
DB2 for OS/390
Version 5 IBM

Call Level Interface Guide and Reference

 SC26-8959-03

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

First Edition (June 1997)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for OS/390), 5655-DB2, and to any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed version by vertical
bars. Additional changes made to this softcopy version of the manual since the hardcopy manual was published are indicated by the
hash (#) symbol in the left-hand margin.

 Copyright International Business Machines Corporation 1997. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . vii
Trademarks . viii

Chapter 1. Introduction to this Book and the DB2 Library 1
About This Book . 1
Who Should Use This Book . 1
How this Book is Structured . 1
How to Read the Syntax Diagrams . 2
How to Use the DB2 Library . 3
How to Obtain DB2 Information . 5
Summary of Changes to DB2 for OS/390 Version 5 7
Summary of Changes to This Book . 14

Chapter 2. Introduction to CLI . 15
DB2 CLI Background Information . 15
Differences Between DB2 CLI and Embedded SQL 17
Advantages of Using DB2 CLI . 20
Deciding Which Interface To Use . 20
Other Information Sources . 21

Chapter 3. Writing a DB2 CLI Application . 23
Initialization and Termination . 24
Transaction Processing . 29
Diagnostics . 35
Data Types and Data Conversion . 37
Working With String Arguments . 43
Querying Environment and Data Source Information 45

Chapter 4. Configuring CLI and Running Sample Applications 49
Installing DB2 CLI . 49
DB2 CLI Runtime Environment . 50
Setting up DB2 CLI Runtime Environment . 51
Preparing a DB2 CLI Application . 54
DB2 CLI Initialization File . 60

Chapter 5. Functions . 71
DB2 CLI Function Summary . 72
SQLAllocConnect - Allocate Connection Handle 76
SQLAllocEnv - Allocate Environment Handle . 80
SQLAllocStmt - Allocate a Statement Handle . 82
SQLBindCol - Bind a Column to an Application Variable 84
SQLBindParameter - Binds A Parameter Marker to a Buffer 89
SQLCancel - Cancel Statement . 100
SQLColAttributes - Get Column Attributes . 102
SQLColumnPrivileges - Get Privileges Associated With The Columns of A

Table . 108
SQLColumns - Get Column Information for a Table 113
SQLConnect - Connect to a Data Source . 118
SQLDataSources - Get List of Data Sources . 124

 Copyright IBM Corp. 1997 iii

SQLDescribeCol - Describe Column Attributes 127
SQLDescribeParam - Describe parameter marker 132
SQLDisconnect - Disconnect from a Data Source 134
SQLDriverConnect - (Expanded) Connect to a Data Source 136
SQLError - Retrieve Error Information . 142
SQLExecDirect - Execute a Statement Directly 148
SQLExecute - Execute a Statement . 153
SQLExtendedFetch - Extended Fetch (Fetch Array of Rows) 156
SQLFetch - Fetch Next Row . 163
SQLForeignKeys - Get the List of Foreign Key Columns 168
SQLFreeConnect - Free Connection Handle . 177
SQLFreeEnv - Free Environment Handle . 179
SQLFreeStmt - Free (or Reset) a Statement Handle 181
SQLGetConnectOption - Returns Current Setting of A Connect Option 184
SQLGetCursorName - Get Cursor Name . 186
SQLGetData - Get Data From a Column . 192
SQLGetEnvAttr - Returns Current Setting of An Environment Attribute 205
SQLGetFunctions - Get Functions . 207
SQLGetInfo - Get General Information . 212
SQLGetSQLCA - Get SQLCA Data Structure . 228
SQLGetStmtOption - Returns Current Setting of A Statement Option 235
SQLGetTypeInfo - Get Data Type Information 237
SQLMoreResults - Determine If There Are More Result Sets 245
SQLNativeSql - Get Native SQL Text . 249
SQLNumParams - Get Number of Parameters in A SQL Statement 252
SQLNumResultCols - Get Number of Result Columns 254
SQLParamData - Get Next Parameter For Which A Data Value Is Needed . . 256
SQLParamOptions - Specify an Input Array for a Parameter 258
SQLPrepare - Prepare a Statement . 260
SQLPrimaryKeys - Get Primary Key Columns of A Table 268
SQLProcedureColumns - Get Input/Output Parameter Information for A

Procedure . 273
SQLProcedures - Get List of Procedure Names 282
SQLPutData - Passing Data Value for A Parameter 286
SQLRowCount - Get Row Count . 289
SQLSetColAttributes - Set Column Attributes . 291
SQLSetConnection - Set Connection Handle . 295
SQLSetConnectOption - Set Connection Option 297
SQLSetCursorName - Set Cursor Name . 303
SQLSetEnvAttr - Set Environment Attribute . 306
SQLSetParam - Binds A Parameter Marker to a Buffer 309
SQLSetStmtOption - Set Statement Option . 314
SQLSpecialColumns - Get Special (Row Identifier) Columns 319
SQLStatistics - Get Index and Statistics Information For A Base Table 325
SQLTablePrivileges - Get Privileges Associated With A Table 330
SQLTables - Get Table Information . 334
SQLTransact - Transaction Management . 338

Chapter 6. Using Advanced Features . 341
Environment, Connection, and Statement Options 341
Distributed Unit of Work (Coordinated Distributed Transactions) 342
Querying System Catalog Information . 346
Sending/Retrieving Long Data in Pieces . 349
Using Arrays to Input Parameter Values . 350

iv Call Level Interface Guide and Reference

Retrieving A Result Set Into An Array . 353
Using Stored Procedures . 356
Writing Multithreaded Applications . 360
Mixing Embedded SQL and DB2 CLI . 366
Using Vendor Escape Clauses . 369

Chapter 7. Problem Diagnosis . 373
Tracing . 373
Debugging . 383

Appendix A. Programming Hints and Tips . 385
Avoiding Common Initialization File Problems . 385
Setting Common Connection Options . 385
Setting Common Statement Options . 385
Using SQLSetColAttributes() to Reduce Network Flow 386
Comparing Binding and SQLGetData . 387
Increasing Transfer Efficiency . 387
Limiting Use of Catalog Functions . 387
Using Column Names of Function Generated Result Sets 387
Making use of Dynamic SQL Statement Caching 388
Optimizing Insertion and Retrieval of Data . 388
Using SQLDriverConnect Instead of SQLConnect 388
Turning Off Statement Scanning . 388
Problem Solving and Debugging . 389

Appendix B. DB2 CLI and ODBC . 391
ODBC APIs and Data Types . 391
ODBC Function List . 393
Isolation Levels . 395

Appendix C. Extended Scalar Functions . 397
String Functions . 397
Date and Time Functions . 398
System Functions . 399

Appendix D. Appendix D. SQLSTATE Cross Reference 401

Appendix E. Data Conversion . 411
Data Type Attributes . 412
Converting Data from SQL to C Data Types . 416
Converting Data from C to SQL Data Types . 425

Appendix F. Example Code . 435
DB2 CLI Application . 435
Stored Procedure . 464

Glossary . 485

Bibliography . 491

Index . 497

 Contents v

vi Call Level Interface Guide and Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

 IBM Corporation
 IBM Corporation
 J74/G4

555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This book is intended to help the customer write applications that use DB2 Call
Level Interface to access IBM DB2 for OS/390 servers. This book documents
General-use Programming Interface and Associated Guidance Information provided
by DATABASE 2 for OS/390 (DB2 for OS/390).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

 Copyright IBM Corp. 1997 vii

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Throughout the library, the DB2 licensed program and a particular DB2 subsystem
are each referred to as “DB2.” In each case, the context makes the meaning clear.
The term MVS is used to represent the MVS/Enterprise Systems Architecture
(MVS/ESA). CICS is used to represent CICS/MVS and CICS/ESA; IMS is used to
represent IMS/ESA; C and C language are used to represent the C/370 and C/C++
for MVS/ESA programming language.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

AIX
BookManager
C++/MVS
CICS
CICS/ESA
CICS/MVS
DATABASE 2
DB2
DB2/2
DB2/6000
DFSMS
DFSMShsm
Distributed Relational Database Architecture
DRDA

IBM
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
OS/2
OS/390
OS/400
Parallel Sysplex
QMF
RACF
SQL/DS
VTAM

viii Call Level Interface Guide and Reference

Chapter 1. Introduction to this Book and the DB2 Library

About This Book
This book provides the information necessary to write applications using DB2 Call
Level Interface to access IBM DATABASE 2 servers as well as any database that
supports DRDA level 1 or DRDA level 2 protocols. This book should also be used
as a supplement when writing portable ODBC applications that can be executed in
a native DB2 for OS/390 environment using the DB2 Call Level Interface.

Who Should Use This Book
DB2 application programmers with a knowledge of SQL and the C programming
language.

ODBC application programmers with a knowledge of SQL and the C programming
language.

How this Book is Structured
This book is divided into the following chapters:

� “Chapter 1. Introduction to this Book and the DB2 Library,” identifies the
purpose, the audience, and the use of this book.

� “Chapter 2. Introduction to CLI” on page 15, introduces DB2 CLI and discusses
the background of the interface and its relation to embedded SQL and
Microsoft ODBC.

� “Chapter 3. Writing a DB2 CLI Application” on page 23, provides an overview
of a typical DB2 CLI application. This chapter discusses the basic tasks or
steps within a simple DB2 CLI application. General concepts are introduced as
well as the basic functions and the interaction between them.

� “Chapter 4. Configuring CLI and Running Sample Applications” on page 49,
contains information for setting up the necessary environment to compile and
run DB2 CLI applications. Sample applications are provided in order to verify
your environment.

� “Chapter 5. Functions” on page 71, is a reference for the functions that make
up DB2 CLI.

� “Chapter 6. Using Advanced Features” on page 341, provides an overview of
more advanced tasks and the functions used to perform them.

� “Chapter 7. Problem Diagnosis” on page 373, explains how to work with traces
and debug applications.

The appendixes contain the following information:

� Appendix A, “Programming Hints and Tips” on page 385, provides some
common hints and tips for improving performance and/or portability of DB2 CLI
applications.

 Copyright IBM Corp. 1997 1

� Appendix B, “DB2 CLI and ODBC” on page 391, discusses the differences
between ODBC and DB2 CLI.

� Appendix C, “Extended Scalar Functions” on page 397, describes the scalar
functions that can be accessed as DB2 functions, or using ODBC vendor
escape clauses.

� Appendix D, “ Appendix D. SQLSTATE Cross Reference” on page 401,
contains an SQLSTATE table that lists the functions that may generate each
SQLSTATE. (Each function description in “Chapter 5. Functions” on page 71
lists the possible SQLSTATEs for each function.)

� Appendix E, “Data Conversion” on page 411, contains information about SQL
and C data types, and conversion between them.

� Appendix F, “Example Code” on page 435, provides an extensive stored
procedure example.

How to Read the Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path).

��──required_item──��

� Optional items appear below the main path.

��─ ─required_item─ ──┬ ┬─────────────── ────────────────────────────────��
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─
��─ ─required_item─ ──┴ ┴─────────────── ────────────────────────────────��

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

��─ ─required_item─ ──┬ ┬─required_choice1─ ─────────────────────────────��
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

2 Call Level Interface Guide and Reference

��─ ─required_item─ ──┬ ┬────────────────── ─────────────────────────────��
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

 ┌ ┐─default_choice──
��─ ─required_item─ ──┼ ┼───────────────── ──────────────────────────────��
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left, above the main line, indicates an item that can
be repeated.

 ┌ ┐───────────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

 ┌ ┐─,───────────────
��─ ─required_item─ ───

�
┴─repeatable_item─ ──────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
column-name). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How to Use the DB2 Library
Titles of books in the library begin with DB2 for OS/390 Version 5. However,
references from one book in the library to another are shortened and do not include
the product name, version, and release. Instead, they point directly to the section
that holds the information. For a complete list of books in the library, and the
sections in each book, see the bibliography at the back of this book.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for MVS/ESA subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks associated with DB2 are grouped into the following major categories
(but supplemental information relating to all of the below tasks for new releases of
DB2 can be found in Release Guide):

Installation: If you are involved with DB2 only to install the system, Installation
Guide might be all you need.

 Chapter 1. Introduction to this Book and the DB2 Library 3

If you will be using data sharing then you also need Data Sharing: Planning and
Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in Application Programming and
SQL Guide and SQL Reference.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all the
instruction or reference material they need. For a list of some of the titles in the
QMF library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need Application Programming
and SQL Guide, SQL Reference, and Ca ll Level Interface Guide and Reference
just as end users do.

Application programmers also need instructions on many other topics:

� How to transfer data between DB2 and a host program—written in COBOL, C,
or FORTRAN, for example

� How to prepare to compile a program that embeds SQL statements

� How to process data from two systems simultaneously, say DB2 and IMS or
DB2 and CICS

� How to write distributed applications across platforms

� How to write applications that use DB2 Call Level Interface to access DB2
servers

� How to write applications that use Open Database Connectivity (ODBC) to
access DB2 servers

� How to write applications in the Java programming language to access DB2
servers

The material needed for writing a host program containing SQL is in Application
Programming and SQL Guide and Application Programming Guide and Reference
for Java. The material needed for writing applications that use DB2 Call Level
Interface or ODBC to access DB2 servers is in Call Level Interface Guide and
Reference.

For handling errors, see Messages and Codes.

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything
else. Administration Guide divides those tasks among the following sections:

� Section 2 (Volume 1) of Administration Guide discusses the decisions that must
be made when designing a
 database and tells how to bring the design into being by creating DB2 objects,
loading data, and adjusting to changes.

4 Call Level Interface Guide and Reference

� Section 3 (Volume 1) of Administration Guide describes ways of controlling
access to the DB2 system and
 to data within DB2, to audit aspects of DB2 usage, and to answer other
security and auditing concerns.

� Section 4 (Volume 1) of Administration Guide describes the steps in normal
day-to-day operation and dis cusses the steps one should take to prepare for
recovery in the event of some failure.

� Section 5 (Volume 2) of Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be
done to make some parts run faster.

In addition, the appendixes in Administration Guide contain valuable information on
DB2 sample tables, National Language Support (NLS), writing exit routines,
interpreting DB2 trace output, and character conversion for distributed data.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need Administration Guide. If you also want to carry out your own
plans by creating DB2 objects, granting privileges, running utility jobs, and so on,
then you also need:

� SQL Reference, which describes the SQL statements you use to create, alter,
and drop objects and grant and revoke privileges

� Utility Guide and Reference, which explains how to run utilities

� Command Reference, which explains how to run commands

If you will be using data sharing, then you need Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
Diagnosis Guide and Reference and Messages and Codes.

How to Obtain DB2 Information

DB2 on the Web
Stay current with the latest information about DB2. View the DB2 home page on
the World Wide Web. News items keep you informed about the latest
enhancements to the product. Product announcements, press releases, fact sheets,
and technical articles help you plan your database management strategy. Technical
professionals can access DB2 publications on the Web and follow links to other
Web sites with more information about DB2 family and OS/390 solutions. Access
DB2 on the Web with the following URL:

 http://www.ibm.com/software/db2os390

 Chapter 1. Introduction to this Book and the DB2 Library 5

 DB2 Publications
The DB2 publications are available in both hardcopy and softcopy format. Using
online books on CD-ROM, you can read, search across books, print portions of the
text, and make notes in these BookManager books. With the appropriate
BookManager READ product or IBM Library Readers, you can view these books on
the MVS, VM, OS/2, DOS, AIX and Windows platforms.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 licensed book for no additional charge:

DB2 Server for OS/390 Version 5 Licensed Online Book, LK2T-9075.

You can order multiple copies for an additional charge by specifying feature code
8207.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 and DATABASE 2 Performance Monitor online
books for no additional charge:

DB2 Server for OS/390 Version 5 Online Library, SK2T-9092

You can order multiple copies for an additional charge through IBM's publication
ordering service.

Periodic updates will be provided on the following collection kit available to
licensees of DB2 Version 5:

IBM Online Library Transaction Processing and Data Collection, SK2T-0730

SK2T-9092 will be superseded by SK2T-0730 when updates to the online library
are available.

In some countries,including the United States and Canada, you receive one copy of
the collection kit at no additional charge when you order DB2 Version 5. You will
automatically receive one copy of the collection kit each time it is updated, for no
additional charge. To order multiple copies of SK2T-0730 for an additional charge,
see “How to Order the DB2 Library” on page 7. In other countries, updates will be
available in displayable softcopy format in the IBM Online Book Library Offering
(5636–PUB), SK2T-0730 IBM Online Library Transaction Processing and Data
Collection at a later date.

See your IBM representative for assistance in ordering the collection.

DB2 Server for OS/390 books are also available for an additional charge on the
following collection kits, which contain online books for many IBM products:

IBM Online Library MVS Collection, SK2T-0710, in English

Online Library Omnibus Edition OS/390 Collection, SK2T-6700, in English

IBM Online Library MVS Collection Kit, SK88-8002, in Japanese, for viewing on
DOS and Windows platforms

6 Call Level Interface Guide and Reference

How to Order the DB2 Library
You can order DB2 publications and CD-ROMs through your IBM representative or
the IBM branch office serving your locality. If you are located within the United
States or Canada, you can place your order by calling one of the toll-free numbers :

� In the U.S., call 1-800-879-2755.
� In Canada, call 1-800-565-1234.

To order additional copies of licensed publications, specify the SOFTWARE option.
To order additional publications or CD-ROMs, specify the PUBLICATIONS & SLSS
option. Be prepared to give your customer number, the product number, and the
feature code(s) or order numbers you want.

Summary of Changes to DB2 for OS/390 Version 5
DB2 for OS/390 Version 5 delivers a database server solution for OS/390. Version
5 supports all functions available in DB2 for MVS/ESA Version 4 plus
enhancements in the areas of performance, capacity, and availability, client/server
and open systems, and user productivity.

If you are currently using DB2, you can migrate only from a DB2 for MVS/ESA
Version 4 subsystem. This summary gives you an overview of the differences to
be found between these versions.

 Server Solution
OS/390 retains the classic strengths of the traditional MVS/ESA operating system,
while offering a network-ready, integrated operational environment.

The following features work directly with DB2 for OS/390 applications to help you
use the full potential of your DB2 subsystem:

� Net.Data for OS/390
 � DB2 Installer
� DB2 Estimator for Windows
� DB2 Visual Explain
� Workstation-based Performance Analysis and Tuning
� DATABASE 2 Performance Monitor

Net.Data for OS/390
Net.Data provides support for Internet access to DB2 data through a Web server.
Applications built with Net.Data make data stored in any DB2 server more
accessible and useful. Net.Data Web applications provide continuous application
availability, scalability, security, and high performance.

This no charge feature can be ordered with DB2 Version 5 or downloaded from
Internet. The Net.Data URL is:

http://www.ibm.com/software/data/net.data/downloads.html

 Chapter 1. Introduction to this Book and the DB2 Library 7

 DB2 Installer
DB2 Installer offers the option to install DB2 on an OS/2 workstation. Now, you
can use a friendly graphical interface to complete installation tasks easily with DB2
Installer.

This function is delivered on CD-ROM with DB2 Visual Explain.

DB2 Estimator for Windows
DB2 Estimator provides an easy-to-use capacity planning tool. You can estimate
the sizes of tables and indexes, and the performance of SQL statements, groups of
SQL statements (transactions), utility runs, and groups of transactions (capacity
runs). From a simple table sizing to a detailed performance analysis of an entire
DB2 application, DB2 Estimator saves time and lowers costs. You can investigate
the impact of new or modified applications on your production system, before you
implement them.

This no charge feature can be ordered with DB2 Version 5 or downloaded from the
Internet. From the internet, use the IBM Software URL:

http://www.ibm.com/software/

From here, you can access information about DB2 Estimator using the download
function.

DB2 Visual Explain
DB2 Visual Explain lets you tune DB2 SQL statements on an OS/2 workstation.
You can see DB2 EXPLAIN output in a friendly graphical interface and easily
access, modify, and analyze applications with DB2 Visual Explain.

Workstation-based Performance Analysis and Tuning
The new workstation-based Performance Analysis and Tuning function simplifies
system administration. You can access statistical data to help you analyze and
improve system performance. This function works with the optional DB2 PM feature
to provide full analysis and tuning functionality.

DATABASE 2 Performance Monitor (DB2 PM)
DB2 PM lets you monitor, analyze, and optimize the performance of DB2 Version 5
and its applications. An online monitor, for both host and workstation environments,
provides an immediate "snap-shot" view of DB2 activities and allows for exception
processing while the system is operational. The workstation-based online monitor
can connect directly to the Visual Explain function of the DB2 base product.

DB2 PM also offers a history facility, a wide variety of customizable reports for
in-depth performance analysis, and an EXPLAIN function to analyze and optimize
SQL statements. For more information, see DB2 PM for OS/390 General
Information .

This feature can be ordered with DB2 Version 5.

8 Call Level Interface Guide and Reference

 Performance

Sysplex Query Parallelism
The increased power of Sysplex query parallelism in DB2 for OS/390 Version 5
allows DB2 to go far beyond DB2 for MVS/ESA Version 4 capabilities; from the
ability to split and process a single query within a DB2 subsystem to processing
that same query across many different DB2 subsystems in a data sharing group.

The advances this release offers in scalable query processing let you process
queries quickly while accommodating the potential growth of data sharing groups
and the increasing complexity of queries.

Prepared Statement Caching
DB2 reduces the cost of duplicate prepares for the same dynamic SQL statement
by saving them in a cache. Now, different application processes can share
prepared statements and they are preserved past the commit point. This
performance improvement offers the most benefit for:

� Client/server applications that frequently use dynamic SQL for repeated
execution of SQL statements

� Relatively short dynamic SQL statements for which PREPARE cost accounts
for most of the CPU expended

 Reoptimization
When host variables, parameter markers, or special registers were used in previous
releases, DB2 could not always determine the best access path because the values
for these variables were unknown. Now, you can tell DB2 to reevaluate the access
path at run time, after these values are known. As a result, queries can be
processed more efficiently, and response time is improved.

Faster Transactions and Batch
� Caching of package authorization improves performance at run time for remote

packages and applications that use pattern-matching characters in a package
list.

� You can define a table space to use selective partition locking, which can
reduce locking costs for applications that do partition-at-a-time processing. It
also can reduce locking costs for certain data sharing applications that rely on
an affinity between members and data partitions.

� A new standalone utility lets you preformat active logs.

� With LOAD and REORG, you can preformat data sets up to the high allocated
RBA, which can make processing for sequential inserts more predictable.

 Faster Utilities
� LOAD and REORG jobs run faster and more efficiently with enhanced index

key sorting that reduces CPU and elapsed time, and an inline copy feature that
lets you make an image copy without a separate copy step.

� New REORG options let you select rows to discard during a REORG and,
optionally, write the discarded records to a file.

� When you run the REBUILD, RECOVER, REORG, or LOAD utility on
DB2-managed indexes or table spaces, a new option lets you logically reset
and reuse the DB2-managed objects.

 Chapter 1. Introduction to this Book and the DB2 Library 9

� RECOVER INDEX and LOAD run faster on large numbers of rows per page.

� Sampling support for RUNSTATS reduces the processing required to collect
nonindexed column statistics.

� BSAM striping improves the I/O capability of DB2 utilities.

Other Performance Enhancements
� There are several significant performance enhancements to data sharing,

including selective partition locking, the MAXROWS option, and several
optimizations to reduce data sharing overhead.

� DB2 installations that run in the OS/390 Version 2 Release 6 environment can
now have as many as (approximately) 25 000 open DB2 data sets at one time.
The maximum number of open data sets in earlier releases of OS/390 is
10000.

� You can easily alter the length of variable-length character columns using the
new ALTER COLUMN clause of the ALTER TABLE statement.

� SQL CASE expressions let you eliminate queries with multiple UNIONs and
improve performance by using only one table scan.

� You can collect a new statistic on concatenated index keys to improve the
performance of queries with correlated columns. The statistic lets DB2 estimate
the number of rows that qualify for the query more accurately, and select
access paths more efficiently.

� DB2 scans partitions more efficiently and allows scans during parallel
processing.

� Query enhancements include the ability to:

– Use indexes for joins on string columns that have different lengths
– Use an index to access predicates with noncorrelated IN subqueries

� Noncolumn expressions in simple predicates are evaluated at stage 1 and can
be indexable.

 Increased Capacity
DB2 for OS/390 Version 5 introduces the concept of a large partitioned table space.
Defining your table space as large allows a substantial capacity increase: to
approximately one terabyte of data and up to 254 partitions. In addition to
accommodating growth potential, large partitioned table spaces make database
design more flexible, and can improve availability.

 Improved Availability

 Online REORG
DB2 for OS/390 Version 5 adds a major improvement to availability with Online
REORG. Now, you can avoid the severe availability problems that occurred while
offline reorganization of table spaces restricted access to read only during the
unload phase and no access during reload phase of the REORG utility. Online
REORG gives you full read and write access to your data through most phases of
the process with only very brief periods of read only or no access.

10 Call Level Interface Guide and Reference

Data Sharing Enhancements
� Version 5 provides continuous availability with group buffer pool duplexing.

Prior releases of DB2 rely on DASD and the merged recovery logs to recover
group buffer pool (GBP) data that is lost if a coupling facility fails. With group
buffer pool duplexing, DB2 writes changed pages to both a primary GBP and a
secondary GBP. Overlapped writes to the GBPs provide good performance and
eliminate the writes to DASD.

� Group buffer pool rebuild makes coupling facility maintenance easier and
improves access to the group buffer pool during connectivity losses.

� Automatic group buffer pool recovery accelerates GBP recovery time,
eliminates operator intervention, and makes data available faster when GBPs
are lost because of coupling facility failures.

� Improved restart performance for members of a data sharing group reduces the
impact of retained locks by making data available faster when a group member
fails.

� Changes to traces and DISPLAY GROUPBUFFERPOOL output improve
monitoring.

Tracker site for disaster recovery
You can set up a tracker site that shadows the activity of a primary site, and
eliminate the need to constantly ship image copies.

Client/Server and Open Systems

Native TCP/IP Network Support
DB2's support of TCP/IP networks allows DRDA clients to connect directly to DDF
and eliminate the gateway machine. In addition, customers can now use
asynchronous transfer mode (ATM) as the underlying communication protocol for
both SNA and TCP/IP connections to DB2.

 Stored Procedures
� Return multiple SQL result sets to local and remote clients in a single network

operation.

� Receive calls from applications that use standard interfaces, such as Open
Database Connectivity** (ODBC) and X/Open** Call Level Interface, to access
data in DB2 for OS/390.

� Run in an enhanced environment. DB2 supports multiple stored procedures
address spaces managed by the MVS Workload Manager (WLM). The WLM
environment offers efficient program management and allows WLM-managed
stored procedures to run as subprograms and use RACF security.

� Use individual MVS dispatching priorities to improve stored procedure
scheduling.

� Access data sources outside DB2 with two-phase commit coordination.

� Use an automatic COMMIT feature on return to the caller that reduces network
traffic and the length of time locks are held.

� Have the ability to invoke utilities, which means you can now invoke utilities
from an application that uses the SQL CALL statement.

 Chapter 1. Introduction to this Book and the DB2 Library 11

� Support IMS Open Database Access (ODBA). Now a DB2 stored procedure
can directly connect to IMS DBCTL and access IMS data.

Dynamic Query and Network Performance
Improvements for DRDA Applications

� Reduced processing costs for block fetch operations

� DRDA support for OPTIMIZE FOR n ROWS on SELECT

� Faster dynamic SQL queries and reduced processing costs for VTAM network
operations

� Reduced message traffic for dynamic SQL SELECT statements

Improved Application Portability
� DB2 for OS/390 Version 5 introduces the DB2 Call Level Interface (CLI) to

MVS/ESA. Unlike applications that use embedded SQL to access DB2 data,
applications that choose CLI are not tied to a precompiler, packages, or a plan.

Workstation and desktop applications use standard interfaces, such as Open
Database Connectivity (ODBC), to access relational data. Standard interfaces
need one version of an application to access many data sources. Now, you can
port UNIX workstation and PC desktop applications to DB2 for OS/390 and
exploit the CLI (ODBC) capabilities without modification. In addition,
applications can issue ODBC or CLI calls from within a stored procedure.

� You can now access DB2 for OS/390 databases in your Java applications. You
can use DB2 Connect Java Database Connectivity (JDBC) for your dynamic
SQL applications, or SQLJ for your static SQL applications.

� DB2 adds DRDA support for the DESCRIBE INPUT statement to improve
performance for many ODBC applications.

� Now, you can write multithreaded DB2 CLI applications, and restrictions on
connection switching no longer exist.

� DB2 now provides ASCII table support for clients and servers across platforms.
This support reduces the cost of translation between EBCDIC and ASCII
encoding schemes. ASCII table support also offers an alternative to writing field
procedures that provide the ASCII sort sequence, which improves performance.

 Improved Security
� DB2 for OS/390 supports Distributed Computing Environment (DCE) for

authenticating remote DRDA clients. DCE offers the following benefits:

– Network security: By providing an encrypted DCE ticket for authentication,
remote clients do not need to send an MVS password in readable text.

– Simplified security administration: End users do not need to maintain a
valid password on MVS to access DB2; instead, they maintain their DCE
password only.

� New descriptive error codes help you determine the cause of network security
errors.

� You can change end user MVS passwords from DRDA clients.

12 Call Level Interface Guide and Reference

 User Productivity

Improved SQL Compatibility
DB2 conforms to the ANSI/ISO SQL entry level standard of 1992. Application
programmers can take advantage of a more complete set of standard SQL to use
across the DB2 family to write portable applications. New SQL function includes:

� More check options for view definitions.

� Foreign keys that reference UNIQUE keys as well as PRIMARY keys.

� An extension to GRANT that lets the REFERENCES privilege apply to a list of
columns.

� A new delete rule, NO ACTION, that you can use to define referential
constraints for self-referencing tables.

� SQL CASE expressions provide the capability to create conditional logic
wherever an expression is allowed.

� SQL temporary tables allow application programs to easily create and use
temporary tables that store results of SQL transactions without logging or
recovery.

New Access Choice
A new attachment facility, the Recoverable Resource Manager Services attachment
facility, improves access in a client/server environment. It coordinates two-phase
commit processing between DB2 and other participating resource managers in any
MVS application environment. Other key features include the ability for multiple
users to run in a single address space, thread reuse, and moving threads between
MVS tasks.

Image Copy Enhancements
The COPY, LOAD, and REORG utilities provide:

� Features of the COPY utility that help you quickly determine what type of image
copy to take, when to take it, and let DB2 automatically take it for you.

� Inline copy in LOAD and REORG that lets you create an image copy while
improving data availability.

Improved Integration of C++ and IBM COBOL for MVS & VM
Support
It is easier for application programmers to use object-oriented programming
techniques in their DB2 applications. DB2 for OS/390 Version 5 adds COBOL and
C++ languages as options on installation panels, DB2I panels, the DSNH command,
and DCLGEN.

Other Usability Enhancements
� To prevent long running units of work and to help avoid unnecessary work

during the recovery phase of restart, DB2 issues new warning messages at an
interval of your choice.

� A new special register for decimal precision provides better granualarity, so that
applications that need different values for decimal precision can run in the
same DB2 subsystem.

 Chapter 1. Introduction to this Book and the DB2 Library 13

� Trace records for IFCID 0022 now include most information in the
PLAN_TABLE.

� An increase from 127 to 255 rows on a page improves table space processing
and eliminates the need for compression.

� Install SYSOPR can recover objects using the START DATABASE command.

� A filtering capability for DISPLAY BUFFERPOOL limits statistics information to
a specified set of page sets.

� You can enter comments within the SYSIN input stream for DB2 utilities.

Summary of Changes to This Book
A new API, SQLDescribeParam(), is added to “Chapter 5. Functions” on page 71.

All application and service diagnostic and debugging information is in a new
chapter, “Chapter 7. Problem Diagnosis” on page 373.

This book no longer contains information about DB2 for OS/390's JDBC support.
See Application Programming Guide and Reference for Java.

Updates are marked with revision bars.

14 Call Level Interface Guide and Reference

Chapter 2. Introduction to CLI

DB2 Call Level Interface (CLI) is IBM's callable SQL interface by the DB2 family of
products. It is a 'C' and 'C++' application programming interface for relational
database access, and it uses function calls to pass dynamic SQL statements as
function arguments. It is an alternative to embedded dynamic SQL, but unlike
embedded SQL, it does not require a precompiler.

DB2 CLI is based on the Microsoft** Open Database Connectivity** (ODBC)
specification, and the X/Open** Call Level Interface specification. These
specifications were chosen as the basis for the DB2 Call Level Interface in an effort
to follow industry standards and to provide a shorter learning curve for those
application programmers already familiar with either of these data source interfaces.
In addition, some DB2 specific extensions were added to help the DB2 application
programmer specifically exploit DB2 features.

DB2 CLI Background Information
To understand DB2 CLI or any callable SQL interface, it is helpful to understand
what it is based on, and to compare it with existing interfaces.

The X/Open Company and the SQL Access Group jointly developed a specification
for a callable SQL interface referred to as the X/Open Call Level Interface. The goal
of this interface is to increase the portability of applications by enabling them to
become independent of any one database product vendor's programming interface.
Most of the X/Open Call Level Interface specification was accepted as part of the
ISO Call Level Interface Draft International Standard (ISO CLI DIS).

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open
CLI. The Call Level Interface specifications in ISO, X/Open, ODBC, and DB2 CLI
continue to evolve in a cooperative manner to provide functions with additional
capabilities.

The ODBC specification also includes an operating environment where data source
specific ODBC drivers are dynamically loaded at run time by a driver manager
based on the data source name provided on the connect request. The application is
linked directly to a single driver manager library rather than to each DBMS's
library. The driver manager mediates the application's function calls at run time
and ensures they are directed to the appropriate DBMS specific ODBC driver.

The ODBC driver manager only knows about the ODBC-specific functions, that is,
those functions supported by the DBMS for which no API is specified. Therefore,
DBMS-specific functions cannot be directly accessed in an ODBC environment.
However, DBMS-specific dynamic SQL statements are indirectly supported via a
mechanism called the vendor escape clause. See “Using Vendor Escape Clauses”
on page 369 for detailed information.

ODBC is not limited to Microsoft operating systems, other implementations are
available, or are emerging on various platforms.

 Copyright IBM Corp. 1997 15

Differences Between DB2 CLI and ODBC Version 2.0.
While DB2 CLI is derived from the ISO Call Level Interface Draft International
Standard (ISO CLI DIS) and ODBC Version 2.0., most existing products are written
to ODBC specifications.

If you port existing ODBC applications to DB2 for OS/390 or write a new application
according to the ODBC specifications, you must comply with the specifications
defined in this publication. However, before you write to any API, validate that the
API is supported by DB2 for OS/390 and that the syntax and semantics are
identical. If there are any differences, you must code to the APIs documented in
this publication.

On the DB2 for OS/390 platform, no ODBC driver manager exists. Consequently,
DB2 CLI support is implemented as a CLI/ODBC driver/driver manager that is
loaded at run time into the application address space. See “DB2 CLI Runtime
Environment” on page 50 for details about the DB2 CLI runtime environment.

The DB2 for common server CLI executes on Windows and AIX as an ODBC
driver, loaded by the Windows driver manager (Windows environment) or the Visi
genic driver manager (UNIX platforms). In this context, DB2 CLI support is limited
to the ODBC specifications. Alternatively, an application can directly invoke the CLI
application programming interfaces (APIs) including those not supported by ODBC.
In this context, the set of APIs supported by DB2 for common server is referred to
as the "Call Level Interface". See DATABASE 2 Call Level Interface Guide and
Reference for common servers.

The use of DB2 CLI in this publication refers to DB2 for OS/390 support of Call
Level Interface unless otherwise noted.

ODBC Features Supported
DB2 CLI support should be viewed as consisting of most of ODBC Version 2.0 as
well as IBM extensions. Where differences exist, applications should be written to
the specifications defined in this publication.

DB2 CLI includes support of the following ODBC functions:

� All ODBC level 1 functions

� All ODBC level 2 functions with the following exceptions:

 SQLBrowseConnect()
 SQLSetPos()
 SQLSetScrollOptions()

� Some X/Open CLI functions

� Some DB2 specific functions

For a complete list of supported functions, see “DB2 CLI Function Summary” on
page 72.

The following DB2 features are available to both ODBC and DB2 CLI applications:

� The double byte (graphic) data types
 � Stored procedures
� Distributed unit of work (DUW) as defined by DRDA, two-phase commit

16 Call Level Interface Guide and Reference

DB2 CLI contains extensions to access DB2 features that can not be accessed by
ODBC applications:

� SQLCA access for detailed DB2 specific diagnostic information
� Control over null termination of output strings.

DB2 CLI does not support the following functions (a deviation from the Microsoft
ODBC Version 2.0 Specification):

� Multiple connections to the same data source

 � Asynchronous SQL

� A connection to a data source unless the connection state is on a transaction
boundary (CONNECT (Type 1) only)

� Scrollable cursor support

� Interactive data source connection as specified via SQLBrowseConnect() and
SQLDriverConnect().

For more information on the relationship between DB2 CLI and ODBC, see
Appendix B, “DB2 CLI and ODBC” on page 391.

Differences Between DB2 CLI and Embedded SQL
An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the data
source, and executed. In contrast, a DB2 CLI application does not have to be
precompiled or bound, but instead uses a standard set of functions to execute SQL
statements and related services at run time.

This difference is important because, traditionally, precompilers have been specific
to each database product, which effectively ties your applications to that product.
DB2 CLI enables you to write portable applications that are independent of any
particular database product. This independence means DB2 CLI applications do not
have to be recompiled or rebound to access different DB2 or DRDA data sources,
but rather just connect to the appropriate data source at run time.

DB2 CLI and embedded SQL also differ in the following ways:

� DB2 CLI does not require the explicit declaration of cursors. They are
generated by DB2 CLI as needed. The application can then use the generated
cursor in the normal cursor fetch model for multiple row SELECT statements and
positioned UPDATE and DELETE statements.

� The OPEN statement is not used in DB2 CLI. Instead, the execution of a SELECT
automatically causes a cursor to be opened.

� Unlike embedded SQL, DB2 CLI allows the use of parameter markers on the
equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect() function).

� A COMMIT or ROLLBACK in DB2 CLI is issued via the SQLTransact() function call
rather than by passing it as an SQL statement.

� DB2 CLI manages statement related information on behalf of the application,
and provides a statement handle to refer to it as an abstract object. This handle
eliminates the need for the application to use product specific data structures.

 Chapter 2. Introduction to CLI 17

� Similar to the statement handle, the environment handle and connection handle
provide a means to refer to all global variables and connection specific
information.

� DB2 CLI uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent with
values used by the IBM relational database products, there are differences.
(There are also differences between ODBC SQLSTATES and the X/Open
defined SQLSTATES). Refer to Table 144 on page 401 for a cross reference
of all DB2 CLI SQLSTATEs.

Despite these differences, there is an important common concept between
embedded SQL and DB2 CLI:

DB2 CLI can execute any SQL statement that can be prepared dynamically in
embedded SQL.

Table 1 lists each DB2 for OS/390 SQL statement, and indicates whether or not it
can be executed using DB2 CLI.

Each DBMS might have additional statements that can be dynamically prepared, in
which case DB2 CLI passes them to the DBMS. There is one exception: COMMIT
and ROLLBACK can be dynamically prepared by some DBMSs but are not passed.
The SQLTransact() function should be used instead to specify either COMMIT or
ROLLBACK.

Table 1 (Page 1 of 2). SQL Statements

SQL Statement Dynamic a Call Level Interface c (CLI)

ALTER TABLE X X

ALTER DATABASE X X

ALTER INDEX X X

ALTER STOGROUP X X

ALTER TABLESPACE X X

BEGIN DECLARE SECTION b

CALL X d

CLOSE SQLFreeStmt()

COMMENT ON X X

COMMIT X SQLTransact()

CONNECT (Type 1) SQLConnect(), SQLDriverConnect()

CONNECT (Type 2) SQLConnect(), SQLDriverConnect()

CREATE { ALIAS, DATABASE,
INDEX, STOGROUP, SYNONYM,
TABLE, TABLESPACE, VIEW }

X X

DECLARE CURSOR b SQLAllocStmt()

DECLARE STATEMENT

DECLARE TABLE

DELETE X X

DESCRIBE SQLDescribeCol(), SQLColAttributes()

18 Call Level Interface Guide and Reference

Table 1 (Page 2 of 2). SQL Statements

SQL Statement Dynamic a Call Level Interface c (CLI)

DROP X X

END DECLARE SECTION b

EXECUTE SQLExecute()

EXECUTE IMMEDIATE SQLExecDirect()

EXPLAIN X X

FETCH SQLFetch()

GRANT X X

INCLUDE b

INSERT X X

LABEL ON X X

LOCK TABLE X X

OPEN SQLExecute(), SQLExecDirect()

PREPARE SQLPrepare()

RELEASE

REVOKE X X

ROLLBACK X SQLTransact()

select-statement X X

SELECT INTO

SET CONNECTION SQLSetConnection()

SET host_variable

SET CURRENT DEGREE X X

SET CURRENT PACKAGESET

SET CURRENT SQLID X X

UPDATE X X

WHENEVER b

Note:

a All statements in this list can be coded as static SQL, but only those marked with X can be coded as
dynamic SQL.

b This statement is not executable.

c An X indicates that this statement can be executed using either SQLExecDirect() or SQLPrepare() and
SQLExecute(). If there is an equivalent DB2 CLI function, the function name is listed.

d Although this statement is not dynamic, DB2 CLI allows the statement to be specified when calling
either SQLExecDirect() or SQLPrepare() and SQLExecute().

 Chapter 2. Introduction to CLI 19

Advantages of Using DB2 CLI
DB2 CLI provides a number of key features that offer advantages in contrast to
embedded SQL. DB2 CLI:

� Ideally suits the client-server environment in which the target data source is
unknown when the application is built. It provides a consistent interface for
executing SQL statements, regardless of which database server the application
connects to.

� Lets you write portable applications that are independent of any particular
database product. DB2 CLI applications do not have to be recompiled or
rebound to access different DB2 or DRDA data sources. Instead they connect
to the appropriate data source at run time.

� Reduces the amount of management required for an application while in
general use. Individual DB2 CLI applications do not need to be bound to each
data source. Bind files provided with DB2 CLI need to be bound only once for
all DB2 Call Level Interface applications.

� Lets applications connect to multiple data sources from the same application.

� Allocates and controls data structures, and provides a handle for the application
to refer to them. Application do not have to control complex global data areas
such as the SQLDA and SQLCA.

� Provides enhanced parameter input and fetching capability. You can specify
arrays of data on input to retrieve multiple rows of a result set directly into an
array. You can execute statements that generate multiple result sets.

� Lets you retrieve multiple rows and result sets generated from a call to a stored
procedure.

� Provides a consistent interface to query catalog information that is contained in
various DBMS catalog tables. The result sets that are returned are consistent
across DBMSs. Application programmers can avoid writing version-specific and
server-specific catalog queries.

� Provides extended data conversion which requires less application code when
converting information between various SQL and C data types.

� Aligns with the emerging ISO CLI standard in addition to using the accepted
industry specifications of ODBC and X/Open CLI.

� Allows application developers to apply their knowledge of industry standards
directly to DB2 Call Level Interface. The interface is intuitive for programmers
who are familiar with function libraries but know little about product specific
methods of embedding SQL statements into a host language.

Deciding Which Interface To Use
DB2 CLI is ideally suited for query-based applications that require portability. Use
the following guidelines to help you decide which interface meets your needs.

20 Call Level Interface Guide and Reference

Static and Dynamic SQL
Only embedded SQL applications can use static SQL. Both static and dynamic SQL
have advantages. Consider these factors:

 � Performance

Dynamic SQL is prepared at run time. Static SQL is prepared at bind time. The
preparation step for dynamic SQL requires more processing and might incur
additional network traffic.

However, static SQL does not always perform better than dynamic SQL.
Dynamic SQL can make use of changes to the data source, such as new
indexes, and can use current catalog statistics to choose the optimal access
plan.

� Encapsulation and Security

In static SQL, authorization to objects is associated with a package and
validated at package bind time. Database administrators can grant execute
authority on a particular package to a set of users rather than grant explicit
access to each database object.

In dynamic SQL, authorization is validated at run time on a per statement
basis; therefore, users must be granted explicit access to each database
object.

Use Both Interfaces
An application can take advantage of both static and dynamic interfaces. An
application programmer can create a stored procedure that contains static SQL.
The stored procedure is called from within a DB2 CLI application and executed on
the server. After the stored procedure is created, any DB2 CLI or ODBC application
can call it.

Write a Mixed Application
You can write a mixed application that uses both DB2 CLI and embedded SQL. In
this scenario, DB2 CLI provides the base application, and you write key modules
using static SQL for performance or security. Choose this option only if stored
procedures do not meet your applications requirements.

Other Information Sources
Application developers should refer to the following publications as a supplement to
this publication:

� ODBC 2.0 Programmer's Reference and SDK Guide
 � Inside ODBC

When writing DB2 CLI applications, you also might need to reference information
for the database servers that are being accessed, in order to understand any
connectivity issues, environment issues, SQL language support issues, and other
server-specific information. For DB2 for OS/390 versions, see SQL Reference and
Application Programming and SQL Guide. If you are writing applications that
access other DB2 server products, see IBM SQL Reference for information that is
common to all products, including any differences.

 Chapter 2. Introduction to CLI 21

22 Call Level Interface Guide and Reference

Chapter 3. Writing a DB2 CLI Application

This section introduces a conceptual view of a typical DB2 CLI application.

A DB2 CLI application can be broken down into a set of tasks. Some of these tasks
are organized into discrete steps, while others might apply throughout the
application. Each task is carried out by calling one or more DB2 CLI functions.

Tasks described in this section are basic tasks that apply to all applications. More
advanced tasks, such as using array insert, are described in “Chapter 6. Using
Advanced Features” on page 341.

The functions are used in examples to illustrate their use in DB2 CLI applications.
Refer to “Chapter 5. Functions” on page 71 for complete descriptions and usage
information for each of the functions.

Figure 1. Conceptual View of a DB2 CLI Application

Every DB2 CLI application contains the three main tasks shown in Figure 1.

Initialization
This task allocates and initializes some resources in preparation for the
main transaction processing task. Refer to “Initialization and Termination”
on page 24 for details.

Transaction Processing
This is the main task of the application. SQL statements are passed to DB2
CLI to query and modify the data. Refer to “Transaction Processing” on
page 29 for details.

Termination
This task frees allocated resources. The resources generally consist of data
areas identified by unique handles. Refer to “Initialization and Termination”
on page 24 for details.

In addition to the three tasks listed above, there are general tasks, such as
handling diagnostic messages, which occur throughout an application.

 Copyright IBM Corp. 1997 23

Initialization and Termination

Figure 2. Conceptual View of Initialization and Termination Tasks

Figure 2 shows the function call sequences for both the initialization and
termination tasks. The transaction processing task in the middle of the diagram is
shown in Figure 3 on page 29.

 Handles
The initialization task consists of the allocation and initialization of environment and
connection handles (which are later freed in the termination task). An application
then passes the appropriate handle when it calls other DB2 CLI functions. A handle
is a variable that refers to a data object controlled by DB2 CLI. Using handles
relieves the application from having to allocate and manage global variables or data
structures, such as the SQLDA or SQLCA, used in IBM's embedded SQL
interfaces.

There are three types of handles:

Environment Handle
The environment handle refers to the data object that contains information
regarding the global state of the application, such as attributes and
connections. This handle is allocated by calling SQLAllocEnv(), and freed
by calling SQLFreeEnv(). An environment handle must be allocated before a
connection handle can be allocated.

Connection Handle
A connection handle refers to a data object that contains information
associated with a connection to a particular data source. This includes
connection options, general status information, transaction status, and
diagnostic information. Each connection handle is allocated by calling
SQLAllocConnect() and freed by calling SQLFreeConnect().

An application can be connected to several database servers at the same
time. An application requires a connection handle for each concurrent
connection to a database server. For information on multiple connections,
refer to “Connecting to One or More Data Sources” on page 26.

Call SQLGetInfo() to determine if a user-imposed limit on the number of
connection handles has been set.

Statement Handles
Statement handles are discussed in the next section, “Transaction
Processing” on page 29.

ODBC Connection Model
The ODBC specifications support any number of concurrent connections, each of
which is an independent transaction. That is, the application can issue SQLConnect
to X, perform some work, issue SQLConnect to Y, perform some work, and then
commit the work at X. ODBC supports multiple concurrent and independent
transactions, one per connection.

24 Call Level Interface Guide and Reference

DB2 CLI Restrictions on the ODBC Connection Model
If the application is not using the MULTICONTEXT=1 initialization file setting, there are
restrictions on DB2 CLI's support of the ODBC connection model. To obtain
simulated support of the ODBC connection model, the application must specify a
CONNECT type value of 1 (either by using the initialization file or the
SQLSetConnectOption() API. See “Initialization Keywords” on page 62 and
“Specifying the Connect Type.”)

The application can then logically connect to any number of data sources.
However, the DB2 CLI driver maintains only a single physical connection, that of
the last data source to which the application successfully connected or at which the
last SQL statement was executed.

As a result, the application is affected as follows:

� When connected to one or more data sources so that the application has
allocated some number of connect handles, any attempt to connect to a new
data source COMMITs the work on the current data source and terminates that
connection. Therefore, the application cannot have cursors concurrently open at
two data sources (including cursors WITH HOLD).

� If the application is currently connected to X and has performed work at X that
has not yet been committed or rolled back, then any execution of an API to
perform work on a valid statement handle Y results in committing the
transaction at X and reestablishing the connection to Y.

With multiple context support, DB2 CLI can fully support the ODBC connection
model. See “DB2 CLI Support of Multiple Contexts” on page 362.

CONNECT Type 1 and Type 2
Every IBM RDBMS supports both type 1 and type 2 CONNECT semantics. In both
cases, there is only one transaction active at any time.

CONNECT (Type 1) lets the application connect to only a single database at any
time so that the single transaction is active on the current connection. This models
the DRDA remote unit of work (RUW) processing.

Conversely, CONNECT (Type 2) connect lets the application connect concurrently
to any number of database servers, all of which participate in the single transaction.
This models the DRDA distributed unit of work (DUW) processing.

ODBC does not support multiple connections participating in a distributed
transaction.

Specifying the Connect Type
The connect type must be established prior to issuing SQLConnect. You can
establish the connect type using either of the following methods:

� Specify the CONNECTTYPE keyword in the common section of the initialization
file with a value of 1 (CONNECT (Type 1)) or 2 (CONNECT (Type 2)). The
initialization file is described in “DB2 CLI Initialization File” on page 60.

� Invoke SQLSetConnectOption(). Specify fOption = SQL_CONNECTTYPE with a
value of SQL_CONCURRENT_TRANS (CONNECT (Type 1)) or a value of
SQL_COORDINATED_TRANS (CONNECT (Type 2)).

 Chapter 3. Writing a DB2 CLI Application 25

Connecting to One or More Data Sources
DB2 CLI supports connections to remote data sources through DRDA.

If the application is executing with CONNECT (Type 1) and MULTICONTEXT==, then
DB2 CLI allows an application to logically connect to multiple data sources;
however, all transactions other than the transaction associated with the current
connection, must be complete (committed or rolled back). If the application is
executing with CONNECT (Type 2), then the transaction is a distributed unit of
work and all data sources participate in the disposition of the transaction (commit or
rollback).

To connect concurrently to one or more data sources, an application calls
SQLAllocConnect() once for each connection. The subsequent connection handle is
used with SQLConnect() to request a data source connection and with
SQLAllocStmt() to allocate statement handles for use within that connection. There
is also an extended connect function, SQLDriverConnect(), which allows for
additional connect options.

Unlike the distributed unit of work connections described in “Distributed Unit of
Work (Coordinated Distributed Transactions)” on page 342, there is no coordination
between the statements that are executed on different connections.

Initialization and Connection Example

26 Call Level Interface Guide and Reference

/? ... ?/

/???

?? - demonstrate basic connection to two datasources.

?? - error handling mostly ignored for simplicity

??

?? Functions used:

??

?? SQLAllocConnect SQLDisconnect

?? SQLAllocEnv SQLFreeConnect

?? SQLConnect SQLFreeEnv

?? Local Functions:

?? DBconnect

??

??/

#include <stdio.h>

#include <stdlib.h>

#include "sqlcli1.h"

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server);

#define MAX_UID_LENGTH 18

#define MAX_PWD_LENGTH 3=

#define MAX_CONNECTIONS 2

int

main()

{

 SQLHENV henv;

 SQLHDBC hdbc[MAX_CONNECTIONS];

 char ? svr[MAX_CONNECTIONS] =

 {

 "KARACHI" ,

 "DAMASCUS"

 }

/? allocate an environment handle ?/

 SQLAllocEnv(&henv);

/? Connect to first data source ?/

 DBconnect(henv, &hdbc[=],

 svr[=]);

/? Connect to second data source ?/

 DBconnect(henv, &hdbc[1],

 svr[1]);

 Chapter 3. Writing a DB2 CLI Application 27

/????????? Start Processing Step ?????????????????????????/

/? allocate statement handle, execute statement, etc. ?/

/????????? End Processing Step ???????????????????????????/

 /??/

/? Commit work on connection 1. ?/

 /??/

 SQLTransact (henv,

 hdbc[=],

 SQL_COMMIT);

 /??/

/? Commit work on connection 2. This has NO effect on the ?/

/? transaction active on connection 1. ?/

 /??/

 SQLTransact (henv,

 hdbc[1],

 SQL_COMMIT);

 printf("\nDisconnecting\n");

SQLDisconnect(hdbc[=]); /? disconnect first connection ?/

SQLDisconnect(hdbc[1]); /? disconnect second connection ?/

 SQLFreeConnect(hdbc[=]); /? free first connection handle ?/

 SQLFreeConnect(hdbc[1]); /? free second connection handle ?/

SQLFreeEnv(henv); /? free environment handle ?/

 return (SQL_SUCCESS);

}

/??

?? Server is passed as a parameter. Note that USERID and PASSWORD??

?? are always NULL. ??

??/

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server)

{

 SQLRETURN rc;

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

SQLAllocConnect(henv, hdbc);/? allocate a connection handle ?/

rc = SQLConnect(?hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n", server);

 return (SQL_ERROR);

} else {

printf(">Connected to %s\n", server);

 return (SQL_SUCCESS);

 }

}

/? ... ?/

28 Call Level Interface Guide and Reference

 Transaction Processing
The following figure shows the typical order of function calls in a DB2 CLI
application. Not all functions or possible paths are shown.

Figure 3. Transaction Processing

Figure 3 shows the steps and the DB2 CLI functions in the transaction processing
task. This task contains five steps:

� Allocating statement handles
� Preparation and execution of SQL statements

 � Processing results
� Commit or rollback
� Optionally, freeing statement handles if the statement is unlikely to be executed

again.

Although the slightly simpler SQLSetParam() function can generally be used in place
of SQLBindParameter(), the more current SQLBindParameter() function is
recommended.

Allocating Statement Handles
SQLAllocStmt() allocates a statement handle. A statement handle refers to the data
object that is used to track the execution of a single SQL statement. This includes
information such as statement options, SQL statement text, dynamic parameters,
cursor information, bindings for dynamic arguments and columns, result values and
status information (these are discussed later). Each statement handle is associated
with a unique connection handle.

A statement handle must be allocated before a statement can be executed. By
default, the maximum number of statement handles that can be allocated at any
one time is limited by the application heap size. The maximum number of statement
handles that can actually be used, however, is defined by DB2 CLI. Table 2 lists
the number of statement handles allowed for each isolation level. If an application
exceeds these limits, SQLSTATE S1014 is returned on the call to SQLPrepare() or
SQLExecDirect().

Table 2. Maximum number of statement handles allocated at one time

Isolation level Without hold With hold Total

Cursor stability 296 254 550

No commit 296 254 550

Repeatable read 296 254 550

Read stability 296 254 550

Uncommitted read 296 254 550

Preparation and Execution
After a statement handle is allocated, there are two methods of specifying and
executing SQL statements:

1. Prepare then execute

a. Call SQLPrepare() with an SQL statement as an argument.

 Chapter 3. Writing a DB2 CLI Application 29

b. Call SQLBindParameter(), or SQLSetParam() if the SQL statement contains
parameter markers.

 c. Call SQLExecute().

 2. Execute direct

a. Call SQLBindParameter() or SQLSetParam() if the SQL statement contains
parameter markers.

b. Call SQLExecDirect() with an SQL statement as an argument.

The first method splits the preparation of the statement from the execution. This
method is used when:

� The statement is executed repeatedly (usually with different parameter values).
This avoids having to prepare the same statement more than once. The
subsequent executions make use of the access plans already generated by the
prepare.

� The application requires information about the columns in the result set, prior to
statement execution.

The second method combines the prepare step and the execute step into one.
This method is used when:

� The statement is executed only once. This avoids having to call two functions
to execute the statement.

� The application does not require information about the columns in the result
set, before the statement is executed.

DB2 for OS/390 and DB2 for common server provide dynamic statement caching at
the database server. In DB2 CLI terms this means that for a given statement
handle, once a statement is prepared, it does not need to be prepared again (even
after commits or rollbacks), as long as the statement handle is not freed.
Applications that repeatedly execute the same SQL statement across multiple
transactions, can save a significant amount of processing time and network traffic
by:

1. Associating each such statement with its own statement handle, and

2. Preparing these statements once at the beginning of the application, then

3. Executing the statements as many times as is needed throughout the
application.

Binding Parameters in SQL Statements
Both of the execution methods described above, allow the use of parameter
markers in place of an expression (or host variable in embedded SQL) in an SQL
statement.

Parameter markers are represented by the ‘?’ character and indicate the position in
the SQL statement where the contents of application variables are to be substituted
when the statement is executed. The parameter markers are referenced
sequentially, from left to right, starting at 1. SQLNumParams() can be used to
determine the number of parameters in a statement.

When an application variable is associated with a parameter marker it is bound to
the parameter marker. The application must bind an application variable to each
parameter marker in the SQL statement before it executes that statement. Binding
is carried out by calling the SQLBindParameter() function with a number of

30 Call Level Interface Guide and Reference

arguments to indicate, the numerical position of the parameter, the SQL type of the
parameter, the data type of the variable, a pointer to the application variable, and
length of the variable.

The bound application variable and its associated length are called deferred input
arguments since only the pointers are passed when the parameter is bound; no
data is read from the variable until the statement is executed. Deferred arguments
allow the application to modify the contents of the bound parameter variables, and
repeat the execution of the statement with the new values.

Information for each parameter remains in effect until overridden, or until the
application unbinds the parameter or drops the statement handle. If the application
executes the SQL statement repeatedly without changing the parameter binding,
then DB2 CLI uses the same pointers to locate the data on each execution. The
application can also change the parameter binding to a different set of deferred
variables. The application must not de-allocate or discard variables used for
deferred input fields between the time it binds the fields to parameter markers and
the time DB2 CLI accesses them at execution time.

It is possible to bind the parameters to a variable of a different type from that
required by the SQL statement. The application must indicate the C data type of
the source, and the SQL type of the parameter marker, and DB2 CLI converts the
contents of the variable to match the SQL data type specified. For example, the
SQL statement might require an integer value, but your application has a string
representation of an integer. The string can be bound to the parameter, and DB2
CLI converts the string to the corresponding integer value when you execute the
statement.

SQLDescribeParam() can be used to determine the data type of a parameter
marker. If the application indicates an incorrect type for the parameter marker,
either an extra conversion by the DBMS, or an error can occur. See “Data Types
and Data Conversion” on page 37 for more information about data conversion.

For information on more advanced methods of binding application storage to
parameter markers, see “Using Arrays to Input Parameter Values” on page 350
and “Sending/Retrieving Long Data in Pieces” on page 349.

 Processing Results
The next step after the statement has been executed depends on the type of SQL
statement.

Processing Query (SELECT, VALUES) Statements
If the statement is a query statement, the following steps are generally needed in
order to retrieve each row of the result set:

1. Establish (describe) the structure of the result set, number of columns, column
types and lengths

2. (Optionally) bind application variables to columns in order to receive the data
3. Repeatedly fetch the next row of data, and receive it into the bound application

variables
4. (Optionally) retrieve columns that were not previously bound, by calling

SQLGetData() after each successful fetch

 Chapter 3. Writing a DB2 CLI Application 31

Each of the above steps requires some diagnostic checks. “Chapter 6. Using
Advanced Features” on page 341 discusses advanced techniques of using
SQLExtendedFetch() to fetch multiple rows at a time.

Step 1
Analyze the executed or prepared statement. If the SQL statement was
generated by the application, then this step might not be necessary since
the application might know the structure of the result set and the data types
of each column. If the application does know the structure of the entire
result set, and if there are a very large number of columns to retrieve, then
the application might wish to supply DB2 CLI with the descriptor
information. This can reduce network traffic since DB2 CLI does not have
to retrieve the information from the server.

On the other hand, if the SQL statement was generated at runtime (for
example, entered by a user), then the application has to query the number
of columns, the type of each column, and perhaps the names of each
column in the result set. This information can be obtained by calling
SQLNumResultCols() and SQLDescribeCol() (or SQLColAttributes()) after
preparing or after executing the statement.

Step 2
The application retrieves column data directly into an application variable
on the next call to SQLFetch(). For each column to be retrieved, the
application calls SQLBindCol() to bind an application variable to a column in
the result set. The application can use the information obtained from Step 1
to determine the C data type of the application variable and to allocate the
maximum storage the column value could occupy. Similar to variables
bound to parameter markers using SQLBindParameter() and
SQLSetParam(), columns are bound to deferred arguments. This time the
variables are deferred output arguments, as data is written to these storage
locations when SQLFetch() is called.

If the application does not bind any columns, as in the case when it needs
to retrieve columns of long data in pieces, it can use SQLGetData(). Both
the SQLBindCol() and SQLGetData() techniques can be combined if some
columns are bound and some are unbound. The application must not
deallocate or discard variables used for deferred output fields between the
time it binds them to columns of the result set and the time DB2 CLI writes
the data to these fields.

Step 3
Call SQLFetch() to fetch the first or next row of the result set. If any
columns are bound, the application variable is updated. There is also a
method that allows the application to fetch multiple rows of the result set
into an array, refer to “Retrieving A Result Set Into An Array” on page 353
for more information.

If data conversion was indicated by the data types specified on the call to
SQLBindCol(), the conversion occurs when SQLFetch() is called. Refer to
“Data Types and Data Conversion” on page 37 for an explanation.

Step 4 (Optional)
Call SQLGetData() to retrieve any unbound columns. All columns can be
retrieved this way, provided they were not bound. SQLGetData() can also
be called repeatedly to retrieve large columns in smaller pieces, which
cannot be done with bound columns.

32 Call Level Interface Guide and Reference

Data conversion can also be indicated here, as in SQLBindCol(), by
specifying the desired target C data type of the application variable. Refer
to “Data Types and Data Conversion” on page 37 for more information.

To unbind a particular column of the result set, use SQLBindCol() with a
null pointer for the application variable argument (rgbValue) To unbind all of
the columns with one function call, use SQLFreeStmt().

Applications generally perform better if columns are bound rather than retrieved
using SQLGetData(). However, an application can be constrained in the amount of
long data that it can retrieve and handle at one time. If this is a concern, then
SQLGetData() might be the better choice.

For information on more advanced methods for binding application storage to result
set columns, refer to “Retrieving A Result Set Into An Array” on page 353 and
“Sending/Retrieving Long Data in Pieces” on page 349.

Processing UPDATE, DELETE and INSERT Statements
If the statement is modifying data (UPDATE, DELETE or INSERT), no action is
required, other than the normal check for diagnostic messages. In this case,
SQLRowCount() can be used to obtain the number of rows affected by the SQL
statement.

If the SQL statement is a positioned UPDATE or DELETE, it is necessary to use a
cursor. A cursor is a moveable pointer to a row in the result table of an active query
statement. (This query statement must contain the FOR UPDATE OF clause to
ensure that the query is not opened as read-only.) In embedded SQL, cursors
names are used to retrieve, update or delete rows. In DB2 CLI, a cursor name is
needed only for positioned UPDATE or DELETE SQL statements as they reference
the cursor by name.

To update a row that was fetched, the application uses two statement handles, one
for the fetch and one for the update. The application calls SQLGetCursorName() to
obtain the cursor name. The application generates the text of a positioned UPDATE
or DELETE, including this cursor name, and executes that SQL statement using a
second statement handle. The application cannot reuse the fetch statement handle
to execute a positioned UPDATE or DELETE as it is still in use. You can also
define your own cursor name using SQLSetCursorName(), but it is best to use the
generated name, since all error messages reference the generated name, rather
than the name defined by SQLSetCursorName().

Processing Other Statements
If the statement neither queries nor modifies the data, then there is no further
action other than the normal check for diagnostic messages.

Commit or Rollback
A transaction is a recoverable unit of work, or a group of SQL statements that can
be treated as one atomic operation. This means that all the operations within the
group are guaranteed to be completed (committed) or undone (rolled back), as if
they were a single operation. A transaction can also be referred to as a unit of work
or a logical unit of work. When the transaction spans multiple connections, it is
referred to as a distributed unit of work.

DB2 CLI supports two commit modes: auto-commit and manual-commit.

 Chapter 3. Writing a DB2 CLI Application 33

In auto-commit mode, every SQL statement is a complete transaction, which is
automatically committed. For a non-query statement, the commit is issued at the
end of statement execution. For a query statement, the commit is issued after the
cursor is closed. Given a single statement handle, the application must not start a
second query before the cursor of the first query is closed.

In manual-commit mode, transactions are started implicitly with the first access to
the data source using SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any
function that returns a result set, such as those described in “Querying System
Catalog Information” on page 346. At this point a transaction begins, even if the
call failed. The transaction ends when you use SQLTransact() to either rollback or
commit the transaction. This means that any statements executed (on the same
connection) between these are treated as one transaction.

The default commit mode is auto-commit (except when participating in a
coordinated transaction, see “Distributed Unit of Work (Coordinated Distributed
Transactions)” on page 342). An application can switch between manual-commit
and auto-commit modes by calling SQLSetConnectOption(). Typically, a query-only
application might wish to stay in auto-commit mode. Applications that need to
perform updates to the data source should turn off auto-commit as soon as the
data source connection is established.

When multiple connections exist, each connection has its own transaction (unless
CONNECT (Type 2) is specified). Special care must be taken to call SQLTransact()

with the correct connection handle to ensure that only the intended connection and
related transaction is affected. Unlike distributed unit of work connections
(described in “Distributed Unit of Work (Coordinated Distributed Transactions)” on
page 342), there is no coordination between the transactions on each connection.

When to Call SQLTransact()
If the application is in auto-commit mode, it never needs to call SQLTransact(), a
commit is issued implicitly at the end of each statement execution.

In manual-commit mode, SQLTransact() must be called before calling
SQLDisconnect(). If distributed unit of work is involved, additional rules can apply.
Refer to “Distributed Unit of Work (Coordinated Distributed Transactions)” on
page 342 for details.

It is recommended that an application that performs updates should not wait until
the disconnect before committing or rolling back the transaction. The other extreme
is to operate in auto-commit mode, which is also not recommended as this adds
extra processing. The application can modify the auto-commit mode by invoking the
SQLSetConnectOption() function. See “Environment, Connection, and Statement
Options” on page 341 and the SQLSetConnectOption() function for information
about switching between auto-commit and manual-commit.

Consider the following when deciding where in the application to end a transaction:

� If using CONNECT (Type 1) with MULTICONTEXT==, only the current connection
can have an outstanding transaction. If using CONNECT (Type 2), all
connections participate in a single transaction.

� If using MULTICONTEXT=1, each connection can have an outstanding transaction.
� Various resources can be held while you have an outstanding transaction.

Ending the transaction releases the resources for use by other users.

34 Call Level Interface Guide and Reference

� When a transaction is successfully committed or rolled back, it is fully
recoverable from the system logs. Open transactions are not recoverable.

Effects of Calling SQLTransact()
When a transaction ends:

� All locks on DBMS objects are released, except those that are associated with
a held cursor.

� Prepared statements are preserved from one transaction to the next if the data
source supports statement caching (DB2 for OS/390 Version 5 does). After a
statement is prepared on a specific statement handle, it does not need to be
prepared again even after a commit or rollback, provided the statement
continues to be associated with the same statement handle.

� Cursor names, bound parameters, and column bindings are maintained from
one transaction to the next.

� By default, cursors are preserved after a commit (but not a rollback). All cursors
are defined using the WITH HOLD clause (except when connected to SQL/DS,
which does not support the WITH HOLD clause). For information about
changing the default behavior, refer to “SQLSetStmtOption - Set Statement
Option” on page 314.

For more information and an example refer to “SQLTransact - Transaction
Management” on page 338.

Freeing Statement Handles
Call SQLFreeStmt() to end processing for a particular statement handle. This
function can be used to do one or more of the following:

� Unbind all columns of the result set
� Unbind all parameter markers
� Close any cursors and discard any pending results
� Drop the statement handle, and release all associated resources

The statement handle can be reused for other statements provided it is not
dropped. If a statement handle is reused for another SQL statement string, any
cached access plan for the original statement is discarded.

The columns and parameters should always be unbound before using the handle to
process a statement with a different number or type of parameters or a different
result set; otherwise application programming errors might occur.

 Diagnostics
Diagnostics refers to dealing with warning or error conditions generated within an
application. There are two levels of diagnostics when calling DB2 CLI functions :

 � Return codes
� Detailed diagnostics (SQLSTATEs, messages, SQLCA)

Each CLI function returns the function return code as a basic diagnostic. The
SQLError() function provides more detailed diagnostic information. The
SQLGetSQLCA() function provides access to the SQLCA, if the diagnostic is reported
by the data source. This arrangement lets applications handle the basic flow
control, and the SQLSTATES allow determination of the specific causes of failure.

 Chapter 3. Writing a DB2 CLI Application 35

The SQLError() function returns three pieces of information:

 � SQLSTATE

� Native error: if the diagnostic is detected by the data source, this is the
SQLCODE; otherwise, this is set to -99999.

� Message text: this is the message text associated with the SQLSTATE.

For the detailed function information and example usage, refer to “SQLError -
Retrieve Error Information” on page 142.

Function Return Codes
The following table lists all possible return codes for DB2 CLI functions.

Table 3. DB2 CLI Function Return Codes

Return Code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning or
other information. Call SQLError() to receive the
SQLSTATE and any other informational messages or
warnings. The SQLSTATE class is '01'. See Table 144
on page 401.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant data
was found. When this is returned after the execution of
an SQL statement, additional information might be
available which can be obtained by calling SQLError().

SQL_NEED_DATA The application tried to execute an SQL statement but
DB2 CLI lacks parameter data that the application had
indicated would be passed at execute time. For more
information, see “Sending/Retrieving Long Data in
Pieces” on page 349.

SQL_ERROR The function failed. Call SQLError() to receive the
SQLSTATE and any other error information.

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection or statement handle). This is a
programming error. No further information is available.

 SQLSTATEs
Since different database servers often have different diagnostic message codes,
DB2 CLI provides a standard set of SQLSTATEs that are defined by the X/Open
SQL CAE specification. This allows consistent message handling across different
database servers.

SQLSTATEs are alphanumeric strings of 5 characters (bytes) with a format of
ccsss, where cc indicates class and sss indicates subclass. Any SQLSTATE that
has a class of:

� '01', is a warning.
� 'S1', is generated by the DB2 CLI driver.

Note: X/Open has reserved class 'HY' for CLI implementations, which is currently
equivalent to the 'S1' class. This might be a consideration if you intend to
follow the X/Open and/or ISO CLI standard in the future.

36 Call Level Interface Guide and Reference

For some error conditions, DB2 CLI returns SQLSTATES that differ from
those states listed in the Microsoft ODBC 2.0 Programmer's Reference and
SDK Guide. This is a result of DB2 CLI following the X/Open SQL CAE and
SQL92 specifications.

DB2 CLI SQLSTATEs include both additional IBM-defined SQLSTATEs that are
returned by the database server, and DB2 CLI defined SQLSTATEs for conditions
that are not defined in the X/Open specification. This allows for the maximum
amount of diagnostic information to be returned.

Follow these guidelines for using SQLSTATEs within your application:

� Always check the function return code before calling SQLError() to determine if
diagnostic information is available.

� Use the SQLSTATEs rather than the native error code.

� To increase your application's portability, only build dependencies on the subset
of DB2 CLI SQLSTATEs that are defined by the X/Open specification, and
return the additional ones as information only. (Dependencies refers to the
application making logic flow decisions based on specific SQLSTATEs.)

Note: It might be useful to build dependencies on the class (the first 2
characters) of the SQLSTATEs.

� For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message also includes the IBM-defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

See Table 144 on page 401 for a listing and description of the SQLSTATEs
explicitly returned by DB2 CLI.

 SQLCA
Embedded applications rely on the SQLCA for all diagnostic information. Although
DB2 CLI applications can retrieve much of the same information by using
SQLError(), there still might be a need for the application to access the SQLCA
related to the processing of a statement. (For example, after preparing a statement,
the SQLCA contains the relative cost of executing the statement.) The SQLCA only
contains meaningful information if there was an interaction with the data source on
the previous request (for example: connect, prepare, execute, fetch, disconnect).

The SQLGetSQLCA() function is used to retrieve this structure. See “SQLGetSQLCA
- Get SQLCA Data Structure” on page 228 for more information.

Data Types and Data Conversion
When writing a DB2 CLI application it is necessary to work with both SQL data
types and C data types. This is unavoidable since the DBMS uses SQL data types,
and the application must use C data types. This means the application must match
C data types to SQL data types when transferring data between the DBMS and the
application (when calling DB2 CLI functions).

To help address this, DB2 CLI provides symbolic names for the various data types,
and manages the transfer of data between the DBMS and the application. It also
performs data conversion (from a C character string to an SQL INTEGER type, for

 Chapter 3. Writing a DB2 CLI Application 37

example) if required. To accomplish this, DB2 CLI needs to know both the source
and target data type. This requires the application to identify both data types using
symbolic names.

38 Call Level Interface Guide and Reference

C and SQL Data Types
Table 4 on page 40 lists each of the SQL data types, with its corresponding
symbolic name, and the default C symbolic name. These data types represent the
combination of the ODBC V2.0 minimum, core, and extended data types. The
ODBC extended data type SQL_BIGINT is not supported. In addition, DB2 CLI
supports SQL_GRAPHIC, SQL_VARGRAPHIC and SQL_LONGVARGRAPHIC.

SQL Data Type
This column contains the SQL data types as they would appear in an SQL
CREATE DDL statement. The SQL data types are dependent on the
DBMS.

Symbolic SQL Data Type
This column contains SQL symbolic names that are defined (in sqlcli1.h)
as an integer value. These values are used by various functions to identify
the SQL data types listed in the first column. See “Example” on page 129
for an example using these values.

Default C Symbolic Data Type
This column contains C symbolic names, also defined as integer values.
These values are used in various function arguments to identify the C data
type as shown in Table 5 on page 41. The symbolic names are used by
various functions, (such as SQLBindParameter(), SQLGetData(),
SQLBindCol()) to indicate the C data types of the application variables.
Instead of explicitly identifying the C data type when calling these functions,
SQL_C_DEFAULT can be specified instead, and DB2 CLI assumes a
default C data type based on the SQL data type of the parameter or
column as shown by this table. For example, the default C data type of
SQL_DECIMAL is SQL_C_CHAR.

 Chapter 3. Writing a DB2 CLI Application 39

Table 5 on page 41 shows the generic C type definitions for each symbolic C type.

C Symbolic Data Type
This column contains C symbolic names, defined as integer values. These
values are used in various function arguments to identify the C data type
shown in the last column. See “Example” on page 88 for an example using
these values.

C Type
This column contains C defined types, defined in sqlcli1.h using a C
typedef statement. The values in this column should be used to declare all
DB2 CLI related variables and arguments, in order to make the application
more portable. Refer to Table 7 on page 42 for a list of additional symbolic
data types used for function arguments.

Base C Type
This column is shown for reference only. All variables and arguments
should be defined using the symbolic types in the previous column. Some
of the values are C structures that are described in Table 6 on page 41.

Table 4. SQL Symbolic and Default Data Types

SQL Data Type Symbolic SQL Data Type Default Symbolic C Data Type

CHAR SQL_CHAR SQL_C_CHAR

CHAR FOR BIT DATA SQL_BINARY SQL_C_BINARY

DATE SQL_DATE SQL_C_DATE

DECIMAL SQL_DECIMAL SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR BIT
DATA

SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC SQL_LONGVARGRAPHIC SQL_C_DBCHAR

NUMERIC a SQL_NUMERIC a SQL_C_CHAR

REAL b SQL_REAL SQL_C_FLOAT

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TIME SQL_C_TIME

TIMESTAMP SQL_TIMESTAMP SQL_C_TIMESTAMP

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

Note:

a NUMERIC is a synonym for DECIMAL on DB2 for OS/390, DB2 for VSE and VM and DB2 for
common server.
b REAL is not valid for DB2 for common server or DB2 for OS/390.

The data types, DATE, DECIMAL, NUMERIC, TIME, and TIMESTAMP cannot be transferred to their
default C buffer types without a conversion.

40 Call Level Interface Guide and Reference

Refer to Table 7 on page 42 for more information on the SQLUSMALLINT C data
type.

Table 5. C Data Types

C Symbolic Data Type C Type Base C type

SQL_C_CHAR SQLCHAR unsigned char

SQL_C_BIT SQLCHAR unsigned char or char (Value 1 or 0)

SQL_C_TINYINT SQLSCHAR signed char (Range -128 to 127)

SQL_C_SHORT SQLSMALLINT short int

SQL_C_LONG SQLINTEGER long int

SQL_C_DOUBLE SQLDOUBLE double

SQL_C_FLOAT SQLREAL float

SQL_C_DATE DATE_STRUCT see Table 6 on page 41

SQL_C_TIME TIME_STRUCT see Table 6 on page 41

SQL_C_TIMESTAMP TIMESTAMP_STRUCT see Table 6 on page 41

SQL_C_BINARY SQLCHAR unsigned char

SQL_C_DBCHAR SQLDBCHAR wchar_t

Table 6. C DATE, TIME, and TIMESTAMP Structures

C Type Generic Structure

DATE_STRUCT typedef struct DATE_STRUCT

 {

SQLSMALLINT year;cols='&cw2. &cw3. ?'

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 } DATE_STRUCT;

TIME_STRUCT typedef struct TIME_STRUCT

 {

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 } TIME_STRUCT;

TIMESTAMP_STRUCT typedef struct TIMESTAMP_STRUCT

 {

 SQLUSMALLINT year;

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 SQLINTEGER fraction;

 } TIMESTAMP_STRUCT;

Other C Data Types
In addition to the data types that map to SQL data types, there are also C symbolic
types used for other function arguments, such as pointers and handles. Both the
generic and ODBC data types are shown below.

 Chapter 3. Writing a DB2 CLI Application 41

Table 7. C Data Types and Base C Data Types

Defined C Type Base C Type Typical Usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLHENV long int Handle referencing environment information.

SQLHDBC long int Handle referencing data source connection
information.

SQLHSTMT long int Handle referencing statement information.

SQLUSMALLINT unsigned
short int

Function input argument for unsigned short integer
values.

SQLUINTEGER unsigned long
int

Function input argument for unsigned long integer
values.

SQLRETURN short int Return code from DB2 CLI functions.

 Data Conversion
As mentioned previously, DB2 CLI manages the transfer and any required
conversion of data between the application and the DBMS. Before the data transfer
actually takes place, the source, target or both data types are indicated when
calling SQLBindParameter(), SQLBindCol() or SQLGetData(). These functions use
the symbolic type names shown in Table 4 on page 40, to identify the data types
involved.

For example, to bind a parameter marker that corresponds to an SQL data type of
DECIMAL(5,3), to an application's C buffer type of double, the appropriate
SQLBindParameter() call would look like:

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,

SQL_DECIMAL, 5, 3, double_ptr, NULL);

Table 4 shows only the default data conversions. The functions mentioned in the
previous paragraph can be used to convert data to other types, but not all data
conversions are supported or make sense. Table 8 on page 43 shows all the
conversions supported by DB2 CLI.

The first column in Table 8 contains the data type of the SQL data type, the
remaining columns represent the C data types. If the C data type columns contains:

D The conversion is supported and is the default conversion for the SQL data
type.

X All IBM DBMSs support the conversion,
Blank No IBM DBMS supports the conversion.

For example, the table indicates that a CHAR (or a C character string as indicated
in Table 8) can be converted into a SQL_C_LONG (a signed long). In contrast, a
LONGVARCHAR cannot be converted to a SQL_C_LONG.

See Appendix E, “Data Conversion” on page 411 for information about required
formats and the results of converting between data types.

Limits on precision, and scale, as well as truncation and rounding rules for type
conversions follow rules specified in the IBM SQL Reference with the following
exception; truncation of values to the right of the decimal point for numeric values

42 Call Level Interface Guide and Reference

returns a truncation warning, whereas truncation to the left of the decimal point
returns an error. In cases of error, the application should call SQLError() to obtain
the SQLSTATE and additional information on the failure. When moving and
converting floating point data values between the application and DB2 CLI, no
correspondence is guaranteed to be exact as the values can change in precision
and scale.

Table 8. Supported Data Conversions

SQL Data Type S
Q

L
_C

_C
H

A
R

S
Q

L
_C

_L
O

N
G

S
Q

L
_C

_S
H

O
R

T

S
Q

L
_C

_T
IN

Y
IN

T

S
Q

L
_C

_F
L

O
A

T

S
Q

L
_C

_D
O

U
B

L
E

S
Q

L
_C

_D
A

T
E

S
Q

L
_C

_T
IM

E

S
Q

L
_C

_T
IM

E
S

T
A

M
P

S
Q

L
_C

_B
IN

A
R

Y

S
Q

L
_C

_B
IT

S
Q

L
_C

_D
B

C
H

A
R

SQL_CHAR X X X X X X X X X X X

SQL_DATE X D X

SQL_DECIMAL D X X X X X X

SQL_DOUBLE X X X X X D X

SQL_FLOAT X X X X X D X

SQL_GRAPHIC X D

SQL_INTEGER X D X X X X X

SQL_LONGVARCHAR D X X X

SQL_LONGVARGRAPHIC X X D

SQL_NUMERIC D X X X X X X

SQL_REAL X X X X D X X

SQL_SMALLINT X X D X X X X

SQL_TIME X D X

SQL_TIMESTAMP X X X D

SQL_VARCHAR D X X X X X X X X X X

SQL_VARGRAPHIC X D

Note:

REAL is not supported by DB2 for common server.

NUMERIC is a synonym for DECIMAL on DB2 for OS/390, DB2 for VSE and VM, and DB2 for common server.

Working With String Arguments
The following conventions deal with the various aspects of working with string
arguments in Call Level Interface functions.

Length of String Arguments
Input string arguments have an associated length argument. This argument
indicates to Call Level Interface, either the exact length of the argument (not
including the null terminator), the special value SQL_NTS to indicate a
null-terminated string, or SQL_NULL_DATA to pass a NULL value. If the length is
set to SQL_NTS, Call Level Interface determines the length of the string by locating
the null terminator.

 Chapter 3. Writing a DB2 CLI Application 43

Output string arguments have two associated length arguments, an input length
argument to specify the length of the allocated output buffer, and an output length
argument to return the actual length of the string returned by DB2 CLI. The
returned length value is the total length of the string available for return, regardless
of whether it fits in the buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned in
the length argument and the output buffer is untouched.

If a function is called with a null pointer for an output length argument, Call Level
Interface does not return a length, and assumes that the data buffer is large
enough to hold the data. When the output data is a NULL value, DB2 CLI can not
indicate that the value is NULL. If it is possible that a column in a result set can
contain a NULL value, a valid pointer to the output length argument must always be
provided. It is highly recommended that a valid output length argument always be
used.

If the length argument (pcbValue) and the output buffer (rgbValue) are contiguous
in memory, DB2 CLI can return both values more efficiently, improving application
performance. For example, if the following structure is defined and
&buffer.pcbValue and buffer.rgbValue are passed to SQLBindCol(), DB2 CLI
updates both values in one operation.

struct

{ SQLINTEGER pcbValue;

 SQLCHAR rgbValue [BUFFER_SIZE];

} buffer;

Null-Termination of Strings
By default, every character string that Call Level Interface returns is terminated with
a null terminator (hex 00), except for strings returned from the graphic data type
into SQL_C_CHAR application variables. The graphic data type that is retrieved
into SQL_C_DBCHAR application variables is null terminated with a double byte
null terminator. This requires that all buffers allocate enough space for the
maximum number of bytes expected, plus the null-terminator.

It is also possible to use SQLSetEnvAttr() and set an environment attribute to
disable null termination of variable length output (character string) data. In this
case, the application allocates a buffer exactly as long as the longest string it
expects. The application must provide a valid pointer to storage for the output
length argument so that DB2 CLI can indicate the actual length of data returned;
otherwise, the application has no means to determine this. The DB2 CLI default is
to always write the null terminator.

 String Truncation
If an output string does not fit into a buffer, DB2 CLI truncates the string to the size
of the buffer, and writes the null terminator. If truncation occurs, the function returns
SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004 indicating truncation.
The application can then compare the buffer length to the output length to
determine which string was truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an
SQLSTATE of 01004, at least one of the buffers bound to a column is too small to
hold the data. For each buffer that is bound to a column, the application can

44 Call Level Interface Guide and Reference

compare the buffer length with the output length and determine which column was
truncated.

ODBC specifies that string data can be truncated on input or output with the
appropriate SQLSTATE. As the data source, an IBM relational database (DB2)
does not truncate data on input, but might truncate data on output to maintain data
integrity. On input, DB2 rejects string truncation with a negative SQLCODE (-302)
and an SQLSTATE of 22001. On output, DB2 truncates the data and issues
SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004.

Interpretation of Strings
Normally, DB2 CLI interprets string arguments in a case-sensitive manner and does
not trim any spaces from the values. The one exception is the cursor name input
argument on the SQLSetCursorName() function. In this case, if the cursor name is
not delimited (enclosed by double quotes) the leading and trailing blanks are
removed and case is preserved.

Querying Environment and Data Source Information
 There are many situations when an application requires information about the
characteristics and capabilities of the current DB2 CLI driver or the data source that
it is connected to.

One of the most common situations involves displaying information for the user.
Information such as the data source name and version, or the version of the DB2
CLI driver might be displayed at connect time, or as part of the error reporting
process.

These functions are also useful to generic applications that are written to adapt and
take advantage of facilities that might be available from some, but not all database
servers. The following DB2 CLI functions provide data source specific information:

� “SQLDataSources - Get List of Data Sources” on page 124
� “SQLGetFunctions - Get Functions” on page 207
� “SQLGetInfo - Get General Information” on page 212
� “SQLGetTypeInfo - Get Data Type Information” on page 237

 Chapter 3. Writing a DB2 CLI Application 45

Querying Environment Information Example

/???/

/? Querying environment and data source information ?/

/???/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlcli1.h>

void main()

{

SQLHENV hEnv; /? Environment handle ?/

SQLHDBC hDbc; /? Connection handle ?/

SQLRETURN rc; /? Return code for API calls ?/

SQLHSTMT hStmt; /? Statement handle ?/

SQLCHAR dsname[3=]; /? Data source name ?/

SQLCHAR dsdescr[255]; /? Data source description ?/

SQLSMALLINT dslen; /? Length of data source ?/

SQLSMALLINT desclen; /? Length of dsdescr ?/

BOOL found = FALSE;

 SQLSMALLINT funcs[1==];

 SQLINTEGER rgbValue;

 /?

? Initialize environment - allocate environment handle.

 ?/

rc = SQLAllocEnv(&hEnv);

rc = SQLAllocConnect(hEnv, &hDbc);

 /?

? Use SQLDataSources to verify MVSDB2 does exist.

 ?/

while((rc = SQLDataSources(hEnv,

 SQL_FETCH_NEXT,

 dsname,

 SQL_MAX_DSN_LENGTH+1,

 &dslen,

 dsdescr,

&desclen)) != SQL_NO_DATA_FOUND)

 {

if(!strcmp(dsname, "MVSDB2")) /? data source exist ?/

 {

found = TRUE;

 break;

 }

 }

if(!found)

 {

fprintf(stdout, "Data source %s does not exist...\n", dsname);

fprintf(stdout, "program aborted.\n");

 exit(1);

 }

46 Call Level Interface Guide and Reference

if((rc = SQLConnect(hDbc, dsname, SQL_NTS, "myid", SQL_NTS, "mypd", SQL_NTS))

== SQL_SUCCESS)

 {

fprintf(stdout, "Connect to %s\n", dsname);

 }

SQLAllocStmt(hDbc, &hStmt);

 /?

? Use SQLGetFunctions to store all APIs status.

 ?/

rc = SQLGetFunctions(hDbc, SQL_API_ALL_FUNCTIONS, funcs);

 /?

? Check whether SQLGetInfo is supported in this driver. If so,

? verify whether DATE is supported for this data source.

 ?/

if(funcs[SQL_API_SQLGETINFO] == 1)

 {

SQLGetInfo(hDbc, SQL_CONVERT_FUNCTIONS, (SQLPOINTER)&rgbValue, 255, &desclen);

if(rgbValue & SQL_CVT_DATE)

 {

SQLGetTypeInfo(hStmt, SQL_DATE);

/? use SQLBindCol and SQLFetch to retrieve data?/

 }

 }

}

 Chapter 3. Writing a DB2 CLI Application 47

48 Call Level Interface Guide and Reference

Chapter 4. Configuring CLI and Running Sample Applications

This section provides information about installing DB2 CLI, the DB2 CLI runtime
environment, and the preparation steps needed to run a DB2 CLI application.

� “Installing DB2 CLI”
� “DB2 CLI Runtime Environment” on page 50
� “Setting up DB2 CLI Runtime Environment” on page 51
� “Preparing a DB2 CLI Application” on page 54
� “DB2 CLI Initialization File” on page 60
� “Chapter 7. Problem Diagnosis” on page 373

Installing DB2 CLI
The steps in this section describe the SMP/E jobs you must edit and run to install
DB2 CLI. Customize these jobs to specify data set names for you DB2 installation
and SMP/E data sets. Refer to the header notes in each job and to Section 2 of
Installation Guidefor details.

Step 1: Copy and Edit the SMP/E Jobs
Use this sample JCL to invoke the MVS utility IEBCOPY to copy the SMP/E jobs to
DASD.

//? COMPID: DB2,574=XYR==

//? DOC: LOAD CLI SMP INSTALLATION JCL FROM TAPE FOR DB2

//LOAD EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=?

//JCLTAPE DD DSN=IBM.HDB551=.F2,VOL=(PRIVATE,,SER=DB551=),

// UNIT=TAPE,LABEL=(3,SL),DISP=(OLD,PASS)

//?

//JCLDISK DD DSN=SYSADM.JCL.CNTL,VOL=SER=USER=1,UNIT=SYSDA,

// DISP=OLD

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSIN DD ?

 COPY I=JCLTAPE,O=JCLDISK

 SELECT MEMBER=(DSNTCJAE)

 SELECT MEMBER=(DSNTCJAC,DSNTCJAP,DSNTCJRC)

//?

Figure 4. Sample JCL to Copy SMP/E jobs to DASD

Step 2: Run the Allocate Job: DSNTCJAE
DSNTCJAE allocates a new header data set.

Step 3: Run the Receive Job: DSNTCJRC
DSNTCJRC invokes SMP/E to receive the FMIDs for DB2 CLI into the SMP/E
control data sets.

 Copyright IBM Corp. 1997 49

Step 4: Run the Apply Job: DSNTCJAP
DSNTCJAP invokes SMP/E to apply the FMIDs for DB2 CLI to the DB2 target
libraries.

The DSNTCJAP job can include objects for Language Environment (LE) or Callable
Services (CSS) libraries. If maintenance is later applied to LE or CSS libraries, you
might need to run the SMP REPORT CALLLIBS command to generate a summary
report. See System Modification Program Extended (SMP/E) Reference for detailed
information.

Step 5: Run the Accept Job: DSNTCJAC
DSNTCJAC invokes SMP/E to accept the FMIDs for DB2 CLI into the DB2
distribution libraries.

DB2 CLI Runtime Environment
DB2 CLI does not support an ODBC driver manager. All API calls are routed
through the single CLI/ODBC driver that is loaded at run time into the application
address space. DB2 CLI support is implemented as an IBM C/C++ Dynamic Load
Library (DLL). By providing DB2 CLI support via a DLL, DB2 CLI applications do
not need to linkedit any DB2 CLI driver code with the application load module.
Instead, the linkage to the DB2 CLI APIs is resolved dynamically at runtime by the
IBM Language Environment (LE) runtime support.

The DB2 CLI driver can use either the call attachment facility (CAF) or the
Recoverable Resource Manager Services attachment facility (RRSAF) to connect to
the DB2 for OS/390 address space.

� If the DB2 CLI application is not running as a DB2 for OS/390 stored
procedure, the MVSATTACHTYPE keyword in the DB2 CLI initialization file
determines the attachment facility that DB2 CLI uses.

� If the DB2 CLI application is running as a DB2 for OS/390 stored procedure,
then DB2 CLI uses the attachment facility that was specified for stored
procedures.

When the DB2 CLI application invokes the first ODBC function, SQLAllocEnv(), the
DB2 CLI driver DLL is loaded and the application is connected to the DB2 for
OS/390 subsystem.

DB2 CLI supports access to the local DB2 for OS/390 subsystems and any remote
data source that is accessible via DB2 for OS/390 Version 5. This includes:

� Remote DB2 subsystems via specification of an alias or three-part name
� Remote DRDA-1 and DRDA-2 servers via LU 6.2 or TCP/IP.

The relationship between the application, the DB2 for OS/390 V5 CLI driver and the
DB2 for OS/390 subsystem are illustrated in Figure 5.

Figure 5. Relationship between DB2 for OS/390 V5 CLI components

50 Call Level Interface Guide and Reference

 Connectivity Requirements
DB2 for OS/390 V5 CLI has the following connectivity requirements:

� DB2 CLI applications must execute on a machine on which Version 5 of DB2
for OS/390 is installed.

� If the application is executing with MULTICONTEXT=1, then there are multiple
physical connections. Each connection corresponds to an independent
transaction and DB2 thread.

� If the application is executing CONNECT (Type 1) (described in “CONNECT
Type 1 and Type 2” on page 25) and MULTICONTEXT==, then there is only one
current physical connection and one transaction on that connection. All
transactions on logical connections (that is, with a valid connection handle) are
rolled back by the application or committed by DB2 CLI. This is a deviation
from the ODBC connection model.

Setting up DB2 CLI Runtime Environment
This section describes the general setup required to enable DB2 CLI applications.
The steps in this section only need to be performed once, and are usually
performed as part of the installation process for DB2 for OS/390.

The DB2 CLI bind files must be bound to the data source. The following two bind
steps are required:

� Create packages at every data source
� Create at least one plan to name those packages.

These bind steps are described in the following sections:

� “Bind DBRMs to Packages”
� “Bind an Application Plan” on page 53

Special considerations for the OS/390 OpenEdition environment are described in
the following section:

� “Setting up OS/390 OpenEdition Environment” on page 53

Bind DBRMs to Packages
For an application to access a data source using DB2 CLI, the following IBM
supplied CLI DBRMs (shipped in DSN510.SDSNDBRM) must be bound to all data
sources, including the local DB2 for OS/390 subsystem and all remote (DRDA) data
sources.

� DSNCLICS bound with ISOLATION(CS)

� DSNCLIRR bound with ISOLATION(RR)

� DSNCLIRS bound with ISOLATION(RS)

� DSNCLIUR bound with ISOLATION(UR)

� DSNCLINC bound with ISOLATION(NC)

� DSNCLIC1 bound with default options

� DSNCLIC2 bound with default options

� DSNCLIMS bound with default options

 Chapter 4. Configuring CLI and Running Sample Applications 51

� DSNCLIVM (only needed to access SQL/DS) bound with default options

� DSNCLIAS (only needed to access OS/400) bound with default options

� DSNCLIV1 (only needed to access DB2 for common server Version 1) bound
with default options

� DSNCLIV2 (only needed to access DB2 for common server Version 2) bound
with default options

� DSNCLIQR bound to any site that supports DRDA query result sets.

� DSNCLIF4 bound with default options

Package Bind Options
For packages listed above that use the ISOLATION keyword, the impact of
package bind options in conjunction with the DB2 CLI initialization file keywords is
as follows:

 � ISOLATION

Packages must be bound with the isolation specified.

 � DYNAMICRULES(BIND)

Binding the packages with this option offers encapsulation and security similar
to that of static SQL. The recommendations and consequences for using this
option are as follows:

1. Bind DB2 CLI packages or plan with DYNAMICRULES(BIND) from a
'driver' authorization ID with table privileges.

2. Issue GRANT EXECUTE on each collection.package or plan name to
individual users. Plans are differentiated by plan name; packages are
differentiated by collection.

3. Select a plan or package by using the PLANNAME or COLLECTIONID
keywords in the DB2 CLI initialization file.

4. When dynamic SQL is issued, the statement is processed with the 'driver'
authid. Users need execute privileges; table privileges are not required.

5. The CURRENTSQLID keyword cannot be used in the DB2 CLI initialization
file. Use of this keyword results in an error at SQLConnect.

 � SQLERROR(CONTINUE)

Use this keyword to bind DB2 CLI to an earlier version of DB2 for OS/390 (prior
to Version 5).

Attention: BIND issues a warning message if an attempt is made to use an
unsupported function when binding to a DB2 for OS/390 release prior to Version 5.

Bind Packages at Remote Sites
For an application to access a data source using DB2 CLI, bind the DBRMs listed
above to all data sources, including the local DB2 for OS/390 subsystem and all
remote (DRDA) data sources. The SQLConnect() argument szDSN identifies the
data source. The data source is the location in the DB2 SYSIBM.LOCATION
catalog table. An application running under DB2 CLI to a remote DB2 for OS/390,
or another DBMS, does not need to be bound into the DB2 CLI plan; rather it can
be bound as a package at the remote site. Failure to bind the package at the
remote site results in SQLCODE -805.

52 Call Level Interface Guide and Reference

Bind Stored Procedures
A stored procedure running under DB2 CLI to a remote DB2 for OS/390, or another
DBMS, does not need to be bound into the DB2 CLI plan; rather it can be bound as
a package at the remote site.

For a stored procedure that resides on the local DB2 for OS/390, the stored
procedure package must be bound in the DB2 CLI plan, using PKLIST. Stored
procedures on remote servers only need to bind to that remote server as a
package.

For example, DB2 CLI must always be bound in a plan to a DB2 for OS/390
subsystem to which DB2 CLI first establishes an affinity on the SQLAllocEnv() call.
This is the local DB2. The scenario in this example is equivalent to specifying the
MVSDEFAULTSSID keyword in the initialization file. If DB2 CLI calls a stored procedure
that resides at this local DB2 for OS/390, that stored procedure package must be in
the DB2 CLI plan, using PKLIST.

This process is unique to DB2 for OS/390 stored procedure support. For more
information about using stored procedures, see “Using Stored Procedures” on
page 356.

Include local, remote, and stored procedure packages in the PKLIST of the plan at
the site where the client will execute.

Bind an Application Plan
A DB2 plan must be created using the PKLIST keyword to name all packages listed
in “Bind DBRMs to Packages” on page 51. Any name can be selected for the plan;
the default name is DSNACLI. If a name other than the default is selected, that
name must be specified within the initialization file by using the PLANNAME keyword.

PLAN Bind Options
Use PLAN bind options as follows:

 � DISCONNECT(EXPLICIT)

All DB2 CLI plans are created using this option. DISCONNECT(EXPLICIT) is
the default value; do not change it.

 � CURRENTSERVER

Do not specify this keyword when binding plans.

An online bind sample, DSNTIJCL, is available in DSN510.SDSNSAMP.

Setting up OS/390 OpenEdition Environment
To use DB2 CLI in the OS/390 OpenEdition environment, the DB2 CLI definition
side-deck must be available to OpenEdition users.

The OpenEdition compiler determines the contents of an input file based on the file
extension. In the case of a file residing in an MVS partitioned data set (PDS), the
last qualifier in the PDS name is treated as the file extension.

The OpenEdition compiler recognizes the DB2 CLI definition side-deck by these
criteria:

 Chapter 4. Configuring CLI and Running Sample Applications 53

� It must reside in an MVS PDS
� The last qualifier in the PDS name must be .EXP

Therefore, to make the DB2 CLI definition side-deck available to OpenEdition
users, you should define an MVS data set alias that uses .EXP as the last qualifier
in the name. This alias should relate to the SDSNMACS data set which is where the
DB2 CLI definition side-deck is installed.

For example, assume that DB2 is installed using DSN51= as the high level data set
qualifier. You can define the alias using the following command:

DEFINE ALIAS(NAME('DSN51=.SDSNC.EXP') RELATE('DSN51=.SDSNMACS'))

This alias allows OpenEdition users to directly reference the DB2 CLI definition
side-deck by specifying:

"//'DSN51=.SDSNC.EXP(DSNAOCLI)'"

as one of the input files to the OpenEdition c89 command.

Preparing a DB2 CLI Application
This section provides an overview of the DB2 CLI components and explains the
steps you follow to prepare a DB2 CLI application.

Figure 6 shows the DB2 CLI components used to build the DB2 CLI DLL, and the
process you follow to install and prepare a DB2 CLI application. The shaded areas
identify the components that are shipped.

Figure 6. DB2 CLI Application Development and Execution

The following sections describe the requirements and steps that are necessary to
run a DB2 CLI application.

� “DB2 CLI Application Requirements”
� “Application Execution” on page 55

DB2 CLI Application Requirements
To successfully build a DLL application, you must ensure that the correct compile,
prelink, and linkedit options are used. In particular, your application must generate
the appropriate DLL linkage for the exported DB2 CLI DLL functions.

The C++ compiler always generates DLL linkage. However, the C compiler only
generates DLL linkage if the DLL compile option is used. Failure to generate the
necessary DLL linkage can cause the prelinker and linkage editor to issue warning
messages for unresolved references to DB2 CLI functions.

The minimum requirements for a DB2 CLI application are as follows:

� Compiler: IBM C/C++ for MVS/ESA Version 3, Release 1, or subsequent
releases.

If the C compiler is used, then the DLL compiler option must be specified.

� Language runtime support: IBM Language Environment Version 1, Release 5,
or subsequent releases.

� The DB2 CLI application must be written and linkedited to execute with a 31-bit
addressing mode, AMODE(31).

54 Call Level Interface Guide and Reference

Special Considerations for OS/390 OpenEdition
A special consideration applies to DB2 CLI product data set access. If you build a
DB2 CLI application in OS/390 OpenEdition, you can use the c89 compile
command to compile your application. Even though you compile your application
under OpenEdition, you can directly reference the non-HFS DB2 CLI data sets in
the c89 command. There is no need to copy the DB2 CLI product files to HFS.

 Application Execution
The following steps describe application preparation and execution:

� “Step 1. Compile the Application”
� “Step 2. Prelink and Linkedit the Application” on page 57
� “Step 3. Execute the Application” on page 59

Step 1. Compile the Application
Include the following statement in your DB2 CLI application:

#include <sqlcli1.h>

The sqlcli1.h file includes all information that is required for compiling your DB2
CLI application. All DB2 CLI header files, including sqlcli1.h, that define the
function prototypes, constants, and data structures that are needed for a DB2 CLI
application are shipped in the DSN51=.SDSNC.H data set. Therefore, you must add
this dataset to your SYSPATH concatenation when you compile your DB2 CLI
application.

 Chapter 4. Configuring CLI and Running Sample Applications 55

For example, your compile job might look like:

//?

//? Sample CLI application compile job

//? This shows sample JCL to compile a CLI application program.

//? In this sample, the CLI application consists of a single C source

//? part (PDS member name CLIAPPL) and associated header files.

//? This sample assumes that the user is using the following data set

//? names:

//?

//? USER=1.MYPROG.SOURCE.C - CLI application source code (PDS)

//? USER=1.MYPROG.INCLUDE.H - CLI application header files (PDS)

//? USER=1.MYPROG.OBJ - CLI application OBJ (PDS)

//? USER=1.RUNLIB.LOAD - User's load libary (PDS)

//? CBC.V3R1M= - High level qualifier for C/C++ V3.1

//? CEE.V1R5M= - High level qualifier for LE 1.5

//? DSN51= - High level qualifier for DB2 V5

//?

//COMPILE EXEC PGM=CBC31=PP,REGION=32M,

// PARM=('/OPTFILE(DD:CCOPT)')

//STEPLIB DD DSN=CEE.V1R5M=.SCEERUN,DISP=SHR

// DD DSN=CBC.V3R1M=.SCBC3CMP,DISP=SHR

//SYSMSGS DD DSN=CBC.V3R1M=.SCBC3MSG(EDCMSGE),DISP=SHR

//SYSXMSGS DD DSN=CBC.V3R1M=.SCBC3MSG(CBCMSGE),DISP=SHR

//SYSIN DD DSN=USER=1.MYPROG.SOURCE.C(CLIAPPL),DISP=SHR

//SYSLIN DD DSN=USER=1.MYPROG.OBJ(CLIAPPL),DISP=SHR,

// DCB=(RECFM=FB,LRECL=8=,BLKSIZE=32==)

//SYSPRINT DD SYSOUT=?

//SYSOUT DD SYSOUT=?

//SYSCPRT DD SYSOUT=?

//CCOPT DD ?

 USERPATH(/USER=1/MYPROG/INCLUDE)

 SYSPATH(/CEE/V1R5M=/SCEEH,/CBC/V3R1M=/SCLB3H,/DSN51=/SDSNC)

 LIST

 SOURCE

 LONG

//?

//SYSUT1 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=8=,BLKSIZE=32==)

//SYSUT4 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=8=,BLKSIZE=32==)

//SYSUT5 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=32==,BLKSIZE=128==)

//SYSUT6 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=32==,BLKSIZE=128==)

//SYSUT7 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=32==,BLKSIZE=128==)

//SYSUT8 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=32==,BLKSIZE=128==)

//SYSUT9 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

//SYSUT1= DD SYSOUT=?

//SYSUT14 DD UNIT=VIO,SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=32==,BLKSIZE=128==)

//SYSUT15 DD SYSOUT=?

Compiling in OS/390 OpenEdition: If you build a DB2 CLI application in OS/390
OpenEdition, you can use the c89 command to compile your application. For
example, to compile a C application named 'myapp.c' that resides in the current
working directory, the c89 compile command might look like:

c89 -c -W 'c,dll,long,source,list -

 -I"//'DSN51=.SDSNC.H'" \

 myapp.c

56 Call Level Interface Guide and Reference

Alternatively, if you write an application in C++, the cxx command might look like:

cxx -c -W 'c,long,source,list' -

 -I"//'DSN51=.SDSNC.H'" \

 myapp.C

If your source code is in C, rather than C++, you must compile using the 'dll'
option to enable use of the DB2 CLI driver. This is a requirement even when using
the cxx compile command to compile C parts.

Step 2. Prelink and Linkedit the Application
Before you can linkedit your DB2 CLI application, you must prelink your application
with the DB2 CLI definition side-deck provided with Version 5 of DB2 for OS/390.

The definition side-deck defines all of the exported functions in the DB2 CLI
dynamic load library, DSNAOCLI. It resides in the DSN51=.SDSNMACS data set, as
member DSNAOCLI. The definition side-deck should also be available under the alias
data set name of DSN51=.SDSNC.EXP as member DSNAOCLI (see “Setting up OS/390
OpenEdition Environment” on page 53 for details). You must include the DSNAOCLI
member as input to the Prelinker by specifying it in the prelink SYSIN DD card
concatenation. For example, your prelink and linkedit job might look like:

 Chapter 4. Configuring CLI and Running Sample Applications 57

//?

//? Sample CLI application prelink and link-edit job

//? This shows sample JCL to prelink and link-edit a CLI application

//? program. In this sample, the CLI application consists of

//? a single C obj. This sample assumes that the user is using the

//? following data set names:

//?

//? USER=1.MYPROG.SOURCE.C - CLI application source code (PDS)

//? USER=1.MYPROG.INCLUDE.H - CLI application header files (PDS)

//? USER=1.MYPROG.OBJ - CLI application OBJ (PDS)

//? USER=1.RUNLIB.LOAD - User's load libary (PDS)

//? CBC.V3R1M= - High level qualifier for C/C++ V3.1

//? CEE.V1R5M= - High level qualifier for LE 1.5

//? DSN51= - High level qualifier for DB2 V5

//?

//?---

//? PRE-LINKEDIT STEP:

//?---

//PLKED EXEC PGM=EDCPRLK,REGION=2=48K,

// PARM='MAP'

//STEPLIB DD DSN=CEE.V1R5M=.SCEERUN,DISP=SHR

//SYSMSGS DD DSN=CEE.V1R5M=.SCEEMSGP(EDCPMSGE),DISP=SHR

//SYSLIB DD DSN=CEE.V1R5M=.SCEECPP,DISP=SHR

//SYSIN DD DSN=USER=1.MYPROG.OBJ(CLIAPPL),DISP=SHR

// DD DSN=CBC.V3R1M=.SCLB3SID(IOSTREAM),DISP=SHR

// DD DSN=CBC.V3R1M=.SCLB3SID(COMPLEX),DISP=SHR

// DD DSN=CBC.V3R1M=.SCLB3SID(APPSUPP),DISP=SHR

// DD DSN=CBC.V3R1M=.SCLB3SID(COLLECT),DISP=SHR

// DD DSN=DSN51=.SDSNMACS(DSNAOCLI),DISP=SHR

//SYSMOD DD DSN=&&PLKSET,UNIT=VIO,DISP=(NEW,PASS),

// SPACE=(32===,(3=,3=)),

// DCB=(RECFM=FB,LRECL=8=,BLKSIZE=32==)

//SYSDEFSD DD DUMMY

//SYSOUT DD SYSOUT=?

//SYSPRINT DD SYSOUT=?

//?

//?---

//? LINKEDIT STEP:

//?---

//LKED EXEC PGM=HEWL,REGION=1=24K,COND=(8,LE,PLKED),

// PARM='AMODE=31,MAP'

//SYSLIB DD DSN=CEE.V1R5M=.SCEELKED,DISP=SHR

//SYSLIN DD DSN=?.PLKED.SYSMOD,DISP=(OLD,DELETE)

//SYSLMOD DD DSN=USER=1.RUNLIB.LOAD(CLIAPPL),DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(32===,(3=,3=))

//SYSPRINT DD SYSOUT=?

For more information about DLL, refer to IBM C/C++ for MVS/ESA Programming
Guide

Prelinking and Linkediting in OS/390 OpenEdition: If you build a DB2 CLI
application in OS/390 OpenEdition, you can use the c89 command to prelink and
linkedit your application. You need to include the DB2 CLI definition side-deck as
one of the input data sets to the c89 command and specify 'dll' as one of the
linkedit options.

For example, assume that you have already compiled a C application named
'myapp.c' to create a 'myapp.o' file in the current working directory. The c89
command to prelink and linkedit your application might look like:

c89 -W l,p,map,noer -W l,dll,AMODE=31,map \

 -o myapp myapp.o //'DSN51=.SDSNC.EXP(DSNAOCLI)'

58 Call Level Interface Guide and Reference

Step 3. Execute the Application
DB2 CLI applications must access the DSN51=.SDSNLOAD data set at execution time.
The SDSNLOAD data set contains both the DB2 CLI dynamic load library and the
attachment facility used to communicate with DB2.

 In addition, the DB2 CLI driver accesses the DB2 for OS/390 load module
DSNHDECP. DSNHDECP contains, among other things, the coded character set ID
(CCSID) information that DB2 for OS/390 uses.

A default DSNHDECP is shipped with DB2 for OS/390 in the DSN51=.SDSNLOAD data
set. However, if the values provided in the default DSNHDECP are not appropriate for
your site, a new DSNHDECP can be created during the installation of DB2 for OS/390.
If a site specific DSNHDECP is created during installation, you should concatenate the
data set containing the new DSNHDECP before the DSN51=.SDSNLOAD data set in your
STEPLIB or JOBLIB DD card.

For example, your execute job might look like:

//?

//? Sample CLI application execution job:

//? This shows sample JCL to execute a CLI application program.

//? In this sample, the CLI application does not have any input

//? parameters and does not require any input from the user.

//? This sample assumes that the user is using the following data set

//? names:

//?

//? USER=1.MYPROG.SOURCE.C - CLI application source code (PDS)

//? USER=1.MYPROG.INCLUDE.H - CLI application header files (PDS)

//? USER=1.MYPROG.OBJ - CLI application OBJ (PDS)

//? USER=1.RUNLIB.LOAD - User's load libary (PDS)

//? USER=1.MYINI - User's CLI initialization file

//? CBC.V3R1M= - High level qualifier for C/C++ V3.1

//? CEE.V1R5M= - High level qualifier for LE 1.5

//? DSN51= - High level qualifier for DB2 V5

//?

//CLIAPPL EXEC PGM=CLIAPPL

//STEPLIB DD DSN=USER=1.RUNLIB.LOAD,DISP=SHR

// DD DSN=DSN51=.SDSNEXIT,DISP=SHR

// DD DSN=DSN51=.SDSNLOAD,DISP=SHR

// DD DSN=CEE.V1R5M=.SCEERUN,DISP=SHR

// DD DSN=CBCV3R1=.SCLB3DLL,DISP=SHR

//SYSPRINT DD SYSOUT=?

//CEEDUMP DD SYSOUT=?

//DSNAOINI DD DSN=USER=1.MYINI,DISP=SHR

//

Executing in OS/390 OpenEdition: To execute a DB2 CLI application in OS/390
OpenEdition, you need to include the DSN51=.SDSNEXIT and DSN51=.SDSNLOAD data
sets in the data set concatenation of your STEPLIB environmental variable. The
STEPLIB environmental variable can be set in your .profile with the statement:

export STEPLIB=DSN51=.SDSNEXIT:DSN51=.SDSNLOAD

Defining a Subsystem
There are two ways to define a DB2 subsystem to DB2 CLI. You can identify the
DB2 subsystem by specifying the MVSDEFAULTSSID keyword in the common section
of initialization file. If the MVSDEFAULTSSID keyword does not exist in the initialization
file, DB2 CLI uses the default subsystem name specified in the DSNHDECP load
module that was created when DB2 was installed. Therefore, you should ensure

 Chapter 4. Configuring CLI and Running Sample Applications 59

that DB2 CLI can find the intended DSNHDECP when your application issues the
SQLAllocEnv call.

The DSNHDECP load module is usually linkedited into the DSN51=.SDSNEXIT data set.
In this case, your STEPLIB DD card includes:

 //STEPLIB DD DSN=DSN51=.SDSNEXIT,DISP=SHR

 // DD DSN=DSN51=.SDSNLOAD,DISP=SHR

 ...

DB2 CLI Initialization File
A set of optional keywords can be specified in a DB2 CLI initialization file, an
EBCDIC file that stores default values for various DB2 CLI configuration options.
Because the initialization file has EBCDIC text, it can be updated using a file editor,
such as the TSO editor.

For most applications, use of the DB2 CLI initialization file is not necessary.
However, to make better use of IBM RDBMS features, the keywords can be
specified to:

� Help improve the performance or usability of an application.
� Provide support for applications written for a previous version of DB2 CLI.
� Provide specific work-arounds for existing ODBC applications.

The following sections describe how to create the initialization file and define the
keywords:

� “Using the Initialization File”
� “Initialization Keywords” on page 62

Using the Initialization File
The DB2 CLI initialization file is read at application run-time. The file can be
specified by either a DSNAOINI DD card or by defining a DSNAOINI OpenEdition
environmental variable. The initialization file specified can be either a tradition MVS
data set or an OpenEdition HFS file. For MVS data sets, the record format of the
initialization file can be either fixed or variable length.

The following JCL examples use a DSNAOINI JCL DD card to specify the DB2 CLI
initialization file types supported:

MVS sequential data set USER1.DB2CLI.CLIINI:

//DSNAOINI DD DSN=USER1.DB2CLI.CLIINI,DISP=SHR

MVS partitioned data set USER1.DB2CLI.DATA, member CLIINI:

//DSNAOINI DD DSN=USER1.DB2CLI.DATA(CLIINI),DISP=SHR

Inline JCL DSNAOINI DD specification:

//DSNAOINI DD ?

 ⅛COMMON‘

 MVSDEFAULTSSID=V51A

/?

HFS file /u/user1/db2cli/cliini:

//DSNAOINI DD PATH='/u/user1/db2cli/cliini'

60 Call Level Interface Guide and Reference

The following examples of OpenEdition export statements define the DB2 CLI
DSNAOINI OpenEdition environmental variable for the DB2 CLI initialization file types
supported:

HFS fully qualified file /u/user1/db2cli/cliini:

export DSNAOINI="/u/user1/db2cli/cliini"

HFS file ./db2cli/cliini, relative to the present working directory of the application:

export DSNAOINI="./db2cli/cliini"

MVS sequential data set USER1.CLIINI:

export DSNAOINI="USER1.CLIINI"

Redirecting to use a file specified by another DD card, MYDD, that is already
allocated:

export DSNAOINI="//DD:MYDD"

MVS partitioned data set USER1.DB2CLI.DATA, member CLIINI:

export DSNAOINI="USER1.DB2CLI.DATA(CLIINI)"

When specifying an HFS file, the value of the DSNAOINI environmental variable must
begin with either a single forward slash (/), or a period followed by a single forward
slash (./). If a setting starts with any other characters, DB2 CLI assumes that an
MVS data set name is specified.

Initialization File Structure
The initialization file consists of the following three sections, or stanzas:

Common section Contains parameters that are global to all applications using
this initialization file.

Subsystem section Contains parameter values unique to that subsystem.

Data Source sections
Contain parameter values to be used only when connected to
that data source. You can specify zero or more data source
sections.

Each section is identified by a syntactic identifier enclosed in square brackets.
Specific guidelines for coding square brackets are described in the list item below
marked 'Common errors'.

The syntactic identifier is either the literal 'common', the subsystem ID or the data
source (location name). For example:

[data-source-name]

This is the section header.

The parameters are set by specifying a keyword with its associated keyword value
in the form:

KeywordName =keywordValue

� All the keywords and their associated values for each data source must be
located below the data source section header.

� The keyword settings in each section apply only to the data source name in
that section header.

 Chapter 4. Configuring CLI and Running Sample Applications 61

� The keywords are not case sensitive; however, their values can be if the
values are character based.

� For the syntax associated with each keyword, refer to “Initialization Keywords.”

� If a data source name is not found in the DB2 CLI initialization file, the default
values for these keywords are in effect.

� Comment lines are introduced by having a semi-colon in the first position of a
new line.

� Blank lines are also permitted. If duplicate entries for a keyword exist, the first
entry is used (and no warning is given).

� Common errors: You can avoid common errors by ensuring that the following
contents of the initialization file are accurate:

– Square brackets: The square brackets in the initialization file must consist
of the correct EBCDIC characters. The open square bracket must use the
hexadecimal characters X'AD'. The close square bracket must use the
hexadecimal characters X'BD'. DB2 CLI does not recognize brackets if
coded differently.

– Sequence numbers: The initialization file cannot accept sequence numbers.
All sequence numbers must be removed.

The following is a sample DB2 CLI initialization file with a common stanza, a
subsystem stanza, and two data source stanzas.

; This is a comment line...

; Example COMMON stanza

[COMMON]

MVSDEFAULTSSID=V51A

; Example SUBSYSTEM stanza for V51A subsystem

[V51A]

MVSATTACHTYPE=RRSAF

PLANNAME=DSNACLI

; Example DATA SOURCE stanza for STLEC1 data source

[STLEC1]

AUTOCOMMIT==

CONNECTTYPE=2

; Example DATA SOURCE stanza for STLEC1B data source

[STLEC1B]

CONNECTTYPE=2

CURSORHOLD==

 Initialization Keywords
The initialization keywords are described in this section. The section (common,
SUBSYTEM, or data source) in which each keyword must be defined is identified.

AUTOCOMMIT = 1 | 0
This keyword is placed in the data source section.

To be consistent with ODBC, DB2 CLI defaults with AUTOCOMMIT on, which
means each statement is treated as a single, complete transaction. This
keyword can provide an alternative default, but is only used if the application
does not specify a value for AUTOCOMMIT as part of the program.

1 = on (default)

62 Call Level Interface Guide and Reference

0 = off

Most ODBC applications assume the default of AUTOCOMMIT is on. Extreme
care must be used when overriding this default during runtime as the
application might depend on this default to operate properly.

This keyword also allows you to specify whether autocommit should be enabled
in a distributed unit of work (DUW) environment. If a connection is part of a
coordinated DUW, and AUTOCOMMIT is not set, the default does not apply;
implicit commits arising from autocommit processing are suppressed. If
AUTOCOMMIT is set to 1, and the connection is part of a coordinated DUW,
the implicit commits are processed. This can result in severe performance
degradations, and possibly other unexpected results elsewhere in the DUW
system. However, some applications might not work at all unless this is
enabled.

A thorough understanding of the transaction processing of an application is
necessary, especially applications written by a third party, before applying it to
a DUW environment.

BITDATA = 1 | 0
This keyword is placed in the data source section.

The BITDATA keyword allows you to specify whether ODBC binary data types,
SQL_BINARY, SQL_VARBINARY, and SQL_LONGVARBINARY, are reported
as binary type data. IBM DBMSs support columns with binary data types by
defining CHAR, VARCHAR and LONG VARCHAR columns with the FOR BIT

DATA attribute.

Only set BITDATA = 0 if you are sure that all columns defined as FOR BIT DATA

contain only character data, and the application is incapable of displaying
binary data columns.

1 = report FOR BIT DATA data types as binary data types (default).
0 = disabled.

CLITRACE = 0 | 1
This keyword is placed in the common section.

The CLITRACE keyword controls whether the DB2 CLI application trace is
enabled. If enabled, every call to any DB2 CLI API from the application is
traced, including input parameters. The trace is written to the file specified on
the TRACEFILENAME keyword.

0 = disabled (default)
1 = enabled

For more information about using the CLITRACE keyword, see “Use of Trace
Keywords” on page 389.

COLLECTIONID = collection_id
This keyword is placed in the data source section.

The COLLECTIONID keyword allows you to specify the collection identifier that is
used to resolve the name of the package allocated at the server. This package
supports the execution of subsequent SQL statements.

The value is a character string and must not exceed 18 characters. It can be
overridden by executing the SET CURRENT PACKAGESET statement.

 Chapter 4. Configuring CLI and Running Sample Applications 63

CONNECTTYPE = 1 | 2
This keyword is placed in the common section.

The CONNECTTYPE keyword allows you to specify the default connect type for all
connections to data sources.

� 1 = Multiple concurrent connections, each with its own commit scope. If
MULTICONTEXT== is specified, a new connection might not be added unless
the current transaction on the current connection is on a transaction
boundary (either committed or rolled back).

� 2 = Coordinated connections where multiple data sources participate under
the same distributed unit of work. CONNECTTYPE=2 is ignored if
MULTICONTEXT=1is specified.

CURRENTSQLID = current_sqlid
This keyword is placed in the data source section.

The CURRENTSQLID keyword is valid only for those DB2 DBMSs that support
SET CURRENT SQLID (such as DB2 for OS/390). If this keyword is present,
then a SET CURRENT SQLID statement is sent to the DBMS after a
successful connect. This allows the end user and the application to name SQL
objects without having to qualify by schema name.

Do not specify this keyword if you are binding the DB2 CLI packages with
DYNAMICRULES(BIND).

CURSORHOLD = 1 | 0
This keyword is placed in the data source section.

The CURSORHOLD keyword controls the effect of a transaction completion on
open cursors.

1 = Cursor hold (default). The cursors are not destroyed when the
transaction is committed.

0 = Cursor no hold. The cursors are destroyed when the transaction is
committed.

Cursors are always destroyed when transactions are rolled back.

This keyword can be used by an end user to improve performance. If the user
is sure that the application:

1. Does not have behavior that is dependent on the
SQL_CURSOR_COMMIT_BEHAVIOR or the
SQL_CURSOR_ROLLBACK_BEHAVIOR information returned via
SQLGetInfo(), and

2. Does not require cursors to be preserved from one transaction to the next,

then the value of this keyword can be set to 0. The DBMS operates more
efficiently as resources no longer need to be maintained after the end of a
transaction.

DBNAME = dbname
This keyword is placed in the data source section.

The DBNAME keyword is only used when connecting to DB2 for OS/390, and only
if (base) table catalog information is requested by the application.

64 Call Level Interface Guide and Reference

If a large number of tables exist in the DB2 for OS/390 subsystem, a dbname
can be specified to reduce the time it takes for the database to process the
catalog query for table information, and reduce the number of tables returned to
the application.

The value of the dbname keyword maps to the DBNAME column in the DB2 for
OS/390 system catalog tables. If no value is specified, or if views, synonyms,
system tables, or aliases are also specified via TABLETYPE, only table
information is restricted; views, aliases, and synonyms are not restricted with
DBNAME. This keyword can be used in conjunction with SCHEMALIST and
TABLETYPE to further limit the number of tables for which information is
returned.

GRAPHIC =0 | 1 | 2 | 3
This keyword is placed in the data source section.

The GRAPHIC keyword controls whether DB2 CLI reports IBM GRAPHIC (double
byte character support) as one of the supported data types when
SQLGetTypeInfo() is called. SQLGetTypeInfo() lists the data types supported by
the data source for the current connection. These are not native ODBC types
but have been added to expose these types to an application connected to a
DB2 family product.

0 = disabled (default)

1 = enabled

2 = report the length of graphic columns returned by DESCRIBE in number
of bytes rather than DBCS characters. This applies to all DB2 CLI and
ODBC functions that return length or precision either on the output
argument or as part of the result set.

3 = settings 1 and 2 combined; that is, GRAPHIC=3 achieves the combined
effect of 1 and 2.

The default is that GRAPHIC is not returned since many applications do not
recognize this data type and cannot provide proper handling.

MAXCONN = 0 | positive number
This keyword is placed in the common section.

The MAXCONN keyword is used to specify the maximum number of connections
allowed for each CLI application program. This can be used by an administrator
as a governor for the maximum number of connections established by each
application. A value of 0 can be used to represent no limit; that is, an
application is allowed to open up as many connections as permitted by the
system resources.

Note that this parameter limits the number of SQLConnect statements that the
application can successfully issue. In addition, if the application is executing
with CONNECT (Type 1) semantics, then this value specifies the number of
logical connections. There is only one physical connection to either the local
DB2/MVS subsystem or a remote DB2 subsystem or remote DRDA-1 or
DRDA-2 server.

MULTICONTEXT = 0 | 1
This keyword is placed in the common section.

The MULTICONTEXT keyword controls whether each connection in an application

 Chapter 4. Configuring CLI and Running Sample Applications 65

can be treated as a separate unit of work with its own commit scope that is
independent of other connections.

0 = The DB2 CLI code does not create an independent context for a data
source connection. Connection switching among multiple data sources
governed by the CONNECTTYPE=1 rules is not allowed unless the current
transaction on the current connection is on a transaction boundary (either
committed or rolled back). This is the default.

1 = The DB2 CLI code creates an independent context for a data source
connection at the connection handle level when SQLAllocConnect() is
issued. Each connection to multiple data sources is governed by
CONNECTTYPE=1 rules and is associated with an independent DB2 thread.
Connection switching among multiple data sources is not prevented due to
the commit status of the transaction; an application can use multiple
connection handles without having to perform a commit or rollback on a
connection before switching to another connection handle. The use of
MULTICONTEXT=1 requires MVSATTACHTYPE=RRSAF and OS/390 Version 2
Release 5 or higher.

The application can use SQLGetInfo() with finfoType=SQL_MULTIPLE_ACTIVE_TXN
to determine whether MULTICONTEXT=1 is supported.

MULTICONTEXT=1 is ignored if any of these conditions are true:

� The CLI application created a DB2 thread before invoking DB2 CLI. This is
always the case for a stored procedure using DB2 CLI.

� The CLI application created and switched to a private context using OS/390
Context Services before invoking DB2 CLI.

� The CLI application started a unit of recovery with any RRS resource
manager (for example, IMS) before invoking DB2 CLI.

� MVSATTACHTYPE=CAF is specified in the initialization file.

� The OS/390 operating system level does not support Unauthorized Context
Services.

MVSATTACHTYPE = CAF | RRSAF
This keyword is placed in the subsystem section.

The MVSATTACHTYPE keyword is used to specify the DB2 for OS/390 attachment
type that DB2 CLI uses to connect to the DB2 for OS/390 address space. This
parameter is ignored if the DB2 CLI application is running as a DB2 for OS/390
stored procedure. In that case, DB2 CLI uses the attachment type that was
defined for the stored procedure.

CAF: DB2 CLI uses the DB2 for OS/390 call attachment facility (CAF).

RRSAF: DB2 CLI uses the DB2 for OS/390 Recoverable Resource
Manager Services attachment facility (RRSAF).

MVSDEFAULTSSID = ssid
This keyword is placed in the common section.

The MVSDEFAULTSSID keyword specifies the default DB2 subsystem to which the
application is connected when invoking the SQLAllocEnv function. You must
specify a four character name of an installed DB2 subsystem.

66 Call Level Interface Guide and Reference

OPTIMIZEFORNROWS = integer
This keyword is placed in the data source section.

The OPTIMIZEFORNROWS keyword appends the "OPTIMIZE FOR n ROWS" clause
to every select statement, where n is an integer larger than 0. The default
action is not to append this clause.

For more information on the effect of the OPTIMIZE FOR n ROWS clause,
refer to SQL Reference.

PLANNAME = planname
This keyword is placed in the subsystem section.

The PLANNAME keyword specifies the name of the DB2 for OS/390 PLAN that
was created during installation. A PLAN name is required when initializing the
application connection to the DB2 for OS/390 subsystem which occurs during
the processing of the SQLAllocEnv call.

If no PLANNAME is specified, the default value DSNACLI is used.

SCHEMALIST = "'schema1', 'schema2' ,..."
This keyword is placed in the data source section.

The SCHEMALIST keyword specifies a list of schemas in the data source.

 If there are a large number of tables defined in the database, a schema list
can be specified to reduce the time it takes for the application to query table
information, and reduce the number of tables listed by the application. Each
schema name is case sensitive, must be delimited with single quotes and
separated by commas. The entire string must also be enclosed in double
quotes, for example:

SCHEMALIST="'USER1','USER2',USER3'"

For DB2 for OS/390, CURRENT SQLID can also be included in this list, but
without the single quotes, for example:

SCHEMALIST="'USER1',CURRENT SQLID,'USER3'"

The maximum length of the keyword string is 256 characters.

This keyword can be used in conjunction with DBNAME and TABLETYPE to
further limit the number of tables for which information is returned.

SCHEMALIST is used to provide a more restrictive default in the case of those
applications that always give a list of every table in the DBMS. This improves
performance of the table list retrieval in cases where the user is only interested
in seeing the tables in a few schemas.

SYSSCHEMA = sysschema
This keyword is placed in the data source section.

The SYSSCHEMA keyword indicates an alternative schema to be searched in
place of the SYSIBM (or SYSTEM, QSYS2) schemas when the DB2 CLI and
ODBC catalog function calls are issued to obtain system catalog information.

Using this schema name, the system administrator can define a set of views
consisting of a subset of the rows for each of the following system catalog
tables:

 Chapter 4. Configuring CLI and Running Sample Applications 67

DB2 for common
server DB2 for OS/390

DB2 for VSE and
VM OS/400 DB2 for OS/400

SYSTABLES SYSTABLES SYSCATALOG SYSTABLES SYSTABLES
SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS
SYSINDEXES SYSINDEXES SYSINDEXES SYSINDEXES SYSINDEXES
SYSTABAUTH SYSTABAUTH SYSTABAUTH SYSCST
SYSRELS SYSRELS SYSKEYCOLS SYSKEYCST
SYSDATATYPES SYSSYNONYMS SYSSYNONYMS SYSCSTCOL

SYSKEYS SYSKEYS SYSKEYS
SYSCOLAUTH SYSCOLAUTH SYSREFCST
SYSFOREIGNKEYS
SYSPROCEDURES
SYSDATABASE

For example, if the set of views for the system catalog tables are in the ACME
schema, then the view for SYSIBM.SYSTABLES is ACME.SYSTABLES; and
SYSSCHEMA should then be set to ACME.

Defining and using limited views of the system catalog tables reduces the
number of tables listed by the application, which reduces the time it takes for
the application to query table information.

If no value is specified, the default is:

� SYSIBM on DB2 for OS/390 and OS/400
� SYSTEM on DB2 for VSE and VM
� QSYS2 on DB2 for OS/400

This keyword can be used in conjunction with SCHEMALIST, TABLETYPE (and
DBNAME on DB2 for OS/390) to further limit the number of tables for which
information is returned.

TABLETYPE="'TABLE' | ,'ALIAS' | ,'VIEW' | , ' | ,
'SYSTEM TABLE' | ,'SYNONYM'"
This keyword is placed in the data source section.

The TABLETYPE keyword specifies a list of one or more table types. If there are
a large number of tables defined in the data source, a table type string can be
specified to reduce the time it takes for the application to query table
information, and reduce the number of tables listed by the application.

Any number of the values can be specified, but each type must be delimited
with single quotes, separated by commas, and in upper case. The entire string
must also be enclosed in double quotes, for example:

TABLETYPE="'TABLE','VIEW'"

This keyword can be used in conjunction with DBNAME and SCHEMALIST to
further limit the number of tables for which information is returned.

TABLETYPE is used to provide a default for the DB2 CLI function that retrieves
the list of tables, views, aliases, and synonyms in the data source. If the
application does not specify a table type on the function call, and this keyword
is not used, information about all table types is returned. If the application does
supply a value for the tabletype on the function call, then that argument value
overrides this keyword value.

If TABLETYPE includes any value other than TABLE, then the DBNAME
keyword setting cannot be used to restrict information to a particular DB2 for
OS/390 subsystem.

68 Call Level Interface Guide and Reference

THREADSAFE= 1 | 0
This keyword is placed in the common section.

The THREADSAFE keyword controls whether DB2 CLI uses POSIX mutexes to
make the DB2 CLI code threadsafe for multiple concurrent or parallel LE
threads.

� 1 = The DB2 CLI code is threadsafe if the application is executing in a
POSIX(ON) environment. Multiple LE threads in the process can use DB2
CLI. The threadsafe capability cannot be provided in a POSIX(OFF)
environment. This is the default.

� 0 = The DB2 CLI code is not threadsafe. This reduces the overhead of
serialization code in DB2 CLI for applications that are not multithreaded, but
provides no protection for concurrent LE threads in applications that are
multithreaded.

TRACE = 0 | 1
This keyword is placed in the common section.

The TRACE keyword allows you to enable the DB2 CLI trace. Use this keyword
only if the trace is not already active.

0 = The DB2 CLI trace is not enabled. No diagnostic data is captured.

1 = The DB2 CLI trace is enabled. Diagnostic data is recorded within the
application address space. If the user has included a DSNAOTRC DD card
identifying a sequential data set, then the trace is externalized at normal
program termination. It can then be formatted using the DSNAOTRC trace
formatting program.

For more information about using the TRACE keyword, see “Use of Trace
Keywords” on page 389.

TRACE_BUFFER_SIZE = buffer size
This keyword is placed in the common section.

The TRACE_BUFFER_SIZE keyword controls the size of the DB2 CLI trace buffer.
This keyword is only used if a trace is started by using the TRACE keyword.
buffer size is an integer value that represents the number of bytes to allocate
for the trace buffer. The buffer size is rounded down to a multiple of 65536
(64K). If the value specified is less than 65536, then 65536 is used. The default
value for the trace buffer size is 65536.

If a trace is already active, this keyword is ignored.

TRACEFILENAME = dataset name
This keyword is placed in the common section. TRACEFILENAME is only used if a
trace is started by the CLITRACE keyword.

When CLITRACE is set to 1, use the TRACEFILENAME keyword to identify a
sequential data set that records the DB2 CLI application trace. If the name has
the form "DD:DDNAME", then a data set must be currently allocated via the
DDNAME. If the data set name is any other string, then the data set is
dynamically allocated if it does not already exist. This keyword is only used if a
trace is started by the CLITRACE keyword.

TRACE_NO_WRAP = 0 | 1
This keyword is placed in the common section.

The TRACE_NO_WRAP keyword controls the behaivor of TRACE when the DB2 CLI

 Chapter 4. Configuring CLI and Running Sample Applications 69

trace buffer fills up. This keyword is only used if a trace is started by the TRACE
keyword.

0 = The trace table is a wrap-around trace. In this case, the trace remains
active to capture the most current trace records. This is the default value.

1 = The trace stops capturing records when the trace buffer fills. The trace
captures the initial trace records that were written.

If a trace is already active, this keyword is ignored.

TXNISOLATION = 1 | 2 | 4 | 8 | 32
This keyword is placed in the data source section.

The TXNISOLATION keyword sets the isolation level to:

1 = Read uncommitted (uncommitted read)
2 = Read committed (cursor stability) (default)
4 = Repeatable read (read stability)
8 = Serializable (repeatable read)
32 = (No commit, DB2 for OS/400 only)

The words in round brackets are the DB2 equivalents for SQL92 isolation
levels. Note that no commit is not an SQL92 isolation level and is supported
only on DATABASE 2 for OS/400. Refer to Application Programming and SQL
Guidefor more information on isolation levels.

UNDERSCORE = 1 | 0
This keyword is placed in the data source section.

The UNDERSCORE keyword specifies whether the underscore character "_" is to
be used as a wildcard character (matching any one character, including no
character), or to be used as itself. This parameter only affects catalog function
calls that accept search pattern strings.

1 = "_" acts as a wildcard (default)

The underscore is treated as a wildcard matching any one character or
none. For example, if two tables are defined as follows:

CREATE TABLE "OWNER"."KEY_WORDS" (COL1 INT)

CREATE TABLE "OWNER"."KEYWORDS" (COL1 INT)

The DB2 CLI catalog function call that returns table information
(SQLTables()) returns both of these entries if "KEY_WORDS" is specified in
the table name search pattern argument.

0 = "_" acts as itself

The underscore is treated as itself. If two tables are defined as shown in
the example above, SQLTables() returns only the "KEY_WORDS" entry if
"KEY_WORDS" is specified in the table name search pattern argument.

Setting this keyword to 0 can result in performance improvement in those
cases where object names (owner, table, column) in the data source
contain underscores.

70 Call Level Interface Guide and Reference

Chapter 5. Functions

This section provides a description of each function. Each description has the
following sections.

 � Purpose
 � Syntax
 � Arguments
 � Usage
 � Return Codes
 � Diagnostics
 � Restrictions
 � Example

Each section is described below.

Purpose
This section gives a brief overview of what the function does. It also indicates if
any functions should be called before and after calling the function being
described.

Each function also has a table, such as the one below that indicates which
specification or standard the function conforms to. The first column indicates
which version (1.0 or 2.0) of the ODBC specification the function was first
provided. The second and third columns indicate if the function is included in
the X/Open CLI CAE specification and the ISO CLI standard.

This table indicates support of the function. Some functions use a set of options
that do not apply to all specifications or standards. The restrictions section
identifies any significant differences.

Syntax
This section contains the generic 'C' prototype. If the function is defined by
ODBC V2.0, then the prototype should be identical to that specified in ODBC
2.0 Programmer's Reference and SDK Guide.

All function arguments that are pointers are defined using the FAR macro. This
macro is defined out (set to a blank). This is consistent with the ODBC
specification.

Arguments
This section lists each function argument, along with its data type, a description
and whether it is an input or output argument.

Only SQLGetInfo() and SQLBindParameter() have parameters that are both
input and output.

Some functions contain input or output arguments which are known as deferred
or bound arguments. These arguments are pointers to buffers allocated by the
application, and are associated with (or bound to) either a parameter in an SQL
statement, or a column in a result set. The data areas specified by the function
are accessed by DB2 CLI at a later time. It is important that these deferred
data areas are still valid at the time DB2 CLI accesses them.

Table 9. Sample Function Specification Table

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Copyright IBM Corp. 1997 71

Usage
This section provides information about how to use the function, and any
special considerations. Possible error conditions are not discussed here, but
are listed in the diagnostics section instead.

Return Codes
This section lists all the possible function return codes. When SQL_ERROR or
SQL_SUCCESS_WITH_INFO is returned, error information can be obtained by
calling SQLError().

Refer to “Diagnostics” on page 35 for more information about return codes.

Diagnostics
This section contains a table that lists the SQLSTATEs explicitly returned by
DB2 CLI (SQLSTATEs generated by the DBMS can also be returned) and
indicates the cause of the error. These values are obtained by calling
SQLError() after the function returns an SQL_ERROR or
SQL_SUCCESS_WITH_INFO.

Refer to “Diagnostics” on page 35 for more information about diagnostics.

Restrictions
This section indicates any differences or limitations between DB2 CLI and
ODBC that can affect an application.

Example
This section contains a code fragment that demonstrates the use of the
function, using the generic data type definitions.

See “Chapter 4. Configuring CLI and Running Sample Applications” on
page 49 for more information on setting up the DB2 CLI environment and
accessing the sample applications.

References
This section lists related DB2 CLI functions.

DB2 CLI Function Summary
 xproc=display. proc=display.

Table 10 (Page 1 of 4). Call Level Interface Function List by Category

Task
Function Name

ODBC
2.0 X/OPEN

DB2 for OS/390
Support Purpose

Connecting to a Data Source

SQLAllocEnv Core Yes Yes Obtains an environment handle. One
environment handle is used for one or more
connections.

SQLAllocConnect Core Yes Yes Obtains a connection handle.

SQLConnect Core Yes Yes Connects to a specific data source by name.

SQLDriverConnect Lvl 1 No Yes Connects to a specific driver by connection
string or optionally requests that the Driver
Manager and driver display connection
dialogs for the user.

SQLSetConnection No No Yes Connects to a specific data source by
connection string.

72 Call Level Interface Guide and Reference

Table 10 (Page 2 of 4). Call Level Interface Function List by Category

Task
Function Name

ODBC
2.0 X/OPEN

DB2 for OS/390
Support Purpose

Obtaining Information about a Driver and Data Source

SQLDataSources Lvl 2 Yes Yes Returns the list of available data sources.

SQLGetInfo Lvl 1 Yes Yes Returns information about a specific driver
and data source.

SQLGetFunctions Lvl 1 Yes Yes Returns supported driver functions.

SQLGetTypeInfo Lvl 1 Yes Yes Returns information about supported data
types.

Setting and Retrieving Driver Options

SQLSetEnvAttr No Yes Yes Sets an environment option.

SQLGetEnvAttr No Yes Yes Returns the value of an environment option.

SQLSetConnectOption Lvl 1 Yes Yes Sets a connection option.

SQLGetConnectOption Lvl 1 Yes Yes Returns the value of a connection option.

SQLSetStmtOption Lvl 1 Yes Yes Sets a statement option.

SQLGetStmtOption Lvl 1 Yes Yes Returns the value of a statement option.

Preparing SQL Requests

SQLAllocStmt Core Yes Yes Allocates a statement handle.

SQLPrepare Core Yes Yes Prepares an SQL statement for later
execution.

SQLBindParameter Lvl 1 No Yes Assigns storage for a parameter in an SQL
statement (ODBC 2.0)

SQLSetParam Core Yes Yes Assigns storage for a parameter in an SQL
statement (ODBC 1.0).

Note: In ODBC 2.0 SQLBindParameter
replaces this function.

SQLParamOptions Lvl 2 No Yes Specifies the use of multiple values for
parameters.

SQLGetCursorName Core Yes Yes Returns the cursor name associated with a
statement handle.

SQLSetCursorName Core Yes Yes Specifies a cursor name.

Submitting Requests

SQLExecute Core Yes Yes Executes a prepared statement.

SQLExecDirect Core Yes Yes Executes a statement.

SQLNativeSql Lvl 2 No Yes Returns the text of an SQL statement as
translated by the driver.

SQLDescribeParam a Lvl 2 Yes Returns the
description for a
specific input
parameter in a
statement.

SQLNumParams Lvl 2 No Yes Returns the number of parameters in a
statement.

 Chapter 5. Functions 73

Table 10 (Page 3 of 4). Call Level Interface Function List by Category

Task
Function Name

ODBC
2.0 X/OPEN

DB2 for OS/390
Support Purpose

SQLParamData Lvl 1 Yes Yes Used in conjunction with SQLPutData() to
supply parameter data at execution time.
(Useful for long data values.)

SQLPutData Lvl 1 Yes Yes Send part or all of a data value for a
parameter. (Useful for long data values.)

Retrieving Results and Information about Results

SQLRowCount Core Yes Yes Returns the number of rows affected by an
insert, update, or delete request.

SQLNumResultCols Core Yes Yes Returns the number of columns in the result
set.

SQLDescribeCol Core Yes Yes Describes a column in the result set.

SQLColAttributes Core Yes Yes Describes attributes of a column in the result
set.

SQLSetColAttributes No No Yes Sets attributes of a column in the result set.

SQLBindCol Core Yes Yes Assigns storage for a result column and
specifies the data type.

SQLFetch Core Yes Yes Returns a result row.

SQLExtendedFetch Lvl 2 No Yes Returns multiple result rows.

SQLGetData Lvl 1 Yes Yes Returns part or all of one column of one row
of a result set. (Useful for long data values.)

SQLMoreResults Lvl 2 No Yes Determines whether there are more result
sets available and, if so, initializes
processing for the next result set.

SQLError Core Yes Yes Returns additional error or status information.

SQLGetSQLCA No No Yes Returns the SQLCA associated with a
statement handle.

Obtaining information about the data source's system tables (catalog functions)

SQLColumnPrivileges Lvl 2 Yes Yes Returns a list of columns and associated
privileges for a specified table.

SQLColumns Lvl 1 Yes Yes Returns the list of column names in specified
tables.

SQLForeignKeys Lvl 2 No Yes Returns a list of column names that
comprise foreign keys, if they exist for a
specified table.

SQLPrimaryKeys Lvl 2 No Yes Returns the list of column names that
comprise the primary key for a table.

SQLProcedureColumns Lvl 2 No Yes Returns the list of input and output
parameters for the specified procedures.

SQLProcedures Lvl 2 No Yes Returns the list of procedure names stored in
a specific data source.

SQLSpecialColumns Lvl 1 Yes Yes Returns information about the optimal set of
columns that uniquely identifies a row in a
specified table.

SQLStatistics Lvl 1 Yes Yes Returns statistics about a single table and
the list of indexes associated with the table.

74 Call Level Interface Guide and Reference

Table 10 (Page 4 of 4). Call Level Interface Function List by Category

Task
Function Name

ODBC
2.0 X/OPEN

DB2 for OS/390
Support Purpose

SQLTablePrivileges Lvl 2 No Yes Returns a list of tables and the privileges
associated with each table.

SQLTables Lvl 1 Yes Yes Returns the list of table names stored in a
specific data source.

Terminating a Statement

SQLFreeStmt Core Yes Yes End statement processing and closes the
associated cursor, discards pending results,
and, optionally, frees all resources
associated with the statement handle.

SQLCancel Core Yes Yes Cancels an SQL statement.

SQLTransact Core Yes Yes Commits or rolls back a transaction.

Terminating a Connection

SQLDisconnect Core Yes Yes Closes the connection.

SQLFreeConnect Core Yes Yes Releases the connection handle.

SQLFreeEnv Core Yes Yes Releases the environment handle.

Note: The ODBC functions:

� SQLSetPos, SQLBrowseConnect, and SQLDescribeParam are not supported by Call Level Interface or
DB2 CLI.

� SQLSetScrollOptions is not supported. It is superceded by the SQL_CURSOR_TYPE,
SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options.

� SQLDrivers is implemented by the ODBC driver manager and is not supported by DB2 CLI.

 Chapter 5. Functions 75

 SQLAllocConnect

SQLAllocConnect - Allocate Connection Handle

 Purpose

SQLAllocConnect() allocates a connection handle and associated resources within
the environment identified by the input environment handle. Call SQLGetInfo() with
fInfoType set to SQL_ACTIVE_CONNECTIONS, to query the number of
connections that can be allocated at any one time.

While this API is active, the DB2 CLI driver establishes an affinity with the DB2
subsystem. Processing includes allocating a DB2 for OS/390 plan as a resource.

SQLAllocEnv() must be called before calling this function.

This function must be called before calling SQLConnect() or SQLDriverConnect().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLAllocConnect (SQLHENV henv,

 SQLHDBC FAR ?phdbc);

 Function Arguments

Table 11. SQLAllocConnect Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle

SQLHDBC * phdbc output Pointer to connection handle

 Usage
The output connection handle is used by DB2 CLI to reference all information
related to the connection, including general status information, transaction state,
and error information.

If the pointer to the connection handle (phdbc) already points to a valid connection
handle previously allocated by SQLAllocConnect(), then the original value is
overwritten as a result of this call. This is an application programming error which is
not detected by DB2 CLI.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phdbc argument is set to SQL_NULL_HDBC. The
application should call SQLError() with the environment handle (henv) and with
hdbc and hstmt arguments set to SQL_NULL_HDBC and SQL_NULL_HSTMT
respectively.

76 Call Level Interface Guide and Reference

 SQLAllocConnect

 Diagnostics

Table 12. SQLAllocConnect SQLSTATEs

CLI
SQLSTATE Description Explanation

58004 Unexpected system failure. This could be a failure to establish the association with the DB2
for OS/390 subsystem or any other system related error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. phdbc was a null pointer.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1014 No more handles. Returned if the MAXCONN keyword or SQL_MAXCONN attribute
is set to a positive integer and the number of connections has
reached that value. If MAXCONN is set to zero, there is no limit.

DB2 CLI is not able to allocate a handle due to internal resources.

 Restrictions
None.

 Example
The following example shows a basic connect, with minimal error handling.

/? ... ?/

/???

?? - demonstrate basic connection to two data sources.

?? - error handling mostly ignored for simplicity

??

?? Functions used:

??

?? SQLAllocConnect SQLDisconnect

?? SQLAllocEnv SQLFreeConnect

?? SQLConnect SQLFreeEnv

?? Local Functions:

?? DBconnect

??

??/

#include <stdio.h>

#include <stdlib.h>

#include "sqlcli1.h"

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server);

#define MAX_UID_LENGTH 18

#define MAX_PWD_LENGTH 3=

#define MAX_CONNECTIONS 2

 Chapter 5. Functions 77

 SQLAllocConnect

int

main()

{

 SQLHENV henv;

 SQLHDBC hdbc[MAX_CONNECTIONS];

 SERVER svr[MAX_CONNECTIONS] =

 {

 "KARACHI" ,

 "DAMASCUSS"

 }

/? allocate an environment handle ?/

 SQLAllocEnv(&henv);

/? Connect to first data source ?/

 DBconnect(henv, &hdbc[=],

 svr[=]);

/? Connect to second data source ?/

 DBconnect(henv, &hdbc[1],

 svr[1]);

/????????? Start Processing Step ?????????????????????????/

/? allocate statement handle, execute statement, etc. ?/

/????????? End Processing Step ???????????????????????????/

 /??/

/? Commit work on connection 1. This has NO effect on the ?/

/? transaction active on connection 2. ?/

 /??/

 SQLTransact (henv,

 hdbc[=],

 SQL_COMMIT);

 /??/

/? Commit work on connection 2. This has NO effect on the ?/

/? transaction active on connection 1. ?/

 /??/

 SQLTransact (henv,

 hdbc[1],

 SQL_COMMIT);

 printf("\nDisconnecting\n");

SQLDisconnect(hdbc[=]); /? disconnect first connection ?/

SQLDisconnect(hdbc[1]); /? disconnect second connection ?/

 SQLFreeConnect(hdbc[=]); /? free first connection handle ?/

 SQLFreeConnect(hdbc[1]); /? free second connection handle ?/

SQLFreeEnv(henv); /? free environment handle ?/

 return (SQL_SUCCESS);

}

78 Call Level Interface Guide and Reference

 SQLAllocConnect

/??

?? Server is passed as a parameter. Note that USERID and PASSWORD??

?? are always NULL. ??

??/

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server)

{

 SQLRETURN rc;

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

SQLAllocConnect(henv, hdbc);/? allocate a connection handle ?/

rc = SQLConnect(?hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n", server);

 return (SQL_ERROR);

} else {

printf(">Connected to %s\n", server);

 return (SQL_SUCCESS);

 }

}

/? ... ?/

 References
� “SQLAllocEnv - Allocate Environment Handle” on page 80
� “SQLConnect - Connect to a Data Source” on page 118
� “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 136
� “SQLDisconnect - Disconnect from a Data Source” on page 134
� “SQLFreeConnect - Free Connection Handle” on page 177
� “SQLGetConnectOption - Returns Current Setting of A Connect Option” on

page 184
� “SQLSetConnectOption - Set Connection Option” on page 297

 Chapter 5. Functions 79

 SQLAllocEnv

SQLAllocEnv - Allocate Environment Handle

 Purpose

SQLAllocEnv() allocates an environment handle and associated resources. An
application can allocate more than one environment at a time.

An application must call this function prior to SQLAllocConnect() or any other DB2
CLI functions. The henv value is passed in all subsequent function calls that require
an environment handle as input.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLAllocEnv (SQLHENV FAR ?phenv);

 Function Arguments

Table 13. SQLAllocEnv Arguments

Data Type Argument Use Description

SQLHENV * phenv output Pointer to environment handle

 Usage
There can be only one active environment at a time per application. Any
subsequent calls to SQLAllocEnv() return the same handle as the first
SQLAllocEnv() call.

SQLFreeEnv() must be called for each successful SQLAllocEnv() call before the
resources associated with the handle are released. SQLFreeEnv() must also be
called to free a restricted environment handle as described under 'Return Codes'
below.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR

If SQL_ERROR is returned and phenv is equal to SQL_NULL_HENV, then
SQLError() cannot be called because there is no handle with which to associate
additional diagnostic information.

If the return code is SQL_ERROR and the pointer to the environment handle is not
equal to SQL_NULL_HENV, then the handle is a restricted handle. This means the
handle can only be used in a call to SQLError() to obtain more error information, or
to SQLFreeEnv().

80 Call Level Interface Guide and Reference

 SQLAllocEnv

 Diagnostics

Table 14. SQLAllocEnv SQLSTATEs

SQLSTATE Description Explanation

S1001 Memory allocation failure. DB2 CLI is not able to allcoate memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 77

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 76
� “SQLFreeEnv - Free Environment Handle” on page 179

 Chapter 5. Functions 81

 SQLAllocStmt

SQLAllocStmt - Allocate a Statement Handle

 Purpose

SQLAllocStmt() allocates a new statement handle and associates it with the
connection specified by the connection handle. There is no defined limit on the
number of statement handles that can be allocated at any one time.

SQLConnect() or SQLDriverConnect() must be called before calling this function.

This function must be called before SQLBindParameter(), SQLPrepare(),
SQLExecute(), SQLExecDirect(), or any other function that has a statement handle
as one of its input arguments.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLAllocStmt (SQLHDBC hdbc,

 SQLHSTMT FAR ?phstmt);

 Function Arguments

Table 15. SQLAllocStmt Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

SQLHSTMT * phstmt output Pointer to statement handle

 Usage
DB2 CLI uses each statement handle to relate all the descriptors, attribute values,
result values, cursor information, and status information to the SQL statement
processed. Although each SQL statement must have a statement handle, you can
reuse the handles for different statements.

A call to this function requires that hdbc references an active database connection.

To execute a positioned UPDATE or DELETE, the application must use different
statement handles for the SELECT statement and the UPDATE or DELETE
statement.

If the input pointer to the statement handle (phstmt) already points to a valid
statement handle allocated by a previous call to SQLAllocStmt(), then the original
value is overwritten as a result of this call. This is an application programming error
that is not detected by DB2 CLI.

82 Call Level Interface Guide and Reference

 SQLAllocStmt

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phstmt argument is set to SQL_NULL_HSTMT.
The application should call SQLError() with the same hdbc and with the hstmt
argument set to SQL_NULL_HSTMT.

 Diagnostics

Table 16. SQLAllocStmt SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection specified by the hdbc argument is not open. The
connection must be established successfully (and the connection
must be open) for the application to call SQLAllocStmt().

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. phstmt was a null pointer.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

 Restrictions
None.

 Example
Refer to “Example” on page 166.

 References
� “SQLConnect - Connect to a Data Source” on page 118
� “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 136
� “SQLFreeStmt - Free (or Reset) a Statement Handle” on page 181
� “SQLGetStmtOption - Returns Current Setting of A Statement Option” on

page 235
� “SQLSetStmtOption - Set Statement Option” on page 314

 Chapter 5. Functions 83

 SQLBindCol

SQLBindCol - Bind a Column to an Application Variable

 Purpose

SQLBindCol() is used to associate (bind) columns in a result set to:

� Application variables or arrays of application variables (storage buffers), for all
C data types. In this case, data is transferred from the DBMS to the application
when SQLFetch() or SQLExtendedFetch() is called. Data conversion can occur
as the data is transferred.

SQLBindCol() is called once for each column in the result set that the application
needs to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called
before this function, and SQLFetch() or SQLExtendedFetch() is called after. Column
attributes might also be needed before calling SQLBindCol(), and can be obtained
using SQLDescribeCol() or SQLColAttributes().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLBindCol (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER FAR ?pcbValue);

 Function Arguments

Table 17 (Page 1 of 2). SQLBindCol Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLUSMALLINT icol input Number identifying the column. Columns are numbered
sequentially, from left to right, starting at 1.

84 Call Level Interface Guide and Reference

 SQLBindCol

Table 17 (Page 2 of 2). SQLBindCol Arguments

Data Type Argument Use Description

SQLSMALLINT fCType input The C data type for column number icol in the result set.
The following types are supported:

 � SQL_C_BINARY
 � SQL_C_BIT
 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DBCHAR
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_TINYINT

The supported data types are based on the data source
to which you are connected. Specifying
SQL_C_DEFAULT causes data to be transferred to its
default C data type. Refer to Table 4 on page 40 for
more information.

SQLPOINTER rgbValue output
(deferred)

Pointer to buffer (or an array of buffers if using
SQLExtendedFetch()) where DB2 CLI is to store the
column data when the fetch occurs.

If rgbValue is null, the column is unbound.

SQLINTEGER cbValueMax input Size of rgbValue buffer in bytes available to store the
column data.

If fCType denotes a binary or character string (either
single or double byte) or is SQL_C_DEFAULT, then
cbValueMax must be > 0, or an error is returned.
Otherwise, this argument is ignored.

SQLINTEGER * pcbValue output
(deferred)

Pointer to value (or array of values) which indicates the
number of bytes DB2 CLI has available to return in the
rgbValue buffer.

SQLFetch() returns SQL_NULL_DATA in this argument if
the data value of the column is null.

This pointer value must be unique for each bound column,
or NULL.

SQL_NO_LENGTH can also be returned. Refer to the
'Usage' section below for more information.

Note:

� For this function, pointers rgbValue and pcbValue are deferred outputs,
meaning that the storage locations they point to do not get updated until a
result set row is fetched. As a result, the locations referenced by these pointers
must remain valid until SQLFetch() or SQLExtendedFetch() is called. For
example, if SQLBindCol() is called within a local function, SQLFetch() must be
called from within the same scope of the function or the rgbValue buffer must
be allocated as static or global.

 Chapter 5. Functions 85

 SQLBindCol

� DB2 CLI performs better for all variable length data types if rgbValue is placed
consecutively in memory after pcbValue. See the 'Usage' section for more
details.

 Usage
The application calls SQLBindCol() once for each column in the result set for which
it wishes to retrieve data. Result sets are generated either by calling SQLPrepare(),
SQLExecDirect(), SQLGetTypeInfo(), or one of the catalog functions. When
SQLFetch() is called, the data in each of these bound columns is placed into the
assigned location (given by the pointers rgbValue and cbValue).

SQLExtendedFetch() can be used in place of SQLFetch() to retrieve multiple rows
from the result set into an array. In this case, rgbValue references an array. For
more information, refer to “Retrieving A Result Set Into An Array” on page 353 and
“SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156. Use of
SQLExtendedFetch() and SQLFetch() cannot be mixed for the same result set.

Columns are identified by a number, assigned sequentially from left to right, starting
at 1. The number of columns in the result set can be determined by calling
SQLNumResultCols() or by calling SQLColAttributes() with the fdescType argument
set to SQL_COLUMN_COUNT.

The application can query the attributes (such as data type and length) of the
column by first calling SQLDescribeCol() or SQLColAttributes(). (As an alternative,
refer to Appendix A, “Programming Hints and Tips” on page 385 for information
about using SQLSetColAttributes() when the application has prior knowledge of
the format of the result set.) This information can then be used to allocate a storage
location of the correct data type and length, to indicate data conversion to another
data type. Refer to “Data Types and Data Conversion” on page 37 for more
information on default types and supported conversions.

An application can choose not to bind every column, or even not to bind any
columns. Data in any of the columns can also be retrieved using SQLGetData()

after the bound columns have been fetched for the current row. Generally,
SQLBindCol() is more efficient than SQLGetData(). For a discussion of when to use
one function over the other, refer to Appendix A, “Programming Hints and Tips” on
page 385.

In subsequent fetches, the application can change the binding of these columns or
bind previously unbound columns by calling SQLBindCol(). The new binding does
not apply to data already fetched, it is used on the next fetch. To unbind a single
column, call SQLBindCol() with the rgbValue pointer set to NULL. To unbind all the
columns, the application should call SQLFreeStmt() with the fOption input set to
SQL_UNBIND.

The application must ensure enough storage is allocated for the data to be
retrieved. If the buffer is to contain variable length data, the application must
allocate as much storage as the maximum length of the bound column requires;
otherwise, the data might be truncated. If the buffer is to contain fixed length data,
DB2 CLI assumes the size of the buffer is the length of the C data type. If data
conversion is specified, the required size might be affected, see “Data Types and
Data Conversion” on page 37 for more information.

86 Call Level Interface Guide and Reference

 SQLBindCol

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and
pcbValue is set to the actual size of rgbValue available for return to the application.

Truncation is also affected by the SQL_MAX_LENGTH statement option (used to
limit the amount of data returned to the application). The application can specify not
to report truncation by calling SQLSetStmtOption() with SQL_MAX_LENGTH and a
value for the maximum length to return for all variable length columns, and by
allocating an rgbValue buffer of the same size (plus the null-terminator). If the
column data is larger than the set maximum length, SQL_SUCCESS is returned
when the value is fetched and the maximum length, not the actual length, is
returned in pcbValue.

If the column to be bound is an SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then fCType can be set to SQL_C_DBCHAR or
SQL_C_CHAR. If fCType is SQL_C_DBCHAR, the data fetched into the rgbValue
buffer is null-terminated by a double byte null-terminator. If fCType is
SQL_C_CHAR, then the data is not null-terminated. In both cases, the length of the
rgbValue buffer (cbValueMax) is in units of bytes and should therefore be a multiple
of 2.

When binding any variable length column, DB2 CLI can write pcbValue and
rgbValue in one operation if they are allocated contiguously. For example:

struct { SQLINTEGER pcbValue;

 SQLCHAR rgbValue[MAX_BUFFER];

 } column;

Note: SQL_NO_TOTAL is returned in pcbValue if:

� The SQL type is a variable length type, and
� pcbValue and rgbValue are contiguous, and
� The column type is NOT NULLABLE, and
� String truncation occurred.

The most recent bind column function call determines the type of binding that is in
effect.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 18 (Page 1 of 2). SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

 Chapter 5. Functions 87

 SQLBindCol

Table 18 (Page 2 of 2). SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

S1002 Invalid column number. The value specified for the argument icol was less than 1.

The value specified for the argument icol exceeded the maximum
number of columns supported by the data source.

S1003 Program type out of range. fCType is not a valid data type or SQL_C_DEFAULT.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The value specified for the argument cbValueMax is less than 1
and the argument fCType is either SQL_C_CHAR,
SQL_C_BINARY or SQL_C_DEFAULT.

S1C00 Driver not capable. DB2 CLI recognizes, but does not support the data type specified
in the argument fCType

Note: Additional diagnostic messages relating to the bound columns might be reported at fetch time.

 Restrictions
None.

 Example
Refer to “Example” on page 166.

 References
� “SQLFetch - Fetch Next Row” on page 163
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156

88 Call Level Interface Guide and Reference

 SQLBindParameter

SQLBindParameter - Binds A Parameter Marker to a Buffer

 Purpose

SQLBindParameter() is used to associate (bind) parameter markers in an SQL
statement to application variables or arrays of application variables (storage
buffers), for all C data types. In this case, data is transferred from the application to
the DBMS when SQLExecute() or SQLExecDirect() is called. Data conversion can
occur as the data is transferred.

This function must also be used to bind application storage to a parameter of a
stored procedure CALL statement where the parameter can be input, output or
both. This function is essentially an extension of SQLSetParam().

Specification: ODBC 2.0

 Syntax
SQLRETURN SQL_API SQLBindParameter(

 SQLHSTMT hstmt,

 SQLUSMALLINT ipar,

 SQLSMALLINT fParamType,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLUINTEGER cbColDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER FAR ?pcbValue);

 Function Arguments

Table 19 (Page 1 of 5). SQLBindParameter Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLUSMALLINT ipar input Parameter marker number, ordered sequentially left to
right, starting at 1.

 Chapter 5. Functions 89

 SQLBindParameter

Table 19 (Page 2 of 5). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT fParamType input The type of parameter. The supported types are:

� SQL_PARAM_INPUT: The parameter marker is
associated with an SQL statement that is not a stored
procedure CALL; or, it marks an input parameter of
the CALLed stored procedure.

When the statement is executed, actual data value for
the parameter is sent to the server: the rgbValue
buffer must contain valid input data values; the
pcbValue buffer must contain the corresponding
length value or SQL_NTS, SQL_NULL_DATA, or (if
the value should be sent via SQLParamData() and
SQLPutData()) SQL_DATA_AT_EXEC.

� SQL_PARAM_INPUT_OUTPUT: The parameter
marker is associated with an input/output parameter of
the CALLed stored procedure.

When the statement is executed, actual data value for
the parameter is sent to the server: the rgbValue
buffer must contain valid input data values; the
pcbValue buffer must contain the corresponding
length value or SQL_NTS, SQL_NULL_DATA, or (if
the value should be sent via SQLParamData() and
SQLPutData()) SQL_DATA_AT_EXEC.

� SQL_PARAM_OUTPUT: The parameter marker is
associated with an output parameter of the CALLed
stored procedure or the return value of the stored
procedure.

After the statement is executed, data for the output
parameter is returned to the application buffer
specified by rgbValue and pcbValue, unless both are
NULL pointers, in which case the output data is
discarded.

SQLSMALLINT fCType input C data type of the parameter. The following types are
supported:

 � SQL_C_BINARY
 � SQL_C_BIT
 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DBCHAR
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_TINYINT

 Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type to the type
indicated in fSqlType.

90 Call Level Interface Guide and Reference

 SQLBindParameter

Table 19 (Page 3 of 5). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT fSqlType input SQL Data Type of the parameter. The supported types
are:

 � SQL_BINARY
 � SQL_CHAR
 � SQL_DATE
 � SQL_DECIMAL
 � SQL_DOUBLE
 � SQL_FLOAT
 � SQL_GRAPHIC
 � SQL_INTEGER
 � SQL_LONGVARBINARY
 � SQL_LONGVARCHAR
 � SQL_LONGVARGRAPHIC
 � SQL_NUMERIC
 � SQL_REAL
 � SQL_SMALLINT
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARBINARY
 � SQL_VARCHAR
 � SQL_VARGRAPHIC

SQLUINTEGER cbColDef input Precision of the corresponding parameter marker. If
fSqlType denotes:

� A binary or single byte character string (for example,
SQL_CHAR, SQL_BINARY), this is the maximum
length in bytes for this parameter marker.

� A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in
double-byte characters for this parameter.

� SQL_DECIMAL, SQL_NUMERIC, this is the maximum
decimal precision.

� Otherwise, this argument is ignored.

SQLSMALLINT ibScale input Scale of the corresponding parameter if fSqlType is
SQL_DECIMAL or SQL_NUMERIC. If fSqlType is
SQL_TIMESTAMP, this is the number of digits to the right
of the decimal point in the character representation of a
timestamp (for example, the scale of yyyy-mm-dd
hh:mm:ss.fff is 3).

Other than for the fSqlType values mentioned here,
ibScale is ignored.

 Chapter 5. Functions 91

 SQLBindParameter

Table 19 (Page 4 of 5). SQLBindParameter Arguments

Data Type Argument Use Description

SQLPOINTER rgbValue input
(deferred)
and/or
output
(deferred)

� On input (fParamType set to SQL_PARAM_INPUT, or
SQL_PARAM_INPUT_OUTPUT):

At execution time, if pcbValue does not contain
SQL_NULL_DATA or SQL_DATA_AT_EXEC, then
rgbValue points to a buffer that contains the actual
data for the parameter.

If pcbValue contains SQL_DATA_AT_EXEC, then
rgbValue is an application-defined 32-bit value that is
associated with this parameter. This 32-bit value is
returned to the application via a subsequent
SQLParamData() call.

If SQLParamOptions() is called to specify multiple
values for the parameter, then rgbValue is a pointer to
an input buffer array of cbValueMax bytes.

� On output (fParamType) set to
SQL_PARAM_OUTPUT, or
SQL_PARAM_INPUT_OUTPUT):

rgbValue points to the buffer where the output
parameter value of the stored procedure is stored.

If fParamType is set to SQL_PARAM_OUTPUT, and
both rgbValue and pcbValue are NULL pointers, then
the output parameter value or the return value from
the stored procedure call is discarded.

SQLINTEGER cbValueMax input For character and binary data, cbValueMax specifies the
length of the rgbValue buffer (if treated as a single
element) or the length of each element in the rgbValue
array (if the application calls SQLParamOptions() to specify
multiple values for each parameter). For non-character
and non-binary data, this argument is ignored -- the length
of the rgbValue buffer (if it is a single element) or the
length of each element in the rgbValue array (if
SQLParamOptions() is used to specify an array of values
for each parameter) is assumed to be the length
associated with the C data type.

For output parameters, cbValueMax is used to determine
whether to truncate character or binary output data in the
following manner:

� For character data, if the number of bytes available to
return is greater than or equal to cbValueMax, the
data in rgbValue is truncated to cbValueMax-1 bytes
and is null-terminated (unless null-termination has
been turned off).

� For binary data, if the number of bytes available to
return is greater than cbValueMax, the data in
rgbValue is truncated to cbValueMax bytes.

92 Call Level Interface Guide and Reference

 SQLBindParameter

Table 19 (Page 5 of 5). SQLBindParameter Arguments

Data Type Argument Use Description

SQLINTEGER * pcbValue input
(deferred)
and/or
output
(deferred)

- If this is an input or input/output parameter:

This is the pointer to the location which contains (when
the statement is executed) the length of the parameter
marker value stored at rgbValue.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If fCType is SQL_C_CHAR, this storage location must
contain either the exact length of the data stored at
rgbValue, or SQL_NTS if the contents at rgbValue are
null-terminated.

If fCType indicates character data (explicitly, or implicitly
using SQL_C_DEFAULT), and this pointer is set to NULL,
it is assumed that the application always provides a
null-terminated string in rgbValue. This also implies that
this parameter marker never has a null value.

If fSqlType denotes a graphic data type and the fCType is
SQL_C_CHAR, the pointer to pcbValue can never be
NULL and the contents of pcbValue can never hold
SQL_NTS. In general for graphic data types, this length
should be the number of octets that the double byte data
occupies; therefore, the length should always be a
multiple of 2. In fact, if the length is odd, then an error
occurs when the statement is executed.

When SQLExecute() or SQLExecDirect() is called, and
pcbValue points to a value of SQL_DATA_AT_EXEC, the
data for the parameter is sent with SQLPutData(). This
parameter is referred to as a data-at-execution
parameter.

If SQLParamOptions() is used to specify multiple values for
each parameter, pcbValue points to an array of
SQLINTEGER values where each of the elements can be
the number of bytes in the corresponding rgbValue
element (excluding the null-terminator), or
SQL_NULL_DATA.

- If this is an output parameter (fParamType is set to
SQL_PARAM_OUTPUT):

This must be an output parameter or return value of a
stored procedure CALL and points to one of the following,
after the execution of the stored procedure:

� number of bytes available to return in rgbValue,
excluding the null-termination character.

 � SQL_NULL_DATA
� SQL_NO_TOTAL if the number of bytes available to

return cannot be determined.

 Chapter 5. Functions 93

 SQLBindParameter

 Usage
A parameter marker is represented by a "?" character in an SQL statement and is
used to indicate a position in the statement where an application supplied value is
to be substituted when the statement is executed. This value can be obtained from
an application variable. SQLBindParameter() (or SQLSetParam()) is used to bind the
application storage area to the parameter marker.

The application must bind a variable to each parameter marker in the SQL
statement before executing the SQL statement. For this function, rgbValue and
pcbValue are deferred arguments, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically allocated
or declared statically or globally.

SQLSetParam() can be called before SQLPrepare() if the columns in the result set
are known; otherwise, the attributes of the result set can be obtained after the
statement is prepared.

Parameter markers are referenced by number (icol) and are numbered sequentially
from left to right, starting at 1.

All parameters bound by this function remain in effect until SQLFreeStmt() is called
with either the SQL_DROP or SQL_RESET_PARAMS option, or until
SQLBindParameter() is called again for the same parameter ipar number.

After the SQL statement is executed, and the results processed, the application
might wish to reuse the statement handle to execute a different SQL statement. If
the parameter marker specifications are different (number of parameters, length or
type), SQLFreeStmt() should be called with SQL_RESET_PARAMS to reset or clear
the parameter bindings.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqlType, or an error occurs.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are
data-at-execution parameters. The application informs DB2 CLI of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

Since the data in the variables referenced by rgbValue and pcbValue is not verified
until the statement is executed, data content or format errors are not detected or
reported until SQLExecute() or SQLExecDirect() is called.

SQLBindParameter() essentially extends the capability of the SQLSetParam()

function by providing a method of:

� Specifying whether a parameter is input, input / output, or output, necessary for
proper handling of parameters for stored procedures.

� Specifying an array of input parameter values when SQLParamOptions() is used
in conjunction with SQLBindParameter(). SQLSetParam() can still be used to

94 Call Level Interface Guide and Reference

 SQLBindParameter

bind single element application variables to parameter markers that are not part
of a stored procedure CALL statement.

The fParamType argument specifies the type of the parameter. All parameters in
the SQL statements that do not call procedures are input parameters. Parameters
in stored procedure calls can be input, input/output, or output parameters. Even
though the DB2 stored procedure argument convention typically implies that all
procedure arguments are input/output, the application programmer can still choose
to specify the nature of input or output more exactly on the SQLBindParameter() to
follow a more rigorous coding style.

Note:

� If an application cannot determine the type of a parameter in a procedure call,
set fParamType to SQL_PARAM_INPUT; if the data source returns a value for
the parameter, DB2 CLI discards it.

� If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, DB2 CLI
sets the pcbValue buffer to SQL_NULL_DATA.

� If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement is processed.
If the rgbValue and pcbValue arguments are both null pointers, DB2 CLI
discards the output value. If the data source does not return a value for an
output parameter, DB2 CLI sets the pcbValue buffer to SQL_NULL_DATA.

� For this function, rgbValue and pcbValue are deferred arguments. In the case
where fParamType is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and
contain input data values when the statement is executed. This means either
keeping the SQLExecDirect() or SQLExecute() call in the same procedure
scope as the SQLBindParameter() calls, or, these storage locations must be
dynamically allocated or statically or globally declared.

Similarly, if fParamType is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the rgbValue and pcbValue buffer locations
must remain valid until the CALL statement is executed.

For character and binary C data, the cbValueMax argument specifies the length of
the rgbValue buffer if it is a single element; or, if the application calls
SQLParamOptions() to specify multiple values for each parameter, cbValueMax is
the length of each element in the rgbValue array, INCLUDING the null-terminator. If
the application specifies multiple values, cbValueMax is used to determine the
location of values in the rgbValue array. For all other types of C data, the
cbValueMax argument is ignored.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are
data-at-execution parameters. The application informs DB2 CLI of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, DB2 CLI can provide some performance

 Chapter 5. Functions 95

 SQLBindParameter

enhancement if the rgbValue buffer is placed consecutively in memory after the
pcbValue buffer. For example:

struct { SQLINTEGER pcbValue;

 SQLCHAR rgbValue[MAX_BUFFER];

 } column;

*

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 20 (Page 1 of 2). SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the fCType
argument to the data type identified by the fSqlType argument is
not a meaningful conversion. (For example, conversion from
SQL_C_DATE to SQL_DOUBLE.)

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1003 Program type out of range. The value specified by the argument fCType not a valid data type
or SQL_C_DEFAULT.

S1004 SQL data type out of range. The value specified for the argument fSqlType is not a valid SQL
data type.

S1009 Invalid argument value. The argument rgbValue is a null pointer; the argument pcbValue
is a null pointer; and fParamType is not SQL_PARAM_OUTPUT.

S1010 Function sequence error. Function is called after SQLExecute() or SQLExecDirect() returned
SQL_NEED_DATA, but data have not been sent for all
data-at-execution parameters.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The value specified for the argument cbValueMax is less than 0.

S1093 Invalid parameter number. The value specified for the argument ipar is less than 1 or greater
than the maximum number of parameters supported by the
server.

S1094 Invalid scale value. The value specified for fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for ibScale is less than 0
or greater than the value for the argument cbParamDef
(precision).

The value specified for fCType is SQL_C_TIMESTAMP; the value
for fSqlType is either SQL_CHAR or SQL_VARCHAR; and the
value for ibScale is less than 0 or greater than 6.

96 Call Level Interface Guide and Reference

 SQLBindParameter

Table 20 (Page 2 of 2). SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

S1104 Invalid precision value. The value specified for fSqlType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified for cbParamDef was less
than 1.

S1105 Invalid parameter type. fParamType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

S1C00 Driver not capable. DB2 CLI or data source does not support the conversion specified
by the combination of the value specified for the argument fCType
and the value specified for the argument fSqlType.

The value specified for the argument fSqlType is not supported by
either DB2 CLI or the data source.

 Restrictions
In ODBC 2.0, this function has replaced SQLSetParam().

A new value for pcbValue, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0,
to indicate that the procedure should use the default value of a parameter, rather
than a value sent from the application. Since DB2 stored procedure arguments do
not have the concept of default values, specification of this value for pcbValue
argument results in an error when the CALL statement is executed since the
SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the pcbValue argument. The macro is used to specify the sum total
length of the entire data that is sent for character or binary C data via the
subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo() with
the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DATABASE 2 ODBC driver returns 'N' to indicate that this
information is not needed by SQLPutData().

 Example
The example shown below binds a variety of data types to a set of parameters. For
an additional example refer to “Stored Procedure” on page 464.

 Chapter 5. Functions 97

 SQLBindParameter

/? ... ?/

 SQLCHAR stmt[] =

"INSERT INTO PRODUCT VALUES (?, ?, ?, ?, ?)";

SQLINTEGER Prod_Num[NUM_PRODS] = {

1==11=, 1==12=, 1==21=, 1==22=, 1==51=, 1==52=, 2==11=,

2==12=, 2==21=, 2==22=, 2==51=, 2==61=, 99=11=, 99=12=,

5==11=, 5==21=, 3==1==

 };

SQLCHAR Description[NUM_PRODS][257] = {

"Aquarium-Glass-25 litres", "Aquarium-Glass-5= litres",

"Aquarium-Acrylic-25 litres", "Aquarium-Acrylic-5= litres",

 "Aquarium-Stand-Small", "Aquarium-Stand-Large",

"Pump-Basic-25 litre", "Pump-Basic-5= litre",

"Pump-Deluxe-25 litre", "Pump-Deluxe-5= litre",

"Pump-Filter-(for Basic Pump)",

"Pump-Filter-(for Deluxe Pump)",

 "Aquarium-Kit-Small", "Aquarium-Kit-Large",

 "Gravel-Colored", "Fish-Food-Deluxe-Bulk",

 "Plastic-Tubing"

 };

SQLDOUBLE UPrice[NUM_PRODS] = {

11=.==, 19=.==, 1==.==, 15=.==, 6=.==, 9=.==, 3=.==,

45.==, 55.==, 75.==, 4.75, 5.25, 16=.==, 24=.==,

2.5=, 35.==, 5.5=

 };

SQLCHAR Units[NUM_PRODS][3] = {

 " ", " ", " ", " ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", " ", "kg", "kg", "m"

 };

SQLCHAR Combo[NUM_PRODS][2] = {

"N", "N", "N", "N", "N", "N", "N", "N", "N",

"N", "N", "N", "Y", "Y", "N", "N", "N"

 };

SQLUINTEGER pirow = =;

/? ... ?/

/? Prepare the statement ?/

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

=, =, Prod_Num, =, NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

257, =, Description, 257, NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DOUBLE, SQL_DECIMAL,

1=, 2, UPrice, =, NULL);

rc = SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

3, =, Units, 3, NULL);

rc = SQLBindParameter(hstmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

2, =, Combo, 2, NULL);

rc = SQLParamOptions(hstmt, NUM_PRODS, &pirow);

rc = SQLExecute(hstmt);

printf("Inserted %ld Rows\n", pirow);

/? ... ?/

98 Call Level Interface Guide and Reference

 SQLBindParameter

 References
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 256
� “SQLParamOptions - Specify an Input Array for a Parameter” on page 258
� “SQLPutData - Passing Data Value for A Parameter” on page 286

 Chapter 5. Functions 99

 SQLCancel

SQLCancel - Cancel Statement

 Purpose

SQLCancel() can be used to prematurely terminate the data-at-execution sequence
described in “Sending/Retrieving Long Data in Pieces” on page 349.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLCancel (SQLHSTMT hstmt);

 Function Arguments

Table 21. SQLCancel Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

 Usage
After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for
values for data-at-execution parameters, SQLCancel() can be used to cancel the
data-at-execution sequence described in “Sending/Retrieving Long Data in Pieces”
on page 349. SQLCancel() can be called any time before the final SQLParamData()

in the sequence. After the cancellation of this sequence, the application can call
SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If an application calls SQLCancel() on an hstmt not associated with a
data-at-execution sequence, SQLCancel() has the same effect as SQLFreeStmt()
with the SQL_CLOSE option. Applications should not call SQLCancel() to close a
cursor; but rather SQLFreeStmt() should be used.

 Return Codes
 � SQL_SUCCESS
 � SQL_INVALID_HANDLE
 � SQL_ERROR

 Diagnostics

Table 22. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

100 Call Level Interface Guide and Reference

 SQLCancel

 Restrictions
DB2 CLI does not support asynchronous statement execution.

 Example
Refer to “Example” on page 288.

 References
� “SQLPutData - Passing Data Value for A Parameter” on page 286
� “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 256

 Chapter 5. Functions 101

 SQLColAttributes

SQLColAttributes - Get Column Attributes

 Purpose

SQLColAttributes() is used to get an attribute for a column of the result set, and
can also be used to determine the number of columns. SQLColAttributes() is a
more extensible alternative to the SQLDescribeCol() function, but can only return
one attribute per call.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

If the application does not know the various attributes (such as, data type and
length) of the column, this function (or SQLDescribeCol()) must be called before
binding, via SQLBindCol(), to any columns.

Note: 1 - X/Open and ISO define this function with a singular name,
SQLColAttribute().

Specification: ODBC 1.0 X/OPEN CLI 1 ISO CLI 1

 Syntax
SQLRETURN SQLColAttributes (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLUSMALLINT fDescType,

 SQLPOINTER rgbDesc,

 SQLSMALLINT cbDescMax,

 SQLSMALLINT FAR ?pcbDesc,

 SQLINTEGER FAR ?pfDesc);

 Function Arguments

Table 23. SQLColAttributes Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLUSMALLINT icol input Column number in result set (must be between 1 and the
number of columns in the results set inclusive). This
argument is ignored when SQL_COLUMN_COUNT is
specified.

SQLUSMALLINT fDescType input The supported values are described in Table 24 on
page 103.

SQLCHAR * rgbDesc output Pointer to buffer for string column attributes

SQLSMALLINT cbDescMax input Length of rgbDesc descriptor buffer.

SQLSMALLINT * pcbDesc output Actual number of bytes returned in rgbDesc buffer. If this
argument contains a value equal to or greater than the
length specified in cbDescMax, truncation occurred. The
column attribute value is then truncated to cbDescMax
bytes minus the size of the null-terminator (or to
cbDescMax bytes if null termination is off).

SQLINTEGER * pfDesc output Pointer to integer which holds the value of numeric
column attributes.

102 Call Level Interface Guide and Reference

 SQLColAttributes

The following values can be specified for the fDescType argument:

Table 24 (Page 1 of 3). fDescType descriptor types

Descriptor Description

SQL_COLUMN_AUTO_INCREMENT Indicates if the column data type is an auto
increment data type.

FALSE is returned in pfDesc for all DB2 SQL data
types.

SQL_COLUMN_CASE_SENSITIVE Indicates if the column data type is a case
sensitive data type.

Either TRUE or FALSE is returned in pfDesc
depending on the data type.

Case sensitivity does not apply to graphic data
types, FALSE is returned.

FALSE is returned for non-character data types.

SQL_COLUMN_CATALOG_NAME
(SQL_COLUMN_QUALIFIER_NAME)

The catalog of the table that contains the column
is returned in rgbDesc. An empty string is returned
since DB2 CLI only supports two-part naming for a
table.

SQL_COLUMN_QUALIFIER_NAME is defined for
compatibility with ODBC. DB2 CLI applications
should use SQL_COLUMN_CATALOG_NAME.

SQL_COLUMN_COUNT The number of columns in the result set is
returned in pfDesc.

SQL_COLUMN_DISPLAY_SIZE The maximum number of bytes needed to display
the data in character form is returned in pfDesc.

Refer to Table 148 on page 415 for the display
size of each of the column types.

SQL_COLUMN_DISTINCT_TYPE The user defined distinct type name of the column
is returned in rgbDesc. If the column is a built-in
SQL type and not a user defined distinct type, an
empty string is returned.

Note: This is an IBM-defined extension to the list
of descriptor attributes defined by ODBC.

SQL_COLUMN_LABEL The column label is returned in rgbDesc. If the
column does not have a label, the column name or
the column expression is returned. If the column is
unlabeled and unnamed, an empty string is
returned.

 Chapter 5. Functions 103

 SQLColAttributes

Table 24 (Page 2 of 3). fDescType descriptor types

Descriptor Description

SQL_COLUMN_LENGTH The number of bytes of data associated with the
column is returned in pfDesc. This is the length in
bytes of data transferred on the fetch or
SQLGetData() for this column if SQL_C_DEFAULT
is specified as the C data type. Refer to Table 147
on page 414 for the length of each of the SQL
data types.

If the column identified in icol is a fixed length
character or binary string, (for example,
SQL_CHAR or SQL_BINARY) the actual length is
returned.

If the column identified in icol is a variable length
character or binary string, (for example,
SQL_VARCHAR) the maximum length is returned.

SQL_COLUMN_MONEY Indicates if the column data type is a money data
type.

FALSE is returned in pfDesc for all DB2 SQL data
types.

SQL_COLUMN_NAME The name of the column icol is returned in
rgbDesc. If the column is an expression, then the
result returned is product specific.

SQL_COLUMN_NULLABLE If the column identified by icol can contain nulls,
then SQL_NULLABLE is returned in pfDesc.

If the column is constrained not to accept nulls,
then SQL_NO_NULLS is returned in pfDesc.

SQL_COLUMN_PRECISION The precision in units of digits is returned in
pfDesc if the column is SQL_DECIMAL,
SQL_NUMERIC, SQL_DOUBLE, SQL_FLOAT,
SQL_INTEGER, SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then
the precision returned in pfDesc, indicates the
maximum number of characters the column can
hold.

If the column is a graphic SQL data type, then the
precision returned in pfDesc, indicates the
maximum number of double-byte characters the
column can hold.

Refer to Table 145 on page 412 for the precision
of each of the SQL data types.

SQL_COLUMN_SCALE The scale attribute of the column is returned. Refer
to Table 146 on page 413 for the scale of each of
the SQL data types.

SQL_COLUMN_SCHEMA_NAME
(SQL_COLUMN_OWNER_NAME)

The schema of the table that contains the column
is returned in rgbDesc. An empty string is returned
as DB2 CLI is unable to determine this attribute.

SQL_COLUMN_OWNER_NAME is defined for
compatibility with ODBC. DB2 CLI applications
should use SQL_COLUMN_SCHEMA_NAME.

104 Call Level Interface Guide and Reference

 SQLColAttributes

Table 24 (Page 3 of 3). fDescType descriptor types

Descriptor Description

SQL_COLUMN_SEARCHABLE Indicates if the column data type is searchable:

� SQL_UNSEARCHABLE if the column cannot
be used in a WHERE clause.

� SQL_LIKE_ONLY if the column can be used in
a WHERE clause only with the LIKE predicate.

� SQL_ALL_EXCEPT_LIKE if the column can be
used in a WHERE clause with all comparison
operators except LIKE.

� SQL_SEARCHABLE if the column can be
used in a WHERE clause with any comparison
operator.

SQL_COLUMN_TABLE_NAME The name of the table that contains the column is
returned in rgbDesc. An empty string is returned
as DB2 CLI cannot determine this attribute.

SQL_COLUMN_TYPE The SQL data type of the column identified in icol
is returned in pfDesc. The possible values for
pfSqlType are listed in Table 4 on page 40.

SQL_COLUMN_TYPE_NAME The type of the column (as entered in an SQL
statement) is returned in rgbDesc.

For information on each data type refer to the
TYPE_NAME attribute found in “Data Types and
Data Conversion” on page 37.

SQL_COLUMN_UNSIGNED Indicates if the column data type is an unsigned
type or not.

TRUE is returned in pfDesc for all non-numeric
data types, FALSE is returned for all numeric data
types.

SQL_COLUMN_UPDATABLE Indicates if the column data type is an updateable
data type.

SQL_ATTR_READWRITE_UNKNOWN is returned
in pfDesc for all DB2 SQL data types.

SQL_ATTR_READONLY is returned if the column
is obtained from a catalog function call.

 Usage
Instead of returning a specific set of attributes like SQLDescribeCol(),
SQLColAttributes() allows you to specify which attribute you wish to receive for a
specific column. If the desired information is a string, it is returned in rgbDesc. If the
desired information is a number, it is returned in pfDesc.

SQLColAttributes() is an extensible alternative to SQLDescribeCol(), which is used
to return a fixed set of commonly used column attribute information.

If an fDescType descriptor type does not apply to the database server, an empty
string is returned in rgbDesc or zero is returned in pfDesc, depending on the
expected result of the descriptor.

Columns are identified by a number (numbered sequentially from left to right
starting with 1) and can be described in any order.

 Chapter 5. Functions 105

 SQLColAttributes

Calling SQLColAttributes() with fDescType set to SQL_COLUMN_COUNT is an
alternative to calling SQLNumResultCols() to determine whether any columns can be
returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 25. SQLColAttributes SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The character string returned in the argument rgbDesc is longer
than the value specified in the argument cbDescMax. The
argument pcbDesc contains the actual length of the string to be
returned. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return
a result set.

The statement associated with the hstmt did not return a result
set. There are no columns to describe.

To prevent encountering this error, call SQLNumResultCols()
before calling SQLColAttributes().

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1002 Invalid column number. The value specified for the argument icol is less than 1.

The value specified for the argument icol is greater than the
number of columns in the result set. Not returned if
SQL_COLUMN_COUNT is specified.

S1010 Function sequence error. The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The length specified in the argument cbDescMax is less than 0
and fDescType requires a character string be returned in
rgbDesc.

S1091 Descriptor type out of range. The value specified for the argument fDescType was not equal to
a value specified in Table 24 on page 103.

S1C00 Driver not capable. The SQL data type returned by the database server for column
icol is not recognized by DB2 CLI.

106 Call Level Interface Guide and Reference

 SQLColAttributes

 Restrictions
None.

 Example
Refer to “Example” on page 129

 References
� “SQLDescribeCol - Describe Column Attributes” on page 127
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLPrepare - Prepare a Statement” on page 260
� “SQLSetColAttributes - Set Column Attributes” on page 291

 Chapter 5. Functions 107

 SQLColumnPrivileges

SQLColumnPrivileges - Get Privileges Associated With The Columns
of A
Table

 Purpose

SQLColumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set, which can be
retrieved using the same functions that are used to process a result set generated
from a query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLColumnPrivileges (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR FAR ?szColumnName,

 SQLSMALLINT cbColumnName);

 Function Arguments

Table 26. SQLColumnPrivileges Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Catalog qualifier of a 3-part table name. This must be a
NULL pointer or a zero length string.

SQLSMALLINT cbCatalogName input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName input Schema qualifier of table name.

SQLSMALLINT cbSchemaName input Length of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input Length of szTableName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result
set by column name.

SQLSMALLINT cbColumnName input Length of szColumnName.

 Usage
The results are returned as a standard result set containing the columns listed in
Table 27 on page 109. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, COLUMN_NAME, and PRIVILEGE. If multiple privileges are
associated with any given column, each privilege is returned as a separate row. A
typical application might wish to call this function after a call to SQLColumns() to
determine column privilege information. The application should use the character

108 Call Level Interface Guide and Reference

 SQLColumnPrivileges

strings returned in the TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns
of the SQLColumns() result set as input arguments to this function.

Since calls to SQLColumnPrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating the calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Note that the szColumnName argument accepts a search pattern. For more
information about valid search patterns, refer to “Input Arguments on Catalog
Functions” on page 347.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 27 (Page 1 of 2). Columns Returned By SQLColumnPrivileges

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
not NULL

Name of the table or view.

4 COLUMN_NAME VARCHAR(128)
not NULL

Name of the column of the specified table or view.

5 GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

6 GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is granted.

 Chapter 5. Functions 109

 SQLColumnPrivileges

Table 27 (Page 2 of 2). Columns Returned By SQLColumnPrivileges

Column
Number/Name Data Type Description

7 PRIVILEGE VARCHAR(128) The column privilege. This can be:

 � ALTER
 � CONTROL
 � DELETE
 � INDEX
 � INSERT
 � REFERENCES
 � SELECT
 � UPDATE

Supported privileges are based on the data source to which you are
connected.

Note: Most IBM RDBMSs do not offer column level privileges at the
column level. DB2 for OS/390 and DB2 for VSE and VM support
the UPDATE column privilege; there is one row in this result set
for each updateable column. For all other privileges for DB2 for
OS/390 and DB2 for VSE and VM, and for all privileges for other
IBM RDBMSs, if a privilege has been granted at the table level, a
row is present in this result set.

8 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant the privilege to other
users.

Either "YES", "NO".

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLColumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, then each privilege is
returned as a separate row in the result set.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 28 (Page 1 of 2). SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. szTableName is NULL.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

110 Call Level Interface Guide and Reference

 SQLColumnPrivileges

Table 28 (Page 2 of 2). SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

 Example

/? ... ?/

SQLRETURN

list_column_privileges(SQLHDBC hdbc, SQLCHAR ?schema, SQLCHAR ?tablename)

{

/? ... ?/

rc = SQLColumnPrivileges(hstmt, NULL, =, schema, SQL_NTS,

tablename, SQL_NTS, columnname.s, SQL_NTS);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) columnname.s, 129,

 &columnname.ind);

rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,

 &grantor.ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) grantee.s, 129,

 &grantee.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) privilege.s, 129,

 &privilege.ind);

rc = SQLBindCol(hstmt, 8, SQL_C_CHAR, (SQLPOINTER) is_grantable.s, 4,

 &is_grantable.ind);

printf("Column Privileges for %s.%s\n", schema, tablename);

/? Fetch each row, and display ?/

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

sprintf(cur_name, " Column: %s\n", columnname.s);

if (strcmp(cur_name, pre_name) != =) {

 printf("\n%s\n", cur_name);

printf(" Grantor Grantee Privilege Grantable\n");

printf(" --------------- --------------- ---------- ---\n");

 }

 strcpy(pre_name, cur_name);

 printf(" %-15s", grantor.s);

printf(" %-15s", grantee.s);

printf(" %-1=s", privilege.s);

printf(" %-3s\n", is_grantable.s);

} /? endwhile ?/

/? ... ?/

 Chapter 5. Functions 111

 SQLColumnPrivileges

 References
� “SQLColumns - Get Column Information for a Table” on page 113
� “SQLTables - Get Table Information” on page 334

112 Call Level Interface Guide and Reference

 SQLColumns

SQLColumns - Get Column Information for a Table

 Purpose

SQLColumns() returns a list of columns in the specified tables. The information is
returned in an SQL result set, which can be retrieved using the same functions that
are used to fetch a result set generated by a query.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLColumns (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR FAR ?szColumnName,

 SQLSMALLINT cbColumnName);

 Function Arguments

Table 29. SQLColumns Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Buffer that can contain a pattern-value to qualify the result
set. Catalog is the first part of a 3-part table name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbCatalogName input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName input Buffer that can contain a pattern-value to qualify the result
set by schema name.

SQLSMALLINT cbSchemaName input Length of szSchemaName.

SQLCHAR * szTableName input Buffer that can contain a pattern-value to qualify the result
set by table name.

SQLSMALLINT cbTableName input Length of szTableName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result
set by column name.

SQLSMALLINT cbColumnName input Length of szColumnName.

 Usage
This function is called to retrieve information about the columns of either a table or
a set of tables. A typical application might wish to call this function after a call to
SQLTables() to determine the columns of a table. The application should use the
character strings returned in the TABLE_SCHEMA and TABLE_NAME columns of
the SQLTables() result set as input to this function.

 Chapter 5. Functions 113

 SQLColumns

SQLColumns() returns a standard result set, ordered by TABLE_CAT,
TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION. Table 30 on
page 114 lists the columns in the result set.

The szSchemaName, szTableName, and szColumnName arguments accept search
patterns. For more information about valid search patterns, see “Input Arguments
on Catalog Functions” on page 347.

Since calls to SQLColumns() in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results
saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 30 (Page 1 of 3). Columns Returned By SQLColumns

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
NOT NULL

Name of the table, view, alias, or synonym.

4 COLUMN_NAME VARCHAR(128)
NOT NULL

Column identifier. Name of the column of the specified table,
view, alias, or synonym.

5 DATA_TYPE SMALLINT
NOT NULL

SQL data type of column identified by COLUMN_NAME. This is
one of the values in the Symbolic SQL Data Type column in
Table 4 on page 40.

6 TYPE_NAME VARCHAR(128)
NOT NULL

Character string representing the name of the data type
corresponding to DATA_TYPE.

7 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or binary
string, then this column contains the maximum length in
characters for the column.

For date, time, timestamp data types, this is the total number of
characters required to display the value when converted to
character.

For numeric data types, this is either the total number of digits,
or the total number of bits allowed in the column, depending on
the value in the NUM_PREC_RADIX column in the result set.

See also, Table 145 on page 412.

114 Call Level Interface Guide and Reference

 SQLColumns

Table 30 (Page 2 of 3). Columns Returned By SQLColumns

Column
Number/Name Data Type Description

8 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to
store data from this column if SQL_C_DEFAULT is specified on
the SQLBindCol(), SQLGetData() and SQLBindParameter()
calls. This length does not include any null-terminator. For
exact numeric data types, the length accounts for the decimal
and the sign.

See also, Table 147 on page 414.

9 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data types
where scale is not applicable.

See also, Table 146 on page 413.

10 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an approximate
numeric data type, this column contains the value 2, then the
COLUMN_SIZE column contains the number of bits allowed in
the column.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE contains the
number of decimal digits allowed for the column.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not applicable.

11 NULLABLE SMALLINT
NOT NULL

SQL_NO_NULLS if the column does not accept NULL values.

SQL_NULLABLE if the column accepts NULL values.

12 REMARKS VARCHAR(254) Might contain descriptive information about the column.

13 COLUMN_DEF VARCHAR(254) The column's default value. If the default value is a numeric
literal, then this column contains the character representation of
the numeric literal with no enclosing single quotes. If the default
value is a character string, then this column is that string
enclosed in single quotes. If the default value is a
pseudo-literal, such as for DATE, TIME, and TIMESTAMP
columns, then this column contains the keyword of the
pseudo-literal (for example, CURRENT DATE) with no
enclosing quotes.

If NULL was specified as the default value, then this column
returns the word NULL, not enclosed in quotes. If the default
value cannot be represented without truncation, then this
column contains TRUNCATED with no enclosing single quotes.
If no default value was specified, then this column is NULL.

14 DATETIME_CODE INTEGER This column is currently NULL.

15 CHAR_OCTET_LENGTH INTEGER Contains the maximum length in octets for a character data
type column. For Single Byte character sets, this is the same
as COLUMN_SIZE. For all other data types it is NULL.

16 ORDINAL_POSITION INTEGER NOT
NULL

The ordinal position of the column in the table. The first column
in the table is number 1.

17 IS_NULLABLE VARCHAR(254) Contains the string 'NO' if the column is known to be not
nullable; and 'YES' otherwise.

 Chapter 5. Functions 115

 SQLColumns

Table 30 (Page 3 of 3). Columns Returned By SQLColumns

Column
Number/Name Data Type Description

Note: This result set is identical to the X/Open CLI Columns() result set specification, which is an extended version of
the SQLColumns() result set specified in ODBC V2. The ODBC SQLColumns() result set includes every column
in the same position up to the REMARKS column.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 31. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

116 Call Level Interface Guide and Reference

 SQLColumns

 Example

/? ... ?/

SQLRETURN

list_columns(SQLHDBC hdbc, SQLCHAR ?schema, SQLCHAR ?tablename)

{

/? ... ?/

rc = SQLColumns(hstmt, NULL, =, schema, SQL_NTS,

tablename, SQL_NTS, "%", SQL_NTS);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_LONG, (SQLPOINTER) &length,

 sizeof(length), &length_ind);

rc = SQLBindCol(hstmt, 9, SQL_C_SHORT, (SQLPOINTER) &scale,

 sizeof(scale), &scale_ind);

rc = SQLBindCol(hstmt, 12, SQL_C_CHAR, (SQLPOINTER) remarks.s, 129,

 &remarks.ind);

rc = SQLBindCol(hstmt, 11, SQL_C_SHORT, (SQLPOINTER) & nullable,

 sizeof(nullable), &nullable_ind);

printf("Schema: %s Table Name: %s\n", schema, tablename);

/? Fetch each row, and display ?/

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 printf(" %s", column_name.s);

if (nullable == SQL_NULLABLE) {

 printf(", NULLABLE");

} else {

printf(", NOT NULLABLE");

 }

printf(", %s", type_name.s);

if (length_ind != SQL_NULL_DATA) {

printf(" (%ld", length);

} else {

 printf("(\n");

 }

if (scale_ind != SQL_NULL_DATA) {

printf(", %d)\n", scale);

} else {

 printf(")\n");

 }

} /? endwhile ?/

/? ... ?/

 References
� “SQLTables - Get Table Information” on page 334
� “SQLColumnPrivileges - Get Privileges Associated With The Columns of A

Table” on page 108
� “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 319

 Chapter 5. Functions 117

 SQLConnect

SQLConnect - Connect to a Data Source

 Purpose

SQLConnect() establishes a connection to the target database. The application
must supply a target SQL database.

SQLAllocConnect() must be called before calling this function.

This function must be called before calling SQLAllocStmt().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLConnect (SQLHDBC hdbc,

 SQLCHAR FAR ?szDSN,

 SQLSMALLINT cbDSN,

 SQLCHAR FAR ?szUID,

 SQLSMALLINT cbUID,

 SQLCHAR FAR ?szAuthStr,

 SQLSMALLINT cbAuthStr);

 Function Arguments

Table 32. SQLConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

SQLCHAR * szDSN input Data Source: The name or alias-name of the database.

SQLSMALLINT cbDSN input Length of contents of szDSN argument

SQLCHAR * szUID input Authorization-name (user identifier). This parameter is
validated but not used.

SQLSMALLINT cbUID input Length of contents of szUID argument. This parameter is
validated but not used.

SQLCHAR * szAuthStr input Authentication-string (password). This parameter is
validated but not used.

SQLSMALLINT cbAuthStr input Length of contents of szAuthStr argument. This parameter
is validated but not used.

 Usage
The target database (also known as data source) for IBM RDBMSs is the location
name as defined in SYSIBM.LOCATIONS when DDF has been configured in the
DB2 subsystem. The application can obtain a list of databases available to connect
to by calling SQLDataSources(). For many applications, a local database is being
accessed (DDF is not being used). The local database name is the name that was
set during DB2 installation as 'DB2 LOCATION NAME' on the DSNTIPR installation
panel for the DB2 subsystem. Your local DB2 administration staff can provide you
with this name, or the application can use a 'null connect', as described below, to
connect to the default local database without supplying a database name.

118 Call Level Interface Guide and Reference

 SQLConnect

The input length arguments to SQLConnect() (cbDSN, cbUID, cbAuthStr) can be set
to the actual length of their associated data (not including any null-terminating
character) or to SQL_NTS to indicate that the associated data is null-terminated.

The szDSN and szUID argument values must not contain any blanks. If these
values are specified, they are ignored. The semantics of szDSN are as follows:

� If szDSN is not NULL and cbDSN is not 0, then DB2 CLI issues a CONNECT
TO the data source.

� If szDSN is not NULL and cbDSN is 0, then DB2 CLI issues a CONNECT
RESET, that is, a CONNECT to the local DB2 subsystem.

� If szDSN is NULL, then CONNECT.

The latter usage is referred to as a 'NULL' CONNECT and is required when
the application is executing as a stored procedure. In this case it cannot
connect to a data source but requires a valid connect handle for the DB2
subsystem.

The CONNECT type (CONNECT (Type 1), CONNECT (Type 2)) is specified as
described in “CONNECT Type 1 and Type 2” on page 25.

Use the more extensible SQLDriverConnect() function to connect when the
application needs to override any or all of the keyword values specified for this data
source in the initialization file.

Various connection characteristics (options) can be specified by the end user in the
section of the initialization file associated with the szDSN data source argument or
set by the application using SQLSetConnectOption(). The extended connect
function, SQLDriverConnect(), can be called with additional connect options and
can also perform a null connect.

Stored procedures written using DB2 CLI must make a null SQLConnect() call. A
null SQLConnect() is where the szDSN argument pointer is set to NULL and the
length argument is set to 0. A null SQLConnect() still requires SQLAllocEnv() and
SQLAllocConnect() be called first, but does not require that SQLTransact() be
called before SQLDisconnect(). For more information, refer to “Stored Procedure”
on page 464.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 33 (Page 1 of 2). SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data
source.

DB2 CLI is not able to establish a connection with the data source
(server).

The connection request is rejected because an existing
connection established via embedded SQL already exists.

 Chapter 5. Functions 119

 SQLConnect

Table 33 (Page 2 of 2). SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08002 Connection in use. The specified hdbc is already being used to establish a
connection with a data source and the connection is still open.

08004 The application server
rejected establishment of the
connection.

The data source (server) rejected the establishment of the
connection.

The number of connections specified by the MAXCONN keyword
has been reached.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. A non-matching double quote (") is found in either the szDSN,
szUID, or szAuthStr argument.

S1090 Invalid string or buffer length. The value specified for argument cbDSN is less than 0, but not
equal to SQL_NTS and the argument szDSN is not a null pointer.

The value specified for argument cbUID is less than 0, but not
equal to SQL_NTS and the argument szUID is not a null pointer.

The value specified for argument cbAuthStr is less than 0, but not
equal to SQL_NTS and the argument szAuthStr is not a null
pointer.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1501 Invalid data source name. An invalid data source name is specified in argument szDSN.

 Restrictions
The implicit connection (or default database) option for IBM RDBMSs is not
supported. SQLConnect() must be called before any SQL statements can be
executed.

 Example

120 Call Level Interface Guide and Reference

 SQLConnect

/? ... ?/

/? Global Variables for user id and password, defined in main module.

To keep samples simple, not a recommended practice.

The INIT_UID_PWD macro is used to initialize these variables.

?/

extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];

/??/

SQLRETURN

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc)

{

 SQLRETURN rc;

 SQLSMALLINT outlen;

/? allocate a connection handle ?/

if (SQLAllocConnect(henv, hdbc) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");

 return (SQL_ERROR);

 }

/? Set AUTOCOMMIT OFF ?/

rc = SQLSetConnectOption(?hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n");

 return (SQL_ERROR);

 }

 Chapter 5. Functions 121

 SQLConnect

rc = SQLConnect(?hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n", server);

 SQLDisconnect(?hdbc);

 SQLFreeConnect(?hdbc);

 return (SQL_ERROR);

} else { /? Print Connection Information ?/

printf(">Connected to %s\n", server);

 }

 return (SQL_SUCCESS);

}

/??/

/? DBconnect2 - Connect with connect type ?/

/? Valid connect types SQL_CONCURRENT_TRANS, SQL_COORDINATED_TRANS ?/

/??/

SQLRETURN DBconnect2(SQLHENV henv,

SQLHDBC ? hdbc, SQLINTEGER contype)

SQLHDBC ? hdbc, SQLINTEGER contype, SQLINTEGER conphase)

{

 SQLRETURN rc;

 SQLSMALLINT outlen;

/? allocate a connection handle ?/

if (SQLAllocConnect(henv, hdbc) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");

 return (SQL_ERROR);

 }

/? Set AUTOCOMMIT OFF ?/

rc = SQLSetConnectOption(?hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n");

 return (SQL_ERROR);

 }

rc = SQLSetConnectOption(hdbc[=], SQL_CONNECTTYPE, contype);

if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting Connect Type -------------\n");

 return (SQL_ERROR);

 }

if (contype == SQL_COORDINATED_TRANS) {

rc = SQLSetConnectOption(hdbc[=], SQL_SYNC_POINT, conphase);

if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting Syncpoint Phase --------\n");

 return (SQL_ERROR);

 }

 }

rc = SQLConnect(?hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n", server);

 SQLDisconnect(?hdbc);

 SQLFreeConnect(?hdbc);

 return (SQL_ERROR);

} else { /? Print Connection Information ?/

printf(">Connected to %s\n", server);

 }

 return (SQL_SUCCESS);

}

/? ... ?/

122 Call Level Interface Guide and Reference

 SQLConnect

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 76
� “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 136
� “SQLSetConnectOption - Set Connection Option” on page 297
� “SQLGetConnectOption - Returns Current Setting of A Connect Option” on

page 184
� “SQLAllocStmt - Allocate a Statement Handle” on page 82
� “SQLDataSources - Get List of Data Sources” on page 124
� “SQLDisconnect - Disconnect from a Data Source” on page 134

 Chapter 5. Functions 123

 SQLDataSources

SQLDataSources - Get List of Data Sources

 Purpose

SQLDataSources() returns a list of target databases available, one at a time.

SQLDataSources() is usually called before a connection is made, to determine the
databases that are available to connect to.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLDataSources (SQLHENV henv,

 SQLUSMALLINT fDirection,

 SQLCHAR FAR ?szDSN,

 SQLSMALLINT cbDSNMax,

 SQLSMALLINT FAR ?pcbDSN,

 SQLCHAR FAR ?szDescription,

 SQLSMALLINT cbDescriptionMax,

 SQLSMALLINT FAR ?pcbDescription);

 Function Arguments

Table 34. SQLDataSources Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle.

SQLUSMALLINT fDirection input Used by application to request the first data source name
in the list or the next one in the list. fDirection can take on
only the following values:

 � SQL_FETCH_FIRST
 � SQL_FETCH_NEXT

SQLCHAR * szDSN output Pointer to buffer to hold the data source name retrieved.

SQLSMALLINT cbDSNMax input Maximum length of the buffer pointed to by szDSN. This
should be less than or equal to
SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT * pcbDSN output Pointer to location where the maximum number of bytes
available to return in the szDSN are stored.

SQLCHAR * szDescription output Pointer to buffer where the description of the data source
is returned. DB2 CLI returns the Comment field
associated with the database cataloged to the DBMS.

Note: IBM RDBMSs always return blank padded to 30 bytes.

SQLSMALLINT cbDescriptionMax input Maximum length of the szDescription buffer. DB2 for
OS/390 always returns NULL.

SQLSMALLINT * pcbDescription output Pointer to location where this function returns the actual
number of bytes available to return for the description of
the data source. DB2 for OS/390 always returns zero.

124 Call Level Interface Guide and Reference

 SQLDataSources

 Usage
The application can call this function any time with fDirection set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list is always returned.

If SQL_FETCH_NEXT is specified:

� Directly following a SQL_FETCH_FIRST call, the second database in the list is
returned

� Before any other SQLDataSources() call, the first database in the list is returned
� When there are no more databases in the list, SQL_NO_DATA_FOUND is

returned. If the function is called again, the first database is returned.
� Any other time, the next database in the list is returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

 Diagnostics

Table 35. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data source name returned in the argument szDSN is longer
than the value specified in the argument cbDSNMax. The
argument pcbDSN contains the length of the full data source
name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument szDescription is
longer than the value specified in the argument cbDescriptionMax.
The argument pcbDescription contains the length of the full data
source description. (Function returns
SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure. Unrecoverable system error.

S1000 General error. An error occurred for which there is no specific SQLSTATE and
for which no specific SQLSTATE is defined. The error message
returned by SQLError in the argument szErrorMsg describes the
error and its cause.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The value specified for argument cbDSNMax is less than 0.

The value specified for argument cbDescriptionMax is less than 0.

S1103 Direction option out of range. The value specified for the argument fDirection is not equal to
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

 Chapter 5. Functions 125

 SQLDataSources

 Restrictions
None.

 Example

/? ... ?/

/???

?? - demonstrate SQLDataSource function

?? - list available servers

?? (error checking has been ignored for simplicity)

??

?? Functions used:

??

?? SQLAllocEnv SQLFreeEnv

?? SQLDataSources

??/

#include <stdio.h>

#include <stdlib.h>

#include "sqlcli1.h"

int

main()

{

 SQLRETURN rc;

 SQLHENV henv;

SQLCHAR source[SQL_MAX_DSN_LENGTH + 1], description[255];

 SQLSMALLINT buffl, desl;

SQLAllocEnv(&henv); /? allocate an environment handle ?/

/? list the available data sources (servers) ?/

printf("The following data sources are available:\n");

 printf("ALIAS NAME Comment(Description)\n");

 printf("--\n");

while ((rc = SQLDataSources(henv, SQL_FETCH_NEXT, source,

SQL_MAX_DSN_LENGTH + 1, &buffl, description, 255, &desl))

!= SQL_NO_DATA_FOUND) {

printf("%-3=s %s\n", source, description);

 }

 SQLFreeEnv(henv);

 return (SQL_SUCCESS);

}

/? ... ?/

 References
None.

126 Call Level Interface Guide and Reference

 SQLDescribeCol

SQLDescribeCol - Describe Column Attributes

 Purpose

SQLDescribeCol() returns a set of commonly used descriptor information (column
name, type, precision, scale, nullability) for the indicated column in the result set
generated by a query.

If the application needs only one attribute of the descriptor information, or needs an
attribute not returned by SQLDescribeCol(), the SQLColAttributes() function can
be used in place of SQLDescribeCol(). Refer to “SQLColAttributes - Get Column
Attributes” on page 102 for more information.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLColAttributes()) is usually called before a bind column
function SQLBindCol() to determine the attributes of a column before binding it to
an application variable.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLCHAR FAR ?szColName,

 SQLSMALLINT cbColNameMax,

 SQLSMALLINT FAR ?pcbColName,

 SQLSMALLINT FAR ?pfSqlType,

 SQLUINTEGER FAR ?pcbColDef,

 SQLSMALLINT FAR ?pibScale,

 SQLSMALLINT FAR ?pfNullable);

 Function Arguments

Table 36 (Page 1 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number to be described. Columns are numbered
sequentially from left to right, starting at 1.

SQLCHAR * szColName output Pointer to column name buffer. Set this to NULL if column
name is not needed.

SQLSMALLINT cbColNameMax input Size of szColName buffer.

SQLSMALLINT * pcbColName output Bytes available to return for szColName argument.
Truncation of column name (szColName) to
cbColNameMax - 1 bytes occurs if pcbColName is greater
than or equal to cbColNameMax.

SQLSMALLINT * pfSqlType output Base SQL data type of column. Refer to the Symbolic
SQL Data Type column of Table 4 on page 40 for the
data types that are supported.

SQLUINTEGER * pcbColDef output Precision of column as defined in the database.

 Chapter 5. Functions 127

 SQLDescribeCol

Table 36 (Page 2 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLSMALLINT * pibScale output Scale of column as defined in the database (only applies
to SQL_DECIMAL, SQL_NUMERIC, SQL_TIMESTAMP).
Refer to Table 146 on page 413 for the scale of each of
the SQL data types.

SQLSMALLINT * pfNullable output Indicates whether NULLS are allowed for this column

 � SQL_NO_NULLS
 � SQL_NULLABLE

 Usage
Columns are identified by a number, are numbered sequentially from left to right
starting with 1, and can be described in any order.

If a null pointer is specified for any of the pointer arguments, DB2 CLI assumes that
the information is not needed by the application and nothing is returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics
If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO,
one of the following SQLSTATEs can be obtained by calling the SQLError()
function.

Table 37 (Page 1 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument szColName is longer
than the value specified in the argument cbColNameMax. The
argument pcbColName contains the length of the full column
name. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return
a result set.

The statement associated with the hstmt did not return a result
set. There are no columns to describe. (Call SQLNumResultCols()
first to determine if there are any rows in the result set.)

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1002 Invalid column number. The value specified for the argument icol is less than 1.

The value specified for the argument icol is greater than the
number of columns in the result set.

S1090 Invalid string or buffer length. The length specified in argument cbColNameMax is less than 1.

128 Call Level Interface Guide and Reference

 SQLDescribeCol

Table 37 (Page 2 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1C00 Driver not capable. The SQL data type of column icol is not recognized by DB2 CLI.

 Restrictions
The ODBC defined data type SQL_BIGINT is not supported.

 Example

/? ... ?/

/???

?? process_stmt

?? - allocates a statement handle

?? - executes the statement

?? - determines the type of statement

?? - if there are no result columns, therefore non-select statement

?? - if rowcount > =, assume statement was UPDATE, INSERT, DELETE

?? else

?? - assume a DDL, or Grant/Revoke statement

?? else

?? - must be a select statement.

?? - display results

?? - frees the statement handle

???/

int

process_stmt(SQLHENV henv,

 SQLHDBC hdbc,

SQLCHAR ? sqlstr)

{

 SQLHSTMT hstmt;

 SQLSMALLINT nresultcols;

 SQLINTEGER rowcount;

 SQLRETURN rc;

SQLAllocStmt(hdbc, &hstmt); /? allocate a statement handle ?/

/? execute the SQL statement in "sqlstr" ?/

rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);

if (rc != SQL_SUCCESS)

if (rc == SQL_NO_DATA_FOUND) {

printf("\nStatement executed without error, however,\n");

printf("no data was found or modified\n");

 return (SQL_SUCCESS);

 } else

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

 Chapter 5. Functions 129

 SQLDescribeCol

rc = SQLNumResultCols(hstmt, &nresultcols);

/? determine statement type ?/

if (nresultcols == =) { /? statement is not a select statement ?/

rc = SQLRowCount(hstmt, &rowcount);

if (rowcount > =) { /? assume statement is UPDATE, INSERT, DELETE ?/

printf("Statement executed, %ld rows affected\n", rowcount);

} else { /? assume statement is GRANT, REVOKE or a DLL

? statement ?/

printf("Statement completed successful\n");

 }

} else { /? display the result set ?/

 display_results(hstmt, nresultcols);

} /? end determine statement type ?/

rc = SQLFreeStmt(hstmt, SQL_DROP); /? free statement handle ?/

 return (=);

} /? end process_stmt ?/

/???

?? display_results

??

?? - for each column

?? - get column name

?? - bind column

?? - display column headings

?? - fetch each row

?? - if value truncated, build error message

?? - if column null, set value to "NULL"

?? - display row

?? - print truncation message

?? - free local storage

???/

display_results(SQLHSTMT hstmt,

 SQLSMALLINT nresultcols)

{

 SQLCHAR colname[32];

 SQLSMALLINT coltype;

 SQLSMALLINT colnamelen;

 SQLSMALLINT nullable;

 SQLINTEGER collen[MAXCOLS];

 SQLUINTEGER precision;

 SQLSMALLINT scale;

 SQLINTEGER outlen[MAXCOLS];

 SQLCHAR ?data[MAXCOLS];

 SQLCHAR errmsg[256];

 SQLRETURN rc;

 SQLINTEGER i;

 SQLINTEGER x;

 SQLINTEGER displaysize;

for (i = =; i < nresultcols; i++) {

SQLDescribeCol(hstmt, i + 1, colname, sizeof(colname),

&colnamelen, &coltype, &precision, &scale, NULL);

collen[i] = precision; /? Note, assignment of unsigned int to signed ?/

/? get display length for column ?/

SQLColAttributes(hstmt, i + 1, SQL_COLUMN_DISPLAY_SIZE, NULL, =,

 NULL, &displaysize);

130 Call Level Interface Guide and Reference

 SQLDescribeCol

 /?

? set column length to max of display length, and column name

? length. Plus one byte for null terminator

 ?/

collen[i] = max(displaysize, strlen((char ?) colname)) + 1;

printf("%-?.?s", collen[i], collen[i], colname);

/? allocate memory to bind column ?/

data[i] = (SQLCHAR ?) malloc(collen[i]);

/? bind columns to program vars, converting all types to CHAR ?/

rc = SQLBindCol(hstmt, i + 1, SQL_C_CHAR, data[i], collen[i], &outlen[

i]);

 }

 printf("\n");

/? display result rows ?/

while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA_FOUND) {

errmsg[=] = '\=';

for (i = =; i < nresultcols; i++) {

/? Build a truncation message for any columns truncated ?/

if (outlen[i] >= collen[i]) {

sprintf((char ?) errmsg + strlen((char ?) errmsg),

"%ld chars truncated, col %d\n",

outlen[i] - collen[i] + 1, i + 1);

sprintf((char ?) errmsg + strlen((char ?) errmsg),

"Bytes to return = %ld sixe of buffer\n",

 outlen[i], collen[i]);

 }

if (outlen[i] == SQL_NULL_DATA)

printf("%-?.?s", collen[i], collen[i], "NULL");

 else

printf("%-?.?s", collen[i], collen[i], data[i]);

} /? for all columns in this row ?/

printf("\n%s", errmsg); /? print any truncation messages ?/

} /? while rows to fetch ?/

/? free data buffers ?/

for (i = =; i < nresultcols; i++) {

 free(data[i]);

 }

} /? end display_results ?/

/? ... ?/

 References
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLNumResultCols - Get Number of Result Columns” on page 254
� “SQLPrepare - Prepare a Statement” on page 260

 Chapter 5. Functions 131

 SQLDescribeParam

SQLDescribeParam - Describe parameter marker

 Purpose

SQLDescribeParam() retrieves the description of a parameter marker associated with
a prepared statement.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLDescribeParam (SQLHSTMT hstmt,

 SQLUSMALLINT ipar,

 SQLSMALLINT FAR ?pfSqlType,

 SQLUINTEGER FAR ?pcbColDef,

 SQLSMALLINT FAR ?pibScale,

 SQLSMALLINT FAR ?pfNullable);

 Function arguments

Table 38. SQLDescribeParam arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT ipar input Parameter marker number ordered sequentially left to
right in prepared SQL statement, starting from 1.

SQLSMALLINT * pfSqlType output Base SQL data type.

SQLUINTEGER * pcbColDef output Precision of the parameter marker. See Appendix E,
“Data Conversion” on page 411 for more details on
precision, scale, length, and display size.

SQLSMALLINT * pibScale output Scale of the parameter marker. See Appendix E, “Data
Conversion” on page 411 for more details on precision,
scale, length, and display size.

SQLSMALLINT * pfNullable output Indicates whether the parameter allows NULL values.
Returns one of the following values:

� SQL_NO_NULLS: The parameter does not allow
NULL values (this is the defualt).

� SQL_NULLABLE: The parameter allows NULL values.

� SQL_NULLABLE_UNKNOWN: The driver cannot
determine if the parameter allows NULL values.

 Usage
For distinct types, SQLDescribeParam() returns both base data types for the input
parameter.

For information about a parameter marker associated with the SQL CALL
statement, use the SQLProcedureColumns() function.

132 Call Level Interface Guide and Reference

 SQLDescribeParam

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 39. SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message indicating an internal commit was issued
on behalf of the application as part of the processing to set the
specified connection option.

S1000 General error. An error occurred for which there is no specific SQLSTATE and
for which no specific SQLSTATE is defined. The error message
returned by SQLError() in the argument szErrorMsg describes the
error and its cause.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1093 Invalid parameter number. The value specified for the argument ipar is less than 1 or greater
than the maximum number of parameters supported by the
server.

S1C00 Driver not capable. The data source does not support the description of input
parameters.

 Restrictions
None.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLCancel - Cancel Statement” on page 100
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLPrepare - Prepare a Statement” on page 260

 Chapter 5. Functions 133

 SQLDisconnect

SQLDisconnect - Disconnect from a Data Source

 Purpose

SQLDisconnect() closes the connection associated with the database connection
handle.

SQLTransact() must be called before calling SQLDisconnect() if an outstanding
transaction exists on this connection.

After calling this function, either call SQLConnect() to connect to another database,
or call SQLFreeConnect().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLDisconnect (SQLHDBC hdbc);

 Function Arguments

Table 40. SQLDisconnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

 Usage
If an application calls SQLDisconnect() before it has freed all the statement handles
associated with the connection, DB2 CLI frees them after it successfully
disconnects from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the
disconnect from the database is successful, additional error or implementation
specific information is available. For example, a problem was encountered on the
clean up subsequent to the disconnect, or if there is no current connection because
of an event that occurred independently of the application (such as communication
failure).

After a successful SQLDisconnect() call, the application can re-use hdbc to make
another SQLConnect() or SQLDriverConnect() request.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

134 Call Level Interface Guide and Reference

 SQLDisconnect

 Diagnostics

Table 41. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the disconnect
succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The connection specified in the argument hdbc is not open.

25000 25501 Invalid transaction state. A transaction is in process on the connection specified by the
argument hdbc. The transaction remains active, and the
connection cannot be disconnected.

Note: This error does not apply to stored procedures written in
DB2 CLI.

25501 Invalid transaction state. A transaction is in process on the connection specified by the
argument hdbc. The transaction remains active, and the
connection cannot be disconnected.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 77

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 76
� “SQLConnect - Connect to a Data Source” on page 118
� “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 136
� “SQLTransact - Transaction Management” on page 338

 Chapter 5. Functions 135

 SQLDriverConnect

SQLDriverConnect - (Expanded) Connect to a Data Source

 Purpose

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a
connection to the target database, but SQLDriverConnect() supports additional
connection parameters.

Use SQLDriverConnect() when you want to pass any or all keyword values defined
in the DB2 CLI initialization file.

When a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests. This allows you to
override any or all keyword values in the DB2 CLI initialization file.

Specification: ODBC 1.0

 Syntax
Generic

SQLRETURN SQLDriverConnect (SQLHDBC hdbc,

 SQLHWND hwnd,

 SQLCHAR FAR ?szConnStrIn,

 SQLSMALLINT cbConnStrIn,

 SQLCHAR FAR ?szConnStrOut,

 SQLSMALLINT cbConnStrOutMax,

SQLSMALLINT FAR ?pcbConnStrOut,

 SQLUSMALLINT fDriverCompletion);

 Function Arguments

Table 42 (Page 1 of 2). SQLDriverConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle.

SQLHWND hwindow input NULL value. Not used.

SQLCHAR * szConnStrIn input A full, partial or empty (null pointer) connection string (see
syntax and description below).

SQLSMALLINT cbConnStrIn input Length of szConnStrIn.

SQLCHAR * szConnStrOut output Pointer to buffer for the completed connection string.

If the connection is established successfully, this buffer
contains the completed connection string. Applications
should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for this
buffer.

SQLSMALLINT cbConnStrOutMax input Maximum size of the buffer pointed to by szConnStrOut.

SQLCHAR * pcbConnStrOut output Pointer to the number of bytes available to return in the
szConnStrOut buffer.

If the value of pcbConnStrOut is greater than or equal to
cbConnStrOutMax, the completed connection string in
szConnStrOut is truncated to cbConnStrOutMax - 1 bytes.

136 Call Level Interface Guide and Reference

 SQLDriverConnect

Table 42 (Page 2 of 2). SQLDriverConnect Arguments

Data Type Argument Use Description

SQLUSMALLINT fDriverCompletion input Indicates when DB2 CLI should prompt the user for more
information.

Possible values:

 � SQL_DRIVER_PROMPT
 � SQL_DRIVER_COMPLETE
 � SQL_DRIVER_COMPLETE_REQUIRED
 � SQL_DRIVER_NOPROMPT

However, DB2 for OS/390 supports
SQL_DRIVER_NOPROMPT only.

 Usage
The connection string is used to pass one or more values needed to complete a
connection.

 ┌ ┐─,───
��─ ───

�
┴──┬ ┬─DSN───────────────────── ─═──attribute─ ───────────────────────��

 ├ ┤─UID─────────────────────
 ├ ┤─PWD─────────────────────
 └ ┘─DB2 CLI-defined-keyword─

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if
fDriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier). This value is ignored.

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty string is specified (PWD=;). This value
is ignored.

The list of DB2 CLI defined keywords and their associated attribute values are
discussed in “Initialization Keywords” on page 62. Any one of the keywords in that
section can be specified on the connection string. If any keywords are repeated in
the connection string, the value associated with the first occurrence of the keyword
is used.

If any keywords exist in the DB2 CLI initialization file, the keywords and their
respective values are used to augment the information passed to DB2 CLI in the
connection string. If the information in the CLI initialization file contradicts
information in the connection string, the values in connection string take
precedence.

The application receives an error on any value of fDriverCompletion as follows:

SQL_DRIVER_PROMPT:
DB2 CLI returns SQL_ERROR.

SQL_DRIVER_COMPLETE:
DB2 CLI returns SQL_ERROR.

 Chapter 5. Functions 137

 SQLDriverConnect

SQL_DRIVER_COMPLETE_REQUIRED:
DB2 CLI returns SQL_ERROR.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information contained in the connection string. If there is not
enough information, SQL_ERROR is returned.

When a connection is established, the complete connection string is returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_NO_DATA_FOUND
 � SQL_INVALID_HANDLE
 � SQL_ERROR

 Diagnostics
All of the diagnostics generated by “SQLConnect - Connect to a Data Source” on
page 118 can be returned here as well. The following table shows the additional
diagnostics that can be returned.

Table 43. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut is not large enough to hold the entire
connection string. The argument pcbConnStrOut contains the
actual length of the connection string available for return.
(Function returns SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string
attribute.

An invalid keyword or attribute value is specified in the input
connection string, but the connection to the data source is
successful because one of the following occurred:

� The unrecognized keyword is ignored.
� The invalid attribute value is ignored, the default value is used

instead.

 (Function returns SQL_SUCCESS_WITH_INFO)

01S02 Option value changed SQL_CONNECTTYPE changed to SQL_CONCURRENT_TRANS
when MULTICONTEXT=1 in use.

S1090 Invalid string or buffer length. The value specified for cbConnStrIn is less than 0, but not equal
to SQL_NTS.

The value specified for cbConnStrOutMax is less than 0.

S1110 Invalid driver completion. The value specified for the argument fCompletion is not equal to
one of the valid values.

 Restrictions
See restrictions described above for fDriverCompletion and SQLHWND parameters.

138 Call Level Interface Guide and Reference

 SQLDriverConnect

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Issues SQLDriverConnect to pass a string of initialization ?/

 /? parameters to compliment the connection to the data source. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "sqlcli1.h"

 /??/

/? SQLDriverConnect ----------- ?/

 /??/

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

 char ?ConnStrIn =

 "dsn=STLEC1;connecttype=2;bitdata=2;optimizefornrows=3=";

 char ConnStrOut [2==];

 SQLSMALLINT cbConnStrOut;

 int i;

 char ?token;

(void) printf ("???? Entering CLIP1=.\n\n");

 /???/

/? CONNECT to DB2 for OS/39= ?/

 /???/

rc = SQLAllocEnv(&hEnv);

if(rc != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? Invoke SQLDriverConnect ----------- ?/

 /???/

RETCODE = SQLDriverConnect (hDbc ,

 NULL ,

(SQLCHAR ?)ConnStrIn ,

 strlen(ConnStrIn) ,

 (SQLCHAR ?)ConnStrOut,

 Chapter 5. Functions 139

 SQLDriverConnect

 sizeof(ConnStrOut) ,

 &cbConnStrOut ,

 SQL_DRIVER_NOPROMPT);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 {

(void) printf ("???? Driver Connect Failed. rc = %d.\n", RETCODE);

 goto dberror;

 }

 /???/

/? Enumerate keywords and values returned from SQLDriverConnect ?/

 /???/

(void) printf ("???? ConnStrOut = %s.\n", ConnStrOut);

for (i = 1, token = strtok (ConnStrOut, ";");

(token != NULL);

token = strtok (NULL, ";"), i++)

(void) printf ("???? Keyword # %d is: %s.\n", i, token);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Disconnect from data sources in Connection Table ?/

 /???/

SQLFreeEnv(hEnv); /? free the environment handle ?/

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP1=.\n\n");

 return(RETCODE);

}

140 Call Level Interface Guide and Reference

 SQLDriverConnect

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 76
� “SQLConnect - Connect to a Data Source” on page 118

 Chapter 5. Functions 141

 SQLError

SQLError - Retrieve Error Information

 Purpose

SQLError() returns the diagnostic information (both errors and warnings) associated
with the most recently invoked DB2 CLI function for a particular statement,
connection or environment handle.

The information consists of a standardized SQLSTATE and native error code.
Refer to “Diagnostics” on page 35 for more information.

Call SQLError() after receiving a return code of SQL_ERROR or
SQL_SUCCESS_WITH_INFO from another function call.

Note: Some database servers provide product-specific diagnostic information after
returning SQL_NO_DATA_FOUND from the execution of a statement.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR FAR ?szSqlState,

 SQLINTEGER FAR ?pfNativeError,

 SQLCHAR FAR ?szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT FAR ?pcbErrorMsg);

 Function Arguments

Table 44 (Page 1 of 2). SQLError Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle. To obtain diagnostic information
associated with an environment, pass a valid environment
handle. Set hdbc and hstmt to SQL_NULL_HDBC and
SQL_NULL_HSTMT respectively.

SQLHDBC hdbc input Database connection handle. To obtain diagnostic
information associated with a connection, pass a valid
database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

SQLHSTMT hstmt input Statement handle. To obtain diagnostic information
associated with a statement, pass a valid statement
handle. The henv and hdbc arguments are ignored.

SQLCHAR * szSqlState output SQLSTATE as a string of 5 characters terminated by a
null character. The first 2 characters indicate error class;
the next 3 indicate subclass. The values correspond
directly to SQLSTATE values defined in the X/Open SQL
CAE specification and the ODBC specification,
augmented with IBM specific and product specific
SQLSTATE values.

142 Call Level Interface Guide and Reference

 SQLError

Table 44 (Page 2 of 2). SQLError Arguments

Data Type Argument Use Description

SQLINTEGER * pfNativeError output Native error code. In DB2 CLI, the pfNativeError argument
contains the SQLCODE value returned by the DBMS. If
the error is generated by DB2 CLI and not the DBMS,
then this field is set to -99999.

SQLCHAR * szErrorMsg output Pointer to buffer to contain the implementation defined
message text. If the error is detected by DB2 CLI, then
the error message is prefaced by:

[IBM][CLI Driver]

to indicate that it is DB2 CLI that detected the error and
there is no database connection yet.

If the error is detected while there is a database
connection, then the error message returned from the
DBMS is prefaced by:

[IBM][CLI Driver][DBMS-name]

where DBMS-name is the name returned by SQLGetInfo()
with SQL_DBMS_NAME information type.

For example,

 DB2

 DB2/6===

 Vendor

Vendor indicates a non-IBM DRDA DBMS.

If the error is generated by the DBMS, the IBM-defined
SQLSTATE is appended to the text string.

SQLSMALLINT cbErrorMsgMax input The maximum (that is, the allocated) length of the buffer
szErrorMsg. The recommended length to allocate is
SQL_MAX_MESSAGE_LENGTH + 1.

SQLSMALLINT * pcbErrorMsg output Pointer to total number of bytes available to return to the
szErrorMsg buffer. This does not include the null
termination character.

 Usage
The SQLSTATEs are those defined by the X/OPEN SQL CAE and the X/Open SQL
CLI CAE, augmented with IBM specific and product specific SQLSTATE values.

To obtain diagnostic information associated with:

� An environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

� A connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

� A statement, pass a valid statement handle. The henv and hdbc arguments are
ignored.

If diagnostic information generated by one DB2 CLI function is not retrieved before
a function other than SQLError() is called with the same handle, the information for
the previous function call is lost. This is true whether or not diagnostic information
is generated for the second DB2 CLI function call.

 Chapter 5. Functions 143

 SQLError

Multiple diagnostic messages might be available after a given DB2 CLI function
call. These messages can be retrieved one at a time by repeatedly calling
SQLError(). For each message retrieved, SQLError() returns SQL_SUCCESS and
removes it from the list of messages available. When there are no more messages
to retrieve, SQL_NO_DATA_FOUND is returned, the SQLSTATE is set to "00000",
pfNativeError is set to 0, and pcbErrorMsg and szErrorMsg are undefined.

Diagnostic information stored under a given handle is cleared when a call is made
to SQLError() with that handle, or when another DB2 CLI function call is made with
that handle. However, information associated with a given handle type is not
cleared by a call to SQLError() with an associated but different handle type: for
example, a call to SQLError() with a connection handle input does not clear errors
associated with any statement handles under that connection.

SQL_SUCCESS is returned even if the buffer for the error message (szErrorMsg) is
too short since the application is not able to retrieve the same error message by
calling SQLError() again. The actual length of the message text is returned in the
pcbErrorMsg.

To avoid truncation of the error message, declare a buffer length of
SQL_MAX_MESSAGE_LENGTH + 1. The message text is never longer than this.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if no diagnostic information is available for the
input handle, or if all of the messages are retrieved by calls to SQLError().

 Diagnostics
SQLSTATEs are not defined, since SQLError() does not generate diagnostic
information for itself.

 Restrictions
Although ODBC also returns X/Open SQL CAE SQLSTATEs, only DB2 CLI (and
the DB2 ODBC driver) returns the additional IBM-defined SQLSTATEs. For more
information on ODBC specific SQLSTATEs refer to ODBC 2.0 Programmer's
Reference and SDK Guide.

Because of this, you should only build dependencies on the standard SQLSTATEs.
This means any branching logic in the application should only rely on the standard
SQLSTATEs. The augmented SQLSTATEs are most useful for debugging
purposes.

Note: It might be useful to build dependencies on the class (the first 2 characters)
of the SQLSTATEs.

144 Call Level Interface Guide and Reference

 SQLError

 Example
This example shows several utility functions used by most of the other DB2 CLI
examples.

/? ... ?/

/???

?? - print_error - call SQLError(), display SQLSTATE and message

?? - called by check_error, see below

???/

SQLRETURN

print_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

SQLRETURN frc, /? Return code to be included with error msg ?/

SQLINTEGER line, /? Used for output message, indcate where ?/

SQLCHAR ? file) /? the error was reported from ?/

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

 SQLINTEGER sqlcode;

 SQLSMALLINT length;

printf(">--- ERROR -- RC= %ld Reported from %s, line %ld ------------\n",

frc, file, line);

while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS) {

printf(" SQLSTATE: %s\n", sqlstate);

printf("Native Error Code: %ld\n", sqlcode);

printf("%s \n", buffer);

 };

 printf(">--\n");

 return (SQL_ERROR);

}

/???

?? - check_error - call print_error(), checks severity of return code

???/

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc,

 SQLINTEGER line,

SQLCHAR ? file)

{

 SQLRETURN rc;

print_error(henv, hdbc, hstmt, frc, line, file);

switch (frc) {

 case SQL_SUCCESS:

 break;

 case SQL_INVALID_HANDLE:

printf("\n>------ ERROR Invalid Handle --------------------------\n");

 Chapter 5. Functions 145

 SQLError

 case SQL_ERROR:

printf("\n>--- FATAL ERROR, Attempting to rollback transaction --\n");

rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

if (rc != SQL_SUCCESS)

printf(">Rollback Failed, Exiting application\n");

 else

printf(">Rollback Successful, Exiting application\n");

 exit(=);

 break;

 case SQL_SUCCESS_WITH_INFO:

printf("\n> ----- Warning Message, application continuing --------\n");

 break;

 case SQL_NO_DATA_FOUND:

printf("\n> ----- No Data Found, application continuing --------- \n");

 break;

 default:

printf("\n> ----------- Invalid Return Code --------------------- \n");

printf("> --------- Attempting to rollback transaction ---------- \n");

SQLTransact(henv, hdbc, SQL_ROLLBACK);

 exit(=);

 break;

 }

 return (SQL_SUCCESS);

}

/? ... ?/

}

/???

? The following macros use check_error

?

? {check_error(henv, SQL_NULL_HDBC, SQL_NULL_HSTMT, RC, __LINE__, __FILE__);&rbr

ace.

?

? {check_error(SQL_NULL_HENV, hdbc, SQL_NULL_HSTMT, RC, __LINE__, __FILE__);&rbra

ce.

?

? {check_error(SQL_NULL_HENV, SQL_NULL_HDBC, hstmt, RC, __LINE__, __FILE__);&rbra

ce.

?

???/

/???

?? - check_error - call print_error(), checks severity of return code

???/

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc,

 SQLINTEGER line,

SQLCHAR ? file)

{

 SQLRETURN rc;

print_error(henv, hdbc, hstmt, frc, line, file);

146 Call Level Interface Guide and Reference

 SQLError

switch (frc) {

 case SQL_SUCCESS:

 break;

 case SQL_INVALID_HANDLE:

printf("\n>------ ERROR Invalid Handle --------------------------\n");

 case SQL_ERROR:

printf("\n>--- FATAL ERROR, Attempting to rollback transaction --\n");

rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

if (rc != SQL_SUCCESS)

printf(">Rollback Failed, Exiting application\n");

 else

printf(">Rollback Successful, Exiting application\n");

 exit(terminate(henv, frc));

 break;

 case SQL_SUCCESS_WITH_INFO:

printf("\n> ----- Warning Message, application continuing --------\n");

 break;

 case SQL_NO_DATA_FOUND:

printf("\n> ----- No Data Found, application continuing --------- \n");

 break;

 default:

printf("\n> ----------- Invalid Return Code --------------------- \n");

printf("> --------- Attempting to rollback transaction ---------- \n");

SQLTransact(henv, hdbc, SQL_ROLLBACK);

 exit(terminate(henv, frc));

 break;

 }

 return (SQL_SUCCESS);

} /? end check_error ?/

/? ... ?/

 References
� “SQLGetSQLCA - Get SQLCA Data Structure” on page 228

 Chapter 5. Functions 147

 SQLExecDirect

SQLExecDirect - Execute a Statement Directly

 Purpose

SQLExecDirect() directly executes the specified SQL statement. The statement
can only be executed once. Also, the connected database server must be able to
dynamically prepare statement. (For more information about supported SQL
statements refer to Table 1 on page 18.)

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR FAR ?szSqlStr,

 SQLINTEGER cbSqlStr);

 Function Arguments

Table 45. SQLExecDirect Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt, see “SQLFreeStmt - Free (or
Reset) a Statement Handle” on page 181 for more
information.

SQLCHAR * szSqlStr input SQL statement string. The connected database server
must be able to prepare the statement, see Table 1 on
page 18 for more information.

SQLINTEGER cbSqlStr input Length of contents of szSqlStr argument. The length must
be set to either the exact length of the statement, or if the
statement is null-terminated, set to SQL_NTS.

 Usage
If the SQL statement text contains vendor escape clause sequences, DB2 CLI first
modifies the SQL statement text to the appropriate DB2-specific format before
submitting it for preparation and execution. If the application does not generate
SQL statements that contain vendor escape clause sequences (“Using Vendor
Escape Clauses” on page 369), then it should set the SQL_NO_SCAN statement
option to SQL_NOSCAN_ON at the connection level so that each statement
passed to DB2 CLI does not incur the performance impact of scanning for vendor
escape clauses.

The SQL statement cannot be a COMMIT or ROLLBACK. Instead, SQLTransact()

must be called to issue COMMIT or ROLLBACK. For more information about
supported SQL statements refer to Table 1 on page 18.

The SQL statement string can contain parameter markers. A parameter marker is
represented by a "?" character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecDirect() is
called. This value can be obtained from an application variable. SQLSetParam() or

148 Call Level Interface Guide and Reference

 SQLExecDirect

SQLBindParameter() is used to bind the application storage area to the parameter
marker.

All parameters must be bound before calling SQLExecDirect().

If the SQL statement is a query, SQLExecDirect() generates a cursor name, and
open the cursor. If the application has used SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 CLI associates the application
generated cursor name with the internally generated one.

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row (or rows) of data into bound variables. Data can also be retrieved by calling
SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLParamOptions() is called to specify that an array of input parameter values is
bound to each parameter marker, then the application needs to call
SQLExecDirect() only once to process the entire array of input parameter values.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NEED_DATA
 � SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or
searched DELETE and no rows satisfy the search condition. SQLRowCount()

should be used to determine the number of rows in a table that were affected by an
UPDATE, INSERT, or DELETE statement executed against the table, or a view of
the table.

 Diagnostics

IZ'.

Table 46 (Page 1 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

szSqlStr contains an UPDATE or DELETE statement but no
WHERE clause. (Function returns SQL_SUCCESS_WITH_INFO
or SQL_NO_DATA_FOUND if there are no rows in the table).

 Chapter 5. Functions 149

 SQLExecDirect

Table 46 (Page 2 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

07001 Wrong number of parameters. The number of parameters bound to application variables using
SQLBindParameter() is less than the number of parameter
markers in the SQL statement contained in the argument
szSqlStr.

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables
would result in incompatible data conversion.

21S01 Insert value list does not
match column list.

szSqlStr contains an INSERT statement and the number of values
to be inserted did not match the degree of the derived table.

21S02 Degrees of derived table
does not match column list.

szSqlStr contains a CREATE VIEW statement and the number of
names specified is not the same degree as the derived table
defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded
the maximum length of the column.

22003 Numeric value out of range. A numeric value assigned to a numeric type column caused
truncation of the whole part of the number, either at the time of
assignment or in computing an intermediate result.

szSqlStr contains an SQL statement with an arithmetic expression
which caused division by zero.

22005 Error in assignment. szSqlStr contains an SQL statement with a parameter or literal
and the value was incompatible with the data type of the
associated table column.

The length associated with a parameter value (the contents of the
pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or
SQLSetParam(), denoted an SQL graphic data type, but the
deferred length argument (pcbValue) contains an odd length
value. The length value must be even for graphic data types.

22007 Invalid datetime format. szSqlStr contains an SQL statement with an invalid datetime
format; that is, an invalid string representation or value was
specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned
to a bound variable because it is too small.

22012 Division by zero is invalid. szSqlStr contains an SQL statement with an arithmetic expression
that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the
UPDATE, DELETE, SET, or
GET statement is not
positioned on a row.

Results were pending on the hstmt from a previous query or a
cursor associated with the hsmt had not been closed.

34000 Invalid cursor name. szSqlStr contains a positioned DELETE or a positioned UPDATE
and the cursor referenced by the statement being executed was
not open.

150 Call Level Interface Guide and Reference

 SQLExecDirect

Table 46 (Page 3 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

37xxx a Invalid SQL syntax. szSqlStr contains one or more of the following:

 � a COMMIT
 � a ROLLBACK
� an SQL statement that the connected database server could

not prepare
� a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled
back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

42xxx Syntax error or access rule
violation

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in szSqlStr.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

44000 Integrity constraint violation. szSqlStr contains an SQL statement with a parameter or literal.
This parameter value is NULL for a column defined as NOT NULL
in the associated table column, or a duplicate value is supplied for
a column constrained to contain only unique values, or some
other integrity constraint is violated.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already
exists.

szSqlStr contains a CREATE TABLE or CREATE VIEW statement
and the table name or view name specified already exists.

S0002 Database object does not
exist.

szSqlStr contains an SQL statement that references a table name
or view name which does not exist.

S0011 Index already exists. szSqlStr contains a CREATE INDEX statement and the specified
index name already exists.

S0012 Index not found. szSqlStr contains a DROP INDEX statement and the specified
index name does not exist.

S0021 Column already exists. szSqlStr contains an ALTER TABLE statement and the column
specified in the ADD clause is not unique or identifies an existing
column in the base table.

S0022 Column not found. szSqlStr contains an SQL statement that references a column
name that does not exist.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. szSqlStr is a null pointer.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The argument cbSqlStr is less than 1 but not equal to SQL_NTS.

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37
class.

 Chapter 5. Functions 151

 SQLExecDirect

 Restrictions
None.

 Example
Refer to “Example” on page 166.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLExecute - Execute a Statement” on page 153
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLFetch - Fetch Next Row” on page 163
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 256
� “SQLPutData - Passing Data Value for A Parameter” on page 286
� “SQLSetParam - Binds A Parameter Marker to a Buffer” on page 309

152 Call Level Interface Guide and Reference

 SQLExecute

SQLExecute - Execute a Statement

 Purpose

SQLExecute() executes a statement, that is successfully prepared using
SQLPrepare(), once or multiple times. The statement is executed using the current
value of any application variables that are bound to parameter markers by
SQLBindParameter() or SQLSetParam() .

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLExecute (SQLHSTMT hstmt);

 Function Arguments

Table 47. SQLExecute Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt, see “SQLFreeStmt - Free (or
Reset) a Statement Handle” on page 181 for more
information.

 Usage
The SQL statement string can contain parameter markers. A parameter marker is
represented by a "?" character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecute() is
called. This value can be obtained from an application variable. SQLSetParam() or
SQLBindParameter() is used to bind the application storage area to the parameter
marker.

You must bind all parameters before calling SQLExecute().

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(); SQLPrepare() must be called first.

If the prepared SQL statement is a query, SQLExecute() generates a cursor name,
and open the cursor. If the application uses SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 CLI associates the application
generated cursor name with the internally generated one.

To execute a query more than once, the application must close the cursor by
calling SQLFreeStmt() with the SQL_CLOSE option. There must not be an open
cursor on the statement handle when calling SQLExecute().

 Chapter 5. Functions 153

 SQLExecute

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row (or rows) of data into bound variables. Data can also be retrieved by calling
SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time SQLExecute()

is called, and must be defined on a separate statement handle under the same
connection handle.

If SQLParamOptions() is called to specify that an array of input parameter values is
bound to each parameter marker, then the application needs to call
SQLExecDirect() only once to process the entire array of input parameter values. If
the executed statement returns multiple result sets (one for each set of input
parameters), then SQLMoreResults() should be used to advance to the next result
set when processing on the current result set is complete. Refer to
“SQLMoreResults - Determine If There Are More Result Sets” on page 245 for
more information.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NEED_DATA
 � SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or
searched DELETE and no rows satisfy the search condition. SQLRowCount()

should be used to determine the number of rows in a table that were affected by an
UPDATE, INSERT, or DELETE statement executed against the table, or a view of
the table.

 Diagnostics
The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() (refer to
Table 46 on page 149) except for S1009, S1090 and with the addition of the
SQLSTATE in the table below.

Table 48. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled
back due to a deadlock or timeout.

S1010 Function sequence error. The specified hstmt is not in prepared state. SQLExecute() is
called without first calling SQLPrepare().

154 Call Level Interface Guide and Reference

 SQLExecute

 Restrictions
None.

 Example
Refer to “Example” on page 263.

 References
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLPrepare - Prepare a Statement” on page 260
� “SQLFetch - Fetch Next Row” on page 163
� “SQLSetParam - Binds A Parameter Marker to a Buffer” on page 309
� “SQLParamOptions - Specify an Input Array for a Parameter” on page 258
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89

 Chapter 5. Functions 155

 SQLExtendedFetch

SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)

 Purpose

SQLExtendedFetch() extends the function of SQLFetch() by returning a block of data
containing multiple rows (called a rowset), in the form of an array, for each bound
column. The size of the rowset is determined by the SQL_ROWSET_SIZE option
on an SQLSetStmtOption() call.

To fetch one row of data at a time, an application should call SQLFetch().

For more description on block or array retrieval, refer to “Retrieving A Result Set
Into An Array” on page 353.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLExtendedFetch (SQLHSTMT hstmt,

 SQLUSMALLINT fFetchType,

 SQLINTEGER irow,

 SQLUINTEGER FAR ?pcrow,

 SQLUSMALLINT FAR ?rgfRowStatus);

 Function Arguments

Table 49 (Page 1 of 2). SQLExtendedFetch Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLUSMALLINT fFetchType Input Direction and type of fetch. DB2 CLI only supports the
fetch direction SQL_FETCH_NEXT; that is, forward only
cursor direction. The next array (rowset) of data is
retrieved.

SQLINTEGER irow Input Reserved for future use.

SQLUINTEGER * pcrow Output Number of the rows actually fetched. If an error occurs
during processing, pcrow points to the ordinal position of
the row (in the rowset) that precedes the row where the
error occurred. If an error occurs retrieving the first row
pcrow points to the value 0.

156 Call Level Interface Guide and Reference

 SQLExtendedFetch

Table 49 (Page 2 of 2). SQLExtendedFetch Arguments

Data Type Argument Use Description

SQLUSMALLINT
*

rgfRowStatus Output An array of status values. The number of elements must
equal the number of rows in the rowset (as defined by the
SQL_ROWSET_SIZE option). A status value for each row
fetched is returned:

 � SQL_ROW_SUCCESS

If the number of rows fetched is less than the number of
elements in the status array (i.e. less than the rowset
size), the remaining status elements are set to
SQL_ROW_NOROW.

DB2 CLI cannot detect whether a row has been updated
or deleted since the start of the fetch. Therefore, the
following ODBC-defined status values are not reported:

 � SQL_ROW_DELETED
 � SQL_ROW_UPDATED

 Usage
SQLExtendedFetch() performs an array fetch of a set of rows. An application
specifies the size of the array by calling SQLSetStmtOption() with the
SQL_ROWSET_SIZE option.

Before SQLExtendedFetch() is called the first time, the cursor is positioned before
the first row. After SQLExtendedFetch() is called, the cursor is positioned on the row
in the result set corresponding to the last row element in the rowset just retrieved.

For any columns in the result set that are bound using the SQLBindCol() function,
DB2 CLI converts the data for the bound columns as necessary and stores it in the
locations bound to these columns. As mentioned in section “Retrieving A Result Set
Into An Array” on page 353, the result set can be bound in a column-wise or
row-wise fashion.

� For column-wise binding of application variables:

To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement option. (This is
the default value.) Then the application calls the SQLBindCol() function.

When the application calls SQLExtendedFetch(), data for the first row is stored
at the start of the buffer. Each subsequent row of data is stored at an offset of
cbValueMax bytes (argument on SQLBindCol() call) or, if the associated C
buffer type is fixed width (such as SQL_C_LONG), at an offset corresponding
to that fixed length from the data for the previous row.

For each bound column, the number of bytes available to return for each
element is stored in the pcbValue array buffer (deferred output argument on
SQLBindCol()) buffer bound to the column. The number of bytes available to
return for the first row of that column is stored at the start of the buffer, and the
number of bytes available to return for each subsequent row is stored at an
offset of sizeof(SQLINTEGER) bytes from the value for the previous row. If the
data in the column is NULL for a particular row, the associated element in the
pcbValue array is set to SQL_NULL_DATA.

 Chapter 5. Functions 157

 SQLExtendedFetch

� For row-wise binding of application variables:

The application needs to first call SQLSetStmtOption() with the
SQL_BIND_TYPE option, with the vParam argument set to the size of the
structure capable of holding a single row of retrieved data and the associated
data lengths for each column data value.

For each bound column, the first row of data is stored at the address given by
the rgbValue supplied on the SQLBindCol() call for the column and each
subsequent row of data at an offset of vParam bytes (used on the
SQLSetStmtOption() call) from the data for the previous row.

For each bound column, the number of bytes available to return for the first row
is stored at the address given by the pcbValue argument supplied on the
SQLBindCol() call, and the number of bytes available to return for each
subsequent row at an offset of vParam bytes from address containing the value
for the previous row.

If SQLExtendedFetch() returns an error that applies to the entire rowset, the
SQL_ERROR function return code is reported with the appropriate SQLSTATE. The
contents of the rowset buffer are undefined and the cursor position is unchanged.

If an error occurs that applies to a single row:

� The corresponding element in the rgfRowStatus array for the row is set to
SQL_ROW_ERROR

� An SQLSTATE of 01S01 is added to the list of errors that can be obtained
using SQLError()

� Zero or more additional SQLSTATEs, describing the error for the current row,
are added to the list of errors that can be obtained using SQLError()

An SQL_ROW_ERROR in the rgfRowStatus array only indicates that there was an
error with the corresponding element; it does not indicate how many SQLSTATEs
were generated. Therefore, SQLSTATE 01S01 is used as a separator between the
resulting SQLSTATEs for each row. DB2 CLI continues to fetch the remaining rows
in the rowset and returns SQL_SUCCESS_WITH_INFO as the function return code.
After SQLExtendedFetch() returns, for each row encountering an error there is an
SQLSTATE of 01S01 and zero or more additional SQLSTATEs indicating the errors
for the current row, retrievable via SQLError(). Individual errors that apply to
specific rows do not affect the cursor which continues to advance.

The number of elements in the rgfRowStatus array output buffer must equal the
number of rows in the rowset (as defined by the SQL_ROWSET_SIZE statement
option). If the number of rows fetched is less than the number of elements in the
status array, the remaining status elements are set to SQL_ROW_NOROW.

An application cannot mix SQLExtendedFetch() with SQLFetch() calls.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

158 Call Level Interface Guide and Reference

 SQLExtendedFetch

 Diagnostics

Table 50 (Page 1 of 2). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns is truncated.
(Function returns SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function
returns SQL_SUCCESS_WITH_INFO.)

07002 Too many columns. A column number specified in the binding for one or more
columns is greater than the number of columns in the result set.

The application has used SQLSetColAttributes() to inform DB2
CLI of the descriptor information of the result set, but it did not
provide this for every column in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to
the data type specified by fCType in SQLBindCol().

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCol() is a null pointer and the value of the corresponding
column is null. There is no means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or
more columns causes the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

A value from an arithmetic expression is returned which results in
division by zero.

22005 Error in assignment. A returned value is incompatible with the data type of the bound
column.

22007 Invalid datetime format. Conversion from character a string to a datetime format is
indicated, but an invalid string representation or value is specified,
or the value is an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned
to a bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression is returned which results in
division by zero.

24000 Invalid cursor state. The previous SQL statement executed on the statement handle is
not a query.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

 Chapter 5. Functions 159

 SQLExtendedFetch

Table 50 (Page 2 of 2). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. SQLExtendedFetch() is called for an hstmt after SQLFetch() is
called and before SQLFreeStmt() is called with the SQL_CLOSE
option.

The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1106 Fetch type out of range. The value specified for the argument fFetchType is not
recognized.

S1C00 Driver not capable. DB2 CLI or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCol() and
the SQL data type of the corresponding column.

A call to SQLBindCol() is made for a column data type which is
not supported by DB2 CLI.

The specified fetch type is recognized, but not supported.

 Restrictions
None.

 Example

/? ... ?/

"SELECT deptnumb, deptname, id, name FROM staff, org \

WHERE dept=deptnumb AND job = 'Mgr'";

/? Column-Wise ?/

 SQLINTEGER deptnumb[ROWSET_SIZE];

 SQLCHAR deptname[ROWSET_SIZE][15];

 SQLINTEGER deptname_l[ROWSET_SIZE];

 SQLSMALLINT id[ROWSET_SIZE];

 SQLCHAR name[ROWSET_SIZE][1=];

 SQLINTEGER name_l[ROWSET_SIZE];

160 Call Level Interface Guide and Reference

 SQLExtendedFetch

/? Row-Wise (Includes buffer for both column data and length) ?/

 struct {

SQLINTEGER deptnumb_l; /? length ?/

SQLINTEGER deptnumb; /? value ?/

 SQLINTEGER deptname_l;

 SQLCHAR deptname[15];

 SQLINTEGER id_l;

 SQLSMALLINT id;

 SQLINTEGER name_l;

 SQLCHAR name[1=];

 } R[ROWSET_SIZE];

 SQLUSMALLINT Row_Stat[ROWSET_SIZE];

 SQLUINTEGER pcrow;

 int i;

/? ... ?/

 /???/

/? Column-Wise Binding ?/

 /???/

rc = SQLAllocStmt(hdbc, &hstmt);

rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) deptnumb, =, NULL);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) deptname, 15, deptname_l);

rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) id, =, NULL);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) name, 1=, name_l);

/? Fetch ROWSET_SIZE rows ast a time, and display ?/

 printf("\nDEPTNUMB DEPTNAME ID NAME\n");

printf("-------- -------------- -------- ---------\n");

while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, =, &pcrow, Row_Stat))

== SQL_SUCCESS) {

for (i = =; i < pcrow; i++) {

printf("%8ld %-14s %8ld %-9s\n", deptnumb[i], deptname[i], id[i], n

ame[i]);

 }

if (pcrow < ROWSET_SIZE)

 break;

} /? endwhile ?/

if (rc != SQL_NO_DATA_FOUND && rc != SQL_SUCCESS)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

rc = SQLFreeStmt(hstmt, SQL_DROP);

 Chapter 5. Functions 161

 SQLExtendedFetch

 /???/

/? Row-Wise Binding ?/

 /???/

rc = SQLAllocStmt(hdbc, &hstmt);

if (rc != SQL_SUCCESS)

check_error(henv, hdbc, SQL_NULL_HSTMT, rc, __LINE__, __FILE__);

/? Set maximum number of rows to receive with each extended fetch ?/

rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);

if (rc != SQL_SUCCESS)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

 /?

? Set vparam to size of one row, used as offset for each bindcol

 ? rgbValue

 ?/

/? ie. &(R[=].deptnumb) + vparam = &(R[1].deptnum) ?/

rc = SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(R) / ROWSET_SIZE);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) & R[=].deptnumb, =,

 &R[=].deptnumb_l);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) R[=].deptname, 15,

 &R[=].deptname_l);

rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) & R[=].id, =,

 &R[=].id_l);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) R[=].name, 1=, &R[=].name_l)&

semi.

/? Fetch ROWSET_SIZE rows at a time, and display ?/

 printf("\nDEPTNUMB DEPTNAME ID NAME\n");

printf("-------- -------------- -------- ---------\n");

while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, =, &pcrow, Row_Stat))

== SQL_SUCCESS) {

for (i = =; i < pcrow; i++) {

printf("%8ld %-14s %8ld %-9s\n", R[i].deptnumb, R[i].deptname,

 R[i].id, R[i].name);

 }

if (pcrow < ROWSET_SIZE)

 break;

} /? endwhile ?/

if (rc != SQL_NO_DATA_FOUND && rc != SQL_SUCCESS)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

/? Free handles, commit, exit ?/

/? ... ?/

 References
� “SQLExecute - Execute a Statement” on page 153
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLFetch - Fetch Next Row” on page 163

162 Call Level Interface Guide and Reference

 SQLFetch

SQLFetch - Fetch Next Row

 Purpose

SQLFetch() advances the cursor to the next row of the result set, and retrieves any
bound columns. When SQLFetch() is called, the appropriate data transfer is
performed, along with any data conversion if conversion was indicated when the
column was bound. The columns can also be received individually after the fetch,
by calling SQLGetData().

SQLFetch() can only be called after a result set is generated (using the same
statement handle) by either executing a query, calling SQLGetTypeInfo() or calling
a catalog function.

To retrieve multiple rows at a time, use SQLExtendedFetch().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLFetch (SQLHSTMT hstmt);

 Function Arguments

Table 51. SQLFetch Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

 Usage
SQLFetch() can only be called after a result set is generated on the same
statement handle. Before SQLFetch() is called the first time, the cursor is positioned
before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the
number of columns in the result set or SQLFetch() fails.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does
not return data to the application, but just advances the cursor. In this case
SQLGetData() could be called to obtain all of the columns individually. Data in
unbound columns is discarded when SQLFetch() advances the cursor to the next
row. For fixed length data types, or small variable length data types, binding
columns provides better performance than using SQLGetData().

Columns can be bound to application storage. SQLBindCol() is used to bind
application storage to the column. Data is transferred from the server to the
application at fetch time. Length of the available data to return is also set.

If any bound storage buffers are not large enough to hold the data returned by
SQLFetch(), the data is truncated. If character data is truncated,
SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated
indicating truncation. The SQLBindCol() deferred output argument pcbValue

 Chapter 5. Functions 163

 SQLFetch

contains the actual length of the column data retrieved from the server. The
application should compare the actual output length to the input buffer length
(pcbValue and cbValueMax arguments from SQLBindCol()) to determine which
character columns are truncated.

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (refer to the diagnostics section).

Truncation of graphic data types is treated the same as character data types,
except that the rgbValue buffer is filled to the nearest multiple of two bytes that is
still less than or equal to the cbValueMax specified in SQLBindCol(). Graphic
(DBCS) data transferred between DB2 CLI and the application is not
null-terminated if the C buffer type is SQL_C_CHAR. If the buffer type is
SQL_C_DBCHAR, then null-termination of graphic data does occur.

Truncation is also affected by the SQL_MAX_LENGTH statement option. The
application can specify that Call Level Interface should not report truncation by
calling SQLSetStmtOption() with SQL_MAX_LENGTH and a value for the maximum
length to return for any one column, and by allocating an rgbValue buffer of the
same size (plus the null-terminator). If the column data is larger than the set
maximum length, SQL_SUCCESS is returned and the maximum length, not the
actual length is returned in pcbValue.

When all the rows are retrieved from the result set, or the remaining rows are not
needed, SQLFreeStmt() should be called to close the cursor and discard the
remaining data and associated resources.

To retrieve multiple rows at a time, use SQLExtendedFetch(). An application cannot
mix SQLFetch() with SQLExtendedFetch() calls on the same statement handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or
previous SQLFetch() calls have fetched all the rows from the result set.

If all the rows were fetched, the cursor is positioned after the end of the result set.

 Diagnostics

Table 52 (Page 1 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns is truncated. String
values or numeric values are right truncated.
(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

164 Call Level Interface Guide and Reference

 SQLFetch

Table 52 (Page 2 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

07002 Too many columns. A column number specified in the binding for one or more
columns is greater than the number of columns in the result set.

The application used SQLSetColAttributes() to inform DB2 CLI of
the descriptor information of the result set, but it did not provide
this for every column in the result set.

07006 Invalid conversion. The data value cannot be converted in a meaningful manner to
the data type specified by fCType in SQLBindCol()

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCol() is a null pointer and the value of the corresponding
column is null. There is no means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or
more columns causes the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

A value from an arithmetic expression is returned which results in
division by zero.

Note: The associated cursor is undefined if this error is detected
by DB2 for OS/390. If the error is detected by DB2 for
common server or by other IBM RDBMSs, the cursor
remains open and continues to advance on subsequent
fetch calls.

22005 Error in assignment. A returned value is incompatible with the data type of binding.

22007 Invalid datetime format. Conversion from character a string to a datetime format is
indicated, but an invalid string representation or value is specified,
or the value is an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned
to a bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression is returned which results in
division by zero.

24000 Invalid cursor state. The previous SQL statement executed on the statement handle is
not a query.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1002 Invalid column number. The specified column is less than 0 or greater than the number of
result columns.

The specified column is 0, but DB2 CLI does not support ODBC
bookmarks (icol = 0).

SQLExtendedFetch() is called for this result set.

 Chapter 5. Functions 165

 SQLFetch

Table 52 (Page 3 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. SQLFetch() is called for an hstmt after SQLExtendedFetch() is
called and before SQLFreeStmt() had been called with the
SQL_CLOSE option.

The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1C00 Driver not capable. DB2 CLI or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCol() and
the SQL data type of the corresponding column.

A call to SQLBindCol() was made for a column data type which is
not supported by DB2 CLI.

 Restrictions
None.

 Example

/? ... ?/

/???

?? main

???/

int

main(int argc, char ? argv[])

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

SQLCHAR sqlstmt[] = "SELECT deptname, location from org where

division = 'Eastern'";

struct { SQLINTEGER ind;

 SQLCHAR s[15];

} deptname, location;

/? macro to initalize server, uid and pwd ?/

 INIT_UID_PWD;

rc = SQLAllocEnv(&henv); /? allocate an environment handle ?/

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

rc = DBconnect(henv, &hdbc);/? allocate a connect handle, and connect ?/

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

166 Call Level Interface Guide and Reference

 SQLFetch

rc = SQLAllocStmt(hdbc, &hstmt);

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,

 &deptname.ind);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location.s, 15,

 &location.ind);

printf("Departments in Eastern division:\n");

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("%-14.14s %-14.14s \n", deptname.s, location.s);

 }

if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

rc = SQLFreeStmt(hstmt, SQL_DROP);

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

 printf("Disconnecting\n");

rc = SQLDisconnect(hdbc);

rc = SQLFreeConnect(hdbc);

rc = SQLFreeEnv(henv);

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

} /? end main ?/

/? ... ?/

 References
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLExecute - Execute a Statement” on page 153
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLGetData - Get Data From a Column” on page 192

 Chapter 5. Functions 167

 SQLForeignKeys

SQLForeignKeys - Get the List of Foreign Key Columns

 Purpose

SQLForeignKeys() returns information about foreign keys for the specified table. The
information is returned in an SQL result set which can be processed using the
same functions that are used to retrieve a result generated by a query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLForeignKeys (SQLHSTMT hstmt,

 SQLCHAR FAR ?szPkCatalogName,

 SQLSMALLINT cbPkCatalogName,

 SQLCHAR FAR ?szPkSchemaName,

 SQLSMALLINT cbPkSchemaName,

 SQLCHAR FAR ?szPkTableName,

 SQLSMALLINT cbPkTableName,

 SQLCHAR FAR ?szFkCatalogName,

 SQLSMALLINT cbFkCatalogName,

 SQLCHAR FAR ?szFkSchemaName,

 SQLSMALLINT cbFkSchemaName,

 SQLCHAR FAR ?szFkTableName,

 SQLSMALLINT cbFkTableName);

 Function Arguments

Table 53. SQLForeignKeys Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szPkCatalogName input Catalog qualifier of the primary key table. This must be a
NULL pointer or a zero length string.

SQLSMALLINT cbPkCatalogName input Length of szPkCatalogName. This must be set to 0.

SQLCHAR * szPkSchemaName input Schema qualifier of the primary key table.

SQLSMALLINT cbPkSchemaName input Length of szPkSchemaName.

SQLCHAR * szPkTableName input Name of the table name containing the primary key.

SQLSMALLINT cbPkTableName input Length of szPkTableName.

SQLCHAR * szFkCatalogName input Catalog qualifier of the table containing the foreign key.
This must be a NULL pointer or a zero length string.

SQLSMALLINT cbFkCatalogName input Length of szFkCatalogName. This must be set to 0.

SQLCHAR * szFkSchemaName input Schema qualifier of the table containing the foreign key.

SQLSMALLINT cbFkSchemaName input Length of szFkSchemaName.

SQLCHAR * szFkTableName input Name of the table containing the foreign key.

SQLSMALLINT cbFkTableName input Length of szFkTableName.

168 Call Level Interface Guide and Reference

 SQLForeignKeys

 Usage
If szPkTableName contains a table name, and szFkTableName is an empty string,
SQLForeignKeys() returns a result set containing the primary key of the specified
table and all of the foreign keys (in other tables) that refer to it.

If szFkTableName contains a table name, and szPkTableName is an empty string,
SQLForeignKeys() returns a result set containing all of the foreign keys in the
specified table and the primary keys (in other tables) to which they refer.

If both szPkTableName and szFkTableName contain table names,
SQLForeignKeys() returns the foreign keys in the table specified in szFkTableName
that refer to the primary key of the table specified in szPkTableName. This should
be one key at the most.

If the schema qualifier argument associated with a table name is not specified, then
the schema name defaults to the one currently in effect for the current connection.

Table 54 lists the columns of the result set generated by the SQLForeignKeys()

call. If the foreign keys associated with a primary key are requested, the result set
is ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and
ORDINAL_POSITION. If the primary keys associated with a foreign key are
requested, the result set is ordered by PKTABLE_CAT, PKTABLE_SCHEM,
PKTABLE_NAME, and ORDINAL_POSITION.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the associated TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and
COLUMN_NAME columns supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 54 (Page 1 of 2). Columns Returned By SQLForeignKeys

Column
Number/Name Data Type Description

1 PKTABLE_CAT VARCHAR(128) This is always NULL.

2 PKTABLE_SCHEM VARCHAR(128) The name of the schema containing PKTABLE_NAME.

3 PKTABLE_NAME VARCHAR(128)
NOT NULL

Name of the table containing the primary key.

4 PKCOLUMN_NAME VARCHAR(128)
NOT NULL

Primary key column name.

5 FKTABLE_CAT VARCHAR(128) This is always NULL.

6 FKTABLE_SCHEM VARCHAR(128) The name of the schema containing FKTABLE_NAME.

7 FKTABLE_NAME VARCHAR(128)
NOT NULL

The name of the table containing the foreign key.

 Chapter 5. Functions 169

 SQLForeignKeys

Table 54 (Page 2 of 2). Columns Returned By SQLForeignKeys

Column
Number/Name Data Type Description

8 FKCOLUMN_NAME VARCHAR(128)
NOT NULL

Foreign key column name.

9 ORDINAL_POSITION SMALLINT
NOT NULL

The ordinal position of the column in the key, starting at 1.

10 UPDATE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation is
UPDATE:

 � SQL_RESTRICT
 � SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either RESTRICT or
SQL_NO_ACTION. However, ODBC applications might encounter the
following UPDATE_RULE values when connected to non-IBM
RDBMSs:

 � SQL_CASCADE
 � SQL_SET_NULL

11 DELETE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation is
DELETE:

 � SQL_CASCADE
 � SQL_NO_ACTION
 � SQL_RESTRICT
 � SQL_SET_DEFAULT
 � SQL_SET_NULL

12 FK_NAME VARCHAR(128) Foreign key identifier. NULL if not applicable to the data source.

13 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLForeignKeys() result set in ODBC.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 55 (Page 1 of 2). SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The arguments szPkTableName and szFkTableName are both
NULL pointers.

170 Call Level Interface Guide and Reference

 SQLForeignKeys

Table 55 (Page 2 of 2). SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

The length of the table or owner name is greater than the
maximum length supported by the server. Refer to “SQLGetInfo -
Get General Information” on page 212.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Invokes SQLForeignKeys against PARENT Table. Find all ?/

 /? tables that contain foreign keys on PARENT. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "cli.h"

#include "sqlcli1.h"

#include "sqlcli1.h"

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

 char pTable [2==];

char ?pDSN = "STLEC1";

 SQLSMALLINT update_rule;

 SQLSMALLINT delete_rule;

 SQLINTEGER update_rule_ind;

 SQLINTEGER delete_rule_ind;

 char update [25];

 char delet [25];

typedef struct varchar // define VARCHAR type

 {

 SQLSMALLINT length;

 SQLCHAR name [128];

 SQLINTEGER ind;

 } VARCHAR;

 Chapter 5. Functions 171

 SQLForeignKeys

 VARCHAR pktable_schem;

 VARCHAR pktable_name;

 VARCHAR pkcolumn_name;

 VARCHAR fktable_schem;

 VARCHAR fktable_name;

 VARCHAR fkcolumn_name;

(void) printf ("???? Entering CLIP=2.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

172 Call Level Interface Guide and Reference

 SQLForeignKeys

 /???/

/? Invoke SQLForeignKeys against PARENT Table, specifying NULL ?/

/? for table with foreign key. ?/

 /???/

rc = SQLForeignKeys (hStmt,

 NULL,

 =,

(SQLCHAR ?) "ADMF==1",

 SQL_NTS,

(SQLCHAR ?) "PARENT",

 SQL_NTS,

 NULL,

 =,

 NULL,

 SQL_NTS,

 NULL,

 SQL_NTS);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? SQLForeignKeys Failed.\n");

 goto dberror;

 }

 /???/

/? Bind following columns of answer set: ?/

 /? ?/

 /? 2) pktable_schem ?/

 /? 3) pktable_name ?/

 /? 4) pkcolumn_name ?/

 /? 6) fktable_schem ?/

 /? 7) fktable_name ?/

 /? 8) fkcolumn_name ?/

 /? 1=) update_rule ?/

 /? 11) delete_rule ?/

 /? ?/

 /???/

rc = SQLBindCol (hStmt, // bind pktable_schem

 2,

 SQL_C_CHAR,

 (SQLPOINTER) pktable_schem.name,

 128,

 &pktable_schem.ind);

rc = SQLBindCol (hStmt, // bind pktable_name

 3,

 SQL_C_CHAR,

 (SQLPOINTER) pktable_name.name,

 128,

 &pktable_name.ind);

rc = SQLBindCol (hStmt, // bind pkcolumn_name

 4,

 SQL_C_CHAR,

 (SQLPOINTER) pkcolumn_name.name,

 128,

 &pkcolumn_name.ind);

 Chapter 5. Functions 173

 SQLForeignKeys

rc = SQLBindCol (hStmt, // bind fktable_schem

 6,

 SQL_C_CHAR,

 (SQLPOINTER) fktable_schem.name,

 128,

 &fktable_schem.ind);

rc = SQLBindCol (hStmt, // bind fktable_name

 7,

 SQL_C_CHAR,

 (SQLPOINTER) fktable_name.name,

 128,

 &fktable_name.ind);

rc = SQLBindCol (hStmt, // bind fkcolumn_name

 8,

 SQL_C_CHAR,

 (SQLPOINTER) fkcolumn_name.name,

 128,

 &fkcolumn_name.ind);

rc = SQLBindCol (hStmt, // bind update_rule

 1=,

 SQL_C_SHORT,

 (SQLPOINTER) &update_rule;

 =,

 &update_rule_ind);

rc = SQLBindCol (hStmt, // bind delete_rule

 11,

 SQL_C_SHORT,

 (SQLPOINTER) &delete_rule,

 =,

 &delete_rule_ind);

 /???/

/? Retrieve all tables with foreign keys defined on PARENT ?/

 /???/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Primary Table Schema is %s. Primary Table Name is %s.\n",

 pktable_schem.name, pktable_name.name);

(void) printf ("???? Primary Table Key Column is %s.\n",

 pkcolumn_name.name);

(void) printf ("???? Foreign Table Schema is %s. Foreign Table Name is %s.\n",

 fktable_schem.name, fktable_name.name);

(void) printf ("???? Foreign Table Key Column is %s.\n",

 fkcolumn_name.name);

if (update_rule == SQL_RESTRICT) // isolate update rule

strcpy (update, "RESTRICT");

 else

if (update_rule == SQL_CASCADE)

strcpy (update, "CASCADE");

 else

strcpy (update, "SET NULL");

174 Call Level Interface Guide and Reference

 SQLForeignKeys

if (delete_rule == SQL_RESTRICT) // isolate delete rule

strcpy (delet, "RESTRICT");

 else

if (delete_rule == SQL_CASCADE)

strcpy (delet, "CASCADE");

 else

if (delete_rule == SQL_NO_ACTION)

strcpy (delet, "NO ACTION");

 else

strcpy (delet, "SET NULL");

(void) printf ("???? Update Rule is %s. Delete Rule is %s.\n",

 update, delet);

 }

 /???/

/? Deallocate Statement Handle ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP=2.\n\n");

 return RETCODE;

}

 Chapter 5. Functions 175

 SQLForeignKeys

 References
� “SQLPrimaryKeys - Get Primary Key Columns of A Table” on page 268
� “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 325

176 Call Level Interface Guide and Reference

 SQLFreeConnect

SQLFreeConnect - Free Connection Handle

 Purpose

SQLFreeConnect() invalidates and frees the connection handle. All DB2 CLI
resources associated with the connection handle are freed.

SQLDisconnect() must be called before calling this function.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

 Function Arguments

Table 56. SQLFreeConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

 Usage
If this function is called when a connection still exists, SQL_ERROR is returned,
and the connection handle remains valid.

To continue termination, call SQLFreeEnv(), or, if a new connection handle is
required, call SQLAllocConnect().

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_SUCCESS_WITH_INFO

 Diagnostics

Table 57. SQLFreeConnect SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called prior to SQLDisconnect() for the hdbc.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Chapter 5. Functions 177

 SQLFreeConnect

 Restrictions
None.

 Example
Refer to “Example” on page 77.

 References
� “SQLDisconnect - Disconnect from a Data Source” on page 134
� “SQLFreeEnv - Free Environment Handle” on page 179

178 Call Level Interface Guide and Reference

 SQLFreeEnv

SQLFreeEnv - Free Environment Handle

 Purpose

SQLFreeEnv() invalidates and frees the environment handle. All DB2 CLI resources
associated with the environment handle are freed.

SQLFreeConnect() must be called before calling this function.

This function is the last DB2 CLI step an application needs to do before
terminating.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLFreeEnv (SQLHENV henv);

 Function Arguments

Table 58. SQLFreeEnv Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle

 Usage
If this function is called when there is still a valid connection handle, SQL_ERROR
is returned, and the environment handle remains valid.

The number of SQLFreeEnv() calls must equal the number of SQLAllocEnv() calls
before the environment information is reset.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 59. SQLFreeEnv SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. There is an hdbc which is in allocated or connected state. Call
SQLDisconnect() and SQLFreeConnect() for the hdbc before
calling SQLFreeEnv().

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Chapter 5. Functions 179

 SQLFreeEnv

 Restrictions
None.

 Example
Refer to “Example” on page 77.

 References
� “SQLFreeConnect - Free Connection Handle” on page 177

180 Call Level Interface Guide and Reference

 SQLFreeStmt

SQLFreeStmt - Free (or Reset) a Statement Handle

 Purpose

SQLFreeStmt() ends processing on the statement referenced by the statement
handle. Use this function to:

� Close a cursor

� Drop the statement handle and free the DB2 CLI resources associated with the
statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the
results.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,

 SQLUSMALLINT fOption);

 Function Arguments

Table 60. SQLFreeStmt Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLUSMALLINT fOption input Option which specified the manner of freeing the
statement handle. The option must have one of the
following values:

 � SQL_CLOSE
 � SQL_DROP
 � SQL_UNBIND
 � SQL_RESET_PARAMS

 Usage
SQLFreeStmt() can be called with the following options:

SQL_CLOSE The cursor (if any) associated with the statement handle (hstmt) is
closed and all pending results are discarded. The application can
reopen the cursor by calling SQLExecute() or SQLExecDirect() with
the same or different values in the application variables (if any)
that are bound to hstmt. The cursor name is retained until the
statement handle is dropped or the next successful
SQLSetCursorName() call. If a cursor is not associated with the
statement handle, this option has no effect (no warning or error is
generated).

SQL_DROP DB2 CLI resources associated with the input statement handle are
freed, and the handle is invalidated. The open cursor, if any, is
closed and all pending results are discarded.

 Chapter 5. Functions 181

 SQLFreeStmt

SQL_UNBIND All the columns bound by previous SQLBindCol() calls on this
statement handle are released (the association between
application variables or file references and result set columns is
broken).

SQL_RESET_PARAMS
All the parameters set by previous SQLBindParameter() calls on
this statement handle are released (the association between
application variables or file references and parameter markers in
the SQL statement for the statement handle is broken).

You can reuse a statement handle to execute a different statement. If the handle is:

� Associated with a query, catalog function, or SQLGetTypeInfo(), you must close
the cursor.

� Bound with a different number or type of parameters, the parameters must be
reset.

� Bound with a different number or type of column bindings, the columns must be
unbound.

Alternatively, you can drop the statement handle and allocate a new one.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if fOption is set to SQL_DROP, since
there would be no statement handle to use when SQLError() is called.

 Diagnostics

Table 61. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1092 Option type out of range. The value specified for the argument fOption is not SQL_CLOSE,
SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

S1506 Error closing a file. Error encountered while trying to close a temporary file.

182 Call Level Interface Guide and Reference

 SQLFreeStmt

 Restrictions
None.

 Example
Refer to “Example” on page 166.

 References
� “SQLAllocStmt - Allocate a Statement Handle” on page 82
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLFetch - Fetch Next Row” on page 163
� “SQLSetParam - Binds A Parameter Marker to a Buffer” on page 309

 Chapter 5. Functions 183

 SQLGetConnectOption

SQLGetConnectOption - Returns Current Setting of A Connect Option

 Purpose

SQLGetConnectOption() returns the current settings for the specified connection
option.

These options are set using the SQLSetConnectOption() function.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLGetConnectOption (

 SQLHDBC hdbc,

 SQLUSMALLINT fOption,

 SQLPOINTER pvParam);

 Function Arguments

Table 62. SQLGetConnectOption Arguments

Data Type Argument Use Description

HDBC hdbc input Connection handle.

SQLUSMALLINT fOption input Option to set. Refer to Table 114 on page 298 for the
complete list of connection options and their descriptions.

SQLPOINTER pvParam input/output Value associated with fOption. Depending on the value of
fOption, this can be a 32-bit integer value, or a pointer to
a null terminated character string. The maximum length of
any character string returned is
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding
the null-terminator).

 Usage
If SQLGetConnectOption() is called, and the specified fOption has not been set via
SQLSetConnectOption and does not have a default, then SQLGetConnectOption()
returns SQL_NO_DATA_FOUND.

Although SQLSetConnectOption() can be used to set statement options,
SQLGetConnectOption() cannot be used to retrieve statement options, use
SQLGetStmtOption() instead.

For a list of valid connect options, refer to Table 114 on page 298, in the function
description for SQLSetConnectOption().

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

184 Call Level Interface Guide and Reference

 SQLGetConnectOption

 Diagnostics

Table 63. SQLGetConnectOption SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The function is called after the communication link source to
which DB2 CLI is connected, failed during the processing of a
previous request.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The pvParam argument is NULL.

S1092 Option type out of range. An invalid fOption value is specified.

S1C00 Driver not capable. The fOption is recognized, but is not supported.

 Restrictions
None.

 Example

/? ... ?/

rc = SQLGetConnectOption(hdbc, SQL_AUTOCOMMIT, &autocommit);

printf("Autocommit is: ");

if (autocommit == SQL_AUTOCOMMIT_ON)

 printf("ON\n");

 else

 printf("OFF\n");

/? ... ?/

 References
� “SQLSetConnectOption - Set Connection Option” on page 297
� “SQLSetStmtOption - Set Statement Option” on page 314
� “SQLGetStmtOption - Returns Current Setting of A Statement Option” on

page 235

 Chapter 5. Functions 185

 SQLGetCursorName

SQLGetCursorName - Get Cursor Name

 Purpose

SQLGetCursorName() returns the cursor name associated with the input statement
handle. If a cursor name is explicitly set by calling SQLSetCursorName(), this name
is returned; otherwise, an implicitly generated name is returned.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCursor,

 SQLSMALLINT cbCursorMax,

 SQLSMALLINT FAR ?pcbCursor);

 Function Arguments

Table 64. SQLGetCursorName Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor output Cursor name

SQLSMALLINT cbCursorMax input Length of buffer szCursor

SQLSMALLINT * pcbCursor output Number of bytes available to return for szCursor

 Usage
SQLGetCursorName() returns the cursor name set explicitly with
SQLSetCursorName(), or if no name is set, it returns the cursor name internally
generated by DB2 CLI.

If a name is set explicitly using SQLSetCursorName(), this name is returned until the
statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR. For
query result sets, DB2 CLI also reserves SQLCURQRS as a cursor name prefix.
Cursor names are always 18 characters or less, and are always unique within a
connection.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

186 Call Level Interface Guide and Reference

 SQLGetCursorName

 Diagnostics

Table 65. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in szCursor is longer than the value in
cbCursorMax, and is truncated to cbCursorMax - 1 bytes. The
argument pcbCursor contains the length of the full cursor name
available for return. The function returns
SQL_SUCCESS_WITH_INFO.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1092 Option type out of range. The value specified for the argument hstmt is not valid.

S1015 No cursor name available. There is no open cursor on the statement handle specified by
hstmt and no cursor name is set with SQLSetCursorName().

S1090 Invalid string or buffer length. The value specified for the argument cbCursorMax is less than 0.

 Restrictions
ODBC generated cursor names begin with SQL_CUR. X/Open CLI generated
cursor names begin with either SQLCUR or SQL_CUR. DB2 CLI also generates a
cursor name that begins with SQLCUR or SQL_CUR.

 Example

 /??/

 /? DB2 for OS/ESA Example: ?/

 /? Performs a positioned update on a column of a cursor. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;

SQLRETURN rc = SQL_SUCCESS, rc2 = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

char ?pDSN = "STLEC1";

 Chapter 5. Functions 187

 SQLGetCursorName

 SWORD cbCursor;

 SDWORD cbValue1;

 SDWORD cbValue2;

 char employee [3=];

int salary = =;

 char cursor_name [2=];

 char update [2==];

char ?stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE

SALARY > 1===== FOR UPDATE OF SALARY";

(void) printf ("???? Entering CLIP=4.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Allocate Statement Handles ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

188 Call Level Interface Guide and Reference

 SQLGetCursorName

rc = SQLAllocStmt (hDbc,

 &hStmt2);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Execute query to retrieve employee nnames ?/

 /???/

rc = SQLExecDirect (hStmt,

(SQLCHAR ?) stmt,

 strlen(stmt));

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? EMPLOYEE QUERY FAILED.\n");

 goto dberror;

 }

 /???/

/? Extract cursor name -- required to build UPDATE statement. ?/

 /???/

rc = SQLGetCursorName (hStmt,

(SQLCHAR ?) cursor_name,

 sizeof(cursor_name),

 &cbCursor);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? GET CURSOR NAME FAILED.\n");

 goto dberror;

 }

(void) printf ("???? Cursor Name is %s.\n");

rc = SQLBindCol (hStmt, // bind employee name

 1,

 SQL_C_CHAR,

 employee,

 sizeof(employee),

 &cbValue1);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? BIND OF NAME FAILED.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind employee salary

 2,

 SQL_C_LONG,

 &salary,

 =,

 &cbValue2);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? BIND OF SALARY FAILED.\n");

 goto dberror;

 }

 Chapter 5. Functions 189

 SQLGetCursorName

 /???/

/? Answer Set is available -- Fetch rows and update salary ?/

 /???/

while (((rc = SQLFetch (hStmt)) == SQL_SUCCESS) &&;

(rc2 == SQL_SUCCESS))

 {

int new_salary = salary?1.1;

(void) printf ("???? Employee Name %s with salary %d. New salary = %d.\n",

 employee,

 salary,

 new_salary);

 sprintf (update,

"UPDATE EMPLOYEE SET SALARY = %d WHERE CURRENT OF %s",

 new_salary,

 cursor_name);

(void) printf ("????? Update statement is : %s\n", update);

rc2 = SQLExecDirect (hStmt2,

(SQLCHAR ?) update,

 SQL_NTS);

 }

if (rc2 != SQL_SUCCESS)

 {

(void) printf ("???? EMPLOYEE UPDATE FAILED.\n");

 goto dberror;

 }

 /???/

/? Reexecute query to validate that salary was updated ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_CLOSE);

rc = SQLExecDirect (hStmt,

(SQLCHAR ?) stmt,

 strlen(stmt));

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? EMPLOYEE QUERY FAILED.\n");

 goto dberror;

 }

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Employee Name %s has salary %d.\n",

 employee,

 salary);

 }

190 Call Level Interface Guide and Reference

 SQLGetCursorName

 /???/

/? Deallocate Statement Handles ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

rc = SQLFreeStmt (hStmt2,

 SQL_DROP);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP=4.\n\n");

 return RETCODE;

}

 References
� “SQLExecute - Execute a Statement” on page 153
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLPrepare - Prepare a Statement” on page 260
� “SQLSetCursorName - Set Cursor Name” on page 303

 Chapter 5. Functions 191

 SQLGetData

SQLGetData - Get Data From a Column

 Purpose

SQLGetData() retrieves data for a single column in the current row of the result set.
This is an alternative to SQLBindCol(), which is used to transfer data directly into
application variables on each SQLFetch() or SQLExtendedFetch() call.
SQLGetData() can also be used to retrieve large data values in pieces.

SQLFetch() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() or SQLExtendedFetch() is
called to retrieve the next row.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetData (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER FAR ?pcbValue);

 Function Arguments

Table 66 (Page 1 of 2). SQLGetData Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number for which the data retrieval is requested.

SQLSMALLINT fCType input The C data type of the column identifier by icol. The
following types are supported:

 � SQL_C_BINARY
 � SQL_C_BIT
 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DBCHAR
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_TINYINT

 Specifying SQL_C_DEFAULT results in the data being
converted to its default C data type, refer to Table 4 on
page 40 for more information.

SQLPOINTER rgbValue output Pointer to buffer where the retrieved column data is to be
stored.

SQLINTEGER cbValueMax input Maximum size of the buffer pointed to by rgbValue.

192 Call Level Interface Guide and Reference

 SQLGetData

Table 66 (Page 2 of 2). SQLGetData Arguments

Data Type Argument Use Description

SQLINTEGER * pcbValue output Pointer to value which indicates the number of bytes DB2
CLI has available to return in the rgbValue buffer. If the
data is being retrieved in pieces, this contains the number
of bytes still remaining.

The value is SQL_NULL_DATA if the data value of the
column is null. If this pointer is NULL and SQLFetch() has
obtained a column containing null data, then this function
fails because it has no means of reporting this.

If SQLFetch() has fetched a column containing binary
data, then the pointer to pcbValue must not be NULL or
this function fails because it has no other means of
informing the application about the length of the data
retrieved in the rgbValue buffer.

Note: DB2 CLI provides some performance enhancement if rgbValue is placed consecutively in memory after
pcbValue.

 Usage
SQLGetData() can be used with SQLBindCol() for the same result set, as long as
SQLFetch() and not SQLExtendedFetch() is used. The general steps are:

1. SQLFetch() - advances cursor to first row, retrieves first row, transfers data for
bound columns.

2. SQLGetData() - transfers data for the specified column.
3. Repeat step 2 for each column needed.
4. SQLFetch() - advances cursor to next row, retrieves next row, transfers data for

bound columns.
5. Repeat steps 2, 3 and 4 for each row in the result set, or until the result set is

no longer needed.

SQLGetData() can also be used to retrieve long columns if the C data type (fCType)
is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR, or if fCType is
SQL_C_DEFAULT and the column type denotes a binary or character string.

Upon each SQLGetData() call, if the data available for return is greater than or
equal to cbValueMax, truncation occurs. Truncation is indicated by a function return
code of SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting data
truncation. The application can call SQLGetData() again, with the same icol value,
to get subsequent data from the same unbound column starting at the point of
truncation. To obtain the entire column, the application repeats such calls until the
function returns SQL_SUCCESS. The next call to SQLGetData() returns
SQL_NO_DATA_FOUND.

Truncation is also affected by the SQL_MAX_LENGTH statement option. The
application can specify that truncation is not to be reported by calling
SQLSetStmtOption() with SQL_MAX_LENGTH and a value for the maximum length
to return for any one column, and by allocating a rgbValue buffer of the same size
(plus the null-terminator). If the column data is larger than the set maximum length,
SQL_SUCCESS is returned and the maximum length, not the actual length is
returned in pcbValue.

 Chapter 5. Functions 193

 SQLGetData

To discard the column data part way through the retrieval, the application can call
SQLGetData() with icol set to the next column position of interest. To discard data
that has not been retrieved for the entire row, the application should call SQLFetch()
to advance the cursor to the next row; or, if it is not interested in any more data
from the result set, call SQLFreeStmt() to close the cursor.

The fCType input argument determines the type of data conversion (if any) needed
before the column data is placed into the storage area pointed to by rgbValue.

For SQL graphic column data:

� The length of the rgbValue buffer (cbValueMax) should be a multiple of 2. The
application can determine the SQL data type of the column by first calling
SQLDescribeCol() or SQLColAttributes().

� The pointer to pcbValue must not be NULL since DB2 CLI stores the number of
octets stored in rgbValue.

� If the data is retrieved in piecewise fashion, DB2 CLI attempts to fill rgbValue to
the nearest multiple of two octets that is still less than or equal to cbValueMax.
This means if cbValueMax is not a multiple of two, the last byte in that buffer is
untouched; DB2 CLI does not split a double-byte character.

The contents returned in rgbValue are always null-terminated unless the column
data to be retrieved is binary, or if the SQL data type of the column is graphic
(DBCS) and the C buffer type is SQL_C_CHAR. If the application is retrieving the
data in multiple chunks, it should make the proper adjustments (for example, strip
off the null-terminator before concatenating the pieces back together assuming the
null termination environment attribute is in effect).

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (refer to the 'Diagnostics' section).

Applications that use SQLExtendedFetch() to retrieve data should call SQLGetData()
only when the rowset size is 1 (equivalent to issuing SQLFetch()). SQLGetData() can
only retrieve column data for a row where the cursor is currently positioned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If
this is the case, pcbValue contains 0, and rgbValue contains a null terminator.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since
the result is undefined.

194 Call Level Interface Guide and Reference

 SQLGetData

 Diagnostics

Table 67 (Page 1 of 2). SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (icol) is truncated. String
or numeric values are right truncated.
SQL_SUCCESS_WITH_INFO is returned.

07006 Invalid conversion. The data value cannot be converted to the C data type specified
by the argument fCType.

The function has been called before for the same icol value but
with a different fCType value.

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue is a null
pointer and the value of the column is null. There is no means to
report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for the column
causes the whole part of the number to be truncated.

22005 Error in assignment. A returned value is incompatible with the data type denoted by
the argument fCType.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned
to a bound variable because it is too small.

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on
a row.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1002 Invalid column number. The specified column is less than 0 or greater than the number of
result columns.

The specified column is 0, but DB2 CLI does not support ODBC
bookmarks (icol = 0).

SQLExtendedFetch() is called for this result set.

S1003 Program type out of range. fCType is not a valid data type or SQL_C_DEFAULT.

S1009 Invalid argument value. The argument rgbValue is a null pointer.

The argument pcbValue is a null pointer; the column SQL data
type is graphic (DBCS); and fcType is set to SQL_C_CHAR.

S1010 Function sequence error. The specified hstmt is not in a cursor positioned state. The
function is called without first calling SQLFetch().

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Chapter 5. Functions 195

 SQLGetData

Table 67 (Page 2 of 2). SQLGetData SQLSTATEs

SQLSTATE Description Explanation

S1090 Invalid string or buffer length. The value of the argument cbValueMax is less than 0 and the
argument fCType is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is
one of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).

S1C00 Driver not capable. The SQL data type for the specified data type is recognized but
not supported by DB2 CLI.

The requested conversion from the SQL data type to the
application data fCType cannot be performed by DB2 CLI or the
data source.

SQLExtendedFetch() is called for the specified hstmt.

 Restrictions
ODBC has defined column 0 for bookmarks. DB2 CLI does not support bookmarks.

 Example
Refer to “Example” on page 166 for a comparison between using bound columns
and using SQLGetData().

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Populates BIOGRAPHY Table from flat file text. Inserts ?/

 /? VITAE in 8=-byte pieces via SQLPutData. Also retrieve ?/

 /? NAME, UNIT and VITAE for all members. VITAE is retrieved?/

 /? via SQLGetData. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

#define TEXT_SIZE 8=

int insert_bio (SQLHSTMT hStmt, // insert_bio prototype

 char ?bio,

 int bcount);

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

 FILE ?fp;

SQLINTEGER RETCODE = =;

 char pTable [2==];

char ?pDSN = "STLEC1";

 UDWORD pirow;

 SDWORD cbValue;

196 Call Level Interface Guide and Reference

 SQLGetData

char ?i_stmt = "INSERT INTO BIOGRAPHY VALUES (?, ?, ?)";

char ?query = "SELECT NAME, UNIT, VITAE FROM BIOGRAPHY";

char text [TEXT_SIZE]; // file text

char vitae [32==]; // biography text

 char Narrative [TEXT_SIZE];

SQLINTEGER vitae_ind = SQL_DATA_AT_EXEC; // bio data is

// passed at execute time

// via SQLPutData

SQLINTEGER vitae_cbValue = TEXT_SIZE;

char ?t = NULL;

char ?c = NULL;

 char name [21];

SQLINTEGER name_ind = SQL_NTS;

SQLINTEGER name_cbValue = sizeof(name);

 char unit [31];

SQLINTEGER unit_ind = SQL_NTS;

SQLINTEGER unit_cbValue = sizeof(unit);

 char tmp [8=];

char ?token = NULL, ?pbio = vitae;

char insert = SQL_FALSE;

int i, bcount = =;

(void) printf ("???? Entering CLIP=9.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 Chapter 5. Functions 197

 SQLGetData

 /???/

/? Allocate Statement Handles ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Allocate Statement Handle Failed.\n");

 goto dberror;

 }

rc = SQLAllocStmt (hDbc,

 &hStmt2);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Allocate Statement Handle Failed.\n");

 goto dberror;

 }

 /???/

/? Prepare INSERT statement. ?/

 /???/

rc = SQLPrepare (hStmt,

(SQLCHAR ?) i_stmt,

 SQL_NTS);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Prepare of INSERT Failed.\n");

 goto dberror;

 }

 /???/

/? Bind NAME and UNIT. Bind VITAE so that data can be passed ?/

/? via SQLPutData. ?/

 /???/

rc = SQLBindParameter (hStmt, // bind NAME

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(name),

 =,

 name,

 sizeof(name),

 &name_ind);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of NAME Failed.\n");

 goto dberror;

 }

198 Call Level Interface Guide and Reference

 SQLGetData

rc = SQLBindParameter (hStmt, // bind Branch

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(unit),

 =,

 unit,

 sizeof(unit),

 &unit_ind);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of UNIT Failed.\n");

 goto dberror;

 }

rc = SQLBindParameter (hStmt, // bind Rank

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_LONGVARCHAR,

 32==,

 =,

 (SQLPOINTER) 3,

 =,

 &vitae_ind);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of VITAE Failed.\n");

 goto dberror;

 }

 /???/

/? Read Biographical text from flat file ?/

 /???/

if ((fp = fopen ("DD:BIOGRAF", "r")) == NULL) // open command file

 {

rc = SQL_ERROR; // open failed

 goto exit;

 }

/???/

/? Process file and insert Biographical text ?/

/???/

while (((t = fgets (text, sizeof(text), fp)) != NULL) &&;

(rc == SQL_SUCCESS))

 {

if (text[=] == #') // if commander data

 {

if (insert) // if BIO data to be inserted

 {

rc = insert_bio (hStmt,

 vitae,

bcount); // insert row into BIOGRAPHY Table

bcount = =; // reset text line count

pbio = vitae; // reset text pointer

 }

 Chapter 5. Functions 199

 SQLGetData

token = strtok (text+1, ","); // get member NAME

(void) strcpy (name, token);

token = strtok (NULL, "#"); // extract UNIT

(void) strcpy (unit, token); // copy to local variable

 // SQLPutData

insert = SQL_TRUE; // have row to insert

 }

 else

 {

memset (pbio, ' ', sizeof(text));

strcpy (pbio, text); // populate text

i = strlen (pbio); // remove '\n' and '\='

pbio [i--] =' ';

 pbio [i] =' ';

pbio += sizeof (text); // advance pbio

bcount++; // one more text line

 }

 }

if (insert) // if BIO data to be inserted

 {

rc = insert_bio (hStmt,

 vitae,

bcount); // insert row into BIOGRAPHY Table

 }

fclose (fp); // close text flat file

 /???/

/? Commit Insert of rows ?/

 /???/

rc = SQLTransact (hEnv,

 hDbc,

 SQL_COMMIT);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? COMMIT FAILED.\n");

 goto dberror;

 }

 /???/

/? Open query to retrieve NAME, UNIT and VITAE. Bind NAME and ?/

/? UNIT but leave VITAE unbound. Retrieved using SQLGetData. ?/

 /???/

RETCODE = SQLPrepare (hStmt2,

 (SQLCHAR ?)query,

 strlen(query));

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? Prepare of Query Failed.\n");

 goto dberror;

 }

200 Call Level Interface Guide and Reference

 SQLGetData

RETCODE = SQLExecute (hStmt2);

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? Query Failed.\n");

 goto dberror;

 }

RETCODE = SQLBindCol (hStmt2, // bind NAME

 1,

 SQL_C_DEFAULT,

 name,

 sizeof(name),

 &name_cbValue);

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? Bind of NAME Failed.\n");

 goto dberror;

 }

RETCODE = SQLBindCol (hStmt2, // bind UNIT

 2,

 SQL_C_DEFAULT,

 unit,

 sizeof(unit),

 &unit_cbValue);

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? Bind of UNIT Failed.\n");

 goto dberror;

 }

while ((RETCODE = SQLFetch (hStmt2)) != SQL_NO_DATA_FOUND)

 {

(void) printf ("???? Name is %s. Unit is %s.\n\n", name, unit);

(void) printf ("???? Vitae follows:\n\n");

for (i = =; (i < 32== && RETCODE != SQL_NO_DATA_FOUND); i += TEXT_SIZE)

 {

RETCODE = SQLGetData (hStmt2,

 3,

 SQL_C_CHAR,

 Narrative,

sizeof(Narrative) + 1,

 &vitae_cbValue);

if (RETCODE != SQL_NO_DATA_FOUND)

(void) printf ("%s\n", Narrative);

 }

 }

 /???/

/? Deallocate Statement Handles ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

rc = SQLFreeStmt (hStmt2,

 SQL_DROP);

 Chapter 5. Functions 201

 SQLGetData

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP=9.\n\n");

 return RETCODE;

}

/???/

/? function insert_bio is invoked to insert one row into the ?/

/? BIOGRAPHY Table. The biography text is inserted in sets of ?/

/? 8= bytes via SQLPutData. ?/

/???/

int insert_bio (SQLHSTMT hStmt,

 char ?vitae,

 int bcount)

{

SQLINTEGER rc = SQL_SUCCESS;

 SQLPOINTER prgbValue;

 int i;

 char ?text;

202 Call Level Interface Guide and Reference

 SQLGetData

 /???/

/? NAME and UNIT are bound... VITAE is provided after execution ?/

/? of the INSERT using SQLPutData. ?/

 /???/

rc = SQLExecute (hStmt);

if (rc != SQL_NEED_DATA) // expect SQL_NEED_DATA

 {

rc = 12;

(void) printf ("???? NEED DATA not returned.\n");

 goto exit;

 }

 /???/

/? Invoke SQLParamData to position ODBC driver on input parameter?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_NEED_DATA)

 {

rc = 12;

(void) printf ("???? NEED DATA not returned.\n");

 goto exit;

 }

 /???/

/? Iterate through VITAE in 8= byte increments.... pass to ?/

/? ODBC Driver via SQLPutData. ?/

 /???/

for (i = =, text = vitae, rc = SQL_SUCCESS;

(i < bcount) && (rc == SQL_SUCCESS);

i++, text += TEXT_SIZE)

 {

rc = SQLPutData (hStmt,

 text,

 TEXT_SIZE);

 }

 /???/

/? Invoke SQLParamData to trigger ODBC driver to execute the ?/

 /? statement. ?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_SUCCESS)

 {

rc = 12;

(void) printf ("???? INSERT Failed.\n");

 }

 exit:

 return (rc);

}

 Chapter 5. Functions 203

 SQLGetData

 References
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLFetch - Fetch Next Row” on page 163

204 Call Level Interface Guide and Reference

 SQLGetEnvAttr

SQLGetEnvAttr - Returns Current Setting of An Environment Attribute

 Purpose

SQLGetEnvAttr() returns the current setting for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

Specification: X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetEnvAttr (SQLHENV henv,

 SQLINTEGER Attribute,

 SQLPOINTER Value,

 SQLINTEGER BufferLength,

 SQLINTEGER FAR ?StringLength);

 Function Arguments

Table 68. SQLGetEnvAttr Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle.

SQLINTEGER Attribute input Attribute to get. Refer to Table 119 on page 306 for the
list of environment attributes and their descriptions.

SQLPOINTER Value output The current value associated with Attribute. The type of
the value returned depends on Attribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by Value, if the
attribute value is a character string; otherwise, ignored.

SQLINTEGER * StringLength output Length in bytes of the output data if the attribute value is
a character string; otherwise, ignored.

If Attribute does not denote a string, then DB2 CLI ignores BufferLength and does
not set StringLength.

 Usage
SQLGetEnvAttr() can be called at any time between the allocation and freeing of
the environment handle. It obtains the current value of the environment attribute.

For a list of valid environment attributes, refer to Table 119 on page 306.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 205

 SQLGetEnvAttr

 Diagnostics

Table 69. SQLGetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1092 Option type out of range. An invalid Attribute value was specified.

 Restrictions
None.

 Example

/? ... ?/

rc = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, =, =);

printf("Null Termination of Output strings is: ");

if (output_nts == SQL_TRUE)

 printf("True\n");

 else

 printf("False\n");

/? ... ?/

 References
� “SQLSetEnvAttr - Set Environment Attribute” on page 306

206 Call Level Interface Guide and Reference

 SQLGetFunctions

SQLGetFunctions - Get Functions

 Purpose

SQLGetFunctions() to query whether a specific function is supported. This allows
applications to adapt to varying levels of support when connecting to different
database servers.

A connection to a database server must exist before calling this function.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetFunctions (SQLHDBC hdbc,

 SQLUSMALLINT fFunction,

 SQLUSMALLINT FAR ?pfExists);

 Function Arguments

Table 70. SQLGetFunctions Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Database connection handle.

SQLUSMALLINT fFunction input The function being queried. Valid fFunction values are
shown in Figure 7 on page 208

SQLUSMALLINT
*

pfExists output Pointer to location where this function returns SQL_TRUE
or SQL_FALSE depending on whether the function being
queried is supported.

 Usage
Figure 7 on page 208 shows the valid values for the fFunction argument and
whether the corresponding function is supported.

If fFunction is set to SQL_API_ALL_FUNCTIONS, then pfExists must point to an
SQLSMALLINT array of 100 elements. The array is indexed by the fFunction values
used to identify many of the functions. Some elements of the array are unused and
reserved. Since some fFunction values are greater than 100, the array method can
not be used to obtain a list of functions. The SQLGetFunction() call must be
explicitly issued for all fFunction values equal to or above 100. The complete set of
fFunction values is defined in sqlcli1.h.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 207

 SQLGetFunctions

SQL_API_SQLALLOCCONNECT = TRUE SQL_API_SQLALLOCENV = TRUE

SQL_API_SQLALLOCSTMT = TRUE SQL_API_SQLBINDCOL = TRUE

SQL_API_SQLBINDFILETOCOL = FALSE SQL_API_SQLBINDFILETOPARAM = FALSE

SQL_API_SQLBINDPARAMETER = TRUE SQL_API_SQLBROWSECONNECT = FALSE

SQL_API_SQLCANCEL = TRUE SQL_API_SQLCOLATTRIBUTES = TRUE

SQL_API_SQLCOLUMNPRIVILEGES = TRUE SQL_API_SQLCOLUMNS = TRUE

SQL_API_SQLCONNECT = TRUE SQL_API_SQLDATASOURCES = TRUE

SQL_API_SQLDESCRIBECOL = TRUE SQL_API_SQLDESCRIBEPARAM = TRUE

SQL_API_SQLDISCONNECT = TRUE SQL_API_SQLDRIVERCONNECT = TRUE

SQL_API_SQLERROR = TRUE SQL_API_SQLEXECDIRECT = TRUE

SQL_API_SQLEXECUTE = TRUE SQL_API_SQLEXTENDEDFETCH = TRUE

SQL_API_SQLFETCH = TRUE SQL_API_SQLFOREIGNKEYS = TRUE

SQL_API_SQLFREECONNECT = TRUE SQL_API_SQLFREEENV = TRUE

SQL_API_SQLFREESTMT = TRUE SQL_API_SQLGETCONNECTOPTION = TRUE

SQL_API_SQLGETCURSORNAME = TRUE SQL_API_SQLGETDATA = TRUE

SQL_API_SQLGETENVATTR = TRUE SQL_API_SQLGETFUNCTIONS = TRUE

SQL_API_SQLGETINFO = TRUE SQL_API_SQLGETLENGTH = FALSE

SQL_API_SQLGETPOSITION = FALSE SQL_API_SQLSQLGETSQLCA = TRUE

SQL_API_SQLGETSTMTOPTION = TRUE SQL_API_SQLGETSUBSTRING = FALSE

SQL_API_SQLGETTYPEINFO = TRUE SQL_API_SQLMORERESULTS = TRUE

SQL_API_SQLNATIVESQL = TRUE SQL_API_SQLNUMPARAMS = TRUE

SQL_API_SQLNUMRESULTCOLS = TRUE SQL_API_SQLPARAMDATA = TRUE

SQL_API_SQLPARAMOPTIONS = TRUE SQL_API_SQLPREPARE = TRUE

SQL_API_SQLPRIMARYKEYS = TRUE SQL_API_SQLPROCEDURECOLUMNS = TRUE

SQL_API_SQLPROCEDURES = TRUE SQL_API_SQLPUTDATA = TRUE

SQL_API_SQLROWCOUNT = TRUE SQL_API_SQLSETCOLATTRIBUTES = TRUE

SQL_API_SQLSETCONNECTION = TRUE SQL_API_SQLSETCONNECTOPTION = TRUE

SQL_API_SQLSETCURSORNAME = TRUE SQL_API_SQLSETENVATTR = TRUE

SQL_API_SQLSETPARAM = TRUE SQL_API_SQLSETPOS = FALSE

SQL_API_SQLSETSCROLLOPTIONS = FALSE SQL_API_SQLSETSTMTOPTION = TRUE

SQL_API_SQLSPECIALCOLUMNS = TRUE SQL_API_SQLSTATISTICS = TRUE

SQL_API_SQLTABLEPRIVILEGES = TRUE SQL_API_SQLTABLES = TRUE

SQL_API_TRANSACT = TRUE

Figure 7. Supported Functions List

 Diagnostics

Table 71. SQLGetFunctions SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The argument pfExists was a null pointer.

S1010 Function sequence error. SQLGetFunctions() was called before a database connection was
established.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

208 Call Level Interface Guide and Reference

 SQLGetFunctions

 Restrictions
None.

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Executes SQLGetFunctions to verify that APIs required ?/

 /? by application are supported. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

typedef struct odbc_api

{

 SQLUSMALLINT api;

 char api_name _4=‘;

} ODBC_API;

 /??/

 /? CLI APIs required by application ?/

 /??/

ODBC_API o_api [7] = {

{ SQL_API_SQLBINDPARAMETER, "SQLBindParameter" } ,

 { SQL_API_SQLDISCONNECT , "SQLDisconnect" } ,

 { SQL_API_SQLGETTYPEINFO , "SQLGetTypeInfo" } ,

 { SQL_API_SQLFETCH , "SQLFetch" } ,

 { SQL_API_SQLTRANSACT , "SQLTransact" } ,

 { SQL_API_SQLBINDCOL , "SQLBindCol" } ,

 { SQL_API_SQLEXECDIRECT , "SQLExecDirect" }

 } ;

 /??/

/? Validate that required APIs are supported. ?/

 /??/

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

 int i;

// SQLGetFunctions parameters

 SQLUSMALLINT fExists = SQL_TRUE;

SQLUSMALLINT ?pfExists = &fExists;

(void) printf ("???? Entering CLIP=5.\n\n");

 Chapter 5. Functions 209

 SQLGetFunctions

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) "STLEC1", // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? See if DSN supports required ODBC APIs ?/

 /???/

for (i = =, (?pfExists = SQL_TRUE);

(i < (sizeof(o_api)/sizeof(ODBC_API)) && (?pfExists) == SQL_TRUE);

 i++)

 {

RETCODE = SQLGetFunctions (hDbc,

 o_api[i].api,

 pfExists);

if (?pfExists == SQL_TRUE) // if api is supported then print

 {

(void) printf ("???? ODBC api %s IS supported.\n",

 o_api[i].api_name);

 }

 }

if (?pfExists == SQL_FALSE) // a required api is not supported

 {

(void) printf ("???? ODBC api %s not supported.\n",

 o_api[i].api_name);

 }

210 Call Level Interface Guide and Reference

 SQLGetFunctions

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf("\n\n???? Exiting CLIP=5.\n\n ");

 return(RETCODE);

}

 References
None.

 Chapter 5. Functions 211

 SQLGetInfo

SQLGetInfo - Get General Information

 Purpose

SQLGetInfo() returns general information, (including supported data conversions)
about the DBMS that the application is currently connected to.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetInfo (SQLHDBC hdbc,

 SQLUSMALLINT fInfoType,

 SQLPOINTER rgbInfoValue,

 SQLSMALLINT cbInfoValueMax,

 SQLSMALLINT FAR ?pcbInfoValue);

 Function Arguments

Table 72. SQLGetInfo Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Database connection handle

SQLUSMALLINT fInfoType input The type of information desired.

SQLPOINTER rgbInfoValue output
(also input)

Pointer to buffer where this function stores the desired
information. Depending on the type of information being
retrieved, 5 types of information can be returned:

� 16-bit integer value
� 32-bit integer value
� 32-bit binary value

 � 32-bit mask
� Null-terminated character string

SQLSMALLINT cbInfoValueMax input Maximum length of the buffer pointed to by rgbInfoValue
pointer.

SQLSMALLINT * pcbInfoValue output Pointer to location where this function returns the total
number of bytes available to return the desired
information. In the case of string output, this size does not
include the null terminating character.

If the value in the location pointed to by pcbInfoValue is
greater than the size of the rgbInfoValue buffer as
specified in cbInfoValueMax, then the string output
information is truncated to cbInfoValueMax - 1 bytes and
the function returns with SQL_SUCCESS_WITH_INFO.

 Usage
Refer to Table 73 on page 213 for a list of the possible values of fInfoType and a
description of the information that SQLGetInfo() would return for that value.

212 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 1 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

Note: Call Level Interface returns a value for each fInfoType in this table. If the fInfoType does not apply or is not supported, the
result is dependent on the return type. If the return type is a:

� Character string containing 'Y' or 'N', "N" is returned.
� Character string containing a value other than just 'Y' or 'N', an empty string is returned.
� 16-bit integer, 0 (zero).
� 32-bit integer, 0 (zero).
� 32-bit mask, 0 (zero).

SQL_ACCESSIBLE_PROCEDURES [20] string A character string of "Y" indicates that the user can execute
all procedures returned by the function SQLProcedures(). "N"
indicates that procedures can be returned that the user
cannot execute.

SQL_ACCESSIBLE_TABLES [19] string A character string of "Y" indicates that the user is guaranteed
SELECT privilege to all tables returned by the function
SQLTables(). "N" indicates that tables can be returned that
the user cannot access.

SQL_ACTIVE_CONNECTIONS [0] 16-bit integer The maximum number of active connections supported per
application.

Zero is returned, indicating that the limit is dependent on
system resources.

The MAXCONN keyword in the initialization file or the
SQL_MAX_CONNECTIONS environment/connection option
can be used to impose a limit on the number of connections.
This limit is returned if it is set to any value other than zero.

SQL_ACTIVE_STATEMENTS [1] 16-bit integer The maximum number of active statements per connection.

Zero is returned, indicating that the limit is dependent on
database system and Call Level Interface resources, and
limits.

SQL_ALTER_TABLE [86] 32-bit mask Indicates which clauses in ALTER TABLE are supported by
the DBMS.

 � SQL_AT_ADD_COLUMN
 � SQL_AT_DROP_COLUMN

SQL_BOOKMARK_PERSISTENCE [82] 32-bit mask Reserved option, zero is returned for the bit-mask.

SQL_COLUMN_ALIAS [87] string Returns "Y" if column aliases are supported, or "N" if they are
not.

SQL_CONCAT_NULL_BEHAVIOR [22] 16-bit integer Indicates how the concatenation of NULL valued character
data type columns with non-NULL valued character data type
columns is handled.

� SQL_CB_NULL - indicates the result is a NULL value
(this is the case for IBM RDBMs).

� SQL_CB_NON_NULL - indicates the result is a
concatenation of non-NULL column values.

 Chapter 5. Functions 213

 SQLGetInfo

Table 73 (Page 2 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_CONVERT_BIGINT [53]
SQL_CONVERT_BINARY [54]
SQL_CONVERT_BIT [55]
SQL_CONVERT_CHAR [56]
SQL_CONVERT_DATE [57]
SQL_CONVERT_DECIMAL [58]
SQL_CONVERT_DOUBLE [59]
SQL_CONVERT_FLOAT [60]
SQL_CONVERT_INTEGER [61]
SQL_CONVERT_LONGVARBINARY [71]
SQL_CONVERT_LONGVARCHAR [62]
SQL_CONVERT_NUMERIC [63]
SQL_CONVERT_REAL [64]
SQL_CONVERT_SMALLINT [65]
SQL_CONVERT_TIME [66]
SQL_CONVERT_TIMESTAMP [67]
SQL_CONVERT_TINYINT [68]
SQL_CONVERT_VARBINARY [69]
SQL_CONVERT_VARCHAR [70]

32-bit mask Indicates the conversions supported by the data source with
the CONVERT scalar function for data of the type named in
the finfoType. If the bitmask equals zero, the data source
does not support any conversions for the data of the named
type, including conversions to the same data type.

For example, to find out if a data source supports the
conversion of SQL_INTEGER data to the SQL_DECIMAL
data type, an application calls SQLGetInfo() with finfoType of
SQL_CONVERT_INTEGER. The application then ANDs the
returned bitmask with SQL_CVT_DECIMAL. If the resulting
value is nonzero then the conversion is supported.

The following bitmasks are used to determine which
conversions are supported:

 � SQL_CVT_BIGINT
 � SQL_CVT_BINARY
 � SQL_CVT_BIT
 � SQL_CVT_CHAR
 � SQL_CVT_DATE
 � SQL_CVT_DECIMAL
 � SQL_CVT_DOUBLE
 � SQL_CVT_FLOAT
 � SQL_CVT_INTEGER
 � SQL_CVT_LONGVARBINARY
 � SQL_CVT_LONGVARCHAR
 � SQL_CVT_NUMERIC
 � SQL_CVT_REAL
 � SQL_CVT_SMALLINT
 � SQL_CVT_TIME
 � SQL_CVT_TIMESTAMP
 � SQL_CVT_TINYINT
 � SQL_CVT_VARBINARY
 � SQL_CVT_VARCHAR

SQL_CONVERT_FUNCTIONS [48] 32-bit mask Indicates the scalar conversion functions supported by the
driver and associated data source.

SQL_CORRELATION_NAME [74] 16-bit integer Indicates the degree of correlation name support by the
server:

� SQL_CN_ANY, supported and can be any valid
user-defined name.

� SQL_CN_NONE, correlation name not supported.
� SQL_CN_DIFFERENT, correlation name supported but it

must be different than the name of the table that it
represents.

SQL_CLOSE_BEHAVIOR 32-bit integer Indicates whether or not locks are released when the cursor
is closed. The possible values are:

� SQL_CC_NO_RELEASE: locks are not released when
the cursor on this statement handle is closed. This is the
default.

� SQL_CC_RELEASE: locks are released when the cursor
on this statement handle is closed.

Typically cursors are explicitly closed when the function
SQLFreeStmt() is called with the SQL_CLOSE or SQL_DROP
option. In addition, the end of the transaction (when a commit
or rollback is issued) can also cause the closing of the cursor
(depending on the WITH HOLD attribute currently in use).

214 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 3 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_CURSOR_COMMIT_BEHAVIOR 16-bit integer Indicates how a COMMIT operation affects cursors. A value
of:

� SQL_CB_DELETE, destroys cursors and drops access
plans for dynamic SQL statements.

� SQL_CB_CLOSE, destroys cursors, but retains access
plans for dynamic SQL statements (including non-query
statements)

� SQL_CB_PRESERVE, retains cursors and access plans
for dynamic statements (including non-query statements).
Applications can continue to fetch data, or close the
cursor and re-execute the query without re-preparing the
statement.

After COMMIT, a FETCH must be issued to reposition the
cursor before actions such as positioned updates or deletes
can be taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR [24] 16-bit integer Indicates how a ROLLBACK operation affects cursors. A
value of:

� SQL_CB_DELETE, destroys cursors and drops access
plans for dynamic SQL statements.

� SQL_CB_CLOSE, destroys cursors, but retains access
plans for dynamic SQL statements (including non-query
statements)

� SQL_CB_PRESERVE, retains cursors and access plans
for dynamic statements (including non-query statements).
Applications can continue to fetch data, or close the
cursor and re-execute the query without re-preparing the
statement.

DB2 servers do not have the SQL_CB_PRESERVE property.

SQL_DATA_SOURCE_NAME [2] string The name used as data source on the input to SQLConnect(),
or the DSN keyword value in the SQLDriverConnect()
connection string.

SQL_DATA_SOURCE_READ_ONLY [25] string A character string of "Y" indicates that the database is set to
READ ONLY mode; an "N" indicates that it is not set to
READ ONLY mode.

SQL_DATABASE_NAME [16] string The name of the current database in use.

Note: Also returned by SELECT CURRENT SERVER on
IBM DBMS's.

SQL_DBMS_NAME [17] string The name of the DBMS product being accessed. For
example:

 � "DB2/6000"
 � "DB2/2"

SQL_DBMS_VER [18] string The Version of the DBMS product accessed. A string of the
form 'mm.vv.rrrr' where mm is the major version, vv is the
minor version and rrrr is the release. For example,
"02.01.0000" translates to major version 2, minor version 1,
release 0.

 Chapter 5. Functions 215

 SQLGetInfo

Table 73 (Page 4 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_DEFAULT_TXN_ISOLATION [26] 32-bit mask The default transaction isolation level supported.

One of the following masks are returned:

� SQL_TXN_READ_UNCOMMITTED = Changes are
immediately perceived by all transactions (dirty read,
non-repeatable read, and phantoms are possible).

This is equivalent to IBM's UR level.
� SQL_TXN_READ_COMMITTED = Row read by

transaction 1 can be altered and committed by transaction
2 (non-repeatable read and phantoms are possible)

This is equivalent to IBM's CS level.
� SQL_TXN_REPEATABLE_READ = A transaction can add

or remove rows matching the search condition or a
pending transaction (repeatable read, but phantoms are
possible)

This is equivalent to IBM's RS level.
� SQL_TXN_SERIALIZABLE = Data affected by pending

transaction is not available to other transactions
(repeatable read, phantoms are not possible)

This is equivalent to IBM's RR level.
� SQL_TXN_VERSIONING = Not applicable to IBM

DBMSs.
� SQL_TXN_NOCOMMIT = Any chnages are effectively

committed at the end of a successful operation; no
explicit commit or rollback is allowed.

This is a DB2 for OS/400 isolation level.

In IBM terminology,

� SQL_TXN_READ_UNCOMMITTED is uncommitted read;
� SQL_TXN_READ_COMMITTED is cursor stability;
� SQL_TXN_REPEATABLE_READ is read stability;
� SQL_TXN_SERIALIZABLE is repeatable read.

SQL_DRIVER_HDBC [3] 32 bits Call Level Interface's current database handle.

SQL_DRIVER_HENV [4] 32 bits Call Level Interface's environment handle.

SQL_DRIVER_HLIB [76] 32 bits Reserved.

SQL_DRIVER_HSTMT [5] 32 bits Call Level Interface's current statement handle for the current
connection.

SQL_DRIVER_NAME [6] string The file name of the Call Level Interface implementation. DB2
CLI returns NULL.

SQL_DRIVER_ODBC_VER [77] string The version number of ODBC that the Driver supports. Call
Level Interface returns "2.1".

SQL_DRIVER_VER [7] string The version of the CLI driver. A string of the form 'mm.vv.rrrr'
where mm is the major version, vv is the minor version and
rrrr is the release. For example, "02.01.0000" translates to
major version 2, minor version 1, release 0.

SQL_EXPRESSIONS_IN_ORDERBY [27] string The character string "Y" indicates the database server
supports the DIRECT specification of expressions in the
ORDER BY list, "N" indicates that is does not.

216 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 5 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_FETCH_DIRECTION [8] 32-bit mask The supported fetch directions.

The following bit-masks are used in conjunction with the flag
to determine which options are supported.

 � SQL_FD_FETCH_NEXT
 � SQL_FD_FETCH_FIRST
 � SQL_FD_FETCH_LAST
 � SQL_FD_FETCH_PREV
 � SQL_FD_FETCH_ABSOLUTE
 � SQL_FD_FETCH_RELATIVE
 � SQL_FD_FETCH_RESUME

SQL_FILE_USAGE [84] 16-bit integer Reserved. Zero is returned.

SQL_GETDATA_EXTENSIONS [81] 32-bit mask Indicates whether extensions to the SQLGetData() function are
supported. The following extensions are currently identified
and supported by Call Level Interface:

� SQL_GD_ANY_COLUMN, SQLGetData() can be called for
unbound columns that precede the last bound column.

� SQL_GD_ANY_ORDER, SQLGetData() can be called for
columns in any order.

ODBC also defines SQL_GD_BLOCK and SQL_GD_BOUND;
these bits are not returned by Call Level Interface.

SQL_GROUP_BY [88] 16-bit integer Indicates the degree of support for the GROUP BY clause by
the server:

� SQL_GB_NO_RELATION, there is no relationship
between the columns in the GROUP BY and in the
SELECT list

� SQL_GB_NOT_SUPPORTED, GROUP BY not supported
� SQL_GB_GROUP_BY_EQUALS_SELECT, GROUP BY

must include all non-aggregated columns in the select list.
 � SQL_GB_GROUP_BY_CONTAINS_SELECT, the

GROUP BY clause must contain all non-aggregated
columns in the SELECT list.

SQL_IDENTIFIER_CASE [28] 16-bit integer Indicates case sensitivity of object names (such as
table-name).

A value of:

� SQL_IC_UPPER = identifier names are stored in upper
case in the system catalog.

� SQL_IC_LOWER = identifier names are stored in lower
case in the system catalog.

� SQL_IC_SENSITIVE = identifier names are case
sensitive, and are stored in mixed case in the system
catalog.

� SQL_IC_MIXED = identifier names are not case sensitive,
and are stored in mixed case in the system catalog.

Note: Identifier names in IBM DBMSs are not case
sensitive.

SQL_IDENTIFIER_QUOTE_CHAR [29] string Indicates the character used to surround a delimited identifier.

SQL_KEYWORDS [89] sting This is a string of all the keywords at the DBMS that are not
in the ODBC's list of reserved words.

SQL_LIKE_ESCAPE_CLAUSE [113] string A character string that indicates if an escape character is
supported for the metacharacters percent and underscore in a
LIKE predicate.

SQL_LOCK_TYPES [78] 32-bit mask Reserved option, zero is returned for the bit-mask.

SQL_MAX_BINARY_LITERAL_LEN [112] 32-bit integer A 32-bit integer value specifying the maximum length of a
hexadecimal literal in a SQL statement.

 Chapter 5. Functions 217

 SQLGetInfo

Table 73 (Page 6 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_MAX_CHAR_LITERAL_LEN [108] 32-bit integer The maximum length of a character literal in an SQL
statement (in bytes).

SQL_MAX_COLUMN_NAME_LEN [30] 16-bit integer The maximum length of a column name (in bytes).

SQL_MAX_COLUMNS_IN_GROUP_BY [97] 16-bit integer Indicates the maximum number of columns that the server
supports in a GROUP BY clause. Zero if no limit.

SQL_MAX_COLUMNS_IN_INDEX [98] 16-bit integer Indicates the maximum number of columns that the server
supports in an index. Zero if no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY [99] 16-bit integer Indicates the maximum number of columns that the server
supports in an ORDER BY clause. Zero if no limit.

SQL_MAX_COLUMNS_IN_SELECT [100] 16-bit integer Indicates the maximum number of columns that the server
supports in a select list. Zero if no limit.

SQL_MAX_COLUMNS_IN_TABLE [101] 16-bit integer Indicates the maximum number of columns that the server
supports in a base table. Zero if no limit.

SQL_MAX_CURSOR_NAME_LEN [31] 16-bit integer The maximum length of a cursor name (in bytes).

SQL_MAX_INDEX_SIZE [102] 32-bit integer Indicates the maximum size in bytes that the server supports
for the combined columns in an index. Zero if no limit.

SQL_MAX_OWNER_NAME_LEN [32]
SQL_MAX_SCHEMA_NAME_LEN

16-bit integer The maximum length of a schema qualifier name (in bytes).

SQL_MAX_PROCEDURE_NAME_LEN [33] 16-bit integer The maximum length of a procedure name (in bytes).

SQL_MAX_QUALIFIER_NAME_LEN [34]
SQL_MAX_CATALOG_NAME_LEN

16-bit integer The maximum length of a catalog qualifier name; first part of
a 3 part table name (in bytes).

SQL_MAX_ROW_SIZE [104] 32-bit integer Specifies the maximum length in bytes that the server
supports in single row of a base table. Zero if no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG
[103]

string Set to "Y" to indicate that the value returned by
SQL_MAX_ROW_SIZE fInfoType includes the length of
product-specific long string data types. Otherwise, set to "N".

SQL_MAX_STATEMENT_LEN [105] 32-bit integer Indicates the maximum length of an SQL statement string in
bytes, including the number of white spaces in the statement.

SQL_MAX_TABLE_NAME_LEN [35] 16-bit integer The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT [106] 16-bit integer Indicates the maximum number of table names allowed in a
FROM clause in a <query specification>.

SQL_MAX_USER_NAME_LEN [107] 16-bit integer Indicates the maximum size allowed for a <user identifier> (in
bytes).

SQL_MULT_RESULT_SETS [36] string The character string "Y" indicates that the database supports
multiple result sets, "N" indicates that it does not.

SQL_MULTIPLE_ACTIVE_TXN [37] string The character string "Y" indicates that active transactions on
multiple connections are allowed. "N" indicates that only one
connection at a time can have an active transaction.

SQL_NEED_LONG_DATA_LEN [111] string A character string reserved for the use of ODBC. "N is"
always returned.

SQL_NON_NULLABLE_COLUMNS [75] 16-bit integer Indicates whether non-nullable columns are supported:

� SQL_NNC_NON_NULL, columns can be defined as NOT
NULL.

� SQL_NNC_NULL, columns can not be defined as NOT
NULL.

SQL_NULL_COLLATION [85] 16-bit integer Indicates where NULLs are sorted in a list:

� SQL_NC_HIGH, null values sort high
� SQL_NC_LOW, to indicate that null values sort low

218 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 7 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_NUMERIC_FUNCTIONS [49] 32-bit mask Indicates the ODBC scalar numeric functions supported.
These functions are intended to be used with the ODBC
vendor escape sequence described in “Using Vendor Escape
Clauses” on page 369.

The following bit-masks are used to determine which numeric
functions are supported:

 � SQL_FN_NUM_ABS
 � SQL_FN_NUM_ACOS
 � SQL_FN_NUM_ASIN
 � SQL_FN_NUM_ATAN
 � SQL_FN_NUM_ATAN2
 � SQL_FN_NUM_CEILING
 � SQL_FN_NUM_COS
 � SQL_FN_NUM_COT
 � SQL_FN_NUM_DEGREES
 � SQL_FN_NUM_EXP
 � SQL_FN_NUM_FLOOR
 � SQL_FN_NUM_LOG
 � SQL_FN_NUM_LOG10
 � SQL_FN_NUM_MOD
 � SQL_FN_NUM_PI
 � SQL_FN_NUM_POWER
 � SQL_FN_NUM_RADIANS
 � SQL_FN_NUM_RAND
 � SQL_FN_NUM_ROUND
 � SQL_FN_NUM_SIGN
 � SQL_FN_NUM_SIN
 � SQL_FN_NUM_SQRT
 � SQL_FN_NUM_TAN
 � SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE [9] 16-bit integer The level of ODBC conformance.

 � SQL_OAC_NONE
 � SQL_OAC_LEVEL1
 � SQL_OAC_LEVEL2

SQL_ODBC_SAG_CLI_CONFORMANCE [12] 16-bit integer The compliance to the functions of the SQL Access Group
(SAG) CLI specification.

A value of:

� SQL_OSCC_NOT_COMPLIANT - the driver is not
SAG-compliant.

� SQL_OSCC_COMPLIANT - the driver is SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE [15] 16-bit integer A value of:

� SQL_OSC_MINIMUM - means minimum ODBC SQL
grammar supported

� SQL_OSC_CORE - means core ODBC SQL Grammar
supported

� SQL_OSC_EXTENDED - means extended ODBC SQL
Grammar supported

For the definition of the above 3 types of ODBC SQL
grammar, see ODBC 2.0 Programmer's Reference and SDK
Guide.

SQL_ODBC_SQL_OPT_IEF [73] string The "Y" character string indicates that the data source
supports Integrity Enhanced Facility (IEF) in SQL89 and in
X/Open XPG4 Embedded SQL; an "N" indicates it does not.

SQL_ODBC_VER [10] string The version number of ODBC that the driver manager
supports.

Call Level Interface returns the string "02.10".

 Chapter 5. Functions 219

 SQLGetInfo

Table 73 (Page 8 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_OJ_CAPABILITIES [65003] 32-bit mask A 32-bit bit-mask enumerating the types of outer join
supported.

The bitmasks are:

� SQL_OJ_LEFT : Left outer join is supported.

� SQL_OJ_RIGHT : Right outer join is supported.

� SQL_OJ_FULL : Full outer join is supported.

� SQL_OJ_NESTED : Nested outer join is supported.

� SQL_OJ_NOT_ORDERED : The order of the tables
underlying the columns in the outer join ON clause need
not be in the same order as the tables in the JOIN
clause.

� SQL_OJ_INNER : The inner table of an outer join can
also be an inner join.

� SQL_OJ_ALL_COMPARISONS_OPS : Any predicate can
be used in the outer join ON clause. If this bit is not set,
the equality (=) operator is the only valid comparison
operator in the ON clause.

SQL_ORDER_BY_COLUMNS_IN_SELECT
[90]

string Set to "Y" if columns in the ORDER BY clauses must be in
the select list; otherwise set to "N".

SQL_OUTER_JOINS [38] string The character string:

� "Y" indicates that outer joins are supported, and Call
Level Interface supports the ODBC outer join request
syntax.

� "N" indicates that it is not supported.

(See “Using Vendor Escape Clauses” on page 369)

SQL_OWNER_TERM [39]
SQL_SCHEMA_TERM

string The database vendor's terminology for a schema (owner)

SQL_OWNER_USAGE [91] 32-bit mask Indicates the type of SQL statements that have schema
(owners) associated with them when these statements are
executed. Schema qualifiers (owners) are:

� SQL_OU_DML_STATEMENTS - supported in all DML
statements.

� SQL_OU_PROCEDURE_INVOCATION - supported in the
procedure invocation statement.

� SQL_OU_TABLE_DEFINITION - supported in all table
definition statements.

� SQL_OU_INDEX_DEFINITION - supported in all index
definition statements.

� SQL_OU_PRIVILEGE_DEFINITION - supported in all
privilege definition statements (i.e. grant and revoke
statements).

SQL_POS_OPERATIONS [79] 32-bit mask Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS [80] 32-bit mask Indicates the degree of support for positioned UPDATE and
positioned DELETE statements:

 � SQL_PS_POSITIONED_DELETE
 � SQL_PS_POSITIONED_UPDATE
� SQL_PS_SELECT_FOR_UPDATE, indicates whether or

not the server requires the FOR UPDATE clause to be
specified on a <query expression> in order for a column
to be updateable via the cursor.

SQL_PROCEDURE_TERM [40] string The name a database vendor uses for a procedure

220 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 9 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_PROCEDURES [21] string A character string of "Y" indicates that the data source
supports procedures and Call Level Interface supports the
ODBC procedure invocation syntax specified in “Using Stored
Procedures” on page 356. "N" indicates that it does not.

SQL_QUALIFIER_LOCATION [114] 16-bit integer A 16-bit integer value indicated the position of the qualifier in
a qualified table name. Zero indicates that qualified names
are not supported.

SQL_QUALIFIER_NAME_SEPARATOR [41]
SQL_CATALOG_NAME_SEPARATOR

string The characters used as a separator between a catalog name
and the qualified name element that follows it.

SQL_QUALIFIER_TERM [42]
SQL_CATALOG_TERM

string The database vendor's terminology for a qualifier.

The name that the vendor uses for the high order part of a
three part name.

Since Call Level Interface does not support three part names,
a zero-length string is returned.

For non-ODBC applications, the SQL_CATALOG_TERM
symbolic name should be used instead of
SQL_QUALIFIER_NAME.

SQL_QUALIFIER_USAGE [92]
SQL_CATALOG_USAGE

32-bit mask This is similar to SQL_OWNER_USAGE except that this is
used for catalog.

SQL_QUOTED_IDENTIFIER_CASE [93] 16-bit integer Returns:

� SQL_IC_UPPER - quoted identifiers in SQL are case
insensitive and stored in upper case in the system
catalog.

� SQL_IC_LOWER - quoted identifiers in SQL are case
insensitive and are stored in lower case in the system
catalog.

� SQL_IC_SENSITIVE - quoted identifiers (delimited
identifiers) in SQL are case sensitive and are stored in
mixed case in the system catalog.

� SQL_IC_MIXED - quoted identifiers in SQL are case
insensitive and are stored in mixed case in the system
catalog.

This should be contrasted with the SQL_IDENTIFIER_CASE
fInfoType which is used to determine how (unquoted)
identifiers are stored in the system catalog.

SQL_ROW_UPDATES [11] string A character string of "Y" indicates changes are detected in
rows between multiple fetches of the same rows, "N"
indicates that changes are not detected.

SQL_SCROLL_CONCURRENCY [43] 32-bit mask Indicates the concurrency options supported for the cursor.

The following bit-masks are used in conjunction with the flag
to determine which options are supported:

 � SQL_SCCO_READ_ONLY
 � SQL_SCCO_LOCK
 � SQL_SCCO_OPT_TIMESTAMP
 � SQL_SCCO_OPT_VALUES

Call Level Interface returns SQL_SCCO_LOCK indicating that
the lowest level of locking that is sufficient to ensure the row
can be updated is used.

 Chapter 5. Functions 221

 SQLGetInfo

Table 73 (Page 10 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_SCROLL_OPTIONS [44] 32-bit mask The scroll options supported for scrollable cursors.

The following bit-masks are used in conjunction with the flag
to determine which options are supported:

 � SQL_SO_FORWARD_ONLY
 � SQL_SO_KEYSET_DRIVEN
 � SQL_SO_STATIC
 � SQL_SO_DYNAMIC
 � SQL_SO_MIXED

Call Level Interface returns SQL_SO_FORWARD_ONLY,
indicating that the cursor scrolls forward only.

SQL_SEARCH_PATTERN_ESCAPE [14] string Used to specify what the driver supports as an escape
character for catalog functions such as (SQLTables(),
SQLColumns()).

SQL_SERVER_NAME [13] string The name of DB2 subsystem to which the application is
connected.

SQL_SPECIAL_CHARACTERS [94] string Contains all the characters in addition to a...z, A...Z,

=...9, and _ that the server allows in non-delimited identifiers.

SQL_STATIC_SENSITIVITY [83] 32-bit mask Indicates whether changes made by an application with a
positioned UPDATE or DELETE statement can be detected
by that application:

� SQL_SS_ADDITIONS: Added rows are visible to the cursor;
the cursor can scroll to these rows. All DB2 servers see
added rows.

� SQL_SS_DELETIONS: Deleted rows are no longer available
to the cursor and do not leave a hole in the result set;
after the cursor scrolls from a deleted row, it cannot
return to that row.

� SQL_SS_UPDATES: Updates to rows are visible to the
cursor; if the cursor scrolls from and returns to an
updated row, the data returned by the cursor is the
updated data, not the original data.

222 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 11 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_STRING_FUNCTIONS [50] 32-bit mask Indicates which string functions are supported.

The following bit-masks are used to determine which string
functions are supported:

 � SQL_FN_STR_ASCII
 � SQL_FN_STR_CHAR
 � SQL_FN_STR_CONCAT
 � SQL_FN_STR_DIFFERENCE
 � SQL_FN_STR_INSERT
 � SQL_FN_STR_LCASE
 � SQL_FN_STR_LEFT
 � SQL_FN_STR_LENGTH
 � SQL_FN_STR_LOCATE
 � SQL_FN_STR_LOCATE_2
 � SQL_FN_STR_LTRIM
 � SQL_FN_STR_REPEAT
 � SQL_FN_STR_REPLACE
 � SQL_FN_STR_RIGHT
 � SQL_FN_STR_RTRIM
 � SQL_FN_STR_SOUNDEX
 � SQL_FN_STR_SPACE
 � SQL_FN_STR_SUBSTRING
 � SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function with the
string1, string2, and start arguments, the
SQL_FN_STR_LOCATE bitmask is returned. If an application
can only call the LOCATE scalar function with the string1 and
string2, the SQL_FN_STR_LOCATE_2 bitmask is returned. If
the LOCATE scalar function is fully supported, both bitmasks
are returned.

SQL_SUBQUERIES [95] 32-bit mask Indicates which predicates support subqueries:

� SQL_SQ_COMPARISION - the comparison predicate
� SQL_SQ_CORRELATE_SUBQUERIES - all predicates
� SQL_SQ_EXISTS - the exists predicate
� SQL_SQ_IN - the in predicate
� SQL_SQ_QUANTIFIED - the predicates containing a

quantification scalar function.

SQL_SYSTEM_FUNCTIONS [51] 32-bit mask Indicates which scalar system functions are supported.

The following bit-masks are used to determine which scalar
system functions are supported:

 � SQL_FN_SYS_DBNAME
 � SQL_FN_SYS_IFNULL
 � SQL_FN_SYS_USERNAME

Note: These functions are intended to be used with the
escape sequence in ODBC.

SQL_TABLE_TERM [45] string The database vendor's terminology for a table.

 Chapter 5. Functions 223

 SQLGetInfo

Table 73 (Page 12 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_TIMEDATE_ADD_INTERVALS [109] 32-bit mask Indicates whether or not the special ODBC system function
TIMESTAMPADD is supported, and, if it is, which intervals
are supported.

The following bitmasks are used to determine which intervals
are supported:

 � SQL_FN_TSI_FRAC_SECOND
 � SQL_FN_TSI_SECOND
 � SQL_FN_TSI_MINUTE
 � SQL_FN_TSI_HOUR
 � SQL_FN_TSI_DAY
 � SQL_FN_TSI_WEEK
 � SQL_FN_TSI_MONTH
 � SQL_FN_TSI_QUARTER
 � SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS [110] 32-bit mask Indicates whether or not the special ODBC system function
TIMESTAMPDIFF is supported, and, if it is, which intervals
are supported.

The following bitmasks are used to determine which intervals
are supported:

 � SQL_FN_TSI_FRAC_SECOND
 � SQL_FN_TSI_SECOND
 � SQL_FN_TSI_MINUTE
 � SQL_FN_TSI_HOUR
 � SQL_FN_TSI_DAY
 � SQL_FN_TSI_WEEK
 � SQL_FN_TSI_MONTH
 � SQL_FN_TSI_QUARTER
 � SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS [52] 32-bit mask Indicates which time and date functions are supported.

The following bit-masks are used to determine which date
functions are supported:

 � SQL_FN_TD_CURDATE
 � SQL_FN_TD_CURTIME
 � SQL_FN_TD_DAYNAME
 � SQL_FN_TD_DAYOFMONTH
 � SQL_FN_TD_DAYOFWEEK
 � SQL_FN_TD_DAYOFYEAR
 � SQL_FN_TD_HOUR
 � SQL_FN_TD_JULIAN_DAY
 � SQL_FN_TD_MINUTE
 � SQL_FN_TD_MONTH
 � SQL_FN_TD_MONTHNAME
 � SQL_FN_TD_NOW
 � SQL_FN_TD_QUARTER
 � SQL_FN_TD_SECOND
 � SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
 � SQL_FN_TD_TIMESTAMPADD
 � SQL_FN_TD_TIMESTAMPDIFF
 � SQL_FN_TD_WEEK
 � SQL_FN_TD_YEAR

Note: These functions are intended to be used with the
escape sequence in ODBC.

224 Call Level Interface Guide and Reference

 SQLGetInfo

Table 73 (Page 13 of 13). Information Returned By SQLGetInfo

fInfoType Format Description and Notes

SQL_TXN_CAPABLE [46] 16-bit integer Indicates whether transactions can contain DDL or DML or
both.

� SQL_TC_NONE = transactions not supported.
� SQL_TC_DML = transactions can only contain DML

statements (SELECT, INSERT, UPDATE, DELETE, etc.)
DDL statements (CREATE TABLE, DROP INDEX, etc.)
encountered in a transaction cause an error.

� SQL_TC_DDL_COMMIT = transactions can only contain
DML statements. DDL statements encountered in a
transaction cause the transaction to be committed.

� SQL_TC_DDL_IGNORE = transactions can only contain
DML statements. DDL statements encountered in a
transaction are ignored.

� SQL_TC_ALL = transactions can contain DDL and DML
statements in any order.

SQL_TXN_ISOLATION_OPTION [72] 32-bit mask The transaction isolation levels available at the currently
connected database server.

The following masks are used in conjunction with the flag to
determine which options are supported:

 � SQL_TXN_READ_UNCOMMITTED
 � SQL_TXN_READ_COMMITTED
 � SQL_TXN_REPEATABLE_READ
 � SQL_TXN_SERIALIZABLE
 � SQL_TXN_NOCOMMIT
 � SQL_TXN_VERSIONING

For descriptions of each level refer to
SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION [96] 32-bit mask Indicates if the server supports the UNION operator:

� SQL_U_UNION - supports the UNION clause
� SQL_U_UNION_ALL - supports the ALL keyword in the

UNION clause

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME [47] string The user name used in a particular database. This is the
identifier specified on the SQLConnect() call.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 225

 SQLGetInfo

 Diagnostics

Table 74. SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information is returned as a string and its length
exceeds the length of the application buffer as specified in
cbInfoValueMax. The argument pcbInfoValue contains the actual
(not truncated) length of the requested information. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The type of information requested in fInfoType requires an open
connection. Only SQL_ODBC_VER does not require an open
connection.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The argument rgbInfoValue is a null pointer.

The fInfoType is SQL_DRIVER_HSTMT and the value pointed to
by rgbInfoValue is not a valid handle.

S1090 Invalid string or buffer length. The value specified for argument cbInfoValueMax is less than 0.

S1096 Information type out of range. An invalid fInfoType is specified.

S1C00 Driver not capable. The value specified in the argument fInfoType is not supported by
either DB2 CLI or the data source.

 Restrictions
None.

226 Call Level Interface Guide and Reference

 SQLGetInfo

 Example

/? ... ?/

?/

/? Check to see if SQLGetInfo() is supported ?/

rc = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);

if (supported == SQL_TRUE) { /? get information about current connection ?/

rc = SQLGetInfo(hdbc, SQL_DATA_SOURCE_NAME, buffer, 255, &outlen);

printf(" Server Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DATABASE_NAME, buffer, 255, &outlen);

printf(" Database Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_SERVER_NAME, buffer, 255, &outlen);

printf(" Instance Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_NAME, buffer, 255, &outlen);

 printf(" DBMS Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_VER, buffer, 255, &outlen);

printf(" DBMS Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_NAME, buffer, 255, &outlen);

printf(" CLI Driver Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_VER, buffer, 255, &outlen);

printf("CLI Driver Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_ODBC_SQL_CONFORMANCE, &output,

 sizeof(output), &outlen);

switch (output) {

 case =:

strcpy(buffer, "Minimum Grammar");

 break;

 case 1:

strcpy(buffer, "Core Grammar");

 break;

 case 2:

strcpy(buffer, "Extended Grammar");

 break;

 default:

printf("Error calling getinfo!");

 return (SQL_ERROR);

 }

printf("ODBC SQL Conformance Level: %s\n", buffer);

} else {

printf("SQLGetInfo is not supported!\n");

 }

/? ... ?/

 References
� “SQLGetTypeInfo - Get Data Type Information” on page 237

 Chapter 5. Functions 227

 SQLGetSQLCA

SQLGetSQLCA - Get SQLCA Data Structure

 Purpose

SQLGetSQLCA() is used to return the SQLCA associated with preparing and
executing an SQL statement, fetching data, or closing a cursor. The SQLCA can
return information that supplements the information obtained by using SQLError().

For a detailed description of the SQLCA structure, see Appendix C of SQL
Reference.

An SQLCA is not available if a function is processed strictly on the application side,
such as allocating a statement handle. In this case, an empty SQLCA is returned
with all values set to zero.

Specification:

 Syntax
SQLRETURN SQLGetSQLCA (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

struct sqlca FAR ?pSqlca);

 Function Arguments

Table 75. SQLGetSQLCA Arguments

Data Type Argument Use Description

SQLHENV henv input Environment Handle

SQLHDBC hdbc input Connection Handle

SQLHSTMT hstmt input Statement Handle

SQLCA * pqlCA output SQL Communication Area

 Usage
The handles are used in the same way as for the SQLError() function. To obtain
the SQLCA associated with:

� An environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

� A connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

� A statement, pass a valid statement handle. The henv and hdbc arguments are
ignored.

If diagnostic information generated by one DB2 CLI function is not retrieved before
a function other than SQLError() is called with the same handle, the information for
the previous function call is lost. This is true whether or not diagnostic information
is generated for the second DB2 CLI function call.

228 Call Level Interface Guide and Reference

 SQLGetSQLCA

If a DB2 CLI function is called that does not result in interaction with the DBMS,
then the SQLCA contains all zeroes. Meaningful information is returned for the
following functions:

 � SQLCancel(),
 � SQLConnect(), SQLDisconnect(),
 � SQLExecDirect(), SQLExecute(),
 � SQLFetch(),
 � SQLPrepare(),
 � SQLTransact()

 � SQLColumns(),
 � SQLConnect(),
� SQLSetConnectOption() (for SQL_AUTOCOMMIT),

 � SQLStatistics(),
 � SQLTables(),
 � SQLColumnPrivileges(),
 � SQLExtendedFetch(),
 � SQLForeignKeys(),
 � SQLMoreResults(),
 � SQLPrimaryKeys(),
 � SQLProcedureColumns(),
 � SQLProcedures(),
 � SQLTablePrivileges().

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics
None.

 Restrictions
None.

 Chapter 5. Functions 229

 SQLGetSQLCA

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Prepares a query and executes that query against a non- ?/

 /? existent table. Then invoke SQLGetSQLCA to extract ?/

 /? native SQLCA data structure. Note that this API is NOT ?/

 /? defined within ODBC, i.e. this is unique to IBM CLI. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

void print_sqlca (SQLHENV, // prototype for print_sqlca

 SQLHDBC,

 SQLHSTMT);

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

char ?pDSN = "STLEC1";

 SWORD cbCursor;

 SDWORD cbValue1;

 SDWORD cbValue2;

 char employee [3=];

int salary = =;

int param_salary = 3====;

char ?stmt = "SELECT NAME, SALARY FROM EMPLOYEES WHERE SALARY > ?";

(void) printf ("???? Entering CLIP11.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

230 Call Level Interface Guide and Reference

 SQLGetSQLCA

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Allocate Statement Handles ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Prepare the query for multiple execution within current ?/

/? transaction. Note that query is collapsed when transaction ?/

/? is committed or rolled back. ?/

 /???/

rc = SQLPrepare (hStmt,

(SQLCHAR ?) stmt,

 strlen(stmt));

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? PREPARE OF QUERY FAILED.\n");

(void) print_sqlca (hStmt,

 hDbc,

 hEnv);

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind employee name

 1,

 SQL_C_CHAR,

 employee,

 sizeof(employee),

 &cbValue1);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? BIND OF NAME FAILED.\n");

 goto dberror;

 }

 Chapter 5. Functions 231

 SQLGetSQLCA

rc = SQLBindCol (hStmt, // bind employee salary

 2,

 SQL_C_LONG,

 &salary,

 =,

 &cbValue2);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? BIND OF SALARY FAILED.\n");

 goto dberror;

 }

 /???/

/? Bind parameter to replace '?' in query. This has an initial ?/

/? value of 3====. ?/

 /???/

rc = SQLBindParameter (hStmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 =,

 =,

 ¶m_salary,

 =,

 NULL);

 /???/

/? Execute prepared statement to generate answer set. ?/

 /???/

rc = SQLExecute (hStmt);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? EXECUTE OF QUERY FAILED.\n");

(void) print_sqlca (hStmt,

 hDbc,

 hEnv);

 goto dberror;

 }

 /???/

/? Answer Set is available -- Fetch rows and print employees ?/

/? and salary. ?/

 /???/

(void) printf ("???? Employees whose salary exceeds %d follow.\n\n",

 param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Employee Name %s with salary %d.\n",

 employee,

 salary);

 }

232 Call Level Interface Guide and Reference

 SQLGetSQLCA

 /???/

/? Deallocate Statement Handles -- statement is no longer in a ?/

/? Prepared state. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP11.\n\n");

 return RETCODE;

}

/???/

/? print_sqlca invokes SQLGetSQLCA and prints the native SQLCA. ?/

/???/

void print_sqlca (SQLHENV hEnv ,

 SQLHDBC hDbc ,

 SQLHSTMT hStmt)

{

 SQLRETURN rc = SQL_SUCCESS;

 struct sqlca sqlca;

struct sqlca ?pSQLCA = &sqlca;

 int code ;

char state [6];

 char errp [9];

 char tok [4=];

 int count, len, start, end, i;

 Chapter 5. Functions 233

 SQLGetSQLCA

if ((rc = SQLGetSQLCA (hEnv ,

 hDbc ,

 hStmt,

pSQLCA)) != SQL_SUCCESS)

 {

(void) printf ("???? SQLGetSQLCA failed Return Code = %d.\n", rc);

 goto exit;

 }

code = (int) pSQLCA->sqlcode;

memcpy (state, pSQLCA->sqlstate, 5);

state [5] = '\=';

(void) printf ("???? sqlcode = %d, sqlstate = %s.\n", code, state);

memcpy (errp, pSQLCA->sqlerrp, 8);

errp [8] = '\=';

(void) printf ("???? sqlerrp = %s.\n", errp);

if (pSQLCA->sqlerrml == =)

(void) printf ("???? No tokens.\n");

 else

 {

for (len = =, count = =; len < pSQLCA->sqlerrml; len = ++end)

 {

start = end = len;

while ((pSQLCA->sqlerrmc [end] != =XFF) &&;

(end < pSQLCA->sqlerrml))

 end++;

if (start != end)

 {

memcpy (tok, &pSQLCA->sqlerrmc[start],

 (end-start));

tok [end-start+1] = '\=';

(void) printf ("???? Token # %d = %s.\n", count++, tok);

 }

 }

 }

for (i = =; i <= 5; i++)

(void) printf ("???? sqlerrd # %d = %d.\n", i+1, pSQLCA->sqlerrd_i‘);

for (i = =; i <= 1=; i++)

(void) printf ("???? sqwarn # %d = %c.\n", i+1, pSQLCA->sqlwarn_i‘);

 exit:

 return;

}

 References
� “SQLError - Retrieve Error Information” on page 142

234 Call Level Interface Guide and Reference

 SQLGetStmtOption

SQLGetStmtOption - Returns Current Setting of A Statement Option

 Purpose

SQLGetStmtOption() returns the current settings of the specified statement option.

These options are set using the SQLSetStmtOption() function.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLGetStmtOption (SQLHSTMT hstmt,

 SQLUSMALLINT fOption,

 SQLPOINTER pvParam);

 Function Arguments

Table 76. SQLStmtOption Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fOption input Option to set. Refer to Table 124 on page 315 for the list
of statement options and their descriptions.

SQLPOINTER pvParam output Value of the option. Depending on the value of fOption
this can be a 32-bit integer value, or a pointer to a null
terminated character string. The maximum length of any
character string returned is
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding
the null-terminator).

 Usage
See Table 124 on page 315 in the function description of SQLSetStmtOption() for a
list of statement options. The following table lists the statement options that are
read-only (can be read but not set).

Table 77. Statement Options

fOption Contents

SQL_ROW_NUMBER A 32-bit integer value that specifies the number of the current row in the entire result set.
If the number of the current row cannot be determined or there is no current row, 0 is
returned.

Note: ODBC also defines the read-only statement option SQL_GET_BOOKMARK. This option is not supported by
Call Level Interface. If it is specified, this function returns SQL_ERROR (SQLSTATE S1011 -- Operation
invalid at this time.)

 Chapter 5. Functions 235

 SQLGetStmtOption

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 78. SQLGetStmtOption SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. There is no open cursor on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. pvParam was null.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1092 Option type out of range. An invalid fOption value was specified.

S1C00 Driver not capable. DB2 CLI recognizes the option but does not support it.

 Restrictions
None.

 Example

/? ... ?/

rc = SQLGetStmtOption(hstmt, SQL_CURSOR_HOLD, &cursor_hold);

printf("Cursor With Hold is: ");

if (cursor_hold == SQL_CURSOR_HOLD_ON)

 printf("ON\n");

 else

 printf("OFF\n");

/? ... ?/

 References
� “SQLSetConnectOption - Set Connection Option” on page 297
� “SQLSetStmtOption - Set Statement Option” on page 314

236 Call Level Interface Guide and Reference

 SQLGetTypeInfo

SQLGetTypeInfo - Get Data Type Information

 Purpose

SQLGetTypeInfo() returns information about the data types that are supported by
the DBMSs associated with DB2 CLI. The information is returned in an SQL result
set. The columns can be received using the same functions that are used to
process a query.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLGetTypeInfo (SQLHSTMT hstmt,

 SQLSMALLINT fSqlType);

 Function Arguments

Table 79. SQLGetTypeInfo Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLSMALLINT fSqlType input The SQL data type being queried. The supported types
are:

 � SQL_ALL_TYPES
 � SQL_BINARY
 � SQL_CHAR
 � SQL_DATE
 � SQL_DECIMAL
 � SQL_DOUBLE
 � SQL_FLOAT
 � SQL_GRAPHIC
 � SQL_INTEGER
 � SQL_LONGVARBINARY
 � SQL_LONGVARCHAR
 � SQL_LONGVARGRAPHIC
 � SQL_NUMERIC
 � SQL_REAL
 � SQL_SMALLINT
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARBINARY
 � SQL_VARCHAR
 � SQL_VARGRAPHIC

If SQL_ALL_TYPES is specified, information about all
supported data types is returned in ascending order by
TYPE_NAME. All unsupported data types are absent from
the result set.

 Chapter 5. Functions 237

 SQLGetTypeInfo

 Usage
Since SQLGetTypeInfo() generates a result set and is equivalent to executing a
query, it generates a cursor and begins a transaction. To prepare and execute
another statement on this statement handle, the cursor must be closed.

If SQLGetTypeInfo() is called with an invalid fSqlType, an empty result set is
returned.

The columns of the result set generated by this function are described below.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.
The data types returned are those that can be used in a CREATE TABLE, ALTER
TABLE, DDL statement. Non-persistent data types such as the locator data types
are not part of the returned result set. User defined data types are not returned
either.

Table 80 (Page 1 of 2). Columns Returned By SQLGetTypeInfo

Column Number/Name Data Type Description

1 TYPE_NAME VARCHAR(128)
NOT NULL

Character representation of the SQL data type name. For
example, VARCHAR, DATE, INTEGER.

2 DATA_TYPE SMALLINT NOT
NULL

SQL data type define values. For example, SQL_VARCHAR,
SQL_DATE, SQL_INTEGER.

3 COLUMN_SIZE INTEGER If the data type is a character or binary string, then this column
contains the maximum length in bytes; if it is a graphic (DBCS)
string, this is the number of double byte characters for the
column.

For date, time, timestamp data types, this is the total number
of characters required to display the value when converted to
character.

For numeric data types, this is the total number of digits.

4 LITERAL_PREFIX VARCHAR(128) Character that DB2 recognizes as a prefix for a literal of this
data type. This column is null for data types where a literal
prefix is not applicable.

5 LITERAL_SUFFIX VARCHAR(128) Character that DB2 recognizes as a suffix for a literal of this
data type. This column is null for data types where a literal
prefix is not applicable.

6 CREATE_PARAMS VARCHAR(128) The text of this column contains a list of keywords, separated
by commas, that correspond to each parameter the application
can specify in parenthesis when using the name in the
TYPE_NAME column as a data type in SQL. The keywords in
the list can be any of the following: LENGTH, PRECISION,
SCALE. They appear in the order that the SQL syntax requires
that they be used.

A NULL indicator is returned if there are no parameters for the
data type definition, (such as INTEGER).

Note: The intent of CREATE_PARAMS is to enable an
application to customize the interface for a DDL
builder. An application should expect, using this, only
to be able to determine the number of arguments
required to define the data type and to have localized
text that could be used to label an edit control.

238 Call Level Interface Guide and Reference

 SQLGetTypeInfo

Table 80 (Page 2 of 2). Columns Returned By SQLGetTypeInfo

Column Number/Name Data Type Description

7 NULLABLE SMALLINT NOT
NULL

Indicates whether the data type accepts a NULL value

� Set to SQL_NO_NULLS if NULL values are disallowed.
� Set to SQL_NULLABLE if NULL values are allowed.

8 CASE_SENSITIVE SMALLINT NOT
NULL

Indicates whether the data type can be treated as case
sensitive for collation purposes; valid values are SQL_TRUE
and SQL_FALSE.

9 SEARCHABLE SMALLINT NOT
NULL

Indicates how the data type is used in a WHERE clause. Valid
values are:

� SQL_UNSEARCHABLE : if the data type cannot be used
in a WHERE clause.

� SQL_LIKE_ONLY : if the data type can be used in a
WHERE clause only with the LIKE predicate.

� SQL_ALL_EXCEPT_LIKE : if the data type can be used in
a WHERE clause with all comparison operators except
LIKE.

� SQL_SEARCHABLE : if the data type can be used in a
WHERE clause with any comparison operator.

10 UNSIGNED_ATTRIBUTE SMALLINT Indicates whether the data type is unsigned. The valid values
are: SQL_TRUE, SQL_FALSE or NULL. A NULL indicator is
returned if this attribute is not applicable to the data type.

11 FIXED_PREC_SCALE SMALLINT NOT
NULL

Contains the value SQL_TRUE if the data type is exact
numeric and always has the same precision and scale;
otherwise, it contains SQL_FALSE.

12 AUTO_INCREMENT SMALLINT Contains SQL_TRUE if a column of this data type is
automatically set to a unique value when a row is inserted;
otherwise, contains SQL_FALSE.

13 LOCAL_TYPE_NAME VARCHAR(128) This column contains any localized (native language) name for
the data type that is different from the regular name of the
data type. If there is no localized name, this column is NULL.

This column is intended for display only. The character set of
the string is locale-dependent and is typically the default
character set of the database.

14 MINIMUM_SCALE SMALLINT The minimum scale of the SQL data type. If a data type has a
fixed scale, the MINIMUM_SCALE and MAXIMUM_SCALE
columns both contain the same value. NULL is returned where
scale is not applicable.

15 MAXIMUM_SCALE SMALLINT The maximum scale of the SQL data type. NULL is returned
where scale is not applicable. If the maximum scale is not
defined separately in the DBMS, but is defined instead to be
the same as the maximum length of the column, then this
column contains the same value as the COLUMN_SIZE
column.

 Chapter 5. Functions 239

 SQLGetTypeInfo

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 81. SQLGetTypeInfo SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle. hstmt is not
closed.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1004 SQL data type out of range. An invalid fSqlType is specified.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

 Restrictions
The following ODBC specified SQL data types (and their corresponding fSqlType
define values) are not supported by any IBM RDBMS:

Data Type fSqlType
TINY INT SQL_TINYINT
BIG INT SQL_BIGINT
BIT SQL_BIT

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Invokes SQLGetTypeInfo to retrieve SQL data types sup- ?/

 /? ported. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

 /??/

/? Invoke SQLGetTypeInfo to retrieve all SQL data types supported ?/

/? by Data Source. ?/

 /??/

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

240 Call Level Interface Guide and Reference

 SQLGetTypeInfo

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

(void) printf ("???? Entering CLIP=6.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) "STLEC1", // DSN

SQL_NTS, // DSN is null-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Retrieve SQL data types from DSN ?/

 /???/

// local variables to Bind to retrieve TYPE_NAME, DATA_TYPE,

// COLUMN_SIZE and NULLABLE

struct // TYPE_NAME is VARCHAR(128)

 {

 SQLSMALLINT length;

 SQLCHAR name [128];

 SQLINTEGER ind;

 } typename;

SQLSMALLINT data_type; // DATA_TYPE is SMALLINT

 SQLINTEGER data_type_ind;

SQLINTEGER column_size; // COLUMN_SIZE is integer

 SQLINTEGER column_size_ind;

SQLSMALLINT nullable; // NULLABLE is SMALLINT

 SQLINTEGER nullable_ind;

 Chapter 5. Functions 241

 SQLGetTypeInfo

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

 /? ?/

/? Retrieve native SQL types from DSN ------------> ?/

 /? ?/

 /? The result set consists of 15 columns. We only bind ?/

 /? TYPE_NAME, DATA_TYPE, COLUMN_SIZE and NULLABLE. Note: Need ?/

 /? not bind all columns of result set -- only those required. ?/

 /? ?/

 /???/

rc = SQLGetTypeInfo (hStmt,

 SQL_ALL_TYPES);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind TYPE_NAME

 1,

 SQL_CHAR,

 (SQLPOINTER) typename.name,

 128,

 &typename.ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind DATA_NAME

 2,

 SQL_C_DEFAULT,

 (SQLPOINTER) &data_type,

 sizeof(data_type),

 &data_type_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind COLUMN_SIZE

 3,

 SQL_C_DEFAULT,

 (SQLPOINTER) &column_size,

 sizeof(column_size),

 &column_size_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind NULLABLE

 7,

 SQL_C_DEFAULT,

 (SQLPOINTER) &nullable,

 sizeof(nullable),

 &nullable_ind);

242 Call Level Interface Guide and Reference

 SQLGetTypeInfo

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Fetch all native DSN SQL Types and print Type Name, Type, ?/

/? Precision and nullability. ?/

 /???/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Type Name is %s. Type is %d. Precision is %d.",

 typename.name,

 data_type,

 column_size);

if (nullable == SQL_NULLABLE)

(void) printf (" Type is nullable.\n");

 else

(void) printf (" Type is not nullable.\n");

 }

if (rc == SQL_NO_DATA_FOUND) // if result set exhausted reset

rc = SQL_SUCCESS; // rc to OK

 /???/

/? Free Statement handle. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

if (RETCODE != SQL_SUCCESS) // An advertised API failed

 goto dberror;

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 Chapter 5. Functions 243

 SQLGetTypeInfo

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP=6.\n\n");

 return(RETCODE);

}

 References
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLGetInfo - Get General Information” on page 212

244 Call Level Interface Guide and Reference

 SQLMoreResults

SQLMoreResults - Determine If There Are More Result Sets

 Purpose

SQLMoreResults() determines whether there is more information available on the
statement handle which has been associated with:

� Array input of parameter values for a query, or
� A stored procedure that is returning result sets.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLMoreResults (SQLHSTMT hstmt);

 Function Arguments

Table 82. SQLMoreResults Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

 Usage
This function is used to return multiple results set in a sequential manner upon the
execution of:

� A parameterized query with an array of input parameter values specified with
SQLParamOptions() and SQLBindParameter(), or

� A stored procedure containing SQL queries, the cursors of which have been left
open so that the result sets remain accessible when the stored procedure has
finished execution.

Refer to “Using Arrays to Input Parameter Values” on page 350 and “Returning
Result Sets From Stored Procedures” on page 358 for more information.

After completely processing the first result set, the application can call
SQLMoreResults() to determine if another result set is available. If the current
result set has unfetched rows, SQLMoreResults() discards them by closing the
cursor and, if another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns
SQL_NO_DATA_FOUND.

If SQLFreeStmt() is called with the SQL_CLOSE or SQL_DROP option, all pending
result sets on this statement handle are discarded.

 Chapter 5. Functions 245

 SQLMoreResults

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

 Diagnostics

Table 83. SQLMoreResults SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

In addition SQLMoreResults() can return the SQLSTATEs associated with
SQLExecute().

 Restrictions
The ODBC specification of SQLMoreResults() also allows counts associated with
the execution of parameterized INSERT, UPDATE, and DELETE statements with
arrays of input parameter values to be returned. However, DB2 CLI does not
support the return of such count information.

 Example

/? ... ?/

#define NUM_CUSTOMERS 25

 SQLCHAR stmt[] =

{ "WITH " /? Common Table expression (or Define Inline View) ?/

"order (ord_num, cust_num, prod_num, quantity, amount) AS "

 "("

"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, '.'), p.units, char(l.quantity, '.')) "

"FROM ord_cust c, ord_line l, product p "

"WHERE c.ord_num = l.ord_num AND l.prod_num = p.prod_num "

"AND cust_num = CNUM(cast (? as integer)) "

 "), "

"totals (ord_num, total) AS "

 "("

"SELECT ord_num, sum(decimal(amount, 1=, 2)) "

"FROM order GROUP BY ord_num "

 ") "

246 Call Level Interface Guide and Reference

 SQLMoreResults

/? The 'actual' SELECT from the inline view ?/

"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,1=,2) amount, total "

"FROM order, totals "

"WHERE order.ord_num = totals.ord_num "

 };

/? Array of customers to get list of all orders for ?/

 SQLINTEGER Cust[]=

 {

1=, 2=, 3=, 4=, 5=, 6=, 7=, 8=, 9=, 1==,

11=, 12=, 13=, 14=, 15=, 16=, 17=, 18=, 19=, 2==,

21=, 22=, 23=, 24=, 25=

 };

#define NUM_CUSTOMERS sizeof(Cust)/sizeof(SQLINTEGER)

/? Row-Wise (Includes buffer for both column data and length) ?/

 struct {

 SQLINTEGER Ord_Num_L;

 SQLINTEGER Ord_Num;

 SQLINTEGER Cust_Num_L;

 SQLINTEGER Cust_Num;

 SQLINTEGER Prod_Num_L;

 SQLINTEGER Prod_Num;

 SQLINTEGER Quant_L;

 SQLDOUBLE Quant;

 SQLINTEGER Amount_L;

 SQLDOUBLE Amount;

 SQLINTEGER Total_L;

 SQLDOUBLE Total;

 } Ord[ROWSET_SIZE];

SQLUINTEGER pirow = =;

 SQLUINTEGER pcrow;

 SQLINTEGER i;

 SQLINTEGER j;

/? ... ?/

/? Get details and total for each order Row-Wise ?/

rc = SQLAllocStmt(hdbc, &hstmt);

rc = SQLParamOptions(hstmt, NUM_CUSTOMERS, &pirow);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

=, =, Cust, =, NULL);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

/? SQL_ROWSET_SIZE sets the max number of result rows to fetch each time ?/

rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);

/? Set Size of One row, Used for Row-Wise Binding Only ?/

rc = SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(Ord) / ROWSET_SIZE);

/? Bind column 1 to the Ord_num Field of the first row in the array?/

rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) &Ord[=].Ord_Num, =,

 &Ord[=].Ord_Num_L);

/? Bind remaining columns ... ?/

/? ... ?/

 Chapter 5. Functions 247

 SQLMoreResults

/? NOTE: This sample assumes that an order never has more

rows than ROWSET_SIZE. A check should be added below to call

SQLExtendedFetch multiple times for each result set.

 ?/

do /? for each result set ?/

{ rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, =, &pcrow, NULL);

if (pcrow > =) /? if 1 or more rows in the result set ?/

 {

i = j = =;

 printf("??????????????????????????????????????\n");

printf("Orders for Customer: %ld\n", Ord[=].Cust_Num);

 printf("??????????????????????????????????????\n");

while (i < pcrow)

{ printf("\nOrder #: %ld\n", Ord[i].Ord_Num);

 printf(" Product Quantity Price\n");

printf(" -------- ---------------- ------------\n");

j = i;

while (Ord[j].Ord_Num == Ord[i].Ord_Num)

{ printf(" %8ld %16.7lf %12.2lf\n",

Ord[i].Prod_Num, Ord[i].Quant, Ord[i].Amount);

 i++;

 }

 printf(" ============\n");

 printf(" %12.2lf\n", Ord[j].Total);

} /? end while ?/

} /? end if ?/

 }

while (SQLMoreResults(hstmt) == SQL_SUCCESS);

/? ... ?/

 References
� “SQLParamOptions - Specify an Input Array for a Parameter” on page 258

248 Call Level Interface Guide and Reference

 SQLNativeSql

SQLNativeSql - Get Native SQL Text

 Purpose

SQLNativeSql() is used to show how DB2 CLI interprets vendor escape clauses. If
the original SQL string passed in by the application contains vendor escape clause
sequences, then DB2 CLI returns the transformed SQL string that the data source
sees (with vendor escape clauses either converted or discarded, as appropriate).

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLNativeSql (SQLHDBC hdbc,

 SQLCHAR FAR ?szSqlStrIn,

 SQLINTEGER cbSqlStrIn,

 SQLCHAR FAR ?szSqlStr,

 SQLINTEGER cbSqlStrMax,

 SQLINTEGER FAR ?pcbSqlStr);

 Function Arguments

Table 84. SQLNativeSql Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle.

SQLCHAR * szSqlStrIn input Input SQL string.

SQLINTEGER cbSqlStrIn input Length of szSqlStrIn.

SQLCHAR * szSqlStr output Pointer to buffer for the transformed output string.

SQLINTEGER cbSqlStrMax input Size of buffer pointed by szSqlStr.

SQLINTEGER * pcbSqlStr output The total number of bytes (excluding the null-terminator)
available to return in szSqlStr. If the number of bytes
available to return is greater than or equal to
cbSqlStrMax, the output SQL string in szSqlStr is
truncated to cbSqlStrMax - 1 bytes.

 Usage
This function is called when the application wishes to examine or display the
transformed SQL string that is passed to the data source by DB2 CLI. Translation
(mapping) only occurs if the input SQL statement string contains vendor escape
clause sequences. For more information on vendor escape clause sequences, refer
to “Using Vendor Escape Clauses” on page 369.

DB2 CLI can only detect vendor escape clause syntax errors; since DB2 CLI does
not pass the transformed SQL string to the data source for preparation, syntax
errors that are detected by the DBMS are not generated at this time. (The
statement is not passed to the data source for preparation because the preparation
can potentially cause the initiation of a transaction.)

 Chapter 5. Functions 249

 SQLNativeSql

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 85. SQLNativeSql SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szSqlStr is not large enough to contain the entire SQL
string, so truncation occurs. The argument pcbSqlStr contains the
total length of the untruncated SQL string. (Function returns with
SQL_SUCCESS_WITH_INFO)

08003 Connection is closed. The hdbc does not reference an open database connection.

37000 Invalid SQL syntax. The input SQL string in szSqlStrIn contained a syntax error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The argument szSqlStrIn is a NULL pointer.

The argument szSqlStr is a NULL pointer.

S1090 Invalid string or buffer length. The argument cbSqlStrIn was less than 0, but not equal to
SQL_NTS.

The argument cbSqlStrMax was less than 0.

 Restrictions
None.

250 Call Level Interface Guide and Reference

 SQLNativeSql

 Example

/? ... ?/

 SQLCHAR in_stmt[1=24];

 SQLCHAR out_stmt[1=24];

 SQLSMALLINT pcPar;

 SQLINTEGER indicator;

/? ... ?/

/? Prompt for a statement to prepare ?/

printf("Enter an SQL statement: \n");

 gets(in_stmt);

/? prepare the statement ?/

rc = SQLPrepare(hstmt, in_stmt, SQL_NTS);

 SQLNumParams(hstmt, &pcPar);

SQLNativeSql(hstmt, in_stmt, SQL_NTS, out_stmt, 1=24, &indicator);

if (indicator == SQL_NULL_DATA)

{ printf("Invalid statement\n"); }

 else

{ printf(" Input Statement: \n %s \n", in_stmt);

printf("Output Statement: \n %s \n", out_stmt);

printf("Number of Parameter Markers = %ld\n", pcPar);

 }

rc = SQLFreeStmt(hstmt, SQL_DROP);

/? ... ?/

 References
� “Using Vendor Escape Clauses” on page 369

 Chapter 5. Functions 251

 SQLNumParams

SQLNumParams - Get Number of Parameters in A SQL Statement

 Purpose

SQLNumParams() returns the number of parameter markers in a SQL statement.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLNumParams (SQLHSTMT hstmt,

SQLSMALLINT FAR ?pcpar);

 Function Arguments

Table 86. SQLNumParams Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT * pcpar Output Number of parameters in the statement.

 Usage
This function can only be called after the statement associated with hstmt has been
prepared. If the statement does not contain any parameter markers, pcpar is set to
0.

An application can call this function to determine how many SQLBindParameter()

calls are necessary for the SQL statement associated with the statement handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 87 (Page 1 of 2). SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. pcpar is null.

S1010 Function sequence error. This function is called before SQLPrepare() is called for the
specified hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

252 Call Level Interface Guide and Reference

 SQLNumParams

Table 87 (Page 2 of 2). SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 251.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLPrepare - Prepare a Statement” on page 260

 Chapter 5. Functions 253

 SQLNumResultCols

SQLNumResultCols - Get Number of Result Columns

 Purpose

SQLNumResultCols() returns the number of columns in the result set associated with
the input statement handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLColAttributes(), or one of the bind
column functions.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,

 SQLSMALLINT FAR ?pccol);

 Function Arguments

Table 88. SQLNumResultCols Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT * pccol output Number of columns in the result set

 Usage
The function sets the output argument to zero if the last statement or function
executed on the input statement handle did not generate a result set.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 89 (Page 1 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. pcccol is a null pointer.

254 Call Level Interface Guide and Reference

 SQLNumResultCols

Table 89 (Page 2 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 129

 References
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLDescribeCol - Describe Column Attributes” on page 127
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLGetData - Get Data From a Column” on page 192
� “SQLPrepare - Prepare a Statement” on page 260

 Chapter 5. Functions 255

 SQLParamData

SQLParamData - Get Next Parameter For Which A Data Value Is
Needed

 Purpose

SQLParamData() is used in conjunction with SQLPutData() to send long data in
pieces. It can also be used to send fixed length data as well. For a description of
the exact sequence of this input method, refer to “Sending/Retrieving Long Data in
Pieces” on page 349.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLParamData (SQLHSTMT hstmt,

 SQLPOINTER FAR ?prgbValue);

 Function Arguments

Table 90. SQLParamData Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLPOINTER * prgbValue output Pointer to the value of the rgbValue argument specified
on the SQLBindParameter() or SQLSetParam() call.

 Usage
SQLParamData() returns SQL_NEED_DATA if there is at least one
SQL_DATA_AT_EXEC parameter for which data is not assigned. This function
returns an application provided value in prgbValue supplied by the application
during the previous SQLBindParameter() call. SQLPutData() is called one or more
times (in the case of long data) to send the parameter data. SQLParamData() is
called to signal that all the data has been sent for the current parameter and to
advance to the next SQL_DATA_AT_EXEC parameter. SQL_SUCCESS is returned
when all the parameters have been assigned data values and the associated
statement has been executed successfully. If any errors occur during or before
actual statement execution, SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or
SQLCancel() calls can be made. All other function calls using this statement handle
fails. In addition, all function calls referencing the parent hdbc of hstmt fail if they
involve changing any attribute or state of that connection; that is, the following
function calls on the parent hdbc are also not permitted:

 � SQLAllocConnect()
 � SQLAllocStmt()
 � SQLSetConnectOption()
 � SQLNativeSql()
 � SQLTransact()

256 Call Level Interface Guide and Reference

 SQLParamData

Should they be invoked during an SQL_NEED_DATA sequence, these functions
return SQL_ERROR with SQLSTATE of S1010 and the processing of the
SQL_DATA_AT_EXEC parameters is not affected.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NEED_DATA

 Diagnostics
SQLParamData() can return any SQLSTATE returned by the SQLExecDirect() and
SQLExecute() functions. In addition, the following diagnostics can also be
generated:

Table 91. SQLParamData SQLSTATEs

SQLSTATE Description Explanation

40001 Transaction rollback. The transaction to which this SQL statement belonged is rolled
back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. SQLParamData() is called out of sequence. This call is only valid
after an SQLExecDirect() or an SQLExecute(), or after an
SQLPutData() call.

Even though this function is called after an SQLExecDirect() or an
SQLExecute() call, there are no SQL_DATA_AT_EXEC
parameters (left) to process.

 Restrictions
None.

 Example
Refer to “Example” on page 288.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLCancel - Cancel Statement” on page 100
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLPutData - Passing Data Value for A Parameter” on page 286
� “SQLSetParam - Binds A Parameter Marker to a Buffer” on page 309

 Chapter 5. Functions 257

 SQLParamOptions

SQLParamOptions - Specify an Input Array for a Parameter

 Purpose

SQLParamOptions() provides the ability to set multiple values for each parameter set
by SQLBindParameter(). This allows the application to perform batched processing
of the same SQL statement with one set of prepare, execute and
SQLBindParameter() calls.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLParamOptions (SQLHSTMT hstmt,

 SQLUINTEGER crow,

SQLUINTEGER FAR ?pirow);

 Function Arguments

Table 92. SQLParamOptions Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLUINTEGER crow Input Number of values for each parameter. If this is greater
than 1, then the rgbValue argument in
SQLBindParameter() points to an array of parameter
values, and pcbValue points to an array of lengths.

SQLUINTEGER * pirow Output
(deferred)

Pointer to the buffer for the current parameter array index.
As each set of parameter values is processed, pirow is
set to the array index of that set. If a statement fails,
pirow can be used to determine how many statements
were successfully processed. Nothing is returned if the
pirow pointer is NULL.

 Usage
DB2 CLI prepares the statement, and executes it repeatedly for the array of
parameter markers.

As a statement executes, pirow is set to the index of the current array of parameter
values. If an error occurs during execution for a particular element in the array,
execution halts and SQLExecute(), SQLExecDirect() or SQLParamData() returns
SQL_ERROR.

The contents of pirow have the following uses:

� When SQLParamData() returns SQL_NEED_DATA, the application can access
the value in pirow to determine which set of parameters is being assigned
values.

� When SQLExecute() or SQLExecDirect() returns an error, the application can
access the value in pirow to find out which element in the parameter value
array failed.

258 Call Level Interface Guide and Reference

 SQLParamOptions

� When SQLExecute(), SQLExecDirect(), SQLParamData(), or SQLPutData()
succeeds, the value in pirow is set to the input value in crow to indicate that all
elements of the array have been processed successfully.

The output argument pirow indicates how many sets of parameters were
successfully processed. If the statement processed is a query, pirow indicates the
array index associated with the current result set returned by SQLMoreResults() and
is incremented each time SQLMoreResults() is called.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 93. SQLParamOptions SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1107 Row value out of range. The value in the argument crow is less than 1.

 Restrictions
None.

 Example
Refer to “Array Input Example” on page 352.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLMoreResults - Determine If There Are More Result Sets” on page 245
� “SQLSetStmtOption - Set Statement Option” on page 314

 Chapter 5. Functions 259

 SQLPrepare

SQLPrepare - Prepare a Statement

 Purpose

SQLPrepare() associates an SQL statement with the input statement handle and
sends the statement to the DBMS to be prepared. The application can reference
this prepared statement by passing the statement handle to other functions.

If the statement handle has been previously used with a query statement (or any
function that returns a result set), SQLFreeStmt() must be called to close the cursor,
before calling SQLPrepare().

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLPrepare (SQLHSTMT hstmt,

 SQLCHAR FAR ?szSqlStr,

 SQLINTEGER cbSqlStr);

 Function Arguments

Table 94. SQLPrepare Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

SQLCHAR * szSqlStr input SQL statement string.

SQLINTEGER cbSqlStr input Length of contents of szSqlStr argument.

This must be set to either the exact length of the SQL
statement in szSqlstr, or to SQL_NTS if the statement text
is null-terminated.

 Usage
If the SQL statement text contains vendor escape clause sequences, DB2 CLI first
modifies the SQL statement text to the appropriate DB2 specific format before
submitting it to the database for preparation. If the application does not generate
SQL statements that contain vendor escape clause sequences (see “Using Vendor
Escape Clauses” on page 369); then the SQL_NOSCAN statement option should
be set to SQL_NOSCAN_ON at the statement level so that DB2 CLI does not
perform a scan for any vendor escape clauses.

When a statement is prepared using SQLPrepare(), the application can request
information about the format of the result set (if the statement was a query) by
calling:

 � SQLNumResultCols()

 � SQLDescribeCol()

 � SQLColAttributes()

The SQL statement string can contain parameter markers and SQLNumParams() can
be called to determine the number of parameter markers in the statement. A

260 Call Level Interface Guide and Reference

 SQLPrepare

parameter marker is represented by a "?" character that indicates a position in the
statement where an application supplied value is to be substituted when
SQLExecute() is called. The bind parameter functions, SQLBindParameter() and
SQLSetParam() are used to bind (associate) application values with each parameter
marker and to indicate if any data conversion should be performed at the time the
data is transferred.

All parameters must be bound before calling SQLExecute(). For more information
refer to “SQLExecute - Execute a Statement” on page 153.

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

The SQL statement cannot be a COMMIT or ROLLBACK. SQLTransact() must be
called to issue COMMIT or ROLLBACK. For more information about SQL
statements, that DB2 for OS/390 supports, see Table 1 on page 18.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be defined on a separate statement handle under
the same connection handle and same isolation level.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 95 (Page 1 of 2). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

szSqlStr contains an UPDATE or DELETE statement which did
not contain a WHERE clause.

21S01 Insert value list does not
match column list.

szSqlStr contains an INSERT statement and the number of values
to be inserted did not match the degree of the derived table.

21S02 Degrees of derived table
does not match column list.

szSqlStr contains a CREATE VIEW statement and the number of
names specified is not the same degree as the derived table
defined by the query specification.

24000 Invalid cursor state. A cursor is already opened on the statement handle.

34000 Invalid cursor name. szSqlStr contains a positioned DELETE or a positioned UPDATE
and the cursor referenced by the statement being executed is not
open.

37xxx a Invalid SQL syntax. szSqlStr contains one or more of the following:

 � A COMMIT
 � A ROLLBACK
� An SQL statement that the connected database server cannot

prepare
� A statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled
back due to deadlock or timeout.

 Chapter 5. Functions 261

 SQLPrepare

Table 95 (Page 2 of 2). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

42xxx a Syntax error or access rule
violation

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in szSqlStr.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already
exists.

szSqlStr contains a CREATE TABLE or CREATE VIEW statement
and the table name or view name specified already exists.

S0002 Database object does not
exist.

szSqlStr contains an SQL statement that references a table name
or a view name that does not exist.

S0011 Index already exists. szSqlStr contains a CREATE INDEX statement and the specified
index name already exists.

S0012 Index not found. szSqlStr contains a DROP INDEX statement and the specified
index name does not exist.

S0021 Column already exists. szSqlStr contains an ALTER TABLE statement and the column
specified in the ADD clause is not unique or identifies an existing
column in the base table.

S0022 Column not found. szSqlStr contains an SQL statement that references a column
name that does not exist.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. szSqlStr is a null pointer.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The argument cbSqlStr is less than 1, but not equal to SQL_NTS.

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37
class.

Not all DBMSs report all of the above diagnostic messages at prepare time.
Therefore, an application must also be able to handle these conditions when calling
SQLExecute().

 Restrictions
None.

262 Call Level Interface Guide and Reference

 SQLPrepare

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Prepares a query and executes that query twice speci- ?/

 /? fying a unique value for the parameter marker. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

char ?pDSN = "STLEC1";

 SWORD cbCursor;

 SDWORD cbValue1;

 SDWORD cbValue2;

 char employee [3=];

int salary = =;

int param_salary = 3====;

char ?stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE SALARY > ?";

(void) printf ("???? Entering CLIP=7.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 Chapter 5. Functions 263

 SQLPrepare

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Allocate Statement Handles ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Preapare the query for multiple execution within current ?/

/? transaction. Note that query is collapsed when transaction ?/

/? is committed or rolled back. ?/

 /???/

rc = SQLPrepare (hStmt,

(SQLCHAR ?) stmt,

 strlen(stmt));

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? PREPARE OF QUERY FAILED.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind employee name

 1,

 SQL_C_CHAR,

 employee,

 sizeof(employee),

 &cbValue1);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? BIND OF NAME FAILED.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind employee salary

 2,

 SQL_C_LONG,

 &salary,

 =,

 &cbValue2);

if (rc != SQL_SUCCESS)

264 Call Level Interface Guide and Reference

 SQLPrepare

 {

(void) printf ("???? BIND OF SALARY FAILED.\n");

 goto dberror;

 }

 /???/

/? Bind parameter to replace '?' in query. This has an initial ?/

/? value of 3====. ?/

 /???/

rc = SQLBindParameter (hStmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 =,

 =,

 ¶m_salary,

 =,

 NULL);

 /???/

/? Execute prepared statement to generate answer set. ?/

 /???/

rc = SQLExecute (hStmt);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? EXECUTE OF QUERY FAILED.\n");

 goto dberror;

 }

 /???/

/? Answer Set is available -- Fetch rows and print employees ?/

/? and salary. ?/

 /???/

(void) printf ("???? Employees whose salary exceeds %d follow.\n\n",

 param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Employee Name %s with salary %d.\n",

 employee,

 salary);

 }

 /???/

/? Close query --- note that query is still prepared. Then change?/

/? bound parameter value to 1=====. Then re-execute query. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_CLOSE);

param_salary = 1=====;

rc = SQLExecute (hStmt);

if (rc != SQL_SUCCESS)

 Chapter 5. Functions 265

 SQLPrepare

 {

(void) printf ("???? EXECUTE OF QUERY FAILED.\n");

 goto dberror;

 }

 /???/

/? Answer Set is available -- Fetch rows and print employees ?/

/? and salary. ?/

 /???/

(void) printf ("???? Employees whose salary exceeds %d follow.\n\n",

 param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Employee Name %s with salary %d.\n",

 employee,

 salary);

 }

 /???/

/? Deallocate Statement Handles -- statement is no longer in a ?/

/? Prepared state. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

266 Call Level Interface Guide and Reference

 SQLPrepare

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP=7.\n\n");

 return RETCODE;

}

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLDescribeCol - Describe Column Attributes” on page 127
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLNumParams - Get Number of Parameters in A SQL Statement” on

page 252
� “SQLNumResultCols - Get Number of Result Columns” on page 254
� “SQLSetParam - Binds A Parameter Marker to a Buffer” on page 309

 Chapter 5. Functions 267

 SQLPrimaryKeys

SQLPrimaryKeys - Get Primary Key Columns of A Table

 Purpose

SQLPrimaryKeys() returns a list of column names that comprise the primary key for
a table. The information is returned in an SQL result set, which can be retrieved
using the same functions that are used to process a result set generated by a
query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLPrimaryKeys (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName);

 Function Arguments

Table 96. SQLPrimaryKeys Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Catalog qualifier of a 3 part table name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbCatalogName input Length of szCatalogName.

SQLCHAR * szSchemaName input Schema qualifier of table name.

SQLSMALLINT cbSchemaName input Length of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input Length of szTableName.

 Usage
SQLPrimaryKeys() returns the primary key columns from a single table. Search
patterns cannot be used to specify the schema qualifier or the table name.

The result set contains the columns listed in Table 97 on page 269, ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME and ORDINAL_POSITION.

Since calls to SQLPrimaryKeys() in many cases map to a complex and, thus,
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call

268 Call Level Interface Guide and Reference

 SQLPrimaryKeys

SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 97. Columns Returned By SQLPrimaryKeys

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
NOT NULL

Name of the specified table.

4 COLUMN_NAME VARCHAR(128)
NOT NULL

Primary key column name.

5 ORDINAL_POSITION SMALLINT
NOT NULL

Column sequence number in the primary key, starting with 1.

6 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is
returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 98. SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Chapter 5. Functions 269

 SQLPrimaryKeys

 Restrictions
None.

 Example
The following example uses SQLPrimaryKeys to locate a primary key for a table, and
calls SQLColAttributes to find its data type.

/? ... ?/

#include <sqlcli1.h>

void main()

{

 SQLCHAR rgbDesc_2=‘;

 SQLCHAR szTableName_2=‘;

 SQLCHAR szSchemaName_2=‘;

 SQLCHAR rgbValue_2=‘;

 SQLINTEGER pcbValue;

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLSMALLINT pscDesc;

 SQLINTEGER pdDesc;

 SQLRETURN rc;

 /???/

 /? Initialization... ?/

 /???/

if(SQLAllocEnv(&henv) != SQL_SUCCESS)

 {

fprintf(stdout, "Error in SQLAllocEnv\n");

 exit(1);

 }

if(SQLAllocConnect(henv, &hdbc) != SQL_SUCCESS)

 {

fprintf(stdout, "Error in SQLAllocConnect\n");

 exit(1);

 }

if(SQLConnect(hdbc,

 NULL, SQL_NTS,

 NULL, SQL_NTS,

NULL, SQL_NTS) != SQL_SUCCESS)

 {

fprintf(stdout, "Error in SQLConnect\n");

 exit(1);

 }

if(SQLAllocStmt(hdbc, &hstmt) != SQL_SUCCESS)

 {

fprintf(stdout, "Error in SQLAllocStmt\n");

 exit(1);

 }

270 Call Level Interface Guide and Reference

 SQLPrimaryKeys

 /???/

/? Get primary key for table 'myTable' by using SQLPrimaryKeys ?/

 /???/

rc = SQLPrimaryKeys(hstmt,

 NULL, SQL_NTS,

 (SQLCHAR?)szSchemaName, SQL_NTS,

(SQLCHAR?)szTableName, SQL_NTS);

if(rc != SQL_SUCCESS)

 {

 goto exit;

 }

 /?

? Since all we need is the ordinal position, we'll bind column 5 from

? the result set.

 ?/

rc = SQLBindCol(hstmt,

 5,

 SQL_C_CHAR,

 (SQLPOINTER)rgbValue,

 2=,

 &pcbValue);

if(rc != SQL_SUCCESS)

 {

 goto exit;

 }

 /?

 ? Fetch data...

 ?/

if(SQLFetch(hstmt) != SQL_SUCCESS)

 {

 goto exit;

 }

 /???/

/? Get data type for that column by calling SQLColAttributes(). ?/

 /???/

 rc = SQLColAttributes(hstmt,

 pcbValue,

 SQL_COLUMN_TYPE,

 rgbDesc,

 2=,

 &pcbDesc,

 &pfDesc);

if(rc != SQL_SUCCESS)

 {

 goto exit;

 }

 /?

? Display the data type.

 ?/

fprintf(stdout, "Data type ==> %s\n", rgbDesc);

 Chapter 5. Functions 271

 SQLPrimaryKeys

exit:

 /???/

/? Clean up the environment... ?/

 /???/

 SQLTransact(henv,

 hdbc,

 SQL_ROLLBACK);

SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

}

 References
� “SQLForeignKeys - Get the List of Foreign Key Columns” on page 168
� “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 325

272 Call Level Interface Guide and Reference

 SQLProcedureColumns

SQLProcedureColumns - Get Input/Output Parameter Information for A
Procedure

 Purpose

SQLProcedureColumns() returns a list of input and output parameters associated
with a procedure. The information is returned in an SQL result set, which can be
retrieved using the same functions that are used to process a result set generated
by a query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLProcedureColumns (

 SQLHSTMT hstmt,

 SQLCHAR FAR ?szProcCatalog,

 SQLSMALLINT cbProcCatalog,

 SQLCHAR FAR ?szProcSchema,

 SQLSMALLINT cbProcSchema,

 SQLCHAR FAR ?szProcName,

 SQLSMALLINT cbProcName,

 SQLCHAR FAR ?szColumnName,

 SQLSMALLINT cbColumnName);

 Function Arguments

Table 99. SQLProcedureColumns Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szProcCatalog input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbProcCatalog input Length of szProcCatalog. This must be set to 0.

SQLCHAR * szProcSchema input Buffer that can contain a pattern-value to qualify the result
set by schema name.

For DB2 for OS/390, all the stored procedures are in one
schema; the only acceptable value for the szProcSchema
argument is a null pointer. For DB2 for common server,
szProcSchema can contain a valid pattern value. For
more information about valid search patterns, refer to
“Querying System Catalog Information” on page 346.

SQLSMALLINT cbProcSchema input Length of szProcSchema.

SQLCHAR * szProcName input Buffer that can contain a pattern-value to qualify the result
set by procedure name.

SQLSMALLINT cbProcName input Length of szProcName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result
set by parameter name. This argument is to be used to
further qualify the result set already restricted by
specifying a non-empty value for szProcName and/or
szProcSchema.

SQLSMALLINT cbColumnName input Length of szColumnName.

 Chapter 5. Functions 273

 SQLProcedureColumns

 Usage
If the stored procedure is at a DB2 for MVS/ESA Version 4 server or later, the
name of the stored procedures must be registered in the server's
SYSIBM.SYSPROCEDURES catalog table.

For versions of other DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

DB2 CLI returns information on the input, input/output, and output parameters
associated with the stored procedure, but cannot return information on the
descriptor information for any result sets returned.

SQLProcedureColumns() returns the information in a result set, ordered by
PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and
COLUMN_TYPE. Table 100 lists the columns in the result set.

Since calls to SQLProcedureColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Applications should be aware that columns beyond the last column might be
defined in future releases. Although new columns might be added and the names
of the existing columns changed in future releases, the position of the current
columns does not change.

Table 100 (Page 1 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

1 PROCEDURE_CAT VARCHAR(128) The is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME. (This
is also NULL for DB2 for OS/390 SQLProcedureColumns() result
sets.)

3 PROCEDURE_NAME VARCHAR(128) Name of the procedure.

4 COLUMN_NAME VARCHAR(128) Name of the parameter.

274 Call Level Interface Guide and Reference

 SQLProcedureColumns

Table 100 (Page 2 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

5 COLUMN_TYPE SMALLINT
NOT NULL

Identifies the type information associated with this row. The values
can be:

� SQL_PARAM_TYPE_UNKNOWN: the parameter type is
unknown.

Note: This is not returned.

� SQL_PARAM_INPUT: this parameter is an input parameter.

� SQL_PARAM_INPUT_OUTPUT: this parameter is an input /
output parameter.

� SQL_PARAM_OUTPUT: this parameter is an output
parameter.

� SQL_RETURN_VALUE: the procedure column is the return
value of the procedure.

Note: This is not returned.

� SQL_RESULT_COL: this parameter is actually a column in the
result set.

Note: This is not returned.

Note: SQL_PARAM_OUTPUT and SQL_RETURN_VALUE
are supported only on ODBC 2.0 or higher.

6 DATA_TYPE SMALLINT
NOT NULL

SQL data type.

7 TYPE_NAME VARCHAR(128)
NOT NULL

Character string representing the name of the data type
corresponding to DATA_TYPE.

8 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or binary
string, then this column contains the maximum length in bytes; if it
is a graphic (DBCS) string, this is the number of double byte
characters for the parameter.

For date, time, timestamp data types, this is the total number of
bytes required to display the value when converted to character.

For numeric data types, this is either the total number of digits, or
the total number of bits allowed in the column, depending on the
value in the NUM_PREC_RADIX column in the result set.

See Table 145 on page 412.

9 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to store
data from this parameter if SQL_C_DEFAULT is specified on the
SQLBindCol(), SQLGetData() and SQLBindParameter() calls. This
length excludes any null-terminator. For exact numeric data types,
the length accounts for the decimal and the sign.

See Table 147 on page 414.

10 DECIMAL_DIGITS SMALLINT The scale of the parameter. NULL is returned for data types where
scale is not applicable.

See Table 146 on page 413.

 Chapter 5. Functions 275

 SQLProcedureColumns

Table 100 (Page 3 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

11 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an approximate numeric
data type, this column contains the value 2, then the
COLUMN_SIZE column contains the number of bits allowed in the
parameter.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE and
DECIMAL_DIGITS columns contain the number of decimal digits
allowed for the parameter.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not applicable.

12 NULLABLE SMALLINT
NOT NULL

SQL_NO_NULLS if the parameter does not accept NULL values.

SQL_NULLABLE if the parameter accepts NULL values.

13 REMARKS VARCHAR(254) Might contain descriptive information about the parameter.

14 ORDINAL_POSITION INTEGER NOT
NULL

Contains the ordinal position of the parameter given by
COLUMN_NAME in this result set. This is the ordinal position of
the argument provided on the CALL statement. The leftmost
argument has an ordinal position of 1.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedureColumns() result set in ODBC.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 101 (Page 1 of 2). SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table
contains a syntax error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

276 Call Level Interface Guide and Reference

 SQLProcedureColumns

Table 101 (Page 2 of 2). SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for procedure
name.

The connected server does not support schema as a qualifier for
procedure name.

 Restrictions
SQLProcedureColumns() does not return information about the attributes of result
sets that stored procedures can return.

If an application is connected to a DB2 server that does not provide support for
stored procedures, or for a stored procedure catalog, SQLProcedureColumns()

returns an empty result set.

 Example

 /??/

 /? DB2 for OS/39= Example: ?/

 /? Invokes SQLProcedureColumns and enumerates all rows ?/

 /? retrieved. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "sqlcli1.h"

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = =;

char ?pDSN = "STLEC1";

 char procedure_name [2=];

 char parameter_name [2=];

 char ptype [2=];

SQLSMALLINT parameter_type = =;

SQLSMALLINT data_type = =;

 char type_name [2=];

 SWORD cbCursor;

 SDWORD cbValue3;

 SDWORD cbValue4;

 SDWORD cbValue5;

 SDWORD cbValue6;

 SDWORD cbValue7;

char ProcCatalog [2=] = {=};

char ProcSchema [2=] = {=};

char ProcName [2=] = {"DOIT%"};

char ColumnName [2=] = {"P%"};

SQLSMALLINT cbProcCatalog = =;

 SQLSMALLINT cbProcSchema = =;

 SQLSMALLINT cbProcName = strlen(ProcName);

 SQLSMALLINT cbColumnName = strlen(ColumnName);

 Chapter 5. Functions 277

 SQLProcedureColumns

(void) printf ("???? Entering CLIP12.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR ?) pDSN, // DSN

SQL_NTS, // DSN is nul-terminated

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? Allocate Statement Handles ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Invoke SQLProcedureColumns and retrieve all rows within ?/

/? answer set. ?/

 /???/

rc = SQLProcedureColumns (hStmt ,

(SQLCHAR ?) ProcCatalog,

 cbProcCatalog ,

(SQLCHAR ?) ProcSchema ,

 cbProcSchema ,

(SQLCHAR ?) ProcName ,

 cbProcName ,

(SQLCHAR ?) ColumnName ,

 cbColumnName);

278 Call Level Interface Guide and Reference

 SQLProcedureColumns

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? SQLProcedureColumns Failed.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind procedure_name

 3,

 SQL_C_CHAR,

 procedure_name,

 sizeof(procedure_name),

 &cbValue3);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of procedure_name Failed.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind parameter_name

 4,

 SQL_C_CHAR,

 parameter_name,

 sizeof(parameter_name),

 &cbValue4);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of parameter_name Failed.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind parameter_type

 5,

 SQL_C_SHORT,

 ¶meter_type,

 =,

 &cbValue5);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of parameter_type Failed.\n");

 goto dberror;

 }

rc = SQLBindCol (hStmt, // bind SQL data type

 6,

 SQL_C_SHORT,

 &data_type,

 =,

 &cbValue6);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of data_type Failed.\n");

 goto dberror;

 }

 Chapter 5. Functions 279

 SQLProcedureColumns

rc = SQLBindCol (hStmt, // bind type_name

 7,

 SQL_C_CHAR,

 type_name,

 sizeof(type_name),

 &cbValue7);

if (rc != SQL_SUCCESS)

 {

(void) printf ("???? Bind of type_name Failed.\n");

 goto dberror;

 }

 /???/

/? Answer Set is available - Fetch rows and print parameters for ?/

/? all procedures. ?/

 /???/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

(void) printf ("???? Procedure Name = %s. Parameter %s",

 procedure_name,

 parameter_name);

 switch (parameter_type)

 {

 case SQL_PARAM_INPUT :

(void) strcpy (ptype, "INPUT");

 break;

 case SQL_PARAM_OUTPUT :

(void) strcpy (ptype, "OUTPUT");

 break;

case SQL_PARAM_INPUT_OUTPUT :

(void) strcpy (ptype, "INPUT/OUTPUT");

 break;

 default :

(void) strcpy (ptype, "UNKNOWN");

 break;

 }

(void) printf (" is %s. Data Type is %d. Type Name is %s.\n",

 ptype ,

 data_type ,

 type_name);

 }

 /???/

/? Deallocate Statement Handles -- statement is no longer in a ?/

/? Prepared state. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

280 Call Level Interface Guide and Reference

 SQLProcedureColumns

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf ("???? Exiting CLIP12.\n\n");

 return RETCODE;

}

 References
� “SQLProcedures - Get List of Procedure Names” on page 282

 Chapter 5. Functions 281

 SQLProcedures

SQLProcedures - Get List of Procedure Names

 Purpose

SQLProcedures() returns a list of procedure names that have been registered at the
server, and which match the specified search pattern.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLProcedures (SQLHSTMT hstmt,

 SQLCHAR FAR ?szProcCatalog,

 SQLSMALLINT cbProcCatalog,

 SQLCHAR FAR ?szProcSchema,

 SQLSMALLINT cbProcSchema,

 SQLCHAR FAR ?szProcName,

 SQLSMALLINT cbProcName);

 Function Arguments

Table 102. SQLTables Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szProcCatalog Input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbProcCatalog Input Length of szProcCatalog. This must be set to 0.

SQLCHAR * szProcSchema Input Buffer that can contain a pattern-value to qualify the result
set by schema name.

For DB2 for OS/390, all the stored procedures are in one
schema; the only acceptable value for the szProcSchema
argument is a null pointer. For DB2 for common server,
szProcSchema can contain a valid pattern value. For
more information about valid search patterns, refer to
“Querying System Catalog Information” on page 346.

SQLSMALLINT cbProcSchema Input Length of szProcSchema.

SQLCHAR * szProcName Input Buffer that can contain a pattern-value to qualify the result
set by table name.

SQLSMALLINT cbProcName Input Length of szProcName.

 Usage
If the stored procedure is at a DB2 for MVS/ESA Version 4 server or later, the
name of the stored procedures must be registered in the server's
SYSIBM.SYSPROCEDURES catalog table.

282 Call Level Interface Guide and Reference

 SQLProcedures

For other versions of DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

The result set returned by SQLProcedures() contains the columns listed in
Table 103 in the order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEMA, and PROCEDURE_NAME.

Since calls to SQLProcedures() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 103. Columns Returned By SQLProcedures

Column Number/Name Data Type Description

1 PROCEDURE_CAT VARCHAR(128) This is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME.

3 PROCEDURE_NAME VARCHAR(128)
NOT NULL

The name of the procedure.

4 NUM_INPUT_PARAMS INTEGER not
NULL

Number of input parameters.

5 NUM_OUTPUT_PARAMS INTEGER not
NULL

Number of output parameters.

6 NUM_RESULT_SETS INTEGER not
NULL

Number of result sets returned by the procedure.

7 REMARKS VARCHAR(254) Contains the descriptive information about the procedure.

8 PROCEDURE_TYPE SMALLINT Defines the procedure type:

� SQL_PT_UNKNOWN: It cannot be determined whether the
procedure returns a value.

� SQL_PT_PROCEDURE: The returned object is a
procedure; that is, it does not have a return value.

� SQL_PT_FUNCTION: The returned object is a function; that
is, it has a return value.

 DB2 CLI always returns SQL_PT_PROCEDURE.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

 Chapter 5. Functions 283

 SQLProcedures

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 104. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for procedure
name.

The connected server does not supported schema as a qualifier
for procedure name.

 Restrictions
If an application is connected to a DB2 server that does not provide support for
stored procedures, or for a stored procedure catalog, SQLProcedureColumns()

returns an empty result set.

284 Call Level Interface Guide and Reference

 SQLProcedures

 Example

/? ... ?/

printf("Enter Procedure Schema Name Search Pattern:\n");

 gets(proc_schem.s);

rc = SQLProcedures(hstmt, NULL, =, proc_schem.s, SQL_NTS, "%", SQL_NTS);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

 &proc_schem.ind);

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

 &proc_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

 &remarks.ind);

 printf("PROCEDURE SCHEMA PROCEDURE NAME \n");

printf("------------------------- ------------------------- \n");

/? Fetch each row, and display ?/

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("%-25s %-25s\n", proc_schem.s, proc_name.s);

if (remarks.ind != SQL_NULL_DATA) {

printf(" (Remarks) %s\n", remarks.s);

 }

} /? endwhile ?/

/? ... ?/

 References
� “SQLProcedureColumns - Get Input/Output Parameter Information for A

Procedure” on page 273

 Chapter 5. Functions 285

 SQLPutData

SQLPutData - Passing Data Value for A Parameter

 Purpose

SQLPutData() is called following an SQLParamData() call returning
SQL_NEED_DATA to supply parameter data values. This function can be used to
send large parameter values in pieces.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLPutData (SQLHSTMT hstmt,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValue);

 Function Arguments

Table 105. SQLPutData Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLPOINTER rgbValue Input Pointer to the actual data, or portion of data, for a
parameter. The data must be in the form specified in the
SQLBindParameter() call that the application used when
specifying the parameter.

SQLINTEGER cbValue Input Length of rgbValue. Specifies the amount of data sent in
a call to SQLPutData() .

The amount of data can vary with each call for a given
parameter. The application can also specify SQL_NTS or
SQL_NULL_DATA for cbValue.

cbValue is ignored for all fixed length C buffer types, such
as date, time, timestamp, and all numeric C buffer types.

For cases where the C buffer type is SQL_C_CHAR or
SQL_C_BINARY, or if SQL_C_DEFAULT is specified as
the C buffer type and the C buffer type default is
SQL_C_CHAR or SQL_C_BINARY, this is the number of
bytes of data in the rgbValue buffer.

 Usage
For a description on the SQLParamData() and SQLPutData() sequence, refer to
“Sending/Retrieving Long Data in Pieces” on page 349.

The application calls SQLPutData() after calling SQLParamData() on a statement in
the SQL_NEED_DATA state to supply the data values for an
SQL_DATA_AT_EXEC parameter. Long data can be sent in pieces via repeated
calls to SQLPutData(). After all the pieces of data for the parameter have been sent,
the application calls SQLParamData() again to proceed to the next

286 Call Level Interface Guide and Reference

 SQLPutData

SQL_DATA_AT_EXEC parameter, or, if all parameters have data values, to
execute the statement.

SQLPutData() cannot be called more than once for a fixed length C buffer type,
such as SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),

SQLCancel(), or another SQLPutData() if the input data is character or binary data.
As with SQLParamData(), all other function calls using this statement handle fail. In
addition, all function calls referencing the parent hdbc of hstmt fail if they involve
changing any attribute or state of that connection; that is, the following function
calls on the parent hdbc are also not permitted:

 � SQLAllocConnect()
 � SQLAllocStmt()
 � SQLSetConnectOption()
 � SQLNativeSql()
 � SQLTransact()

Should they be invoked during an SQL_NEED_DATA sequence, these functions
return SQL_ERROR with SQLSTATE of S1010 and the processing of the
SQL_DATA_AT_EXEC parameters is not affected.

If one or more calls to SQLPutData() for a single parameter results in
SQL_SUCCESS, attempting to call SQLPutData() with cbValue set to
SQL_NULL_DATA for the same parameter results in an error with SQLSTATE of
22005. This error does not result in a change of state; the statement handle is still
in a Need Data state and the application can continue sending parameter data.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics
Some of the following diagnostic conditions are also reported on the final
SQLParamData() call rather than at the time the SQLPutData() is called.

Table 106 (Page 1 of 2). SQLPutData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter is truncated without the
loss of significant digits.

Timestamp data sent for a date or time column is truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data is sent for a binary or char data than the data source
can support for that column.

22003 Numeric value out of range. The data sent for a numeric parameter cause the whole part of
the number to be truncated when assigned to the associated
column.

SQLPutData() was called more than once for a fixed length
parameter.

 Chapter 5. Functions 287

 SQLPutData

Table 106 (Page 2 of 2). SQLPutData SQLSTATEs

SQLSTATE Description Explanation

22005 Error in assignment. The data sent for a parameter is incompatible with the data type
of the associated table column.

22007 Invalid datetime format. The data value sent for a date, time, or timestamp parameters is
invalid.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. The argument rgbValue is a NULL pointer, and the argument
cbValue is neither 0 nor SQL_NULL_DATA.

S1010 Function sequence error. The statement handle hstmt must be in a need data state and
must have been positioned on an SQL_DATA_AT_EXEC
parameter via a previous SQLParamData() call.

S1090 Invalid string or buffer length. The argument rgbValue is not a NULL pointer, and the argument
cbValue is less than 0, but not equal to SQL_NTS or
SQL_NULL_DATA.

 Restrictions
A new value for pcbValue, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0,
to indicate that the procedure is to use the default value of a parameter, rather than
a value sent from the application. Since the concept of default values does not
apply to DB2 stored procedure arguments, specification of this value for the
pcbValue argument results in an error when the CALL statement is executed
because the SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the pcbValue argument. The macro is used to specify the sum total
length of the entire data that would be sent for character or binary C data via the
subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo() with
the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DB2 CLI ODBC driver returns 'N' to indicate that this information is
not needed by SQLPutData().

 Example
Refer to “Example” on page 196.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLExecute - Execute a Statement” on page 153
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 256
� “SQLCancel - Cancel Statement” on page 100

288 Call Level Interface Guide and Reference

 SQLRowCount

SQLRowCount - Get Row Count

 Purpose

SQLRowCount() returns the number of rows in a table that were affected by an
UPDATE, INSERT, or DELETE statement executed against the table, or a view
based on the table.

SQLExecute() or SQLExecDirect() must be called before calling this function.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLRowCount (SQLHSTMT hstmt,

 SQLINTEGER FAR ?pcrow);

 Function Arguments

Table 107. SQLRowCount Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLINTEGER * pcrow output Pointer to location where the number of rows affected is
stored.

 Usage
If the last executed statement referenced by the input statement handle was not an
UPDATE, INSERT, or DELETE statement, or if it did not execute successfully, then
the function sets the contents of pcrow to -1.

If SQLRowCount() is executed after the SQLExecDirect() or SQLExecute() of an SQL
statement other than INSERT, UPDATE, or DELETE, it results in return code 0 and
pcrow is set to -1.

Any rows in other tables that might be affected by the statement (for example,
cascading deletes) are not included in the count.

If SQLRowCount() is executed after a built-in function (for example, SQLTables()), it
results in return code -1 and SQLSTATE S1=1=.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 289

 SQLRowCount

 Diagnostics

Table 108. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called prior to calling SQLExecute() or
SQLExecDirect() for the hstmt.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 129.

 References
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLNumResultCols - Get Number of Result Columns” on page 254

290 Call Level Interface Guide and Reference

 SQLSetColAttributes

SQLSetColAttributes - Set Column Attributes

 Purpose

SQLSetColAttributes() sets the data source result descriptor (column name, type,
precision, scale and nullability) for one column in the result set so that the DB2 CLI
implementation does not have to obtain the descriptor information from the DBMS
server.

Specification:

 Syntax
SQLRETURN SQLSetColAttributes (SQLHSTMT hstmt,

 SQLUSMALLINT icol,

 SQLCHAR FAR ?pszColName,

 SQLSMALLINT cbColName,

 SQLSMALLINT fSQLType,

 SQLUINTEGER cbColDef,

 SQLSMALLINT ibScale,

 SQLSMALLINT fNullable);

 Function Arguments

Table 109 (Page 1 of 2). SQLSetColAttributes Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number of result data, ordered sequentially left to
right, starting at 1.

SQLCHAR * szColName input Pointer to the column name. If the column is unnamed or
is an expression, this pointer can be set to NULL, or an
empty string can be used.

SQLSMALLINT cbColName input Length of szColName buffer.

 Chapter 5. Functions 291

 SQLSetColAttributes

Table 109 (Page 2 of 2). SQLSetColAttributes Arguments

Data Type Argument Use Description

SQLSMALLINT fSqlType input The SQL data type of the column. The following values
are recognized:

 � SQL_BINARY
 � SQL_CHAR
 � SQL_DATE
 � SQL_DECIMAL
 � SQL_DOUBLE
 � SQL_FLOAT
 � SQL_GRAPHIC
 � SQL_INTEGER
 � SQL_LONGVARBINARY
 � SQL_LONGVARCHAR
 � SQL_LONGVARGRAPHIC
 � SQL_NUMERIC
 � SQL_REAL
 � SQL_SMALLINT
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARBINARY
 � SQL_VARCHAR
 � SQL_VARGRAPHIC

SQLUINTEGER cbColDef input The precision of the column on the data source.

SQLSMALLINT ibScale input The scale of the column on the data source. This is
ignored for all data types except SQL_DECIMAL,
SQL_NUMERIC, SQL_TIMESTAMP.

SQLSMALLINT fNullable input Indicates whether the column allows NULL value. This
must of one of the following values:

� SQL_NO_NULLS - the column does not allow NULL
values.

� SQL_NULLABLE - the column allows NULL values.

 Usage
This function is designed to help reduce the amount of network traffic that can
result when an application is fetching result sets that contain an extremely large
number of columns. If the application has advanced knowledge of the
characteristics of the descriptor information of a result set (that is, the exact number
of columns, column name, data type, nullability, precision, or scale), then it can
inform DB2 CLI rather than having DB2 CLI obtain this information from the
database, thus reducing the quantity of network traffic.

An application typically calls SQLSetColAttributes() after a call to SQLPrepare()
and before the associated call to SQLExecute(). An application can also call
SQLSetColAttributes() before a call to SQLExecDirect(). This function is valid only
after the statement option SQL_NODESCRIBE has been set to
SQL_NODESCRIBE_ON for this statement handle.

SQLSetColAttributes() informs DB2 CLI of the column name, type, and length that
would be generated by the subsequent execution of the query. This allows DB2
CLI to determine whether any data conversion is necessary when the result is
returned to the application. The application should only use this function if it has

292 Call Level Interface Guide and Reference

 SQLSetColAttributes

prior knowledge of the exact nature of the result set. The application must provide
the result descriptor information for every column in the result set or an error occurs
on the subsequent fetch (SQLSTATE 07002). Using this function only benefits
those applications that handle an extremely large number (hundreds) of columns in
a result set, otherwise the effect is minimal.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 110. SQLSetColAttributes SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. szColName contains a column name that is too long. To obtain
the maximum length of the column name, call SQLGetInfo with
the fInfoType SQL_MAX_COLUMN_NAME_LEN.

24000 Invalid cursor state. A cursor is already open on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1000 General error. An error occurred for which there is no specific SQLSTATE and
for which no implementation defined SQLSTATE is defined. The
error message returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1002 Invalid column number. The value specified for the argument icol is less than 1 or greater
than the maximum number of columns supported by the server.

S1004 SQL data type out of range. The value specified for the argument fSqlType is not a valid SQL
data type.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The value specified for the argument cbColName is less than 0
and not equal to SQL_NTS.

S1094 Invalid scale value. The value specified for fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for ibScale is less than 0 or
greater than the value for the argument cbColDef (precision).

The value specified for fSqlType is SQL_TIMESTAMP and the
value for ibScale is less than 0 or greater than 6.

S1099 Nullable type out of range. The value specified for fNullable is invalid.

S1104 Invalid precision value. The value specified for fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for cbColDef is less than 1.

 Chapter 5. Functions 293

 SQLSetColAttributes

 Restrictions
None.

 Example

/? ... ?/

 SQLCHAR stmt[] =

{ "Select id, name from staff" };

/? ... ?/

/? Tell DB2 CLI not to get Column Attribute from the server for this hstmt ?/

rc = SQLSetStmtOption(hstmt, SQL_NODESCRIBE, SQL_NODESCRIBE_ON);

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

/? Provide the columns attributes to DB2 CLI for this hstmt ?/

rc = SQLSetColAttributes(hstmt, 1, "-ID-", SQL_NTS, SQL_SMALLINT,

5, =, SQL_NO_NULLS);

rc = SQLSetColAttributes(hstmt, 2, "-NAME-", SQL_NTS, SQL_CHAR,

9, =, SQL_NULLABLE);

rc = SQLExecute(hstmt);

print_results(hstmt); /? Call sample function to print column attributes

and fetch and print rows. ?/

rc = SQLFreeStmt(hstmt, SQL_DROP);

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

 printf("Disconnecting\n");

rc = SQLDisconnect(hdbc);

rc = SQLFreeConnect(hdbc);

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

rc = SQLFreeEnv(henv);

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

 return (SQL_SUCCESS);

} /? end main ?/

 References
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLDescribeCol - Describe Column Attributes” on page 127
� “SQLExecute - Execute a Statement” on page 153
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLPrepare - Prepare a Statement” on page 260

294 Call Level Interface Guide and Reference

 SQLSetConnection

SQLSetConnection - Set Connection Handle

 Purpose

This function is needed if the application needs to deterministically switch to a
particular connection before continuing execution. It should only be used when the
application is mixing DB2 CLI function calls with embedded SQL function calls and
multiple connections are involved.

Specification:

 Syntax
SQLRETURN SQLSetConnection (SQLHDBC hdbc);

 Function Arguments

Table 111. SQLSetConnection Arguments

Data Type Argument Use Description

SQLHDBC hdbc input The connection handle associated with the connection to
which the application wishes to switch.

 Usage
Call Level Interface allows multiple concurrent connections. It is not clear which
connection an embedded SQL routine uses when invoked. In practice, the
embedded routine uses the connection associated with the most recent network
activity. However, from the application's perspective, this is not always easy to
determine and it is difficult to keep track of this information. SQLSetConnection() is
used to allow the application to explicitly specify which connection is active. The
application can then call the embedded SQL routine.

SQLSetConnection() is not needed at all if the application makes purely Call Level
Interface calls. This is because each statement handle is implicitly associated with
a connection handle and there is never any confusion as to which connection a
particular DB2 CLI function applies.

For more information on using embedded SQL within DB2 CLI applications refer to
“Mixing Embedded SQL and DB2 CLI” on page 366.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 295

 SQLSetConnection

 Diagnostics

Table 112. SQLSetConnection SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with
an open connection to a database server.

S1000 General error. An error occurred for which there is no specific SQLSTATE and
for which the implementation does not define an SQLSTATE.
SQLError returns an error message in the argument szErrorMsg
that describes the error and its cause.

 Restrictions
None.

 Example
Refer to “Mixed Embedded SQL and DB2 CLI Example” on page 366.

 References
� “SQLConnect - Connect to a Data Source” on page 118
� “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 136

296 Call Level Interface Guide and Reference

 SQLSetConnectOption

SQLSetConnectOption - Set Connection Option

 Purpose

SQLSetConnectOption() sets connection attributes for a particular connection.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLSetConnectOption(

 SQLHDBC hdbc,

 SQLUSMALLINT fOption,

 SQLUINTEGER vParam);

 Function Arguments

Table 113. SQLSetConnectOption Arguments

Data Type Argument Use Description

HDBC hdbc Input Connection handle.

SQLUSMALLINT fOption Input Connect option to set, refer to Table 114 on page 298 for
the complete list of connect options and their description.

SQLUINTEGER vParam Input Value associated with fOption. Depending on the option,
this can be a 32-bit integer value, or a pointer to a
null-terminated string.

 Usage
The SQLSetConnectOption() can be used to specify statement options for all
statement handles on this connection, as well as for all future statement handles on
this connection. For a list of statement options, refer to “SQLSetStmtOption - Set
Statement Option” on page 314.

All connection and statement options set via the SQLSetConnectOption() persist
until SQLFreeConnect() is called or the next SQLSetConnectOption() call.

It is illegal to call SQLSetConnectOption() (SQLSTATE S1010) if any of the
statement handles associated with this connection is in a need data state (that is, in
the middle of an SQLParamData() -- SQLPutData() sequence to process
SQL_DATA_AT_EXEC parameters). This sequence is described in
“Sending/Retrieving Long Data in Pieces” on page 349.

The format of information set with vParam depends on the specified fOption. The
option information can be either a 32-bit integer or a pointer to a null-terminated
character string. In the case of the null-terminated character string, the maximum
length of the string can be SQL_MAX_OPTION_STRING_LENGTH bytes
(excluding the null-terminator).

 Chapter 5. Functions 297

 SQLSetConnectOption

Table 114 (Page 1 of 3). Connect Options

fOption Contents

SQL_ACCESS_MODE A 32-bit integer value which can be either:

� SQL_MODE_READ_ONLY: Indicates that the application is not performing any
updates on data from this point on. Therefore, a less restrictive isolation level
and locking can be used on transactions; that is, uncommitted read
(SQL_TXN_READ_UNCOMMITTED).

DB2 CLI does not ensure that requests to the database are read-only. If an
update request is issued, DB2 CLI processes it using the transaction isolation
level it selected as a result of the SQL_MODE_READ_ONLY setting.

� SQL_MODE_READ_WRITE: Indicates that the application is making updates
on data from this point on. DB2 CLI goes back to using the default transaction
isolation level for this connection.

SQL_MODE_READ_WRITE is the default.

There must not be any outstanding transactions on this connection.

SQL_AUTOCOMMIT A 32-bit integer value that specifies whether to use auto-commit or manual commit
mode:

� SQL_AUTOCOMMIT_OFF: The application must manually, explicitly commit or
rollback transactions with SQLTransact() calls.

� SQL_AUTOCOMMIT_ON: DB2 CLI operates in auto-commit mode. Each
statement is implicitly committed. Each statement, that is not a query, is
committed immediately after it has been executed. Each query is committed
immediately after the associated cursor is closed.

SQL_AUTOCOMMIT_ON is the default.

Note: If this is a coordinated distributed unit of work connection, then the
default is SQL_AUTOCOMMIT_OFF

When specifying auto-commit, the application can have only one outstanding
statement per connection. For example, there must not be two open cursors, or
unpredictable results can occur. An open cursor must be closed before another
query is executed.

Since in many DB2 environments, the execution of the SQL statements and the
commit can be flowed separately to the database server, autocommit can be
expensive. It is recommended that the application developer take this into
consideration when selecting the auto-commit mode.

Changing from manual-commit to auto-commit mode commits any open transaction
on the connection.

298 Call Level Interface Guide and Reference

 SQLSetConnectOption

Table 114 (Page 2 of 3). Connect Options

fOption Contents

SQL_CONNECTTYPE A 32-bit integer value that specifies whether this application is to operate in a
coordinated or uncoordinated distributed environment. If the processing needs to be
coordinated, then this option must be considered in conjunction with the
SQL_SYNC_POINT connection option. The possible values are:

� SQL_CONCURRENT_TRANS: The application can have concurrent multiple
connections to any one database or to multiple databases. This option setting
corresponds to the specification of the Type 1 CONNECT in embedded SQL.
Each connection has its own commit scope. No effort is made to enforce
coordination of transaction.

The current setting of the SQL_SYNC_POINT option is ignored.

This is the default.

� SQL_COORDINATED_TRANS: The application wishes to have commit and
rollbacks coordinated among multiple database connections. This option setting
corresponds to the specification of the Type 2 CONNECT in embedded SQL
and must be considered in conjunction with the SQL_SYNC_POINT connection
option. In contrast to the SQL_CONCURRENT_TRANS setting described
above, the application is permitted only one open connection per database.

Note: This connection type results in the default for SQL_AUTOCOMMIT
connection option to be SQL_AUTOCOMMIT_OFF.

This option must be set before making a connect request; otherwise, the
SQLSetConnectOption() call is rejected.

All the connections within an application must have the same
SQL_CONNECTTYPE and SQL_SYNC_POINT values. The first connection
determines the acceptable attributes for the subsequent connections. We
recommend that the application set the SQL_CONNECTTYPE attribute at the
environment level rather than on a per connection basis. ODBC applications written
to take advantage of coordinated DB2 transactions must set these attributes at the
connection level for each connection as SQLSetEnvAttr() is not supported in
ODBC.

Note: This is an IBM-defined extension.

SQL_CURRENT_SCHEMA A null-terminated character string containing the name of the schema to be used by
DB2 CLI for the SQLColumns() call if the szSchemaName pointer is set to null.

To reset this option, specify this option with a zero length or a null pointer for the
vParam argument.

This option is useful when the application developer has coded a generic call to
SQLColumns() that does not restrict the result set by schema name, but needs to
constrain the result set at isolated places in the code.

This option can be set at any time and is effective on the next SQLColumns() call
where the szSchemaName pointer is null.

Note: This is an IBM-defined extension.

 Chapter 5. Functions 299

 SQLSetConnectOption

Table 114 (Page 3 of 3). Connect Options

fOption Contents

SQL_MAXCONN A 32-bit integer value corresponding to the number of maximum concurrent
connections that an application wants to set up. The default value is 0, which
means no maximum - the application is allowed to set up as many connections as
the system resources permit. The integer value must be 0 or a positive number.

This can be used as a governor for the maximum number of connections on a per
application basis.

The value that is in effect when the first connection is established is the value that
is used. When the first connection is established, attempts to change this value are
rejected. We recommend that the application set SQL_MAXCONN at the
environment level rather then on a connection basis. ODBC applications must set
this attribute at the connection level since SQLSetEnvAttr() is not supported in
ODBC.

Note: This is an IBM-defined extension.

SQL_PARAMOPT_ATOMIC If specified, DB2 CLI returns S1C== on SQLSetConnectOption and S1=11 on
SQLGetConnectOption.

SQL_TXN_ISOLATION A 32-bit bitmask that sets the transaction isolation level for the current connection
referenced by hdbc. The valid values for vParam can be determined at runtime by
calling SQLGetInfo() with fInfoType set to SQL_TXN_ISOLATION_OPTIONS. The
following values are accepted by DB2 CLI, but each server might only support a
subset of these isolation levels:

� SQL_TXN_READ_UNCOMMITTED - Dirty reads, reads that cannot be
repeated, and phantoms are possible.

� SQL_TXN_READ_COMMITTED - Dirty reads are not possible. Reads that
cannot be repeated, and phantoms are possible.

This is the default.
� SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be

repeated are not possible. Phantoms are possible.
� SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads,

non-repeatable reads, and phantoms are not possible.
� SQL_TXN_NOCOMMIT - Any changes are effectively committed at the end of

a successful operation; no explicit commit or rollback is allowed. This is
analogous to autocommit. This is not an SQL92 isolation level, but an IBM
defined extension, supported only by DB2 for OS/400.

 In IBM terminology,

� SQL_TXN_READ_UNCOMMITTED is uncommitted read;
� SQL_TXN_READ_COMMITTED is cursor stability;
� SQL_TXN_REPEATABLE_READ is read stability;
� SQL_TXN_SERIALIZABLE is repeatable read.

For a detailed explanation of isolation levels, refer to IBM SQL Reference

This option cannot be specified while there is an open cursor on any hstmt, or an
outstanding transaction for this connection; otherwise, SQL_ERROR is returned on
the function call (SQLSTATE S1011).

Note: There is an IBM extension that permits the setting of transaction isolation
levels on a per statement handle basis. See the
SQL_STMTTXN_ISOLATION option in the function description for
SQLSetStmtOption().

300 Call Level Interface Guide and Reference

 SQLSetConnectOption

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 115. SQLSetConnectOption SQLSTATEs

SQLSTATE Description Explanation

Note: Since SQLSetConnectOption() can also be used to set statement options, SQLSTATES for
SQLSetConnectOption() can also include those listed under "Diagnostics' for the SQLSetStmtOption() API.

01000 Warning. Informational message indicating an internal commit has been
issued on behalf of the application as part of the processing to set
the specified connection option.

01S02 Option value changed SQL_CONNECTTYPE changed to SQL_CONCURRENT_TRANS
when MULTICONTEXT=1 in use.

08003 Connection is closed. An fOption is specified that required an open connection.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. Given the fOption value, an invalid value is specified for the
argument vParam.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1011 Operation invalid at this time. The fOption specified option cannot be set at this time:

� SQL_CONNECTTYPE, SQL_LONGDATA_COMPAT: attempt
is made to change the value of these options from their
current value but the connection is open.

� SQL_TXN_ISOLATION, SQL_ACCESS_MODE: a transaction
is outstanding.

S1092 Option type out of range. An invalid fOption value is specified.

S1C00 Driver not capable. The specified fOption is not supported.

Given specified fOption value, the value specified for the
argument vParam is not supported.

 Restrictions
For compatibility with ODBC applications, fOption values of
SQL_CURRENT_QUALIFIER and SQL_PACKET_SIZE are also recognized, but
not supported. If either of these two options are specified, SQL_ERROR is returned
on the function call (SQLSTATE S1C00).

ODBC fOption values of SQL_TRANSLATE_DLL and SQL_TRANSLATE_OPTION
are not supported since DB2 handles codepage conversion at the server, not the
client.

 Chapter 5. Functions 301

 SQLSetConnectOption

 Example
Refer to “Example” on page 120.

 References
� “SQLGetConnectOption - Returns Current Setting of A Connect Option” on

page 184
� “SQLGetStmtOption - Returns Current Setting of A Statement Option” on

page 235
� “SQLSetStmtOption - Set Statement Option” on page 314

302 Call Level Interface Guide and Reference

 SQLSetCursorName

SQLSetCursorName - Set Cursor Name

 Purpose

SQLSetCursorName() associates a cursor name with the statement handle. This
function is optional since DB2 CLI implicitly generates a cursor name when each
statement handle is allocated.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLSetCursorName (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCursor,

 SQLSMALLINT cbCursor);

 Function Arguments

Table 116. SQLSetCursorName Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor input Cursor name

SQLSMALLINT cbCursor input Length of contents of szCursor argument

 Usage
DB2 CLI always generates and uses an internally generated cursor name when a
query is prepared or executed directly. SQLSetCursorName() allows an application
defined cursor name to be used in an SQL statement (a positioned UPDATE or
DELETE). DB2 CLI maps this name to the internal name. The name remains
associated with the statement handle, until the handle is dropped, or another
SQLSetCursorName() is called on this statement handle.

Although SQLGetCursorName() returns the name set by the application (if one is set),
error messages associated with positioned UPDATE and DELETE statements refer
to the internal name. For this reason, we recommend that you do not use
SQLSetCursorName(). Instead, use the internal name which can be obtained by
calling SQLGetCursorName().

Cursor names must follow these rules:

� All cursor names within the connection must be unique.
� Each cursor name must be less than or equal to 18 bytes in length. Any

attempt to set a cursor name longer than 18 bytes results in truncation of that
cursor name to 18 bytes. (No warning is generated.)

� Since internally generated names begin with SQLCUR, SQL_CUR, or
SQLCURQRS, the application must not input a cursor name starting with either
SQLCUR or SQL_CUR in order to avoid conflicts with internal names.

� Since a cursor name is considered an identifier in SQL, it must begin with an
English letter (a-z, A-Z) followed by any combination of digits (0-9), English
letters or the underscore character (_).

 Chapter 5. Functions 303

 SQLSetCursorName

� To permit cursor names containing characters other than those listed above
(such as National Language Set or Double Bytes Character Set characters),
the application must enclose the cursor name in double quotes (").

� Unless the input cursor name is enclosed in double quotes, all leading and
trailing blanks from the input cursor name string are removed.

For efficient processing, applications should not include any leading or trailing
spaces in the szCursor buffer. If the szCursor buffer contains a delimited identifier,
applications should position the first double quote as the first character in the
szCursor buffer.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 117. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name. The cursor name specified by the argument szCursor is invalid.
The cursor name either begins with SQLCUR, SQL_CUR, or
SQLCURQRS or violates the cursor naming rules (Must begin
with a-z or A-Z followed by any combination of English letters,
digits, or the '_' character.

The cursor name specified by the argument szCursor already
exists.

The cursor name length is greater than the value returned by
SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN
argument.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. szCursor is a null pointer.

S1010 Function sequence error. There is an open or positioned cursor on the statement handle.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation called prior to SQLSetCursorName().

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

S1090 Invalid string or buffer length. The argument cbCursor is less than 0, but not equal to
SQL_NTS.

304 Call Level Interface Guide and Reference

 SQLSetCursorName

 Restrictions
None.

 Example

/? ... ?/

 SQLCHAR sqlstmt[] =

"SELECT name, job FROM staff "

"WHERE job='Clerk' FOR UPDATE OF job";

/? ... ?/

/? allocate second statement handle for update statement ?/

rc2 = SQLAllocStmt(hdbc, &hstmt2);

/? Set Cursor for the SELECT statement's handle ?/

rc = SQLSetCursorName(hstmt1, "JOBCURS", SQL_NTS);

rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS);

/? bind name to first column in the result set ?/

rc = SQLBindCol(hstmt1, 1, SQL_C_CHAR, (SQLPOINTER) name.s, 1=,

 &name.ind);

/? bind job to second column in the result set ?/

rc = SQLBindCol(hstmt1, 2, SQL_C_CHAR, (SQLPOINTER) job.s, 6,

 &job.ind);

printf("Job Change for all clerks\n");

while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS) {

printf("Name: %-9.9s Job: %-5.5s \n", name.s, job.s);

printf("Enter new job or return to continue\n");

 gets(newjob);

if (newjob[=] != '\=') {

 sprintf(updstmt,

"UPDATE staff set job = '%s' where current of JOBCURS",

 newjob);

rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);

 }

 }

if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt1, rc, __LINE__, __FILE__);

/? ... ?/

 References
� “SQLGetCursorName - Get Cursor Name” on page 186

 Chapter 5. Functions 305

 SQLSetEnvAttr

SQLSetEnvAttr - Set Environment Attribute

 Purpose

SQLSetEnvAttr() sets an environment attribute for the current environment.

Specification: X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLSetEnvAttr (SQLHENV henv,

 SQLINTEGER Attribute,

 SQLPOINTER Value,

 SQLINTEGER StringLength);

 Function Arguments

Table 118. SQLSetEnvAttr Arguments

Data Type Argument Use Description

SQLHENV henv Input Environment handle.

SQLINTEGER Attribute Input Environment attribute to set. Refer to Table 119 for the
list of attributes and their descriptions.

SQLPOINTER Value Input The desired value for Attribute.

SQLINTEGER StringLength Input Length of Value in bytes if the attribute value is a
character string; if Attribute does not denote a string, then
DB2 CLI ignores StringLength.

 Usage
When set, the attribute's value affects all connections in this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

Table 119 (Page 1 of 2). Environment Attributes

Attribute Contents

SQL_ATTR_OUTPUT_NTS A 32-bit integer value which controls the use of null-termination in output arguments.
The possible values are:

� SQL_TRUE: DB2 CLI uses null termination to indicate the length of output
character strings.

This is the default.

� SQL_FALSE: DB2 CLI does not use null termination in output character strings.

The CLI functions affected by this attribute are all functions called for the
environment (and for any connections and statements allocated under the
environment) that have character string parameters.

This attribute can only be set when there are no connection handles allocated under
this environment.

306 Call Level Interface Guide and Reference

 SQLSetEnvAttr

Table 119 (Page 2 of 2). Environment Attributes

Attribute Contents

SQL_CONNECTTYPE A 32-bit integer value that specifies whether this application is to operate in a
coordinated or uncoordinated distributed environment. The possible values are:

� SQL_CONCURRENT_TRANS: Each connection has its own commit scope. No
effort is made to enforce coordination of transaction. If an application issues a
commit using the environment handle on SQLTransact() and not all of the
connections commit successfully, the application is responsible for recovery.
This corresponds to CONNECT (Type 1) semantics subject to the restrictions
described in “DB2 CLI Restrictions on the ODBC Connection Model” on
page 25.

This is the default.

� SQL_COORDINATED_TRANS: The application wishes to have commit and
rollbacks coordinated among multiple database connections. In contrast to the
SQL_CONCURRENT_TRANS setting described above, the application is
permitted only one open connection per database.

This attribute must be set before allocating any connection handles, otherwise, the
SQLSetEnvAttr() call is rejected.

All the connections within an application must have the same SQL_CONNECTTYPE
and SQL_SYNCPOINT values. This attribute can also be set using the
SQLSetConnectOption function. We recommend that the application set the
SQL_CONNECTTYPE attribute at the environment level rather than on a per
connection basis. ODBC applications written to take advantage of coordinated DB2
transactions must set these attributes at the connection level for each connection
using SQLSetConnectOption() as SQLSetEnvAttr() is not supported in ODBC.

Note: This is an IBM-defined extension.

SQL_MAXCONN A 32-bit integer value corresponding to the number that maximum concurrent
connections that an application wants to set up. The default value is 0, which means
no maximum - the application is allowed to set up as many connections as the
system resources permit. The integer value must be 0 or a positive number.

This can be used as a governor for the maximum number of connections on a per
application basis.

The value that is in effect when the first connection is established is the value that is
used. When the first connection is established, attempts to change this value are
rejected. We recommend that the application set SQL_MAXCONN at the
environment level rather then on a connection basis. ODBC applications must set
this attribute at the connection level since SQLSetEnvAttr() is not supported in
ODBC.

Note: This is an IBM-defined extension.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Chapter 5. Functions 307

 SQLSetEnvAttr

 Diagnostics

Table 120. SQLSetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

01S02 Option value changed SQL_CONNECTTYPE changed to SQL_CONCURRENT_TRANS
when MULTICONTEXT=1 in use.

S1009 Invalid argument value. Given the fOption value, an invalid value is specified for the
argument vParam.

S1011 Operation invalid at this time. Applications cannot set environment attributes while connection
handles are allocated on the environment handle.

S1092 Option type out of range. An invalid Attribute value is specified.

S1C00 Driver not capable. The specified Attribute is not supported by DB2 CLI.

Given specified Attribute value, the value specified for the
argument Value is not supported.

 Restrictions
None.

 Example
See also, “Distributed Unit of Work Example” on page 344.

/? ... ?/

int

main()

{

 SQLHENV henv;

 SQLRETURN rc;

SQLINTEGER output_nts = SQL_TRUE;

rc = SQLAllocEnv(&henv); /? allocate an environment handle ?/

if (rc == SQL_SUCCESS)

{ rc = SQLSetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, output_nts,

 =);

 }

rc = SQLFreeEnv(henv);

}

/? ... ?/

 References
� “SQLGetEnvAttr - Returns Current Setting of An Environment Attribute” on

page 205

308 Call Level Interface Guide and Reference

 SQLSetParam

SQLSetParam - Binds A Parameter Marker to a Buffer

 Purpose

Note: In ODBC 2.0, this function has been replaced by SQLBindParameter().
Refer to the restrictions section below for details.

SQLSetParam() is used to associate (bind) parameter markers in an SQL statement
to application variables (storage buffers), for all data types. In this case data is
transferred from the application to the DBMS when SQLExecute() or
SQLExecDirect() is called. Data conversion can occur as the data is transferred.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLSetParam (SQLHSTMT hstmt,

 SQLUSMALLINT ipar,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLUINTEGER cbParamDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER FAR ?pcbValue);

 Function Arguments

Table 121 (Page 1 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT ipar input Parameter marker number, ordered sequentially left to
right, starting at 1.

SQLSMALLINT fCType input C data type of argument. The following types are
supported:

 � SQL_C_BINARY
 � SQL_C_BIT
 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DBCHAR
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_TINYINT

Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type for the type
indicated in fSqlType. Refer to Table 4 on page 40 for
more information.

 Chapter 5. Functions 309

 SQLSetParam

Table 121 (Page 2 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLSMALLINT fSqlType input SQL Data Type of column. The supported types are:

 � SQL_BINARY
 � SQL_CHAR
 � SQL_DATE
 � SQL_DECIMAL
 � SQL_DOUBLE
 � SQL_FLOAT
 � SQL_GRAPHIC
 � SQL_INTEGER
 � SQL_LONGVARBINARY
 � SQL_LONGVARCHAR
 � SQL_LONGVARGRAPHIC
 � SQL_NUMERIC
 � SQL_REAL
 � SQL_SMALLINT
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARBINARY
 � SQL_VARCHAR
 � SQL_VARGRAPHIC

SQLUINTEGER cbParamDef input Precision of the corresponding parameter marker. If
fSqlType denotes:

� A binary or single byte character string (for example,
SQL_CHAR, SQL_BINARY), this is the maximum
length in bytes for this parameter marker.

� A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in
double-byte characters for this parameter.

� SQL_DECIMAL, SQL_NUMERIC, this is the maximum
decimal precision.

� Otherwise, this argument is ignored.

SQLSMALLINT ibScale input Scale of the corresponding parameter marker if fSqlType
is SQL_DECIMAL or SQL_NUMERIC. If fSqlType is
SQL_TIMESTAMP, this is the number of digits to the right
of the decimal point in the character representation of a
timestamp (for example, the scale of yyyy-mm-dd
hh:mm:ss.fff is 3).

Other than for the fSqlType values mentioned here,
ibScale is ignored.

SQLPOINTER rgbValue input
(deferred)

Pointer to the location which contains (when the
statement is executed) the actual values for the
associated parameter marker.

310 Call Level Interface Guide and Reference

 SQLSetParam

Table 121 (Page 3 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLINTEGER * pcbValue input
(deferred)

Pointer to the location which contains (when the
statement is executed) the length of the parameter marker
value stored at rgbValue.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If fCType is SQL_C_CHAR, this storage location must
contain either the exact length of the data stored at
rgbValue, or SQL_NTS if the contents at rgbValue are
null-terminated.

If fCType indicates character data (explicitly, or implicitly
using SQL_C_DEFAULT), and this pointer is set to NULL,
it is assumed that the application always provides a
null-terminated string in rgbValue. This also implies that
this parameter marker never contains a null value.

If fSqlType indicates a graphic data type, and the fCType
is SQL_C_CHAR, the pointer to pcbValue can never be
NULL and the contents of pcbValue can never hold
SQL_NTS. In general for graphic data types, this length
should be the number of octets that the double byte data
occupies; therefore, the length should always be a
multiple of 2. In fact, if the length is odd, then an error
occurs when the statement is executed.

 Usage
A parameter marker is represented by a "?" character in an SQL statement and is
used to indicate a position in the statement where an application supplied value is
to be substituted when the statement is executed. This value can be obtained from
an application variable. SQLSetParam() (or SQLBindParameter()) is used to bind the
application storage area to the parameter marker.

The application must bind a variable to each parameter marker in the SQL
statement before executing the SQL statement. For this function, rgbValue and
pcbValue are deferred arguments. The storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically allocated
or declared statically or globally.

SQLSetParam() can be called before SQLPrepare() if the columns in the result set
are known, otherwise the attributes of the result set can be obtained after the
statement is prepared.

Parameter markers are referenced by number (icol) and are numbered sequentially
from left to right, starting at 1.

All parameters bound by this function remain in effect until SQLFreeStmt() is called
with either the SQL_DROP or SQL_RESET_PARAMS option, or until
SQLSetParam() is called again for the same parameter ipar number.

 Chapter 5. Functions 311

 SQLSetParam

After the SQL statement is executed, and the results processed, the application can
reuse the statement handle to execute a different SQL statement. If the parameter
marker specifications are different (number of parameters, length or type), then
SQLFreeStmt() should be called with SQL_RESET_PARAMS to reset or clear the
parameter bindings.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqlType, or an error occurs.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are
data-at-execution parameters. The application informs DB2 CLI of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

Since the data in the variables referenced by rgbValue and pcbValue is not verified
until the statement is executed, data content or format errors are not detected or
reported until SQLExecute() or SQLExecDirect() is called.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 122 (Page 1 of 2). SQLSetParam SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the fCType
argument to the data type identified by the fSqlType argument is
not a meaningful conversion. (For example, conversion from
SQL_C_DATE to SQL_DOUBLE.)

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1003 Program type out of range. The value specified by the argument fCType is not a valid data
type or SQL_C_DEFAULT.

S1004 SQL data type out of range. The value specified for the argument fSqlType is not a valid SQL
data type.

S1009 Invalid argument value. The argument rgbValue is a null pointer.

S1010 Function sequence error. There is an open or positioned cursor on the statement handle.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation, called prior to SQLSetCursorName().

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

312 Call Level Interface Guide and Reference

 SQLSetParam

Table 122 (Page 2 of 2). SQLSetParam SQLSTATEs

SQLSTATE Description Explanation

S1093 Invalid parameter number. The value specified for the argument ipar is less than 1 or greater
than the maximum number of parameters supported by the
server.

S1094 Invalid scale value. The value specified for fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for ibScale is less than 0
or greater than the value for the argument cbParamDef
(precision).

The value specified for fCType is SQL_C_TIMESTAMP and the
value for fSqlType is either SQL_CHAR or SQL_VARCHAR and
the value for ibScale is less than 0 or greater than 6.

S1104 Invalid precision value. The value specified for cbParamDef is either less than 0 or
greater than the permissible range for the fSQLType.

S1C00 Driver not capable. DB2 CLI or the data source does not support the conversion
specified by the combination of the value specified for the
argument fCType and the value specified for the argument
fSqlType.

The value specified for the argument fCType or fSqlType is not
supported by either DB2 CLI or the data source.

 Restrictions
In ODBC 2.0, SQLSetParam() has replaced by SQLBindParameter().

SQLSetParam() cannot be used to:

� Bind application variables to parameter markers in a stored procedure CALL
statement.

� Bind arrays of application variables when SQLParamOptions() has been used
to specify multiple input parameter values.

SQLBindParameter() should be used instead in both of the above situations.

 Example
Refer to “Example” on page 263.

 References
� “SQLBindParameter - Binds A Parameter Marker to a Buffer” on page 89
� “SQLExecDirect - Execute a Statement Directly” on page 148
� “SQLExecute - Execute a Statement” on page 153
� “SQLPrepare - Prepare a Statement” on page 260

 Chapter 5. Functions 313

 SQLSetStmtOption

SQLSetStmtOption - Set Statement Option

 Purpose

SQLSetStmtOption() sets an attribute of a specific statement handle. To set an
option for all statement handles associated with a connection handle, the
application can call SQLSetConnectOption() (refer to “SQLSetConnectOption - Set
Connection Option” on page 297).

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLSetStmtOption (SQLHSTMT hstmt,

 SQLUSMALLINT fOption,

 SQLUINTEGER vParam);

 Function Arguments

Table 123. SQLSetStmtOption Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fOption input Option to set. Refer to Table 124 on page 315 for the list
of statement options that can be set and their
descriptions.

SQLUINTEGER vParam input Value associated with fOption. vParam can be a 32-bit
integer value or a pointer to a null-terminated string.

 Usage
Statement options for an hstmt remain in effect until they are changed by another
call to SQLSetStmtOption() or SQLSetConnectOption(), or the hstmt is dropped by
calling SQLFreeStmt() with the SQL_DROP option. Calling SQLFreeStmt() with the
SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset
statement options.

The format of vParam depends on the value specified fOption. The format of each
is noted in Table 124 on page 315. If the format denotes a pointer to a
null-terminated character string the maximum length is
SQL_MAX_OPTION_STRING_LENGTH (excluding the null terminator).

Note: Currently no statement option requires a string.

314 Call Level Interface Guide and Reference

 SQLSetStmtOption

Table 124 (Page 1 of 3). Statement Options

fOption Contents

Note: Values shown in bold are default values.

SQL_BIND_TYPE A 32-bit integer value that sets the binding orientation to be used when
SQLExtendedFetch() is called with this statement handle. Column-wise binding is
selected by supplying the value SQL_BIND_BY_COLUMN for the argument
vParam. Row-wise binding is selected by supplying a value for vParam specifying
the length of the structure or an instance of a buffer into which result columns are
bound.

For row-wise binding, the length specified in vParam must include space for all of
the bound columns and any padding of the structure or buffer to ensure that when
the address of a bound column is incremented with the specified length, the result
points to the beginning of the same column in the next row. (When using the
sizeof operator with structures or unions in ANSI C, this behavior is guaranteed.)

SQL_CLOSE_BEHAVIOR A 32-bit integer that forces the release of locks upon an underlying CLOSE
CURSOR operation. The possible values are:

� SQL_CC_NO_RELEASE: locks are not released when the cursor on this
statement handle is closed.

� SQL_CC_RELEASE: locks are released when the cursor on this statement
handle is closed.

Typically cursors are explicitly closed when the function SQLFreeStmt() is called
with the SQL_CLOSE or SQL_DROP option. In addition, the end of the transaction
(when a commit or rollback is issued) can also close the cursor (depending on the
WITH HOLD attribute currently in use).

SQL_CONCURRENCY If specified, DB2 CLI returns S1C== on SQLSetConnectOption and S1=11 on
SQLGetConnectOption.

SQL_CURSOR_HOLD A 32-bit integer which specifies whether the cursor associated with this hstmt is
preserved in the same position as before the COMMIT operation, and whether the
application can fetch without executing the statement again.

 � SQL_CUSROR_HOLD_ON
 � SQL_CURSOR_HOLD_OFF

The default value when an hstmt is first allocated is SQL_CURSOR_HOLD_ON.

This option cannot be specified while the re is an open cursor on this hstmt.

SQL_CURSOR_TYPE A 32-bit integer value that specifies the cursor type. The currently supported value
is:

� SQL_CURSOR_FORWARD_ONLY - Cursor behaves as a forward only
scrolling cursor.

This option cannot be set if there is an open cursor on the associated hstmt.

Note: ODBC has also defined the following values, which are not supported by
Call Level Interface:

� SQL_CURSOR_STATIC - The data in the result set appears to be
static.

� SQL_CURSOR_KEYSET_DRIVEN - The keys for the number of rows
specified in the SQL_KEYSET_SIZE option is stored. DB2 CLI does
not support this option value.

� SQL_CURSOR_DYNAMIC - The keys for the rows in the rowset are
saved. DB2 CLI does not support this option value.

If one of these values is used, SQL_SUCCESS_WITH_INFO (SQLSTATE
01S02) is returned and the value remains unchanged.

 Chapter 5. Functions 315

 SQLSetStmtOption

Table 124 (Page 2 of 3). Statement Options

fOption Contents

SQL_MAX_LENGTH A 32-bit integer value corresponding to the maximum amount of data that can be
retrieved from a single character or binary column. If data is truncated because the
value specified for SQL_MAX_LENGTH is less than the amount of data available,
an SQLGetData() call or fetch returns SQL_SUCCESS instead of returning
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (data truncated). The default
value for vParam is 0; 0 means that DB2 CLI attempts to return all available data
for character or binary type data.

SQL_MAX_ROWS A 32-bit integer value corresponding to the maximum number of rows to return to
the application from a query. The default value for vParam is 0; 0 means all rows
are returned.

SQL_NODESCRIBE A 32-bit integer which specifies whether DB2 CLI should automatically describe the
column attributes of the result set or wait to be informed by the application via
SQLSetColAttributes().

 � SQL_NODESCRIBE_OFF
 � SQL_NODESCRIBE_ON

This option cannot be specified while there is an open cursor on this hstmt.

This option is used in conjunction with the function SQLSetColAttributes() by an
application which has prior knowledge of the exact nature of the result set to be
returned and which does not wish to incur the extra network traffic associated with
the descriptor information needed by DB2 CLI to provide client side processing.

Note: This option is an IBM-defined extension.

SQL_NOSCAN A 32-bit integer value that specifies whether DB2 CLI will scan SQL strings for
escape clauses. The two permitted values are:

� SQL_NOSCAN_OFF - SQL strings are scanned for escape clause sequences.
� SQL_NOSCAN_ON - SQL strings are not scanned for escape clauses.

Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never uses vendor escape
sequences in the SQL strings that it sends. This eliminates some of the overhead
processing associated with scanning.

SQL_RETRIEVE_DATA A 32-bit integer value indicating whether DB2 CLI should actually retrieve data
from the database when SQLExtendedFetch() is called. The possible values are:

� SQL_RD_ON: SQLExtendedFetch() does retrieve data.

� SQL_RD_OFF: SQLExtendedFetch() does not retrieve data. This is useful for
verifying whether rows exist without incurring the overhead of sending long
data from the database server. DB2 CLI internally retrieves all the fixed length
columns, such as integer and smallint; so there is still some overhead.

This option cannot be set if the cursor is open.

SQL_ROWSET_SIZE A 32-bit integer value that specifies the number of rows in the rowset. A rowset is
the array of rows returned by each call to SQLExtendedFetch(). The default value
is 1, which is equivalent to making a single SQLFetch(). This option can be
specified even when the cursor is open and becomes effective on the next
SQLExtendedFetch() call.

316 Call Level Interface Guide and Reference

 SQLSetStmtOption

Table 124 (Page 3 of 3). Statement Options

fOption Contents

SQL_STMTTXN_ISOLATION
SQL_TXN_ISOLATION

A 32-bit integer value that sets the transaction isolation level for the current hstmt.
This overrides the default value set at the connection level (refer also to
“SQLSetConnectOption - Set Connection Option” on page 297 for the permitted
values).

This option cannot be set if there is an open cursor on this statement handle
(SQLSTATE 24000).

The value SQL_STMTTXN_ISOLATION is synonymous with
SQL_TXN_ISOLATION.

Note: It is an IBM extension to allow setting this option at the statement level.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 125. SQLSetStmtOption SQLSTATEs

SQLSTATE Description Explanation

01S02 Option value changed A recognized concurrency value is specified for the
SQL_CONCURRENCY option, but is not supported by DB2 CLI.

24000 Invalid cursor state. fOption is set to SQL_CONCURRENCY, SQL_CURSOR_TYPE,
SQL_STMTTXN_ISOLATION, or SQL_TXN_ISOLATION and a
cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1000 General error. An error occurred for which there is no specific SQLSTATE and
for which no implementation defined SQLSTATE is defined. The
error message returned by SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument value. Given the specified fOption value, an invalid value is specified for
the argument vParam.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation; called prior to SQLSetCursorName().

S1011 Operation invalid at this time. The fOption is SQL_CONCURRENCY, SQL_CURSOR_HOLD,
SQL_NODESCRIBE, SQL_RETRIEVE_DATA,
SQL_(STMT)TXN_ISOLATION, or SQL_CURSOR_TYPE and the
statement is prepared.

S1092 Option type out of range. An invalid fOption value is specified.

S1C00 Driver not capable. The option or option value is not supported.

 Chapter 5. Functions 317

 SQLSetStmtOption

 Restrictions
ODBC also defines statement options SQL_KEYSET_SIZE, SQL_BOOKMARKS
and SQL_SIMULATE_CURSOR. These options are not supported by DB2 CLI. If
either one is specified, SQL_ERROR (SQLSTATE S1C00) is returned.

 Example
Refer to “Example” on page 294.

 References
� “SQLColAttributes - Get Column Attributes” on page 102
� “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 156
� “SQLFetch - Fetch Next Row” on page 163
� “SQLGetConnectOption - Returns Current Setting of A Connect Option” on

page 184
� “SQLGetData - Get Data From a Column” on page 192
� “SQLGetStmtOption - Returns Current Setting of A Statement Option” on

page 235
� “SQLParamOptions - Specify an Input Array for a Parameter” on page 258
� “SQLSetConnectOption - Set Connection Option” on page 297

318 Call Level Interface Guide and Reference

 SQLSpecialColumns

SQLSpecialColumns - Get Special (Row Identifier) Columns

 Purpose

SQLSpecialColumns() returns unique row identifier information (primary key or
unique index) for a table. The information is returned in an SQL result set, which
can be retrieved using the same functions that are used to process a result set
generated by a query.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLSpecialColumns(SQLHSTMT hstmt,

 SQLUSMALLINT fColType,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName,

 SQLUSMALLINT fScope,

 SQLUSMALLINT fNullable);

 Function Arguments

S' split='1' rules='BOTH' expand.

 Chapter 5. Functions 319

 SQLSpecialColumns

Table 126 (Page 1 of 2). SQLSpecialColumns Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLUSMALLINT fColType Input Type of unique row identifier to return. Only the following
type is supported:

 � SQL_BEST_ROWID

Returns the optimal set of columns that can uniquely
identify any row in the specified table.

Note: For compatibility with ODBC applications,
SQL_ROWVER is also recognized, but not
supported; therefore, if SQL_ROWVER is
specified, an empty result is returned.

SQLCHAR * szCatalogName Input Catalog qualifier of a 3 part table name. This must be a
null pointer or a zero length string.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be a set to 0.

SQLCHAR * szSchemaName Input Schema qualifier of the specified table.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Table name.

SQLSMALLINT cbTableName Input Length of cbTableName.

SQLUSMALLINT fScope Input Minimum required duration for which the unique row
identifier is valid.

fScope must be one of the following:

� SQL_SCOPE_CURROW: The row identifier is
guaranteed to be valid only while positioned on that
row. A later re-select using the same row identifier
values might not return a row if the row was updated
or deleted by another transaction.

� SQL_SCOPE_TRANSACTION: The row identifier is
guaranteed to be valid for the duration of the current
transaction.

Note: This option is only valid if
SQL_TXN_SERIALIZABLE and
SQL_TXN_REPEATABLE_READ isolation
options are set.

� SQL_SCOPE_SESSION: The row identifier is
guaranteed to be valid for the duration of the
connection.

Note: This option is not supported by DB2 for
OS/390.

The duration over which a row identifier value is
guaranteed to be valid depends on the current transaction
isolation level. For information and scenarios involving
isolation levels, refer to SQL Reference.

320 Call Level Interface Guide and Reference

 SQLSpecialColumns

SQLUSMALLINT fNullable Input Determines whether to return special columns that can
have a NULL value.

Must be one of the following:

� SQL_NO_NULLS - The row identifier column set
returned cannot have any NULL values.

� SQL_NULLABLE - The row identifier column set
returned can include columns where NULL values are
permitted.

 Usage
If multiple ways exist to uniquely identify any row in a table (that is, if there are
multiple unique indexes on the specified table), then DB2 CLI returns the best set
of row identifier column sets based on its internal criterion.

If there is no column set that allows any row in the table to be uniquely identified,
an empty result set is returned.

The unique row identifier information is returned in the form of a result set where
each column of the row identifier is represented by one row in the result set.
Table 127 shows the order of the columns in the result set returned by
SQLSpecialColumns(), sorted by SCOPE.

Since calls to SQLSpecialColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_COLUMN_NAME_LEN to determine the actual
length of the COLUMN_NAME column supported by the connected DBMS.

Although new columns might be added and the names of the columns changed in
future releases, the position of the current columns does not change.

Table 127 (Page 1 of 2). Columns Returned By SQLSpecialColumns

Column Number/Name Data Type Description

1 SCOPE SMALLINT The duration for which the name in COLUMN_NAME is guaranteed to
point to the same row. Valid values are the same as for the fScope
argument: Actual scope of the row identifier. Contains one of the
following values:

 � SQL_SCOPE_CURROW
 � SQL_SCOPE_TRANSACTION
 � SQL_SCOPE_SESSION

Refer to fScope in Table 126 on page 320 for a description of each
value.

2 COLUMN_NAME VARCHAR(128)
NOT NULL

Name of the column that is (or part of) the table's primary key.

3 DATA_TYPE SMALLINT
NOT NULL

SQL data type of the column. One of the values in the Symbolic SQL
Data Type column in Table 4 on page 40.

 Chapter 5. Functions 321

 SQLSpecialColumns

Table 127 (Page 2 of 2). Columns Returned By SQLSpecialColumns

Column Number/Name Data Type Description

4 TYPE_NAME VARCHAR(128)
NOT NULL

DBMS character string represented of the name associated with
DATA_TYPE column value.

5 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or binary string,
then this column contains the maximum length in bytes; if it is a
graphic (DBCS) string, this is the number of double byte characters
for the parameter.

For date, time, timestamp data types, this is the total number of bytes
required to display the value when converted to character.

For numeric data types, this is either the total number of digits, or the
total number of bits allowed in the column, depending on the value in
the NUM_PREC_RADIX column in the result set.

See Table 145 on page 412.

6 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to store
data from this column if SQL_C_DEFAULT is specified on the
SQLBindCol(), SQLGetData() and SQLBindParameter() calls. This
length does not include any null-terminator. For exact numeric data
types, the length accounts for the decimal and the sign.

See Table 147 on page 414.

7 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data types where scale
is not applicable. See Table 146 on page 413.

8 PSEUDO_COLUMN SMALLINT Indicates whether or not the column is a pseudo-column. DB2 CLI
only returns:

 � SQL_PC_NOT_PSEUDO

DB2 DBMSs do not support pseudo columns. ODBC applications can
receive the following values from other non-IBM RDBMS servers:

 � SQL_PC_UNKNOWN
 � SQL_PC_PSEUDO

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 128 (Page 1 of 2). SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

322 Call Level Interface Guide and Reference

 SQLSpecialColumns

Table 128 (Page 2 of 2). SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the length arguments is less than 0, but not
equal to SQL_NTS.

The value of one of the length arguments exceeded the maximum
length supported by the DBMS for that qualifier or name.

S1097 Column type out of range. An invalid fColType value is specified.

S1098 Scope type out of range. An invalid fScope value is specified.

S1099 Nullable type out of range. An invalid fNullable values is specified.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

 Example

 Chapter 5. Functions 323

 SQLSpecialColumns

/? ... ?/

SQLRETURN

list_index_columns(SQLHDBC hdbc, SQLCHAR ?schema, SQLCHAR ?tablename)

{

/? ... ?/

rc = SQLSpecialColumns(hstmt, SQL_BEST_ROWID, NULL, =, schema, SQL_NTS,

tablename, SQL_NTS, SQL_SCOPE_CURROW, SQL_NULLABLE);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

rc = SQLBindCol(hstmt, 5, SQL_C_LONG, (SQLPOINTER) & precision,

 sizeof(precision), &precision_ind);

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT, (SQLPOINTER) & scale,

 sizeof(scale), &scale_ind);

printf("Primary Key or Unique Index for %s.%s\n", schema, tablename);

/? Fetch each row, and display ?/

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(" %s, %s ", column_name.s, type_name.s);

if (precision_ind != SQL_NULL_DATA) {

printf(" (%ld", precision);

} else {

 printf("(\n");

 }

if (scale_ind != SQL_NULL_DATA) {

printf(", %d)\n", scale);

} else {

 printf(")\n");

 }

 }

/? ... ?/

 References
� “SQLColumns - Get Column Information for a Table” on page 113
� “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 325
� “SQLTables - Get Table Information” on page 334

324 Call Level Interface Guide and Reference

 SQLStatistics

SQLStatistics - Get Index and Statistics Information For A Base Table

 Purpose

SQLStatistics() retrieves index information for a given table. It also returns the
cardinality and the number of pages associated with the table and the indexes on
the table. The information is returned in a result set, which can be retrieved using
the same functions that are used to process a result set generated by a query.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLStatistics (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName,

 SQLUSMALLINT fUnique,

 SQLUSMALLINT fAccuracy);

 Function Arguments

Table 129 (Page 1 of 2). SQLStatistics Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szCatalogName Input Catalog qualifier of a 3 part table name. This must be a
null pointer or a zero length string.

SQLSMALLINT cbCatalogName Input Length of cbCatalogName. This must be set to 0.

SQLCHAR * szSchemaName Input Schema qualifier of the specified table.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Table name.

SQLSMALLINT cbTableName Input Length of cbTableName.

SQLUSMALLINT fUnique Input Type of index information to return:

 � SQL_INDEX_UNIQUE

Only unique indexes are returned.
 � SQL_INDEX_ALL

All indexes are returned.

 Chapter 5. Functions 325

 SQLStatistics

Table 129 (Page 2 of 2). SQLStatistics Arguments

Data Type Argument Use Description

SQLUSMALLINT fAccuracy Input Indicate whether the CARDINALITY and PAGES columns
in the result set contain the most current information:

� SQL_ENSURE : This value is reserved for future use,
when the application requests the most up to date
statistics information. New applications should not
use this value. Existing applications specifying this
value receive the same results as SQL_QUICK.

� SQL_QUICK : Statistics which are readily available at
the server are returned. The values might not be
current, and no attempt is made to ensure that they
be up to date.

 Usage
SQLStatistics() returns two types of information:

� Statistics information for the table (if it is available):

– when the TYPE column in the table below is set to SQL_TABLE_STAT, the
number of rows in the table and the number of pages used to store the
table.

– when the TYPE column indicates an index, the number of unique values in
the index, and the number of pages used to store the indexes.

� Information about each index, where each index column is represented by one
row of the result set. The result set columns are given in Table 130 in the
order shown; the rows in the result set are ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME and ORDINAL_POSITION.

Since calls to SQLStatistics() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 130 (Page 1 of 2). Columns Returned By SQLStatistics

Column Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) The is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

326 Call Level Interface Guide and Reference

 SQLStatistics

Table 130 (Page 2 of 2). Columns Returned By SQLStatistics

Column Number/Name Data Type Description

3 TABLE_NAME VARCHAR(128)
NOT NULL

Name of the table.

4 NON_UNIQUE SMALLINT Indicates whether the index prohibits duplicate values:

� SQL_TRUE if the index allows duplicate values.
� SQL_FALSE if the index values must be unique.
� NULL is returned if the TYPE column indicates that this row is

SQL_TABLE_STAT (statistics information on the table itself).

5 INDEX_QUALIFIER VARCHAR(128) The string is used to qualify the index name in the DROP INDEX
statement. Appending a period (.) plus the INDEX_NAME results in
a full specification of the index.

6 INDEX_NAME VARCHAR(128) The name of the index. If the TYPE column has the value
SQL_TABLE_STAT, this column has the value NULL.

7 TYPE SMALLINT
NOT NULL

Indicates the type of information contained in this row of the result
set:

� SQL_TABLE_STAT - Indicates this row contains statistics
information on the table itself.

� SQL_INDEX_CLUSTERED - Indicates this row contains
information on an index, and the index type is a clustered index.

� SQL_INDEX_HASHED - Indicates this row contains information
on an index, and the index type is a hashed index.

� SQL_INDEX_OTHER - Indicates this row contains information
on an index, and the index type is other than clustered or
hashed.

8 ORDINAL_POSITION SMALLINT Ordinal position of the column within the index whose name is given
in the INDEX_NAME column. A NULL value is returned for this
column if the TYPE column has the value of SQL_TABLE_STAT.

9 COLUMN_NAME VARCHAR(128) Name of the column in the index. A NULL value is returned for this
column if the TYPE column has the value of SQL_TABLE_STAT.

10 ASC_OR_DESC CHAR(1) Sort sequence for the column; "A" for ascending, "D" for
descending. NULL value is returned if the value in the TYPE column
is SQL_TABLE_STAT.

11 CARDINALITY INTEGER � If the TYPE column contains the value SQL_TABLE_STAT, this
column contains the number of rows in the table.

� If the TYPE column value is not SQL_TABLE_STAT, this
column contains the number of unique values in the index.

� A NULL value is returned if information is not available from the
DBMS.

12 PAGES INTEGER � If the TYPE column contains the value SQL_TABLE_STAT, this
column contains the number of pages used to store the table.

� If the TYPE column value is not SQL_TABLE_STAT, this
column contains the number of pages used to store the indexes.

� A NULL value is returned if information is not available from the
DBMS.

13 FILTER_CONDITION VARCHAR(128) If the index is a filtered index, this is the filter condition. Since
DATABASE 2 servers do not support filtered indexes, NULL is
always returned. NULL is also returned if TYPE is
SQL_TABLE_STAT.

For the row in the result set that contains table statistics (TYPE is set to
SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,

 Chapter 5. Functions 327

 SQLStatistics

INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC are
set to NULL. If the CARDINALITY or PAGES information cannot be determined,
then NULL is returned for those columns.

Note: The accuracy of the information returned in the SQLERRD(3) and
SQLERRD(4) fields is dependent on many factors such as the use of
parameter markers and expressions within the statement. The main factor
which can be controlled is the accuracy of the database statistics. That is,
when the statistics were last updated, (for example, for DB2 for OS/390, the
last time the RUNSTATS utility was run.)

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 131. SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

S1100 Uniqueness option type out of
range.

An invalid fUnique value was specified.

S1101 Accuracy option type out of
range.

An invalid fAccuracy value was specified.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

328 Call Level Interface Guide and Reference

 SQLStatistics

 Example

/? ... ?/

SQLRETURN

list_stats(SQLHDBC hdbc, SQLCHAR ?schema, SQLCHAR ?tablename)

{

/? ... ?/

rc = SQLStatistics(hstmt, NULL, =, schema, SQL_NTS,

tablename, SQL_NTS, SQL_INDEX_UNIQUE, SQL_QUICK);

rc = SQLBindCol(hstmt, 4, SQL_C_SHORT,

&non_unique, 2, &non_unique_ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR,

index_name.s, 129, &index_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT,

&type, 2, &type_ind);

rc = SQLBindCol(hstmt, 9, SQL_C_CHAR,

column_name.s, 129, &column_name.ind);

rc = SQLBindCol(hstmt, 11, SQL_C_LONG,

&cardinality, 4, &card_ind);

rc = SQLBindCol(hstmt, 12, SQL_C_LONG,

&pages, 4, &pages_ind);

printf("Statistics for %s.%s\n", schema, tablename);

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

{ if (type != SQL_TABLE_STAT)

{ printf(" Column: %-18s Index Name: %-18s\n",

 column_name.s, index_name.s);

 }

 else

 { printf(" Table Statistics:\n");

 }

if (card_ind != SQL_NULL_DATA)

printf(" Cardinality = %13ld", cardinality);

 else

printf(" Cardinality = (Unavailable)");

if (pages_ind != SQL_NULL_DATA)

printf(" Pages = %13ld\n", pages);

 else

printf(" Pages = (Unavailable)\n");

 }

/? ... ?/

 References
� “SQLColumns - Get Column Information for a Table” on page 113
� “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 319

 Chapter 5. Functions 329

 SQLTablePrivileges

SQLTablePrivileges - Get Privileges Associated With A Table

 Purpose

SQLTablePrivileges() returns a list of tables and associated privileges for each
table. The information is returned in an SQL result set, which can be retrieved
using the same functions that are used to process a result set generated by a
query.

Specification: ODBC 1.0

 Syntax
SQLRETURN SQLTablePrivileges (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName);

 Function Arguments

Table 132. SQLTablePrivileges Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szTableQualifier Input Catalog qualifier of a 3 part table name. This must be a
null pointer or a zero length string.

SQLSMALLINT cbTableQualifier Input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName Input Buffer that can contain a pattern-value to qualify the result
set by schema name.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Buffer that can contain a pattern-value to qualify the result
set by table name.

SQLSMALLINT cbTableName Input Length of szTableName.

The szSchemaName and szTableName arguments accept search pattern. For
more information about valid search patterns, refer to “Input Arguments on Catalog
Functions” on page 347.

 Usage
The results are returned as a standard result set containing the columns listed in
the following table. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and PRIVILEGE. If multiple privileges are associated with any given
table, each privilege is returned as a separate row.

Since calls to SQLTablePrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and
the results saved rather than repeating calls.

330 Call Level Interface Guide and Reference

 SQLTablePrivileges

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 133. Columns Returned By SQLTablePrivileges

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) The is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema contain TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
NOT NULL

The name of the table.

4 GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

5 GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is granted.

6 PRIVILEGE VARCHAR(128) The table privilege. This can be one of the following strings:

 � ALTER
 � CONTROL
 � DELETE
 � INDEX
 � INSERT
 � REFERENCES
 � SELECT
 � UPDATE

7 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant the privilege to other
users.

This can be "YES", "NO" or NULL.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 134 (Page 1 of 2). SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

 Chapter 5. Functions 331

 SQLTablePrivileges

Table 134 (Page 2 of 2). SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

The value of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

 Restrictions
None.

332 Call Level Interface Guide and Reference

 SQLTablePrivileges

 Example

/? ... ?/

SQLRETURN

list_table_privileges(SQLHDBC hdbc, SQLCHAR ?schema,

SQLCHAR ?tablename)

{

 SQLHSTMT hstmt;

 SQLRETURN rc;

struct { SQLINTEGER ind; /? Length & Indicator variable ?/

SQLCHAR s[129]; /? String variable ?/

} grantor, grantee, privilege;

struct { SQLINTEGER ind;

 SQLCHAR s[4];

 }is_grantable;

SQLCHAR cur_name[512] = ""; /? Used when printing the ?/

SQLCHAR pre_name[512] = ""; /? Result set ?/

/? Allocate a statment handle to reference the result set ?/

rc = SQLAllocStmt(hdbc, &hstmt);

/? Create Table Privilges result set ?/

rc = SQLTablePrivileges(hstmt, NULL, =, schema, SQL_NTS,

 tablename, SQL_NTS);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,

 &grantor.ind);

/? Continue Binding, then fetch and display result set ?/

/? ... ?/

 References
� “SQLTables - Get Table Information” on page 334

 Chapter 5. Functions 333

 SQLTables

SQLTables - Get Table Information

 Purpose

SQLTables() returns a list of table names and associated information stored in the
system catalog of the connected data source. The list of table names is returned as
a result set, which can be retrieved using the same functions that are used to
process a result set generated by a query.

Specification: ODBC 1.0 X/OPEN CLI

 Syntax
SQLRETURN SQLTables (SQLHSTMT hstmt,

 SQLCHAR FAR ?szCatalogName,

 SQLSMALLINT cbCatalogName,

 SQLCHAR FAR ?szSchemaName,

 SQLSMALLINT cbSchemaName,

 SQLCHAR FAR ?szTableName,

 SQLSMALLINT cbTableName,

 SQLCHAR FAR ?szTableType,

 SQLSMALLINT cbTableType);

 Function Arguments

Table 135. SQLTables Arguments

Data Type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szCatalogName Input Buffer that can contain a pattern-value to qualify the result
set. Catalog is the first part of a 3 part table name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName Input Buffer that can contain a pattern-value to qualify the result
set by schema name.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Buffer that can contain a pattern-value to qualify the result
set by table name.

SQLSMALLINT cbTableName Input Length of szTableName.

SQLCHAR * szTableType Input Buffer that can contain a value list to qualify the result set
by table type.

The value list is a list of upper-case comma-separated
single quoted values for the table types of interest. Valid
table type identifiers can include: TABLE, VIEW, SYSTEM
TABLE, ALIAS, SYNONYM. If szTableType argument is a
NULL pointer or a zero length string, then this is
equivalent to specifying all of the possibilities for the table
type identifier.

If SYSTEM TABLE is specified, then both system tables
and system views (if there are any) are returned.

SQLSMALLINT cbTableType Input Size of cbTableType

334 Call Level Interface Guide and Reference

 SQLTables

Note that the szCatalogName, szSchemaName, and szTableName arguments
accept search patterns. For more information about valid search patterns, refer to
“Input Arguments on Catalog Functions” on page 347.

 Usage
Table information is returned in a result set where each table is represented by one
row of the result set. To determine the type of access permitted on any given table
in the list, the application can call SQLTablePrivileges(). Otherwise, the application
must be able to handle a situation where the user selects a table for which
SELECT privileges are not granted.

To support obtaining just a list of schemas, the following special semantics for the
szSchemaName argument can be applied: if szSchemaName is a string containing
a single percent (%) character, and szCatalogName and szTableName are empty
strings, then the result set contains a list of valid schemas in the data source.

If szTableType is a single percent character (%) and szCatalogName,
szSchemaName, and szTableName are empty strings, then the result set contains
a list of valid table types for the data source. (All columns except the TABLE_TYPE
column contain NULLs.)

If szTableType is not an empty string, it must contain a list of upper-case,
comma-separated values for the types of interest; each value can be enclosed in
single quotes or unquoted. For example, "'TABLE','VIEW'" or "TABLE,VIEW". If the
data source does not support or does not recognize a specified table type, nothing
is returned for that type.

Sometimes, an application calls SQLTables() with null pointers for some or all of the
szSchemaName, szTableName, and szTableType arguments so that no attempt is
made to restrict the result set returned. For some data sources that contain a large
quantity of tables, views, or aliases, this scenario maps to an extremely large result
set and very long retrieval times. Three mechanisms are introduced to help the end
user reduce the long retrieval times: three keywords (SCHEMALIST, SYSCHEMA,
TABLETYPE) can be specified in the CLI initialization file to help restrict the result
set when the application has supplied null pointers for either or both of
szSchemaName and szTableType. These keywords and their usage are discussed
in detail in “Initialization Keywords” on page 62. If the application did not specify a
null pointer for szSchemaName or szTableType then the associated keyword
specification in the CLI initialization file is ignored.

The result set returned by SQLTables() contains the columns listed in Table 136 on
page 336 in the order given. The rows are ordered by TABLE_TYPE, TABLE_CAT,
TABLE_SCHEM, and TABLE_NAME.

Since calls to SQLTables() in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results
saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

 Chapter 5. Functions 335

 SQLTables

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 136. Columns Returned By SQLTables

Column Name Data Type Description

TABLE_CAT VARCHAR(128) The name of the catalog containing TABLE_SCHEM. This column
contains a NULL value.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, or view, or alias, or synonym.

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the TABLE_NAME column. It
can have the string values 'TABLE', 'VIEW', 'INOPERATIVE VIEW',
'SYSTEM TABLE', 'ALIAS', or 'SYNONYM'.

REMARKS VARCHAR(254) Contains the descriptive information about the table.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 137. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1014 No more handles. DB2 CLI is not able to allocate a handle due to internal resources.

S1090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

The value of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

S1C00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

336 Call Level Interface Guide and Reference

 SQLTables

 Restrictions
None.

 Example
Also, refer to “Querying Environment Information Example” on page 46.

/? ... ?/

SQLRETURN init_tables(SQLHDBC hdbc)

{

 SQLHSTMT hstmt;

 SQLRETURN rc;

 SQLUSMALLINT rowstat[MAX_TABLES];

 SQLUINTEGER pcrow;

rc = SQLAllocStmt(hdbc, &hstmt);

/? SQL_ROWSET_SIZE sets the max number of result rows to fetch each time ?/

rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, MAX_TABLES);

/? Set Size of One row, Used for Row-Wise Binding Only ?/

rc = SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(table) / MAX_TABLES);

printf("Enter Search Pattern for Table Schema Name:\n");

 gets(table->schem);

printf("Enter Search Pattern for Table Name:\n");

 gets(table->name);

rc = SQLTables(hstmt, NULL, =, table->schem, SQL_NTS,

table->name, SQL_NTS, NULL, =);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) &table->schem, 129,

 &table->schem_l);

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) &table->name, 129,

 &table->name_l);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) &table->type, 129,

 &table->type_l);

rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) &table->remarks, 255,

 &table->remarks_l);

/? Now fetch the result set ?/

/? ... ?/

 References
� “SQLColumns - Get Column Information for a Table” on page 113
� “SQLTablePrivileges - Get Privileges Associated With A Table” on page 330

 Chapter 5. Functions 337

 SQLTransact

SQLTransact - Transaction Management

 Purpose

SQLTransact() commits or rolls back the current transaction in the specified
connection. SQLTransact() can also be used to request that a commit or rollback
be issued for each of the connections associated with the environment.

All changes to the database performed on the connection since connect time or the
previous call to SQLTransact() (whichever is the most recent) are committed or
rolled back.

If a transaction is active on a connection, the application must call SQLTransact()

before it can disconnect from the database.

Specification: ODBC 1.0 X/OPEN CLI ISO CLI

 Syntax
SQLRETURN SQLTransact (SQLHENV henv,

 SQLHDBC hdbc,

 SQLUSMALLINT fType);

 Function Arguments

Table 138. SQLTransact Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle.

If hdbc is a valid connection handle, henv is ignored.

SQLHDBC hdbc input Database connection handle.

If hdbc is set to SQL_NULL_HDBC, then henv must
contain the environment handle that the connection is
associated with.

SQLUSMALLINT fType input The desired action for the transaction. The value for this
argument must be one of:

 � SQL_COMMIT
 � SQL_ROLLBACK

 Usage
In DB2 CLI, a transaction begins implicitly when an application that does not
already have an active transaction, issues SQLPrepare(), SQLExecDirect(),
SQLExecDirect(), SQLGetTypeInfo(), or one of the catalog functions. The
transaction ends when the application calls SQLTransact() or disconnects from the
data source.

If the input connection handle is SQL_NULL_HDBC and the environment handle is
valid, then a commit or rollback is issued on each of the open connections in the
environment. SQL_SUCCESS is returned only if success is reported on all the
connections. If the commit or rollback fails for one or more of the connections,
SQLTransact() returns SQL_ERROR. To determine which connections failed the

338 Call Level Interface Guide and Reference

 SQLTransact

commit or rollback operation, the application needs to call SQLError() on each
connection handle in the environment.

It is important to note that unless the connection option SQL_CONNECTTYPE is
set to SQL_COORDINATED_TRANS (to indicate coordinated distributed
transactions), there is no attempt to provide coordinated global transaction with
one-phase or two-phase commit protocols.

Completing a transaction has the following effects:

� Prepared SQL statements (via SQLPrepare()) survive transactions; they can be
executed again without first calling SQLPrepare().

� Cursor positions are maintained after a commit unless one or more of the
following is true:

– The server is SQL/DS.
– The SQL_CURSOR_HOLD statement option for this handle is set to

SQL_CURSOR_HOLD_OFF.
– The CURSORHOLD keyword in the DB2 CLI initialization file is set so that

cursor with hold is not in effect and this has not been overridden by
resetting the SQL_CURSOR_HOLD statement option.

– The CURSORHOLD keyword is present in a the connection string on the
SQLDriverConnect() call that set up this connection, and it indicates cursor
with hold is not in effect, and this has not been overridden by resetting the
SQL_CURSOR_HOLD statement option.

If the cursor position is not maintained due to any one of the above
circumstances, the cursor is closed and all pending results are discarded.

If the cursor position is maintained after a commit, the application must issue a
fetch to re-position the cursor (to the next row) before continuing with
processing of the remaining result set.

To determine whether cursor position is maintained after a commit, call
SQLGetInfo() with the SQL_CURSOR_COMMIT_BEHAVIOR information type.

� Cursors are closed after a rollback and all pending results are discarded.

� Statement handles are still valid after a call to SQLTransact(), and can be
reused for subsequent SQL statements or de-allocated by calling
SQLFreeStmt().

� Cursor names, bound parameters, and column bindings survive transactions.

If no transaction is currently active on the connection, calling SQLTransact() has no
effect on the database server and returns SQL_SUCCESS.

SQLTransact() can fail while executing the COMMIT or ROLLBACK due to a loss of
connection. In this case the application might not be able to determine whether the
COMMIT or ROLLBACK was processed, and a database administrator's help might
be required. Refer to the DBMS product information for more information on
transaction logs and other transaction management tasks.

 Chapter 5. Functions 339

 SQLTransact

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 139. SQLTransact SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The hdbc is not in a connected state.

08007 Connection failure during
transaction.

The connection associated with the hdbc failed during the
execution of the function and it cannot be determined whether the
requested COMMIT or ROLLBACK occurred before the failure.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 CLI is not able to allocate memory required to support
execution or completion of the function.

S1012 Invalid transaction code. The value specified for the argument fType was neither
SQL_COMMIT not SQL_ROLLBACK.

S1013 Unexpected memory handling
error.

DB2 CLI is not able to access memory required to support
execution or completion of the function.

 Restrictions
SQLTransact() can not be issued if the application is executing as a stored
procedure.

 Example
Refer to “Example” on page 166.

 References
� “SQLSetStmtOption - Set Statement Option” on page 314
� “SQLGetInfo - Get General Information” on page 212

340 Call Level Interface Guide and Reference

Chapter 6. Using Advanced Features

This section covers a series of advanced tasks.

� “Environment, Connection, and Statement Options”
� “Distributed Unit of Work (Coordinated Distributed Transactions)” on page 342
� “Querying System Catalog Information” on page 346
� “Sending/Retrieving Long Data in Pieces” on page 349
� “Using Arrays to Input Parameter Values” on page 350
� “Retrieving A Result Set Into An Array” on page 353
� “Using Stored Procedures” on page 356
� “Writing Multithreaded Applications” on page 360
� “Mixing Embedded SQL and DB2 CLI” on page 366
� “Using Vendor Escape Clauses” on page 369

Environment, Connection, and Statement Options
Environments, connections, and statements each have a defined set of options (or
attributes). All attributes can be queried by the application, but only some attributes
can be changed from their default values. By changing attribute values, the
application can change the behavior of DB2 CLI.

An environment handle has attributes which affect the behavior of DB2 CLI
functions under that environment. The application can specify the value of an
attribute by calling SQLSetEnvAttr() and can obtain the current attribute value by
calling SQLGetEnvAttr(). SQLSetEnvAttr() can only be called before connection
handles have been allocated.

A connection handle has options which affect the behavior of DB2 CLI functions
under that connection. Of the options that can be changed:

� Some can be set any time after the connection handle is allocated.
� Some can be set only before the actual connection is established.
� Some can be set only after the connection is established.
� Some can be set after the connection is established, but only while there are

no outstanding transactions or open cursors.

The application can change the value of connection options by calling
SQLSetConnectOption() and can obtain the current value of an option by calling
SQLGetConnectOption(). An example of a connection option which can be set any
time after a handle is allocated is the auto-commit option introduced in “Commit or
Rollback” on page 33. For complete details on when each option can be set, refer
to “SQLSetConnectOption - Set Connection Option” on page 297.

A statement handle has options which affect the behavior of CLI functions executed
using that statement handle. Of the statement options that can be changed:

� Some options can be set, but currently can be set to only one specific value.
� Some options can be set any time after the statement handle is allocated.
� Some options can only be set if there is no open cursor on that statement

handle.

The application can specify the value of any settable statement option by calling
SQLSetStmtOption(), and can obtain the current value of an option by calling

 Copyright IBM Corp. 1997 341

SQLGetStmtOption(). For complete details on when each option can be set, refer to
“SQLSetStmtOption - Set Statement Option” on page 314.

The SQLSetConnectOption() function can also be used to set statement options for
all statement handles currently associated with the connection as well as for all
future statement handles to be allocated under this connection. However,
SQLGetConnectOption() can only be used to obtain connection options;
SQLGetStmtOption() must be used to obtain the current value of a statement option.

Many applications use just the default option settings; however, there can be
situations where some of these defaults are not suitable for a particular user of the
application. DB2 CLI provides end users with two methods to change some of
these default values at run time. The first method is to specify the new default
attribute values in the connection string input to the SQLDriverConnect() function.
The second method involves the specification of the new default attribute values in
a DB2 CLI initialization file.

The DB2 CLI initialization file can be used to change default values for all DB2 CLI
applications. This might be the end user's only means of changing the defaults if
the application does not have a way for the user to provide default attribute values
in the SQLDriverConnect() connection string. Default attribute values that are
specified on SQLDriverConnect() override the values in the DB2 CLI initialization
file for that particular connection. For information on how the end user can use the
DB2 CLI initialization file as well as for a list of changeable defaults, refer to “DB2
CLI Initialization File” on page 60.

The mechanisms for changing defaults are intended for end user tuning; application
developers must use the appropriate set-option function. If an application does call
a set-option or attribute function with a value different from the initialization file or
the connection string specification, then the initial default value is overridden and
the new value takes effect.

The options that can be changed, are listed in the detailed function descriptions of
the set option or attributes functions, see “Chapter 5. Functions” on page 71. The
read-only options (if any exist) are listed with the detailed function descriptions of
the get option or attribute functions.

For information on some commonly used options, refer to Appendix A,
“Programming Hints and Tips” on page 385.

Figure 8 shows the addition of the option or attribute functions to the basic connect
scenario.

Figure 8. Setting and Retrieving Options (Attributes)

Distributed Unit of Work (Coordinated Distributed Transactions)
The transaction scenario described in “Connecting to One or More Data Sources”
on page 26 portrays an application which interacts with only one database server
in a transaction. Further, only one transaction (that associated with the current
server) existed at any given time.

342 Call Level Interface Guide and Reference

With distributed unit of work (coordinated distributed transactions), the application, if
executing CONNECT (Type 2), is able to access multiple database servers from
within the same coordinated transaction. This section describes how DB2 CLI
applications can be written to use coordinated distributed unit of work.

 First, consider the environment attribute (SQL_CONNECTTYPE) which controls
whether the application is to operate in a coordinated or uncoordinated distributed
environment. The two possible values for this attribute are:

� SQL_CONCURRENT_TRANS - supports the single data source per transaction
semantics described in Chapter 2. Multiple (logical) concurrent connections to
different data sources are permitted. This is the default.

� SQL_COORDINATED_TRANS - supports the multiple data sources per
transaction semantics, as discussed below.

All connections within an application must have the same SQL_CONNECTTYPE
setting. It is recommended that the application set this environment attribute, if
necessary, as soon as SQLAllocEnv() is called successfully.

Options that Govern Distributed Unit of Work Semantics
A coordinated transaction means that commits or rollbacks among multiple data
source connections are coordinated. The SQL_COORDINATED_TRANS setting of
the SQL_CONNECTTYPE attribute corresponds to the CONNECT (Type 2) in IBM
embedded SQL.

All the connections within an application must have the same
SQL_CONNECTTYPE setting. After the first connection is established, all
subsequent connect types must be the same as the first. Coordinated connections
default to manual-commit mode (for discussion on auto-commit mode, see “Commit
or Rollback” on page 33).

Figure 9 shows the logical flow of an application executing statements on two
SQL_CONCURRENT_TRANS connections ('A' and 'B'), and indicates the scope
of the transactions.

Figure 10 on page 344 shows the same statements being executed on two
SQL_COORDINATED_TRANS connections ('A' and 'B'), and the scope of a
coordinated distributed transaction.

Figure 9. Multiple Connections with Concurrent Transactions

In Figure 9, within the context of the ODBC connection model, the third and fourth
transactions can be interleaved as shown. That is, if the application has specified
SQL_CONCURRENT_TRANS, then the ODBC model supports one transaction for
each active connection. The third transaction, consisting of the execution of
statements B2, B2 again and B1 at data source B, can be managed and committed
independent of the fourth transaction, consisting of the execution of statements A1
and A2 at data source A. That is, the transactions at A and B are independent and
exist concurrently.

If the application specifies SQL_CONCURRENT_TRANS and is executing with
MULTICONTEXT== specified in the initialization file, then DB2 for OS/390 allows any
number of concurrent connection handles to be allocated, subject to the restriction
that only one physical connection can exist at any given time. This behavior

 Chapter 6. Using Advanced Features 343

precludes support for the ODBC connection model, and consequently the behavior
of the application is substantially different (than that described for the ODBC
execution model described above.)

In particular, the third transaction is executed as three transactions. Prior to
executing statement 'B2', DB2 CLI connects to B. This statement is executed and
committed prior to reconnecting to data source A to execute "A1". Similarly, this
statement at data source A is committed prior to reconnecting to data source B to
execute statement "B2". This statement is then committed and a reconnection is
made to A to execute "A2". Next, another commit occurs and a reconnection to B
to execute "B1".

From an application point of view, the transaction at data source B, consisting of
B2->B2->B1, is broken into three independent transactions: B2, B2 and B1. The
fourth transaction at data source A, consisting of A1->A2, is broken into two
independent transactions: A1 and A2.

Figure 10. Multiple Connections with Coordinated Transactions

For a discussion of multiple active transaction support, see “DB2 CLI Support of
Multiple Contexts” on page 362.

Establishing a Coordinated Transaction Connection
An application can establish coordinated transaction connections by calling the
SQLSetEnvAttr() or SQLSetConnectOption() functions, or by setting the
CONNECTTYPE keyword in the DB2 CLI initialization file or in the connection
string for SQLDriverConnect(). The initialization file is intended for existing
applications that do not use the SQLSetConnectOption() function. For information
about the keywords, refer to “DB2 CLI Initialization File” on page 60.

An application cannot have a mixture of concurrent and coordinated connections;
the type of the first connection determines the type of all subsequent connections.
SQLSetEnvAttr() and SQLSetConnectOption() return an error if an application
attempts to change the connect type while there is an active connection. When the
connection type is established, it persists until SQLFreeEnv is called.

Distributed Unit of Work Example
The following example connects to two data sources using a SQL_CONNECTTYPE
set to SQL_COORDINATED_TRANS (CONNECT (Type 2)).

344 Call Level Interface Guide and Reference

/? ... ?/

#define MAX_CONNECTIONS 2

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server);

int

main()

{

 SQLHENV henv;

 SQLHDBC hdbc[MAX_CONNECTIONS];

 SQLRETURN rc;

 char ? svr[MAX_CONNECTIONS] =

 {

 "KARACHI" ,

 "DAMASCUS"

 }

/? allocate an environment handle ?/

 SQLAllocEnv(&henv);

/? Before allocating any connection handles, set Environment wide

 Connect Options ?/

/? Set to Connect Type 2 ?/

rc = SQLSetEnvAttr(henv, SQL_CONNECTTYPE,

(SQLPOINTER) SQL_COORDINATED_TRANS, =);

/? ... ?/

/? Connect to first data source ?/

/? allocate a connection handle ?/

if (SQLAllocConnect(henv, &hdbc[=]) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");

 return (SQL_ERROR);

 }

/? Connect to first data source (Type-II) ?/

 DBconnect (henv,

 &hdbc[=],

 svr[=]);

/? allocate a second connection handle ?/

if (SQLAllocConnect(henv, &hdbc[1]) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");

 return (SQL_ERROR);

 }

/? Connect to second data source (Type-II) ?/

 DBconnect (henv,

 &hdbc[1],

 svr[1]);

 Chapter 6. Using Advanced Features 345

/????????? Start Processing Step ?????????????????????????/

/? allocate statement handle, execute statement, etc. ?/

/? Note that both connections participate in the disposition?/

/? of the transaction. Note that a NULL connection handle ?/

/? is passed as all work is committed on all connections. ?/

/????????? End Processing Step ???????????????????????????/

(void) SQLTransact (henv,

 SQL_NULL_HDBC,

 SQL_COMMIT);

/? Disconnect, free handles and exit ?/

}

/??

?? Server is passed as a parameter. Note that USERID and PASSWORD??

?? are always NULL. ??

??/

int

DBconnect(SQLHENV henv,

SQLHDBC ? hdbc,

 char ? server)

{

 SQLRETURN rc;

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

SQLAllocConnect(henv, hdbc);/? allocate a connection handle ?/

rc = SQLConnect(?hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n", server);

 return (SQL_ERROR);

} else {

printf(">Connected to %s\n", server);

 return (SQL_SUCCESS);

 }

}

/? ... ?/

Querying System Catalog Information
 Often, one of the first tasks an application performs is to display to the user a list
of tables from which one or more tables are selected by the user to work with.
Although the application can issue its own queries against the database system
catalog to get this type of catalog information, it is best that the application calls the
DB2 CLI catalog functions instead. These catalog functions provide a generic
interface to issue queries and return consistent result sets across the DB2 family of
servers. In most cases, this allows the application to avoid server specific and
release specific catalog queries.

 The catalog functions operate by returning a result set to the application through a
statement handle. Calling these functions is conceptually equivalent to using
SQLExecDirect() to execute a SELECT against the system catalog tables. After
calling these functions, the application can fetch individual rows of the result set as

346 Call Level Interface Guide and Reference

it would process column data from an ordinary SQLFetch(). The DB2 CLI catalog
functions are:

� “SQLColumnPrivileges - Get Privileges Associated With The Columns of A
Table” on page 108

� “SQLColumns - Get Column Information for a Table” on page 113
� “SQLForeignKeys - Get the List of Foreign Key Columns” on page 168
� “SQLPrimaryKeys - Get Primary Key Columns of A Table” on page 268
� “SQLProcedureColumns - Get Input/Output Parameter Information for A

Procedure” on page 273
� “SQLProcedures - Get List of Procedure Names” on page 282
� “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 319
� “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 325
� “SQLTablePrivileges - Get Privileges Associated With A Table” on page 330
� “SQLTables - Get Table Information” on page 334

The result sets returned by these functions are defined in the descriptions for each
catalog function. The columns are defined in a specified order. The results sets for
each API are fixed and cannot be changed. In future releases, other columns might
be added to the end of each defined result set, therefore applications should be
written in a way that would not be affected by such changes.

Some of the catalog functions result in execution of fairly complex queries, and for
this reason should only be called when needed. It is recommended that the
application save the information returned rather than making repeated calls to get
the same information.

Input Arguments on Catalog Functions
All of the catalog functions have CatalogName and SchemaName (and their
associated lengths) on their input argument list. Other input arguments can also
include TableName, ProcedureName, or ColumnName (and their associated
lengths). These input arguments are used to either identify or constrain the amount
of information to be returned. CatalogName, however, must always be a null pointer
(with its length set to 0) as DB2 CLI does not support three-part naming.

In the Function Arguments sections for these catalog functions in “Chapter 5.
Functions” on page 71, each of the above input arguments are described either as
a pattern-value or just as an ordinary argument. For example,
SQLColumnPrivileges() treats SchemaName and TableName as ordinary
arguments and ColumnName as a pattern-value.

Inputs treated as ordinary arguments are taken literally and the case of letters is
significant. The argument does not qualify a query but rather identifies the
information desired. If the application passes a null pointer for this argument, the
results can be unpredictable.

Inputs treated as pattern-values are used to constrain the size of the result set by
including only matching rows as though the underlying query were qualified by a
WHERE clause. If the application passes a null pointer for a pattern-value input, the
argument is not used to restrict the result set (that is, there is no WHERE clause).
If a catalog function has more than one pattern-value input argument, they are
treated as though the WHERE clauses in the underlying query were joined by AND;
a row appears in this result set only if it meets all the conditions of the WHERE
clauses.

 Chapter 6. Using Advanced Features 347

 Each pattern-value argument can contain:

� The underscore (_) character which stands for any single character.

� The percent (%) character which stands for any sequence of zero or more
characters.

� Characters which stand for themselves. The case of a letter is significant.

 These argument values are used on conceptual LIKE predicates in the WHERE
clause. To treat the metadata characters (_, %) as themselves, an escape
character must immediately precede the _ or %. The escape character itself can be
specified as part of the pattern by including it twice in succession. An application
can determine the escape character by calling SQLGetInfo() with
SQL_SEARCH_PATTERN_ESCAPE.

Catalog Functions Example
 In the sample application:

� A list of all tables are displayed for the specified schema (qualifier) name or
search pattern.

� Column, special column, foreign key, and statistics information is returned for a
selected table.

DB2 for common server is the data source in this example. Output from a sample is
shown below. Relevant segments of the sample are listed for each of the catalog
functions.

Enter Search Pattern for Table Schema Name:

STUDENT

Enter Search Pattern for Table Name:

%

TABLE SCHEMA TABLE_NAME TABLE_TYPE

------------------------- ------------------------- ----------

1 STUDENT CUSTOMER TABLE

2 STUDENT DEPARTMENT TABLE

3 STUDENT EMP_ACT TABLE

4 STUDENT EMP_PHOTO TABLE

5 STUDENT EMP_RESUME TABLE

6 STUDENT EMPLOYEE TABLE

7 STUDENT NAMEID TABLE

8 STUDENT ORD_CUST TABLE

9 STUDENT ORD_LINE TABLE

1= STUDENT ORG TABLE

11 STUDENT PROD_PARTS TABLE

12 STUDENT PRODUCT TABLE

13 STUDENT PROJECT TABLE

14 STUDENT STAFF TABLE

Enter a table Number and an action:(n [Q | C | P | I | F | T |O | L])

|Q=Quit C=cols P=Primary Key I=Index F=Foreign Key |

|T=Tab Priv O=Col Priv S=Stats L=List Tables |

348 Call Level Interface Guide and Reference

1c

Schema: STUDENT Table Name: CUSTOMER

CUST_NUM, NOT NULLABLE, INTeger (1=)

FIRST_NAME, NOT NULLABLE, CHARacter (3=)

LAST_NAME, NOT NULLABLE, CHARacter (3=)

STREET, NULLABLE, CHARacter (128)

CITY, NULLABLE, CHARacter (3=)

PROV_STATE, NULLABLE, CHARacter (3=)

PZ_CODE, NULLABLE, CHARacter (9)

COUNTRY, NULLABLE, CHARacter (3=)

PHONE_NUM, NULLABLE, CHARacter (2=)

>> Hit Enter to Continue<<

1p

Primary Keys for STUDENT.CUSTOMER

 1 Column: CUST_NUM Primary Key Name: = NULL

>> Hit Enter to Continue<<

1f

Primary Key and Foreign Keys for STUDENT.CUSTOMER

 CUST_NUM STUDENT.ORD_CUST.CUST_NUM

Update Rule SET NULL , Delete Rule: NO ACTION

>> Hit Enter to Continue<<

Sending/Retrieving Long Data in Pieces
When manipulating long data, it might not be feasible for the application to load the
entire parameter data value into storage at the time the statement is executed, or
when the data is fetched from the database. A method is provided to allow the
application to handle the data in pieces. The technique to send long data in pieces
is called Specifying Parameter Values at Execute Time because it can also be used
to specify values for fixed size non-character data types such as integers.

Specifying Parameter Values at Execute Time
 A bound parameter for which value is prompted at execution time instead of stored
in memory before calling SQLExecute() or SQLExecDirect() is called a
data-at-execute parameter. To indicate such a parameter on an
SQLBindParameter() or SQLSetParam() call, the application:

� Sets the input data length pointer to point to a variable that, at execute time,
contains the value SQL_DATA_AT_EXEC.

� If there is more than one data-at-execute parameter, sets each input data
pointer argument to some value that it recognizes as uniquely identifying the
field in question.

If there are any data-at-execute parameters when the application calls
SQLExecDirect() or SQLExecute(), the call returns with SQL_NEED_DATA to
prompt the application to supply values for these parameters. The application
responds as follows:

1. It calls SQLParamData() to conceptually advance to the first such parameter.
SQLParamData() returns SQL_NEED_DATA and provides the contents of the
input data pointer argument specified on the associated SQLBindParameter() or
SQLSetParam() call to help identify the information required.

 Chapter 6. Using Advanced Features 349

2. It calls SQLPutData() to pass the actual data for the parameter. Long data can
be sent in pieces by calling SQLPutData() repeatedly.

3. It calls SQLParamData() again after it has provided the entire data for this
data-at-execute parameter. If more data-at-execute parameters exist,
SQLParamData() again returns SQL_NEED_DATA and the application repeats
steps 2 and 3 above.

When all data-at-execute parameters are assigned values, SQLParamData()

completes execution of the SQL statement and produces a return value and
diagnostics as the original SQLExecDirect() or SQLExecute() would have produced.
The right side of Figure 11 illustrates this flow.

While the data-at-execution flow is in progress, the only DB2 CLI functions the
application can call are:

� SQLParamData() and SQLPutData() as given in the sequence above.

� The SQLCancel() function which is used to cancel the flow and force an exit
from the loops on the right side of Figure 11 without executing the SQL
statement.

� The SQLError() function. The application also must not end the transaction nor
set any connection attributes.

Fetching Data in Pieces
Typically, based on its knowledge of a column in the result set (via
SQLDescribeCol() or prior knowledge), the application can choose to allocate the
maximum memory the column value can occupy and bind it using SQLBindCol().
However, in the case of character and binary data, the column can be long. If the
length of the column value exceeds the length of the buffer the application can
allocate, or afford to allocate, a feature of SQLGetData() lets the application use
repeated calls to obtain in sequence the value of a single column in more
manageable pieces.

Basically, as shown on the left side of Figure 11, a call to SQLGetData() returns
SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data exists
for this column. SQLGetData() is called repeatedly to get the remaining pieces of
data until it returns SQL_SUCCESS, signifying that the entire data were retrieved
for this column.

Input and Retrieval Example
See “DB2 CLI Application” on page 435 for a detailed example that uses
SQLGetData() and SQLPutData() to input and retrieve data.

Figure 11. Input and Retrieval of Data in Pieces

Using Arrays to Input Parameter Values
For some data entry and update applications, users might often insert, delete, or
change many cells in a data entry form and then ask for the data to be sent to the
database. For these situations of bulk insert, delete, or update, DB2 CLI provides
an array input method to save the application from having to call SQLExecute()

350 Call Level Interface Guide and Reference

repeatedly on the same INSERT, DELETE, or UPDATE statement. In addition,
there can be savings in network flows.

This method involves the binding of parameter markers to arrays of storage
locations via the SQLBindParameter() call. For character and binary input data, the
application uses the maximum input buffer size argument (cbValueMax) on
SQLBindParameter() call to indicate to DB2 CLI the location of values in the input
array. For other input data types, the length of each element in the array is
assumed to be the size of the C data type. SQLParamOptions() is called to specify
how many elements are in the array before the execution of the SQL statement.

Suppose for Figure 12 on page 352 there is an application that allows the user to
change values in the OVERTIME_WORKED and OVERTIME_PAID columns of a
time sheet data entry form. Also suppose that the primary key of the underlying
EMPLOYEE table is EMPLOY_ID. The application can then request to prepare the
following SQL statement:

UPDATE EMPLOYEE SET OVERTIME_WORKED= ? and OVERTIME_PAID= ?

WHERE EMPLOY_ID=?

When the user enters all the changes, the application counts that n rows are to
change and allocates m=3 arrays to store the changed data and the primary key.
Then, the application makes calls to functions as follows:

1. SQLBindParameter() to bind the three parameter markers to the location of
three arrays in memory.

2. SQLParamOptions() to specify the number of rows to change (the size of the
array).

3. SQLExecute() once and all the updates are sent to the database.

This is the flow shown on the right side of Figure 12 on page 352.

The basic method is shown on the left side of Figure 12 on page 352 where
SQLBindParameter() is called to bind the three parameter markers to the location of
three variables in memory. SQLExecute() is called to send the first set of changes
to the database. The variables are updated to reflect values for the next row of
changes and again SQLExecute() is called. This method has n-1 extra
SQLExecute() calls. For insert and update, use SQLRowCount to verify the number of
changed rows.

Note: SQLSetParam() must not be used to bind an array storage location to a
parameter marker. In the case of character or binary input data, there is no
method to specify the size of each element in the input array.

For queries with parameter markers on the WHERE clauses, an array of input
values generate multiple sequential result sets. Each result set can be processed
before moving onto the next one by calling SQLMoreResults(). See
“SQLMoreResults - Determine If There Are More Result Sets” on page 245 for
more information and an example.

Figure 12 on page 352 shows the two methods of executing a statement with m
parameters n times. The basic method shown on the left calls SQLExecute() once
for each set of parameter values. The array method on the right, calls
SQLParamOptions() to specify the number of rows (n), then calls SQLExecute()
once. Both methods must call SQLBindParameter() once for each parameter.

 Chapter 6. Using Advanced Features 351

Figure 12. Array Insert

Array Input Example
This example shows an array INSERT statement. For an example of an array query
statement, refer to “SQLMoreResults - Determine If There Are More Result Sets”
on page 245.

/? ... ?/

SQLUINTEGER pirow = =;

 SQLCHAR stmt[] =

"INSERT INTO CUSTOMER (Cust_Num, First_Name, Last_Name) "

"VALUES (?, ?, ?)";

SQLINTEGER Cust_Num[25] = {

1=, 2=, 3=, 4=, 5=, 6=, 7=, 8=, 9=, 1==,

11=, 12=, 13=, 14=, 15=, 16=, 17=, 18=, 19=, 2==,

21=, 22=, 23=, 24=, 25=

 };

SQLCHAR First_Name[25][31] = {

"EVA", "EILEEN", "THEODORE", "VINCENZO", "SEAN",

"DOLORES", "HEATHER", "BRUCE", "ELIZABETH", "MASATOSHI",

 "MARILYN", "JAMES", "DAVID", "WILLIAM", "JENNIFER",

 "JAMES", "SALVATORE", "DANIEL", "SYBIL", "MARIA",

 "ETHEL", "JOHN", "PHILIP", "MAUDE", "BILL"

 };

SQLCHAR Last_Name[25][31] = {

"SPENSER", "LUCCHESI", "O'CONNELL", "QUINTANA",

"NICHOLLS", "ADAMSON", "PIANKA", "YOSHIMURA",

"SCOUTTEN", "WALKER", "BROWN", "JONES",

"LUTZ", "JEFFERSON", "MARINO", "SMITH",

"JOHNSON", "PEREZ", "SCHNEIDER", "PARKER",

"SMITH", "SETRIGHT", "MEHTA", "LEE",

 "GOUNOT"

 };

/? ... ?/

/? Prepare the statement ?/

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

rc = SQLParamOptions(hstmt, 25, &pirow);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

=, =, Cust_Num, =, NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

31, =, First_Name, 31, NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

31, =, Last_Name, 31, NULL);

rc = SQLExecute(hstmt);

printf("Inserted %ld Rows\n", pirow);

/? ... ?/

352 Call Level Interface Guide and Reference

Retrieving A Result Set Into An Array
One of the most common tasks performed by an application is to issue a query
statement, and then fetch each row of the result set into application variables that
were bound using SQLBindCol(). If the application requires that each column or
each row of the result set be stored in an array, each fetch must be followed by
either a data copy operation or a new set of SQLBindCol() calls to assign new
storage areas for the next fetch.

Alternatively, applications can eliminate the overhead of extra data copies or extra
SQLBindCol() calls by retrieving multiple rows of data (called a rowset) at a time
into an array. SQLBindCol() is also used to assign storage for application array
variables. By default, the binding of rows is in column-wise fashion: this is
symmetrical to using SQLBindParameter() to bind arrays of input parameter values
as described in the previous section.

Figure 13. Column-Wise Binding

Figure 14. Row-Wise Binding

Returning Array Data for Column-Wise Bound Data
Figure 13 is a logical view of column-wise binding. The right side of Figure 15 on
page 354 shows the function flows for column-wise retrieval.

To specify column-wise array retrieval, the application calls SQLSetStmtOption()

with the SQL_ROWSET_SIZE attribute to indicate how many rows to retrieve at a
time. When the value of the SQL_ROWSET_SIZE attribute is greater than 1, DB2
CLI knows to treat the deferred output data pointer and length pointer as pointers to
arrays of data and length rather than to one single element of data and length of a
result set column.

The application then calls SQLExtendedFetch() to retrieve the data. When returning
data, DB2 CLI uses the maximum buffer size argument (cbValueMax) on
SQLBindCol() to determine where to store successive rows of data in the array; the
number of bytes available for return for each element is stored in the deferred
length array. If the number of rows in the result set is greater than the
SQL_ROWSET_SIZE attribute value, multiple calls to SQLExtendedFetch() are
required to retrieve all the rows.

Returning Array Data for Row-Wise Bound Data
The application can also do row-wise binding which associates an entire row of the
result set with a structure. In this case the rowset is retrieved into an array of
structures, each of which holds the data in one row and the associated length
fields. Figure 14 gives a pictorial view of row-wise binding.

To perform row-wise array retrieval, the application needs to call
SQLSetStmtOption() with the SQL_ROWSET_SIZE attribute to indicate how many
rows to retrieve at a time. In addition, it must call SQLSetStmtOption() with the
SQL_BIND_TYPE attribute value set to the size of the structure to which the result
columns are bound. DB2 CLI treats the deferred output data pointer of
SQLBindCol() as the address of the data field for the column in the first element of

 Chapter 6. Using Advanced Features 353

the array of these structures. It treats the deferred output length pointer as the
address of the associated length field of the column.

The application then calls SQLExtendedFetch() to retrieve the data. When returning
data, DB2 CLI uses the structure size provided with the SQL_BIND_TYPE attribute
to determine where to store successive rows in the array of structures.

Figure 15 shows the required functions for each method. The left side shows n
rows being selected, and retrieved one row at a time into m application variables.
The right side shows the same n rows being selected, and retrieved directly into an
array.

Note:

� The diagram shows m columns bound, so m calls to SQLBindCol() are required
in both cases.

� If arrays of less than n elements had been allocated, then multiple
SQLExtendedFetch() calls would be required.

Figure 15. Array Retrieval

Column-Wise, Row-Wise Binding Example

/? ... ?/

#define NUM_CUSTOMERS 25

 SQLCHAR stmt[] =

{ "WITH " /? Common Table expression (or Define Inline View) ?/

"order (ord_num, cust_num, prod_num, quantity, amount) AS "

 "("

"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, '.'), p.units, char(l.quantity, '.')) "

"FROM ord_cust c, ord_line l, product p "

"WHERE c.ord_num = l.ord_num AND l.prod_num = p.prod_num "

"AND cust_num = CNUM(cast (? as integer)) "

 "), "

"totals (ord_num, total) AS "

 "("

"SELECT ord_num, sum(decimal(amount, 1=, 2)) "

"FROM order GROUP BY ord_num "

 ") "

354 Call Level Interface Guide and Reference

/? The 'actual' SELECT from the inline view ?/

"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,1=,2) amount, total "

"FROM order, totals "

"WHERE order.ord_num = totals.ord_num "

 };

/? Array of customers to get list of all orders for ?/

 SQLINTEGER Cust[]=

 {

1=, 2=, 3=, 4=, 5=, 6=, 7=, 8=, 9=, 1==,

11=, 12=, 13=, 14=, 15=, 16=, 17=, 18=, 19=, 2==,

21=, 22=, 23=, 24=, 25=

 };

#define NUM_CUSTOMERS sizeof(Cust)/sizeof(SQLINTEGER)

/? Row-Wise (Includes buffer for both column data and length) ?/

 struct {

 SQLINTEGER Ord_Num_L;

 SQLINTEGER Ord_Num;

 SQLINTEGER Cust_Num_L;

 SQLINTEGER Cust_Num;

 SQLINTEGER Prod_Num_L;

 SQLINTEGER Prod_Num;

 SQLINTEGER Quant_L;

 SQLDOUBLE Quant;

 SQLINTEGER Amount_L;

 SQLDOUBLE Amount;

 SQLINTEGER Total_L;

 SQLDOUBLE Total;

 } Ord[ROWSET_SIZE];

SQLUINTEGER pirow = =;

 SQLUINTEGER pcrow;

 SQLINTEGER i;

 SQLINTEGER j;

/? ... ?/

/? Get details and total for each order Row-Wise ?/

rc = SQLAllocStmt(hdbc, &hstmt);

rc = SQLParamOptions(hstmt, NUM_CUSTOMERS, &pirow);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

=, =, Cust, =, NULL);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

/? SQL_ROWSET_SIZE sets the max number of result rows to fetch each time ?/

rc = SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);

/? Set Size of One row, Used for Row-Wise Binding Only ?/

rc = SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(Ord) / ROWSET_SIZE);

/? Bind column 1 to the Ord_num Field of the first row in the array?/

rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) &Ord[=].Ord_Num, =,

 &Ord[=].Ord_Num_L);

/? Bind remaining columns ... ?/

/? ... ?/

 Chapter 6. Using Advanced Features 355

/? NOTE: This sample assumes that an order never has more

rows than ROWSET_SIZE. A check should be added below to call

SQLExtendedFetch multiple times for each result set.

 ?/

do /? for each result set ?/

{ rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, =, &pcrow, NULL);

if (pcrow > =) /? if 1 or more rows in the result set ?/

 {

i = j = =;

 printf("??????????????????????????????????????\n");

printf("Orders for Customer: %ld\n", Ord[=].Cust_Num);

 printf("??????????????????????????????????????\n");

while (i < pcrow)

{ printf("\nOrder #: %ld\n", Ord[i].Ord_Num);

 printf(" Product Quantity Price\n");

printf(" -------- ---------------- ------------\n");

j = i;

while (Ord[j].Ord_Num == Ord[i].Ord_Num)

{ printf(" %8ld %16.7lf %12.2lf\n",

Ord[i].Prod_Num, Ord[i].Quant, Ord[i].Amount);

 i++;

 }

 printf(" ============\n");

 printf(" %12.2lf\n", Ord[j].Total);

} /? end while ?/

} /? end if ?/

 }

while (SQLMoreResults(hstmt) == SQL_SUCCESS);

/? ... ?/

Using Stored Procedures
An application can be designed to run in two parts, one on the client and the other
on the server. The stored procedure is a server application that runs at the
database within the same transaction as the client application. Stored procedures
can be written in either embedded SQL or using the DB2 CLI functions (see
“Writing a DB2 CLI Stored Procedure” on page 358).

Both the main application that calls a stored procedure and a stored procedure
itself can be a either a CLI application or a standard DB2 precompiled application.
Any combination of embedded SQL and CLI applications can be used. Figure 16
illustrates this concept.

Figure 16. Running Stored Procedures

Advantages of Using Stored Procedures
In general, stored procedures have the following advantages:

� Avoid network transfer of large amounts of data obtained as part of
intermediate results in a long sequence of queries.

� Deployment of client database applications into client/server pieces.

356 Call Level Interface Guide and Reference

In addition, stored procedures written in embedded static SQL have the following
advantages:

� Performance - static SQL is prepared at precompile time and has no run time
overhead of access plan (package) generation.

� Encapsulation (information hiding) - users do not need to know the details
about database objects in order to access them. Static SQL can help enforce
this encapsulation.

� Security - users access privileges are encapsulated within the packages
associated with the stored procedures, so there is no need to grant explicit
access to each database object. For example, you can grant a user run access
for a stored procedure that selects data from tables for which the user does not
have select privilege.

Catalog Table for Stored Procedures
If the server is DB2 for common server Version 2 Release 1 or later, or DB2 for
MVS/ESA Version 4 or later, an application can call SQLProcedureColumns() to
determine the type of a parameter in a procedure call.

If the stored procedure resides on a DB2 for MVS/ESA Version 4 or later server,
the name of the stored procedure must be defined in the
SYSIBM.SYSPROCEDURES catalog table. (The pseudo catalog table used by DB2
for common server is a derivation and extension of the DB2 for OS/390
SYSIBM.SYSPROCEDURES catalog table).

For more information, refer to “Catalog Table for Stored Procedures” and
“SQLProcedureColumns - Get Input/Output Parameter Information for A Procedure”
on page 273.

Calling Stored Procedures from a DB2 CLI Application
Stored procedures are invoked from a DB2 CLI application by passing the following
CALL statement syntax to SQLExecDirect() or to SQLPrepare() followed by
SQLExecute().

 ┌ ┐─,───
��─ ─CALL──procedure-name──(─ ───

�
┴┬ ┬─── ─)──────────────────────────────────��

 └ ┘ ─?─

procedure-name
The name of the stored procedure to execute.

Note: Although the CALL statement cannot be prepared dynamically, DB2 CLI
accepts the CALL statement as if it could be dynamically prepared.

Stored procedures can also be called using the ODBC vendor escape
sequence shown in “Stored Procedure Call Syntax” on page 371.

For more information regarding the use of the CALL statement and stored
procedures, refer to SQL Reference and Application Programming and SQL Guide.

If the server is DB2 for common server Version 2 Release 1 or later, or DB2 for
MVS/ESA Version 4 or later, SQLProcedures() can be called to obtain a list of
stored procedures available at the database.

 Chapter 6. Using Advanced Features 357

The ? in the CALL statement syntax diagram denotes parameter markers
corresponding to the arguments for a stored procedure. All arguments must be
passed using parameter markers; literals, the NULL keyword, and special registers
are not allowed. However, literals can be used if a vendor escape clause for the
CALL statement is used. See “Using Vendor Escape Clauses” on page 369.

The parameter markers in the CALL statement are bound to application variables
using SQLBindParameter(). Although stored procedure arguments can be used both
for input and output, in order to avoid sending unnecessary data between the client
and the server, the application should specify on SQLBindParameter() the
parameter type of an input argument to be SQL_PARAM_INPUT and the parameter
type of an output argument to be SQL_PARAM_OUTPUT. Those arguments that
are both input and output have a parameter type of
SQL_PARAM_INPUT_OUTPUT. Literals are considered type SQL_PARAM_INPUT
only.

Writing a DB2 CLI Stored Procedure
Although embedded SQL stored procedures provide the most advantages,
application developers who have existing DB2 CLI applications might wish to move
components of the application to run on the server. In order to minimize the
required changes to the code and logic of the application, these components can
be implemented by writing stored procedures using DB2 CLI.

Auto-commit must be off. This is acheived by using the AUTOCOMMIT keyword in the
initialization file or by using the SQLSetConnectOption API with the
SQL_AUTOCOMMIT connect option SQL_AUTOCOMMIT_OFF.

SQLConnect() should be a null connect. Since all the internal information related to
a DB2 CLI connection is referenced by the connection handle, and since a stored
procedure runs under the same connection and transaction as the client
application, a stored procedure written using DB2 CLI must make a null
SQLConnect() call to associate a connection handle with the underlying connection
of the client application. In a null SQLConnect() call, the szDSN, szUID, and
szAuthStr argument pointers are all set to NULL and their respective length
arguments all set to 0.

For stored procedures written in DB2 CLI, the COMMIT_ON _RETURN option has
no effect on DB2 CLI rules; set it to 'N'. However, be aware that setting this
option to 'N' overrides the manual-commit mode set in the client application.

For information about binding a stored procedure that runs under DB2 CLI, see
“Bind Stored Procedures” on page 53.

Returning Result Sets From Stored Procedures
DB2 CLI provides the ability to retrieve one or more result sets from a stored
procedure call, provided the stored procedure is coded such that one or more
cursors, each associated with a query, is opened and left opened when the stored
procedure exits. If more than one cursor is left open, multiple result sets are
returned.

Stored procedures written to return one or more result sets to a DB2 CLI
application should indicate the maximum number of result sets that can be returned

358 Call Level Interface Guide and Reference

in the RESULT_SETS column of the SYSIBM.SYSPROCEDURES table. A zero in
this column indicates that open cursors returned no result sets.

Programming Stored Procedures to Return Result Sets
To return one or more result sets to a DB2 CLI application the stored procedure
must satisfy the following requirements:

� The stored procedure indicates that it wants a result set returned by declaring a
cursor on the result set, opening a cursor on the result set (that is, executing
the query), and leaving the cursor open when exiting the stored procedure.

� For every cursor that is left open, a result set is returned to the application.

� If more than one cursor is left open, the result sets are returned in the order in
which their cursors were opened in the stored procedure.

� In a stored procedure, DB2 CLI uses a cursor declared WITH RETURN. If the
cursor is closed before the stored procedure exit, it is a local cursor. If the
cursor remains open upon stored procedure exit, it returns a query result set
(also called a multiple result set) to the client application.

� To leave the cursor open to return result sets, the application must follow these
guidelines:

– Issue SQLExecute() or SQLExecDirect().

– Optionally, SQLFetch() rows.

– Do not issue SQLFreeStmt() with either SQL_DROP or SQL_CLOSE.

– Issue SQLDisconnect(), SQLFreeConnect(), and SQLFreeEnv() to terminate
with the statement handle in a valid state.

By avoiding SQLFreeStmt(), the cursor remains open to return result sets.
Appendix F, “Example Code” on page 435 provides an example; see case 2 of
step 4.

� Only unread rows are passed back. For example, if the result set of a cursor
has 500 rows, and 150 of those rows were already read by the stored
procedure when it terminated, then rows 151 through 500 are returned to the
stored procedure. This can be useful if the stored procedure wishes to filter out
some initial rows and not return them to the application.

Restrictions on Stored Procedures Returning Result Sets
In general, calling a stored procedure that returns a result set is equivalent to
executing a query statement. The following restrictions apply:

� Column names are not returned by either SQLDescribeCol() or
SQLColAttributes() for static query statements. In this case, the ordinal
position of the column is returned instead.

� All result sets are read-only.

� Schema functions (such as SQLTables()) cannot be used to return a result set.
If schema functions are used within a stored procedure, all of the cursors for
the associated statement handles must be closed before returning, otherwise
extraneous result sets might be returned.

� When a query is prepared, result set column information is available before the
execute. When a stored procedure is prepared, the result set column
information is not available until the CALL statement is executed.

 Chapter 6. Using Advanced Features 359

Programming DB2 CLI Client Applications to Receive Result
Sets
DB2 CLI applications can retrieve result sets after the execution of a stored
procedure that leaves cursors open. The following guidelines explain the process
and requirements.

� Before the stored procedure is called, ensure that there are no open cursors
associated with the statement handle.

� Call the stored procedure.

� The execution of the stored procedure CALL statement effectively causes the
cursors associated with the result sets to open.

� Examine any output parameters that are returned by the stored procedure. For
example, the procedure might be designed so that there is an output parameter
that indicates exactly how many result sets are generated.

� The DB2 CLI application can then process a query as it normally does. If the
application does not know the nature of the result set or the number of columns
returned, it can call SQLNumResultCols(), SQLDescribeCol() or
SQLColAttributes(). Next, the application can use any permitted combination
of SQLBindCol(), SQLFetch(), and SQLGetData() to obtain the data in the result
set.

� When SQLFetch() returns SQL_NO_DATA_FOUND or if the application is
finished with the current result set, the application can call SQLMoreResults() to
determine if there are more result sets to retrieve. Calling SQLMoreResults()
closes the current cursor and advances processing to the next cursor that was
left open by the stored procedure.

� If there is another result set, then SQLMoreResults() returns SQL_SUCCESS;
otherwise, it returns an SQL_NO_DATA_FOUND.

� Result sets must be processed in serial fashion by the application, that is, one
at a time in the order that they were opened in the stored procedure.

Stored Procedure Example with Query Result Set
A detailed stored procedure example is provided in Appendix F, “Example Code”
on page 435.

Writing Multithreaded Applications
This section explains DB2 CLI's support of multithreading and multiple contexts,
and provides guidelines for programming techniques.

DB2 CLI Support of Multiple LE Threads
All DB2 CLI applications have at least one LE thread created automatically in the
application's LE enclave. A multithreaded DB2 CLI application creates additional LE
threads using the POSIX Pthread function pthread_create(). These additional
threads share the same reentrant copy of DB2 CLI code within the LE enclave.

DB2 CLI code is reentrant but uses shared storage areas that must be protected if
multiple LE threads are running concurrently in the same enclave. The quality of
being reentrant and correctly handling shared storage areas is referred to as
threadsafe. This quality is required by multithreaded applications.

360 Call Level Interface Guide and Reference

DB2 CLI supports concurrent execution of LE threads by making all of the DB2 CLI
function calls threadsafe. This threadsafe quality of function calls is only available if
DB2 CLI has access to OpenEdition system services. DB2 CLI uses the Pthread
mutex functions of OpenEdition system services to provide threadsafe function calls
by serializing critical sections of DB2 CLI code. See “Initialization Keywords” on
page 62 for a description of the THREADSAFE keyword.

Because OpenEdition system services are present, threadsafe capability is
available by default when executing a DB2 CLI application in the following
environments:

� The OpenEdition shell

� TSO or batch for HFS-resident applications using the IBM supplied BPXBATCH
program. (See OS/390 OpenEdition Command Reference for more information
about BPXBATCH).

� TSO or batch for applications that are not HFS-resident if the LE runtime option
POSIX(ON) is specified when the application runs.

For example, to specify POSIX(ON) in TSO, you can invoke the DB2 CLI
application APP1 in the MVS dataset USER.RUNLIB.LOAD as follows:

CALL 'USER.RUNLIB.LOAD(APP1)' 'POSIX(ON)/'

Using batch JCL, you can invoke the same application:

//STEP1 EXEC PGM=APP1,PARM='POSIX(ON)/'

//STEPLIB DD DSN=USER.RUNLIB.LOAD,DISP=SHR

// DD ...other libraries needed at runtime...

For more OpenEdition information relating to DB2 CLI, see “Special Considerations
for OS/390 OpenEdition” on page 55. Also, see Language Environment for OS/390
& VM Programming Guide for more information about running programs that use
OpenEdition system services.

Multithreaded applications allow threads to perform work in parallel on different
connections as shown in Figure 17.

Figure 17. Multithreaded Application

In Figure 17, an application implements a database-to-database copy as follows:

� A parent LE thread creates two child LE threads. The parent thread remains
present for the duration of the activity of the child threads. DB2 CLI requires
that the thread which establishes the environment using SQLAllocEnv() must
remain present for the duration of the application, so that DB2 language
interface routines remain resident in the LE enclave.

� One child LE thread connects to database A and uses SQLFetch() calls to read
data from one connection into a shared application buffer.

� Another child LE thread connects to database B and concurrently reads from
the shared buffer, inserting the data into database B.

� Pthread functions are used to synchronize the use of the shared application
buffer. See OS/390 C/C++ Run-Time Library Reference for a description of the
Pthread functions.

 Chapter 6. Using Advanced Features 361

When to Use Multiple LE Threads
Detailed discussion of evaluating application requirements and making decisions
about whether or not to use multithreading is beyond the scope of this book.
However, there are some general application types that are well-suited to
multithreading. For example, applications that handle asynchronous work requests
are candidates for multithreading.

An application that handles asynchronous work requests can take the form of a
parent/child threading model in which the parent LE thread creates child LE threads
to handle incoming work. The parent thread can then act as a dispatcher of these
work requests as they arrive, directing them to child threads that are not currently
busy servicing other work.

DB2 CLI Support of Multiple Contexts
The context consists of the application's logical connection to the data source and
associated internal DB2 CLI connection information that allows the application to
direct its operations to a data source. In DB2 CLI, the context is established when
SQLAllocConnect() is issued.

The context is the DB2 CLI equivalent of a DB2 thread. DB2 CLI always creates a
context when a successful SQLAllocConnect() is first issued by an application LE
thread. If DB2 CLI support for multiple contexts is not enabled, only the first
SQLAllocConnect() for a LE thread establishes a context. With support for multiple
contexts, DB2 CLI establishes a separate context (and DB2 thread) each time the
SQLAllocConnect() function is invoked.

If the initialization file specifies MULTICONTEXT== (see “Initialization Keywords” on
page 62), there can only be one context for each LE thread that the application
creates. This single context per thread can provide only the simulated support of
the ODBC connection model, explained in “DB2 CLI Restrictions on the ODBC
Connection Model” on page 25.

When the initialization file specifies MULTICONTEXT=1, a distinct context is established
for each connection handle that is allocated when SQLAllocConnect() is issued.
Using MULTICONTEXT=1 requires:

� The RRSAF attachment facility, specified by MVSATTACHTYPE=RRSAF in the
initialization file.

� OS/390 Unauthorized Context Services, available in OS/390 Version 2 Release
5 and higher releases.

Consistent with the ODBC connection model, the use of MULTICONTEXT=1 implies
CONNECTTYPE=1. The connections are independently handled by SQLTransact for
both commit and rollback.

The creation of a context for each connection is consistent with, and provides full
support for, the ODBC connection model.

The context is established with SQLAllocConnect() and deleted by
SQLFreeConnect(). All SQLConnect() and SQLDisconnect() operations that use the
same connection handle belong to the same context. Although there can be only
one active connection to a data source at any given time for the duration of the

362 Call Level Interface Guide and Reference

context, the target data source can be changed by SQLDisconnect() and
SQLConnect(), subject to the rules of CONNECTTYPE=1.

With MULTICONTEXT=1 specified, DB2 CLI automatically uses OS/390 Unauthorized
Context Services to create and manage contexts for the application. However, DB2
CLI does not perform context management for the application if any of the following
are true:

� The CLI application created a DB2 thread before invoking DB2 CLI. This is
always the case for a stored procedure using DB2 CLI.

� The CLI application created and switched to a private context before invoking
DB2 CLI. For example, an application that is explicitly using OS/390 Context
Services and issues ctxswch to switch to a private context prior to invoking DB2
CLI cannot take advantage of MULTICONTEXT=1.

� The CLI application started a unit of recovery with any RRS resource manager
before invoking DB2 CLI.

� MVSATTACHTYPE=CAF is specified in the initialization file.

� The OS/390 operating system level does not support Unauthorized Context
Services.

The application can use the SQLGetInfo() function with
finfoType=SQL_MULTIPLE_ACTIVE_TXN to determine if MULTICONTEXT=1 is active for
the DB2 CLI application. See “SQLGetInfo - Get General Information” on page 212
for the description of SQLGetInfo().

Table 140. Connection Characteristics

Settings Results

MULTICONTEXT CONNECTTYPE Can LE thread
have more than

one CLI connection
with an

outstanding unit of
work?

Can LE thread
commit/rollback
CLI connection
independently?

Number of DB2
created by DB2 CLI
on behalf of
application

0 2 Y N 1 per LE thread

0 1 N Y 1 per LE thread

1 1 1 or 2 2 Y Y 1 per CLI connection
handle

Note:

1. MULTICONTEXT=1 requires MVSATTACHTYPE=RRSAF and OS/390 Version 2 Release 5 or higher.

2. MULTICONTEXT=1 implies CONNECTTYPE=1 characteristics. With MULTICONTEXT=1 and CONNECTTYPE=2 specified
in the initialization file, DB2 CLI ignores CONNECTTYPE=2. With MULTICONTEXT=1 specified, any attempts to set
CONNECTTYPE=2 using SQLSetEnvAttr(), SQLSetConnectOptions(), or SQLDriverConnect() are rejected with
SQLSTATE=01S02.

� All connections in a DB2 CLI application have the same CONNECTTYPE and MULTICONTEXT
characteristics. CONNECTTYPE is established at the first SQLConnect(). MULTICONTEXT is established at
SQLAllocEnv().

� For CONNECTTYPE=1 or MULTICONTEXT=1, the AUTOCOMMIT default is ON. For CONNECTTYPE=2 or
MULTICONTEXT==, the AUTOCOMMIT default is OFF.

 Chapter 6. Using Advanced Features 363

Multiple Contexts, One LE Thread
When using the initialization file setting MULTICONTEXT=1, a DB2 CLI application can
create multiple independent connections for a LE thread. Figure 18 is an example
of a multicontext, one LE thread application.

 /? Get an environment handle (henv). ?/

SQLAllocEnv(&henv);

 /?

? Get two connection handles, hdbc1 and hdbc2, which

? represent two independent DB2 threads.

 ?/

SQLAllocConnect(henv , &hdbc1);

SQLAllocConnect(henv , &hdbc2);

 /? Set autocommit off for both connections. ?/

 /? This is done only to emphasize the ?/

 /? independence of the connections for purposes ?/

 /? of this example, and is not intended as ?/

 /? a general recommendation. ?/

SQLSetConnectOption(hdbc1 , SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

SQLSetConnectOption(hdbc2 , SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

 /? Perform SQL under DB2 thread 1 at STLEC1. ?/

SQLConnect(hdbc1, (SQLCHAR ?) "STLEC1", ...);

 SQLAllocStmt ...

 SQLExecDirect ...

 .

 .

 /? Perform SQL under DB2 thread 2 at STLEC1. ?/

SQLConnect(hdbc2, (SQLCHAR ?) "STLEC1", ...);

 SQLAllocStmt ...

 SQLExecDirect ...

 .

 .

 /? Commit changes on connection 1. ?/

SQLTransact(henv , hdbc1 , SQL_COMMIT);

 /? Rollback changes on connection 2. ?/

SQLTransact(henv , hdbc2 , SQL_ROLLBACK);

 .

 .

Figure 18. Example of independent connections on a single LE thread.

Multiple Contexts, Multiple LE Threads
Using the initialization file setting MULTICONTEXT=1, combined with the default
THREADSAFE=1, the application can create multiple independent connections under
multiple LE threads. This capability can support complex DB2 CLI server
applications that handle multiple incoming work requests by using a fixed number of
threads.

The multiple context, multiple LE thread capability requires some special
considerations for the application using it. The Pthread functions should be used by

364 Call Level Interface Guide and Reference

the application for serialization of the use of connection handles and the associated
statement handles. As an example of what can go wrong without proper
serialization, see Figure 19 on page 365.

Figure 19. Example of improper serialization.

The suggested design is to map one LE thread per connection by establishing a
pool of connections as shown in Figure 20.

Figure 20. Model for Multithreading with Connection Pooling (MULTICONTEXT=1)

In Figure 20, a pool of connections is established as follows:

� Designate a parent LE thread which allocates:

– m child LE threads
– n connection handles

� Each task that requires a connection is executed by one of the child LE
threads, and is given one of the n connections by the parent LE thread. The
parent thread remains active, acting as a dispatcher of tasks.

� The parent LE thread marks a connection as being in use until the child thread
returns it to the connection pool.

� The parent LE thread frees the connections using SQLFreeConnect() when the
parent thread is ending.

DB2 CLI requires that the LE thread which establishes the environment using
SQLAllocEnv() must remain present for the duration of the application, so that DB2
language interface routines will remain resident in the LE enclave.

This suggested design allows the parent LE thread to create more LE threads than
connections if the threads are also used to perform non-SQL related tasks, or more
connections than threads if the application should maintain a pool of active
connections but limit the number of active tasks.

Connections can move from one application LE thread to another as the
connections in the pool are assigned to child threads, returned to the pool, and
assigned again.

The use of this design prevents two LE threads from trying to use the same
connection (or an associated statement handle) at the same time. Although DB2
CLI controls access to its internal resources, the application resources such as
bound columns, parameter buffers, and files are not controlled by DB2 CLI. If it is
necessary for two threads to share an application resource, the application must
implement some form of synchronization mechanism. For example, the database
copy scenario in Figure 17 on page 361 uses Pthread functions to synchronize use
of the shared buffer.

 Application Deadlocks
The possibility of timeouts, deadlocks, and general contention for database
resources exists when multiple connections are used to access the same database
resources concurrently.

 Chapter 6. Using Advanced Features 365

An application that creates multiple connections by using multithreading or multiple
context support can potentially create deadlocks with shared resources in the
database.

A DB2 subsystem can detect deadlocks and rollback one or more connections to
resolve them. An application can still deadlock if the following sequence occurs:

� Two LE threads connect to the same data source using two DB2 threads.

� One LE thread holds an internal application resource (such as a mutex) while
its DB2 thread waits for access to a database resource.

� The other LE thread has a lock on a database resource while waiting for the
internal application resource.

In this case the DB2 subsystem does not detect a deadlock since the application's
internal resources cannot be monitored by a DB2 subsystem. However, the
application is still subject to the DB2 subsystem detecting and handling any DB2
thread timeouts.

Mixing Embedded SQL and DB2 CLI
It is possible, and sometimes desirable for an application to use DB2 CLI in
conjunction with embedded static SQL. Consider the scenario where the application
developer wishes to take advantage of the ease of use provided by the DB2 CLI
catalog functions and maximize the portion of the application's processing where
performance is critical. In order to mix the use of DB2 CLI and embedded SQL, the
application must comply to the following rules:

� All connection management and transaction management must be performed
completely using either DB2 CLI or embedded SQL. Either the DB2 CLI
application performs all the connects and commits/rollback and calls functions
written using embedded SQL; or an embedded SQL application performs all the
connects and commits/rollback and calls functions written in DB2 CLI which use
a null connection (see “Writing a DB2 CLI Stored Procedure” on page 358 for
details on null connections).

� Query statement processing must not and cannot straddle across DB2 CLI and
embedded SQL interfaces for the same statement; for example, the application
cannot open a cursor in an embedded SQL routine, and then call the DB2 CLI
SQLFetch() function to retrieve row data.

Since DB2 CLI permits multiple connections, the SQLSetConnection() function must
be called prior to making a function call to a routine written in embedded SQL. This
allows the application to explicitly specify the connection under which the
embedded SQL routine should perform its processing. If the application only ever
sets up one connection, or if the application is written entirely in DB2 CLI, then calls
to SQLSetConnection() are not needed.

Mixed Embedded SQL and DB2 CLI Example
The following example demonstrates an application that connects to two data
sources, and executes both embedded SQL and dynamic SQL using DB2 CLI.

366 Call Level Interface Guide and Reference

/? ... ?/

/? allocate an environment handle ?/

 SQLAllocEnv(&henv);

/? Connect to first data source ?/

 DBconnect(henv, &hdbc[=]);

/? Connect to second data source ?/

 DBconnect(henv, &hdbc[1]);

/????????? Start Processing Step ?????????????????????????/

/? NOTE: at this point there are two active connections ?/

/? set current connection to the first database ?/

if ((rc = SQLSetConnection(hdbc[=])) != SQL_SUCCESS)

printf("Error setting connection 1\n");

/? call function that contains embedded SQL ?/

if ((rc = Create_Tab()) != =)

printf("Error Creating Table on 1st connection, RC=%ld\n", rc);

/? Commit transation on connection 1 ?/

SQLTransact(henv, hdbc[=], SQL_COMMIT);

/? set current connection to the second database ?/

if ((rc = SQLSetConnection(hdbc[1])) != SQL_SUCCESS)

printf("Error setting connection 2\n");

/? call function that contains embedded SQL ?/

if ((rc = Create_Tab()) != =)

printf("Error Creating Table on 2nd connection, RC=%ld\n", rc);

/? Commit transation on connection 2 ?/

SQLTransact(henv, hdbc[1], SQL_COMMIT);

/? Pause to allow the existance of the tables to be verified. ?/

printf("Tables created, hit Return to continue\n");

 getchar();

 SQLSetConnection(hdbc[=]);

if ((rc = Drop_Tab()) != =)

printf("Error dropping Table on 1st connection, RC=%ld\n", rc);

 Chapter 6. Using Advanced Features 367

/? Commit transation on connection 1 ?/

SQLTransact(henv, hdbc[=], SQL_COMMIT);

 SQLSetConnection(hdbc[1]);

if ((rc = Drop_Tab()) != =)

printf("Error dropping Table on 2nd connection, RC=%ld\n", rc);

/? Commit transation on connection 2 ?/

SQLTransact(henv, hdbc[1], SQL_COMMIT);

 printf("Tables dropped\n");

/????????? End Processing Step ???????????????????????????/

/? ... ?/

/????????????? Embedded SQL Functions ???????????????????????????????

?? This would normally be a separate file to avoid having to ?

?? keep precompiling the embedded file in order to compile the DB2 CLI ?

?? section5= ?

??/

EXEC SQL INCLUDE SQLCA;

int

Create_Tab()

{

EXEC SQL CREATE TABLE mixedup

(ID INTEGER, NAME CHAR(1=));

 return(SQLCODE);

}

int

Drop_Tab()

{

EXEC SQL DROP TABLE mixedup;

 return(SQLCODE);

}

/? ... ?/

368 Call Level Interface Guide and Reference

Using Vendor Escape Clauses
The X/Open SQL CAE specification defines an escape clause as: “a syntactic
mechanism for vendor-specific SQL extensions to be implemented in the framework
of standardized SQL”. Both DB2 CLI and ODBC support vendor escape clauses as
defined by X/Open.

Note: ODBC defines short forms of vendor escape clauses that are not defined by
X/Open.

Currently, escape clauses are used extensively by ODBC to define SQL
extensions. DB2 CLI translates the ODBC extensions into the correct DB2 syntax.
The SQLNativeSql() function can be used to display the resulting syntax.

If an application is only going to access DB2 data sources, then there is no reason
to use the escape clauses. If an application is going to access other data sources
that offer the same support, but uses different syntax, then the escape clauses
increase the portability of the application.

Escape Clause Syntax
The format of an X/Open SQL escape clause definition is:

 --(?vendor(vendor-identifier),

product(product-identifier) extended SQL text?)--

vendor-identifier Vendor identification that is consistent across all of that
vendor's SQL products (for example, IBM).

product-identifier Identifies an SQL product (for example, DB2).

These two parts make up the SQL-escape-identification.

Using ODBC Defined SQL Extensions
ODBC has used a vendor escape clause of:

--(? vendor(Microsoft), product(ODBC) extended SQL text?)--

to define the following SQL extensions (these extensions are not defined by
X/Open):

� Extended date, time, timestamp data

 � Outer join

 � LIKE predicate

� Call stored procedure

� Extended scalar functions

 – Numeric functions
 – String functions
 – System functions

ODBC also defines a shorthand syntax for specifying these extensions:

{ extended SQL text }

X/Open does not support this shorthand syntax; however, it is widely used by
ODBC applications.

 Chapter 6. Using Advanced Features 369

ODBC Date, Time, Timestamp Data
The ODBC escape clauses for date, time, and timestamp data are:

--(�vendor(Microsoft),product(ODBC) d 'value'�)--
K.

--(�vendor(Microsoft),product(ODBC) t 'value'�)--
--(�vendor(Microsoft),product(ODBC) ts 'value'�)--

d indicates value is a date in the yyyy-mm-dd format,
t indicates value is a time in the hh:mm:ss format
ts indicates value is a timestamp in the yyyy-mm-dd hh:mm:ss.ffffff format.

The shorthand syntax for date, time, and timestamp data is:

 {d 'value'}
 {t 'value'}
 {ts 'value'}

For example, each of the following statements can be used to issue a query
against the EMPLOYEE table:

SELECT ? FROM EMPLOYEE

WHERE HIREDATE=--(?vendor(Microsoft),product(ODBC) d '1994-=3-29' ?)--

SELECT ? FROM EMPLOYEE WHERE HIREDATE={d '1994-=3-29'}

DB2 CLI translates either of the above statements to a DB2 format.
SQLNativeSql() can be used to return the translated statement.

The ODBC escape clauses for date, time, and timestamp literals can be used in
input parameters with a C data type of SQL_C_CHAR.

ODBC Outer Join Syntax
The ODBC escape clause for outer join is:

--(�vendor(Microsoft),product(ODBC) oj outer join�)--

where outer join is:

table-name {LEFT | RIGHT | FULL} OUTER JOIN

{table-name | outer-join}
 ON search-condition

Or alternatively, the ODBC shorthand syntax is:

 {oj outer-join}

For example, DB2 CLI translates the following two statements:

SELECT ? FROM

 --(?vendor(Microsoft),product(ODBC) oj

T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3?)--

 WHERE T1.C2>2=

SELECT ? FROM {oj T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3}

 WHERE T1.C2>2=

to IBM's format, which corresponds to the SQL92 outer join syntax.

SELECT ? FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3 WHERE T1.C2>2=

370 Call Level Interface Guide and Reference

Note: Not all servers support outer join. To determine if the current server
supports outer joins, call SQLGetInfo() with the SQL_OUTER_JOIN and
SQL_OJ_CAPABILITIES options.

LIKE Predicate Escape Clauses
In an SQL LIKE predicate, the metacharacter % matches zero or more of any
character and the metacharacter _ matches any one character. The ESCAPE
clause allows the definition of patterns intended to match values that contain the
actual percent and underscore characters by preceding them with an escape
character. The escape clause ODBC uses to define the LIKE predicate escape
character is:

--(�vendor(Microsoft),product(ODBC) escape 'escape-character&
apos.�)--

where escape-character is any character supported by the DB2 rules governing the
use of the ESCAPE clause. The shorthand syntax for the LIKE predicate escape
character is:

{escape 'escape-character'}

Applications that are not concerned about portability across different vendor DBMS
products should pass the ESCAPE clause directly to the data source. To determine
when LIKE predicate escape characters are supported by a particular data source,
an application should call SQLGetInfo() with the SQL_LIKE_ESCAPE_CLAUSE
information type.

Stored Procedure Call Syntax
 The ODBC escape clause for calling a stored procedure is:

 --(�vendor(Microsoft),product(ODBC),
 [?=]call procedure-name[([parameter][,[parameter]]...)]�)--

procedure-name
Specifies the name of a procedure stored at the data source.

parameter
Specifies a procedure parameter.

A procedure can have zero or more parameters. The short form syntax is:

{[?=]call procedure-name[([parameter][,[parameter]]...)]
}

(The square brackets ([]) indicate optional arguments.

ODBC specifies the optional parameter ?= to represent the procedure's return
value, which, if present, is stored in the location specified by the first parameter
marker defined by SQLBindParameter(). DB2 CLI returns the SQLCODE as the
procedure's return value if ?= is present in the escape clause. If ?= is not present,
then the application can retrieve the SQLCA by using the SQLGetSQLCA() function.
Unlike ODBC, DB2 CLI does not support literals as procedure arguments.
Parameter markers must be used.

For more information about stored procedures, refer to “Using Stored Procedures”
on page 356 or Application Programming and SQL Guide.

 Chapter 6. Using Advanced Features 371

For example, DB2 CLI translates the following two statements:

--(?vendor(Microsoft),product(ODBC) CALL NEBT94(?,?,?)?)--

{CALL NETB94(?,?,?)}

To an internal CALL statement format:

CALL NEBT94(?, ?, ?)

ODBC Scalar Functions
Scalar functions such as string length, substring, or trim can be used on columns of
a result sets and on columns that restrict rows of a result set. The ODBC escape
clauses for scalar functions and its shorthand are:

--(�vendor(Microsoft),product(ODBC) fn scalar-function?)--

or,

{fn scalar-function}

Where, scalar-function can be any function listed in Appendix C, “Extended Scalar
Functions” on page 397.

For example, Call Level Interface translates both of the following statements:

SELECT --(?vendor(Microsoft),product(ODBC) fn CONCAT(FIRSTNAME,LASTNAME) ?)--

FROM EMPLOYEE

SELECT {fn CONCAT(FIRSTNAME,LASTNAME)} FROM EMPLOYEE

to:

SELECT FIRSTNAME CONCAT LASTNAME FROM EMPLOYEE

SQLNativeSql() can be called to obtain the translated SQL statement.

To determine which scalar functions are supported by the current server referenced
by a specific connection handle, call SQLGetInfo() with the
SQL_NUMERIC_FUNCTIONS, SQL_STRING_FUNCTIONS,
SQL_SYSTEM_FUNCTIONS, and SQL_TIMEDATE_FUNCTIONS options.

372 Call Level Interface Guide and Reference

Chapter 7. Problem Diagnosis

This section provides guidelines for working with the DB2 CLI traces and
information about general diagnosis, debugging, and abends. You can obtain traces
for DB2 CLI applications and diagnostics and DB2 CLI stored procedures.

 Tracing
DB2 CLI provides two traces that differ in purpose:

� An application trace intended for debugging user applications, described in
“Application Trace.”

� A service trace for problem diagnosis, described in “Diagnostic Trace” on
page 375.

 Application Trace
The DB2 CLI application trace is enabled using the CLITRACE and TRACEFILENAME
keywords in the DB2 CLI initialization file.

The CLITRACE keyword is intended for customer application debugging. This trace
records data information at the DB2 CLI API interface; it is specifically designed to
trace CLI API calls. The trace is written to the file specified on the TRACEFILENAME
keyword. We strongly recommend that you use this trace

Specifying the Trace File Name
You can use a JCL DD card format or an OS/390 OpenEdition HFS file name
format to specify the TRACEFILENAME keyword setting. The primary use of the JCL
DD card format is write to an MVS preallocated sequential data set. You can also
specify OS/390 OpenEdition HFS files on a DD statement. The OS/390
OpenEdition HFS file name format is used strictly for writing to HFS files.

JCL DD Card Format: The JCL DD card format is TRACEFILENAME="DD:ddname".
The ddname value is the name of the DD card specified in your job or TSO logon
procedure.

Examples: Assume the keyword setting is TRACEFILENAME="DD:APPLDD". You can
use the following JCL DD statement examples in your job or TSO logon procedure
to specify the MVS trace data set.

Example 1: Write to preallocated MVS sequential data set USER01.MYTRACE.

//APPLDD DD DISP=SHR,DSN=USER=1.MYTRACE

Example 2: Write to preallocated OS/390 OpenEdition HFS file MYTRACE in
directory /usr/db2.

//APPLDD DD PATH='/usr/db2/MYTRACE'

Example 3: Allocate OS/390 OpenEdition HFS file MYTRACE in directory /usr/db2
specifying permission for the file owner to read from (SIRUSR) and write to
(SIWUSR) the trace file:

 Copyright IBM Corp. 1997 373

//APPLDD DD PATH='/usr/db2/MYTRACE',

 PATHOPTS=(ORDWR,OCREAT,OTRUNC),

 PATHMODE=(SIRUSR,SIWUSR)

OS/390 OpenEdition HFS File Name Format: The OS/390 OpenEdition HFS file
name format is TRACEFILENAME=hfs_filename. The hfs_filename value specifies the
path and file name for the HFS file. The HFS file does not have to be preallocated.
If the file name does not exist in the specified directory, the file is dynamically
allocated.

Examples: The following examples use the TRACEFILENAME keyword to specify an
OS/390 OpenEdition HFS trace file.

Example 1: Create and write to HFS file named APPLTRC1 in the fully qualified
directory /usr/db2.

TRACEFILENAME=/usr/db2/APPLTRC1

Example 2: Create and write to HFS file named APPLTRC1 in the current working
directory of the application.

TRACEFILENAME=./APPLTRC1

Example 3: Create and write to HFS file named APPLTRC1 in the parent directory
of the current working directory.

TRACEFILENAME=../APPLTRC1

Application Trace Output
The following example of application trace output shows how DB2 CLI follows the
APIs invoked, indicates values used, data pointers, etc. Errors are also indicated.

374 Call Level Interface Guide and Reference

SQLAllocEnv(phEnv=&6b7e77c)

SQLAllocEnv(phEnv=1)

 ---> SQL_SUCCESS

SQLAllocConnect(hEnv=1, phDbc=&6b7e778)

SQLAllocConnect(phDbc=1)

 ---> SQL_SUCCESS

SQLConnect(hDbc=1, szDSN=Null Pointer, cbDSN==, szUID=Null Pointer, cbUID==,

szAuthStr=Null Pointer, cbAuthStr==)

SQLConnect()

 ---> SQL_SUCCESS

SQLAllocStmt(hDbc=1, phStmt=&6b7e774)

SQLAllocStmt(phStmt=1)

 ---> SQL_SUCCESS

SQLExecDirect(hStmt=1, pszSqlStr="SELECT NAME FROM SYSIBM.SYSPLAN", cbSqlStr=-3)

SQLExecDirect()

 ---> SQL_SUCCESS

SQLFetch(hStmt=1)

SQLFetch()

 ---> SQL_SUCCESS

SQLTransact(hEnv=1, hDbc=1, fType=SQL_COMMIT)

SQLTransact()

 ---> SQL_SUCCESS

SQLFreeStmt(hStmt=1, fOption=SQL_DROP)

SQLFreeStmt()

 ---> SQL_SUCCESS

SQLDisconnect(hDbc=1)

SQLDisconnect()

 ---> SQL_SUCCESS

SQLFreeConnect(hDbc=1)

SQLFreeConnect()

 ---> SQL_SUCCESS

SQLFreeEnv(hEnv=1)

SQLFreeEnv()

 ---> SQL_SUCCESS

For more information about how to specify the CLITRACE and TRACEFILENAME

keywords, see “DB2 CLI Initialization File” on page 60.

 Diagnostic Trace
The DB2 CLI diagnostic trace captures information to use in DB2 CLI problem
determination. The trace is intended for use under the direction of the IBM Support
Center; it is not intended to assist in debugging user written DB2 CLI applications.
You can view this trace to obtain information about the general flow of an
application, such as commit information. However, this trace is intended for IBM
service information only and is therefore subject to change.

You can activate the diagnostic trace by either the DSNAOTRC command or the

TRACE keyword in the DB2 CLI initialization file.

 Chapter 7. Problem Diagnosis 375

If you activate the diagnostic trace using the TRACE keyword in the initialization file,
you must also allocate a DSNAOTRC DD statement in your job or TSO logon
procedure. You can use one of the following methods to allocate a DSNAOTRC DD
statement:

� Specify a DSNAOTRC DD JCL statement in your job or TSO logon procedure

� Use the TSO/E ALLOCATE command

� Use dynamic allocation in your CLI application

Specifying the Diagnostic Trace File
The diagnostic trace data can be written to an MVS sequential data set or an
OS/390 OpenEdition HFS file.

An MVS data set must be preallocated with the following data set attributes:

� Sequential data set organization
� Fixed-block 80 record format

When you execute an CLI application in OS/390 OpenEdition and activate the
diagnostic trace using the TRACE keyword in the initialization file, DB2 writes the
diagnostic data to a dynamically allocated file, DD:DSNAOTRC. This file is located
in the current working directory of the application if the DSNAOTRC DD statement
is not available to the CLI application. You can format DD:DSNAOTRC using the
trace formatting program.

Examples: The following JCL examples use a DSNAOTRC JCL DD card to
specify the diagnostic trace file.

Example 1: Write to preallocated MVS sequential data set USER01.DIAGTRC.

//DSNAOTRC DD DISP=SHR,DSN=USER=1.DIAGTRC

Example 2: Write to preallocated OS/390 OpenEdition HFS file DIAGTRC in
directory /usr/db2.

//DSNAOTRC DD PATH='/usr/db2/DIAGTRC'

Example 3: Allocate OS/390 OpenEdition HFS file DIAGTRC in directory /usr/db2
specifying permission for the file owner to read from (SIRUSR) and write to
(SIWUSR) the trace file.

//DSNAOTRC DD PATH='/usr/db2/DIAGTRC',

 PATHOPTS=(ORDWR,OCREAT,OTRUNC),

 PATHMODE=(SIRUSR,SIWUSR)

For more information about the TRACE keyword, see “DB2 CLI Initialization File” on
page 60.

Using the Diagnostic Trace Command: DSNAOTRC
You can use the DSNAOTRC command to:

� Manually start or stop the recording of memory resident diagnostic trace
records.

� Query the current status of the diagnostic trace.

� Capture the memory resident trace table to an MVS data set or OS/390
OpenEdition HFS file.

376 Call Level Interface Guide and Reference

� Format the DB2 CLI diagnostic trace.

Special OS/390 OpenEdition Considerations: You can issue the DSNAOTRC
command from the OS/390 OpenEdition shell command line to activate the
diagnostic trace prior to executing an CLI application. Under the direction of IBM
support only, you must store the dsnaotrc program load module in an OS/390
OpenEdition HFS file.

Use the TSO/E command, OPUTX, to store the dsnaotrc load module in an HFS
file. The following example uses the OPUTX command to store load module
dsnaotrc from MVS partitioned data set DB2A.DSNLOAD to HFS file DSNAOTRC
in directory /usr/db2:

OPUTX 'DB2A.DSNLOAD(DSNAOTRC)' /usr/db2/dsnaotrc

After storing the dsnaotrc program module in an HFS file, follow these steps at the
OS/390 OpenEdition shell to activate, dump, and format the diagnostic trace:

1. Enable the shared address space environment variable for the OS/390
OpenEdition shell. Issue the following export statement at the command line or
specify it in your $HOME/.profile:

export _BPX_SHAREAS=YES

Setting this environment variable allows the OMVS command and the OS/390
OpenEdition shell to run in the same TSO address space.

2. Go to the directory that contains the dsnaotrc module.

3. Verify that execute permission is established for the dsnaotrc load module. If
execute permission was not granted, use the chmod command to set execute
permission for the dsnaotrc load module.

4. Issue dsnaotrc on. The options for activating the diagnostic trace are optional.

5. Execute the CLI application.

6. Issue dsnaotrc dmp "raw_trace_file". The raw_trace_file value is the name
of the output file to which DB2 writes the raw diagnostic trace data.

7. Issue dsnaotrc off to deactivate the diagnostic trace.

8. Issue dsnaotrc fmt "raw_trace_file" "fmt_trace_file" to format the raw
trace data records from input file "raw_trace_file" to output file
"fmt_trace_file".

After successfully formatting the diagnostic trace data, delete the dsnaotrc program
module from your OS/390 OpenEdition directory. Do not attempt to maintain a
private copy of the dsnaotrc program module in your HFS directory.

 Chapter 7. Problem Diagnosis 377

 Syntax

��──DSNAOTRC──�

�─ ──┬ ┬──ON ──┬ ┬────────────────── ────────────────────────────── ───────────��
 │ │├ ┤ ─ -L──buffer size─
 │ │└ ┘ ─ -I──buffer size─
 ├ ┤─OFF──
 ├ ┤─INF──
 ├ ┤─DMP──trace data set spec───────────────────────────────
 ├ ┤ ─FMT─ ──┬ ┬───
 │ │└ ┘─input data set spec─ ──┬ ┬──────────────────────
 │ │└ ┘─output data set spec─
 └ ┘─FLW──input data set spec─ ──┬ ┬────────────────────── ────
 └ ┘─output data set spec─

 Option Descriptions

ON
Start the DB2 CLI diagnostic trace.

-L buffer size
L = Last. The trace wraps; it captures the last, most current trace records.

buffer size is the number of bytes to allocate for the trace buffer. This value
is required. The buffer size is rounded to a multiple of 65536 (64K).

-I buffer size
I = Initial. The trace does not wrap; it captures the initial trace records.

buffer size is the number of bytes to allocate for the trace buffer. This value
is required. The buffer size is rounded to a multiple of 65536 (64K).

OFF
Stop the DB2 CLI diagnostic trace.

INF
Display information about the currently active DB2 CLI diagnostic trace.

DMP
Dump the currently active DB2 CLI diagnostic trace.

trace data set spec
Specifies the MVS data set or OS/390 OpenEdition HFS file to which DB2
writes the raw DB2 CLI diagnostic trace data. The data set specification
can be either an MVS data set name, an OS/390 OpenEdition HFS file
name, or a currently allocated JCL DD card name.

FMT
Generate a formatted detail report of the DB2 CLI diagnostic trace contents.

FLW
Generate a formatted flow report of the DB2 CLI diagnostic trace contents.

input data set spec
The data set that contains the raw DB2 CLI diagnostic trace data to be
formatted. This is the data set that was generated as the result of a
DSNAOTRC DMP command or due to the DSNAOTRC DD card if the
trace was started by using the TRACE initialization keyword. The data set
specification can be either an MVS data set name, an OS/390 OpenEdition

378 Call Level Interface Guide and Reference

HFS file name, or a currently allocated JCL DD card name. If this
parameter is not specified, then DSNAOTRC attempts to format the
memory resident DSNAOTRC that is currently active.

output data set spec
The data set to which the formatted DB2 CLI diagnostic trace records are
written. The data set specification can be either an MVS data set name, an
OS/390 OpenEdition HFS file name, or a currently allocated JCL DD card
name. If you specify an MVS data set or OS/390 OpenEdition HFS file that
does not exist, DB2 allocates it dynamically. If this parameter is not
specified, the output is written to standard output ("STDOUT").

Examples: The following examples show how to code the data set specifications.

� Trace data set specification:

Example 1: Currently allocated JCL DD card name TRACEDD.

DSNAOTRC DMP DD:TRACEDD

Example 2: MVS sequential data set USER01.DIAGTRC.

DSNAOTRC DMP "USER=1.DIAGTRC"

Example 3: OS/390 OpenEdition HFS file named DIAGTRC in directory
/usr/db2:

DSNAOTRC DMP "/usr/db2/DIAGTRC"

� Input data set specification:

Example 1: Currently allocated JCL DD card name INPDD.

DSNAOTRC FLW DD:INPDD output-dataset-spec

Example 2: MVS sequential data set USER01.DIAGTRC.

DSNAOTRC FLW "USER=1.DIAGTRC" output-dataset-spec

Example 3: OS/390 OpenEdition HFS file DIAGTRC in directory /usr/db2.

DSNAOTRC FLW "/usr/db2/DIAGTRC" output-dataset-spec

� Output data set specification:

Example 1: Currently allocated JCL DD card name OUTPDD.

DSNAOTRC FLW input-dataset-spec DD:OUTPDD

Example 2: MVS sequential data set USER01.TRCFLOW.

DSNAOTRC FLW input-dataset-spec "USER=1.TRCFLOW"

Example 3: OS/390 OpenEdition HFS file TRCFLOW in directory /usr/db2.

DSNAOTRC FLW input-dataset-spec "/usr/db2/TRCFLOW"

Stored Procedure Trace
This section describes the steps required to obtain an application trace or a
diagnostic trace of a DB2 CLI stored procedure. DB2 CLI stored procedures run in
either a DB2-established stored procedures address space or a WLM-established
address space. Both the main application that calls the stored procedure (client
application), and the stored procedure itself, can be either a DB2 CLI application or
a standard DB2 precompiled application.

 Chapter 7. Problem Diagnosis 379

If the client application and the stored procedure are DB2 CLI application programs,
you can trace:

� A client application only
� A stored procedure only
� Both the client application and stored procedure

More than one address spaces can not share write access to a single data set.
Therefore, you must use the appropriate JCL DD statements to allocate a unique
trace data set for each stored procedures address space that uses the DB2 CLI
application trace or diagnostic trace.

Tracing a Client Application
This section explains how to obtain an application trace and a diagnostic trace for a
client application.

Application Trace: Follow these steps to obtain an application trace.

1. Set CLITRACE=1 and TRACEFILENAME="DD:DDNAME" in the common section of the
DB2 CLI initialization file as follows:

[COMMON]

CLITRACE=1

TRACEFILENAME="DD:APPLTRC"

DDNAME is the name of an OS/390 JCL DD statement specified in the JCL for
the application job or your TSO logon procedure.

2. Specify an OS/390 JCL DD statement in the JCL for the application job or your
TSO logon procedure. The DD statement references a pre-allocated OS/390
sequential data set with DCB attributes RECFM=VBA,LRECL=137, an OS/390
OpenEdition HFS file to contain the client application trace, as shown in the
following examples:

//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC DD PATH='/u/cli/appltrc'

Diagnostic Trace: When tracing only the client application, you can activate the
diagnostic trace by using the TRACE keyword in the DB2 CLI initialization file or the
DSNAOTRC command. See “Diagnostic Trace” on page 375 for information about
obtaining a diagnostic trace of the client application.

Tracing a Stored Procedure
This section explains how to obtain an application trace and a diagnostic trace for a
stored procedure.

Application Trace: Follow these steps to obtain an application trace.

1. Set CLITRACE=1 and TRACEFILENAME="DD:DDNAME" in the common section of the
DB2 CLI initialization file as follows:

[COMMON]

CLITRACE=1

TRACEFILENAME="DD:APPLTRC"

DDNAME is the name of an OS/390 JCL DD statement specified in the JCL for
the stored procedures address space.

2. Specify an OS/390 JCL DD statement in the JCL for the stored procedures
address space The DD statement references a pre-allocated OS/390 sequential

380 Call Level Interface Guide and Reference

data set with DCB attributes RECFM=VBA,LRECL=137 or OS/390 OpenEdition HFS
file to contain the client application trace, as shown in the following examples:

//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC DD PATH='/u/cli/appltrc'

Diagnostic Trace: Follow these steps to obtain a diagnostic trace.

1. Set TRACE=1, TRACE_BUFFER_SIZE=nnnnnnn, and TRACE_NO_WRAP==|1 in the
common section of the DB2 CLI initialization file. For example:

[COMMON]

TRACE=1

TRACE_BUFFER_SIZE=2======

TRACE_NO_WRAP=1

nnnnnnn is the number of bytes to allocate for the diagnostic trace buffer.

2. Specify an OS/390 DSNAOINI JCL DD statement in the JCL for the stored
procedures address space. The DD statement references the DB2 CLI
initialization file, as shown in the following examples:

//DSNAOINI DD DISP=SHR,DSN=CLI.DSNAOINI

//DSNAOINI DD PATH='/u/cli/dsnaoini'

3. Specify an OS/390 DSNAOTRC JCL DD statement in the JCL for the stored
procedures space. The DD statement references a pre-allocated OS/390
sequential data set with DCB attributes RECFM=FB,LRECL=8=, or an OS/390
OpenEdition HFS file to contain the unformatted diagnostic data, as shown in
the following examples:

//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC

//DSNAOTRC DD PATH='/u/cli/diagtrc'

4. Execute the client application that calls the stored procedure.

5. After the DB2 CLI stored procedure executes, stop the stored procedures
address space.

� For DB2-established address spaces, use the DB2 command, STOP
PROCEDURE.

� For WLM-established address spaces operating in WLM goal mode, use
the MVS command, "VARY WLM,APPLENV=name,QUIESCE". name is the WLM
application environment name.

� For WLM-established address spaces operating in WLM compatibility
mode, use the MVS command, "CANCEL address-space-name".
address-space-name is the name of the WLM-established address space.

6. You can submit either the formatted or unformatted diagnostic trace data to the
IBM Support Center. To format the raw trace data at your site, run the
DSNAOTRC FMT or DSNAOTRC FLW command against the diagnostic trace
data set.

 Chapter 7. Problem Diagnosis 381

Tracing both a Client Application and a Stored Procedure
This section explains how to obtain an application trace and a diagnostic trace for
both a client application and a stored procedure.

Application Trace: Follow these steps to obtain an application trace.

1. Set CLITRACE=1 and CLITRACEFILENAME="DD:DDNAME" in the common section of
the DB2 CLI initialization file as follows:

[COMMON]

CLITRACE=1

TRACEFILENAME="DD:APPLTRC"

DDNAME is the name of an OS/390 JCL DD statement specified in both the JCL
for the client application job and the stored procedures address space.

2. Specify an OS/390 JCL DD statement in the JCL for the client application. The
DD statement references a pre-allocated OS/390 sequential data set with DCB
attributes RECFM=VBA,LRECL=137, or an OS/390 OpenEdition HFS file to contain
the client application trace, as shown in the following examples:

//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC.CLIENT

//APPLTRC DD PATH='/u/cli/appltrc.client'

You must allocate a separate application trace data set, or an HFS file for the
client application. Do not attempt to write to the same application trace data set
or HFS file used for the stored procedure.

3. Specify an OS/390 JCL DD statement in the JCL for the stored procedures
address space. The DD statement references a pre-allocated OS/390
sequential data set, or an OS/390 OpenEdition HFS file to contain the stored
procedure application trace, as shown in the following examples:

//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC.SPROC

//APPLTRC DD PATH='/u/cli/appltrc.sproc'

You must allocate a separate trace data set or HFS file for the stored
procedure. Do not attempt to write to the same application trace data set or
HFS file used for the client application.

Diagnostic Trace: Follow these steps to obtain a diagnostic trace.

1. Set TRACE=1, TRACE_BUFFER_SIZE=nnnnnnn, and TRACE_NO_WRAP==|1 in the
common section of the DB2 CLI initialization file. For example:

[COMMON]

TRACE=1

TRACE_BUFFER_SIZE=2======

TRACE_NO_WRAP=1

nnnnnnn is the number of bytes to allocate for the diagnostic trace buffer.

2. Specify an OS/390 DSNAOINI JCL DD statement in the JCL for the stored
procedures address space. The DD statement references the DB2 CLI
initialization file, as shown in the following examples:

//DSNAOINI DD DISP=SHR,DSN=CLI.DSNAOINI

//DSNAOINI DD PATH='/u/cli/dsnaoini'

3. Specify an OS/390 DSNAOTRC JCL DD statement in JCL for the client
application job. The DD statement references a pre-allocated OS/390
sequential data set with DCB attributes RECFM=FB,LRECL=8=, or an OS/390

382 Call Level Interface Guide and Reference

OpenEdition HFS file to contain the unformatted diagnostic data, as shown in
the following examples:

//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC.CLIENT

//DSNAOTRC DD PATH='/u/cli/diagtrc.client'

4. Specify an OS/390 DSNAOTRC JCL DD statement in the JCL for the stored
procedures address space. The DD statement references a pre-allocated
OS/390 sequential data set with DCB attributes RECFM=FB,LRECL=8=, or an
OS/390 OpenEdition HFS file to contain the stored procedure's unformatted
diagnostic data, as shown in the following examples:

//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC.SPROC

//DSNAOTRC DD PATH='/u/cli/diagtrc.sproc'

5. Execute the client application that calls the stored procedure.

6. After the DB2 CLI stored procedure executes, stop the stored procedures
address space.

� For DB2-established address spaces, use the DB2 command, STOP
PROCEDURE.

� For WLM-established address spaces operating in WLM goal mode, use
the MVS command, "VARY WLM,APPLENV=name,QUIESCE". name is the WLM
application environment name.

� For WLM-established address spaces operating in WLM compatibility
mode, use the MVS command, "CANCEL address-space-name".
address-space-name is the name of the WLM-established address space.

7. You can submit either the formatted or unformatted diagnostic trace data to the
IBM Support Center. To format the raw trace data at your site, run the
DSNAOTRC FMT or DSNAOTRC FLW command against the client
application's diagnostic trace data set and the stored procedure's diagnostic
trace data set.

 Debugging
You can debug DB2 for OS/390 CLI applications debug tool shipped with your the
C or C++ language compiler. For detailed instructions on debugging DB2 stored
procedures, including DB2 CLI stored procedures, see Section 6 of Application
Programming and SQL Guide.

 Abnormal Termination
Language Environment reports abends since DB2 CLI runs under Language
Environment. Typically, Language Environment reports the type of abend that
occurs and the function that is active in the address space at the time of the abend.

DB2 CLI has no facility for abend recovery. When an abend occurs, DB2
CLIterminates. DBMSs follow the normal recovery process for any outstanding DB2
unit of work.

"CEE" is the prefix for all Language Environment messages. If the prefix of the
active function is "CLI", then DB2 CLI had control during the abend which indicates
that this can be a DB2 CLI, a DB2, or a user error.

 Chapter 7. Problem Diagnosis 383

The following example shows an abend:

CEE325=C The system or user abend S=4E R========= was issued.

 From entry point CLI_mvsCallProcedure(CLI_CONNECTINFO?,...

 +=91A2376 at address =91A2376...

In this message, you can determine what caused the abend as follows:

� "CEE" indicates that Language Environment is reporting the abend.
� The entry point shows that DB2 CLI is the active module.
� Abend code "S04E" means that this is a DB2 system abend.

For further information on debugging, see OS/390 Language Environment for
OS/390 & VM Debugging Guide. For further information on the DB2 recovery
process, see Section 4 (Volume 1) of Administration Guide.

Internal Error Code
DB2 CLI provides an internal error code for CLI diagnosis that is intended for use
under the guidance of IBM service. This unique error location, ERRLOC, is a good
tool for APAR searches. The following example of a failed SQLAllocConnect()
shows an error location:

DB2 CLI Sample SQLError Information

DB2 CLI Sample SQLSTATE : 58==4

DB2 CLI Sample Native Error Code : -99999

DB2 CLI Sample Error message text:

{DB2 for OS/39=}{CLI Driver} SQLSTATE=58==4 ERRLOC=2:17.:4;
RRS "IDENTIFY" failed using DB2 system:V61A,

RC==8 and REASON===f3==91

384 Call Level Interface Guide and Reference

Appendix A. Programming Hints and Tips

This section provides some hints and tips to help improve DB2 CLI and ODBC
application performance and portability.

Avoiding Common Initialization File Problems
You can avoid two common problems when using the DB2 CLI initialization file by
ensuring that these contents are accurate.

Square brackets
The square brackets in the initialization file must consist of the correct
EBCDIC characters. The open square bracket must use the hexadecimal
characters X'AD'. The close square bracket must use the hexadecimal
characters X'BD'. DB2 CLI does not recognize brackets if coded
differently.

Sequence numbers
The initialization file cannot accept sequence numbers. All sequence
numbers must be removed.

Setting Common Connection Options
The following connection options might need to be set (or considered) by DB2 CLI
applications.

 SQL_AUTOCOMMIT
Generally this option should be set to SQL_AUTOCOMMIT_OFF, since each
commit request can generate extra network flow. Only leave SQL_AUTOCOMMIT
on if specifically needed.

Note: The default is SQL_AUTOCOMMIT_ON.

 SQL_TXN_ISOLATION
This connection (and statement) option determines the isolation level at which the
connection or statement operate. The isolation level determines the level of
concurrency possible, and the level of locking required to execute the statement.
Applications need to choose an isolation level that maximizes concurrency, yet
ensures data consistency.

See Section 4 of Application Programming and SQL Guide for a complete
discussion of isolation levels and their effect.

Setting Common Statement Options
The following statement options might need to be set by DB2 CLI applications.

 Copyright IBM Corp. 1997 385

 SQL_MAX_ROWS
Setting this option limits the number of rows returned to the application. This can
be used to avoid an application from being overwhelmed with a very large result set
generated inadvertently, especially for applications on clients with limited memory
resources.

Note: The full result set is still generated at the server. DB2 CLI only fetches up to
SQL_MAX_ROWS rows.

 SQL_CURSOR_HOLD
This statement option determines if the cursor for this statement is defined with the
equivalent of the CURSOR WITH HOLD clause.

Resources associated with statement handles can be better utilized by DB2 CLI if
the statements that do not require CURSOR WITH HOLD are set to
SQL_CURSOR_HOLD_OFF.

Note: Many ODBC applications expect a default behavior where the cursor
position is maintained after a commit.

 SQL_STMTTXN_ISOLATION
DB2 CLI allows the isolation level to be set at the statement level (however, we
recommend that the isolation level be set at the connection level). The isolation
level determines the level of concurrency possible, and the level of locking required
to execute the statement.

Resources associated with statement handles can be better utilized by DB2 CLI if
statements are set to the required isolation level, rather than leaving all statements
at the default isolation level. This should only be attempted with a thorough
understanding of the locking and isolation levels of the connected DBMS. Refer to
SQL Reference for a complete discussion of isolation levels and their effect.

Applications should use the minimum isolation level possible to maximize
concurrency.

Using SQLSetColAttributes() to Reduce Network Flow
Each time a query statement is prepared or executed directly, DB2 CLI retrieves
information about the SQL data type, and its size from the data source. If the
application knows this information ahead of time, SQLSetColAttributes() can be
used to provide DB2 CLI with the information. This can significantly reduce the
network flow from remote data sources if the result set coming back contains a very
large number (hundreds) of columns.

Note: The application must provide DB2 CLI with exact result descriptor
information for ALL columns; otherwise, an error occurs when the data is
fetched.

Queries that generate result sets that contain a large number of columns, but
relatively small number of rows, have the most to gain from using
SQLSetColAttributes().

386 Call Level Interface Guide and Reference

Comparing Binding and SQLGetData
Generally it is more efficient to bind application variables to result sets than to use
SQLGetData(). Use SQLGetData() when the data value is large variable-length data
that:

� Must be received in pieces, or
� Might not need to be retrieved (dependent on another application action.)

Increasing Transfer Efficiency
The efficiency of transferring character data between bound application variables
and DB2 CLI can be increased if the pcbValue and rgbValue arguments are
contiguous in memory. (This allows DB2 CLI to fetch both values with one copy
operation.)

For example:

struct { SQLINTEGER pcbValue;

 SQLCHAR rgbValue[MAX_BUFFER];

 } column;

Limiting Use of Catalog Functions
In general, try to limit the number of times the catalog functions are called, and limit
the number of rows returned.

The number of catalog function calls can be reduced by calling the function once,
and storing the information at the application.

The number of rows returned can be limited by specifying a:

� Schema name or pattern for all catalog functions

� Table name or pattern for all catalog functions other than SQLTables

� Column name or pattern for catalog functions that return detailed column
information.

Remember, although an application can be developed and tested against a data
source with hundreds of tables, it can be run against a database with thousands of
tables. Plan ahead.

Close any open cursors (call SQLFreeStmt() with SQL_CLOSE) for statement
handles used for catalog queries to release any locks against the catalog tables.
Outstanding locks on the catalog tables can prevent CREATE, DROP or ALTER
statements from executing.

Using Column Names of Function Generated Result Sets
The column names of the result sets generated by catalog and information
functions can change as the X/Open and ISO standards evolve. The position of the
columns, however, does not change.

Any application dependency should be based on the column position (icol
parameter) and not the name.

 Appendix A. Programming Hints and Tips 387

Making use of Dynamic SQL Statement Caching
To make use of dynamic caching (when the server caches a prepared version of a
dynamic SQL statement), the application must use the same statement handle for
the same SQL statement.

For example, if an application routinely uses a set of 10 SQL statements, 10
statement handles should be allocated and associated with each of those
statements. Do not free the statement handle while the statement can still be
executed. (The transaction can still be rolled back or committed without affecting
any of the prepared statements). The application continues to prepare and execute
the statements in a normal manner. DB2 CLI determines if the prepare is actually
needed.

To reduce function call overhead, the statement can be prepared once, and
executed repeatedly throughout the application.

Optimizing Insertion and Retrieval of Data
The methods described in “Using Arrays to Input Parameter Values” on page 350
and “Retrieving A Result Set Into An Array” on page 353 optimize the network flow.

Use these methods as much as possible.

Using SQLDriverConnect Instead of SQLConnect
Using SQLDriverConnect() gives an application the flexibility to override any or all
of the initialization keyword values specified for the target data source.

Turning Off Statement Scanning
DB2 CLI by default, scans each SQL statement searching for vendor escape clause
sequences.

If the application does not generate SQL statements that contain vendor escape
clause sequences (“Using Vendor Escape Clauses” on page 369), then the
SQL_NO_SCAN statement option should be set to SQL_NOSCAN_ON at the
connection level so that DB2 CLI does not perform a scan for vendor escape
clauses.

388 Call Level Interface Guide and Reference

Problem Solving and Debugging
This section provides guidelines for working with traces and abends.

Use of Trace Keywords
The DB2 CLI initialization file contains two trace keywords: TRACE and CLITRACE.
These keywords differ in purpose.

 TRACE
The TRACE keyword in the DB2 CLI initialization file is a service trace that IBM uses
for problem diagnosis. You can view this trace to obtain information about the
general flow of an application, such as commit information. However, this trace is
intended for IBM service information only and is therefore subject to change.

 CLITRACE
The CLITRACE keyword in the DB2 CLI initialization file is intended for customer
application debugging. This trace records data information at the DB2 CLI API
interface.

 Abnormal Termination
Language Environment reports abends since DB2 CLI runs under Language
Environment. Typically, Language Environment reports the type of abend that
occurs and the function that is active in the address space at the time of the abend.

DB2 CLI has no facility for abend recovery. When an abend occurs, DB2 CLI
terminates. DBMSs follow the normal recovery process for any outstanding DB2
unit of work.

"CEE" is the prefix for all all Language Environment messages. If the prefix of the
active function is "CLI", then DB2 CLI had control during the abend which indicates
that this can be a DB2 CLI, a DB2, or a user error.

The following example shows an abend:

CEE325=C The system or user abend S=4E R========= was issued.

From entry point CLI_mvsCallProcedure(CLI_CONNECTINFO?,...

+=91A2376 at address =91A2376...

In this message, you can determine what caused the abend as follows:

� "CEE" indicates that Language Environment is reporting the abend.

� The entry point shows that DB2 CLI is the active module.

� Abend code "S04E" means that this is a DB2 system abend.

For further information on debugging, see Language Environment for MVS & VM
Debugging and Run-Time Messages Guide. For further information on the DB2
recovery process, see Section 4 (Volume 1) of Administration Guide.

 Appendix A. Programming Hints and Tips 389

390 Call Level Interface Guide and Reference

Appendix B. DB2 CLI and ODBC

This appendix discusses the support provided by the DB2 ODBC driver, and how it
differs from DB2 CLI.

Figure 21 below compares DB2 CLI and the DB2 ODBC driver.

1. An ODBC driver under the ODBC driver manager
2. DB2 CLI, callable interface designed for DB2 specific applications.

Figure 21. DB2 CLI and ODBC.

In an ODBC environment, the driver manager provides the interface to the
application. It also dynamically loads the necessary driver for the database server
to which the application connects. It is the driver that implements the ODBC
function set, with the exception of some extended functions implemented by the
driver manager.

The DB2 CLI driver does not execute in this environment. Rather, DB2 CLI is a
self-sufficient driver which supports a subset of the functions provided by the ODBC
driver.

DB2 CLI applications interface directly with the CLI driver which executes within the
application address space. Applications do not interface with a driver manager. The
capabilities provided to the application are a subset of the Microsoft ODBC Version
2 specifications.

The following sections compare DB2 CLI support with the ODBC Version 2.0
support.

� “ODBC APIs and Data Types”
� “ODBC Function List” on page 393

In addition “Isolation Levels” on page 395 compares IBM with ODBC isolation
levels.

ODBC APIs and Data Types
Table 141 summarizes the ODBC Version 2 application programming interfaces,
ODBC SQL data types and ODBC C data types and whether those functions, and
data types are supported by DB2 CLI. Table 142 on page 393 provides a complete
list of ODBC 2.0 functions, and indicates if they are supported.

Table 141 (Page 1 of 2). DB2 CLI ODBC Support

ODBC Features DB2 CLI

Core Level Functions All

Level 1 Functions All

Level 2 Functions All, except for:

 � SQLBrowseConnect()
 � SQLSetPos()
 � SQLSetScrollOptions()

 Copyright IBM Corp. 1997 391

Table 141 (Page 2 of 2). DB2 CLI ODBC Support

ODBC Features DB2 CLI

Additional DB2 CLI Functions � SQLCancel()
 � SQLSetConnection()
 � SQLGetEnvAttr()
 � SQLSetEnvAttr()
 � SQLSetColAttributes()
 � SQLGetSQLCA()

Minimum SQL Data Types � SQL_CHAR
 � SQL_LONGVARCHAR
 � SQL_VARCHAR

Core SQL Data Types � SQL_DECIMAL
 � SQL_NUMERIC
 � SQL_SMALLINT
 � SQL_INTEGER
 � SQL_REAL
 � SQL_FLOAT
 � SQL_DOUBLE

Extended SQL Data Types � SQL_BIT
 � SQL_TINYINT
� SQL_BIGINT (NOT SUPPORTED)

 � SQL_BINARY
 � SQL_DATE
 � SQL_LONGVARBINARY
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARBINARY

ODBC Version 3 SQL Data Types � SQL_GRAPHIC
 � SQL_LONGVARGRAPHIC
 � SQL_VARGRAPHIC

Core C Data Types � SQL_C_CHAR
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG(SLONG, ULONG)
� SQL_C_SHORT (SSHORT, USHORT)

Extended C Data Types � SQL_C_BINARY
 � SQL_C_BIT
 � SQL_C_DATE
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_TINYINT

ODBC Version 3 C Data Types � SQL_C_DBCHAR (SQL_C_WCHAR)

Return Codes � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_NEED_DATA
 � SQL_NO_DATA_FOUND
 � SQL_ERROR
 � SQL_INVALID_HANDLE

SQLSTATES Mapped to X/Open SQLSTATES with additional IBM
SQLSTATES

Multiple connections per application Supported but Type 1 connections,
SQL_CONNECTTYPE = SQL_CONCURRENT_TRANS.
Must be on a transaction boundary prior to an
SQLConnect or SQLSetConnection.

392 Call Level Interface Guide and Reference

For more information on ODBC, refer to ODBC 2.0 Programmer's Reference and
SDK Guide.

ODBC Function List
The following table is a complete list of all Microsoft's ODBC 2.0 functions. The
ODBC conformance level and whether it is supported by DB2 CLI is shown for
each function. For a complete list of DB2 CLI functions and information about
X/Open and ISO callable SQL standards, see “DB2 CLI Function Summary” on
page 72. xproc=display. proc=display.

Table 142 (Page 1 of 3). ODBC Function List

Task Function Name Conformance
DB2 CLI
Support Purpose

Note: The DB2 CLI Support column indicates the first Version in which the function was supported.

Connecting to a Data Source

SQLAllocEnv Core V5 Obtains an environment handle. One environment
handle is used for one or more connections.

SQLAllocConnect Core V5 Obtains a connection handle.

SQLConnect Core V5 Connects to specific driver by data source name, user
ID, and password.

SQLDriverConnect Level 1 V5 Connects to a specific driver by connection string or
requests that the driver manager and driver display
connection dialogs for the user.

Note: This function is also extended by the additional
IBM keywords supported in the ODBC.INI file in
the DB2 for common server CLI environment.
Within the DB2 for OS/390 V5 CLI environment,
there is no equivalent of the ODBC.INI file.

SQLBrowseConnect Level2 No Returns successive levels of connection attributes and
valid attribute values. When a value is specified for each
connection attribute, connects to the data source.

Obtaining Information about a Driver and Data Source

SQLDataSources Level 2 V5 Returns the list of available data sources.

SQLDrivers Level 2 No Returns the list of installed drivers and their attributes
(ODBC 2.0).

Note: This function is implemented within the ODBC
driver manager and is therefore not applicable
within the DB2 for OS/390 V5 CLI environment.

SQLGetInfo Level 1 V5 Returns information about a specific driver and data
source.

SQLGetFunctions Level 1 V5 Returns supported driver functions.

SQLGetTypeInfo Level 1 V5 Returns information about supported data types.

Setting and Retrieving Driver Options

SQLSetConnectOption Level 1 V5 Sets a connection option.

SQLGetConnectOption Level 1 V5 Returns the value of a connection option.

SQLSetStmtOption Level 1 V5 Sets a statement option.

SQLGetStmtOption Level 1 V5 Returns the value of a statement option.

 Appendix B. DB2 CLI and ODBC 393

Table 142 (Page 2 of 3). ODBC Function List

Task Function Name Conformance
DB2 CLI
Support Purpose

Preparing SQL Requests

SQLAllocStmt Core V5 Allocates a statement handle.

SQLPrepare Core V5 Prepares an SQL statement for later execution.

SQLBindParameter Level 1 V5 Assigns storage for a parameter in an SQL statement
(ODBC 2.0)

SQLSetParam Core V5 Assigns storage for a parameter in an SQL statement
(ODBC 2.0). In ODBC, SQLBindParameter replaces this
function.

SQLParamOptions Level 2 V5 Specifies the use of multiple values for parameters.

SQLGetCursorName Core V5 Returns the cursor name associated with a statement
handle.

SQLSetCursorName Core V5 Specifies a cursor name.

SQLSetScrollOptions Level 2 No Sets options that control cursor behavior.

Submitting Requests

SQLExecute Core V5 Executes a prepared statement.

SQLExecDirect Core V5 Executes a statement.

SQLNativeSql Level 2 V5 Returns the text of an SQL statement as translated by
the driver.

SQLDescribeParam Level 2 No Returns the description for a specific parameter in a
statement.

SQLNumParams Level 2 V5 Returns the number of parameters in a statement.

SQLParamData Level 1 V5 Used in conjunction with SQLPutData() to supply
parameter data at execution time. (Useful for long data
values.)

SQLPutData Level 1 V5 Send part or all of a data value for a parameter. (Useful
for long data values.)

Retrieving Results and Information about Results

SQLRowCount Core V5 Returns the number of rows affected by an insert,
update, or delete request.

SQLNumResultCols Core V5 Returns the number of columns in the result set.

SQLDescribeCol Core V5 Describes a column in the result set.

SQLColAttributes Core V5 Describes attributes of a column in the result set.

SQLBindCol Core V5 Assigns storage for a result column and specifies the
data type.

SQLFetch Core V5 Returns a result row.

SQLExtendedFetch Level 2 V5 Returns multiple result rows.

SQLGetData Level 1 V5 Returns part or all of one column of one row of a result
set. (Useful for long data values.)

SQLSetPos Level 2 No Positions a cursor within a fetched block of data.

SQLMoreResults Level 2 V5 Determines whether there are more result sets available
and, if so, initializes processing for the next result set.

SQLError Core V5 Returns additional error or status information.

394 Call Level Interface Guide and Reference

Table 142 (Page 3 of 3). ODBC Function List

Task Function Name Conformance
DB2 CLI
Support Purpose

Obtaining information about the data source's system tables (catalog functions)

SQLColumnPrivileges Level 2 V5 Returns a list of columns and associated privileges for a
table.

SQLColumns Level 1 V5 Returns the list of column names in specified tables.

SQLForeignKeys Level 2 V5 Returns a list of column names that comprise foreign
keys, if they exist for a specified table.

SQLPrimaryKeys Level 2 V5 Returns the list of column names that comprise the
primary key for a table.

SQLProcedureColumns Level 2 V5 Returns the list of input and output parameters, as well
as the columns that make up the result set for the
specified procedures.

SQLProcedures Level 2 V5 Returns the list of procedure names stored in a specific
data source.

SQLSpecialColumns Level 1 V5 Returns information about the optimal set of columns
that uniquely identifies a row in a specified table, or the
columns that are automatically updated when any value
in the row is updated by a transaction.

SQLStatistics Level 1 V5 Returns statistics about a single table and the list of
indexes associated with the table.

SQLTablePrivileges Level 2 V5 Returns a list of tables and the privileges associated
with each table.

SQLTables Level 1 V5 Returns the list of table names stored in a specific data
source.

Terminating a Statement

SQLFreeStmt Core V5 End statement processing and closes the associated
cursor, discards pending results, and, optionally, frees
all resources associated with the statement handle.

SQLCancel Core Yes Cancels an SQL statement.

SQLTransact Core V5 Commits or rolls back a transaction.

Terminating a Connection

SQLDisconnect Core V5 Closes the connection.

SQLFreeConnect Core V5 Releases the connection handle.

SQLFreeEnv Core V5 Releases the environment handle.

 Isolation Levels
The following table maps IBM RDBMs isolation levels to ODBC transaction isolation
levels. The SQLGetInfo() function, indicates which isolation levels are available.

 Appendix B. DB2 CLI and ODBC 395

Table 143. Isolation Levels Under ODBC

IBM Isolation Level ODBC Isolation Level

Cursor Stability SQL_TXN_READ_COMMITTED

Repeatable Read SQL_TXN_SERIALIZABLE_READ

Read Stability; SQL_TXN_REPEATABLE_READ

Uncommitted Read SQL_TXN_READ_UNCOMMITTED

No Commit (no equivalent in ODBC)

Note: SQLSetConnectOption() and SQLSetStmtOption return SQL_ERROR with an
SQLSTATE of S1009 if you try to set an unsupported isolation level.

396 Call Level Interface Guide and Reference

Appendix C. Extended Scalar Functions

The following functions are defined by ODBC using vendor escape clauses. Each
function can be called using the escape clause syntax, or calling the equivalent
DB2 function.

These functions are presented in the following categories:

 � “String Functions”
� “Date and Time Functions” on page 398
� “System Functions” on page 399

For more information about vendor escape clauses, refer to “ODBC Scalar
Functions” on page 372.

All errors detected by the following functions, when connected to a DB2 for
common server Version 2 server, return SQLSTATE 38552. The text portion of the
message is of the form SYSFUN:nn where nn is one of the following reason codes:

01 Numeric value out of range
02 Division by zero
03 Arithmetic overflow or underflow
04 Invalid date format
05 Invalid time format
06 Invalid timestamp format
07 Invalid character representation of a timestamp duration
08 Invalid interval type (must be one of 1, 2, 4, 8, 16, 32, 64, 128, 256)
09 String too long
10 Length or position in string function out of range
11 Invalid character representation of a floating point number

 String Functions
The string functions in this section are supported by DB2 CLI and defined by ODBC
using vendor escape clauses.

Note:

� Character string literals used as arguments to scalar functions must be
bounded by single quotes.

� Arguments denoted as string_exp can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type can be
represented as SQL_CHAR, SQL_VARCHAR, or SQL_LONGVARCHAR. .

� Arguments denoted as start, length, code or count can be a numeric literal or
the result of another scalar function, where the underlying data type is integer
based (SQL_SMALLINT, SQL_INTEGER).

� The first character in the string is considered to be at position 1.

ASCII(string_exp)
Returns the ASCII code value of the leftmost character of string_exp as an
integer.

 Copyright IBM Corp. 1997 397

CONCAT(string_exp1, string_exp2)
Returns a character string that is the result of concatenating string_exp2 to
string_exp1.

INSERT(string_exp1, start, length, string_exp2)
Returns a character string where length number of characters beginning at start
is replaced by string_exp2 which contains length characters.

LEFT(string_exp,count)
Returns the leftmost count of characters of string_exp.

LENGTH(string_exp)
Returns the number of characters in string_exp, excluding trailing blanks and
the string termination character.

REPEAT(string_exp, count)
Returns a character string composed of string_exp repeated count times.

RIGHT(string_exp, count)
Returns the rightmost count of characters of string_exp.

SUBSTRING(string_exp, start, length)
Returns a character string that is derived from string_exp beginning at the
character position specified by start for length characters.

Date and Time Functions
The date and time functions in this section are supported by DB2 CLI and defined
by ODBC using vendor escape clauses.

Note:

� Arguments denoted as timestamp_exp can be the name of a column, the result
of another scalar function, or a time, date, or timestamp literal.

� Arguments denoted as date_exp can be the name of a column, the result of
another scalar function, or a date or timestamp literal, where the underlying
data type can be character based, or date or timestamp based.

� Arguments denoted as time_exp can be the name of a column, the result of
another scalar function, or a time or timestamp literal, where the underlying
data types can be character based, or time or timestamp based.

CURDATE()
Returns the current date as a date value.

CURTIME()
Returns the current local time as a time value.

398 Call Level Interface Guide and Reference

DAYOFMONTH (date_exp)
Returns the day of the month in date_exp as an integer value in the range of
1-31.

HOUR(time_exp)
Returns the hour in time_exp as an integer value in the range of 0-23.

MINUTE(time_exp)
Returns the minute in time_exp as integer value in the range of 0-59.

MONTH(date_exp)
Returns the month in date_exp as an integer value in the range of 1-12.

NOW()
Returns the current date and time as a timestamp value.

SECOND(time_exp)
Returns the second in time_exp as an integer value in the range of 0-59.

 System Functions
The system functions in this section are supported by DB2 CLI and defined by
ODBC using vendor escape clauses.

� Arguments denoted as exp can be the name of a column, the result of another
scalar function, or a literal.

� Arguments denoted as value can be a literal constant.

DATABASE()
Returns the name of the database corresponding to the connection handle
(hdbc). (The name of the database is also available via SQLGetInfo() by
specifying the information type SQL_DATABASE_NAME.)

IFNULL(exp, value)
If exp is null, value is returned. If exp is not null, exp is returned. The possible
data types of value must be compatible with the data type of exp.

USER()
Returns the user's authorization name. (The user's authorization name is also
available via SQLGetInfo() by specifying the information type
SQL_USER_NAME.)

 Appendix C. Extended Scalar Functions 399

400 Call Level Interface Guide and Reference

 SQLSTATE Cross Reference

Appendix D. Appendix D. SQLSTATE Cross Reference

This table is a cross-reference of all the SQLSTATEs listed in the 'Diagnostics'
section of each function description in “Chapter 5. Functions” on page 71.

Note: DB2 CLI can also return SQLSTATEs generated by the server that are not
listed in this table. If the returned SQLSTATE is not listed here, refer to the
documentation for the server for additional SQLSTATE information.

Table 144 (Page 1 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

01000 Warning. � SQLSetConnectOption()

01002 Disconnect error. � SQLDisconnect()

01004 Data truncated. � SQLColAttributes()

 � SQLDataSources()

 � SQLDescribeCol()

 � SQLDriverConnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetInfo()

 � SQLNativeSql()

 � SQLPutData()

 � SQLSetColAttributes()

01504 The UPDATE or DELETE statement does
not include a WHERE clause.

 � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

01508 Statement disqualified for blocking. � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

01S00 Invalid connection string attribute. � SQLDriverConnect()

01S01 Error in row. � SQLExtendedFetch()

01S02 Option value changed � SQLDriverConnect()

 � SQLSetConnectOption()

 � SQLSetEnvAttr()

 � SQLSetStmtOption()

07001 Wrong number of parameters. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

07002 Too many columns. � SQLExtendedFetch()

 � SQLFetch()

07005 The statement did not return a result set. � SQLColAttributes()

 � SQLDescribeCol()

07006 Invalid conversion. � SQLBindParameter()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetData()

 � SQLSetParam()

08001 Unable to connect to data source. � SQLConnect()

 � SQLDriverConnect()

 Copyright IBM Corp. 1997 401

 SQLSTATE Cross Reference

Table 144 (Page 2 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

08002 Connection in use. � SQLConnect()

 � SQLDriverConnect()

08003 Connection is closed. � SQLAllocStmt()

 � SQLDisconnect()

 � SQLGetConnectOption()

 � SQLGetInfo()

 � SQLNativeSql()

 � SQLSetConnection()

 � SQLSetConnectOption()

 � SQLTransact()

08004 The application server rejected
establishment of the connection.

 � SQLConnect()

 � SQLDriverConnect()

08007 Connection failure during transaction. � SQLTransact()

21S01 Insert value list does not match column list. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

21S02 Degrees of derived table does not match
column list.

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

22001 String data right truncation. � SQLPutData()

22002 Invalid output or indicator buffer specified. � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetData()

22003 Numeric value out of range. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetData()

 � SQLPutData()

22005 Error in assignment. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetData()

 � SQLPutData()

22008 Datetime field overflow. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetData()

22012 Division by zero is invalid. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

23000 Integrity constraint violation. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

402 Call Level Interface Guide and Reference

 SQLSTATE Cross Reference

Table 144 (Page 3 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

24000 Invalid cursor state. � SQLColumns()

 � SQLColumnPrivileges()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLForeignKeys()

 � SQLGetData()

 � SQLGetStmtOption()

 � SQLGetTypeInfo()

 � SQLPrepare()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLSetColAttributes()

 � SQLSetStmtOption()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

24504 The cursor identified in the UPDATE,
DELETE, SET, or GET statement is not
positioned on a row.

 � SQLExecDirect()

 � SQLExecute()

25000 Invalid transaction state. � SQLDisconnect()

25501 Invalid transaction state. � SQLDisconnect()

28000 Invalid authorization specification. � SQLConnect()

 � SQLDriverConnect()

34000 Invalid cursor name. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

 � SQLSetCursorName()

37XXX Invalid SQL syntax. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

37000 Invalid SQL syntax. � SQLNativeSql()

38552 Error in function listed in SYSFUN schema All scalar functions, and
SQLFetch() where the SQL
statement references an ODBC
scalar function.

40001 Transaction rollback. � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

 Appendix D. Appendix D. SQLSTATE Cross Reference 403

 SQLSTATE Cross Reference

Table 144 (Page 4 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

40003 Communication link failure. � SQLAllocStmt()

 � SQLBindCol()

 � SQLBindParameter()

 � SQLCancel()

 � SQLColumns()

 � SQLColumnPrivileges()

 � SQLColAttributes()

 � SQLDescribeCol()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLForeignKeys()

 � SQLFreeStmt()

 � SQLGetConnectOption()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetFunctions()

 � SQLGetInfo()

 � SQLGetStmtOption()

 � SQLGetTypeInfo()

 � SQLMoreResults()

 � SQLNumParams()

 � SQLNumResultCols()

 � SQLParamData()

 � SQLParamOptions()

 � SQLPrepare()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLPutData()

 � SQLRowCount()

 � SQLSetColAttributes()

 � SQLSetConnectOption()

 � SQLSetCursorName()

 � SQLSetParam()

 � SQLSetStmtOption()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

42XXX Syntax error or access rule violation � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

425XX Syntax error or access rule violation � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

42601 PARMLIST syntax error. � SQLProcedureColumns()

42895 The value of a host variable in the
EXECUTE or OPEN statement cannot be
used because of its data type

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

44000 Integrity constraint violation. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

404 Call Level Interface Guide and Reference

 SQLSTATE Cross Reference

Table 144 (Page 5 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

56084 LOB data is not supported in DRDA. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

58004 Unexpected system failure. � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLBindParameter()

 � SQLColAttributes()

 � SQLConnect()

 � SQLDriverConnect()

 � SQLDataSources()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetFunctions()

 � SQLGetInfo()

 � SQLMoreResults()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetCursorName()

 � SQLSetParam()

 � SQLTransact()

S0001 Database object already exists. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

S0002 Database object does not exist. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

S0011 Index already exists. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

S0012 Index not found. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

S0021 Column already exists. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

S0022 Column not found. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLPrepare()

 Appendix D. Appendix D. SQLSTATE Cross Reference 405

 SQLSTATE Cross Reference

Table 144 (Page 6 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1C00 Driver not capable. � SQLBindCol()

 � SQLBindParameter()

 � SQLColumns()

 � SQLColumnPrivileges()

 � SQLColAttributes()

 � SQLDescribeCol()

 � SQLDescribeParam()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLForeignKeys()

 � SQLGetConnectOption()

 � SQLGetData()

 � SQLGetInfo()

 � SQLGetStmtOption()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLSetConnectOption()

 � SQLSetEnvAttr()

 � SQLSetParam()

 � SQLSetStmtOption()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

S1000 General error. � SQLDataSources()

 � SQLDescribeParam()

 � SQLDriverConnect()

 � SQLSetColAttributes()

 � SQLSetConnection()

 � SQLSetStmtOption()

S1001 Memory allocation failure. All functions.

S1002 Invalid column number. � SQLBindCol()

 � SQLColAttributes()

 � SQLDescribeCol()

 � SQLGetData()

 � SQLSetColAttributes()

S1003 Program type out of range. � SQLBindCol()

 � SQLBindParameter()

 � SQLGetData()

 � SQLSetParam()

S1004 SQL data type out of range. � SQLBindParameter()

 � SQLGetTypeInfo()

 � SQLSetColAttributes()

 � SQLSetParam()

406 Call Level Interface Guide and Reference

 SQLSTATE Cross Reference

Table 144 (Page 7 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1009 Invalid argument value. � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindParameter()

 � SQLColumnPrivileges()

 � SQLConnect()

 � SQLDriverConnect()

 � SQLExecDirect()

 � SQLForeignKeys()

 � SQLGetConnectOption()

 � SQLGetData()

 � SQLGetFunctions()

 � SQLGetInfo()

 � SQLGetStmtOption()

 � SQLNativeSql()

 � SQLNumParams()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLPutData()

 � SQLSetConnectOption()

 � SQLSetCursorName()

 � SQLSetEnvAttr()

 � SQLSetParam()

 � SQLSetStmtOption()

S1010 Function sequence error. � SQLBindCol()

 � SQLBindParameter()

 � SQLColumns()

 � SQLColAttributes()

 � SQLDescribeCol()

 � SQLDescribeParam()

 � SQLDisconnect()

 � SQLExecute()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLForeignKeys()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetFunctions()

 � SQLGetStmtOption()

 � SQLGetTypeInfo()

 � SQLMoreResults()

 � SQLNumParams()

 � SQLNumResultCols()

 � SQLParamData()

 � SQLParamOptions()

 � SQLPrepare()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLPutData()

 � SQLRowCount()

 � SQLSetColAttributes()

 � SQLSetConnectOption()

 � SQLSetCursorName()

 � SQLSetParam()

 � SQLSetStmtOption()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

 Appendix D. Appendix D. SQLSTATE Cross Reference 407

 SQLSTATE Cross Reference

Table 144 (Page 8 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1011 Operation invalid at this time. � SQLSetConnectOption()

 � SQLSetEnvAttr()

 � SQLSetStmtOption()

S1012 Invalid transaction code. � SQLTransact()

S1013 Unexpected memory handling error. � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLBindParameter()

 � SQLCancel()

 � SQLColAttributes()

 � SQLConnect()

 � SQLDriverConnect()

 � SQLDataSources()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetFunctions()

 � SQLMoreResults()

 � SQLNumParams()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetColAttributes()

 � SQLSetCursorName()

 � SQLSetParam()

 � SQLTransact()

S1014 No more handles. � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLColumns()

 � SQLColumnPrivileges()

 � SQLExecDirect()

 � SQLForeignKeys()

 � SQLPrepare()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

408 Call Level Interface Guide and Reference

 SQLSTATE Cross Reference

Table 144 (Page 9 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1090 Invalid string or buffer length. � SQLBindCol()

 � SQLBindParameter()

 � SQLColumns()

 � SQLColumnPrivileges()

 � SQLColAttributes()

 � SQLConnect()

 � SQLDriverConnect()

 � SQLDataSources()

 � SQLDescribeCol()

 � SQLDriverConnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

 � SQLForeignKeys()

 � SQLGetCursorName()

 � SQLGetData()

 � SQLGetInfo()

 � SQLNativeSql()

 � SQLPrepare()

 � SQLPrimaryKeys()

 � SQLProcedures()

 � SQLProcedureColumns()

 � SQLPutData()

 � SQLSetColAttributes()

 � SQLSetCursorName()

 � SQLSpecialColumns()

 � SQLStatistics()

 � SQLTables()

 � SQLTablePrivileges()

S1091 Descriptor type out of range. � SQLColAttributes()

S1092 Option type out of range. � SQLFreeStmt()

 � SQLGetConnectOption()

 � SQLGetEnvAttr()

 � SQLExecDirect()

 � SQLExecute()

 � SQLExtendedFetch()

 � SQLFetch()

 � SQLGetStmtOption()

 � SQLParamData()

 � SQLSetConnectOption()

 � SQLSetEnvAttr()

 � SQLSetStmtOption()

S1093 Invalid parameter number. � SQLBindParameter()

 � SQLDescribeParam()

 � SQLSetParam()

S1094 Invalid scale value. � SQLBindParameter()

 � SQLSetColAttributes()

 � SQLSetParam()

S1096 Information type out of range. � SQLGetInfo()

S1097 Column type out of range. � SQLSpecialColumns()

S1098 Scope type out of range. � SQLSpecialColumns()

S1099 Nullable type out of range. � SQLSetColAttributes()

 � SQLSpecialColumns()

S1100 Uniqueness option type out of range. � SQLStatistics()

S1101 Accuracy option type out of range. � SQLStatistics()

S1103 Direction option out of range. � SQLDataSources()

 � SQLGetInfo()

 Appendix D. Appendix D. SQLSTATE Cross Reference 409

 SQLSTATE Cross Reference

Table 144 (Page 10 of 10). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1104 Invalid precision value. � SQLBindParameter()

 � SQLSetColAttributes()

 � SQLSetParam()

S1105 Invalid parameter type. � SQLBindParameter()

S1106 Fetch type out of range. � SQLExtendedFetch()

S1107 Row value out of range. � SQLParamOptions()

S1110 Invalid driver completion. � SQLDriverConnect()

S1501 Invalid data source name. � SQLConnect()

 � SQLDriverConnect()

S1503 Invalid file name length. � SQLExecDirect()

 � SQLExecute()

 � SQLParamData()

S1506 Error closing a file. � SQLCancel()

 � SQLFreeStmt()

 � SQLParamData()

S1509 Error deleting a file. � SQLParamData()

410 Call Level Interface Guide and Reference

 Appendix E. Data Conversion

This section contains tables used for data conversion between C and SQL data
types. This includes:

� Precision, scale, length, and display size of each data type

� Conversion from SQL to C data types

� Conversion from C to SQL data types

For a list of SQL and C data types, their symbolic types, and the default
conversions, refer to Table 4 on page 40 and Table 5 on page 41. Supported
conversions are shown in Table 8 on page 43.

 Copyright IBM Corp. 1997 411

 Data Type Attributes

Data Type Attributes
Information is shown for the following data type attributes:

 � “Precision”
� “Scale” on page 413
� “Length” on page 414
� “Display Size” on page 415

 Precision
The precision of a numeric column or parameter refers to the maximum number of
digits used by the data type of the column or parameter. The precision of a
non-numeric column or parameter generally refers to the maximum length or the
defined length of the column or parameter. The following table defines the precision
for each SQL data type.

Table 145. Precision

fSqlType Precision

SQL_CHAR
SQL_VARCHAR

The defined length of the column or parameter. For example, the precision of a
column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column or parameter. a

SQL_DECIMAL
SQL_NUMERIC

The defined maximum number of digits. For example, the precision of a column
defined as NUMERIC(10,3) is 10.

SQL_SMALLINT b 5

SQL_INTEGER b 10

SQL_FLOAT b 15

SQL_REAL b 7

SQL_DOUBLE b 15

SQL_BINARY
SQL_VARBINARY

The defined length of the column or parameter. For example, the precision of a
column defined as CHAR(10) FOR BIT DATA, is 10.

SQL_LONGVARBINARY The maximum length of the column or parameter.

SQL_DATE b 10 (the number of characters in the yyyy-mm-dd format).

SQL_TIME b 8 (the number of characters in the hh:mm:ss format).

SQL_TIMESTAMP The number of characters in the "yyyy-mm-dd hh:mm:ss[.fff[fff]]” or
"yyyy-mm-dd.hh.mm.ss.fff[fff]]” format used by the TIMESTAMP data type. For
example, if a timestamp does not use seconds or fractional seconds, the precision is
16 (the number of characters in the "yyyy-mm-dd hh:mm” format). If a timestamp
uses thousandths of a second, the precision is 26 (the number of characters in the
"yyyy-mm-dd hh:mm:ss.ffffff” format). The maximum for fractional seconds is 6
digits.

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column or parameter. For example, the precision of a
column defined as GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

Note:

a When defining the precision of a parameter of this data type with SQLBindParameter() or
SQLSetParam(), cbParamDef should be set to the total length of the data, not the precision as defined
in this table.

b The cbParamDef argument of SQLBindParameter() or SQLSetParam() is ignored for this data type.

412 Call Level Interface Guide and Reference

 Data Type Attributes

 Scale
The scale of a numeric column or parameter refers to the maximum number of
digits to the right of the decimal point. Note that, for approximate floating point
number columns or parameters, the scale is undefined, since the number of digits
to the right of the decimal place is not fixed. The following table defines the scale
for each SQL data type.

Table 146. Scale

fSqlType Scale

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal place. For example, the
scale of a column defined as NUMERIC(10, 3) is 3.

SQL_SMALLINT
SQL_INTEGER

0

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Not applicable.

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Not applicable.

SQL_DATE
SQL_TIME

Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal point in the "yyyy-mm-dd
hh:mm:ss[fff[fff]]” format. For example, if the TIMESTAMP data type uses the
"yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3. The maximum for fractional
seconds is 6 digits.

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC

Not applicable.

 Appendix E. Data Conversion 413

 Data Type Attributes

 Length
The length of a column is the maximum number of bytes returned to the application
when data is transferred to its default C data type. For character data, the length
does not include the null termination byte. Note that the length of a column can be
different than the number of bytes required to store the data on the data source.
For a list of default C data types, see the "Default C Data Types” section.

The following table defines the length for each SQL data type.

Table 147. Length

fSqlType Length

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example, the length of a column defined as
CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus two. Since these data types are returned as
character strings, characters are needed for the digits, a sign, and a decimal point.
For example, the length of a column defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 2 (two bytes).

SQL_INTEGER 4 (four bytes).

SQL_REAL 4 (four bytes).

SQL_FLOAT 8 (eight bytes).

SQL_DOUBLE 8 (eight bytes).

SQL_BINARY
SQL_VARBINARY

The defined length of the column. For example, the length of a column defined as
CHAR(10) FOR BIT DATA is 10.

SQL_LONGVARBINARY The maximum length of the column.

SQL_DATE
SQL_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT structure).

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column times 2. For example, the length of a column
defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column times 2.

414 Call Level Interface Guide and Reference

 Data Type Attributes

 Display Size
The display size of a column is the maximum number of bytes needed to display
data in character form. The following table defines the display size for each SQL
data type.

Table 148. Display Size

fSqlType Display Size

SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example, the display size of a column defined
as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus two (a sign, precision digits, and a decimal point).
For example, the display size of a column defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 6 (a sign and 5 digits).

SQL_INTEGER 11 (a sign and 10 digits).

SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a sign, and
2 digits).

SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign, and
3 digits).

SQL_BINARY
SQL_VARBINARY

The defined length of the column times 2 (each binary byte is represented by a 2
digit hexadecimal number). For example, the display size of a column defined as
CHAR(10) FOR BIT DATA is 20.

SQL_LONGVARBINARY The maximum length of the column times 2.

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIME 8 (a time in the format hh:mm:ss).

SQL_TIMESTAMP 19 (if the scale of the timestamp is 0) or 20 plus the scale of the timestamp (if the
scale is greater than 0). This is the number of characters in the "yyyy-mm-dd
hh:mm:ss[fff[fff]]” or "yyyy-mm-dd.hh.mm.ss.fff[fff]]” format. For example, the display
size of a column storing thousandths of a second is 23 (the number of characters in
"yyyy-mm-dd hh:mm:ss.ffffff”). The maximum for fractional seconds is 6 digits.

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column or parameter. For example, the display size of a
column defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

 Appendix E. Data Conversion 415

 SQL to C Data Types

Converting Data from SQL to C Data Types
For a given SQL data type:

� The first column of the table lists the legal input values of the fCType argument
in SQLBindCol() and SQLGetData().

� The second column lists the outcomes of a test, often using the cbValueMax
argument specified in SQLBindCol() or SQLGetData(), which the driver performs
to determine if it can convert the data.

� The third and fourth columns list the values (for each outcome) of the rgbValue
and pcbValue arguments specified in the SQLBindCol() or SQLGetData() after
the driver has attempted to convert the data.

� The last column lists the SQLSTATE returned for each outcome by SQLFetch(),
SQLExtendedFetch(), or SQLGetData().

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fCType argument in SQLBindCol() or SQLGetData() contains a value not
shown in the table for a given SQL data type, SQLFetch(), or SQLGetData() returns
the SQLSTATE 07006 (restricted data type attribute violation).

If the fCType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLFetch(), or SQLGetData() returns
SQLSTATE S1C00 (driver not capable).

Though it is not shown in the tables, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is NULL. For an explanation of the
use of pcbValue when multiple calls are made to retrieve data, see SQLGetData().

When SQL data is converted to character C data, the character count returned in
pcbValue does not include the null termination byte. If rgbValue is a null pointer,
SQLBindCol() or SQLGetData() returns SQLSTATE S1009 (Invalid argument value).

In the following tables:

Length of data
The total length of the data after it has been converted to the specified C
data type (excluding the null termination byte if the data was converted to a
string). This is true even if data is truncated before it is returned to the
application.

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

Display size
The total number of bytes needed to display data in the character format.

 proc=display. xproc=display.

416 Call Level Interface Guide and Reference

 SQL to C Data Types

Converting Character SQL Data to C Data
The character SQL data types are:

 SQL_CHAR
 SQL_VARCHAR
 SQL_LONGVARCHAR

Table 149. Converting Character SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data < cbValueMax Data Length of data 00000

Length of data >= cbValueMax Truncated data Length of data 01004

SQL_C_BINARY Length of data <= cbValueMax Data Length of data 00000

Length of data > cbValueMax Truncated data Length of data 01004

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT

Data converted without truncation a Data Size of the
C data type

00000

Data converted with truncation, but
without loss of significant digits a

Data Size of the
C data type

01004

Conversion of data would result in
loss of significant digits a

Untouched Size of the
C data type

22003

Data is not a number a Untouched Size of the
C data type

22005

SQL_C_DATE Data value is a valid date a Data 6 b 00000

Data value is not a valid date a Untouched 6 b 22008

SQL_C_TIME Data value is a valid time a Data 6 b 00000

Data value is not
a valid time a

Untouched 6 b 22008

SQL_C_TIMESTAMP Data value is a valid
timestamp a

Data 16 b 00000

Data value is not a valid
timestamp a

Untouched 16 b 22008

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue
is the size of the C data type.

b This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

 Appendix E. Data Conversion 417

 SQL to C Data Types

Converting Graphic SQL Data to C Data
The graphic SQL data types are:

 SQL_GRAPHIC
 SQL_VARGRAPHIC
 SQL_LONGVARGRAPHIC

Table 150. Converting Graphic SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double byte characters
* 2 <= cbValueMax

Data Length of
data(octets)

00000

Number of double byte characters
 * 2 <= cbValueMax

Truncated
data, to the
nearest
even byte
that is less
than
cbValueMax.

Length of
data(octets)

01004

SQL_C_DBCHAR Number of double byte characters
* 2 < cbValueMax

Data Length of
data(octets)

00000

Number of double byte characters
* 2 >= cbValueMax

Truncated
cbValueMax.
data, to the
nearest
even byte
that is less
than
cbValueMax.

Length of
data(octets)

01004

Note:

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

418 Call Level Interface Guide and Reference

 SQL to C Data Types

Converting Numeric SQL Data to C Data
The numeric SQL data types are:

 SQL_DECIMAL
 SQL_NUMERIC
 SQL_SMALLINT
 SQL_INTEGER
 SQL_REAL
 SQL_FLOAT
 SQL_DOUBLE

Table 151. Converting Numeric SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of data 00000

Number of significant digits
< cbValueMax

Truncated data Length of data 01004

Number of significant digits
>= cbValueMax

Untouched Length of data 22003

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT

Data converted
without truncation a

Data Size of the
C data type

00000

Data converted with truncation, but
without loss of significant digits a

Truncated data Size of the
C data type

01004

Conversion of data would result in
loss of significant digits a

Untouched Size of the
C data type

22003

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue
is the size of the C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

 Appendix E. Data Conversion 419

 SQL to C Data Types

Converting Binary SQL Data to C Data
The binary SQL data types are:

 SQL_BINARY
 SQL_VARBINARY
 SQL_LONGVARBINARY

Table 152. Converting Binary SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) < cbValueMax Data Length of data N/A

(Length of data) >= cbValueMax Truncated data Length of data 01004

SQL_C_BINARY Length of data <= cbValueMax Data Length of data N/A

Length of data > cbValueMax Truncated data Length of data 01004

420 Call Level Interface Guide and Reference

 SQL to C Data Types

Converting Date SQL Data to C Data
The date SQL data type is:

 SQL_DATE

Table 153. Converting Date SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 00000

cbValueMax < 11 Untouched 10 22003

SQL_C_DATE None a Data 6 b 00000

SQL_C_TIMESTAMP None a Data c 16 b 00000

SQL_C_BINARY Length of data <= cbValueMax Data Length of data 00000

Length of data > cbValueMax Untouched Untouched 22003

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue
is the size of the C data type.

b This is the size of the corresponding C data type.
c The time fields of the TIMESTAMP_STRUCT structure are set to zero.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

When the date SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd” format.

 Appendix E. Data Conversion 421

 SQL to C Data Types

Converting Time SQL Data to C Data
The time SQL data type is:

 SQL_TIME

Table 154. Converting Time SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 00000

cbValueMax < 9 Untouched 8 22003

SQL_C_TIME None a Data 6 b 00000

SQL_C_TIMESTAMP None a Data c 16 b 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue
is the size of the C data type.

b This is the size of the corresponding C data type.
c The date fields of the TIMESTAMP_STRUCT structure are set to the current system date of the

machine that the application is running, and the time fraction is set to zero.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

When the time SQL data type is converted to the character C data type, the
resulting string is in the "hh:mm:ss” format.

422 Call Level Interface Guide and Reference

 SQL to C Data Types

Converting Timestamp SQL Data to C Data
The timestamp SQL data type is:

 SQL_TIMESTAMP

Table 155. Converting Timestamp SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of data 00000

19 <= cbValueMax <= Display size Truncated
data b

Length of data 01004

cbValueMax < 19 Untouched Length of data 22003

SQL_C_DATE None a Truncated
data c

6 e 01004

SQL_C_TIME None a Truncated
data d

6 e 01004

SQL_C_TIMESTAMP None a Data 16 e 00000

Fractional seconds portion of
timestamp is truncated.a

Data b 16 01004

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue
is the size of the C data type.

b The fractional seconds of the timestamp are truncated.
c The time portion of the timestamp is deleted.
d The date portion of the timestamp is deleted.
e This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

When the timestamp SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd hh:mm:ss[.fff[fff]]” format (regardless of the
precision of the timestamp SQL data type).

 Appendix E. Data Conversion 423

 SQL to C Data Types

SQL to C Data Conversion Examples

'.
Table 156. SQL to C Data Conversion Examples

SQL Data Type
SQL
Data Value C Data Type cbValueMax rgbValue

SQL
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a 00000

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a 00000

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 00000

SQL_DECIMAL 1234.56 SQL_C_SHORT Ignored 1234 01004

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a 00000

SQL_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP Ignored 1992,12,31,
0,0,0,0 b

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 --- 22003

Note:

a "\0" represents a null termination character.
b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

424 Call Level Interface Guide and Reference

 C to SQL Data Types

Converting Data from C to SQL Data Types
For a given C data type:

� The first column of the table lists the legal input values of the fSqlType
argument in SQLBindParameter() or SQLSetParam().

� The second column lists the outcomes of a test, often using the length of the
parameter data as specified in the pcbValue argument in SQLBindParameter()

or SQLSetParam(), which the driver performs to determine if it can convert the
data.

� The third column lists the SQLSTATE returned for each outcome by
SQLExecDirect() or SQLExecute().

Note: Data is sent to the data source only if the SQLSTATE is 00000
(success).

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fSqlType argument in SQLBindParameter() or SQLSetParam() contains a value
not shown in the table for a given C data type, SQLSTATE 07006 is returned
(Restricted data type attribute violation).

If the fSqlType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLBindParameter() or SQLSetParam()
returns SQLSTATE S1C00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter() or
SQLSetParam() are both null pointers, that function returns SQLSTATE S1009
(Invalid argument value).

Length of data
The total length of the data after it has been converted to the specified SQL
data type (excluding the null termination byte if the data was converted to a
string). This is true even if data is truncated before it is sent to the data
source.

Column length
The maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does
not include the null termination byte.

Display size
The maximum number of bytes needed to display data in character form.

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

 Appendix E. Data Conversion 425

 C to SQL Data Types

Converting Character C Data to SQL Data
The character C data type is:

 SQL_C_CHAR

Table 157. Converting Character C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data <= Column length 00000

Length of data > Column length 01004

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of significant digits 01004

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

(Length of data) < Column length N/A

(Length of data) >= Column length 01004

Data value is not a hexadecimal value 22005

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22008

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22008

Data value is a valid timestamp; time portion is non-zero 01004

SQL_TIMESTAMP Data value is a valid timestamp

Data value is a valid timestamp; fractional seconds portion is
non-zero

00000

01004

Data value is not a valid timestamp

Data value is a valid timestamp; fractional seconds portion is
non-zero

22008

01004

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC

Length of data / 2 <= Column length 00000

Length of data / 2 < Column length 01004

Note:

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

426 Call Level Interface Guide and Reference

 C to SQL Data Types

Converting Numeric C Data to SQL Data
The numeric C data types are:

 SQL_C_SHORT
 SQL_C_LONG
 SQL_C_FLOAT
 SQL_C_DOUBLE
 SQL_C_TINYINT
 SQL_C_BIT

Table 158. Converting Numeric C Data to SQL Data

fSQLType Test SQLSTATE

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of significant digits 01004

Conversion of data would result in loss of significant digits 22003

SQL_CHAR
SQL_VARCHAR

Data converted without truncation. 00000

Conversion of data would result in loss of significant digits. 22003

Note:

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

 Appendix E. Data Conversion 427

 C to SQL Data Types

Converting Binary C Data to SQL Data
The binary C data type is:

 SQL_C_BINARY

Table 159. Converting Binary C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data <= Column length N/A

Length of data > Column length 01004

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Length of data <= Column length N/A

Length of data > Column length 01004

428 Call Level Interface Guide and Reference

 C to SQL Data Types

Converting DBCHAR C Data to SQL Data
The double byte C data type is:

 SQL_C_DBCHAR

Table 160. Converting DBCHAR C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 01004

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 01004

 Appendix E. Data Conversion 429

 C to SQL Data Types

Converting Date C Data to SQL Data
The date C data type is:

 SQL_C_DATE

Table 161. Converting Date C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 10 00000

Column length < 10 22003

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22008

SQL_TIMESTAMP a Data value is a valid date 00000

Data value is not a valid date 22008

Note:

a The time component of TIMESTAMP is set to zero.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

430 Call Level Interface Guide and Reference

 C to SQL Data Types

Converting Time C Data to SQL Data
The time C data type is:

 SQL_C_TIME

Table 162. Converting Time C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 8 00000

Column length < 8 22003

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22008

SQL_TIMESTAMP a Data value is a valid time 00000

Data value is not a valid time 22008

Note:

a The date component of TIMESTAMP is set to the system date of the machine at which the application
is running.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

 Appendix E. Data Conversion 431

 C to SQL Data Types

Converting Timestamp C Data to SQL Data
The timestamp C data type is:

 SQL_C_TIMESTAMP

Table 163. Converting Timestamp C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= Display size 00000

19 <= Column length < Display size a 01004

Column length < 19 22003

SQL_DATE Data value is a valid date b 01004

Data value is not a valid date 22008

SQL_TIME Data value is a valid time c 01004

Data value is not a valid time

Fractional seconds fields are non-zero

22008

01004

SQL_TIMESTAMP Data value is a valid timestamp 00000

Data value is not a valid timestamp 22008

Note:

a The fractional seconds of the timestamp are truncated.
b The time portion of the timestamp is deleted.
c The date portion of the timestamp is deleted.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

432 Call Level Interface Guide and Reference

 C to SQL Data Types

C to SQL Data Conversion Examples

Table 164. C to SQL Data Conversion Examples

C Data Type C Data Value SQL Data Type
Column
Length SQL Data Value SQLSTATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef 00000

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 00000

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT Not
applicable

1234.56 00000

SQL_C_FLOAT 1234.56 SQL_INTEGER Not
applicable

1234 01004

Note:

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

 Appendix E. Data Conversion 433

 C to SQL Data Types

434 Call Level Interface Guide and Reference

 Appendix F. Example Code

This section provides two extensive examples.

� “DB2 CLI Application” shows an application that creates two tables, populates
them, and reads them.

� “Stored Procedure” on page 464 shows a DB2 CLI client application calling a
DB2 CLI stored procedure.

DB2 CLI Application
The application in this example consists of three parts.

1. In the first step, the application creates two tables: the COMMANDERS table
and the BATTLES table.

2. In the second step, the application populates these tables with long data in
pieces using the SQLPutData() API.

3. In the last step, the application retrieves data from the tables using the
SQLGetData() API.

STEP 1. Create COMMANDERS and BATTLES tables.

 /??/

 /? DB2 for OS/39= CLI Sample: ?/

 /? Exercises the ODBC Version 2.= APIs necessary to create ?/

 /? tables. The tables are formulated using ODBC SQL data types ?/

 /? and text is generated to create a COMMANDERS table and a ?/

 /? BATTLES table. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include <sqlcli1.h>

typedef struct Column

{

UCHAR Colname [16]; // columns name

SWORD SQLType; // ODBC SQL type

 SWORD Precision; // length

SWORD Nullable; // nullable (true) or non-nullabe (false

} COLUMN, ?pCOLUMN;

typedef struct DSNtype

{

UCHAR Typename [4=]; // DSN type name

SWORD SQLType; // DSN SQL type

 SWORD Precision; // length

SWORD Nullable; // nullable (true) or non-nullabe (false

struct DSNtype ?next; // forward link

} DSNTYPE, ?pDSNTYPE;

 Copyright IBM Corp. 1997 435

typedef struct Table

{

UCHAR TableName [16]; // table name

SWORD NumColumns; // number of columns

pCOLUMN TableCols; // address of COLUMN array

} TABLE, ?pTABLE;

 /??/

 /? Define BATTLES Table ?/

 /??/

COLUMN BATTLES [5] = {

{ "Battlename", SQL_CHAR , 2=, =},

 { "Date" , SQL_DATE , =, =},

 { "Winner" , SQL_CHAR , 2=, =},

 { "Loser" , SQL_CHAR , 2=, =},

{ "Narrative" , SQL_LONGVARCHAR, =, =}

 } ;

 /??/

 /? Define COMMANDERS Table ?/

 /??/

COLUMN COMMANDERS [4] = {

 { "CINC" , SQL_CHAR , 2=, 1},

 { "Branch" , SQL_CHAR , 3=, 1},

 { "Rank" , SQL_CHAR , 2=, 1},

{ "Cur_Vitae" , SQL_LONGVARCHAR, =, =}

 } ;

TABLE TBDEF [2] = {

{ "Commanders", 4, COMMANDERS },

{ "Battles" , 5, BATTLES }

 } ;

 /??/

 /? CLI APIs required ?/

 /??/

SQLUSMALLINT ODBC_api [7] = {

 SQL_API_SQLBINDPARAMETER,

 SQL_API_SQLDISCONNECT ,

 SQL_API_SQLGETTYPEINFO ,

 SQL_API_SQLFETCH ,

 SQL_API_SQLTRANSACT ,

 SQL_API_SQLBINDCOL ,

 SQL_API_SQLEXECDIRECT

 } ;

 /??/

/? GetDSNTypes and CreateTable prototypes ?/

 /??/

int GetDSNTypes (SQLHDBC hdbc,

 pDSNTYPE ?dsntype);

int CreateTable (SQLHDBC hdbc,

 pDSNTYPE dsntype,

 pTABLE pTab);

436 Call Level Interface Guide and Reference

 /??/

/? CLI T3: Create Table main entry point ?/

 /??/

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = SQL_SUCCESS;

 SQLSMALLINT t3_small= =;

 int i;

pDSNTYPE dsntype_list = NULL;

 pDSNTYPE dsnp;

 pTABLE pTab;

// SQLDataSources parameters

SQLCHAR szDSN [19] = {=};

SQLSMALLINT fDirection = SQL_FETCH_FIRST;

 SQLSMALLINT cbDSNMax = sizeof(szDSN);

 SQLSMALLINT cbDSN = =;

 SQLSMALLINT ?pcbDSN = &cbDSN;

 SQLCHAR szDescription [4=];

SQLSMALLINT cbDescriptionMax = sizeof(szDescription);

SQLSMALLINT ?pcbDescription = &t3_small;

// SQLGetFunctions parameters

 SQLUSMALLINT fExists = SQL_TRUE;

SQLUSMALLINT ?pfExists = &fExists;

(void) printf ("???? DB2 for OS/39= CLI: Create Table.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? See if DSN= STLEC1 is known ?/

 /???/

RETCODE = SQLDataSources (hEnv,

 fDirection,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch first DSN

while ((RETCODE == SQL_SUCCESS) &&

(memcmp(szDSN, "STLEC1", (?pcbDSN)) != =))

 {

RETCODE = SQLDataSources (hEnv,

 SQL_FETCH_NEXT,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch next DSN

 }

 Appendix F. Example Code 437

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? DSN = STLEC1 not known.\n");

 goto dberror;

 }

 else

(void) printf ("???? Found DSN = STLEC1.\n");

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

 szDSN, // DSN

(?pcbDSN), // length of DSN

NULL, // Null UID

 = ,

NULL, //

Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 else

(void) printf ("???? Connect to %s OK.\n", (char ?) szDSN);

 /???/

/? See if DSN supports required ODBC APIs ?/

 /???/

for (i = =, (?pfExists = SQL_TRUE);

(i < 7 && (?pfExists) == SQL_TRUE);

 i++)

 {

RETCODE = SQLGetFunctions (hDbc,

 ODBC_api[i],

 pfExists);

 }

if (?pfExists == SQL_FALSE) // a required API is not supported

 goto dberror;

 /???/

/? Retrieve SQL data types from DSN ?/

 /???/

RETCODE = GetDSNTypes (hDbc,

 &dsntype_list);

if (RETCODE != SQL_SUCCESS) // An advertised API failed

 goto dberror;

438 Call Level Interface Guide and Reference

 /???/

/? Create COMMANDERS and BATTLES Tables ?/

 /???/

for (i = =, pTab = TBDEF;

(i < 2 && RETCODE == SQL_SUCCESS);

 i++, pTab++)

 {

RETCODE = CreateTable (hDbc,

 dsntype_list,

 pTab);

 }

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

 /???/

/? Deallocate DSN Type List ?/

 /???/

for (dsnp = dsntype_list; dsnp != NULL; dsnp = dsntype_list)

 {

dsntype_list = dsnp->next;

(void) free ((void ?) dsnp);

 }

(void) printf("\n\nDB2 for OS/39= CLI: Create Table TERMINATION\n\n ");

 if (RETCODE!==)

(void) printf("\n\nDB2 for OS/39= CLI: WAS UNSUCCESSFUL\n");

 else

(void) printf("\n\nDB2 for OS/39= CLI: WAS SUCCESSFUL\n\n");

 return(RETCODE);

}

 Appendix F. Example Code 439

/???/

/? Function GetDSNTypes creates a linked list of all SQL data ?/

/? types supported by the DSN. ?/

/???/

int GetDSNTypes (SQLHDBC hDbc,

 pDSNTYPE ?pdsntype)

{

SQLINTEGER rc = SQL_SUCCESS;

SQLHSTMT hStmt = SQL_NULL_HSTMT;

 pDSNTYPE pdsn = NULL;

 int count= 1;

// local variables to Bind to retrieve TYPE_NAME, DATA_TYPE,

// COLUMN_SIZE and NULLABLE

struct // TYPE_NAME is VARCHAR(128)

 {

 SQLSMALLINT length;

 SQLCHAR name [128];

 SQLINTEGER ind;

 } typename;

SQLSMALLINT data_type; // DATA_TYPE is SMALLINT

 SQLINTEGER data_type_ind;

 SQLINTEGER column_size; // COLUMN_SIZE is integer

 SQLINTEGER column_size_ind;

SQLSMALLINT nullable; // NULLABLE is SMALLINT

 SQLINTEGER nullable_ind;

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Retrieve native SQL types from DSN ------------> ?/

 /? The result set consists of 15 columns. We will only bind ?/

 /? TYPE_NAME, DATA_TYPE, COLUMN_SIZE and NULLABLE. Note: Need ?/

 /? not bind all columns of result set -- only those required. ?/

 /???/

rc = SQLGetTypeInfo (hStmt,

 SQL_ALL_TYPES);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind TYPE_NAME

 1,

 SQL_CHAR,

 (SQLPOINTER) typename.name,

 128,

 &typename.ind);

if (rc != SQL_SUCCESS)

 goto exit;

440 Call Level Interface Guide and Reference

rc = SQLBindCol (hStmt, // bind DATA_NAME

 2,

 SQL_C_DEFAULT,

 (SQLPOINTER) &data_type,

 sizeof(data_type),

 &data_type_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind COLUMN_SIZE

 3,

 SQL_C_DEFAULT,

 (SQLPOINTER) &column_size,

 sizeof(column_size),

 &column_size_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindCol (hStmt, // bind NULLABLE

 7,

 SQL_C_DEFAULT,

 (SQLPOINTER) &nullable,

 sizeof(nullable),

 &nullable_ind);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Fetch all native DSN types and allocate a DSNTYPE structure ?/

/? and chain onto linked list passed via pdsntype ?/

 /???/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

 {

pdsn = (pDSNTYPE) malloc (sizeof(DSNTYPE));

strcpy ((char ?) pdsn->Typename, (char ?) typename.name);

 pdsn->SQLType = data_type;

 pdsn->Precision = column_size;

 pdsn->Nullable = nullable;

 pdsn->next = (?pdsntype);

 (?pdsntype) = pdsn;

 }

if (rc == SQL_NO_DATA_FOUND) // if result set exhausted reset

rc = SQL_SUCCESS; // rc to OK

 /???/

/? Free Statement handle. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 exit:

 return (rc);

}

 Appendix F. Example Code 441

/???/

/? Function CreateTable processes the TABLE passed, generating ?/

/? a CREATE TABLE statement. It then executes the statement. ?/

/???/

int CreateTable (SQLHDBC hDbc,

 pDSNTYPE pdsnt,

 pTABLE pTab)

{

SQLINTEGER rc = SQL_SUCCESS;

SQLHSTMT hStmt = SQL_NULL_HSTMT;

char pTable[2==]; // buffer for CREATE TABLE

 char precision [1=];

pCOLUMN pCol; // Column Pointer

 int i;

 char temp [1=];

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? First DROP Table ?/

 /???/

(void) strcpy (pTable, "DROP TABLE ");

(void) strcat (pTable, (char ?) pTab->TableName);

rc = SQLExecDirect (hDbc,

(SQLCHAR ?) pTable,

 strlen(pTable));

 /???/

/? Build CREATE TABLE text ?/

 /???/

(void) strcpy (pTable, "CREATE TABLE ");

(void) strcat (pTable, (char ?) pTab->TableName);

(void) strcat (pTable, " (");

 /???/

/? Iterate through all ODBC column types and find matching ?/

/? SQL type on native SQL type linked list. If not found cannot ?/

/? create table. ?/

 /???/

for (i = =, pCol = pTab->TableCols;

(i < pTab->NumColumns);

 i++, pCol++)

 {

pDSNTYPE dsnp = pdsnt; // point to start of list

while ((dsnp != NULL) &&

(dsnp->SQLType != pCol->SQLType))

dsnp = dsnp->next;

if (dsnp == NULL) // SQL type not supported

 {

rc = SQL_ERROR; // cannot build CREATE TABLE

 goto exit;

 }

 else

 {

strcat (pTable, (char ?) pCol->Colname); // append Column name

strcat (pTable, " ");

strcat (pTable, (char ?)dsnp->Typename); // append DSN Type Name

442 Call Level Interface Guide and Reference

if (pCol->Precision != =) // if length required

 {

strcat (pTable, " ("); // convert to CHAR and

sprintf (precision, "%d", pCol->Precision); // append

strcat (pTable, precision);

strcat (pTable, ")");

 }

if (!pCol->Nullable) // if column is NOT NULLABLE

strcat (pTable, " NOT NULL ");

if (i == (pTab->NumColumns - 1)) // if last column

strcat (pTable, ")"); // close parens

 else

strcat (pTable, " , "); // append comma delimiter

 }

 }

 /???/

/? CREATE TABLE text is constructed. Execute statement ?/

 /???/

(void) printf ("???? DB2 for OS/39= CLI: Table text = %s.\n",

 pTable);

rc = SQLExecDirect (hDbc,

(SQLCHAR ?) pTable,

 strlen(pTable));

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Deallocate Statement Handle ?/

 /???/

rc = SQLFreeStmt (hDbc,

 SQL_DROP);

 exit:

 return (rc);

}

 Appendix F. Example Code 443

STEP 2. Populate tables.

 /??/

 /? DB2 for OS/39= CLI Sample: ?/

 /? Exercises the ODBC Version 2.= APIs necessary to populate ?/

 /? the COMMANDERS and BATTLES tables. The biographic text of ?/

 /? the COMMANDERS table and the Narrative text of the BATTLES ?/

 /? table is inserted in 8=-character pieces. ?/

 /? ?/

 /? The source for the tables are two flat files read via the ?/

 /? ANSI C file APIs. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlcli1.h>

 /??/

 /? Structure to represent one line of text ?/

 /??/

typedef struct Text

{

char text_line [8=]; // line of text

struct Text ?next; // forward link

} TEXT, ?pTEXT;

 /??/

 /? Structure to represent one Commander ?/

 /??/

typedef struct Commander

{

char Cname [2=]; // Commander Name

char Branch [3=]; // Branch of service

char Rank [2=]; // Rank in service

pTEXT CVitae; // Curriculm Vitae text chain

SQLINTEGER Cname_ind; // Cname length

SQLINTEGER Branch_ind; // Branch length

SQLINTEGER Rank_ind; // Rank length

SQLINTEGER CVitae_ind; // CVitae indicator

struct Commander ?next; // forward link

} COMMANDER, ?pCOMMANDER;

 /??/

 /? Structure to represent one Battle ?/

 /??/

typedef struct Battle

{

char Bname [2=]; // Battle Name

char Date [3=]; // Date

 char Winner [2=]; // Winner

 char Loser [2=]; // Loser

pTEXT Narrative; // Curriculm Vitae text chain

SQLINTEGER Bname_ind; // Bname length

SQLINTEGER Date_ind; // Date length

SQLINTEGER Winner_ind; // Winner length

 SQLINTEGER Loser_ind; // Loser length

SQLINTEGER Narrative_ind; // Narrative indicator

struct Battle ?next; // forward link

} BATTLE, ?pBATTLE;

444 Call Level Interface Guide and Reference

 /??/

 /? CLI APIs required ?/

 /??/

SQLUSMALLINT ODBC_api [7] = {

 SQL_API_SQLBINDPARAMETER,

 SQL_API_SQLDISCONNECT ,

 SQL_API_SQLFETCH ,

 SQL_API_SQLTRANSACT ,

 SQL_API_SQLBINDCOL ,

 SQL_API_SQLEXECDIRECT ,

 SQL_API_SQLPUTDATA

 } ;

 /??/

/? GetCommanders, GetBattles , PopCommanders and PopBattles ?/

/? Function prototypes ?/

 /??/

int GetCommanders (pCOMMANDER ?pCmd,

 FILE ?fp);

int GetBattles (pBATTLE ?pBat,

 FILE ?fp);

int PopCommanders (SQLHDBC hdbc,

 pCOMMANDER pCmd);

int PopBattles (SQLHDBC hdbc,

 pBATTLE pBat);

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLRETURN rc = SQL_SUCCESS;

 SQLSMALLINT t3_small= =;

SQLINTEGER RETCODE = =;

 int i;

pCOMMANDER pCmdTop = NULL; // linked list of Commander structures

 pCOMMANDER pCmd = NULL;

pBATTLE pBatTop = NULL; // linked list of Battles structures

 pBATTLE pBat = NULL;

 pTEXT ptxt = NULL;

FILE ?fp = NULL;

// SQLDataSources parameters

SQLCHAR szDSN [19]‘ = {=};

SQLSMALLINT fDirection = SQL_FETCH_FIRST;

 SQLSMALLINT cbDSNMax = sizeof(szDSN);

 SQLSMALLINT cbDSN = =;

 SQLSMALLINT ?pcbDSN = &cbDSN;

 SQLCHAR szDescription [4=];

SQLSMALLINT cbDescriptionMax = sizeof(szDescription);

SQLSMALLINT ?pcbDescription = &t3_small;

// SQLGetFunctions parameters

 SQLUSMALLINT fExists = SQL_TRUE;

SQLUSMALLINT ?pfExists = &fExists;

(void) printf ("???? DB2 for OS/39= CLI: Table Population.\n\n");

 Appendix F. Example Code 445

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? See if STLEC1 is a known DSN ?/

 /???/

RETCODE = SQLDataSources (hEnv,

 fDirection,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch first DSN

while ((RETCODE == SQL_SUCCESS) &&

(memcmp(szDSN, "STLEC1", (?pcbDSN)) != =))

 {

RETCODE = SQLDataSources (hEnv,

 SQL_FETCH_NEXT,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch next DSN

 }

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? DSN = STLEC1 not known.\n");

 goto dberror;

 }

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

 szDSN, // DSN

(?pcbDSN), // length of DSN

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

446 Call Level Interface Guide and Reference

 /???/

/? See if DSN supports required ODBC APIs ?/

 /???/

for (i = =, (?pfExists = SQL_TRUE);

(i < 7 && (?pfExists) == SQL_TRUE);

 i++)

 {

RETCODE = SQLGetFunctions (hDbc,

 ODBC_api[i],

 pfExists);

 }

if (?pfExists == SQL_FALSE) // a required API is not supported

 goto dberror;

 /???/

/? Read Commanders File and build Commander List ?/

 /???/

RETCODE = GetCommanders (&pCmdTop,

 fp);

if (RETCODE != SQL_SUCCESS) // List Creation failed

 goto dberror;

 /???/

/? Populate Commanders Table ?/

 /???/

RETCODE = PopCommanders (hDbc,

 pCmdTop);

if (RETCODE != SQL_SUCCESS) // Population failed

 goto dberror;

 /???/

/? Read Battles File and build Battles List ?/

 /???/

RETCODE = GetBattles (&pBatTop,

 fp);

if (RETCODE != SQL_SUCCESS) // List Creation failed

 goto dberror;

 /???/

/? Populate Battles Table ?/

 /???/

RETCODE = PopBattles (hDbc,

 pBatTop);

if (RETCODE != SQL_SUCCESS) // Population failed

 goto dberror;

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 Appendix F. Example Code 447

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

 /???/

/? Deallocate Commander and Battle List and associated text lines?/

 /???/

for (pCmd = pCmdTop; pCmd != NULL; pCmd = pCmdTop)

 {

for (ptxt = pCmd->CVitae; ptxt != NULL; ptxt = pCmd->CVitae)

 {

pCmd->CVitae = ptxt->next;

(void) free ((void ?) ptxt);

 }

pCmdTop = pCmdTop->next;

(void) free ((void ?) pCmd);

 }

for (pBat = pBatTop; pBat != NULL; pBat = pBatTop)

 {

for (ptxt = pBat->Narrative; ptxt != NULL; ptxt = pBat->Narrative)

 {

pBat->Narrative = ptxt->next;

(void) free ((void ?) ptxt);

 }

pBatTop = pBatTop->next;

(void) free ((void ?) pBat);

 }

(void) printf("\n\nDB2 for OS/39= CLI: Table Population TERMINATION\n\n ");

 if (RETCODE!==)

(void) printf("\n\nDB2 for OS/39= CLI: Table Population WAS UNSUCCESSFUL\n"

 else

(void) printf("\n\nDB2 for OS/39= CLI: Table Population WAS SUCCESSFUL\n\n"

 return(RETCODE);

}

448 Call Level Interface Guide and Reference

/???/

/? Function GetCommanders reads the "command" file and creates a ?/

/? linked list of COMMANDER structures which is returned to the ?/

/? caller. ?/

/???/

int GetCommanders (pCOMMANDER ?pCmd,

 FILE ?fp)

{

SQLINTEGER rc = SQL_SUCCESS;

pCOMMANDER pCmd2 = NULL;

char text [8=]; // file text

char ?t = NULL;

char ?c = NULL;

char ?token = NULL;

 char temp [8=];

 pTEXT ptxt, ptxt2;

 int i;

if ((fp = fopen ("DD:COMMAND", "r")) == NULL) // open command file

 {

rc = SQL_ERROR; // open failed

 goto exit;

 }

/???/

/? Process file and create COMMANDER structures ?/

/???/

while ((t = fgets (text, sizeof(text), fp)) != NULL)

 {

if (text[=] == '#') // if commander data

 {

if (pCmd2 != NULL) // if Commander structure allocated

 {

pCmd2->next = (?pCmd); // then insert LIFO

 (?pCmd) = pCmd2;

 }

pCmd2 = (pCOMMANDER) malloc (sizeof(COMMANDER));

pCmd2->next = NULL;

token = strtok (text+1, ","); // get commander name

(void) strcpy (pCmd2->Cname, token); // copy to structure

pCmd2->Cname_ind = SQL_NTS; // string is null terminated

token = strtok (NULL, ","); // extract Branch

(void) strcpy (pCmd2->Branch, token); // copy to structure

pCmd2->Branch_ind = SQL_NTS; // string is null-terminated

token = strtok (NULL, "#"); // extract Rank

(void) strcpy (pCmd2->Rank, token);// copy to structure

pCmd2->Rank_ind = SQL_NTS; // string is null-terminated

pCmd2->CVitae_ind = SQL_DATA_AT_EXEC; // will provide data via

pCmd2->CVitae = NULL; // no text

 // SQLPutData

 }

 else

 {

ptxt = (pTEXT) malloc (sizeof(TEXT)); // allocate text structure

memset (ptxt->text_line, ' ', sizeof(ptxt->text_line));

ptxt->next = NULL;

strcpy (ptxt->text_line, text); // populate text

i = strlen (ptxt->text_line); // remove '\n' and '\='

ptxt->text_line [i--] =' ';

 ptxt->text_line [i] =' ';

ptxt2 = pCmd2->CVitae; // point to 1st text line

if (ptxt2 == NULL) // if text is empty

pCmd2->CVitae = ptxt; // insert 1st line

 Appendix F. Example Code 449

 else

 {

while (ptxt2->next != NULL) // else find last

ptxt2 = ptxt2->next;

ptxt2->next = ptxt;

 }

 }

 }

if (pCmd2 != NULL) // if Commander structure allocated

 {

pCmd2->next = (?pCmd); // then insert LIFO

 (?pCmd) = pCmd2;

 }

 exit:

/???/

/? Close the Commander file if necessary. ?/

/???/

if (fp != NULL)

(void) fclose (fp);

 return (rc);

}

/???/

/? Function GetBattles reads the "battle" file and creates a ?/

/? linked list of BATTLE structures which is returned to the ?/

/? caller. ?/

/???/

int GetBattles (pBATTLE ?pBat,

 FILE ?fp)

{

SQLINTEGER rc = SQL_SUCCESS;

pBATTLE pBat2 = NULL;

char text [8=]; // file text

char ?t = NULL;

char ?c = NULL;

char ?token = NULL;

 pTEXT ptxt, ptxt2;

 int i;

if ((fp = fopen ("DD:BATTLE", "r")) == NULL) // open command file

 {

rc = SQL_ERROR; // open failed

 goto exit;

 }

/???/

/? Process file and create BATTLES structures ?/

/???/

while ((t = fgets (text, sizeof(text), fp)) != NULL)

 {

if (text[=] == '#') // if battle data

 {

if (pBat2 != NULL) // if Battle structure allocated

 {

pBat2->next = (?pBat); // then insert LIFO

 (?pBat) = pBat2;

 }

pBat2 = (pBATTLE) malloc (sizeof(BATTLE));

pBat2->next = NULL;

token = strtok (text+1, ","); // get battle name

(void) strcpy (pBat2->Bname, token); // copy to structure

450 Call Level Interface Guide and Reference

pBat2->Bname_ind = SQL_NTS; // string is null terminated

token = strtok (NULL, ","); // extract Date

(void) strcpy (pBat2->Date, token); // copy to structure

pBat2->Date_ind = SQL_NTS; // string is null terminated

token = strtok (NULL, ","); // extract Winner

(void) strcpy (pBat2->Winner, token);// copy to structure

pBat2->Winner_ind = SQL_NTS; // string is null terminated

token = strtok (NULL, "#"); // extract Loser

(void) strcpy (pBat2->Loser, token);// copy to structure

pBat2->Loser_ind = SQL_NTS; // string is null terminated

pBat2->Narrative_ind = SQL_DATA_AT_EXEC; // will provide data

// in 8=-character subsets

pBat2->Narrative = NULL; // no text yet

 }

 else

 {

ptxt = (pTEXT) malloc (sizeof(TEXT)); // allocate text structure

memset (ptxt->text_line, ' ', sizeof(ptxt->text_line));

ptxt->next = NULL;

strcpy (ptxt->text_line, text); // populate text

i = strlen (ptxt->text_line); // remove '\n' and '\='

ptxt->text_line [i--] =' ';

 ptxt->text_line [i] =' ';

ptxt2 = pBat2->Narrative; // point to 1st text line

if (ptxt2 == NULL) // if text is empty

pBat2->Narrative = ptxt; // insert 1st line

 else

 {

while (ptxt2->next != NULL) // else find last

ptxt2 = ptxt2->next;

ptxt2->next = ptxt;

 }

 }

 }

if (pBat2 != NULL) // if Battle structure allocated

 {

pBat2->next = (?pBat); // then insert LIFO

 (?pBat) = pBat2;

 }

 exit:

/???/

/? Close the Battles file if necessary. ?/

/???/

if (fp != NULL)

(void) fclose (fp);

 return (rc);

}

 Appendix F. Example Code 451

/???/

/? Function PopCommanders processes the linked list of Commander ?/

/? structures and for each node, binds each column and then ?/

/? Executes the Insert statement. Note that the Cur_Vitae column ?/

/? is populated by inserting 8= byte subsets via SQLPutData. ?/

/???/

int PopCommanders (SQLHDBC hDbc,

 pCOMMANDER pCmd)

{

SQLINTEGER rc = SQL_SUCCESS;

SQLHSTMT hStmt = SQL_NULL_HSTMT;

 pCOMMANDER pCmd2;

 int i;

 SQLPOINTER prgbValue;

 pTEXT ptxt;

// INSERT text with five parameter markers

 char ?pSQLStmt =

"INSERT INTO COMMANDERS VALUES (?, ?, ?, ?)";

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Prepare Statement.............. ?/

 /???/

rc = SQLPrepare (hStmt,

(SQLCHAR ?) pSQLStmt,

 SQL_NTS);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Iterate through Commander List ?/

 /???/

for (pCmd2 = pCmd; pCmd2 != NULL; pCmd2 = pCmd2->next)

 {

rc = SQLBindParameter (hStmt, // bind CINC

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pCmd2->Cname),

 =,

 pCmd2->Cname,

 sizeof(pCmd2->Cname),

 &pCmd2->Cname_ind);

if (rc != SQL_SUCCESS)

 goto exit;

452 Call Level Interface Guide and Reference

rc = SQLBindParameter (hStmt, // bind Branch

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pCmd2->Branch),

 =,

 pCmd2->Branch,

 sizeof(pCmd2->Branch),

 &pCmd2->Branch_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindParameter (hStmt, // bind Rank

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pCmd2->Rank),

 =,

 pCmd2->Rank,

 sizeof(pCmd2->Rank),

 &pCmd2->Rank_ind);

if (rc != SQL_SUCCESS)

 goto exit;

(void) printf ("???? Inserting CINC = %s.\n", pCmd2->Cname);

rc = SQLBindParameter (hStmt, // bind CVitae, rgbValue

4, // is specified as parm #

SQL_PARAM_INPUT, // and pcbValue is set

SQL_C_CHAR, // to SQL_DATA_AT_EXEC

SQL_LONGVARCHAR, // execution will be

32==, // deferred until

=, // SQLParamData returns

 (SQLPOINTER) 4, // SQL_SUCCESS

 =,

 &pCmd2->CVitae_ind);

 /???/

/? Three columns are bound... CVitae will be provided later.... ?/

/? Execute statement. ?/

 /???/

rc = SQLExecute (hStmt);

if (rc != SQL_NEED_DATA) // expect SQL_NEED_DATA

 goto exit;

 /???/

/? Invoke SQLParamData to position ODBC driver on input parameter?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_NEED_DATA)

 goto exit;

 /???/

/? Iterate through CVitae in 8= byte increments.... pass to ?/

/? ODBC Driver via SQLPutData. ?/

 /???/

for (rc = SQL_SUCCESS, ptxt = pCmd2->CVitae;

((ptxt != NULL) && (rc == SQL_SUCCESS));

ptxt = ptxt->next)

 Appendix F. Example Code 453

 {

rc = SQLPutData (hStmt,

 ptxt->text_line,

 sizeof(ptxt->text_line));

 }

 /???/

/? Invoke SQLParamData to trigger ODBC driver to execute the ?/

 /? statement. ?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_SUCCESS)

 goto exit;

 }

 /???/

/? Free Statement handle. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 exit:

 return (rc);

}

/???/

/? Function PopBattle processes the linked list of Battle ?/

/? structures and for each node, binds each column and then ?/

/? Executes the Insert statement. ?/

/???/

int PopBattles (SQLHDBC hDbc,

 pBATTLE pBat)

{

SQLINTEGER rc = SQL_SUCCESS;

SQLHSTMT hStmt = SQL_NULL_HSTMT;

 pBATTLE pBat2;

 int i;

 SQLPOINTER prgbValue;

 pTEXT ptxt;

// INSERT text with five parameter markers

 char ?pSQLStmt =

"INSERT INTO BATTLES VALUES (?, ?, ?, ?, ?)";

 /???/

/? Allocate Statement Handle ?/

 /???/

rc = SQLAllocStmt (hDbc,

 &hStmt);

if (rc != SQL_SUCCESS)

 goto exit;

 /???/

/? Prepare Statement.............. ?/

 /???/

rc = SQLPrepare (hStmt,

(SQLCHAR ?) pSQLStmt,

 SQL_NTS);

if (rc != SQL_SUCCESS)

 goto exit;

454 Call Level Interface Guide and Reference

 /???/

/? Iterate through Battles List ?/

 /???/

for (pBat2 = pBat; pBat2 != NULL; pBat2 = pBat2->next)

 {

rc = SQLBindParameter (hStmt, // bind Battlename

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pBat2->Bname),

 =,

 pBat2->Bname,

 sizeof(pBat2->Bname),

 &pBat2->Bname_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindParameter (hStmt, // bind Date

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pBat2->Date),

 =,

 pBat2->Date,

 sizeof(pBat2->Date),

 &pBat2->Date_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindParameter (hStmt, // bind Winner

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pBat2->Winner),

 =,

 pBat2->Winner,

 sizeof(pBat2->Winner),

 &pBat2->Winner_ind);

if (rc != SQL_SUCCESS)

 goto exit;

rc = SQLBindParameter (hStmt, // bind Loser

 4,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 sizeof(pBat2->Loser),

 =,

 pBat2->Loser,

 sizeof(pBat2->Loser),

 &pBat2->Loser_ind);

if (rc != SQL_SUCCESS)

 goto exit;

(void) printf ("???? Inserting Battle = %s.\n", pBat2->Bname);

 Appendix F. Example Code 455

rc = SQLBindParameter (hStmt, // bind Narrative, rgbValue

5, // is specified as parm #

SQL_PARAM_INPUT, // and pcbValue is set

SQL_C_CHAR, // to SQL_DATA_AT_EXEC

SQL_LONGVARCHAR, // execution will be

32==, // deferred until

=, // SQLParamData returns

 (SQLPOINTER) 4, // SQL_SUCCESS

 =,

 &pBat2->Narrative_ind);

 /???/

/? Four columns are bound... Narrative will be provided later. ?/

/? Execute statement. ?/

 /???/

rc = SQLExecute (hStmt);

if (rc != SQL_NEED_DATA) // expect SQL_NEED_DATA

 goto exit;

 /???/

/? Invoke SQLParamData to position ODBC driver on input parameter?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_NEED_DATA)

 goto exit;

 /???/

/? Iterate through Narrative in 8= byte increments.... pass to ?/

/? ODBC Driver via SQLPutData. ?/

 /???/

for (rc = SQL_SUCCESS, ptxt = pBat2->Narrative;

((ptxt != NULL) && (rc == SQL_SUCCESS));

ptxt = ptxt->next)

 {

rc = SQLPutData (hStmt,

 ptxt->text_line,

 sizeof(ptxt->text_line));

 }

 /???/

/? Invoke SQLParamData to trigger ODBC driver to execute the ?/

 /? statement. ?/

 /???/

if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_SUCCESS)

 goto exit;

 }

 /???/

/? Free Statement handle. ?/

 /???/

rc = SQLFreeStmt (hStmt,

 SQL_DROP);

 exit:

 return (rc);

}

456 Call Level Interface Guide and Reference

 STEP 3. Read tables.

 /??/

 /? DB2 for OS/39= CLI Sample: ?/

 /? Exercises the ODBC Version 2.= APIs necessary to perform ?/

 /? an outer join of the COMMANDERS and BATTLES tables to ?/

 /? identify the winners of all battles that occurred after ?/

 /? January 1 192=. Then retrieves the results. The Narrative ?/

 /? is retrieved via SQLGetData. ?/

 /??/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlcli1.h>

 // global static variables

static char Bname [2=];

static char Rank [2=];

static char CINC [2=];

static char Branch [3=];

static char Narrative [8=];

 /??/

 /? Structure to represent one column of answer set -- expected ?/

 /? results ----------------------> ?/

 /??/

typedef struct Column

{

char Col_name [2=]; // column name

SQLINTEGER SQLType; // SQL Type

char ?pSelect_item; // Select item

void ?rgbValue; // target for SQLBindCol

SQLINTEGER cbValueMax; // Maximum size of bound column

SQLINTEGER cbValue; // return size

} COLUMN, ?pCOLUMN;

 /??/

 /? Expected Columns from ODBC Outer Join ?/

 /??/

COLUMN EXP_COL [5] = {

{ "BATTLENAME", SQL_CHAR , "Battles.Battlename" , (void ?)Bname , size

{ "RANK" , SQL_CHAR , "Commanders.Rank" , (void ?)Rank , size

{ "CINC" , SQL_CHAR , "Commanders.CINC" , (void ?)CINC , size

{ "BRANCH" , SQL_CHAR , "Commanders.Branch" , (void ?)Branch , size

{ "NARRATIVE" , SQL_LONGVARCHAR , "Battles.Narrative" , NULL , =

 } ;

 /??/

 /? CLI APIs required ?/

 /??/

SQLUSMALLINT ODBC_api [6] = {

 SQL_API_SQLDISCONNECT ,

 SQL_API_SQLFETCH ,

 SQL_API_SQLTRANSACT ,

 SQL_API_SQLBINDCOL ,

 SQL_API_SQLEXECUTE ,

 SQL_API_SQLGETDATA

 } ;

 /??/

/? StripBlanks functions prototype ?/

 /??/

void Strip_Blanks (char ?ptext,

 int size);

 Appendix F. Example Code 457

int main()

{

 SQLHENV hEnv = SQL_NULL_HENV;

 SQLHDBC hDbc = SQL_NULL_HDBC;

 SQLHSTMT hStmt = SQL_NULL_HSTMT;

 SQLRETURN rc = SQL_SUCCESS;

 SQLSMALLINT t3_small= =;

SQLINTEGER RETCODE = =;

 int i,j;

 char pSELECT [255];

 pCOLUMN pCol;

 char ?outer_join =

"{ oj Battles LEFT OUTER JOIN Commanders ON Battles.Winner=Commanders.CINC }

 char ?predicate =

" WHERE Battles.Date > {d '192=-=1-=1'};";

// SQLDataSources parameters

SQLCHAR szDSN [19] = {=};

SQLSMALLINT fDirection = SQL_FETCH_FIRST;

 SQLSMALLINT cbDSNMax = sizeof(szDSN);

 SQLSMALLINT cbDSN = =;

 SQLSMALLINT ?pcbDSN = &cbDSN;

 SQLCHAR szDescription [4=];

SQLSMALLINT cbDescriptionMax = sizeof(szDescription);

SQLSMALLINT ?pcbDescription = &t3_small;

// SQLGetFunctions parameters

 SQLUSMALLINT fExists = SQL_TRUE;

SQLUSMALLINT ?pfExists = &fExists;

 // SQLGetInfo parameters

 char oj[2];

 SQLSMALLINT cbInfoValue;

 // SQLGetData parameters

 SQLINTEGER cbValue;

// SQLDescribeCol parameters

 SQLCHAR szColName [2=];

 SQLSMALLINT cbColName;

 SQLSMALLINT fSqlType;

 SQLUINTEGER cbColDef;

 SQLSMALLINT ibScale;

 SQLSMALLINT fNullable;

(void) printf ("???? DB2 for OS/39= CLI: Identify Winners.\n\n");

 /???/

/? Allocate Environment Handle ?/

 /???/

RETCODE = SQLAllocEnv(&hEnv);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

458 Call Level Interface Guide and Reference

 /???/

/? See if STLEC1 is a known DSN ?/

 /???/

RETCODE = SQLDataSources (hEnv,

 fDirection,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch first DSN

while ((RETCODE == SQL_SUCCESS) &&

(memcmp(szDSN, "STLEC1", (?pcbDSN)) != =))

 {

RETCODE = SQLDataSources (hEnv,

 SQL_FETCH_NEXT,

 szDSN,

 cbDSNMax,

 pcbDSN,

 szDescription,

 cbDescriptionMax,

pcbDescription); // fetch next DSN

 }

if (RETCODE != SQL_SUCCESS)

 {

(void) printf ("???? DSN = STLEC1 not known.\n");

 goto dberror;

 }

 /???/

/? Allocate Connection Handle to DSN ?/

 /???/

RETCODE = SQLAllocConnect(hEnv,

 &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

 goto dberror;

 /???/

/? CONNECT TO data source (STLEC1) ?/

 /???/

RETCODE = SQLConnect(hDbc, // Connect handle

 szDSN, // DSN

(?pcbDSN), // length of DSN

NULL, // Null UID

 = ,

NULL, // Null Auth string

 =);

if(RETCODE != SQL_SUCCESS) // Connect failed

 goto dberror;

 /???/

/? See if DSN supports required ODBC APIs ?/

 /???/

for (i = =, (?pfExists = SQL_TRUE);

(i < 6 && (?pfExists) == SQL_TRUE);

 i++)

 {

RETCODE = SQLGetFunctions (hDbc,

 ODBC_api⅛i‘,

 pfExists);

 }

 Appendix F. Example Code 459

if (?pfExists == SQL_FALSE) // a required API is not supported

 goto dberror;

 /???/

/? See if DSN supports OUTER JOIN ----------------> ?/

 /???/

if ((RETCODE = SQLGetInfo(hDbc,

 SQL_OUTER_JOINS,

 oj,

 sizeof(oj),

&cbInfoValue)) != SQL_SUCCESS)

 goto dberror;

if (strcmp(oj, "N") == =)

 {

RETCODE = SQL_ERROR;

 goto dberror;

 }

 /???/

/? DSN supports Outer Join. Allocate statement handle and build ?/

/? OUTER JOIN text ----------------> ?/

 /???/

RETCODE = SQLAllocStmt (hDbc,

 &hStmt);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

(void) strcpy (pSELECT, "SELECT ");

for (i = =, pCol = EXP_COL;

(i < 5);

 i++, pCol++)

 {

(void) strcat (pSELECT, pCol->pSelect_item);

if (i <=3)

(void) strcat (pSELECT, ",");

 }

(void) strcat (pSELECT, " FROM ");

(void) strcat (pSELECT, outer_join);

(void) strcat (pSELECT, predicate);

 /???/

/? OUTER JOIN text is complete ---> Prepare statement ----> ?/

 /???/

RETCODE = SQLPrepare (hStmt,

 (SQLCHAR ?)pSELECT,

 strlen(pSELECT));

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Validate that column names and types are as expected ---> ?/

 /???/

for (i = 1, pCol = EXP_COL;

(i <= 5) && (RETCODE == SQL_SUCCESS);

 i++, pCol++)

 {

RETCODE = SQLDescribeCol (hStmt,

 i,

 szColName ,

 sizeof(szColName),

 &cbColName ,

 &fSqlType ,

460 Call Level Interface Guide and Reference

 &cbColDef ,

 &ibScale ,

 &fNullable);

if ((RETCODE != SQL_SUCCESS) ||

(strcmp ((char ?)szColName, pCol->Col_name) != =) ||

(fSqlType != pCol->SQLType))

 {

RETCODE = SQL_ERROR;

 goto dberror;

 }

 }

 /???/

/? Bind 4 of the columns --- leaving Narrative unbound ?/

 /???/

for (pCol = EXP_COL, i = 1;

(i < 5) && (RETCODE == SQL_SUCCESS);

 i++, pCol++)

 {

RETCODE = SQLBindCol (hStmt, // bind Column

 i,

 SQL_C_DEFAULT,

 (SQLPOINTER) pCol->rgbValue,

 pCol->cbValueMax,

 &pCol->cbValue);

 }

 /???/

/? Execute the statement generating a results set -------------> ?/

 /???/

RETCODE = SQLExecute (hStmt);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Fetch Battle name, Commander Rank, Commander Name and Branch ?/

/? via SQLFetch. Then retrieve Battle Narrative via SQLGetData ?/

/? in subsets of 8= characters. ?/

 /???/

while ((RETCODE = SQLFetch (hStmt)) != SQL_NO_DATA_FOUND)

 {

(void) Strip_Blanks (Bname,

 sizeof(Bname)-1);

(void) printf ("???? Battle = %s\n", // null-terminate string

 Bname);

(void) Strip_Blanks (Rank, // null-terminate string

 sizeof(Rank)-1);

(void) Strip_Blanks (CINC, // null-terminate string

 sizeof(CINC)-1);

(void) Strip_Blanks (Branch, // null-terminate string

 sizeof(Branch)-1);

(void) printf ("???? Winner is %s, %s, %s\n\n",

 Rank,

 CINC,

 Branch);

(void) printf ("???? Battle Narrative follows ----->\n\n");

 Appendix F. Example Code 461

for (i = =; (i < 32== && RETCODE != SQL_NO_DATA_FOUND); i += 8=)

 {

RETCODE = SQLGetData (hStmt,

 5,

 SQL_C_CHAR,

 Narrative,

 sizeof(Narrative)+1,

 &cbValue);

if (RETCODE != SQL_NO_DATA_FOUND)

(void) printf ("%s\n", Narrative);

 }

 }

 /???/

/? Free Statement handle. ?/

 /???/

RETCODE = SQLFreeStmt (hStmt,

 SQL_DROP);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? DISCONNECT from data source ?/

 /???/

RETCODE = SQLDisconnect(hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Deallocate Connection Handle ?/

 /???/

RETCODE = SQLFreeConnect (hDbc);

if (RETCODE != SQL_SUCCESS)

 goto dberror;

 /???/

/? Free Environment Handle ?/

 /???/

RETCODE = SQLFreeEnv (hEnv);

if (RETCODE == SQL_SUCCESS)

 goto exit;

 dberror:

 RETCODE=12;

 exit:

(void) printf("\n\nDB2 for OS/39= CLI: Identify Winners TERMINATION\n\n ");

 if (RETCODE!==)

(void) printf("\n\nDB2 for OS/39= CLI: Identify Winners WAS UNSUCCESSFUL\n"

 else

(void) printf("\n\nDB2 for OS/39= CLI: Identify Winners WAS SUCCESSFUL\n\n"

 return(RETCODE);

}

462 Call Level Interface Guide and Reference

/???/

/? Function StripBlanks removes trailing blanks from a fixed ?/

/? CHAR field. ?/

/???/

void Strip_Blanks (char ?ptext,

 int size)

{

int i = size;

while (ptext [size--] != ' '); // move backwards until 1st

 // non-blank

ptext [size + 1] = '\='; // append null terminator

 return;

}

 Appendix F. Example Code 463

 Stored Procedure
This example shows a DB2 CLI client application (APD29) calling a DB2 CLI stored
procedure (SPD29). It includes very fundamental processing of query result sets (a
query cursor opened in a stored procedure and return to client for fetching). For
completeness, the CREATE TABLE, data INSERTs and
SYSIBM.SYSPROCEDURES declaration is provided.

STEP 1. CREATE TABLE

 printf("\nAPDDL SQLExecDirect stmt=%d",__LINE__);

 strcpy((char ?)sqlstmt,

 "CREATE TABLE TABLE2A (INT4 INTEGER,SMINT SMALLINT,FLOAT8 FLOAT");

 strcat((char ?)sqlstmt,

 ",DEC312 DECIMAL(31,2),CHR1= CHARACTER(1=),VCHR2= VARCHAR(2=)");

 strcat((char ?)sqlstmt,

 ",LVCHR LONG VARCHAR,CHRSB CHAR(1=),CHRBIT CHAR(1=) FOR BIT DATA");

 strcat((char ?)sqlstmt,

 ",DDATE DATE,TTIME TIME,TSTMP TIMESTAMP)");

 printf("\nAPDDL sqlstmt=%s",sqlstmt);

 rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

STEP 2. INSERT 1.1 ROWS INTO TABLE

/? insert 1== rows into table2a ?/

for (jx=1;jx<=1== ;jx++) {

 printf("\nAPDIN SQLExecDirect stmt=%d",__LINE__);

strcpy((char ?)sqlstmt,"insert into table2a values(");

sprintf((char ?)sqlstmt+strlen((char ?)sqlstmt),"%ld",jx);

 strcat((char ?)sqlstmt,

 ",4,8.2E+3=,1515151515151.51,'CHAR','VCHAR','LVCCHAR','SBCS'");

 strcat((char ?)sqlstmt,

 ",'MIXED','=1/=1/1991','3:33 PM','1999-=9-=9-=9.=9.=9.=9=9=9')");

 printf("\nAPDIN sqlstmt=%s",sqlstmt);

 rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

} /? endfor ?/

STEP 3. DEFINE STORED PROCEDURE IN SYSIBM.SYSPROCEDURES

 DELETE FROM SYSIBM.SYSPROCEDURES

 WHERE PROCEDURE='SPD29';

 INSERT INTO SYSIBM.SYSPROCEDURES

 VALUES('SPD29',

 ' ',

 ' ',

 'SPD29',

 ' ',

 'DSNAOCLI',

 'C',

 =,

 'Y',

 'N',

 ' ',

'INTEGER INOUT',2,' ','M','N','N');

464 Call Level Interface Guide and Reference

STEP 4. STORED PROCEDURE

/?START OF SPD29??/

/? PRAGMA TO CALL PLI SUBRTN CSPSUB TO ISSUE CONSOLE MSGS ?/

#pragma options (rent)

 #pragma runopts(plist(os))

 /??/

/? Include the 'C' include files ?/

 /??/

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include "sqlcli1.h"

 #include <sqlca.h>

 #include <decimal.h>

 #include <wcstr.h>

 /??/

/? Variables for COMPARE routines ?/

 /??/

#ifndef NULL

#define NULL =

#endif

SQLHENV henv = SQL_NULL_HENV;

SQLHDBC hdbc = SQL_NULL_HDBC;

SQLHSTMT hstmt = SQL_NULL_HSTMT;

SQLHSTMT hstmt2 = SQL_NULL_HSTMT;

SQLRETURN rc = SQL_SUCCESS;

 SQLINTEGER id;

 SQLCHAR name[51];

SQLINTEGER namelen, intlen, colcount;

 SQLSMALLINT scale;

 struct sqlca sqlca;

 SQLCHAR server[18];

 SQLCHAR uid[3=];

 SQLCHAR pwd[3=];

 SQLCHAR sqlstmt[5==];

 SQLCHAR sqlstmt2[5==];

 SQLSMALLINT pcpar==;

 SQLSMALLINT pccol==;

 SQLCHAR cursor[19];

 SQLSMALLINT cursor_len;

 SQLINTEGER SPCODE;

 struct {

 SQLSMALLINT LEN;

 SQLCHAR DATA_2==‘; } STMTSQL;

 SQLSMALLINT H1SMINT;

 SQLINTEGER H1INT4;

 SQLDOUBLE H1FLOAT8;

 SQLDOUBLE H1DEC312;

 SQLCHAR H1CHR1=[11];

 SQLCHAR H1VCHR2=[21];

 SQLCHAR H1LVCHR[21];

 SQLCHAR H1CHRSB[11];

 SQLCHAR H1CHRBIT[11];

 SQLCHAR H1DDATE[11];

 SQLCHAR H1TTIME[9];

 SQLCHAR H1TSTMP[27];

 Appendix F. Example Code 465

 SQLSMALLINT I1SMINT;

 SQLSMALLINT I1INT4;

 SQLSMALLINT I1FLOAT8;

 SQLSMALLINT I1DEC312;

 SQLSMALLINT I1CHR1=;

 SQLSMALLINT I1VCHR2=;

 SQLSMALLINT I1LVCHR;

 SQLSMALLINT I1CHRSB;

 SQLSMALLINT I1CHRBIT;

 SQLSMALLINT I1DDATE;

 SQLSMALLINT I1TTIME;

 SQLSMALLINT I1TSTMP;

 SQLINTEGER LEN_H1SMINT;

 SQLINTEGER LEN_H1INT4;

 SQLINTEGER LEN_H1FLOAT8;

 SQLINTEGER LEN_H1DEC312;

 SQLINTEGER LEN_H1CHR1=;

 SQLINTEGER LEN_H1VCHR2=;

 SQLINTEGER LEN_H1LVCHR;

 SQLINTEGER LEN_H1CHRSB;

 SQLINTEGER LEN_H1CHRBIT;

 SQLINTEGER LEN_H1DDATE;

 SQLINTEGER LEN_H1TTIME;

 SQLINTEGER LEN_H1TSTMP;

 SQLSMALLINT H2SMINT;

 SQLINTEGER H2INT4;

 SQLDOUBLE H2FLOAT8;

 SQLCHAR H2CHR1=[11];

 SQLCHAR H2VCHR2=[21];

 SQLCHAR H2LVCHR[21];

 SQLCHAR H2CHRSB[11];

 SQLCHAR H2CHRBIT[11];

 SQLCHAR H2DDATE[11];

 SQLCHAR H2TTIME[9];

 SQLCHAR H2TSTMP[27];

 SQLSMALLINT I2SMINT;

 SQLSMALLINT I2INT4;

 SQLSMALLINT I2FLOAT8;

 SQLSMALLINT I2CHR1=;

 SQLSMALLINT I2VCHR2=;

 SQLSMALLINT I2LVCHR;

 SQLSMALLINT I2CHRSB;

 SQLSMALLINT I2CHRBIT;

 SQLSMALLINT I2DDATE;

 SQLSMALLINT I2TTIME;

 SQLSMALLINT I2TSTMP;

 SQLINTEGER LEN_H2SMINT;

 SQLINTEGER LEN_H2INT4;

 SQLINTEGER LEN_H2FLOAT8;

 SQLINTEGER LEN_H2CHR1=;

 SQLINTEGER LEN_H2VCHR2=;

 SQLINTEGER LEN_H2LVCHR;

 SQLINTEGER LEN_H2CHRSB;

 SQLINTEGER LEN_H2CHRBIT;

 SQLINTEGER LEN_H2DDATE;

 SQLINTEGER LEN_H2TTIME;

 SQLINTEGER LEN_H2TSTMP;

466 Call Level Interface Guide and Reference

SQLCHAR locsite[18] = "stlec1";

SQLCHAR remsite[18] = "stlec1b";

 SQLCHAR spname[8];

 SQLINTEGER ix,jx,locix;

 SQLINTEGER result;

 SQLCHAR state_blank[6] =" ";

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

SQLRETURN

prt_sqlca();

 /??/

/? Main Program ?/

 /??/

SQLINTEGER

main(SQLINTEGER argc, SQLCHAR ?argv[])

{

 printf("\nSPD29 INITIALIZATION");

 scale = =;

 rc==;

 rc==;

 SPCODE==;

 /? argv= = sp module name ?/

 if (argc != 2)

 {

printf("SPD29 parm number error\n ");

printf("SPD29 EXPECTED =%d\n",3);

printf("SPD29 received =%d\n",argc);

 goto dberror;

 }

strcpy((char ?)spname,(char ?)argv[=]);

result = strncmp((char ?)spname,"SPD29",5);

if (result != =)

 {

printf("SPD29 argv= sp name error\n ");

printf("SPD29 compare rusult =%i\n",result);

printf("SPD29 expected =%s\n","SPD29");

printf("SPD29 received spname=%s\n",spname);

printf("SPD29 received argv= =%s\n",argv[=]);

 goto dberror;

 }

/? get input spcode value ?/

SPCODE = ?(SQLINTEGER ?) argv[1];

 printf("\nSPD29 SQLAllocEnv number= 1\n");

 henv==;

 rc = SQLAllocEnv(&henv);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29-henv=%i",henv);

 /???/

 printf("\nSPD29 SQLAllocConnect ");

 hdbc==;

 SQLAllocConnect(henv, &hdbc);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29-hdbc=%i",hdbc);

 Appendix F. Example Code 467

 /???/

 /? Make sure no autocommits after cursors are allocated, commits ?/

 /? cause sp failure. No-autocommit could also be specified in the?/

 /? INI file. ?/

 /? Also, sp could be defined with COMMIT_ON_RETURN in the ?/

 /? DB2 catalog table SYSIBM.SYSPROCEDURES, but be wary that this ?/

 /? removes control from the client appl to control commit scope. ?/

 /???/

 printf("\nSPD29 SQLSetConnectOption-no autocommits in stored procs");

 rc = SQLSetConnectOption(hdbc,SQL_AUTOCOMMIT,SQL_AUTOCOMMIT_OFF);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nSPD29 SQLConnect NULL connect in stored proc ");

 strcpy((char ?)uid,"cliuser");

 strcpy((char ?)pwd,"password");

 printf("\nSPD29 server=%s",NULL);

 printf("\nSPD29 uid=%s",uid);

 printf("\nSPD29 pwd=%s",pwd);

 rc=SQLConnect(hdbc, NULL, =, uid, SQL_NTS, pwd, SQL_NTS);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? Start SQL statements ??/

 /???/

 switch(SPCODE)

 {

 /??/

/? CASE(SPCODE==) do nothing and return ?????/

 /??/

 case =:

 break;

 case 1:

 /??/

 /? CASE(SPCODE=1) ?????/

 /? -sqlprepare/sqlexecute insert int4=2== ?????/

 /? -sqlexecdirect insert int4=2=1 ?????/

/? ?validated in client appl that inserts occur ?????/

 /??/

 SPCODE==;

 printf("\nSPD29 SQLAllocStmt \n");

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29-hstmt=%i\n",hstmt);

 printf("\nSPD29 SQLPrepare \n");

 strcpy((char ?)sqlstmt,

"insert into TABLE2A(int4) values(?)");

 printf("\nSPD29 sqlstmt=%s",sqlstmt);

 rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29 SQLNumParams \n");

 rc=SQLNumParams(hstmt,&pcpar);

if(rc != SQL_SUCCESS) goto dberror;

if (pcpar!=1) {

printf("\nSPD29 incorrect pcpar=%d",pcpar);

 goto dberror;

 }

468 Call Level Interface Guide and Reference

 printf("\nSPD29 SQLBindParameter int4 \n");

 H1INT4=2==;

 LEN_H1INT4=sizeof(H1INT4);

 rc=SQLBindParameter(hstmt,1,SQL_PARAM_INPUT,SQL_C_LONG,

 SQL_INTEGER,=,=,&H1INT4,=,(SQLINTEGER ?)&LEN_H1INT4);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29 SQLExecute \n");

 rc=SQLExecute(hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29 SQLFreeStmt \n");

 rc=SQLFreeStmt(hstmt, SQL_DROP);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nAPDIN SQLAllocStmt stmt=%d",__LINE__);

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPDIN-hstmt=%i\n",hstmt);

 jx=2=1;

 printf("\nAPDIN SQLExecDirect stmt=%d",__LINE__);

strcpy((char ?)sqlstmt,"insert into table2a values(");

sprintf((char ?)sqlstmt+strlen((char ?)sqlstmt),"%ld",jx);

 strcat((char ?)sqlstmt,

 ",4,8.2E+3=,1515151515151.51,'CHAR','VCHAR','LVCCHAR','SBCS'");

 strcat((char ?)sqlstmt,

 ",'MIXED','=1/=1/1991','3:33 PM','1999-=9-=9-=9.=9.=9.=9=9=9')");

 printf("\nAPDIN sqlstmt=%s",sqlstmt);

 rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 break;

 /???/

 case 2:

 /??/

 /? CASE(SPCODE=2) ?????/

 /? -sqlprepare/sqlexecute select int4 from table2a ?????/

 /? -sqlprepare/sqlexecute select chr1= from table2a ?????/

/? ?qrs cursors should be allocated and left open by CLI ?????/

 /??/

 SPCODE==;

/? generate 1st queryresultset ?/

 printf("\nSPD29 SQLAllocStmt \n");

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29-hstmt=%i\n",hstmt);

 printf("\nSPD29 SQLPrepare \n");

 strcpy((char ?)sqlstmt,

"SELECT INT4 FROM TABLE2A");

 printf("\nSPD29 sqlstmt=%s",sqlstmt);

 rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29 SQLExeccute \n");

 rc=SQLExecute(hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 Appendix F. Example Code 469

/? allocate 2nd stmt handle for 2nd queryresultset ?/

/? generate 2nd queryresultset ?/

 printf("\nSPD29 SQLAllocStmt \n");

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt2);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29-hstmt2=%i\n",hstmt2);

 printf("\nSPD29 SQLPrepare \n");

 strcpy((char ?)sqlstmt2,

"SELECT CHR1= FROM TABLE2A");

 printf("\nSPD29 sqlstmt2=%s",sqlstmt2);

 rc=SQLPrepare(hstmt2,sqlstmt2,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nSPD29 SQLExeccute \n");

 rc=SQLExecute(hstmt2);

if(rc != SQL_SUCCESS) goto dberror;

/?leave queryresultset cursor open for fetch back at client appl ?/

 break;

 /??/

 default:

 {

printf("SPD29 INPUT SPCODE INVALID\n");

 printf("SPD29...EXPECTED SPCODE==-2\n");

 printf("SPD29...RECIEVED SPCODE=%i\n",SPCODE);

 goto dberror;

 break;

 }

 }

 /???/

 /? End SQL statements ??/

 /???/

 /?Be sure NOT to put a SQLTransact with SQL_COMMIT in a DB2/MVS ?/

 /? stored procedure. Commit is not allowed in a DB2/MVS ?/

 /? stored procedure. Use SQLTransact with SQL_ROLLBACK to ?/

 /? force a must rollback condition for this sp and calling ?/

 /? client application. ?/

 /???/

 printf("\nSPD29 SQLDisconnect number= 4\n");

 rc=SQLDisconnect(hdbc);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nSPD29 SQLFreeConnect number= 5\n");

 rc = SQLFreeConnect(hdbc);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nSPD29 SQLFreeEnv number= 6\n");

 rc = SQLFreeEnv(henv);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 goto pgmend;

 dberror:

 printf("\nSPD29 entry dberror label");

 printf("\nSPD29 rc=%d",rc);

 check_error(henv,hdbc,hstmt,rc);

 printf("\nSPD29 SQLFreeEnv number= 7\n");

 rc = SQLFreeEnv(henv);

470 Call Level Interface Guide and Reference

 printf("\nSPD29 rc=%d",rc);

 rc=12;

 rc=12;

 SPCODE=12;

 goto pgmend;

 pgmend:

 printf("\nSPD29 TERMINATION ");

 if (rc!==)

 {

printf("\nSPD29 WAS NOT NOT NOT SUCCESSFUL");

printf("\nSPD29 SPCODE = %i", SPCODE);

printf("\nSPD29 rc = %i", rc);

 }

 else

 {

printf("\nSPD29 WAS SUCCESSFUL");

 }

 /? assign output spcode value ?/

 ?(SQLINTEGER ?) argv[1] = SPCODE;

 exit;

} /?END MAIN?/

/???

?? check_error - call print_error(), checks severity of return code

???/

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

SQLRETURN frc)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR cli_sqlstate[SQL_SQLSTATE_SIZE + 1];

 SQLINTEGER cli_sqlcode;

 SQLSMALLINT length;

printf("\nSPD29 entry check_error rtn");

switch (frc) {

 case SQL_SUCCESS:

 break;

 case SQL_INVALID_HANDLE:

printf("\nSPD29 check_error> SQL_INVALID HANDLE ");

 case SQL_ERROR:

printf("\nSPD29 check_error> SQL_ERROR ");

 break;

 case SQL_SUCCESS_WITH_INFO:

 printf("\nSPD29 check_error> SQL_SUCCESS_WITH_INFO");

 break;

 case SQL_NO_DATA_FOUND:

printf("\nSPD29 check_error> SQL_NO_DATA_FOUND ");

 break;

 default:

printf("\nSPD29 check_error> Invalid rc from api rc=%i",frc);

 break;

} /?end switch?/

 Appendix F. Example Code 471

 printf("\nSPD29 SQLError ");

while ((rc=SQLError(henv, hdbc, hstmt, cli_sqlstate, &cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH + 1, &length)) == SQL_SUCCESS) {

printf(" SQLSTATE: %s", cli_sqlstate);

printf("Native Error Code: %ld", cli_sqlcode);

printf("%s ", buffer);

 };

 if (rc!=SQL_NO_DATA_FOUND)

printf("SQLError api call failed rc=%d",rc);

 printf("\nSPD29 SQLGetSQLCA ");

rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);

if(rc == SQL_SUCCESS)

 prt_sqlca();

 else

printf("\n SPD29-check_error SQLGetSQLCA failed rc=%i",rc);

 return (frc);

}

 /???/

/? P r i n t S Q L C A ?/

 /???/

SQLRETURN

 prt_sqlca()

 {

 SQLINTEGER i;

printf("\nlSPD29 entry prts_sqlca rtn");

printf("\r\r??? Printing the SQLCA:\r");

printf("\nSQLCAID %s",sqlca.sqlcaid);

printf("\nSQLCABC %d",sqlca.sqlcabc);

printf("\nSQLCODE %d",sqlca.sqlcode);

printf("\nSQLERRML ... %d",sqlca.sqlerrml);

printf("\nSQLERRMC ... %s",sqlca.sqlerrmc);

 printf("\nSQLERRP ... %s",sqlca.sqlerrp);

for (i = =; i < 6; i++)

printf("\nSQLERRD%d ... %d",i+1,sqlca.sqlerrd??(i??));

for (i = =; i < 1=; i++)

printf("\nSQLWARN%d ... %c",i,sqlca.sqlwarn[i]);

printf("\nSQLWARNA ... %c",sqlca.sqlwarn[1=]);

printf("\nSQLSTATE ... %s",sqlca.sqlstate);

 return(=);

} /? End of prtsqlca ?/

 /???/

/?END OF SPD29 ???/

472 Call Level Interface Guide and Reference

STEP 5. CLIENT APPLICATION
 /??/

 /?START OF SPD29???/

 /? SCEANRIO PSEUDOCODE: ?/

 /? APD29(CLI CODE CLIENT APPL) ?/

 /? -CALL SPD29 (CLI CODE STORED PROCEDURE APPL) ?/

 /? -SPCODE== ?/

 /? -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) ?/

 /? -SPCODE=1 ?/

 /? -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) ?/

 /? -SQLPREPARE/EXECUTE INSERT INT4=2== ?/

 /? -SQLEXECDIRECT INSERT INT4=2=1 ?/

 /? -SPCODE=2 ?/

 /? -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) ?/

 /? -SQLPREPARE/EXECUTE SELECT INT4 FROM TABLE2A ?/

 /? -SQLPREPARE/EXECUTE SELECT CHR1= FROM TABLE2A ?/

 /? (CLI CURSORS OPENED 'WITH RETURN')... ?/

 /? -RETURN ?/

 /? -FETCH QRS FROM SP CURSOR ?/

 /? -COMMIT ?/

 /? -VERFIFY INSERTS BY SPD29 ?/

 /??/

/? Include the 'C' include files ?/

 /??/

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include "sqlcli1.h"

 #include <sqlca.h>

 /??/

/? Variables for COMPARE routines ?/

 /??/

#ifndef NULL

#define NULL =

#endif

SQLHENV henv = SQL_NULL_HENV;

SQLHDBC hdbc = SQL_NULL_HDBC;

SQLHSTMT hstmt = SQL_NULL_HSTMT;

SQLRETURN rc = SQL_SUCCESS;

 SQLINTEGER id;

 SQLCHAR name[51];

SQLINTEGER namelen, intlen, colcount;

 SQLSMALLINT scale;

 struct sqlca sqlca;

 SQLCHAR server[18];

 SQLCHAR uid[3=];

 SQLCHAR pwd[3=];

 SQLCHAR sqlstmt[25=];

 SQLSMALLINT pcpar==;

 SQLSMALLINT pccol==;

 SQLINTEGER SPCODE;

 struct {

 SQLSMALLINT LEN;

 SQLCHAR DATA[2==]; } STMTSQL;

 Appendix F. Example Code 473

 SQLSMALLINT H1SMINT;

 SQLINTEGER H1INT4;

 SQLDOUBLE H1FLOAT8;

 SQLDOUBLE H1DEC312;

 SQLCHAR H1CHR1=[11];

 SQLCHAR H1VCHR2=[21];

 SQLCHAR H1LVCHR[21];

 SQLCHAR H1CHRSB[11];

 SQLCHAR H1CHRBIT[11];

 SQLCHAR H1DDATE[11];

 SQLCHAR H1TTIME[9];

 SQLCHAR H1TSTMP[27];

 SQLSMALLINT I1SMINT;

 SQLSMALLINT I1INT4;

 SQLSMALLINT I1FLOAT8;

 SQLSMALLINT I1DEC312;

 SQLSMALLINT I1CHR1=;

 SQLSMALLINT I1VCHR2=;

 SQLSMALLINT I1LVCHR;

 SQLSMALLINT I1CHRSB;

 SQLSMALLINT I1CHRBIT;

 SQLSMALLINT I1DDATE;

 SQLSMALLINT I1TTIME;

 SQLSMALLINT I1TSTMP;

 SQLINTEGER LNH1SMINT;

 SQLINTEGER LNH1INT4;

 SQLINTEGER LNH1FLOAT8;

 SQLINTEGER LNH1DEC312;

 SQLINTEGER LNH1CHR1=;

 SQLINTEGER LNH1VCHR2=;

 SQLINTEGER LNH1LVCHR;

 SQLINTEGER LNH1CHRSB;

 SQLINTEGER LNH1CHRBIT;

 SQLINTEGER LNH1DDATE;

 SQLINTEGER LNH1TTIME;

 SQLINTEGER LNH1TSTMP;

 SQLSMALLINT H2SMINT;

 SQLINTEGER H2INT4;

 SQLDOUBLE H2FLOAT8;

 SQLCHAR H2CHR1=[11];

 SQLCHAR H2VCHR2=[21];

 SQLCHAR H2LVCHR[21];

 SQLCHAR H2CHRSB[11];

 SQLCHAR H2CHRBIT[11];

 SQLCHAR H2DDATE[11];

 SQLCHAR H2TTIME[9];

 SQLCHAR H2TSTMP[27];

 SQLSMALLINT I2SMINT;

 SQLSMALLINT I2INT4;

 SQLSMALLINT I2FLOAT8;

 SQLSMALLINT I2CHR1=;

 SQLSMALLINT I2VCHR2=;

 SQLSMALLINT I2LVCHR;

 SQLSMALLINT I2CHRSB;

 SQLSMALLINT I2CHRBIT;

 SQLSMALLINT I2DDATE;

 SQLSMALLINT I2TTIME;

 SQLSMALLINT I2TSTMP;

474 Call Level Interface Guide and Reference

 SQLINTEGER LNH2SMINT;

 SQLINTEGER LNH2INT4;

 SQLINTEGER LNH2FLOAT8;

 SQLINTEGER LNH2CHR1=;

 SQLINTEGER LNH2VCHR2=;

 SQLINTEGER LNH2LVCHR;

 SQLINTEGER LNH2CHRSB;

 SQLINTEGER LNH2CHRBIT;

 SQLINTEGER LNH2DDATE;

 SQLINTEGER LNH2TTIME;

 SQLINTEGER LNH2TSTMP;

SQLCHAR locsite[18] = "stlec1";

SQLCHAR remsite[18] = "stlec1b";

 SQLINTEGER ix,jx,locix;

 SQLINTEGER result;

 SQLCHAR state_blank[6] =" ";

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

SQLRETURN

prt_sqlca();

 /??/

/? Main Program ?/

 /??/

SQLINTEGER

main()

{

 printf("\nAPD29 INITIALIZATION");

scale = =;

 rc==;

 printf("\nAPD29 SQLAllocEnv stmt=%d",__LINE__);

 henv==;

rc = SQLAllocEnv(&henv);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-henv=%i",henv);

for (locix=1;locix<=2;locix++)

{

 /? Start SQL statements ??/

 /???/

 printf("\nAPD29 SQLAllocConnect ");

 hdbc==;

 SQLAllocConnect(henv, &hdbc);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-hdbc=%i",hdbc);

 /???/

 printf("\nAPD29 SQLConnect ");

if (locix == 1)

 {

strcpy((char ?)server,(char ?)locsite);

 }

 else

 {

strcpy((char ?)server,(char ?)remsite);

 }

 Appendix F. Example Code 475

 strcpy((char ?)uid,"cliuser");

 strcpy((char ?)pwd,"password");

 printf("\nAPD29 server=%s",server);

 printf("\nAPD29 uid=%s",uid);

 printf("\nAPD29 pwd=%s",pwd);

rc=SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? CASE(SPCODE==) QRS RETURNED== COL== ROW== ?/

 /???/

 printf("\nAPD29 SQLAllocStmt stmt=%d",__LINE__);

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-hstmt=%i\n",hstmt);

 SPCODE==;

 printf("\nAPD29 call sp SPCODE =%i\n",SPCODE);

 printf("\nAPD29 SQLPrepare stmt=%d",__LINE__);

 strcpy((char?)sqlstmt,"CALL SPD29(?)");

 printf("\nAPD29 sqlstmt=%s",sqlstmt);

 rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLBindParameter stmt=%d",__LINE__);

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 =,

 =,

 &SPCODE,

 =,

 NULL);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLExecute stmt=%d",__LINE__);

 rc=SQLExecute(hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 if(SPCODE != =)

 {

printf("\nAPD29 SPCODE not zero, spcode=%i\n",SPCODE);

 goto dberror;

 }

 printf("\nAPD29 SQLTransact stmt=%d",__LINE__);

 rc=SQLTransact(henv, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLFreeStmt stmt=%d",__LINE__);

 rc=SQLFreeStmt(hstmt, SQL_DROP);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? CASE(SPCODE=1) QRS RETURNED== COL== ROW== ?/

 /???/

 printf("\nAPD29 SQLAllocStmt stmt=%d",__LINE__);

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-hstmt=%i\n",hstmt);

476 Call Level Interface Guide and Reference

 SPCODE=1;

 printf("\nAPD29 call sp SPCODE =%i\n",SPCODE);

 printf("\nAPD29 SQLPrepare stmt=%d",__LINE__);

 strcpy((char?)sqlstmt,"CALL SPD29(?)");

 printf("\nAPD29 sqlstmt=%s",sqlstmt);

 rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLBindParameter stmt=%d",__LINE__);

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 =,

 =,

 &SPCODE,

 =,

 NULL);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLExecute stmt=%d",__LINE__);

 rc=SQLExecute(hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 if(SPCODE != =)

 {

printf("\nAPD29 SPCODE not zero, spcode=%i\n",SPCODE);

 goto dberror;

 }

 printf("\nAPD29 SQLTransact stmt=%d",__LINE__);

 rc=SQLTransact(henv, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLFreeStmt stmt=%d",__LINE__);

 rc=SQLFreeStmt(hstmt, SQL_DROP);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? CASE(SPCODE=2) QRS RETURNED=2 COL=1(int4/chr1=) ROW=1==+ ?/

 /???/

 printf("\nAPD29 SQLAllocStmt number= 18\n");

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-hstmt=%i\n",hstmt);

 SPCODE=2;

 printf("\nAPD29 call sp SPCODE =%i\n",SPCODE);

 printf("\nAPD29 SQLPrepare number= 19\n");

 strcpy((char?)sqlstmt,"CALL SPD29(?)");

 printf("\nAPD29 sqlstmt=%s",sqlstmt);

 rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);

 if(rc != SQL_SUCCESS) goto dberror;

 Appendix F. Example Code 477

 printf("\nAPD29 SQLBindParameter number= 2=\n");

 rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT_OUTPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 =,

 =,

 &SPCODE,

 =,

 NULL);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLExecute number= 21\n");

 rc=SQLExecute(hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 if(SPCODE != =)

 {

printf("\nAPD29 spcode incorrect");

 goto dberror;

 }

 printf("\nAPD29 SQLNumResultCols number= 22\n");

 rc=SQLNumResultCols(hstmt,&pccol);

 if (pccol!=1)

 {

printf("APD29 col count wrong=%i\n",pccol);

 goto dberror;

 }

 printf("\nAPD29 SQLBindCol number= 23\n");

 rc=SQLBindCol(hstmt,

 1,

 SQL_C_LONG,

 (SQLPOINTER) &H1INT4,

 (SQLINTEGER)sizeof(SQLINTEGER),

(SQLINTEGER ?) &LNH1INT4);

 if(rc != SQL_SUCCESS) goto dberror;

 jx==;

 printf("\nAPD29 SQLFetch number= 24\n");

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

 jx++;

printf("\nAPD29 fetch loop jx =%i\n",jx);

if ((H1INT4<==) || (H1INT4>=2=2)

|| (LNH1INT4!=4 && LNH1INT4!=-1))

{ /? data error ?/

 printf("\nAPD29 H1INT4=%i\n",H1INT4);

 printf("\nAPD29 LNH1INT4=%i\n",LNH1INT4);

 goto dberror;

 }

 printf("\nAPD29 SQLFetch number= 24\n");

 } /? end while loop ?/

 if(rc != SQL_NO_DATA_FOUND)

 {

printf("\nAPD29 invalid end of data\n");

 goto dberror;

 }

478 Call Level Interface Guide and Reference

 printf("\nAPD29 SQLMoreResults number= 25\n");

 rc=SQLMoreResults(hstmt);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLNumResultCols number= 26\n");

 rc=SQLNumResultCols(hstmt,&pccol);

 if (pccol!=1) {

printf("APD29 col count wrong=%i\n",pccol);

 goto dberror;

 }

 printf("\nAPD29 SQLBindCol number= 27\n");

 rc=SQLBindCol(hstmt,

 1,

 SQL_C_CHAR,

 (SQLPOINTER) H1CHR1=,

 (SQLINTEGER)sizeof(H1CHR1=),

(SQLINTEGER ?) &LNH1CHR1=);

 if(rc != SQL_SUCCESS) goto dberror;

 jx==;

 while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

 jx++;

printf("\nAPD29 fetch loop jx =%i\n",jx);

 result=strcmp((char ?)H1CHR1=,"CHAR ");

if ((result!==)

|| (LNH1INT4!=4 && LNH1INT4!=-1))

 {

 printf("\nAPD29 H1CHR1==%s\n",H1CHR1=);

 printf("\nAPD29 result=%i\n",result);

 printf("\nAPD29 LNH1CHR1==%i\n",LNH1CHR1=);

printf("\nAPD29 strlen(H1CHR1=)=%i\n",strlen((char ?)H1CHR1=));

 goto dberror;

 }

 printf("\nAPD29 SQLFetch number= 24\n");

 } /? end while loop ?/

 if(rc != SQL_NO_DATA_FOUND)

 goto dberror;

 printf("\nAPD29 SQLMoreResults number= 29\n");

 rc=SQLMoreResults(hstmt);

 if(rc != SQL_NO_DATA_FOUND) goto dberror;

 printf("\nAPD29 SQLTransact number= 3=\n");

 rc=SQLTransact(henv, hdbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29 SQLFreeStmt number= 31\n");

 rc=SQLFreeStmt(hstmt, SQL_DROP);

 if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nAPD29 SQLDisconnect stmt=%d",__LINE__);

 rc=SQLDisconnect(hdbc);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nSQLFreeConnect stmt=%d",__LINE__);

 rc=SQLFreeConnect(hdbc);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

/? End SQL statements ??/

 Appendix F. Example Code 479

} /? end for each site perform these stmts ?/

for (locix=1;locix<=2;locix++)

{

 /???/

 printf("\nAPD29 SQLAllocConnect ");

 hdbc==;

 SQLAllocConnect(henv, &hdbc);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD29-hdbc=%i",hdbc);

 /???/

 printf("\nAPD29 SQLConnect ");

if (locix == 1)

 {

strcpy((char ?)server,(char ?)locsite);

 }

 else

 {

strcpy((char ?)server,(char ?)remsite);

 }

 strcpy((char ?)uid,"cliuser");

 strcpy((char ?)pwd,"password");

 printf("\nAPD29 server=%s",server);

 printf("\nAPD29 uid=%s",uid);

 printf("\nAPD29 pwd=%s",pwd);

rc=SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? Start validate SQL statements ?????????????????????????????????/

 /???/

 printf("\nAPD=1 SQLAllocStmt \n");

 hstmt==;

 rc=SQLAllocStmt(hdbc, &hstmt);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1-hstmt=%i\n",hstmt);

 printf("\nAPD=1 SQLExecDirect \n");

 strcpy((char ?)sqlstmt,

"SELECT INT4 FROM TABLE2A WHERE INT4=2==");

 printf("\nAPD=1 sqlstmt=%s",sqlstmt);

 rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLBindCol \n");

 rc=SQLBindCol(hstmt,

 1,

 SQL_C_LONG,

 (SQLPOINTER) &H1INT4,;

 (SQLINTEGER)sizeof(SQLINTEGER),

(SQLINTEGER ?) &LNH1INT4);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLFetch \n");

 rc=SQLFetch(hstmt);

if(rc != SQL_SUCCESS) goto dberror;

if ((H1INT4!=2==) || (LNH1INT4!=4))

 {

 printf("\nAPD=1 H1INT4=%i\n",H1INT4);

 printf("\nAPD=1 LNH1INT4=%i\n",LNH1INT4);

 goto dberror;

 }

480 Call Level Interface Guide and Reference

 printf("\nAPD=1 SQLTransact \n");

rc=SQLTransact(henv, hdbc, SQL_COMMIT);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLFreeStmt \n");

 rc=SQLFreeStmt(hstmt, SQL_CLOSE);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLExecDirect \n");

 strcpy((char ?)sqlstmt,

"SELECT INT4 FROM TABLE2A WHERE INT4=2=1");

 printf("\nAPD=1 sqlstmt=%s",sqlstmt);

 rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLFetch \n");

 rc=SQLFetch(hstmt);

if(rc != SQL_SUCCESS) goto dberror;

if ((H1INT4!=2=1) || (LNH1INT4!=4))

 {

 printf("\nAPD=1 H1INT4=%i\n",H1INT4);

 printf("\nAPD=1 LNH1INT4=%i\n",LNH1INT4);

 goto dberror;

 }

 printf("\nAPD=1 SQLTransact \n");

rc=SQLTransact(henv, hdbc, SQL_COMMIT);

if(rc != SQL_SUCCESS) goto dberror;

 printf("\nAPD=1 SQLFreeStmt \n");

 rc=SQLFreeStmt(hstmt, SQL_DROP);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 /? End validate SQL statements ???????????????????????????????????/

 /???/

 printf("\nAPD29 SQLDisconnect stmt=%d",__LINE__);

 rc=SQLDisconnect(hdbc);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 printf("\nSQLFreeConnect stmt=%d",__LINE__);

 rc=SQLFreeConnect(hdbc);

if(rc != SQL_SUCCESS) goto dberror;

} /? end for each site perform these stmts ?/

 /???/

 printf("\nSQLFreeEnv stmt=%d",__LINE__);

 rc=SQLFreeEnv(henv);

if(rc != SQL_SUCCESS) goto dberror;

 /???/

 goto pgmend;

 dberror:

 printf("\nAPD29 entry dberror label");

 printf("\nAPD29 rc=%d",rc);

 check_error(henv,hdbc,hstmt,rc);

 printf("\nAPDXX SQLFreeEnv number= 6\n");

 rc=SQLFreeEnv(henv);

 printf("\nAPDXX FREEENV rc =%d",rc);

 rc=12;

 printf("\nAPDXX DBERROR set rc =%d",rc);

 goto pgmend;

 Appendix F. Example Code 481

 pgmend:

 printf("\nAPD29 TERMINATION ");

 if (rc!==)

 {

printf("\nAPD29 WAS NOT NOT NOT SUCCESSFUL");

printf("\nAPD29 SPCODE = %i", SPCODE);

printf("\nAPD29 rc = %i", rc);

 }

 else

printf("\nAPD29 WAS SUCCESSFUL");

 return(rc);

} /?END MAIN?/

/???

?? check_error - call print_error(), checks severity of return code

???/

SQLRETURN

check_error(SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

SQLRETURN frc)

{

SQLCHAR buffer_SQL_MAX_MESSAGE_LENGTH + 1‘;

SQLCHAR cli_sqlstate_SQL_SQLSTATE_SIZE + 1‘;

 SQLINTEGER cli_sqlcode;

 SQLSMALLINT length;

printf("\nAPD29 entry check_error rtn");

switch (frc) {

 case SQL_SUCCESS:

 break;

 case SQL_INVALID_HANDLE:

printf("\nAPD29 check_error> SQL_INVALID HANDLE ");

 case SQL_ERROR:

printf("\nAPD29 check_error> SQL_ERROR ");

 break;

 case SQL_SUCCESS_WITH_INFO:

 printf("\nAPD29 check_error> SQL_SUCCESS_WITH_INFO");

 break;

 case SQL_NO_DATA_FOUND:

printf("\nAPD29 check_error> SQL_NO_DATA_FOUND ");

 break;

 default:

printf("\nAPD29 check_error> Invalid rc from api rc=%i",frc);

 break;

} /?end switch?/

 printf("\nAPD29 SQLError ");

while ((rc=SQLError(henv, hdbc, hstmt, cli_sqlstate, &cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH + 1, &length)) == SQL_SUCCESS) {

printf(" SQLSTATE: %s", cli_sqlstate);

printf("Native Error Code: %ld", cli_sqlcode);

printf("%s ", buffer);

 };

 if (rc!=SQL_NO_DATA_FOUND)

printf("SQLError api call failed rc=%d",rc);

482 Call Level Interface Guide and Reference

 printf("\nAPD29 SQLGetSQLCA ");

rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);

if(rc == SQL_SUCCESS)

 prt_sqlca();

 else

printf("\n APD29-check_error SQLGetSQLCA failed rc=%i",rc);

 return (frc);

}

 /???/

/? P r i n t S Q L C A ?/

 /???/

SQLRETURN

 prt_sqlca()

 {

 SQLINTEGER i;

printf("\nlAPD29 entry prts_sqlca rtn");

printf("\r\r??? Printing the SQLCA:\r");

printf("\nSQLCAID %s",sqlca.sqlcaid);

printf("\nSQLCABC %d",sqlca.sqlcabc);

printf("\nSQLCODE %d",sqlca.sqlcode);

printf("\nSQLERRML ... %d",sqlca.sqlerrml);

printf("\nSQLERRMC ... %s",sqlca.sqlerrmc);

 printf("\nSQLERRP ... %s",sqlca.sqlerrp);

for (i = =; i < 6; i++)

printf("\nSQLERRD%d ... %d",i+1,sqlca.sqlerrd??(i??));

for (i = =; i < 1=; i++)

printf("\nSQLWARN%d ... %c",i,sqlca.sqlwarn[i]);

printf("\nSQLWARNA ... %c",sqlca.sqlwarn[1=]);

printf("\nSQLSTATE ... %s",sqlca.sqlstate);

 return(=);

} /? End of prtsqlca ?/

/?END OF APD29??/

 Appendix F. Example Code 483

484 Call Level Interface Guide and Reference

 address space ? call level interface (CLI)

 Glossary

The following terms and abbreviations are defined as
they are used in the DB2 library. If you do not find the
term you are looking for, refer to the index or to
Dictionary of Computing.

A
address space. A range of virtual storage pages
identified by a number (ASID) and a collection of
segment and page tables which map the virtual pages
to real pages of the computer's memory.

address space connection. The result of connecting
an allied address space to DB2. Each address space
containing a task connected to DB2 has exactly one
address space connection, even though more than one
task control block (TCB) can be present. See allied
address space and task control block.

allied address space. An area of storage external to
DB2 that is connected to DB2 and is therefore capable
of requesting DB2 services.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. American National Standards Institute.

API. Application programming interface.

application. A program or set of programs that
perform a task; for example, a payroll application.

application plan. The control structure produced
during the bind process and used by DB2 to process
SQL statements encountered during statement
execution.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
licensed program.

application requester (AR). See requester.

AR. application requester. See requester.

ASCII. An encoding scheme used to represent strings
in many environments, typically on PCs and
workstations. Contrast with EBCDIC.

attachment facility. An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

B
base table. A table created by the SQL CREATE
TABLE statement that is used to hold persistent data.
Contrast with result table and temporary table.

bind. The process by which the output from the DB2
precompiler is converted to a usable control structure
called a package or an application plan. During the
process, access paths to the data are selected and
some authorization checking is performed.

automatic bind. (More correctly automatic rebind).
A process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL statements
are bound after they have been precompiled. All
static SQL statements are prepared for execution at
the same time. Contrast with dynamic bind.

built-in function. Scalar function or column function.

C
CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment
facility for application programs running in TSO or MVS
batch. The CAF is an alternative to the DSN command
processor and allows greater control over the execution
environment.

call level interface (CLI). A callable application
program interface (API) for database access, which is

 Copyright IBM Corp. 1997 485

 catalog ? full outer join

an alternative to using embedded SQL. In contrast to
embedded SQL, DB2 CLI does not require the user to
precompile or bind applications, but instead provides a
standard set of functions to process SQL statements
and related services at run time.

catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table. Any table in the DB2 catalog.

CLI. See call level interface.

client. See requester.

column function. An SQL operation that derives its
result from a collection of values across one or more
rows. Contrast with scalar function.

commit. The operation that ends a unit of work by
releasing locks so that the database changes made by
that unit of work can be perceived by other processes.

common server. Describes the set of DB2 products
that run on various platforms and have the same source
code. These platforms include OS/2, Windows, and
UNIX.

connection handle. The data object that contains
information associated with a connection managed by
DB2 CLI. This includes general status information,
transaction status, and diagnostic information.

constant. A language element that specifies an
unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

context. The application's logical connection to the
data source and associated internal DB2 CLI
connection information that allows the application to
direct its operations to a data source. A DB2 CLI
context represents a DB2 thread.

cursor. A named control structure used by an
application program to point to a row of interest within
some set of rows, and to retrieve rows from the set,
possibly making updates or deletions.

D
database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

DBMS. Database management system.

DB2 thread. The DB2 structure that describes an
application's connection, traces its progress, processes

resource functions, and delmits its accessibility to DB2
resources. and services.

distributed relational database architecture
(DRDA). A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

DRDA. Distributed relational database architecture.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution.

E
EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme used to represent character
data in the MVS, VM, VSE, and OS/400 environments.
Contrast with ASCII.

embedded SQL. SQL statements coded within an
application program. See static SQL.

environment. A collection of names of logical and
physical resources that are used to support the
performance of a function.

environment handle. In DB2 CLI, the data object that
contains global information regarding the state of the
application. An environment handle must be allocated
before a connection handle can be allocated. Only one
environment handle can be allocated per application.

equi-join. A join operation in which the join-condition
has the form expression = expression.

F
foreign key. A key that is specified in the definition of
a referential constraint. Because of the foreign key, the
table is a dependent table. The key must have the
same number of columns, with the same descriptions,
as the primary key of the parent table.

full outer join. The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of both tables. See
also join.

486 Call Level Interface Guide and Reference

 function ? precompilation

function. A scalar function or column function. Same
as built-in function.

H
handle. In DB2 CLI, a variable that refers to a data
structure and associated resources. See statement
handle, connection handle, and environment handle.

I
initialization file. For DB2 CLI applications, a file
containing values that can be set to adjust the
performance of the database manager.

inner join. The result of a join operation that includes
only the matched rows of both tables being joined. See
also join.

J
JCL. Job control language.

join. A relational operation that allows retrieval of data
from two or more tables based on matching column
values. See also full outer join, inner join, left outer join,
outer join, right outer join, equi-join.

L
left outer join. The result of a join operation that
includes the matched rows of both tables being joined,
and preserves the unmatched rows of the first table.
See also join.

link-edit. To create a loadable computer program
using a linkage editor.

load module. A program unit that is suitable for
loading into main storage for execution. The output of a
linkage editor.

local. Refers to any object maintained by the local
DB2 subsystem. A local table, for example, is a table
maintained by the local DB2 subsystem. Contrast with
remote.

M
multithreading. Multiple TCBs executing one copy of
DB2 CLI code concurrently (sharing a processor) or in
parallel (on separate central processors).

mutex. Pthread mutual exclusion; a lock. A Pthread
mutex variable is used as a locking mechanism to allow
serialization of critical sections of code by temporarily
blocking the execution of all but one thread.

MVS/ESA. Multiple Virtual Storage/Enterprise Systems
Architecture.

N
NUL. In C, a single character that denotes the end of
the string.

null. A special value that indicates the absence of
information.

NUL-terminated host variable. A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator. In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
ODBC. See Open Database Connectivity.

ODBC driver. A dynamically-linked library (DLL) that
implements ODBC function calls and interacts with a
data source.

Open Database Connectivity (ODBC). A Microsoft
database application programming interface (API) for C
that allows access to database management systems
by using callable SQL. ODBC does not require the use
of an SQL preprocessor. In addition, ODBC provides an
architecture that lets users add modules called
database drivers that link the application to their choice
of database management systems at run time. This
means that applications no longer need to be directly
linked to the modules of all the database management
systems that are supported.

outer join. The result of a join operation that includes
the matched rows of both tables being joined and
preserves some or all of the unmatched rows of the
tables being joined. See also join.

P
plan. See application plan.

plan name. The name of an application plan.

POSIX. Portable Operating System Interface. The
IEEE operating system interface standard which defines
the Pthread standard of threading. See Pthread.

precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with

 Glossary 487

 prepare ? Structured Query Language (SQL)

statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

prepare. The first phase of a two-phase commit
process in which all participants are requested to
prepare for commit.

prepared SQL statement. A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

primary key. A unique, nonnull key that is part of the
definition of a table. A table cannot be defined as a
parent unless it has a unique key or primary key.

Pthread. The POSIX threading standard model for
splitting an application into subtasks. The Pthread
standard includes functions for creating threads,
terminating threads, synchronizing threads through
locking, and other thread control facilities.

R
RDBMS. Relational database management system.

reentrant. Executable code that can reside in storage
as one shared copy for all threads. Reentrant code is
not self-modifying and provides separate storage areas
for each thread. Reentrancy is a compiler and operating
system concept, and reentrancy alone is not enough to
guarantee logically consistent results when
multithreading. See threadsafe.

relational database management system (RDBMS).
A relational database manager that operates
consistently across supported IBM systems.

remote. Refers to any object maintained by a remote
DB2 subsystem; that is, by a DB2 subsystem other than
the local one. A remote view, for instance, is a view
maintained by a remote DB2 subsystem. Contrast with
local.

requester. Also application requester (AR). The
source of a request to a remote RDBMS, the system
that requests the data.

result set. The set of rows returned to a client
application by a stored procedure.

result set locator. A 4-byte value used by DB2 to
uniquely identify a query result set returned by a stored
procedure.

result table. The set of rows specified by a SELECT
statement.

right outer join. The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of the second join
operand. See also join.

rollback. The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

S
scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name followed by a list of arguments enclosed
in parentheses. See also column function.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQL communication area (SQLCA). A structure used
to provide an application program with information about
the execution of its SQL statements.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQLCA. SQL communication area.

SQLDA. SQL descriptor area.

SQL/DS. SQL/Data System. Also known as DB2/VSE
& VM.

statement handle. In DB2 CLI, the data object that
contains information about an SQL statement that is
managed by DB2 CLI. This includes information such
as dynamic arguments, bindings for dynamic arguments
and columns, cursor information, result values and
status information. Each statement handle is associated
with the connection handle.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables specified by
the statement might change).

stored procedure. A user-written application program,
that can be invoked through the use of the SQL CALL
statement.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a
relational database.

488 Call Level Interface Guide and Reference

 table ? X/Open

T
table. A named data object consisting of a specific
number of columns and some number of unordered
rows. Synonymous with base table or temporary table.

task control block (TCB). A control block used to
communicate information about tasks within an address
space that are connected to DB2. An address space
can support many task connections (as many as one
per task), but only one address space connection. See
address space connection.

TCB. MVS task control block.

TCP/IP. A network communication protocol used by
computer systems to exchange information across
telecommunication links.

temporary table. A table created by the SQL
CREATE GLOBAL TEMPORARY TABLE statement that
is used to hold temporary data. Contrast with result
table and temporary table.

threadsafe. Characteristic of code that allows
multithreading both by providing private storage areas

for each thread, and by properly serializing shared
(global) storage areas.

timestamp. A seven-part value that consists of a date
and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

trace. A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

V
variable. A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

X
X/Open. An independent, worldwide open systems
organization that is supported by most of the world's
largest information systems suppliers, user
organizations, and software companies. X/Open's goal
is to increase the portability of applications by
combining existing and emerging standards.

 Glossary 489

490 Call Level Interface Guide and Reference

 Bibliography

DB2 for OS/390 Version 5

� Administration Guide, SC26-8957

� Application Programming and SQL Guide,
SC26-8958

� Call Level Interface Guide and Reference,
SC26-8959

� Command Reference, SC26-8960

� Data Sharing: Planning and Administration,
SC26-8961

� Data Sharing Quick Reference Card, SX26-3841

� Diagnosis Guide and Reference, LY27-9659

� Diagnostic Quick Reference Card, LY27-9660

� Installation Guide, GC26-8970

� Application Programming Guide and Reference for
Java, SC26-9547

� Licensed Program Specifications, GC26-8969

� Messages and Codes, GC26-8979

� Reference for Remote DRDA Requesters and
Servers, SC26-8964

� Reference Summary, SX26-3842

� Release Guide, SC26-8965

� SQL Reference, SC26-8966

� Utility Guide and Reference, SC26-8967

� What's New?, GC26-8971

 � Program Directory

DB2 PM for OS/390 Version 5

� Batch User's Guide, SC26-8991

� Command Reference, SC26-8987

� General Information, GC26-8982

� Getting Started on the Workstation, SC26-8989

� Master Index, SC26-8984

� Messages Manual, SC26-8988

� Online Monitor User's Guide, SC26-8990

� Report Reference Volume 1, SC26-8985

� Report Reference Volume 2, SC26-8986

 � Program Directory

Ada/370

� IBM Ada/370 Language Reference, SC09-1297
� IBM Ada/370 Programmer's Guide, SC09-1414
� IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2

� APL2 Programming Guide, SH21-1072
� APL2 Programming: Language Reference,

SH21-1061
� APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400

� DB2 for OS/400 SQL Programming, SC41-4611
� DB2 for OS/400 SQL Reference, SC41-4612

BASIC

� IBM BASIC/MVS Language Reference, GC26-4026
� IBM BASIC/MVS Programming Guide, SC26-4027

C/370

� IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1356

� IBM SAA AD/Cycle C/370 Programming Guide for
Language Environment/370, SC09-1840

� IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

� SAA CPI C Reference, SC09-1308

Character Data Representation Architecture

� Character Data Representation Architecture
Overview, GC09-2207

� Character Data Representation Architecture
Reference, SC09-2190

CICS/ESA

� CICS/ESA Application Programming Guide,
SC33-1169

� CICS/ESA Application Programming Reference,
SC33-1170

� CICS/ESA CICS - RACF Security Guide,
SC33-1185

� CICS/ESA CICS-Supplied Transactions, SC33-1168
� CICS/ESA Customization Guide, SC33-1165
� CICS/ESA Data Areas, LY33-6083
� CICS/ESA Installation Guide, SC33-1163
� CICS/ESA Intercommunication Guide, SC33-1181
� CICS/ESA Messages and Codes, SC33-1177
� CICS/ESA Operations and Utilities Guide,

SC33-1167
� CICS/ESA Performance Guide, SC33-1183
� CICS/ESA Problem Determination Guide,

SC33-1176
� CICS/ESA Resource Definition Guide, SC33-1166
� CICS/ESA System Definition Guide, SC33-1164
� CICS/ESA System Programming Reference,

GC33-1171

 Copyright IBM Corp. 1997 491

CICS/MVS

� CICS/MVS Application Programming Primer,
SC33-0139

� CICS/MVS Application Programmer's Reference,
SC33-0512

� CICS/MVS Facilities and Planning Guide,
SC33-0504

� CICS/MVS Installation Guide, SC33-0506
� CICS/MVS Operations Guide, SC33-0510
� CICS/MVS Problem Determination Guide,

SC33-0516
� CICS/MVS Resource Definition (Macro), SC33-0509
� CICS/MVS Resource Definition (Online), SC33-0508

IBM C/C++ for MVS/ESA or OS/390

� IBM C/C++ for MVS/ESA Library Reference,
SC09-1995

� IBM C/C++ for MVS/ESA Programming Guide,
SC09-1994

� IBM C/C++ for OS/390 User's Guide, SC09-2361

IBM COBOL for MVS & VM

� IBM COBOL for MVS & VM Language Reference,
SC26-4769

� IBM COBOL for MVS & VM Programming Guide,
SC26-4767

Conversion Guides

� DBMS Conversion Guide: DATACOM/DB to DB2,
GH20-7564

� DBMS Conversion Guide: IDMS to DB2,
GH20-7562

� DBMS Conversion Guide: Model 204 to DB2 or
SQL/DS, GH20-7565

� DBMS Conversion Guide: VSAM to DB2,
GH20-7566

� IMS-DB and DB2 Migration and Coexistence Guide,
GH21-1083

Cooperative Development Environment

� CoOperative Development Environment/370: Debug
Tool, SC09-1623

DATABASE 2 for Common Servers

� DATABASE 2 Administration Guide for common
servers, S20H-4580

� DATABASE 2 Application Programming Guide for
common servers, S20H-4643

� DATABASE 2 Software Developer's Kit for AIX:
Building Your Applications, S20H-4780

� DATABASE 2 Software Developer's Kit for OS/2:
Building Your Applications, S20H-4787

� DATABASE 2 SQL Reference for common servers,
S20H-4665

� DATABASE 2 Call Level Interface Guide and
Reference for common servers, S20H-4644

Data Extract (DXT)

� Data Extract Version 2: General Information,
GC26-4666

� Data Extract Version 2: Planning and Administration
Guide, SC26-4631

DataPropagator NonRelational

� DataPropagator NonRelational MVS/ESA
Administration Guide, SH19-5036

� DataPropagator NonRelational MVS/ESA
Reference, SH19-5039

DataPropagator Relational

� DataPropagator Relational User's Guide,
SC26-3399

� IBM An Introduction to DataPropagator Relational,
GC26-3398

Data Facility Data Set Services

� Data Facility Data Set Services: User's Guide and
Reference, SC26-4125

Database Design

� DB2 Database Design and Implementation Using
DB2, SH24-6101

� DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley

� Handbook of Relational Database Design, C.
Fleming and B Von Halle, Addison Wesley

� Principles of Database Systems, Jeffrey D. Ullman,
Computer Science Press

DataHub

� IBM DataHub General Information, GC26-4874

DB2 Universal Database

� DB2 Universal Database Administration Guide,
S10J-8157

� DB2 Universal Database API Reference, S10J-8167
� DB2 Universal Database Application Development

Guide, SC09-2845
� DB2 Universal Database Building Applications for

UNIX Environments, S10J-8161
� DB2 Universal Database Building Applications for

Windows and OS/2 Environments, S10J-8160
� DB2 Universal Database CLI Guide and Reference,

S10J-8159
� DB2 Universal Database SQL Reference,

S10J-8165

Device Support Facilities

� Device Support Facilities User's Guide and
Reference, GC35-0033

492 Call Level Interface Guide and Reference

DFSMS/MVS

� DFSMS/MVS: Access Method Services for the
Integrated Catalog, SC26-4906

� DFSMS/MVS: Access Method Services for VSAM
Catalogs, SC26-4905

� DFSMS/MVS: Administration Reference for
DFSMSdss, SC26-4929

� DFSMS/MVS: DFSMShsm Managing Your Own
Data, SH21-1077

� DFSMS/MVS: Diagnosis Reference for DFSMSdfp,
LY27-9606

� DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

� DFSMS/MVS: Managing Catalogs, SC26-4914
� DFSMS/MVS: Program Management, SC26-4916
� DFSMS/MVS: Storage Administration Reference for

DFSMSdfp, SC26-4920
� DFSMS/MVS: Using Advanced Services for Data

Sets, SC26-4921
� DFSMS/MVS: Utilities, SC26-4926
� MVS/DFP: Managing Non-VSAM Data Sets,

SC26-4557

DFSORT

� DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database

� Data Stream and OPA Reference, SC31-6806
� Distributed Relational Database Architecture:

Application Programming Guide, SC26-4773
� Distributed Relational Database Architecture:

Connectivity Guide, SC26-4783
� Distributed Relational Database Architecture:

Evaluation and Planning Guide, SC26-4650
� Distributed Relational Database Architecture:

Problem Determination Guide, SC26-4782
� Distributed Relational Database: Every Manager's

Guide, GC26-3195
� IBM SQL Reference, SC26-8416
� Open Group Technical Standard (the Open Group

presently makes the following books available
through their website at www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Education

� Dictionary of Computing, SC20-1699
� IBM Enterprise Systems Training Solutions Catalog,

GR28-5467

Enterprise System/9000 and Enterprise System/3090

� Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System Manager
Planning Guide, GA22-7123

FORTRAN

� VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

� VS FORTRAN Version 2: Programming Guide for
CMS and MVS, SC26-4222

High Level Assembler

� High Level Assembler/MVS and VM and VSE
Language Reference, SC26-4940

� High Level Assembler/MVS and VM and VSE
Programmer's Guide, SC26-4941

Parallel Sysplex Library

� System/390 MVS Sysplex Application Migration,
GC28-1211

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

� System/390 MVS Sysplex Overview: An Introduction
to Data Sharing and Parallelism, GC28-1208

� System/390 MVS Sysplex Systems Management,
GC28-1209

� System/390 MVS 9672/9674 System Overview,
GA22-7148

ICSF/MVS

� ICSF/MVS General Information, GC23-0093

IMS/ESA

� IMS Batch Terminal Simulator General Information,
GH20-5522

� IMS/ESA Administration Guide: System, SC26-8013
� IMS/ESA Application Programming: Database

Manager, SC26-8727
� IMS/ESA Application Programming: Design Guide,

SC26-8016
� IMS/ESA Application Programming: Transaction

Manager, SC26-8729
� IMS/ESA Customization Guide, SC26-8020
� IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
� IMS/ESA Installation Volume 2: System Definition

and Tailoring, SC26-8024
� IMS/ESA Messages and Codes, SC26-8028
� IMS/ESA Operator's Reference, SC26-8030
� IMS/ESA Utilities Reference: System, SC26-8035

ISPF

� ISPF Version 4 Messages and Codes, SC34-4450
� ISPF Version 4 for MVS Dialog Management Guide,

SC34-4213
� ISPF/PDF Version 4 for MVS Guide and Reference,

SC34-4258

 Bibliography 493

� ISPF and ISPF/PDF Version 4 for MVS Planning
and Customization, SC34-4134

Language Environment for MVS & VM

� Language Environment for MVS & VM Concepts
Guide, GC26-4786

� Language Environment for MVS & VM Debugging
and Run-Time Messages Guide, SC26-4829

� Language Environment for MVS & VM Installation
and Customization, SC26-4817

� Language Environment for MVS & VM
Programming Guide, SC26-4818

� Language Environment for MVS & VM
Programming Reference, SC26-3312

MVS/ESA

� MVS/ESA Analyzing Resource Measurement
Facility Monitor I and Monitor II Reference and
User's Guide, LY28-1007

� MVS/ESA Analyzing Resource Measurement
Facility Monitor III Reference and User's Guide,
LY28-1008

� MVS/ESA Application Development Reference:
Assembler Callable Services for OpenEdition MVS,
SC23-3020

� MVS/ESA Data Administration: Utilities, SC26-4516
� MVS/ESA Diagnosis: Procedures, LY28-1844
� MVS/ESA Diagnosis: Tools and Service Aids,

LY28-1845
� MVS/ESA Initialization and Tuning Guide,

SC28-1451
� MVS/ESA Initialization and Tuning Reference,

SC28-1452
� MVS/ESA Installation Exits, SC28-1459
� MVS/ESA JCL Reference, GC28-1479
� MVS/ESA JCL User's Guide, GC28-1473
� MVS/ESA JES2 Initialization and Tuning Guide,

SC28-1453
� MVS/ESA MVS Configuration Program, GC28-1615
� MVS/ESA Planning: Global Resource Serialization,

GC28-1450
� MVS/ESA Planning: Operations, GC28-1441
� MVS/ESA Planning: Workload Management,

GC28-1493
� MVS/ESA Programming: Assembler Services

Guide, GC28-1466
� MVS/ESA Programming: Assembler Services

Reference, GC28-1474
� MVS/ESA Programming: Authorized Assembler

Services Guide, GC28-1467
� MVS/ESA Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

� MVS/ESA Programming: Extended Addressability
Guide, GC28-1468

� MVS/ESA Programming: Sysplex Services Guide,
GC28-1495

� MVS/ESA Programming: Sysplex Services
Reference, GC28-1496

� MVS/ESA Programming: Workload Management
Services, GC28-1494

� MVS/ESA Routing and Descriptor Codes,
GC28-1487

� MVS/ESA Setting Up a Sysplex, GC28-1449
� MVS/ESA SPL: Application Development Guide,

GC28-1852
� MVS/ESA System Codes, GC28-1486
� MVS/ESA System Commands, GC28-1442
� MVS/ESA System Management Facilities (SMF),

GC28-1457
� MVS/ESA System Messages Volume 1, GC28-1480
� MVS/ESA System Messages Volume 2, GC28-1481
� MVS/ESA System Messages Volume 3, GC28-1482
� MVS/ESA Using the Subsystem Interface,

SC28-1502

Net.Data for OS/390

� Net.Data Language Environment Guide,
http://www.ibm.com/software/net.data/docs

� Net.Data Programming Guide,
http://www.ibm.com/software/net.data/docs

� Net.Data Reference Guide,
http://www.ibm.com/software/net.data/docs

NetView

� NetView Installation and Administration Guide,
SC31-8043

� NetView User's Guide, SC31-8056

ODBC

� ODBC 2.0 Programmer's Reference and SDK
Guide, ISBN 1-55615-658-8

� Inside ODBC, ISBN 1-55615-815-7

OS/390

� OS/390 C/C++ Programming Guide, SC09-2362
� OS/390 C/C++ Run-Time Library Reference,

SC28-1663
� OS/390 Information Roadmap, GC28-1727
� OS/390 Introduction and Release Guide,

GC28-1725
� OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
� OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
� OS/390 Language Environment for OS/390 & VM

Concepts Guide, GC28-1945
� OS/390 Language Environment for OS/390 & VM

Customization, SC28-1941
� OS/390 Language Environment for OS/390 & VM

Debugging Guide, SC28-1942
� OS/390 Language Environment for OS/390 & VM

Programming Guide, SC28-1939
� OS/390 Language Environment for OS/390 & VM

Programming Reference, SC28-1940
� OS/390 MVS Diagnosis: Procedures, LY28-1082
� OS/390 MVS Diagnosis: Reference, SY28-1084

494 Call Level Interface Guide and Reference

� OS/390 MVS Diagnosis: Tools and Service Aids,
LY28-1085

� OS/390 MVS Initialization and Tuning Guide,
SC28-1751

� OS/390 MVS Initialization and Tuning Reference,
SC28-1752

� OS/390 MVS Installation Exits, SC28-1753
� OS/390 MVS JCL Reference, GC28-1757
� OS/390 MVS JCL User's Guide, GC28-1758
� OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
� OS/390 MVS Planning: Operations, GC28-1760
� OS/390 MVS Planning: Workload Management,

GC28-1761
� OS/390 MVS Programming: Assembler Services

Guide, GC28-1762
� OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
� OS/390 MVS Programming: Authorized Assembler

Services Guide, GC28-1763
� OS/390 MVS Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1764,
GC28-1765, GC28-1766, GC28-1767

� OS/390 MVS Programming: Callable Services for
High-Level Languages, GC28-1768

� OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

� OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

� OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

� OS/390 MVS Programming: Workload Management
Services, GC28-1773

� OS/390 MVS Routing and Descriptor Codes,
GC28-1778

� OS/390 MVS Setting Up a Sysplex, GC28-1779
� OS/390 MVS System Codes, GC28-1780
� OS/390 MVS System Commands, GC28-1781
� OS/390 MVS System Messages Volume 1,

GC28-1784
� OS/390 MVS System Messages Volume 2,

GC28-1785
� OS/390 MVS System Messages Volume 3,

GC28-1786
� OS/390 MVS System Messages Volume 4,

GC28-1787
� OS/390 MVS System Messages Volume 5,

GC28-1788
� OS/390 Security Server (RACF) Auditor's Guide,

SC28-1916
� OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
� OS/390 Security Server (RACF) General User's

Guide, SC28-1917
� OS/390 Security Server (RACF) Security

Administrator's Guide, SC28-1915
� OS/390 Security Server (RACF) System

Programmer's Guide, SC28-1913
� OS/390 SMP/E Reference, SC28-1806

� OS/390 SMP/E User's Guide, SC28-1740
� OS/390 RMF User's Guide, SC28-1949
� OS/390 TSO/E CLISTS, SC28-1973
� OS/390 TSO/E Command Reference, SC28-1969
� OS/390 TSO/E Customization, SC28-1965
� OS/390 TSO/E Messages, GC28-1978
� OS/390 TSO/E Programming Guide, SC28-1970
� OS/390 TSO/E Programming Services, SC28-1971
� OS/390 TSO/E REXX Reference, SC28-1975
� OS/390 TSO/E User's Guide, SC28-1968

OS/390 OpenEdition

� OS/390 OpenEdition DCE Administration Guide,
SC28-1584

� OS/390 OpenEdition DCE Introduction, GC28-1581
� OS/390 R1 OE DCE Messages and Codes,

ST01-0920
� OS/390 OpenEdition Command Reference,

SC28-1892
� OS/390 OpenEdition Messages and Codes,

SC28-1908
� OS/390 OpenEdition Planning, SC28-1890
� OS/390 OpenEdition User's Guide, SC28-1891

PL/I for MVS & VM

� IBM PL/I MVS & VM Language Reference,
SC26-3114

� IBM PL/I MVS & VM Programming Guide,
SC26-3113

OS PL/I

� OS PL/I Programming Language Reference,
SC26-4308

� OS PL/I Programming Guide, SC26-4307

PROLOG

� IBM SAA AD/Cycle Prolog/MVS & VM
Programmer's Guide, SH19-6892

Query Management Facility

� Query Management Facility: Managing QMF for
MVS, SC26-8218

� Query Management Facility: Reference, SC26-4716
� Query Management Facility: Using QMF,

SC26-8078

Remote Recovery Data Facility

� Remote Recovery Data Facility Program Description
and Operations, LY37-3710

Resource Access Control Facility (RACF)

� External Security Interface (RACROUTE) Macro
Reference for MVS and VM, GC28-1366

� Resource Access Control Facility (RACF) Auditor's
Guide, SC28-1342

� Resource Access Control Facility (RACF) Command
Language Reference, SC28-0733

 Bibliography 495

� Resource Access Control Facility (RACF) General
Information Manual, GC28-0722

� Resource Access Control Facility (RACF) General
User's Guide, SC28-1341

� Resource Access Control Facility (RACF) Security
Administrator's Guide, SC28-1340

� Recource Access Control Facility (RACF) System
Programmer's Guide, SC28-1343

Storage Management

� MVS/ESA Storage Management Library:
Implementing System-Managed Storage,
SC26-3123

� MVS/ESA Storage Management Library: Leading an
Effective Storage Administration Group, SC26-3126

� MVS/ESA Storage Management Library: Managing
Data, SC26-3124

� MVS/ESA Storage Management Library: Managing
Storage Groups, SC26-3125

� MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
SC26-4659

System/370 and System/390

� IBM System/370 ESA Principles of Operation,
SA22-7200

� IBM System/390 ESA Principles of Operation,
SA22-7205

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

System Modification Program Extended (SMP/E)

� System Modification Program Extended (SMP/E)
Reference, SC28-1107

� System Modification Program Extended (SMP/E)
User's Guide, SC28-1302

System Network Architecture (SNA)

� SNA Formats, GA27-3136
� SNA LU 6.2 Peer Protocols Reference, SC31-6808
� SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084
� SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

� IBM TCP/IP for MVS: Customization &
Administration Guide, SC31-7134

� IBM TCP/IP for MVS: Diagnosis Guide, LY43-0105
� IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
� IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TSO Extensions

� TSO/E CLISTS, SC28-1876
� TSO/E Command Reference, SC28-1881
� TSO/E Customization, SC28-1872
� TSO/E Messages, GC28-1885
� TSO/E Programming Guide, SC28-1874
� TSO/E Programming Services, SC28-1875
� TSO/E User's Guide, SC28-1880

VS COBOL II

� VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

� VS COBOL II Application Programming: Language
Reference, SC26-4047

� VS COBOL II Installation and Customization for
MVS, SC26-4048

VTAM

� Planning for NetView, NCP, and VTAM, SC31-8063
� VTAM for MVS/ESA Diagnosis, LY43-0069
� VTAM for MVS/ESA Messages and Codes,

SC31-6546
� VTAM for MVS/ESA Network Implementation Guide,

SC31-6548
� VTAM for MVS/ESA Operation, SC31-6549
� VTAM for MVS/ESA Programming, SC31-6550
� VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
� VTAM for MVS/ESA Resource Definition Reference,

SC31-6552

496 Call Level Interface Guide and Reference

 Index

Special Characters
_ 348
% 348

A
abends 383, 389
allocate functions

AllocConnect 76
AllocEnv 80
AllocStmt 82

application
compile 55
deadlock 365
example, input and retrieval 435
execute 59
execution steps 55
linkedit 57
multithreaded 360
prelink 57
preparation 54
requirements 54
tasks 23
trace 373

application variables
binding 30

array input 350
array output 353
ASCII scalar function 397
attributes

connection 341
environment 341
querying and setting 341
statement 341

AUTOCOMMIT keyword 62

B
BINARY

conversion to C 420
BindCol, function 84
binding

application variables
columns 32
parameter markers 30

packages 52
plan 53
sample, DSNTIJCL 53
stored procedures 53

BindParameter, function 89
BITDATA keyword 63

C
caching

dynamic SQL statement 388
CALL statement 357
Cancel, function 100
case sensitivity 45
catalog

functions
description 346
limiting use of 387

querying 346
CD-ROM, books on 5
CHAR

conversion to C 417
display size 415
length 414
precision 412
scale 413

character strings 43, 45
CLITRACE keyword

description 63
use of 375, 389

ColAttributes, function 102
COLLECTIONID keyword 63
column-wise binding 353
ColumnPrivileges, function 108
Columns, function 113
commit 33
common server 16
compile, application 55
CONCAT scalar function 398
configuring

DB2 CLI 49
CONNECT 136

See also SQLDriverConnect
type 1, type 2 25

Connect, function 118
connection attributes (options)

description 341
setting 385

connection handle 17
allocating 24
AllocConnect, function 76
Free, function 177
freeing 24

connection string 342
connectivity

ODBC model 24
requirements 51

CONNECTTYPE keyword 64

 Copyright IBM Corp. 1997 497

contexts
multiple 362

coordinated distributed transactions 342
coordinated transactions, establishing 344
core level functions 15
CURDATE scalar function 398
CURRENTSERVER, plan bind option 53
CURRENTSQLID keyword 64
cursor

definition 33
use in CLI 17

CURSORHOLD keyword 64
CURTIME scalar function 398

D
data conversion

C data types 39
C to SQL data types 425
data types 37
default data types 39
description 42
display size of SQL data types 415
length of SQL data types 414
precision of SQL data types 412
scale of SQL data types 413
SQL data types 39
SQL to C data types 416

data source information, querying 45
data types

C 39, 41
generic 41
ODBC 41
SQL 39

data-at-execute 349
DATABASE scalar function 399
DataSources, function 124
DATE

conversion to C 421
display size 415
length 414
precision 412
scale 413

DAYOFMONTH scalar function 399
DB2 books on line 5
DB2 CLI

advantages of using 20
application requirements 54
components 54
configuring 49
diagnostic trace 375
function list 72
initialization file 60
installing 49
stored procedures 356

DBNAME keyword 64
DBRMs

binding to packages 51
deadlock, application 365
debugging 383, 389
DECIMAL

conversion to C 419
display size 415
length 414
precision 412
scale 413

deferred arguments 30
DescribeCol, function 127
diagnosis

description 35
trace 375

Disconnect, function 134
DISCONNECT, plan bind option 53
display size of SQL data types 415
distributed transactions 342
DOUBLE

conversion to C 419
display size 415
length 414
precision 412
scale 413

driver
CLI 391
ODBC 391

driver manager 391
DriverConnect, function 136
DSNAOINI

DD card 60
DSNTIJCL, bind sample 53
DYNAMICRULES, package bind option 52

E
embedded SQL

comparison to DB2 CLI 17
mixing with DB2 CLI 366

environment
attributes (options) 341
information, querying 45
OpenEdition, setup 53
runtime 50

environment handle
allocating 24
AllocEnv, function 80
description 17
Free, function 179
freeing 24

environmental variables
OpenEdition 60

error code, internal 384

498 Call Level Interface Guide and Reference

Error, function 142
escape clauses, vendor 369
examples

application, input and retrieval 435
array INSERT 352
catalog functions 348
stored procedure 435

ExecDirect, function 148
execute direct 29
execute statement 29
execute, application 55, 59
Execute, function 153
export statements

OpenEdition 60
ExtendedFetch, function 156

F
FAR pointers 71
Fetch, function 163
fetching data in pieces 350
FLOAT

conversion to C 419
display size 415
length 414
precision 412
scale 413

ForeignKeys, function 168
free functions

FreeConnect 177
FreeEnv 179
FreeStmt 181

function list, ODBC 393
functions

by category 72
ODBC list 393

G
Get Data, function 192
Get Functions, function 207
Get Info, function 212
GetConnectOption, function 184
GetCursorName, function 186
GetNumResultCols, function 254
GetSQLCA, function 228
GetStmtOption, function 235
GetTypeInfo, function 237
GRAPHIC

conversion to C 418
keyword 65

H
handles

connection handle 17, 24

handles (continued)
environment handle 17, 24
statement handle 17

HOUR scalar function 399

I
IFNULL scalar function 399
initialization

file
common errors 62, 385
defaults, changing 342
description 60
specifying 60

task 23
INSERT scalar function 398
installation

DB2 CLI 49
INTEGER

conversion to C 419
display size 415
length 414
precision 412
scale 413

internal error code 384
introduction to CLI 15
INVALID_HANDLE 36
isolation levels, ODBC 395
ISOLATION, package bind option 52

K
keywords, initialization 61, 62

L
LE threads

multiple 360
LEFT scalar function 398
length of SQL data types 414
LENGTH scalar function 398
library

online 5
linkedit, application 57
long data

retrieving in pieces 349
sending in pieces 349

LONGVARBINARY
conversion to C 420

LONGVARCHAR
conversion to C 417
display size 415
length 414
precision 412
scale 413

 Index 499

LONGVARGRAPHIC
conversion to C 418

M
MAXCONN keyword 65
metadata characters 348
MINUTE scalar function 399
MONTH scalar function 399
MoreResults, function 245
MULTICONTEXT keyword 65
multiple contexts 362
multithreaded applications 360
MVSATTACHTYPE keyword 66
MVSDEFAULTSSID keyword 66

N
native error code 37
NativeSQL, function 249
NOW scalar function 399
null connect 358
null-terminated strings 43
NUMERIC

conversion to C 419
display size 415
length 414
precision 412
scale 413

NumParams, function 252
NumResultCols, function 254

O
ODBC

and DB2 CLI 15, 391
connectivity 24
core level functions 15
function list 393
isolation levels 395
vendor escape clauses 369

online books 5
OpenEdition

compile application 56
environment setup 53
environmental variables 60
execute application 59
export statements 60
prelink, linkedit application 58
special considerations 55

OPTIMIZEFORNROWS keyword 67
options

connection 341
environment 341
querying and setting 341
statement 341

P
packages, binding 51
ParamData, function 256
parameter markers

array input 350
binding 30
use of 17

ParamOptions, function 258
pattern-values 347
plan, binding 53
PLANNAME keyword 67
pointers, FAR 71
portability 20
precision of SQL data types 412
prelink, application 57
Prepare, function 260
prepare, statement 29
PrimaryKey, function 268
ProcedureCols, function 273
Procedures, function 282
PutData, function 286

Q
query statements, processing 31
querying

data source information 45
environment information 45
system catalog information 346

R
REAL

conversion to C 419
display size 415
length 414
precision 412
scale 413

registering stored procedures 357
remote site

binding packages 52
REPEAT scalar function 398
result sets

function generated 387
retrieving into array 353
returning from stored procedures 358

retrieving multiple rows 353
return codes 36
RIGHT scalar function 398
rollback 33
row-wise binding 353
RowCount, function 289
rowset 156
runtime environment

setting up 51
support 50

500 Call Level Interface Guide and Reference

S
scale of SQL data types 413
SCHEMALIST keyword 67
search arguments 347
SECOND scalar function 399
SELECT 31
SetColAttributes, function 291
SetConnectOption, function 297
SetCursorName, function 303
SetParam, function 309
SetStmtOption, function 314
SMALLINT

conversion to C 419
display size 415
length 414
precision 412
scale 413

SMP/E jobs 49
softcopy publications 5
SpecialColumns, function 319
SQL

dynamically prepared 18
parameter markers 30
preparing and executing statements 29
query statements 31
SELECT 31
statements

DELETE 33
UPDATE 33

VALUES 31
SQL Access Group 15
SQL_ACCESS_MODE 297
SQL_ATTR_OUTPUT_NTS 306
SQL_AUTOCOMMIT 297, 385
SQL_BIND_TYPE 315
SQL_C_BINARY

conversion from SQL 428
SQL_C_BIT

conversion from SQL 427
SQL_C_CHAR

conversion from SQL 426
SQL_C_DATE

conversion from SQL 430
SQL_C_DBCHAR

conversion from SQL 429
SQL_C_DOUBLE

conversion from SQL 427
SQL_C_FLOAT

conversion from SQL 427
SQL_C_LONG

conversion from SQL 427
SQL_C_SHORT

conversion from SQL 427
SQL_C_TIME

conversion from SQL 431

SQL_C_TIMESTAMP
conversion from SQL 432

SQL_C_TINYINT
conversion from SQL 427

SQL_CLOSE_BEHAVIOR 315
SQL_COLUMN_AUTO_INCREMENT 103
SQL_COLUMN_CASE_SENSITIVE 103
SQL_COLUMN_CATALOG_NAME 103
SQL_COLUMN_COUNT 103
SQL_COLUMN_DISPLAY_SIZE 103
SQL_COLUMN_DISTINCT_TYPE 103
SQL_COLUMN_LABEL 103
SQL_COLUMN_LENGTH 103
SQL_COLUMN_MONEY 103
SQL_COLUMN_NAME 103
SQL_COLUMN_NULLABLE 103
SQL_COLUMN_OWNER_NAME 103
SQL_COLUMN_PRECISION 103
SQL_COLUMN_QUALIFIER_NAME 103
SQL_COLUMN_SCALE 103
SQL_COLUMN_SCHEMA_NAME 103
SQL_COLUMN_SEARCHABLE 104
SQL_COLUMN_TABLE_NAME 104
SQL_COLUMN_TYPE 104
SQL_COLUMN_TYPE_NAME 104
SQL_COLUMN_UNSIGNED 104
SQL_COLUMN_UPDATABLE 104
SQL_CONCURRENCY 315
SQL_CONCURRENT_TRANS 343
SQL_CONNECTTYPE 297, 306, 343
SQL_COORDINATED_TRANS 343
SQL_CURRENT_SCHEMA 297
SQL_CURSOR_HOLD 315, 386
SQL_CURSOR_TYPE 315
SQL_DATA_AT_EXEC 349
SQL_ERROR 36
SQL_MAX_LENGTH 315
SQL_MAX_ROWS 315, 386
SQL_MAXCONN 297, 306
SQL_NEED_DATA 36
SQL_NO_DATA_FOUND 36
SQL_NODESCRIBE 315
SQL_NOSCAN 315, 388
SQL_NTS 43
SQL_PARAMOPT_ATOMIC 297
SQL_RETRIEVE_DATA 315
SQL_ROWSET_SIZE 315, 353
SQL_STMTTXN_ISOLATION 315, 386
SQL_SUCCESS 36
SQL_SUCCESS_WITH_INFO 36
SQL_TXN_ISOLATION 297, 315, 385
SQLAllocConnect, function

description 76
SQLAllocEnv, function

description 80

 Index 501

SQLAllocStmt, function
description 82
overview 29

SQLBindCol, function
description 84
overview 29, 32

SQLBindParameter, function
description 89
overview 32

SQLCancel, function
description 100
use in data-at-execute 350

SQLColAttributes, function
description 102
overview 29, 32

SQLColumnPrivileges, function
description 108

SQLColumns, function
description 113

SQLConnect, function
description 118

SQLDataSources, function
description 124
overview 29

SQLDescribeCol, function
description 127
overview 29, 32

SQLDescribeParam, function
description 132

SQLDisconnect, function
description 134

SQLDriverConnect, function
description 136

SQLDriverConnect() 342
SQLError, function

description 142
SQLERROR, package bind option 52
SQLExecDirect, function

description 148
overview 29

SQLExecute, function
description 153
overview 29

SQLExtendedFetch, function
description 156

SQLFetch, function
description 163
overview 29, 32

SQLForeignKeys, function
description 168

SQLFreeConnect, function
description 177

SQLFreeEnv, function
description 179

SQLFreeStmt, function
description 181

SQLFreeStmt, function (continued)
overview 29

SQLGetConnectOption, function
description 184

SQLGetCursorName, function
description 186

SQLGetData, function
description 192
overview 29, 32

SQLGetEnvAttr, function
description 205

SQLGetFunctions, function
description 207

SQLGetInfo, function
description 212

SQLGetSQLCA, function
description 228

SQLGetStmtOption, function
description 235

SQLGetTypeInfo, function
description 237

SQLMoreResults, function
description 245
use of 351

SQLNativeSql, function
description 249

SQLNumParams, function
description 252

SQLNumResultCols, function
description 254
overview 29, 32

SQLParamData, function
description 256
use in data-at-execute 349

SQLParamOptions, function
description 258

SQLPrepare, function
description 260
overview 29

SQLPrimaryKeys, function
description 268

SQLProcedureColumns, function
description 273

SQLProcedures, function
description 282

SQLPutData, function
description 286
use in data-at-execute 349

SQLRowCount, function
description 289
overview 29

SQLSetColAttributes, function
description 291

SQLSetConnection, function
description 295

502 Call Level Interface Guide and Reference

SQLSetConnectOption, function
description 297

SQLSetCursorName, function
description 303

SQLSetEnvAttr, function
description 306

SQLSetParam, function
description 309
overview 29, 32

SQLSetStmtOption, function
description 314

SQLSpecialColumns, function
description 319

SQLSTATE
description 36
format of 36
function cross reference 401
in CLI 18

SQLStatistics, function
description 325

SQLTablePrivileges, function
description 330

SQLTables, function
description 334

SQLTransact, function
description 338
overview 29, 32, 33

statement attributes (options)
description 341
setting 385

statement handle 17
allocating 29
Free, function 181
freeing 35
maximum number of 29

statement handle functions
AllocStmt 82

Statistics, function 325
stored procedures

binding 53
catalog table

registering 357
example 435
ODBC escape clause 371
returning result sets 358
tracing 379
using with DB2 CLI 356

string
arguments 43, 45
null-termination 43
truncation 44

SUBSTRING scalar function 398
subsystem, defining 59
syntax diagrams, how to read 2
SYSSCHEMA keyword 67

system catalogs, querying 346

T
Table, function 334
TablePrivileges, function 330
TABLETYPE keyword 68
termination task 23
threads

multiple 360
THREADSAFE keyword

description 69
TIME

conversion to C 422
display size 415
length 414
precision 412
scale 413

TIMESTAMP
conversion to C 423
display size 415
length 414
precision 412
scale 413

trace
application 373
DB2 CLI diagnosis 375
keywords, using 375, 389
stored procedure 379

TRACE keyword
description 69
use of 375, 389

TRACE_BUFFER_SIZE keyword 69
TRACE_NO_WRAP keyword 69
TRACEFILENAME keyword 69
Transact, function 338
transaction

isolation levels, ODBC 395
management 33
processing 23

truncation 44
TXNISOLATION keyword 70

U
UNDERSCORE keyword 70
USER scalar function 399

V
VALUES 31
VARBINARY

conversion to C 420
VARCHAR

conversion to C 417
display size 415

 Index 503

VARCHAR (continued)
length 414
precision 412
scale 413

VARGRAPHIC
conversion to C 418

vendor escape clauses 369

W
writing DB2 CLI applications 23

X
X/Open CAE 36
X/Open Company 15
X/Open SQL CLI 15

504 Call Level Interface Guide and Reference

We'd Like to Hear from You

DB2 for OS/390
Version 5
Call Level Interface Guide and Reference

Publication No. SC26-8959-03

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773 or (408) 463-4393.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIBMXFC @ IBMMAIL
 – IBMLink: DB2PUBS @ STLVM27
 – Internet: DB2PUBS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number or your name and electronic address if

you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

DB2 for OS/390
Version 5
Call Level Interface Guide and Reference

Publication No. SC26-8959-03

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-8959-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-8959-03

IBM

Program Number: 5655-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-8959-=3

	Contents
	Notices
	Programming Interface Information
	Trademarks

	Chapter 1. Introduction to this Book and the DB2 Library
	About This Book
	Who Should Use This Book
	How this Book is Structured
	How to Read the Syntax Diagrams
	How to Use the DB2 Library
	How to Obtain DB2 Information
	DB2 on the Web
	DB2 Publications
	How to Order the DB2 Library

	Summary of Changes to DB2 for OS/390 Version 5
	Server Solution
	Net.Data for OS/390
	DB2 Installer
	DB2 Estimator for Windows
	DB2 Visual Explain
	Workstation-based Performance Analysis and Tuning
	DATABASE 2 Performance Monitor (DB2 PM)

	Performance
	Sysplex Query Parallelism
	Prepared Statement Caching
	Reoptimization
	Faster Transactions and Batch
	Faster Utilities
	Other Performance Enhancements

	Increased Capacity
	Improved Availability
	Online REORG
	Data Sharing Enhancements
	Tracker site for disaster recovery

	Client/Server and Open Systems
	Native TCP/IP Network Support
	Stored Procedures
	Dynamic Query and Network Performance
	Improved Application Portability
	Improved Security

	User Productivity
	Improved SQL Compatibility
	New Access Choice
	Image Copy Enhancements
	Improved Integration of C++ and IBM COBOL for MVS & VM Support
	Other Usability Enhancements

	Summary of Changes to This Book

	Chapter 2. Introduction to CLI
	DB2 CLI Background Information
	Differences Between DB2 CLI and ODBC Version 2.0.
	ODBC Features Supported

	Differences Between DB2 CLI and Embedded SQL
	Advantages of Using DB2 CLI
	Deciding Which Interface To Use
	Static and Dynamic SQL
	Use Both Interfaces
	Write a Mixed Application

	Other Information Sources

	Chapter 3. Writing a DB2 CLI Application
	Initialization and Termination
	Handles
	ODBC Connection Model
	DB2 CLI Restrictions on the ODBC Connection Model

	CONNECT Type 1 and Type 2
	Specifying the Connect Type

	Connecting to One or More Data Sources
	Initialization and Connection Example

	Transaction Processing
	Allocating Statement Handles
	Preparation and Execution
	Binding Parameters in SQL Statements

	Processing Results
	Processing Query (SELECT, VALUES) Statements
	Processing UPDATE, DELETE and INSERT Statements
	Processing Other Statements

	Commit or Rollback
	When to Call SQLTransact()
	Effects of Calling SQLTransact()

	Freeing Statement Handles

	Diagnostics
	Function Return Codes
	SQLSTATEs
	SQLCA

	Data Types and Data Conversion
	C and SQL Data Types
	Other C Data Types
	Data Conversion

	Working With String Arguments
	Length of String Arguments
	Null-Termination of Strings
	String Truncation
	Interpretation of Strings

	Querying Environment and Data Source Information
	Querying Environment Information Example

	Chapter 4. Configuring CLI and Running Sample Applications
	Installing DB2 CLI
	Step 1: Copy and Edit the SMP/E Jobs
	Step 2: Run the Allocate Job: DSNTCJAE
	Step 3: Run the Receive Job: DSNTCJRC
	Step 4: Run the Apply Job: DSNTCJAP
	Step 5: Run the Accept Job: DSNTCJAC

	DB2 CLI Runtime Environment
	Connectivity Requirements

	Setting up DB2 CLI Runtime Environment
	Bind DBRMs to Packages
	Package Bind Options

	Bind Packages at Remote Sites
	Bind Stored Procedures
	Bind an Application Plan
	PLAN Bind Options

	Setting up OS/390 OpenEdition Environment

	Preparing a DB2 CLI Application
	DB2 CLI Application Requirements
	Special Considerations for OS/390 OpenEdition

	Application Execution
	Step 1. Compile the Application
	Step 2. Prelink and Linkedit the Application
	Step 3. Execute the Application
	Defining a Subsystem

	DB2 CLI Initialization File
	Using the Initialization File
	Initialization File Structure

	Initialization Keywords

	Chapter 5. Functions
	DB2 CLI Function Summary
	SQLAllocConnect - Allocate Connection Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLAllocEnv - Allocate Environment Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLAllocStmt - Allocate a Statement Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLBindCol - Bind a Column to an Application Variable
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLBindParameter - Binds A Parameter Marker to a Buffer
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLCancel - Cancel Statement
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLColAttributes - Get Column Attributes
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLColumnPrivileges - Get Privileges Associated With The Columns of A Table
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLColumns - Get Column Information for a Table
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLConnect - Connect to a Data Source
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLDataSources - Get List of Data Sources
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLDescribeCol - Describe Column Attributes
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLDescribeParam - Describe parameter marker
	Purpose
	Syntax
	Function arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	References

	SQLDisconnect - Disconnect from a Data Source
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLDriverConnect - (Expanded) Connect to a Data Source
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLError - Retrieve Error Information
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLExecDirect - Execute a Statement Directly
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLExecute - Execute a Statement
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLFetch - Fetch Next Row
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLForeignKeys - Get the List of Foreign Key Columns
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLFreeConnect - Free Connection Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLFreeEnv - Free Environment Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLFreeStmt - Free (or Reset) a Statement Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetConnectOption - Returns Current Setting of A Connect Option
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetCursorName - Get Cursor Name
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetData - Get Data From a Column
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetEnvAttr - Returns Current Setting of An Environment Attribute
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetFunctions - Get Functions
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetInfo - Get General Information
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetSQLCA - Get SQLCA Data Structure
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetStmtOption - Returns Current Setting of A Statement Option
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLGetTypeInfo - Get Data Type Information
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLMoreResults - Determine If There Are More Result Sets
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLNativeSql - Get Native SQL Text
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLNumParams - Get Number of Parameters in A SQL Statement
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLNumResultCols - Get Number of Result Columns
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLParamData - Get Next Parameter For Which A Data Value Is Needed
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLParamOptions - Specify an Input Array for a Parameter
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLPrepare - Prepare a Statement
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLPrimaryKeys - Get Primary Key Columns of A Table
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLProcedureColumns - Get Input/Output Parameter Information for A Procedure
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLProcedures - Get List of Procedure Names
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLPutData - Passing Data Value for A Parameter
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLRowCount - Get Row Count
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetColAttributes - Set Column Attributes
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetConnection - Set Connection Handle
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetConnectOption - Set Connection Option
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetCursorName - Set Cursor Name
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetEnvAttr - Set Environment Attribute
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetParam - Binds A Parameter Marker to a Buffer
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSetStmtOption - Set Statement Option
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLSpecialColumns - Get Special (Row Identifier) Columns
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLStatistics - Get Index and Statistics Information For A Base Table
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLTablePrivileges - Get Privileges Associated With A Table
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLTables - Get Table Information
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	SQLTransact - Transaction Management
	Purpose
	Syntax
	Function Arguments
	Usage
	Return Codes
	Diagnostics
	Restrictions
	Example
	References

	Chapter 6. Using Advanced Features
	Environment, Connection, and Statement Options
	Distributed Unit of Work (Coordinated Distributed Transactions)
	Options that Govern Distributed Unit of Work Semantics
	Establishing a Coordinated Transaction Connection
	Distributed Unit of Work Example

	Querying System Catalog Information
	Input Arguments on Catalog Functions
	Catalog Functions Example

	Sending/Retrieving Long Data in Pieces
	Specifying Parameter Values at Execute Time
	Fetching Data in Pieces
	Input and Retrieval Example

	Using Arrays to Input Parameter Values
	Array Input Example

	Retrieving A Result Set Into An Array
	Returning Array Data for Column-Wise Bound Data
	Returning Array Data for Row-Wise Bound Data
	Column-Wise, Row-Wise Binding Example

	Using Stored Procedures
	Advantages of Using Stored Procedures
	Catalog Table for Stored Procedures
	Calling Stored Procedures from a DB2 CLI Application
	Writing a DB2 CLI Stored Procedure
	Returning Result Sets From Stored Procedures
	Programming Stored Procedures to Return Result Sets
	Restrictions on Stored Procedures Returning Result Sets
	Programming DB2 CLI Client Applications to Receive Result Sets
	Stored Procedure Example with Query Result Set

	Writing Multithreaded Applications
	DB2 CLI Support of Multiple LE Threads
	When to Use Multiple LE Threads
	DB2 CLI Support of Multiple Contexts
	Multiple Contexts, One LE Thread
	Multiple Contexts, Multiple LE Threads

	Application Deadlocks

	Mixing Embedded SQL and DB2 CLI
	Mixed Embedded SQL and DB2 CLI Example

	Using Vendor Escape Clauses
	Escape Clause Syntax
	Using ODBC Defined SQL Extensions
	ODBC Date, Time, Timestamp Data
	ODBC Outer Join Syntax
	LIKE Predicate Escape Clauses
	Stored Procedure Call Syntax
	ODBC Scalar Functions

	Chapter 7. Problem Diagnosis
	Tracing
	Application Trace
	Specifying the Trace File Name
	Application Trace Output

	Diagnostic Trace
	Specifying the Diagnostic Trace File
	Using the Diagnostic Trace Command: DSNAOTRC

	Stored Procedure Trace
	Tracing a Client Application
	Tracing a Stored Procedure
	Tracing both a Client Application and a Stored Procedure

	Debugging
	Abnormal Termination
	Internal Error Code

	Appendix A. Programming Hints and Tips
	Avoiding Common Initialization File Problems
	Setting Common Connection Options
	SQL_AUTOCOMMIT
	SQL_TXN_ISOLATION

	Setting Common Statement Options
	SQL_MAX_ROWS
	SQL_CURSOR_HOLD
	SQL_STMTTXN_ISOLATION

	Using SQLSetColAttributes() to Reduce Network Flow
	Comparing Binding and SQLGetData
	Increasing Transfer Efficiency
	Limiting Use of Catalog Functions
	Using Column Names of Function Generated Result Sets
	Making use of Dynamic SQL Statement Caching
	Optimizing Insertion and Retrieval of Data
	Using SQLDriverConnect Instead of SQLConnect
	Turning Off Statement Scanning
	Problem Solving and Debugging
	Use of Trace Keywords
	TRACE
	CLITRACE

	Abnormal Termination

	Appendix B. DB2 CLI and ODBC
	ODBC APIs and Data Types
	ODBC Function List
	Isolation Levels

	Appendix C. Extended Scalar Functions
	String Functions
	Date and Time Functions
	System Functions

	Appendix D. Appendix D. SQLSTATE Cross Reference
	Appendix E. Data Conversion
	Data Type Attributes
	Precision
	Scale
	Length
	Display Size

	Converting Data from SQL to C Data Types
	Converting Character SQL Data to C Data
	Converting Graphic SQL Data to C Data
	Converting Numeric SQL Data to C Data
	Converting Binary SQL Data to C Data
	Converting Date SQL Data to C Data
	Converting Time SQL Data to C Data
	Converting Timestamp SQL Data to C Data
	SQL to C Data Conversion Examples

	Converting Data from C to SQL Data Types
	Converting Character C Data to SQL Data
	Converting Numeric C Data to SQL Data
	Converting Binary C Data to SQL Data
	Converting DBCHAR C Data to SQL Data
	Converting Date C Data to SQL Data
	Converting Time C Data to SQL Data
	Converting Timestamp C Data to SQL Data
	C to SQL Data Conversion Examples

	Appendix F. Example Code
	DB2 CLI Application
	Stored Procedure

	Glossary
	Bibliography
	Index

