
variable is used primarily for developing and testing the SQL within an
application and is not intended for use in production systems.

You can disable the display of SQL statements in production environments
using one of the following methods:

v When using versions of Net.Data that support the DTW_SHOWSQL
configuration variable, use this variable in the Net.Data initialization file to
override the effect of setting SHOWSQL within your Net.Data macros.
See “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable” on page 13 for syntax and additional information.

v Use the DTW_ASSIGN() function as described in “Macro Development
Techniques” on page 32.

See SHOWSQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

Chapter 3. Keeping Your Assets Secure 31

|
|

|
|
|
|
|

|
|

|
|

Consider whether it is appropriate to enable direct request for production
environments

The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly within
a URL. The macro request method allows users to execute only those SQL
statements and functions defined or called in a macro.

You should carefully consider whether to allow the use of direct request
because it might give your users the ability to execute a very broad set of
functions. When enabling this method of invocation, ensure that user ID
under which the Net.Data request is processed has the appropriate level of
authorization.

You can use the DTW_DIRECT_REQUEST configuration variable to disable
direct request. See “DTW_DIRECT_REQUEST: Enable Direct Request
Variable” on page 11 for syntax and additional information.

Macro Development Techniques

Net.Data provides several mechanisms that allow users to assign values to input
variables. To ensure that macros execute in the manner intended, these input
variables should be validated by the macro. Your database and application should
also be designed to limit a user’s access to the data that the user is authorized to
see.

Use the following development techniques when writing your Net.Data macros.
These techniques will help you ensure that your applications execute as intended
and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides the
effect of DEFINE statements used to initialize variables in a macro. This
might alter the manner in which your macro executes. To safeguard against
this possibility, initialize your Net.Data variables using the DTW_ASSIGN()
function.

Example: Instead of using %DEFINE SHOWSQL="NO" to define the Net.Data
SHOWSQL variable, use @DTW_ASSIGN(SHOWSQL, "NO"). Then, a query string
assignment such as SHOWSQL=YES does not override the macro setting.

You can disable the display of SQL statements in production environments
using one of the following methods:

v When using versions of Net.Data that support the DTW_SHOWSQL
configuration variable, use this variable in the Net.Data initialization file to
override the effect of setting SHOWSQL within your Net.Data macros.
See “DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable” on page 13 for syntax and additional information.

v Use the DTW_ASSIGN() function as described in the above example, to
assign the value of SHOWSQL to prevent it from being overridden.

See SHOWSQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

You can also use DTW_ASSIGN to ensure that other Net.Data variables,
such as RPT_MAX_ROWS or START_ROW_NUM, are not overridden. See
the variables chapter of Net.Data Reference for more information about
these variables.

32 Net.Data: Administration and Programming Guide for OS/390

|
|

|
|
|
|
|

|
|

|
|

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro allows
users to dynamically alter the SQL statement before executing it. It is the
responsibility of the macro writer to validate user-provided input values and
ensure that an SQL statement containing a variable reference is not being
modified in an unexpected manner. Your Net.Data application should
validate user-provided input values from the URL so the Net.Data
application can reject invalid input. Your validation design process should
include for the following steps:

1. Identify the syntax of valid input; for example, a customer ID must start
with a letter and can contain only alphanumeric characters.

2. Determine what potential harm can be caused by allowing incorrect
input, intentionally harmful input, or input entered to gain access to
internal assets of the Net.Data application.

3. Include input verification statements in the macro that meet the needs of
the application. Such verification depends on the syntax of the input and
how it is used. In simpler cases it can be enough to check for invalid
content in the input or to invoke Net.Data to verify the type of the input.
If the syntax of the input is more complex, the macro developer might
have to parse the input partially or completely to verify whether it is
valid.

Example 1: Using the DTW_POS() string function to verify SQL statements
%FUNCTION(DTW_SQL) query1() {

select * from shopper where shlogid = '$(shlogid)'
%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to rows that
contain information about the shopper identified by the shopper ID.
However, if the string “smith' or shlogid<>'smith” is passed as the value
of the variable shlogid, the query becomes:
select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement returns
the entire shopper table.

The Net.Data string functions can be used to verify that the SQL statement
is not modified by the user in inappropriate ways. For example, the
following logic can be used to ensure that the input value associated with
the shlogid variable consists of a single shopper ID:
@DTW_POS(" ", $(shlogid), result)
%IF (result == "0")
@query1()

%ELSE
%{ perform some sort of error processing %}

%ENDIF

Example 2: Using DTW_TRANSLATE()

Suppose that your application needs to validate that the value provided in
the input variable number_of_orders is an integer. One way of
accomplishing this is to create a translation table input_translation_table

Chapter 3. Keeping Your Assets Secure 33

|

|
|
|

|
|
|
|
|

|

|
|

that contains all keyboard characters except the numeric characters 0-9 and
to use the DTW_TRANSLATE and DTW_POS string functions to validate
the input:
@DTW_TRANSLATE(number_of_orders, "x", input_translation_table, "x", string_out)

@DTW_POS("x", string_out, result)

%IF (result = "0")

%{ continue with normal processing %}

%ELSE

%{ perform some sort of error processing %}

%ENDIF

Note that SQL statements within stored procedures cannot be modified by
users at Web browsers and that user-provided input parameter values are
constrained by the SQL data types associated with the input parameters. In
situations where it is impractical to validate user input values using the
Net.Data string functions, you can use stored procedures.

Ensure that a file name in an INCLUDE statement is not modified in ways that
alter the intended behavior of your application

If you specify the value for the file name with an INCLUDE statement using
a Net.Data variable, then the file to be included is not determined until the
INCLUDE file is executed. If your intent is to set the value of this variable
within your macro, but to not allow a user at the browser to override the
macro-provided value, then you should set the value of the variable using
DTW_ASSIGN instead of DEFINE. If you do intend to permit the user at a
browser to provide a value for the file name, then your macro should
validate the value provided.

Example: A query string assignment such as filename="../../x" can
result in the inclusion of a file from a directory not normally specified in the
INCLUDE_PATH configuration statement. Suppose that your Net.Data
initialization file contains the following path configuration statement:
INCLUDE_PATH /usr/lpp/netdata/include

and that your Net.Data macro contains the following INCLUDE ststement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the file
/usr/lpp/x , which was not intended by the INCLUDE_PATH configuration
statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the following logic
can be used to ensure that the input value associated with the file name
variable does not contain the string ″..″:
@DTW_POS("..", $(filename), result)
%IF (result > "0")
%{ perform some sort of error processing %}

%ELSE
%{ continue with normal processing %}
%ENDIF

34 Net.Data: Administration and Programming Guide for OS/390

Design your database and queries so that user requests do not have access
to sensitive data about other users

Some database designs collect sensitive user data in a single table. Unless
SQL SELECT requests are qualified in some fashion, this approach may
make all of the sensitive data available to any user at a web browser.

Example: The following SQL statement returns order information for an
order identified by the variable order_rn:
select setsstatcode, setsfailtype, mestname
from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)

This method permits users at a browser to specify random order numbers
and possibly obtain sensitive information about the orders of other
customers. One way to safeguard against this type of exposure is to make
the following changes:

v Add a column to the order information table that identifies the customer
associated with the order information within a specific row.

v Modify the SQL SELECT statement to ensure that the SELECT is
qualified by an authenticated customer ID provided by the user at the
browser.

For example, if shlogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname
from merchant, setstatus
where merfnbr = setsmenbr
and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)

Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various characteristics of
your Net.Data macro from users that view your HTML source with their Web
browser. For example, you can hide the internal structure of your database.
See “Hidden Variables” on page 60 for more information about hidden
variables.

Chapter 3. Keeping Your Assets Secure 35

36 Net.Data: Administration and Programming Guide for OS/390

Chapter 4. Invoking Net.Data

This chapter describes how you invoke Net.Data using the various Web server
interfaces. Before you can use one of the methods of invocation, Net.Data must first
be configured for the specified interface. You can configure Net.Data to use the
following Web server interfaces:

v Common Gateway Interface (CGI)

v Lotus Domino Go Web server (GWAPI)

v Internet Connection Server (ICAPI)

v Java Servlets

See “Chapter 2. Installing and Configuring Net.Data” on page 5 to learn more about
configuring Net.Data for these interfaces. You determine how Net.Data is invoked
when you configure the Web server.

The following sections describe the types of requests Net.Data accepts and the
methods you can use to invoke Net.Data using the various APIs and Servlets.

v “Invoking Net.Data using CGI, ICAPI, or GWAPI”

v “Invoking Net.Data with Java Servlets” on page 46

Invoking Net.Data using CGI, ICAPI, or GWAPI

Regardless of the method with which you invoke Net.Data, there are two types of
requests that can be specified, depending on whether you want to execute a macro,
or whether you want to execute a single SQL statement, stored procedure, or
function.

Macro Request
Specifies that Net.Data execute the macro specified.

Direct Request
Specifies that Net.Data execute an SQL statement, stored procedure, or
function. The request specifies:

v The name of a language environment

v An SQL statement or the name of a function, along with any parameter
values that are required for the invocation of the function

v Form data that is required for invocation of the SQL statement or function

Web developers who want to write a single SQL query or call a single function such
as a DB2 stored procedure, REXX program, or Perl function can issue a direct
request to the database. A direct request does not have any complex Net.Data
application logic that requires a Net.Data macro, and therefore bypasses the
Net.Data macro processor. Direct request parameters are passed to the appropriate
language environment for processing for improved performance.

Figure 3 on page 38 illustrates the differences between a macro request and a
direct request. A macro request always specifies a macro within the URL for the
request and can also use form data. A direct request never specifies a macro within
the URL, but can still use form data.

© Copyright IBM Corp. 1997, 1998 37

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

The syntax for invoking Net.Data when it is configured for use with ICAPI or GWAPI
is the same as the syntax for invoking Net.Data when it is configured for use with
CGI. For both macro and direct requests, Net.Data is invoked using a URL. The
URL can be entered directly by the user, or it can be coded into the HTML page as
an HTML link or an HTML form. The Web server invokes Net.Data using CGI,
ICAPI, or GWAPI.

For macro requests, specify within the URL the name of the Net.Data macro and
the name of the HTML block that is to be executed within the Net.Data macro. For
direct requests, specify within the URL the name of the Net.Data language
environment, the SQL statement or the name of the function, and any additional
required parameter values. You specify these values using a syntax defined by
Net.Data.

The following sections describe these invocation requests in more detail:

v “Invoking Net.Data with a Macro (Macro Request)”

v “Invoking Net.Data without a Macro (Direct Request)” on page 41

Invoking Net.Data with a Macro (Macro Request)

This section shows you how to invoke Net.Data by specifying a macro.

The following syntax statements show how to invoke Net.Data. The examples
assume that Net.Data was configured using Net.Data directories, as previously
described in “Configuring Net.Data for Use with CGI” on page 22 and “Configuring
Net.Data for Use with ICAPI or GWAPI” on page 23.

v URL:
http://server/Net.Data_invocation_path/filename/block[?name=val&...]

Figure 3. Macro Request Versus Direct Request

38 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

Parameters:

server Specifies the name and pathof the Web server. If the server is the local
server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data load modules. For example,
/netdata-cgi/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the
MACRO_PATH initialization path variable. See “MACRO_PATH” on page 15
for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

method
Specifies the HTML method used with the form.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

You can then specify the URL directly in your browser, or you can use it in an
HTML link or form as follows:

v HTML link:
any text

v HTML form:
<FORM METHOD=method ACTION="URL">any text</FORM>

Parameters:

method
Specifies the HTML method used with the form.

URL Specifies the URL used to run the Net.Data macro, the parameters of which
are described above.

Examples

The following examples demonstrate the different methods of invoking Net.Data.

Example 1: Invoking Net.Data using an HTML link:

.
.
.

Example 2: Invoking Net.Data using a form
<FORM METHOD=POST
ACTION="http://server/netdata-cgi/db2www/myMacro.d2w/report">

.

.

.
</FORM>

Chapter 4. Invoking Net.Data 39

|

|
|

|

|

||
|

The following sections describe HTML links and forms and more about how to
invoke Net.Data with them:

v “HTML Links”

v “HTML Forms”

HTML Links

If you are authoring a Web page, you can create an HTML link that results in the
execution of an HTML block. When a user at a browser clicks on a text or image
that is defined as an HTML link, Net.Data executes the HTML block within the
macro.

To create an HTML link, use the HTML <a> tag. Decide which text or graphic you
want to use as your hyperlink to the Net.Data macro, then surround it by the <a>
and tags. In the HREF attribute of the <a> tag, specify the macro and the
HTML block.

The following example shows a link that results in the execution of an SQL query
when a user selects the text ″List all monitors″ on a Web page.

List all monitors

Clicking on the link calls a macro named listA.d2w, which has an HTML block
named ″report″, as in the following example:

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='MONITOR'
%}

%HTML(report){
@myQuery()
%}

The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table. This
example displays the results of the query by generating a default report. See
“Report Blocks” on page 74 for information on how you can customize your reports
using a REPORT block.

HTML Forms

You can dynamically customize the execution of your Net.Data macros using HTML
forms. Forms allow users to provide input values that can affect the execution of the
macro and the contents of the Web page that Net.Data builds.

The following example builds on the monitor list example in “HTML Links” by letting
users at a browser use a simple HTML form to select the type of product for which
information will be displayed.
<H1>Hardware Query Form</H1>
<HR>
<FORM METHOD=POST ACTION="/netdata-cgi/db2www/equiplst.d2w/report">
<P>What type of hardware do you want to see?
<MENU>
<INPUT TYPE="RADIO" NAME="hdware" VALUE="MON" checked> Monitors
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PNT"> Pointing devices
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PRT"> Printers

40 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|

|
|
|
|

<INPUT TYPE="RADIO" NAME="hdware" VALUE="SCN"> Scanners
</MENU>

<INPUT TYPE="SUBMIT" VALUE="Submit">
</FORM>

After the user at the browser makes a selection and clicks on the Submit button,
the Web server processes the ACTION parameter of the FORM tag, which invokes
Net.Data. Net.Data then executes the HTML report block in the equiplst.d2w
macro:
%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'
%REPORT{
<H3>Here is the list you requested</H3>
%ROW{
<HR>
$(N1): $(V1), $(N2): $(V2)
<P>$(N3): $(V3)
%}
%}
%}

%HTML(report){
@myQuery()
%}

In the above example, the value of TYPE=$(hdware) in the SQL statement is taken
from the HTML form input.

See Net.Data Reference for a detailed description of the variables that are used in
the ROW block.

Invoking Net.Data without a Macro (Direct Request)

This section shows you how to invoke Net.Data using direct request. When you use
direct request, you do not specify the name of a macro in the URL. Instead, you
specify the Net.Data language environment, the SQL statement or a program to be
executed, and any additional required parameter values within the URL, using a
syntax defined by Net.Data. See “DTW_DIRECT_REQUEST: Enable Direct Request
Variable” on page 11 to learn how to enable and disable direct request.

The SQL statement or program and any other specified parameters are passed
directly to the designated language environment for processing. Direct request
improves performance because Net.Data does not need to read and process a
macro. The SQL, ODBC, System, Perl, and REXX Net.Data-supplied language
environments support direct request, and you can call Net.Data using a URL, an
HTML form, or a link.

A direct request invokes Net.Data by passing parameters in the query string of the
URL or the form data. The following example illustrates the context in which you
specify a direct request. It assumes that Net.Data was configured using Net.Data
directories, as previously described in “Configuring Net.Data for Use with CGI” on
page 22 and “Configuring Net.Data for Use with ICAPI or GWAPI” on page 23, and
illustrates the context in which you specify a direct request for the Perl language
environment.
any text

Chapter 4. Invoking Net.Data 41

|
|
|
|
|
|

|

|

|
|

Where direct_request represents the direct request syntax. For example, the
following HTML link contains the direct request:

any text

Direct Request Syntax

The syntax for invoking Net.Data with direct request can contain a call to either a
database or a non-database language environment.

Syntax

ÊÊ ? Database language environment call
Non-database language environment call

ÊÍ

Database language environment call:

·
Form data entry &

LANGENV = dblangenv & Ê

Ê ·
Form data entry &

Ê

Ê SQL= sql_stmt
FUNC= stored_proc_name (Parameter list)

Ê

Ê ·
& Form data entry

Form data entry:

= VALUE
DB_CASE
DB2PLAN
DB2SSID
DTW_HTML_TABLE
LOCATION
RPT_MAX_ROWS
SHOWSQL

Parameter list:

42 Net.Data: Administration and Programming Guide for OS/390

·

,

IN parm_type parm_value
″ parm_value ″

OUT parm_type parm_name
parm_name

INOUT parm_type parm_name parm_value
parm_name ″ parm_value ″

Non-database language environment call:

LANGENV= lang_env & FUNC = program_name Ê

Ê ·

,

()
" parm_value "

Parameters

Database language environment call
Specifies a direct request to Net.Data that invokes a database language
environment.

Form data entry
Parameters that allow you to specify the settings of SQL variables or to
request simple HTML formatting. See the variables chapter of Net.Data
Reference to learn more about these variables.

DB_CASE
Specifies the case (upper or lower) for SQL statements.

DB2PLAN
Specifies the DB2 plan to be used when accessing the local DB2
subsystem.

DB2SSID
Specifies the DB2 subsystem ID to be used when accessing the local
DB2 subsystem.

DTW_HTML_TABLE
Specifies whether Net.Data should return an HTML table or a
pre-formatted text table.

LOCATION
Specifies the name of the remote server to which the local DB2
subsystem should pass the SQL request.

RPT_MAX_ROWS
Specifies the maximum number of rows within a table that a function
will return in a report.

SHOWSQL
Specifies whether Net.Data should hide or display the SQL statement
being executed.

Chapter 4. Invoking Net.Data 43

|

START_ROW_NUM
Specifies the row number in a table for a function to use as the start of
its report.

VALUE
Specifies the value of the Net.Data variable.

LANGENV
Specifies the target language environment for the SQL statement or stored
procedure call.

dblangenv
The name of the database language environment:

v DTW_SQL

v DTW_ODBC

SQL
Indicates that the direct request specifies the execution of an in-line SQL
statement.

sql_stmt
Specifies a string that contains any valid SQL statement that can be
executed using dynamic SQL.

FUNC
Indicates that the direct request specifies the execution of a stored
procedure.

stored_proc_name
Specifies any valid DB2 stored procedure name.

parm_type
Specifies any valid parameter type for a DB2 stored procedure.

parm_name
Specifies any valid parameter name.

parm_value
Specifies any valid parameter value for a DB2 stored procedure.

IN Specifies that Net.Data should use the parameter to pass input data to the
stored procedure.

INOUT
Specifies that Net.Data should use the parameter to both pass input data to
the stored procedure and return output data from the language
environment.

OUT
Specifies that the language environment should use the parameter to return
output data from the stored procedure.

Non-database language environment call
Specifies a direct request to Net.Data that invokes a non-database language
environment.

LANGENV
Specifies the target language environment for the execution of the function.

lang_env
Specifies the name of the non-database language environment:

v DTW_PERL

v DTW_REXX

44 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|

v DTW_SYSTEM

FUNC
Indicates that the direct request specifies the execution of a program.

program_name
Specifies the program containing the function to be executed.

parm_value
Specifies any valid parameter value for the function.

Direct Request Examples

The following examples show the different ways you can invoke Net.Data while
using the direct request method. The examples assume that Net.Data was
configured using Net.Data directories as previously described in “Configuring
Net.Data for Use with CGI” on page 22 and “Configuring Net.Data for Use with
ICAPI or GWAPI” on page 23

HTML Links: Example 1: A link that invokes the Perl language environment and
calls a Perl script that is in the EXEC path statement of the Net.Data initialization
file

any text

Example 2: A link that invokes the Perl language environment, as in the previous
example, but passes a string with URL-encoded values for the double quote and
the space characters
<A HREF="http://server/netdata-cgi/db2www/?LANGENV=DTW_PERL&FUNC=my_perl

(%22Hello+World%22)">any text

Tip: You must encode certain characters, such as spaces and double quotes,
within URLs. In this example, the double quotes characters and spaces within
the parameter value must be encoded as %22 and the + character,
respectively. You can use the built-in function DTW_URLESCSEQ to encode
any text that must be encoded witin a URL. For more information on the
DTW_URLESCSEQ function, see its description in Net.Data Reference.

HTML Forms: Example 1: An HTML form that results in the execution of an SQL
query using the SQL language environment
<FORM METHOD="POST"
ACTION="http://server/netdata-cgi/db2www/">
<INPUT TYPE=hidden NAME="LANGENV" VALUE="DTW_SQL">
<INPUT TYPE=hidden NAME="SQL" VALUE="select * from Table1 where col1=$(InputName)">
Enter Customer name:
<INPUT TYPE=text NAME="InputName" VALUE="John">
<INPUT TYPE=SUBMIT>
</FORM>

This example contains a variable substitution in the SQL statement to make the
WHERE clause dynamic.

URL: Example 1: A URL that results in the execution of an SQL query using the
SQL language environment
http://server/netdata-cgi/db2www/?LANGENV=DTW_SQL&SQL=select+*+from+customer

Example 2: A URL that invokes the Perl language environment and calls an
executable file that is not in the EXEC path statement of the Net.Data initialization
file

Chapter 4. Invoking Net.Data 45

|
|
|

|
|

http://server/netdata-cgi/db2www/?LANGENV=DTW_PERL&FUNC=/u/MYDIR/macros/myexec.pl

Example 3: A URL that invokes the System language environment and calls an
external Perl script
http://server/netdata-cgi/db2www/?LANGENV=DTW_SYSTEM&FUNC=perl+/u/MYDIR/macros/myexec.pl

Example 4: A URL that invokes the REXX language environment, calls a REXX
program, and passes parameters to the program
http://server/netdata-cgi/db2www/?LANGENV=DTW_REXX&FUNC=myexec.cmd(parm1,parm2)

Example 5: A URL that calls a stored procedure and passes parameters to the SQL
language environment
http://server/netdata-cgi/db2www/?LANGENV=DTW_SQL&FUNC=MY_STORED_PROC

(IN+CHAR(30)+Salaries)&DTW_HTML_TABLE=YES

Invoking Net.Data with Java Servlets

Servlets are Java classes that perform a role similar to that of CGI programs or
Web server API plug-ins. Servlets are used by a Java servlet-enabled Web server
to perform CGI-like functions. Servlets do not have their own graphical user
interface, but their classes can be dynamically loaded locally, or from across the
network, and can be called using a URL address (remotely) or by a class name
(locally).

Net.Data provides servlets that you can use to invoke Net.Data macros, single SQL
statements, stored procedures, and functions on OS/390. The servlets can be
executed from both a URL and as a Server-Side-Include (SSI). Net.Data provides
two servlets:

MacroServlet (com.ibm.netdata.servlets.MacroServlet)
Executes a Net.Data macro.

You can run macros through Server-Side-Includes (SSI) to embed multiple
macros in your HTML file.

Function Servlet (com.ibm.netdata.servlets.FunctionServlet)
Invokes Net.Data without a macro by specifying:

v The name of a language environment.

v An SQL statement or the name of a function, along with any parameter
values that are required for the invocation of the function.

v Form data that is required for invocation of the SQL statement or
function.

The function servlet provides direct request capability, but using a Java
interface. See “Invoking Net.Data without a Macro (Direct Request)” on
page 41 for more information.

Invoking Net.Data using MacroServlet

You can call this servlet from either a URL or an SSI in an HTML file.

Syntax and Examples
v URL:

http://server/servlet/com.ibm.netdata.servlets.MacroServlet?MACRO=macro_value&
BLOCK=block_value&parmn=valuenn

46 Net.Data: Administration and Programming Guide for OS/390

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

For example:
http://server/servlet/com.ibm.netdata.servlets.MacroServlet?MACRO=companies.d2w&
BLOCK=gatherinfo

v SSI:
<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="MACRO" value="my_macro">
<param name="BLOCK" value="my_block">
<param name="parmn" value="valuen">

</servlet>

For example:
<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="MACRO" value="companies.d2w">
<param name="field1" value="custno">

</servlet>

Parameters
MACRO

Required. Specifies the path to an existing Net.Data macro.

BLOCK
Specifies the name of the HTML block in the specified Net.Data macro to
execute. The default block is report.

parmn
Specifies any additional parameters that your macro requires.

Invoking Net.Data using FunctionServlet

You can call this servlet from either a URL or an SSI in an HTML file, and with it
you can invoke either a function, SQL statement, or stored procedure.

Syntax and Examples
v URL:

– Invoking a function:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=language&
FUNC=function_name&parmn=valuenn

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=DTW_REXX&FUNC=custinp

– Invoking an SQL statement:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=database_lang&
SQL=SQL_statement&parmn=valuenn

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=DTW_SQL&SQL=select+la

– Invoking a stored procedure:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet
?LANGENV=DTW_SQL&FUNC=stored_procedure_name(parameter_list)

For example:
http://server/servlet/com.ibm.netdata.servlets.FunctionServlet
?LANGENV=DTW_SQL&FUNC=myStoredProc(IN+CHAR(20)+"inval")

v SSI:

– Invoking a function:

Chapter 4. Invoking Net.Data 47

|

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|
|

|

|

<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="LANGENV" value="language">
<param name="FUNC" value="function_name">
<param name="parmn" value="valuen">

</servlet>

– Invoking an SQL statement:
<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="LANGENV" value="language">
<param name="SQL" value="SQL_statement">
<param name="parmn" value="valuen">

</servlet>

– Invoking a stored procedure:
<servlet code="com.ibm.netdata.servlets.MacroServlet">
<param name="LANGENV" value="language">
<param name="FUNC" value="stored_procedure">
<param name="parmn" value="valuen">

</servlet>

For example:
<servlet code="com.ibm.netdata.servlets.FunctionServlet">
<param name="LANGENV" value="DTW_SQL">
<param name="FUNC" value="myStoredProc(IN CHAR(20) invalue)">

</servlet>

Parameters
LANGENV

Specifies the Net.Data language environment that is called to process the
function (for example, DTW_SQL or DTW_REXX).

FUNC
Specifies the name of the program that contains the function to be executed, or
in the case of a stored procedure, the stored procedure name and parameter.
For example, my_rexx, where my_rexx is the name of an executable REXX file.
Use the parmn keyword to specify input parameters to the function.

SQL
Specifies an SQL statement or stored procedure name that accesses a
database, for example, "select * from employee".

parmn
Specifies any additional parameters that the function requires.

48 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro language
constructs that:

v Specify the layout of Web pages

v Define variables and functions

v Call functions that are built-in to Net.Data or defined in the macro

v Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part and the
presentation part, as shown in Figure 4.

v The declaration part contains the definitions of variables and functions in the
macro.

v The presentation part contains HTML blocks that specify the layout of the Web
page. The HTML blocks are made up of text presentation statements that are
supported by your Web browser, such as HTML and JavaScript.

You can use these parts multiple times and in any order. See Net.Data Reference
for syntax of the macro parts and constructs.

This chapter examines the different blocks that make up a Net.Data macro and
methods you can use for writing the macro.

v “Anatomy of a Net.Data Macro” on page 50

v “Net.Data Macro Variables” on page 54

v “Net.Data Functions” on page 64

v “Generating Web Pages in a Macro” on page 72

v “Conditional Logic and Looping in a Macro” on page 78

Figure 4. Macro Structure

© Copyright IBM Corp. 1997, 1998 49

|

Anatomy of a Net.Data Macro

The macro consists of two parts:

v The declaration part, that contains definitions used in the presentation part. The
declaration part uses two major optional blocks:

– DEFINE block

– FUNCTION block

The declaration part can also contain other language constructs and statements,
such as EXEC statements, IF blocks, INCLUDE statements, and MESSAGE
blocks. For more information about the language constructs, see the chapter
about language constructs in Net.Data Reference.

v The presentation part defines the layout of the Web page, references variables,
and calls functions using HTML blocks that are used as entry and exit points
from the macro. When you invoke Net.Data, you specify an HTML block name as
an entry point for processing the macro. The HTML blocks are described in
“HTML Blocks” on page 52.

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information to pass
to a REXX program. The macro passes this information to an external REXX
program called ompsamp.cmd, which echoes the data that the user enters. The
results are then displayed on a second HTML page.

First, look at the entire macro, and then each block in detail:
%{ ********************** DEFINE block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

%{ ********************** FUNCTION Definition block ************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result)
{
%EXEC{ompsamp.cmd %}

%}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

result = date()
%}

%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Input Form</h1>
Today is @today()

<FORM METHOD="post" ACTION="OUTPUT">
Type some data to pass to a REXX program:
<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>
<INPUT TYPE="submit" VALUE="Enter">

</form>

<hr>
<p>[Home page]

50 Net.Data: Administration and Programming Guide for OS/390

</body></html>
%}

%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data)
<p><hr>
<p>[Home page |
Previous page]
</body></html>
%}

The sample macro consists of four major blocks: the DEFINE, the FUNCTION, and
the two HTML blocks. You can have multiple DEFINE, FUNCTION, and HTML
blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML, which
make writing Web macros easy. If you are familiar with HTML, building a macro
simply involves adding macro statements to be processed dynamically at the server
and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server accesses
it through Net.Data using CGI, a Web server API, or a Java Servlet. To invoke a
macro, Net.Data requires two parameters: the name of the macro to process, and
the HTML block in that macro to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block

The DEFINE block contains the DEFINE language construct and variable definitions
used later in the HTML blocks. The following example shows a DEFINE block with
one variable definition:
%{ ********************** DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"
%}

The first line is a comment. A comment is any text inside %{ and %}. Comments can
be anywhere in the macro. The next statement starts a DEFINE block. You can
define multiple variables in one define block. In this example, only one variable,
page_title, is defined. After it is defined, this variable can be referenced anywhere
in the macro using the syntax, $(page_title). Using variables makes it easy to
make global changes to your macro later. The last line of this block, %}, identifies
the end of the DEFINE block.

The FUNCTION Block

The FUNCTION block contains declarations for functions invoked by the HTML
blocks. Functions are processed by language environments and can execute
programs, SQL queries, or stored procedures.

Chapter 5. Developing Net.Data Macros 51

The following example shows two FUNCTION blocks. One defines a call to an
external REXX program and the other contains inline REXX statements.
%{ ********************** FUNCTION Block **********************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result) { <-- This function accepts

one parameter and returns the
variable 'result', which is
assigned by the external REXX
program

%EXEC{ompsamp.cmd %} <-- The function executes an external REXX program
called "ompsamp.cmd"

%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is

contained inline.
%}

The first function block, rexx1, is a REXX function declaration that in turn, runs an
external REXX program called ompsamp.cmd. One input variable, input, is accepted
by this function and automatically passed to the external REXX command. The
REXX command also returns one variable called result. The contents of the
result variable in the REXX command replaces the invoking @rexx1() function call
contained in the OUTPUT block. The variables input and result are directly
accessible by the REXX program, as shown in the source code for ompsamp.cmd:
/* REXX */
result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can format the
resulting text any way you want by enclosing the requesting @rexx1() function call
in normal mark-up style tags (like or). Rather than using the result
variable, the REXX program could have written HTML tags to standard output using
REXX SAY statements.

The second function block, also refers to a REXX program, today. However, the
entire REXX program in this case is contained in the function declaration itself. An
external program is not needed. Inline programs are allowed for both REXX and
Perl functions because they are interpreted languages that can be parsed and
executed dynamically. Inline programs have the advantage of simplicity by not
requiring a separate program file to manage. The first REXX function could also
have been handled inline.

HTML Blocks

HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An HTML
block is always specified in the Net.Data macro request and every macro must
have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.
%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) { <--- Identifies the name of this HTML block.
<html>
<head>
<title>$(page_title)</title> <--- Note the variable substitution.
</head><body>
<h1>Input Form</h1>
Today is @today() <--- This line contains a call to a function.

52 Net.Data: Administration and Programming Guide for OS/390

<FORM METHOD="post" ACTION="OUTPUT"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.

Type some data to pass to a REXX program:
<INPUT NAME="input_data" <--- "input_data" is defined when the form
TYPE="text" SIZE="30"> is submitted and can be referenced elsewhere in

this macro. It is initialized to whatever the
user types into the input field.

<p>
<INPUT TYPE="submit" VALUE="Enter">

<hr>
<p>
[
Home page]
</body><html>

%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, %HTML (INPUT) {...%}.
INPUT identifies the name of this block. The name can contain any alphanumeric
character, underscores, or periods. The HTML <title> tag contains an example of
variable substitution. The value of the variable page_title is substituted into the title
of the form.

This block also has a function call. The expression @today() is a call to the function
today. This function is defined in the FUNCTION block that is described above.
Net.Data inserts the result of the today function, the current date, into the HTML
text in the same location that the @today() expression is located.

The ACTION parameter of the FORM statement provides an example of navigation
between HTML blocks or between macros. Referencing the name of another block
in an ACTION parameter accesses that block when the form is submitted. Any input
data from an HTML form is passed to the block as implicit variables. This is true of
the single input field defined on this form. When the form is submitted, data entered
in this form is passed to the HTML(OUTPUT) block in the variable input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.d2w/main" accesses the HTML block called main in the
macro othermacro.d2w. Again, any data entered into the form is passed to this
macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For example:
Next macro

You can access or manipulate form data in the macro by referencing the variable
name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains the
HTML tagging and Net.Data macro statements that define the output processed
from the HTML(INPUT) request.
%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title> <--- More substitution.

</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data) <--- This line contains a call to function rexx1

passing the argument "input_data".

Chapter 5. Developing Net.Data Macros 53

<p>
<hr>
<p>
[
Home page |
Previous page]
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title variable
is substituted into the title statement. And, as before, this block contains a function
call. In this case, it calls the function rexx1 and passes to it the contents of the
variable input_data, which it received from the form defined in the Input block. You
can pass any number of variables to and from a function. The function definition
specifies the number and the usage of variables that are passed.

Net.Data Macro Variables

Net.Data lets you define and reference variables in a Net.Data macro. In addition,
you can pass these variables from the macro to language environments and back.
Net.Data tokens, such as variable names and values, and literal strings, can contain
up to 256 KB of data.

Net.Data variables can be defined depending on the type of variable and whether it
has a predefined value. These variables can be categorized into the following types,
based on how they are defined:

v Explicitly defined variables using the DEFINE statement in the DEFINE block

v Predefined variables, which are variables that are made available by Net.Data
and are set to a value. This value usually cannot be changed.

v Implicitly defined variables, which are of four types:

– Variables that are not explicitly defined but are instantiated when first
assigned a value.

– Parameter variables that are part of a FUNCTION block definition and that
can only be referenced within a FUNCTION block.

– Variables that are instantiated by Net.Data and correspond to form data or
query string data.

– Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:

v “Identifier Scope”

v “Defining Variables” on page 55

v “Referencing Variables” on page 57

v “Variable Types” on page 57

Identifier Scope

An identifier, which is a variable or a function call, becomes visible, meaning that it
can be referenced when it is declared or instantiated. The region where an identifier
is visible is called its scope. The five types of scope are:

v Global

54 Net.Data: Administration and Programming Guide for OS/390

|
|

An identifier has global scope if you can reference it anywhere within a macro.
Identifiers that have global scope are:

– Net.Data built-in functions

– Form data

– Query string data

– Variables instantiated from within an HTML block

v Macro

An identifier has this scope if its declaration appears outside of any block. A
block starts with an opening bracket ({) and ends with a percent sign and bracket
(%}). (Note that DEFINE blocks are excluded from this definition and should be
treated as separate DEFINE statements.) Unlike an identifier with global scope,
one with macro scope can only be referred to by items in the macro that follow
the idenfier’s declaration.

v FUNCTION block or MACRO_FUNCTION block

An identifier has function block scope if:

– The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the idenfitier from the function parameter list
within the function block.

– The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function parameter
list. The value of the identifier within the function block remains unchanged
unless updated by the function.

v REPORT block

An identifier has report block scope if it can be referenced only from within a
REPORT block (for example, table column names N1, N2, ..., Nn). Only those
variables that Net.Data implicitly defines as part of its table processing can have
a report block scope. Any other variables that are instantiated have function block
scope.

v ROW block

An identifier has row block scope if it can only be referenced from within a ROW
block (for example, table value names V1, V2, ..., Vn). Only those variables that
Net.Data implicitly defines as part of its table processing can have a row block
scope. Any other variables that are instantiated have function block scope.

Defining Variables

There are three ways to define variables in a Net.Data macro:

v Define statement or block

v HTML form tags

v Query string data

A variable value received from form or query string data overrides a variable value
set by a DEFINE statement in a Net.Data macro.

v DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use the
DEFINE statement. The syntax is as follows:

Chapter 5. Developing Net.Data Macros 55

|

|
|

%DEFINE variable_name="variable value"

%DEFINE variable_name={ variable value on multiple
lines of text %}

%DEFINE {
variable_name1="variable value 1"
variable_name2="variable value 2"

%}

The variable_name is the name you give the variable. Variable names must
begin with a letter or underscore and can contain any alphanumeric character, an
underscore, or a period. All variable names are case-sensitive, except
N_columnName and V_columnName, which are table variables.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use block
braces around the value:
%DEFINE introduction={
Hello,
My name is John.
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE block:
%DEFINE {

variable1="value1"
variable2="value2"
variable3="value3"
variable4="value4"

%}

v HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses standard
HTML form tags to define Net.Data variables:
<INPUT NAME="variable_name" TYPE=...>

or
<SELECT NAME="variable_name">
<OPTION>value one
<OPTION>value two

</SELECT>

56 Net.Data: Administration and Programming Guide for OS/390

To assign a variable that spans multiple lines or contains special characters, such
as quotes, the TEXTAREA tag can be used:
<TEXTAREA NAME="variable_name" ROWS="4">
Please type the multiline value
of your variable here.
</TEXTAREA>

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See “HTML Forms” on
page 40 for an example of how this type of variable definition is used in a
Net.Data macro.

v Query String Data

You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/netdata-cgi/db2www/stdqry1.d2w/input?field=custno

In the above example, the variable name, field, and the variable value, custno,
specify additional data that Net.Data receives from the query string. Net.Data
receives and processes the data as it would from form data.

Referencing Variables

You can reference a previously defined variable to return its value. To reference a
variable in Net.Data macros, specify the variable name inside $(and). For
example:
$(variableName)
$(homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference with
the value of the variable.

To use variables as part of your text presentation statements, reference them in the
HTML blocks of your macro.

Example 1: Variable reference in a link

If you have defined the variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

You can refer to the home page as $(homeURL) and create a link:
Home page

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the time
it is referenced, Net.Data returns an empty string. A variable reference alone does
not define the variable.

Variable Types

You can use the following types of variable in your macros.

v “Conditional Variables” on page 58

v “Environment Variables” on page 58

v “Executable Variables” on page 59

Chapter 5. Developing Net.Data Macros 57

|

|

|

|
|
|

v “Hidden Variables” on page 60

v “List Variables” on page 61

v “Table Variables” on page 61

v “Miscellaneous Variables” on page 62

v “Table Processing Variables” on page 63

v “Report Variables” on page 63

v “Language Environment Variables” on page 64

If you assign strings to variables that are defined a certain way by Net.Data, such
as ENVVAR, LIST, condition list variables, the variable no longer behaves in the
defined way. In other words, the variable becomes a simple variable, containing a
string.

See Net.Data Reference for syntax and examples of each variable.

Conditional Variables

Conditional variables let you define a conditional value for a variable by using a
method similar to an IF, THEN construct. When defining the conditional variable,
you can specify two possible variable values. If the first variable you reference
exists, the conditional variable gets the first value; otherwise the conditional variable
gets the second value. The syntax for a conditional variable is:
varA = varB ? "value_1" : "value_2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is equivalent to
using an IF block, as in the following example:
%IF ($(varB))

varA = "value_1"
%ELSE

varA = "value_2"
%ENDIF

See “List Variables” on page 61 for an example of using conditional variables with
list variables.

Environment Variables

You can reference environment variables that the Web server makes available to
the process or thread that is processing your Net.Data request. When the ENVVAR
variable is referenced, Net.Data returns the current value of the environment
variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

58 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|

The output looks like this:
The server is www.software.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.

Executable Variables

You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC language
element, see the language constructs chapter in the Net.Data Reference. In the
following example, the variable runit is defined to execute the executable program
testProg:
%DEFINE runit=%EXEC "testProg"

runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable reference
in a Net.Data macro. For example, the program testProg is executed when a valid
variable reference is made to the variable runit in a Net.Data macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable date is
defined as an executable variable and dateRpt contains a reference to the
executable variable.
%DEFINE date=%EXEC "date"
%DEFINE dateRpt="Today is $(date)"

Wherever $(dateRpt) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, returns:
Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:

1. It searches the directories specified by the EXEC_PATH in the Net.Data
initialization file. See “EXEC_PATH” on page 15 for details.

2. If Net.Data does not locate the program, the system searches the directories
defined by the system PATH environment variable or the library list. If it locates
the executable program, Net.Data runs the program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable date
is NULL. If you use this variable in a DTW_ASSIGN function call to assign its value
to another variable, the value of the new variable after the assignment is NULL
also. The only purpose of an executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition. In this example, the values of
distance and time are passed to the program calcMPH.
%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

This next example returns the system date as part of the report:

Chapter 5. Developing Net.Data Macros 59

%DEFINE tstamp=%EXEC "date"

%FUNCTION(DTW_SQL) myQuery() {
SELECT CUSTNO, CUSTNAME from dist1.customer
%REPORT{
%ROW{

$(V1) $(V2)

%}
%}
%}

%HTML(report){
<H1>Report made: $(tstamp) </H1>
@myQuery()
%}

Each report displays the date for easy tracking. This example also puts the
customer number and name in a link for another Net.Data macro. Clicking on any
customer in the report calls the exmp.d2w Net.Data macro, passing the customer
number and name to the Net.Data macro.

Hidden Variables

You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:

1. Define a variable for each string you want to hide, after the variable’s last
reference in the HTML block. Variables are always defined with the DEFINE
language construct after they are used in the HTML block, as in the following
example. The $$(variable) variables are referenced and then defined.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of $(X).
%HTML(INPUT) {
<FORM ...>
<P>Select fields to view:
shanghai<SELECT NAME="Field">
<OPTION VALUE="$$(name)"> Name
<OPTION VALUE="$$(addr)"> Address
...
</FORM>
%}

%DEFINE{
name="customer.name"
addr="customer.address"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

%}

...

When a Web browser displays the HTML form, $$(name) and $$(addr) are
replaced with $(name) and $(addr) respectively, so the actual table and column
names never appear on the HTML form. Application users cannot tell that the
true variable names are hidden. When the user submits the form, the

60 Net.Data: Administration and Programming Guide for OS/390

HTML(REPORT) block is called. When @mySelect() calls the FUNCTION block,
$(Field) is substituted in the SQL statement with customer.name or
customer.addr in the SQL query.

List Variables

Use list variables to build a delimited string of values. They are particularly useful in
helping you construct an SQL query with multiple items like those found in some
WHERE or HAVING clauses. The syntax for a list variable is:
%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after the
value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:
%HTML(INPUT){
<FORM METHOD="POST" ACTION="/netdata-cgi/db2www/example2.d2w/report">
<H2>Select one or more cities:</H2>
<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond1)">Sao Paolo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">
</FORM>
%}

%DEFINE{
%LIST " OR " conditions
cond1="cond1='Sao Paolo'"
cond2="cond2='Seattle'"
cond3="cond3='Shanghai'"
whereClause= ? "WHERE $(conditions)" : ""
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$(whereClause)
%}

%HTML(REPORT){
@mySelect()
%}

In the HTML form, if no boxes are checked, conditions is NULL, so whereClause is
also NULL in the query. Otherwise, whereClause has the selected values separated
by OR. For example, if all three cities are selected, the SQL query is:
SELECT name, city FROM citylist
WHERE cond1='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:
SELECT name, city FROM citylist
WHERE cond1='Seattle'

Table Variables

The table variable defines a collection of related data. It contains a set of rows and
columns including a row of column headers. A table is defined in the Net.Data
macro as in the following statement:
%DEFINE myTable=%TABLE(30)

Chapter 5. Developing Net.Data Macros 61

The number following %TABLE is the limit on the number of rows that this table
variable can contain. To specify a table with no limit on the number of rows, use the
default or specify ALL, as shown in these examples:
%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE(ALL)

When you define a table, it has zero rows and zero columns. The only way you can
populate a table with values is by passing it as an OUT or INOUT parameter to a
function or by using the built-in table functions provided by Net.Data. The
DTW_SQL language environment automatically puts the results of a SELECT
statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL, the
language environment is also responsible for setting table values. However, the
language environment script or program defines the table values cell-by-cell. See
“Chapter 6. Using Language Environments” on page 83 for more information about
how language environments use table variables.

You can pass a table between functions by referring to the table variable name. The
individual elements of the table can be referred to in a REPORT block of a function.
See “Table Processing Variables” on page 63 for details. Table variables are usually
populated with values in an SQL function, and then used as input to a report, either
in the SQL function or in another function after being passed to that function as a
parameter. You can pass table variables as IN, OUT, or INOUT parameters to any
non-SQL function. Tables can be passed to SQL functions only as OUT parameters.

Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to:

v Affect Net.Data processing

v Find out the status of a function call

v Obtain information about the result set of a database query

v Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it is
processing, whereas you can specify whether Net.Data removes extra white space
caused by tabulators and new-line characters.

Predefined variables are used as variable references within the macro and provide
information about the current status of files, dates, or the status of a function call.
For example, to retrieve the name of the current file, you could use:
<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>.</P>

Modifiable variable values are generally set using a DEFINE statement or with the
@DTW_ASSIGN() function and let you affect how Net.Data processes the macro.
For example, to specify whether white space is removed, you could use the
following DEFINE statement:
%DEFINE DTW_REMOVE_WS="YES"

62 Net.Data: Administration and Programming Guide for OS/390

Table Processing Variables

Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function
calls.

Table processing variables have a predefined value that Net.Data determines.
These variables allow you to reference values from the result sets of SQL queries
or function calls by the column, row, or field that is being processed. You can also
access information about the number of rows being processed or a list of all the
column names.

For example, as Net.Data processes a result set from an SQL query, it assigns the
value of the variable Nn for each current column name, such that N1 is assigned to
the first column, N2 is assigned to the second column, and so on. You can
reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you could
use:
<p>Column 1 is <i>$(N1)</i>.</P>

Table processing variables also provide information about the results of a query.
You can reference the variable TOTAL_ROWS in the macro to show how many
rows are returned from an SQL query, as in the following example:
Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or built-in
functions. For example, TOTAL_ROWS requires that the DTW_SET_TOTAL_ROWS
SQL language environment variable be activated so that Net.Data assigns the value
of TOTAL_ROWS when processing the results from a SQL query or function call as
in the following example:
%DEFINE DTW_SET_TOTAL_ROWS="YES"
...

Names found: $(TOTAL_ROWS)

Report Variables

Net.Data displays Web page output generated from the macro in a default report
format. The default report format displays in a table format using <PRE> </PRE>
tags. You can override the default report by defining a REPORT block with
instructions for displaying the output or by using one of the report variables to
prevent the default report from being generated.

Report variables help you customize how your Web page output is displayed and
used with default reports and Net.Data tables. You must define these variables
before using them with a DEFINE statement or with the @DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify HTML
table output versus default table output, and specify other display features. For
example, you can use the ALIGN variable to control leading and trailing spaces for
table processing variables. The following example uses the ALIGN variable to
separate by a space each column name in a list that is returned by a query.

Chapter 5. Developing Net.Data Macros 63

%DEFINE ALIGN="YES"
...
<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to begin
displaying the results of a query. For example, the following variable value specifies
that Net.Data will begin displaying the results of a query at the third row.
%DEFINE START_ROW_NUM = "3"

You can also determine whether Net.Data uses HTML tags for default formatting.
With DTW_HTML_TABLE set to YES, an HTML table is generated rather than a
text-formatted table.
%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL){
SELECT NAME, ADDRESS FROM $(qTable)
%}

Language Environment Variables

These variables are used with language environments and affect how the language
environment processes a request.

With these variables, you can perform tasks such as establishing connections to
DB2 subsystems,enabling NLS support, and determining whether the execution of
an SQL statement is successful.

For example, you can use the SQL_STATE variable to access or display the SQL
state value returned from the database.
%FUNCTION (DTW_SQL) val1() {
select * from customer

%REPORT {
...

%ROW {
...

%}
SQLSTATE=$(SQL_STATE)

%}

Net.Data Functions

Net.Data provides built-in functions for use in your applications, such as word and
string manipulation functions or functions that retrieve and set table variable
functions. You can also define functions for use with your application, for example to
call an external program or a stored procedure.

User-defined functions
Those functions that you define for use with your application, for example to
call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications, such as
functions for manipulating words and strings and functions that get and set
table variables.

These sections describe the following topics:

v “Defining Functions” on page 65

v “Calling Functions” on page 69

64 Net.Data: Administration and Programming Guide for OS/390

v “Calling Net.Data Built-in Functions” on page 69

Defining Functions

To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must contain
language statements or calls to an external program.

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is allowed in an
HTML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:
%FUNCTION(type) function-name([usage] [datatype] parameter, ...) [RETURNS(return-var)] {

executable-statements
[report-block]
...

[message-block]
%}

MACRO_ FUNCTION block:
%MACRO_FUNCTION function-name(usage parameter, ...) {
executable-statements

%}

Where:

type Identifies a language environment that is configured in the initialization file.
The language environment invokes a specific language processor (which
processes the executable statements) and provides a standard interface
between Net.Data and the language processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block. A
function call specifies the function-name, preceded by an at (@) sign. See
“Calling Functions” on page 69 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks with the
same name so that they are processed at the same time. Each of the
blocks must all have identical parameter lists. When Net.Data calls the
function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the order
they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output (OUT)
parameter, or both types (INOUT). This designation indicates whether the
parameter is passed into or received back from the FUNCTION block,
MACRO_FUNCTION block, or both. The usage type applies to all of the
subsequent parameters in the parameter list until changed by another
usage type. The default type is IN.

Chapter 5. Developing Net.Data Macros 65

|
|
|
|
|
|
|

datatype
The data type of the parameter for calling a stored procedure. When calling
a stored procedure, the data type of the parameter must match the data
type of the corresponding parameter in the stored procedure. For a list of
supported data types for stored prodedures, see the operating system
appendix of Net.Data Reference.

parameter
The name of a variable with local scope that is replaced with the value of a
corresponding argument specified on a function call. Parameter references,
for example $(parm1), in the executable statements or REPORT block are
replaced with the actual value of the parameter. In addition, parameters are
passed to the language environment and are accessible to the executable
statements using the natural syntax of that language or as environment
variables. Parameter variable references are not valid outside the
FUNCTION or MACRO_FUNCTION blocks.

return-var
Specify this parameter after the RETURNS keyword to identify a special
OUT parameter. The value of the return variable is assigned in the function
block, and its value is returned to the place in the macro from which the
function was called. For example, in the following sentence, <p>My name is
@my_name()., @my_name() gets replaced by the value of the return variable. If
you do not specify the RETURNS clause, the value of the function call is:

v NULL if the return code from the call to the language environment is zero

v The value of the return code, when the return code is non-zero.

executable-statements
The set of language statements that is passed to the specified language
environment for processing after the variables are substituted and the
functions are processed. executable-statements can contain Net.Data
variable references and Net.Data function calls.

For FUNCTION blocks, Net.Data replaces all variable references with the
variable values, executes all function calls, and replaces the function calls
with their resulting values before the executable statements are passed to
the language environment. Each language environment processes the
statements differently. For more information about specifying executable
statements or calling executable programs, see “Executable Variables” on
page 59.

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this case,
no language environment is involved because Net.Data acts as the
language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the
FUNCTION. See “Report Blocks” on page 74. (Multiple report blocks can
only be used in the SQL and ODBC language environments in the
FUNCTION block, and are not allowed in the MACRO_FUNCTION block).

message-block
Defines the MESSAGE block, which handles any messages returned by the
FUNCTION block. See “Message Blocks” on page 67.

Define functions outside of any other block and before they are called in the
Net.Data macro.

66 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

|
|
|
|

|
|

Using Special Characters in Functions

When characters that match Net.Data language constructs syntax are used in the
language statements section of a function block as part of syntactically valid
embedded program code (such as REXX or Perl), they can be misinterpreted as
Net.Data language constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter characters,
%{. When the macro is run, the %{ characters are interpreted as the beginning of a
COMMENT block. Net.Data then looks for the end of the COMMENT block, which it
thinks it finds when it reads the end of the function block. Net.Data then proceeds
to look for the end of the function block, and when it can’t be found, issues an error.

Use one of the following methods to use COMMENT block delimiter characters, or
any other Net.Data special characters as part of your embedded program code,
without having them interpreted by Net.Data as special characters:

v Use the EXEC statement to call the program code, rather than putting the code
inline.

v Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:
%FUNCTION(DTW_PERL) func() {
...
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {
&make_links($Rtitles{$num}{$num_words});

}
...

%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either of the
following ways:

v Use the %EXEC statement:
%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}

%}

v Use a variable reference to specify the %{ characters:
%define percent_openbrace = "%{"

%FUNCTION(DTW_PERL) func() {
...
for $num_words (sort by number keys $(percent_openbrace) $Rtitles{$num} } {
&make_links($Rtitles{$num}{$num_words});

}
...

%}

Message Blocks

The MESSAGE block lets you determine how to proceed after a function call, based
on the success or failure of the function call, and lets you display information to the
caller of the function. When processing a message, Net.Data sets the language
environment variable RETURN_CODE for each function call to a FUNCTION block.
RETURN_CODE is not set on a function call to a MACRO_FUNCTION block.

Chapter 5. Developing Net.Data Macros 67

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax of a
MESSAGE block is shown in the language constructs chapter of Net.Data
Reference.

A MESSAGE block can have a global or a local scope. If the MESSAGE block is
defined in a FUNCTION block, its scope is local to that FUNCTION block. If it is
specified at the outermost macro layer, the MESSAGE block has global scope and
is active for all function calls executed in the Net.Data macro. If you define more
than one global MESSAGE block, the last one defined is active.

Net.Data uses these rules to process the value of the RETURN_CODE variable
from a function call:

1. Check local MESSAGE block for an exact match; exit or continue as specified.

2. If RETURN_CODE is not 0, check local MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

3. If RETURN_CODE is not 0, check local MESSAGE block for default; exit or
continue as specified.

4. Check global MESSAGE block for an exact match; exit or continue as specified.

5. If RETURN_CODE is not 0, check global MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

6. If RETURN_CODE is not 0, check global MESSAGE block for default; exit or
continue as specified.

7. If RETURN_CODE is not 0, issue Net.Data internal default message and exit.

The following example shows part of a Net.Data macro with a global MESSAGE
block and a MESSAGE block for a function.
%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue

+default : {
This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {
%EXEC { my_command.cmd %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue

-default : {
This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : exit
%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data processes
the error in this order:

1. Check for an exact match in the local MESSAGE block.

2. Check for +default in the local MESSAGE block.

3. Check for default in the local MESSAGE block.

68 Net.Data: Administration and Programming Guide for OS/390

4. Check for an exact match in the global MESSAGE block.

5. Check for +default in the global MESSAGE block.

When Net.Data finds a match, it sends the message text to the Web browser and
checks the requested action.

When you specify continue, Net.Data continues to process the Net.Data macro
after printing the message text. For example, if a macro calls my_functions() five
times and error 100 is found during processing with the MESSAGE block in the
example, output from a program can look like this:
.
.
.
11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message
22 May 1997 $ 42.67

Total: $994.37

Calling Functions

Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a macro
function name:
@function_name([argument,...])

function_name
This is the name of the function or macro function to invoke. The function
must already be defined in the Net.Data macro, unless this is a built-in
function.

argument
This is the name of a variable, a quoted string, a variable reference, or a
function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while the
function or macro function is being processed. The arguments must be the
same number and type as the corresponding parameters.

Calling Net.Data Built-in Functions

Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not need
to define them. You can call these functions as you would call other functions.

Figure 5 on page 70 shows how the Net.Data built-in functions and the macro
interact.

Chapter 5. Developing Net.Data Macros 69

|
|
|
|
|
|

Built-in functions can return their results in three ways, depending on its prefix:

v DTW_ and DTWF_: The results of the call are returned in an output parameter
or no result is returned. (DTWF_ is the prefix for flat file functions.)

v DTW_r and DTWF_r: The results of the function call replace the function call in
the macro, in the same way the value of the RETURNS keyword replaces the
function call for a user-defined function which has specified a RETURNS
keyword.

v DTW_m: Multiple results are returned in each of the parameters passed to the
function.

Some built-in functions do not have each type. To determine which type a particular
built-in function has, see the Net.Data built-in functions chapter in Net.Data
Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word, or
table manipulation functions. See Net.Data Reference for descriptions of each
function with syntax and examples. Some of these functions required variables to
be set prior to their use, or must be used in a specific context.

v “General Purpose Functions”

v “Math Functions” on page 71

v “String Functions” on page 71

v “Word Functions” on page 72

v “Table Functions” on page 72

v “Flat File Functions” on page 72

General Purpose Functions

This set of functions help you develop Web pages by altering data or accessing
system services. You can use them to query and set environment variables, use
HTML escape codes, and get other useful information from the system.

Figure 5. Net.Data Built-in Functions

70 Net.Data: Administration and Programming Guide for OS/390

For example, to specify that Net.Data should exit a macro if a specific condition
occurs, without processing the rest of the macro, you use the DTW_EXIT function:
%HTML(cache_example) {

<html>
<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<!!!>
<! Joe Smith sees a very short page !>
<!!!>
%IF (customer == "Joe Smith")

</body>
</html>

@DTW_EXIT()

%ENDIF

...

</body>
</html>
%}

The DTW_URLESCSEQ function replaces characters that are not allowed in a URL
with their escape values. For example, if the input variable string1 equals "Guys &
Dolls", DTW_URLESCSEQ assigns the output variable to the value
"Guys%20%26%20Dolls".

Math Functions

These functions perform mathematical operations, letting you calculate or alter
numeric data. Besides standard mathematical operations, you can also perform
modulus division, specify a result precision, and use scientific notation.

For example, the function DTW_POWER raises the value of its first parameter to
the power of its second parameter and returns the result, as shown in the following
example:
@DTW_POWER("2", "-3", result)

DTW_POWER returns ".125" in the variable result

String Functions

These functions let you manipulate characters within strings. You can change a
string’s case, insert or delete characters, assign a string value to another variable,
plus other useful functions.

For example, you can use DTW_ASSIGN to assign the value of an input variable to
an output variable. You can also use this function to change a variable in a macro.
In the following example, the variable RC is assigned to zero.
@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings, and
DTW_INSERT, which inserts strings at a specific position, as well many other string
manipulations functions.

Chapter 5. Developing Net.Data Macros 71

Word Functions

These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example, they let
you count the number of words in a string, remove words, search a string for a
word.

For example, use DTW_DELW0RD to delete a specified number of words from a
string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the number of
characters in a word, and DTW_WORDPOS, which returns the position of a word
within a string.

Table Functions

You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data tables,
and to manipulate and retrieve values in those tables. Table variables contain a set
of values and their associated column names. They provide a convenient way to
pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the following
example, Net.Data appends ten rows to the table, myTable:
@DTW_TB_APPENDROW(myTable, "10")

Additionally, DTW_TB_DUMPH, returns the contents of a macro table variable,
enclosed in <PRE></PRE> tags, with each row of the table is displayed on a
different line. And DTW_TB_CHECKBOX returns one or more HTML check box
input tags from a macro table variable.

Flat File Functions

Use the flat file interface (FFI) functions to open, read, and manipulate data from
flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the end of
a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot read
or update the file. DTWF_CLOSE releases the file when Net.Data is done with it,
allowing other requests to access the file.

Generating Web Pages in a Macro

Net.Data lets you easily present standard Web pages on the application user’s
browser. The following sections describe the HTML and REPORT blocks of the
macro and show you how to format Web pages in Net.Data macros. See the
language constructs chapter in Net.Data Reference for syntax information for these
blocks.

72 Net.Data: Administration and Programming Guide for OS/390

HTML Blocks

A Net.Data macro contains HTML blocks that generate text presentation statements,
such as HTML, to a Web browser. In a macro, you must specify at least one HTML
block, but can specify as many as you want. Each HTML block generates a single
Web page at the browser. Net.Data processes only one HTML block each time it is
invoked. To create an application consisting of many Web pages, you can invoke
Net.Data multiple times to process HTML blocks using standard navigation
techniques, such as links and forms.

Any valid text presentation statements, such as HTML or JavaScript, can appear in
an HTML block. In addition, you can use INCLUDE statements, function calls, and
variable references in an HTML block. The following example shows a common use
of HTML blocks in a Net.Data macro:
%DEFINE DATABASE="MNS96"

%HTML(INPUT){
<H1>Hardware Query Form</H1>
<HR>
<FORM METHOD="POST" ACTION="/netdata-cgi/db2www/equiplst.d2w/report">
<dl>
<dt>What hardware do you want to list?
<dd><input type="radio" name="hdware" value="MON" checked>Monitors
<dd><input type="radio" name="hdware" value="PNT">Pointing devices
<dd><input type="radio" name="hdware" value="PRT">Printers
<dd><input type="radio" name="hdware" value="SCN">Scanners
</dl>
<HR>
<input type="submit" value="Submit">
</FORM>
%}

%FUNCTION(DTW_SQL) myQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE=$(hdware)
%REPORT{
Here is the list you requested:

%ROW{
<HR>
$(N1): $(V1) $(N2): $(V2)
<P>
$(V3)
%}
%}
%}

%HTML(REPORT){
@myQuery()
%}

You can invoke the Net.Data macro from an HTML link like the one in the following
example:

List of hardware

When the application user clicks on this link, the Web browser invokes Net.Data,
and Net.Data parses the macro. When Net.Data begins processing the HTML block
specified on the invocation, in this case the HTML(INPUT) block, it begins to
process the text inside the block. Anything that Net.Data does not recognize as a
Net.Data macro language construct, it sends to the browser for display.

Chapter 5. Developing Net.Data Macros 73

After the user makes a selection and presses the Submit button, Net.Data runs the
ACTION part of the HTML FORM element, which specifies a call to the Net.Data
macro’s HTML(OUTPUT) block. Net.Data then processes the HTML(OUTPUT)
block just as the HTML(INPUT) block was.

Net.Data then processes the myQuery() function call, which in turn invokes the SQL
FUNCTION block. After replacing the $(hdware) variable reference in the SQL
statement with the value returned from the input form, Net.Data runs the query. At
this point, Net.Data resumes processing the report, displaying the results of the
query according to the text presentation statements specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the
HTML(OUTPUT) block, and finishes processing.

Report Blocks

Use the REPORT block language construct to format and display data output from
a FUNCTION block. This output is typically table data, although any valid
combination of text, macro variable references, and function calls can be specified.
A table name can optionally be specified on the REPORT block. Except for SQL
and ODBC language environments, if you do not specify a table name, Net.Data
uses the table data from the first output table in the FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:

v Header information, which contains text that is displayed once before the table
row data.

v A ROW block, which contains text and table variables that are displayed once for
each row of the result table.

v Footer information, which contains text that is displayed once after the table row
data.

Example:
%REPORT{
<H2>Query Results</H2>
<P>Select a name for details.
<TABLE BORDER=1>
<TR>
<TD>Name</TD>
<TD>Location</TD></TR>

%ROW{
<TR>
<TD>
$(V1)
</TD>
<TD>$(V2)</TD>

</TR>
%}

</TABLE>
%}

REPORT Block Guidelines

Use the following guidelines when creating REPORT blocks:

v To avoid displaying any table output from the ROW block, leave the ROW block
empty or omit it entirely.

74 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|

v Use Net.Data-provided variables inside the REPORT block to access the data in
the Net.Data macro results table. These variables are described in “Table
Processing Variables” on page 63. For additional detail, see the Report Variables
section in the Net.Data Reference.

v To provide header and footer information, provide the text before and after the
ROW block. Net.Data processes everything it finds before a ROW block as
header information. Net.Data processes everything it finds after the ROW block
as footer information. As with the HTML block, Net.Data treats everything in the
header, ROW, and footer blocks that is not recognized as macro language
constructs as text presentation statements and sends these statements to the
browser.

v You can call functions and reference variables in a REPORT block.

v To have Net.Data print a default report using preformatted text, do not include the
REPORT block in the macro. The following example shows the default report
format:
SHIPDATE | RECDATE | SHIPNO |

25/05/1997 | 30/05/1997 | 1495194B |

25/05/1997 | 28/05/1997 | 2942821G |

v To use the HTML tags instead of the preformatted text, set DTW_HTML_TABLE
to YES.

v To disable the printing of the a default report, set DTW_DEFAULT_REPORT to
NO or by specifying an empty REPORT block. For example:
%REPORT{%}

Example: Customizing a Report

The following example shows how you can customize report formats using special
variables and HTML tags. It displays the names, phone numbers, and fax numbers
from the table CustomerTbl:
%DEFINE SET_TOTAL_ROWS="YES"
...
%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{

<I>Phone Query Results:</I>

=====================

%ROW{
Name: $(V1)

Phone: $(V2)

Fax: $(V3)

%}
Total records retrieved: $(TOTAL_ROWS)

%}
%}

The resulting report looks like this in the Web browser:
Phone Query Results:
====================
Name: Doen, David

Chapter 5. Developing Net.Data Macros 75

Phone: 422-245-1293
Fax: 422-245-7383

Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974

Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:

1. Printing Phone Query Results: once at the beginning of the report. This text,
along with the separator line, is the header part of the REPORT block.

2. Replacing the variables V1, V2, and V3 with their values for Name, Phone, and
Fax respectively for each row as it is retrieved.

3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once at
the end of the report. (This text is the footer part of the REPORT block.)

Multiple REPORT Blocks

You can use multiple REPORT blocks with the DTW_SQL language environment or
the DTW_ODBC language environment when a function calls a stored procedure
that returns multiple result sets. See “Stored Procedures” on page 87.

To use multiple REPORT blocks, place a result set name on the stored procedure
CALL statement for each result set. If more result sets are returned from the stored
procedure than the number of REPORT blocks you have specified, then default
reports are generated for each result set that is not associated with a REPORT
block. This assumes that you have not disabled default report processing by
specifying DTW_DEFAULT_REPORT = ″NO″.

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment
%FUNCTION (dtw_sql) myStoredProc () {

CALL myproc (table1, table2) %}

To display multiple reports by specifying REPORT blocks for display
processing:

Example 1: Named REPORT blocks
%FUNCTION(dtw_sql) myStoredProc () {

CALL myproc (table1, table2)

%REPORT(table2) {
...
%ROW { %}
...

%}

%REPORT(table1) {
...

76 Net.Data: Administration and Programming Guide for OS/390

%row { %}
...

%}
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. The tables are displayed in the order they
are specified on the REPORT blocks, table2 first, then table1. By specifying a
table name on the REPORT block, you can control the order in which the reports
are displayed.

Example 2: Unnamed REPORT blocks
%FUNCTION(dtw_sql) myStoredProc () {

CALL myproc

%REPORT {
...
%ROW { %}
...

%}
%REPORT {
...
%ROW { %}
...

%}
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. Because there are no table names specified
on the REPORT blocks, reports are displayed for the two tables in the order in
which they are returned from the stored procedure.

To display multiple reports using a combination of default reports and
REPORT blocks:

Example: A combination of default reports and REPORT blocks
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION(dtw_sql) myStoredProc (OUT table1) {

CALL myproc (table1, table2, table3)

%REPORT(table2) {
...
%ROW { %}
...

%}

%}

In this example, only one REPORT block is specified. Because the block specifies
table2, and table2 is the second result set listed on the CALL statement, the
second result set is used to display the report. Because there are fewer REPORT
blocks specified than the number of result sets returned from the stored procedure,
default reports are then displayed for the remaining result sets: first, a default report
for the first result set, table1; then a default report for the third result set, table3.
One output table is specified, table1, which can be used for processing later in the
macro file.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the following
guidelines and restrictions when specifying multiple REPORT blocks in a
FUNCTION block.

Chapter 5. Developing Net.Data Macros 77

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Guidelines:

v Specify REPORT blocks for multiple tables in the order in which you want them
to be processed.

v To specify default processing when there is not a REPORT block specified for a
table, define DTW_DEFAULT_REPORT = ″YES″. When Net.Data builds the Web
page, it displays default reports for tables after it displays the reports for tables
having REPORT blocks.

v To prevent Net.Data from displaying tables that do not have REPORT blocks, set
DTW_DEFAULT_REPORT = ″NO″.

v When using the DTW_SAVE_TABLE_IN variable with a function that returns
more than one table, the first table returned from the function is assigned to the
DTW_SAVE_TABLE_IN table.

Restrictions:

v Multiple REPORT blocks can only be used in functions using the DTW_SQL or
DTW_ODBC language environments when the function calls a stored procedure
that returns multiple result sets.

v The values of all report variables in a function apply to all the REPORT blocks in
that function. You cannot modify the value of a report variable for individual
REPORT blocks.

v The MESSAGE block must be located either before or after a list of REPORT
blocks, and not between REPORT blocks.

v Table variables must be defined within the TABLE statement before being passed
to the function.

v If the first report block specifies a table name, then all report blocks must specify
table names.

v If the first report block does not specify a table name, then none of the report
blocks can specify table names.

v Multiple REPORT blocks cannot be specified for the same table.

Conditional Logic and Looping in a Macro

Net.Data lets you incorporate conditional logic and looping in your Net.Data macros
using the IF and WHILE blocks.

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome of the
condition test. The condition list contains logical operators, such as = and <+, and
terms, which are made up of quoted strings, variables, variable references, and
function calls. Quoted strings can contain variable references and functions calls, as
well. You can nest the condition list.

The following sections describe conditional logic and looping:

v “Conditional Logic: IF Blocks” on page 79

v “Looping Constructs: WHILE Blocks” on page 81

78 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

Conditional Logic: IF Blocks

Use the IF block for conditional processing in a Net.Data macro. The IF block is
similar to IF statements in most high-level languages because it provides the ability
to test one or more conditions, and then to perform a block of statements based on
the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

The rules for IF block syntax are determined by the block’s position in the macro.
The elements allowed in the executable block of statements of an IF block depend
on the location of the IF block itself. Any element that is valid in the block containing
the IF block is valid within that IF block. For example, if you specify an IF block
inside an HTML block, any element that is allowed in the HTML block is allowed in
the IF block, such as INCLUDE statements and WHILE blocks.
%HTML block
...
%IF block

...
%INCLUDE

...
%WHILE

...
%ENDIF

%}

Similarly, if you specify the IF block outside of any other block in the declaration
part of the Net.Data macro, only those elements allowed outside of any other block
(such as a DEFINE block or FUNCTION block) are allowed in the IF block.
%IF
...
%DEFINE

...
%FUNCTION

...
%ENDIF

When an IF block is nested within an IF block that is outside of any other block in
the declaration part, it can use any element that the outside block can use. When
an IF block is nested within another block that is in an IF block, it takes on the
syntax rules for the block it is inside.

For example, a nested IF block must follow the rules used when it is inside an
HTML block.
%IF
...
%HTML {

...
%IF

...
%ENDIF

%}
...
%ENDIF

Exception: Do not specify a ROW block in an IF block.

Chapter 5. Developing Net.Data Macros 79

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat all
terms as strings, and to perform string comparisons as specified in the conditions.
However, if the comparison is between two strings representing integers, then the
comparison is numeric. Net.Data assumes a string is numeric if it contains only
digits, optionally preceded by a ’+’ or ’-’ character. The string cannot contain any
non-digit characters other than the ’+’ or ’-’. Net.Data does not support numerical
comparision of non-integer numbers.

Examples of valid integer strings:
+1234567890
-47
000812
92000

Examples of invalid integer strings:
- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which can be
different than the time it is originally read by Net.Data. For example, if you specify
an IF block in a REPORT block, Net.Data does not evaluate the condition list
associated with the IF block when it reads the FUNCTION block definition
containing the REPORT block, but rather when it calls the function and executes it.
This is true for both the condition list part of the IF block and the block of
statements to be executed.

Example: A macro containing IF blocks inside other blocks
%{ This macro is called from another macro, passing the operating system

and version variables in the form data.
%}

%IF (platform == "OS390")
%IF (version == "1.3")

%INCLUDE "os390v1r3_def.hti"
%ELIF (version == "2.0")

%INCLUDE "os390v2r1_def.hti"
%ELIF (version == "2.2")

%INCLUDE "os390v2r2_def.hti"
%ENDIF

%ELSE
%INCLUDE "default_def.hti"

%ENDIF

%MACRO_FUNCTION numericCompare(IN term1, term2, OUT result) {
%IF (term1 < term2)
@dtw_assign(result, "-1")

%ELIF (term1 > term2)
@dtw_assign(result, "1")

%ELSE
@dtw_assign(result, "0")

%ENDIF
%}

%HTML(report){
%WHILE (a < "10") {
outer while loop #$(a)

%IF (@dtw_rdivrem(a,"2") == "0")
this is an even number loop

80 Net.Data: Administration and Programming Guide for OS/390

%ENDIF
@DTW_ADD(a, "1", a)

%}
%}

Looping Constructs: WHILE Blocks

Use the WHILE block to perform looping in a Net.Data macro. Like the IF block, the
WHILE block provides the ability to test one or more conditions, and then to
perform a block of statements based on the outcome of the condition test. Unlike
the IF block, the block of statements can be executed any number of times based
on the outcome of the condition test.

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW blocks,
and IF blocks, and you can nest them. The syntax of a WHILE block is shown in
the language constructs chapter of Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And, like any
conditional looping construct, it is possible for processing to go into an infinite loop
if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE loopCounter = "1"

%HTML(build_table) {
%WHILE (loopCounter <= "100") {
%{ generate table tag and column headings %}
%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description

%ENDIF

%{ generate individual rows %}
<TR>
<TD>$(loopCounter)
<TD>@getDescription(loopCounter)

%{ generate end table tag %}
%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(loopCounter, "1", loopCounter)

%}
%}

Chapter 5. Developing Net.Data Macros 81

82 Net.Data: Administration and Programming Guide for OS/390

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources and
to execute application programs containing business logic. For example, the SQL
language environment lets you pass SQL statements to a DB2 subsystem, and the
REXX language environment lets you invoke REXX programs. You can also use the
SYSTEM language environment to execute an external program that, for example,
uses the External CICS Interface (EXCI) interface to execute a CICS program.

With Net.Data, you can add user-written language environments in a pluggable
fashion. Each user-written language environment must support a standard set of
interfaces that are defined by Net.Data and must be implemented as a dynamic link
library (DLL). For complete details on Net.Data-supplied language environments
and on how to create a user-written language environment, see the Net.Data
Language Environment Interface Reference.

Figure 6 shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

The following sections describe the Net.Data language environments and how to
use them in your macros:

v “Overview of Net.Data-Supplied Language Environments” on page 84

v “Calling a Language Environment” on page 84

v “Data Language Environments” on page 85

v “Programming Language Environments” on page 95

For configuration information about the Net.Data-provided language environments,
see “Setting Up the Language Environments” on page 19.

For information about improving performance when using the language
environments, see “Chapter 7. Improving Performance” on page 111.

Figure 6. The Net.Data Language Environments

© Copyright IBM Corp. 1997, 1998 83

|
|

|
|

|

|

|

|

|

|

Overview of Net.Data-Supplied Language Environments

Net.Data provides language environments that let you access data and
programming resources for your application.

Net.Data provides two types of language environments:

v “Data Language Environments” on page 85

v “Programming Language Environments” on page 95

Table 3 provides a brief description of each language environment:

Table 3. Net.Data Language Environments

Language
Environment Environment Name Description

Flat File
Interface

DTW_FILE The flat file interface (FFI) provides functions that
support text files as data sources.

IMS Web HWS_LE The IMS Web language environment lets you submit
an IMS transaction using IMS Web and receive the
output of the transaction at your Web browser.

Java Applet DTW_APPLET The Java applet language environment lets you use
Java applets in your Net.Data applications. To
generate an applet tag, you must provide the applet
tag’s qualifiers and the applet’s parameter list.

ODBC DTW_ODBC The ODBC language environment executes SQL
statements through an ODBC interface for access to
multiple database management systems.

Perl DTW_PERL The Perl language environment interprets internal Perl
scripts that are specified in a FUNCTION block of the
Net.Data macro, or it executes external Perl scripts
stored in separate files.

REXX DTW_REXX The REXX language environment interprets internal
REXX programs that are specified in a FUNCTION
block of the Net.Data macro, or it can execute
external REXX programs stored in a separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable.

System DTW_SYSTEM The System language environment supports calls to
external programs that are identified in an EXEC
statement in the FUNCTION block. The System
language environment interprets the EXEC statement
by passing the program name and its parameters to
the operating system for execution.

Calling a Language Environment

To call a langugage environment:

v Use a FUNCTION statement to define a function that calls the language
environment.

v Use a function call to the language environment.

For example:

84 Net.Data: Administration and Programming Guide for OS/390

|
|

|
|

|

|

|

|

|
|
|

|
|||

|
|
||
|

|||
|
|

|||
|
|
|

|||
|
|

|||
|
|
|

|||
|
|
|

|||
|
|

|||
|
|
|
|
|

|

|

|
|

|

|

...
%function(dtw_odbc) myStoredProc() {
create table int_null (int1 int, int2 int)
%}

...
%HTML(REPORT) {
@myStoredProc()

%}

Data Language Environments

The data language environments provided by Net.Data enable you to access data
from relational and hierarchical databases, and other data sources from a Net.Data
macro. The following sections discuss the Net.Data-provided data language
environments and how to use them in your Net.Data macros.

v “Relational Database Language Environments”

v “Flat File Interface Language Environment” on page 93

v “IMS Web Language Environment” on page 94

Access Rights: Ensure that the user ID under which Net.Data executes has
access rights to execute database queries or access files that it needs to complete
a transaction. See “Granting Access Rights to Files and Data Sets Accessed by
Net.Data” on page 27 for more information.

Relational Database Language Environments

Net.Data provides relational database language environments to help you access
your relational data sources. Net.Data provides the following relational database
language environments:

ODBC Language Environment
The Open Database Connectivity (ODBC) language environment executes
SQL statements through an ODBC interface. ODBC is based on the
X/Open SQL CAE specification, which lets a single application access many
database management systems.

To use the ODBC language environment:

Verify that the location of your CLI initialization file is specified in the
configuration variable DSNAOINI. To learn how to set the DSNAOINI
configuration variable, see “DSNAOINI: DB2 CLI Initialization File Variable”
on page 10.

Verify that the following configuration statement is in the initialization file, on
one line.
ENVIRONMENT (DTW_ODBC) odbcdll ()

Allowed variables on the ENVIRONMENT statement:
TRANSACTION_SCOPE, LOCATION

Restrictions:

v SQL statements in the inline statement block can be 32 KB.

SQL Language Environment

Chapter 6. Using Language Environments 85

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|

|
|
|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|

|
|

|

|

|
|

The SQL language environment provides access to DB2 databases. Use
this language environment for optimal performance when accessing DB2.

To use the SQL language environment:

Verify that the following configuration statement is in the initialization file, on
one line.
ENVIRONMENT (DTW_SQL) dtwsql ()

Allowed variables on the ENVIRONMENT statement:
TRANSACTION_SCOPE, LOCATION, DB2SSID, DB2PLAN

Important: See “SQL and ODBC Language Environments” on page 20 to
learn how to set up the SQL language environment.

Restriction: SQL statements in the inline statement block can be up to 32
KB.

The following sections describe how to use these language environments:

v “Managing Transactions in a Net.Data Application”

v “Stored Procedures” on page 87

v “Example” on page 92

Managing Transactions in a Net.Data Application

When you modify the content of a database using insert, delete, or update
statements, the modifications do not become persistent until the database receives
a commit statement from Net.Data. If an error occurs, Net.Data sends a rollback
statement to the database, reversing all modifications since the last commit.

The way in which Net.Data sends the commit and possible rollback depends on
how you set TRANSACTION_SCOPE and whether you specify the commit explicitly
in the macro. The values for TRANSACTION_SCOPE are MULTIPLE and SINGLE.

MULTIPLE

Specifies that Net.Data will execute all SQL statements before a commit
and possible rollback statement is issued. Net.Data sends the commit at the
end of the request, and if each SQL statement is issued successfully, the
commit makes all modifications in the database persistent. If any of the
statements returns an error, Net.Data issues a rollback statement, which
sets the database back to its original state. MULTIPLE is the default if
TRANSACTION_SCOPE is not set.

To activate this commit method set TRANSACTION_SCOPE to MULTIPLE.

For example:
@DTW_ASSIGN(TRANSACTION_SCOPE,"MULTIPLE")

SINGLE

Specifies that Net.Data issues a commit statement after each successful
SQL statement. If the SQL statement returns an error, a rollback statement
is issued. Single transaction scope secures a database modification
immediately; however, with this scope, it is not possible to undo a
modification using a rollback statement later.

To activate this commit method, set TRANSACTION_SCOPE to SINGLE.
For example:

86 Net.Data: Administration and Programming Guide for OS/390

|
|

|

|
|

|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|

@DTW_ASSIGN(TRANSACTION_SCOPE,"SINGLE")

You can issue a commit statement at the end of any SQL statement in your macro
by using the COMMIT SQL statement. By leaving TRANSACTION_SCOPE set to
MULTIPLE and issuing commit statements at the end of those groups of statements
that you feel qualify as a transaction, you the application developer maintain full
control over the commit and rollback behavior in your application.

To issue an SQL commit statement, you can define a function that you can call in at
any point in your HTML block:
%FUNCTION(DTW_SQL) user_commit() {
commit

%}

...

%HTML {
...
@user_commit()
...

%}

Stored Procedures

A stored procedure is a compiled program stored in DB2 that can execute SQL
statements. In Net.Data, stored procedures are called from Net.Data functions using
a CALL statement. Stored procedure parameters are passed in from the Net.Data
function parameter list. You can use stored procedures to improve performance and
integrity by keeping compiled SQL statements with the database server. Net.Data
supports the use of stored procedures with DB2 through the SQL and ODBC
language environments.

This section describes following topics:

v “Stored Procedure Syntax”

v “Calling a Stored Procedure” on page 88

v “Passing Parameters” on page 89

v “Processing Result Sets” on page 89

Stored Procedure Syntax: The syntax of the stored procedure uses the
FUNCTION statement, the CALL statement, and optionally a REPORT block.
%FUNCTION (DTW_lang_env) function_name ([IN datatype arg1, INOUT datatype arg2,

OUT tablename, ...]) {
CALL stored_procedure [(resultsetname, ...)]

[%REPORT [(resultsetname)] { %}]
...
[%REPORT [(resultsetname)] { %}]
[%MESSAGE %}]

%}

Where:

lang_env
Is the name of the language environment being invoked. It can be DTW_SQL or
DTW_ODBC.

Chapter 6. Using Language Environments 87

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

function_name
Is the name of the Net.Data function that initiates the call of the stored
procedure

stored_procedure
Is the name of the stored procedure

datatype
Is one of the database data types supported by Net.Data as shown in Table 4.
The data types specified in the parameter list must match the data types in the
stored procedure. See your database documentation for more information about
these data types.

tablename
Is the name of a Net.Data table in which the result set is to be stored (used
only when the result set is to be stored in a Net.Data table). If specified, this
parameter name must match the associated parameter name for resultsetname.

resultsetname
Is the name that associates a result returned from a stored procedure with a
REPORT block and a table name on the function parm list, or both. The
resultsetname on a REPORT block must match a result set on the CALL
statement.

Table 4. Stored Procedures Data Types
CHAR FLOAT SMALLINT
DECIMAL INTEGER VARCHAR
DOUBLE GRAPHIC VARGRAPHIC
DOUBLEPRECISION

Calling a Stored Procedure:

1. Define a function that initiates a call to the stored procedure.
%FUNCTION (DTW_SQL) function_name()

2. Optionally, specify any IN, INOUT, or OUT parameters for the stored procedure,
including a table variable name for storing a result set in a Net.Data table (you
only need to specify a Net.Data table if you want the result set stored in a
Net.Data table).
%FUNCTION (DTW_SQL) function_name (IN datatype
arg1, INOUT datatype arg2,

OUT tablename...)

3. Use the CALL statement to identify the stored procedure name.
CALL stored_procedure

4. If the stored procedure is going to generate one result set, optionally specify a
REPORT block to define how Net.Data displays the result set.
%REPORT (resultsetname) {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1) {

CALL myproc
%REPORT (mytable){
...
%ROW { ... %}
...

%}
%}

5. If the stored procedure is going to generate more than one result set:

88 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|

|

|

|
|

|
|
|

|

|
|
|
|
|
|
|
|

|

v Specify the result set names on the CALL statement.
CALL stored_procedure (resultsetname1, resultsetname2, ...)

v Optionally specify one or more REPORT blocks to define how Net.Data
displays the result sets.
%REPORT(resultsetname1) {
...
%}

Example:
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) arg1, OUT table1) {

CALL myproc (table1, table2)
%REPORT (table2) {

...
%ROW { ... %}
...

%}
%REPORT (table1) {

...
%ROW { ... %}
...

%}
%}

Passing Parameters: You can pass parameters to a stored procedure and you
can have the stored procedure update the parameter values so that the new value
is passed back to the Net.Data macro. The number and type of the parameters on
the function parameter list must match the number and type defined for the stored
procedure. For example, if a parameter on the parameter list defined for the stored
procedure is INOUT, then the corresponding parameter on the function parameter
list must be INOUT. If a parameter on the list defined for the stored procedure is of
type CHAR(30), then the corresponding parameter on the function parameter list
must also be CHAR(30)..

Example 1: Passing a parameter value to the stored procedure
%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) valuein) {

CALL myproc
...

Example 2: Returning a value from a stored procedure
%FUNCTION (DTW_SQL) mystoredproc (OUT VARCHAR(9) retvalue) {
CALL myproc

...

Processing Result Sets: You can return one or more result sets from a stored
procedure using the SQL or ODBC language environments. The result sets can be
stored in Net.Data tables for further processing within your macro or processed
using a REPORT block. If a stored procedure generates multiple result sets, you
must associate a name with each result set generated by the stored procedure.
This is done by specifying parameters on the CALL statement. The name you
specify for a result set can then be associated with a REPORT block or a Net.Data
table, enabling you to determine how each result set is processed by Net.Data. You
can:

v Have the result processed in Net.Data’s default report style by not defining a
report block for the result set.

v Associate a result set with a REPORT block to apply your own report style. In the
REPORT block, you can use Net.Data variables, text processing statements like
HTML or JavaScript, or other functions to specify how the report data is
displayed in the browser.

Chapter 6. Using Language Environments 89

|

|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

v Store the result sets in Net.Data tables when you want Net.Data to use the data
later in the macro. For example, you can pass the Net.Data table to another
function so that it can use the data for calculations and display the results based
on those calculations.

See “Guidelines and Restrictions for Multiple REPORT Blocks” on page 77 for
guidelines and restrictions when using multiple report blocks.

To return a single result set and use default reporting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc() {

CALL myproc
%}

To return a single result set and specify a REPORT block:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname)]
%REPORT [(resultsetname)] {
...

%}
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%REPORT {

...
%ROW { ... %}
...

%}
%}

Alternatively, the following syntax can be used:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure (resultsetname)

%REPORT (resultsetname) {
...

%}
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1)
%REPORT (mytable1) {
...
%ROW { ... %}
...

%}
%}

To store a single result set in a Net.Data table for further processing:

90 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|

|
|

|

|

|
|
|

|

|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename) {

CALL stored_procedure (resultsetname)
%}

For example:
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1) {
CALL myproc (mytable1)

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result set.

To return multiple result sets and display them using default report
formatting:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name () {

CALL stored_procedure [(resultsetname1, resultsetname2, ...)]
%}

Where no report block is specified.

For example:
%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc
%}

To return multiple result sets and have the result sets stored in Net.Data
tables for further processing:

Use the following syntax:
%FUNCTION (DTW_SQL) function_name (OUT tablename1, tablename2, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%}

For example:
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION (DTW_SQL) mystoredproc (OUT mytable1, mytable2) {
CALL myproc (mytable1, mytable2)

%}

Note that DTW_DEFAULT_REPORT is set to NO so that a default report is not
generated for the result sets.

To return multiple result sets and specify REPORT blocks for display
processing:

Each result set is associated with its one REPORT block. Use the following syntax:
%FUNCTION (DTW_SQL) function_name (, ...) {

CALL stored_procedure (resultsetname1, resultsetname2, ...)
%REPORT (tablename1)

...
%ROW { ... %}

Chapter 6. Using Language Environments 91

|

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|

|

|

|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

...
%}
%REPORT (tablename2)
...
%ROW { ... %}
...

%}

...
%}

For example:
%FUNCTION (DTW_SQL) mystoredproc () {

CALL myproc (mytable1, mytable2)

%REPORT(mytable1) {
...
%ROW { ... %}
...

%}

%REPORT(mytable2) {
...
%ROW { ... %}
...

%}
%}

To return multiple result sets and specify different display or processing
options for each result set:

You can specify different processing options for each result set using unique
parameter names. For example:
%FUNCTION (DTW_SQL) mystoredproc (OUT mytable2) {

CALL myproc (mytable1, mytable2, mytable3)

%REPORT(mytable1)
...
%ROW { ... %}
...
%}

%}

The result set mytable1 is processed by the corresponding REPORT block and is
displayed as specified by the macro writer. The result set mytable2 is stored in the
Net.Data table mytable2 and can now be used for further processing, such as being
passed to another function. The result set mytable3 is displayed using Net.Data’s
default report format because no REPORT block was specified for it.

Example

The following example shows how you can call the relational database language
environments from your macros:

SQL and ODBC

The following example shows a macro with a DTW_SQL function definition
that calls an SQL stored procedure. For the ODBC language environment,
substitute DTW_ODBC for DTW_SQL where it appears. It has three parameters of
different data types. The DTW_SQL language environment passes each
parameter to the stored procedure in accordance with the data type of the

92 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

parameter. When the stored procedure completes processing, output
parameters are returned and Net.Data updates the variables accordingly.
%{***

DEFINE BLOCK
**%}
%DEFINE {
MACRO_NAME = "TEST ALL TYPES"
DTW_HTML_TABLE = "YES"
Procedure = "TESTTYPE"
parm1 = "1" %{SMALLINT %}
parm2 = "11" %{INT %}
parm3 = "1.1" %{DECIMAL (2,1) %}
%}

%FUNCTION(DTW_SQL) myProc
(INOUT SMALLINT parm1,
INOUT INT parm2,
INOUT DECIMAL(2,1) parm3){

CALL $(Procedure)
%}
%HTML(REPORT) {
<HEAD>
<TITLE>Net.Data : SQL Stored Procedure: Example '$(MACRO_NAME)'. </TITLE>
</HEAD>
<BODY BGCOLOR="#BBFFFF" TEXT="#000000" LINK="#000000">
<p><p>
Calling the function to create the stored procedure.
<p><p>
@CRTPROC()

<hr>
<h2>
Values of the INOUT parameters
prior to calling the stored procedure:<p>

</h2>
parm1 (SMALLINT)

$(parm1)<p>
parm2 (INT)

$(parm2)<p>
parm3 (DECIMAL)

$(parm3)<p>
<p>
<hr>
<h2>
Calling the function that executes the stored procedure.
</h2>
<p><p>
@myProc(parm1,parm2,parm3)

<hr>
<h2>
Values of the INOUT parameters after
calling the stored procedure:<p>
</h2>
parm1 (SMALLINT)

$(parm1)<p>
parm2 (INT)

$(parm2)<p>
parm3 (DECIMAL)

$(parm3)<p>
</body>
%}

Flat File Interface Language Environment

If you choose to use flat files (or plain-text files) as your data source, use the flat
file interface (FFI) and its associated functions to open, close, read, write, and

Chapter 6. Using Language Environments 93

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

delete files on the Web server. The file language support uses FFI functions to read
from or write to files on the Web server at the Web client’s request through the
browser. FFI views the file as a record file, each record equivalent to a row in a
Net.Data macro table variable, and each value in a record equivalent to a field
value in a Net.Data macro table variable. FFI reads records from a file into rows of
a Net.Data macro table, and writes rows from a table into records.

See Net.Data Reference for description and syntax of the FFI built-in functions.

Configuring the FFI Language Environment

Verify that the following configuration statement is in the initialization file, on one
line:
ENVIRONMENT (DTW_FILE) filedll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Calling FFI Built-in Functions

Call an FFI function as you would any other function. Use a DEFINE statement to
define as variables any of the parameters that you want to pass; for example:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "1500"
myRows = "2"

%}

Then use a function call statement to invoke the function; for example:
@DTWF_UPDATE(myFile, "Delimited", "|", myTable, myWait, myRows)

Example

In this example, Net.Data reads the content of the ffi001.dat file into a Net.Data
table and writes the content of this table into the tmp.dat file. Finally, Net.Data
deletes the tmp.dat file.
%DEFINE {
mytable = %TABLE(ALL)
myfile = "/usr/lpp/netdata/ffi//ffi001.dat"
tmpfile = "/usr/lpp/netdata/ffi/tmp.dat"
%}
%HTML(report) {
@DTWF_READ(myfile, "ASCIITEXT", " ", mytable)
@DTW_TB_TABLE(mytable)

@DTWF_WRITE(tmpfile, "ASCIITEXT", " ", mytable)
@DTW_TB_TABLE(mytable)

@DTWF_REMOVE(tmpfile)
%}

IMS Web Language Environment

The IMS Web language environment is part of a complete end-to-end solution for
running your IMS transactions in the World Wide Web environment using Net.Data.
The IMS Web language environment provides:

v A Net.Data macro with:

94 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|

|

|

|
|

|

|
|

|

|
|

|
|
|
|
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

– The HTML used to enter the transaction input data

– A Net.Data FUNCTION block that invokes the IMS Web language
environment

– The HTML that displays the output of the transaction

v The source for a transaction DLL or shared library that is invoked by the IMS
Web language environment

The IMS Web Studio tool generates code for the DLL and the macro, as well as a
make file for building the DLL executable, from the Message Format Service (MFS)
source for the transaction and a sample HTML page for the IMS WEb Net.Data
application. After the executable form of the DLL has been built, the user moves the
the DLL and the macros to the Web server that is running Net.Data. The transaction
is ready to run in the Web environment.

IMS Web uses the IMS TCP/IP Open Transaction Manager Access (OTMA)
Connection to communicate between the Web server and IMS environments.

See the IMS Web home page for more information about using IMS Web.
http://www.software.ibm.com/data/ims/about/imsweb/document/

Configuring the IMS Web Language Environment

To use the IMS Web language environment, you need to verify the Net.Data
initialization settings and set up the language environment.

Verify that the following configuration statement is in the initialization file, on one
line.
ENVIRONMENT (HWS_LE) hwsdll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Important: See “IMS Web Language Environment” on page 19 to learn how to set
up the IMS language environment.

Restrictions

The IMS Web language environment of Net.Data is only supported when Net.Data
runs as a CGI application.

Programming Language Environments

Net.Data provides the following language environments for you to use when calling
external programs:

v “Java Applet Language Environment” on page 96

v “Perl Language Environment” on page 102

v “REXX Language Environment” on page 105

v “System Language Environment” on page 107

Access Rights: Ensure that the user ID under which Net.Data executes has
access rights to execute programs, including any objects that the programs might
access. See “Granting Access Rights to Files and Data Sets Accessed by Net.Data”
on page 27 for more information.

Chapter 6. Using Language Environments 95

|

|
|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|

Java Applet Language Environment

The Java applet language environment lets you easily generate HTML tags for Java
applets in your Net.Data applications. When you call the Java applet language
environment, you specify the name of your applet and pass any parameters that the
applet needs. The language environment processes the macro and generates the
HTML applet tags, which the Web browser uses to run the applet.

Additionally, Net.Data provides a set of interfaces your applet can use to access
table parameters. These interfaces are contained in the class, DTW_Applet.class.

The following sections describe how to use the Java applet language environment
to run your Java applets.

Configuring the Java Applet Language Environment

Verify that the following configuration statement is in the initialization file, on one
line:
ENVIRONMENT (DTW_APPLET) appldll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Creating Java Applets

Before using the Net.Data Java applet language environment, you need to
determine which applets you plan to use or which applets you need to write. See
your Java documentation for more information on creating applets.

Generating the Applet Tags

You specify a call to the applet language environment with a Net.Data function call.
No declaration is needed for the function call. The syntax for the function call is
shown here:
@DTWA_AppletName(parm1, parm2, ..., parmN)

v DTWA_ identifies the function call to the applet language environment.

v AppletName is the name of the applet for which tags are generated.

v parm1 through parmN are parameters used to generate PARAM tags.

To write a macro that generates applet tags:
1. Define any parameters required by the applet in the DEFINE section of the

macro. These parameters include any applet tag attributes, Net.Data variables,
and Net.Data table parameters that you need as input for the applet. For
example:
%define{
DATABASE = "celdial" <=Net.Data variable: name of the database
MyGraph.codebase = "/netdata-java/" <=Required applet attribute
MyGraph.height = "200" <=Required applet attribute
MyGraph.width = "400" <=Required applet attribute
MyTitle = "This is my Title" <=Net.Data variable: name of the Web page
MyTable = %TABLE(all) <=Table to store query results
%}

2. Optional: Specify a query to the database to generate a result set as input for
the applet. This is useful when you are using an applet that generates a chart or
table. For example:

96 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|
|
|

%FUNCTION(DTW_SQL) mySQL(OUT table){
select name, ages from ibmuser.guests
%}

3. Specify the function call in the Net.Data macro to call the Java applet language
environment and invoke the applet. The function call specifies the name of the
applet and the parameters you want to pass to the language environment.
These parameters include any Net.Data variables, and Net.Data table or column
parameters that you need as input for the applet.

For example:
%HTML(report){ <=The start of the HTML block
@mySQL(MyTable) <=A call to the SQL function

mySQL
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable) <=Applet function call
%}

Applet Tag Attributes: You can specify attributes for applet tags anywhere in your
Net.Data macro. Net.Data substitutes all variables that have the form
AppletName.attribute into the applet tag as attributes. The syntax for defining an
attribute on an applet tag is shown here:
%define AppletName.attribute = "value"

The following attributes are required for all applets:

v codebase: The location of the applet, which is identified by a URL.

v height: The height of the applet in pixels.

v width: The width of the applet in pixels.

The following attributes are optional:

v align: the alignment of the applet

v alt: any text that should be displayed if the browser understands the APPLET tag
but can’t run Java applets

v archive: an archive containing classes and other resources

v hspace: the number of pixels on each side of the applet

v name: a name for the applet instance

v object: the name of the file that contains a serialized representation of an applet

v vspace: the number of pixels above and below the applet

For example, if your applet is called MyGraph, you can define these required
attributes as shown here:
%DEFINE{
MyGraph.codebase = "/netdata-java/"
MyGraph.height = "200"
MyGraph.width = "400"
%}

The actual assignment need not be in a DEFINE section. You can set the value
with the DTW_ASSIGN function. If you do not define a variable for
AppletName.code variable, Net.Data adds a default code parameter to the applet
tag. The value of the codeparameter is AppletName.class, where AppletName is the
name of your applet.

Applet Tag Parameters: You define a list of parameters to pass to the Java
applet language environment in the function call. You can pass parameters that
include:

Chapter 6. Using Language Environments 97

|

|

|
|

|

|

|

|

|

|

v Net.Data variables (including LIST variables)

v Net.Data tables

v Columns of Net.Data tables

When you pass a parameter, Net.Data creates a Java applet PARAM tag in the
HTML output with the name and value that you assign to the parameter. You cannot
pass string literals or results of function calls.

Net.Data Variable Parameters:

You can use Net.Data variables as parameters. If you define a variable in the
DEFINE block of the macro and pass the variable value in the DTWA_AppletName
function call, Net.Data generates a PARAM tag that has the same name and value
as the variable. For example, given the following macro statement:
%define{

...

MyTitle = "This is my Title"
%}

%HTML(report){
@DTWA_MyGraph(MyTitle, ...)
%}

Net.Data produces the following applet PARAM tag:
<param name = 'MyTitle' value = "This is my Title" >

Net.Data Table Parameters:

Net.Data automatically generates a PARAM tag with the name
DTW_NUMBER_OF_TABLES every time the Java applet language environment is
called, specifying whether the function call has passed any table variables. The
value is the number of table variables that Net.Data uses in the function. If no table
variables are specified in the function call, the following tag is generated:
<param name = "DTW_NUMBER_OF_TABLES" value = "0" >

You can pass one or more Net.Data table variables as parameters on the function
call. If you specify a Net.Data table variable on a DTWA_AppletName function call,
Net.Data generates the following PARAM tags:

Table name parameter tag:

This tag specifies the names of the tables to pass. The tag has the
following syntax:
<param name = 'DTW_TABLE_i_NAME' value = "tname" >

Where i is the number of the table based on the ordering of the function
call, and tname is the name of the table.

Row and column specification parameter tags:

PARAM tags are generated to specify the number of rows and columns a
particular table. This tag has the following syntax:
<param name = 'DTW_tname_NUMBER_OF_ROWS' value = "rows" >
<param name = 'DTW_tname_NUMBER_OF_COLUMNS' value = "cols" >

98 Net.Data: Administration and Programming Guide for OS/390

Where the name of the table is tname, rows is the number of rows in the
table, and cols is the number of columns in the table. This pair of tags is
generated for each unique table specified in the function call.

Column value parameter tags:

This PARAM tag specifies the column name of a particular column. This tag
has the following syntax:
<param name = 'DTW_tname_COLUMN_NAME_j' value = "cname" >

Where the table name is tname, j is the column number, and cname is the
name of the column in the table.

Row value parameter tags:

This PARAM tag specifies the values at a particular row and column. This
tag has the following syntax:
<param name = 'DTW_tname_cname_VALUE_k' value = "val" >

Where the table name is tname, cname is the column name, k is the row
number, and val is the value that matches the value in the corresponding
row and column.

Table Column Parameters: You can pass a table column as a parameter on a
function call to generate tags for a specific column. Net.Data generates the
corresponding applet tags only for the specified column. A table column parameter
uses the following syntax:
@DTWA_AppletName(DTW_COLUMN(x)Table)

Where x is the name or number of the column in the table.

Table column parameters use the same applet tags defined for the table
parameters.

Alternate Text for the Applet Tag on Browsers that are not Java-Enabled: The
variable DTW_APPLET_ALTTEXT specifies the text to display on browsers that do
no support Java or have turned Java support off. For example, the following
variable definition:
%define DTW_APPLET_ALTTEXT = "<P>Sorry, your browser is not Java-enabled."

produces the following HTML tag and text:
<P>Sorry, your browser is not Java-enabled.

If this variable is not defined, no alternate text is displayed.

Java Applet Example

The following example demonstrates a Net.Data macro that calls the Java applet
language environment and the resulting applet tag that the language environment
generates.

The Net.Data macro contains the following function calls to the Java applet
language environment:
%define{
DATABASE = "celdial"
DTW_APPLET_ALTTEXT = "<P>Sorry, your browser is not Java-enabled."
DTW_DEFAULT_REPORT = "no"
MyGraph.codebase = "/netdata-java/"

Chapter 6. Using Language Environments 99

MyGraph.height = "200"
MyGraph.width = "400"
MyTitle = "This is my Title"
%}
%FUNCTION(DTW_SQL) mySQL(OUT table){
select name, ages from ibmuser.guests
%}
%HTML(report){
@mySQL(MyTable)
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)
%}

The Net.Data macro lines in the DEFINE section specify the attributes of the applet
tag:
MyGraph.codebase = "/netdata-java/"
MyGraph.height = "200"
MyGraph.width = "400"

The language environment generates an applet tag with the following qualifiers:
<applet code = 'MyGraph.class' codebase = '/netdata-java/' width = '400 'height = '200'>

Net.Data returns the SQL query results from the SQL section of the Net.Data macro
in the output table, MyTable. This table is specified in the DEFINE section:
MyTable = %TABLE(all)

The call to the applet in the macro is specified in the HTML section:
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)

Based on the parameters in the function call, Net.Data generates the complete
applet tag containing the information about the result table, such as the number of
columns, the number of rows returned, and the result rows. Net.Data generates one
parameter tag for each cell in the result table, as shown in the following example:
param name = 'DTW_MyTable_ages_VALUE_1' value = "35">

The parameter name, DTW_MyTable_ages_VALUE_1, specifies the table cell (row
1, column ages) in the table, MyTable, which has a value of 4. The keyword,
DTW_COLUMN, in the function call to the applet, specifies that you are interested
only in the column ages of the resulting table, MyTable, shown here:
@DTWA_MyGraph(MyTitle, DTW_COLUMN(ages) MyTable)

The following output shows the complete applet tag that Net.Data generates for the
example:
<applet code = 'MyGraph.class' codebase = '/netdata-java/' width = '400' height = '200' >
<param name = 'MyTitle' value = "This is my Title" >
<param name = 'DTW_NUMBER_OF_TABLES' value = "1" >
<param name = 'DTW_TABLE_1_NAME' value = "MyTable" >
<param name = 'DTW_MyTable_NUMBER_OF_ROWS' value = "5" >
<param name = 'DTW_MyTable_NUMBER_OF_COLUMNS' value = "1" >
<param name = 'DTW_MyTable_COLUMN_NAME_1' value = "ages" >
<param name = 'DTW_MyTable_ages_VALUE_1' value = "35">
<param name = 'DTW_MyTable_ages_VALUE_2' value = "32">
<param name = 'DTW_MyTable_ages_VALUE_3' value = "31" >
<param name = 'DTW_MyTable_ages_VALUE_4' value = "28" >
<param name = 'DTW_MyTable_ages_VALUE_5' value = "40" >
<P>Sorry, your browser is not Java-enabled.

</applet>

100 Net.Data: Administration and Programming Guide for OS/390

|
|

|
|
|

|

Using the Net.Data Java Applet Interface

Net.Data provides a set of interfaces in a class called DTW_Applet.class, which you
can use with your Java applets to help process the PARAM tags that are generated
for table variables. You can create an applet that extends this interface to call the
routines from your applet.

Net.Data provides these interfaces:

v int GetNumberOfTables() returns the number of tables found in the applet tag.

v String [] GetTableNames() returns a list of the table names found in the applet
tag.

v int GetNumberOfColumns(String table_name) returns the number of columns
in the table table_name.

v int GetNumberOfRows(String table_name) returns the number of rows in the
table table_name.

v String[] GetColumnNames(String table_name) returns the names of the
columns in the table table_name.

v String[][] GetTable(String table_name) returns a two-dimensional array of
strings containing the values of the table’s rows and columns.

To access the interfaces, use the EXTENDS keyword in your applet code to
subclass your applet from the DTW_APPLET class, as shown in the following
example:
import java.io.*;
import java.applet.Applet;

public class myDriver extends DTW_Applet
{
public void init()

{
super.init();

if (GetNumberOfTables() > 0)
{
String [] tables = GetTableNames();
printTables(tables);
}

}

private void printTables(String[] tables)
{
String table_name;

for (int i = 0; i < tables.length; i++)
{
table_name = tables[i];
printTable(table_name);
}

}

private void printTable(String table_name)
{
int nrows = GetNumberOfRows(table_name);
int ncols = GetNumberOfColumns(table_name);

System.out.println("Table: " + table_name + " has " + ncols + " columns and
" + nrows + " rows.");

String [] col_names = GetColumnNames(table_name);

Chapter 6. Using Language Environments 101

System.out.println("--");

for (int i = 0; i < ncols; i++)
System.out.print(" " + col_names[i] + " ");

System.out.println("\n--");

String [][] mytable = GetTable(table_name);

for (int j = 0; j < nrows; j++)
{
for (int i = 0; i < ncols; i++)

System.out.print(" " + mytable[i][j] + " ");

System.out.println("\n");
}

}
}

Perl Language Environment

The Perl language environment can interpret inline Perl scripts that you specify in a
FUNCTION block of the Net.Data macro, or it can process external Perl scripts that
are stored in separate files on the server.

Configuring the Perl Language Environment

Verify that the following configuration statement is in the Net.Data initialization file,
on one line:
ENVIRONMENT (DTW_PERL) perldll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Calling External Perl Scripts

Calls to external Perl scripts are identified in a FUNCTION block by an EXEC
statement, using the following syntax:
%EXEC{ perl_script_name [optional parameters] %}

Required: Ensure that perl_script_name, the Perl script name, is listed in a path
specified for the EXEC_PATH configuration variable in the Net.Data initialization file.
%FUNCTION(DTW_PERL) rexx1() {
%EXEC{MyPerl.pl %}
%}

Passing Parameters

There are two ways to pass information to a program that is invoked by the Perl
(DTW_PERL language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the Perl script. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_PERL) sys1() {
%EXEC{

MyPerl.pl $(INPARM1) "literal string"
%}

%}

102 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|
|
|
|

The Net.Data variable INPARM1 is referenced and passed to the Perl
script. The parameters are passed to the Perl script in the same way the
parameters are passed to the Perl script when the Perl script is called from
the command line. The parameters that are passed to the Perl script using
this method are considered input type parameters (the parameters passed
to the Perl script can be used and manipulated by the Perl script, but
changes to the parameters are not reflected back to Net.Data).

Indirectly

Pass parameters directly on the call to the Perl script using one of the
following methods:

v Have Net.Data pass input parameters to the Perl script as environment
variables. The Perl script can then retrieve the parameters through
environment variables.

v Have the Perl script pass output parameters back to the language
environment by writing to a named pipe whose name Net.Data passes in
the environment variable, DTWPIPE. Use the the following syntax to
write data to the named pipe:
name="value"

For multiple data items, separate each item with a new-line or blank
character.

If a variable name has the same name as an output parameter and uses
the above syntax, the new value replaces the current value. If a variable
name does not correspond to an output parameter, Net.Data ignores it.

The following example shows how Net.Data passes variables from a macro.
%FUNCTION(DTW_PERL) today() RETURNS(result) {
$date = ′date′;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

%}
%HTML(INPUT) {
@today()

%}

If the Perl script is in an external file called today.pl, the same function can
be written as in the next example:
%FUNCTION(DTW_PERL) today() RETURNS(result) {
%EXEC { today.pl %}

%}

You can pass Net.Data tables to a Perl script called by the Perl language
environment. The Perl script accesses the values of a Net.Data macro table
parameter by their Net.Data name. The column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_N_j, and the field values are myTable_V_i_j, where i is the row
number and j is the column number. The number of rows and columns for
the table are myTable_ROWS and myTable_COLS.

Chapter 6. Using Language Environments 103

|
|
|

|
|
|
|
|
|
|
|

REPORT and MESSAGE blocks in FUNCTION Sections

REPORT and MESSAGE blocks are permitted as in any FUNCTION section. They
are processed by Net.Data, not by the language environment. A Perl script can,
however, write text to the standard output stream to be included as part of the Web
page.

Perl Language Environment Example

The following example shows how Net.Data generates a table by executing the
external Perl script:
%define {
c = %TABLE(20)
rows = "5"
columns = "5" %}
%function(DTW_PERL) genTable(in rows, in columns, out table) {
%exec{ perl.pl
%}

%message{
default: "genTable: Unexpected Error"
%}
%}

%HTML(REPORT) {
@genTable(rows, columns, c)
return code is $(RETURN_CODE)
%}
The Perl script (perl.pl):

open(D2W,"> $ENV{DTWPIPE}");
print "genTable begins ...

";
$r = $ENV{ROWS};
$c = $ENV{COLUMNS};
print D2W "table_ROWS=\"$r\" ";
print D2W "table_COLS=\"$c\" ";
print "rows: $r
";
print "columns: $c";
for ($j=1; $j<=$c; $j++)
{
print D2W "table_N_$j=\"COL$j\" ";
}
for ($i=1; $i<=$r; $i++)
{
for ($j=1; $j<=$c; $j++)
{
print D2W "table_V_$i","_","$j=\"¦ $i $j ¿\" ";
}
}
close(D2W);

Results: genTable generates:
rows: 5 columns: 5
COL1 | COL2 | COL3 | COL4 | COL5 |

--
[1 1] | [1 2] | [1 3] | [1 4] | [1 5] |
--
[2 1] | [2 2] | [2 3] | [2 4] | [2 5] |
--
[3 1] | [3 2] | [3 3] | [3 4] | [3 5] |
--

104 Net.Data: Administration and Programming Guide for OS/390

|
|
|
|

[4 1] | [4 2] | [4 3] | [4 4] | [4 5] |
--
[5 1] | [5 2] | [5 3] | [5 4] | [5 5] |
--
return code is 0

REXX Language Environment

The REXX language environment can interpret inline REXX programs, which are
specified in a FUNCTION block of the Net.Data macro, or it can execute external
REXX programs stored in a separate file.

Configuring the REXX Language Environment

To use the REXX language environment, you need to verify the Net.Data
initialization settings and set up the language environment.

Verify that the following configuration statement is in the initialization file, on one
line:
ENVIRONMENT (DTW_REXX) rexxdll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Calling External REXX Programs

To call external REXX programs, use a FUNCTION block with the format:
%EXEC{ REXX_file_name [optional
parameters] %}

Required: Ensure that REXX_script_name, the REXX file name, is listed in a path
specified for the EXEC_PATH configuration variable in the Net.Data initialization file.

For example:
%FUNCTION(DTW_REXX) rexx1() {
%EXEC{REXX.EXE %}
%}

Passing Parameters

There are two ways to pass information to a REXX program that is invoked by the
REXX (DTW_REXX) language environment, directly and indirectly.

Directly
Pass parameters directly to an external REXX program using the %EXEC
statement. For example:
%FUNCTION(DTW_REXX) rexx1() {
%EXEC{
CALL1.CMD $(INPARM) "literal string" %}

%}

The Net.Data variable INPARM1 is dereferenced and passed to the external
REXX program. The REXX program can reference the variable by using
REXX PARSE ARG instruction. The parameters that are passed to the
program using this method are considered input type parameters (the
parameters passed to the program can be used and manipulated by the
program, but changes to the parameters are not reflected back to
Net.Data).

Chapter 6. Using Language Environments 105

Indirectly

Pass parameters indirectly, by way of the REXX program variable pool.
When a REXX program is started, a space which contains information
about all variables is created and maintained by the REXX interpreter. This
space is called the variable pool.

When a REXX language environment (DTW_REXX) function is called, any
function parameters that are input (IN) or input/output (INOUT) are stored in
the variable pool by the REXX language environment prior to executing the
REXX program. When the REXX program is invoked, it can access these
variables directly. Upon the successful completion of the REXX program,
the DTW_REXX language environment determines whether there are any
output (OUT) or INOUT function parameters. If so, the language
environment retrieves the value corresponding to the function parameter
from the variable pool and updates the function parameter value with the
new value. When Net.Data receives control, it updates all OUT or INOUT
parameters with the new values obtained from the REXX language
environment. For example:
%DEFINE a = "3"
%DEFINE b = "0"
%FUNCTION(DTW_REXX) double_func(IN inp1, OUT outp1){

outp1 = 2*inp1
%}

%HTML(REPORT) {
Value of b is $(b), @double_func(a, b) Value of b is $(b)
%}

In the above example, the call @double_func passes two parameters, a
and b. The REXX function double_func doubles the first parameter and
stores the result in the second parameter. When Net.Data invokes the
macro, b has a value of 6.

You can pass Net.Data tables to a REXX program. A REXX program
accesses the values of a Net.Data macro table parameter as REXX stem
variables. To a REXX program, the column headings and field values are
contained in variables identified with the table name and column number.
For example, in the table myTable, the column headings are myTable_N.j,
and the field values are myTable_N.i.j, where i is the row number and j is
the column number. The number of rows in the table is myTable_ROWS and
the number of columns in the table is myTable_COLS.

REXX Language Environment Example

The following example shows a macro that calls a REXX function to generate a
Net.Data table that has two columns and three rows. Following the call to the REXX
function, a built-in function, DTW_TB_TABLE(), is called to generate an HTML table
that is sent back to the browser.
%DEFINE myTable = %TABLE
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION(DTW_REXX) genTable(out out_table) {
out_table_ROWS = 3
out_table_COLS = 2

/* Set Column Headings */
do j=1 to out_table_COLS
out_table_N.j = 'COL'j

end

106 Net.Data: Administration and Programming Guide for OS/390

/* Set the fields in the row */
do i = 1 to out_table_ROWS
do j = 1 to out_table_COLS
out_table_V.i.j = '[' i j ']'

end
end

%}

%HTML(REPORT) {
@genTable(myTable)
@DTW_TB_TABLE(myTable)

%}

Results:
COL1 COL2

[1 1] [1 2]
[2 1] [2 2]
[3 1] [3 2]

System Language Environment

The System language environment supports calls to external programs, such as
C/C++ and COBOL, identified in an EXEC statement of the FUNCTION block. The
System language environment interprets the EXEC statement by passing the
specified program name or command and parameters to the operating system for
execution.

Configuring the System Language Environment

Add the following configuration statement to the initialization file, on one line:
ENVIRONMENT (DTW_SYSTEM) sysdll ()

See “Environment Configuration Statements” on page 17 to learn more about the
Net.Data initialization file and language environment ENVIRONMENT statements.

Passing Parameters

There are two ways to pass information to a program that is invoked by the System
(DTW_SYSTEM) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the program. For example:
%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC{
CALL1.CMD $(INPARM1) "literal string"

%}
%}

The Net.Data variable INPARM1 is referenced and passed to the program.
The parameters are passed to the program in the same way the
parameters are passed to the program when the program is called from the
command line. The parameters that are passed to the program using this
method are considered input type parameters (the parameters passed to
the program can be used and manipulated by the program, but changes to
the parameters are not reflected back to Net.Data).

Indirectly

Chapter 6. Using Language Environments 107

|
|
|
|
|
|
|

The System language environment cannot directly pass or retrieve Net.Data
variables, so they are made available to programs in the following manner:

v Net.Data passes input parameters to the program as environment
variables. The program can then retrieve the parameters through
environment variables.

v The program passes output parameters back to the language
environment by writing to a named pipe whose name Net.Data passes in
the environment variable, DTWPIPE. Use the following syntax to write
data to the named pipe:
name="value"

For multiple data items, separate each item with a new-line or blank
character.

If a variable name has the same name as an output parameter and uses
the above syntax, the new value replaces the current value. If a variable
name does not correspond to an output parameter, Net.Data ignores it.

The following example shows how Net.Data passes variables from a macro.
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {

%EXEC {
UPDPGM

%}
%}

You can pass Net.Data tables to a program called by the System language
environment. The program accesses the values of a Net.Data macro table
parameter by their Net.Data name. The column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable_N_j, and the field values are myTable_V_i_j, where i is the row
number and j is the column number. The number of rows and columns for
the table are myTable_ROWS and myTable_COLS.

It is not recommended that you pass tables with many rows because the number of
environment variables for the process is limited.

System Language Environment Example

The following example shows a macro that contains a function definition with three
parameters, P1, P2, and P3. P1 is an input (IN) parameter and P2 and P3 are output
(OUT) parameters. The function invokes a program, UPDPGM, which updates the
parameter P2 with the value of P1 and sets P3 to a character string. Prior to
processing the statement in the %EXEC block, the DTW_SYSTEM language
environment stores P1 and the corresponding value in the environment space.
%DEFINE {

MYPARM2 = "ValueOfParm2"
MYPARM3 = "ValueOfParm3"

%}
%FUNCTION(DTW_SYSTEM) sys1 (IN P1, OUT P2, P3) {
%EXEC {

UPDPGM
%}

%}

%HTML(upd1) {
<P>
Passing data to a program. The current value

108 Net.Data: Administration and Programming Guide for OS/390

|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

of MYPARM2 is "$(MYPARM2)", and the current value of MYPARM3 is
"$(MYPARM3)". Now we invoke the Web macro function.

@sys1("ValueOfParm1", MYPARM2, MYPARM3)

<P>
After the function call, the value of MYPARM2 is "$(MYPARM2)",
and the value of MYPARM3 is "$(MYPARM3)".
%}

Chapter 6. Using Language Environments 109

110 Net.Data: Administration and Programming Guide for OS/390

Chapter 7. Improving Performance

Improving performance is an important part of tuning your system. This chapter
discusses strategies for improving the performance of Net.Data. The following
topics are discussed:

v “Using the Web Server APIs”

v “Net.Data Caching of Macros”

v “Suppressing DB2 for OS/390 Messages” on page 113

v “Optimizing the Language Environments” on page 113

In addition, ensure that your Web server has been properly tuned. The performance
of your Web server has a direct effect on response time, independently of how fast
Net.Data processes a macro or direct request.

Using the Web Server APIs

You can improve performance by invoking Net.Data with a Web server API, such as
ICAPI or GWAPI, instead of CGI. When Net.Data executes using a Web server API,
Net.Data executes as a thread within the Web server’s process. Because a Web
server’s process is multi-threaded, multiple Net.Data requests can be processed
concurrently within the same address space, eliminating the overhead of invoking
Net.Data as a CGI process.

Consideration: Using a Web server API provides improved performance, without
application isolation. Because Net.Data runs in a multi-threaded environment, errors
introduced within user-written language environments, improper invocations, or even
database outages can cause problems with the Web server and potentially bring it
down. When deciding whether to use one of the Web server APIs, determine
whether the higher priority for your application is performance or application
isolation.

Net.Data Caching of Macros

Use macro caching to improve throughput and reduce CPU utilization. When macro
caching is enabled, preprocessed macros are cached in memory when the macros
are first invoked. These preprocessed versions are then available for reuse, thereby
eliminating the costs associated with reading and the macros from HFS and
processing them each time they are requested.

Guidelines and Restrictions

Please note the following items regarding caching of macros:

v Caching is available when using ICAPI, GWAPI, or Net.Data Servlets.

v The cached version of a macro is available to a requestor that has read
permission for the file containing the macro.

v The amount of memory that the preprocessed version of the macro uses is
approximately twice the size of the macro file itself.

v You can control the amount of memory that will be used for the caching of
macros by using the caching configuration variables. These configuration
variables specify the macros that you want cached.

© Copyright IBM Corp. 1997, 1998 111

|
|
|
|
|

|

|

|
|

|
|

|
|
|

Enabling Macro Caching

You enable macro caching by adding caching configuration variables to the
Net.Data initialization file (db2www.ini). If you add the DTW_CACHE_MACRO
variable, the DTW_DO_NOT_CACHE_MACRO variable, or both variables to the
Net.Data initialization file, then caching is enabled. If you do not add either variable,
then no macros will be cached.

If the DTW_CACHE_MACRO and DTW_DO_NOT_CACHE configuration variables
both specify the same macro, then the macro is not cached by Net.Data.

Defining which Macros to Cache

The DTW_MACRO_CACHE configuration variable specifies macros that are to be
cached.

Set this configuration variable in the Net.Data initialization file.

Syntax:
DTW_CACHE_MACRO [=] filename_or_pathtemplate;...

Where filename_or_pathtemplate is either:

v A fully qualified macro file name.

v A path template, which is a directory path followed by /*. If a path template is
used, all macros in the directory and its subdirectories will be cached.

Example 1 : If you want all of the macros in /u/user1/macros and its subdirectories
to be cached, set the configuration variable as follows:
DTW_CACHE_MACRO /u/user1/macros/*

Example 2 : If you want to cache all macros in the DIR1 and DIR2 directories and
the individual macro sql.dtw, the DTW_CACHE_MACRO path might look like this:
DTW_CACHE_MACRO /u/user1/macros/DIR1/*;/u/user2/macros/sql.dtw;/u/user2/macros/DIR2/*

Defining which Macros to Not Cache

The DTW_DO_NOT_CACHE_MACRO configuration variable specifies which
macros are not to be cached.

Set this configuration variable in the Net.Data initialization file. If the Net.Data
initialization file contains this variable, and does not contain the
DTW_CACHE_MACRO variable, then all macros will be cached except for those
listed in the DTW_DO_NOT_CACHE_MACRO variable.

Syntax:
DTW_DO_NOT_CACHE_MACRO [=] filename_or_pathtemplate;...

Where filename_or_pathtemplate is either:

v A fully qualified macro file name.

v A path template, which is a directory path followed by /*. If a path template is
used, then none of the macros in the directory or its subdirectories will be
cached.

Example 1 : If you want all of your macros to be cached except the adminset.d2w
macro, you would set the configuration variable as follows:

112 Net.Data: Administration and Programming Guide for OS/390

|

|
|

|
|

|

DTW_DO_NOT_CACHE_MACRO /u/user1/macros/adminset.d2w

Example 2 : If both caching configuration variables are set in the initialization file,
the DTW_DO_NOT_CACHE_MACRO takes precedence. For example, suppose the
variable settings appear as follows:
DTW_CACHE_MACRO /u/user1/user_macros/*;/u/user1/admin_macros/*
DTW_DO_NOT_CACHE_MACRO /u/user1/admin_macros/adminset.d2w

The macros in the directories user_macros and admin_macros will be cached
except for the macro adminset.d2w. Even though this macro is in the admin_macros
directory, it will not be cached because the setting for
DTW_DO_NOT_CACHE_MACRO overrides the setting for DTW_CACHE_MACRO.

Suppressing DB2 for OS/390 Messages

You can improve the performance of Net.Data for OS/390 when using the SQL
language environment by suppressing DB2 messages from non-zero SQLCODEs.
Use the DB2MSGS configuration variable to indicate the level of messages that is
necessary for your application. Within production environments, you can bypass
DB2 message lookups by setting DB2MSGS to NONE. When DB2MSGS is set to
NONE or ERRORONLY, you can still catch non-zero SQLCODEs with MESSAGE
blocks within your macro. See Net.Data Reference to learn how to use the
MESSAGE block in your macro.

To specify the messaging level, use the DB2MSGS configuration variable in the
Net.Data initialization file.

Possible values:
DB2MSGS [=] message_level

Where message_level indicates the level of DB2 messages provided by Net.Data
and can be specified as follows:

NONE Specifies that Net.Data provides no messages.

ERRORONLY Specifies that Net.Data provides messages only for negative
SQLCODE values.

ALL Specifies that Net.Data provides messages for all SQLCODE
values. This is the default. If a value is provided for DB2MSGS
other than one of the valid values listed above, Net.Data uses the
default value of ALL.

Optimizing the Language Environments

The following sections describes techniques you can use to improve performance
when using the Net.Data-provided language environments.

v “REXX Language Environment”

v “SQL Language Environment” on page 114

v “System and Perl Language Environments” on page 114

REXX Language Environment

Use the following tips to improve the performance of your Net.Data application:

Chapter 7. Improving Performance 113

|
|

|
|
|
|

|

v Combine your REXX programs where possible. Having fewer, larger programs
provides better performance than more smaller programs because the REXX
interpreter is initialized each time a REXX LE function is called in the macro.

v For external REXX programs, reference the global variables on the command
line in the %EXEC statement.

v Pass input-only parameters directly to a REXX program by defining global
Net.Data variables and referencing the variables. For inline REXX programs,
reference the global variables directly in your REXX source.

SQL Language Environment

In the sections that follow, some performance techniques about the SQL language
environment are described. To learn about DB2 performance considerations, visit
the web at: http://review.software.ibm.com/data/db2/performance

SQL Language Environment Techniques

Use the following SQL language environment techniques to improve performance.

v Use the START_ROW_NUM and RPT_MAX_ROWS Net.Data variables to
reduce the size of returned tables. If a result set contains a large number of
rows, you can specify a subset of the result set that is returned to the browser by
using START_ROW_NUM and RPT_MAX_ROWS. START_ROW_NUM specifies
the row number of the first row to return, and RPT_MAX_ROWS specifies the
number of rows to return.

Important: Net.Data reissues the query for every request because cursor
position is not maintained across requests.

v Consider calling a stored procedure that uses static SQL. Dynamic SQL is
prepared at runtime, while static SQL is prepared at the precompile stage. The
SQL language environment uses dynamic SQL, which allows it to run SQL
statements at program run time. Because preparing statements requires
additional processing time, static SQL is more efficient.

System and Perl Language Environments

Pass input-only parameters directly to the program that the System or Perl
language environment is invoking. Do this by defining global Net.Data variables and
referencing them. For external programs and Perl scripts, reference the variables on
the command line in the %EXEC statement. For inline Perl scripts, reference the
variables directly in the Perl source.

114 Net.Data: Administration and Programming Guide for OS/390

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

Appendix A. Bibliography

This section lists the documents referred to in this book.

v “Net.Data Technical Library”

v “Related Documentation”

Net.Data Technical Library

The Net.Data Technical Library is available from the Net.Data Web site at
http://www.software.ibm.com/data/net.data/library.html

Document Description

v Net.Data Administration
and Programming Guide
for OS/390

v Net.Data Administration
and Programming Guide
for OS/2, Windows NT,
and UNIX

v Net.Data Administration
and Programming Guide
for OS/400

Contains conceptual and task information about installing,
configuring, and invoking Net.Data. Also describes how to
write Net.Data macros, use Net.Data performance techniques,
use Net.Data language environments, manage connections,
and use Net.Data logging and traces for trouble shooting and
performance tuning.

Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.

Net.Data Language
Environment Interface
Reference

Describes the Net.Data language environment interface.

Net.Data Messages and
Codes Reference

Lists Net.Data error messages and return codes.

Program Directory for
Net.Data for OS/390 Version
2 Release 2

Describes SMP/E installation and configuration of Net.Data for
OS/390

Related Documentation

The following documents might be useful when using Net.Data and related
products:

v Accessing DB2 for OS/390 Data from the World Wide Web, SG24-5273, Maria
Sueli Almeida, Charles E. Lewis, Uwe Sager, Pilar Sandoval

v IBM Internet Connection Secure Server Planning for Installation Version 2
Release 2 for OS/390, GC31-8489

v IBM Internet Connection Secure Server Webmaster’s Guide Version 2 Release 2
for OS/390, GC31-8490

v Lotus Domino Go Webserver Planning for Installation Version 4.6.1 for OS/390,
SC31-8642

v Lotus Domino Go Webserver Webmaster’s Guide Version 4.6.1 for OS/390,
SC31-8643

v OS/390 MVS Planning: Workload Management, GC28-1761

© Copyright IBM Corp. 1997, 1998 115

116 Net.Data: Administration and Programming Guide for OS/390

Appendix B. Configuring Net.Data for OS/390 to Access
DataJoiner

You can use Net.Data for OS/390 with DataJoiner to access remote databases such
as DB2/6000, Oracle, and Sybase. This section describes how to configure your
system for use with DataJoiner for AIX Version 1.2 with PTF U447593 or DataJoiner
for HP-UX Version 1.1.

Configuration steps:

1. Enter the information needed in the communications database (CDB) for remote
communication to DataJoiner. Information on the CDB is in DB2 Installation
Guide.

2. Bind the Net.Data DBRM to the remote location where DataJoiner is installed
using the BIND PACKAGE command.

3. Bind the Net.Data DBRM to DB2 using the BIND PLAN command. Use the
PKLIST option to include the package created at the remote location.

4. Modify the Net.Data initialization file, which is in the Web server’s document root
directory, to specify the LOCATION variable as an input variable to SQL
functions. The new DTW_SQL environment statement looks like this:
ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION)

Net.Data macros that access remote data using DataJoiner must specify a value for
LOCATION. This example Net.Data macro queries a remote database through
DataJoiner:
%{ ****************** Define Block ******************************** %}
%DEFINE {
DB2SSID="NDA1"
LOCATION="QMFDJ00"
DTW_DEFAULT_REPORT="YES"

%}

%{ ****************** Function Definition Block ******************* %}
%FUNCTION(DTW_SQL) selectall() {
SELECT * FROM $(tabnam)

%}

%{ ****************** HTML Block: Table_Input ********************* %}
%HTML(Table_Input) {
<Title>DJ Test #1</Title>
<Body>
<h1 align=center>Table Selection</h1>

<form method="post" action="Column_Output">
<p>Enter Table Name: <input type="text" name="tabnam"></p>
<p><input type="submit"></p>
</form>
</Body>
%}

%{ ****************** HTML Block: Column_Output ******************* %}
%HTML(Column_Output) {
<Title>DJ Test #1</Title>
<Body>
@selectall()
</Body>
%}

© Copyright IBM Corp. 1997, 1998 117

118 Net.Data: Administration and Programming Guide for OS/390

Appendix C. Net.Data Sample Macro

This sample macro application displays a list of employees names from which the
application user can obtain additional information about an individual employee by
selecting the employee’s name from the list. The macro uses the SQL language
environment to query the EMPLOYEE table for both the employee names and the
information about a specific employee.

© Copyright IBM Corp. 1997, 1998 119

%{************************ Sample Macro *****************************
* FileName = sqlsamp1.d2w *
* Description: *
* This Net.Data macro queries... *
* - The EMPLOYEE table to create a selection list of *
* employees for display at a browser *
* - The EMPLOYEE table to obtain additional information *
* about an individual employee *
* *
**%}
%{***
* Include for global DEFINEs - *
**%}
%INCLUDE "sqlsamp1.hti" *
%{**
* Function: queryDB Language Environment: SQL *
* Description: Queries the table designated by the variable myTable and *
* creates a selection list from the result. The value of the variable *
* myTable is specified in the include file sqlsamp1.hti. *
**%}
%FUNCTION(DTW_SQL) queryDB() {
SELECT * FROM $(myTable)

%MESSAGE {
-204: {<p>ERROR -204: Table $(myTable) not found.

<p>Be sure the correct include file is being used.
%} : exit

+default: "WARNING $(RETURN_CODE)" : continue
-default: "Unexpected ERROR $(RETURN_CODE)" : exit

%}

%REPORT {
<select name=emp_name>
%ROW{
<option>$(V2)
%}
</select>
%}
%}

%{**
* Function: fname Language Environment: SQL *
* Description: Queries the table designated by the variable myTable for *
* additional information about the employee identified by the *
* variable emp_name. *
**%}
%FUNCTION(DTW_SQL) fname(){
SELECT EMPNME, PHONENO, JOB FROM $(myTable) WHERE EMPNME='$(emp_name)'
%MESSAGE {
-204: "Error -204: Table not found "
-104: "Error -104: Syntax error"
100: "Warning 100: No records" : continue

+default: "Warning $(RETURN_CODE)" : continue
-default: "Unexpected SQL error" : exit

%}
%}

120 Net.Data: Administration and Programming Guide for OS/390

%{***
* HTML block: INPUT Title: Dynamic Query Selection *
* *
* Description: Queries the EMPLOYEE table to create a selection list of *
* the employees for display at the browser *
**%}
%HTML(INPUT) {
<html>
<head>
<title>Generate Employee Selection List</title>
</head>
<body>
<h3>$(exampleTitle)</h3>
<p>This example queries a table and uses the result to create
a selection list using a %REPORT block.
<hr>
<form method="post" action="report">
@queryDB()<input type="submit" value="Select Employee">
</form>
<hr>
</body>
</html>
%}

%{***
* HTML block: REPORT *
* Description: Queries the EMPLOYEE table to obtain additional information *
* about an individual employee *
**%}
%HTML(REPORT) {
<html>
<head>
<title>Obtain Employee Information</title>
</head>
<body>
<h3>You selected employee name = $(emp_name)</h3>
<p>Here is the information for that employee:
<PRE>
@fname()
</PRE>
<hr>Return to previous page
</body>
</html>
%}

%{ End of Net.Data macro 1 %}
===
%{**************************** Include File *********************************
* FileName = sqlsamp1.hti *
* Description: *
* This include file provides global DEFINEs for the sqlsamp1.d2w *
* Net.Data macro. *
**%}
%define {

emp_name =""
exampleTitle = "Sample Macro"
myTable = "MRZ.EMPLOYEE"

%}

%{ End of include file %}

Appendix C. Net.Data Sample Macro 121

122 Net.Data: Administration and Programming Guide for OS/390

Appendix D. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1997, 1998 123

W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
_U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
AS/400
CBIDO
CBPDO
CICS
CustomPac
DB2
DB2 Universal Databas
DataJoiner
Distributed Relational

Database Architecture
DRDA
IBM

IMS
Language Environment
MVS/ESA
Net.Data
OpenEdition
Operating System/400
OS/2
OS/390
OS/400
RACF
SystemPac

The following terms are trademarks of other companies as follows:

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

124 Net.Data: Administration and Programming Guide for OS/390

Lotus and Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Appendix D. Notices 125

126 Net.Data: Administration and Programming Guide for OS/390

Glossary

absolute path. The full path name of an object.
Absolute path names begins at the highest level, or
″root″ directory (which is identified by the forward slash
(/) or back slash (\) character).

API. Application programming interface. Net.Data
supports three Web server APIs for improved
performance over CGI processes.

applet. A Java program included in an HTML page.
Applets work with Java-enabled browsers, such as
Netscape Navigator, and are loaded when the HTML
page is processed.

application programming interface (API). A
functional interface supplied by the operating system or
by a separately orderable licensed program that allows
an application program written in a high-level language
to use specific data or functions of the operating system
or licensed program. Net.Data supports the following
proprietary Web server APIs for improved performance
over CGI processes: ICAPI and GWAPI.

CGI. Common Gateway Interface.

commitment control. The establishment of a
boundary within the process that Net.Data is running
under where operations on resources are part of a unit
of work.

Common Gateway Interface (CGI). A standardized
way for a Web server to pass control to an application
program and receive data back.

current working directory. The default directory of a
process from which all relative path names are
resolved.

database. A collection of tables, or a collection of table
spaces and index spaces.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

data type. An attribute of columns and literals.

DBMS. Database management system.

Domino Go Web server. The Web server offered by
Lotus Corp. and IBM, that offers both regular and
secure connections. ICAPI and GWAPI are the
interfaces provided with this server.

firewall. A computer with software that guards an
internal network from unauthorized external access.

flat file interface. A set of Net.Data built-in functions
that let you read and write data from plain-text files.

GWAPI. Go Web server API.

HTML. Hypertext markup language.

HTTP. Hypertext transfer protocol.

hypertext markup language. A tag language used to
write Web documents.

hypertext transfer protocol. The communication
protocol used between a Web server and browser.

ICAPI. Internet Connection API. See .

Internet. An international public TCP/IP computer
network.

Intranet. A TCP/IP network inside a company firewall.

Java. An operating system-independent
object-oriented programming language especially useful
for Internet applications.

language environment. A module that provides
access from a Net.Data macro to an external data
source such as DB2 or a programming language such
as Perl.

LOB. Large object.

middleware. Software that mediates between an
application program and a network. It manages the
interaction between a client application program and a
server through the network.

null. A special value that indicates the absence of
information.

path. A search route used to locate files.

path name. Tells the system how to locate an object.
The path name is expressed as a sequence of directory
names followed by the name of the object. Individual
directories and the object name are seperated by a
forward slash (/) or back slash (\) character.

Perl. An interpreted programming language.

persistence. The state of keeping an assigned value
for an entire transaction, where a tranaction spans
multiple Net.Data invocations. Only variables can be
persistent. In addition, operations on resources affected
by commitment control are kept active until an explicit
commit or rollback is done, or when the transaction
completes.

port. A 16-bit number used to communicate between
TCP/IP and a higher-level protocol or application.

registry. A repository where strings can be stored and
retrieved.

© Copyright IBM Corp. 1997, 1998 127

relative path name. A path name that does not begin
at the highest level, or ″root″ directory. The system
assumes that the path name begins at the process’s
current working directory.

TCP/IP. Transmission Control Protocol / Internet
Protocol.

transaction. One Net.Data invocation. If persistent
Net.Data is used, then a transaction can span multiple
Net.Data invocations.

Transmission Control Protocol / Internet Protocol.
A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide-area networks.

URL. Uniform resource locator.

uniform resource locator. An address that names a
HTTP server and optionally a directory and file name,
for example:
http://www.software.ibm.com/data/net.data/index.html.

unit of work. A recoverable sequence of operations
that are treated as one atomic operation. All operations
within the unit of work can be completed (commited) or
undone (rolled back) as if the operations are a single
operation. Only operations on resources that are
affected by commitment control can be committed or
rolled back.

Web server. A computer running HTTP server
software, such as Internet Connection.

128 Net.Data: Administration and Programming Guide for OS/390

Index

A
access rights, specifying to Net.Data files 27
authentication, security 30
authorization

security 31
specifying access rights to Net.Data files 27

B
blanks, variable for removing extra 13
blocks, macro 51

C
calling functions 69
calling stored procedures 87, 88
CGI, configuring Net.Data for OS/390 22
character sets 12
Common Gateway Interface. See CGI 22
conditional

logic, IF blocks 79
variables 58

configuration variable statements
configuring in the initialization file 7
DB2MSGS 8
DB2PLAN 9
DB2SSID 9
DefaultDBCp 10
description 7
DSNAOINI 10
DTW_DIRECT_REQUEST 11
DTW_MBMODE 12
DTW_REMOVE_WS 13
DTW_SHOWSQL 13

configuring for DataJoiner 117
configuring Net.Data

access rights to Net.Data files and data sets 27
connection management 21
for CGI 22
for use with ICAPI and GWAPI 23
for use with Java Servlets 25
initialization file

configuration variable statements 7
description 5
ENVIRONMENT statements 17
path statements 14
updating 6

message catalog 26
overview 5
setting up language environments 19
Work Load Manager (WLM) 21

connection management
configuration 21
Work Load Manager considerations 21

D
data sets, access rights 27
data types, valid for stored procedures 88
DB2MSGS 8, 113
DB2PLAN 9
DB2SSID 9
DBCS support for functions 12
declaration part, macro structure 49
default reports 90, 91

printing 75
specifying for stored procedures 90, 91

DEFINE block
defining variables 55
description 51

defining variables
DEFINE statement or block 55
HTML form SELECT, INPUT, and TEXTAREA

tags 56
query string data 57

direct request
description 37
examples 45
syntax 42

disable direct request variable
(DTW_DIRECT_REQUEST) 11

DTW_APPLET 96
DTW_DIRECT_REQUEST 11
DTW_FFI 93
DTW_MBMODE 12
DTW_ODBC 85
DTW_PERL 102
DTW_REMOVE_WS 13
DTW_SHOWSQL 13
dynamically generating variable names 57

E
enable direct request variable

(DTW_DIRECT_REQUEST) 11
encryption, network 29
ENVIRONMENT statements

configuring in the initialization file 17, 18
description 17
DLL or library name 18
example 18
language environment type 18
parameter list 18
syntax 18

environment variables 58
EXEC_PATH

configuring in the initialization file 15
executable variables 59

F
FFI_PATH

configuring in the initialization file 17
files, specifying access rights to Net.Data 27

© Copyright IBM Corp. 1997, 1998 129

firewalls 29
flat file interface

language environment 93
footer information, REPORT block 75
formatting data output 74
forms 39, 40

in Web pages to invoke Net.Data 40
invoking Net.Data 39, 45

FUNCTION block
calling functions 69
description 51
formatting output 74
identifier scope 55

function calls
syntax 69

functions 87
calling 69
calling stored procedures 87
defining 65
description 64
FUNCTION block syntax 65
MACRO_FUNCTION block syntax 65
user-defined 65

G
global identifier scope 54
glossary 125
GWAPI

configuring for Net.Data 23

H
header information, REPORT block 75
hidden variables

conceal variable names 60
protecting assets 31

HTML 39, 40
blocks

description 52
example 73
invoking Net.Data 73
processing 73

FORM Submit button 73
forms 39, 40

about 40
invoking Net.Data 39, 45
SELECT, INPUT, and TEXTAREA tags, defining

variables 56
generating in a macro 72
links 39, 40

about 40
invoking Net.Data 39, 45

tags for tables 75
unrecognized data as 73
URLs, invoking Net.Data 45

HWS_LE 94

I
ICAPI

and Domino Go Webserver (GWAPI) 23

ICAPI (continued)
configuring for Net.Data 23

identifiers
scope 54

IF blocks 79
improving performance 111
IMS Web

language environment 94
Studio tool 95

INCLUDE_PATH
configuring in the initialization file 16

initialization file
configuration variable statements 7
description 5
ENVIRONMENT statements 17
format 6
path statements 14
updating 6

installing
Net.Data 5

invoking applets 96
invoking Net.Data 38, 39

direct request 37
forms 39, 45
HTML blocks 73
links 39, 45
macro request 37
overview 37
syntax 38
URLs 39, 45
using CGI 37
with a macro 38
without a macro 41

J
Java applets

classes 101
creating 96
example 99
generating tags 96
invoking 96
language environment 96

Java Servlets
configuring for Net.Data 25

L
language environments 83

configuring ENVIRONMENT statements 17
configuring in the initialization file 17
examples 17
flat file interface 93
IMS Web 94
Java applet 96
ODBC 85
Perl 102
setting up 19
summary 84
variables 64

links 39, 40

130 Net.Data: Administration and Programming Guide for OS/390

links 39, 40 (continued)
in Web pages to invoke Net.Data 40
invoking Net.Data 39, 45

list variables 61
looping, WHILE blocks 81

M
MACRO_FUNCTION block

calling functions 69
syntax 65

MACRO_PATH
configuring in the initialization file 15

macro request 38
description 37
examples 38
syntax 38

macros
anatomy 50
blocks 51
conditional logic 79
declaration part 49
DEFINE block 51
description 1
developing 49
FUNCTION block 51
functions 64
generating HTML 72
HTML block 52
identifier scope 55
IF blocks 79
looping 81
navigation within and between 53
presentation part 49
sample 50
variables 54
WHILE blocks 81

MBCS support for functions 12
MESSAGE block

description 67
example 68
processing 67
scope 68
syntax 68

message catalogs, enabling 26
miscellaneous variables 62
multiple report blocks 76

N
native language support for functions 12
navigation, within and between macros 53
Net.Data

configuring 5
files, access rights 27
installing 5
installing OS/390 117
invoking 37
macros, developing 49
overview 1
security mechanisms 31

Net.Data macros. See macros. 1

Net.Data tables, stored procedures 90, 91
Notices 123

O
ODBC

language environment 85
ODBC, setting up language environment 20
OS/390, Net.Data for 117

P
parts of a macro

declaration 49
presentation 49

passing parameters, stored procedures 89
path statements

configuring in the initialization file 14
EXEC_PATH 15
FFI_PATH 17
INCLUDE_PATH 16
MACRO_PATH 15
protecting assets 31
update guidelines 15

performance 111
SQLCODE messages 113
Web server APIs 111

Perl 108
language environment 102
Net.Data variables in scripts 103, 108

printing, disabling for default reports 75
processing result sets, stored procedures 89
program directory, OS/390 117
protecting assets 29

R
referencing variables 57
REPORT block 90

description 74
formatting data output 74
header and footer information 75
scope 55
stored procedures 90

REPORT blocks 91
examples 76
guidelines for multiple 77
multiple 76
restrictions 77
stored procedures 91

report formats, customizing 75
report variables 63
reports

generating multiple with one function call 76
result sets 89, 90, 91

multiple 91
multiple, guidelines and restrictions 77
processing, stored procedures 89
single 90

RETURN_CODE variable 67
ROW block, identifier scope 55

Index 131

S
sample macro 119
scope

identifiers 54
REPORT block 55

scope, identifier
FUNCTION block 55
global 54
macro 55
ROW block 55

security
authentication 30
authorization 31
firewall 29
Net.Data mechanisms 31
network encryption 29
overview 29
specifying access rights 27

Servlets
configuring for Net.Data 25

SQL, setting up language environment 20
SQLCODE messages, turning off 113
starting Net.Data 37
stored procedures 87, 88, 89, 90, 91

calling from macro 87
default reports 90, 91
multiple result sets 91
Net.Data tables 90, 91
passing parameters 89
processing result sets 89
REPORT blocks 90, 91
single result sets 90
steps 88
valid data types 88

T
table processing variables 63
table variables 61
token sizes 54
types, variable 57

U
Unicode variable

with DTW_MBMODE 12
URLs 39

defining variables 57
invoking Net.Data 39, 45

user-defined functions 65

V
variables

conditional 58
configuration, statements

database code page variable (DefaultNetCp) 10
DB2 CLI Initialization File Variable

(DSNAOINI) 10
DB2 messages performance variable

(DB2MSGS) 8

variables (continued)
configuration, statements (continued)

DB2 Plan Variable (DB2PLAN) 9
DB2 Subsystem ID (DB2SSID) 9
description 7
disable SHOWSQL (DTW_SHOWSQL) 13
enable direct request

(DTW_DIRECT_REQUEST) 11
enable SHOWSQL (DTW_SHOWSQL) 13
initialization file 7
native language support (DTW_MBMODE) 12
removing extra blanks (DTW_REMOVE_WS) 13

defining 55
description 54
environment 58
executable 59
generating names dynamically 57
hidden 60
language environment 64
list 61
miscellaneous 62
nested references 57
referencing 57
report 63
scope 54
table 61
table processing 63
token sizes 54
types 54, 57

W
Web server

configuring for CGI 22
configuring for ICAPI and GWAPI 23
setting environment variables for message

catalogs 26
Web server APIs

configuring for Net.Data
GWAPI 23
ICAPI 23

improving performance with 111
performance consideration 111

WHILE blocks 81
white space, variable for removing extra 13

132 Net.Data: Administration and Programming Guide for OS/390

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

