
DB2 for OS/390
Version 5 IBM

Administration Guide

 SC26-8957-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xi.

First Edition (June 1997)

This edition applies to Version 5 of IBM DATABASE 2 Server for OS/390 (DB2 for OS/390), 5655-DB2, and to any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

The technical changes for this edition are summarized under “Summary of Changes to this Book” in the Introduction. Specific
changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption indicates that the figure
has changed. Editorial changes that have no technical significance are not noted.

This softcopy version is based on the printed version of the book, and includes the changes indicated in the printed version by
vertical bars. Additional changes made to this softcopy version of the manual since the hardcopy manual was published are
indicated by the hash (#) symbol in the left-hand margin.

 Copyright International Business Machines Corporation 1982, 1997. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Programming Interface Information . xi
Trademarks . xiii

Section 1. Introduction . 1-1

Chapter 1-1. Introduction to This Book and the DB2 Library 1-3
Who Should Read This Book . 1-3
How This Book Is Organized . 1-3
How to Read the Syntax Diagrams . 1-4
How to Use the DB2 Library . 1-5
How to Obtain DB2 Information . 1-7
DB2 Classes . 1-8

| Summary of Changes to DB2 for OS/390 Version 5 1-12
| Summary of Changes to This Book . 1-19

Chapter 1-2. System Planning Concepts . 1-21
The Relational Database . 1-21
Structured Query Language (SQL) . 1-22
The Structure of DB2 . 1-22
Control and Maintenance of DB2 . 1-33
DB2 and the MVS Environment . 1-36
Data Sharing . 1-45

Section 2. Designing a Database . 2-1

Chapter 2-1. Designing a Database . 2-5
Using the Design Chapters . 2-5
Terminology . 2-6
Logical Design . 2-7
DB2 Structures . 2-7
Physical Design . 2-8
Plan for Maintaining Data Integrity . 2-8
Plan for Distributed Data . 2-9
Plan for Data Security . 2-10

Chapter 2-2. Designing Tables and Views 2-11
Decide What Data to Record in the Relational Database 2-11
Define Tables for Each Type of Relationship 2-12
Normalize Your Tables to Avoid Redundancy 2-13
Consider Denormalizing Your Tables for Performance 2-16
Consider Creating Views of Your Tables . 2-17

Chapter 2-3. Maintaining Data Integrity . 2-19
Maintaining Referential Integrity . 2-19
Defining Table Check Constraints . 2-36

Chapter 2-4. Designing Columns . 2-39
Choosing Columns . 2-39

 Copyright IBM Corp. 1982, 1997 iii

Provide Column Definitions for All Tables . 2-40
Column Specifications . 2-41

Chapter 2-5. Designing Indexes . 2-51
Index Types and Recommendations . 2-51
Leaf Pages, Root Page, and Subpages . 2-53
Index Keys . 2-54
Designing Index Spaces . 2-57

Chapter 2-6. Designing Table Spaces . 2-59
Deciding What Type of Table Space and How Many 2-59
Compressing Data in a Table Space or Partition 2-63

Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets . 2-67
Managing Your DB2 Data Sets with DFSMShsm 2-67
Managing Your Own DB2 Data Sets . 2-68

Chapter 2-8. Designing a Database in a Distributed Environment 2-73
Ways to Access Distributed Data . 2-73
Implications for Application Programming . 2-75
Implications for System Operations . 2-76
Stored Procedures . 2-76

Chapter 2-9. Implementing Your Design . 2-79
Choosing Names for DB2 Objects . 2-79
Implementing Your Storage Groups . 2-82
Implementing Your Databases . 2-85
Implementing Your Table Spaces . 2-86
Implementing Your Tables . 2-92
Implementing Your Indexes . 2-99
Implementing Referential Constraints . 2-104
Implementing Your Views . 2-105
Creating Schemas . 2-109

Chapter 2-10. Loading Data into DB2 Tables 2-113
Loading Methods . 2-113
Loading Tables with the LOAD Utility . 2-113
Replacing Data . 2-114
Loading Data Using the SQL INSERT Statement 2-115
Loading Data from DL/I . 2-116

Chapter 2-11. Using the Catalog in Database Design 2-117
Retrieving Catalog Information about DB2 Storage Groups 2-117
Retrieving Catalog Information about a Table 2-117
Retrieving Catalog Information about Aliases 2-118
Retrieving Catalog Information about Columns 2-118
Retrieving Catalog Information about Indexes 2-119
Retrieving Catalog Information about Views . 2-119
Retrieving Catalog Information about Authorizations 2-119
Retrieving Catalog Information about Primary Keys 2-120
Retrieving Catalog Information about Foreign Keys 2-120
Retrieving Catalog Information about Check Pending 2-121
Retrieving Catalog Information about Table Check Constraints 2-121
Adding and Retrieving Comments . 2-121

iv Administration Guide

Verifying the Accuracy of the Database Definition 2-122

Chapter 2-12. Altering Your Database Design 2-123
Using the ALTER Statement . 2-123
Dropping and Re-creating DB2 Objects . 2-123
Altering DB2 Storage Groups . 2-124
Altering DB2 Databases . 2-125
Altering Table Spaces . 2-125
Dropping, Re-creating, or Converting a Table Space 2-127
Altering Tables . 2-128
Altering Indexes . 2-137
Altering Views . 2-138
Changing Data Set Passwords . 2-139
Changing the High-Level Qualifier for DB2 Data Sets 2-139
Moving DB2 Data . 2-147

Section 3. Security and Auditing . 3-1

Chapter 3-1. Introduction to Security and Auditing in DB2 3-5
Security Planning . 3-5
Auditing . 3-7
Controlling Data Access . 3-7

Chapter 3-2. Controlling Access to DB2 Objects 3-13
Explicit Privileges and Authorities . 3-14
Implicit Privileges of Ownership . 3-23
Privileges Exercised through a Plan or a Package 3-25
Which IDs Can Exercise Which Privileges . 3-31
Some Role Models . 3-35
Examples of Granting and Revoking Privileges 3-36
Finding Catalog Information about Privileges 3-45

Chapter 3-3. Controlling Access Through a Closed Application 3-49
Controlling Data Definition . 3-50
Managing the Registration Tables and Their Indexes 3-57

Chapter 3-4. Controlling Access to a DB2 Subsystem 3-63
Controlling Local Requests . 3-64
Processing Connections . 3-64
Processing Sign-ons . 3-68
Controlling Requests from Remote Applications 3-71
Planning to Send Remote Requests . 3-84
Establishing RACF Protection for DB2 . 3-93

| Establishing DCE Security for DB2 . 3-106
Other Methods of Controlling Access . 3-111

Chapter 3-5. Protecting Data Sets . 3-113
Controlling Data Sets through RACF . 3-113
Protecting Data Sets by Passwords . 3-116

Chapter 3-6. Auditing Concerns . 3-119
How Can I Tell Who Has Accessed the Data? 3-119
Other Sources of Audit Information . 3-125

 Contents v

What Security Measures Are in Force? . 3-126
What Helps Ensure Data Accuracy and Consistency? 3-126
How Can I Tell That Data is Consistent? . 3-129
How Can DB2 Recover Data After Failures? 3-131
How Can I Protect the Software? . 3-132
How Can I Ensure Efficient Usage of Resources? 3-132

Chapter 3-7. A Sample Security Plan for Employee Data 3-135
Managers' Access . 3-136
Payroll Operations . 3-139
Others Who Have Access . 3-141

Section 4. Operation and Recovery . 4-1

Chapter 4-1. Basic Operation . 4-7
Entering Commands . 4-8
Starting and Stopping DB2 . 4-13
Submitting Work to Be Processed . 4-16
Receiving Messages . 4-21

Chapter 4-2. Monitoring and Controlling DB2 and Its Connections . . . 4-23
Controlling DB2 Databases and Buffer Pools 4-23
Controlling DB2 Utilities . 4-33
Controlling the IRLM . 4-34
Monitoring Threads . 4-37
Controlling TSO Connections . 4-38
Controlling CICS Connections . 4-41
Controlling IMS Connections . 4-49

| Controlling OS/390 RRS Connections . 4-58
Controlling Connections to Remote Systems 4-61
Controlling Traces . 4-78
Controlling the Resource Limit Facility (Governor) 4-81

Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-83
How Database Changes Are Made . 4-83
Establishing the Logging Environment . 4-84
Managing the Bootstrap Data Set (BSDS) . 4-92
Discarding Archive Log Records . 4-94

Chapter 4-4. Restarting DB2 After Termination 4-99
Termination . 4-99
Normal Restart and Recovery . 4-101
Deferring Restart Processing . 4-105
Restarting with Conditions . 4-107

Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-109
Consistency with Other Systems . 4-109
Resolving Indoubt Units of Recovery . 4-113
Consistency Across More than Two Systems 4-119

Chapter 4-6. Backing Up and Recovering Databases 4-123
Planning for Backup and Recovery . 4-123
Copying Table Spaces and Data Sets . 4-139

vi Administration Guide

Recovering Table Spaces and Data Sets . 4-141
Recovering the Catalog and Directory . 4-143
Recovering Data to a Prior Point of Consistency 4-144
Recovery of Dropped Objects . 4-149
Discarding SYSCOPY and SYSLGRNX Records 4-154

Chapter 4-7. Recovery Scenarios . 4-155
IRLM Failure . 4-155
MVS or Power Failure . 4-156
DASD Failure . 4-156
Application Program Error . 4-158
IMS-Related Failures . 4-160
CICS-Related Failures . 4-164
Subsystem Termination . 4-169
DB2 System Resource Failures . 4-171
DB2 Database Failures . 4-182
Recovery from Down-Level Page Sets . 4-183
Table Space Input/Output Errors . 4-184
DB2 Catalog or Directory Input/Output Errors 4-185
Integrated Catalog Facility Catalog VSAM Volume Data Set Failures 4-187
Violations of Referential Constraints . 4-192
Failures Related to the Distributed Data Facility 4-192
Remote Site Recovery from Disaster at a Local Site 4-197

| Using a Tracker Site for Disaster Recovery . 4-205
Resolving Indoubt Threads . 4-211

Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-221
Failure during Log Initialization or Current Status Rebuild 4-223
Failure during Forward Log Recovery . 4-233
Failure during Backward Log Recovery . 4-238
Failure during a Log RBA Read Request . 4-241
Unresolvable BSDS or Log Data Set Problem during Restart 4-242
Failure Resulting from Total or Excessive Loss of Log Data 4-244
Resolving Inconsistencies Resulting from Conditional Restart 4-248

Section 5. Performance Monitoring and Tuning . 5-1

Chapter 5-1. Planning Your Performance Strategy 5-7
Further Topics in Monitoring and Tuning . 5-7
Managing Performance in General . 5-8
Establishing Performance Objectives . 5-9
Planning for Monitoring . 5-13
Reviewing Performance Data . 5-15
Tuning DB2 . 5-17

| Enhancements in DB2 Version 5 . 5-17

Chapter 5-2. Analyzing Performance Data 5-25
Investigating the Problem Overall . 5-25
Reading Accounting Reports from DB2 PM . 5-26
A General Approach to Problem Analysis in DB2 5-32

Chapter 5-3. Improving Response Time and Throughput 5-37
Reducing I/O Operations . 5-37

 Contents vii

Reducing the Time Needed to Perform I/O Operations 5-40
Reducing the Amount of Processor Resources Consumed 5-43
How Response Time Is Reported . 5-46

Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-49
Tuning Database Buffer Pools . 5-49
Tuning the EDM Pool . 5-66
Increasing RID Pool Size . 5-69
Controlling Sort Pool Size and Sort Processing 5-70

Chapter 5-5. Improving Resource Utilization 5-73
Controlling Resource Usage . 5-73
Resource Limit Facility (Governor) . 5-76
Managing the Opening and Closing of Data Sets 5-87
Planning the Placement of DB2 Data Sets . 5-91
DB2 Logging . 5-94
Improving DASD Utilization: Space and Device Utilization 5-99
Improving Main Storage Utilization . 5-103
Performance and the Storage Hierarchy . 5-105
MVS Performance Options for DB2 . 5-108

Chapter 5-6. Managing DB2 Threads . 5-115
Setting Thread Limits . 5-115
Allied Thread Allocation . 5-116
Database Access Threads . 5-121
CICS Design Options . 5-128
IMS Design Options . 5-134
TSO Design Options . 5-135
QMF Design Options . 5-136

Chapter 5-7. Improving Concurrency . 5-137
What Is Concurrency? What Are Locks? . 5-138
Effects of DB2 Locks . 5-139
Basic Recommendations to Promote Concurrency 5-141
Aspects of Transaction Locks . 5-144
Tuning Your Use of Locks . 5-161
Controlling Concurrency for Utilities and Commands 5-185
Monitoring DB2 Locking . 5-190
Deadlock Detection Scenarios . 5-197

Chapter 5-8. Tuning Your Queries . 5-203
General Tips and Questions . 5-203
Writing Efficient Predicates . 5-206
Using Host Variables Efficiently . 5-224
Writing Efficient Subqueries . 5-228
Special Techniques to Influence Access Path Selection 5-233

Chapter 5-9. Maintaining Statistics in the Catalog 5-243
Statistics Used for Access Path Selection . 5-243
Using RUNSTATS to Monitor and Update Statistics 5-249
Updating the Catalog . 5-250
Querying the Catalog for Statistics . 5-252
Improving Index and Table Space Access . 5-253
Modeling Your Production System . 5-258

viii Administration Guide

Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-261
Obtaining Information from EXPLAIN . 5-262
First Questions about Data Access . 5-270
Interpreting Access to a Single Table . 5-275
Interpreting Access to Two or More Tables . 5-282
Interpreting Data Prefetch . 5-290
Determining Sort Activity . 5-294
View Processing . 5-296
Parallel Operations and Query Performance 5-299

Chapter 5-11. Monitoring and Tuning in a Distributed Environment . . . 5-315
Remote Access Types . 5-315
Considerations for Tuning Distributed Applications 5-316
How Block Fetch Improves Performance . 5-318
Monitoring DB2 in a Distributed Environment 5-321
Using DB2 PM Accounting Reports to Monitor Distributed Processing 5-325

Using RMF to Monitor Distributed Processing 5-326
Monitoring and Tuning Stored Procedures . 5-327

Appendixes . X-1

Appendix A. DB2 Sample Tables . X-7
Activity Table (DSN8510.ACT) . X-7
Department Table (DSN8510.DEPT) . X-8
Employee Table (DSN8510.EMP) . X-10
Project Table (DSN8510.PROJ) . X-14
Project Activity Table (DSN8510.PROJACT) X-15
Employee to Project Activity Table (DSN8510.EMPPROJACT) X-16
Relationships Among the Tables . X-17

Views on the Sample Tables . X-18
Storage of Sample Application Tables . X-22

Appendix B. Writing Exit Routines . X-25
Connection and Sign-On Routines . X-25

| Access Control Authorization Exit . X-34
Edit Routines . X-44
Validation Routines . X-48
Date and Time Routines . X-51
Conversion Procedures . X-54
Field Procedures . X-57
Log Capture Routines . X-68
Routines for Dynamic Plan Selection in CICS X-71
General Considerations for Writing Exit Routines X-74
Row Formats for Edit and Validation Routines X-77

Appendix C. Reading Log Records . X-81
What the Log Contains . X-81
The Physical Structure of the Log . X-86
Reading Log Records . X-92

Appendix D. Interpreting DB2 Trace Output X-107
Processing Trace Records . X-107
Trace Field Descriptions . X-122

 Contents ix

Appendix E. Programming for the Instrumentation Facility Interface
(IFI) . X-123

What IFI Can Do . X-123

Appendix F. Sharing Read-Only Data . X-153
Overview of Shared Read-Only Data . X-153
Implementing Shared Read-Only Data . X-155
Plan to Set Up and Maintain Data Definitions X-156
Tune GRS for DB2 . X-157
Alter an Existing Database to be Shared . X-157
Create DB2 Objects to be Shared . X-158
Load Data in the Owner . X-163
Starting and Stopping a Shared Database . X-164
Maintaining Shared Read-Only Data . X-167

Appendix G. Using Tools to Monitor Performance X-173
Using MVS, CICS, and IMS Tools . X-175
DB2 Trace . X-177
Recording SMF Trace Data . X-182
Recording GTF Trace Data . X-183
DB2 Performance Monitor (DB2 PM) . X-184
Performance Reporter for MVS . X-184
Monitoring Application Plans and Packages X-185

Glossary and Bibliography . G-1

Glossary . G-3

Bibliography . G-21

Index . I-1

Index . I-3

x Administration Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation
IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This book is intended to help you to plan for and administer IBM DATABASE 2
Server for OS/390 (DB2 for OS/390).

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by IBM DATABASE 2 Server for OS/390.

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390.

 Copyright IBM Corp. 1982, 1997 xi

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-use Programming Interface

General-use Programming Interface and Associated Guidance Information ...

End of General-use Programming Interface

Product-sensitive Programming Interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
this IBM software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

xii Administration Guide

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States
and/or other countries:

Throughout the library, the DB2 licensed program and a particular DB2 subsystem
are each referred to as “DB2.” In each case, the context makes the meaning clear.
The term MVS is used to represent the MVS/Enterprise Systems Architecture
(MVS/ESA). CICS is used to represent CICS/MVS and CICS/ESA; IMS is used to
represent IMS/ESA; C and C language are used to represent the C/370
programming language. COBOL is used to represent OS/VS COBOL, VS COBOL
II, COBOL/370, and IBM COBOL for MVS & VM programming languages.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AD/Cycle
AIX
APL2
BookManager
C/370
CICS
CICS/ESA
CICS/MVS
COBOL/370
DATABASE 2
DataHub
DataRefresher
DB2
DFSMS
DFSMS/MVS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSORT
Distributed Relational
 Database Architecture
DProp
DRDA
DXT
Enterprise System/9000
ES/9000

Hiperspace
IBM
IMS/ESA
Language Environment
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
NetView
OS/2
OS/390
Parallel Sysplex
QMF
RACF
RAMAC
Resource Measurement Facility
RETAIN
RMF
SAA
Systems Application Architecture
System/370
System/390
SQL/DS
VM/XA
VTAM

 Notices xiii

xiv Administration Guide

 Section 1. Introduction

Chapter 1-1. Introduction to This Book and the DB2 Library 1-3
Who Should Read This Book . 1-3
How This Book Is Organized . 1-3
How to Read the Syntax Diagrams . 1-4
How to Use the DB2 Library . 1-5
How to Obtain DB2 Information . 1-7

DB2 on the Web . 1-7
DB2 Publications . 1-7
How to Order the DB2 Library . 1-8

DB2 Classes . 1-8
| Summary of Changes to DB2 for OS/390 Version 5 1-12
| Server Solution . 1-12
| Performance . 1-14
| Increased Capacity . 1-15
| Improved Availability . 1-15
| Client/Server and Open Systems . 1-16
| User Productivity . 1-18
| Summary of Changes to This Book . 1-19

Chapter 1-2. System Planning Concepts . 1-21
The Relational Database . 1-21
Structured Query Language (SQL) . 1-22
The Structure of DB2 . 1-22

Data Structures . 1-23
System Structures . 1-28

Control and Maintenance of DB2 . 1-33
Commands . 1-33
Utility Jobs . 1-34
High Availability . 1-34

DB2 and the MVS Environment . 1-36
Address Spaces . 1-36
DB2 and MVS . 1-37
DB2 and RACF . 1-38
DB2 and SMS . 1-38
DB2 and TSO Attachment Facility . 1-38
DB2 and ISPF . 1-39
Call Attachment Facility . 1-40
DB2 and CICS . 1-40
DB2 and IMS . 1-42
DB2 and DL/I Batch . 1-44
DB2 and DDF . 1-44

Data Sharing . 1-45

 Copyright IBM Corp. 1982, 1997 1-1

1-2 Administration Guide

Chapter 1-1. Introduction to This Book and the DB2 Library

This chapter contains specific information about this book and a general overview
of the DB2 library.

Who Should Read This Book
This book is primarily intended for system and database administrators. It assumes
that the user is familiar with:

� The basic concepts and facilities of DB2

� The MVS Time Sharing Option (TSO) and the MVS Interactive System
Productivity Facility (ISPF)

� The basic concepts of Structured Query Language (SQL)

� The basic concepts of Customer Information Control System (CICS)

� The basic concepts of Information Management System (IMS)

� How to define and allocate MVS data sets using MVS job control language
(JCL).

Certain tasks require additional skills, such as knowledge of Virtual
Telecommunications Access Method (VTAM) to set up communication between
DB2 subsystems, or knowledge of the IBM System Modification Program (SMP/E)
to install IBM licensed programs.

How This Book Is Organized
This book consists of two volumes with a total of five sections and seven
appendixes. Each volume contains a complete index.

Volume 1:

� Section 1. Introduction This section introduces the DB2 system and explains
the concepts that relate to system and database administration.

� Section 2. Designing a Database

This section describes the logical steps of database design and how to
implement that design. It also shows you how to define referential constraints,
load data into DB2 tables, and alter your database design.

� Section 3. Security and Auditing

This section describes anything involved with the control of access to the DB2
subsystem, its data, or its resources. It also answers the question: How can I
tell who has actually accessed the data?

� Section 4. Operation and Recovery

This section covers starting and stopping DB2, entering commands, submitting
work to be processed, and receiving messages. It also provides information on
termination and restart, backing up and recovering databases, and recovery
scenarios.

 Copyright IBM Corp. 1982, 1997 1-3

Volume 2:

� Section 5. Performance Monitoring and Tuning This section describes how to
monitor the performance of your DB2 subsystem, and covers methods of
improving DB2's speed and efficiency.

� Appendix A. DB2 Sample Tables

� Appendix B. Writing Exit Routines

� Appendix C. Reading Log Records

� Appendix D. Interpreting DB2 Trace Output

� Appendix E. Programming for the Instrumentation Facility Interface

� Appendix F. Sharing Read-Only Data

� Appendix G. Using Tools to Monitor Performance

How to Read the Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The 55─── symbol indicates the beginning of a statement.

The ───5 symbol indicates that the statement syntax is continued on the next
line.

The 5─── symbol indicates that a statement is continued from the previous line.

The ───5% symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the 5───
symbol and end with the ───5 symbol.

� Required items appear on the horizontal line (the main path).

55──required_item──5%

� Optional items appear below the main path.

55─ ─required_item─ ──┬ ┬─────────────── ────────────────────────────────5%
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─
55─ ─required_item─ ──┴ ┴─────────────── ────────────────────────────────5%

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55─ ─required_item─ ──┬ ┬─required_choice1─ ─────────────────────────────5%
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

1-4 Administration Guide

55─ ─required_item─ ──┬ ┬────────────────── ─────────────────────────────5%
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

 ┌ ┐─default_choice──
55─ ─required_item─ ──┼ ┼───────────────── ──────────────────────────────5%
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left, above the main line, indicates an item that can
be repeated.

 ┌ ┐───────────────────
55─ ─required_item─ ───

6
┴─repeatable_item─ ──────────────────────────────5%

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

 ┌ ┐─,───────────────
55─ ─required_item─ ───

6
┴─repeatable_item─ ──────────────────────────────5%

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� Keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
column-name). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How to Use the DB2 Library
Titles of books in the library begin with DB2 for OS/390 Version 5. However,
references from one book in the library to another are shortened and do not include
the product name, version, and release. Instead, they point directly to the section
that holds the information. For a complete list of books in the library, and the
sections in each book, see the bibliography at the back of this book.

Throughout the library, the DB2 for OS/390 licensed program and a particular DB2
for MVS/ESA subsystem are each referred to as “DB2.” In each case, the context
makes the meaning clear.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks associated with DB2 are grouped into the following major categories
(but supplemental information relating to all of the below tasks for new releases of
DB2 can be found in Release Guide):

Installation: If you are involved with DB2 only to install the system, Installation
Guide might be all you need.

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-5

If you will be using data sharing then you also need Data Sharing: Planning and
Administration, which describes installation considerations for data sharing.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in Application Programming and
SQL Guide and SQL Reference.

End users can also issue SQL statements through the Query Management Facility
(QMF) or some other program, and the library for that program might provide all the
instruction or reference material they need. For a list of some of the titles in the
QMF library, see the bibliography at the end of this book.

Application Programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need Application Programming
and SQL Guide, SQL Reference, and Call Level Interface Guide and Reference just
as end users do.

Application programmers also need instructions on many other topics:

� How to transfer data between DB2 and a host program—written in COBOL, C,
or FORTRAN, for example

� How to prepare to compile a program that embeds SQL statements

� How to process data from two systems simultaneously, say DB2 and IMS or
DB2 and CICS

� How to write distributed applications across platforms

| � How to write applications that use DB2 Call Level Interface to access DB2
| servers

| � How to write applications that use Open Database Connectivity (ODBC) to
| access DB2 servers

| � How to write applications in the Java programming language to access DB2
| servers

The material needed for writing a host program containing SQL is in Application
Programming and SQL Guide and Application Programming Guide and Reference

| for Java. The material needed for writing applications that use DB2 Call Level
| Interface or ODBC to access DB2 servers is in Call Level Interface Guide and
| Reference.

For handling errors, see Messages and Codes.

Information about writing applications across platforms can be found in Distributed
Relational Database Architecture: Application Programming Guide.

System and Database Administration: Administration covers almost everything
else.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need Administration Guide. If you also want to carry out your own

1-6 Administration Guide

plans by creating DB2 objects, granting privileges, running utility jobs, and so on,
then you also need:

� SQL Reference, which describes the SQL statements you use to create, alter,
and drop objects and grant and revoke privileges

� Utility Guide and Reference, which explains how to run utilities

� Command Reference, which explains how to run commands

If you will be using data sharing, then you need Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
Messages and Codes, which lists messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
Diagnosis Guide and Reference and Messages and Codes.

How to Obtain DB2 Information

DB2 on the Web
Stay current with the latest information about DB2. View the DB2 home page on
the World Wide Web. News items keep you informed about the latest
enhancements to the product. Product announcements, press releases, fact sheets,
and technical articles help you plan your database management strategy. Technical
professionals can access DB2 publications on the Web and follow links to other
Web sites with more information about DB2 family and OS/390 solutions. Access
DB2 on the Web with the following URL:

 http://www.ibm.com/software/db2os390

 DB2 Publications
The DB2 publications are available in both hardcopy and softcopy format. Using
online books on CD-ROM, you can read, search across books, print portions of the
text, and make notes in these BookManager books. With the appropriate
BookManager READ product or IBM Library Readers, you can view these books on
the MVS, VM, OS/2, DOS, AIX and Windows platforms.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 licensed book for no additional charge:

DB2 Server for OS/390 Version 5 Licensed Online Book, LK2T-9075.

You can order multiple copies for an additional charge by specifying feature code
8207.

When you order DB2 Version 5, you are entitled to one copy of the following
CD-ROM, which contains the DB2 and DATABASE 2 Performance Monitor online
books for no additional charge:

DB2 Server for OS/390 Version 5 Online Library, SK2T-9092

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-7

You can order multiple copies for an additional charge through IBM's publication
ordering service.

Periodic updates will be provided on the following collection kit available to
licensees of DB2 Version 5:

IBM Online Library Transaction Processing and Data Collection, SK2T-0730

SK2T-9092 will be superseded by SK2T-0730 when updates to the online library
are available.

In some countries,including the United States and Canada, you receive one copy of
the collection kit at no additional charge when you order DB2 Version 5. You will
automatically receive one copy of the collection kit each time it is updated, for no
additional charge. To order multiple copies of SK2T-0730 for an additional charge,
see “How to Order the DB2 Library.” In other countries, updates will be available in
displayable softcopy format in the IBM Online Book Library Offering (5636–PUB),
SK2T-0730 IBM Online Library Transaction Processing and Data Collection at a
later date.

See your IBM representative for assistance in ordering the collection.

DB2 Server for OS/390 books are also available for an additional charge on the
following collection kits, which contain online books for many IBM products:

IBM Online Library MVS Collection, SK2T-0710, in English

Online Library Omnibus Edition OS/390 Collection, SK2T-6700, in English

IBM Online Library MVS Collection Kit, SK88-8002, in Japanese, for viewing on
DOS and Windows platforms

How to Order the DB2 Library
You can order DB2 publications and CD-ROMs through your IBM representative or
the IBM branch office serving your locality. If you are located within the United
States or Canada, you can place your order by calling one of the toll-free numbers :

� In the U.S., call 1-800-879-2755.
� In Canada, call 1-800-565-1234.

To order additional copies of licensed publications, specify the SOFTWARE option.
To order additional publications or CD-ROMs, specify the PUBLICATIONS & SLSS
option. Be prepared to give your customer number, the product number, and the
feature code(s) or order numbers you want.

 DB2 Classes
IBM Education and Training offers a wide variety of classroom courses to help you
quickly and efficiently gain DB2 expertise. Classes are scheduled in cities all over
the world. For more information, including the current local schedule, please contact
your IBM representative.

Classes can also be taught at your location, at a time that suits your needs.
Courses can even be customized to meet your exact requirements. The diagrams
below show the DB2 curriculum in the United States. Enterprise Systems Training

1-8 Administration Guide

Solutions, GR28-5467 describes these courses. You can inquire about or enroll in
them by calling 1-800-IBM-TEACh (1-800-426-8322).

Figure 1. Application Programmer Curriculum

Figure 2. Application Designer Curriculum

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-9

Figure 3. Database Administrator Curriculum

1-10 Administration Guide

Figure 4. System Administrator Curriculum

Figure 5. System Programmer Curriculum

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-11

Figure 6. Migration Curriculum

| Summary of Changes to DB2 for OS/390 Version 5
| DB2 for OS/390 Version 5 delivers a database server solution for OS/390. Version
| 5 supports all functions available in DB2 for MVS/ESA Version 4 plus
| enhancements in the areas of performance, capacity, and availability, client/server
| and open systems, and user productivity.

| If you are currently using DB2, you can migrate only from a DB2 for MVS/ESA
| Version 4 subsystem . This summary gives you an overview of the differences to
| be found between these versions.

| Server Solution
| OS/390 retains the classic strengths of the traditional MVS/ESA operating system,
| while offering a network-ready, integrated operational environment.

| The following features work directly with DB2 for OS/390 applications to help you
| use the full potential of your DB2 subsystem:

| � Net.Data for OS/390
| � DB2 Installer
| � DB2 Estimator for Windows
| � DB2 Visual Explain
| � Workstation-based Performance Analysis and Tuning
| � DATABASE 2 Performance Monitor

| Net.Data for OS/390
| Net.Data provides support for Internet access to DB2 data through a Web server.
| Applications built with Net.Data make data stored in any DB2 server more
| accessible and useful. Net.Data Web applications provide continuous application
| availability, scalability, security, and high performance.

| This no charge feature can be ordered with DB2 Version 5 or downloaded from
| Internet. The Net.Data URL is:

http://www.ibm.com/software/data/net.data/downloads.html

1-12 Administration Guide

| DB2 Installer
| DB2 Installer offers the option to install DB2 on an OS/2 workstation. Now, you
| can use a friendly graphical interface to complete installation tasks easily with DB2
| Installer.

| This function is delivered on CD-ROM with DB2 Visual Explain.

| DB2 Estimator for Windows
| DB2 Estimator provides an easy-to-use capacity planning tool. You can estimate
| the sizes of tables and indexes, and the performance of SQL statements, groups of
| SQL statements (transactions), utility runs, and groups of transactions (capacity
| runs). From a simple table sizing to a detailed performance analysis of an entire
| DB2 application, DB2 Estimator saves time and lowers costs. You can investigate
| the impact of new or modified applications on your production system, before you
| implement them.

| This no charge feature can be ordered with DB2 Version 5 or downloaded from the
| Internet. From the internet, use the IBM Software URL:

http://www.ibm.com/software/

| From here, you can access information about DB2 Estimator using the download
| function.

| DB2 Visual Explain
| DB2 Visual Explain lets you tune DB2 SQL statements on an OS/2 workstation.
| You can see DB2 EXPLAIN output in a friendly graphical interface and easily
| access, modify, and analyze applications with DB2 Visual Explain.

| Workstation-based Performance Analysis and Tuning
| The new workstation-based Performance Analysis and Tuning function simplifies
| system administration. You can access statistical data to help you analyze and
| improve system performance. This function works with the optional DB2 PM feature
| to provide full analysis and tuning functionality.

| DATABASE 2 Performance Monitor (DB2 PM)
| DB2 PM lets you monitor, analyze, and optimize the performance of DB2 Version 5
| and its applications. An online monitor, for both host and workstation environments,
| provides an immediate "snap-shot" view of DB2 activities and allows for exception
| processing while the system is operational. The workstation-based online monitor
| can connect directly to the Visual Explain function of the DB2 base product.

| DB2 PM also offers a history facility, a wide variety of customizable reports for
| in-depth performance analysis, and an EXPLAIN function to analyze and optimize
| SQL statements. For more information, see DB2 PM for OS/390 General
| Information .

| This feature can be ordered with DB2 Version 5.

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-13

| Performance

| Sysplex Query Parallelism
| The increased power of Sysplex query parallelism in DB2 for OS/390 Version 5
| allows DB2 to go far beyond DB2 for MVS/ESA Version 4 capabilities; from the
| ability to split and process a single query within a DB2 subsystem to processing
| that same query across many different DB2 subsystems in a data sharing group.

| The advances this release offers in scalable query processing let you process
| queries quickly while accommodating the potential growth of data sharing groups
| and the increasing complexity of queries.

| Prepared Statement Caching
| DB2 reduces the cost of duplicate prepares for the same dynamic SQL statement
| by saving them in a cache. Now, different application processes can share
| prepared statements and they are preserved past the commit point. This
| performance improvement offers the most benefit for:

| � Client/server applications that frequently use dynamic SQL for repeated
| execution of SQL statements

| � Relatively short dynamic SQL statements for which PREPARE cost accounts
| for most of the CPU expended

| Reoptimization
| When host variables, parameter markers, or special registers were used in previous
| releases, DB2 could not always determine the best access path because the values
| for these variables were unknown. Now, you can tell DB2 to reevaluate the access
| path at run time, after these values are known. As a result, queries can be
| processed more efficiently, and response time is improved.

| Faster Transactions and Batch
| � Caching of package authorization improves performance at run time for remote
| packages and applications that use pattern-matching characters in a package
| list.

| � You can define a table space to use selective partition locking , which can
| reduce locking costs for applications that do partition-at-a-time processing. It
| also can reduce locking costs for certain data sharing applications that rely on
| an affinity between members and data partitions.

| � A new standalone utility lets you preformat active logs.

| � With LOAD and REORG, you can preformat data sets up to the high allocated
| RBA, which can make processing for sequential inserts more predictable.

| Faster Utilities
| � LOAD and REORG jobs run faster and more efficiently with enhanced index
| key sorting that reduces CPU and elapsed time, and an inline copy feature that
| lets you make an image copy without a separate copy step.

� New REORG options let you select rows to discard during a REORG and,
optionally, write the discarded records to a file.

� When you run the REBUILD, RECOVER, REORG, or LOAD utility on
DB2-managed indexes or table spaces, a new option lets you logically reset
and reuse the DB2-managed objects.

1-14 Administration Guide

| � RECOVER INDEX and LOAD run faster on large numbers of rows per page.

| � Sampling support for RUNSTATS reduces the processing required to collect
| nonindexed column statistics.

| � BSAM striping improves the I/O capability of DB2 utilities.

| Other Performance Enhancements
| � There are several significant performance enhancements to data sharing,
| including selective partition locking, the MAXROWS option, and several
| optimizations to reduce data sharing overhead.

� DB2 installations that run in the OS/390 Version 2 Release 6 environment can
now have as many as (approximately) 25 000 open DB2 data sets at one time.
The maximum number of open data sets in earlier releases of OS/390 is
10000.

� You can easily alter the length of variable-length character columns using the
new ALTER COLUMN clause of the ALTER TABLE statement.

| � SQL CASE expressions let you eliminate queries with multiple UNIONs and
| improve performance by using only one table scan.

| � You can collect a new statistic on concatenated index keys to improve the
| performance of queries with correlated columns. The statistic lets DB2 estimate
| the number of rows that qualify for the query more accurately, and select
| access paths more efficiently.

| � DB2 scans partitions more efficiently and allows scans during parallel
| processing.

� Query enhancements include the ability to:

– Use indexes for joins on string columns that have different lengths
– Use an index to access predicates with noncorrelated IN subqueries

| � Noncolumn expressions in simple predicates are evaluated at stage 1 and can
| be indexable.

| Increased Capacity
| DB2 for OS/390 Version 5 introduces the concept of a large partitioned table space.
| Defining your table space as large allows a substantial capacity increase: to
| approximately one terabyte of data and up to 254 partitions. In addition to
| accommodating growth potential, large partitioned table spaces make database
| design more flexible, and can improve availability.

| Improved Availability

| Online REORG
| DB2 for OS/390 Version 5 adds a major improvement to availability with Online
| REORG. Now, you can avoid the severe availability problems that occurred while
| offline reorganization of table spaces restricted access to read only during the
| unload phase and no access during reload phase of the REORG utility. Online
| REORG gives you full read and write access to your data through most phases of
| the process with only very brief periods of read only or no access.

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-15

| Data Sharing Enhancements
� Version 5 provides continuous availability with group buffer pool duplexing.
Prior releases of DB2 rely on DASD and the merged recovery logs to recover
group buffer pool (GBP) data that is lost if a coupling facility fails. With group
buffer pool duplexing, DB2 writes changed pages to both a primary GBP and a
secondary GBP. Overlapped writes to the GBPs provide good performance and
eliminate the writes to DASD.

| � Group buffer pool rebuild makes coupling facility maintenance easier and
| improves access to the group buffer pool during connectivity losses.

| � Automatic group buffer pool recovery accelerates GBP recovery time,
| eliminates operator intervention, and makes data available faster when GBPs
| are lost because of coupling facility failures.

| � Improved restart performance for members of a data sharing group reduces the
| impact of retained locks by making data available faster when a group member
| fails.

| � Changes to traces and DISPLAY GROUPBUFFERPOOL output improve
| monitoring.

Tracker site for disaster recovery
You can set up a tracker site that shadows the activity of a primary site, and
eliminate the need to constantly ship image copies.

| Client/Server and Open Systems

| Native TCP/IP Network Support
| DB2's support of TCP/IP networks allows DRDA clients to connect directly to DDF
| and eliminate the gateway machine. In addition, customers can now use
| asynchronous transfer mode (ATM) as the underlying communication protocol for
| both SNA and TCP/IP connections to DB2.

| Stored Procedures
| � Return multiple SQL result sets to local and remote clients in a single network
| operation.

| � Receive calls from applications that use standard interfaces, such as Open
| Database Connectivity** (ODBC) and X/Open** Call Level Interface, to access
| data in DB2 for OS/390.

| � Run in an enhanced environment. DB2 supports multiple stored procedures
| address spaces managed by the MVS Workload Manager (WLM). The WLM
| environment offers efficient program management and allows WLM-managed
| stored procedures to run as subprograms and use RACF security.

| � Use individual MVS dispatching priorities to improve stored procedure
| scheduling.

| � Access data sources outside DB2 with two-phase commit coordination.

| � Use an automatic COMMIT feature on return to the caller that reduces network
| traffic and the length of time locks are held.

� Have the ability to invoke utilities, which means you can now invoke utilities
from an application that uses the SQL CALL statement.

1-16 Administration Guide

� Support IMS Open Database Access (ODBA). Now a DB2 stored procedure
can directly connect to IMS DBCTL and access IMS data.

| Dynamic Query and Network Performance
| Improvements for DRDA Applications

| � Reduced processing costs for block fetch operations

| � DRDA support for OPTIMIZE FOR n ROWS on SELECT

| � Faster dynamic SQL queries and reduced processing costs for VTAM network
| operations

| � Reduced message traffic for dynamic SQL SELECT statements

| Improved Application Portability
| � DB2 for OS/390 Version 5 introduces the DB2 Call Level Interface (CLI) to
| MVS/ESA. Unlike applications that use embedded SQL to access DB2 data,
| applications that choose CLI are not tied to a precompiler, packages, or a plan.

| Workstation and desktop applications use standard interfaces, such as Open
| Database Connectivity (ODBC), to access relational data. Standard interfaces
| need one version of an application to access many data sources. Now, you can
| port UNIX workstation and PC desktop applications to DB2 for OS/390 and
| exploit the CLI (ODBC) capabilities without modification. In addition,
| applications can issue ODBC or CLI calls from within a stored procedure.

� You can now access DB2 for OS/390 databases in your Java applications. You
can use DB2 Connect Java Database Connectivity (JDBC) for your dynamic
SQL applications, or SQLJ for your static SQL applications.

� DB2 adds DRDA support for the DESCRIBE INPUT statement to improve
performance for many ODBC applications.

� Now, you can write multithreaded DB2 CLI applications, and restrictions on
connection switching no longer exist.

| � DB2 now provides ASCII table support for clients and servers across platforms.
| This support reduces the cost of translation between EBCDIC and ASCII
| encoding schemes. ASCII table support also offers an alternative to writing field
| procedures that provide the ASCII sort sequence, which improves performance.

| Improved Security
| � DB2 for OS/390 supports Distributed Computing Environment (DCE) for
| authenticating remote DRDA clients. DCE offers the following benefits:

| – Network security: By providing an encrypted DCE ticket for authentication,
| remote clients do not need to send an MVS password in readable text.

| – Simplified security administration: End users do not need to maintain a
| valid password on MVS to access DB2; instead, they maintain their DCE
| password only.

| � New descriptive error codes help you determine the cause of network security
| errors.

| � You can change end user MVS passwords from DRDA clients.

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-17

| User Productivity

| Improved SQL Compatibility
| DB2 conforms to the ANSI/ISO SQL entry level standard of 1992. Application
| programmers can take advantage of a more complete set of standard SQL to use
| across the DB2 family to write portable applications. New SQL function includes:

| � More check options for view definitions.

| � Foreign keys that reference UNIQUE keys as well as PRIMARY keys.

| � An extension to GRANT that lets the REFERENCES privilege apply to a list of
| columns.

| � A new delete rule, NO ACTION, that you can use to define referential
| constraints for self-referencing tables.

| � SQL CASE expressions provide the capability to create conditional logic
| wherever an expression is allowed.

| � SQL temporary tables allow application programs to easily create and use
| temporary tables that store results of SQL transactions without logging or
| recovery.

| New Access Choice
| A new attachment facility, the Recoverable Resource Manager Services attachment
| facility, improves access in a client/server environment. It coordinates two-phase
| commit processing between DB2 and other participating resource managers in any
| MVS application environment. Other key features include the ability for multiple
| users to run in a single address space, thread reuse, and moving threads between
| MVS tasks.

| Image Copy Enhancements
| The COPY, LOAD, and REORG utilities provide:

| � Features of the COPY utility that help you quickly determine what type of image
| copy to take, when to take it, and let DB2 automatically take it for you.

| � Inline copy in LOAD and REORG that lets you create an image copy while
| improving data availability.

| Improved Integration of C ++ and IBM COBOL for MVS & VM
| Support
| It is easier for application programmers to use object-oriented programming
| techniques in their DB2 applications. DB2 for OS/390 Version 5 adds COBOL and
| C++ languages as options on installation panels, DB2I panels, the DSNH command,
| and DCLGEN.

| Other Usability Enhancements
| � To prevent long running units of work and to help avoid unnecessary work
| during the recovery phase of restart, DB2 issues new warning messages at an
| interval of your choice.

� A new special register for decimal precision provides better granualarity, so that
applications that need different values for decimal precision can run in the
same DB2 subsystem.

1-18 Administration Guide

| � Trace records for IFCID 0022 now include most information in the
| PLAN_TABLE.

| � An increase from 127 to 255 rows on a page improves table space processing
| and eliminates the need for compression.

| � Install SYSOPR can recover objects using the START DATABASE command.

| � A filtering capability for DISPLAY BUFFERPOOL limits statistics information to
| a specified set of page sets.

| � You can enter comments within the SYSIN input stream for DB2 utilities.

| Summary of Changes to This Book
| Section 2 (Volume 1) of Administration Guide: has the following changes:

| � Information about creating temporary tables.

| � The term parent key refers to either a primary key or unique key. Foreign keys
| can reference primary and unique keys.

| � Steps on how to alter a table from EBCDIC and ASCII.

| � The section on “Consider Creating Views of Your Tables” on page 2-17 has
| been added at the end of Chapter 2-2.

| � The section on “Implementing Referential Constraints” on page 2-104 has been
| moved from Chapter 2-3 to Chapter 2-9.

| Section 3 (Volume 1) of Administration Guide: has the following changes:

| � “Chapter 3-2. Controlling Access to DB2 Objects” on page 3-13 includes
| information about caching authorization IDs for packages.

| � “Chapter 3-4. Controlling Access to a DB2 Subsystem” on page 3-63 has
| extensive changes describing the following new and changed functions:

| – Setting up security for TCP/IP connections
| – Configuring the DB2 server for the Distributed Computing Environment
| (DCE) security
| – Using RACF PassTickets
| – Setting up security for stored procedures in WLM-established address
| spaces
| – Options for extended security

| Section 4 (Volume 1) of Administration Guide: has the following changes:

| � Information is added about operation and recovery for applications that use
| Recoverable Resource Manager Services attachment facility (RRSAF).

| � “Monitoring and Controlling Stored Procedures” on page 4-72 is expanded to
| include stored procedures in WLM-established address spaces.

| � “Controlling Connections to Remote Systems” on page 4-61 is expanded to
| include monitoring distributed threads that use TCP/IP.

| Section 5 (Volume 2) of Administration Guide: has the following changes:

| � For a list of performance enhancements in Version 5, see “Enhancements in
| DB2 Version 5” on page 5-17.

 Chapter 1-1. Introduction to This Book and the DB2 Library 1-19

| � Information about how temporary tables use work file space is included in
| “Work File Data Sets” on page 5-93.

| � “MVS Performance Options for DB2” on page 5-108 is revised to include
| information about setting up dispatching priorities for stored procedures address
| spaces. There is also additional information about how I/O priority is
| determined when you are running in goal mode.

| � “Using Workload Manager to Set Performance Objectives” on page 5-124
| includes information about how to set performance objectives for stored
| procedures that run in a WLM-established address space.

| � Information about the LOCKPART clause of CREATE and ALTER
| TABLESPACE is included in “Chapter 5-7. Improving Concurrency” on
| page 5-137. That chapter also includes information about the KEEP UPDATE
| LOCKS clause.

| � “Chapter 5-8. Tuning Your Queries” on page 5-203 contains information about
| collecting statistics on correlated columns and about the new REOPT(VARS)
| bind option.

| � “Chapter 5-9. Maintaining Statistics in the Catalog” on page 5-243 has
| information about when to reorganize table spaces and indexes. Some of this
| information was previously in an appendix.

| � Guidance about how to partition for the best parallel performance has been
| added to “Chapter 5-10. Using EXPLAIN to Improve SQL Performance” on
| page 5-261.

| � “Chapter 5-11. Monitoring and Tuning in a Distributed Environment” on
| page 5-315 is reorganized to put stored procedures information in one place.
| That section also contains information about how to set up application
| environments for WLM-established stored procedures.

| Appendixes (Volume 2) of Administration Guide: has the following change:

| � Some information in “Appendix G. Using Tools to Monitor Performance” on
| page X-173 has been deleted or moved to other places in the library.

1-20 Administration Guide

Chapter 1-2. System Planning Concepts

This chapter introduces the DB2 system and explains the concepts that relate to
system and database administration. It consists of the following sections:

� “The Relational Database” is a broad introduction to DB2.

� “The Structure of DB2” on page 1-22 describes the elements you deal with
when using DB2.

� “Control and Maintenance of DB2” on page 1-33 briefly describes commands
and utility jobs.

� “DB2 and the MVS Environment” on page 1-36 explains how DB2 operates
with certain related IBM products.

| General information about DB2 for OS/390 is available from the DB2 for OS/390
| World Wide Web page:

http://www.software.ibm.com/data/db2/os39ð/

The Relational Database
DB2 is a relational database management system. In a relational database, data is
perceived to exist in one or more tables, each containing a specific number of
columns and a number of unordered rows. Each column in a row is related in some
way to the other columns. Thinking of the data as a collection of tables gives you
an easy way to visualize the stored data and enables you to explain your needs in
easy-to-understand terms. Table 1 shows the department table (DSN8510.DEPT)
of the sample database. The table contains four columns (DEPTNO, DEPTNAME,
MGRNO, and ADMRDEPT) and nine rows.

DB2 accesses data by referring to its content instead of its location or organization
in storage. The rows of a relational table have no fixed order. The order of the
columns, however, are always the order in which you specified them when defining
the table.

A DB2 database involves more than just a collection of tables. It also includes table
spaces, storage groups, views, indexes, and other items. These are all collectively
referred to as DB2 structures.

Table 1. Example of a DB2 Table (Department Table)

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER A00

E01 SUPPORT SERVICES 000050 A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

 Copyright IBM Corp. 1982, 1997 1-21

Sample Tables: The examples in this book are based on the set of tables
described in Appendix A (Volume 2) of Administration Guide. Those tables are part
of the DB2 licensed program and represent data related to the activities of an
imaginary computer services company, the Spiffy Computer Services Company.

Structured Query Language (SQL)
The language used to access the data in DB2 tables is called SQL. SQL contains
both data definition statements and data manipulation statements. Data definition
statements define the structures of the database. Data manipulation statements
manipulate (retrieve, insert, delete, and update) data in tables. SQL also performs
functions that are neither data definition nor data manipulation, such as granting or
revoking authorization to use resources.

You can execute statements written in SQL in the following ways:

� Interactively, using the SQL processor using file input (SPUFI) or Query
Management Facility (QMF), another IBM licensed program.

| � By embedding them in application programs written in Ada, APL2, assembler,
| BASIC, C, C++, COBOL, FORTRAN, PL/I, or Prolog.

| � By using a DB2 Call Level Interface application program. For more information
| about using DB2 CLI, see Call Level Interface Guide and Reference.

An important aspect of SQL is that it is nonprocedural; that is, when you use SQL
you specify what you want done, not how to do it. In particular, to access data you
need only name the table and column where it can be found; you do not have to
describe an access method.

Below is an example of an SQL SELECT statement. It selects (retrieves) the
department number (DEPTNO) and department name (DEPTNAME) columns from
the department table (DSN8510.DEPT). It retrieves only those rows where the
administrating department (ADMRDEPT) is D01.

SELECT DEPTNO, DEPTNAME

 FROM DSN851ð.DEPT

WHERE ADMRDEPT = 'Dð1';

You can also use SQL statements to insert new rows into a table, update existing
rows, or delete rows.

For an elementary introduction to SQL and detailed instructions for using SPUFI,
see Section 2 of Application Programming and SQL Guide. For a complete
reference to the SQL language, see SQL Reference.

The Structure of DB2
The elements that DB2 manages can be divided into two broad categories:

� Data structures, which are accessed under the user's direction and by which
the user's data (and some system data) is organized.

� System structures, which are controlled and accessed by DB2.

1-22 Administration Guide

 Data Structures
DB2 data structures described in this section include:

“Databases” on page 1-24
“DB2 Storage Groups” on page 1-24
“Table Spaces” on page 1-24
“Tables” on page 1-26
“Indexes” on page 1-26
“Views” on page 1-27.

The brief descriptions here show how the structures fit into an overall view of DB2.
“Chapter 2-9. Implementing Your Design” on page 2-79 contains detailed
information about each structure and explains how to use SQL to define them.
There are other structures, such as group buffer pools and shared communications
areas, that relate specifically to the data sharing environment. See Data Sharing:
Planning and Administration for more information.

Figure 7 shows how some DB2 structures contain others. To some extent, the
notion of “containment” provides a hierarchy of structures. This section introduces
those structures from the most to the least inclusive.

┌───────────────────────────────┐

│ Database D1 │

│ ┌───────────────────────────┐ │ ┌───────────────────────┐

│ │ Table space S1 │ │ │ Storage group G1 │

│ │ ┌──────────┐ ┌──────────┐ ├─┼─5│ │

│ │ │ Table T1 │ │ Table T2 │ │ │ │ │

│ │ └──────────┘ └──────────┘ │ │ │ ┌────────┐ │

│ └───────────────────────────┘ │ │ │Volume 1│ │

│ ┌──────────┐ │ │ │ (DASD) │ │

│ │ Index X1 ├───────────────┼─5│ └────────┘ │

│ └──────────┘ │ │ ┌────────┐ │

│ ┌──────────┐ │ │ │Volume 2│ │

│ │ Index X2 ├───────────────┼─5│ │ (DASD) │ │

│ └──────────┘ │ │ └────────┘ │

│ ┌──────────────────────────┐ │ │ │

│ │ ┌─────────┐ │ │ │ │

│ │ │Table T3 ├─┼──┼─5│ │

│ │ Partitioned │Part 1 │ │ │ │ │

│ │ table space ├─────────┤ │ │ └───────────────────────┘

│ │ S2 │Table T3 │ │ │ ┌────────────────┐ &

│ │ │Part 2 ├─┼──┼─5│ Storage │ │

│ │ └─────────┘ │ │ │ Group G2 │ │

│ └──────────────────────────┘ │ │ ┌────────┐ │ │

│ ┌──────────────────────┐ │ │ │Volume 2│ │ │

│ │ Partitioned index X3 ├───┼─5│ │ (338ð) │ │ │

│ │ Part 1 │ │ │ └────────┘ │ │

│ ├──────────────────────┤ │ └────────────────┘ │

│ │ Partitioned index X3 ├───┼──────────────────────┘

│ │ Part 2 │ │

│ └──────────────────────┘ │

└───────────────────────────────┘

Figure 7. A Hierarchy of DB2 Structures

 Chapter 1-2. System Planning Concepts 1-23

 Databases
In DB2, a database is a set of DB2 structures. When you define a DB2 database,
you give a name to an eventual collection of tables and associated indexes, as well
as to the table spaces in which they reside. A single database, for example, can
contain all the data associated with one application or with a group of related
applications. Collecting that data into one database allows you to start or stop
access to all the data in one operation and grant authorization for access to all the
data as a single unit.

If you create a table space or a table and do not specify a database, the table or
table space is created in the default database, DSNDB04. The default database is
predefined in the installation process; its default buffer pool is BP0, and its default
DB2 storage group is SYSDEFLT.

Storage group SYSDEFLT is created when you install DB2. After that, all users
have the authority to create table spaces or tables in database DSNDB04. The
system administrator can revoke those privileges and grant them only to particular
users as necessary.

When you migrate to Version 5, DB2 adopts the default database and default
storage group you used in Version 4. You have the same authority for Version 5 as
you did in Version 4.

DB2 Storage Groups
A DB2 storage group is a set of volumes on direct access storage devices (DASD).
The volumes hold the data sets in which tables and indexes are actually stored.
The description of a storage group names the group and identifies its volumes and
the VSAM catalog that records the data sets.

All volumes of a given storage group must have the same device type. But, as
Figure 7 on page 1-23 suggests, parts of a single database can be stored in
different storage groups.

DFSMS storage groups are also discussed in this book. They are not the same as
DB2 storage groups. When DFSMS storage groups are discussed, the reference
will be explicit.

 Table Spaces
A table space is one or more data sets in which one or more tables are stored. A

table space can consist of a number of VSAM data sets , which can together
contain up to 64 gigabytes of data for tablespaces not defined as large. A LARGE
| table space can consist of up to 254 data sets, or 1 terabyte of data. Data sets are

VSAM linear data sets (LDSs). Table spaces are divided into equal-sized units,
called pages, which are written to or read from DASD in one operation. Refer to the
following sections for maximum sizes of each table space type. You should also
refer to Appendix A of SQL Reference for specific limits.

When you create a table space, you can specify the database to which the table
space belongs and the storage group it uses. If you do not specify the database
and storage group, DB2 assigns the table space to the default database and the
default storage group. You also control whether the table space is partitioned,
segmented, or simple.

1-24 Administration Guide

Partitioned Table Spaces: In a partitioned table space, the available space is
divided into separate units of storage called partitions, each containing a part of
one table. Although the partitions can be independently assigned to separate

storage groups, the entire collection of data is logically a single table. A partition for
a table space not defined as large can be 1, 2, or 4 gigabytes in length, depending
on the number of partitions contained in the entire table space. If less than 16
partitions are defined on the table space, then each partition's maximum size is 4
gigabytes. For a table space that is defined as large, the maximum size of a
partition is 4 gigabytes, for 1 to 254 partitions. See “Chapter 2-5. Designing

Indexes” on page 2-51 for more information on partitioned table spaces.

Partitioning a table space provides several advantages for large tables:

� Improved data availability. You can perform normal maintenance on one
partition of the table while the rest of the table remains available for utility or
SQL processing.

� Improved utility performance. A utility can work on all partitions simultaneously
instead of working on one partition at a time. Also, different utilities can work on
different partitions simultaneously. This can significantly reduce the amount of
time needed for a utility to finish.

� Improved query response time. When DB2 scans data to answer a query, it
scans through partitions simultaneously instead of scanning through the entire
table space from beginning to end. This improvement is most significant for
queries that are complex or require DB2 to scan a lot of data.

� Improved efficiency in table space and index scans. DB2 can limit a scan to a
subset of the partitions in both table space and index scans. Only the specific
partitions that are needed are actually scanned.

Segmented Table Spaces: A segmented table space is intended to hold more
than one table. The available space is divided into groups of pages called
segments, each the same size. Each segment contains rows from only one table.
To search all the rows for one table, it is not necessary to scan the entire table
space, but only the segments that contain that table. If a table is dropped, its
segments become immediately reusable. A segmented table space can have

| between 1 and 32 VSAM linear data sets, all of which are either user-defined or in
| the same storage group. The maximum size of a data set in the segmented table

space is 2 gigabytes. And so, the maximum size of a segmented table space is 64
gigabytes (2 gigabytes multiplied by 32 data sets). See “Chapter 2-5. Designing
Indexes” on page 2-51 for more information on segmented table spaces.

Simple Table Spaces: If a table space is not partitioned or segmented, it is called
simple. A simple table space can contain more than one table, but the rows of
different tables are not kept separate. To find all the rows of one table can require
scanning the entire table space. If a table is dropped, its rows are not deleted. The
space occupied by the rows does not become available until the table space is

| reorganized. All tables in a table space must be either user-defined or in the same
| storage group. The maximum size of a data set in the simple table space is 2
gigabytes. And so, the maximum size of a simple table space is 64 gigabytes (2
gigabytes multiplied by 32 data sets).

 Chapter 1-2. System Planning Concepts 1-25

 Tables
All data in a DB2 database is presented in tables—collections of rows all having the
same columns. When you create a table in DB2, you define an ordered set of
columns.

A few rows of the sample department table are shown above. The ordered set of
columns contains DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT. Each row
contains data for a single department; the columns represent, respectively, its
number, its name, the employee number of its manager, and the number of the
department to which it reports. The whole table is a collection of rows, each
containing those columns.

At the intersection of a column and row is a value. For example, PLANNING is the
value of the DEPTNAME column in the row for Department B01.

The storage representation of a row is called a record, and the storage
representation of a column is called a field. For most tasks discussed in this book,
you do not need to know what a record looks like. For instances when you do need
to know, see Appendix B (Volume 2) of Administration Guide.

All the data in a given column must be of the same data type. For example, the
data in the DEPTNAME column of the table is varying-length character
(VARCHAR). DB2 data types are described in “Specifying Data Types” on
page 2-44 .

A table can have a primary key. A primary key is a column or set of columns
whose values uniquely identify each row. In the sample department table,
DSN8510.DEPT, the DEPTNO (department ID) column is a primary key. Columns
of other tables can be foreign keys, whose values must be equal to values of the
primary key of the first table. In the sample employee table, DSN8510.EMP (see
Appendix A (Volume 2) of Administration Guide) the column that shows what
department an employee works in is a foreign key; its values must be values of the
department ID column in the department table. DB2 can automatically enforce the
integrity of references from a foreign key to a primary key by guarding against
insertions, updates, or deletions that violate the integrity. Automatic enforcement of
referential integrity is described in “Chapter 2-3. Maintaining Data Integrity” on
page 2-19.

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

 Indexes
An index is an ordered set of pointers to the data in a DB2 table. The index is
stored separately from the table. Each index is based on the values of data in one
or more columns of a table. After you create an index, DB2 maintains the index, but
you can check, repair, or reorganize it.

You can create an index on a table any time after you create the table, and you
can create the index either before or after you load data into the table. Except for
changes in performance, users of the table are unaware that an index is being
used. DB2 decides whether or not to use the index to access the table.

1-26 Administration Guide

Each index occupies its own index space. A nonpartitioned index on a table space
that is not defined as large can contain from 1 to 32 linear data sets, each data set
capable of holding 2 GB of data . A nonpartitioned index on a table space that is
defined as large can contain from 1 to 128 VSAM linear data sets, each capable of
holding up to 4 GB of data, for a total of .5 terabytes. When you create an index,
an index space is automatically defined in the same database as the table.

Refer to Appendix A of SQL Reference for specific limits.

You can use indexes to:

� Improve performance. In many cases, access to data is faster with an index
than without.

� Ensure uniqueness. A table with a unique index cannot have two rows with the
same values in the column or columns that form the index key.

Both of these topics are discussed further in “Chapter 2-5. Designing Indexes” on
page 2-51 .

Partitioned Indexes: A partitioned index is created with the keyword PART, on a
table in a partitioned table space that is divided into multiple index spaces.

A partitioned index consists of between 1 and 64 partitions for a table space that is
not defined as large and between 1 and 254 partitions for a table space that is
defined as large. Each of these partitions has a one to one correspondence to a
VSAM data set. Each partitioned table space always has one table and one
partitioned index defined on it. The maximum size of a partitioned index defined on
a table space that is not defined as large is 1, 2 or 4 GB depending on the number
of partitions. The maximum size of a partitioned data set defined on a table space
that is defined as large is 4 GB. A partitioned index is always a clustering index.

Clustering Indexes: A clustering index determines the approximate order in which
records of the base table are stored. Therefore, DB2 can access the entire table in
the sequence of the clustering key faster than in any other sequence. Each table
can have only one clustering index.

 Views
A view is an alternate way of representing data that exists in one or more tables. A
view can include all or some of the columns from one or more base tables. Views
can also be based on other views or on a combination of views and tables.
Figure 8 on page 1-28 shows some of the possible relationships between tables
and the views that users see of them.

 Chapter 1-2. System Planning Concepts 1-27

 ┌────────────┐ ┌────────────┐

 │ │ │ │

 ┌────┤ User 1 ├──────┐ │ User 2 │

 │ │ │ │ │ │

 │ └───────┬────┘ │ └─────┬──────┘

 │ 6 6 6

 │ ┌────────┐ ┌────────┐ ┌────────┐

│ │ View 1 │ │ View 2 ├──────┐ ┌───┤ View 3 │

 │ └───┬────┘ └───┬────┘ │ │ └────────┘

6 6 6 6 6

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐

│ Table 1 │ │ Table 2 │ │ Table 3 │ │ Table 4 │

└─────────┘ └─────────┘ └─────────┘ └─────────┘

Figure 8. Relationship between Tables and Views

A view looks just like a table and can be used as though it were a table. You can
use a view name in the FROM clause of an SQL SELECT statement, in the same
way you use a table name. Although some operations cannot be performed on a
view, often a user need not know that an apparent table is actually a view.

A table has a storage representation, but a view does not. When you define a view,
DB2 stores the definition of the view in the DB2 catalog. But DB2 does not store
any data for the view itself, because the data already exists in the base table or
tables. Because no data is stored for the view, you cannot create an index on it.
However, an index on a base table can improve the performance of operations on
the view. For more information on views, see Section 2 of Administration Guide.

 System Structures
DB2 system structures described in this section include:

“DB2 Catalog”
“DB2 Directory” on page 1-29
“Active and Archive Logs” on page 1-30
“Bootstrap Data Set (BSDS)” on page 1-31
“Buffer Pools” on page 1-31
“Communications Database” on page 1-32
“Data Definition Control Support Database” on page 1-32
“Resource Limit Facility Database” on page 1-33

 DB2 Catalog
The DB2 catalog consists of tables of data about everything defined to the DB2
system. The DB2 catalog is contained in system database DSNDB06. When you
create, alter, or drop any structure, DB2 inserts, updates, or deletes rows of the
catalog that describe the structure and tell how the structure relates to other
structures. Appendix D of SQL Reference describes all the DB2 catalog tables.

| For Version 5, the communications database (CDB) is moved into the catalog.

| DB2 has extensive support to help move your applications into the next millennium.
| The Version 5 catalog supports timestamps generated both before and after the
| year 2000.

To illustrate the use of the catalog, here is a brief description of some of what
happens when the employee table is created:

1-28 Administration Guide

� To record the name of the structure, its owner, its creator, its type (alias, table,
or view), the name of its table space, and the name of its database, DB2
inserts a row into the catalog table SYSIBM.SYSTABLES.

� To record the name of the table to which the column belongs, its length, its
data type, and its sequence number in the table, DB2 inserts rows into
SYSIBM.SYSCOLUMNS for each column of the table.

| � To increase by one the number of tables in the table space DSN8S51E, DB2
| updates the row in the catalog table SYSIBM.SYSTABLESPACE.

| � To record that the owner (DSN8510) of the table has all privileges on the table,
| DB2 inserts a row into table SYSIBM.SYSTABAUTH.

Because the catalog consists of DB2 tables in a DB2 database, you can use SQL
statements to retrieve information from it.

For catalog data set naming conventions, see Installation Guide.

 DB2 Directory
The DB2 directory contains information required to start DB2, and DB2 uses the
directory during normal operation. You cannot access the directory using SQL. The
structures in the directory are not described in the DB2 catalog.

The directory consists of a set of DB2 tables stored in five table spaces in system
database DSNDB01. Each of the following table spaces is contained in a VSAM
linear data set:

� SCT02 is the skeleton cursor table space (SKCT).
� SPT01 is the skeleton package table space.
� SYSLGRNX is the log range table space.
� SYSUTILX is the system utilities table space.
� DBD01 is the database descriptor (DBD) table space.

The directory contains DSNSCT02, an index space for SCT02; DSNSPT01 and
DSNSPT02, index spaces for SPT01; DSNLLX01 and DSNLLX02, indexes for
SYSLGRNX; and DSNLUX01 and DSNLUX02, the indexes for SYSUTILX.

For directory data set naming conventions, see Installation Guide.

Skeleton Cursor Table: The skeleton cursor table space (SCT02) contains a
table that describes the internal form of SQL statements of application programs.
When you bind a plan, DB2 creates a skeleton cursor table in SCT02. The index
space for the skeleton cursor table is DSNSCT02.

Skeleton Package Table: The skeleton package table space (SPT01) contains a
table that describes the internal form of SQL statements in application programs.
When you bind a package, DB2 creates a skeleton package table in SPT01. The
index spaces for the skeleton package table are DSNSPT01 and DSNSPT02.

Log Range: DB2 inserts a row in the log range table space (SYSLGRNX) every
time a table space or partition is opened and updated, and it updates SYSLGRNX
whenever that structure is closed. The row contains the opening log relative byte
address (RBA), the closing log RBA, or both for the structure. The log RBA is the
relative byte address in the log data set where open and close information about
the structure is contained.

 Chapter 1-2. System Planning Concepts 1-29

The use of SYSLGRNX speeds up recovery by limiting the log information that
must be scanned to apply changes to a table space or partition being recovered.

The two indexes defined on SYSLGRNX are DSNLLX01 (a clustered index) and
DSNLLX02.

System Utilities: DB2 inserts a row in the system utilities table space
(SYSUTILX) for every utility job that is run. The row remains there until the utility
completes its full processing. If the utility terminates without completing, DB2 uses
the information in the row to restart the utility. The indexes defined on SYSUTILX
are DSNLUX01 and DSNLUX02.

Database Descriptor: The database descriptor table space (DBD01) contains
internal control blocks, called database descriptors (DBDs), that describe the
databases existing within DB2. Each database has exactly one corresponding DBD

| that describes the database, table spaces, tables, table check constraints, indexes,
and referential relationships. A DBD also contains other information about
accessing tables in the database. DB2 creates and updates DBDs whenever their
corresponding databases are created or updated. Figure 9 illustrates the contents
of DBD01.

┌───────────────────┐

│ DBDð1 │

│ ┌──────────┐ │

│ │ DBDð2 │ │ Used to assign DBD numbers to new

│ └──────────┘ │ DBDs (DB2 internal use only)

│ ┌──────────┐ │

│ │ DBDð4 │ │ Describes the default database:

│ └──────────┘ │ DSNDBð4

│ ┌──────────┐ │

│ │ DBDð6 │ │ Describes the catalog database:

│ └──────────┘ │ DSNDBð6

│ ┌──────────┐ │

│ │ DBDnnnnn │┐ │ DBDs for other databases

│ └──────────┘│┐ │

│ └──────────┘│┐ │

│ └──────────┘│ │

│ └──────────┘ │

└───────────────────┘

Figure 9. Contents of the Database Descriptor Table Space (DBD01). DBD02, DBD04, and
DBD06 are shipped with DB2. Other DBDs are produced when databases are created.

Active and Archive Logs
DB2 records all data changes and significant events in a log as they occur. In the
case of failure, DB2 uses this data to recover.

DB2 writes each log record to a DASD data set called the active log. When the
active log is full, DB2 copies the contents of the active log to a DASD or magnetic
tape data set called the archive log.

The archive log can consist of up to 1000 data sets, each of which is a sequential
data set (physical sequential) that resides on a DASD or magnetic tape volume. An
archive log data set is created during the log off-load process (when an active log
data set is copied to an archive log data set). The archive log can be cataloged in
an integrated catalog facility catalog and protected with an MVS data set password
or with resource access control facility (RACF).

1-30 Administration Guide

DB2 allows you to choose either single logging or dual logging. A single active log
contains between 2 and 31 active log data sets. With dual logging, the active log
has the capacity for 4 to 62 active log data sets, because two identical copies of
the log records are kept. Each active log data set is a single-volume, single-extent
VSAM LDS.

For a detailed description of the logs, their contents, and the process of off-loading
from active to archive logs, see “Chapter 4-3. Managing the Log and the Bootstrap
Data Set” on page 4-83 .

Bootstrap Data Set (BSDS)
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that
contains information critical to DB2. Specifically, the BSDS contains:

� An inventory of all active and archive log data sets known to DB2. DB2 uses
this information to track the active and archive log data sets. DB2 also uses
this information to locate log records to satisfy log read requests during normal
DB2 system activity and during restart and recovery processing.

For any log, the list tells the RBA range (or LRSN range in a data sharing
environment) in each data set. (The list specifies separate log data set name
entries for each volume on which the log resides.) For the active log, the list
also tells which are full and which are available for reuse. DB2 records data
about the log data set in the BSDS each time a new archive log data set is
defined or an active log data set is reused.

� A wrap-around inventory of all recent DB2 checkpoint activity. DB2 uses this
information during restart processing.

� The distributed data facility (DDF) communication record. This record contains
the DB2 location name, the virtual telecommunications access method (VTAM)
LU name, and the password used to connect DB2 to VTAM. DB2 uses this
information to establish the distributed database environment.

| � The bootstrap dataset (BSDS) also includes a table of IP addresses. These
| uniquely identify a host within the TCP/IP network.

Because the BSDS is essential to recovery in the event of subsystem failure, during
installation DB2 automatically creates two copies of the BSDS and, if space
permits, places them on separate volumes.

For a more complete description of the functions and uses of the BSDS, see
“Managing the Bootstrap Data Set (BSDS)” on page 4-92 .

 Buffer Pools
Buffer pools, also known as virtual buffer pools, are areas of virtual storage used
temporarily to store pages of table spaces or indexes. When an application
program needs to access a row of a table, DB2 retrieves the page containing that
row and places the page in a buffer. If the row is changed, the buffer must be
written back to the table space. If the needed data is already in a buffer, the
application program will not have to wait for it to be retrieved from DASD. The
result is faster performance. The sizes of virtual buffer pools can be changed while
DB2 is running. The result is greater flexibility. See Chapter 2 of Command
Reference for details about the ALTER BUFFERPOOL command.

DB2 supports a second level of storage for each virtual buffer pool if your system
meets the following requirements:

 Chapter 1-2. System Planning Concepts 1-31

� A processor that supports MVPG hardware instruction and Asynchronous Data
Mover Facility licensed internal code

� Expanded storage available in ES/9000 hardware

� MVS/ESA Version 4 Release 3 with the Special Programming Enhancement
containing support for Asynchronous Data Mover Facility

The second level of storage, the hiperpool, is an extension to the virtual buffer pool.
Virtual buffer pools hold the most frequently accessed data. Data in virtual buffer
pools that is not accessed frequently can be moved to its corresponding
hiperpool—only one hiperpool can exist for each virtual buffer pool.

Hiperpools can span up to four hiperspaces, 2GB expanded storage areas. Using
hiperspaces and hiperpools improves performance because you can cache up to
8GB to help avoid I/O operations.

When you install DB2, you make the following decisions about virtual buffer pools
and hiperpools:

� Specify the number of 4KB virtual buffer pools and 32KB virtual buffer pools
that you plan to use. You can have up to 50 4KB virtual buffer pools, and up to
10 32KB virtual buffer pools. The number of buffers within each pool is always
less than or equal to the corresponding value specified on one of the buffer
pool sizes panels (DSNTIP1, DSNTIP2).

� Specify whether you want a hiperpool to exist for a given virtual buffer pool.
There can be only one hiperpool for each virtual buffer pool, and the sum of all
hiperpools must not exceed 8GB of storage.

Another level of buffer pools is the group buffer pool, associated with the DB2 data
sharing environment. For information relating to group buffer pools, see Data
Sharing: Planning and Administration.

 Communications Database
| The communications database (CDB) is part of the catalog shipped with DB2. The
| distributed data facility (DDF) uses the CDB to map DB2 location names to VTAM
| LU names and TCP/IP IP addresses or domain names. The CDB also handles
| security translation requirements and communication requirements. The CDB is
| used to get information about communicating with other DB2 subsystems, or with
| remote locations that support Distributed Relational Database Architecture. Once
| your subsystem is installed, you must populate the CDB tables with unique
| information that enables your location to send and receive distributed data
| requests. For more information on the CDB, see Installation Guide.

Data Definition Control Support Database
The data definition control support database is automatically created during
installation. This database is a user-maintained collection of tables used by data
definition control support to restrict the submission of specific DB2 DDL statements
to selected application identifiers (plans or collections of packages). Once this
database is created, you must populate these tables to make use of this facility.
The system name for this database is DSNRGFDB. For more information about
DDL registration, see “Chapter 3-3. Controlling Access Through a Closed
Application” on page 3-49 .

1-32 Administration Guide

Resource Limit Facility Database
The resource limit facility database contains tables that limit the amount of
processor time permitted for the execution of dynamic SELECT, UPDATE,
DELETE, and INSERT SQL statements. You can establish a single limit for all
users, different limits for individual users, or both. No limits apply to those with
installation SYSADM or installation SYSOPR authority.

The limits are defined in one or more resource limit specification tables (RLST).
One RLST is used for each invocation of the resource limit facility and is identified
on the START RLIMIT command. If you are using DDF, the RLST contains
columns so you can specify limits for primary authorization IDs, plan names, or
package names from other subsystems. The RLST also governs BIND authority.
You can have more than one RLST, but only one RLST is active at any one time.
The system name for this database is DSNRLST.

| The RLST also contains a column that determines which mode of parallelism is
| disabled, if query CP parallelism or query I/O parallelism is possible. For more
| information on the RLST, see “Resource Limit Facility (Governor)” on page 5-76 .

Work File Database
The work file database is used as storage for processing SQL statements that
require working space. You can create a work file database using the CREATE

| DATABASE and CREATE TABLESPACE statements.

In a non-data sharing environment, the work file database is called DSNDB07. In a
data sharing environment, each DB2 member in the data sharing group has its own
work file database. One member of the data sharing group can have the name
DSNDB07, but you can create a work file database with a more meaningful name.

| The default is DSN1. The recommended name is the DB2 subsystem name.

Control and Maintenance of DB2
DB2 is controlled and maintained by the following:

� Commands, which can be entered at a terminal or a MVS console
� Utility jobs, which run as standard MVS batch jobs.

 Commands
DB2 is controlled by commands entered at a terminal or MVS console. The
commands are divided into the following categories:

� DSN command and subcommands
 � DB2 commands
 � IMS commands
� CICS attachment facility commands
� MVS IRLM commands
� TSO CLIST commands.

For example, the command -START DB2 starts DB2. -STOP DB2 stops it. For a
description of the steps used in operating DB2, and the commands used to
implement them, see “ Section 4. Operation and Recovery” on page 4-1 of
Administration Guide . For more information on commands, see Chapter 2 of
Command Reference.

 Chapter 1-2. System Planning Concepts 1-33

 Utility Jobs
Many of the tasks of maintaining DB2 data, such as loading a table, copying a table
space, or recovering a database to some previous point in time, are done by parts
of DB2 called utilities.

The utilities run as batch jobs under MVS. DB2 interactive (DB2I) provides a simple
way to prepare the job control language (JCL) for those jobs and to perform many
other operations by entering values on panels. DB2I runs under TSO using ISPF
services. To use DB2I, follow your local procedures for logging on to TSO, entering
ISPF, and displaying the DB2I menu, shown in Figure 12 on page 1-40.

You control each operation by entering values that describe it on the panels
provided. There are also help panels giving the syntax and examples of commands
and utility control statements. To access the help panels, press the HELP PF key.
(The HELP PF key can be set locally, but typically it is PF key 1.)

A utility control statement tells a particular utility what task to perform; many
examples appear in this book. To run a utility job, first enter the control statement in
a data set you use for input. Then invoke DB2I and select option 8, UTILITIES, on
the DB2I Primary Option Menu. In some cases, you need other data sets; for
example, the LOAD utility requires a data set containing the data that is to be
loaded. For detailed instructions, see Section 1 of Utility Guide and Reference .

 High Availability
It is not necessary to start or stop DB2 often. For nearly continuous operation, DB2
has been designed with the following capabilities:

� Online definition and modification of database and authorization descriptors.

� Online binding of application plans.

� Online changing of buffer pool and hiperpool sizes.

� Online execution of most utilities. For example:

– You can recover online such structures as table spaces, partitions, data
sets, a range of pages, a single page, and indexes.

– You can recover several indexes or index partitions simultaneously to
reduce recovery time.

– You can read and update a table space while copying it.

– You can reorganize table spaces and partitions separately. and read the
| data during the unload phase. You can specify the degree of access to
| your data during reorganization

� Availability of a table space (provided it is not explicitly stopped) after an I/O
error, except for any portions that span the error ranges.

� Fewer pages are unavailable because of error conditions. For any structure that
has a problem while applying a log record to the structure, DB2 adds the
relevant pages and log ranges to the logical page list (LPL). This leaves only
pages affected by the error condition unavailable.

� Improved reorganization time for a table with a low cluster ratio by specifying
the SORTDATA parameter on the REORG utility.

� Using package versions permits binding while the applications continue to run.
If there is a problem in the new application, the old program uses the old

1-34 Administration Guide

version of the package. When an application changes, only the programs that
have changed need to be rebound.

� Continuing operation of DB2 after an I/O error writing a log record. On the
active log, it moves to the next data set; on the archive log, it dynamically
allocates another data set.

� Remote site disaster recovery methods that allow you to prepare for disasters
that could cause a complete shutdown of your local DB2 system.

� Typical continuation of DB2 during restoration of dual operation of the bootstrap
data set, active logs, and archive logs if degradation to single copy mode was
necessary.

� DB2's data sharing function allows applications running on more than one DB2
subsystem to read and write to the same set of data concurrently. For details
on the benefits of data sharing see Data Sharing: Planning and Administration.

To reduce the probability and duration of unplanned outages you should
periodically back up and reorganize your data. Because these affect the availability
of the databases, you should limit your use of, and understand the options of,
utilities such as COPY and REORG.

The CONCURRENT and SHRLEVEL options of the COPY utility can minimize
outages and improve availability of DB2 data during backup processing. If you use
the SHRLEVEL CHANGE option, the data sets being copied are available during
the entire copy operation. If you use SHRLEVEL REFERENCE, the availability of
data sets depends on whether you also use the CONCURRENT opiton, which
invokes DFSMS Concurrent Copy.

� If you specify SHRLEVEL REFERENCE but not CONCURRENT, data sets are
unavailable until the copy operation is complete.

� If you specify SHRLEVEL REFERENCE and CONCURRENT, data is
unavailable only until DFSMSdss finishes logical processing of the list of data
sets to be copied.

For information on using DB2 utilities such as COPY and REORG, see Utility Guide
and Reference.

Unplanned outages are difficult to avoid entirely. However, the time that elapses
because of an unplanned outage can be minimized, and the occurrence of these
outages can be reduced. When unplanned outages occur, you can use the
RECOVER utility to restore a damaged DB2 structure. For more information on
recovering data, see “Recovering Table Spaces and Data Sets” on page 4-141 and
Section 2 of Utility Guide and Reference .

It is important to avoid I/O errors on table spaces, indexes, logs, and the bootstrap
data set because recovery of these errors (using the RECOVER utility) causes
unplanned outages. For more information on I/O error recovery, see Section 2 of
Utility Guide and Reference.

To ensure continuous availability, it is important to monitor the databases regularly.
Monitoring measures the efficiency of your database, in both performance and
space utilization. Most of your base tables and indexes are constantly being
changed through updates, inserts, and deletions. Monitoring your space utilization
can prevent problems. You can monitor and tune a database by using the
RUNSTATS and STOSPACE utilities.

 Chapter 1-2. System Planning Concepts 1-35

DB2 and the MVS Environment
DB2 operates as a formal subsystem of MVS/ESA. DB2 utilities run in the batch
environment, and applications that access DB2 resources can run in the batch,
TSO, IMS, or CICS environments. IBM provides attachment facilities to connect
DB2 to each of these environments.

 Address Spaces
DB2 requires several different address spaces for the following purposes:

� One for database services, DSN1DBM1, which manipulate most of the
structures in user-created databases.

� One for system services, DSN1MSTR, which perform a variety of
system-related functions.

� One for distributed data facility, DSN1DIST, which provides support for remote
requests.

� One for the internal resource lock manager (IRLM), IRLMPROC, which controls
DB2 locking.

| � One for DB2-established stored procedures, DSN1SPAS, which provides an
| isolated execution environment for user-written SQL programs at a DB2 server.

| � Zero to many for WLM-established stored procedures to be handled in order of
| priority and isolated from other stored procedures running in other address
| spaces.

� At least one, possibly several, of the following types of user address spaces:

 TSO
 Batch
 CICS

IMS dependent region
IMS control region

Figure 10 on page 1-37 shows how the address spaces relate to batch, TSO, IMS,
and CICS user address spaces. Each user address space communicates with
database services, system services, and distributed data facility address spaces. In
addition, the IMS user address space communicates with the IRLM and IMS
address spaces. The system services, database services, CICS, IRLM, IMS,
stored procedures and distributed data facility address spaces communicate with
each other as the arrows indicate.

1-36 Administration Guide

┌──────────┐

│ TSO user │

│ address ├──────────┬──────────────┐

│ space │ │ │

└──────────┘ │ │

┌──────────┐ │ │

│ Batch │ │ │

│ address ├────────┬─│────────────┐ │

│ space │ │ │ │ │

└──────────┘ │ │ │ │

┌──────────┐ │ │ │ │

│ CICS │ │ │ │ │

│ address ├──────┬─│─│──────────┐ │ │

│ space │ │ │ │ │ │ │

└──────────┘ │ │ │ │ │ │

┌──────────┐ │ │ │ │ │ │

│ IMS user │ │ │ │ │ │ │

│ address ├────┬─│─│─│────────┬─│─│─│───────────┬──────────────┐

│ space │ │ │ │ │ │ │ │ │ │ │

└──────────┘ │ │ │ │ │ │ │ │ │ │

┌───────────┐ │ │ │ │ │ │ │ │ │ │

│ stored │ │ │ │ │ │ │ │ │ │ │

│ procedures│ │ │ │ │ │ │ │ │ │ │

│ address ├──┬│─│─│─│──────┬─│─│─│─│─────────┬─│────────────┐ │

│ spaces │ ││ │ │ │ │ │ │ │ │ │ │ │ │

└───────────┘ 66 6 6 6 6 6 6 6 6 6 6 6 6

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐

 │ DB2 │ │ DB2 │ │ IRLMPROC│ │ IMS │

│ DSN1DBM1││──5│ DSN1MSTR││──5│ address ││──5│ Control │

│ address │ │ address │ │ space │ │ address │

 │ space │ │ space │ │ │ │ space │

└─────────┘ └─────────┘ └─────────┘ └─────────┘

 & & & &

 │ │ │ │

 ┌────┴────┐ │ └────────────────────────────┘

 │ DSN1DIST│ │

│ address ││───────┘

 │ space │

 └─────────┘

Figure 10. Relationship between DB2 Users and DB2-Related Address Spaces

DB2 and MVS
As a formal subsystem of MVS, DB2 uses:

� The MVS subsystem interface (SSI) protocols

� Key 7 operation and storage

� Synchronous cross-memory services for address space switching

� System Management Facilities (SMF) for statistics, accounting information, and
performance data

| � VTAM and TCP/IP for distributed data facility

� These reliability and serviceability features:

Functional recovery routines (FRR)
ESTAE recovery routines

 SYS1.LOGREC
 SYS1.DUMP

You can enter all DB2 commands from an authorized MVS console by using a
subsystem command prefix (composed of 1 to 8 characters) at the beginning of the

 Chapter 1-2. System Planning Concepts 1-37

command. The default subsystem command prefix is -DSN1. You can change the
value when you install or migrate DB2.

DB2 and RACF
Resource Access Control Facility (RACF) can be used to control access to your
MVS system. If you are using RACF Version 1 Release 9 or later, you can control
access to the distributed data facility (DDF) based on the connecting partner's LU
name. When users begin sessions with TSO, IMS, or CICS, their identities are
checked to prevent unauthorized access to the system.

Recommendation: use RACF to run security checks on DB2 users and to protect
DB2 resources. RACF provides effective protection for DB2 data by permitting only
DB2-mediated access to DB2 data sets.

| Much authorization to DB2 objects can be controlled directly from RACF. By using
| the access control authorization exit, a user can bypass some or most of DB2
| authorization checking. For more information on writing exit routines, see Appendix
| B (Volume 2) of Administration Guide.

For a detailed description of security methods available in DB2, see “ Section 3.
Security and Auditing” on page 3-1.

DB2 and SMS
DFSMSdfp storage management subsystem (SMS) can be used to manage DB2
DASD data sets. Private data, image copies, and archive logs are possible
candidates for space management with SMS. The decision to use SMS to manage
DB2 data sets must be made with your site's storage administrator. For more
information about using SMS to manage DB2 data sets, see MVS Storage
Management Library: Storage Management Subsystem Migration Planning Guide .

Partitioned data set extended (PDSE), a feature of DFSMSdfp, provides a way to
manage partitioned data sets. PDSE allows multiple access at a data set's member
level rather than at the data set level, removing the concurrent access constraints
of regular partitioned data sets. DB2 users who have MVS/ESA and DFSMSdfp
installed should consider using PDSE data sets for their DBRM libraries.

| PDSE data sets must be managed by SMS and stored on direct access storage
| devices. See MVS/DFP: Managing Non-VSAM Data Sets for information about
| differences of PDS and PDSE data sets and how to convert them.

DB2 and TSO Attachment Facility
The Time Sharing Option (TSO) attachment facility is required for binding
application plans and packages and for executing several online functions that are
provided with DB2.

Using the TSO attachment facility, you can access DB2 by running in either
foreground or batch. You gain foreground access through a TSO terminal; you gain
batch access by invoking the TSO terminal monitor program (TMP) from an MVS
batch job.

Whether you access DB2 in foreground or batch, attaching through the TSO
attachment facility and the DSN command processor makes access easier. The
DSN command processor (DSN) executes as a TSO command processor. DB2

1-38 Administration Guide

subcommands that execute under DSN are therefore subject to the command size
limitations as defined by TSO. See Appendix B in TSO/E Programming Services for
additional information on the limits for TSO/E services routines. TSO allows

authorized DB2 users or jobs to create, modify, and maintain databases and
application programs. DB2I invokes the DSN command processor before invoking
the supported DSN subcommands shown in Figure 12 on page 1-40. You invoke
the DSN processor from the foreground by issuing a command at a TSO terminal.
From batch, first invoke TMP from within an MVS batch job, then pass commands
to TMP in the SYSTSIN data set.

After DSN is running, you can issue DB2 commands or DSN subcommands. You
cannot issue a -START DB2 command from within DSN. If DB2 is not running,
DSN cannot establish a connection to it; a connection is required so that DSN can
transfer commands to DB2 for processing.

Figure 11 shows the relationship between DB2 and TSO as used by the DB2
interactive (DB2I) service.

 TSO DB2 Subsystem

 ┌───────────────────┐ ┌───────────────────┐

 │ ┌───────────┐ │ connection │ │

│ │ DSN │ │ │ │

│ │ command │ │ │ │─┐

│ │ processor │ │ │ │ │

 │ └───────────┘ │ │ │ │

 │ & │ │ │ │─┐

│ 6 │ │ │ │ │

│ │ %───────────5 │ │ │ │

│ ┌───────────┐ │ │ │ │ ├─┐

│ │ DB2I │ │ │ │ │ │ │

│ └───────────┘ │ │ │ │ │ ├──┐

│ & │ │ DSN1MSTR │ │ │ │ │

│ │ │ │ address space │ │ │ │ │

│ 6 │ └───────────────────┘ │ │ │ │

│ ┌───────────┐ │ │ DSN1DBM1 │ │ │ │

│ │ ISPF │ │ │ address space │ │ │ │

│ └───────────┘ │ └───────────────────┘ │ │ │

│ │ │ DSN1DIST │ │ │

│ address space │ │ address space │ │ │

 └───────────────────┘ └──┬────────────────┘ │ │

 │ IRLMPROC │ │

│ address space │ │

 └──┬───────────────┘ │

│ stored procedures│

│ address spaces │

 └──────────────────┘

Figure 11. Relationship of DB2 to TSO

DB2 and ISPF
DB2 provides Interactive System Productivity Facility (ISPF) panels that allow you
to perform most DB2 tasks interactively. These panels make up a DB2 facility
called DB2 interactive (DB2I). Figure 12 on page 1-40 provides an example of a
DB2I ISPF panel.

 Chapter 1-2. System Planning Concepts 1-39

à ð
DB2I PRIMARY OPTION MENU

===>_

Select one of the following DB2 functions and press ENTER.

 1 SPUFI (Process SQL statements)

 2 DCLGEN (Generate SQL and source language declarations)

 3 PROGRAM PREPARATION (Prepare a DB2 application program to run)

 4 PRECOMPILE (Invoke DB2 precompiler)

 5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)

 6 RUN (RUN an SQL program)

 7 DB2 COMMANDS (Issue DB2 commands)

 8 UTILITIES (Invoke DB2 utilities)

 D DB2I DEFAULTS (Set global parameters)

 X EXIT (Leave DB2I)

PRESS: END to exit HELP for more information

á ñ

Figure 12. DB2I Primary Option Menu

Because application programs are invoked under the TSO terminal monitor
program, you can use ISPF to structure input and output. For information on using
DB2 and ISPF together in an application, see Section 6 of Application Programming
and SQL Guide .

Call Attachment Facility
Most TSO applications must use the TSO attachment facility, which invokes the
DSN command processor. Together, DSN and TSO provide services such as
automatic connection to DB2, attention key support, and translation of return codes
into error messages. However, when using DSN services, your application must run
under the control of DSN.

The call attachment facility (CAF) provides an alternative connection for TSO and
batch applications needing tight control over the session environment. Applications
using CAF can explicitly control the state of their connections to DB2 by using
connection functions supplied by CAF. For more information on CAF, see Section 6
of Application Programming and SQL Guide.

DB2 and CICS
The Customer Information Control System (CICS) attachment facility provided with
DB2 allows you to access DB2 from CICS. After you start DB2, you can operate
DB2 from a CICS terminal. You can start and stop CICS and DB2 independently,
and you can establish or terminate the connection between them at any time. You
also have the option of allowing CICS to connect to DB2 automatically.

The CICS attachment facility also provides CICS applications with access to DB2
data while operating in the CICS environment. CICS applications, therefore, can
access both DB2 data and CICS data. In case of system failure, CICS coordinates
recovery of both DB2 and CICS data.

The CICS attachment facility uses standard CICS command-level services where
needed; for example, EXEC CICS WAIT, EXEC CICS ABEND. A portion of the
CICS attachment facility executes under the control of the transaction issuing the

1-40 Administration Guide

SQL requests. Therefore these calls for CICS services appear to be issued by the
application transaction. These calls affect the application in the standard CICS way.

You can use DB2 with an extended recovery facility to facilitate recovery from a
CICS failure. To accomplish this, you must place all DB2 data sets on DASD
shared between the primary and alternate XRF systems. This enables DB2 to be
manually stopped on the primary system and started on the alternate system. You
must then ensure that the DB2 data sets on the shared DASD cannot be updated
at the same time by both the primary and alternate XRF systems. You might use a
multi-system DASD serialization function, such as Global Resource Serialization
(GRS), or any other means of shared DASD protection. For more information about
XRF, see “Extended Recovery Facility (XRF) Toleration” on page 4-160 and
IMS/ESA Administration Guide: System. For more information on global resource
serialization, see MVS/ESA Planning: Global Resource Serialization.

Figure 13 shows the relationship between DB2 and CICS. For a detailed
discussion of the connections, see “Chapter 4-2. Monitoring and Controlling DB2
and Its Connections” on page 4-23 of Administration Guide .

 CICS DB2 Subsystem

┌──────────────────┐ ┌───────────────────┐

│ │ Connections │ │

│ │ %─────────5 │ │─┐

│ │ %─────────5 │ │ │─┐

│ CICS │ %─────────5 │ DSN1MSTR │ │ ├─┐

│ address space │ │ address space │ │ │ ├─┐

└──────────────────┘ └───────────────────┘ │ │ │ │

│ DSN1DBM1 │ │ │ │

│ address space │ │ │ │

└───────────────────┘ │ │ │

│ DSN1DIST │ │ │

│ address space │ │ │

└─┬─────────────────┘ │ │

 │ IRLMPROC │ │

│ address space │ │

 └──┬────────────────┘ │

│ stored procedures│

│ address spaces │

 └──────────────────┘

Figure 13. Relationship of DB2 to CICS

Application Programming with CICS
Programmers writing CICS command-level programs can use the same data
communication coding techniques to write the data communication portions of
application programs that access DB2 data. Only the database portion of the
programming changes. For the database portions, programmers use SQL
statements to retrieve or modify data in DB2 tables.

To a CICS terminal user, application programs that access both CICS and DB2
data appear identical to application programs that access only CICS data.

DB2 supports this cross-product programming by coordinating recovery resources
with those of CICS. CICS applications can therefore access CICS-controlled
resources as well as DB2 databases.

 Chapter 1-2. System Planning Concepts 1-41

Function shipping of SQL requests is not supported. In a CICS multi-region
operation (MRO) environment, each CICS address space can have its own
attachment to the DB2 subsystem. A single CICS region can be connected to only
one DB2 subsystem at a time.

System Administration and Operation with CICS
An authorized CICS terminal operator can issue DB2 commands to control and
monitor both the attachment facility and DB2 itself. Authorized terminal operators
can also start and stop DB2 databases.

Even though you perform DB2 functions through CICS, you need to have the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment to
bind application plans and packages.

There are significant changes to the CICS attachment facility with CICS Version 4.
For more information on using CICS with DB2 see Installation Guide.

DB2 and IMS
The Information Management System (IMS) attachment facility allows you to
access DB2 from IMS. The IMS attachment facility receives and interprets requests
for access to DB2 databases using exits provided by IMS subsystems. Usually, IMS
connects to DB2 automatically with no operator intervention.

In addition to Data Language I (DL/I) and Fast Path calls, IMS applications can
make calls to DB2 using embedded SQL statements. In case of system failure, IMS
coordinates recovery of both DB2 and IMS data.

You can use DB2 with an extended recovery facility to facilitate recovery from an
IMS failure. To accomplish this, you must place all DB2 data sets on DASD shared
between the primary and alternate XRF systems. This enables DB2 to be manually
stopped on the primary system and started on the alternate system. You must then
ensure that the DB2 data sets on the shared DASD cannot be updated at the same
time by both the primary and alternate XRF systems. You might use a multi-system
DASD serialization function, such as Global Resource Serialization (GRS), or any
other means of shared DASD protection. For more information about XRF, see
“Extended Recovery Facility (XRF) Toleration” on page 4-160 and IMS/ESA
Administration Guide: System. For more information on global resource
serialization, see MVS/ESA Planning: Global Resource Serialization.

Figure 14 on page 1-43 shows the relationship between DB2 and IMS.

1-42 Administration Guide

 IMS

┌────────────────────┐ DB2 Subsystem

│ │─┐ Connections ┌────────────────────┐

│ IMS control │%┼─────────────5│ │─┐

│ region │ │─┐ │ │ │

│ address space │ │%┼───────────5│ │ │─┐

└────────────────────┘ │ │─┐ │ │ │ │

│ IMS BMP │ │ │ │ │ │ │─┐

│ independent region │ │%┼─────────5│ │ │ │ │

│ address space │ │ │ │ │ │ │ ├─┐

└────────────────────┘ │ │%────────5│ DSN1MSTR │ │ │ │ │

│ IMS MPP │ │ │ address space │ │ │ │ │

│ independent region │ │ ┌────5│ │ │ │ │ │

│ address space │ │ │ └────────────────────┘ │ │ │ │

└────────────────────┘ │ │ │ DSN1DBM1 │ │ │ │

│ IMS Fast Path │ │ │ address space │ │ │ │

│ independent region │ │ └────────────────────┘ │ │ │

│ address space │ │ │ DSN1DIST │ │ │

└────────────────────┘ │ │ address space │ │ │

┌────────────────────┐ │ └────────────────────┘ │ │

│ │ │ │ IRLMPROC │ │

│ DL/I Batch │%─────────┘ │ address space │ │

│ address space │ └──┬─────────────────┘ │

│ │ │ stored procedures │

└────────────────────┘ │ address spaces │

 └───────────────────┘

Figure 14. Relationship of DB2 to IMS

Application Programming with IMS
With the IMS attachment facility, DB2 provides database services for IMS
dependent regions. DL/I batch support allows users to access both IMS data (DL/I)
and DB2 data in the IMS batch environment.

IMS programmers writing the data communication portion of application programs
do not need to alter their coding technique to write the data communication portion
when accessing DB2; only the database portions of the application programs
change. For the database portions, programmers code SQL statements to retrieve
or modify data in DB2 tables.

To an IMS terminal user, IMS application programs that access DB2 appear
identical to IMS.

DB2 supports this cross-product programming by coordinating database recovery
services with those of IMS. Any IMS program uses the same synchronization and
rollback calls in application programs that access DB2 data as they use in IMS
DB/DC application programs that access DL/I data.

Another aid for cross-product programming is the Data Propagator NonRelational
(DPropNR) licensed program. Data Propagator NonRelational Release 1 allows
automatic updates to DB2 tables when corresponding information in an IMS DB
(database) is updated. Data Propagator NonRelational Release 2 adds the ability to
automatically update an IMS DB when corresponding information in your DB2
tables is updated.

Data Propagator NonRelational Release 2 also lets application programs access
up-to-date IMS or DB2 changes without requiring users to convert production

 Chapter 1-2. System Planning Concepts 1-43

applications or periodically copy data back and forth between DB2 tables and IMS
DBs.

See DataPropagator NonRelational MVS/ESA Administration Guide for more
information about Data Propagator NonRelational.

System Administration and Operation with IMS
An authorized IMS terminal operator can issue DB2 commands to control and
monitor DB2. The terminal operator can also start and stop DB2 databases.

Even though you perform DB2 functions through IMS, you need the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment
facility to bind application plans and packages.

DB2 and DL/I Batch
The DL/I batch support allows you to access both IMS data (DL/I) and DB2 data in
the IMS batch environment. DL/I batch access allows:

� Access to DB2 and DL/I data from application programs.

� Coordinated recovery through a two-phase commit process.

� Use of the IMS extended restart (XRST) and symbolic checkpoint (CHKP) calls
by application programs to coordinate recovery with IMS, DB2, and generalized
sequential access method (GSAM) files.

For more information on DL/I batch, see Section 5 of Application Programming and
SQL Guide.

DB2 and DDF
The distributed data facility (DDF) is an optional feature that allows a DB2
application to access data at other DB2s and at remote relational database systems
that support IBM's Distributed Relational Database Architecture (DRDA). In
addition, DDF allows applications running in a remote application requester
environment that supports DRDA to access data in DB2 subsystems. Figure 15 on
page 1-45 gives an overview of DDF support.

Substantial improvements in distributed database access have been achieved with
the stored procedures function and distributed threads enhancements.

Stored procedures solve the problem of high processor and elapsed time costs that
DRDA users experience during SQL processing when accessing data managed by
DB2 for OS/390. This function introduces an SQL interface that allows an SQL
requester to invoke user-written SQL programs, or stored procedures, at a DB2
server. Local DB2 applications or remote DRDA applications can issue the new
SQL CALL statement to invoke a stored procedure. With a single send or receive
operation, a series of SQL statements are invoked in the stored procedure, thus
significantly decreasing the costs of distributed SQL statement processing.

Distributed threads enhancements allow you to have up to 25000 distributed
threads connected to DB2 at the same time. This increase gives you room to grow
your distributed applications; more applications can now connect to DB2 without
delays.

1-44 Administration Guide

Local subsystem Requests Remote subsystem

┌──────────────┐

│ │

│ Application │

│ │

├──────────────┤

│ │ SQL ┌─────────┐

│ │%───────────────5│ DB2 │

│ DB2 │%───────────────5│ │

│ │ Data └─────────┘

│ │

│ │ SQL ┌────────────────────┐

│ │%───────────────5│ Another database │

│ │%───────────────5│ management system │

│ │ Data │ using DRDA │

└──────────────┘ └────────────────────┘

Figure 15. Overview of Distributed Database Support

The decision to access distributed data has implications for many DB2 activities:
application programming, data recovery, authorization, and so on. For a discussion
of these implications, see “Plan for Distributed Data” on page 2-9 .

 Data Sharing
DB2 takes advantage of the System/390 Parallel Sysplex, with its superior
processing capabilities. By allowing two or more processors to share the same
data, you can maximize performance while minimizing cost; improve system
availability and concurrency; expand system capacity; and configure your system
environment more flexibly. With data sharing, applications running on more than
one DB2 subsystem can read from and write to the same set of data concurrently.

 Chapter 1-2. System Planning Concepts 1-45

Figure 16. Data Sharing

Sharing DB2s must belong to a DB2 data sharing group. A data sharing group is a
collection of one or more DB2 subsystems accessing shared DB2 data. Each DB2
subsystem belonging to a particular data sharing group is a member of that group.
All members of a group use the same shared DB2 catalog and directory. DB2 data
sharing is intended as a replacement for shared read-only data. Unlike read-only
data sharers, all members of a data sharing group have equal and concurrent read
and write access to databases.

Data sharing allows you to add another DB2 onto another central processor
complex and access the same data through the new DB2. There is no need to
manage copies or distribute data. All DB2s in the group have concurrent read and
write access, and a single catalog and a single directory are used by all.

Data sharing allows you great flexibility in environment configuration. You can use
separate MVS images, each tailored for its user set, sharing the same data. You
can build your system incrementally as need dictates and set up members for use
during peak times only.

For more information, see Data Sharing: Planning and Administration.

1-46 Administration Guide

Section 2. Designing a Database

Chapter 2-1. Designing a Database . 2-5
Using the Design Chapters . 2-5
Terminology . 2-6
Logical Design . 2-7

A Sample List of Entities . 2-7
DB2 Structures . 2-7
Physical Design . 2-8
Plan for Maintaining Data Integrity . 2-8

| Parent Key . 2-8
Primary Key . 2-9
Foreign Key . 2-9
Parent and Dependent Tables and Rows . 2-9
Table Check Constraints . 2-9

Plan for Distributed Data . 2-9
Plan for Data Security . 2-10

Chapter 2-2. Designing Tables and Views 2-11
Decide What Data to Record in the Relational Database 2-11
Define Tables for Each Type of Relationship 2-12

One-to-Many and Many-to-One Relationships 2-12
Many-to-Many Relationships . 2-13
One-to-One Relationships . 2-13

Normalize Your Tables to Avoid Redundancy 2-13
First Normal Form . 2-14
Second Normal Form . 2-14
Third Normal Form . 2-15
Fourth Normal Form . 2-15

Consider Denormalizing Your Tables for Performance 2-16
Consider Creating Views of Your Tables . 2-17

Reasons for Using Views . 2-17
Using Joins . 2-18

Chapter 2-3. Maintaining Data Integrity . 2-19
Maintaining Referential Integrity . 2-19

Identify One or More Columns as a Parent Key 2-20
Defining a Parent Key and a Unique Index 2-21
Defining a Foreign Key . 2-22
Implications for SQL Statements . 2-25
Implications for Utility Operations . 2-30

Defining Table Check Constraints . 2-36
Constraint Considerations . 2-36
When Table Check Constraints Are Enforced 2-37
How Table Check Constraints Set Check Pending Status 2-37

Chapter 2-4. Designing Columns . 2-39
Choosing Columns . 2-39

Considerations for Record Size . 2-39
Provide Column Definitions for All Tables . 2-40
Column Specifications . 2-41

Column Names . 2-41

 Copyright IBM Corp. 1982, 1997 2-1

Column Labels . 2-41
Null Values . 2-42
Default Values . 2-42
Reasons for Using Nulls . 2-43
Reasons for Using Nonnull Default Values 2-44
Specifying Data Types . 2-44
Choosing String or Numeric Data Types . 2-45
Date, Time and Timestamp Data Types . 2-48
Comparing Data Types . 2-49

Chapter 2-5. Designing Indexes . 2-51
Index Types and Recommendations . 2-51

Type 2 Indexes . 2-51
Leaf Pages, Root Page, and Subpages . 2-53

Type 1 Indexes and Locking . 2-53
Type 2 Indexes and Locking . 2-54

Index Keys . 2-54
Using Unique Indexes . 2-55
Using Composite Keys . 2-56
Clustering Indexes . 2-56
Partitioned Indexes . 2-56

| Nonpartitioned Indexes . 2-57
Designing Index Spaces . 2-57

Chapter 2-6. Designing Table Spaces . 2-59
Deciding What Type of Table Space and How Many 2-59

Simple Table Spaces . 2-59
Segmented Table Spaces . 2-60
Partitioned Table Spaces . 2-61
Use LOCKSIZE with Performance in Mind 2-62

Compressing Data in a Table Space or Partition 2-63
Deciding Whether to Compress . 2-63
Building the Compression Dictionary . 2-64
Determining the Effectiveness of Compression 2-65

Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets . 2-67
Managing Your DB2 Data Sets with DFSMShsm 2-67
Managing Your Own DB2 Data Sets . 2-68

Managing Your Data Sets Using Access Method Services 2-69
Requirements for Your Own Data Sets . 2-69
DEFINE CLUSTER Command . 2-71

Chapter 2-8. Designing a Database in a Distributed Environment 2-73
Ways to Access Distributed Data . 2-73

DRDA Access . 2-73
DB2 Private Protocol Access . 2-73
Coordinated Updates . 2-74

Implications for Application Programming . 2-75
Implications for System Operations . 2-76
Stored Procedures . 2-76

Chapter 2-9. Implementing Your Design . 2-79
Choosing Names for DB2 Objects . 2-79

DB2 Storage Groups and Databases . 2-80

2-2 Administration Guide

Table Spaces . 2-80
Tables, Views, and Indexes . 2-80
Naming Remote Objects for DB2 Private Protocol Access 2-80

Implementing Your Storage Groups . 2-82
CREATE STOGROUP Statement . 2-83

Implementing Your Databases . 2-85
CREATE DATABASE Statement . 2-85
Using the Default Database . 2-86

Implementing Your Table Spaces . 2-86
Creating a Table Space Implicitly . 2-86
Creating a Table Space Explicitly . 2-87
CREATE TABLESPACE Statement . 2-87
Creating a Segmented Table Space . 2-90
Creating a Partitioned Table Space . 2-91

| Creating a Large Partitioned Table Space 2-91
Implementing Your Tables . 2-92

Table Names . 2-93
CREATE TABLE Statement . 2-93
Clauses of the CREATE TABLE Statement 2-93

| CREATE GLOBAL TEMPORARY TABLE Statement 2-98
Implementing Your Indexes . 2-99

CREATE INDEX Statement . 2-99
Clauses of the CREATE INDEX Statement 2-100

| Creating a Partitioned Index on a Large Partitioned Table Space 2-103
Creating an Index on a Large Table . 2-104

Implementing Referential Constraints . 2-104
Order of Operations in Building a Referential Structure 2-104
Creating the Tables . 2-105
Loading the Tables . 2-105

Implementing Your Views . 2-105
Creating a View on a Single Table . 2-106
Creating a View Combining Information from Several Tables 2-106
Inserting and Updating through Views . 2-107

Creating Schemas . 2-109
Authorization to Process Schema Definitions 2-110
Processing Schema Definitions . 2-110

Chapter 2-10. Loading Data into DB2 Tables 2-113
Loading Methods . 2-113
Loading Tables with the LOAD Utility . 2-113
Replacing Data . 2-114
Loading Data Using the SQL INSERT Statement 2-115
Loading Data from DL/I . 2-116

Chapter 2-11. Using the Catalog in Database Design 2-117
Retrieving Catalog Information about DB2 Storage Groups 2-117
Retrieving Catalog Information about a Table 2-117
Retrieving Catalog Information about Aliases 2-118
Retrieving Catalog Information about Columns 2-118
Retrieving Catalog Information about Indexes 2-119
Retrieving Catalog Information about Views . 2-119
Retrieving Catalog Information about Authorizations 2-119
Retrieving Catalog Information about Primary Keys 2-120
Retrieving Catalog Information about Foreign Keys 2-120

 Section 2. Designing A Database 2-3

Retrieving Catalog Information about Check Pending 2-121
Retrieving Catalog Information about Table Check Constraints 2-121
Adding and Retrieving Comments . 2-121
Verifying the Accuracy of the Database Definition 2-122

Chapter 2-12. Altering Your Database Design 2-123
Using the ALTER Statement . 2-123
Dropping and Re-creating DB2 Objects . 2-123
Altering DB2 Storage Groups . 2-124
Altering DB2 Databases . 2-125
Altering Table Spaces . 2-125

Using the ALTER TABLESPACE Statement 2-125
Changing the Space Allocation for User-Managed Data Sets 2-127

Dropping, Re-creating, or Converting a Table Space 2-127
Altering Tables . 2-128

Using the ALTER TABLE Statement . 2-128
Adding a New Column . 2-129
Altering a Table for Referential Integrity . 2-130
Adding or Dropping Table Check Constraints 2-132
Altering the Assignment of a Validation Routine 2-132
Altering a Table for Capture of Changed Data 2-133
Altering an Edit Procedure or Field Procedure 2-133
Altering the Subtype of a String Column . 2-134
Altering Data Types and Attributes and Deleting Columns 2-134

| Altering a Table from EBCDIC to ASCII . 2-137
Altering Indexes . 2-137
Altering Views . 2-138
Changing Data Set Passwords . 2-139
Changing the High-Level Qualifier for DB2 Data Sets 2-139

Define a New Integrated Catalog Alias . 2-140
Change the Qualifier for System Data Sets 2-140
Change Qualifiers for Other Databases and User Data Sets 2-143

Moving DB2 Data . 2-147
Introduction: Tools Available . 2-147
Moving a DB2 Data Set . 2-149
Copying a Relational Database . 2-150
Copying an Entire DB2 Subsystem . 2-150

2-4 Administration Guide

Chapter 2-1. Designing a Database

This chapter provides an overview of the other chapters in this section and
introduces some DB2-specific terminology. Additionally, this chapter briefly
describes the two types of database design, logical and physical.

Using the Design Chapters
This section of the Administration Guide:

� Introduces database design terminology
� Describes relational database design concepts
� Provides planning information for logical design activities
� Details DB2 database design implementation activities
� Tells how to use the catalog as a design tool
� Describes how to alter your implemented design

“Chapter 2-2. Designing Tables and Views” on page 2-11 explores the elements of
table design in relational databases, including the types of relationships,
normalization and denormalization and also considers views and reasons for using
views of tables.

| “Chapter 2-3. Maintaining Data Integrity” on page 2-19 gives an overview of how
| to ensure that rows are unique, maintain referential integrity, and ensure data
| validity.

“Chapter 2-4. Designing Columns” on page 2-39 describes how to design columns
in tables, define primary and foreign keys, and explains the types of data you can
put in columns.

“Chapter 2-5. Designing Indexes” on page 2-51 explains the differences between
the two types of indexes used in DB2, and how and when you should use them.
Designing index spaces is also described in this chapter.

“Chapter 2-6. Designing Table Spaces” on page 2-59 provides information about
simple, segmented, and partitioned table spaces, and describes how to compress
data in DB2 databases.

“Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets” on
page 2-67 explains how to manage DB2 data sets through use of storage groups.

“Chapter 2-8. Designing a Database in a Distributed Environment” on page 2-73
provides information necessary for designing databases in a distributed
environment, and describes design considerations for stored procedures.

“Chapter 2-9. Implementing Your Design” on page 2-79 details specific
implementation activities, such as creating storage groups, table spaces,
databases, and tables.

“Chapter 2-10. Loading Data into DB2 Tables” on page 2-113 is an overview of
how data is loaded into DB2 tables.

 Copyright IBM Corp. 1982, 1997 2-5

“Chapter 2-11. Using the Catalog in Database Design” on page 2-117 describes
how to use the catalog to find information about DB2 databases.

“Chapter 2-12. Altering Your Database Design” on page 2-123 tells how you can
alter your databases after you have created them.

 Terminology
This section defines our basic terms for database design; other terms are defined
later as they occur. The terms used in this book might be used differently in other
non-DB2 books.

The term database is not used consistently in the data processing industry.
Sometimes, database means the entire set of data used by an enterprise, whether
the data is all computer-processed or not. Elsewhere, database means all the
machine-readable data managed by a particular computer application program. And
particular products, like DB2, use database in specialized senses. We use
database in the following ways:

� A relational database is the entire set of data managed by one instance of a
relational database management system (DBMS), like DB2. Where “relational
database” is clear from context, we shorten that to database. In this chapter,
“database” generally means “relational database”.

� A DB2 database is a DB2 object created by the CREATE DATABASE
statement. Again, we shorten that to database when the meaning seems clear
from context. For example, “database DSNDB06” refers to a named DB2
object.

An entity is a person, object or concept about which you wish to store information.
In DB2, information about entities are stored in tables, which are described in
“Chapter 2-2. Designing Tables and Views” on page 2-11.

Some of the entities described in the sample DB2 tables are employees,
departments, and projects. (See “Appendix A. DB2 Sample Tables” on page X-7,
for a description of the sample database.) In the sample employee table
(DSN8510.EMP), the employee “entity” has attributes, or properties, such as
employee number, job code, birth date, and salary amount. Those properties
appear as the columns EMPNO, JOBCODE, BIRTHDATE, and SALARY. An
occurrence of the entity “employee” consists of the values in all of the columns for
one employee. Each employee has a unique employee number (EMPNO) that can
be used to identify an occurrence of the entity “employee.”

In DB2 tables, entities and properties of similar entities are represented as
columns, and occurrences are represented as values in the columns, as in the
following table:

Table 2. Occurrences and Properties of an Entity

Entity
(employee)

%────────────────────Properties────────────────────5

EMPNO JOBCODE BIRTHDATE SALARY

Sally Kwan 000030 60 1941-11-05 38250

John Geyer 000050 58 1925-09-15 40175

2-6 Administration Guide

 Logical Design
A database is more than a collection of employee and department numbers, parts
and inventory identifiers, and dollars and cents. A database is a representation of
the people and things your business needs to operate, and the way those people
and things relate to each other.

The logical structure of data is the entities and their relations to each other, while
the physical data structure is the software implementation of the entities and their
relations. Relationships between dissimilar entities are represented by like values in
columns of different tables.

Logical design is the process of listing entities and mapping their relationships.

A Sample List of Entities
For example, your business has employees, in departments with managers, who
produce goods and services, using parts and inventory, to fill orders placed by
customers. One listing of the entities is:

 � Employees
 � Departments
 � Managers
 � Parts
 � Orders
 � Customers

Listing the types of entities is the first, and often easiest step in logical database
design. Tracing the relationships of entities to each other can be complex, because
there is often more than simple one-to-one causal correspondence between the
entities and their associated properties.

For example, employees are usually assigned unique employee numbers and
report to one department. But managers can manage more than one department,
and employees can be working on several different products, filling multiple orders
from a variety of customers. Customers, also usually assigned a unique customer
number, can be ordering several products at one time.

 DB2 Structures
In DB2, you use different structures (also called objects) to turn your logical
database design into the physical database. You create these structures, and they
determine how the data is accessed and stored. This section briefly describes the
DB2 structures that require storage allocation. More detailed information about
creating DB2 structures can be found in “Chapter 2-9. Implementing Your Design”
on page 2-79 and SQL Reference.

Tables: Tables are the primary means of organizing entities in DB2. Tables are a
collection of unordered rows, each representing a specific entity. Table 2 on

| page 2-6 is an example of a table containing employee information. In addition, you
| can use temporary tables when your database design only needs a table for the life
| of an application process.

Columns: Columns contain the properties of the entities in your tables. In Table 2
on page 2-6, the properties of the employees are their employee numbers, job

 Chapter 2-1. Designing a Database 2-7

codes, birthdays, and salaries. You name the columns of your table as you create
or alter your table.

Indexes: Indexes are a set of pointers you specify that provide access to data
stored in tables. Indexes are defined separately from tables. Indexes are used to:

 � Ensure uniqueness
� Provide fast access to data

Table Spaces: A table space is one or more data sets used to store one or more
tables. In DB2, there are several types of table spaces. More information about the
types of table spaces can be found in “Chapter 2-6. Designing Table Spaces” on
page 2-59.

Index Spaces: Index spaces are the implicitly-created physical storage areas for
indexes. Each index gets an individual index space.

Storage Groups: Storage groups is a list of DASD volumes you specify to hold
your DB2 objects. Storage is then allocated from these volumes as your tables are
loaded with data.

Databases: A database is a collection of table spaces and index spaces, and the
data contained within them.

 Physical Design
Using objects to create physical data structures is one part of physical design.
Other considerations include appropriate organization of your data, allocating
storage across one or more DASD volumes at one or more locations, the number
of users who will need access to the data and what kind of access they will need,
and the types of applications used to access the data.

Plan for Maintaining Data Integrity
The condition of a set of tables in which all references from one table to another
are valid is called referential integrity; referential integrity is the enforcement of all
referential constraints. Of course, having referential integrity does not mean that the
data is necessarily correct. That the employee table shows every employee
assigned to a valid department number is one thing; to have it show every
employee assigned to the correct department is quite another.

When you design your tables, make sure that entities that refer to entities in other
tables refer to entities and tables that actually exist. Referential integrity is
described in “Chapter 2-3. Maintaining Data Integrity” on page 2-19.

| Parent Key
| The parent key of a table is either a primary key or a unique key that is part of a
| referential constraint.

2-8 Administration Guide

 Primary Key
The primary key of a table is the column or set of columns that provide the unique
identifiers of the rows. For example, the primary key of the department table is the
department number; the primary key of the project activity table is a combination of
the project number, the activity number, and the activity starting date.

 Foreign Key
A column or set of columns that refer to a parent key (it is common for the parent
key to be a primary key) is called a foreign key. For example, the column of
department numbers in the employee table is a foreign key because it refers to the
primary key of the department table. The combination of project number, activity
number, and activity starting date that appears in the employee to project activity
table is a foreign key because it refers to the same combination of columns in the
project activity table. The employee number in that same table is another foreign
key; it refers to the primary key of the employee table.

Parent and Dependent Tables and Rows
The table containing the primary key is called the parent table and the one
containing the foreign key is the dependent table. A dependent of a dependent is a
descendent.

These terms should not suggest a “family tree” of dependencies. It is possible for a
table to be a dependent of itself (called a self-referencing table), for two tables to
be dependents of each other, or for there to be a cycle of tables each dependent
on the one before it. A table can be the parent of many dependents, and it can also
be a dependent of many parents. Refer to Figure 27 on page 2-19 for examples of
various relationships.

Similar terms apply to rows. A row of a parent table that is referred to by some row
of the dependent table is a parent row. The row that refers to it is a dependent row.
But a row of a parent table is not always a parent row—perhaps nothing refers to it.
Likewise, a row of a dependent table is not always a dependent row—the foreign
key could allow null values, which refer to nothing.

Table Check Constraints
Table check constraints allow you to specify what values of a column in a table are
valid, such as ensuring that phone numbers have a numeric value between 0000
and 9999. With table check constraints, you do not have to enforce constraints
within an application program or with a validation routine.

Plan for Distributed Data
By distributed data, we mean data processing in which some or all of the data is
stored in more than one system. This section is an overview to help you evaluate
whether distributed data is appropriate for your environment. You can find more
information about distributed data in Distributed Relational Database Architecture:
Evaluation and Planning Guide. “Chapter 2-8. Designing a Database in a
Distributed Environment” on page 2-73 tells you how to set up DB2 for distributed
data.

 Chapter 2-1. Designing a Database 2-9

Plan for Data Security
The final step in logical database design is to plan how you will control access to
the DB2 subsystem and its data. To find out what security mechanisms and
choices are available to you, see “ Section 3. Security and Auditing” on page 3-1.

2-10 Administration Guide

Chapter 2-2. Designing Tables and Views

This chapter explains the different types of relationships between data, the forms of
tables, and normalization, and also considers creating views and reasons for using
views of your tables.

Decide What Data to Record in the Relational Database
In a table, each column of a row is related in some way to all the other columns of
that row. Some of the relationships expressed in the sample tables are:

� Employees are assigned to departments.

Dolores Quintana is assigned to Department C01.

� Employees earn money.

Dolores earns $23,800 per year.

� Departments report to other departments.

Department C01 reports to Department A00.
Department D01 reports to Department A00.

� Employees work on projects.

Dolores and Heather work on projects IF1000 and IF2000.

� Employees manage departments.

Before you design your tables, you must understand entities and their relationships.
“Employee” and “department” are entities; Sally Kwan is part of an occurrence of
“employee,” and C01 is part of an occurrence of “department.” Entities and their
relationships can be represented as in Table 3.

The same relationship applies to the same columns in every row of a table. For
example, one row of a table expresses the relationship that Sally Kwan manages
Department C01; another, the relationship that John Geyer manages Department
E01.

Table 3. Relationships in the DB2 Sample Tables

Entity Relationship Entity

Employees are assigned to departments

Employees earn money

Departments report to departments

Employees work on projects

Employees manage departments

 Copyright IBM Corp. 1982, 1997 2-11

Define Tables for Each Type of Relationship
In a relational database, you can express several types of relationships. Consider
the possible relationships between employees and departments. A given employee
can work in only one department; this relationship is single-valued for employees.
On the other hand, one department can have many employees; the relationship is
multivalued for departments. The relationship between employees (single-valued)
and departments (multivalued) is a one-to-many relationship. Relationships can be
one-to-many, many-to-one, one-to-one, or many-to-many.

The type of a given relationship can vary, depending on the specific environment. If
employees of some company belong to several departments, the relationship
between employees and departments is many-to-many.

You will want to define separate tables for different types of relationships.

One-to-Many and Many-to-One Relationships
To define tables for each one-to-many and many-to-one relationship:

� Group all the relationships for which the “many” side of the relationship is the
same entity.

� Define a single table for all the relationships in a group.

In Table 4, the “many” side of the first and second relationships is “employees” so
we define an employee table (DSN8510.EMP).

The “many” side of the third relationship is “departments,” so we define a
department table (DSN8510.DEPT). Figure 17 illustrates the process.

Table 4. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees earn money

Departments report to (administrative) departments

┌─────────────────────────────────────┐ Employee Table

│ Employees assigned to departments ├──┐ (DSN851ð.EMP)

│ Many to one │ │ ─────────────────────────

├─────────────────────────────────────┤ ├───5 EMPNO WORKDEPT SALARY
│ Employees earn money │ │ ─────────────────────────

│ Many to one ├──┘

└─────────────────────────────────────┘

 Department Table

┌─────────────────────────────────────┐ (DSN851ð.DEPT)

│ Departments report to departments │ ─────────────────

│ Many to one ├──────5 DEPTNO ADMRDEPT
└─────────────────────────────────────┘ ─────────────────

Figure 17. Assigning Many-to-One Facts to Tables

2-12 Administration Guide

 Many-to-Many Relationships
A relationship that is multivalued in both directions is a many-to-many relationship.
An employee can work on more than one project, and a project can have more
than one employee assigned. The questions “What does Dolores Quintana work
on?” and “Who works on project IF1000?” both yield multiple answers. A
many-to-many relationship can be expressed in a table with a column for each
entity (“employees” and “projects”), as shown in Figure 18.

 Employee to

Project Activity Table

┌────────────────────────────────────┐ (DSN851ð.EMPPROJACT)

│ Employees work on projects │ ──────────────

│ Many to many ├─────5 EMPNO PROJNO
└────────────────────────────────────┘ ──────────────

Figure 18. Assigning Many-to-Many Facts to a Table

 One-to-One Relationships
One-to-one relationships are single-valued in both directions. A manager manages
one department; a department has only one manager. The questions, “Who is the
manager of Department C01?” and “What department does Sally Kwan manage?”
both have single answers. The relationship can be assigned to either the
department table or the employee table. Because all departments have managers,
but not all employees are managers, it is most logical to add the manager to the
department table as shown in Figure 19.

 Department Table

┌─────────────────────────────────────┐ (DSN851ð.DEPT)

│Employee manages department │ ─────────────────────────

│ One to one ├─────5 DEPTNO ADMRDEPT MGRNO
└─────────────────────────────────────┘ ─────────────────────────

Figure 19. Assigning One-to-One Facts to a Table

Normalize Your Tables to Avoid Redundancy
Normalization helps you avoid redundancies and inconsistencies in your data. This
section briefly reviews the rules for first, second, third, and fourth normal forms of
tables, and describes some reasons why they should or should not be followed.
The fifth normal form of a table, which is covered in many books on database
design, is not described here.

Here are brief descriptions of the normal forms presented later:

Form Description

First At each row and column position in the table there exists one value, never
a set of values.

Second Each column that is not in the key provides a fact that depends on the
entire key.

Third Each nonkey column provides a fact that is independent of other nonkey
columns and depends only on the key.

Fourth No row contains two or more independent multivalued facts about an
entity.

 Chapter 2-2. Designing Tables and Views 2-13

First Normal Form
Any relational table satisfies the requirement of first normal form: at each
row-and-column position in the table there exists one value, never a set of values.

Second Normal Form
A table is in second normal form if each column that is not in the key provides a
fact that depends on the entire key.

Second normal form is violated when a nonkey column is a fact about a subset of a
composite key, as in the following example. An inventory table records quantities of
specific parts stored at particular warehouses; its columns are shown in Figure 20.

 KEY

 ┌────┴────┐

─┴─────────┴────────────────────────────────────

PART WAREHOUSE QUANTITY WAREHOUSE─ADDRESS
──

Figure 20. Key Violates Second Normal Form

Here, the key consists of the PART and the WAREHOUSE columns together.
Because the column WAREHOUSE-ADDRESS depends only on the value of
WAREHOUSE, the table violates the rule for second normal form. The problems
with this design are:

� The warehouse address is repeated in every record for a part stored in that
warehouse.

� If the address of the warehouse changes, every row referring to a part stored in
that warehouse must be updated.

� Because of the redundancy, the data might become inconsistent, with different
records showing different addresses for the same warehouse.

� If at some time there are no parts stored in the warehouse, there might be no
row in which to record the warehouse address.

To satisfy second normal form, the information shown above would be in two
tables, as in Figure 21.

 KEY KEY

 ┌────┴────┐ │

─┴─────────┴──────────────── ────┴────────────────────────

PART WAREHOUSE QUANTITY WAREHOUSE WAREHOUSE─ADDRESS
──────────────────────────── ─────────────────────────────

Figure 21. Two Tables Satisfy Second Normal Form

However, there is a performance consideration in having the two tables in second
normal form. Application programs that produce reports on the location of parts
must join both tables to retrieve the relevant information.

To better understand performance considerations, see “Consider Denormalizing
Your Tables for Performance” on page 2-16.

2-14 Administration Guide

Third Normal Form
A table is in third normal form if each nonkey column provides a fact that is
independent of other nonkey columns and depends only on the key.

Third normal form is violated when a nonkey column is a fact about another nonkey
column. For example, the first table in Figure 22 contains the columns EMPNO and
WORKDEPT. Suppose a column DEPTNAME is added. The new column depends
on WORKDEPT, whereas the primary key is the column EMPNO; thus the table
now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the
department name for other employees in that department. The inconsistency that
results is shown in the updated version of the table in Figure 22.

The table can be normalized by providing a new table, with columns for
WORKDEPT and DEPTNAME. In that case, an update like changing a department
name is much easier—the update only has to be made to the new table. An SQL
query that shows the department name along with the employee name is more
complex to write because it requires joining the two tables. This query will probably
also take longer to execute than the query of a single table. In addition, the entire
arrangement takes more storage space because the WORKDEPT column must
appear in both tables.

Employee─Department Table (EMPDEPT) Before Update

 ───

EMPNO FIRSTNME LASTNAME WORKDEPT DEPTNAME
 ───

 ððð29ð JOHN PARKER E11 OPERATIONS

ððð32ð RAMLAL MEHTA E21 SOFTWARE SERVICES

 ððð31ð MAUDE SETRIGHT E11 OPERATIONS

 ───

Employee─Department Table (EMPDEPT) After Update

 ───

EMPNO FIRSTNME LASTNAME WORKDEPT DEPTNAME
 ───

 ððð29ð JOHN PARKER E11 INSTALLATION MGMT

ððð32ð RAMLAL MEHTA E21 SOFTWARE SERVICES

 ððð31ð MAUDE SETRIGHT E11 OPERATIONS

──

Figure 22. Update of an Unnormalized Table. Information in the table has become
inconsistent.

Fourth Normal Form
A table is in fourth normal form if no row contains two or more independent
multivalued facts about an entity.

Consider these entities: employees, skills, and languages. An employee can have
several skills and know several languages. There are two relationships, one
between employees and skills, and one between employees and languages. A
table is not in fourth normal form if it represents both relationships, as in the
example of Figure 23 on page 2-16.

 Chapter 2-2. Designing Tables and Views 2-15

 KEY

 ┌──────┼──────────┐

────┴──────┴──────────┴────

EMPLOYEE SKILL LANGUAGE
───────────────────────────

Figure 23. A Table That Violates Fourth Normal Form

Instead, the relationships should be represented in two tables, as in Figure 24.

 KEY KEY

 ┌───┴─────┐ ┌───┴──────┐

───┴─────────┴── ───┴──────────┴────

EMPLOYEE SKILL EMPLOYEE LANGUAGE
──────────────── ───────────────────

Figure 24. Tables in Fourth Normal Form

If, however, the facts are interdependent—that is, the employee applies certain
languages only to certain skills—then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a
database is to arrange all data in tables in fourth normal form, and then decide
whether the result gives you an acceptable level of performance. If it does not, you
are at liberty to denormalize your design.

Consider Denormalizing Your Tables for Performance
“Normalize Your Tables to Avoid Redundancy” on page 2-13 describes
normalization only from the viewpoint of logical database design. This is
appropriate because the rules of normalization do not consider performance. See
the example, given in “Second Normal Form” on page 2-14, of the column that
contains the addresses of warehouses. The column is first shown as part of a table
that contains information about parts and warehouses. To further normalize the
design, the column is removed from that table and defined as part of a table that
contains information only about warehouses. The other possible design (in which
the column is part of both tables) is not considered, because the context of the
discussion is logical database design.

What if there are applications that require information about both parts and
warehouses, including the addresses of warehouses? The premise of the
normalization rules is that the information can be retrieved by SQL statements that
join the two tables. The problem is that a join operation can be time consuming,
even for only two tables. As the number of tables increases, the access costs can
increase enormously, depending on the size of the tables, the available indexes,
and so on. For example, if indexes are not available, the join of many large tables
could conceivably take hours. Furthermore, the number of tables that can be joined
is at most 15 and, depending on the complexity of the statement, can be
significantly less. Thus, a denormalized design might be absolutely necessary.

Consider the design in which both tables have a column that contains the
addresses of warehouses. If this design makes join operations unnecessary, it
could be a worthwhile redundancy. Addresses of warehouses do not change often.
And if one does change, SQL makes it easy to update all occurrences.

Normalizing tables is recommended, but there can be performance problems, if, for
example, user queries view data that is in more than one table, causing too many
joins. It may become necessary for you to denormalize your tables.

2-16 Administration Guide

What you have to consider is the trade-off—whether duplication, in several tables,
of often requested columns is less expensive than the time it takes to perform joins.
This duplication of columns in multiple tables is denormalization, and increases
redundancy.

In the following tables, information about parts, warehouses, and warehouse
addresses are contained in two tables, both in normal form.

 KEY KEY

 ┌────┴────┐ │

─┴─────────┴──────────────── ────┴────────────────────────

PART WAREHOUSE QUANTITY WAREHOUSE WAREHOUSE─ADDRESS
──────────────────────────── ─────────────────────────────

Figure 25. Two Tables Satisfy Second Normal Form

 KEY

 ┌────┴────┐

─┴─────────┴────────────────────────────────────

PART WAREHOUSE QUANTITY WAREHOUSE─ADDRESS
──

Figure 26. Denormalized Table

If you decide to denormalize, thoroughly document your denormalization. Describe,
in detail, the logic behind the denormalization and the steps you took. Then, if in
the future it becomes necessary to normalize again, an accurate record is available
for those who must do the work.

Consider Creating Views of Your Tables
Some of your users might find that no single table contains all the data they need;
rather, the data might be scattered among several tables. Furthermore, one table
might contain more data than they want to see, or more than they should be
authorized to see. For those situations, you can create views. A view is an
alternative way of describing data that exists in one or more tables.

You can create a view any time after creating the underlying tables. The owner of a
set of tables implicitly has the authority to create a view on them, and a user with
SYSADM authority can create a view for any owner on any set of tables.

Reasons for Using Views
Some reasons you might want to use views are:

� To provide a customized table for a specific user

Some tables might have a large number of columns, not all of which are of
interest to all users. You can, in effect, create a smaller table for certain users
by defining a view containing only the columns of interest.

� To limit access to certain kinds of data

You can create a view containing only selected columns and rows from a table
or tables. Users with the SELECT privilege on the view see only the information
you describe. For example, a view could be defined that showed only the
FIRSTNME, LASTNAME, WORKDEPT, and EDLEVEL columns for employees
in Department D11.

� To allow you to alter tables without affecting application programs

 Chapter 2-2. Designing Tables and Views 2-17

For example, an application program that uses INSERT into T1 without a
specified list of column names causes an error after you add a column to table
T1. The error is generated because the number of values being inserted into
the table is different from the number of columns in the table. If T1 is a view,
you are protected from that error because adding a column to the table does
not affect the view definition and, therefore, does not affect the application
program.

When designing views, there are several restrictions you need to consider. See
Chapter 6 of SQL Reference.

 Using Joins
You can create a view that combines information from two or more tables by
naming more than one table in the FROM clause. See “Creating a View Combining
Information from Several Tables” on page 2-106 for more information.

2-18 Administration Guide

Chapter 2-3. Maintaining Data Integrity

This chapter discusses the following topics:

� “Maintaining Referential Integrity”
� “Defining Table Check Constraints” on page 2-36

Maintaining Referential Integrity
Throughout this section, you might want to refer to the diagram of tables and
relationships in Figure 27.

 ┌────────┐

 6 CASCADE

 ┌───────────┐ │

 ┌─────┤ DEPT ├─────┘

 │ │ │

 │ └─┬─────────┘

 │ SET &

 │ NULL SET

 │ 6 NULL

 │ ┌────────┴──┐

 │ │ EMP ├───────────────────────────────────────┐

 │ │ │ │

 │ └─┬─────────┘ │

 │ RESTRICT RESTRICT

 RESTRICT │ ┌────────┐ ┌───────────┐ │

│ 6 6 CASCADE │ ACT │ │

 │ ┌───────────┐ │ │ │ │

 └────5│ PROJ ├─────┘ └─────┬─────┘ │

 │ │ RESTRICT │

 └─────┬─────┘ 6 │

 RESTRICT ┌───────────┐ │

└────────────────────────5│ PROJACT │ │

 │ │ │

 └─────┬─────┘ │

 RESTRICT │

 6 │

 ┌───────────┐ │

 │EMPPROJACT │%──────┘

 │ │

 └───────────┘

Figure 27. Relationships Among Tables in the Sample Application. Arrows point from
parent tables to dependent tables.

A table can serve as the “master list” of all occurrences of an entity. In the sample
application, the employee table serves that purpose for employees; only the
numbers that appear in that table are valid employee numbers. Likewise, the
department table provides a master list of all valid department numbers; the project
activity table provides a master list of activities performed for projects; and so on.

There are times when normalizing a table means that one table must refer to other
entities, thus creating occurrences of duplicate data. In the sample tables, for
example, the employee table refers to departments by listing the department for
which each employee works.

Clearly, when a table refers to an entity for which there is a master list, it should
identify an occurrence of the entity that actually appears in the master list;
otherwise, either the reference is invalid or the “master list” is incomplete.

You can let DB2 enforce referential integrity, or you can have your application
programs enforce it. In either case, you must consider how a change to a table can
be affected by its parent tables or might affect its dependent tables.

 Copyright IBM Corp. 1982, 1997 2-19

Identify One or More Columns as a Parent Key
If every row in a table represents relationships for a unique entity, the table should
have one column or a set of columns that provides a unique identifier for the rows
of the table. This column (or set of columns) is called the parent key of the table.
To ensure that the parent key does not contain duplicate values, you must create a
unique index (see “Using Unique Indexes” on page 2-55) on the column or
columns that constitute the parent key. Defining the parent key is thus called entity
integrity, since it requires each entity to have a unique key.

In some cases, using a timestamp as part of the key can be helpful, for example
when a table does not have a “natural” unique key or if arrival sequence is the key
(see “Date, Time and Timestamp Data Types” on page 2-48).

Primary keys for some of the sample tables are:

Table Key Column
Employee table EMPNO
Department table DEPTNO
Project table PROJNO

Figure 28 shows part of the project table with the primary key column indicated.

 PRIMARY KEY COLUMN

 │

 6 Project Table

 ───────────────────────────────────────

 PROJNO PROJNAME DEPTNO
 ───────────────────────────────────────

 MA21ðð WELD LINE AUTOMATION Dð1

 MA211ð W L PROGRAMMING D11

 ───────────────────────────────────────

Figure 28. A Primary Key on a Table

Figure 29 shows a primary key containing more than one column; it is a composite
key.

PRIMARY KEY COLUMNS

│ Project Activity Table

 ┌───────┴┬────────────────────┐

 6 6 6

 ──────────────────────────────────────

PROJNO ACTNO ACSTAFF ACSTDATE
 ──────────────────────────────────────

 MA21ðð 1ð .5 82ð1ð1

 MA21ðð 2ð 1.ð 82ð3ð1

 MA211ð 1ð 1.ð 83ð2ð1

───────────────────────────────────────

Figure 29. A Composite Primary Key. The three columns PROJNO, ACTNO, and
ACSTDATE are all parts of the key.

2-20 Administration Guide

Defining a Parent Key and a Unique Index
The information under this heading, up to “Defining a Foreign Key” on page 2-22 is
General-use Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

The primary key of a table, if there is one, uniquely identifies each occurrence of an
entity about which the table contains information. The PRIMARY KEY clause
identifies the column or columns of the primary key. Each column identified must be
defined as NOT NULL.

| Another way to allow only unique values in a column is to create a table using the
| UNIQUE clause of the CREATE TABLE statement. Like the PRIMARY KEY clause,
| the specification of a UNIQUE clause prevents use of the table until you create an
| index to enforce the uniqueness of the key. For more information about the
| UNIQUE clause, see Chapter 6 of SQL Reference.

| A table that is to be a parent of dependent tables must have a primary or a unique
| key— the foreign keys of the dependent tables refer to it. Otherwise, a primary key

is optional. Consider defining a primary key if each row of your table does pertain
| to a unique occurrence of some entity. If you define a primary key, an index must
| be created (the primary index) on the same set of columns, in the same order as

those columns. If you are defining referential constraints for DB2 to enforce, read
“Chapter 2-3. Maintaining Data Integrity” on page 2-19 before creating or altering
any of the tables involved.

Further information about other clauses of the CREATE TABLE statement can be
found in other sections of Administration Guide and in Chapter 6 of SQL Reference.

A table can have only one primary key. It obeys the same restrictions as do index
keys:

� It can include no more than 64 columns
� No column can be named twice

� The sum of the column length attributes cannot be greater than 255

You define a list of columns as the primary key of a table with the PRIMARY KEY
clause in the CREATE TABLE statement.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
| ALTER TABLE statement. In this case, a unique index must already exist.

 Incomplete Definition
If a table is created with a primary key, its primary index is the first unique index
created on its primary key columns, with the same order of columns as the primary
key columns. The columns of the primary index can be in either ascending or
descending order. The table has an incomplete definition until the primary index is
created. This incomplete definition status is recorded as an “I” in the STATUS
column of SYSIBM.SYSTABLES. Use of a table with an incomplete definition is
severely restricted: you can drop the table, create the primary index, and drop or

| create other indexes; you cannot load the table, insert data, retrieve data, update
| data, delete data, or create foreign keys that reference the primary key.

 Chapter 2-3. Maintaining Data Integrity 2-21

Because of these restrictions, you might plan to create the primary index soon after
creating the table. For example, to create the primary index for the project activity
table, issue:

CREATE UNIQUE INDEX XPROJAC1

ON DSN851ð.PROJACT (PROJNO, ACTNO, ACSTDATE);

Creating the primary index resets the “incomplete definition” status and its
associated restrictions. But if you drop the primary index, it reverts to incomplete
definition status; to reset it, you must create the primary index or alter the table to
drop the primary key.

If the primary key is added later, with ALTER TABLE, then a unique index on the
key columns must already exist. If there is more than one unique index on those
columns, DB2 chooses one arbitrarily to be the primary index. See “Altering a Table
for Referential Integrity” on page 2-130 for more information about altering an
existing table.

Recommendations for Defining Primary Keys
Consider the following items when you plan for primary keys:

� The theoretical model of a relational database suggests that every table should
have a primary key to uniquely identify the entities it describes. However, you
must weigh that against the potential cost of index maintenance overhead.
There is no DB2 requirement to define a primary key for tables with no
dependents.

� Choose a primary key that cannot be updated. This enforces the good practice
of having unique identifiers that remain the same for the lifetime of the entity
occurrence.

� A primary key column should not have default values unless the primary key is
a single TIMESTAMP column.

� Choose the minimum number of columns to ensure uniqueness of the primary
key.

� An updatable view that is defined on a table with a primary key should include
all columns of the key. Although this is necessary only if the view is used for
inserts, the unique identification of rows can be useful if the view is used for
updates, deletes, or selects.

� You can drop a primary key later if you change your database or application
using SQL.

Defining a Foreign Key
The information under this heading, up to “Implications for SQL Statements” on
page 2-25 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

You define a list of columns as a foreign key of a table with the FOREIGN KEY
clause in the CREATE TABLE statement.

| A foreign key can refer to either a unique or a primary key of the parent table. If the
| foreign key refers to a non-primary unique key, you must specify the column names
| of the key explicitly. If the column names of the key are not specified explicitly, the
| default is to refer to the column names of the primary key of the parent table.

2-22 Administration Guide

| The column names you specify identify the columns of the parent key. The privilege
| set must include the ALTER or the REFERENCES privilege on the columns of the
| parent key. A unique index must exist on the parent key columns of the parent
| table.

The Relationship Name
You can choose a constraint name (an identifier of up to 8 bytes) for the
relationship defined by a foreign key, but you do not need to. If you do not choose
a name, DB2 generates one from the name of the first column of the foreign key, in
the same way that it generates the name of an implicitly created table space (as
described under “Creating a Table Space Implicitly” on page 2-86). For example,
the names of the relationships in which the employee to project activity table is a
dependent would, by default, be recorded (in column RELNAME of
SYSIBM.SYSFOREIGNKEYS) as 'EMPNO' and 'PROJNO'. In the following
sample CREATE TABLE statement, they are given the constraint names REPAPA
and REPAE.

CREATE TABLE DSN851ð.EMPPROJACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

FOREIGN KEY REPAPA (PROJNO, ACTNO) REFERENCES DSN851ð.PROJACT

ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN851ð.EMP

ON DELETE RESTRICT)

IN DATABASE DSN8D51A;

Figure 30. Specifying Foreign Key Constraint Names

The name is used in error messages, queries to the catalog, and the DROP
FOREIGN KEY statement. Hence, you might want to choose one if you were
experimenting with your database design and had more than one foreign key
beginning with the same column (when DB2 would otherwise generate the name).

Indexes on Foreign Keys
No index is required on a foreign key, but one is strongly recommended if rows of
the parent table are often deleted. The validity of the delete, and its possible effect
on the dependent table, can be checked through the index.

You can create an index on the columns of a foreign key in the same way you
create one on any other set of columns. Most often it would not be a unique index.
If you do create a unique index on a foreign key, it introduces an additional
constraint on the values of the columns.

In order to let an index on the foreign key to be used on the dependent table for a
delete operation on a parent table, the leading columns of the index on the foreign
key must be identical to and in the same order as the columns in the foreign key.

A foreign key can also be the primary key; then the primary index is also a unique
index on the foreign key. In that case, every row of the parent table has at most
one dependent row. The dependent table might be used to hold information that
pertains to only a few of the occurrences of the entity described by the parent table.
For example, a dependent of the employee table might contain information that
applies only to employees working in a different country.

 Chapter 2-3. Maintaining Data Integrity 2-23

For another example, the primary key could share columns of the foreign key if the
first n columns of the foreign key are the same as the primary key's columns.
Again, the primary index serves as an index on the foreign key. In the sample
project activity table, the primary index (on PROJNO, ACTNO, ACSTDATE) serves
as an index on the foreign key on PROJNO. It does not serve as an index on the
foreign key on ACTNO, because ACTNO is not the first column of the index.

The FOREIGN KEY Clause in ALTER TABLE
You can add a foreign key to an existing table; in fact, that is sometimes the only
way to proceed. To make a table self-referencing, you must add a foreign key after
creating it.

When a foreign key is added to a populated table, the table space is put into check
pending status. See “The Check Pending Status and Implications for CHECK
DATA” on page 2-31 for more information.

Restrictions on Cycles of Dependent Tables
A cycle is a set of two or more tables that can be ordered so that each is a
dependent of the one before it, and the first is a dependent of the last. Every table
in the cycle is a descendent of itself. In the sample application, the employee and
department tables are a cycle; each is a dependent of the other.

DB2 does not allow you to create a cycle in which a delete operation on a table
involves that same table. Enforcing that principle creates rules about adding a
foreign key to a table:

� In a cycle of two tables, neither delete rule can be CASCADE.

� In a cycle of more than two tables, two or more delete rules must not be
CASCADE. For example, in a cycle with three tables, two of the delete rules
must be other than CASCADE. This concept is illustrated in Figure 31.

On the other hand, a delete operation on a self-referencing table must involve the
same table, and the delete rule there must be CASCADE or NO ACTION.

No rule, though, prevents you from creating a cycle in which all the delete rules are
RESTRICT and none of the foreign keys allow nulls. But try not to do this because,
when you have done it, there is no way to delete a row of any of the tables.

 Valid ┌───────┐ Invalid ┌───────┐

 Cycle │TABLE1 │ Cycle │TABLE1 │

 ┌─────── │ │%───────┐ ┌─────── │ │%───────┐

│ └───────┘ │ │ └───────┘ │

 RESTRICT CASCADE CASCADE CASCADE

 │ │ │ │

 6 │ 6 │

 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐

 │TABLE2 │ │TABLE3 │ │TABLE2 │ │TABLE3 │

│ │───────SET──────5│ │ │ │───────SET──────5│ │

└───────┘ NULL └───────┘ └───────┘ NULL └───────┘

Figure 31. Valid and Invalid Delete Cycles. The left cycle is valid because two or more
delete rules are not CASCADE. The cycle on the right is invalid because of the two
cascading deletes.

2-24 Administration Guide

Implications for SQL Statements
The information under this heading, up to “Implications for Utility Operations” on
page 2-30 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

Suppose that relationships are defined on a set of tables, as in the sample
application. The SQL operations INSERT, UPDATE, and DELETE must now
comply with referential constraints.

The Basic Constraint: All of the changes combine to enforce this rule: a foreign
| key value in a dependent table must either match a parent key value in the
| corresponding parent table or be null.

If the foreign key consists of more than one column, its value is considered null if
the value in any one of the columns is null.

Implications for INSERT
The basic constraint applies most clearly to an INSERT operation. For example, the
project table has foreign keys on the department number (DEPTNO), referencing
the department table, and the employee number (RESPEMP), referencing the
employee table. Every row inserted in the table must have a value of RESPEMP
that is either equal to some value of EMPNO in the employee table or is null. The
row must also have a value of DEPTNO that is equal to some value of DEPTNO in
the department table. (The null value is not allowed because DEPTNO in the
project table is defined as NOT NULL.) An attempt to insert a row that would violate
that rule results in an error code.

The department table is a self-referencing table. Column ADMRDEPT is a foreign
key on column DEPTNO, both of which are in the department table. In general,
when you insert a new row in the department table, a row for the department it
reports to must already be there. Therefore, if the referential constraint is defined
on the table when it is empty, the reporting department (A00) and the department it
reports to must be the same in the first row you insert. This type of row is called a
self-refencing row because the foreign key and its corresponding primary key are in
the same row.

 INSERT Rules
Again, the examples are based on the department and employee tables,
considering only the relationship between the columns of department numbers.

For Parent Tables: You can insert a row at any time into a parent table without
taking any action in the dependent table. For example, you can create a new
department in the department table without making any change to the employee
table.

For Dependent Tables: You cannot insert a row into a dependent table unless
| there is a row in the parent table with a parent key value equal to the foreign key

value you want to insert. If a foreign key has a null value, it can be inserted into a
dependent table, but then no logical connection exists.

 Chapter 2-3. Maintaining Data Integrity 2-25

Implications for UPDATE
| If the unique key or primary key is a parent key, the referential constraints are
| effectively checked at the end of the operation.

For foreign key values, the restriction is essentially the same as for INSERT. You
cannot change the value of a foreign key so that the dependent row no longer has
a parent row, unless you make the key value null. For example, department
numbers in the employee table depend on the department table; you can assign an
employee to no department at all, but not to a department that does not exist. That
is, you can change a value of WORKDEPT to null, but you cannot change it to a
nonnull value that does not appear in the department table.

 UPDATE Rules
Again, the examples are based on the department and employee tables.

| For Parent Tables: You cannot change a parent key column of a row that has a
| dependent row. If you do, the dependent row no longer satisfies the referential

constraint, so the operation is prohibited.

For Dependent Tables: You cannot change the value of a foreign key column in a
| dependent table unless the new value exists in the parent key of the parent table.

For example, when an employee transfers from one department to another, the
department number must change. The new value must be the number of an
existing department, or be null.

Implementing the Consistency Rules
“Chapter 2-3. Maintaining Data Integrity” on page 2-19 describes the procedures
to use to have DB2 automatically enforce referential constraints. It includes
information on defining the referential constraints using SQL and the implications of
those constraints.

Otherwise, you can implement the rules through application programs. Here, the
designer of an application must describe the constraints that the application
programs enforce. For example, you might simplify the task by limiting the number
of application programs that perform insert and delete operations.

For some applications, a good alternative is not to enforce referential constraints
but instead to accept the possibility of inconsistent data. For example, the sample
employee table includes a job name and a code for education level for each
employee. We could have set up master tables of allowable job names and
education-level codes, and defined referential constraints to ensure consistency in
job names and education-level codes in the employee table. However, we chose

| not to build these additional tables. Table check clauses would generally be a
| better choice for allowable job names and education level codes. We can use the
| flexibility and power of SQL to ensure consistency without needing additional table
| accesses.

Implications for DELETE
The effect of a delete operation on a parent table can become quite complex.
There is no new effect on a row that is not a parent row; it is deleted. But the effect
of an attempt to delete a row that has dependents varies according to the delete
rules defined for the relationships in which it participates.

2-26 Administration Guide

 DELETE Rules
For ON DELETE RESTRICT, the attempt to delete a row with dependents fails with
an SQL error return code. For example, you cannot delete a department from the
department table as long as it is still responsible for some project, described by a

| dependent row in the project table. With ON DELETE RESTRICT, DB2 checks
| constraints before it performs each cascaded update and delete operation. Because
| this behavior would cause unpredictable results for a self-referencing constraint,
| you cannot specify ON DELETE RESTRICT for a self-referencing constraint.

| For ON DELETE NO ACTION, the attempt to delete a row with dependents fails
| with an SQL error return code. With ON DELETE NO ACTION, DB2 checks
| constraints after it performs all cascaded update and delete operations. This means
| that for self-referencing constraints, the result of the delete operation is not
| dependent on the order in which DB2 processes rows in the table.

For ON DELETE SET NULL, the parent row is deleted, and in all its dependent
rows the values of all columns of the foreign key that allow nulls are set to null. For
example, you can delete an employee from the employee table even if the
employee manages some department: the value of MGRNO in the department
table is set to null. The change requires no privilege on the dependent table, only
the DELETE privilege on the parent.

For ON DELETE CASCADE, the attempt to delete a parent row propagates to all
its dependent rows in the dependent table, and from them to all their dependent
rows, according to the delete rules encountered in each new relationship. If the
delete rules are all CASCADE, then all descendent rows are deleted. For example,
you can delete a department by deleting its row in the department table; this action
also deletes the rows for all departments that report to it, all departments that report
to them, and so on. Deleting the row for department A00 deletes every row in the
table. The change requires no privilege on the descendent tables, only the DELETE
privilege on the parent.

But if the cascading delete ever encounters a row that is dependent through a
relationship with the rule RESTRICT, the operation is completely canceled. The
parent row in the latest relationship cannot be deleted; hence, its parents cannot be
deleted, nor their parents, and so on back to the original row. No rows are deleted.

Finally, encountering a relationship with the rule SET NULL merely ends one
branch of the cascade. The foreign key in the final dependent table must have one

| or more columns that allow nulls. Because those columns cannot be part of the
| parent key of that table, setting those values to null has no effect on any of the

table's dependents. For example, deleting a department from the department table
| sets WORKDEPT to null for every employee assigned to that department. But
| WORKDEPT is not part of the parent key of the employee table; therefore, the

change has no effect on other rows.

DELETE with a Subquery: It is a basic rule of SQL that the result of an operation
must not depend on the order in which rows of a table are accessed. That rule
gives rise to the restriction that a subquery of a DELETE statement must not
reference the same table from which rows are deleted.

For example, in the sample application some departments administer other
departments; consider the following statement, which seems to delete every
department that does not administer another one:

 Chapter 2-3. Maintaining Data Integrity 2-27

Invalid Statement
DELETE FROM DSN851ð.DEPT THIS

WHERE NOT EXISTS (SELECT \ FROM DSN851ð.DEPT

WHERE ADMRDEPT = THIS.DEPTNO);

If the statement can be executed, its result depends strongly on whether the row for
any department is accessed before or after deleting the rows for the departments it
administers; hence, it is prohibited.

Where there are referential constraints, the same rule extends to dependent tables.
See Chapter 6 of SQL Reference for more information about using DELETE.

Operations on Self-Referencing Tables: The department table is
self-referencing—every value of column ADMRDEPT is constrained to be a value of
column DEPTNO. Without referential constraints, a single insert operation might
insert two new rows for departments F01 and F11, where F01 administers F11; the
order of inserting the rows makes no difference. With the constraints, the row for
F01 has to be inserted before the row for F11. Because the result cannot be
allowed to depend on the order of the rows, the operation is prohibited; a similar
prohibition applies to delete operations.

If a self-referencing table is the object of an INSERT statement with a subquery,
the subquery cannot return more than one row.

The examples that follow are based on the department and employee tables,
considering only the relationship between the columns of department numbers.

For Parent Tables: Suppose, for example, that you delete the row about
Department C01 from the department table. That deletion should affect the
information in the employee table about Dolores Quintana and Heather Nicholls,
who belong to that department. For any particular relationship, DB2 can enforce
any one of the following delete rules:

 � CASCADE

When you delete a row of the parent table, any related rows in the dependent
table are also deleted. This rule is useful when a row in the dependent table
makes no sense without a row in the parent table.

For example, a row in a sales table could represent a quantity of items sold
and refer to a table of purchase orders; if the purchase order is deleted, all the
item quantities listed in it should be deleted. But the rule would be inappropriate
for the department-employee relationship: when you dissolve a department, you
do not want to throw away the records of employees currently assigned to it.

CASCADE is a very powerful rule. Unlike RESTRICT and SET NULL,
CASCADE can potentially trickle down many levels of descendents if those
descendents also use the CASCADE delete rule. Use this rule with caution.

� RESTRICT or NO ACTION

You cannot delete any rows of the parent table that have dependent rows. In
| the department-employee relationship, using RESTRICT or NO ACTION

requires that you reassign every employee in a department before you can
| delete the department. The only difference between NO ACTION and
| RESTRICT is when the referential constraint is enforced. RESTRICT enforces
| the rule immediately and NO ACTION enforces the rule at the end of the
| statement.

2-28 Administration Guide

 � SET NULL

When you delete a row of a parent table, the corresponding values of the
foreign key in any dependent rows are set to null only if the column allows a
NULL value; columns that do not allow NULL values remain unchanged. This
rule is used in the department-employee relationship; when you delete a
department record, the WORKDEPT column of related rows in the employee
table is set to null, indicating that the employees are not assigned to a
department.

For Dependent Tables: You can at any time delete rows from a dependent table
without taking any action on the parent table. For example, in the
department-employee relationship, an employee could retire and have his row
deleted from the employee table with no effect on the department table. (Ignore, for
the moment, the reverse relationship of employee-department, in which the
department manager ID is a foreign key referring to the primary key of the
employee table. If a manager retires, there is an effect on the department table.)

Implications for DROP
Dropping a table is not equivalent to deleting all its rows, and the operation does
not propagate according to referential delete rules. Instead, when you drop a table
you drop all the relationships in which the table participates, either as a parent or a
dependent. For example, dropping the activity table from the sample set would not
affect the rows of the project activity table at all. But that table would no longer
have a foreign key on the ACTNO column, and DB2 would not check the values in
that column when rows were inserted or updated. In such circumstances,
remember that application programs might depend on the existence of a parent
table, and use DROP with care.

 Performance Implications
Referential constraints can have a significant impact on the performance of
DELETE operations. That is especially true for a cascading delete, in which an
operation that originally accesses a single row could propagate to hundreds of rows
in dozens of tables.

In many cases, the impact can be reduced by creating indexes on the foreign keys.
An index is not required on a foreign key, but without one a deletion of a row from
the parent table requires a scan of the entire dependent table—possibly multiple
scans of many dependent tables!

In some cases, the performance impact can be further reduced by the placement of
tables in table spaces. If rows of table T are often deleted, consider placing in the
same table space all the dependents of T and all the tables to which deletes from T
cascade. But if a table has no index on the foreign key, consider placing it in its
own table space, or in a segmented table space, to avoid scanning extraneous
rows when deletes cascade to it.

Concurrent Operations: A delete operation on a parent table must acquire locks
on the dependent tables, or at least on their indexes. That can only make those
tables less readily available for concurrent use.

Locks during Bind: Table spaces and index spaces that are required only for
enforcing referential constraints are not affected by the ACQUIRE(ALLOCATE)
option of the BIND PLAN command (there is no ACQUIRE(ALLOCATE) option for

 Chapter 2-3. Maintaining Data Integrity 2-29

BIND PACKAGE). The table spaces and indexes spaces are acquired only when
used, and the time needed for that operation is also a performance consideration.
With the RELEASE(DEALLOCATE) option, they are kept open, like all other table
and index spaces, until the plan terminates.

Implications for Utility Operations
Enforcing referential constraints during utility operations significantly changes the
effects of several utilities. Also, there are operations that aid in checking constraints
and correcting any errors that are discovered.

Implications for LOAD
For tables with primary keys: LOAD does not load a table with an incomplete

| definition. If the table has a parent key, the unique index on that key must exist. If
you try to load any table that has an incomplete definition, the LOAD job
terminates.

For tables with foreign keys: By default, LOAD enforces referential constraints.
| That is, it does not load a row with a foreign key value that does not match some
| parent key value of a parent table. Encountering such a row produces a message

and the row can be written to a discard data set.

Concurrency considerations for referential constraints: LOAD requires access
to the primary indexes on the parent tables of any tables loaded. For simple,
segmented, and partitioned table spaces, it drains all writers from the parent tables'
primary indexes. Other users cannot make changes to the parent tables that result
in an update to their own primary indexes. Concurrent inserts and deletes on the
parent tables are blocked, but updates are allowed for columns not defined as part
of the primary index.

For cycles of dependent tables: For a cycle of dependent tables, referential
constraints must sometimes be suspended; so there is an ENFORCE(NO) option.
For example, MGRNO in the department table is a foreign key that references
EMPNO in the employee table; WORKDEPT in the employee table is a foreign key
that references DEPTNO in the department table. If you want to add a new
department and its employees, using LOAD(RESUME), you can consider these
methods:

� If both tables are in the same table space, load the new records to both tables
in the same job, while enforcing the constraints. All records are loaded before
the constraints are checked; therefore, if all was prepared correctly, the new
department record and the new manager's employee record are in place before
checking begins. But this option does not apply to the sample application,
because the two tables are in different table spaces.

� If one of the tables allows null values in its foreign key, load it with nulls there,
while enforcing referential constraints. (The null value of the foreign key is
always valid.) Then load the second table, again enforcing referential
constraints. Finally, update the null values in the first table. This option is
reasonable for the sample application. Both tables allow null values, and it is a
simple matter to choose the department table as the first table and load (or
insert) a single new department with a null value of MGRNO. However, the
method is more difficult when many rows are added in each table; in particular,
the final update can become quite complex.

2-30 Administration Guide

� Load new records to one table without enforcing referential constraints (use
ENFORCE(NO)). Then load the second table, enforcing the constraints.
Finally, run the CHECK DATA utility to verify that records loaded with constraint
checking turned off do not violate any referential constraints. Running CHECK
DATA removes the check pending restriction placed on the first table space by
the load that was not enforced.

The Check Pending Status and Implications for CHECK DATA
If a table is loaded without enforcing referential constraints on its foreign keys, it
can then contain data that violates the constraints. Using that data could threaten
the referential integrity of an entire set of related tables. So the table space
containing the table is immediately placed in a special status called check pending.
For partitioned table spaces, only the newly loaded partitions are placed in check
pending. Until the status is reset, none of the tables in the table space can be used
for SQL SELECT, INSERT, UPDATE, or DELETE operations. The table space
cannot be the object of a COPY, REORG, or QUIESCE utility job. And INSERT,
UPDATE, and DELETE operations on tables in other table spaces do not execute if
those operations, through referential constraints, involve a table in the table space
that is in the check pending status.

Other operations that also can cause a table space to be placed in check pending
status are:

� Defining a referential constraint on a populated table, using ALTER TABLE. (A
table in a nonsegmented table space is considered populated if it has ever
contained records, even if all were deleted.)

� Interrupting a LOAD job before the checking of referential constraints is
complete.

� Replacing the data in a parent table space, using LOAD REPLACE. The table
spaces containing all the dependent tables of the parent are placed in check
pending status immediately after the parent table space has been reset. This is
the point at which the constraint violations are introduced.

Certain CHECK DATA and RECOVER operations, described below, can also place
table spaces in the check pending status.

The Scope of Check Pending Status
CHECK DATA need not always examine an entire table space; a scope is recorded
with each check pending status, and only rows within the scope must be checked.
For example, if rows are loaded to a table with RESUME(YES) and
ENFORCE(NO), only the new rows need checking.

Resetting the Check Pending Status
The CHECK DATA utility checks whether the tables of a table space violate
referential constraints and, optionally, deletes any invalid rows. If no rows violate
the constraints, or if invalid rows are deleted, the utility resets the check pending
status of the table space. The deleted rows can be copied to exception tables,
where they can be examined and corrected, and from which they can be reinserted
in the original tables.

 Chapter 2-3. Maintaining Data Integrity 2-31

Creating Exception Tables
An exception table is a user-created table that duplicates the definition of a
dependent table. The dependent table is the table being checked with the CHECK
DATA utility. It consists of at least n columns, where n is the number of columns of
the dependent table for which it is used. The CHECK DATA utility copies the
deleted rows from the dependent table to the exception table. Table 5 describes
the contents of an exception table.

Table 5. Exception Tables

Column Description Required Data Type and
Length

NULL Attribute

1 to n Corresponds to columns in
the table being checked
and are used to hold data
from rows in the table being
checked that violate
referential constraints.

Yes The same as the
corresponding
columns in the
table being
checked.

The same as the
corresponding
columns in the
table being
checked.

n+1 Identifies the RIDs of the
invalid rows of the table
being checked.

No| CHAR(4) or
| CHAR(5)

Anything

n+2 Starting time of the CHECK
utility

No TIMESTAMP Anything

≥ n+2 Any additional columns are
not used by the CHECK
utility

No Anything Anything

If you delete rows with CHECK DATA, you must have exception tables for all tables
in the table spaces named and for all their descendents, because you will delete all
descendents of any row you delete.

When creating or using exception tables, be aware of the following:

� The exception tables should not have any unique indexes or referential
constraints that could cause errors when CHECK DATA inserts rows in them.

� You can create a new exception table prior to running the CHECK DATA utility
or use an existing exception table. The exception table can contain rows from
multiple invocations of the CHECK DATA utility.

� If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time.
Otherwise, it does not use this column.

| � The RID column used by the CHECK utility must be 5 bytes for LARGE table
| spaces but it can be 4 or 5 bytes for table spaces that are not defined with
| LARGE.

� The user must have DELETE authorization on the dependent table being
checked.

� The user must have INSERT authorization on the exception table.

� Exception table column names can be given any name.

� Any change to the structure of the dependent table (such as a column being
dropped or added) is not automatically reflected in the exception table. You
must make that change to the exception table yourself.

2-32 Administration Guide

General-use Programming Interface

There is a clause of CREATE TABLE that makes the exception table easy to
create. You can create an exception table for the project activity table using these
SQL statements:

CREATE TABLE EPROJACT

 LIKE DSN851ð.PROJACT

IN DATABASE DSN8D51A;

ALTER TABLE EPROJACT

ADD RID CHAR(5);

ALTER TABLE EPROJACT

ADD TIME TIMESTAMP NOT NULL WITH DEFAULT;

The first statement requires the SELECT privilege on table DSN8510.PROJACT as
well as the privileges usually required to create a table.

End of General-use Programming Interface

Table EPROJACT has the same structure as table DSN8510.PROJACT, but with
two extra columns.

� Its first five columns mimic the columns of the project activity table; they have
exactly the same names and descriptions. Although the column names are the
same, they do not have to be. However, the rest of the column attributes for
the initial columns must be same as those of the table being checked.

� The next column, added by ALTER TABLE, is optional; CHECK DATA uses it
as an identifier. The name “RID” is an arbitrary choice—if the table already has
a column with that name, you have to use something else. But the description,
CHAR(4) or CHAR(5), is required.

| � The final timestamp column is also optional and useful. If the timestamp column
| is defined, a row identifier (RID) column must exist and precede this column.
| You might define a permanent exception table for each table subject to
| referential constraints. You can define it once and use it as you wish to hold
| invalid rows detected by CHECK DATA. The TIME column allows you to
| identify rows added by the most recent run.

Eventually, you make corrections to the data in the exception tables, perhaps with
an SQL UPDATE, and transfer the corrections to the original tables with statements
like this one:

General-use Programming Interface

INSERT INTO DSN851ð.PROJACT

SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 FROM EPROJACT

WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

End of General-use Programming Interface

 Chapter 2-3. Maintaining Data Integrity 2-33

Other Ways to Reset Check Pending Status
The purpose of the check pending status is to encourage the use of CHECK DATA,
but the status can also be reset by any of the following operations:

� Dropping tables, so the table space no longer contains invalid rows.

� Replacing the data in the table space, using LOAD REPLACE and enforcing
the referential constraints.

� Recovering all members of an inter-related set of tables to a quiesce point,
when no constraints were violated.

� Dropping all foreign keys in the table using ALTER TABLE. The check pending
status is reset when there are no more foreign keys defined in the table.

Implications for COPY, QUIESCE, RECOVER, and REPORT
All of the following utilities are concerned with recovering or preparing to recover
data. “Chapter 4-6. Backing Up and Recovering Databases” on page 4-123
describes the operations in detail; here they are outlined as considerations for
relational database design.

Where there are referential constraints, recovery requires careful attention, for it is
possible to recover one of a set of related tables to a state in which it is
inconsistent with the others. DB2 guards against such an event, but does not
absolutely prevent it.

┌───────────────────────────┐ ┌───────────────────────────┐

│ Table space W │ │ Table space Y │

│ ┌─────────┐ ┌─────────┐ │ │ ┌─────────┐ ┌─────────┐ │

│ │ Table A │ │ Table B │ │ │ │ Table K │ │ Table P │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ ────┼───┼──5 │ │ │ │ │ │ │ │ │ │ │

│ └───┼─────┘ └─────────┘ │ │ └───┼─┼───┘ └────┼────┘ │

└─────┼─────────────────────┘ └─────┼─┼────────────┼──────┘

 │ ┌───────────────────────┘ │ ┌───────┘

 │ │ ┌──────┘ │

┌─────┼───────────────┼─────┐ ┌───────┼───────────┼─────────────────────┐

│ ┌───┼─────┐ ┌─────┼───┐ │ │ ┌─────┼───┐ ┌───┼─────┐ ┌─────────┐ │

│ │ 6 │ │ 6 │ │ │ │ 6 │ │ 6 %───┼───┼──── │ │

│ │ Table C │ │ Table J │ │ │ │ Table L │ │ Table Q │ │ Table R │ │

│ │ │ │ │ │ │ │ │ │ │ │ │ │

│ └─────────┘ └─────────┘ │ │ └─────────┘ └─────────┘ └─────────┘ │

│ Table space X │ │ Table space Z │

└───────────────────────────┘ └───┘

Figure 32. Recovery and Referential Structures. Recovering Tables in Referential
Structures

When you define referential constraints, you create referential structures, made up
of all objects connected by referential relationships. In Figure 32, tables A, B and C
form a referential structure, as do tables J, K and L, and tables P, Q and R. If you
recover table A to a prior point, you must recover tables B and C to the same point
to preserve the integrity of the structure. Because COPY and RECOVER operate
on table spaces, you recover table space W and table space X, which also contains
table J. To preserve the integrity of the J-K-L referential structure, you must recover
table spaces Y and Z. Note that this also recovers all of the tables in the P-Q-R
structure.

2-34 Administration Guide

The COPY Utility
COPY cooperates in enforcing referential constraints by declining to copy a table
space in check pending status. It is probably not necessary to copy every table
space in a set at every quiesce point. The RECOVER utility can use incremental
image copies and log records.

The QUIESCE Utility
If there are many table spaces in a set, all being updated concurrently by many
users, you might need a special technique to establish a point in time at which the
entire set is known to be consistent, no more work is going on, and the set can be
copied. The technique is to start the table spaces for read-only access, run the
QUIESCE utility (to wait for the clean point and record it), copy all the table spaces,
then start the table spaces for read-write access. See Utility Guide and Reference
for more details about QUIESCE.

The RECOVER Utility
Use the DB2 RECOVER utility to recover a list of table spaces to the point in time
recorded by QUIESCE. The recovery is swiftest, of course, if all the table spaces
have been copied at that point. For instructions, see “Using RECOVER to Restore
Data to a Previous Point in Time” on page 4-147.

Recovery to a prior time can either set or reset the check pending status.
RECOVER sets the status on if:

� The list of table spaces does not make up a complete table space set. In that
case, the status is set on for every dependent space that is recovered, and for
every space anywhere that is a dependent of a recovered space.

� The list made up a complete table space set, but the prior time is not a quiesce
point nor an image copy made with SHRLEVEL REFERENCE for some table
space recovered in the set.

� All table spaces are recovered to a quiesce point or to an image copy made
with SHRLEVEL REFERENCE, but a referential constraint or a check constraint
was defined on some table in one of the table spaces after that point.

If none of these conditions occurs, then RECOVER resets the check pending status
of any table space in the list.

In summary, creating a referential structure codifies an association among the
members of a table space set. In utility operations, especially loading and
recovering, all tables in the set must be considered together. But, even without
referential constraints, the association exists; it is implicit in the relationships among
the entities that the data describes. The difference is that, with the constraints
defined, you cannot choose to simplify operations by accepting inconsistencies in
the data.

The REPORT Utility
In most cases, you want only a single referential structure in each table space set.
But there might be some question whether the database design was implemented
as intended. Perhaps users have been allowed to create tables in several different
table spaces and to define relationships among them. When in doubt, use the
REPORT utility to list the names of all the table spaces in a set, given any one of
them, using:

REPORT TABLESPACESET TABLESPACE tsname

 Chapter 2-3. Maintaining Data Integrity 2-35

Defining Table Check Constraints
The information under this heading, up to “Column Specifications” on page 2-41 is
General-use Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

When designing your tables, consider whether you need table check constraints.
Table check constraints designate the values that specific columns of a base table
can contain, providing you a method of controlling the integrity of data entered into
tables. You can create tables with table check constraints using the CREATE
TABLE statement, or add the constraints with the ALTER TABLE statement.
However, if the check integrity is compromised, or cannot be guaranteed for a
table, the table space or partition that contains the table is placed in a check
pending state. Check integrity is the condition that exists when each row of a table
conforms to the check constraints defined on that table.

For example, you might want to make sure that no salary can be below 15,000
dollars:

CREATE TABLE EMPSAL

(ID INTEGER NOT NULL,

SALARY INTEGER CHECK (SALARY >= 15ððð).

Figure 33. Creating a Simple Table Check Constraint

Using table check constraints makes your programming task easier, because you
do not have to enforce those constraints within application programs or with a
validation routine. Define table check constraints on one or more columns in a table
when that table is created or altered.

 Constraint Considerations
The syntax of a table check constraint is checked when the constraint is defined,
but the meaning is not checked. The following examples show mistakes that are
not caught. Column C1 is defined as INTEGER NOT NULL.

Allowable but mistaken check constraints:

� A self-contradictory check constraint:

CHECK (C1 > 5 AND C1 < 2)

� Two check constraints that contradict each other:

CHECK (C1 > 5)
CHECK (C1 < 2)

� Two check constraints, one of which is redundant:

CHECK (C1 > ð)

CHECK (C1 >= 1)

� A check constraint that contradicts the column definition:

CHECK (C1 IS NULL)

� A check constraint that repeats the column definition:

CHECK (C1 IS NOT NULL)

2-36 Administration Guide

A table check constraint is not checked for consistency with other types of
constraints. For example, a column in a dependent table can have a referential
constraint with a delete rule of SET NULL. You can also define a check constraint
that prohibits nulls in the column. As a result, an attempt to delete a parent row
fails, because setting the dependent row to null violates the check constraint.

Similarly, a table check constraint is not checked for consistency with a validation
routine, which is applied to a table before a check constraint. If the routine requires
a column to be greater than or equal to 10 and a check constraint requires the
same column to be less than 10, table inserts are not possible. Plans and
packages do not need to be rebound after table check constraints are defined on or
removed from a table.

When Table Check Constraints Are Enforced
After table check constraints are defined on a table, any change must satisfy those
constraints if it is made by:

� The LOAD utility with the option ENFORCE CONSTRAINT
� An SQL INSERT statement
� An SQL UPDATE statement

A row satisfies a check constraint if its condition evaluates either to true or to
unknown. A condition can evaluate to unknown for a row if one of the columns
named contains the null value for that row.

Any constraint defined on columns of a base table applies to the views defined on
that base table.

When you use ALTER TABLE to add a table check constraint to already populated
tables, the enforcement of the check constraint is determined by the value of the
CURRENT RULES special register as follows:

� If the value is STD, the check constraint is enforced immediately when it is
defined. If a row does not conform, the table check constraint is not added to
the table and an error occurs.

� If the value is DB2, the check constraint is added to the table description but its
enforcement is deferred. Because there might be rows in the table that violate
the check constraint, the table is placed in check pending status.

How Table Check Constraints Set Check Pending Status
Maintaining check integrity requires enforcing check constraints on data in a table.
When check integrity is compromised or cannot be guaranteed, the table space or
partition that contains the table is placed in check pending status. The definition of
that status includes violations of table check constraints as well as referential
constraints.

Table check violations place a table space or partition in check pending status
when:

� A table check constraint is defined on a populated table using the ALTER
TABLE statement and the value of the CURRENT RULES special register is
DB2.

� The LOAD utility is run with CONSTRAINTS NO, and table check constraints
are defined on the table.

 Chapter 2-3. Maintaining Data Integrity 2-37

� CHECK DATA is run on a table that contains violations of table check
constraints.

� A point-in-time RECOVER TABLESPACE introduces violations of table check
constraints.

2-38 Administration Guide

 Chapter 2-4. Designing Columns

This chapter describes how to design columns for tables, including column
specifications and column names. It also describes column values, date, time, and
timestamp data types, and some implementation information.

 Choosing Columns
You implement your logical database design primarily by choosing the columns that
make up each table. There is almost always some conflict between the theoretical
design and the most practical implementation of the design. Some sources of that
conflict are described under the headings “Consider Denormalizing Your Tables for
Performance” on page 2-16 and “Considerations for Record Size.”

Considerations for Record Size
In DB2, a record is the storage representation of a row. Records are stored within 4
KB or 32 KB pages and a single record cannot occupy more than one page. You
cannot create a table with a maximum record size greater than the page size.
There is no other absolute limit, but to ignore record size in favor of implementing a
good theoretical design might waste storage.

Record Length—Fixed or Varying
Most DB2 data types describe data of fixed length. Some data types, however,
allow data of varying-length. In a table whose columns all have fixed-length data
types, all rows (thus all records) are the same size. Otherwise, the size of records
might vary. Record size might also vary if the table uses an edit routine or data
compression.

Fixed-length records are preferable to varying-length records, because DB2
processing is most efficient for fixed-length records. A fixed-length record never has
to be moved from the page on which it is first stored. Varying-length records,
however, can be updated to a length that no longer fits on the original page; in that
case, the record is moved to another page. When the record is accessed, there is
an additional page reference. Therefore, use varying-length columns with care.

There is a performance advantage in placing varying-length columns after the
fixed-length columns of the table. For more information, see “String Data Types” on
page 2-45.

| When you are using varying-length columns, there are two considerations: retrieval
| performance and update performance. For the best retrieval performance, place
| varying-length columns at the end of a row. For the best update performance,
| place varying-length columns at the end of a row. If you use both retrieval and
| update operations, place the columns you want to update at the end, followed by
| the read-only varying-length columns.

| If you use ALTER to add a fixed-length column to a table, that column is treated as
| variable-length until the table has been reorganized.

 Copyright IBM Corp. 1982, 1997 2-39

Record Lengths and Pages
In addition to the bytes of actual data in the row, each record has:

� A 6-byte prefix
� One additional byte for each column that might contain null values
� Two additional bytes for each varying-length column.

Every data page has:

� A 22-byte header
� A 2-byte directory entry for each record stored in the page.

To simplify the calculation of record and page length, consider the directory entry
as part of the record. Then, every record has a fixed overhead of 8 bytes, and the
space available to store records in a 4 KB page is 4074 bytes. Achieving that
maximum in practice is not always simple. For example, if you are using the default
values, the LOAD utility leaves approximately 5 percent of a page as free space
when loading more than one record per page, so that if two records are to fit in a
page, each cannot be longer than 1934 bytes (approximately 0.95 × 4074 × 0.5).

| Furthermore, the record length is limited by the page size of the table space in
| which the table is defined. If the table space is 4 KB, then the record length of each
| row cannot be greater than 4056 bytes. Because there is an 8-byte overhead for

each row, the sum of column lengths cannot be greater than 4048 bytes (4056
minus the 8-byte overhead for a record).

DB2 provides a 32KB page size to allow for long records. You can improve
performance by using 32KB pages for record lengths that are longer than 2028
bytes, as in some text-processing or image-processing applications.

Designs That Waste Space
| Space is wasted in a table space that only contains records slightly longer than half
| a page,because only one record can fit in a page. If you can reduce the record

length to just under half a page, you need only half as many pages. Similar
considerations apply to records that are just over (and could be reduced to just
under) a third of a page, a quarter of a page, and so on.

Provide Column Definitions for All Tables
To define a column in a DB2 table:

1. Choose a name for the column

Each column in a table must have a name that is unique within the table.
Selecting column names is described in detail in “Column Specifications” on
page 2-41.

2. Tell what kind of data is valid for the column

The data type of a column indicates the length of the values in the column and
the kind of data that is valid for the column. Data types are described in
“Specifying Data Types” on page 2-44.

3. Tell which columns might need default values

Some columns cannot have meaningful values in all rows because:

� A value of the column is not applicable to the row.

2-40 Administration Guide

For example, a column containing an employee's middle initial is not
applicable to an employee who has no middle initial.

� A value is applicable, but the value is not known at this time.

As an example, the MGRNO column might not contain a valid manager
number because the previous manager of the department has been
transferred and a new manager has not been appointed yet.

In both situations, you can choose between allowing a null value (a special
value indicating that the column value is unknown or inapplicable) or allowing a
nonnull default value to be assigned by DB2 or by the application.

Null values and default values are described in detail in “Null Values” on
page 2-42.

 Column Specifications
The information under this heading, up to “Chapter 2-5. Designing Indexes” on
page 2-51 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

Tables without foreign keys and parent tables can have up to 750 columns. Tables
with foreign keys can have up to 749 columns.

A column contains values of the same type. You can think of it as a field in a
record. In the sample employee table, the HIREDATE column contains all the hire
dates for all employees represented by EMPNO. You cannot redefine or overlap
columns and, after you have implemented the design of your tables, you usually
cannot change a column definition without disrupting applications. Therefore,
consider carefully the decisions you make about column definitions. (However, you
can add columns to an existing table; for instructions, see “Altering Tables” on
page 2-128.)

For each column, you must specify a name and a data type. If you specify a string
type, you also have to specify a length (of values in the column, not the number of
values) and whether null values are permitted in the column.

You might want to execute a user-written exit routine whenever an application
program enters data in the column or retrieves it. If you do, you must specify that
also. This type of routine is called a field procedure; one can be used, for example,
to alter the sorting sequence of values entered in the column. How you can use a
field procedure is described under “Field Procedures” on page X-57.

 Column Names
Column names must be unique within a table, but you can use the same column
name in different tables. The maximum length of a column name is 18 bytes.

 Column Labels
Frequently, a column name does not adequately describe the contents of a given
column; you might want a more descriptive column heading to appear in an
interactive display. The SQL LABEL ON statement provides a way for you to define
expanded column headings that can appear in addition to, or instead of, column
names in SPUFI output or in the SQL descriptor area (SQLDA) in application
programs. For a description of this statement, see Chapter 6 of SQL Reference.

 Chapter 2-4. Designing Columns 2-41

When you want to use the alternate column headings or labels on SPUFI output,
specify LABELS in the COLUMN HEADINGS option on the SPUFI Default Panel.

 Null Values
As described under “Provide Column Definitions for All Tables” on page 2-40,
some columns cannot have a meaningful value in every row.

DB2 uses a special value indicator, called the null value, to stand for an unknown
or missing value. A null value is a value and not a zero value, a blank, or an empty
string. It is a special value interpreted by DB2 to mean that no data has been
supplied.

If you do not specify otherwise, any column you define can contain null values, and
rows can be created in the table without providing a value for the column.

NOT NULL disallows null values in the column. If you use NOT NULL and do not
use some form of the DEFAULT clause, you must provide a nonnull value for that
column whenever you insert data into the table.

 Default Values
When a row is inserted or loaded and no value is specified for the column, the
default value you specified with the DEFAULT clauses in CREATE TABLE or
ALTER TABLE is used. Defaults can be either DB2-defined or user-defined as
follows.

DB2-defined Defaults: If you specified DEFAULT without a value, the data type of
the column determines the DB2-defined default as follows:

User-defined Defaults: You can specify a particular default, such as

DEFAULT 'N/A'

The default value must agree with the data type of the column. You can specify
one of the following forms:

 � A constant

| � The value of the USER special register at the time that DB2 inserts data into a
| row or updates the row.

Table 6. DB2-defined default values for data types.

For columns of... Data types Default

Numbers SMALLINT, INTEGER,
DECIMAL, or FLOAT

0

Fixed-length strings CHAR or GRAPHIC Blanks

Varying-length strings VARCHAR, LONG
VARCHAR,
VARGRAPHIC, or LONG
VARGRAPHIC

Empty string

Dates DATE CURRENT DATE

Times TIME CURRENT TIME

Timestamps TIMESTAMP CURRENT TIMESTAMP

Note: Synonyms exist for the various data types.

2-42 Administration Guide

| � The SQL authorization ID (CURRENT SQLID) of the process at the time that
| DB2 inserts data into a row or updates the row.

� Null (provided the column allows nulls)

| If you execute the ALTER TABLE statement to add a column to a table, and you
| define that column with DEFAULT USER or DEFAULT CURRENT SQLID, DB2
| returns the value of USER or CURRENT SQLID for the new column when you
| select rows that existed before you executed ALTER TABLE.

For example, if you want a record of who inserted any row of a table, define the
table with two additional columns:

PRIMARY_ID CHAR(8) WITH DEFAULT USER,

SQL_ID CHAR(8) WITH DEFAULT CURRENT SQLID,

You can allow updates and inserts to the table only through a view that omits those
columns. Then, the primary authorization ID and the SQL ID of the process are
added by default.

If you add a column to an existing table, and you read from it before you have
added data to it, the values you retrieve are provided by default. The default values
for retrieval are the same as the defaults for insert, except in the cases of columns
with a data type of DATE, TIME, or TIMESTAMP. The retrieval defaults for the
exceptional columns are:

Data Type Default for Retrieval
DATE 0001-01-01
TIME 00.00.00
TIMESTAMP 0001-01-01-00.00.00.000000

Reasons for Using Nulls
Suppose you want to find out the average salary earned in a department. It is not
necessary that the salary column always contain a meaningful value, so you can
choose between:

� Allowing null values for the SALARY column

� Using a nonnull default value

By allowing null values, you can formulate the query easily, and DB2 provides the
average of all known or recorded salaries. The calculation does not include the
rows containing null values. In the second case, you get a misleading answer
unless you know the nonnull default value for unknown salaries and formulate your
query accordingly.

In Figure 34 on page 2-44, in the example using a nonnull default value, the
average salary for department E21 is calculated on the basis of three employees,
although salaries are given for only two. In the example using null values, only
those employees with actual salary data are included in the calculation.

 Chapter 2-4. Designing Columns 2-43

SELECT WORKDEPT, AVG(SALARY)

 FROM DSN851ð.EMP

GROUP BY WORKDEPT;

With Null Value With Default Value

 ┌────────┬──────────┬──────────┐ ┌────────┬──────────┬──────────┐

 │ EMPNO │ WORKDEPT │ SALARY │ │ EMPNO │ WORKDEPT │ SALARY │

 ├────────┼──────────┼──────────┤ ├────────┼──────────┼──────────┤

 │ ððð32ð │ E21 │ 1995ð.ðð │ │ ððð32ð │ E21 │ 1995ð.ðð │

 │ ððð31ð │ E11 │ 159ðð.ðð │ │ ððð31ð │ E11 │ 159ðð.ðð │

 │ ððð29ð │ E11 │ 1534ð.ðð │ │ ððð29ð │ E11 │ 1534ð.ðð │

 │ ððð34ð │ E21 │ (null) │ │ ððð34ð │ E21 │ ð.ðð │

 │ ððð33ð │ E21 │ 2125ð.ðð │ │ ððð33ð │ E21 │ 2125ð.ðð │

 └────────┴──────────┴──────────┘ └────────┴──────────┴──────────┘

 │ │

 │ │

 6 6

 WORKDEPT AVG(SALARY) WORKDEPT AVG(SALARY)

 E21 2ð6ðð.ðð E21 13733.33

 E11 1562ð.ðð E11 1562ð.ðð

 (Average of

 nonnull salaries)

Figure 34. When Nulls Are Preferable to Default Values

Reasons for Using Nonnull Default Values
Before you decide whether to allow nulls for unknown values in a column, you
should be aware of how nulls can affect the result of a query.

� Nulls in application programs

Nulls do not satisfy any condition in an SQL statement other than the special IS
NULL predicate. Null values do not behave like other values. For instance, if
you ask DB2 to determine whether a null value is larger or smaller than a given
known value, you get an answer of UNKNOWN for both comparisons.

A default acts in a way familiar to programmers.

� Nulls in a join operation.

Nulls need special handling. If you perform a join operation using a column that
is allowed to contain null values, you should consider using an outer join. See
Section 2 of Application Programming and SQL Guide for more information.

Nulls with Field Procedures: If you allow nulls in a column with a field procedure,
that routine is not executed when you access a null value; rather, DB2 returns the
null value. Field procedures can only be specified for short string columns that do
not have a nonnull default value.

Specifying Data Types
You must give a data type for each column of a DB2 table. It tells the type of data
the column will contain and the length of the data field.

The first thing you must decide when defining a column is what kind of data the
column will contain—string, numeric, or date/time. The decision is often obvious
because only a string column can contain letters or special characters. If the data
consists solely of digits, however, you have to decide whether to specify it as string
or numeric data. And if the values represent dates, times, or timestamps, you will
want to consider the data types DATE, TIME, and TIMESTAMP.

2-44 Administration Guide

Choosing String or Numeric Data Types
For numeric data, use numeric rather than string columns; they require less space,
and DB2 verifies that the data has the assigned type. For example, if numbers are
represented as strings, when DB2 calculates a range (as for BETWEEN, greater
than, and less than) it assumes that its values include all combinations of
alphanumeric characters. Consider defining numeric identifiers as numeric rather
than string, and dates or times as DATE or TIME.

String Data Types
The data types for strings are described in Table 7. In each case the length
specification, (n), can be omitted (unless otherwise noted in the table); its default
value is 1.

String Subtypes: Subtypes can be important if another DBMS accesses your table
through the distributed data facility and also uses a different character encoding
scheme from your own. Subtypes apply only to CHAR, VARCHAR, and LONG
VARCHAR data types. Table 8 describes the possible subtypes.

Table 7. String Data Types

Data Type Denotes a column of...

CHARACTER(n) Fixed-length character strings with a length of n bytes. n must be
greater than 0 and not greater than 255.

VARCHAR(n) Varying-length character strings with a maximum length of n bytes.
| The length n is required. n must be greater than 0 and less than a

number that depends on the page size of the table space. If n is
greater than 254, certain restrictions apply to the use of the
columns in SQL statements. Appendix A of SQL Reference lists
the upper limits on the value of n.

LONG VARCHAR Varying-length character strings with a maximum length calculated
by DB2. See the CREATE TABLE statement in Chapter 6 of SQL
Reference to see how the length is calculated.

GRAPHIC(n) Fixed-length graphic strings containing n double-byte characters. n
must be greater than 0 and less than 128.

VARGRAPHIC(n) Varying-length graphic strings. The maximum length, n, must be
greater than 0 and less than a number that depends on the page

| size of the table space. The length n is required. If n is greater than
127, certain restrictions apply to the use of the column in SQL
statements. Appendix A of SQL Reference lists the upper limits on
the value of n.

LONG
VARGRAPHIC

Varying-length graphic strings with a maximum length calculated by
DB2.

Table 8 (Page 1 of 2). String Subtypes

Subtype Denotes that the data...

BIT Does not represent characters, and is not converted as though it
represents characters.

 Chapter 2-4. Designing Columns 2-45

If bit data might be converted when accessed by a remote DBMS, use the clause
FOR BIT DATA in the column description in the CREATE TABLE statement. For
further information on character conversion, see Installation Guide.

| Choosing EBCDIC or ASCII Data: If you require data to be in the ASCII sorting
| order, you can store and manipulate character data as ASCII. To do this, specify
| the ASCII value of the CCSID option on the CREATE TABLE, CREATE
| TABLESPACE, or CREATE DATABASE statement. See Chapter 6 of SQL
| Reference for details. Before you decide to use the ASCII encoding scheme for
| your data, consider the following restrictions:

| � You must declare an entire table with a single encoding scheme. Some
| columns in the table cannot be ASCII when others are EBCDIC.

| � If an SQL statement accesses more than one table, all tables must use the
| same encoding scheme.

| � All tables in a referential structure must use the same encoding scheme.

Choosing CHAR or VARCHAR: VARCHAR saves DASD space, but costs a
2-byte overhead for each value and the additional processing required for
varying-length records. Thus, CHAR is preferable to VARCHAR, unless the space
saved by the use of VARCHAR is significant. The savings are not significant if the
maximum length is small or the lengths of the values do not have a significant
variation. In general, do not define a column as VARCHAR(n) unless n is at least
18. (Consider, also, using data compression if your main concern is DASD
savings. See “Compressing Data in a Table Space or Partition” on page 2-63 for
more information.)

If you use VARCHAR, do not specify a maximum length greater than necessary.
Though VARCHAR saves space in a table space, it does not save space in an
index (type 1 and type 2) because index records are padded with blanks to the

maximum length. Note particularly the restrictions on columns of strings longer than

Table 8 (Page 2 of 2). String Subtypes

Subtype Denotes that the data...

SBCS Represents single-byte characters. The coded character set is
specified by the single-byte character set (SBCS) coded character
set identifier (CCSID) identified for this DB2 subsystem during
installation. If required, values placed into this column or taken from
this column are converted from one CCSID to another CCSID. This
can occur, for example, if data with a CCSID different than the DB2
SBCS CCSID is received from a remote location for insertion into
this column.

This subtype is the default if the MIXED DATA option was set to
NO during installation.

MIXED Represents either SBCS characters or double-byte character set
(DBCS) characters, or a combination of both. The SBCS and
DBCS coded character sets are implied by the MIXED CCSID
identified for this DB2 subsystem during installation. If required,
values placed into this column or taken from this column are
converted from one coded character set to another.

This subtype is the default if the MIXED DATA option was set to
YES during installation.

2-46 Administration Guide

255 bytes; for example, they cannot be indexed. These restrictions are listed in
Chapter 3 of SQL Reference.

Do not use LONG VARCHAR unless you really want the maximum record length to
be as large as possible. Also, you cannot use ALTER to add a column to a table
that already has a LONG column.

In most cases, the content of the data intended for a column dictates the data type
you choose. For example, the data type selected for the department name
(DEPTNAME) of the department table is VARCHAR(36). Because department
names normally vary considerably in length, the choice of a varying-length data
type seems appropriate. Choosing a data type of CHAR(36), for example, would
result in much wasted space. All department names, regardless of length, would be
assigned the same amount of space (36 bytes). The choice of a data type of
CHAR(6) for the employee number would appear to be an obvious choice, because
all values are fixed-length (6 bytes).

There is a performance advantage in placing VARCHAR columns after the
fixed-length columns of the table.

The foregoing considerations about CHAR, VARCHAR, and LONG VARCHAR
columns apply in the same way to GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC columns. The one exception is that the length (n) of a GRAPHIC or
VARGRAPHIC column is given as a number of double-byte characters; hence, the
length in bytes is twice n.

Choosing GRAPHIC or Mixed Data: Columns containing DBCS characters can be
defined as graphic string columns (GRAPHIC, VARGRAPHIC, or LONG GRAPHIC)
or as mixed data character string columns (CHAR, VARCHAR, or LONG
VARCHAR with MIXED DATA implicitly or explicitly specified).

DBCS characters include Kanji characters and non-Kanji characters. The non-Kanji
characters include double-byte representations for those characters that can be
represented using a single byte (the Latin letters A through Z, for example). Thus,
the same information can be represented in graphic strings and mixed data strings.
The only difference is in how the information is represented.

Graphic strings consist only of DBCS characters. There are no shift codes or SBCS
characters. In mixed data strings, DBCS characters (if any) are delimited by shift

| codes and SBCS characters are used whenever possible. Since ASCII does not
| have shift-in and shift-out characters, this data type is not applicable to ASCII input.

If most or all of the characters must be represented with DBCS characters
(because most of the characters are Kanji, for example), use the graphic data type.
This saves you the two bytes of shift-in and shift-out characters it costs to switch
from double-byte back to single byte. However, if most characters can be
represented with SBCS characters, use mixed data to save one byte for every
single-byte character in the column.

 Chapter 2-4. Designing Columns 2-47

Numeric Data Types
Table 9 describes the data types for numbers.

For integer values, SMALLINT or INTEGER (depending on the range of the values)
is preferable to DECIMAL or FLOAT. (But when using them in COBOL application
programs, see the suggestions in Section 3 of Application Programming and SQL
Guide; the range allowed by the COBOL PICTURE clause is not as large as the
DB2 range.)

Table 9. Numeric Data Types

Data Type Denotes a Column of...

SMALLINT Small integers. A small integer is an IBM System/390 two-byte
binary integer of 16 bits; the range is -32768 to +32767

INTEGER or
INT

Large integers. A large integer is an IBM System/390 fullword
binary integer of 32 bits; the range is -2147483648 to +2147483647

REAL or
FLOAT(n)

Single precision floating-point numbers. n must be in the range 1
through 21. If you omit n, the column has double precision. A single
precision floating-point number is an IBM System/390 short
floating-point number of 32 bits.

FLOAT,
FLOAT(n), or
DOUBLE
PRECISION, or
DOUBLE

Double precision floating-point numbers. n must be in the range 22
through 53. A double precision floating-point number is an IBM
System/390 long floating-point number of 64 bits. The range of
magnitudes for floating-point numbers of either type is about
5.4E-79 to 7.2E+75

DECIMAL(p,s) or
DEC(p,s), or
NUMERIC(p,s)

IBM System/390 packed decimal numbers with precision p and
scale s. The precision p, which is the total number of digits
including the digits following the decimal point, must be greater
than 0 and less than 32. The scale s, which is the number of digits
in the fractional part of the number, must be greater than or equal
to 0 and less than or equal to the precision. s can be omitted; its
default is 0. And if s is omitted, p can also be omitted; its default is
5. The maximum range is 1 - 10**31 to 10**31 - 1

Date, Time and Timestamp Data Types
Table 10 describes the data types for dates, times, and timestamps.

Table 10. Date, Time and Timestamp Data Types

Data Type Denotes a Column of...

DATE Dates. A date is a three-part value representing a year, month, and
day in the range 0001-01-01 to 9999-12-31

TIME Times. A time is a three-part value representing a time of day in
hours, minutes, and seconds, in the range 00.00.00 to 24.00.00

TIMESTAMP Timestamps. A timestamp is a seven-part value representing a date
and time by year, month, day, hour, minute, second, and
microsecond, in the range 0001-01-01-00.00.00.000000 to
9999-12-31-24.00.00.000000

2-48 Administration Guide

Advantages of Date/Time Data Types
Numbers representing dates and times can, of course, be stored in columns with
numeric data types; if they include special characters as separators, they can be
stored in string columns. But neither of those options allows the advantages
described below, which belong to the data types DATE, TIME, and TIMESTAMP.

Variable Input and Output Format: Date/time values in DB2 are stored in a
special internal format. When you load or retrieve data, DB2 can convert to or from
any of the formats in the Table 11

You also have the option of supplying an exit routine to make conversions to and
from any local standard (choose LOCAL on the DATE FORMAT and TIME

| FORMAT fields on installation panel DSNTIP4). For instructions about writing and
using a date or time exit routine, see “Date and Time Routines” on page X-51.

When loading date or time values from an outside source, DB2 accepts any of the
formats listed in Table 11, and converts valid input values to the internal format.
For retrieval, there is a default format that you select when installing DB2, but you
can override that default for every statement in an application program by a
precompiler option, or for particular instances by the scalar function CHAR. For
example, whatever your local default, the following statement displays employees'
birth dates in IBM USA standard form:

SELECT EMPNO, CHAR(BIRTHDATE, USA) FROM DSN851ð.EMP;

Queries Sent to a Distributed System: When an SQL statement is sent to a
remote system, there are some restrictions for date and time formats. See Chapter
3 of SQL Referencefor more information.

Table 11. Date and Time Format Options

Format Name Abbreviation Typical Date Typical Time

International
Standards
Organization

ISO 1986-12-25 13.30.05

IBM USA standard USA 12/25/1986 1:30 PM

IBM European
standard

EUR 25.12.1986 13.30.05

Japanese Industrial
Standard Christian
Era

JIS 1986-12-25 13:30:05

Comparing Data Types
DB2 compares values of different types and lengths provided that both values are
numeric, both values are character strings, or both values are graphic strings.
However, if two columns are compared (for example, to join tables) and their data
types and lengths are not identical, DB2 might not use indexes that are defined on
the columns. Therefore, when defining a column that will be compared with another
column, ensure that their data types and lengths are identical.

Character strings are converted to the same coded character set prior to
comparison.

 Chapter 2-4. Designing Columns 2-49

You cannot make date and time comparisons with values of different types. You
can compare a date only with a date, a time with a time, and a timestamp with a
timestamp (or, in each case, with a valid string representation of a date, time, or
timestamp).

If a column uses a field procedure, values to be compared to it are first encoded by
the field procedure. If a column with a field procedure is compared to another
column, that column must have the same field procedure. If the encoded values are
numeric, their data types must be identical; if they are strings, their data types must
be compatible.

2-50 Administration Guide

 Chapter 2-5. Designing Indexes

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page xi.

DB2 uses indexes not only to enforce uniqueness on column values, as for parent
keys, but also to cluster data, partition tables, and to provide access paths to data
for queries. Understanding some of the structure of DB2 indexes can be important
for achieving your best performance.

Even though a table has indexes, DB2 does not always use one to access the
data. You can tell whether an index is used in executing a particular SQL statement
by using the EXPLAIN statement, or the EXPLAIN option of bind. For a description
of this technique, see “Chapter 5-10. Using EXPLAIN to Improve SQL
Performance” on page 5-261.

Index Types and Recommendations
There are two types of indexes in DB2, type 1 and type 2. Use the statement
CREATE INDEX to create either type. To change an index from one type to the
other, use ALTER INDEX; then run the utility RECOVER INDEX to complete the
change.

When you use CREATE INDEX, the default value of the index type depends on the
value of LOCKSIZE for the associated table space:

1. If LOCKSIZE is ROW then the default index type is type 2. You cannot use row
locking with a type 1 index.

2. If LOCKSIZE is not ROW, then the default for CREATE INDEX is the type
specified in field DEFAULT INDEX TYPE of installation panel DSNTIPE.

| The storage space required for an index depends on several factors. For more
| information on calculating the estimated space required for a Type 2 index, see
| Installation Guide.

To convert an existing index to type 2, use the ALTER INDEX statement. After
using ALTER INDEX, run the utility RECOVER INDEX to complete the task.

Type 2 Indexes
Type 2 indexes differ from type 1 indexes in that:

� Type 2 indexes have no subpages.

� Type 2 indexes require no locks on their pages. A lock on the data page or row
locks the index key.

Type 2 indexes support high concurrency by locking the underlying data page
or record. Only one lock is held after an update to a data row or page and its
associated indexes.

(In some cases, this might produce contention that does not occur with a type 1
index. For example, a type 2 index scan might require locks on data pages, but
a type 1 index scan does not. Hence, the index scan might contend with an
update operation.)

 Copyright IBM Corp. 1982, 1997 2-51

� With type 2 indexes, no locks are acquired on index pages during modifications
of index structures. A structure modification (such as page splits or page
deletions) is an index operation that updates the nonleaf portion of the index
tree. and changes the structure of the tree. Other transactions can read or
modify pages involved in structure modifications.

� Type 2 indexes use suffix truncation on nonleaf pages to store the high key
values. Only enough of the prefix portion of the key is stored to distinguish it
from the previous key. For example, suppose that during a leaf page split, the
first key value on the new page is WXYZ4792 and the last key value on the
previous page is WXYY5341. Without suffix truncation, WXYZ4792 would be
stored as the new high key value in the nonleaf page. With suffix truncation,
only WXYZ is stored as the new high key value. Depending on the nature of
the index key (if most of the keys are alike) there could be a reduction in the
number of index levels and, consequently, in the number of pages read and in
the cost of I/O for index access.

� The record identifiers (RIDs) stored with a type 2 nonunique index entry are
kept in ascending order.

This RID ordering is maintained so that a binary search can locate the RID of
interest efficiently. RID maps for type 2 indexes can contain as many RIDs as
will physically fit on the page; they are not limited to 256 entries, as in type 1.
Deleting a single duplicate no longer requires a slow sequential search of
duplicates that can span multiple leaf pages. RID ordering improves
performance in deleting or updating entries, when the number of duplicates is
in the thousands.

� Unless the table or table space is locked in mode X, a DELETE operation does
not physically remove the entry. Instead, it pseudo-deletes the entry by leaving
it in the page, but marks it for deletion. The space remains available in the
index at least until the data is committed, so if a rollback takes place, there will
always be enough room to reinsert the deleted entry and avoid the need to split
the page. After the deleting operation commits, the committed pseudo-entry can
be physically deleted when space is needed for an insert, or when the
percentage of pseudo-deleted entries marked on a page reaches a certain
threshold.

� There are four types of index pages: the header page, space map page, leaf
page and nonleaf page. With type 2 indexes, the formats of these pages
change. For example, type 2 space maps cover fewer pages, but contain more
information per page, than type 1 space maps.

� There are no one-level type 2 indexes. A type 2 index is created as a two-level
index with a root page that points to an empty leaf page.

� With a type 2 index, the predicate can be evaluated when the index is
accessed, particularly if all columns in the predicate are in the index. If not all
columns are present in the index, some evaluation might still be possible when
the index is accessed, and then the predicate is evaluated further when the
data is accessed.

Use type 2 indexes whenever possible. Type 2 index provide increased
concurrency and performance. They also provide the following functions, which are
unavailable with type 1 indexes.

� Row locking on a table space
� UR isolation for an access path

2-52 Administration Guide

� Processing of queries by multiple parallel tasks
� Concurrent access to separate logical partitiions

Leaf Pages, Root Page, and Subpages
Indexes can have more than one level of pages. Index pages that point directly to
the data in your tables are called leaf pages. If the index has more than one leaf
page, it must have at least one nonleaf page, containing entries that point to the
leaf pages. If it has more than one nonleaf page, the nonleaf pages whose entries
point directly to leaf pages are said to be on level 1; there must be a second level
of nonleaf pages to point to level 1, and so on. The highest level contains a single

| page, called the root page. When DB2 first builds your index, it creates an index
| tree which resides in a 4KB index page, called the root page. This index tree points
| directly to the data in your tables giving the key and the row ID. A typical index is
| shown schematically in Figure 35.

 ROOT PAGE

LEVEL 2 ┌────────┬───────────────────────┐

┌───────────────┤ Page A │ highest key of page A │

 │ ├────────┼───────────────────────┤

│ │ Page B │ highest key of page B ├─────────────┐

 │ ├────────┴───────────────────────┤ │

 │ │ │ │

 │ └────────────────────────────────┘ │

 │ │

6 NONLEAF PAGE A NONLEAF PAGE B 6

LEVEL 1 ┌───────┬───────────────────────┐ ┌───────────────────────────────┐

┌──┤ Page 1│ highest key of page 1 │ │ │

 │ ├───────┴───────────────────────┤ ├───────────────────────────────┤

│ │ │ │ │

 │ ├───────┬───────────────────────┤ ├───────┬───────────────────────┤

│ │ Page X│ highest key of page X │ │ Page Z│ highest key of page Z ├──┐

 │ └───────┴───────────────┬───────┘ └───────┴───────────────────────┘ │

 │ │ │

│ LEAF PAGE 1 │ LEAF PAGE X LEAF PAGE Z │

LEVEL ð │ ┌─────────────┐ │ ┌─────────────┐ ┌─────────────┐ │

└─5│ │ └─5│ │ ││%─┘

├───┬─────────┤ ├───┬─────────┤ ├───┬─────────┤

│KEY│record─ID│ │KEY│record─ID│ │KEY│record─ID│

└───┴──────┬──┘ └───┴──────┬──┘ └───┴────┬────┘

 │ │ │

 │ ┌───────────┬─6──────┐ │

 │ │ TABLE │ row │ │

 │ │ └────────┤ │

 │ ├────────┐ ┌────────┤ │

└────────────5 row │ │ row %─────────────────┘

 ├────────┘ └────────┤

 └────────────────────┘

Figure 35. Sample Index Structure and Pointers (Three-Level Index)

Type 1 Indexes and Locking
The leaf pages of a type 1 index can be subdivided into 1, 2, 4, 8, or 16 subpages;
the default is 4.

The subpage is a unit of locking. The purpose of having more than one subpage is
to increase concurrency for applications that update, rather than insert. Insert
applications often must reduce the number of subpages for concurrency. Although
increasing the number of subpages is effective in reducing lock contention, the

 Chapter 2-5. Designing Indexes 2-53

processing overhead is higher, and there is also a fixed storage overhead for each
subpage.

| If your type 1 index grows beyond the 4K index page, a page split occurs and a
| level 1 index page is created. After the first page split, the root page is no longer
| called a leaf page; the level 0 pages pointing directly to the data are now known as
| leaf pages. Each leaf page holds approximately 4096 bytes of data, and, if one
| page is full, an insertion in the index causes a leaf page split. A page split adds
| another page to the same level of the index. If there is no room on that level of the
| index tree to accommodate another page, another level of index is added.

| The number of pages in a level of the index depends on the number of index
| entries you have and the length of the key. The root page contains the page
| number and highest key of each page in the next level of the index. Similarly, the
| nonleaf pages at a given level contain the page number and highest key of each
| page in the next level. For an explanation of what a key is, refer to “Index
| Keys.” Figure 35 on page 2-53 shows an index that has split into three levels,
| where the index entries in the root page point to the entries in the level 1 index
| page.

| For a nonpartitioned index, there is one tree for each index. For a partitioned index,
| there is one tree for each partition.

Type 2 Indexes and Locking
A possible solution to the concurrency problem is to use type 2 indexes, which
allow locking every row in the table separately (LOCKSIZE ROW). Type 2 indexes
do not have subpages. They do not lock index pages. See “Type 2 Indexes” on
page 2-51 for a description of the differences between type 1 and type 2 indexes.

 Index Keys
A table can have more than one index, and an index key can use one or more
columns. An index key is a column or an ordered collection of columns on which an
index is defined. A composite key is a key built on 2 to 64 columns.

The usefulness of an index depends on its key. Columns that you use frequently in
performing selection, join, grouping, and ordering operations are good candidates
for use as keys.

The number of bytes in an index key is the sum of the number of bytes in the
column or columns that make up the key, plus one byte for each column that can
contain null values. (For columns with a field procedure, use the number of bytes in
the encoded field, not the number in the decoded column. This distinction is
explained under “Field Procedures” on page X-57.) For information about
restrictions on key length, see Chapter 6 of SQL Reference.

Some Things to Remember When Defining Keys:

� Column updates require index updates .

Define as few indexes as possible on a column that is updated frequently,
because every change must be reflected in each index.

� A composite key might be more useful than a key on a single column
when the comparison is for equality .

2-54 Administration Guide

A single multicolumn index is more efficient when the comparison is for equality
and the initial columns are provided. For example, if an index is composed of
columns A, B, and C, a SELECT statement with a WHERE clause of the form
WHERE A = value AND B = value might be processed more efficiently than if
there are separate indexes on A and on B.

However, for more general comparisons, such as A > value AND B > value,
multiple indexes might be more efficient.

� Indexes are important tools for improving performance .

To fully understand how indexes are used during access path selection, see
“Chapter 5-10. Using EXPLAIN to Improve SQL Performance” on page 5-261.

Using Unique Indexes
DB2 allows you to enter duplicate values in a key column. If you do not want
duplicate values, use CREATE UNIQUE INDEX. For example, in the sample
application it is important that there be no duplicate department IDs in the
department table. Creating a unique index, as in the following example, prevents
duplicates.

CREATE UNIQUE INDEX XDEPT1

ON DSN851ð.DEPT (DEPTNO);

The index name is XDEPT1 and the indexed column is DEPTNO.

If a table has a primary key (as the department table has), its entries must be
unique. This uniqueness is enforced by defining a unique index on the primary key
columns, with the index columns in the same order as the primary key columns.

But it is not necessary that all keys be unique. For example, an index on the
SALARY column of the employee table would allow duplicates, because it is
perfectly reasonable for several employees to earn the same salary.

Before you create a unique index on a table that already contains data, be sure
that no pair of rows has the same key value. If DB2 finds a duplicate value in a set
of key columns for a unique index, it returns an error message and does not create
the index.

Using the UNIQUE WHERE NOT NULL Clause
A single-column key defined with UNIQUE WHERE NOT NULL can have more
than one null value, but its nonnull values must be unique. For example, suppose
some of your employees have paging phones, and their phone numbers are
recorded in column BEEPER of the table of employee data. An index on BEEPER,
defined with UNIQUE WHERE NOT NULL, allows many null values for employees
with no paging phone, but ensures that any number added or updated is unique.

For a key on more than one column, where the index is defined with the UNIQUE
WHERE NOT NULL clause, the key value is null if any part of the key value is null.
An index defined with UNIQUE WHERE NOT NULL must be type 2.

 Chapter 2-5. Designing Indexes 2-55

Using Composite Keys
You can create an index with a composite key, containing multiple columns. The
index entries can be in sequence by the ascending values or descending values of

| the columns. The keywords ASC and DESC of the CREATE INDEX statement
| indicate ascending and descending order. ASC is the default and can be omitted.

The other clauses of the CREATE INDEX statement are described on following
pages.

CREATE UNIQUE INDEX DSN851ð.XPROJAC1

 ON DSN851ð.PROJACT

 (PROJNO ASC,

 ACTNO ASC,

 ACSTDATE DESC)

 ...

 Clustering Indexes
To specify a clustering index, use the CLUSTER clause in the CREATE INDEX
statement. When a table has a clustering index, an INSERT statement inserts
records as nearly as possible in the order of their index values. These clustered
inserts can provide a significant performance advantage in some operations,
particularly those that involve many records, such as grouping, ordering, and
comparisons other than equal. Although a table can have several indexes, only one
of them can be a clustering index.

If you first create a nonclustering index, DB2 organizes the data by that index. If
later you create an index you specify as clustering, DB2 identifies it as the
clustering index but does not rearrange the data already in the table. The data is
still organized by the original nonclustering index you created for the table.
However, when the table space is reorganized by the REORG utility, DB2 clusters
the data in accordance with the new clustering index. Therefore, if you know you
want a clustering index, it is better to define it before you load the table. If that is
not possible, define the index and then reorganize the table.

 Partitioned Indexes
When you store a table in a partitioned table space, you tell how to divide the data
among partitions by using the PART clause of a CREATE INDEX statement.
Therefore, the index that divides the data is a partitioned index. It is also a
clustering index, because the data is clustered by the index key values. Thus, your

| PART clause must be preceded by CLUSTER. The index must be type 2 to support
| logical partitions.

Although the total length of your partitioned index columns can be up to 255 bytes
(less one for each column that can contain nulls), only the first 40 bytes are actually
used to partition the data. DB2 is not sensitive to field boundaries when it

determines partitioning. There might be situations in which you need to know where
the 40-byte truncation occurs. For example, you might not want to truncate a field
with zeros in the high order bytes, if that could disrupt your partitioning strategy.

Recommendation: choose values for partitioning keys that are unlikely to be
updated. Updates that cause a row to move from one partition to another have
lower performance. To prevent degrading the performance of other SQL statements
that are in the same unit of work, update partitioning keys in a separate unit of

2-56 Administration Guide

work, if possible. If you must move many rows into another partition, use the
procedure in 2-150.

| Nonpartitioned Indexes
| You can define a nonpartitioned index on either a nonpartitioned or a partitioned
| table space. If you define a nonpartitioned index and a partitioned index on the
| same table, you lose some of the benefits of partition-level independence for utility
| operations because access to a nonpartitioned index must be sequential. However,
| logical partitions of a nonpartitioned index can usually be accessed by utilities and
| SQL applications concurrently. To take advantage of this concurrency, your
| nonpartitioned indexes must be type 2. For more information about utility
| operations, nonpartitioned indexes, impacts of using type 1 or type 2 indexes, see
| “Utility Operations with Nonpartitioned Indexes” on page 5-189.

Designing Index Spaces
CREATE INDEX creates an index space in the DB2 database containing the table
on which the index is defined. If you do not defer the index build, a populated table
space is always scanned during the execution of CREATE INDEX. Because the
LOAD utility builds indexes more efficiently, it is best to create the indexes before
loading the table.

If you are creating a nonunique index on a populated table, consider using the
DEFER clause, as described in “Creating an Index on a Large Table” on
page 2-104. This allows you to build the index later using RECOVER INDEX.

When you use CREATE INDEX, specify the USING clause. If you use a storage
group, consider specifying the primary and the secondary space allocation
quantities (PRIQTY and SECQTY). You specify the allocation as a number of
kilobytes; DB2 specifies the value to VSAM as a number of pages. For each
clause, the default value is three pages. For more information about how space
allocation can affect the performance of mass inserts, see “Ensure Allocation in
Cylinders” on page 5-40.

| The primary quantity is particularly important; so try to specify a value that avoids
| secondary allocation without wasting space. DB2 can extend a nonpartitioned index
| space to more than one data set, but only if the value of (PRIQTY + 118 × SECQTY)
| is at least the value of the PIECESIZE parameter. (You might possibly reach 123
| extents before reaching the limit, but 119 is more likely.) To make the best use of
| space for nonpartitioned indexes, choose a value for PIECESIZE that is an even
| multiple of (PRIQTY + 118 × SECQTY).

The default value of SECQTY is 10 percent of the specified PRIQTY, or three times
the page size, whichever is larger.

If you partition the table space, the clustering index is also partitioned.

You can use the USING clause to specify space for the entire index, or, if the index
is partitioned, you can specify space for each partition. Information about space
allocation for the index is kept in the SYSIBM.SYSINDEXPART table of the DB2
catalog. Other information about the index is in SYSIBM.SYSINDEXES.

 Chapter 2-5. Designing Indexes 2-57

2-58 Administration Guide

Chapter 2-6. Designing Table Spaces

After you design a relational database, you must create DB2 objects. This chapter
includes physical design considerations and implementation information.

Deciding What Type of Table Space and How Many
The information under this heading, up to “Building the Compression Dictionary” on
page 2-64, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

You can choose from three types of table spaces:

Simple A table space that can contain more than one table. The space
is composed of pages, and each page can contain rows from
many tables.

Segmented A table space that can contain more than one table. The space
is composed of groups of pages called segments. Each segment
is dedicated to holding rows of a single table.

Partitioned A table space that can contain only a single table. The space is
subdivided into partitions based on the key range of a nominated
partitioning index. Each such partition can be processed
concurrently by utilities and SQL.

If you are creating a single table, you can choose any of the three types of table
spaces. If you are creating several tables in a table space, you can choose either a
simple or segmented table space.

Rule of Thumb: All large table spaces should be partitioned and the rest of the
table spaces should be segmented. Use the following description of the three types
of table spaces to help you decide.

Simple Table Spaces
In general, use segmented or partitioned table spaces for most of your DB2 data.
The following section describes why you might use simple table spaces.

Advantage of Simple Table Spaces
If you know how your data is usually retrieved and you don't insert or delete rows in
your table too often, you can put things together physically that belong together
logically. For example, for logically hierarchical data in which dependents are often
retrieved with their parent, you might want to load the data in hierarchic order to
improve the chances of parent and dependent rows residing on the same page.

The disadvantages of simple table spaces are as follows:

� It takes more time to scan for all the rows of a table when tables are intermixed
in a table space. Scanning one table requires scanning the entire table space.

� When a table is dropped, the space occupied by the table does not become
available for reuse immediately.

� The entire table space is unavailable when certain DB2 utilities are executing.

 Copyright IBM Corp. 1982, 1997 2-59

� For simple table spaces containing more than one table, there is no provision
for locking a single table. If LOCK TABLE is specified for a table that is
contained in a simple table space, all tables in the table space are actually
locked.

� A page lock in a simple table space can mean that information from other
tables is locked as well. For further information on locking, refer to “Chapter
5-7. Improving Concurrency” on page 5-137.

Segmented Table Spaces
A segmented table space is ideal for storing more than one table, especially
relatively small tables. The pages of the space are organized into segments, and
each segment holds records from only one table. Each segment contains the same
number of pages, which must be a multiple of 4 (from 4 to 64). Each table uses
only as many segments as it needs, and a space map records the assignments of
segments to tables.

As records are inserted by INSERT or LOAD, there is no attempt to keep segments
from the same table together. Figure 36 shows one use of space that might result.
Reorganizing the table space puts segments of the same table together.

A possible organization of ┌──────────────────┐

segments in a segmented ┌──────────────────┐ Segment │

table space ┌──────────────────┐ Segment │ 5 │

┌──────────────────┐ Segment │ 4 │ │

┌──────────────────┐ Segment │ 3 │ │ Table │ .

┌──────────────────┐ Segment │ 2 │ │ Table │ C │ .

┌──────────────────┐ Space │ 1 │ │ Table │ A │ │ .

 │ │ Map │ │ Table │ C │ │─────────┘

│ Header Page │ │ Table │ B │ │─────────┘

│ │ │ A │ │─────────┘

│ │ │ │─────────┘

 │ │ │─────────┘

 │ │─────────┘

 └──────────────────┘

Figure 36. Segments of a Segmented Table Space

Advantages of Segmented Table Spaces
� When scanning a table, only the segments assigned to that table need be

accessed. Pages of empty segments do not have to be fetched.

� When locking a table, the lock does not interfere with access to segments of
other tables.

� When a table is dropped its segments become available for reuse immediately
after the DROP is committed; it is not necessary to wait for an intervening
REORG utility job.

� When all rows of a table are deleted (mass delete), all segments but the first
become available for reuse immediately after the delete has been committed; it
is not necessary to wait for an intervening REORG utility job.

� A mass delete of all rows of a table operates much more quickly and produces
much less log information.

However, if you have a validation procedure, a parent table in a referential
constraint, or DATA CAPTURE CHANGES defined on a table in a segmented
table space, each row has to be processed; thus, you lose the advantage of
the quick mass delete.

2-60 Administration Guide

� Even if the table space contains only one table, segmenting it means that
COPY does not copy pages that are empty because of a dropped table or a
mass delete.

� Because the space map contains more information than a space map for a
simple table space, some read operations are avoided when inserting records.

Creating fewer table spaces, by storing several tables in one table space, can help
you avoid reaching the maximum number of concurrently open data sets. Each
table space requires at least one data set, and there is a maximum number of
concurrently open data sets that is determined during installation. Using fewer table
spaces means less time spent in data set allocation and deallocation.

Disadvantages of Segmented Table Spaces
| � Some DB2 utilities, such as LOAD with the REPLACE option, RECOVER,
| COPY, and REORG, operate only on a table space or a partition. Therefore, for
| a segmented table space, you must run these utilities on the entire table space.
| For a large table space, this can have a negative impact on availability.

� There is some additional overhead to maintaining the space map.

If you choose to segment the table space, use the SEGSIZE clause. Refer to
“Creating a Segmented Table Space” on page 2-90 for more information.

Partitioned Table Spaces
You use a partitioned table space to store a single table. As shown in Figure 37,

| each partition contains one part of the table. We recommend that if you implement
| a partitioned table space, create it as LARGE to use its advantages.

┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐

 Partition 1 │ │ │ │ │ │ │ │

 Key range A-L │ │ │ │ │ │ │ │

└──────┘ └──────┘ └──────┘ └──────┘

┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐

 Partition 2 │ │ │ │ │ │ │ │

 Key range M-Z │ │ │ │ │ │ │ │

└──────┘ └──────┘ └──────┘ └──────┘

Figure 37. Pages in a Partitioned Table Space. The first page of each partition is a header
page. The second page is a space map page.

A partitioned table space needs a clustering index because rows are assigned to
the partitions according to the values of their cluster index keys.

Advantages of Partitioned Table Spaces
Partitioned table spaces have the following advantages:

� You can spread a large table over several DB2 storage groups or data sets.
All the partitions of the table do not have to use the same storage group.

� You can work on part of your data at a time, and possibly decrease the amount
of time required for the operation. Partitioned table spaces let a utility job work
on part of the data at a time, while allowing concurrent access to other jobs or
applications on other partitions. In that way, several concurrent utility jobs can,
for example, load all partitions of a table space concurrently.

| � You can break mass update, delete, or insert operations into separate jobs,
| each of which works on a different partition. Breaking the job into several
| smaller jobs that run concurrently can reduce the time for the whole task. If

 Chapter 2-6. Designing Table Spaces 2-61

| your table space uses nonpartitioned indexes, you might need to modify the
| size of the data sets in the indexes to avoid I/O contention among the
| concurrently running jobs. Use the PIECESIZE parameter of CREATE or
| ALTER INDEX to modify the sizes of the index data sets.

� You can put frequently accessed data on faster devices. If a clustering
(partitioned) index can separate more frequently accessed data from the
remainder of the table, that data can be put in a partition of its own and can
use a different device type.

� You can take advantage of parallelism for certain read-only queries. When DB2
determines that processing will be extensive, it can begin parallel processing of
more than one partition at a time. Parallel processing (for read-only queries) is
most efficient when you spread the partitions over different DASD volumes and
allow each I/O stream to operate on a separate channel. For more information
about parallelism, see “Parallel Operations and Query Performance” on
page 5-299.

| You can take advantage of query parallelism by using the Parallel Sysplex data
| sharing technology to process a single read-only query across many DB2s in a
| data sharing group. Sysplex query parallel processing is optimized when each
| DB2 is on a separate central processor complex. For more information about
| Sysplex query parallelism, see Data Sharing: Planning and Administration.

Advantages of Large Table Spaces
Large table spaces offer flexibility in database design:

� You do not have to separate large amounts of data into different tables
because of size constraints.

� Greater amounts of data are available when utilities are run because you
distribute data across more partitions. Larger numbers of partitions can also
speed up parallel queries by permitting more concurrent parallel processing.

� You can better accommodate a growing database.

Disadvantages of Partitioned Table Spaces
� You must have a partitioning key and a clustering index on a fixed number of

partitions. This means you must define all the partitions you expect to use even
if you will not use them for some time.

| � Table space scans can be less efficient than table space scans of segmented
| table spaces. See “Table Space Scans (ACCESSTYPE=R PREFETCH=S)” on
| page 5-275 for more information.

| � DB2 opens more data sets when you access data in a partitioned table space
| than when you access data in other types of table spaces.

See “Creating a Partitioned Table Space” on page 2-91 for more information on
partitioned table spaces.

Use LOCKSIZE with Performance in Mind
LOCKSIZE ANY is the default for CREATE TABLESPACE, allowing DB2 to choose
the locksize, usually LOCKSIZE PAGE and LOCKMAX SYSTEM. Before you
choose LOCKSIZE TABLESPACE or LOCKSIZE TABLE, you should know why you
do not need concurrent access to the object. Before you choose LOCKSIZE ROW,

2-62 Administration Guide

estimate the increase in overhead for locking and weigh it against the increase in
concurrency.

For more information see “Recommendations for Database Design” on page 5-141.

Compressing Data in a Table Space or Partition
Specifying COMPRESS YES on CREATE or ALTER TABLESPACE when used
with a LOAD or REORG utility compresses data in a table space or partition. When
you compress data, bit strings that occur frequently are replaced by shorter strings.
Information about the mapping of bit strings to their replacements is stored in a
compression dictionary. Computer processing is required to compress data before it
is stored and to decompress the data when it is retrieved from storage.

Deciding Whether to Compress
Consider the following before compressing a table space or partition:

� Saving space in large table spaces

Compression can work very well for large table spaces. With small table
spaces, the size of the compression dictionary (8KB to 64KB) can offset the
space savings provided by the compression.

� The size of the data rows

DB2 compresses the data of one record at a time. (The prefix of the record is
not compressed.) However, if compressing the record produces a result that is
no shorter than the original, DB2 does not compress the record. This is one
reason why you should not try to use data compression to encrypt data.

The closer that the average row length is to the actual page size, the more
inefficient compression might be; because rows cannot span pages, you might
not achieve enough compression to fit two rows on a page.

 � Processing costs

Compressing data costs processing time. The cost is significantly lower if you
use IBM's synchronous data compression hardware than if you use the
DB2-provided software simulation. DB2 determines at startup time whether you
have hardware support for compression. If you do not, DB2 uses software
simulation.

It costs less to decompress data than to compress it, and the overall cost
depends on the patterns in your data. You can use the DSN1COMP
stand-alone utility to find out how effective compressing your data will be. For

| more information, see Section 3 of Utility Guide and Reference.

See “Compressing Your Data” on page 5-102 for more performance
considerations.

 Chapter 2-6. Designing Table Spaces 2-63

 � Data patterns

The frequency of patterns in the data determines the compression savings.
Data with many repeated strings (such as state and city names or numbers
with sequences of zeros) results in good compression savings.

� Table space design

If you use LOAD to build the compression dictionary, the first n rows loaded in
the table space determine the contents of the dictionary. The value of n is
determined by the compressibility of your data.

If you have a table space with more than one table, and if the data used to
build the dictionary comes from only one or a few of those tables, the data
compression might not be optimal for the remaining tables. Therefore, we
recommend that you put a table you want to compress into a table space by
itself, or into a table space containing only tables with similar kinds of data.

REORG, on the other hand, uses a sampling technique to build the dictionary.
This technique uses the first n rows from the table space and then continues to
sample rows for the remainder of the UNLOAD phase. In most cases, this
sampling technique produces a better dictionary than does LOAD, and might
produce better results for table spaces containing tables with dissimilar kinds of
data.

� Existing exit routines

An exit routine is executed before compressing or after decompressing, so you
can use DB2 data compression with your existing exit routines. However, we
recommend that you do not use DB2 data compression in conjunction with
DSN8HUFF. This adds little additional compression at the cost of significant
extra CPU processing.

� Effects on logging

If a data row is compressed, all data logged because of SQL changes to that
data is compressed. Thus, you can expect less logging for insertions and
deletions; the amount of logging for updates varies. In any event, applications
that are sensitive to log-related resources can see some benefit with
compressed data.

External routines that read the DB2 log cannot interpret compressed data
without access to the compression dictionary that was in effect when the data
was compressed. Using IFCID 306, however, you can cause DB2 to write log
records of compressed data in decompressed format. You can retrieve those
by using the IFI function READS.

 � Distributed data

DB2 decompresses data before transmitting it to VTAM.

Building the Compression Dictionary
Each table space or partition that contains compressed data has a compression
dictionary. The compression dictionary contains information used to control
compression and decompression. The dictionary contains a fixed number of entries,
usually 4096, and resides with the data. Its content is based on the data at the
time it was built, and does not change unless the dictionary is rebuilt or recovered,
or compression is disabled with ALTER.

2-64 Administration Guide

You can build the compression dictionary by using the LOAD utility with the
REPLACE or RESUME NO options, or by using the REORG TABLESPACE utility.
With LOAD, the dictionary is built as data is loaded; no data is compressed until the
dictionary is completely built. For more information about using LOAD or REORG to
create a compression dictionary, see Section 2 of Utility Guide and Reference.

Determining the Effectiveness of Compression
| There are a couple ways for you to determine how effective data compression is by
| using compression reports and catalog statistics. If you want to estimate the
| compression effectiveness prior to compressing the data, then use the DSN1COMP
| stand-alone utility.

 Compression Reports
You can determine the effectiveness of compression after you use REORG or
LOAD to build the compression dictionary and compress the data. Both utilities
issue a report message (DSNU234I or DSNU244I). This report gives you
information about the amount of compression and how much space is saved.
(REORG with the KEEPDICTIONARY option does not produce the report.)

 Catalog Statistics
In addition to these reports, the PAGESAVE column of the
SYSIBM.SYSTABLEPART catalog table and the PCTROWCOMP columns of
SYSIBM.SYSTABLES and SYSIBM.SYSTABSTATS contain information about data
compression. PAGESAVE tells you a percentage of pages saved by compressing
the data, and PCTROWCOMP tells you the percentage of the rows that were
compressed in the table or partition the last time RUNSTATS was run. Use the
RUNSTATS utility to update these catalog columns.

 DSN1COMP
Use the stand-alone utility DSN1COMP to find out how much space it will save and
how much processing it will require to compress your data. Run DSN1COMP on a
data set containing a table space, a table space partition, or an image copy.
DSN1COMP generates a report of compression statistics but does not compress
the data. For instructions on using DSN1COMP, see Section 3 of Utility Guide and
Reference .

 Chapter 2-6. Designing Table Spaces 2-65

2-66 Administration Guide

Chapter 2-7. Designing Storage Groups and Managing DB2
Data Sets

DB2 manages the auxiliary storage requirements of a DB2 database by using DB2
storage groups. Data sets in these DB2 storage groups are DB2-managed data
sets. These DB2 storage groups are not the same as storage groups defined by
DFSMS/MVS's storage management subsystem (DFSMS). A DB2 storage group is
a named set of DASD volumes, in which DB2 does the following:

� Allocates storage for table spaces and indexes
� Defines the necessary VSAM data sets
� Extends and deletes the VSAM data sets
� Alters VSAM data sets

This chapter explains how to manage your DB2 data sets.

Naming DB2 Storage Groups and Databases: A name for DB2 storage groups
and databases is an unqualified identifier of up to eight characters. A DB2 storage
group name must not be the same as the name of any other storage group in the
DB2 catalog, and a DB2 database name must not be the same as the name of any
other DB2 database. The following examples are used in the sample application:

Object Name
DB2 storage group DSN8G510
Database DSN8D51A

See the SQL Reference for more information about naming conventions.

If you are using shared read-only data, see “Appendix F. Sharing Read-Only Data”
on page X-153.

Managing Your DB2 Data Sets with DFSMShsm
If you decide to use DFSMShsm for your DB2 data sets, you should develop a
migration plan with your system administrator. With user-defined data sets, you can
specify DFSMShsm classes on the access method services DEFINE statement.
With DB2 storage groups, you need to develop automatic class selection routines.

Do not let DFSMShsm migrate the DB2 catalog, DB2 directory, active logs, and the
temporary database (DSNDB07 in a non data-sharing environment) before starting
DB2. Considerations for using DFSMShsm for archive log data sets are discussed
in “Archive Log Data Sets” on page 4-91.

 Copyright IBM Corp. 1982, 1997 2-67

General-use Programming Interface

To allow DFSMShsm to manage your DB2 storage groups, you can use one or
more asterisks as volume IDs in your CREATE STOGROUP or ALTER
STOGROUP statement, as shown here:

CREATE STOGROUP G2ð2

VOLUMES ("\")

VCAT DB2SMST;

End of General-use Programming Interface

This example causes all database data set allocations and definitions to use
nonspecific selection through DFSMShsm filtering services.

The RECOVER utility can execute the DFDSS command RESTORE, which
generally uses extensions larger than the data set's primary and secondary values
(RECOVER executes this command if the recoverable point is a copy that was
taken with the CONCURRENT option). However, DFDSS RESTORE does not
extend a data set the same way DB2 does, so you must alter the page set to
contain extends defined by DB2. Use ALTER TABLESPACE to enlarge the primary
and secondary values for stogroup-defined data sets, because DB2 could run out of
extends when REORG or LOAD REPLACE (unloading and reloading the same
data) is used.

After using ALTER TABLESPACE, the new values take effect only when REORG
or LOAD REPLACE is used. Using RECOVER TABLESPACE again does not
resolve the extend definition.

For user-defined data sets (see “Managing Your Own DB2 Data Sets”), define the
data sets with larger primary and secondary values.

For more information about using DFSMShsm to manage DB2 data sets, see MVS
Storage Management Library: Storage Management Subsystem Migration Planning
Guide.

Managing Your Own DB2 Data Sets
You might choose to manage your own VSAM data sets for reasons such as these:

� You have a large linear table space on several data sets. If you manage your
own data sets, you can better control the placement of the individual data sets
on the volumes. (Although you can do a similar type of control by using
single-volume DB2 storage groups.)

� You want to prevent deleting a data set within a specified time period, by using
the TO and FOR options of the access method services DEFINE and ALTER
commands. You can create and manage the data set yourself, or you can
create the data set with DB2 and use the ALTER command of access method
services to change the TO and FOR options.

� You are concerned about recovering dropped table spaces. Your own data set
is not automatically deleted when a table space is dropped, making it easier to
reclaim the data if the table space is dropped.

2-68 Administration Guide

Managing Your Data Sets Using Access Method Services
Managing DB2 auxiliary storage yourself involves using access method services
directly. To define the required data sets, use DEFINE CLUSTER; to add
secondary volumes to expanding data sets, use ALTER ADDVOLUMES; and to
delete data sets, use DELETE CLUSTER.

You can define a data set for each of these items:

� A simple or segmented table space
� A partition of a partitioned table space
� A nonpartitioned index
� A partition of a partitioned index.

Furthermore, as table spaces and index spaces expand, you might need to provide
additional data sets. To take advantage of parallel I/O streams when doing certain
read-only queries, consider spreading large table spaces over different DASD
volumes that are attached on separate channel paths. For more information about
data set extension, see “Extending DB2-Managed Data Sets” on page 5-100.

Requirements for Your Own Data Sets
DB2 checks whether you have defined your data sets correctly. If you plan to
define and manage VSAM data sets yourself, you must meet these requirements:

1. Define the data sets before you issue the CREATE TABLESPACE or CREATE
INDEX statement.

2. Give each data set a name with this format:

catname.DSNDBx.dbname.psname.Iððð1.Annn

The name variables are defined below:

catname integrated catalog name or alias (up to eight characters). Use the
same name or alias here as in the USING VCAT clause of the
CREATE TABLESPACE and CREATE INDEX statements.

x C (for VSAM clusters) or D (for VSAM data components).

dbname DB2 database name. If the data set is for a table space, dbname
must be the name given in the CREATE TABLESPACE statement. If
the data set is for an index, dbname must be the name of the
database containing the base table. If you are using the default
database, dbname must be DSNDB04.

psname table space name or index name. This name must be unique within
the database.

You will use this name on the CREATE TABLESPACE or CREATE
INDEX statement. (You can use a name longer than eight
characters on the CREATE INDEX statement, but the first eight
characters of that name must be the same as in the data set's
psname.)

| nnn data set number. For partitioned table spaces, the number is 001 for
| the first partition, 002 for the second, and so forth, up to the
| maximum of 254 partitions.

| For a nonpartitioning index on a partitioned table space that you
| defined using the LARGE option, the maximum data set number is
| 128.

 Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets 2-69

| For simple or segmented table spaces, the number is 001 for the
| first data set. When space runs short, DB2 issues a warning
| message. If the size of the data set for a simple or segmented table
| space approaches 2 gigabytes, define another data set. Give it the
| same name as the first data set, and the number 002. The next data
| set will be 003, and so forth. You might eventually need up to 32
| data sets (the maximum) for a simple or segmented table space.

| For table spaces, it is possible to reach the 119-extent limit for the
| data set before reaching the 2-gigabyte limit for a nonpartitioned
| table space or the 4-gigabyte limit for a partitioned table space. If
| this happens, DB2 does not extend the data set.

3. You must use the DEFINE CLUSTER command to define the size of the
primary and secondary extents of the VSAM cluster. If you specify zero for the
secondary extent size, data set extension does not occur.

4. If you specify passwords when defining a VSAM data set, give your
highest-level password in the DSETPASS clause (in the CREATE
TABLESPACE or CREATE INDEX statement).

5. Define the data sets as LINEAR. Do not use RECORDSIZE or
CONTROLINTERVALSIZE; these attributes are invalid, and are replaced by the
specification LINEAR.

6. Use the REUSE option. You must define the data set as REUSE in order to
use the DSN1COPY utility.

 7. Use SHAREOPTIONS(3,3).

The DEFINE CLUSTER command has many optional parameters that do not apply
when the data set is used by DB2. If you use the parameters SPANNED,
EXCEPTIONEXIT, SPEED, BUFFERSPACE, or WRITECHECK, VSAM applies
them to your data set, but DB2 ignores them when it accesses the data set.

The OWNER parameter value for clusters defined for storage groups is the first
SYSADM authorization ID specified at installation.

When you drop indexes or table spaces for which you defined the data sets, you
must delete the data sets yourself unless you want to reuse them. To reuse a data
set, first commit, and then create a new table space or index with the same name.
When DB2 uses the new object, it overwrites the old information with new
information, destroying the old data.

Likewise, if you delete data sets, you must drop the corresponding table spaces
and indexes; DB2 does not do it automatically.

| Defining Data Sets for Online REORG
| Before executing the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL
| CHANGE, you must create shadow data sets, with names that have the form
| catname.DSNDBx.dbname.psname.Sððð1.Annn.

| In the switch phase of REORG with SHRLEVEL REFERENCE or SHRLEVEL
| CHANGE, REORG exchanges the names of the original data sets and shadow
| data sets by renaming the data sets as follows:

| 1. Rename the original data set from catname.DSNDBx.dbname.psname.Iððð1.Annn

| to catname.DSNDBx.dbname.psname.Tððð1.Annn, which is a temporary name.

2-70 Administration Guide

| 2. Rename the shadow data set from catname.DSNDBx.dbname.psname.Sððð1.Annn

| to catname.DSNDBx.dbname.psname.Iððð1.Annn.

| 3. Rename the original data set from catname.DSNDBx.dbname.psname.Tððð1.Annn

| to catname.DSNDBx.dbname.psname.Sððð1.Annn.

| Therefore, data sets with names that have the form
| catname.DSNDBx.dbname.psname.Tððð1.Annn must not already exist when you invoke
| the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE.

| In addition, before executing the REORG utility with SHRLEVEL REFERENCE or
| SHRLEVEL CHANGE on partition mmm of a partitioned table space, you must
| create (for each nonpartitioned index) a shadow data set for a copy of the logical
| partition of the index, with a name that has the form
| catname.DSNDBx.dbname.psname.Sðmmm.Annn.

DEFINE CLUSTER Command
Figure 38 shows the DEFINE CLUSTER command, which defines the VSAM linear

| data set (LDS) for the DB2 catalogs SYSUSER table space in database DSNDB06.
Assume that an integrated catalog named DSNCAT has already been defined.

DEFINE CLUSTER-

 (NAME(DSNCAT.DSNDBC.DSNDBð6.SYSUSER.Iððð1.Aðð1) -

 LINEAR -

 REUSE -

 VOLUMES(DSNVð1) -

 MASTERPW(DBADMIN) -

 CONTROLPW(DBADMIN) -

 RECORDS(1ð 1ð) -

SHAREOPTIONS(3 3)) -

 DATA -

 (NAME(DSNCAT.DSNDBD.DSNDBð6.SYSUSER.Iððð1.Aðð1) -

 MASTERPW(DBADMIN) -

 CONTROLPW(DBADMIN)) -

 CATALOG(DSNCAT/DSNDEFPW)

Figure 38. Defining a VSAM linear data set with DEFINE CLUSTER.

| DEFINE CLUSTER-

| (NAME(DSNCAT.DSNDBC.DSNDBð6.SYSUSER.Sððð1.Aðð1) -

| LINEAR -

| REUSE -

| VOLUMES(DSNVð1) -

| MASTERPW(DBADMIN) -

| CONTROLPW(DBADMIN) -

| RECORDS(24 12) -

| SHAREOPTIONS(3 3)) -

| DATA -

| (NAME(DSNCAT.DSNDBD.DSNDBð6.SYSUSER.Sððð1.Aðð1) -

| MASTERPW(DBADMIN) -

| CONTROLPW(DBADMIN)) -

| CATALOG(DSNCAT/DSNDEFPW)

| Figure 39. Defining a shadow data set with DEFINE CLUSTER.

 Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets 2-71

For more information about defining and managing VSAM data sets, refer to
DFSMS/MVS: Access Method Services for the Integrated Catalog.

2-72 Administration Guide

Chapter 2-8. Designing a Database in a Distributed
Environment

Many businesses have a need to manage data from a variety of sources and
locations. A distributed data processing environment allows more flexibility in the
allocation of resources.

This chapter describes the planning considerations for accessing data in a
distributed environment, including the implications for application and systems
programming, and discusses stored procedures and the role of the DB2
administrator.

Ways to Access Distributed Data
From an application's point of view, there are two ways to access distributed data:
one is called DRDA access, and the other is called DB2 private protocol access.
Both of these methods are described in this section.

 DRDA Access
DRDA access allows access to any remote database management system that
implements the Distributed Relational Database Architecture (DRDA). An
application requester can select from or update tables at a remote location (the
server) by connecting to that location before executing SQL statements. We call
this DRDA access because an application process can issue explicit or implicit SQL
CONNECT statements; there is no use of three-part table or view names.

A package that you execute at another server can contain most kinds of SQL
statements, for example, CREATE, SELECT, or even GRANT and REVOKE. It
cannot contain statements to connect to yet another server. However, packages
can contain statements with three-part names that allow them to access data at
another DB2 using DB2 private protocol access. (This is sometimes known as a
“double hop.”)

Using DRDA access, you can update at more than one system if you use a type 2
CONNECT statement. You can update at only one system if you use a type 1
CONNECT statement, or if the system is at a level of DRDA that does not support
two-phase commit. Information about the CONNECT statement is in Section 6 of
Application Programming and SQL Guide .

Additionally, applications using DRDA can use DB2's stored procedures. More
information about stored procedures in a distributed environment is in “Stored
Procedures” on page 2-76.

DB2 Private Protocol Access
DB2 private protocol access allows access only to other DB2 subsystems for MVS.
An application can issue SQL SELECT, INSERT, UPDATE, or DELETE statements
for a table at a remote location by using a three-part name, or an alias of that
name, in which one part names the location at which the table resides. You cannot
create or drop a table at a remote location using DB2 private protocol access.

 Copyright IBM Corp. 1982, 1997 2-73

This method is called DB2 private protocol access because DB2 determines where
to connect to based on the name of the object in the statement. If you are a
database administrator, you will probably be involved in maintaining the association
of object names with locations.

Using DB2 private protocol access, you can update at multiple DB2 subsystems in
the same unit of work. However, if you update data in a system using DB2 Version
2, you can update only that one subsystem in a single unit of work, although you
can read from many other subsystems.

Figure 40 shows a comparison of the two ways to access distributed data. Which
method you use depends on your particular application.

 DRDA access
┌───┐

│ │

│ │

│ � Application connects explicitly to any DRDA server │

│ � DB2 to any server │

│ � SQL statements can be bound before execution │

│ � Can use any SQL statement supported by the │

│ system which executes the statement │

│ │

│ ┌──┼───────────┐

│ │ │ │

│ │ � Read and update at remote locations │ │

│ │ from IMS, CICS, TSO, batch, or call │ │

│ │ attachment facility (DRDA level 2) │ │

│ │ � Only one location per SQL statement │ │

│ │ │ │

│ │ │ │

└──────────┼──┘ │

 │ │

│ � DB2 requester finds remote data by │

│ its object name │

│ � DB2 to DB2 only │

│ � No remote bind │

│ � Limited to SQL INSERT, UPDATE, and │

│ DELETE statements, and to statements │

 │ supporting SELECT │

 │ │

 └──┘

DB2 private protocol access

Figure 40. A Comparison of Ways to Access Distributed Data. The ability to update at
remote locations through CICS and IMS requires communications and DRDA support for
two-phase commit.

It is possible to use both types of distributed access in a single application. For
information about planning a DB2 application to use distributed data, see Section 5
of Application Programming and SQL Guide. For more information about distributed
data, see Distributed Relational Database Architecture: Evaluation and Planning
Guide.

 Coordinated Updates
Both DRDA access and DB2 private protocol access can coordinate updates
across locations. Assuming both requesters and servers have communications and
DRDA support for two-phase commit, you can both read from and update many
remote locations in a single unit of work, no matter where your application
originates. When your application reaches a commit point, it issues a single
statement to commit or roll back the changes everywhere.

2-74 Administration Guide

See Section 3 of Installation Guide for information on how to configure DB2's
communication support for two-phase commit.

Implications for Application Programming
Implications of distributed data for application programming fall under four main
headings. For detailed information about distributed processing, see Application
Programming and SQL Guide.

 � Naming conventions

Names of tables and views can be qualified by a location name. When the
current server is a DB2 subsystem, you can use the location name to access
an object in another DB2 subsystem through DB2 private protocol access. You
can also create aliases for tables or views in other systems. “Naming Remote
Objects for DB2 Private Protocol Access” on page 2-80 and Section 2 of
Application Programming and SQL Guide address the topic of naming
conventions.

 � Access limitations

Refer to Figure 40 on page 2-74 for a general look at what each method of
access can do. The limitations on access are based also on the level of DRDA
that the other server or requester supports. We assume here that both server
and requester are using DRDA and both support the ability to update at
multiple sites (two-phase commit). For information about access between
different release levels of DB2 and different levels of DRDA, see Section 5 of
Application Programming and SQL Guide.

Using DB2 private protocol access, you cannot:

– Create or drop objects in a remote system
– Grant or revoke privileges or authorities in a remote system

With either DB2 private protocol access or DRDA access, your application
cannot:

– Access more than one system in a single SQL statement
– Define referential constraints between different systems

 � Performance considerations

With distributed data, an obvious consideration for an SQL query transmitted to
a remote system is that the query and its reply must both be transmitted over a
network. This is complicated even further when you add the ability to update at
multiple sites—additional messages need to be sent among the participants in
the unit of work. See “Considerations for Tuning Distributed Applications” on
page 5-316 for more information about message overhead for distributed
processing.

The main benefit of stored procedures is that they reduce the number of times
queries must be sent across a network by allowing the DB2 server to issue
multiple SQL statements within a single stored procedure. This reduces an
application's CPU costs and I/O delays, thus, improving end user elapsed time.
Additionally, performance usually improves when using stored procedures
because a DB2 client can use a stored procedure to execute multiple SQL
statements at a DB2 server with a single network request. For more detailed
information about stored procedures and performance, see Section 6 of
Application Programming and SQL Guide.

 Chapter 2-8. Designing a Database in a Distributed Environment 2-75

With DB2 private protocol access, the need to bind SQL statements when they
are first executed in a unit of work can increase processor overhead when
compared with the same query executed on your local subsystem. Some
applications, however, can improve performance using block fetch, which is
described in “How Block Fetch Improves Performance” on page 5-318.

With DRDA access, you prebind your queries at the remote location, and
execute the resulting package over and over again, so that additional time is
not spent on binding the query for each unit of work. The package can contain
PREPARE and EXECUTE statements, so you can send queries to remote
locations using DRDA access. For more information about designing remote
applications, see Section 5 of Application Programming and SQL Guide.

� Character conversion considerations.

If the systems represent characters using different coded character sets, such
as EBCDIC and ASCII, the DB2 SYSIBM.SYSSTRINGS catalog table must
include a row that describes conversions from one coded character set to the
other. Refer to Appendix B of Installation Guide for further information.

Implications for System Operations
If you administer a DB2 subsystem that has the distributed data facility (DDF), you
can stop and start DDF without stopping DB2. For information about the DB2
commands for those operations and other associated ones, see “ Section 4.
Operation and Recovery” on page 4-1.

You cannot, however, effectively administer a remote system from your local
system. Hence, you must sometimes coordinate recovery operations on the two
systems by some means outside of DB2. “Considerations for Recovering
Distributed Data” on page 4-124 describes those considerations.

Also, each system controls access to its own data. “Chapter 3-2. Controlling
Access to DB2 Objects” on page 3-13 tells how to grant privileges to users on
remote systems.

DB2 traces provide ways to identify accesses from other systems. The resource
limit facility (the governor) allows you to limit the time allotted to dynamic accesses
and remote binds from other systems. See “Resource Limit Facility (Governor)” on
page 5-76 for more information about the governor. See “DB2 Trace” on
page X-177 for more information about traces.

DataHub can simplify administration of remote systems because it allows you to
work from a single interface. For more information, see IBM DataHub General
Information.

 Stored Procedures
DB2's stored procedures function offers significant time and overhead savings for
applications using DRDA. Stored procedures can be also be accessed locally.
Using a stored procedure, the client application issues a single network operation to
run the stored procedure. The stored procedure can issue many SQL statements
using a single thread—the same thread used by the calling application—and return
a parameter list in another single operation.

2-76 Administration Guide

| A stored procedure is simply a DB2 application program, containing SQL
| statements, that runs in a DB2-managed or WLM-managed stored procedures

address space. With a single operation, a series of SQL statements are executed in
the stored procedure, thus significantly decreasing the costs of distributed SQL
statement processing.

For more information on stored procedures, see Section 6 of Application
Programming and SQL Guide .

 Chapter 2-8. Designing a Database in a Distributed Environment 2-77

2-78 Administration Guide

Chapter 2-9. Implementing Your Design

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page xi.

After you design a relational database, you must implement the design by allocating
storage for the database and creating DB2 objects. This chapter includes physical
design considerations and implementation information. The following topics are
discussed:

� Auxiliary storage . All DB2 data is stored in VSAM data sets. You can let DB2
create and manage these data sets (using DB2 storage groups) or you can do
it yourself (using VSAM access method services). This chapter explains what to
do for either choice.

� How to create DB2 objects . This is described under:

“Implementing Your Storage Groups” on page 2-82
“Implementing Your Databases” on page 2-85
“Implementing Your Table Spaces” on page 2-86
“Implementing Your Tables” on page 2-92
“Implementing Your Indexes” on page 2-99
“Implementing Your Views” on page 2-105.

If you are using DB2 to enforce referential integrity, see also “Chapter 2-3.
Maintaining Data Integrity” on page 2-19.

The natures and uses of DB2 objects are introduced in “Chapter 2-1.
Designing a Database” on page 2-5. Information about the privilege or authority
needed to create an object is in “Chapter 3-2. Controlling Access to DB2
Objects” on page 3-13.

� What the DB2 catalog records . This tells you how to retrieve information
about DB2 objects. See “Chapter 2-11. Using the Catalog in Database Design”
on page 2-117

You create objects by executing SQL statements. This chapter does not include
either the complete syntax or a full description of all the effects of each SQL
statement. For that information, refer to SQL Reference. This chapter also does not
include information about creating objects to contain shared read-only data. See
“Appendix F. Sharing Read-Only Data” on page X-153 for information about doing
that.

Choosing Names for DB2 Objects
The allowable format for DB2 object names varies depending on what type of
object is being named. See Chapter 3 of SQL Reference for more information
about naming conventions.

 Copyright IBM Corp. 1982, 1997 2-79

DB2 Storage Groups and Databases
A name for either of these objects is an unqualified identifier of up to eight
characters. A DB2 storage group name must not be the same as the name of any
other storage group in the DB2 catalog, and a DB2 database name must not be the
same as the name of any other DB2 database. The following examples are used in
the sample application:

Object Name
Storage group DSN8G510
Database DSN8D51A

 Table Spaces
A table space name is an identifier of up to eight characters, qualified by a
database name. If you omit the database name, DB2 assumes the default
database, DSNDB04. A typical name is:

Object Name
Table Space DSN8D51A.DSN8S51D

Tables, Views, and Indexes
A name for any of these objects is an identifier of up to 18 characters qualified by a
short identifier of up to eight characters. Do not use SYSIBM as a qualifier in the
names of tables, views, or indexes because it is used only for IBM-supplied objects.

For indexes, the index space name is an eight-character name. For DB2-managed
data sets, DB2 generates a unique index space name. For user-managed data
sets, DB2 uses the index name specified on the CREATE INDEX statement for the
eight-character index space name. However, if the index name on the CREATE
INDEX statement is greater then eight characters, DB2 uses the first eight bytes of
that name. This index space name must be unique among all index space and
table space names in the database.

Names of some objects are:

Object Name
Table DSN8510.EMP
View DSN8510.VDEPMG1
Index DSN8510.XACTYPE1
DB2 catalog table SYSIBM.SYSINDEXES

Naming Remote Objects for DB2 Private Protocol Access
Unlike DRDA access, in which you use the SQL CONNECT statement to direct
activity to a certain database management system, DB2 private protocol access
relies on location names to refer to objects from other DB2 subsystems. Therefore,
DB2 supports the use of names with three parts for tables and views.

Suppose that data is occasionally moved from one DB2 subsystem to another.
Users who query that data want those moves to be transparent. They want to log
on always to the same system and access the same table or view, no matter where
the data is. They do that by using aliases.

2-80 Administration Guide

Three-Part Names for DB2 Private Protocol Access
You can access a table or view at a specific DB2 subsystem using DB2 private
protocol access by using a name containing the following three parts, separated by
periods:

� A LOCATION name : This is the name that appears in the LOCATION column
of table SYSIBM.LOCATIONS in the communications database (CDB) and
uniquely identifies the subsystem you are addressing within the VTAM network.
The LOCATION name is the same as the DRDA RDB_NAME used by non-DB2
database management systems using DRDA.

� An AUTHORIZATION ID : This identifies the owner of the table or view at the
location you are addressing.

� An OBJECT name : This is the name of the table or view at the location you
are addressing.

For example, if the SYSIBM.LOCATIONS table at your local subsystem contains an
entry for location USIBMSTODB21, you can access the sample employee table at
USIBMSTODB21 in a query like this:

SELECT SUM(SALARY), SUM(BONUS), SUM(COMM)

 FROM USIBMSTODB21.DSN851ð.EMP;

It is also possible to use names with three parts for local tables or views.

With few exceptions, a name with three parts can be used wherever a table or view
can be used. The exceptions are:

� The LOAD and RUNSTATS utilities
� The CREATE SYNONYM statement.

Aliases for DB2 Private Protocol Access
An alias is a substitute for the three-part name of a table or view. The alias can be
up to 18 characters long, qualified by an owner ID.

You can use an alias wherever you can use a table or a view, with the following
exceptions:

� You cannot use an alias in the LOAD and RUNSTATS utilities.

� You cannot create a synonym for an alias that refers to an object from a
remote DB2 subsystem. (However, you can create a synonym for an alias that
refers to a local table or a view.)

� You cannot create a view on an alias that refers to an object from a remote
DB2 subsystem. (However, you can create a view on an alias that refers to a
local table or a view.)

The CREATE ALIAS Statement: Use the SQL CREATE ALIAS and DROP ALIAS
statements to manage aliases. An example of a CREATE ALIAS statement follows.

CREATE ALIAS TESTTAB FOR USIBMSTODB22.DSN851ð.EMP;

If the user with the ID JONES dynamically creates the alias, then JONES owns the
alias, and you query the table like this:

SELECT SUM(SALARY), SUM(BONUS), SUM(COMM)

 FROM JONES.TESTTAB;

 Chapter 2-9. Implementing Your Design 2-81

The object for which you are defining an alias does not have to exist when you
execute the CREATE ALIAS statement. However, the object must exist when a
statement that refers to the alias is executed.

Who Can Use Aliases

After an alias has been created, it can be used by anyone who has been granted
authority to the object the alias is referencing. A user does not need to be granted
a separate privilege to use the alias.

Comparing Three-Part Names and Aliases
When you use DB2 private protocol access, you can always use three-part names
to reference data at another DB2 subsystem. The advantage of three-part names is
that they allow application code to be executed at different DB2 locations without
the additional overhead of alias maintenance. However, if the table locations
change, then the applications affected must be changed.

The advantage of aliases is that aliases allow you to move data around without
having to modify application code or interactive queries. However, if you move a
table or view, you must drop aliases that refer to those tables or views, then
re-create them with the new location names.

The relative costs and benefits of aliases are summarized in Table 12.

For more information about using aliases, see Chapter 3 of SQL Reference .

Table 12. Relative Costs and Benefits of Three-part Names vs. Aliases

Situation Three-part names Aliases

A table is moved
from one location to
another.

Three-part names
in applications
referring to the
moved table must
be changed.

The alias for that table must be dropped,
then re-created with the new location name.

An application is
moved from one
location to another.

No change. Aliases must exist at new location for all
tables referred to by the application. Aliases
at the old location can be dropped if they
are no longer needed.

Implementing Your Storage Groups
When you create table spaces and indexes, you name the storage group from
which you want space to be allocated. Try to assign frequently accessed objects
(indexes, for instance) to fast devices and seldom-used tables to slower devices;
that choice of storage groups improves performance.

Here are some of the things that DB2 does for you in managing your auxiliary
storage requirements:

� When a table space is created, DB2 defines the necessary VSAM data sets
using VSAM access method services. After the data sets have been created,
you can process them with access method service commands that support
VSAM control-interval (CI) processing (for example, IMPORT and EXPORT).

2-82 Administration Guide

� When a table space is dropped, DB2 automatically deletes the associated data
sets.

� When a data set in a simple table space reaches its maximum size of 2 GB,
DB2 might automatically create a new data set. The primary data set allocation
is obtained for each new data set.

� When needed, DB2 can extend individual data sets. For more information, see
“Extending DB2-Managed Data Sets” on page 5-100.

� When creating or reorganizing a table space, if the associated data sets
already exist, DB2 deletes and then redefines them.

� When you want to move data sets to a new volume, you can alter the volumes
list in your storage group. DB2 will automatically relocate your data sets during
utility operations that build or rebuild a data set (LOAD REPLACE, REORG,
and RECOVER). With user-defined data sets, on the other hand, you must
delete and redefine your data sets in order to move them.

After you define a storage group, DB2 stores information about it in the DB2
catalog. (This catalog is not the same as the integrated catalog facility catalog that
describes DB2 VSAM data sets). The catalog table SYSIBM.SYSSTOGROUP has
a row for each storage group and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can display the catalog information
about DB2 storage groups by using SQL statements. “Chapter 2-11. Using the
Catalog in Database Design” on page 2-117 provides more information.

Use storage groups whenever you can, either specifically or by default. However, if
you want to maintain closer control over the physical storage of your tables and
indexes, you can define and manage your own VSAM data sets using VSAM
access method services. We describe the alternatives under CREATE STOGROUP
Statement below, and “Managing Your Own DB2 Data Sets” on page 2-68. Yet
another possibility is to have SMS manage some or all of your DB2 data sets. For
information about this, see “Managing Your DB2 Data Sets with DFSMShsm” on
page 2-67.

For both user-managed and DB2-managed data sets, you need at least one
integrated catalog facility catalog, either user or master, created with the integrated
catalog facility. You must identify the integrated catalog facility catalog (the
"integrated catalog") when you create a storage group or when you create a table
space that does not use storage groups.

CREATE STOGROUP Statement
To create a DB2 storage group, use the SQL statement CREATE STOGROUP.
This This statement provides a list of volumes that DB2 can use. For detailed
information on CREATE STOGROUP, see Chapter 6 of SQL Reference.

When DB2 processes the CREATE STOGROUP statement, it does not check the
existence of the volumes in the VOLUMES clause or determine the types of
devices they identify. Later, when the storage group is used to allocate data sets,
DB2 passes the list of volumes in the order you specified to Data Facilities
(DFSMSdfp), which does the data set allocation.

All the volumes in a storage group must be of the same type. If the volumes you
name are not mounted, or are not all of the same device type, a dynamic allocation
error occurs when you try to create a table space or index.

 Chapter 2-9. Implementing Your Design 2-83

A dynamic allocation error can also occur when trying to extend the table space or
index if any of the following are true:

� The volumes are of different device types
� Any volid in the STOGROUP is varied offline
� Any volid in the STOGROUP is invalid

Below are two examples; the sections that follow explain their principal elements.

CREATE STOGROUP DSN8G51ð

 VOLUMES (DSNVð1)

 VCAT DSNC51ð

 PASSWORD DSNDEFPW;

CREATE STOGROUP G2ð1

VOLUMES ("33333", "44444")

 VCAT CAT2

 PASSWORD XB17R;

 Names
The statements above create two STORAGE GROUPS, DSN8G510 and G201.
(DSN8G510 is the storage group for the DB2 sample application.) You cannot have
two DB2 storage groups with the same name in the same DB2 system. Other
objects, however, can have the same name as a DB2 storage group.

 VOLUMES Clause
Storage group DSN8G510 is assigned one volume and G201 is assigned two. A
given volume can belong to more than one DB2 storage group.

You can add or delete volumes using the ALTER STOGROUP statement. The
changes do not affect the storage of existing objects in the storage groups, but do
affect the future assignment of storage within the group; for example, an object you
define later can be assigned to an added volume, but cannot be assigned to a
deleted volume.

To allow SMS to manage your storage groups, you can use asterisks (nonspecific
volume IDs) in the VOLUMES clause. However, do not mix specific and nonspecific
volume IDs, whether in a new or existing storage group. For information about
using SMS to manage your storage groups, see “Managing Your DB2 Data Sets
with DFSMShsm” on page 2-67. If you are using shared read-only data, see
“Create DB2 Storage Groups” on page X-158 for additional storage management
considerations.

 VCAT clause
Identifies the integrated catalog in the VCAT clause.

 PASSWORD Clause
If your integrated catalog facility catalog is password protected, then when you
create a DB2 storage group, you must supply the control or master integrated
catalog password in the PASSWORD clause. The password does not apply to data
sets managed by DFSMS/MVS's storage management subsystem (SMS). Data
sets defined to SMS should be protected by RACF or some similar external security
system.

2-84 Administration Guide

Default Storage Group
There is a system default storage group, SYSDEFLT, defined when DB2 is
installed. If you are authorized, and do not take specific steps to manage your own
storage, you can still define tables, indexes, table spaces, and databases; DB2
uses SYSDEFLT to allocate the necessary auxiliary storage. Information about
SYSDEFLT, as with any other storage group, is kept in the catalog tables
SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.

Implementing Your Databases
When you define a DB2 database, you name an eventual collection of tables and
associated indexes, as well as the table spaces in which they reside. In deciding
whether to define a new database for a new set of objects, consider the following
factors:

� An entire database can be started and stopped as a unit; the statuses of all its
objects can be displayed by a single command that names only the database.
Therefore, it is often convenient to place a set of tables that are used together
into the same database. (The same database will hold any indexes on those
tables.)

� Some operations lock an entire database. For example, some phases of the
LOAD utility prevent some SQL statements from using the same database
concurrently. Therefore, it might be inconvenient to place many unrelated tables
in a single database.

When one user is executing a CREATE, ALTER, or DROP statement for a
table, no other user can access the database that contains that table. QMF
users, especially, might do a great deal of data definition; the operations SAVE
DATA and ERASE data-object are accomplished by creating and dropping DB2
tables. For maximum concurrency, we recommend that each QMF user have a
separate database.

� It is possible for internal database descriptors (DBDs) to become inconveniently
large; Section 2 of Installation Guide contains some calculations showing how
the size depends on the number of columns in a table. DBDs grow as new
objects are defined, but do not immediately shrink when objects are
dropped—the DBD space for a dropped object is not reclaimed until the
MODIFY RECOVERY utility is used to delete records of obsolete copies from
SYSIBM.SYSCOPY. DBDs occupy storage and are the objects of occasional
input and output operations. Thus, limiting the size of DBDs is another reason

| to define new databases. The MODIFY utility is described in Section 2 of Utility
| Guide and Reference.

CREATE DATABASE Statement
To create a database, use the CREATE DATABASE statement. For detailed
information on CREATE DATABASE, see Chapter 6 of SQL Reference.

The example below shows the SQL statement that can be used to create the
sample database DSN8D51A:

CREATE DATABASE DSN8D51A

 STOGROUP DSN8G51ð

 BUFFERPOOL BPð;

 Chapter 2-9. Implementing Your Design 2-85

 STOGROUP clause
This clause establishes a default DB2 storage group, DSN8G510, for the database.
If you do not name a storage group, the default storage group for the database is
SYSDEFLT.

 BUFFERPOOL clause
This clause establishes BP0 as the default buffer pool for table spaces and indexes
within the database.

You can also use the STOGROUP and BUFFERPOOL clauses in the CREATE
TABLESPACE and CREATE INDEX statements. If you use them in the CREATE
DATABASE statement, you do not have to use them each time you create a table
space or index. If you do use them again in CREATE TABLESPACE and CREATE
INDEX, you override the defaults you established with CREATE DATABASE.
Furthermore, you might specify that you are not using a DB2 storage group, or that
you are using the default storage group of the database, but with a new primary or
secondary space allocation.

| CCSID Clause
| This clause specifies the default encoding scheme, ASCII or EBCDIC, for data
| stored in this database. This default applies to table spaces created in this
| database. All tables stored within a table space must use the same encoding
| scheme. This option defaults to the default encoding scheme that was specified
| during installation.

Using the Default Database
You do not have to define a database to use DB2; you can use the default
database (DSNDB04). This means that you can define tables and indexes without
specifically having to define a database. The catalog table
SYSIBM.SYSDATABASE describes all databases, including the default.

Implementing Your Table Spaces
Table spaces are the physical spaces that hold tables. A table space can have one
or more tables. Each table space can hold a maximum of 64 GB of data and might

| use one or more VSAM data sets. Table spaces are divided into units called pages
| that are either 4KB or 32KB in size. As a general rule, you should have no more

than 10 or 20 table spaces in one DB2 database. See the information under
“Implementing Your Table Spaces” for a discussion of the factors that influence this
recommendation.

It is possible to compress data in a table space, which can allow you to store more
data per data page. For more information, see “Compressing Data in a Table
Space or Partition” on page 2-63.

Creating a Table Space Implicitly
As with DB2 storage groups and databases, it is not necessary to create a table
space before you create a table unless you are managing all your own data sets.
When you use CREATE TABLE, DB2 generates a table space for you. However,
DB2 will generate a table space only if you use CREATE TABLE without specifying
an existing table space name. If you do not name a database name in the CREATE
TABLE statement, DB2 uses the default database, DSNDB04, and the default DB2

2-86 Administration Guide

storage group, SYSDEFLT. DB2 also uses defaults for space allocation and other
table space attributes.

If you create a table space implicitly, DB2 derives a table space name from the
name of your table according to these rules:

� The table space name is the same as the table name if these conditions apply:

– No other table space or index space in the database already has that name

– The table name has no more than 8 characters

– The characters are all alphanumeric and the first character is not a digit

� If some other table space in the database already has the same name as the
table, DB2 assigns a name of the form xxxxnyyy, where xxxx is the first 4
characters of the table name, and nyyy is a digit and 3 letters that guarantees
uniqueness.

DB2 stores this name in the DB2 catalog in the SYSIBM.SYSTABLESPACE table
along with all your other table space names.

Creating a Table Space Explicitly
Use the CREATE TABLESPACE statement to create a table space explicitly. The
statement allows you to specify the attributes of the table space. You can create
simple, segmented, and partitioned table spaces.

CREATE TABLESPACE Statement
This section explains the various clauses of the CREATE TABLESPACE statement.
For detailed information on CREATE TABLESPACE, see Chapter 6 of SQL
Reference .

 IN Clause
If you want the table space to be part of a specific database, use the name of that
database in this clause. The named database must have been previously defined. If
you do not name a database, DB2 uses the default database DSNDB04.

 USING Clause
If you do not include the USING clause in your CREATE TABLESPACE statement,
DB2 uses the default storage group of the database.

� STOGROUP or VCAT

Use STOGROUP and the name of a DB2 storage group to create the table
space in a specific DB2 storage group. Use VCAT and the name of an
integrated catalog facility catalog to create the table space in VSAM data sets
that you have defined yourself.

� PRIQTY and SECQTY with STOGROUP

If you use STOGROUP, the PRIQTY and SECQTY clauses allow you to specify
the primary and secondary space allocations for the table space. The clauses
are optional, but consider using them. You specify the allocation as a number
of kilobytes. The default value of PRIQTY is three pages. For large tables, you

| need a larger allocation. For nonpartitioned table spaces, do not use a value
larger than 2 GB, because DB2 allocates a new data set when that limit is

| reached, leaving the rest of the allocation unused. For partitioned table spaces,
| do not set PRIQTY to a value greater than the partition size. The default value

 Chapter 2-9. Implementing Your Design 2-87

of SECQTY is 10 percent of the primary quantity or three times the page size,
whichever is larger.

For more information about how space allocation can affect the performance of
mass inserts, see “Ensure Allocation in Cylinders” on page 5-40.

If you use secondary allocations, they are probably not located either next to
the primary allocation or next to each other. Therefore, if an application
accesses data from both areas, performance might suffer. If possible, use a
value for PRIQTY that minimizes the need for DB2 to go to secondary
allocations, without wasting space. DB2 can extend a simple or segmented
table space to more than one data set, but only if the value of (PRIQTY + 118 ×
SECQTY) is at least 2 GB.

You might possibly get up to 123 extents before reaching the limit, but 119 is
more likely.

When DB2 finds that the space available for your table space is getting low, it
gives you a warning message. For information about what to do when you are
running out of space, see “Out of DASD Space or Extent Limit Reached” on
page 4-188.

The amount of space allocated to table spaces is recorded in the
SYSIBM.SYSTABLESPACE table of the DB2 catalog by the STOSPACE utility.
STOSPACE is described further in “Appendix G. Using Tools to Monitor
Performance” on page X-173.

You can change the values of PRIQTY, SECQTY, and ERASE by altering the
table space definition. For instructions, see “Altering Table Spaces” on
page 2-125.

� ERASE with STOGROUP

The ERASE clause determines what action VSAM takes when a DB2 storage
group-defined table space is dropped, either through the DROP TABLESPACE
or DROP DATABASE SQL statements, or from the LOAD REPLACE, REORG,
or RECOVER utilities. If you use ERASE YES, the data is overwritten with
zeros, as a security measure. If you use ERASE NO, the data is not
necessarily overwritten. For more information about what happens with ERASE,
see DFSMS/MVS: Access Method Services for the Integrated Catalog.

Using the default, ERASE NO, means that deletion happens more quickly. With
ERASE NO, the dropped data is still accessible in machine-readable form,
though not through DB2.

 BUFFERPOOL Clause
Your choice of buffer pool name implicitly determines the page size you get—buffer
pools BP0 through BP49 result in 4KB page sizes, and BP32K through BP32K9
result in a page size of 32KB. The choice of buffer pool is not critical at this stage;
you can change it easily with the ALTER TABLESPACE statement.

In most cases, you can omit the clause and use the buffer pool of the database by
default. Make sure the buffer pool you specify is defined with a nonzero size and
that you are authorized to use that buffer pool. Otherwise, you get an error when
you try to create or alter the table space.

For more information about buffer pools, see “Tuning Database Buffer Pools” on
page 5-49.

2-88 Administration Guide

 LOCKSIZE Clause
In most cases, you can probably omit this value, and use LOCKSIZE ANY by
default. That choice leaves the decisions about the lock size to DB2, and the
system will usually choose LOCKSIZE PAGE and LOCKMAX SYSTEM (see
below). When LOCKSIZE TABLESPACE is specified, LOCKMAX must be 0. Before
you choose LOCKSIZE TABLESPACE you should know why you do not need
concurrent access to the object. See “Other Options that Affect Locking” on
page 5-167 for information about the effects of the LOCKSIZE clause.

 LOCKMAX Clause
This specifies the maximum number of page or row locks an application process
can hold simultaneously in the table space. If a program requests more than that
number, locks are escalated. The page or row locks are released and the intent
lock on the table space or segmented table is promoted to S or X mode.

You use an integer to specify the number of locks allowed before escalating, or you
can specify SYSTEM, which uses the value set as LOCKS PER TABLESPACE on
installation panel DSNTIPJ.

 CLOSE Clause
The CLOSE clause tells the priority DB2 should use when determining which open
data sets to close. DB2 defers deallocating the table space's data sets until the
number of open data sets reaches either a maximum determined by certain
installation parameters (the derived value DSMAX) or your MVS limit. If this
maximum is reached, the least recently used table spaces that were defined with
CLOSE YES are closed first.

CLOSE NO table spaces are only closed if there are not enough CLOSE YES table
spaces to relieve the excess number of open data sets. For most table spaces,
CLOSE YES is the recommended option. For more information about the CLOSE
clause, see “Understanding the CLOSE YES and CLOSE NO Options” on
page 5-90.

 DSETPASS Clause
If you are using DB2 storage groups, the password you give is the one that
protects the data sets and the one that is passed to VSAM when the data sets are
used by DB2. If you are defining the data sets yourself, the password you give is
only the password that is passed to VSAM when the data sets are used by DB2. In
the latter case, the password that protects the data sets is defined by you, using
VSAM access method services. All password-protected data sets of the table space
must have the same password.

PCTFREE and FREEPAGE Clauses
PCTFREE tells you the percentage of each page that is to be reserved as free
space during LOAD and REORG operations. The space can be used by later
inserts or updates. The default value is 5.

If you can foresee adding a new column to a table, you might want to provide
additional free space in the table space. Otherwise, inserting values in the new
column is likely to force rows out of sequence. For more information about
choosing values for PCTFREE and FREEPAGE, see “Reserve Free Space in Table
Spaces and Indexes” on page 5-38.

 Chapter 2-9. Implementing Your Design 2-89

 COMPRESS Clause
Use COMPRESS YES to compress data in a table space or in any or all partitions
in a partitioned table space. The corresponding index data is not compressed.
Catalog, directory, and work file table spaces are not compressed, either.

The data is not compressed until a dictionary is built for the table space or partition,
by using the LOAD utility (with REPLACE or RESUME NO) or the REORG utility.
After a dictionary is built, any rows inserted or updated are compressed if
compression reduces row length.

Although data compression can reduce the amount of DASD space required to
store data, it can also require a significant amount of processor overhead. Before
deciding to compress, see “Compressing Data in a Table Space or Partition” on
page 2-63 for more information.

| CCSID Clause
| This clause specifies the encoding scheme, ASCII or EBCDIC, of tables stored in
| this table space. The CCSID option defaults to the encoding scheme of the
| database in which this table resides.

| MAXROWS Clause
| Use MAXROWS integer to specify the number of rows that DB2 will consider
| placing on each page, where the integer can range from 1 to 255. If MAXROWS is
| not specified, the default number of rows is 255. For more information, see “
| Section 5. Performance Monitoring and Tuning” on page 5-1.

Creating a Segmented Table Space
Figure 41 shows an example of a CREATE TABLESPACE statement that creates
a segmented table space.

CREATE TABLESPACE DSN8S51C

 IN DSN8D51P

USING STOGROUP DSN8G51ð

 PRIQTY 3ð72ð

 SECQTY 1ð24ð

 SEGSIZE 32

 LOCKSIZE TABLE

 BUFFERPOOL BPð

 CLOSE YES

DSETPASS DSN8;

Figure 41. Example of CREATE TABLESPACE, for a Segmented Table Space

 SEGSIZE Clause
The value given is the number of pages in each segment; it must be a multiple of
4, from 4 to 64. The choice of the value depends on the size of the tables to be
stored. For efficient use of sequential prefetch of tables that are smaller than 32
pages and that do not grow, choose a segment size close to the number of pages
in the largest table in the table space. However, if there are many tables that take
less space than an entire segment, then space is wasted in each segment.

2-90 Administration Guide

But if most of the tables require several segments, then access can be made more
efficient by choosing a larger segment size such as 32 or 64. For information about
choosing a value for SEGSIZE, see “Table Space Scans (ACCESSTYPE=R
PREFETCH=S)” on page 5-275.

 LOCKSIZE Clause
The TABLE option is valid only for segmented table spaces. It means that DB2 can
acquire locks that lock a single table, rather than the entire table space. See “Other
Options that Affect Locking” on page 5-167 for information about the effects of the
LOCKSIZE clause.

 FREEPAGE Clause
If you want to leave full pages of free space in a segmented table space, you must
have at least one free page in each segment. A value of FREEPAGE that is larger
than the value of SEGSIZE makes no sense because it means that more than a
segment should be filled before leaving a page free. Therefore, if you use a
FREEPAGE value larger than SEGSIZE, it is effectively reduced to (SEGSIZE -1).
For example, if you use FREEPAGE 30 with SEGSIZE 20, the value of
FREEPAGE is interpreted as 19, and you get one free page in each segment.

Creating a Partitioned Table Space
A partitioned table space can have only one table, and up to 64 partitions. The
maximum size of any table space is 64 GB, but the maximum size of a partition is
4 GB; therefore, a table space with fewer than 16 partitions cannot reach the
maximum size. Each partition can be thought of as a unit of storage. DB2 creates
and manages a separate VSAM data set for each partition. If you are managing
your own VSAM data sets, you must do the same, or you can allocate space for
each partition using the PART option of the NUMPARTS clause.

| Creating a Large Partitioned Table Space
| You may also consider creating large partitioned table spaces which support tables
| with more than 64 GB of data, or more than 64 partitions. With large partitioned
| table spaces, you can have up to 254 partitions of 4 GB each, while a non-large
| partitioned table space can have up to 64 partitions. This allows the size of
| partitioned tables to increase to roughly one terabyte. In addition, each index
| partition of the partitioned index is 4 GB. The maximum size of a data set for a
| nonpartitioned index on a LARGE partitioned table space is 4 GB. With a limit of
| 128 datasets, the maximum size of a nonpartitioned index is 512 GB.

| Figure 42 on page 2-92 creates a large table space, SALESHX. The first USING
| clause establishes the default DB2 storage group and space allocations for all
| partitions. The example assumes that this table space is used by a large query
| database application to record historical sales data for marketing statistics.

 Chapter 2-9. Implementing Your Design 2-91

| CREATE LARGE TABLESPACE SALESHX

| IN DSN8D51A

| USING STOGROUP DSN8G51ð

| PRIQTY 4ððð

| SECQTY 13ð

| ERASE NO

| NUMPARTS 82

| (PART 52 USING STOGROUP DSN8G51ð

| PRIQTY 4ððð

| SECQTY 13ð

| COMPRESS YES,

| PART 75 USING STOGROUP DSN8G51ð

| PRIQTY 4ððð

| SECQTY 13ð

| COMPRESS NO)

| LOCKSIZE PAGE

| BUFFERPOOL BP1

| CLOSE NO;

| Figure 42. Example of CREATE LARGE TABLESPACE, for a Partitioned Table Space

| The CREATE TABLESPACE statement in Figure 42 creates a table space with 82
| partitions by using the NUMPARTS clause. The statement illustrates how the
| partitions can be stored on different device types; partition 52 uses storage group
| DSN8G510 and has compressed data.

Implementing Your Tables
| Designing tables to be used by many applications is a critical task. Table design
| can be difficult because the same information can be represented many ways. In
| addition, decisions between the conflicting objectives of logical design and a
| physical design must be made. An example of such a conflict is normalization,
| described in “Normalize Your Tables to Avoid Redundancy” on page 2-13. Later,
| you may have to make changes to your tables. The ALTER TABLE statement lets
| you make changes such as adding columns, add or drop a primary or foreign key,
| add or drop table check constraints, change the AUDIT, VALIDPROC or DATA
| CAPTURE clauses. Changes in design should be carefully considered to avoid or
| reduce the disruption of your applications.

If you have DBADM authority, you probably want to control the definition of DB2
databases and table spaces because of their impact on the performance, storage,
and security of the entire relational database. In most cases, you also want to keep
the responsibility for creating tables. After designing the relational database, create
the necessary tables for application programs, then pass the authorization for their
use to the application developers—either directly or by using views.

But if you want to, you can grant the authority for creating tables to those
responsible for implementing the application. For example, you probably want to
authorize certain application programmers to create tables if they need temporary
tables for testing purposes.

If some users in your organization want to use DB2 with minimum assistance or
control, you can define a separate storage group and database for these users and
authorize them to create whatever data objects they need, including tables.

2-92 Administration Guide

 Table Names
| For both DB2 base tables and temporary tables, a table name can have up to 18

characters. Table names that are not explicitly qualified by you are implicitly
qualified by DB2. For example, assume that someone with an SQL ID of SMITH is
at a terminal entering dynamic SQL statements. If SMITH creates a table named
ABC, with no qualifier, DB2 uses SMITH as the qualifier and considers that the
table name is SMITH.ABC. SMITH cannot own another table, view, or alias called
ABC. A different SQL ID (say, JONES) can create another table, view, or alias
called ABC. DB2 recognizes the second table as JONES.ABC.

CREATE TABLE Statement
To create a table you have designed, use the CREATE TABLE statement. When
you create a table, DB2 records a definition of the table in the DB2 catalog.
Creating a table does not store the application data. You can put data into the table
by several means, all described in “Chapter 2-10. Loading Data into DB2 Tables”
on page 2-113.

Figure 43 shows the statement used to create the sample employee table.

CREATE TABLE DSN851ð.EMP

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) ,

PHONENO CHAR(4) CONSTRAINT NUMBER CHECK,

 HIREDATE DATE ,

 JOB CHAR(8) ,

 EDLEVEL SMALLINT ,

 SEX CHAR(1) ,

 BIRTHDATE DATE ,

 SALARY DECIMAL(9,2) ,

 BONUS DECIMAL(9,2) ,

 COMM DECIMAL(9,2) ,

PRIMARY KEY (EMPNO) ,

FOREIGN KEY RED (WORKDEPT) REFERENCES DSN851ð.DEPT

ON DELETE SET NULL)

 EDITPROC DSN8EAE1

 IN DSN8D51A.DSN8S51E;

Figure 43. Example of CREATE TABLE

Further information about the clauses of the CREATE TABLE statement can be
found in other sections of Administration Guide and in Chapter 6 of SQL Reference.

Clauses of the CREATE TABLE Statement
| This section explains the various clauses of the CREATE TABLE statement.
| However, the clauses discussed here for the CREATE TABLE statement do NOT
| apply to the CREATE GLOBAL TEMPORARY TABLE statement with the exception
| of the CCSID clause.

 Chapter 2-9. Implementing Your Design 2-93

PRIMARY KEY Clause
This clause defines a primary key composed of specified columns. You can have
only one primary key per table and the specified columns must be defined as NOT
NULL. Each column name must be an unqualified name that identifies a column of

the table and you can specify each column only once. The number of specified
columns must not exceed 64, and the sum of their length attributes must not
exceed 255.

The following example shows how to define a composite primary key.

CREATE TABLE DSN851ð.PROJACT

 (PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 ACSTAFF DECIMAL(5,2) ,

 ACSTDATE DATE NOT NULL,

 ACENDATE DATE ,

PRIMARY KEY (PROJNO, ACTNO, ACSTDATE))

IN DATABASE DSN8D51A;

Figure 44. Defining a Composite Primary Key

(This example omits the clauses that define the foreign keys in the table.)

FOREIGN KEY Clause
A foreign key of a table is a key that is specified in the definition of a referential

| constraint. The foreign key must have the same number of columns, with the same
| descriptions, as the parent key of the parent table. For information on how to define

foreign keys, refer to “Defining a Foreign Key” on page 2-22.

The following example shows how to define a list of columns as a foreign key of a
table.

CREATE TABLE DSN851ð.EMPPROJACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2) ,

 EMSTDATE DATE ,

 EMENDATE DATE ,

FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE) REFERENCES DSN851ð.PROJACT

ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN851ð.EMP

ON DELETE RESTRICT)

IN DATABASE DSN8D51A;

Figure 45. Creating the Employee to Project Activity Table.

2-94 Administration Guide

Rules for the FOREIGN KEY Clause
Keep the following rules in mind about the FOREIGN KEY clause:

� The order of the foreign key columns must match the order of the primary key
columns of the parent table. The descriptions of the foreign and primary key
columns must match, except for the names, default values, and null attributes.

� The referred to (parent) table must already exist and have a complete
definition. The parent cannot be a table in the DB2 catalog. The parent table
does not have to be in the same DB2 database or table space as the table in
which you define a foreign key.

� A foreign key cannot reference a view.

� The clause defines a relationship, naming one of the delete rules from the list
in “DELETE Rules” on page 2-27.

� If multiple pathways exist between tables T1 and T2 in which T1 is a parent of
T2 or T1 has a CASCADE relationship to a parent of T2, then the relationships
that enter T2 must be the same and must not be SET NULL.

 ┌───────┐

│ Table ├──────────────────┐

│ A │ │

 └─┬─┬─┬─┘ │

┌─────────────┘ │ └─────────────┐ │

RESTRICT SET│NULL CASCADE │

6 6 6 │

┌───────┐ ┌───────┐ ┌───────┐ │

│ Table │ │ Table │ │ Table │ │

│ B │ │ C │ │ D │ │

└───┬───┘ └───┬───┘ └───┬───┘ │

 │Rule X │Rule Y │Rule Z│

6 6 6 │

┌───────┐ ┌───────┐ ┌───────┐ │Rule Z

│ Table │ │ Table │ │ Table │%─┘

│ E │ │ F │ │ G │

└───────┘ └───────┘ └───────┘

Figure 46. Sample Pathways Between Tables

For example, in Figure 46, a delete operation on table A enters G through two
different pathways because G is both a dependent of A and a dependent of D,
to which deletes from A cascade. Therefore, Rule Z must be the same in both

| places, either both RESTRICT, or both CASCADE, or both NO ACTION. There
is no restriction on delete rules X and Y, because E and F are not affected by a
delete operation on table A.

This restriction exists because DB2 does not allow you to create ambiguous
situations in which the result of a delete operation would depend on the order
in which the deletions occur.

� A table cannot have two foreign keys on the same list of columns that
reference the same parent table. The table can have more than one foreign
key, as the sample project table has, and two or more foreign keys (on different
lists of columns) can reference the same parent table. Also, two foreign keys
can use the same list of columns, referring to different parent tables.

� In a distributed system, the parent table cannot reside in a different subsystem
from its dependents.

 Chapter 2-9. Implementing Your Design 2-95

| Authorization: Creating a table with a foreign key requires the usual privileges for
| the dependent table. In addition, the parent table must have the ALTER privilege,
| or the columns of the parent key must have the REFERENCES privilege.

 CHECK Clause
This clause defines a table check constraint. A check-condition is a search
condition, with the following restrictions:

� It can refer only to columns of table table-name.
� It can be up to 3800 bytes long, not including redundant blanks.
� It must not contain any of the following:

 – Subselects
– Functions

 – Host variables
 – Parameter markers
 – Special registers

– Columns that include a field procedure
 – Quantified predicates
 – EXISTS predicates

EDITPROC and VALIDPROC Clauses
These clauses allow you to specify two exit routines, an edit routine and a
validation routine, which deal with entire rows rather than the values of a single
column. “Edit Routines” on page X-44 and “Validation Routines” on page X-48
describe these routines and explain how to use them.

IBM supplies two sample edit routines: One is called DSN8EAE1 and encodes and
decodes the data for the salary column of the employee sample table. The other
sample compresses data by the Huffman algorithm and is called DSN8HUFF.
Before using any data compression routine, understand its limitations and consider
tailoring it to your particular table. For the restrictions and concerns that apply to
the IBM sample, see the comments provided with the code. Both samples reside in
library prefix.SDSNSAMP.

DB2 provides a more efficient method for compressing data than DSN8HUFF. For
more information, see “Compressing Data in a Table Space or Partition” on
page 2-63.

 FIELDPROC Clause
A field procedure is often used to change the sorting sequence of the values in a
short string column. To specify that a column uses a field procedure, use the option
FIELDPROC, followed by the application program name of the procedure and,
optionally, a list of parameters. For example, to specify a field procedure for the
column LASTNAME of the employee sample table, we changed one line of
Figure 43 on page 2-93 to look like this:

LASTNAME VARCHAR(15) NOT NULL FIELDPROC MYPROG (4, 3, 7),

In the example, the name of the field procedure is chosen as “MYPROG.” For
instructions about writing a field procedure, see “Field Procedures” on page X-57 .

2-96 Administration Guide

 IN Clause
Use the IN clause of CREATE TABLE to name the DB2 database or the database
and the table space to be used for the table. If you do not name a database, DB2
creates the table in the default database DSNDB04. If you do not name a table
space, DB2 creates a simple table space for you as described in “Creating a Table
Space Implicitly” on page 2-86. You might also want to consider whether the table
warrants a new database; some pertinent factors are described for IN Clause of
“CREATE TABLESPACE Statement” on page 2-87.

 UNIQUE Clause
If UNIQUE is specified in the definition of column C, the effect is the same as if the
UNIQUE(C) clause is specified as a separate clause.

The NOT NULL clause must be specified with this clause. This clause cannot be
specified more than once in a column definition. Columns in a UNIQUE clause
cannot be parent keys.

 AUDIT Clause
The audit trace allows you to list events of various types that occur in audited
tables. The AUDIT clause tells whether a particular table is audited. It has three
options: ALL, CHANGES, and NONE. These options are described in more detail in
“Auditing a Specific Table” on page 3-123.

For an exact description of the events that are audited for each trace class and
instructions on using the trace, see “Options of the Audit Trace” on page 3-120.
There is likely to be a performance cost in auditing accesses of any type, so
consider carefully how you intend to use the trace before including an AUDIT
clause in the table definition.

DATA CAPTURE Clause
Use this clause when you want data changes to this table to be written to the log in
an expanded format that can be retrieved by such programs as the Log Apply
Feature of the Remote Recovery Data Facility (RRDF) program offering or Data
Propagator Relational (DPropR).

 OBID Clause
| Use this clause when you want to use a specific object identifier or when you are

re-creating table definitions for shared read-only data. For more information about
shared read-only data, see “Appendix F. Sharing Read-Only Data” on page X-153.

WITH RESTRICT ON DROP Clause
If a table is defined with WITH RESTRICT ON DROP, it can be dropped only after
it is altered to remove the restriction. Also, a table space or database that contains

| a table with WITH RESTRICT ON DROP cannot be dropped until the table is
altered to remove the defined restriction.

| CCSID Clause
| Use the CCSID clause to specify the encoding scheme, ASCII or EBCDIC, for data
| stored in the table. If an IN clause is specified with a table space name then the
| value must agree with the encoding scheme already in use for that table space. All
| data stored within a table space must use the same encoding scheme.

 Chapter 2-9. Implementing Your Design 2-97

| If an IN clause is not specified with a table space name then a table space is
| created implicitly and the encoding scheme of that table space is the same as the
| table being created.

| The CCSID option defaults to the encoding scheme of the table space containing
| this table. In addition, the CCSID option defaults to the DEFAULT ENCODING
| SCHEME install option for a table created in an implicit table space.

| CREATE GLOBAL TEMPORARY TABLE Statement
| DB2 Version 5 introduces the CREATE GLOBAL TEMPORARY TABLE statement
| allowing the creation and use of temporary tables which have a subset of the
| attributes of DB2 base tables. The term “global” for DB2 temporary tables means
| global to an application's process at the current server.

| When you need a table only for the life of an application process, you can create a
| temporary table. DB2 does not log or lock temporary tables, so SQL statements
| that use them can be processed more efficiently. Temporary tables are especially
| useful when you need to sort or query intermediate result sets that contain large
| numbers of rows, but you want to store only a small subset of those rows
| permanently.

| Temporary tables also have a number of uses for stored procedures. For more
| information, see Section 6 of Application Programming and SQL Guide.

| Figure 47 shows the statement used to create a definition of a temporary table
| called TEMPPROD:

| CREATE GLOBAL TEMPORARY TABLE TEMPPROD

| (SERIAL CHAR(8) NOT NULL,

| DESCRIPTION VARCHAR(6ð) NOT NULL,

| MFGCOST DECIMAL(8,2),

| MFGDEPT CHAR(3),

| MARKUP SMALLINT,

| SALESDEPT CHAR(3),

| CURDATE DATE NOT NULL);

| Figure 47. Example of CREATE GLOBAL TEMPORARY TABLE

| CCSID Clause
| Use the CCSID clause to specify the encoding scheme, ASCII or EBCDIC, for data
| stored in this table. This option defaults to the DEFAULT ENCODING SCHEME in
| the INSTALL panel for temporary tables.

| Distinctions Between Base and Temporary Tables in DB2
| Table 13 on page 2-99 summarizes important distinctions between DB2 base
| tables and DB2 temporary tables.

2-98 Administration Guide

| A more detailed example of implementing temporary tables as well as restrictions
| and extensions of temporary tables can be found in Section 2 of Application
| Programming and SQL Guide and in Chapter 6 of SQL Reference. For information
| about temporary tables and their impact on DB2 resources, see “Work File Data
| Sets” on page 5-93.

| Table 13. Important distinctions between DB2 base tables and DB2 temporary tables.

| Base Tables| Temporary Tables

| CREATE TABLE statement puts description
| of table in catalog table SYSTABLES. That
| table description is a base table.

| CREATE GLOBAL TEMPORARY TABLE
| statement puts description of table in
| catalog table SYSTABLES. That table
| description is a base table.

| CREATE TABLE statement creates one
| empty instance of the table.
| CREATE GLOBAL TEMPORARY TABLE
| statement does NOT create an instance of
| the table. An empty instance of a given
| temporary table is instantiated with the first
| implicit or explicit reference to the named
| temporary table in an OPEN, SELECT,
| INSERT, or DELETE operation executed by
| any program in the application process. In
| addition, an instance of the table is not a
| base table.

| Any references to that table name in
| multiple application processes refer to a
| single base table at the current server.

| References to that table name in multiple
| application processes refer to a distinct
| instantiation of the temporary table for each
| application process at the current server.

| Table space and database operations,
| locking, logging, and recovery do apply.
| Table space and database operations,
| locking, logging, and recovery do NOT
| apply.

Implementing Your Indexes
Indexes provide efficient access to data. This section describes clauses of the
CREATE INDEX statement and gives an example of how to create an index for a
large table. It also provides examples of creating indexes on partitioned and large
partitioned table spaces.

CREATE INDEX Statement
Use the CREATE INDEX statement to create an index. If the table being indexed is
empty, DB2 creates the index, but does not create index entries until the table is
loaded or rows are inserted. If the table is not empty, you can choose whether to
have DB2 build the index right away (when CREATE INDEX is executed) or you
can defer the build of the index until later. Optimally, you should create all the
indexes on a table before loading the table; however, if you have a populated table,
choose the DEFER option and build the index using RECOVER INDEX.

| The indexes you create have the same encoding scheme, ASCII or EBCDIC, as
| their associated table. Index entries for an ASCII table are stored in ASCII order. All
| indexes defined in an ASCII table must be type 2 indexes.

If you are creating an index for a table in a shared DB2 database, you need to be
aware of the information in “Appendix F. Sharing Read-Only Data” on page X-153
before you create the index.

 Chapter 2-9. Implementing Your Design 2-99

| If you are creating an index for a large partitioned table space, See “Creating a
| Partitioned Index on a Large Partitioned Table Space” on page 2-103.

| For nonpartitioned indexes, you can use the PIECESIZE clause to indicate how
| large DB2 should make the data sets that make up a nonpartitioned index. See
| “PIECESIZE Clause” on page 2-102 for more information.

Clauses of the CREATE INDEX Statement
This section describes the various clauses of the CREATE INDEX statement.

 TYPE Clause
| This allows you to specify the format of the index as either type 1 or type 2. Type 2
| indexes are recommended. If you do not specify the TYPE option, the type is

based on either the LOCKSIZE of the table space containing the table on which the
index is being defined, or the default. For more information on default index type,
see “Index Types and Recommendations” on page 2-51.

Type 1 indexes are not permitted on tables defined in a table space with a
LOCKSIZE specification of ROW.

The default index type is specified during installation. See Installation Guide for
more information.

UNIQUE and UNIQUE WHERE NOT NULL Clauses
This option specifies a constraint on the index key, preventing the table from
containing rows that are duplicates with respect to the values of the columns. If the
table already contains rows that are duplicate values of the columns, the index is
not created.

If the column of the key allows null values and only UNIQUE is specified, null
values are treated like any other values in the enforcement of the uniqueness
constraint. For example, if the key is a single column, the index can contain no
more than one null value. If any column of the key allows null values and UNIQUE
WHERE NOT NULL is specified, the uniqueness constraint does not apply to a key
value where any component is null.

The WHERE NOT NULL option is valid only for Type 2 indexes.

PCTFREE and FREEPAGE Clauses
These clauses enable you to specify an amount of space to be reserved when the
index is created on a populated table, or when index entries are created or
reorganized as a result of executing a DB2 utility. The reserved space is used later,
when new index entries are created, to reduce the number of times a leaf page
must be split to accommodate a new entry.

The clauses function much as they do in CREATE TABLESPACE:

� PCTFREE tells the percentage of each page that is to be reserved as free
space when the index entries are created, either as the result of executing a
DB2 utility or at the time the index is created. In leaf pages, the free space is
divided equally among all subpages. For nonleaf pages, a maximum of 10
percent is left free. (If you specify a PCTFREE value of over 10, only 10
percent is left free.)

2-100 Administration Guide

� FREEPAGE specifies how often DB2 is to leave a page of free space when the
index entries are created.

In an index space that has many inserts, as in a simple table space, you might
want to request the maximum amount of free space. In an index that will have no
inserts, you might want no free space.

And again, as in a table space, free pages in the index are useful when the table
receives many rows by inserts from another table, or when an application wants to
insert many rows into a single page because of the same or similar clustering key.
Generally, it is better to have free space in the same page than in another page,
even one that's nearby. So, use FREEPAGE when it is impractical to use
PCTFREE; otherwise accept its default value of 0.

In a partitioned index, you might give different values of PCTFREE or FREEPAGE
for separate partitions. Give the partition number in the PART clause.

 CLUSTER Clause
If you have data that needs to be viewed as a group or in sequence, create an

| index using the CLUSTER clause. Every partitioned table space must have one
| and only one clustering index.

PART: This is an integer that specifies the highest value of an index key in one
partition of a partitioned index. If you use CLUSTER, and the table is contained in a
partitioned table space, you must use exactly one PART clause for each partition
defined with the NUMPARTS clause on the CREATE TABLESPACE statement.

VALUES: This is a constant that you must specify at least once for each PART
clause. You can use as many values as there are columns in the key.

 SUBPAGES Clause
Use this to specify the number of subpages for each physical page. Use 1, 2, 4, 8,

| or 16; the default is 4. Type 2 indexes do not support SUBPAGES.

BUFFERPOOL, CLOSE, and DSETPASS Clauses
The considerations for using BUFFERPOOL, CLOSE, and DSETPASS clauses with
CREATE INDEX are essentially the same as for using them with CREATE
TABLESPACE, which is described in “CREATE TABLESPACE Statement” on
page 2-87. For indexes, however, you cannot use any 32KB buffer pool.

 DEFER Clause
Use DEFER YES when you are creating a nonunique index on a populated table,
especially if that table is large. DEFER YES allows you to build the index later,
using RECOVER INDEX. When you defer the build for DB2-managed data sets,
DB2 creates the VSAM data set and adds the definition for the index to the catalog,
but does not build the index. For user-managed data sets, the data set must
already exist before DB2 adds the definition to the catalog.

The index is placed in RECOVER PENDING status, and SQL statements that
cause DB2 to access this index fail until the index is recovered with the RECOVER
INDEX utility. Building an index this way on a populated table is more efficient than
building it at CREATE time. The next two steps show how to do this:

 Chapter 2-9. Implementing Your Design 2-101

� Run RECOVER INDEX, and specify the new index as the index to be
recovered.

RECOVER INDEX (DSN851ð.NEWINDEX)

� Run RUNSTATS to provide accurate statistical information. Bind plans and
packages that use the new index. In creating an index on a large partitioned
table space, the CREATE INDEX statement has other additional
considerations. See “Creating a Partitioned Index on a Large Partitioned Table
Space” on page 2-103 for more information about how to do this.

REORG TABLESPACE also builds the index. However, you must reorganize the
entire table space and cannot use the new index to unload the data. You would
probably use REORG only if you were planning on doing a reorganization anyway.

The default for the DEFER clause is NO.

We recommend that you do not use DEFER YES when creating a unique index on
a populated table. With DEFER YES, the table itself is not accessed when the
CREATE INDEX statement executes; thus, any duplicate values do not cause the
statement to fail. However, when you attempt to build the index with RECOVER
INDEX or REORG TABLESPACE, the job fails with message DSNU340I. If this
happens, you must either drop and re-create the index to be nonunique, or you
must run the REPAIR utility to remove the duplicate rows.

| PIECESIZE Clause
| Use the PIECESIZE clause to set the maximum size of a data set in a
| nonpartitioned index.

| The default for PIECESIZE is 2 GB for a nonpartitioned index on a table space that
| is not defined as LARGE, or 4 GB for a nonpartitioned index on a table space
| defined as LARGE.

| Using indexes that consist of several smaller data sets, rather than one large data
| set, can reduce I/O contention on the devices that contain the indexes, which can
| improve performance. For more information on PIECESIZE and performance, see
| “Spread Data Sets of Nonpartitioning Indexes” on page 5-42.

| USING Clause
| When you use CREATE INDEX, specify the USING clause. If you use a storage
| group, consider specifying the primary and the secondary space allocation
| quantities (PRIQTY and SECQTY). You specify the allocation as a number of
| kilobytes; DB2 specifies the value to VSAM as a number of pages. For each
| clause, the default value is three pages. For more information about how space
| allocation can affect the performance of mass inserts, see “Ensure Allocation in
| Cylinders” on page 5-40.

| The primary quantity is particularly important; so try to specify a value that avoids
| secondary allocation without wasting space. DB2 can extend a nonpartitioned index
| space to more than one data set, but only if the value of PRIQTY + 118 × SECQTY
| is at least 2 GB.

| For nonpartitioning indexes on partitioned table spaces defined as LARGE, the
| value of PRIQTY + 118 × SECQTY must be at least the user-specified value of

2-102 Administration Guide

| PIECESIZE, or the default value of 4GB. If DB2 reaches the maximum number of
| extents before reaching the PIECESIZE or 4GB limit, the extension fails.

| You might possibly reach 123 extents before reaching the limit, but 119 is more
| likely.

| The default value of SECQTY is 10 percent of the specified PRIQTY, or three times
| the page size, whichever is larger.

| If you partition the table space, the clustering index is also partitioned.

| You can specify space for the entire index by using the USING clause, or, if the
| index is partitioned, you can specify space for each partition. Information about
| space allocation for the index is kept in the SYSIBM.SYSINDEXPART table of the
| DB2 catalog. Other information about the index is in SYSIBM.SYSINDEXES.

| Creating a Partitioned Index on a Large Partitioned Table Space
| The example in Figure 48 creates an index on a large partitioned table space. Our
| example assumes a table STOCK was previously created. A type 2 index was
| created by the statement. All indexes defined on a table in a LARGE partitioned
| table space must be type 2. If you do not specify the TYPE option, the index is
| TYPE 2.

| The example also specifies high key values for the composite key (ITEMNO,
| STORENO) for the partitions using the CLUSTER clause. When you specify the
| VALUES clause, the constant you specify for the last partition is enforced for a
| large partitioned table space. If the columns of the index are ascending, the value
| specified for the last partition is the highest value that can be placed in the table. If
| the columns of the index index are descending, the value specified for the last
| partition is the lowest value that can be placed in the table. A key value greater
| than (or less than if the index is descending) the value specified for the last
| partition is considered to be out of range. If you want a different storage group for
| each partition, you can use the example in Figure 48 with the USING STOGROUP
| clause.

| CREATE TYPE 2 INDEX SALIND

| ON STOCK

| (ITEMNO ASC, STORENO ASC)

| CLUSTER

| (PART 1 VALUES ('ððð999','ð5ð') USING STOGROUP MYSG1,

| PART 2 VALUES ('ðð1999','ð75') USING STOGROUP MYSG2,

| PART 3 VALUES ('ðð2999','1ðð') USING STOGROUP MYSG3,

| PART 4 VALUES ('ðð4999','1ðð') USING STOGROUP MYSG4,

| PART 5 VALUES ('ðð5999','125') USING STOGROUP MYSG5,

| .

| .

| .

| PART 66 VALUES ('ð18999','143') USING STOGROUP MYSG66,

| PART 67 VALUES ('ð2ð999','ð78') USING STOGROUP MYSG67,

| PART 68 VALUES ('ð22ððð','15ð') USING STOGROUP MYSG68)

| .

| .

| BUFFERPOOL BP1

| CLOSE YES;

| Figure 48. Example of Creating an Index on a Large Partitioned Table Space

 Chapter 2-9. Implementing Your Design 2-103

Creating an Index on a Large Table
Although you should try to create indexes for large tables before loading the table,
there might be times when you have to create an index on a populated table. The
DEFER option of CREATE INDEX can make this process more efficient by allowing
you to defer the build and thus use the quicker RECOVER INDEX to build the
index.

Create a new index on the table space, as shown in Figure 49.

CREATE INDEX DSN851ð.NEWINDEX

 ON DSN851ð.EMP

 (LASTNAME ASC)

USING STOGROUP DSN8G51ð

 PRIQTY 3ð72

 SECQTY 1ð24

 ERASE NO

 BUFFERPOOL BPð

 CLOSE YES

 DEFER YES;

Figure 49. Example of Creating an Index on a Large Table

Because this is an index on a populated table, DEFER YES puts the index into
recovery pending status. Any SQL statements that cause this index to be accessed
will fail.

Implementing Referential Constraints
Implementing a referential constraint can be complex. For example, objects with
referential constraints must sometimes be defined in a certain order. A foreign key

| cannot be defined unless the corresponding primary key already exists and has a
| unique index defined on it.

More information about implementing referential constraints in your design, such as
creating table spaces and table, can be found in “Chapter 2-9. Implementing Your
Design” on page 2-79.

Order of Operations in Building a Referential Structure
Without referential constraints, there is little to say about the order of creating a set
of table spaces, tables, and indexes such as the one that makes up the sample
application. A table space must be created before any tables it is to contain, or the
table space can be created implicitly when its table is created. Tables must be
created before their indexes. After they are created, the tables can be loaded in
any order.

| With referential constraints, parent tables must be created, with their primary and
| unique keys and corresponding indexes, before matching foreign keys can be

defined on dependent tables.

2-104 Administration Guide

Creating the Tables
Create table spaces in any order before you perform the following steps.

1. Start with the cycle containing the department and the employee tables—both
have dependents, and neither has any other parent. Take the following steps:

a. Create the department table and define its primary key (DEPTNO).

b. Create the primary index for the department table.

c. Create the employee table, defining its primary and foreign keys at the
same time.

d. Alter the department table twice, to add the definitions of its two foreign
keys.

2. Create the activity table with its primary key and then define its index. This
step is independent of most of the others; you could do it first, or at any time
before defining the project activity table.

3. Create the project table with its primary key and the foreign keys on DEPTNO
and RESPEMP, but not the foreign key on MAJPROJ. The key on MAJPROJ
makes the table self-referencing, so it must be defined in a later step. At any
later time, alter the table to define the last foreign key.

4. Create the project activity table with its primary and two foreign keys.

5. Create the employee to project activity table with its keys.

Loading the Tables
When loading a table, you can allow LOAD to enforce referential constraints or you
can suspend enforcement by using the ENFORCE(NO) option. Because the sample
tables contain a cycle that spans more than one table space, the referential
constraints should be enforced after the tables are loaded.

1. Load all of the tables, specifying ENFORCE(NO).

2. Create an exception table for each dependent table.

3. Use ALTER TABLE to add a RID and timestamp column to each exception
table.

4. Run CHECK DATA against all the table spaces, specifying DELETE YES.

5. Correct any erroneous rows in the exception tables.

6. Insert the corrected rows into the original tables using INSERT.

Implementing Your Views
In designing your database, you may find it necessary to give users access to only
certain pieces of data. This can be done with the design and use of views.

Use the CREATE VIEW statement to define a view and give the view a name.
Unless you specifically list different column names after the view name, the column
names of the view are the same as those of the underlying table. (Table 15 on
page 2-107 shows an example of this.) When creating different column names for
your view, remember the naming conventions you established when designing the
relational database.

 Chapter 2-9. Implementing Your Design 2-105

As the following examples illustrate, the information in the view is described by a
SELECT statement. The SELECT statement can name other views as well as
tables, and can use the WHERE, GROUP BY, and HAVING clauses. It cannot use
the ORDER BY clause or name a host variable.

You cannot create a view on a table from another subsystem. However, with the
proper authority, you can access a view from another subsystem.

Creating a View on a Single Table
The example below illustrates creating a view on a single table, the department
table. Of the four columns in the table, only three are required for the view:
DEPTNO, DEPTNAME, and MGRNO. The order of the columns in the SELECT
clause is the order in which they appear in the view.

CREATE VIEW VDEPT3 AS

 SELECT DEPTNO,DEPTNAME,MGRNO

 FROM DSN851ð.DEPT;

In this example, because no column list follows the view name, VDEPT3, the
columns of the view have the same names as those of the table on which it is
based (DEPTNO, DEPTNAME, MGRNO). Table 14 is the result of executing this
SQL statement:

SELECT \ FROM VDEPT3;

Table 14. A View of a Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER --------

E01 SUPPORT SERVICES 000050

D11 MANUFACTURING SYSTEMS 000060

D21 ADMINISTRATION SYSTEMS 000070

E11 OPERATIONS 000090

E21 SOFTWARE SUPPORT 000100

Creating a View Combining Information from Several Tables
DB2 provides two types of joins, an outer join and an inner join. An outer join
includes rows where the values in the join columns do not match, as well as rows
where the values match. An inner join includes only rows where matching values in
the join columns are returned. For more information about outer join, see Section 2
of Application Programming and SQL Guide. An inner join is shown in the next
example, which includes the manager's name (from table DSN8510.EMP) along
with information from DSN8510.DEPT. The WHERE clause shown limits the view to
just those columns where the MGRNO in the DSN8510.DEPT table matches the
EMPNO in the DSN8510.EMP table.

CREATE VIEW SMITH.VDEPTM AS

SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

FROM DSN851ð.DEPT, DSN851ð.EMP

WHERE DSN851ð.EMP.EMPNO = DSN851ð.DEPT.MGRNO;

2-106 Administration Guide

Table 15 on page 2-107 shows the result of executing the CREATE VIEW
statement:

Now, suppose you want to create the same view, but including only those
departments that report administratively to Department A00. Suppose also that you
want a different set of column names. The CREATE statement is shown below.

CREATE VIEW SMITH.VDEPTMAðð

(DEPT, MGR, NAME, REPORTTO)

 AS

SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

FROM DSN851ð.EMP, DSN851ð.DEPT

WHERE DSN851ð.EMP.EMPNO = DSN851ð.DEPT.MGRNO

AND ADMRDEPT = 'Aðð';

The result of SELECT * FROM SMITH.VDEPTMA00 is shown in Table 16.

Table 15. Inner Join View from Two Tables

DEPTNO MGRNO LASTNAME ADMRDEPT

A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00
E01 000050 GEYER A00
D11 000060 STERN D01
D21 000070 PULASKI D01
E11 000090 HENDERSON E01
E21 000100 SPENSER E01

Table 16. View Created with New Column Names

DEPT MGR NAME REPORTTO

A00 000010 HAAS A00

B01 000020 THOMPSON A00

C01 000030 KWAN A00

E01 000050 GEYER A00

Inserting and Updating through Views
You can name a view in an INSERT or UPDATE statement; the insert or update is
made to the base table. (You cannot insert into or update a view that is based on
more than one table.)

Unless the view definition uses the WITH CHECK OPTION clause, no check is
made to see that the insert or update conforms to the definition of the view. The
following example illustrates some probably undesirable results of omitting that
check.

Suppose the view V1 is defined as follows:

CREATE VIEW V1 AS

SELECT \ FROM DSN851ð.EMP

WHERE WORKDEPT LIKE 'D%' ;

A user with the SELECT privilege on V1 can see the information from the employee
table for employees in departments whose IDs begin with 'D': D01, D11, or D21.

 Chapter 2-9. Implementing Your Design 2-107

Somewhat surprisingly, a user with the INSERT privilege on V1 can insert a new
row with any value for WORKDEPT, whether it begins with a 'D' or not: a user
with both SELECT and INSERT privileges can insert a row for department E01,
perhaps erroneously, and not be able to select the row just inserted.

WITH CHECK OPTION for Views
To avoid the situation in which a value that does not match the view definition is
inserted into the base table, modify the definition of view V1 to include WITH
CHECK OPTION. The definition of view V1 then becomes:

CREATE VIEW V1 AS

SELECT \ FROM DSN851ð.EMP

WHERE WORKDEPT LIKE 'D%'

WITH CHECK OPTION;

With the new definition, any insert or update made to V1 must satisfy the predicate
contained in the WHERE clause: WORKDEPT LIKE 'D%'. The check can be
valuable, but it also carries a processing cost; each potential insert or update must
be checked against the view definition.

Views of Views, With and Without Checking
Now suppose there is a second view defined on the first view. For example:

CREATE VIEW V2 AS

SELECT \ FROM V1

WHERE WORKDEPT IN ('Bð1', 'Cð1', 'Dð1');

A user who selects from V2 retrieves data only for employees in department D01,
the only department number permitted in both views. But a user who inserts into V2
might be able to enter rows for one department, three departments, or all
departments, depending on whether one, both, or neither of V1 and V2 were
defined using WITH CHECK OPTION. The following table shows the possibilities:

In the table, the entry CHECK indicates that the view uses checking, specified by
the WITH CHECK OPTION clause. For example, if View 1 and View 2 are the
views V1 and V2 defined above, and if both use checking, an update of a
department ID through V2 must satisfy the predicates of both V1 and V2. Hence, it
can only be D01. If only V1 uses checking, the update value must be D01, D11, or
D12; if only V2 uses checking, the update value must be B01, C01, or D01. And if
neither view uses checking, the department ID can be updated, through V2, to any
value the column can hold.

Table 17. Predicates Checked When Inserting Into or Updating a View of a View

View 1 View 2 Predicates Checked

CHECK CHECK View 1 and view 2

CHECK - View 1

- CHECK View 2

- - None

2-108 Administration Guide

| Using LOCAL or CASCADED CHECK OPTION to Control Updates
| on Views of Views
| Views and their underlying views might all have search conditions. You can use the
| value LOCAL or CASCADED in WITH CHECK OPTION to determine whether DB2
| applies search conditions on underlying views when you perform an insert or
| update operation on a view. If you defined the view:

| WITH CASCADED CHECK OPTION
| All search conditions of underlying views are checked unconditionally, that is,
| whether or not those underlying views are defined with a check option.

| WITH LOCAL CHECK OPTION
| Search conditions of underlying views are checked conditionally, that is, only if
| they are defined with a check option or if they are underlying views of a view
| defined with a check option.

| The difference between CASCADE and LOCAL is shown best by example.
| Consider the following updatable views, where x and y represent either LOCAL or
| CASCADE:

| V3 is defined on Table T0.
| V4 is defined on V3 WITH x CHECK OPTION.
| V5 is defined on V4.
| V6 is defined on V5 WITH y CHECK OPTION.
| V7 is defined on V6.

| Table 18 shows the views in which search conditions are checked during an
| INSERT or UPDATE operation:

| Table 18. Views in Which Search Conditions are Checked during INSERT and UPDATE Operations

| View used in
| INSERT or UPDATE
| Operation
| x = LOCAL
| y = LOCAL
| x = CASCADED
| y = CASCADED
| x = LOCAL
| y = CASCADED
| x = CASCADED
| y = LOCAL

| V3| none| none| none| none

| V4| V4| V4, V3| V4| V4, V3

| V5| V4| V4, V3| V4| V4, V3

| V6| V6, V4| V6, V5, V4, V3| V6, V5, V4, V3| V6, V4, V3

| V7| V6, V4| V6, V5, V4, V3| V6, V5, V4, V3| V6, V4, V3

 Creating Schemas
One way to organize your CREATE TABLE, CREATE VIEW and GRANT (table
privileges) statements is to put them in a schema definition. A schema definition is
a set of CREATE TABLE, CREATE VIEW and GRANT statements that are
preceded by the words CREATE SCHEMA.

CREATE SCHEMA is not an SQL statement, and cannot be embedded in a host
program or executed interactively. To process the CREATE SCHEMA statement,
you must use the schema processor, as described in “Processing Schema
Definitions” on page 2-110. The ability to process schema definitions is provided for
conformance to ISO/ANSI standards. The result of processing a schema definition

 Chapter 2-9. Implementing Your Design 2-109

is identical to the result of executing the SQL statements without a schema
definition.

The order of statements within a schema definition is important.

| Outside of the schema processor, the order of statements is important. They must
| be arranged so that all referenced objects have been previously created. This
| restriction is relaxed when the statements are processed by the schema processor
| as long as the object table is created within the same CREATE SCHEMA. By
| relaxed we mean that the requirement that all referenced objects have been
| previously created is not checked until all of the statements have been processed.
| For example, this means that within the context of the schema processor, you can
| define a constraint that references a table that does not exist yet or GRANT an
| authorization on a table that does not exist yet. Figure 50 is an example of a valid
| schema definition.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF

 (TESTNO CHAR(4),

 RESULT CHAR(4),

 TESTTYPE CHAR(3))

CREATE TABLE STAFF

 (EMPNUM CHAR(3) NOT NULL,

 EMPNAME CHAR(2ð),

 GRADE DECIMAL(4),

 CITY CHAR(15))

CREATE VIEW STAFFV1

AS SELECT \ FROM STAFF

WHERE GRADE >= 12

GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF

 TO PUBLIC

Figure 50. Example of Schema Processor Input

Authorization to Process Schema Definitions
The schema processor sets the current SQLID to the value of the schema
authorization ID before executing any of the statements in the schema definition.
Therefore, that ID must have SYSADM or SYSCTRL authority, or be the primary or
one of the secondary authorization IDs of the process that executes the schema
processor. The same ID must have all the privileges needed to execute all the
statements in the schema definition.

Processing Schema Definitions
Run the schema processor (DSNHSP) as a batch job; use the sample JCL
provided in member DSNTEJ1S of the SDSNSAMP library. The schema processor
accepts only one schema definition in a single job. No statements that are outside
the schema definition are accepted. Only SQL comments can come before the
CREATE SCHEMA statement; the end of input ends the schema definition. SQL
comments can be used within and between SQL statements as well.

2-110 Administration Guide

The processor takes the SQL from CREATE SCHEMA (the SYSIN data set),
dynamically executes it, and prints the results in the SYSPRINT data set.

If a statement in the schema definition has an error, the schema processor
processes the remaining statements but rolls back all the work at the end. You
need to fix the statement in error and resubmit the entire schema definition.

 Chapter 2-9. Implementing Your Design 2-111

2-112 Administration Guide

Chapter 2-10. Loading Data into DB2 Tables

This chapter provides an overview of how to load data into DB2 tables. There are
several ways to fill DB2 tables with data, but you will probably load most of your
tables using the LOAD utility.

 Loading Methods
You can load tables in DB2 by using:

� The LOAD utility. See “Loading Tables with the LOAD Utility” and Section 2 of
Utility Guide and Reference . The utility loads data into DB2 persistent tables,

| from either sequential data sets or SQL/DS unload data sets, using BSAM. The
| LOAD utility cannot be used to load data into DB2 temporary tables.

When loading tables with indexes, referential constraints, or table check
constraints, LOAD can perform several checks on the validity of data. If errors
are found, then the table space being loaded, its index spaces, and even other
table spaces can be left in a restricted status.

Plan to make necessary corrections and remove restrictions after any such
LOAD job. For instructions, see 2-114.

� An SQL INSERT statement in an application program. See “Loading Data
Using the SQL INSERT Statement” on page 2-115 and SQL Reference. The
method allows you to develop an application tailored to your own requirements.

� An SQL INSERT statement to copy all or selected rows of another table. You
can do that interactively, using SPUFI. See “Loading Data Using the SQL
INSERT Statement” on page 2-115 and SQL Reference.

To reformat data from IMS DL/I databases and VSAM and SAM loading for the
LOAD utility, use the DataPropagator Relational licensed program. See “Loading
Data from DL/I” on page 2-116.

For general guidance about running DB2 utility jobs, see Utility Guide and
Reference. For information about DataPropagator Relational, see DataPropagator
Relational User's Guide.

Loading Tables with the LOAD Utility
Use LOAD to load one or more persistent tables of a table space, or one or more
partitions of a table space. LOAD operates on a table space, so you must have
authority for all tables in the table space when you perform LOAD.

LOAD loads records into the tables and builds or extends any indexes defined on
them. If the table space already contains data, you can choose whether you want
to add the new data to the existing data or replace the existing data.

| Data input with LOAD can be in either the ASCII or EBCDIC character encoding
| schemes.

For nonpartitioned table spaces, or if there are nonpartitioned indexes defined on a
table in partitioned table space, data in the table space being loaded is unavailable
to other application programs during the load operation. Also, some SQL

 Copyright IBM Corp. 1982, 1997 2-113

statements, such as CREATE, DROP and ALTER, might experience contention
when they run against another table space in the same DB2 database while the
table is being loaded.

Additionally, LOAD can be used to:

� Compress data and build a compression dictionary
� Convert data between compatible data types
� Load multiple tables in a single table space

When a table is loaded, the default value of a column not loaded is the value
specified in the DEFAULT clause of the ALTER TABLE or CREATE TABLE
statements, if there is one.

 Replacing Data
You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the
REPLACE option), or you can load new records into a table space without
destroying the rows already there (using the RESUME option).

Making Corrections after LOAD: LOAD can place a table space or index space
into one of several kinds of restricted status. Your use of a table space in restricted
status is severely limited. In general, you cannot access its data through SQL; you
can only drop the table space or one of its tables, or perform some operation that
resets the status.

To discover what spaces are in restricted status, use the command:

-DISPLAY DATABASE (\) SPACENAM (\) RESTRICT

| LOAD places a table space in the “copy pending” state if you load with LOG NO,
| which you might do to save space in the log. Immediately after that operation, DB2

cannot recover the table space. However, the table space can be recovered by
loading it again. Prepare for recovery, and turn off the restriction, by making a full
image copy using SHRLEVEL REFERENCE. (If you end the copy job before it is
finished, the table space is still in copy pending status.)

| When REORG or LOAD REPLACE is used and the COPYDDN keyword is
| specified, a full image copy data set (SHRLEVEL REF) is created during the
| execution of the REORG or LOAD utility. This full image copy is known as an inline
| copy. The table space is not left in copy pending state regardless of which LOG
| option was specified for the utility.

| The inline copy is not valid unless the entire table space or partition is being
| replaced. If an inline copy is requested by specifying keyword COPYDDN in a
| LOAD utility statement, but the load is RESUME YES, or is RESUME NO and
| REPLACE is not specified, an error message is issued and the LOAD terminates.

LOAD places all the index spaces for a table space in the “recovery pending” status
if you end the job (using -TERM UTILITY) before it completes the INDEXVAL
phase. It places the table space itself in “recovery pending” if you end the job
before it completes the RELOAD phase.

LOAD places a table space in the “check pending” status if its referential or check
integrity is in doubt. The intent of the restriction is to encourage the use of the

2-114 Administration Guide

CHECK DATA utility. That utility locates invalid data and, optionally, removes it. If it
removes the invalid data, the data remaining satisfies all referential and table check
constraints, and the check pending restriction is lifted.

Loading Data Using the SQL INSERT Statement
The information under this heading, up to “Loading Data from DL/I” on page 2-116
is General-use Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

Another way to load data into tables is with the SQL INSERT statement. You can
issue the statement interactively, or embed it in an application program.

The simplest form of INSERT inserts a single row of data. In this form of the
statement, you specify the table name, the columns into which the data is to be
inserted, and the data itself.

Suppose you created a test table, TEMPDEPT, with the same characteristics as the
department table:

CREATE TABLE SMITH.TEMPDEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) NOT NULL,

 ADMRDEPT CHAR(3) NOT NULL)

 IN DSN8D51A.DSN8S51D;

To add a row to table TEMPDEPT, you might enter:

INSERT INTO SMITH.TEMPDEPT

 VALUES ('Xð5','EDUCATION','ððð631','Að1');

If you write an application program to load data into tables, you use that form of
INSERT, probably with host variables instead of the actual values shown above.

You can also use a form of INSERT that copies rows from another table. You can
load TEMPDEPT with the following statement:

INSERT INTO SMITH.TEMPDEPT

 SELECT DEPTNO,DEPTNAME,MGRNO,ADMRDEPT

 FROM DSN851ð.DEPT

 WHERE ADMRDEPT='Dð1';

The statement loads TEMPDEPT with data from the department table about all
departments that report to Department D01.

When a table, whose indexes are already defined, is populated by using the
INSERT statement, both the FREEPAGE and the PCTFREE parameters are
ignored. FREEPAGE and PCTFREE are only in effect during a LOAD or REORG
operation.

For the full syntax of the statement, see SQL Reference.

 Chapter 2-10. Loading Data into DB2 Tables 2-115

Loading Data from DL/I
To convert data in IMS DL/I databases from a hierarchic structure to a relational
structure so that it can be loaded into DB2 tables, you can use the DataRefresher
licensed programs.

2-116 Administration Guide

Chapter 2-11. Using the Catalog in Database Design

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page xi.

Retrieving information from the catalog, using SQL statements, can be helpful in
designing your relational database. Appendix D of SQL Reference lists all the DB2
catalog tables and the information stored in them.

The information in the catalog is vital to normal DB2 operation. As the examples in
this chapter show, you can retrieve catalog information, but changing it could have
serious consequences. So you cannot execute INSERT or DELETE statements that
affect the catalog, and there is only a limited list of columns you can update.
Exceptions to these restrictions are the SYSIBM.SYSSTRINGS,

| SYSIBM.SYSPROCEDURES, SYSIBM.SYSCOLDIST, and
SYSIBM.SYSCOLDISTSTATS catalog tables, into which you can insert rows and
proceed to update and delete rows. See “Chapter 5-9. Maintaining Statistics in the
Catalog” on page 5-243 for information about updating catalog columns.

To execute the following examples, you need at least the SELECT privilege on the
appropriate catalog tables. Be careful with your own examples; querying the DB2
catalog can result in a long table space scan.

Retrieving Catalog Information about DB2 Storage Groups
SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES contain information about
DB2 storage groups and the volumes in those storage groups. The following query
shows what volumes are in a DB2 storage group, how much space is used, and
when that space was last calculated.

SELECT SGNAME,VOLID,SPACE,SPCDATE

 FROM SYSIBM.SYSVOLUMES,SYSIBM.SYSSTOGROUP

 WHERE SGNAME=NAME

ORDER BY SGNAME;

Retrieving Catalog Information about a Table
SYSIBM.SYSTABLES contains a row for every table, view, and alias in your DB2
system. For each, the row tells you whether the object is a table, a view, or an
alias, its name, who created it, what database it belongs to, what table space it
belongs to, and other information. SYSTABLES also has a REMARKS column in
which you can store your own information about the table in question. See “Adding
and Retrieving Comments” on page 2-121 for more information about how to do
this.

This statement displays all the information for the project activity sample table:

SELECT \

 FROM SYSIBM.SYSTABLES

WHERE NAME = 'PROJACT'

AND CREATOR = 'DSN851ð';

 Copyright IBM Corp. 1982, 1997 2-117

Retrieving Catalog Information about Aliases
SYSIBM.SYSTABLES describes the aliases you create. It has three columns used
only for aliases:

� LOCATION contains your subsystem's location name for the remote system, if
the object on which the alias is defined resides at a remote subsystem.

� TBCREATOR contains the owner of the table or view.

� TBNAME contains the name of the table or the view.

The NAME and the CREATOR columns of SYSTABLES contain the name and
owner of the alias, and three other columns contain the following alias information:

� TYPE will be A.
� DBNAME will be DSNDB06.
� TSNAME will be SYSDBAUT.

If similar tables at different locations have names with the same second and third
parts, you can retrieve the aliases for them with a query like this one:

SELECT LOCATION, CREATOR, NAME

 FROM SYSIBM.SYSTABLES

WHERE TBCREATOR='DSN851ð' AND TBNAME='EMP'

 AND TYPE='A';

Retrieving Catalog Information about Columns
SYSIBM.SYSCOLUMNS has one row for each column of every table and view.
Query it, for example, if you cannot remember the column names of a table or
view.

This statement retrieves information about columns in the sample Department table:

SELECT NAME, TBNAME, COLTYPE, LENGTH, NULLS, DEFAULT

 FROM SYSIBM.SYSCOLUMNS

 WHERE TBNAME='DEPT'

AND TBCREATOR = 'DSN851ð';

The result is shown below; it tells for each column:

� The column name
� The name of the table that contains it
� Its data type
� Its length attribute
� Whether or not it allows nulls
� Whether or not it allows default values.

NAME TBNAME COLTYPE LENGTH NULLS DEFAULT

DEPTNO DEPT CHAR 3 N N

DEPTNAME DEPT VARCHAR 36 N N

MGRNO DEPT CHAR 6 Y N

ADMRDEPT DEPT CHAR 3 N N

2-118 Administration Guide

Retrieving Catalog Information about Indexes
SYSIBM.SYSINDEXES contains a row for every index, including indexes on catalog
tables. This example retrieves information about the index XEMPL2.

SELECT \

 FROM SYSIBM.SYSINDEXES

WHERE NAME = 'XEMPL2'

AND CREATOR = 'DSN851ð';

The previous example displays a single row of information about a particular index.
But a table can have more than one index. To display information about all the
indexes of a table, enter a statement like this one:

SELECT \

 FROM SYSIBM.SYSINDEXES

WHERE TBNAME = 'EMP'

AND TBCREATOR = 'DSN851ð';

Retrieving Catalog Information about Views
For every view you create, DB2 stores descriptive information in several catalog
tables. The following is what happens in the catalog following the execution of
CREATE VIEW:

� A row is inserted into SYSIBM.SYSTABLES.

� A row is inserted into SYSIBM.SYSTABAUTH to record the owner's privileges
on the view.

� For each column of the view, a row is inserted into SYSIBM.SYSCOLUMNS.

� One or more rows are inserted into the SYSIBM.SYSVIEWS table to record the
text of the CREATE VIEW statement.

� For each table or view on which the view is dependent, a row is inserted into
SYSIBM.SYSVIEWDEP to record the dependency.

� A row is inserted into SYSIBM.SYSVTREE, and possibly into
SYSIBM.SYSVLTREE, to record the parse tree of the view (an internal
representation of its logic).

Users might want a view of one or more of those tables, containing information
about their own tables and views.

Retrieving Catalog Information about Authorizations
SYSIBM.SYSTABAUTH contains information about the privileges held by
authorization IDs over tables and views. Query it to learn who can access your
data. The following query retrieves the names of all users who have been granted
access to the DSN8510.DEPT table.

SELECT GRANTEE

 FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'DEPT'

AND GRANTEETYPE <> 'P'

AND TCREATOR = 'DSN851ð';

 Chapter 2-11. Using the Catalog in Database Design 2-119

GRANTEE is the name of the column that contains authorization IDs for users of
tables. TTNAME and TCREATOR specify the DSN8510.DEPT table. The clause
GRANTEETYPE <> 'P' ensures that you retrieve the names only of users (not
application plans or packages) that have authority to access the table.

Retrieving Catalog Information about Primary Keys
SYSIBM.SYSCOLUMNS identifies columns of a primary key in column KEYSEQ; a
nonzero value indicates the place of a column in the primary key. To retrieve the
creator, database and names of the columns in the primary key of the sample
project activity table using SQL statements, execute:

SELECT TBCREATOR, TBNAME, NAME, KEYSEQ

 FROM SYSIBM.SYSCOLUMNS

WHERE TBCREATOR = 'DSN851ð'

AND TBNAME = 'PROJACT'

AND KEYSEQ > ð

ORDER BY KEYSEQ;

SYSIBM.SYSINDEXES identifies the primary index of a table by the value 'P' in
column UNIQUERULE. To find the name, creator, database, and index space of
the primary index on the project activity table, execute:

SELECT TBCREATOR, TBNAME, NAME, CREATOR, DBNAME, INDEXSPACE

 FROM SYSIBM.SYSINDEXES

WHERE TBCREATOR = 'DSN851ð'

AND TBNAME = 'PROJACT'

AND UNIQUERULE = 'P';

Retrieving Catalog Information about Foreign Keys
SYSIBM.SYSRELS contains information about referential constraints, and each
constraint is uniquely identified by the creator and name of the dependent table and
the constraint name (RELNAME). SYSIBM.SYSFOREIGNKEYS contains
information about the columns of the foreign key that defines the constraint. To
retrieve the constraint name, column names, and parent table names for every
relationship in which the project table is a dependent, execute:

SELECT A.CREATOR, A.TBNAME, A.RELNAME, B.COLNAME, B.COLSEQ,

 A.REFTBCREATOR, A.REFTBNAME

FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B

WHERE A.CREATOR = 'DSN851ð'

AND B.CREATOR = 'DSN851ð'

AND A.TBNAME = 'PROJ'

AND B.TBNAME = 'PROJ'

AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLSEQ;

You can use the same tables to find information about the foreign keys of tables to
which the project table is a parent, as follows:

SELECT A.RELNAME, A.CREATOR, A.TBNAME, B.COLNAME, B.COLNO

FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B

WHERE A.REFTBCREATOR = 'DSN851ð'

AND A.REFTBNAME = 'PROJ'

AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLNO;

2-120 Administration Guide

Retrieving Catalog Information about Check Pending
SYSIBM.SYSTABLESPACE indicates that a table space is in check pending status
by a value in column STATUS: 'P' if the entire table space has that status, 'S' if
the status has a scope of less than the entire space. To list all table spaces whose
use is restricted for any reason, give this command:

-DISPLAY DATABASE (\) SPACENAM(\) RESTRICT

To retrieve the names of table spaces in check pending status only, with the names
of the tables they contain, execute:

SELECT A.DBNAME, A.NAME, B.CREATOR, B.NAME

FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLES B

WHERE A.DBNAME = B.DBNAME

AND A.NAME = B.TSNAME

AND (A.STATUS = 'P' OR A.STATUS = 'S')

ORDER BY 1, 2, 3, 4;

Retrieving Catalog Information about Table Check Constraints
The following query shows all table check constraints on all tables named
SIMPDEPT and SIMPEMPL in order by column name within table owner. It shows
the name, authorization ID of the creator, and text for each constraint. A constraint
that uses more than one column name appears more than once in the result.
Information about check constraints is stored in the DB2 catalog in:

� SYSIBM.SYSCHECKS, which contains one row for each check constraint
defined on a table

� SYSIBM.SYSCHECKDEP, which contains one row for each reference to a
column in a check constraint

CREATE TABLE SIMPDEPT

(DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(12) CONSTRAINT CC1 CHECK (DEPTNAME IS NOT NULL),

 MGRNO CHAR(6),

 MGRNAME CHAR(6));

SELECT A.TBOWNER, A.TBNAME, B.COLNAME,

A.CHECKNAME, A.CREATOR, A.CHECKCONDITION

FROM SYSIBM.SYSCHECKS A, SYSIBM.SYSCHECKDEP B

WHERE A.TBOWNER = B.TBOWNER

AND A.TBNAME = B.TBNAME

AND B.TBNAME = 'SIMPDEPT'

AND A.CHECKNAME = B.CHECKNAME

ORDER BY TBOWNER, TBNAME, COLNAME;

Adding and Retrieving Comments
After you create a table, a view, or an alias, you can provide explanatory
information about it for future reference—information such as the purpose of the
table, who uses it, and anything unusual about it. Not only can you store a
comment about the table or the view as a whole, you can also include one for each
column. A comment must not exceed 254 bytes.

 Chapter 2-11. Using the Catalog in Database Design 2-121

A comment is especially useful if your names do not clearly indicate the contents of
columns or tables. In that case, use a comment to describe the specific contents of
the column or table.

Below are two examples of COMMENT ON:

COMMENT ON TABLE DSN851ð.EMP IS

'Employee table. Each row in this table represents one

employee of the company.';

COMMENT ON COLUMN DSN851ð.PROJ.PRSTDATE IS

'Estimated project start date. The format is DATE.';

After executing a COMMENT ON statement, your comments are stored in the
REMARKS column of SYSIBM.SYSTABLES or SYSIBM.SYSCOLUMNS. (Any
comment already present in the row is replaced by the new one.) The next two
examples retrieve the comments added by the previous COMMENT ON
statements.

SELECT REMARKS

 FROM SYSIBM.SYSTABLES

WHERE NAME = 'EMP'

AND CREATOR = 'DSN851ð';

SELECT REMARKS

 FROM SYSIBM.SYSCOLUMNS

WHERE NAME = 'PRSTDATE' AND TBNAME = 'PROJ'

AND TBCREATOR = 'DSN851ð';

Verifying the Accuracy of the Database Definition
The catalog can also be used to verify the accuracy of your database definition
process. After you have created the objects in your database, display selected
information from the catalog to check that there were no errors in your CREATE
statements. By displaying the catalog tables, you can verify that you have the
correct tables in each table space, the table space associated with the correct
storage group, and so on.

2-122 Administration Guide

Chapter 2-12. Altering Your Database Design

The information under this heading, up to “Changing the High-Level Qualifier for
DB2 Data Sets” on page 2-139 is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page xi.

After using a relational database for a while, you might want to change some
aspects of its design. This chapter tells how to change:

� The definitions of DB2 objects, in:

“Altering DB2 Storage Groups” on page 2-124
“Altering DB2 Databases” on page 2-125
“Altering Table Spaces” on page 2-125
“Altering Tables” on page 2-128
“Altering Indexes” on page 2-137
“Altering Views” on page 2-138

� Data set passwords, in “Changing Data Set Passwords” on page 2-139

� Data set high-level qualifier, in “Changing the High-Level Qualifier for DB2 Data
Sets” on page 2-139

This task is actually a series of subtasks and includes procedures for changing
the VCAT name for DB2-managed and user-managed data sets, system data
sets, and for moving data to a different storage group.

� The location of DB2 data, in “Moving DB2 Data” on page 2-147.

You can alter the definition of a DB2 object by either:

� Using an SQL ALTER statement
� Dropping the object and then re-creating it with different specifications.

Using the ALTER Statement
Use the SQL ALTER statement to change DB2 storage groups, databases, table
spaces, tables, and indexes. ALTER changes the way those objects are defined in
the DB2 catalog, but it does not accomplish every change; for example, you cannot
drop a column from a table with ALTER. Application and object registration tables
can restrict the use of ALTER. See “Chapter 3-3. Controlling Access Through a
Closed Application” on page 3-49 for more information.

Dropping and Re-creating DB2 Objects
When you cannot make a change with ALTER, you must:

1. Use the DROP statement to remove the object.
| 2. Use the COMMIT statement to commit the changes to the database object.

3. Use the CREATE statement to re-create the object.

The DROP statement has a cascading effect; objects dependent on the dropped
| object are also dropped. For example, all authorities for those objects disappear.
| Plans or packages that reference deleted objects are marked invalid by DB2.

Before dropping an object, check the DB2 catalog to determine the impact of the
operation.

 Copyright IBM Corp. 1982, 1997 2-123

When a user with the EXECUTE authority tries to execute an invalid plan or
package, DB2 first rebinds it automatically, using the same options that were used
during the most recent bind operation. (To see if a plan or package is invalidated,
check the VALID column in SYSIBM.SYSPLAN or SYSIBM.SYSPACKAGE.) For
more information about invalidated plans and packages and rebinding, see Section

| 4 of Application Programming and SQL Guide. For more information about dropping
| a table, see “Implications of Dropping a Table” on page 2-135.

Altering DB2 Storage Groups
You can use the ALTER STOGROUP statements to add or remove volumes from a
storage group. If you want to migrate to another device type or change the
integrated catalog facility catalog name, you need to move the data. See “Moving
DB2 Data” on page 2-147 for more information.

All the volumes in a storage group must be of the same type; and, when a storage
group is used to extend a data set, the volumes must have the same device type
as the volumes used when the data set was defined.

The changes you make to the volume list by ALTER STOGROUP have no effect
on existing storage. Changes take effect when new objects are defined or when the
REORG, RECOVER, or LOAD REPLACE utilities are used on those objects. For
example, if you use ALTER STOGROUP to remove volume 22222 from storage
group DSN8G510, the DB2 data on that volume remains intact. However, when a
new table space is defined using DSN8G510, volume 22222 is not available for
space allocation.

To force a volume off and add a new volume, follow these steps:

1. Use the SYSIBM.SYSTABLEPART catalog table to determine which table
spaces are associated with the storage group. The following query tells which
table spaces use storage group DSN8G510:

SELECT TSNAME, DBNAME

 FROM SYSIBM.SYSTABLEPART

WHERE STORNAME ='DSN8G51ð' AND STORTYPE = 'I';

2. Make an image copy of each table space; for example, COPY TABLESPACE
dbname.tsname DEVT SYSDA.

3. Ensure that the table space is not being updated in such a way that the data
set might have to be extended. You can do this by stopping the database.

4. Use the ALTER STOGROUP statement to remove the volume associated with
the old storage group and to add the new volume.

Important: When a new volume is added, or when a storage group is used to
extend a data set, the volumes must have the same device type as the
volumes used when the data set was defined.

ALTER STOGROUP DSN8G51ð

REMOVE VOLUMES (VOL1)

ADD VOLUMES (VOL2);

5. Start the database with utility-only processing, and use the RECOVER or
REORG utility to move the data in each table space; for example, RECOVER
TABLESPACE dbname.tsname.

6. Start the database.

2-124 Administration Guide

Altering DB2 Databases
The ALTER DATABASE statement allows you to change the following clauses used
to create a database:

� STOGROUP. Allows you to change the name of the default storage group to
support DASD space requirements for table spaces and indexes within the
database. The new default DB2 storage group is only used for new table
spaces and indexes; existing definitions are not changed.

� BUFFERPOOL. Allows you to change the name of the default buffer pool for
table spaces and indexes within the database. Again, it applies only to new
table spaces and indexes; existing definitions are not changed.

� ROSHARE. Allows you to convert an existing database from not shared to
shared, or vice versa. For more information about converting to or from a
shared database, see “Altering” on page X-169.

Altering Table Spaces
This section discusses the following topics:

� The attributes of a table space that you can change with ALTER
TABLESPACE, in “Using the ALTER TABLESPACE Statement”

� How to change the space allocation of a table space for which the data sets
are user-managed, in “Changing the Space Allocation for User-Managed Data
Sets” on page 2-127

� How to change table space attributes when you cannot use ALTER
TABLESPACE, in “Dropping, Re-creating, or Converting a Table Space” on
page 2-127

Using the ALTER TABLESPACE Statement
The ALTER TABLESPACE statement allows you to change these clauses:

� BUFFERPOOL. Allows you to name the bufferpool to be associated with the
table space. The page size must remain the same. The change does not take
effect until the data set is closed and reopened.

(To change the size of the buffer pool, you can use the ALTER BUFFERPOOL
command, as described in Chapter 2 of Command Reference .)

� LOCKSIZE. Allows you to specify the locking level for the table space. You can
use the options PAGE, TABLESPACE, or ANY, and if there are no type 1
indexes on the table space, you can use ROW. For a segmented table space,
you can use TABLE.

If LOCKSIZE TABLESPACE is specified, LOCKMAX must be omitted or its
operand must be 0.

� LOCKMAX. Allows you to specify the number of locks for the table space.

� CLOSE. The CLOSE clause tells the priority DB2 should use when determining
which open data sets to close.

� DSETPASS. Allows you to specify the password that is passed to VSAM when
the data sets of the table space are used by DB2. You must also use VSAM
access method services to change the data set passwords. Be cautious about

 Chapter 2-12. Altering Your Database Design 2-125

changing passwords: be sure the table space is stopped and no activity is
pending on it.

� PART. Allows you to identify a partition of the table space.

� FREEPAGE. Allows you to specify how often to leave a page of free space
when the table space is loaded or reorganized.

� PCTFREE. Allows you to specify what percentage of each page to leave as
free space when the table space is loaded or reorganized.

� USING. You can change from one group of data sets to another, or between
user-managed and DB2-managed data sets, by changing the value of VCAT
(the integrated catalog facility catalog name) or STOGROUP. The change has
no immediate effect on the existing data sets; the new data sets are used when
you RECOVER, REORG, or LOAD REPLACE the table space, or when DB2
extends to a new data set. For suggestions on moving the data to a new
device, see “Moving DB2 Data” on page 2-147.

� PRIQTY. Allows you to specify the primary space allocation for a data set of
the table space or partition when the data sets for the table space are
DB2-managed.

� SECQTY. Allows you to specify the secondary space allocation for a data set
of the table space or partition, when the data sets for the table space are
DB2-managed.

� ERASE. Allows you to specify whether the contents of a data set for the table
space or partition are erased when the table space is dropped.

You can change the options for PRIQTY, SECQTY, and ERASE in either the
same or a new storage group. You can change the storage attribute for a
partition of the table space by using the PART clause.

� COMPRESS. Allows you to specify whether the contents of a data set for the
table space or partition are compressed. For more information about
compression, see “Compressing Data in a Table Space or Partition” on
page 2-63.

– To compress data in an existing table space, use ALTER TABLESPACE
with COMPRESS YES, then use REORG TABLESPACE (or LOAD with
REPLACE or RESUME NO) to build the compression dictionary and
compress the data.

– To decompress data, use ALTER TABLESPACE with COMPRESS NO,
then use REORG TABLESPACE (or LOAD). This erases the compression
dictionary and decompresses the data in the table space or partition.

| � GBPCACHE. Allows you to specify what pages of the table space or partition
| are written to the group buffer pool in a data sharing environment. In a
| non-data-sharing environment, you can specify this option, but it is ignored.

| � MAXROWS. Allows you to specify the number of rows that DB2 will consider
| placing on each page, where the integer can range from 1 to 255. The change
| takes effect immediately for new rows added. It is highly recommended to
| reorganize the table space after altering MAXROWS.

| � LOCKPART. Allows you to indicate whether selective partition locking is to be
| used when locking a partitioned table space.

2-126 Administration Guide

Changing the Space Allocation for User-Managed Data Sets
If the table space is supported by data sets that are user-managed, use this
method to change the space allocation:

1. Run the REORG utility, and specify the UNLOAD PAUSE option.

2. When the utility has completed the unload and has stopped, delete and
redefine the data sets.

If the table space was created with the CLOSE NO parameter, then the table
space must be stopped with the STOP DATABASE command with the
SPACENAM option before you delete and define the data sets.

3. Resubmit the utility job with the RESTART(PHASE) parameter specified on the
EXEC statement. The job now uses the new data sets to do the reload.

Use of the REORG utility to extend data sets causes the newly acquired free space
to be distributed throughout the table space rather than to be clustered at the end.

Dropping, Re-creating, or Converting a Table Space
To make changes to a table space such as changing SEGSIZE or the number of
partitions or convert it to a large table space, you must first drop the table space
and then re-create it. You must commit the DROP TABLESPACE statement before
creating a table space or index using the same name. When you drop a table
space, all entries for that table space are dropped from SYSIBM.SYSCOPY. This
makes recovery for that table space impossible from previous image copies. You
can change or convert your table spaces with the following steps:

1. For each table (for example, TA1, TA2, TA3, ...) in the table space (TS1), if you
do not have the original CREATE TABLE statement and all authorization
statements for the table, query the DB2 catalog to determine the table's
description, the description of all indexes and views on it, and all users with
privileges on the table.

2. In another table space (TS2, for example), create tables TB1, TB2, TB3, ...
identical to TA1, TA2, TA3, For example, use statements like:

CREATE TABLE TB1 LIKE TA1

3. If necessary, unload the data, using a statement such as:

REORG TABLESPACE DSN8D41ð.TSPACE LOG NO SORTDATA UNLOAD ONLY

Or, you can insert the data from your old tables to the new tables executing a
statement like:

INSERT INTO TB1

SELECT \ FROM TA1;

4. Drop the table space, executing the statement:

DROP TABLESPACE TS1.

The compression dictionary for the table space is dropped, if one exists. All
tables in TS1 are dropped automatically.

| 5. Commit the DROP statement.

6. Create the new table space TS1, and grant the appropriate use privileges. You
can also create a large partitioned table space. You could use the following
statements:

 Chapter 2-12. Altering Your Database Design 2-127

CREATE LARGE TABLESPACE TSPACE

 IN DSN8D51A

USING STOGROUP DSN8G51ð

 PRIQTY 4ððð

 SECQTY 13ð

 ERASE NO

 NUMPARTS 95

(PART 45 USING STOGROUP DSN8G51ð

 PRIQTY 4ððð

 SECQTY 13ð

 COMPRESS YES,

PART 62 USING STOGROUP DSN8G51ð

 PRIQTY 4ððð

 SECQTY 13ð

 COMPRESS NO)

 LOCKSIZE PAGE

 BUFFERPOOL BP1

 CLOSE NO;

7. Create new tables TA1, TA2, TA3,

8. Re-create indexes on the tables, and re-grant users' privileges on those tables.
See “Implications of Dropping a Table” on page 2-135 for more information.

9. For each table, execute an INSERT statement of the following form:

INSERT INTO TA1

SELECT \ FROM TB1;

10. Drop the tables TB1, TB2, TB3,

If a table in the table space has been created with RESTRICT ON DROP, you
must alter that table to remove the restriction before you can drop the table
space.

11. Notify users to re-create any synonyms they had on TA1, TA2, TA3,

 Altering Tables
When you alter a table, you do not change the data in the table; you merely
change the specifications you used in creating the table.

Using the ALTER TABLE Statement
With ALTER TABLE you can:

� Add a new column; see “Adding a New Column” on page 2-129.

� Change the AUDIT clause, using the options ALL, CHANGES, or NONE. For
the effects of the AUDIT value, see “Chapter 3-5. Protecting Data Sets” on
page 3-113.

� Add or drop a primary or a foreign key; see “Altering a Table for Referential
Integrity” on page 2-130.

� Change the VALIDPROC clause; see “Altering the Assignment of a Validation
Routine” on page 2-132.

� Change the DATA CAPTURE clause; see “Altering a Table for Capture of
Changed Data” on page 2-133.

2-128 Administration Guide

� Add or drop a table check constraint; see “Adding or Dropping Table Check
Constraints” on page 2-132.

| � Add or drop the restriction on dropping the table and the database and table
| space that contain the table; see SQL Reference .

| � Use with temporary tables to add a column only; see “CREATE GLOBAL
| TEMPORARY TABLE Statement” on page 2-98.

In addition to the above topics, this section includes techniques for making the
following changes:

� “Altering an Edit Procedure or Field Procedure” on page 2-133
� “Altering the Subtype of a String Column” on page 2-134.

For other changes, you must drop and re-create the table as described in “Altering
Data Types and Attributes and Deleting Columns” on page 2-134.

Adding a New Column
When you use ALTER TABLE to add a new column, the new column becomes the
rightmost column of the table. The physical records are not actually changed until
values are inserted in the new column. Plans and packages are not invalidated
unless the new column is a TIME, TIMESTAMP, or DATE. However, in order to use
the new column in a program, you need to modify and recompile the program and
bind the plan or package again. You might also need to modify any program
containing a static SQL statement SELECT *, which will return the new column
after the plan or package is rebound. You must also modify any INSERT statement
not containing a column list.

Access time to the table is not affected immediately, unless the record was
previously fixed-length. If the record was fixed-length, the addition of a new column
causes DB2 to treat the record as variable-length, and there will be some
performance degradation immediately. To change the records to fixed-length, do
the following:

| 1. Run REORG with COPY on the table space, using the inline copy.

2. Run the MODIFY utility with the DELETE option to delete records of all image
copies made before the REORG you ran in step 1.

| 3. If you add a column that specifies PRIMARY KEY or UNIQUE, then, a unique
| index should be created.

Inserting values in the new column could also degrade performance by forcing rows
onto another physical page. You can avoid this situation by creating the table space
with enough free space to accommodate normal expansion. If you already have this
problem, run REORG on the table space to fix it.

You can define the new column as NOT NULL if you use the DEFAULT clause.
| You can let DB2 choose the default value, or you can specify a constant or the
| value of the CURRENT SQLID or USER special register as the value to be used as
| the default. When you retrieve an existing row from the table, a default value is

provided for the new column. Except in the following cases, the value for retrieval is
the same as the value for insert:

� For columns of data type DATE, TIME, and TIMESTAMP, the retrieval defaults
are:

 Chapter 2-12. Altering Your Database Design 2-129

Data Type Default for Retrieval
DATE 0001-01-01
TIME 00.00.00
TIMESTAMP 0001-01-01-00.00.00.000000

| � For DEFAULT USER and DEFAULT CURRENT SQLID, the value retrieved for
| rows that existed before the column was added is the value of the special
| register when the column was added.

If the new column is a short string column, you can specify a field procedure for it;
see “Field Procedures” on page X-57. If you do specify a field procedure, you
cannot also specify NOT NULL.

The following example adds a new column to the table DSN8510.DEPT that
contains a location code for the department. The column name is LOCNCODE, and
its data type is CHAR (4).

ALTER TABLE DSN851ð.DEPT

ADD LOCNCODE CHAR (4);

Altering a Table for Referential Integrity
If you plan to let DB2 enforce referential integrity in a set of tables, then you must
read “Chapter 2-3. Maintaining Data Integrity” on page 2-19. That section
describes the requirements for referential constraints.

Adding Referential Constraints to Existing Tables
For this illustration, assume that the tables in the sample application already exist,
have the appropriate column definitions, and are already populated. You want to
define relationships among them by adding primary and foreign keys with the
ALTER TABLE statement.

The procedure conforms to these rules:

� An existing table must have a unique index on its primary key columns before
you can add the primary key. The index becomes the primary index.

� The parent key of the parent table must be added before the corresponding
foreign key of the dependent table.

| � If a parent key is added using UNIQUE, then an index needs to be created
| before the foreign key is added.

There is more than one sequence of operations that could build the same
referential structure. The following sequence does not have the fewest number of
possible operations, but it is perhaps the simplest to explain.

1. Create a unique index on the primary key columns for any table that does not
already have one.

2. For each table, issue an ALTER TABLE statement to add its primary key.

For each table except the activity table, you need to issue an ALTER TABLE
statement to add its foreign keys. This leaves the table space in check pending
status, which you reset by running CHECK DATA with the DELETE(YES)
option.

CHECK DATA deletes are not bound by delete rules; they cascade to all
descendents of a deleted row. This could be disastrous. For example, if you
managed to delete the row for department A00 from the department table, it

2-130 Administration Guide

might propagate through most of the referential structure. The following steps
prevent deletion from more than one table at a time.

3. Add the foreign keys for the department table and run CHECK DATA
DELETE(YES) on its table space. Correct any rows in the exception table, and
use INSERT to replace them in the department table. This table is now
consistent with existing data.

4. Drop the foreign key on MGRNO in the department table. This “disconnects” it
from the employee table, without changing its data.

5. Add the foreign key to the employee table, run CHECK DATA, and correct any
errors as before. If there are errors, be particularly careful not to make any row
inconsistent with the department table when correcting them.

6. Again add the foreign key on MGRNO to the department table. This again
leaves the table space in check pending status, so again run CHECK DATA. If
you have not changed the data since the previous check, you can use
DELETE(YES) with no fear of cascading deletions.

7. For each of the following tables, in the order shown, add its foreign keys, run
CHECK DATA DELETE(YES), and correct any rows in error:

 a. Project table
b. Project activity table
c. Employee to project activity table.

Implications of Adding Primary and Foreign Keys
Adding a primary or a foreign key to an existing table has the following restrictions
and implications:

� If you add a primary key, the table must already have a unique index on the
key columns. That index, or the first such one encountered, becomes the
primary index. Because of the unique index, there are no duplicate values of
the key in the table, therefore checking for the validity of the data is not
needed.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
ALTER TABLE statement. For example, if the department table and its index
XDEPT1 already exist, create its primary key by issuing:

ALTER TABLE DSN851ð.DEPT

ADD PRIMARY KEY (DEPTNO);

� You can use only one FOREIGN KEY clause in each ALTER TABLE
statement; if you want to add two foreign keys to a table, you must execute two
ALTER TABLE statements.

| � If you add a foreign key, the parent key and unique index of the parent table
| must already exist. Adding the foreign key requires the ALTER privilege on the
| dependent table, and either the ALTER or REFERENCES privilege on the
| parent table.

� Adding a foreign key establishes a relationship, with the many implications
described in “Chapter 2-3. Maintaining Data Integrity” on page 2-19. DB2 does
not validate the data. Instead, if the table is populated (or, in the case of a
nonsegmented table space, if the table space has ever been populated), the
table space containing the table is placed in check pending status, just as if it

| had been loaded with ENFORCE NO. In this instance, you need to execute
| CHECK DATA to clear the check pending status.

 Chapter 2-12. Altering Your Database Design 2-131

Implications of Dropping Primary and Foreign Keys
Dropping a foreign key drops the corresponding referential relationship and requires
the ALTER privilege on the dependent table, and either the ALTER or
REFERENCES privilege on the parent table.

| When you drop a primary key, DB2 drops all the referential relationships in which
| the table is a parent, and requires the ALTER privilege on any dependent tables.
| Similarly, dropping a unique (non-primary) key, if it is the parent key, drops all
| referential relationships in which the table is a parent. The dependent tables no
| longer have foreign keys; the table's primary index is no longer primary, but is still a
| unique index.

In the case of dropping a foreign key or a primary key, you should consider
carefully the effects on your application programs. The primary key of a table is
intended to serve as a permanent, unique identifier of the occurrences of the
entities it describes. It is likely that some of your application programs depend on
that. The foreign key defines a referential relationship and a delete rule. Without the
key, your application programs must enforce the constraints.

Adding or Dropping Table Check Constraints
| You can define a check constraint on a table by using the ADD CHECK clause of

the ALTER TABLE statement. If the table is empty, the check constraint is added to
the description of the table.

If the table is not empty, what happens when you define the check constraint
depends on the value of the CURRENT RULES special register, which can be
either 'STD' or 'DB2'.

� If 'STD', then the new check constraint is enforced immediately. If any rows
violate the new check constraint, an error occurs and the description of the
table is unchanged. If no rows violate the new check constraint, the check
constraint is added to the description of the table.

� If 'DB2', then enforcement of the new check constraint is deferred and the table
space or partition containing the table is placed in a check pending state
because check integrity cannot be guaranteed.

The ALTER TABLE statement used to define a check constraint always fails if the
table space or partition that contains the table is in a check pending state, the
CURRENT RULES special register value is 'STD', and the table is not empty.

To remove a check constraint from a table, use the DROP CONSTRAINT or DROP
CHECK clauses of the ALTER TABLE statement.

Altering the Assignment of a Validation Routine
If you have a validation exit routine associated with a table, you can use the
ALTER TABLE statement to make the following changes:

� Disassociate the validation routine from the table using the VALIDPROC NULL
clause. The routine will no longer be given control when DB2 accesses the

| table. For example:

ALTER TABLE DSN851ð.EMP

 VALIDPROC NULL;

2-132 Administration Guide

� Assign a new validation routine to the table, using the VALIDPROC
program-name clause. (Only one validation routine can be connected to a table
at a time; so if a validation routine already exists, DB2 disconnects the old one
and connects the new.) Rows that existed before the connection of a new

| validation routine are not validated. For example:

ALTER TABLE DSN851ð.EMP

 VALIDPROC EMPLNEWE;

Checking Rows of a Table with a New Validation Routine
To ensure that the rows of a table conform to a new validation routine, you must
run the validation routine against the old rows. One way to accomplish this is to use
the REORG and LOAD utilities as shown in the following steps:

1. Use REORG to reorganize the table space that contains the table with the new
validation routine. Specify UNLOAD ONLY, as in this example:

REORG TABLESPACE DSN8D51A.DSN8S51E

 UNLOAD ONLY

This step creates a data set that is used as input to the LOAD utility.

2. Run LOAD with the REPLACE option and specify a discard data set to hold
any invalid records. For example:

LOAD INTO TABLE DSN851ð.EMP

 REPLACE

 FORMAT UNLOAD

 DISCARDDN SYSDISC

All rows are validated by the EMPLNEWE validation routine after the LOAD step
has completed. Any invalid rows would have been copied into the SYSDISC data
set.

Altering a Table for Capture of Changed Data
You can use DATA CAPTURE CHANGES on the ALTER TABLE statement to have
data changes to that table written to the log in an expanded format that can be
retrieved by a program such as the log apply feature of the Remote Recovery Data
Facility (RRDF) program offering, or DataPropagator Relational.

To return a table back to normal logging, use DATA CAPTURE NONE.

Altering an Edit Procedure or Field Procedure
You cannot use ALTER TABLE to change the assignment of an edit or field
procedure. However, with the assistance of DB2 utilities, you can change an
existing edit or field procedure. To alter an edit procedure or field procedure, do the
following:

1. Run REORG with UNLOAD PAUSE on the table space that contains the table
whose edit or field procedure is to change.

If you are using the same edit or field procedure for multiple columns, make
sure you run REORG on all the table spaces that have tables which use the
procedure.

2. Change the edit or field procedure code.

3. After the UNLOAD phase of REORG (at the pause), stop DB2.

 Chapter 2-12. Altering Your Database Design 2-133

4. Link-edit the new procedure with the same name as the old one.

 5. Start DB2.

6. Restart the paused REORG.

Altering the Subtype of a String Column
If you add a column with a string data type, as described in “String Data Types” on
page 2-45, you can specify its subtype in the ALTER TABLE statement. Subtypes
are valid only for string columns of data types CHAR, VARCHAR, and LONG
VARCHAR.

You can also change the subtype of an existing string column, but not by using
| ALTER TABLE. The operation involves updating the FOREIGN KEY column of the
| SYSIBM.SYSCOLUMNS catalog table and requires the SYSADM authority,

SYSCTRL authority, or DBADM authority for the catalog database. The
interpretation of the FOREIGNKEY column depends upon whether the MIXED
DATA install option is YES or NO.

If the MIXED DATA install option on installation panel DSNTIPF is yes, use one of
the following values in the column:

B for bit data
S for SBCS data
Any other value for MIXED data

If the MIXED DATA install option is NO, use one of the following values in the
column:

B for bit data
Any other value for SBCS data

Entering an M in the column when the MIXED DATA install option is NO specifies
SBCS data, not MIXED data.

Altering Data Types and Attributes and Deleting Columns
Some changes to a table cannot be made with an ALTER TABLE statement. For
example, you might need to change the data type of a column to make its fields
longer. An original specification of CHAR (20), for example, must become CHAR
(25) or a column defined as SMALLINT now must be INTEGER. Or, a column
defined with NOT NULL must now admit null values.

| To make such changes, you need to drop the table, commit the drop, and re-create
| the table. Be very careful about dropping a table—in most cases, it is nearly

impossible to recover a dropped table. If you do decide to drop a table, remember
that such changes might cause a plan or a package to be marked invalid as
described in “Dropping and Re-creating DB2 Objects” on page 2-123.

If tables have been created with RESTRICT ON DROP, you must alter those tables
to remove the restriction before you can drop them.

2-134 Administration Guide

Implications of Dropping a Table
The DROP TABLE statement deletes a table. For example, to drop the project
table, execute:

DROP TABLE DSN851ð.PROJ;

The statement deletes the row in the SYSIBM.SYSTABLES catalog table that
contains information about DSN8510.PROJ. It also drops any other objects that
depend on the project table. As a result:

� The column names of the table are dropped from SYSIBM.SYSCOLUMNS.

� Any views based on the table are dropped.

� Application plans or packages that involve the use of the table are invalidated.

� Synonyms for the table are dropped from SYSIBM.SYSSYNONYMS.

� Indexes created on any columns of the table are dropped.

� Referential constraints that involve the table are dropped. In the case of the
project table, it is no longer a dependent of the department and employee
tables, nor a parent of the project activity table.

� Authorization information kept in the DB2 catalog authorization tables is
updated to reflect the dropping of the table. Users who were previously
authorized to use the table, or views on it, no longer have those privileges
because catalog rows are deleted.

� Access path statistics and space statistics for the table are deleted from the
catalog.

� The storage space of the dropped table might or might not be reclaimed.

If the table space containing the table is:

– Implicitly created (using CREATE TABLE without the TABLESPACE
clause), then the table space is also dropped. If the data sets are in a
storage group, dropping the table space reclaims the space. If the data sets
are user-managed, you have to reclaim the space yourself.

– Partitioned, or contains only the one table, then you can drop the table
space.

– Segmented, then DB2 reclaims the space.

– Simple, and contains other tables as well, then you have to run the
REORG utility to reclaim the space.

If a table has a partitioned index, you must drop the table space or use LOAD
REPLACE when loading the redefined table. If the CREATE TABLE creates a table
space implicitly, commit the DROP statement before re-creating a table by the
same name. You must also commit the DROP statement before you create any
new indexes with the same name as the original indexes.

Check Objects that Depend on the Table
Before dropping a table, it is a good idea to check what other objects are
dependent on it. The SYSIBM.SYSVIEWDEP, SYSIBM.SYSPLANDEP, and
SYSIBM.SYSPACKDEP tables tell what views, application plans, and packages are
dependent on different DB2 objects. This example lists the views, with their
creators, that are affected if you drop the project table.

 Chapter 2-12. Altering Your Database Design 2-135

SELECT DNAME, DCREATOR

 FROM SYSIBM.SYSVIEWDEP

WHERE BNAME = 'PROJ'

AND BCREATOR = 'DSN851ð'

AND BTYPE = 'T';

The next example lists the packages, identified by the package name, collection ID
and consistency token (in hexadecimal representation), that are affected if you drop
the project table.

SELECT DNAME, DCOLLID, HEX(DCONTOKEN)

 FROM SYSIBM.SYSPACKDEP

WHERE BNAME = 'PROJ'

AND BQUALIFIER = 'DSN851ð'

AND BTYPE = 'T';

This example lists the plans, identified by plan name, that are affected if you drop
the project table.

SELECT DNAME

 FROM SYSIBM.SYSPLANDEP

WHERE BNAME = 'PROJ'

AND BCREATOR = 'DSN851ð'

AND BTYPE = 'T';

The SYSIBM.SYSINDEXES table tells you what indexes currently exist on a table.
From the SYSIBM.SYSTABAUTH table, you can determine which users are
authorized to use the table.

Recreating a Table
To re-create a DB2 table to increase the length attribute of a string column or the
precision of a numeric column, follow these steps:

1. If you do not have the original CREATE TABLE statement and all authorization
statements for the table (call it T1), query the catalog to determine its
description, the description of all indexes and views on it, and all users with
privileges on it.

2. Create a new table (call it T2) with the desired attributes.

3. Execute the following INSERT statement:

INSERT INTO T2

SELECT \ FROM T1;

to copy the contents of T1 into T2.

4. Execute the statement DROP TABLE T1. If T1 is the only table in an explicitly
created table space, and you do not mind losing the compression dictionary, if
one exists, drop the table space instead, so that the space is reclaimed.

5. Commit the DROP statement.

| 6. Use the statement RENAME TABLE to rename table T2 to T1.

7. Run the REORG utility on the table space that contains table T1.

8. Notify users to re-create any synonyms they had on T1.

If you want to change a data type from string to numeric or from numeric to string
(for example, INTEGER to CHAR or CHAR to INTEGER), follow the same steps
except:

2-136 Administration Guide

� Instead of steps 2 and 3, use an application program to copy the data into a
non-DB2 data set. While copying the data, convert it as needed, for example
from numeric to string.

� Instead of steps 7 and 8, use an application program to copy the converted
data into the new table.

Another alternative is to use the sample program DSNTIAUL to save the data in a
sequential file and use the LOAD utility to repopulate the table after re-creating it.
This method is particularly appealing when you are trying to re-create a large table
where DB2 DASD is constrained. When you reload the table, make sure you edit
the LOAD statement to match the new column definition.

| Altering a Table from EBCDIC to ASCII
| If you want to convert a table from EBCDIC to ASCII, follow these steps:

| 1. Quiesce all activity against the table.

| 2. Unload the data by using the DSNTIAUL sample unload program.

| 3. Drop the table (or table space, if partitioned).

| 4. Create the ASCII table.

| If you are using the EDITPROC specification for the dropped EBCDIC tables,
| specify the CREATE TABLE statement with CCSID ASCII and without
| EDITPROC.

| 5. Reload the data.

| 6. Rebind plans and packages.

 Altering Indexes
The ALTER INDEX statement allows you to change index attributes with these
clauses:

� BUFFERPOOL. Allows you to name the buffer pool to be associated with the
index.

� CLOSE. Allows you to specify the priority DB2 should use when determining
which open data sets to close.

� CONVERT TO TYPE. Allows you to change index type to either type 1 or type
2.

� DSETPASS. Allows you to specify a password that is passes to VSAM when
the data sets of the index are used by DB2. You must also use VSAM access
method services to change the data set passwords. Be cautious about
changing passwords: ensure that the index space is stopped and no activity is
pending on it.

� PART. Allows you to identify a partition of the index.

� FREEPAGE. Allows you to specify how often to leave a page of free space
when the index or partition is loaded or reorganized.

� PCTFREE. Allows you to specify the amount of free space to leave in each
nonleaf page and subpage when the index or partition is loaded or reorganized.

 Chapter 2-12. Altering Your Database Design 2-137

� USING. As with table spaces, you can change from one group of data sets to
another, or between user-managed and DB2-managed data sets, by changing
the value of VCAT or STOGROUP.

� PRIQTY. Allows you to specify the primary space allocation for a data set of
the index or partition.

� SECQTY. Allows you to specify the secondary space allocation for a data set
of the index or partition.

� ERASE. Allows you to specify whether the contents of a data set for the index
or partition are erased when the index is dropped.

You can change the options for PRIQTY, SECQTY, and ERASE, in either the
same or a new storage group. You can change the storage assignment for a
partition of the index by using the PART clause.

| � GBPCACHE. Allows you to specifiy what index pages are written to the group
| bufferpool in a data sharing environment. In a non-data-sharing environment,
| you can specify this option, but it is ignored.

| � PIECESIZE. Allows you to indicate how large DB2 should make the data sets
| that make up a nonpartitioning index.

To change any other clause of the index definition, you must drop the index,
commit, and redefine it. Dropping an index does not cause DB2 to drop any other
objects. As described in “Dropping and Re-creating DB2 Objects” on page 2-123,
the consequence of dropping indexes is that DB2 invalidates application plans and
packages that use the index and automatically rebinds them when they are next
used.

You must commit the DROP INDEX statement before you create any new table
spaces or indexes by the same name. If an index is dropped and then an
application program using that index is run (and thereby automatically rebound),
that application program would not use the old index. If, at a later time, the index is
re-created, and the application program is not rebound, the application program
could not take advantage of the new index.

 Altering Views
In many cases, changing user requirements can be satisfied by modifying an
existing view. But there is no ALTER statement for views; the only way to change a

| view is by dropping the view, committing the drop, and re-creating the view. When
you drop a view, DB2 also drops the dependent views.

When you drop a view, DB2 invalidates application plans and packages that are
dependent on the view and revokes the privileges of users who are authorized to
use it. DB2 attempts to rebind the package or plan the next time it is executed, and
you will get an error if you did not re-create the view.

To tell how much rebinding and reauthorizing is needed if you drop a view, check
these catalog tables:

SYSIBM.SYSPLANDEP
To see what application plans are dependent on the view

SYSIBM.SYSPACKDEP
To see what packages are dependent on the view

2-138 Administration Guide

SYSIBM.SYSVIEWDEP
To see what views are dependent on the view

SYSIBM.SYSTABAUTH
To see what users are authorized to use the view.

For more information about defining and dropping views, see “Implementing Your
Views” on page 2-105.

Changing Data Set Passwords
To change a data set password, follow these steps:

1. Stop the database, using the -STOP DATABASE command.

2. Change the password on all associated data sets by using VSAM access
method services.

3. Change the password, using the DSETPASS clause of the ALTER
TABLESPACE statement or the ALTER INDEX statement. You must use the
same password for all data sets for the same table space or index space.

4. Start the database again, using the -START DATABASE command.

Changing the High-Level Qualifier for DB2 Data Sets
The high-level qualifier for DB2 data sets is the integrated catalog facility catalog
name. (From now on, we refer to the integrated catalog facility catalog as the
“integrated catalog.”) You cannot change this qualifier for DB2 data sets using the
DB2 installation or migration update process. This section describes other ways to
change this qualifier for both system data sets and user data sets.

These procedures do not actually move or copy data. For information about moving
data, see “Moving DB2 Data” on page 2-147.

Changing the high-level qualifier for DB2 data sets is a complex task; thus, you
should have both DB2 experience and experience managing integrated catalogs.
The following tasks are described:

� “Define a New Integrated Catalog Alias” on page 2-140.

� “Change the Qualifier for System Data Sets” on page 2-140, which includes the
DB2 catalog, directory, active and archive logs, and the BSDS.

� “Change Qualifiers for Other Databases and User Data Sets” on page 2-143,
which includes the temporary database (DSNDB07) and the default database
(DSNDB04), as well as other DB2 databases and user databases.

To concentrate on DB2-related issues, this procedure assumes that the catalog
alias resides in the same integrated user catalog as that currently used. If the new
catalog alias resides in a different user catalog, refer to DFSMS/MVS: Access
Method Services for the Integrated Catalog for information about planning such a
move.

If the data sets are managed by the Storage Management Subsystem (SMS), make
sure that automatic class selection routines are in place for the new data set name.

 Chapter 2-12. Altering Your Database Design 2-139

Define a New Integrated Catalog Alias
This step can be done at any time before changing the high-level qualifier for
system or user data sets.

Set up the new high-level qualifier as an alias to a current integrated catalog, using
the following command:

DEFINE ALIAS (NAME (newcat) RELATE (usercat) CATALOG (master-cat))

See DFSMS/MVS: Access Method Services for the Integrated Catalog for more
information.

Change the Qualifier for System Data Sets
In this task, you stop DB2, change the high-level qualifier in the system parameter
load module (possibly DSNZPARM), and establish a new xxxxMSTR cataloged
procedure before restarting DB2. These steps must be done in sequence.

Step 1: Change the Load Module to Reflect the New Qualifier
To change the system parameter load module to specify the new qualifier for new
archive data sets and the DB2 catalog and directory data sets, you must use the
installation process.

| 1. Run the installation CLIST, and specify INSTALL TYPE=INSTALL and DATA
| SHARING FUNCTION=NONE.

2. Enter new values for the fields shown in Table 19.

Table 19. CLIST Panels and Fields to Change to Reflect New Qualifier

Panel Name Field Name Comments

DSNTIPA1 INSTALL
TYPE

Specify INSTALL. Do not specify a new default prefix
for the input data sets listed on this panel.

DSNTIPA1 OUTPUT
MEMBER
NAME

DSNTIPA2 CATALOG
ALIAS

DSNTIPH COPY 1
NAME and
COPY 2
NAME

These are the bootstrap data set names.

DSNTIPH COPY 1
PREFIX and
COPY 2
PREFIX

These fields appear for both active and archive log
prefixes.

DSNTIPT SAMPLE
LIBRARY

This field allows you to specify a field name for edited
output of the installation CLIST. Avoid overlaying
existing data sets by changing the middle node,
NEW, to something else. The only members you use
in this procedure are xxxxMSTR and DSNTIJUZ in
the sample library.

DSNTIPO DSNZPARM
NAME

Change this value only if you want to preserve the
existing member through the CLIST.

2-140 Administration Guide

The output from the CLIST is a new set of tailored JCL with new cataloged
procedures and a DSNTIJUZ job, which produces a new member.

 3. Run DSNTIJUZ.

Unless you have specified a new name for the load module, make sure the
output load module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem.

DSNTIJUZ also places any archive log data set and system passwords into the
BSDS and creates a new DSNHDECP member. You do not have to run these
steps because they are unnecessary for changing the high-level qualifier.

Step 2: Stop DB2 with No Outstanding Activity
In this step, make sure the subsystem does not have any outstanding activity, such
as outstanding units of recovery or pending writes. This ensures that DB2 does not
have to access the data sets on restart through the log, which contains the old data
set qualifiers.

1. Enter the following command:

-STOP DB2 MODE(QUIESCE)

This command allows DB2 to complete processing currently executing
programs.

2. Enter the following command:

-START DB2 ACCESS(MAINT)

3. Use the following commands to make sure the subsystem is in a consistent
state. See Chapter 2 of Command Reference and “ Section 4. Operation and
Recovery” on page 4-1 for more information about these commands.

-DISPLAY THREAD(*) TYPE(*)
-DISPLAY UTILITY (*)

 -TERM UTILITY(*)
-DISPLAY DATABASE(*) RESTRICT
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT

 -RECOVER INDOUBT

Correct any problems before continuing on.

4. Stop DB2, using the following command:

-STOP DB2 MODE(QUIESCE)

5. Run the print log map utility (DSNJU004) to identify the current active log data
set and the last checkpoint RBA. For information about the print log map utility,
see Section 3 of Utility Guide and Reference.

6. Run DSN1LOGP with the SUMMARY (YES) option, using the last checkpoint
RBA from the output of the print log map utility you ran in the previous step.
For information about DSN1LOGP, see Section 3 of Utility Guide and
Reference .

The report headed DSN1157I RESTART SUMMARY identifies active units of
recovery or pending writes. If either situation exists, do not attempt to continue.
Start DB2 (with ACCESS(MAINT)), use the necessary commands to correct the
problem, and repeat steps 4 through 6 until all activity is complete.

 Chapter 2-12. Altering Your Database Design 2-141

Step 3: Rename System Data Sets with the New Qualifier
All of the following steps assume that the new qualifier and the old qualifier reside
in the same integrated user catalog. Access method services does not allow
ALTER where the new name does not match the existing catalog structure for an
SMS-managed VSAM data set. If the data set is not managed by SMS, the rename
succeeds, but DB2 cannot allocate it as described in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

DB2 table spaces are defined as linear data sets with DSNDBC as the second
node of the name for the cluster and DSNDBD for the data component (as
described in “Requirements for Your Own Data Sets” on page 2-69). The examples
shown here assume the normal defaults for DB2 and VSAM data set names. Use
access method services statements with a generic name (*) to simplify the process.
Access method services allows only one generic name per data set name string.

1. Using IDCAMS, change the names of the catalog and directory table spaces:

 ALTER oldcat.DSNDBC.DSNDBð1.\.Iððð1.Aðð1 -

 NEWNAME (newcat.DSNDBC.DSNDBð1.\.Iððð1.Aðð1)
 ALTER oldcat.DSNDBD.DSNDBð1.\.Iððð1.Aðð1 -

 NEWNAME (newcat.DSNDBD.DSNDBð1.\.Iððð1.Aðð1)
 ALTER oldcat.DSNDBC.DSNDBð6.\.Iððð1.Aðð1 -

 NEWNAME (newcat.DSNDBC.DSNDBð6.\.Iððð1.Aðð1)
 ALTER oldcat.DSNDBD.DSNDBð6.\.Iððð1.Aðð1 -

 NEWNAME (newcat.DSNDBD.DSNDBð6.\.Iððð1.Aðð1)

2. Using IDCAMS, change the active log names. Active log data sets are named
oldcat.LOGCOPY1.COPY01 for the cluster component and
oldcat.LOGCOPY1.COPY01.DATA for the data component.

 ALTER oldcat.LOGCOPY1.\ -

 NEWNAME (newcat.LOGCOPY1.\)
 ALTER oldcat.LOGCOPY1.\.DATA -

 NEWNAME (newcat.LOGCOPY1.\.DATA)
 ALTER oldcat.LOGCOPY2.\ -

 NEWNAME (newcat.LOGCOPY2.\)
 ALTER oldcat.LOGCOPY2.\.DATA -

 NEWNAME (newcat.LOGCOPY2.\.DATA)

3. Using IDCAMS, change the BSDS names.

 ALTER oldcat..BSDSð1 -

 NEWNAME (newcat.BSDSð1)
 ALTER oldcat.BSDSð1.\ -

 NEWNAME (newcat.BSDSð1.\)
 ALTER oldcat.BSDSð2 -

 NEWNAME (newcat.BSDSð2)
 ALTER oldcat.BSDSð2.\ -

 NEWNAME (newcat.BSDSð2.\)

Step 4: Update the BSDS with the New Qualifier
Update the first BSDS with the new alias and correct data set names for the active
logs. This procedure does not attempt to change the names of existing archive log
data sets. If these catalog entries or data sets will not be available in the future,
copy all the table spaces in the DB2 subsystem to establish a new recovery point.
You can also delete the entries from the BSDS at this time, but it is not necessary
as they will gradually roll off.

1. Run the change log inventory utility (DSNJU003).

2-142 Administration Guide

Use the new qualifier for the BSDS, because it has now been renamed. The
following example illustrates the control statements required if there are three
logs and dual copy is specified for the logs. This is only an example; the
number of logs can vary and dual copy is an option. The starting and ending
log RBAs are from the print log map report.

NEWCAT VSAMCAT=newcat
DELETE DSNAME=oldcat.LOGCOPY1.DSð1
DELETE DSNAME=oldcat.LOGCOPY1.DSð2
DELETE DSNAME=oldcat.LOGCOPY1.DSð3
DELETE DSNAME=oldcat.LOGCOPY2.DSð1
DELETE DSNAME=oldcat.LOGCOPY2.DSð2
DELETE DSNAME=oldcat.LOGCOPY2.DSð3
NEWLOG DSNAME=newcat.LOGCOPY1.DSð1,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DSð2,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DSð3,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DSð1,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DSð2,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DSð3,COPY2,STARTRBA=strtrba,ENDRBA=endrba

During startup, DB2 compares the newcat value with the value in the system
parameter load module, and they must be the same.

2. Using the IDCAMS REPRO command, replace the contents of BSDS2 with the
contents of BSDS01.

3. Run the print log map utility (DSNJU004) to verify your changes to the BSDS.

4. At a convenient time, change the DD statements for the BSDS in any of your
off-line utilities to use the new qualifier.

Step 5: Establish a New xxxxMSTR Cataloged Procedure
Before you start DB2, do the following:

1. Update xxxxMSTR in SYS1.PROCLIB with the new BSDS data set names.

2. Copy the new system parameter load module to the active
SDSNEXIT/SDSNLOAD library.

Step 6: Start DB2 with the New xxxxMSTR and Load Module
Use the START DB2 command with the new load module name as shown here:

-START DB2 PARM(new_name)

If you stopped DSNDB01 or DSNDB06 in “Step 2: Stop DB2 with No Outstanding
Activity” on page 2-141, you must explicitly start them in this step.

Change Qualifiers for Other Databases and User Data Sets
This step changes qualifiers for DB2 databases other than the catalog and
directory. DSNDB07 is a system database but contains no permanent data, and
can be deleted and redefined with the new qualifier. If you are changing its
qualifier, do that before the rest of the user databases.

Change only the databases in the following list which apply to your environment.

DSNDB07 (temporary database)
DSNDB04 (default database)
DSNDDF (communications database)
DSNRLST (resource limit facility database)
DSNRGFDB (the database for data definition control)
Any other application databases that use the old high-level qualifier.

 Chapter 2-12. Altering Your Database Design 2-143

At this point, the DB2 catalog tables SYSSTOGROUP, SYSTABLEPART, and
SYSINDEXPART contain information about the old integrated user catalog alias.
To update those tables with the new alias, you must follow the procedures below.
Until you do so, the underlying resources are not available. The following
procedures are described separately.

� “Changing Your Work Database to Use the New High-Level Qualifier”
� “Changing User-Managed Objects to Use the New Qualifier” on page 2-145
� “Changing DB2-Managed Objects to Use the New Qualifier” on page 2-145

Table spaces and indexes that span more than one data set require special
procedures. Partitioned table spaces can have different partitions allocated to
different DB2 storage groups. Nonpartitioned table spaces or indexes only have the
additional data sets to rename (those with lowest level name of A002, A003, and so
on).

Changing Your Work Database to Use the New High-Level
Qualifier
There are two methods of changing the high-level qualifier for your work database
or possibly DSNDB07. Which method you use depends on if you have a new
installation or a migrated installation.

New Installation:

1. Reallocate the database using the installation job DSNTIJTM from
prefix.SDSNSAMP

2. Modify your existing job. Change the job to remove the BIND step for DSNTIAD
and rename the data set names in the DSNTTMP step to your new names,
making sure you include your current allocations.

Migrated Installations: Migrated installations do not have a usable DSNTIJTM,
because the IDCAMS allocation step is missing. For migrated installations, you
must:

1. Stop the database, using the following command (for a database named
DSNDB07):

-STOP DATABASE (DSNDBð7)

2. Drop the database, using the following SQL statement:

DROP DATABASE DSNDBð7;

3. Re-create the database, using the following SQL statement:

CREATE DATABASE DSNDBð7;

4. Define the clusters, using the following access method services commands:

 ALTER oldcat.DSNDBC.DSNDBð7.DSN4Kð1.Iððð1.Aðð1
 NEWNAME newcat.DSNDBC.DSNDBð7.DSN4Kð1.Iððð1.Aðð1
 ALTER oldcat.DSNDBC.DSNDBð7.DSN32Kð1.Iððð1.Aðð1
 NEWNAME newcat.DSNDBC.DSNDBð7.DSN32Kð1.Iððð1.Aðð1

Repeat the above statements (with the appropriate table space name) for as
many table spaces as you use.

5. Create the table spaces in DSNDB07.

2-144 Administration Guide

CREATE TABLESPACE DSN4Kð1

 IN DSNDBð7

 BUFFERPOOL BPð

 CLOSE NO

USING VCAT DSNC51ð;

CREATE TABLESPACE DSN32Kð1

 IN DSNDBð7

 BUFFERPOOL BP32K

 CLOSE NO

USING VCAT DSNC51ð;

6. Start the database, using the following command:

-START DATABASE (DSNDBð7)

Changing User-Managed Objects to Use the New Qualifier
1. Stop the table spaces and index spaces, using the following command:

-STOP DATABASE(dbname) SPACENAM(\)

2. Use the following SQL ALTER TABLESPACE and ALTER INDEX statements
with the USING clause to specify the new qualifier:

ALTER TABLESPACE dbname.tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

Repeat for all the objects in the database.

3. Using IDCAMS, rename the data sets to the new qualifier:

 ALTER oldcat.DSNDBC.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBC.dbname.\.Iððð1.Aðð1
 ALTER oldcat.DSNDBD.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBD.dbname.\.Iððð1.Aðð1

4. Start the table spaces and index spaces, using the following command:

-START DATABASE(dbname) SPACENAM(\)

5. Verify the success of the procedure by entering the following command:

-DISPLAY DATABASE(dbname)

Then, use SQL to verify that you can access the data.

The data set renames can be done while DB2 is down. They are included here
because the names must be generated for each database, table space and index
space that will be changed.

Changing DB2-Managed Objects to Use the New Qualifier
Use this procedure when you want to keep the existing DB2 storage group,
changing just the high-level qualifier. If you want to move the data to a new DB2
storage group, see 2-150.

1. Remove all table spaces and index spaces from the storage group by
converting the data sets temporarily to user-managed data sets.

a. Stop each database that has data sets you are going to convert, using the
following command:

 Chapter 2-12. Altering Your Database Design 2-145

-STOP DATABASE(dbname) SPACENAM(\)

b. Convert the data sets to user-managed with the USING VCAT clause of the
SQL ALTER TABLESPACE and ALTER INDEX statements, as shown in
the following statements. Use the new catalog name for VCAT.

ALTER TABLESPACE dbname.tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

2. Drop the storage group, using the following statement:

DROP STOGROUP stogroup-name;

The DROP succeeds only if all the objects that referenced this STOGROUP are
dropped or converted to user-managed (USING VCAT clause).

3. Re-create the storage group using the correct volumes and the new alias, using
the following statement:

CREATE STOGROUP stogroup-name
 VOLUMES (VOL1,VOL2)

 VCAT newcat;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier:

ALTER oldcat.DSNDBC.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBC.dbname.\.Iððð1.Aðð1
ALTER oldcat.DSNDBD.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBD.dbname.\.Iððð1.Aðð1

If your table space or index space spans more than one data set, be sure to
rename those data sets also.

5. Convert the data sets back to DB2-managed data sets by using the new DB2
storage group. Use the following SQL ALTER TABLESPACE and ALTER
INDEX statements:

| ALTER TABLESPACE dbname.tsname
| USING STOGROUP stogroup-name
| PRIQTY priqty

| SECQTY secqty;

| ALTER INDEX creator.index-name
| USING STOGROUP stogroup-name
| PRIQTY priqty

| SECQTY secqty;

If you specify USING STOGROUP without specifying the PRIQTY and
SECQTY clauses, DB2 uses the default values. For more information about
USING STOGROUP, see SQL Reference.

6. Start each database, using the following command:

-START DATABASE(dbname) SPACENAM(\)

7. Verify the success of the procedure by entering the following command:

-DISPLAY DATABASE(dbname)

Then, use SQL to verify that you can access the data.

2-146 Administration Guide

Moving DB2 Data
We consider the following categories of operations for moving data:

� “Moving a DB2 Data Set” on page 2-149 describes moving a data set from one
volume to another

� “Copying a Relational Database” on page 2-150 describes copying a
user-managed relational database, with its object definitions as well as its data,
from one DB2 subsystem to another, whether on the same MVS system or not.

� “Copying an Entire DB2 Subsystem” on page 2-150 describes copying a DB2
subsystem from one MVS system to another. The copy must include the
following:

– All the user data and object definitions
– The DB2 system data sets:

 - The log
- The bootstrap data set
- Image copy data sets
- The DB2 catalog
- The integrated catalog facility catalog that records all the DB2 data

sets.

 Introduction: Tools Available
Important: Before copying any DB2 data, resolve any inconsistent data state. Use

the DISPLAY DATABASE command to determine whether any inconsistent
state exists, and the RECOVER INDOUBT command or the RECOVER
utility to resolve the inconsistency. The copying process generally loses all
traces of an inconsistency except the problems that result.

Although DB2 data sets are created using VSAM access method services, they are
specially formatted for DB2 and cannot be processed by services that use VSAM
record processing. They can be processed by VSAM utilities that use
control-interval (CI) processing and, if they are linear data sets (LDSs), also by
utilities that recognize the LDS type.

Furthermore, copying the data might not be enough. Some operations require
copying DB2 object definitions. And when copying from one subsystem to another,
you must consider internal values that appear in the DB2 catalog and the log, for
example, the DB2 object identifiers (OBIDs) and log relative byte addresses
(RBAs).

Fortunately, several tools exist that simplify the operations.

These tools are shipped as parts of DB2:

� The REORG and LOAD utilities.

Those can be used to move data sets from one DASD device type to another
within the same DB2 subsystem. For instructions on using LOAD and REORG,
see Section 2 of Utility Guide and Reference.

� The COPY and RECOVER utilities. Using those utilities, you can recover an
image copy of a DB2 table space onto another DASD device within the same
subsystem. For instructions on using COPY and RECOVER, see Section 2 of
Utility Guide and Reference.

 Chapter 2-12. Altering Your Database Design 2-147

� The DSNTIAUL sample program. The program unloads a DB2 table into a
sequential file and generates statements to allow the LOAD utility to load it

| elsewhere. For instructions on using DSNTIAUL, see Section 2 of Installation
| Guide.

� The DSN1COPY utility. The utility copies the data set for a table space or index
space to another data set. It can also translate the object identifiers and reset
the log RBAS in the target data set. For instructions, see Section 3 of Utility
Guide and Reference.

These tools are not parts of DB2 but are separate program products or offerings:

� DataPropagator Relational. This licensed program can extract data from DB2
tables, as well as from DL/I databases, VSAM files, and sequential files. For
instructions, see “Loading Data from DL/I” on page 2-116.

� DFSMS/MVS, which contains the following functional components:

– Data Set Services (DFSMSdss)

Use DFSMSdss to copy data between DASD devices. For instructions, see
Data Facility Data Set Services: User's Guide and Reference. You can use
on-line panels to control this, through the Interactive Storage Management
Facility (ISMF) available with DFSMS/MVS; for instructions, refer to
DFSMS/MVS: Storage Administration Reference for DFSMSdfp.

– Data Facilities (DFSMSdfp)

This is a prerequisite for DB2. You can use access method services
EXPORT and IMPORT commands with DB2 data sets, when control
interval processing (CIMODE) is used. For instructions on EXPORT and
IMPORT, see DFSMS/MVS: Access Method Services for the Integrated
Catalog.

– Hierarchical Storage Manager (DFSMShsm)

With the MIGRATE, HMIGRATE, or HRECALL commands, which can
specify specific data set names, you can move data sets from one DASD
device type to another within the same DB2 subsystem. Do not migrate the
DB2 directory, DB2 catalog, and the temporary database (DSNDB07). Do
not migrate any data sets that are in use frequently, such as the bootstrap
data set and the active log. With the MIGRATE VOLUME command, you
can move an entire DASD volume from one device type to another. The
program can be controlled using on-line panels, through the Interactive
Storage Management Facility (ISMF). For instructions, see DFSMS/MVS:
DFSMShsm Managing Your Own Data.

The following table shows which tools are applicable to which operations:

Table 20 (Page 1 of 2). Tools Applicable to Data-Moving Operations

TOOL
Moving a
Data Set

Copying a
Data Base

Copying an
Entire
Subsystem

REORG and LOAD Yes - -

COPY and RECOVER Yes - -

DSNTIAUL Yes Yes -

DSN1COPY Yes Yes -

2-148 Administration Guide

Some of the tools listed rebuild the table space and index space data sets, and
therefore generally require longer to execute than the tools that merely copy them.
The tools that rebuild are REORG and LOAD, COPY and RECOVER, DSNTIAUL,
and DXT. The tools that merely copy data sets are DSN1COPY, DFSMSdss,
DFSMSdfp EXPORT and IMPORT, and DFSMShsm.

DSN1COPY is fairly efficient in use, but somewhat complex to set up. It requires a
separate job step to allocate the target data sets, one job step per data set to copy
the data, and a step to delete or rename the source data sets. DFSMSdss,
DFSMSdfp, and DFSMShsm all simplify the job setup significantly.

Though less efficient in execution, RECOVER might be easy to set up, if image
copies and recover jobs already exist. You might need only to redefine the data
sets involved and recover the objects as usual.

Table 20 (Page 2 of 2). Tools Applicable to Data-Moving Operations

TOOL
Moving a
Data Set

Copying a
Data Base

Copying an
Entire
Subsystem

DXT or DataRefresher Yes Yes -

DFSMSdss Yes - Yes

DFSMSdfp Yes - Yes

DFSMShsm Yes - -

Moving a DB2 Data Set
The movement DB2 data is accomplished by RECOVER, REORG, or DSN1COPY,
or by the use of non-DB2 facilities, such as DFSMSdss. Both the DB2 utilities and
the non-DB2 tools can be used while DB2 is running, but the space to be moved
should be stopped to prevent users from accessing it.

Procedures for Moving Data
The following procedures differ mainly in that the first one assumes you do not
want to reorganize or recover the data. Generally, this means that the first
procedure is faster. In all cases, make sure that there is enough space on the
target volume to accommodate the data set.

If you use storage groups , then you can change the storage group definition to
include the new volumes, as described in “Altering DB2 Storage Groups” on
page 2-124. If you change the integrated catalog password known to DB2 in
redefining the storage group, you must execute access method services to change
that password in the integrated catalog.

Moving Data without REORG or RECOVER:

1. Stop the database.

2. Move the data, using DSN1COPY or a non-DB2 facility.

3. Issue the ALTER INDEX or ALTER TABLESPACE statement to use the new
integrated catalog facility catalog name or DB2 storage group name.

4. Start the database.

 Chapter 2-12. Altering Your Database Design 2-149

Moving DB2-Managed Data with REORG or RECOVER: With this procedure you
create a storage group (possibly using a new catalog alias) and move the data to
that new storage group.

1. Create a new storage group using the correct volumes and the new alias, as
shown in the following statement:

CREATE STOGROUP stogroup-name
 VOLUMES (VOL1,VOL2)

 VCAT (newcat);

2. Prevent access to the data sets you are going to move, by entering the
following command:

-STOP DATABASE(dbname) SPACENAM(\)

3. Enter the ALTER TABLESPACE and ALTER INDEX SQL statements to use
the new storage group name, as shown in the following statements:

ALTER TABLESPACE dbname.tsname
USING STOGROUP stogroup-name;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier.

 ALTER oldcat.DSNDBC.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBC.dbname.\.Iððð1.Aðð1
 ALTER oldcat.DSNDBD.dbname.\.Iððð1.Aðð1 -

 NEWNAME newcat.DSNDBD.dbname.\.Iððð1.Aðð1

5. Start the database for utility processing only, using the following command:

-START DATABASE(dbname) SPACENAM(\) ACCESS(UT)

6. Use the REORG or the RECOVER utility on the table space or index space.

7. Start the database, using the following command:

-START DATABASE(dbname) SPACENAM(\)

Copying a Relational Database
This operation involves not only copying data, but finding or generating, and
executing, SQL statements to create storage groups, databases, table spaces,
tables, indexes, views, synonyms, and aliases.

As with the other operations, DSN1COPY is likely to execute faster than the other
applicable tools. It copies directly from one data set to another, while the other tools
extract input for LOAD, which then loads table spaces and builds indexes. But
again, DSN1COPY is more difficult to set up. In particular, you must know the
internal DB2 object identifiers, which other tools translate automatically.

Copying an Entire DB2 Subsystem
This operation involves copying an entire DB2 subsystem from one MVS system to
another. (Although you can have two DB2 subsystems on the same MVS system,
one cannot be a copy of the other.

Only two of the tools listed are applicable: DFSMSdss DUMP and RESTORE, and
DFSMSdfp EXPORT and IMPORT. Refer to the documentation on those programs
for the most recent information about their use.

2-150 Administration Guide

Section 3. Security and Auditing

Chapter 3-1. Introduction to Security and Auditing in DB2 3-5
Security Planning . 3-5

If You are New to DB2 . 3-5
| If You Have Used DB2 Before . 3-5

Auditing . 3-7
Controlling Data Access . 3-7

Access Control within DB2 . 3-8
Controlling Access to a DB2 Subsystem . 3-9
Data Set Protection . 3-10

Chapter 3-2. Controlling Access to DB2 Objects 3-13
Explicit Privileges and Authorities . 3-14

Authorization Identifiers . 3-14
Explicit Privileges . 3-14
Administrative Authorities . 3-18
Field-level Access Control by Views . 3-22
Authority over the Catalog and Directory . 3-23

Implicit Privileges of Ownership . 3-23
Establishing Ownership of Objects with Unqualified Names 3-24
Establishing Ownership of Objects with Qualified Names 3-24
Privileges by Type of Object . 3-24
Granting Implicit Privileges . 3-25
Changing Ownership . 3-25

Privileges Exercised through a Plan or a Package 3-25
Establishing Ownership of a Plan or a Package 3-26
Qualifying Unqualified Names . 3-26
Checking Authorization to Execute . 3-26
Authorization for Stored Procedures . 3-29
Controls in the Program . 3-29
Privileges Required for Remote Packages 3-30

Which IDs Can Exercise Which Privileges . 3-31
Authorization for Dynamic SQL Statements 3-31
Composite Privileges . 3-34
Multiple Actions in One Statement . 3-34

Some Role Models . 3-35
Examples of Granting and Revoking Privileges 3-36

Examples Using GRANT . 3-37
Examples with Secondary IDs . 3-39
The REVOKE Statement . 3-42

Finding Catalog Information about Privileges 3-45
Retrieving Information in the Catalog . 3-45
Using Views of the DB2 Catalog Tables . 3-48

Chapter 3-3. Controlling Access Through a Closed Application 3-49
Controlling Data Definition . 3-50

Required Installation Options . 3-50
Controlling by Application Name . 3-51
Controlling by Application Name with Exceptions 3-52
Registering Sets of Objects . 3-53
Controlling by Object Name . 3-54

 Copyright IBM Corp. 1982, 1997 3-1

Controlling by Object Name with Exceptions 3-56
Managing the Registration Tables and Their Indexes 3-57

An Overview of the Registration Tables . 3-57
Creating the Tables and Indexes . 3-59
Adding Columns . 3-60
Updating the Tables . 3-60
Columns for Optional Use . 3-60
Stopping Data Definition Control . 3-60
Data Sharing . 3-61

Chapter 3-4. Controlling Access to a DB2 Subsystem 3-63
Controlling Local Requests . 3-64
Processing Connections . 3-64

The Steps in Detail . 3-65
Supplying Secondary IDs for Connection Requests 3-66
Required CICS Specifications . 3-67

Processing Sign-ons . 3-68
The Steps in Detail . 3-68
Supplying Secondary IDs for Sign-on Requests 3-70

Controlling Requests from Remote Applications 3-71
| Overview of Security Mechanisms for DRDA and SNA 3-71
| The Communications Database for the Server 3-72

Controlling Inbound Connections that Use SNA Security Mechanisms . . . 3-74
Controlling Inbound Connections that Use TCP/IP Protocols 3-81

Planning to Send Remote Requests . 3-84
| The Communications Database for the Requester 3-84

What IDs You Send . 3-87
Translating Outbound IDs . 3-89
Sending Passwords . 3-91

Establishing RACF Protection for DB2 . 3-93
Defining DB2 Resources to RACF . 3-94
Permitting RACF Access . 3-97

| Establishing RACF Protection for Stored Procedures 3-104
| Establishing RACF Protection for TCP/IP . 3-106
| Establishing DCE Security for DB2 . 3-106
| Step 1: Create a DCE Account for DB2 . 3-107
| Step 2: Define DB2 to OpenEdition Security 3-109
| Step 3: Cross-link RACF and DCE Security Information 3-110
| Step 4: Manage DB2's Server Key . 3-110

Other Methods of Controlling Access . 3-111

Chapter 3-5. Protecting Data Sets . 3-113
Controlling Data Sets through RACF . 3-113

Adding Groups to Control DB2 Data Sets 3-113
Creating Generic Profiles for Data Sets . 3-113
Permitting DB2 Authorization IDs to Use the Profiles 3-115
Allowing DB2 Authorization IDs to Create Data Sets 3-115

Protecting Data Sets by Passwords . 3-116
VSAM Passwords . 3-116
MVS Passwords . 3-117

Chapter 3-6. Auditing Concerns . 3-119
How Can I Tell Who Has Accessed the Data? 3-119

Options of the Audit Trace . 3-120

3-2 Administration Guide

Auditing a Specific Table . 3-123
Using Audit Records . 3-124

Other Sources of Audit Information . 3-125
What Security Measures Are in Force? . 3-126
What Helps Ensure Data Accuracy and Consistency? 3-126

Is Required Data Present? Is It of the Required Type? 3-126
Are Data Values Unique Where Required? 3-127
Has Data a Required Pattern? Is It in a Specific Range? 3-127
Is New Data in a Specific Set? Is It Consistent with Other Tables? 3-128
What Ensures That Concurrent Users Access Consistent Data? 3-128
Have Any Transactions Been Lost or Left Incomplete? 3-129
Summary . 3-129

How Can I Tell That Data is Consistent? . 3-129
SQL Queries . 3-130
Data Modifications . 3-130
CHECK Utility . 3-130
DISPLAY DATABASE Command . 3-130
REPORT Utility . 3-130
Operation Log . 3-131
Internal Integrity Reports . 3-131

How Can DB2 Recover Data After Failures? 3-131
How Can I Protect the Software? . 3-132
How Can I Ensure Efficient Usage of Resources? 3-132

Chapter 3-7. A Sample Security Plan for Employee Data 3-135
Managers' Access . 3-136

To What ID Is the SELECT Privilege Granted? 3-136
Allowing Distributed Access . 3-137
Auditing Managers' Use . 3-139

Payroll Operations . 3-139
Salary Updates . 3-139
Additional Controls . 3-140
To What ID Are Privileges Granted? . 3-140
Auditing Use by Payroll Operations and Payroll Management 3-141

Others Who Have Access . 3-141
IDs with Database Administrative Authority 3-141
IDs with System Administrative Authority . 3-142
The Employee Table Owner . 3-142
Auditing for Other Users . 3-143

 Section 3. Security and Auditing 3-3

3-4 Administration Guide

Chapter 3-1. Introduction to Security and Auditing in DB2

The two topics of security and auditing overlap a great deal, but not completely.

Security covers anything to do with the control of access, whether to the DB2
subsystem, its data, or its resources. A security plan sets objectives for a security
system, determining who shall have access to what, and in what circumstances.
The plan also describes how to meet the objectives, using functions of DB2,
functions of other programs, and administrative procedures.

Auditing determines whether the security plan is working and who actually has
accessed data. It includes other questions also, such as: Have attempts been made
to gain unauthorized access? Is the data in the system accurate and consistent?
Are system resources used efficiently?

Because the two topics are not the same, this chapter suggests different ways to
approach the information that follows. If you want first a brief overview of the range
of objects that DB2 protects, look at the left-hand columns of Table 21 on
page 3-15.

 Security Planning
If you have any sensitive data in your DB2 subsystem, you must plan carefully to
allow access to the data only as you desire. The plan sets objectives for the access
allowed and describes means of achieving the objectives. Clearly, the nature of the
plan depends entirely on the data to be protected, and thus, there is no single way
to approach the task. Consider the following suggestions:

If You are New to DB2
Read carefully the introductory section on “Controlling Data Access” on page 3-7.
Then skim chapters “Chapter 3-2. Controlling Access to DB2 Objects” on
page 3-13 through “Chapter 3-6. Auditing Concerns” on page 3-119. Those
chapters describe the tools you use to implement your plan, but they probably
contain more detail than you want on a first reading. Read the case study in
“Chapter 3-7. A Sample Security Plan for Employee Data” on page 3-135. The
sample plan describes decisions of the kind you must make about access to your
own data.

Now list your security objectives and the means you will use to achieve them.
Reread the chapter parts that describe the functions you expect to use. Be sure
you can achieve the objectives you have set, or adjust your plan accordingly.

| If You Have Used DB2 Before
| This section contains a summary of the changes in Version 5 for security and
| auditing.

 Copyright IBM Corp. 1982, 1997 3-5

| Changes for Distributed Processing
| � Support for RACF PassTickets lets a requester attach to DB2 without having to
| flow passwords on the wire. Also, because passwords do not have to be stored
| in a requesting DB2's communications database, password maintenance is
| simpler and more secure. See “Sending RACF PassTickets” on page 3-92 for
| more information.

| � Ability to use RACF checks for stored procedures that access non-DB2
| resources. Also, you can control which address spaces are allowed to identify
| themselves to Workload Manager as server address spaces. See “Establishing
| RACF Protection for Stored Procedures” on page 3-104.

| � DB2 for OS/390's support for Distributed Computing Environment (DCE)
| security as a server lets a DRDA requester connect securely to DB2 by means
| of a unique global identity. See “Establishing DCE Security for DB2” on
| page 3-106.

| � A new install option, EXTENDED SECURITY, allows you to have DB2 send the
| requester detailed error codes for the cause of a security failure, as described
| in Figure 60 on page 3-77 and Figure 61 on page 3-83. This option also
| allows client programs to allow users to change expired RACF passwords, if
| those clients wish to implement that function. See “Allowing Users to Change
| Expired Passwords” on page 3-72.

| Changes for Performance
| � You can cache package authorizations. See “Caching Authorization IDs for
| Best Performance” on page 3-28.

| � You can cache prepared, dynamic statements. When a prepared dynamic
| statement has been cached for an authorization ID, subsequent executions of
| this statement do no require a catalog lookup to check authorization. See
| Section 6 of Application Programming and SQL Guide for details.

| Changes for Usability
| � Users with installation SYSOPR authority can now issue the START
| DATABASE command to remove GRECP or LPL status. Previously, installation
| SYSADM authority was required.

| � Programs using the Recoverable Resource Manager Services attachment
| facility can reuse threads by setting a new sign-on ID. See Section 6 of
| Application Programming and SQL Guide for more information.

| � A new system privilege, CREATETMTAB, allows you to define a temporary
| table. See Table 21 on page 3-15.

| � The REFERENCES privilege is refined so that now the privilege can be granted
| on a specific list of columns in the table. See the description of the GRANT
| statement in Chapter 6 of SQL Reference for more information.

| � DB2 provides an installation-wide exit point which lets your own exit routine or
| another security system, such as the Security Server with OS/390 Release 4,
| control DB2 authorization. This makes it easier to provide a single point of
| control for DB2 authorization. For information about Security Server support,
| see OS/390 Security Server (RACF) Security Administrator's Guide. For more
| information about the DB2 exit point, see “Access Control Authorization Exit” on
| page X-34.

3-6 Administration Guide

 Auditing
If you are auditing the activity of a DB2 subsystem, you might have turned directly
to this section of your book. If that plunges you into an ocean of unfamiliar
terminology, begin by reading “ Section 1. Introduction” on page 1-1, which
provides a brief and general view of what DB2 is all about.

We assume you are interested at least in the question of control of access to data.
First read “Controlling Data Access” below, and then “Chapter 3-2. Controlling
Access to DB2 Objects” on page 3-13. Read also “Chapter 3-6. Auditing
Concerns” on page 3-119.

Controlling Data Access
At this point, we need a term to remind you that not every access to data is from a
person engaged in an interactive terminal session. For example, it could be from a
program running in batch mode, or an IMS or CICS transaction. Hence, so as not
to focus your attention too narrowly, we choose the term process to represent all
access to data.

As Figure 51 on page 3-8 suggests, there are several routes from a process to
DB2 data, with controls on every route.

One of the ways that DB2 controls access to data is through the use of identifiers.
There are three types of identifiers: primary authorization IDs, secondary
authorization IDs, and SQL IDs.

� Generally it is the primary authorization ID that identifies a process. For
example, statistics and performance trace records use a primary authorization
ID to identify a process.

� A secondary authorization ID, which is optional, can hold additional privileges
available to the process. For example, a secondary authorization ID could be a
Resource Access Control Facility (RACF) group ID.

� An SQL ID, which holds the privileges exercised when issuing certain dynamic
SQL statements, can be set equal to the primary or any of the secondary IDs.
If an authorization ID of a process has SYSADM authority, then the process
can set its SQL ID to any authorization ID.

 Chapter 3-1. Introduction to Security and Auditing in DB2 3-7

 ┌───────────┐

│ PROCESS ├───────────────────────────────┐

 └─────┬─────┘ │

 ┌─────────┴─────────┐ ┌───────┴──────┐

│ Control of access │ │ Data set │

│ to DB2 subsystem │ │ protection │

 └─────────┬─────────┘ └───────┬──────┘

 ┌───────────────┬───────┴──────────┬───────────────┐ │

 ┌───────│───────────────│──────────────────│───────────────│───────┐ │

 │ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ │ │

 │ │ Primary │ │ Secondary │ │ Secondary │ │ │ │ │

 │ │ ID │ │ ID 1 │... │ ID n │ │ SQL ID │ │ │

 │ └─────┬─────┘ └─────┬─────┘ └─────┬─────┘ └─────┬─────┘ │ │

│ └───────────────┴───────┬──────────┴───────────────┘ │ │

 │ ┌─────────┴─────────┐ │ │

 │ Access control │ Control of access │ │ │

 │ within DB2 │ to DB2 objects │ │ │

 │ └─────────┬─────────┘ │ │

 └───────────────────────────────│──────────────────────────────────┘ │

 6 │

 ┌───────────┐ │

│ DB2 data │%──────────────────────────────┘

 └───────────┘

Figure 51. DB2 Data Access Control

Access Control within DB2
Within the DB2 subsystem, a process could be represented by a primary
authorization identifier (ID), possibly one or more secondary IDs, and an SQL ID.
The use of IDs is affected by your security and network systems, and by the
choices you make for DB2 connections.

If two different accesses to DB2 are associated with the same set of IDs, DB2
cannot determine whether they involve the same process. You might know that
someone else is using your ID, but DB2 does not; neither does it know that you are
using someone else's ID. DB2 recognizes only the IDs. Therefore, we speak,
however awkwardly, of an ID “owning an object” or “taking an action.”

Thus, IDs can hold privileges that allow them to take certain actions or be
prohibited from doing so. The list of DB2 privileges provides extremely fine control.
For example, you can grant to an ID all the privileges over a table. Or, you could,
separately and specifically, grant the privileges to retrieve data from the table, insert
rows, delete rows, or update specific columns. By granting or not granting those
privileges over views of the table, you can effectively determine exactly what an ID
can do to the table, down to the level of specific fields. “Implementing Your Views”
on page 2-105 shows a typical view, of the sample employee and department
tables; it reveals only the employee numbers and names of the managers of a
restricted list of departments. Specific privileges are also available over databases,
plans, packages, and the entire DB2 subsystem.

DB2 also defines sets of related privileges, called administrative authorities. By
granting an administrative authority to an ID, you grant all the privileges associated
with it, in one statement.

Ownership of an object carries with it a set of related privileges over the object. An
ID can own an object it creates, or it can create an object to be owned by another
ID. There are separate controls for creation and ownership.

3-8 Administration Guide

The privilege to execute an application plan or a package deserves special
attention. Executing a plan or package exercises implicitly all the privileges that the
owner needed when binding it. Hence, granting the privilege to execute can provide
a finely detailed set of privileges and can eliminate the need to grant other
privileges separately. For example, assume an application plan issues the INSERT
and SELECT statement on several tables. You need to grant INSERT and SELECT
privileges only to the plan owner. Any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements through the plan without explicitly being granted the privilege to do so.

Instead of granting privileges to many primary authorization IDs, consider
associating each of those primary IDs with the same secondary ID; then, grant the
privileges to the secondary ID. A primary ID can be associated with one or more
secondary IDs when it gains access to the DB2 subsystem; the association is made
within an exit routine. The assignment of privileges to the secondary ID is controlled
entirely within DB2.

“Chapter 3-2. Controlling Access to DB2 Objects” on page 3-13 tells how to use
the system of privileges within DB2. Alternatively, the entire system of control within
DB2 can be disabled, by setting USE PROTECTION to NO when installing or
updating DB2. If protection in DB2 is disabled, then any user that gains access can
do anything, but no GRANT or REVOKE statements are allowed.

| Using an Exit Routine to Control Authorization Checking: DB2 provides an
| installation-wide exit point that lets you determine how you want to handle
| authorization checking. This exit point can give you a single point of control by
| letting the Security Server of OS/390 Release 4 handle DB2 authorization checks.
| You can also use this exit point to write your own authorization checking routine. If
| your installation uses the access control authorization exit, that exit routine might be
| controlling authorization rules rather then those documented in this publication. For
| more information about this exit point, see “Access Control Authorization Exit” on
| page X-34.

Controlling Access to a DB2 Subsystem
Whether or not a process can gain access to a specific DB2 subsystem can be
controlled outside of DB2. A common procedure is to grant access only through
RACF or some similar security system. Profiles for access to DB2 from various
environments, and DB2 address spaces, are defined as resources to RACF. Each
request to access DB2 is associated with an ID. RACF checks that the ID is
authorized for DB2 resources and permits, or does not permit, access to DB2.

The RACF system provides several advantages of its own. For example, it can:

� Identify and verify the identifier associated with a process
� Connect those identifiers to RACF group names
� Log and report unauthorized attempts to access protected resources

Access at a Local DB2
A local DB2 user is subject to several checks even before reaching DB2. For
example, if you are running DB2 under TSO and using the TSO logon ID as the
DB2 primary authorization ID, then that ID was verified with a password when the
user logged on.

 Chapter 3-1. Introduction to Security and Auditing in DB2 3-9

When the user gains access to DB2, a user-written or IBM-supplied exit routine
connected to DB2 can check the authorization ID further, change it, and associate it
with secondary IDs. In doing that, it can use the services of an external security
system again. “Chapter 3-4. Controlling Access to a DB2 Subsystem” on
page 3-63 gives detailed instructions.

Access from a Remote Application
A remote user is also subject to several checks before reaching your DB2. You

| can use RACF or a similar security subsystem, or you can use Distributed
| Computing Environment (DCE) security services to authenticate a user.

| RACF can:

| � Verify an identifier associated with a remote attach request and check it with a
| password.

| � Generate PassTickets on the sending side. PassTickets can be used instead of
| passwords. A PassTicket lets a user gain access to a host system without
| sending the RACF password across the network. “Sending RACF PassTickets”
| on page 3-92 contains information about RACF PassTickets.

| If you use DCE, a user is identified by a DCE name (known as a DCE principal
| name) and is authenticated by means of an encrypted DCE ticket obtained from
| DCE by the client system. The server validates the ticket by invoking a DCE
| security service and maps the authenticated user DCE identity to a local RACF
| identity by means of a RACF service. The local RACF ID is used for subsequent
| authority checking. See “Establishing DCE Security for DB2” on page 3-106 for
| more information.

The Communications Database: DB2's communications database (CDB) does
allow some control of authentication in that you can cause IDs to be translated
before sending them to the remote system. See “The Communications Database
for the Requester” on page 3-84 for more information. See “The Communications
Database for the Server” on page 3-72 for information about controls on the server
side.

Data Set Protection
The data in a DB2 subsystem is contained in data sets. As Figure 51 on page 3-8
suggests, those data sets could conceivably be accessed without going through
DB2 at all. If the data is at all sensitive, you want to control that route.

If you are using RACF or some similar security system to control access to DB2,
then the simplest means of controlling data set access outside of DB2 is to use
RACF for that purpose also. That means defining RACF profiles for data sets and
permitting access to them for certain DB2 IDs. If you are not using RACF, you
probably want to protect the data sets with VSAM passwords. “Chapter 3-5.
Protecting Data Sets” on page 3-113 gives some detailed suggestions.

If your data is very sensitive, you may want to consider encrypting it, for protection
against unauthorized access to data sets and backup copies outside DB2. You can
use DB2 edit procedures or field procedures to encrypt data, and those routines
can use the Integrated Cryptographic Service Facility (ICSF) of MVS. For
information about that, see ICSF/MVS General Information.

3-10 Administration Guide

Data compression is not a substitute for encryption. In some cases, the
compression method does not actually shorten the data, and then the data is left
uncompressed and readable. If you both encrypt and compress data, compress it
first to obtain the maximum compression, and then encrypt the result. When
retrieving, take the steps in reverse order: decrypt the data first, and then
decompress the result.

 Chapter 3-1. Introduction to Security and Auditing in DB2 3-11

3-12 Administration Guide

Chapter 3-2. Controlling Access to DB2 Objects

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page xi.

DB2 controls access to its objects by a set of privileges. Each privilege allows an
action on some object. Figure 52 shows that there are three primary ways within
DB2 to give an ID access to data.1

 ┌───────────┐

 │ ID │

 └─────┬─────┘

 ┌───────────────────────┼───────────────────────┐

┌────────┴────────┐ ┌────────┴────────┐ ┌────────┴─────────┐

│ PRIVILEGE: │ │ OWNERSHIP: │ │ PLAN and PACKAGE │

 │ Controlled by │ │ Controlled by │ │ EXECUTION: │

 │ explicit │ │ privileges │ │ Controlled by │

 │ granting and │ │ needed to │ │ privilege to │

 │ revoking │ │ create objects │ │ execute │

 │ │ │ │ │ │

└────────┬────────┘ └────────┬────────┘ └────────┬─────────┘

 └───────────────────────┼───────────────────────┘

 ┌─────┴─────┐

 │ DATA │

 └───────────┘

Figure 52. Access to Data within DB2

The security plan must be aware of every way to allow access to data. To write
such a plan, first see:

“Explicit Privileges and Authorities” on page 3-14
“Implicit Privileges of Ownership” on page 3-23
“Privileges Exercised through a Plan or a Package” on page 3-25.

DB2 has primary authorization IDs, secondary authorization IDs, and SQL IDs.
Some privileges can be exercised only by one type of ID, others by more than one.
To decide what IDs should hold specific privileges, see:

“Which IDs Can Exercise Which Privileges” on page 3-31.

At that point, you have the tools needed for a security plan. Before you begin it,
see what others have done in:

“Some Role Models” on page 3-35
“Examples of Granting and Revoking Privileges” on page 3-36.

Privileges granted and the ownership of objects are recorded in the DB2 catalog.
To check the implementation of your security plan, see:

“Finding Catalog Information about Privileges” on page 3-45.

The types of objects to which access is controlled are described in “Chapter 1-2.
System Planning Concepts” on page 1-21.

1 Certain authorities are assigned when DB2 is installed, and can be reassigned by changing the subsystem parameter
(DSNZPARM); that could be considered a fourth way to grant data access in DB2.

 Copyright IBM Corp. 1982, 1997 3-13

Explicit Privileges and Authorities
One way of controlling access within DB2 is by granting, not granting, or revoking
explicit privileges and authorities.

A privilege allows a specific function, sometimes on a specific object.
An explicit privilege has a name and is held as the result of an SQL GRANT or
REVOKE statement.
An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted; for example, the ability to terminate any
utility job, which is included in the SYSOPR authority.

Privileges and authorities are held by authorization IDs.

 Authorization Identifiers
Every process that connects to or signs on to DB2 is represented by a set of one
or more DB2 short identifiers called authorization IDs. Authorization IDs can be
assigned to a process by default procedures or by user-written exit routines.
Methods of assigning those IDs are described in detail in “Chapter 3-4. Controlling
Access to a DB2 Subsystem” on page 3-63; see especially Table 40 on page 3-65
and Table 41 on page 3-66.

As a result of assigning authorization IDs, every process has exactly one ID called
the primary authorization ID. All other IDs are secondary authorization IDs.

Furthermore, one ID (either primary or secondary) is designated as the current SQL
ID. You can change the value of the SQL ID during your session. If ALPHA is your
primary or one of your secondary authorization IDs, you can make it your current
SQL ID by issuing the SQL statement:

SET CURRENT SQLID = 'ALPHA';

If you issue that statement through the distributed data facility, then ALPHA must
be one of the IDs associated with your process at the location where the statement
runs. As explained in “Controlling Requests from Remote Applications” on
page 3-71, your primary ID can be translated before being sent to a remote
location, and secondary IDs are associated with your process at the remote
location. The current SQL ID, however, is not translated.

An ID with SYSADM authority can set the current SQL ID to any string of up to 8
bytes, whether or not it is an authorization ID or associated with the process that is
running.

 Explicit Privileges
To provide finely detailed control, there are many explicit privileges. For
convenience, we group them into privileges over tables, plans, packages,
collections, databases, the entire subsystem, and uses of objects. The following
tables list and describe explicit privileges.

3-14 Administration Guide

Table 21. Explicit DB2 Table Privileges

Table Privileges Allow These SQL Statements for a Named Table or View

ALTER ALTER TABLE, to change the table definition

| DELETE DELETE, to delete rows2

INDEX CREATE INDEX, to create an index on the table

INSERT INSERT, to insert rows

| REFERENCES ALTER or CREATE TABLE, to add or remove a referential constraint
| referring to the named table or a list of columns in the table

SELECT SELECT, to retrieve data from the table

| UPDATE UPDATE, to update all columns or a specific list of columns 2

GRANT ALL on a table can grant all table privileges listed above.

Table 22. Explicit DB2 Plan Privileges

Plan Privileges Allow These Subcommands for a Named Application Plan

BIND BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE RUN, to use the plan when running the application

Table 23. Explicit DB2 Package Privileges

Package Privilege Allows These Functions for a Named Package

BIND The BIND, REBIND, and FREE PACKAGE subcommands, and the
DROP PACKAGE statement, to bind or free the package, and,
depending on the installation option BIND NEW PACKAGE, to bind a
new version of a package.

COPY The COPY option of BIND PACKAGE, to copy a package

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL on a package can grant all package privileges listed above.

Table 24. Explicit DB2 Collection Privileges

Collection Privileges Allows These Functions for a Named Package Collection

CREATE IN Naming the collection in the BIND PACKAGE subcommand

| 2 If you use SQLRULES(STD), or if the CURRENT RULES special register is set to 'STD', you must have the SELECT privilege
| for searched updates and deletes.

 Chapter 3-2. Controlling Access to DB2 Objects 3-15

Table 25. Explicit DB2 Database Privileges

Database Privileges Allow These Functions on a Named Database

CREATETAB The CREATE TABLE statement, to create tables in the database

CREATETS The CREATE TABLESPACE statement, to create table spaces in the
database

DISPLAYDB The DISPLAY DATABASE command, to display the database status

DROP The DROP and ALTER DATABASE statements, to drop or alter the
database

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare for,
make, and merge copies of table spaces in the database; the MODIFY
utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER and REPORT utilities, to recover objects in the
database and report their recovery status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD and
DIAGNOSE WAIT) to generate diagnostic information about, and
repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS and CHECK utilities, to gather statistics and check
indexes and referential constraints for objects in the database

STOPDB The STOP DATABASE command, to stop the database

3-16 Administration Guide

Privileges Needed for Statements, Commands, and Utility Jobs: For lists of all
privileges and authorities that let you:

� Execute a particular SQL statement, see the description of the statement in
Chapter 6 of SQL Reference.

Table 26. Explicit DB2 System Privileges

System Privileges Allow These Functions

ARCHIVE The ARCHIVE LOG command, to archive the current active log, the
DISPLAY ARCHIVE command, to give information about input archive
logs, and the SET ARCHIVE command, to control allocation and
deallocation of tape units for archive processing.

BINDADD The BIND subcommand with the ADD option, to create new plans and
packages

BINDAGENT The BIND, REBIND, and FREE subcommands, and the DROP
PACKAGE statement, to bind, rebind, or free a plan or package, or
copy a package, on behalf of the grantor The BINDAGENT privilege is
intended for separation of function, not for added security. A bind
agent with the EXECUTE privilege might be able to gain all the
authority of the grantor of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap data set

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table or view
name

CREATEDBA The CREATE DATABASE statement, to create a database and have
DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database and have
DBCTRL authority over it

CREATESG The CREATE STOGROUP statement, to create a storage group

| CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to define a
| temporary table

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY THREAD, and DISPLAY
TRACE commands, to display system information

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE commands,
to control tracing

Table 27. Explicit DB2 Use Privileges

Use Privileges Allows the Use of These Objects

USE OF BUFFERPOOL
A buffer pool

USE OF STOGROUP A storage group

USE OF TABLESPACE
A table space

 Chapter 3-2. Controlling Access to DB2 Objects 3-17

� Issue a particular DB2 command, see the description of the command in
Chapter 2 of Command Reference.

� Run a particular type of utility job, see the description of the utility in Command
Reference.

 Administrative Authorities
Figure 53 on page 3-19 shows how privileges are grouped into authorities and how
the authorities form a branched hierarchy. Table 28 on page 3-19 expands on the
figure to include capabilities of each authority that are not represented by explicit
privileges described in Table 21 on page 3-15.

3-18 Administration Guide

 ┌───────────────────────────────────┐

 │ Authority: Installation SYSADM │

│ No additional named privileges │

 └─────────────────┬─────────────────┘

 ┌─────────────────┴─────────────────┐

 │ Authority: SYSADM │

│ EXECUTE privilege on all plans │

┌───────────────────┤ All privileges on all packages ├────────────────┐

 │ └─────────────────┬─────────────────┘ │

┌─────────────────┴─────────────────┐ ┌──────────────┴──────────────┐ ┌──────────────┴───────────────┐

 │ Authority: SYSCTRL │ │ Authority: PACKADM │ │ Authority: DBADM │

 │ System Privileges: │ │ Privileges on a collection: │ │ Privileges on tables and │

 │ BINDADD CREATEDBC │ │ CREATE IN │ │ views in one database: │

 │ BINDAGENT CREATESG │ │ Privileges on all packages │ │ ALTER INSERT │

 │ BSDS CREATETMTAB │ │ in the collection: │ │ DELETE SELECT │

│ CREATEALIAS MONITOR1 │ │ BIND COPY EXECUTE │ │ INDEX UPDATE │

 │ CREATEDBA MONITOR2 │ │ │ │ │

│ STOSPACE │ └─────────────────────────────┘ │ REFERENCES │

 │ Privileges on all tables: │ └──────────────┬───────────────┘

 │ ALTER INDEX │ │

 │ REFERENCES │ │

 │ Privileges on catalog tables\: │ │

 │ SELECT UPDATE │ │

 │ INSERT DELETE │ │

 │ Privileges on all plans: │ │

 │ BIND │ │

 │ Privileges on all packages: │ │

 │ BIND COPY │ │

 │ Privileges on all collections: │ │

 │ CREATE IN │ │

 │ Use privileges on: │ │

 │ BUFFERPOOL TABLESPACE │ │

 │ STOGROUP ├───┐ │

 └─────────────────┬─────────────────┘ ┌─────────┴────┴───────────────┐

 ┌─────────────────┴─────────────────┐ │ Authority: DBCTRL │

 │ Authority: Installation SYSOPR │ │ Privileges on one database: │

 │ Privileges: ARCHIVE │ │ DROP LOAD RECOVERDB │

 │ STARTDB (Cannot change access │ │ REORG REPAIR │

 │ mode) │ └──────────────┬───────────────┘

 └─────────────────┬─────────────────┘ ┌──────────────┴───────────────┐

 ┌─────────────────┴─────────────────┐ │ Authority: DBMAINT │

 │ Authority: SYSOPR │ │ Privileges on one database: │

 │ Privileges: │ │ CREATETAB STARTDB │

 │ DISPLAY STOPALL │ │ CREATETS STATS │

 │ RECOVER TRACE │ │ DISPLAYDB STOPDB │

 └───────────────────────────────────┘ │ IMAGCOPY │

 └──────────────────────────────┘

\ For the applicable catalog tables and the operations that can

be performed on them by SYSCTRL, see the DB2 catalog

appendix in the SQL Reference.

| Figure 53. Individual Privileges of Administrative Authorities. Each authority includes the privileges in its box plus all
the privileges of all authorities beneath it. Installation SYSOPR authority is an exception; it can do some things that
SYSADM and SYSCTRL cannot.

Table 28 (Page 1 of 4). DB2 Authorities

Authority Description

SYSOPR System operator:

� Can issue most DB2 commands
� Cannot issue ARCHIVE LOG, START DATABASE, STOP DATABASE, and RECOVER

BSDS
� Can terminate any utility job
� Can run the DSN1SDMP utility.

 Chapter 3-2. Controlling Access to DB2 Objects 3-19

Table 28 (Page 2 of 4). DB2 Authorities

Authority Description

Installation SYSOPR One or two IDs are named to this when DB2 is installed. They have all the privileges of
SYSOPR, plus:

� Authority is not recorded in the DB2 catalog. The catalog need not be available to check
installation SYSOPR authority.

� No ID can revoke the authority; it can be removed only by changing the module that
contains the subsystem initialization parameters (typically DSNZPARM).

Those IDs can also:

� Access DB2 when the subsystem is started with ACCESS(MAINT).

� Run all allowable utilities on the directory and catalog databases (DSNDB01 and
DSNDB06).

� Run the REPAIR utility with the DBD statement.

� Start and stop the database containing the application and object registration tables
(ART and ORT).

� Issue dynamic SQL statements not controlled by the DB2 governor.

| � Issue a START DATABASE command to recover objects that have LPL entries or group
| recovery pending status. These IDs cannot change the access mode.

PACKADM Package administrator: has all package privileges on all packages in specific collections, or
on all collections, plus the CREATE IN privilege on those collections. If held with the GRANT
option, can grant those privileges to others. If the installation option BIND NEW PACKAGE
is BIND, also has the privilege to add new packages or new versions of existing packages.

DBMAINT Database maintenance: In a specific database, the holder can create certain objects, run
certain utilities, and issue certain commands. If held with the GRANT option, can grant those
privileges to others. The holder can use the TERM UTILITY command to terminate all
utilities except DIAGNOSE, REPORT, and STOSPACE on the database.

DBCTRL Database control: includes DBMAINT over a specific database, plus the database privileges
to run utilities that can change the data. If held with the GRANT option, can grant those
privileges to others.

DBADM Database administration: includes DBCTRL over a specific database, plus privileges to
access any of its tables through SQL statements. If held with the GRANT option, can grant
those privileges to others.

Can also drop and alter any table space, table, or index in the database and issue a
COMMENT ON, LABEL ON, or LOCK TABLE statement for any table. Has no privileges on
views owned by other IDs, even if they are based on tables in the database.

3-20 Administration Guide

Table 28 (Page 3 of 4). DB2 Authorities

Authority Description

SYSCTRL System control: has nearly complete control of the DB2 subsystem but cannot access user
data directly, unless granted the privilege to do so. Designed for administering a system
containing sensitive data, it can:

� Act as installation SYSOPR (when the catalog is available) or DBCTRL over any
database

� Run any allowable utility on any database
� Issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any table
� Create a view for itself or others on any catalog table
� Create tables and aliases for itself or others
� Bind a new plan or package, naming any ID as the owner.

 Without additional privileges, it cannot:

� Execute DML statements on user tables or views
� Run plans or packages
� Set the current SQL ID to a value that is not one of its primary or secondary IDs
� Start or stop the database containing the ART and ORT
� Act fully as SYSADM or as DBADM over any database
� Access DB2 when the subsystem is started with ACCESS(MAINT).

SYSCTRL authority is intended for separation of function, not for added security. If any plans
have their EXECUTE privilege granted to PUBLIC, an ID with SYSCTRL authority can grant
itself SYSADM authority. The only control over such actions is to audit the activity of IDs
with high levels of authority.

SYSADM System administrator: includes SYSCTRL, plus access to all data. It can:

� Use all the privileges of DBADM over any database
� Use EXECUTE and BIND on any plan or package, COPY on any package
� Use privileges over views owned by others
� Set the current SQL ID to any valid value, whether or not it is currently a primary or

secondary authorization ID
� Create and drop synonyms and views for others on any table
� Use any valid value for OWNER in BIND or REBIND
� Drop database DSNDB07.
� Grant any of the privileges listed above to others.

Holders can also drop or alter any DB2 object, except system databases, issue a
COMMENT ON or LABEL ON statement for any table or view, and terminate any utility job,
but cannot specifically grant those privileges.

 Chapter 3-2. Controlling Access to DB2 Objects 3-21

Table 28 (Page 4 of 4). DB2 Authorities

Authority Description

Installation SYSADM One or two IDs are named to this when DB2 is installed. They have all the privileges of
SYSADM, plus:

� Authority is not recorded in the DB2 catalog. The catalog need not be available to check
installation SYSADM authority. (The authority outside the catalog is crucial: If the catalog

table space SYSDBAUT is stopped, for example, DB2 cannot check the authority to start
it again. Only an installation SYSADM can start it.)

� No ID can revoke the authority; it can be removed only by changing the module that
contains the subsystem initialization parameters (typically DSNZPARM).

Those IDs can also:

| � Run the CATMAINT utility.

� Access DB2 when the subsystem is started with ACCESS(MAINT).

� Start databases DSNDB01 and DSNDB06 when those are stopped or in restricted
status.

� Run the DIAGNOSE utility with the WAIT statement.

� Start and stop the database containing the ART and ORT.

Field-level Access Control by Views
Any of the table privileges, except ALTER, REFERENCES and INDEX, can also be
granted on a view. By creating a view and granting privileges on it, it is possible to
give an ID access only to a specific combination of data. The capability is
sometimes called “field-level access control” or “field-level sensitivity.”

For example, suppose you want a particular ID, say MATH110, to be able to extract
certain data from the sample employee table for statistical investigation. To be
exact, suppose you want to allow access to data:

� From columns HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, and
COMM (but not an employee's name or identification number)

� Only for employees hired after 1975
� Only for employees with an education level of 13 or higher
� Only for employees whose job is not MANAGER or PRES.

To do that, create and name a view that shows exactly that combination of data:

CREATE VIEW SALARIES AS

SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM

 FROM DSN851ð.EMP

WHERE HIREDATE > '1975-12-31' AND EDLEVEL >= 13

AND JOB <> 'MANAGER' AND JOB <> 'PRES';

Then grant the SELECT privilege on the view SALARIES to MATH110:

GRANT SELECT ON SALARIES TO MATH11ð;

Then MATH110 can execute SELECT statements on the restricted set of data only.

3-22 Administration Guide

Authority over the Catalog and Directory
The DB2 catalog is in database DSNDB06. An ID with SYSCTRL or SYSADM
authority can control access to the catalog by granting privileges or authorities on
that database or on its tables or views, or by binding plans or packages that access
the catalog. Unlike SYSADM, however, SYSCTRL cannot act as DBADM over
database DSNDB06. DBADM on DSNDB06 can update
SYSIBM.SYSPROCEDURES for stored procedures.

Authorities granted on DSNDB06 also cover database DSNDB01, which contains
the DB2 directory. An ID with SYSADM authority can control access to the directory
by granting privileges to run the utilities listed in Table 29 on DSNDB06, but not by
granting privileges on DSNDB01 directly.

Every authority, except SYSOPR, carries the privilege to run some utilities on
databases DSNDB01 and DSNDB06. Table 29 shows what utilities the other
authorities can run on those databases.

Table 29. Utility Privileges on the DB2 Catalog and Directory

Utilities Authorities

Installation SYSOPR,
SYSCTRL, SYSADM,
Installation SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT
on
DSNDB06

LOAD,
REPAIR DBD

None (cannot be run on DSNDB01 and DSNDB06)

Note: LOAD can be used to add lines to SYSIBM.SYSSTRINGS.

CHECK DATA,
REORG
TABLESPACE,
STOSPACE

Yes No No

Note: CHECK DATA can be run only by an ID with installation SYSOPR authority, and
cannot be run on DSNDB01.

RECOVER INDEX,
RECOVER
TABLESPACE,
REORG INDEX,
REPAIR, REPORT

Yes Yes No

CHECK INDEX, COPY,
MERGECOPY, MODIFY,
QUIESCE, RUNSTATS

Yes Yes Yes

Implicit Privileges of Ownership
You create DB2 objects, except for plans and packages, by issuing SQL CREATE
statements in which you name the object. The name can be unqualified (for
example, T1) or, for tables, views, indexes, aliases, and synonyms, qualified (for
example, GAMMA.T1). When you create the object, you establish its ownership,
and the owner implicitly holds certain privileges over it. (Plans and packages have
unique features of their own, described in “Privileges Exercised through a Plan or a
Package” on page 3-25.)

 Chapter 3-2. Controlling Access to DB2 Objects 3-23

Establishing Ownership of Objects with Unqualified Names
If the name is unqualified, then you establish the object's ownership in these ways:

� If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF,
or some similar program, then the owner of the object created is your current
SQL ID. That ID must have the privileges needed to create the object.

� If you issue the CREATE statement statically, by running a plan or package
that contains it, then the ownership of the object created depends on an option
of the bind operation. The QUALIFIER option allows the binder to name a
qualifier to be used for all unqualified names of tables, views, indexes, aliases,
or synonyms that appear in the plan or package. (The owner of the plan or
package must have all required privileges on the objects designated by the
qualified names.) If the QUALIFIER option is not used, then the ID named by
the OWNER option, or the default owner, is used as the qualifier.

Establishing Ownership of Objects with Qualified Names
If you create a table, a view, an index, an alias, or a synonym with a qualified
name, then the qualifier becomes the owner of the object, subject to these
restrictions:

� If you issue the CREATE statement dynamically, and have no administrative
authority, then the qualifier must be your primary ID or one of your secondary
IDs. However, if your current SQL ID has at least DBCTRL authority, you can
use any qualifier for a table or index, and if it has SYSADM or SYSCTRL
authority, you can also use any qualifier for a view or alias.

If the current SQL ID has at least DBCTRL authority, then the qualifier ID does
not need any privileges. In addition to DBCTRL authority, the SQL ID must
have any additional privileges needed to create the object; those are
CREATETS or USE OF TABLESPACE for a table, and USE OF
BUFFERPOOL and USE OF STOGROUP for an index. If the current SQL ID
does not have at least DBCTRL authority, then all the necessary privileges
must be held by the qualifier ID.

� If you issue the CREATE statement statically, and the owner of the plan or
package that contains the statement has no administrative authority, then the
qualifier can only be the owner. However, if the owner has at least DBCTRL
authority, the plan or package can use any qualifier for a table or an index, and
if the owner has SYSADM or SYSCTRL authority, it can also use any qualifier
for a view or an alias.

Privileges by Type of Object
The table below lists implicit privileges of ownership by type of object.

Object type Implicit privileges of ownership

Storage group To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Database DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) exercised in creating it.
DBCTRL authority does not include the privilege to access data in
tables in the database.

Table space To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

3-24 Administration Guide

Object type Implicit privileges of ownership

| Table| To alter or drop the table or any indexes on it
| To lock the table, comment on it, or label it
| To create an index or view for the table
| To select or update any row or column
| To insert or delete any row
| To use the LOAD utility for the table
| To define referential constraints on any table or set of columns

Index To alter or drop the index

View To drop the view, comment on or label it, select any row or column
To update any row or column, insert or delete any row
(if the view is not read-only)

Synonym To use or drop the synonym

Package To bind, rebind, free, copy, execute, or drop the package

Plan To bind, rebind, free, or execute the plan

Alias To drop the alias

Granting Implicit Privileges
Some implicit privileges of ownership correspond to privileges that can be granted
by a GRANT statement, and some do not. For those that do correspond, the owner
of the object can grant the privilege to another user. For example, the owner of a
table can grant the SELECT privilege on the table to any other user.

 Changing Ownership
There is no way to revoke the privileges implicit in ownership. Except for a plan or
package, as long as an object exists, there is no way to change its owner. All that
can be done is to drop the object, which usually deletes all privileges on it, and
then re-create it with a new owner.3

In practice, however, it can be desirable to share the privileges of ownership. That
can be done by making the owning ID a secondary ID to which several primary
authorization IDs are connected. The list of primary IDs connected to the secondary
ID can be changed without having to drop and re-create the object.

Privileges Exercised through a Plan or a Package
An application plan or a package can take many actions on many tables, all of
them requiring one or more privileges. The owner of the plan or package must hold
every privilege required. Another ID can execute the plan or package if it has only
the EXECUTE privilege. In that way, another ID can exercise all the privileges used
in validating the plan or package, but only within the restrictions imposed by the
SQL statements in the original program.

For example, the program might contain:

EXEC SQL

SELECT \ INTO :EMPREC FROM DSN851ð.EMP

 WHERE EMPNO='ðððð1ð';

3 Dropping a package does not delete all privileges on it if another version of the package still remains in the catalog.

 Chapter 3-2. Controlling Access to DB2 Objects 3-25

The example puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN8510.EMP. But the ID that has
EXECUTE privilege for this plan can only access rows in the DSN8510.EMP table
that have EMPNO = '000010'.

The executing ID can use some of the owner's privileges, within limits. If the
privileges are revoked from the owner, then the plan or the package is invalidated.
It must be rebound, and the new owner must have the required privileges.

Establishing Ownership of a Plan or a Package
The BIND and REBIND subcommands create or change an application plan or a
package. On either one, use the OWNER option to name the owner of the resulting
plan or package.

� Any user can name the primary or any secondary ID.
� An ID with the BINDAGENT privilege can name the grantor of that privilege.
� An ID with SYSCTRL or SYSADM authority can name any authorization ID on

a BIND command, but not on REBIND.

If you omit the OWNER option:

� On BIND, your primary ID becomes the owner.
� On REBIND, the previous owner retains ownership.

Not all systems that can bind a package at a DB2 system support the OWNER
option. When the option is not supported, the primary authorization ID is always the
owner of the package, and a secondary ID cannot be named as the owner.

Qualifying Unqualified Names
A plan or package can contain SQL statements that use unqualified table or view
names. The default qualifier for those names in a plan or package is the owner of
the plan or package. But, you can use the QUALIFIER option of BIND to specify a
different qualifier.

Using the BINDAGENT privilege and the OWNER and QUALIFIER options, you
have considerable flexibility in performing bind operations. For example, if ALPHA
has the BINDAGENT privilege from BETA, and BETA has privileges over tables
owned by GAMMA, then ALPHA can bind a plan using OWNER (BETA) and
QUALIFIER (GAMMA). ALPHA, as merely a binding agent, need have no privileges
over the tables and does not have the privilege to execute the plan.

Checking Authorization to Execute
The plan or package owner must have authorization to execute all SQL statements
embedded in the plan or package. But you do not need to have the authorizations
in place when the plan or package is bound; in fact, the SQL objects referred to do
not even have to exist at that time.

A bind operation always checks whether a local object exists and whether the
owner has the required privileges on it. Any failure results in a message. To
choose whether the failure prevents the bind operation from completing, use the
VALIDATE option of BIND PLAN and BIND PACKAGE, and also the SQLERROR
option of BIND PACKAGE. See Section 5 of Application Programming and SQL
Guide for instructions. If you let the operation complete, the checks are made again

3-26 Administration Guide

at run time. The corresponding checks for remote objects are always made at run
time.

Authorization to execute dynamic SQL statements is also checked at run time.
Table 31 on page 3-31 shows which IDs can supply the required authorizations for
different types of statement.

Applications that use the Recoverable Resource Manager Services attachment
facility (RRSAF) to connect to DB2 do not require a plan. If the requesting
application is an RRSAF application, DB2 follows the rules described in “Checking
authorization to execute an RRSAF application without a plan” on page 3-28 to
perform authorization checking.

Checking Authorization at a Second DB2 Server: Authorization for execution at
a second DB2 server (also known as a “double hop” situation) is a special case of
system-directed access. See Figure 54

 ┌─────────────────────────────┐

│ Requester │

 └──────────────┬──────────────┘

6 Runs a package

 ┌─────────────────────────────┐

 │ DB2 Server │

 │ (process runner) │

 └──────────────┬──────────────┘

6 Uses DB2 private procotol

┌─────────────────────────────┐ to execute an SQL statement

 │ Second DB2 Server │ remotely

 └─────────────────────────────┘

| Figure 54. Execution at a Second DB2 Server

In the figure, a remote requester, either a DB2 for OS/390 or some other requesting
system, runs a package at the DB2 server. A statement in the package uses an
alias or a three-part name to request services from a second DB2 for OS/390
server. The ID that is checked for the privileges needed to run at the second server
can be the owner of the plan running at the requester (if the requester is DB2 for
MVS/ESA or DB2 for OS/390), the owner of the package running at the DB2
server, or the authorization ID of the process that runs the package at the first DB2
server (the “process runner”). Which ID is used depends on these four factors:

� Whether the requester is DB2 for OS/390 or DB2 for MVS/ESA, or a different
system.

� The value of the bind option DYNAMICRULES (RUN or BIND). See Chapter 2
of Command Reference for information about DYNAMICRULES.

� Whether the parameter HOPAUTH at the DB2 server site was set to YES or
NO when running the installation job DSNTIJUZ. The default value is YES.

� Whether the statement executed at the second server is static or dynamic SQL.

Table 30 on page 3-28 shows how these factors determine the ID that must hold
the required privileges.

 Chapter 3-2. Controlling Access to DB2 Objects 3-27

Table 30. The Authorization ID That Must Hold Required Privileges

Requester DYNAMICRULES HOPAUTH Statement Authorization ID

DB2 for MVS/ESA or
DB2 for OS/390

RUN (default) n/a
Static Plan owner

Dynamic Process runner

BIND n/a Either Plan owner

Different System
or
RRSAF application
without a plan

RUN (default)
YES (default)
Static# Package owner

Dynamic Process runner

NO Either Process runner

BIND n/a Either Package owner

Checking authorization to execute an RRSAF application without
a plan
RRSAF provides the capability for an application to connect to DB2 and run without
a DB2 plan. If an RRSAF application does not have a plan, the following
authorization rules are true:

� For the following types of packages, the primary or secondary authorization ID
of the process is used for checking authorization to execute the package:

– A local package

– A remote package that is on a DB2 for OS/390 or DB2 for MVS/ESA
system and is accessed using DRDA

� At a DB2 for OS/390 or DB2 for MVS/ESA server, the authorization to execute
the DESCRIBE TABLE statement includes checking the primary and secondary
authorization IDs.

� For a double hop situation, the authorization ID that must hold the required
privileges to execute SQL statements at the second server is determined as if
the requester is not a DB2 for OS/390 or DB2 for MVS/ESA system. Table 30
lists the specific privileges.

Caching Authorization IDs for Best Performance
| You can specify that DB2 cache authorization IDs for plans or packages. Having

IDs cached can greatly improve performance, especially when user IDs are reused
| frequently. There is a cache for each plan, and one global cache for packages. For

a data sharing group, each member does its own authorization caching.

Caching IDs for Plans: Checking is fastest when the EXECUTE privilege is
granted to PUBLIC and, after that, when the plan is reused by an ID that already
appears in the cache.

You set the size of the plan authorization cache in the BIND PLAN subcommand.
For suggestions on setting this cache size, see Section 5 of Application
Programming and SQL Guide . The default cache size is specified by an installation
option, with an initial default setting of 1024 bytes.

| Caching IDs for Packages: This performance enhancement provides a run time
| benefit for the following:

| � Stored procedures

| � Remotely bound packages

3-28 Administration Guide

| � Local packages in a package list in which the plan owner does not have
| execute authority on the package at bind time but does at run time

| � Local packages that are not explicitly listed in a package list but are implicitly
| listed by collection-id.* The benefit is also provided for use of *.* or
| *.package-id.

| If you do not use collections, or if you have all your packages in the same
| collection, you will see less performance benefit than if you have frequently-run
| packages in different collections.

| Set the size of the package authorization cache using the PACKAGE AUTH
| CACHE field on installation panel DSNTIPP. The default value, 32K, is enough
| storage to support about 400 collection-id.package-id entries or collection-id.*
| entries. For each increase of 100 packages, add 8KB of storage to the cache. The
| ssnmDBM1 address space provides the storage.

| You can cache more package authorization information by granting package
| execute authority to collection.*, by granting package execute authority to PUBLIC
| for some packages or collections, or by increasing the size of the cache.

| Field QTPACAUT in the package accounting trace tells you how often DB2 was
| successful at reading package authorization information from the cache.

Authorization for Stored Procedures
The privileges required to execute a plan or package containing a CALL statement
must include at least one of the following:

� The EXECUTE privilege on the plan or package
� Ownership of the plan or package
� PACKADM authority for the collection (packages only)

 � SYSADM authority

Additional privileges are required on each package used by the stored procedure
during its execution. The application server determines the privileges that are

| required and the authorization ID that must have the privileges. See Chapter 6 of
| SQL Reference for more information about authorization for the CALL statement.

Controls in the Program
Because an ID executes a package or an application plan by running a program, it
is sometimes useful to implement control measures in the program. For example,
consider the SQL statement on page 3-25, that permits access to the row of the
employee table WHERE EMPNO='ðððð1ð'. If you replace the value 10 with a host
variable, the program could supply the value of the variable and so permit access
to various employee numbers. Routines in the program could limit that access to
certain IDs, or to certain times of the day, on certain days of the week, or in other
special circumstances.

Stored procedures provide an alternative to controls in the program. By
encapsulating several SQL statements into a single message to the DB2 server,
sensitive portions of the application program can be protected. Also, stored
procedures can include access to non-DB2 resources as well as DB2.

 Chapter 3-2. Controlling Access to DB2 Objects 3-29

A Caution about Controls in the Program
We do not recommend using programs to extend security. Whenever possible,
other techniques, such as stored procedures or views, should be used as a security
mechanism. Program controls are separate from other access controls, can be
difficult to implement properly, are difficult to audit and relatively simple to bypass.
Almost any debugging facility can be used to bypass security checks. Other
programs might use the plan without doing the needed checking. Errors in the
program checks might allow unauthorized access.

Because the routines that check security might be quite separate from the SQL
statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

Also, a BIND REPLACE operation for an existing plan does not necessarily revoke
the existing EXECUTE privileges on the plan. (To revoke those privileges is the
default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted
only to a carefully planned list of IDs.

Restricting a Plan or a Package to Particular Systems
If you do use controls in the program, then it is important to limit the use of a plan
or package to the particular systems for which it was designed. DB2 does not
ensure that only specific programs are used with a plan, but program-to-plan
control can be enforced in IMS and CICS. DB2 does provide a consistency check
to avoid accidental mismatches between program and plan, but that is not a
security check.

The ENABLE and DISABLE Options: The ENABLE and DISABLE options on the
BIND and REBIND subcommands for plans and packages can limit their use. For
example, ENABLE IMS allows running the plan or package from any IMS
connection and, unless other systems are named also, prevents running it from any
other type of connection. DISABLE BATCH prevents running the plan or package
through a batch job but allows running it from all other types of connection. You
can exercise even finer control, enabling or disabling particular IMS connection
names, CICS application IDs, requesting locations, and so on. For details, see the
syntax of the BIND and REBIND subcommands in Command Reference.

Privileges Required for Remote Packages
Generally, the privileges required for a remote bind (BIND PACKAGE
location.collection) must be granted at the server location. That is, the ID that owns
the package must have all the privileges required to run the package at the server,
and BINDADD4 and CREATE IN privileges at the server. The exceptions are:

� For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2, where the package being copied resides.

4 Or BIND, depending on the installation option BIND NEW PACKAGE.

3-30 Administration Guide

� If the creator of the package is not the owner, the creator must have SYSCTRL
authority or higher, or must have been granted the BINDAGENT privilege by
the owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,
and bind privileges must be held there. Authorization to execute a package at a
remote location is checked at execution time, as follows:

| � For DB2 private protocol, the owner of the plan at the requesting DB2 must
| have the EXECUTE privilege for the package at the DB2 server.

| � For DRDA, if the server is a DB2 for OS/390, the authorization ID of the
| process (primary or any secondary) must have the EXECUTE privilege for the
| package at the DB2 server.

� If the server is not DB2 for OS/390, the primary authorization ID must have
| whatever privileges are needed. Check that product's documentation.

Which IDs Can Exercise Which Privileges
When a process gains access to DB2, it has a primary authorization ID, an SQL ID,
and perhaps one or more secondary authorization IDs. A plan or package also has
an owner ID. A specific one of those IDs must hold the required privileges for some
actions; for other actions, any one or several of the IDs must hold the required
privileges. The following table summarizes, for different actions, which IDs can
provide the necessary privileges. For more specific details on any statement or
command, see SQL Reference or Command Reference.

Performance Hints: A process can have up to 245 secondary IDs. For some
actions, DB2 searches a catalog table for each ID until it finds a required privilege.
Therefore, the more secondary IDs that must be checked, the slower the check
proceeds. For dynamic SQL, the current SQL ID is checked first; the operation is
quickest if that ID has all the necessary privileges.

Authorization for Dynamic SQL Statements
If the value of the bind option DYNAMICRULES is RUN, the authorization ID for
dynamic SQL statements is determined at run time. The IDs that must hold
required privileges are the primary ID and its associated secondary IDs, and one of
those IDs is the current SQLID. The current SQLID holds the privileges exercised
when issuing certain dynamic SQL statements.

If the value of DYNAMICRULES is BIND, the authorization ID for dynamic SQL
statements is determined at bind time. The ID that must hold the required privileges
is the plan or package owner. Neither secondary IDs associated with that ID nor
the current SQLID are checked for authorization. Hence, users issuing dynamic
statements through the plan or package can exercise all the privileges of the owner
and only those privileges. See Chapter 2 of Command Reference for additional
information about DYNAMICRULES.

Table 31 (Page 1 of 4). Privileges Required for Basic Operations

Operation ID Required Privileges

Dynamic SQL Statements

 Chapter 3-2. Controlling Access to DB2 Objects 3-31

Table 31 (Page 2 of 4). Privileges Required for Basic Operations

Operation ID Required Privileges

GRANT Current SQL ID Any of these:

The applicable privilege with the grant option
An authority that includes the privilege, with the
grant option (not needed for SYSADM or SYSCTRL)
Ownership that implicitly includes the privilege

REVOKE Current SQL ID Must have granted the privilege being revoked, or hold
SYSCTRL or SYSADM authority.

CREATE, for unqualified
object name

Current SQL ID Applicable table or database privilege

Qualify name of object
created

ID named as owner Applicable table or database privilege. If the current SQL
ID has SYSADM authority, the qualifier can be any ID at
all, and need not have any privilege.

Other dynamic SQL if
DYNAMICRULES = RUN

All primary and
secondary IDs and the
current SQL ID together

As required by the statement; see “Composite
Privileges” on page 3-34. Unqualified object names are
qualified by the value of the special register CURRENT
SQLID. See “Authorization for Dynamic SQL
Statements.”

Other dynamic SQL if
DYNAMICRULES = BIND

Plan or package owner As required by the statement; see “Composite
Privileges” on page 3-34. Unqualified object names
include the value of QUALIFIER. See “Authorization for
Dynamic SQL Statements.”

Operations on Plans and Packages

Execute a plan Primary or any
secondary ID

Any of these:

Ownership of the plan
EXECUTE privilege for the plan

 SYSADM authority

Bind embedded SQL
statements, for any bind
operation

Plan or package owner Any of these:

Applicable privileges required by the statements
Authorities that include the privileges
Ownership that implicitly includes the privileges

Object names include the value of QUALIFIER, where it
applies.

Include package in PKLIST Plan owner Any of these:

Ownership of the package
EXECUTE privilege for the package
PACKADM authority over the package collection

 SYSADM authority

BIND a new plan using the
default owner or primary
authorization ID

Primary ID BINDADD privilege, or SYSCTRL or SYSADM authority

3-32 Administration Guide

Table 31 (Page 3 of 4). Privileges Required for Basic Operations

Operation ID Required Privileges

BIND a new package using
the default owner or
primary authorization ID

Primary ID If the value of the field BIND NEW PACKAGE on
installation panel DSNTIPP is BIND, any of these:

BINDADD privilege and CREATE IN privilege for the
collection
PACKADM authority for the collection
SYSADM or SYSCTRL authority

 If BIND NEW PACKAGE is BINDADD, any of these:

BINDADD privilege and either the CREATE IN or
PACKADM privilege for the collection
SYSADM or SYSCTRL authority

BIND REPLACE or
REBIND for a plan or
package using the default
owner or primary
authorization ID

Primary or any
secondary ID

Any of these:

Ownership of the plan or package
BIND privilege for the plan or package
BINDAGENT from the plan or package owner
PACKADM authority for the collection (for a package
only)
SYSADM or SYSCTRL authority

See also “Multiple Actions in One Statement” on
page 3-34.

BIND a new version of a
package, with default
owner

Primary ID If BIND NEW PACKAGE is BIND, any of these:

BIND privilege on the package or collection
BINDADD privilege and CREATE IN privilege for the
collection
PACKADM authority for the collection
SYSADM or SYSCTRL authority

 If BIND NEW PACKAGE is BINDADD, any of these:

BINDADD privilege and either the CREATE IN or
PACKADM privilege for the collection
SYSADM or SYSCTRL authority

FREE or DROP a package Primary or any
secondary ID

Any of these:

Ownership of the package
BINDAGENT from the package owner
PACKADM authority for the collection
SYSADM or SYSCTRL authority

COPY a package Primary or any
secondary ID

Any of these:

Ownership of the package
COPY privilege for the package
BINDAGENT from the package owner
PACKADM authority for the collection
SYSADM or SYSCTRL authority

FREE a plan Primary or any
secondary ID

Any of these:

Ownership of the plan
BIND privilege for the plan
BINDAGENT from the plan owner
SYSADM or SYSCTRL authority

 Chapter 3-2. Controlling Access to DB2 Objects 3-33

Table 31 (Page 4 of 4). Privileges Required for Basic Operations

Operation ID Required Privileges

Name a new OWNER
other than the primary
authorization ID for any
bind operation

Primary or any
secondary ID

Any of these:

New owner is the primary or any secondary ID
BINDAGENT from the new owner
SYSADM or SYSCTRL authority

 Composite Privileges
An SQL statement can name more than one object; for example, a SELECT
operation can join two or more tables, or an INSERT can use a subquery. Those
operations require privileges on all the tables. You might be able to issue such a
statement dynamically even though no one of your IDs has all the privileges
required. If the bind option DYNAMICRULES is RUN, when the dynamic statement
is prepared, it is validated if the set of your primary and all your secondary IDs has
all the needed privileges among them. If you embed the same statement in a host
program and try to bind it into a plan or package, the validation fails. The validation
also fails if the DYNAMICRULES option is BIND when you issue the dynamic
statement. In either of those cases, all the required privileges must be held by the
single ID that owns the plan or package.

Multiple Actions in One Statement
A REBIND or FREE command can name more than one plan or package. If no
owner is named, the set of privileges associated with the primary and secondary
IDs must include the BIND privilege for each object. For example, suppose that
FREDDY has the BIND privilege on plan P1 and that REUBEN has the BIND
privilege on plan P2. When someone with FREDDY and REUBEN as secondary
authorization IDs issues the command:

REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither FREDDY nor REUBEN
has the BIND privilege for both plans.

3-34 Administration Guide

Some Role Models
The names of some authorities suggest job titles. For example, you might expect a
system administrator to have SYSADM authority. But not all organizations divide
job responsibilities in the same way. The table below lists some other common job
titles, the tasks that usually go with them, and the DB2 authorities or privileges that
are needed to carry out those tasks.

Table 32. Some Common Jobs, Tasks, and Required Privileges

Job Title Tasks Required Privileges

System Operator Issues commands to start and stop
DB2; control traces; display databases
and threads; recover indoubt threads

SYSOPR authority

System Administrator Performs emergency backup, with
access to all data

SYSADM authority

Security Administrator Authorizes other users, for some or all
levels below

SYSCTRL authority

Database Administrator Designs, creates, loads, reorganizes,
and monitors databases, tables, and
other objects

DBADM authority over some database;
use of storage groups and buffer pools

System Programmer Installs a DB2 system; recovers the DB2
catalog; repairs data

Installation SYSADM, given when DB2 is
installed. (Consider securing the
password for an ID with this authority so
that the authority is available only when
needed.)

Application Programmer Develops and tests DB2 application
programs; can create tables of test data

BIND on existing plans or packages, or
BINDADD; CREATE IN on some
collections; privileges on some tables;
CREATETAB on some database, with a
default table space provided.

Production Binder Binds, rebinds, and frees application
plans

BINDAGENT, granted by users with
BINDADD and CREATE IN privileges

Package Administrator Manages collections and the packages
in them, and delegates the
responsibilities

PACKADM authority

User Analyst Defines the data requirements for an
application program, by examining the
DB2 catalog

SELECT on the SYSTABLES,
SYSCOLUMNS, and SYSVIEWS catalog

| tables. CREATETMTAB system privilege
| to create temporary tables

Program End User Executes an application program EXECUTE for the application plan

Information Center
Consultant

Defines the data requirements for a
query user; provides the data by
creating tables and views, loading
tables, and granting access

DBADM authority over some database;
SELECT on the SYSTABLES,
SYSCOLUMNS, and SYSVIEWS catalog
tables

Query User Issues SQL statements to retrieve, add,
or change data. Can save results as
tables or in global temporary tables

SELECT, INSERT, UPDATE, DELETE on
some tables and views; CREATETAB, to
create tables in other than the default

| database; CREATETMTAB system
| privilege to create temporary tables;

SELECT on SYSTABLES,
SYSCOLUMNS, or views thereof. QMF
provides the views.

 Chapter 3-2. Controlling Access to DB2 Objects 3-35

Examples of Granting and Revoking Privileges
The SQL GRANT statement enables you to grant privileges explicitly. The REVOKE
statement enables you to take them away. Only a privilege that has been
specifically granted can be revoked. (You can use either statement only if
authorization checking was enabled when DB2 was installed.)

You can grant and revoke privileges to and from a single ID, or you can name
several IDs on one statement. You can grant privileges to the ID PUBLIC, making
them available to all IDs at the local DB2, including the owner IDs of packages that
are bound from a remote location. You can also grant a table privilege to any ID
anywhere that uses system-directed access to your data, by issuing:

GRANT privilege TO PUBLIC AT ALL LOCATIONS;

| The privilege can be any table privilege except ALTER, INDEX, or REFERENCES.

If you grant a privilege to PUBLIC, the DB2 catalog tables record the grantee as
PUBLIC. If you grant to PUBLIC AT ALL LOCATIONS, the grantee is PUBLIC*.
PUBLIC is a special identifier used by DB2 internally; it should not be used as a
primary or secondary authorization ID. PUBLIC* cannot be used as an ID. When a
privilege is revoked from PUBLIC or PUBLIC AT ALL LOCATIONS, authorization
IDs to which the privilege was specifically granted still retain it.

The holding of other privileges can depend on privileges granted to PUBLIC. Then,
GRANTOR is listed as PUBLIC, as in the following examples:

� USER1 creates a table and grants ALL PRIVILEGES on it to PUBLIC. USER2
then creates a view on the table. In the catalog table SYSIBM.SYSTABAUTH,
GRANTOR is PUBLIC and GRANTEE is USER2. Creating the view requires
the SELECT privilege, held by PUBLIC. If PUBLIC loses the privilege, the view
is dropped unless the privilege was also granted specifically to USER2.

� Another user binds a plan, PLAN1, whose program refers to the table created
in the previous example. In SYSTABAUTH, GRANTOR is PUBLIC, GRANTEE
is PLAN1, and GRANTEETYPE is P. Again, if PUBLIC loses its privilege, the
plan can be invalidated.

You can grant a specific privilege on one object in a single statement, you can
grant a list of privileges, and you can grant privileges over a list of objects. You can
also grant ALL, for all the privileges of accessing a single table, or for all privileges
associated with a specific package. If the same grantor grants access to the same
grantee more than once, without revoking it, DB2 ignores the duplicate grants and
keeps only one record in the catalog for the authorization. That suppression of
duplicate records applies not only to explicit grants, but also to the implicit grants of
privileges that are made when a package is created.

Granting Privileges to Remote Users: A query arriving at your local DB2 through
the distributed data facility is accompanied by an authorization ID. That ID can go
through connection or sign-on processing when it arrives, can be translated to
another value, and can be associated with secondary authorization IDs. (For the
details of all those processes, see “Controlling Requests from Remote Applications”
on page 3-71.)

3-36 Administration Guide

The end result is that the query is associated with a set of IDs known to your local
DB2. How you assign privileges to those IDs is no different from how you assign
them to IDs associated with queries arising locally.

There are, however, some differences in the privileges that a query using
system-directed access can use:

� It cannot use privileges granted TO PUBLIC; it can use privileges granted TO
PUBLIC AT ALL LOCATIONS.

� It can exercise only the SELECT, INSERT, UPDATE, and DELETE privileges at
the remote location.

Those restrictions do not apply to queries run by a package bound at your local
DB2. Those queries can use any privilege granted to their associated IDs or any
privilege granted to PUBLIC.

Examples Using GRANT
The scenario in this section illustrates the different types of grant statements. In
order to focus upon GRANT, and not the broader topic of security, the example is
one for which the data is not highly critical.

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards—important things like
notices of upcoming holidays and bowling scores. The president of the Spiffy
Computer Company, Truly Spiffy, is a wonderful bowler with a great ego, and wants
everyone in the company to have access to her scores.

To create and maintain the tables and programs needed for this application, the
security plan provides for the roles shown in Figure 55.

┌──────────────────────────┐

│ System administrator │

│ ID: ADMIN │

└──────────┬───────────────┘

┌──────────┴───────────────┐ ┌──────────────────────────┐

│ Package administrator │ │ Production binder │

│ ID: PKAð1 ├─────────┤ ID: BINDER │

└──────────┬───────────────┘ └──────────────────────────┘

┌──────────┴───────────────┐ ┌──────────────────────────┐

│ Database administrator │ │ Database controllers │

│ ID: DBAð1 ├─────────┤ IDs: DBUTIL1, DBUTIL2 │

└──────────┬───────────────┘ └──────────────────────────┘

┌──────────┴───────────────┐

│ Application programmers │

│ IDs: PGMRð1, PGMRð2 │

│ PGMRð3 │

└──────────────────────────┘

Figure 55. Security Plan for the Spiffy Computer Company. Lines connect the grantor of a
privilege or authority to the grantee.

Spiffy's system of privileges and authorities associates each role with an
authorization ID.

 Chapter 3-2. Controlling Access to DB2 Objects 3-37

System Administrator's Privileges
┌────────────────────────────────────┐

│ User ID: ADMIN │

│ Authority: SYSADM │

│ Privileges: Ownership of SG1 │

└────────────────────────────────────┘

The system administrator uses the ADMIN authorization ID, which has SYSADM
authority, to create a storage group (SG1) and issue the following statements:

1. GRANT PACKADM ON COLLECTION BOWLS TO PKAð1 WITH GRANT OPTION;

(This grants package privileges on all packages in the collection BOWLS, plus
the CREATE IN privilege on that collection to PKA01, who can also grant those
privileges to others.)

2. GRANT CREATEDBA TO DBAð1;

(This grants the privilege to create a database and have DBADM authority over
it to DBA01.)

3. GRANT USE OF STOGROUP SG1 TO DBAð1 WITH GRANT OPTION;

(This allows DBA01 to use storage group SG1 and to pass that privilege on to
others.)

4. GRANT USE OF BUFFERPOOL BPð, BP1 TO DBAð1 WITH GRANT OPTION;

(This allows DBA01 to use buffer pools BP0 and BP1 and to pass that privilege
on to others.)

Package Administrator's Privileges
┌────────────────────────────────────┐

│ User ID: PKAð1 │

│ Authority: PACKADM over the │

│ collection BOWLS │

└────────────────────────────────────┘

The package administrator, PKA01, controls the binding of packages into
collections and can pass on the CREATE IN privilege and the package privileges to
others.

Database Administrator's Privileges
┌────────────────────────────────────┐

│ User ID: DBAð1 │

│ Authority: DBADM over DB1 │

│ Privileges: CREATEDBA │

│ Use of SG1 with GRANT │

│ Use of BPð and BP1 │

│ with GRANT │

│ Ownership of DB1 │

└────────────────────────────────────┘

The database administrator, DBA01, using the CREATEDBA privilege, creates the
database DB1. Then DBA01 automatically has DBADM authority over the
database.

3-38 Administration Guide

Database Controller's Privileges
But the database administrator at Spiffy wants help running the COPY and
RECOVER utilities, so he grants DBCTRL authority over database DB1 to DBUTIL1
and DBUTIL2.

┌────────────────────────────────────┐

│ User ID: DBUTIL1, DBUTIL2 │

│ Authority: DBCTRL over DB1 │

└────────────────────────────────────┘

To do that, the database administrator issues the following statement:

GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

Examples with Secondary IDs
The examples that follow illustrate the use of secondary authorization IDs.

That means using RACF (or a similar external security system) to define user
groups and connect primary authorization IDs to them. The primary DB2
authorization ID is the user's RACF user ID, and the associated secondary
authorization IDs are the names of the groups to which the primary ID is
connected. DB2 privileges are then granted to the secondary IDs, but might not be
explicitly granted to any primary ID.

This approach reduces the number of grants that are needed and associates
privileges with a functional ID, rather than an individual one. The functional ID can
remain in place until Spiffy redesigns its procedures. Individual IDs, which come
and go, can be connected to or disconnected from the group that exercises the
functional ID's privileges, without requiring new grants or revokes.

Application Programmers' Privileges
The database administrator at Spiffy wants several employees in their Software
Support department to create tables in the DB1 database. He creates DEVGROUP
as a RACF group ID for this purpose. To make things simpler, the database
administrator decides that each CREATE TABLE statement should implicitly create
a unique table space for the table. Hence, DEVGROUP needs both the
CREATETAB and CREATETS privileges, as well as the privileges to use the SG1
storage group and one of the buffer pools, BP0, for the implicitly created table
spaces.

┌────────────────────────────────────┐

│ RACF group ID: DEVGROUP │

│ Privileges: (All without GRANT) │

│ CREATETAB on DB1 │

│ CREATETS on DB1 │

│ Use of SG1 │

│ Use of BPð │

└────────────────────────────────────┘

DBA01 owns database DB1 and has the privileges to use storage group SG1 and
buffer pool BP0 (both with the GRANT option). He issues the following statements:

1. GRANT CREATETAB, CREATETS ON DATABASE DB1 TO DEVGROUP;

2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;

3. GRANT USE OF BUFFERPOOL BPð TO DEVGROUP;

The system and database administrators at Spiffy still need to control the use of
those resources, so the statements above are issued without the GRANT option.

 Chapter 3-2. Controlling Access to DB2 Objects 3-39

Three programmers in Software Support write and test a new program,
PROGRAM1. Their IDs are PGMR01, PGMR02, and PGMR03. Each one needs to
create test tables, use the SG1 storage group, and use one of the buffer pools. But
all of those resources are controlled by DEVGROUP, which is a RACF group ID.

So it is not necessary to grant privileges over those resources specifically to each
of PGMR01, PGMR02, and PGMR03. All that is needed is to connect each ID to
the RACF group DEVGROUP. (That plan assumes that the installed connection
and sign-on procedures allow secondary authorization IDs. For examples of RACF
commands that connect IDs to RACF groups, and for a description of the
connection and sign-on procedures, see “Chapter 3-4. Controlling Access to a DB2
Subsystem” on page 3-63.)

┌────────────────────────────────────┐

│ RACF group ID: DEVGROUP │

│ Group members: PGMRð1, PGMRð2, │

│ PGMRð3 │

└────────────────────────────────────┘

The security administrator connects as many members as desired to the group
DEVGROUP. Each member can exercise all the privileges granted to the group ID.

Privileges for Binding the Plan
Three programmers can now share the tasks done by the ID DEVGROUP.
Someone creates a test table, DEVGROUP.T1, in database DB1 and loads it with
test data. Someone writes a program, PROGRAM1, to display bowling scores
contained in T1. Someone must bind the plan and packages that accompany the
program, and that requires an additional privilege.

┌────────────────────────────────────┐

│ RACF group ID: DEVGROUP │

│ Privilege: BINDADD │

└────────────────────────────────────┘

ADMIN, who has SYSADM authority, grants the required privilege by issuing the
following statement:

GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages to be owned by DEVGROUP. Any member of the group can rebind a
plan or package owned by DEVGROUP.

Software Support proceeds to create and test the program.

Moving PROGRAM1 into Production
Spiffy has a different set of tables, containing actual data and owned by another
group ID, PRODCTN. The program was written with unqualified table names; the
new packages and plan must refer to table PRODCTN.T1. To move the completed
program into production, someone must:

� Rebind the application plan with the owner PRODCTN
� Rebind the packages into the collection BOWLS, again with the owner

PRODCTN

Spiffy gives that job to a production binder, with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or

3-40 Administration Guide

package with OWNER (PRODCTN), and to add a package to the collection
BOWLS.

┌────────────────────────────────────┐

│ User ID: BINDER │

│ Privileges: BINDAGENT for DEVGROUP │

│ BINDAGENT for PRODCTN │

│ CREATE on BOWLS │

└────────────────────────────────────┘

Any member of the group DEVGROUP can grant the BINDAGENT privilege, by
using the statements below. Any member of PRODCTN can also grant the
BINDAGENT privilege, by using a similar set of statements.

1. SET CURRENT SQLID='DEVGROUP';

2. GRANT BINDAGENT TO BINDER;

The package administrator for BOWLS, PACKADM, can grant the CREATE
privilege with this statement:

GRANT CREATE ON COLLECTION BOWLS TO BINDER;

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAM1 plan available to all employees. He does this by issuing the
statement:

GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

More than one ID has the authority or privileges necessary to issue this statement.
ADMIN has SYSADM authority and can grant the EXECUTE privilege. Or,
PGMR01 can set CURRENT SQLID to PRODCTN, which owns PROGRAM1, and
issue the statement. When EXECUTE is granted to public, other IDs do not need
any explicit authority on T1; it is enough that they have the privilege of executing
the plan.

Finally, the plan to display bowling scores at Spiffy Computer Company is
complete. The production plan, PROGRAM1, is created and all IDs have the
authority to execute the plan.

Spiffy's Approach to Distributed Data
Some time after the system and database administrators at Spiffy install their
security plan, Truly Spiffy tells them that other applications on other systems must
connect to the local DB2. She wants people at every location to be able to access
bowling scores through PROGRAM1 on the local system.

The solution is to:

1. Add a CONNECT statement to the program, naming the location at which table
PRODCTN.T1 resides. (In this case, the table and the package reside at only
the central location.)

2. Issue the statement: GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP;

(PKA01, who has PACKADM authority, grants the required privileges to
DEVGROUP by issuing this statement.)

3. Bind the SQL statements in PROGRAM1 as a package.

That done, the package owner can issue the statement:

 Chapter 3-2. Controlling Access to DB2 Objects 3-41

GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Any system connected to the original DB2 location can then run PROGRAM1 and
execute the package, using DRDA access. (If the remote system is another DB2,
then there must be a plan bound there that includes the package in its package
list.)

That solution, of course, is vastly simplified. Here we are focusing on granting
appropriate privileges and authorities. In practice, you would also have to consider
questions like these:

� Is the performance of a remote query acceptable for this application?
� If other DBMSs are not DB2 subsystems, will the non-SQL portions of

PROGRAM1 run in their environments?

And so on.

The REVOKE Statement
An ID that has granted a privilege can revoke it by issuing the REVOKE statement:

REVOKE authorization-specification FROM auth-id

An ID with SYSADM or SYSCTRL authority can revoke a privilege that has been
granted by another ID with:

REVOKE authorization-specification FROM auth-id BY auth-id

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single
REVOKE statement does not remove the privilege. To remove it, each grant of the
privilege must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass
the granted privilege on to others. If the privilege is removed from the ID, its
deletion can cascade to others, with side effects that are not immediately evident.
When a privilege is removed from authorization ID X, it is also removed from any
ID to which X granted it, unless that ID also has it from some other source.5

For example, suppose that DBA01 has granted DBCTRL authority with the GRANT
option on database DB1 to DBUTIL1, and DBUTIL1 has granted the CREATETAB
privilege on DB1 to PGMR01. If DBA01 revokes DBCTRL from DBUTIL1, PGMR01
loses the CREATETAB privilege. If PGMR01 also granted that to OPER1 and
OPER2, they also lose it. But table T1, which PGMR01 created while enjoying the
CREATETAB privilege, is not dropped, and the privileges that PGMR01 has or
granted as its owner are not deleted. If PGMR01 granted SELECT on T1 to
OPER1, the validity of that grant rests on PGMR01's ownership of the table. Even
when the privilege of creating the table is revoked, the table remains, the privilege
remains, and OPER1 can still access T1.

5 DB2 does not cascade a revoke of SYSADM authority from the installation SYSADM authorization IDs.

3-42 Administration Guide

Privileges Granted from Two or More IDs
In addition to the CREATETAB privilege granted by DBUTIL1, suppose DBUTIL2
also granted the CREATETAB privilege to PGMR01. The action is recorded in the
catalog, with its date and time, but has no other effect until the grant from DBUTIL1
to PGMR01 is revoked. Then it is necessary to determine by what authority
PGMR01 granted CREATETAB to OPER1 and the others. Figure 56 diagrams the
situation; arrows represent the granting of the CREATETAB privilege.

 DBUTIL2

 │

│ Time 2

 │

Time 1 6 Time 3

DBUTIL1 ────────5 PGMRð1 ─────────5 OPER1

Figure 56. Authorization Granted by Two or More IDs

As in the diagram, suppose that DBUTIL1 and DBUTIL2 at, respectively, Time 1
and Time 2, each issued this statement:

GRANT CREATETAB ON DATABASE DB1 TO PGMRð1 WITH GRANT OPTION;

At Time 3, PGMR01 grants the privilege to OPER1. Later, DBUTIL1's authority is
revoked, or perhaps DBUTIL1 explicitly revokes the CREATETAB privilege from
PGMR01. PGMR01 has the privilege also from DBUTIL2, and does not lose it. But
does OPER1 lose the privilege?

� If Time 3 is later than Time 2, OPER1 does not lose the privilege. The recorded
dates and times show that, at Time 3, PGMR01 could have granted the
privilege entirely on the basis of the privilege granted by DBUTIL2. That
privilege was not revoked.

� If Time 3 is earlier than Time 2, OPER1 does lose the privilege. The recorded
dates and times show that, at Time 3, PGMR01 could only have granted the
privilege on the basis of the privilege granted by DBUTIL1. That privilege was
revoked, so the privileges dependent on it are revoked.

Revoking Privileges Granted by Other IDs
An ID with SYSADM or SYSCTRL authority can revoke privileges granted by other
IDs.

To revoke the CREATETAB privilege on database DB1 from PGMR01 entirely, use:

REVOKE CREATETAB ON DATABASE DB1 FROM PGMRð1 BY ALL;

To revoke privileges granted by DBUTIL1, and leave intact the same privileges if
they were granted by any other ID, use:

REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMRð1 BY DBUTIL1;

Other Implications of the REVOKE Statement
View Deletion: If a table privilege is revoked from the owner of a view on the table,
the corresponding privilege on the view is revoked. The privilege is revoked not
only from the owner of the view, but from all other IDs it was granted to. If the
SELECT privilege on the base table is revoked from the owner of the view, the
view is dropped. For example, suppose OPER2 has the SELECT and INSERT
privileges on table T1 and creates a view of it. If the INSERT privilege on T1 is
revoked from OPER2, all insert privileges on the view are revoked. If the SELECT
privilege on T1 is revoked from OPER2, the view is dropped.

 Chapter 3-2. Controlling Access to DB2 Objects 3-43

Views Created by SYSADM: It is possible for an authorization ID with SYSADM
authority to create a view for another authorization ID. In this case, the view could
have both a creator and an owner. The owner is automatically given the SELECT
privilege on the view. But it is still the privilege on the base table that determines
whether the view is dropped. For example, suppose that IDADM, with SYSADM
authority, creates a view on TABLX with OPER as the owner. OPER now has the
SELECT privilege on the view, but not necessarily any privileges on the base table.
If SYSADM is revoked from IDADM, so that the SELECT privilege on TABLX is
gone, the view is dropped.

If one ID creates a view for another, the catalog table SYSIBM.SYSTABAUTH
might need two rows to record the fact.

� If IDADM creates a view for OPER when OPER has enough privileges to
create the view by itself, then only one row is inserted in SYSTABAUTH. The
row shows only that OPER granted the required privileges.

� If IDADM creates a view for OPER when OPER does not have enough
privileges to create the view by itself, then two rows are inserted in
SYSTABAUTH. One row shows IDADM as GRANTOR and OPER as
GRANTEE of the SELECT privilege. The other row shows any other privileges
that OPER might have on the view because of privileges held on the base
table.

Application Plan and Package Invalidation: If the owner of an application plan or
package loses a privilege required by the plan or package, and the owner does not
have that privilege from another source, DB2 invalidates the plan or package. For
example, suppose OPER2 has the SELECT and INSERT privileges on table T1
and creates a plan that uses SELECT, but not INSERT. If the SELECT privilege is
revoked, DB2 invalidates the plan. If the INSERT privilege is revoked, there is no
effect on the plan.

| Implications for Caching: If authorization is being cached for packages, a revoke
| of EXECUTE authority on the package from an ID causes that ID to be removed
| from the cache.

| If authorization is being cached for plans, a revoke of EXECUTE authority on the
| plan from any ID causes the authorization cache to be invalidated.

| If an application is caching dynamic SQL statements, and a privilege is revoked
| that was needed when the statement was originally prepared and cached, that
| statement is removed from the cache. Subsequent PREPARE requests for that
| statement do not find it in the cache and execute a full PREPARE. If the plan or
| package is bound with KEEPDYNAMIC(YES), which means the application does
| not have to explicitly re-prepare the statement after a commit operation, this means
| you might get an error on an OPEN, DESCRIBE, or EXECUTE of that statement
| following the next commit operation. The error can occur because a prepare
| operation is performed implicitly by DB2. If you no longer have sufficient authority
| needed for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking SYSADM from Install SYSADM: If you REVOKE SYSADM from the
Install SYSADM user ID, DB2 does not cascade the revoke. This feature allows you
to change the Install SYSADM user ID or delete extraneous SYSADM user IDs. To
change the Install SYSADM user ID:

1. Select the new Install SYSADM user ID.

3-44 Administration Guide

2. GRANT it SYSADM authority.

3. REVOKE SYSADM authority from the old Install SYSADM user ID.

| 4. Update the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

To delete an extraneous SYSADM user ID:

1. Write down the current Install SYSADM.

| 2. Make the SYSADM user ID you wish to delete an Install SYSADM, by updating
| the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

3. REVOKE SYSADM authority from it using another SYSADM user ID.

4. Change the Install SYSADM user ID back to its original value.

Finding Catalog Information about Privileges
The following catalog tables contain information about the privileges held by IDs:

Table Name Records Privileges Held For:
SYSIBM.SYSCOLAUTH Updating columns
SYSIBM.SYSDBAUTH Databases
SYSIBM.SYSPLANAUTH Plans
SYSIBM.SYSPACKAUTH Packages
SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections, and table

spaces
SYSIBM.SYSTABAUTH Tables and views
SYSIBM.SYSUSERAUTH System authorities.

For descriptions of the columns of each table, see Appendix D of SQL Reference .
The suggestions that follow show how to extract useful information about privileges.

Retrieving Information in the Catalog
You can query the DB2 catalog tables through SQL SELECT statements.
Executing those statements requires appropriate privileges and authorities, and you
can control access to the catalog by granting and revoking those. For suggestions
about securing the catalog, see “Using Views of the DB2 Catalog Tables” on
page 3-48.

The following examples suggest some of the information you can get from the DB2
catalog.

 Chapter 3-2. Controlling Access to DB2 Objects 3-45

Retrieving All DB2 Authorization IDs with Granted Privileges
Each of the catalog tables listed above includes columns named GRANTEE and
GRANTEETYPE. If GRANTEETYPE is blank, the value of GRANTEE is an ID that
has been granted a privilege. No single catalog table contains information about all
privileges. However, to retrieve all IDs with privileges, you can issue:

SELECT GRANTEE, 'PLAN ' FROM SYSIBM.SYSPLANAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'PACKAGE ' FROM SYSIBM.SYSPACKAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'SYSTEM ' FROM SYSIBM.SYSUSERAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'DATABASE' FROM SYSIBM.SYSDBAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'TABLE ' FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'COLUMNS ' FROM SYSIBM.SYSCOLAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'USE ' FROM SYSIBM.SYSRESAUTH

WHERE GRANTEETYPE= ' ';

Periodically, you should compare the list retrieved by that statement with lists of
users from subsystems that connect to DB2—such as IMS, CICS, and TSO—and
with lists of RACF groups and lists of users from other DBMSs that access your
DB2. If DB2 lists IDs that do not exist elsewhere, you should revoke their privileges.

Retrieving Multiple Grants of the Same Authorization
If several grantors grant the same privilege to the same grantee, the catalog can
become cluttered with similar data. This might cause poor performance. (DB2 does
not keep duplicate records of the same privilege granted to the same grantee by
the same grantor.) But, you might want authority granted from several different IDs.
For example, you might want to retain a privilege if it is revoked by just one of the
sources that granted it.

The following SQL statement retrieves duplicate grants on plans. If multiple grants
clutter your catalog, examine the output from a query like this one, starting at the
top with the most frequent grants.

SELECT GRANTEE, NAME, COUNT(\)

 FROM SYSIBM.SYSPLANAUTH

GROUP BY GRANTEE, NAME

HAVING COUNT(\) > 2

ORDER BY 3 DESC;

Similar statements for other catalog tables can retrieve multiple grants on other
types of objects.

Retrieving All IDs with DBADM Authority
To retrieve all IDs that have DBADM authority, issue:

SELECT DISTINCT GRANTEE

 FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <>' ' AND GRANTEETYPE = ' ';

3-46 Administration Guide

Retrieving IDs Authorized to Access a Table
To retrieve all IDs that are explicitly authorized to access the employee table
(DSN8510.EMP in database DSN8D51A), issue:

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN851ð'

AND GRANTEETYPE = ' ';

To find out who can change the employee table, issue the following statement. It
retrieves IDs with administrative authorities, as well as IDs to which authority is
explicitly granted.

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN851ð' AND

GRANTEETYPE = ' ' AND

(ALTERAUTH <> ' ' OR

DELETEAUTH <> ' ' OR

INSERTAUTH <> ' ' OR

UPDATEAUTH <> ' ')

UNION

SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ' '

UNION

SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ' ' AND NAME = 'DSN8D51A';

To retrieve the columns of DSN8510.EMP for which update privileges have been
granted on a specific set of columns, issue:

SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH

WHERE CREATOR='DSN851ð' AND TNAME='EMP'

ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to an authorization ID (blank) or are used by an application plan or
package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN8510.EMP, issue:

SELECT DISTINCT GRANTEE

 FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR='DSN851ð' AND GRANTEETYPE=' '

AND UPDATEAUTH <> ' ';

The query returns only IDs to which update privileges have been specifically
granted. It does not return those who have the privilege because of SYSADM or
DBADM authority. They could be included by forming the union with another query.

Retrieving the Tables an ID is Authorized to Access
To retrieve the list of tables and views that PGMR001 can access, issue:

SELECT DISTINCT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE GRANTEE = 'PGMRðð1' AND GRANTEETYPE =' ';

To retrieve the tables, views, and aliases that PGMR001 owns, issue:

SELECT NAME FROM SYSIBM.SYSTABLES

WHERE CREATOR = 'PGMRðð1';

 Chapter 3-2. Controlling Access to DB2 Objects 3-47

Retrieving the Plans and Packages That Access a Table
The statement below retrieves the names of application plans and packages that
refer to table DSN8510.EMP directly.

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = 'P' AND

 TCREATOR = 'DSN851ð' AND

 TTNAME = 'EMP';

A plan or package can refer to the table indirectly, through a view. To find all views
that refer to the table, query SYSIBM.SYSVIEWDEP. Then find all plans and
packages that refer to those views by issuing statements like the one above.

The query above does not distinguish between plans and packages. To identify a
package, use the COLLECTION column of table SYSTABAUTH: it names the
collection a package resides in and is blank for a plan.

Using Views of the DB2 Catalog Tables
Only an ID with SYSADM or SYSCTRL authority automatically has the privilege of
retrieving data from catalog tables. If it is not desirable to grant the SELECT
privilege on all catalog tables to PUBLIC, consider using views to let each ID
retrieve information about its own privileges.

For example, the following view includes the owner and the name of every table on
which a user's primary authorization ID has the SELECT privilege:

CREATE VIEW MYSELECTS AS

SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE SELECTAUTH <> ' ' AND GRANTEETYPE = ' ' AND

GRANTEE IN (USER, 'PUBLIC', 'PUBLIC\', CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue:

GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This one shows privileges over columns:

CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)

 AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL

 FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH

WHERE TCREATOR = TBCREATOR AND TTNAME = TBNAME AND GRANTEETYPE = ' '

AND GRANTEE IN (USER,'PUBLIC',CURRENT SQLID,'PUBLIC\');

3-48 Administration Guide

Chapter 3-3. Controlling Access Through a Closed
Application

A closed application is an application that requires DB2 objects to be managed
solely through external interfaces. As an example, consider an application process
that uses DB2 as a repository for changing data. The process does not merely
write to and read from a fixed set of tables; it must also create, alter, and drop
tables, and perhaps other objects, to deal with new data formats. Normally, a
database administrator would have the privileges needed to do those operations at
any time, but now the operations must be done only through a specific application.
The application is “closed” because it requires exclusive control over data definition
statements for some set of objects.

If you install data definition control support you can control how specific plans or
package collections can use those statements. Figure 57 lists the specific
statements that are controlled. In this chapter, those statements are referred to as
“data definition language,” or “DDL.”

The control does not avoid existing authorization checks; it does impose additional
constraints. You register plans and package collections in a special table, and
register the objects that the plans and collections are associated with in another
table. DB2 then consults those two registration tables before accepting a given DDL
statement from a process. If the registration tables indicate that the particular
process is not allowed to create, alter, or drop that particular object, DB2 does not
allow it.

This chapter tells how to impose several degrees of control over applications and
objects; see “Controlling Data Definition” on page 3-50.

If you choose to impose those controls, you have two tables to manage: the
application registration table (ART) and the object registration table (ORT). For
instructions, see “Managing the Registration Tables and Their Indexes” on
page 3-57.

CREATE ALIAS DROP ALIAS COMMENT ON

CREATE DATABASE ALTER DATABASE DROP DATABASE LABEL ON

CREATE INDEX ALTER INDEX DROP INDEX

CREATE STOGROUP ALTER STOGROUP DROP STOGROUP

CREATE SYNONYM DROP SYNONYM

CREATE TABLE ALTER TABLE DROP TABLE

CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE

CREATE VIEW DROP VIEW

Figure 57. Statements controlled by data definition control support

 Copyright IBM Corp. 1982, 1997 3-49

Controlling Data Definition
You can control the use of data definition language through several installation
options and entries in two special tables, the application registration table and the
object registration table. In those tables, you register the names of plans and
package collections that make up an application and the names of the objects
whose data definition they control. First, there are installation options you must
choose to make any use of data definition control; see “Required Installation
Options.” The next sections illustrate the use of installation options and the
registration tables for the following situations:

� Control by application name

– Registered applications have total control over all DDL in the DB2
subsystem. See “Controlling by Application Name” on page 3-51.

– Registered applications have total control with some exceptions. See
“Controlling by Application Name with Exceptions” on page 3-52.

� Control by object name

– All objects in the system are registered and controlled by name. See
“Controlling by Object Name” on page 3-54.

– Some specific objects are registered and controlled, but with exceptions.
DDL is accepted for objects that are not registered. See “Controlling by
Object Name with Exceptions” on page 3-56.

The names in some columns in the ART and ORT can be represented by patterns
that use the percent sign (%) and the underscore (_) characters. 3-51 tells you how
to do this.

Required Installation Options
To make any use of the application and object registration tables, you must install
data definition control support. Do that on panel DSNTIPZ by entering:

1 INSTALL DD CONTROL SUPT. ===> YES

Also on panel DSNTIPZ, choose the names for the registration tables in your DB2
subsystem, their owner, and the database they reside in. You can accept the
default names or assign names of your own. The default names are:

6 REGISTRATION OWNER ===> DSNRGCOL
7 REGISTRATION DATABASE ===> DSNRGFDB

8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL

9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT

We use those names throughout this chapter. If you choose table names of your
own, each name can have a maximum of 17 characters.

Four other options on panel DSNTIPZ determine how DDL statements are
controlled. The following sections of this chapter show how specific objectives make
use of:

 2 CONTROL ALL APPLICATIONS ===>
 3 REQUIRE FULL NAMES ===>

 4 UNREGISTERED DDL DEFAULT ===>

 5 ART/ORT ESCAPE CHARACTER ===>

3-50 Administration Guide

Controlling by Application Name
The simplest use of data definition control is to give one or more applications total
control over the use of DDL in the system. To do that:

1. When installing DB2, choose to control all applications. On panel DSNTIPZ,
enter:

CONTROL ALL APPLICATIONS ===> YES

That choice allows only package collections or plans registered in the
application registration table to use DDL statements. (This case, then, does not
require any use of the object registration table.)

2. Register, in the application registration table, all package collections that you
allow to issue DDL statements, using the value Y in column DEFAULTAPPL. If
a plan is to issue DDL statements not bound to a package, register the plan
name. You must supply values for at least the following columns:

Column Name Description

APPLIDENT Collection-ID of the package executing the DDL or, if
there is no package, the name of the plan executing the
DDL

APPLIDENTTYPE Type of item named by APPLIDENT:

P Application plan
C Package collection

DEFAULTAPPL Whether the plan or package collection named by
APPLIDENT can use DDL. Enter Y (Yes); the default is N
(No).

(There are other columns in which you can enter information for your own use.
For a complete description of the table, see “Columns of the Application
Registration Table (ART)” on page 3-57.)

Example: Suppose you want all DDL in your system to be issued only through
certain applications. The applications are identified by:

1. PLANA, the name of an application plan
2. PACKB, a package collection-ID
3. TRULY%, a pattern for any plan name beginning with TRULY
4. TR%, a pattern for any plan name beginning with TR

Table 33 shows the entries you need in your application registration table.

 Using Name Patterns: DB2 accepts two pattern characters:

� The percent sign (%), to represent zero or more characters
� The underscore character (_), to represent a single character

Table 33. Table DSN_REGISTER_APPL for total system control

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y
PACKB C Y
TRULY% P Y
TR% P N

 Chapter 3-3. Controlling Access Through a Closed Application 3-51

Patterns are used here much as they are in the SQL LIKE predicate described in
Chapter 3 of SQL Reference. However, there is one difference: blanks following a
pattern character are not significant. DB2 treats 'A% ' the same as 'A%'.

The Escape Character: If you want the percent or underscore character to be
treated as a character, specify an escape character for option 5 on installation
panel DSNTIPZ. The escape character can be any special character, except _ or
%. To use the pound sign (#), enter:

5 ART/ORT ESCAPE CHARACTER ===> #

With that specification, the pound sign can be used in names here in the same way
as an escape character is used in an SQL LIKE predicate.

An Inactive Table Entry: In the table, the row with TR% for APPLIDENT was once
entered with the value Y for DEFAULTAPPL, to allow DDL to be executed by any
plan with a name beginning with TR. Later, DEFAULTAPPL was changed to N, to
disallow that use. The changed row does not prevent plans beginning with TR from
using DDL; the row merely fails to allow that use. (When the table is checked, that
row is ignored.) Hence, the plan TRULYXYZ is allowed to use DDL, by the row
with APPLIDENT TRULY%.

Controlling by Application Name with Exceptions
In this situation, you want to give one or more applications almost total control over
DDL. You reserve only a few objects to be created, altered, or dropped by other
applications. To do that:

1. When installing DB2, choose not to control all applications. On panel DSNTIPZ,
enter:

CONTROL ALL APPLICATIONS ===> NO

That choice allows unregistered applications to use DDL statements. The object
registration table determines restrictions that apply to that use.

2. Also on panel DSNTIPZ, enter:

UNREGISTERED DDL DEFAULT ===> APPL

That choice restricts the use of DDL statements for objects not registered in the
object registration table: only registered applications can use DDL for
unregistered objects. Hence, the registered applications retain “almost” total
control; only registered objects are possible exceptions.

3. In the object registration table, register all objects that are exceptions to the
system DDL control. You must supply values for at least the following columns:

Column Name Description

QUALIFIER Qualifier for the object name

NAME Simple name of the object

TYPE Type of object named:

C Table, view, index, synonym, or alias
D Database
T Table space
S Storage group

3-52 Administration Guide

APPLMATCHREQ Whether only the application named in APPLIDENT can
use DDL for this object: Y (Yes) or N (No)

APPLIDENT Collection-ID of the package that can have exclusive
control over DDL for this object or, if there is no package,
the name of the plan that can have exclusive control

APPLIDENTTYPE Type of item named by APPLIDENT:

P Application plan
C Package collection

(There are other columns in which you can enter information for your own use.
For a complete description of the table, see “Columns of the Object
Registration Table (ORT)” on page 3-58.)

Example: As in the example for “Controlling by Application Name” on page 3-51,
suppose that you want almost all DDL in your system to be issued only through
certain applications, known by an application plan (PLANA), a package collection
(PACKB), and a pattern for plan names (TRULY%). But you also want these
specific exceptions:

� Object KIM.VIEW1 can be created, altered, or dropped only by PLANC.
� Object BOB.ALIAS, only by the package collection PACKD.
� Object FENG.TABLE2, by any plan or package collection.
� Objects with names like SPIFFY.MSTR_, where the underscore stands for any

single character, only by plans with names that begin with TRULY.

The application registration table remains as in Table 33 on page 3-51; PLANA
and PACKB have total system control (but with exceptions). Table 34 shows the
entries needed to register those exceptions in the object registration table.

The first of those entries requires an application match for the object KIM.VIEW1:
the view can be created, altered, or dropped only by the application plan PLANC.
Similarly, the second entry specifies that BOB.ALIAS can be created, altered, or
dropped only by the package collection PACKD. The third entry requires no
application match for FENG.TABLE2: the object can be created, altered, or dropped
by any plan or package collection. The fourth entry requires only a pattern match;
the object SPIFFY.MSTRA, for example, can be created, altered, or dropped by
plan TRULYJKL.

Table 34. Table DSN_REGISTER_OBJT for system control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM VIEW1 C Y PLANC P
BOB ALIAS C Y PACKD C
FENG TABLE2 C N
SPIFFY MSTR_ C Y TRULY% P

Registering Sets of Objects
It is not necessary to give a complete two-part name for every object registered in
the ORT. To use incomplete names, on installation panel DSNTIPZ enter:

3 REQUIRE FULL NAMES ===> NO

The default value, YES, requires you to use both parts of the name of each
registered object. With the value NO, an incomplete name in the ORT represents a
set of objects that all share the same value for one part of a two-part name.

 Chapter 3-3. Controlling Access Through a Closed Application 3-53

Objects represented by incomplete names in the ORT need an authorizing entry in
the ART.

With the new option in effect, you could add to Table 34 on page 3-53 the entries
shown in Table 35.

The first two entries record two sets of objects, *.TABA and *.TABB, which are
controlled by PLANX and PACKY, respectively. That is, only PLANX can create,
alter, or drop any object whose name is qual.TABA, where qual is any appropriate
qualifier. Only PACKY can create, alter, or drop any object whose name is
qual.TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in Table 36. That allows the applications to use
sets of objects registered in the ORT with an incomplete name.

The next two new entries in the ORT record:

1. Tables, views, indexes, or aliases with names like SYSADM.*
2. Table spaces with names like DBSYSADM.*; that is, table spaces in database

DBSYSADM

The last entry in the ORT allows two kinds of incomplete names: table names like
USER1.* and table names like <! ** TABLEX was missing *** tonello *** 09/30/97
--> *.TABLEX.

ART Entries for Objects with Incomplete Names in the ORT: Objects having
names like those patterns can be created, altered, or dropped by any package
collection or application plan, because APPLMATCHREQ = N. But the collection or
plan that creates, alters, or drops such an object must be registered in the ART
with QUALIFIEROK=Y, to allow it to use incomplete object names.

Table 36 shows PLANA and PACKB registered in the ART to use sets of objects
that are registered in the ORT with incomplete names.

Table 35. Table DSN_REGISTER_OBJT for objects with incomplete names

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P
TABB C Y PACKY C

SYSADM C N
DBSYSADM T N
USER1 TABLEX C N

Table 36. Table DSN_REGISTER_APPL for plans that use sets of objects

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANA P N Y
PACKB C N Y

Controlling by Object Name
In this situation, you want each of several applications to control a specific set of
objects, and you want no unregistered objects in the system. You do allow some
registered objects that are not controlled by specific applications. To accomplish
that:

1. When installing DB2, choose not to control all applications, as in “Controlling by
Application Name with Exceptions” on page 3-52. On panel DSNTIPZ, enter:

3-54 Administration Guide

CONTROL ALL APPLICATIONS ===> NO

2. Also on panel DSNTIPZ, enter:

UNREGISTERED DDL DEFAULT ===> REJECT

That option totally restricts the use of DDL statements for objects not registered
in the object registration table: no application can create, or use any DDL, for
any unregistered object. (This case, then, might not require any use of the
ART.)

3. Register all objects in the system in the ORT by QUALIFIER, NAME, and
TYPE. You can use name patterns for QUALIFIER and NAME. (If you used
REQUIRE FULL NAMES = NO, then register sets of objects by NAME and
TYPE or by QUALIFIER and TYPE.) For each controlled object, use
APPLMATCHREQ = Y. Give the name of the plan or package collection that
controls the object in the APPLIDENT column. (Again, you can use a name
pattern.) You can have only one row in the ORT for each combination of
QUALIFIER.NAME.TYPE.

4. Register in the ART, with QUALIFIEROK = Y, any plan or package collection
that can use a set of objects that you register in the ORT with an incomplete
name, whether or not that set has APPLMATCHREQ = Y.

Example: Table 37 on page 3-56 shows entries in the object registration table for
a DB2 subsystem containing the following objects:

� Two storage groups and a database that are not controlled by a specific
application. Those could be created, altered, or dropped by a user with the
appropriate authority using any application, say SPUFI or QMF.

� Two table spaces that are not controlled by a specific application. Their names
are qualified by the name of the database they reside in.

� Three objects whose names are qualified by the authorization IDs of their
owners. Those objects could be tables, views, indexes, synonyms, or aliases.
DDL statements for those objects can be issued only through the application
plan named PLANX or the package collection named PACKX.

� Objects with names like EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, that
can be created, altered, or deleted by application plan SPUFI. Entry E%D in
the QUALIFIER column represents all three objects.

� Objects with names beginning TRULY.MY_, where the underscore character is
actually part of the name. We assume that you specified # as the escape
character. All of those objects can be created, altered, or dropped only by plans
with names that begin with TRULY.

If we assume the installation option

REQUIRE FULL NAMES ===> YES

then the table entries do not specify incomplete names. Hence, objects not
represented in the table cannot be created in the system, except by an ID with
installation SYSADM authority.

 Chapter 3-3. Controlling Access Through a Closed Application 3-55

Table 37. Table DSN_REGISTER_OBJT for total control by object

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N
STOG2 S N
DATB1 D N

DATB1 TBSP1 T N
DATB1 TBSP2 T N
KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
E%D OBJ4 C Y SPUFI P
TRULY MY#_% C Y TRULY% P

Controlling by Object Name with Exceptions
In this situation, you want each of several applications to control a specific set of
registered objects. You also allow other applications to use DDL statements for
unregistered objects.

1. When installing DB2, choose not to control all applications, as in “Controlling by
Application Name with Exceptions” on page 3-52. On panel DSNTIPZ, enter:

CONTROL ALL APPLICATIONS ===> NO

2. Also on panel DSNTIPZ, enter:

UNREGISTERED DDL DEFAULT ===> ACCEPT

That option does not restrict the use of DDL statements for objects not
registered in the object registration table: any application can use DDL for any
unregistered object.

3. Register all controlled objects in the object registration table. Use a name and
qualifier to identify a single object. Use only one part of a two-part name to
identify a set of objects that share just that part of the name. For each
controlled object, use APPLMATCHREQ = Y. Give the name of the plan or
package collection that controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the
ORT), register the controlling application in the application registration table.
Supply values for the APPLIDENT and APPLIDENTTYPE columns as before.
You must also supply values for one additional column:

Column Name Description

QUALIFIEROK Use Y (Yes) to show that the application can supply the
remaining part of the name in DDL statements for objects
that are registered in the ORT by an incomplete name.

Example: The two tables below assume that the installation option, REQUIRE
FULL NAMES, was set to NO, as described in “Registering Sets of Objects” on
page 3-53. Table 38 on page 3-57 shows entries in the object registration table for
the following controlled objects:

� The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all
of which are controlled by PLANX or PACKX, as described under “Controlling
by Object Name” on page 3-54. Those names cannot be interpreted as
incomplete names because the objects that control them, PLANX and PACKX,
are registered in Table 39 on page 3-57 with QUALIFIEROK=N.

3-56 Administration Guide

� Two sets of objects, *.TABA and *.TABB, which are controlled by PLANA and
PACKB, respectively.

Table 39 shows entries in the corresponding application registration table.

In this situation, with the combination of installation options shown above, any
application can use DDL for objects not covered by entries in the ORT. For
example, if user HOWARD has the CREATETAB privilege, he can create the table
HOWARD.TABLE10 through any application.

Table 38. Table DSN_REGISTER_OBJT for object control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
EDWARD OBJ4 C Y PACKX C

TABA C Y PLANA P
TABB C Y PACKB C

Table 39. Table DSN_REGISTER_APPL for object control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANX P N N
PACKX C N N
PLANA P N Y
PACKB C N Y

Managing the Registration Tables and Their Indexes
“Columns of the Application Registration Table (ART)” and “Columns of the Object
Registration Table (ORT)” on page 3-58 describe the columns of the two
registration tables.

An Overview of the Registration Tables

Columns of the Application Registration Table (ART)
APPLIDENT CHAR(18); can include pattern characters

Collection-ID of the package executing the DDL or, if there is no package,
the name of the plan executing the DDL

APPLIDENTTYPE CHAR(1)
Type of application identifier (rows with other values are ignored):

C package collection name
P plan name

APPLICATIONDESC VARCHAR(30)
Optional description of the application

DEFAULTAPPL CHAR(1)
Whether all DDL should be accepted from this application:

Y Yes
N No (the default; rows without Y are ignored)

 Chapter 3-3. Controlling Access Through a Closed Application 3-57

QUALIFIEROK CHAR(1)
Whether the application can supply a missing name part for objects named
in the ORT, if REQUIRE FULL NAMES = NO:

Y Yes
N No (the default; rows without Y are ignored)

CREATOR CHAR(26)
Suggested use: Authorization ID that created the row

CREATETIMESTAMP TIMESTAMP
Suggested use: Time the row was created

CHANGER CHAR(26)
Suggested use: Authorization ID that last altered the row

CHANGETIMESTAMP TIMESTAMP
Suggested use: Time the row was last altered

Columns of the Object Registration Table (ORT)
QUALIFIER CHAR(8); can include pattern characters

Object name qualifier; blank, if none

NAME CHAR(18); can include pattern characters
Unqualified object name

TYPE CHAR(1)
Type of object (rows with other values are ignored):

C collection qualified name (table, view, index, synonym, or alias)
D database
T table space
S storage group

APPLMATCHREQ CHAR(1)
Whether an application naming this object must match the one named in the
APPLIDENT column:

Y Yes
N No (the default; rows without Y are ignored)

APPLIDENT CHAR(18); can include pattern characters
Collection-ID of the package executing the DDL or, if there is no package,
the name of the plan executing the DDL

APPLIDENTTYPE CHAR(1)
Type of application identifier (rows with other values are ignored):

C package collection name
P plan name

APPLICATIONDESC VARCHAR(30)
Optional description of the application

CREATOR CHAR(26)
Suggested use: Authorization ID that created the row

CREATETIMESTAMP TIMESTAMP
Suggested use: Time the row was created

CHANGER CHAR(26)
Suggested use: Authorization ID that last altered the row

3-58 Administration Guide

CHANGETIMESTAMP TIMESTAMP
Suggested use: Time the row was last altered

Creating the Tables and Indexes
The application registration table (ART), the object registration table (ORT), and the
required unique indexes on each of them are created when you install data
definition control support. If you drop any of those objects, you can re-create them
using the CREATE statements shown here:

CREATE Statements for the ART and Its Index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL

(APPLIDENT CHAR(18) NOT NULL WITH DEFAULT,

APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,

APPLICATIONDESC VARCHAR(3ð) NOT NULL WITH DEFAULT,

DEFAULTAPPL CHAR(1) NOT NULL WITH DEFAULT,

QUALIFIEROK CHAR(1) NOT NULL WITH DEFAULT,

CREATOR CHAR(26) NOT NULL WITH DEFAULT,

CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,

CHANGER CHAR(26) NOT NULL WITH DEFAULT,

CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)

 IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI

 ON DSNRGCOL.DSN_REGISTER_APPL

(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)

 CLUSTER;

CREATE Statements for the ORT and Its Index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT

(QUALIFIER CHAR(8) NOT NULL WITH DEFAULT,

NAME CHAR(18) NOT NULL WITH DEFAULT,

TYPE CHAR(1) NOT NULL WITH DEFAULT,

APPLMATCHREQ CHAR(1) NOT NULL WITH DEFAULT,

APPLIDENT CHAR(18) NOT NULL WITH DEFAULT,

APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,

APPLICATIONDESC VARCHAR(3ð) NOT NULL WITH DEFAULT,

CREATOR CHAR(26) NOT NULL WITH DEFAULT,

CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,

CHANGER CHAR(26) NOT NULL WITH DEFAULT,

CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)

 IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI

 ON DSNRGCOL.DSN_REGISTER_OBJT

(QUALIFIER, NAME, TYPE) CLUSTER;

You can alter those statements to add columns to the ends of the tables, assign an
auditing status, or choose buffer pool or storage options for indexes. You can
create these tables with table check constraints to limit the types of entries that are
allowed. If you change either of the table names, their owner, or their database,
you must reinstall DB2 in update mode and make the corresponding changes on
panel DSNTIPZ. Make the name of a required index from the name of its
corresponding table by adding the letter I.

If you drop any of the registration tables or indexes, most data definition statements
are rejected until the dropped objects are re-created. The only DDL statements

 Chapter 3-3. Controlling Access Through a Closed Application 3-59

allowed in such circumstances are those that create the registration tables defined
during installation, their indexes, and the table spaces and database that contain
them.

The installation job DSNTIJSG creates a segmented table space to hold the ART
and the ORT, using this statement:

CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify job DSNTIJSG before installing DB2 or else drop the table space and
re-create it, the two tables, and their indexes.

 Adding Columns
You can add columns to either registration table for your own use, using the
ALTER TABLE statement. If IBM adds columns to either table in future releases,
the column names will contain only letters and numbers; consider using some
special character, such as the plus sign (+), in your column names to avoid
possible conflict.

Updating the Tables
You can load either table with the LOAD utility or update it with SQL INSERT,
UPDATE, or DELETE statements. Security provisions are important. Allow only a
restricted set of authorization IDs, or perhaps only those with SYSADM authority, to
update the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column. A registration table cannot be updated until all jobs whose
DDL statements are controlled by the table have completed.

Columns for Optional Use
Both tables contain columns not used by DB2. We recommend using them to audit
and manage the tables as follows:

� In APPLICATIONDESC, put a more readable description of each application
than the 8-character APPLIDENT column can contain.

� In CREATOR or CHANGER, put the authorization ID that created or last
changed the row. There is room for a three-part name, with the parts separated
by periods in columns 9 and 18. If you enter only the primary authorization ID
(from the SQL value USER), consider entering it right-justified in the field—that
is, preceded by 18 blanks.

� When updating CREATETIMESTAMP and CHANGETIMESTAMP, enter
CURRENT TIMESTAMP. When you load or insert a row, DB2 can
automatically enter the value of CURRENT TIMESTAMP.

Stopping Data Definition Control
When data definition control is active, only the users with installation SYSADM or
installation SYSOPR authority are able to stop the database, a table space, or an
index space containing a registration table or index. When the object is stopped,
only an ID with one of those authorities can start it again.

Bypassing Data Definition Control: An ID with install SYSADM authority can
execute DDL statements whether or not data definition control is active, and
whether or not the ART or ORT are available, through the following means:

3-60 Administration Guide

� Through a static SQL statement, if the ID is owner of the plan or package that
contains the statement

� Through a dynamic CREATE statement, if the ID is the current SQLID

� Through a dynamic ALTER or DROP statement, if the ID is the current SQLID,
the primary ID, or any secondary ID of the process executing

 Data Sharing
The ART and ORT tables must have the same names for every member of a data
sharing group.

 Chapter 3-3. Controlling Access Through a Closed Application 3-61

3-62 Administration Guide

Chapter 3-4. Controlling Access to a DB2 Subsystem

This chapter tells how to control access to the DB2 subsystem from different
environments and how, while doing that, to associate a process with an intended
set of authorization IDs.

External Security System: We recommend that you control access through an
external security system, for which Resource Access Control Facility (RACF) is the
model. “Establishing RACF Protection for DB2” on page 3-93 tells how to make
DB2 and its IDs known to RACF.

Control by RACF is not strictly necessary, and some alternatives are described
under “Other Methods of Controlling Access” on page 3-111. But most of the
description assumes that RACF, or something like it, is already in place.

Local Requests Only: If you are not accepting requests from or sending requests
to remote locations, begin this chapter with “Controlling Local Requests” on
page 3-64. When you come to “Controlling Requests from Remote Applications” on
page 3-71, you can skip everything up to “Establishing RACF Protection for DB2”
on page 3-93.

Remote Requests: If you are accepting requests from remote applications, you
might first want to read “Controlling Requests from Remote Applications” on
page 3-71, which describes the security checks that a remote request is subject to

| before it can access your DB2 subsystem. The level of security differs depending
| on whether the requesting application is using SNA or Transmission Control
| Protocol/Internet Protocol (TCP/IP) protocols to access DB2. After the incoming ID
| has been authenticated by the local system, the ID is treated like a local connection

request or a local sign-on request: You can process it with your connection or
sign-on exit routine and associate secondary authorization IDs with it. Read about
those processes under “Controlling Local Requests” on page 3-64.

| If you are sending requests to a remote DB2 subsystem, that subsystem can
| subject your requests to various security checks. For suggestions on how to plan
| for those checks, see “Planning to Send Remote Requests” on page 3-84. If you
| send requests to a remote DBMS that is not DB2 for OS/390, use the
| documentation for that DRDA application server.

| Topics Covered in This Chapter:

| � “Controlling Local Requests” on page 3-64
| � “Processing Connections” on page 3-64
| � “Processing Sign-ons” on page 3-68
| � “Controlling Requests from Remote Applications” on page 3-71
| � “Planning to Send Remote Requests” on page 3-84
| � “Establishing RACF Protection for DB2” on page 3-93
| � “Establishing DCE Security for DB2” on page 3-106
| � “Other Methods of Controlling Access” on page 3-111

 Copyright IBM Corp. 1982, 1997 3-63

Controlling Local Requests
Different local processes enter the access control procedure at different points,
depending on the environment they originate from. (Quite different criteria apply to
remote requests; they are described in “Controlling Requests from Remote
Applications” on page 3-71.)

� These processes go through connection processing only:

– Requests originating in TSO foreground and background (including online
utilities and requests through the call attachment facility)

– JES-initiated batch jobs

– Requests through started task control address spaces (from the MVS
START command)

� These processes go through connection processing and can later go through
the sign-on exit also.

– The IMS control region
– The CICS recovery coordination task

 – DL/I batch
| – Applications that connect using the Recoverable Resource Manager
| Services attachment facility (RRSAF). (See Section 6 of Application
| Programming and SQL Guide for more information.)

� These processes go through sign-on processing:

– Requests from IMS dependent regions (including MPP, BMP, and Fast
Path)

– CICS transaction subtasks

For instructions on controlling the IDs associated with connection requests, see
“Processing Connections.” For instructions on controlling the IDs associated with
sign-on requests, see “Processing Sign-ons” on page 3-68.

| IMS, CICS, RRSAF, or DDF-to-DDF connections can make a sign-on request,
| typically in order to execute an application plan. That request must provide a
| primary ID; optionally, it can provide secondary IDs also. After a plan is allocated, it
| need not be deallocated until a new plan is needed. A different transaction can use
| the same plan by issuing a new sign-on request with a new primary ID.

 Processing Connections
A connection request makes a new connection to DB2; it does not reuse an
application plan already allocated. Therefore, an essential step in processing the
request is to check that the ID is authorized to use DB2 resources, as shown in
Figure 58 on page 3-65.

3-64 Administration Guide

 ┌─────────────────────────────┐

│ Step 1: Obtain primary ID │

 └──────────────┬──────────────┘

 6

 ┌───────────────────┐

│ Step 2: Verify by │

│ RACF that the ID ├────5 Not authorized;

│ can access DB2 │ reject request

 └─────────┬─────────┘

 6

 ┌─────────────────────────────┐

│ Step 3: Run the connection │

 │ exit routine │

 └─────────────────────────────┘

Figure 58. Connection processing

The Steps in Detail
The steps in processing connections are:

1. DB2 obtains the initial primary ID. Table 40 shows how the source of the ID
depends on the type of address space from which the connection was made.

| 2. RACF is called through the system authorization facility (SAF) to check whether
| the ID associated with the address space is authorized to use:

The DB2 resource class (CLASS=DSNR)
The DB2 subsystem (SUBSYS=ssnm)
The connection type requested

For instructions on authorizing those uses, see “Permitting RACF Access” on
page 3-97. The SAF return code (RC) from the invocation determines the next
step, as follows:

If RC > 4, then RACF determined that the RACF user ID is not valid or
does not have the necessary authorization to access the resource name;
DB2 rejects the request for a connection.

If RC = 4, then the RACF return code is checked. If that value is

= 4, then the resource name is not defined to RACF and DB2 rejects
the request (with reason code X'00F30013'). For instructions on
defining the resource name, see “Defining DB2 Resources to RACF” on
page 3-94.

Not = 4 , then RACF is not active. DB2 continues with the next step, but
the connection request and the user are not verified.

Table 40. Sources of Initial Primary Authorization Identifiers

Source Initial Primary Authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

IMS control region or CICS USER parameter on JOB statement

IMS or CICS started task Entries in the started task control table

| Remote access requests| Depends on the security mechanism used. See
| “Overview of Security Mechanisms for DRDA and SNA”
| on page 3-71 for more details.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-65

If RC = 0, then RACF is active and has verified the RACF user ID; DB2
continues with the next step.

3. DB2 runs the connection exit routine. To use DB2 secondary IDs, you must
replace the exit routine. See “Supplying Secondary IDs for Connection
Requests.”

If you do not want to use secondary IDs, do nothing. The IBM-supplied default
connection exit routine continues the connection processing. The processing
has the following effects:

� If there is a value for the initial primary authorization ID, the value becomes
the DB2 primary ID.

� If there is no value (the value is blank), then the primary ID is set by
default, as shown in Table 41.

� The SQL ID is set equal to the primary ID.

� There are no secondary IDs.

If you do want to use secondary IDs, see the description in “Supplying
Secondary IDs for Connection Requests.” Of course, you can also replace the
exit routine with one that provides different default values for the DB2 primary

| ID. If you have written such a routine for an earlier release of DB2, it will
probably work for this release with no change.

Table 41. Sources of Default Authorization Identifiers

Source Default Primary Authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job
with no USER parameter

Default authorization ID set when DB2 was installed
(UNKNOWN AUTHID on installation panel DSNTIPP)

| Remote request| None. The user ID is required and is provided by the DRDA
| requester.

Supplying Secondary IDs for Connection Requests
If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary
IDs, as illustrated in “Examples of Granting and Revoking Privileges” on page 3-36,
the easiest method is to use the IBM-supplied sample routine.

Pause here to distinguish those two routines carefully.

� The default connection exit routine is supplied as object code, is installed as
part of the normal procedure for installing, and provides values only for the DB2
primary and SQL IDs—not for secondary IDs.

� The sample connection exit routine is supplied as source code (you can
change it), must be compiled and placed in a DB2 library, and provides for
secondary IDs as well as primary and SQL IDs. Installation job DSNTIJEX
replaces the default connection exit routine with the sample connection exit
routine; see Section 2 of Installation Guide for more information.

3-66 Administration Guide

In full, the sample connection exit routine has the following effects:

� The DB2 primary ID is set in the same way as it is set by the default routine. If
the initial primary ID is not blank, it becomes the DB2 primary ID. If the initial
primary ID is blank, the sample routine provides the same default value as
does the default routine. If the sample routine cannot find a nonblank primary
ID, DB2 uses the default ID (UNKNOWN AUTHID) from installation panel
DSNTIPP. In that case, no secondary IDs are supplied.

� If the connection request is from a TSO-managed address space, the routine
sets the SQL ID to the TSO data set name prefix in the TSO user profile table,
but only if the TSO data set name prefix is also equal to the primary ID or one
of the secondary IDs. Those requests include requests through the call
attachment facility, as well as requests from TSO foreground and background.
In all other cases, the routine sets the SQL ID equal to the primary ID.

� The secondary authorization IDs depend on RACF options:

– If RACF is not active, there are no secondary IDs.

– If RACF is active but its “list of groups” option is not active, then there is
one secondary ID, the default connected group name, if that was supplied
by the attachment facility.

– If RACF is active and you have selected the option for a list of groups, the
routine sets the list of DB2 secondary IDs to the list of group names to
which the RACF user ID is connected (but not in REVOKE status), up to a
limit of 245 groups. The list of group names is obtained from RACF and
includes the default connected group name.

If you need something that is not provided by either the default or the sample
connection exit routine, you can write your own routine. For instructions, see
“Appendix B. Writing Exit Routines” on page X-25.

Required CICS Specifications
In order for a CICS transaction to use the sample connection or sign-on exit
routines, the external security system, such as RACF, must be defined to CICS
with these specifications:

� The CICS system initialization table must specify external security. For CICS
Version 4, specify SEC=YES; for earlier releases of CICS, specify
EXTSEC=YES. If you are using the CICS multiple region option (MRO), you
must specify SEC=YES or EXTSEC=YES for every CICS system that is
connected by interregion communication (IRC).

� If your version of CICS uses a sign-on table (SNT), then the CICS sign-on table
must specify EXTSEC=YES for each signed on user that will use the sign-on
exit.

� When the user signs on to a CICS terminal-owning region (TOR), the TOR
must propagate the authorization ID to the CICS application-owning region
(AOR). For more information on that propagation, see the description of
ATTACHSEC in the applicable version of the CICS Intercommunication Guide.

If you attach to DB2 with an AUTH parameter in the RCT other than
AUTH=GROUP, you also have the RACF list-of-groups option active, and you have
transactions whose initial primary authorization ID is not defined to RACF, then you

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-67

must change the sample sign-on exit routine (DSN3SSGN) before using it. For
instructions, see “Sample Exit Routines” on page X-26.

 Processing Sign-ons
| For requests from IMS dependent regions, CICS transaction subtasks or OS/390
| RRS connections, the initial primary ID is not obtained until just before allocating a
| plan for a transaction. It is possible to make a new sign-on request to run the same
| plan without deallocating the plan and reallocating it. Nevertheless, the new sign-on
| can change the primary ID.

Unlike connection processing, sign-on processing does not include a check of the
RACF user ID of the address space. The steps are shown in Figure 59.

 ┌─────────────────────────────┐

│ Step 1: Obtain primary ID │

 └──────────────┬──────────────┘

 6

 ┌─────────────────────────────┐

│ Step 2: Run the sign-on │

 │ exit routine │

 └─────────────────────────────┘

Figure 59. Sign-on processing

The Steps in Detail
The steps in processing sign-ons are:

Step 1. The initial primary ID is determined as follows:

For IMS sign-ons from message-driven regions, if the user has signed
on, the initial primary authorization ID is the user's sign-on ID.

| IMS passes to DB2 not only the IMS sign-on ID but also the associated
| RACF connected group name, if there is one.

If the user has not signed on, the primary ID is the LTERM name, or if
that is not available, the PSB name.

For a batch-oriented region, the primary ID is the value of the USER
parameter on the job statement, if that is available. If that is not available,
the primary ID is the program's PSB name.

For CICS sign-ons , the initial primary authorization ID is specified by
authorization directives in the CICS resource control table (RCT). For
instructions on setting up the RCT to indicate the appropriate ID, see the
description of the AUTH option in the macro DSNCRCT TYPE=ENTRY in
Section 2 of Installation Guide, and also the information there about
coordinating CICS and DB2 security.

You can use the following values for authorization IDs:

� The VTAM application name for the CICS system; use
AUTH=SIGNID.

� A character string up to eight characters long, supplied in the RCT;
use AUTH=(string).

� The CICS group ID (eight characters); use AUTH=GROUP. That
option passes to DB2 not only the CICS user ID, but also the

3-68 Administration Guide

associated RACF connected group name. AUTH=GROUP is not a
valid authorization type for transactions that do not have RACF user
IDs associated with them (for example, non-terminal-driven
transactions in releases of CICS before CICS Version 4).

� The CICS user ID (eight characters); use AUTH=USERID.
AUTH=USERID is not a valid authorization type for transactions that
do not have signed-on user IDs associated with them (for example,
non-terminal-driven transactions in releases of CICS before CICS
Version 4).

� The operator ID (three characters padded on the right with 5 blanks);
use AUTH=USER. AUTH=USER is valid only for transactions
associated with a signed-on USERID or a terminal.

� The terminal ID (four characters padded with four blanks); use
AUTH=TERM. AUTH=TERM is valid only for transactions associated
with a terminal. The transaction ID (four characters padded with four
blanks); use AUTH=TXID.

� The transaction ID (four characters padded with four blanks); use
AUTH=TXID.

For remote requests , the source of the initial primary ID is determined
by entries in the SYSIBM.USERNAMES table. “Accepting a Remote
Attach Request” on page 3-75 tells how to control the ID.

| For connections using Recoverable Resource Manager Services
| attachment facility , the processing depends on the type of signon
| request:

| � SIGNON
| � AUTH SIGNON
� CONTEXT SIGNON

| For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if
| an ACEE is associated with the TCB (TCBSENV). This is assumed to be
| the normal case; however, if an ACEE is not associated with the TCB
| then SIGNON uses the primary authorization id associated with the
| address space; that is, from the ASXB. If the new primary authorization
| ID was retrieved from the ACEE associated with the TCB and
| ACEEGRPN is not null, DB2 uses ACEEGRPN to establish secondary
| authorization IDs.

| With AUTH SIGNON, an APF-authorized program can pass a primary
| authorization ID for the connection. If a primary authorization ID is
| passed, then AUTH SIGNON also uses the value passed in the
| secondary authorization ID parameter to establish secondary
| authorization IDs. If the primary authid is not passed, but a valid ACEE is
| passed, then AUTH SIGNON uses the value in ACEEUSRI for the
| primary authorization ID if ACEEUSRL is not 0. If ACEEUSRI is used for
| the primary authid then AUTH SIGNON uses the value in ACEEGRPN as
| the secondary authorization ID if ACEEGRPL is not 0.

For CONTEXT SIGNON, the primary authorization ID is retrieved from
data associated with the current RRS context using the context_key
supplied as input. CONTEXT SIGNON uses the CTXSDTA and
CTXRDTA functions of RRS context services. An authorized function
must use CTXSDTA to store a primary authorization ID prior to invoking

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-69

CONTEXT SIGNON. Optionally, CTXSDTA can be used to store the
address of an ACEE in the context data which has a context_key that
was supplied as input to CONTEXT SIGNON. DB2 uses CTXRDTA to
retrieve context data. If an ACEE address is passed, CONTEXT SIGNON
uses the value in ACEEGRPN as the secondary authorization ID if
ACEEGRPL is not 0.

| For more information, see Section 6 of Application Programming and SQL
| Guide.

Step 2. DB2 runs the sign-on exit routine. To use DB2 secondary IDs, you must
replace the exit routine.

If you do not want to use secondary IDs, do nothing. Sign-on processing
is then continued by the IBM-supplied default sign-on exit routine, which
has the following effects:

The initial primary authorization ID remains the primary ID.
The SQL ID is set equal to the primary ID.
There are no secondary IDs.

Of course, you can replace the exit routine with one of your own devising,
even if it has nothing to do with secondary IDs. If you do, remember that

| IMS and CICS recovery coordinators, their dependent regions, and
| RRSAF take the exit routine only if they have provided a user ID in the

sign-on parameter list.

If you do want to use secondary IDs, see the description that follows.

Supplying Secondary IDs for Sign-on Requests
If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine. The procedure
is like that for connection processing: If you want to use RACF group names as
DB2 secondary IDs, the easiest method is to use the IBM-supplied sample routine.
An installation job can automatically replace the default routine with the sample
routine; to run it, see “Installation Step 6: Define User Authorization Exit Routines:
DSNTIJEX” in Section 2 of Installation Guide.

Again, you want to distinguish carefully between two routines. The default sign-on
routine provides no secondary IDs and has the effects described in step 2 of
Processing Sign-ons. The sample sign-on routine provides for DB2 secondary IDs,
and is like the sample connection routine.

The sample sign-on routine has the following effects:

� The initial primary authorization ID is left unchanged as the DB2 primary ID.

� The SQL ID is made equal to the DB2 primary ID.

� The secondary authorization IDs depend on RACF options:

– If RACF is not active, there are no secondary IDs.

– If RACF is active but its “list of groups” option is not active, then there is
one secondary ID, the name passed by CICS or by IMS.

– If RACF is active and you have selected the option for a list of groups, the
routine sets the list of DB2 secondary IDs to the list of group names to

3-70 Administration Guide

which the RACF user ID is connected, up to a limit of 245 groups. The list
of group names includes the default connected group name.

Controlling Requests from Remote Applications
| If you are controlling requests from remote applications, your DB2 subsystem might
| be accepting requests from applications that use SNA network protocols, TCP/IP
| network protocols, or both. This section describes the methods that the DB2 server
| can use to control access from those applications. To understand what is
| described here, you must be familiar with the communications database, which is
| part of the DB2 catalog. The following topics are described in this chapter:

| � “Overview of Security Mechanisms for DRDA and SNA”

| � “The Communications Database for the Server” on page 3-72

| � “Controlling Inbound Connections that Use SNA Security Mechanisms” on
| page 3-74

| � “Controlling Inbound Connections that Use TCP/IP Protocols” on page 3-81

| Overview of Security Mechanisms for DRDA and SNA
| SNA and DRDA have different security mechanisms. DRDA allows a user to be
| authenticated using SNA security mechanisms or DRDA mechanisms, which are
| independent of the underlying network protocol. For an SNA network connection, a
| DRDA requester can send security tokens using an SNA attach or using DRDA
| commands. DB2 for OS/390 as a requester uses SNA security mechanisms if using
| an SNA network connection (except for DCE) and DRDA security mechanisms for
| TCP/IP network connections (or when DCE authentication is chosen regardless of
| the network type).

Mechanisms Used by DB2 for OS/390 as a Requester
DB2 for OS/390 as a requester chooses SNA or DRDA security mechanisms based
on the network protocol and the authentication mechanisms you use. If you use
SNA protocols, the following SNA authentication mechanisms are supported:

� User ID only (already verified)

� User ID and password, described in “Sending Passwords” on page 3-91

� User ID and PassTicket, described in “Sending RACF PassTickets” on page
3-92

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, the following DRDA authentication mechanisms are
supported:

� User ID only (already verified)

� User ID and password, described in “Sending Passwords” on page 3-91

� User ID and PassTicket, described in “Sending RACF PassTickets” on page
3-92

Authentication is performed based on DRDA level 3 protocols, which means that
the authentication tokens are sent in DRDA security flows.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-71

If you use a requester other than DB2 for OS/390, refer to that product's
documentation.

Mechanisms Accepted by DB2 for OS/390 as a Server
DB2 for OS/390 as a server can accept either SNA or DRDA authentication
mechanisms. This means that DB2 can authenticate remote users from either the
security tokens obtained from the SNA ATTACH (FMH-5) or from the DRDA
security commands described by each of the protocols. The following authentication
methods are supported by DB2 for OS/390 as a server:

� User ID only (already verified at the requester)

� User ID and password, described in “Sending Passwords” on page 3-91

� User ID and PassTicket, described in “Sending RACF PassTickets” on page
3-92

� DCE tickets, described in “Establishing DCE Security for DB2” on page 3-106

� User ID and encrypted password, described in “Sending encrypted passwords
from a workstation” on page 3-92

� User ID, password, and new password, described in “Allowing Users to Change
Expired Passwords”

| Allowing Users to Change Expired Passwords: DB2 can return to the DRDA
| requester information about errors and expired passwords. To allow this, specify
| YES in the EXTENDED SECURITY field of installation panel DSNTIPR.

| When the DRDA level 3 requester is notified that the RACF password has expired,
| and the requester has implemented function to allow passwords to be changed,
| then the requester can prompt the end user for the old password and a new
| password. The requester sends the old and new passwords to the DB2 server.

| With the extended security option, DB2 passes the old and new passwords to
| RACF. If the old password is correct, and the new password meets the installation's
| password requirements, the end user's password is changed and the DRDA
| connection request is honored.

Detecting Authorization Failures (EXTENDED SECURITY): If the DB2 server is
installed with YES for the EXTENDED SECURITY field of installation panel
DSNTIPR, detailed reason codes are returned to a DRDA level 3 client when a
DDF connection request fails because of security errors. When using SNA
protocols, the requester must have included support for extended security sense
codes. One such product is DB2 Connect Version 5 and subsequent releases.

If the proper requester support is present, the requester generates SQLCODE
-30082 (SQLSTATE '08001') with a specific indication for the failure. Otherwise, a
generic security failure is returned.

| The Communications Database for the Server
| The information under this heading, up to “Controlling Inbound Connections that
| Use SNA Security Mechanisms” on page 3-74, is General-use Programming
| Interface and Associated Guidance Information, as defined in “Notices” on page xi.

| The communications database (CDB) is a set of DB2 catalog tables that let you
| control aspects of requests leaving this DB2 and requests coming in. In this

3-72 Administration Guide

| section, we concentrate on the columns of the communications database pertaining
| to security on the inbound side (the server).

| The SYSIBM.IPNAMES table is not described in this section, because that table is
| not used to control inbound TCP/IP requests.

| Columns Used in SYSIBM.LUNAMES
| This table is used only for requests that use SNA protocols.

| LUNAME CHAR(8)
| The LUNAME of the remote system. A blank value identifies a default row
| that serves requests from any system not specifically listed elsewhere in the
| column.

| SECURITY_IN CHAR(1)
| The acceptance option for a remote request from the corresponding
| LUNAME:

V The option is “verify.” An incoming request must include one of the
following authentication entities:

� User ID and password
� User ID and RACF PassTicket, described in “Sending RACF
PassTickets” on page 3-92
� User ID and RACF encrypted password (not recommended)
� DCE security tickets, described in “Establishing DCE Security
for DB2” on page 3-106
� User ID and DRDA encrypted password, described in “Sending
encrypted passwords from a workstation” on page 3-92.
� User ID, password, and new password, described in “Allowing
Users to Change Expired Passwords” on page 3-72

| A The option is “already verified.” This is the default. With A, a
| request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:

� User ID only
� All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains I or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

| ENCRYPTPSWDS CHAR(1)
| This column only applies to DB2 for OS/390 or DB2 for MVS/ESA partners
| when passwords are used as authentication tokens. It indicates whether
| passwords received from and sent to the corresponding LUNAME are
| encrypted:

| Y Yes, passwords are encrypted. For outbound requests, the
| encrypted password is extracted from RACF and sent to the server.
| For inbound requests, the password is treated as encrypted.
| N No, passwords are not encrypted. This is the default; any character
| but Y is treated as N.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-73

| When you connect to a DB2 for OS/390 partner that is at Version 5 or a
| subsequent release, we recommend that you use RACF PassTickets
| (SECURITY_OUT='R') instead of using passwords.

| USERNAMES CHAR(1)
| This column indicates whether an ID accompanying a remote request, sent
| from or to the corresponding LUNAME, is subject to translation and “come
| from” checking. When you specify I, O, or B, use the SYSIBM.USERNAMES
| table to perform the translation.

| I An inbound ID is subject to translation.
| O An outbound ID, sent to the corresponding LUNAME, is subject to
| translation.
| B Both inbound and outbound IDs are subject to translation.
| blank No IDs are translated.

| Columns Used in SYSIBM.USERNAMES
| This table is used by both SNA and TCP/IP connections.

| TYPE CHAR(1)
| Whether the row is used for inbound or outbound translation:

| I The row applies to inbound IDs (not applicable for TCP/IP connections.
| O The row applies to outbound IDs.

| The field should contain only I or O. Any other character, including blank,
| causes the row to be ignored.

| AUTHID CHAR(8)
| An authorization ID that is permitted and perhaps translated. If blank, any
| authorization ID is permitted with the corresponding LINKNAME, and all are
| translated in the same way.

| LINKNAME CHAR(8)
| Identifies the VTAM or TCP/IP network locations associated with this row. A
| blank value in this column indicates that this name translation rule applies to
| any TCP/IP or SNA partner.

| If you specify a nonblank value for this column, one or both of the following
| situations must be true:

| � A row exists in table SYSIBM.LUNAMES that has an LUNAME value
| that matches the LINKNAME value that appears in this column.

| � A row exists in table SYSIBM.IPNAMES that has a LINKNAME value
| that matches the LINKNAME value that appears in this column.

| NEWAUTHID CHAR(8)
| The translated authorization ID. If blank, no translation occurs.

Controlling Inbound Connections that Use SNA Security Mechanisms
Requests from a remote LU are subject to two security checks before they come
into contact with DB2. Those checks control what LUs can attach to the network
and verify the identity of a partner LU.

Finally, DB2 itself imposes several checks before accepting an attach request.

3-74 Administration Guide

Controlling What LUs Can Attach to the Network
This check is carried out by VTAM, to prevent an unauthorized LU from attaching to
the network and presenting itself to other LUs as an acceptable partner in
communication. It requires each LU that attaches to the network to identify itself by
a password. If that requirement is in effect for your network, then your DB2
subsystem, like every other LU on the network, must:

1. Choose a VTAM password.

2. Code the password with the PRTCT parameter of the VTAM APPL statement,
when you define your DB2 to VTAM. The APPL statement is described in detail
in Section 3 of Installation Guide.

Verifying a Partner LU
This check is carried out by RACF and VTAM, to check the identity of an LU
sending a request to your DB2. We recommend that you specify partner-LU
verification; it requires the following steps:

1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define
your DB2 to VTAM. The APPL statement is described in detail in Section 3 of
Installation Guide .

2. Establish a RACF profile for each LU from which you permit a request. For the
steps required, see “Enable Partner-LU Verification” on page 3-96.

Accepting a Remote Attach Request
When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2.
(Do not confuse the remote request with a local attach request that comes through
one of the DB2 attachment facilities—IMS, CICS, TSO, and so on. A remote attach
request is defined by Systems Network Architecture and LU 6.2 protocols;
specifically, it is an SNA Function Management Header 5.)

This section tells what security checks you can impose on remote attach requests.

Conversation-level Security: Throughout this section, we assume that you have
defined your DB2 to VTAM with the conversation-level security set to “already
verified.” (To do that, you coded SECACPT=ALREADYV on the VTAM APPL
statement, as described in Section 3 of Installation Guide. That value provides
more options than does “conversation” (SECACPT=CONV), which we do not
recommend.

Steps, Tools, and Decisions: The steps an attach request goes through before
acceptance allow much flexibility in choosing security checks. Scan Figure 60 on
page 3-77 to see what is possible.

The primary tools for controlling remote attach requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attach requests,
or else you need a dummy row that allows any system to send attach requests (or
you could have both). You might need rows in SYSIBM.USERNAMES to permit
requests from specific IDs or specific LUNAMES, or to provide translations for
permitted IDs.

When planning to control remote requests, answer the questions posed by the
following topics for each remote LU that can send a request.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-75

1. “Do You Permit Access?” on page 3-76
2. “Do You Manage Inbound IDs Through DB2 or RACF?”
3. “Do You Trust the Partner LU?”
4. “If You Use Passwords, Are They Encrypted?” on page 3-77
5. “Do You Translate Inbound IDs?” on page 3-79
6. “How Do You Associate Inbound IDs with Secondary IDs?” on page 3-81

| Do You Permit Access?: To permit attach requests from a particular LU, you
| need a row in your SYSIBM.LUNAMES table. The row must either give the specific

LUNAME or it must be a dummy row with the LUNAME blank. (There can be only
one dummy row, to be used by all LUs for which there is no specific row, when
making requests.) Without one of those rows, the attach request is rejected.

Do You Manage Inbound IDs Through DB2 or RACF?: If you manage incoming
IDs through RACF, you must register every acceptable ID with RACF, and DB2

| must call RACF to process every request. If you manage incoming IDs through
| RACF, either RACF or DCE can be used to authenticate the user. DCE cannot be
| used if you do not have RACF on the system.

If you manage incoming IDs through DB2, you can avoid calls to RACF and can
specify accepting many IDs by a single row in the SYSIBM.USERNAMES table.

To manage incoming IDs through DB2, put an I in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. (Or, if there is an O there already
because you are also sending requests to that LU, change O to B.) Attach
requests from that LU now go through sign-on processing, and its IDs are subject
to translation. (For more about that, see “Do You Translate Inbound IDs?” on
page 3-79.)

To manage incoming IDs through RACF, leave USERNAMES blank for that LU (or
| leave the O unchanged). Requests from that LU now go through connection

processing, and its IDs are not subject to translation.

Do You Trust the Partner LU?: Presumably, RACF has already validated the
identity of the other LU (as we described in “Verifying a Partner LU” on page 3-75).

| If you trust incoming IDs from that LU, you do not need to validate them by an
| authentication token. Put an A in the SECURITY_IN column of the row in
| SYSIBM.LUNAMES that corresponds to the other LU; your acceptance level for
| requests from that LU is now “already verified.” Requests from that LU are
| accepted without an authentication token. (In order to use this option, you must
| have defined DB2 to VTAM with SECACPT=ALREADYV, as described in 3-75.) If
| an authentication token does accompany a request, DB2 calls RACF to check the
| authorization ID against it. To require an authentication token from a particular LU,
| put a V in the SECURITY_IN column in SYSIBM.LUNAMES; your acceptance level
| for requests from that LU is now “verify.” You must also register every acceptable

incoming ID, and its password, with RACF.

| Performance Considerations: Each request to RACF to validate authentication
| tokens results in an I/O operation, which has a high performance cost. To eliminate

the I/O, we recommend that you allow RACF to cache security information in VLF.
To activate this option, add the IRRACEE class to the end of MVS VLF member
COFVLFxx in SYS1.PARMLIB, as follows:

CLASS NAME(IRRACEE)

EMAJ (ACEE)

3-76 Administration Guide

If You Use Passwords, Are They Encrypted?: Passwords can be encrypted
through:

� RACF using PassTickets, described in “Sending RACF PassTickets” on
page 3-92.

� DRDA password encryption support. DB2 for OS/390 as a server supports
DRDA encrypted passwords. See “Sending encrypted passwords from a
workstation” on page 3-92 for more information.

If you use DCE, are users authenticated?: If your distributed environment uses
DCE to manage users and perform user authentication, DB2 for OS/390 can use
DCE security services to authenticate remote users. See “Establishing DCE
Security for DB2” on page 3-106.

Remote attach request using SNA protocols

┌───────────│──┐ Activity at
│ │ ID and Authentication Check │ the DB2 Server
│ ┌───────┴───────┐ ┌───────────────┐ │

│ │ Step 1: is an │No │ Step 2: Test │= V │

│ │ authentication├────5 value of ├────5 Token │

│ │ token present?│ │ SECURITY_IN. │ required; │

│ └───────┬───────┘ └───────┬───────┘ reject │

│ │ Yes │= A request │

│ %────────────────────┘ │

└───────────┼──┘

│

┌───────────│───────────────┐ ┌──┐

│ Check │SYSIBM.LUNAMES │ │ Check ID for Sign-ons │

│ ┌───────6───────┐ │ │ ┌───────────────┐ ┌───────────────┐ │

│ │ Step 3: Is │Yes │ │ │ Step 7: is a │Yes │ Step 8: │ │

│ │ USERNAMES one ├────────────────────────────5 password ├────5 Verify ID │ │

│ │ of I or B? │ │ │ │ present? │ │ by RACF. │ │

│ └───────┬───────┘ │ │ └───────┬───────┘ └───┬──────┬────┘ │

│ │ No │ │ No│ │ 6 │

└───────────┼───────────────┘ │ %────────────────┘ Not authorized; │

│ │ │ reject request │

│ └───────────┼──────────────────────────────────┘

┌───────────│───────────────────────────┐ │

│ Check ID │for Connections │ ┌───────────│──────────────────────────────────┐

│ ┌───────6───────┐ │ │ │ Check USERNAMES Table │

│ │ Step 4: │ │ │ ┌─────────6─────────┐ │

│ │ Verify ID ├──5 Not authorized;│ │ │ Step 9: Seek a │ │

│ │ by RACF. │ reject request │ │ │ translation row ├──5 Not found; │

│ └───────┬───────┘ │ │ │ in USERNAMES. │ reject request │

└───────────┼───────────────────────────┘ │ └─────────┬─────────┘ │

│ │ │ Found │

┌───────────│───────────────────────────┐ │ ┌─────────6─────────┐ │

│ │ Connection Processing │ │ │ Step 1ð: Obtain │ │

│ ┌─────────6─────────┐ │ │ │ the primary ID. │ │

│ │ Step 5: Verify by │ │ │ └─────────┬─────────┘ │

│ │ RACF that the ID ├5 Not authorized;│ └───────────┼──────────────────────────────────┘

│ │ can access DB2. │ reject request │ │

│ └─────────┬─────────┘ │ Request accepted: continue

│ Request accepted: continue │ │

│ │ │ ┌───────────6───────────────────────────┐

│ ┌─────────6─────────┐ │ │ Sign-on │ Processing │

│ │ Step 6: Run the │ │ │ ┌─────────┴────────────────┐ │

│ │ connection exit │ │ │ │ Step 11: Run the sign-on │ │

│ │ routine (DSN3@ATH)│ │ │ │ exit routine (DSN3@SGN). │ │

│ └─────────┬─────────┘ │ │ └─────────┬────────────────┘ │

└───────────┼───────────────────────────┘ └───────────┼───────────────────────────┘

└──────────────────────────────┬─────────────┘

│

┌───────────6──────────────┐

│ Step 12: Local privilege │

│ check at the server. │

└──────────────────────────┘

| Figure 60. Steps in Accepting a Remote Attach Request from Requester that is using SNA

Details of Remote Attach Request Processing:

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-77

| Step 1. If there is no authentication token with the remote request, DB2 checks
| the security acceptance option in the SECURITY_IN column of table
| SYSIBM.LUNAMES. No password is sent or checked for the plan or
| package owner sent from a DB2 system.

| Step 2. If the acceptance option is “verify” (SECURITY_IN = V), there must be a
| security token to authenticate the user. DB2 rejects the request if the
| token missing.

Step 3. If the USERNAMES column of SYSIBM.LUNAMES contains I or B, the
authorization ID, and the plan or package owner sent by a DB2 system,
are subject to translation under control of the SYSIBM.USERNAMES
table. If the request is allowed, it eventually goes through sign-on
processing.

If USERNAMES does not contain I or B, the authorization ID is not
translated.

Step 4. DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to
| check the ID. The PASSCHK=NO option is used if there is no password,
and ENCRYPT=YES is used if the ENCRYPTPSWDS column of
| SYSIBM.LUNAMES contains Y. If the ID, password, or PassTicket cannot
be verified, DB2 rejects the request.

In addition, depending on your RACF environment, the following RACF
checks may also be performed:

a. If the RACF APPL class is active, RACF verifies that the ID has been
given access to the DB2 APPL. The APPL resource that is checked is
the LU name that the requester used when the attach request was
issued. This is either the local DB2 LU name or the generic LU name.

b. If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized access to MVS from the port of entry (POE). The POE that
is use in the verify call is the requesting LU name.

| Step 5. The remote request is now treated like a local connection request with a
| DIST environment for the DSNR resource class; for details, see
“Processing Connections” on page 3-64. DB2 calls RACF by the
RACROUTE macro with REQUEST=AUTH, to check whether the
authorization ID is allowed to use DB2 resources defined to RACF.

The RACROUTE macro call also verifies that the user is authorized to
use DB2 resources from the requesting system, known as the port of
entry (POE); for details, see “Allowing Access from Remote Requesters”
on page 3-103.

Step 6. DB2 invokes the connection exit routine. The parameter list passed to the
routine describes where a remote request originated.

Step 7. If there is no password, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

Step 8. If there is a password, DB2 calls RACF through the RACROUTE macro
with REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If the ID or password cannot be verified,
DB2 rejects the request.

Step 9. DB2 searches SYSIBM.USERNAMES for a row that tells how to translate
the ID. The need for a row that applies to a particular ID and sending

3-78 Administration Guide

location imposes a “come-from” check on the ID: If there is no such row,
then DB2 rejects the request.

Step 10. If an appropriate row is found, DB2 translates the ID as follows:

� If there is a nonblank value of NEWAUTHID in the row, that value
becomes the primary authorization ID.
� If NEWAUTHID is blank, the primary authorization ID remains
unchanged.

Step 11. The remote request is now treated like a local sign-on request; for details,
see “Processing Sign-ons” on page 3-68. DB2 invokes the sign-on exit
routine. The parameter list passed to the routine describes where a
remote request originated. For details, see “Connection and Sign-On
Routines” on page X-25.

Step 12. The remote request now has a primary authorization ID, possibly one or
more secondary IDs, and an SQL ID. A request from a remote DB2 is
also known by a plan or package owner. Privileges and authorities
granted to those IDs at the DB2 server govern the actions that the
request can take.

Do You Translate Inbound IDs?: Ideally, each of your authorization IDs has the
same meaning throughout your entire network. In practice, that might not be so,
and the duplication of IDs on different LUs is a security exposure. For example,
suppose that the ID DBADM1 is known to the local DB2 and has DBADM authority
over certain databases there; suppose also that the same ID exists in some remote
LU. If an attach request comes in from DBADM1, if nothing is done to alter the ID,
the wrong user can exercise privileges of DBADM1 in the local DB2 . The
protection against that exposure is to translate the remote ID into a different ID
before the attach request is accepted.

You must be prepared to translate the IDs of plan and package owners, as well as
the primary IDs of processes that make remote requests. For the IDs sent to you
by other DB2 LUs, see “What IDs You Send” on page 3-87. (Do not plan to
translate all IDs in the connection exit routine: It does not receive plan and package
owner IDs.)

If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities
only to the translated value. As Figure 60 on page 3-77 shows, that “translation” is
not affected by anything you do in your connection or sign-on exit routine. The
output of the translation becomes the input to your sign-on exit routine. We
recommend not translating inbound IDs in an exit routine, but only through the
SYSIBM.USERNAMES table.

The examples in Table 42 on page 3-80 shows what possibilities there are for
translation and how to control translation by SYSIBM.USERNAMES. You can use
entries to allow requests only from particular LUs or particular IDs, or from
combinations of an ID and an LU. While doing that, you can translate any incoming
ID to another value. Table 43 on page 3-81 shows the search order of the
SYSIBM.USERNAMES table.

Performance Considerations: In the process of accepting remote attach requests,
any step that calls RACF is likely to have a relatively high performance cost. To
trade some of that cost for a somewhat greater security exposure, have RACF

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-79

check the identity of the other LU just once, as described under “Verifying a Partner
LU” on page 3-75. Then trust the partner LU, translating the inbound IDs and not
requiring or using passwords. In this case, no calls are made to RACF from within
DB2; the penalty is only that you make the partner LU responsible for verifying IDs.

Update Considerations: If you update tables in the CDB while the distributed data
facility is running, the changes might not take effect immediately. For details, see in
Section 3 of Installation Guide .

Example: Translating Inbound IDs

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
following requests:

Table 42. Your SYSIBM.USERNAMES Table. (Row numbers have been added for
reference.)

| Row TYPE AUTHID LINKNAME NEWAUTHID

1 I blank LUSNFRAN blank
2 I BETTY LUSNFRAN ELIZA
3 I CHARLES blank CHUCK
4 I ALBERT LUDALLAS blank
5 I BETTY blank blank

ALBERT requests
from LUDALLAS

| DB2 searches for an entry for AUTHID=ALBERT and LINKNAME=LUDALLAS. It finds one
| in row 4, so the request is accepted. The value of NEWAUTHID there is blank, so ALBERT
| is left unchanged.

BETTY requests from
LUDALLAS

DB2 searches for an entry for AUTHID=BETTY and LINKNAME=LUDALLAS; there is none.
It next searches for AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5, so
the request is accepted. The value of NEWAUTHID there is blank, so BETTY is left
unchanged.

CHARLES requests
from LUDALLAS

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS; there is no such entry.
It next searches for AUTHID=CHARLES and LINKNAME=blank. The search ends at row 3;
the request is accepted. The value of NEWAUTHID there is CHUCK, so CHARLES is
translated to CHUCK.

ALBERT requests
from LUSNFRAN

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; there is no such entry. It
next searches for AUTHID=ALBERT and LINKNAME=blank; again there is no entry. Finally,
it searches for AUTHID=blank and LINKNAME=LUSNFRAN; it finds that entry in row 1, so
the request is accepted. The value of NEWAUTHID there is blank, so ALBERT is left
unchanged.

BETTY requests from
LUSNFRAN

DB2 finds row 2, and BETTY is translated to ELIZA.

CHARLES requests
from LUSNFRAN

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

WILBUR requests
from LUSNFRAN

No provision has been made for WILBUR, but row 1 of the SYSIBM.USERNAMES table
allows any ID to request from LUSNFRAN and to pass without translation. The acceptance
level for LUSNFRAN is “already verified,” so WILBUR can pass without a password check
by RACF. Once accessing DB2, WILBUR can use only the privileges granted to WILBUR
and to PUBLIC (for DRDA access) or to PUBLIC AT ALL LOCATIONS (for DB2 private
protocol access).

3-80 Administration Guide

WILBUR requests
from LUDALLAS

Because the acceptance level for LUDALLAS is “verify” as recorded in the
SYSIBM.LUNAMES table, WILBUR must be known to the local RACF. DB2 searches in
succession for one of the combinations WILBUR/LUDALLAS, WILBUR/blank, or
blank/LUDALLAS. None of those is in the table, so the request is rejected. The absence of a
row permitting WILBUR to request from LUDALLAS imposes a “come-from” check: WILBUR
can attach from some locations (LUSNFRAN), some IDs (ALBERT, BETTY, CHARLES) can
attach from LUDALLAS, but WILBUR cannot attach if coming from LUDALLAS.

Table 43. Precedence Search Order for SYSIBM.USERNAMES Table

AUTHID| LINKNAME Result

Name Name If NEWAUTHID is specified, AUTHID
is translated to NEWAUTHID for the

| specified LINKNAME.

Name Blank If NEWAUTHID is specified, AUTHID
is translated to NEWAUTHID for all

| LINKNAMEs.

Blank Name If NEWAUTHID is specified, it is
substituted for AUTHID for the

| specified LINKNAME.

Blank Blank Unavailable resource message
(SQLCODE -904) returned.

How Do You Associate Inbound IDs with Secondary IDs?: Your decisions on
the previous questions determine what value is used for the primary authorization
ID on an attach request. They also determine whether those requests are next
treated as connection requests or as sign-on requests. That means that the remote
request next goes through the same processing as a local request, and that you
have the opportunity to associate the primary ID with a list of secondary IDs in the
same way you do for local requests. Go on now to read “Processing Connections”
on page 3-64 or “Processing Sign-ons” on page 3-68.

Controlling Inbound Connections that Use TCP/IP Protocols
| DRDA connections that use TCP/IP have fewer security controls than do
| connections using SNA protocols. When planning to control inbound TCP/IP
| connections, consider the following issues:

| Do You Permit Access by TCP/IP? If the serving DB2 for OS/390 subsystem has
| a DRDA port and resynchronization port specified in the BSDS, DB2 is enabled for
| TCP/IP connections.

| Do You Manage Inbound IDs through DB2 or RACF? There is no option to
| handle incoming IDs through DB2. All IDs must be passed on to RACF or DCE for
| processing.

| Do You Trust the Partner? There is no concept similar to SNA's partner LU
| verification with TCP/IP. If your requesters support mutual authentication, use DCE
| to handle this on the requester side.

If you use passwords, are they encrypted? Passwords can be encrypted
through:

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-81

� RACF using PassTickets, described in “Sending RACF PassTickets” on
page 3-92.

� DRDA password encryption support. DB2 for OS/390 as a server supports
DRDA encrypted passwords. See “Sending encrypted passwords from a
workstation” on page 3-92 for more information.

If you use DCE, are users authenticated? If your distributed environment uses
DCE to manage users and perform user authentication, DB2 for OS/390 can use
DCE security services to authenticate remote users. See “Establishing DCE
Security for DB2” on page 3-106.

| Do You Translate Inbound IDs? Inbound IDs are not translated when you use
| TCP/IP.

| How Do You Associate Inbound IDs with Secondary IDs? To associate an
| inbound ID with secondary IDs, modify the default connection exit (DSN3@ATH).
| TCP/IP requests do not use the sign-on exit.

| Steps, Tools, and Decisions
| See Figure 61 on page 3-83 for an overview of how incoming requests are
| handled. See “Detecting Authorization Failures (EXTENDED SECURITY)” on
| page 3-72 for information about security diagnostics.

| 1. You must first decide whether you want incoming requests to have
| authentication information passed along with the authorization ID: RACF
| passwords, RACF PassTickets, or DCE tickets.

| To indicate that you require this authentication information, specify NO on the
| TCP/IP ALREADY VERIFIED field of installation panel DSNTIP5 (this is the
| default option). If you do not specify NO, all incoming TCP/IP requests can
| connect to DB2 without any authentication.

| 2. If you require authentication, ensure that the security subsystem at your server
| is properly configured to handle the authentication information that is passed in.

| � For requests that use RACF passwords or PassTickets, enter the following
| RACF command to indicate which user IDs that use TCP/IP are authorized
| to access DDF (the distributed data facility address space:

| PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)
| WHEN(APPCPORT(TCPIP))

| � When you use DCE tickets for incoming authentication, make sure that
| each DCE name is registered with the DCE server and in the DCE
| segment of the RACF registry for the MVS that houses the DB2 server. For
| more information about setting up DB2 to use DCE security, “Establishing
| DCE Security for DB2” on page 3-106.

3-82 Administration Guide

| Activity at DB2 Server
| TCP/IP request from remote user

| │

| ┌────────────┼───┐

| │ │ │

| │ Verify Remote Connections │

| │ ┌─────────────────────────┐ ┌─────────────────────────┐ │

| │ │Step 1: Is authentication│ No │Step 2: Does the serving │ TCPALVER=NO │

| │ │ information present? ├──────5subsystem accept remote ├─────────────5 Reject request │

| │ │ │ │requests without │ │

| │ │ │ │verification? │ │

| │ └─────────┬───────────────┘ └───────┬─────────────────┘ │

| │ Yes %──────────────────────────────┘TCPALVER=YES │

| └────────────┼───┘

| │

| │

| ┌────────────6──────────────────────────────────────┐

| │ Check ID for Connections │

| │ ┌─────────────────┐ │

| │ │Step 3: Verify │ │

| │ │identity by RACF │ │

| │ │or DCE │───────────5 Not authorized; │

| │ └─────────┬───────┘ reject request │

| │ │ │

| └────────────┼──────────────────────────────────────┘

| │

| ┌────────────┼──────────────────────────────────────┐

| │ │ │

| │ Connection │Processing │

| │ │ │

| │┌───────────6─────────────┐ │

| ││Step 4: Verify by RACF │ Not authorized; │

| ││that the ID can access ├─────5 reject request │

| ││DB2. │ │

| │└───────────┬─────────────┘ │

| │ │ │

| │ Request accepted: continue │

| │ │ │

| │ │ │

| │┌───────────6──────────────┐ │

| ││Step 5: Run the connection│ │

| ││exit routine (DSN3@ATH) │ │

| │└───────────┬──────────────┘ │

| │ │ │

| └────────────┼──────────────────────────────────────┘

| │

| │

| ┌────────────6────────────┐

| │ Step 6: Check local │

| │ privilege at the server │

| └─────────────────────────┘

| Figure 61. Steps in Accepting a Request from TCP/IP.

| Details of Steps: These notes explain the steps shown in Figure 61.

Step 1. DB2 checks to see if an authentication token (RACF encrypted
password, RACF PassTicket, DRDA encrypted password, or DCE ticket)
| accompanies the remote request.

| Step 2. If there is no authentication token DB2 checks the TCPALVER subsystem
| parameter to see if DB2 accepts IDs without authentication information. If
| TCPALVER=NO, authentication information must accompany all requests,
| and DB2 rejects the request. If TCPALVER=YES, DB2 accepts the
| request without authentication.

| Step 3. The identity is a RACF ID that is authenticated by RACF if a password or
| PassTicket is provided, or it is a DCE principal identity that is validated by
| DCE, if a DCE ticket is provided. You must be sure that the ID is defined
| to RACF in all cases. When DCE tickets are used, the RACF ID is
| derived from the DCE principal identity. To do this, you must ensure that
| you cross-link DCE principal names with RACF IDs, as described in
| “Establishing DCE Security for DB2” on page 3-106.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-83

| In addition, depending on your RACF environment, the following RACF
| checks may also be performed:

| a. If the RACF APPL class is active, RACF verifies that the ID has been
| given access to the DB2 APPL. The APPL resource that is checked is
| the LU name that the requester used when the attach request was
| issued. This is either the local DB2 LU name or the generic LU name.

| b. If the RACF APPCPORT class is active, RACF verifies that the ID is
| authorized access to MVS from the port of entry (POE). The POE that
| is use in the verify call is the string 'TCPIP'.

| If this is a request to change a password, the password is changed.

| Step 4. The remote request is now treated like a local connection request (using
| the DIST environment for the DSNR resource class). DB2 calls RACF to
| check the IDs authorization against the ssnm.DIST resource.

| Step 5. DB2 invokes the connection exit routine. The parameter list passed to the
| routine describes where the remote request originated.

| Step 6. The remote request has a primary authorization ID, possibly one or more
| secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The
| plan or package owner ID also accompanies the request. Privileges and
| authorities granted to those IDs at the DB2 server govern the actions that
| the request can take.

Planning to Send Remote Requests
If you are planning to send requests to another DB2, consider that the security
administrator there might have chosen any of the options described in “Controlling
Requests from Remote Applications” on page 3-71. You have to know what those
choices are and make entries in your CDB to correspond to them. You can also
choose some things independently of what the other system requires.

If you are planning to send remote requests to some DBMS that is not DB2 for
OS/390, you have to satisfy the requirements of that system. You probably need
documentation for the particular type of system; some of the choices described in
this section might not apply.

| Network Protocols and Authentication Tokens: DB2 chooses how to send
| authentication tokens based on the network protocols being used (SNA or TCP/IP).
| If the request is sent using SNA, the authentication tokens are sent in the SNA
| attach request (FMH5), unless you are using DCE. If you use DCE, authentication
| tokens are sent with DRDA security commands.

If the request uses TCP/IP, the authentication tokens are always sent using DRDA
security commands.

| The Communications Database for the Requester
| The information under this heading, up to “What IDs You Send” on page 3-87, is
| General-use Programming Interface and Associated Guidance Information, as
| defined in “Notices” on page xi.

| The communications database (CDB) is a set of DB2 catalog tables that let you
| control aspects of remote requests. In this section, we concentrate on the columns

3-84 Administration Guide

| of the communications database pertaining to security issues related to the
| requesting system.

| Columns Used in SYSIBM.LUNAMES
| This table is used only for requests that use SNA protocols.

| LUNAME CHAR(8)
| The LUNAME of the remote system. A blank value identifies a default row
| that serves requests from any system not specifically listed elsewhere in the
| column.

| SECURITY_OUT (CHAR 1)
| This column defines the security option that is used when local DB2 SQL
| applications connect to any remote server associated with the corresponding
| LUNAME.

| A The option is “already verified,” the default. With A, outbound
| connection requests contain an authorization ID and no
| authentication token. The value used for an outbound request is
| either the DB2 user's authorization ID or a translated ID, depending
| on the value in the USERNAMES column.

| R The option is “RACF PassTicket.” Outbound connection requests
| contain a user ID and a RACF PassTicket. The LUNAME column is
| used as the RACF PassTicket application name.

| The value used for an outbound request is either the DB2 user's
| authorization ID or a translated ID, depending on the value in the
| USERNAMES column. The translated ID is used to build the RACF
| PassTicket.

| P The option is “password.” Outbound connection requests contain an
| authorization ID and a password. The password is obtained from
| RACF if ENCRYPTPSWDS=Y, or from SYSIBM.USERNAMES if
| ENCRYPTPSWDS=N. If you get the password from
| SYSIBM.USERNAMES, the USERNAMES column of
| SYSIBM.LUNAMES must contain B or O. The value used for an
| outbound request is the translated ID.

| ENCRYPTPSWDS CHAR(1)
| This column only applies to DB2 for MVS/ESA or DB2 for OS/390 partners
| when passwords are used as authentication tokens. It indicates whether
| passwords received from and sent to the corresponding LUNAME are
| encrypted:

| Y Yes, passwords are encrypted. For outbound requests, the
| encrypted password is extracted from RACF and sent to the server.
| For inbound requests, the password is treated as encrypted.
| N No, passwords are not encrypted. This is the default; any character
| but Y is treated as N.

| When you connect to a DB2 for OS/390 partner that is at Version 5 or a
| subsequent release, we recommend that you use RACF PassTickets
| (SECURITY_OUT='R') instead of encrypting passwords.

| USERNAMES CHAR(1)
| This column indicates whether an ID accompanying a remote attach request,
| sent from or to the corresponding LUNAME, is subject to translation and

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-85

| “come from” checking. When you specify I, O, or B, use the
| SYSIBM.USERNAMES table to perform the translation.

| I An inbound ID is subject to translation.
| O An outbound ID, sent to the corresponding LUNAME, is subject to
| translation.
| B Both inbound and outbound IDs are subject to translation.
| blank No IDs are translated.

| Columns Used in SYSIBM.IPNAMES
| This table is used only for requests that use TCP/IP protocols.

| LINKNAME CHAR(8)
| The name used in the LINKNAME column of SYSIBM.LOCATIONS to
| identify the remote system.

| SECURITY_OUT
| This column defines the DRDA security option that is used when local DB2
| SQL applications connect to any remote server associated with this TCP/IP
| host.

| A The option is “already verified,” the default. Outbound connection
| requests contain an authorization ID and no password. The value
| used for an outbound request is either the DB2 user's authorization
| ID or a translated ID, depending on the value in the USERNAMES
| column.

| R The option is “RACF PassTicket.” Outbound connection requests
| contain a user ID and a RACF PassTicket. The LINKNAME column
| must contain the server's LU name which is used as the RACF
| PassTicket application name to generate the PassTicket.

| The value used for an outbound request is either the DB2 user's
| authorization ID or a translated ID, depending on the value in the
| USERNAMES column. The translated ID is used to build the RACF
| PassTicket.

| P The option is “password.” Outbound connection requests contain an
| authorization ID and a password. The password is obtained from
| the SYSIBM.USERNAMES table.

| If you specify P, the USERNAMES column must contain O.

| USERNAMES CHAR(1)
| This column indicates whether an outbound request translates the
| authorization ID. When you specify O, use the SYSIBM.USERNAMES table
| to perform the translation.

| O An outbound ID, sent to the corresponding LUNAME, is subject to
| translation.
| blank No translation is done.

| Columns Used in SYSIBM.USERNAMES
| This table is used by both SNA and TCP/IP connections.

| TYPE CHAR(1)
| Whether the row is used for inbound or outbound translation:

| I The row applies to inbound IDs.
| O The row applies to outbound IDs.

3-86 Administration Guide

| The field should contain only I or O. Any other character, including blank,
| causes the row to be ignored.

| AUTHID CHAR(8)
| An authorization ID that is permitted and perhaps translated. If blank, any
| authorization ID is permitted with the corresponding LINKNAME, and all are
| translated in the same way.

| LINKNAME CHAR(8)
| Identifies the VTAM or TCP/IP network locations associated with this row. A
| blank value in this column indicates that this name translation rule applies to
| any TCP/IP or SNA partner.

| If you specify a nonblank value for this column, one or both of the following
| situations must be true:

| � A row exists in table SYSIBM.LUNAMES that has an LUNAME value
| that matches the LINKNAME value that appears in this column.

| � A row exists in table SYSIBM.IPNAMES that has a LINKNAME value
| that matches the LINKNAME value that appears in this column.

| NEWAUTHID CHAR(8)
| The translated authorization ID. If blank, no translation occurs.

| PASSWORD CHAR(8)
| A password that is sent with outbound requests. This password is not
| provided by RACF and cannot be encrypted.

What IDs You Send
| The primary authorization ID of the process making the request is always sent to
| the server. This is the ID that is used for authentication at the remote server. But
| other IDs can accompany some requests. It's important to understand what other
| IDs are sent because they are subject to translation. You must include these other
| IDs in table SYSIBM.USERNAMES to avoid an error when you use outbound
| translation. Table 44 shows what other IDs you send for the different situations that
| can occur.

Table 44. IDs That Accompany the Primary ID on a Remote Request

In this situation: You send this ID also:

An SQL query, using DB2 private protocol
access

The plan owner

Remote execution of a package The plan and package owner (If the server
is not DB2 for OS/390, only the package
owner is used for authorization at the
server.)

A remote BIND, COPY, or REBIND
PACKAGE command

The package owner

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-87

| ┌───────────────────┐ Activity at the
| │ Step 1: Check │ DB2 Sending System
| │ local privilege │

| │ │

| └─────────┬─────────┘

| │

| ┌────────────────────────────────┼─────────────────────────────────────┐

| │ Check SYSIBM.LUNAMES or SYSIBM.IPNAMES │

| │ │ │

| │ ┌────────┴────────────┐ │

| │ │ Step 2: Is │ │

| │ │ outbound translation│ │

| │ Yes │ specified? │ No │

| │ └─────────┬───────────┘ │

| │ ┌────────────────────┴───────────────────┐ │

| │ ┌──────────┴────────────────┐ ┌────────────┴─────────────┐ │

| │ │Translate remote primary │ │Remote primary ID is the │ │

| │ │ ID by using NEWAUTHID │ │same as local primary ID. │ │

| │ │column of SYSIBM.USERNAMES.│ │ │ │

| │ └──────────┬────────────────┘ └────────────┬─────────────┘ │

| │ │ │ │

| │ └────────────────────────┬───────────────┘ │

| │ ┌───────────┴────────────────┐ │

| │ │ Step 3: Check SECURITY_OUT │ │

| │ │ column of SYSIBM.LUNAMES or│ │

| │ │ SYSIBM.IPNAMES. │ │

| │ └────────────────────────────┘ │

| └─────────────────────────────────────┬────────────────────────────────┘

| │

| ┌─────────────────────────────────────6───┐

| │ Step 4: Obtain Authentication Information │

| │ ┌───────────────────────┬───────────────────────────┐ │

| │ ┌───────┴───────┐ ┌─────────┴───────┐ ┌─────────────┴────────────┐ No │

| │ │A: No password │ │R: Get PassTicket│ │ P: Are passwords │ ┌───────────────────┐ │

| │ │ is sent. │ │ from RACF │ │ encrypted (possible ├───┤ Get password from │ │

| │ └───────────────┘ └─────────────────┘ │ only with SNA)? │ │ SYSIBM.USERNAMES │ │

| │ └─────────────┬────────────┘ └───────────────────┘ │

| │ Yes ┌─────┴───────────┐ │

| │ │Get password from│ │

| │ │RACF │ │

| │ └─────────────────┘ │

| │ │

| └─────────────────────────────────────┬───┘

| │

| ┌──────────6──────────┐

| │ Step 5: Send request│

| └─────────────────────┘

| Figure 62. Steps in Sending a Request from a DB2 Subsystem

Details of Steps in Sending a Request from DB2: These notes explain the steps
in Figure 62.

Step 1. The DB2 subsystem that sends the request checks whether the primary
authorization ID has the privilege to execute the plan or package.

DB2 checks to see what value in column LINKNAME of table
SYSIBM.LOCATIONS matches either column LUNAME of table
SYSIBM.LUNAMES or column LINKNAME of table SYSIBM.IPNAMES.
This check determines whether SNA or TCP/IP protocols are used to
carry the DRDA request. (Statements that use DB2 private protocol, not
DRDA, always use SNA.)

Step 2. When executing a plan, the plan owner is also sent with the authorization
ID; when binding a package, the authorization ID of the package owner is
also sent. If the USERNAMES column of table SYSIBM.LUNAMES
contains O or B, or if the USERNAMES column of table
SYSIBM.IPNAMES contains O, both IDs are subject to translation under
control of the SYSIBM.USERNAMES table. Be sure that these IDs are

3-88 Administration Guide

included in SYSIBM.USERNAMES, or you will receive SQLCODE -904.
DB2 translates the ID as follows:

� If there is a nonblank value of NEWAUTHID in the row, that value
becomes the new ID.

� If NEWAUTHID is blank, the ID is not changed.

If table SYSIBM.USERNAMES does not contain a new authorization ID to
which the primary authorization ID is translated, then the request is
rejected with a SQLCODE -904.

If column USERNAMES does not contain O or B, the IDs are not
translated.

Step 3. SECURITY_OUT is checked for outbound security options. Those options
are as follows:

A Already verified. No password is sent with the authorization ID.
This option is valid only if the server accepts already verified
requests.

For SNA, the server must have specified A in the
| SECURITY_IN column of the SYSIBM.LUNAMES table.

For TCP/IP, the server must have specified YES in the
TCP/IP ALREADY VERIFIED field of installation panel
DSNTIP5.

R RACF PassTicket. If the primary authorization ID was translated,
that translated ID is sent with the PassTicket. See “Sending
RACF PassTickets” on page 3-92 for information about setting up
PassTickets.

P Password. The outbound request must be accompanied by a
password:

If the requester is a DB2 for OS/390 and uses SNA protocols,
passwords can be encrypted if you specify Y in the
ENCRYPTPSWDS column of SYSIBM.LUNAMES. If
passwords are not encrypted, the password is obtained from
the PASSWORD column of table SYSIBM.USERNAMES.

We recommend using RACF PassTickets or DCE tickets to
avoid flowing unencrypted passwords over the wire.

| If the requester uses TCP/IP protocols, you cannot encrypt
| the password; therefore, the password is always obtained
| from RACF.

Step 4. Send the request. See Table 44 on page 3-87 to determine which IDs
accompany the primary authorization ID.

Translating Outbound IDs
| One reason for translating outbound IDs is that an ID on your system duplicates an
| ID on the remote system. Or, you might want to change some IDs to others that
| are accepted by the remote system.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-89

| To indicate that you want to translate outbound user IDs:

| 1. Specify an O in the USERNAMES column of table SYSIBM.IPNAMES or
| SYSIBM.LUNAMES.

| 2. Use the NEWAUTHID column of SYSIBM.USERNAMES to specify the ID to
| which the outbound ID is translated.

Example 1: Suppose that the remote system accepts from you only the IDs
XXGALE, GROUP1 and HOMER.

1. To specify that outbound translation is in effect for the remote system, LUXXX,
you need the following values in table SYSIBM.LUNAMES:

If your row for LUXXX already has I for column USERNAMES (because you
translate inbound IDs coming from LUXXX), change I to B (for both inbound
and outbound translation.

2. Translate the ID GALE to XXGALE on all outbound requests to LUXXX. You
need these values in table SYSIBM.USERNAMES:

3. Translate EVAN and FRED to GROUP1 on all outbound requests to LUXXX.
You need this in SYSIBM.USERNAMES:

4. Do not translate the ID HOMER on outbound requests to LUXXX. (HOMER is
assumed to be an ID on your DB2 as well as on LUXXX.) You need these
values in table SYSIBM.USERNAMES:

5. Reject any requests from BASIL to LUXXX before they are sent. For that, you
need nothing in table SYSIBM.USERNAMES. If there is no row telling what to
do with the ID BASIL on an outbound request to LUXXX, the request is
rejected.

Example 2: If you send requests to another LU, say LUYYY, then you generally
need another set of rows to tell how your IDs are translated on outbound requests
to LUYYY.

But you can use a single row to specify a translation that is to be in effect on
requests to all other LUs. For example, if HOMER is to be sent untranslated
everywhere, and DOROTHY is to be translated to GROUP1 everywhere, you can
use these rows in table SYSIBM.USERNAMES:

| LUNAME USERNAMES

LUXXX O

| TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O GALE LUXXX XXGALE GALEPASS

| TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O EVAN LUXXX GROUP1 GRP1PASS
O FRED LUXXX GROUP1 GRP1PASS

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER LUXXX blank HOMERSPW

3-90 Administration Guide

You can also use a single row to specify that all IDs that accompany requests to a
single remote system must be translated. For example, if every one of your IDs is
to be translated to THEIRS on requests to LUYYY, you can use the following row in
table SYSIBM.USERNAMES:

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER blank blank HOMERSPW
O DOROTHY blank GROUP1 GRP1PASS

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O blank LUYYY THEIRS THEPASS

 Sending Passwords
Recommendation: For the tightest security, do not send passwords through the
network. Instead, use one of the following security mechanisms:

� RACF encrypted passwords, described in “Sending RACF Encrypted
Passwords”

� RACF PassTickets, described in “Sending RACF PassTickets” on page 3-92

� DCE tickets, described in “Sending DCE Tickets” on page 3-92

� DRDA encrypted passwords, described in “Sending encrypted passwords from
a workstation” on page 3-92

If you want to send passwords, you can put the password for an ID in the
PASSWORD column of SYSIBM.USERNAMES. If you do this, pay special
attention to the security of the SYSIBM.USERNAMES table. We strongly
recommend that you use an edit routine (EDITPROC) to encrypt the passwords
and authorization IDs in SYSIBM.USERNAMES. For instructions on writing an edit
routine and creating a table that uses it, see “Edit Routines” on page X-44.

DB2 for OS/390 allows the use of RACF encrypted passwords or RACF
PassTickets. However, workstations, such as Windows/NT, do not support these
security mechanisms. RACF encrypted passwords are not a secure mechanism,
because they can be replayed.

Recommendation : Do not use RACF encrypted passwords unless you are
connecting to a previous release of DB2 for OS/390.

Sending RACF Encrypted Passwords
A method available only to DB2 subsystems that communicate with each other
using SNA protocols is to specify password encryption in SYSIBM.LUNAMES as
follows:

The partner DB2 must also specify password encryption in its SYSIBM.LUNAMES
table. Both partners must register every ID and its password with RACF. Then, for
every request to LUXXX, your DB2 calls RACF to supply an encrypted password to
accompany the ID. With password encryption, you do not use the PASSWORD
column of SYSIBM.USERNAMES, so the security of that table becomes somewhat
less critical.

LUNAME USERNAMES ENCRYPTPSWDS

LUXXX O Y

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-91

Sending RACF PassTickets
To send RACF PassTickets with your remote requests to a particular remote
system, enter R in the SECURITY_OUT column of SYSIBM.IPNAMES or
SYSIBM.LUNAMES table for that system.

To set up RACF to generate PassTickets, you must define and activate a RACF
PassTicket data class (PTKTDATA). This class must contain a RACF profile for
each remote DB2 subsystem to which you send requests.

1. Activate the RACF PTKTDATA class by issuing the following RACF commands:

SETROPTS CLASSACT(PTKTDATA)

SETROPTS RACLIST(PTKTDATA)

2. Define profiles for the remote systems by entering the name of the remote
system as it appears in the LINKNAME column of table SYSIBM.LOCATIONS.
For example, the following command defines a profile for DB2A in the RACF
PTKTDATA class:

RDEFINE PTKTDATA DB2A SSIGNON(KEYMASKED(Eðð1193519561977))

3. Refresh the RACF PTKTDATA definition with the new profile by issuing the
following command:

SETROPTS RACLIST(PTKTDATA) REFRESH

See OS/390 Security Server (RACF) Security Administrator's Guide for more
information about RACF PassTickets.

Sending DCE Tickets
DB2 for OS/390 cannot send DCE tickets for authentication. If your requester is
enabled for DCE security as a requester, refer to that product's documentation for
information about sending DCE tickets.

Sending encrypted passwords from a workstation
DB2 for OS/390 allows DRDA level 4 clients to flow DRDA encrypted passwords to
a DB2 server. This support uses the Diffie-Hellman key distribution algorithm.6

To enable DB2 Connect V6 to flow encrypted passwords, database connection
services (DCS) authentication must be set to DCS_ENCRYPT in the DCS directory
entry. When the workstation application issues an SQL CONNECT, the workstation
negotiates this support with the database server. If supported, a shared private key
is generated by the client and server using the Diffie-Hellman public key technology
and the password is encrypted using 56-bit DES with the shared private key. The
encrypted password is non-replayable, and the shared private key is generated on
every connection. If the server does not support password encryption, the
application receives SQLCODE -30073 (DRDA security manager level 6 is not
supported).

6 Diffie-Hellman is one of the first standard public key algorithms. It results in exchanging a connection key which is used by client
and server to generate a shared private key. The 56-bit Data Encryption Standards (DES) algorithm is used for encrypting and
decrypting of the password using the shared private key.

3-92 Administration Guide

Establishing RACF Protection for DB2
For purposes of illustration, suppose that the system of RACF IDs shown in
Figure 63 is used to control DB2 usage.

 ┌───────────┐

│ SYS1 │ The major RACF group for the site

 └─────┬─────┘

 ├──────────────────────────────┬─────────────┬────────┐

 ┌─────┴─────┐ │ │ │

│ DB2 │ The DB2 groupother groups

 └─────┬──┬──┘

 │ │ ┌────────┐

│ └───────────────────┤DB2OWNER│ This ID owns, and is

│ └────────┘ connected to, group DB2

 ├────────────────┬─────────────┬─────────────┬────────┐

┌─────┴─────┐ ┌─────┴─────┐ │ │ ┌─────┴─────┐ The group of

│ DSNC51ð │ │ DSN51ð │ ... other aliases ... │ DB2USER │ all DB2 IDs

 └───────────┘ └───────────┘ └─────┬─────┘

DB2 groups (aliases to integrated │

catalog facility catalogs) ┌──────────────┼──────────────┐

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐

RACF group │ DB2SYS │ │ GROUP1 │ │ GROUP2 │

names └───┬───┬───┘ └───┬───┬───┘ └───┬───┬───┘

┌─────────────┬──────────────┬────┘ └───┐ ┌──┘ └───┐ ┌──┘ └─────┐

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌───┴───┴───┐ ┌───┴───┴───┐ ┌─────┴─────┐

│ SYSADM │ │ SYSOPR │ │ SYSDSP │ │ USER2 │ │ USER3 │ │ USER4 │

└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 63. Sample DB2/RACF Environment

Figure 63 shows some of the relationships among the following names:

RACF ID Use
SYS1 Major RACF group ID
DB2 DB2 group
DB2OWNER Owner of the DB2 group
DSNC510 Group to control databases and recovery logs
DSN510 Group to control installation data sets
DB2USER Group of all DB2 users
SYSADM ID with DB2 installation SYSADM authority
SYSOPR ID with DB2 installation SYSOPR authority
DB2SYS, GROUP1, GROUP2 RACF group names
SYSDSP RACF user ID for DB2 started tasks

(There are additional RACF group names and user IDs that do not appear in the
figure; they are listed in Table 45 on page 3-98.)
USER1, USER2, USER3 RACF user IDs

In order to establish RACF protection for DB2, perform the steps described below.
Some are required, some are optional, depending on your circumstances. All
presume that RACF is already installed. The steps do not need to be taken strictly
in the order shown here; we group them under two major objectives:

� “Defining DB2 Resources to RACF” on page 3-94 includes steps that tell RACF
what to protect.

� “Permitting RACF Access” on page 3-97 includes steps that make the
protected resources available to processes.

For a more thorough description of RACF facilities, see Recource Access Control
Facility (RACF) System Programmer's Guide.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-93

Defining DB2 Resources to RACF
To define DB2 resources to the RACF system, perform the following steps in any
order:

� “Define the Names of Protected Access Profiles”

� “Add Entries to the RACF Router Table” on page 3-95

� “Enable RACF Checking for the DSNR and SERVER Classes” on page 3-96

All of the steps are required. As a result of the steps, no one can access the DB2
subsystem until RACF is further instructed to permit access.

Other tasks you might want to perform include:

� Controlling whether two DBMSs using VTAM LU 6.2 can establish sessions
with each other, as described in “Enable Partner-LU Verification” on page 3-96.

| � Ensure that IDs associated with stored procedures address spaces are
| authorized to run the appropriate attachment facility, as described in “Step 1:
| Control Access via the Attachment Facilities (Required)” on page 3-104.

| � If you are using TCP/IP, ensure that the ID associated with the DDF address
| space is authorized to use OpenEdition MVS services, as described in
| “Establishing RACF Protection for TCP/IP” on page 3-106.

Define the Names of Protected Access Profiles
The RACF resource class for DB2 is DSNR, and that class is contained in the
RACF descriptor table. Among the resources in that class are profiles for access to
a DB2 subsystem from one of these environments—IMS, CICS, the distributed data
facility (DDF), and TSO or batch. Those profiles allow you to control access to a
DB2 subsystem from a particular environment.

Each profile has a name of the form subsystem.environment, where:

subsystem is the name of a DB2 subsystem, of 1 to 4 characters; for example,
DSN or DB2T.
environment denotes the environment, by one of the following terms:

� MASS for IMS (including MPP, BMP, Fast Path, and DL/I batch)

� SASS for CICS

� DIST for DDF

| � RRSAF for Recoverable Resource Manager Services attachment facility.
| Stored procedures use RRSAF in WLM-established address spaces.

| � BATCH for all others, including TSO, batch, all utility jobs, DB2-established
stored procedures address space, and requests through the call attachment
facility

To control access, you need to define a profile name, as a member of class DSNR,
for every combination of subsystem and environment you want to use. For
example, suppose you want to access:

� Subsystem DSN from TSO and DDF
| � Subsystem DB2P from TSO, DDF, IMS and RRSAF
| � Subsystem DB2T from TSO, DDF, CICS and RRSAF

3-94 Administration Guide

Then define the following profile names:

| DSN.BATCH DSN.DIST

| DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

| DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF

You can do that with a single RACF command, which also names an owner for the
resources:

| RDEFINE DSNR (DSN.BATCH DSN.DIST DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

| DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF) OWNER(DB2OWNER)

Those profiles are the ones that you later permit access to, as shown under “Permit
Access for Users and Groups” on page 3-102. After you define an entry for your
DB2 system in the RACF router table, the only users that can access the system
are those who are permitted access to a profile. If you do not want to limit access
to particular users or groups, you can give universal access to a profile with a
command like this:

RDEFINE DSNR (DSN.BATCH) OWNER(DB2OWNER) UACC(READ)

When you have added an entry for an DB2 subsystem to the RACF Router Table,
you must remove the entry for that subsystem from the Router Table to deactivate
RACF checking.

Add Entries to the RACF Router Table
You need to add an entry for each DB2 subsystem to the RACF router table,
because they are not included in the default router table distributed by RACF.
Figure 64 on page 3-96 shows the ICHRFRTB macros to generate entries in the
RACF router table (ICHRFR01) for the DB2 subsystems DSN, DB2P, and DB2T.
This table controls the action taken when DB2 invokes the RACROUTE macro.
(Refer to Recource Access Control Facility (RACF) System Programmer's Guide
for a description of how to generate the RACF router table and the RACROUTE
macro). If you do not have an entry in the router table for a particular DB2
subsystem, then any user who tries to access that subsystem from any
environment is accepted.

(If you later decide not to use RACF checking for any or all of these resources, use
the RACF RDELETE command to delete the resources you do not want checked.
Then reassemble the RACF router table without them.)

Finally, re-IPL the MVS system to cause it to use the new router table. Or you can
delay the IPL until you have reassembled the RACF started procedures table in the
next set of steps and, therefore, do it only once.

Operational Note: The macro ICHRFRTB used in the job sends a message to
warn that the class name, DSNR, does not contain a digit or national character in
the first four characters. You can ignore the message.

As a result of the job, those subsystems, in class DSNR with requester IDENTIFY,
have their requests passed to RACF (ACTION=RACF) for connection checking.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-95

\

\ REASSEMBLE AND LINKEDIT THE INSTALLATION-PROVIDED

\ ROUTER TABLE ICHRFRð1 TO INCLUDE DB2 SUBSYSTEMS IN THE

\ DSNR RESOURCE CLASS.

\

\ PROVIDE ONE ROUTER ENTRY FOR EACH DB2 SUBSYSTEM NAME.

\ THE REQUESTOR-NAME MUST ALWAYS BE "IDENTIFY".

ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DSN,ACTION=RACF

ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DB2P,ACTION=RACF

ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DB2T,ACTION=RACF

Figure 64. Router Table in RACF

| Enable RACF Checking for the DSNR and SERVER Classes
| To enable RACF access checking for resources in the DSNR resource class, issue
| this RACF command:

| SETROPTS CLASSACT(DSNR)

| The command must be issued by a user with the SPECIAL attribute.

| If you are using stored procedures in a WLM-established address space, you might
| also need to enable RACF checking for the SERVER class. See “Step 2: Control
| Access to WLM (Optional)” on page 3-104.

Enable Partner-LU Verification
With RACF 1.9, VTAM 3.3, and later releases, you can control whether two LUs
using LU 6.2 can connect to each other.

Each member of a connecting pair must establish a profile for the other member.
For example, if LUAAA and LUBBB are to connect and know each other by those
LUNAMES, issue RACF commands similar to these:

At LUAAA: RDEFINE APPCLU netid.LUAAA.LUBBB UACC(NONE) ...
At LUBBB: RDEFINE APPCLU netid.LUBBB.LUAAA UACC(NONE) ...

Here, netid is the network ID, given by the VTAM start option NETID.

When you create those profiles with RACF, use the SESSION operand to supply:

� The VTAM password as a session key (SESSKEY suboperand)
� The maximum number of days between changes of the session key

(INTERVAL suboperand)
� Whether the LU pair is locked (LOCK suboperand).

For details, see Resource Access Control Facility (RACF) Security Administrator's
Guide.

Finally, to enable RACF checking for the new APPCLU resources, issue this RACF
command at both LUAAA and LUBBB:

SETROPTS CLASSACT(APPCLU)

3-96 Administration Guide

Permitting RACF Access
To permit processes to use the protected resources, take the following steps:

� “Define RACF User IDs for DB2 Started Tasks”
� “Add RACF Groups” on page 3-101
� “Permit Access for Users and Groups” on page 3-102

The sections that follow provide detailed suggestions.

Define RACF User IDs for DB2 Started Tasks
A DB2 subsystem has the following started-task address spaces:

� ssnmDBM1 for database services,
� ssnmMSTR for system services,
� ssnmDIST for the distributed data facility

| � ssnmSPAS for the DB2-established stored procedures address space
� Names for your WLM-established address spaces for stored procedures

You must associate each of these address spaces with a RACF user ID. Each of
them can also be assigned a RACF group name. The DB2 address spaces cannot
be started with batch jobs.

If you have IMS or CICS applications issuing DB2 SQL requests, you must
associate RACF user IDs, and can associate group names, with the IMS control
region and the CICS address space, as well as with the four DB2 address spaces.
If the IMS and CICS address spaces are started as batch jobs, provide their RACF
IDs and group names with the USER and GROUP parameters on the JOB
statement. If they are started as started tasks, assign the IDs and group names as
you do for the DB2 address spaces, by changing the RACF started procedures
table.

| Stored Procedures: For stored procedures, stored procedures address space
| entries are required in the RACF started procedures table. The associated RACF
| user ID and group name do not have to match those used for the DB2 address
| spaces, but they must be authorized to run the call attachment facility (for the
| DB2-established stored procedure address space) or Recoverable Resource
| Manager Services attachment facility (for WLM-established stored procedure
| address spaces).

Changing the RACF Started Procedures Table: To change the RACF started
procedures table (ICHRIN03), change, reassemble, and link edit the resulting object
code to MVS. Figure 65 on page 3-98 shows the sample entries for three DB2
subsystems and optional entries for CICS and IMS. (Refer to Recource Access
Control Facility (RACF) System Programmer's Guide for a description of how code
a RACF started procedures table.) The example provides for the DB2 started tasks
for each of three DB2 subsystems, named DSN, DB2T, and DB2P, as well as for
CICS and an IMS control region. The IDs and group names associated with the
address spaces are shown in Table 45 on page 3-98.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-97

Table 45. DB2 Address Space IDs and Associated RACF User IDs and Group Names

Address Space RACF User ID RACF Group Name

DSNMSTR SYSDSP DB2SYS
DSNDBM1 SYSDSP DB2SYS
DSNDIST SYSDSP DB2SYS
DSNSPAS SYSDSP DB2SYS

| DSNWLM| SYSDSP| DB2SYS
DB2TMSTR SYSDSPT DB2TEST
DB2TDBM1 SYSDSPT DB2TEST
DB2TDIST SYSDSPT DB2TEST
DB2TSPAS SYSDSPT DB2TEST
DB2PMSTR SYSDSPD DB2PROD
DB2PDBM1 SYSDSPD DB2PROD
DB2PDIST SYSDSPD DB2PROD
DB2PSPAS SYSDSPD DB2PROD
CICSSYS CICS CICSGRP
IMSCNTL IMS IMSGRP

//\

//\ REASSEMBLE AND LINKEDIT THE RACF STARTED PROCEDURES

//\ TABLE ICHRINð3 TO INCLUDE USERIDS AND GROUP NAMES

//\ FOR EACH DB2 CATALOGED PROCEDURE. OPTIONALLY, ENTRIES

//\ FOR AN IMS OR CICS SYSTEM MIGHT BE INCLUDED.

//\

//\ AN IPL WITH A CLPA (OR AN MLPA SPECIFYING THE LOAD

//\ MODULE) IS REQUIRED FOR THESE CHANGES TO TAKE EFFECT.

//\

ENTCOUNT DC AL2(((ENDTABLE-BEGTABLE)/ENTLNGTH)+32768)

\ NUMBER OF ENTRIES AND INDICATE RACF FORMAT

\

\ PROVIDE FOUR ENTRIES FOR EACH DB2 SUBSYSTEM NAME.

\

| Figure 65 (Part 1 of 4). Sample Job to Reassemble the RACF Started Procedures Table

3-98 Administration Guide

BEGTABLE DS ðH

\ ENTRIES FOR SUBSYSTEM NAME "DSN"

DC CL8'DSNMSTR' SYSTEM SERVICES PROCEDURE

 DC CL8'SYSDSP' USERID

 DC CL8'DB2SYS' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

ENTLNGTH EQU \-BEGTABLE CALCULATE LENGTH OF EACH ENTRY

DC CL8'DSNDBM1' DATABASE SERVICES PROCEDURE

 DC CL8'SYSDSP' USERID

 DC CL8'DB2SYS' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

 DC CL8'DSNDIST' DDF PROCEDURE

 DC CL8'SYSDSP' USERID

 DC CL8'DB2SYS' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DSNSPAS' STORED PROCEDURES PROCEDURE

 DC CL8'SYSDSP' USERID

 DC CL8'DB2SYS' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DSNWLM' WLM-ESTABLISHED S.P. ADDRESS SPACE

 DC CL8'SYSDSP' USERID

 DC CL8'DB2SYS' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

| Figure 65 (Part 2 of 4). Sample Job to Reassemble the RACF Started Procedures Table

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-99

\ ENTRIES FOR SUBSYSTEM NAME "DB2T"

DC CL8'DB2TMSTR' SYSTEM SERVICES PROCEDURE

 DC CL8'SYSDSPT' USERID

 DC CL8'DB2TEST' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DB2TDBM1' DATABASE SERVICES PROCEDURE

 DC CL8'SYSDSPT' USERID

 DC CL8'DB2TEST' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

 DC CL8'DB2TDIST' DDF PROCEDURE

 DC CL8'SYSDSPT' USERID

 DC CL8'DB2TEST' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DB2TSPAS' STORED PROCEDURES PROCEDURE

 DC CL8'SYSDSPT' USERID

 DC CL8'DB2TEST' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

\ ENTRIES FOR SUBSYSTEM NAME "DB2P"

DC CL8'DB2PMSTR' SYSTEM SERVICES PROCEDURE

 DC CL8'SYSDSPD' USERID

 DC CL8'DB2PROD' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DB2PDBM1' DATABASE SERVICES PROCEDURE

 DC CL8'SYSDSPD' USERID

 DC CL8'DB2PROD' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

 DC CL8'DB2PDIST' DDF PROCEDURE

 DC CL8'SYSDSPD' USERID

 DC CL8'DB2PROD' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'DB2PSPAS' STORED PROCEDURES PROCEDURE

 DC CL8'SYSDSPD' USERID

 DC CL8'DB2PROD' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

| Figure 65 (Part 3 of 4). Sample Job to Reassemble the RACF Started Procedures Table

3-100 Administration Guide

\ OPTIONAL ENTRIES FOR CICS AND IMS CONTROL REGION

DC CL8'CICSSYS' CICS PROCEDURE NAME

 DC CL8'CICS' USERID

 DC CL8'CICSGRP' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

DC CL8'IMSCNTL' IMS CONTROL REGION PROCEDURE

 DC CL8'IMS' USERID

 DC CL8'IMSGRP' GROUP NAME

DC X'ðð' NO PRIVILEGED ATTRIBUTE

 DC XL7'ðð' RESERVED BYTES

ENDTABLE DS ðD

 END

| Figure 65 (Part 4 of 4). Sample Job to Reassemble the RACF Started Procedures Table

Add RACF Groups
The details of this step depend on the groups you have defined. To add the user
DB2OWNER, issue:

ADDUSER DB2OWNER CLAUTH(DSNR USER) UACC(NONE)

That gives DB2OWNER class authorization for DSNR and USER. DB2OWNER can
add users to RACF and issue the RDEFINE command to define resources in class
DSNR. DB2OWNER has control over and responsibility for the entire DB2 security
plan in RACF.

The RACF group SYS1 already exists. To add group DB2 and make DB2OWNER
its owner, issue:

ADDGROUP DB2 SUPGROUP(SYS1) OWNER(DB2OWNER)

To connect DB2OWNER to group DB2 with the authority to create new subgroups,
add users, and manipulate profiles, issue:

CONNECT DB2OWNER GROUP(DB2) AUTHORITY(JOIN) UACC(NONE)

To make DB2 the default group for commands issued by DB2OWNER, issue:

ALTUSER DB2OWNER DFLTGRP(DB2)

To create the group DB2USER and add five users to it, issue:

ADDGROUP DB2USER SUPGROUP(DB2)

ADDUSER (USER1 USER2 USER3 USER4 USER5) DFLTGRP(DB2USER)

To define a user to RACF, use the RACF ADDUSER command. That invalidates
the current password. You can then log on as a TSO user to change the password.

DB2 Considerations When Using RACF Groups:

� When a user is newly connected to, or disconnected from, a RACF group, the
change is not effective until the next logon. Therefore, it is necessary for a TSO
user to log off and log on, or for a CICS or IMS user to sign on again, to pick
up a new group name as a secondary authorization ID.

� A user with the SPECIAL, JOIN, or GROUP-SPECIAL RACF attribute can
define new groups with any name accepted by RACF and connect any user to

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-101

them. Because the group name can become a secondary authorization ID, you
should control the use of those RACF attributes.

� Existing RACF group names can duplicate existing DB2 authorization IDs.
That is unlikely, because a group name cannot be the same as a user name
and authorization IDs known to DB2 are usually user IDs known to RACF.
However, if you create a table with an owner name that happens to be a RACF
group name, and you use the IBM-supplied sample connection exit routine,
then any TSO user with the group name as a secondary ID has ownership
privileges on the table. You can prevent that by designing the connection exit
routine to stop unwanted group names from being passed to DB2. For
example, in CICS, if the RCT specifies AUTH=TXID, make sure that the
transaction identifier is not a RACF group; if it is, any user connected to the
group has the same privileges as the transaction code.

Permit Access for Users and Groups
DB2OWNER is authorized for class DSNR, owns the profiles, and has the right to
change them. The next commands allow all users belonging to the group
DB2USER, and the system administrators and operators, to be TSO users, run
batch jobs, and run DB2 utilities on the three systems DSN, DB2P, and DB2T. The
ACCESS(READ) operand allows use of DB2 without the ability to manipulate
profiles.

PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

PERMIT DB2P.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

PERMIT DB2T.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

IMS and CICS: You want to permit the IDs for attaching systems to use the
appropriate access profile. For example, to permit the IMS user ID to use the
access profile for IMS on system DB2P, issue:

PERMIT DB2P.MASS CLASS(DSNR) ID(IMS) ACCESS(READ)

To permit the CICS group ID to use the access profile for CICS on system DB2T,
issue:

PERMIT DB2T.SASS CLASS(DSNR) ID(CICSGRP) ACCESS(READ)

Default IDs for Installation Authorities: When DB2 is installed, IDs are named to
have special authorities—one or two for SYSADM and one or two for SYSOPR.
Those IDs can be connected to the group DB2USER, but if they are not, they
certainly need to be permitted access. The next command permits the default IDs
for the special authorities to use subsystem DSN through TSO:

PERMIT DSN.BATCH CLASS(DSNR) ID(SYSADM,SYSOPR) ACCESS(READ)

Those IDs also can be group names.

Secondary IDs: One important use of a secondary authorization ID is to identify a
RACF group, to which are assigned privileges that are shared by several, perhaps
many, primary IDs. For example, suppose that DB2OWNER wants to create a
group GROUP1 and give the ID USER1 administrative authority over it. USER1
should be able to connect other existing users to the group. To create the group,
DB2OWNER issues this command:

ADDGROUP GROUP1 OWNER(USER1) DATA('GROUP FOR DEPT. G1')

To permit the group to connect to the “DSN” system through TSO, DB2OWNER
issues:

3-102 Administration Guide

PERMIT DSN.BATCH CLASS(DSNR) ID(GROUP1) ACCESS(READ)

USER1 can now connect other existing IDs to the group GROUP1, using
commands like this:

CONNECT (USER2 EPSILON1 EPSILON2) GROUP(GROUP1)

If you add or update secondary IDs for CICS transactions, you must start and stop
the CICS attachment facility in order to ensure that all threads sign on and get the
correct security information.

Allowing Users to Create Data Sets: “Chapter 3-6. Auditing Concerns” on
page 3-119 recommends using RACF to protect the data sets that store DB2 data.
If you use that method, then when you create a new group of DB2 users, you might
want to connect it to a group that can create data sets. Looking ahead to the
methods of the next chapter, to allow USER1 to create and control data sets,
DB2OWNER creates a generic profile and permits complete control to USER1, and
also to DB2 (through SYSDSP) and to the four administrators.

ADDSD 'DSNC51ð.DSNDBC.ST\' UACC(NONE)

PERMIT 'DSNC51ð.DSNDBC.ST\'

ID(USER1 SYSDSP SYSAD1 SYSAD2 SYSOP1 SYSOP2) ACCESS(ALTER)

| Allowing Access from Remote Requesters: The recommended way of
| controlling access from remote requesters is to use the DSNR RACF class with a
| PERMIT to access the distributed data address space (such as DSN.DIST). For
| example, the following RACF commands let the users represented by the group
| DB2USER to access DDF on the DSN subsystem. These DDF requests can
| originate from any partner in the network.

| PERMIT DSN.DIST CLASS(DSNR) ID(DB2USER) ACCESS(READ)

| If you want to ensure that a specific user be allowed access only when originating
| from a specific LU name, you can use WHEN(APPCPORT) on the PERMIT
| command. For example, to permit access to DB2 distributed processing on
| subsystem DSN when the request comes from USER5 at LUNAME equal to
| NEWYORK, issue:

| PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

| WHEN(APPCPORT(NEWYORK))

| For connections coming in through TCP/IP, you must use TCPIP as the
| APPCPORT name as shown here:

| PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

| WHEN(APPCPORT(TCPIP))

| If your system has the RACF APPCPORT class active on your system, and a
| resource profile for the requesting LU name already exists, you must permit READ
| access to the APPCPORT resource profile for the user IDs used with DB2, even
| when you are using the DSNR resource class. Similarly, if you are using the RACF
| APPL class and that class is restricting access to the local DB2 LU name or
| generic LU name, you must permit READ access to the APPL resource for the user
| IDs used with DB2.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-103

| Establishing RACF Protection for Stored Procedures
| This section is a summary of the procedures you can follow for establishing RACF
| protection for stored procedures that run on your DB2 subsystem.

| This section contains the following procedures:

| � “Step 1: Control Access via the Attachment Facilities (Required)”

| � “Step 2: Control Access to WLM (Optional)”

| � “Step 3: Control Access to Non-DB2 Resources (Optional)” on page 3-105.

| Step 1: Control Access via the Attachment Facilities (Required)
| The user ID associated with the DB2-established address space must be
| authorized to run the DB2 call attachment facility. It must be associated with the
| ssnm.BATCH profile, as described in “Define the Names of Protected Access
| Profiles” on page 3-94.

| The user ID associated with the WLM-established stored procedures address
| space must be authorized to run Recoverable Resource Manager Services
| attachment facility (RRSAF) and is associated with the ssnm.RRSAF profile.

| Control access to the DB2 subsystem through RRSAF by performing the following
| steps:

| 1. If you haven't already established a profile for controlling access from the RRS
| attachment as described in “Define the Names of Protected Access Profiles” on
| page 3-94, define ssnm.RRSAF in the DSNR resource class with a universal
| access authority of NONE.

| RDEFINE DSNR (DB2P.RRSAF DB2T.RRSAF) UACC(NONE)

| 2. Activate the resource class:

| SETROPTS RACLIST(DSNR) REFRESH

| 3. Add user IDs that are associated with the stored procedures address spaces to
| the RACF Started Procedures Table:
| .| .| .

| DC CL8'DSNWLM' WLM-ESTABLISHED S.P. ADDRESS SPACE

| DC CL8'SYSDSP' USERID

| DC CL8'DB2SYS' GROUP NAME

| DC X'ðð' NO PRIVILEGED ATTRIBUTE

| DC XL7'ðð' RESERVED BYTES
| .| .| .

| 4. Allow read access to ssnm.RRSAF to the user ID associated with the stored
| procedures address space:

| PERMIT DB2P.RRSAF CLASS(DSNR) ID(SYSDSP) ACCESS(READ)

| Step 2: Control Access to WLM (Optional)
| Optionally, you can control which address spaces can be WLM-established server
| address spaces that run stored procedures. To do this, use the server resource
| class, which WLM uses to identify valid address spaces to which work can be sent.
| If the server class is not defined or activated, then any address space is allowed to
| connect to WLM as a server address space and to identify itself as a server
| address space that runs stored procedures.

3-104 Administration Guide

| To use the server resource class, you must perform both of the following steps:

| 1. Run a version of RACF in which the resource class SERVER is included as
| part of the predefined resource classes (RACF Version 2 Release 2 and
| subsequent releases).

| 2. Define a RACF profile for resource class SERVER:

| RDEFINE SERVER (DB2.ssnm.applenv)

| where applenv is the name of the application environment associated with the
| stored procedure. See “Assigning Stored Procedures to WLM Application
| Environments” on page 5-329 for more information about application
| environments.

| If you want to define the following profile names:

| DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY

| Use the following RACF command:

| RDEFINE SERVER (DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY)

| 3. Activate the SERVER resource class:

| SETROPTS RACLIST(SERVER) REFRESH

| 4. Permit read access to the server resource name to the user IDs associated
| with the stored procedures address space.

| PERMIT DB2.DB2T.TESTPROC CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

| PERMIT DB2.DB2P.PAYROLL CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

| PERMIT DB2.DB2P.QUERY CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

| Step 3: Control Access to Non-DB2 Resources (Optional)
| With stored procedures that run in a DB2-established address space, the user ID of
| the stored procedures address space (from the Started Procedures Table of RACF)
| is used to access non-DB2 resources such as IMS or CICS transactions,
| MVS/APPC conversations, or VSAM files.

| With WLM-established address spaces, you can specify that access to non-DB2
| resources is controlled by the authorization ID of the caller rather than that of the
| stored procedures address space. To do this, specify Y in the
| EXTERNAL_SECURITY column of table SYSIBM.SYSPROCEDURES for the
| stored procedure.

| When you specify Y for EXTERNAL_SECURITY, a separate RACF environment is
| set up for that stored procedure. Use EXTERNAL_SECURITY=Y only when the
| caller must access resources outside of DB2. Figure 66 shows the user ID
| associated with each part of a stored procedure.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-105

| DB2 Server Other MVS

| Client Program A ┌──┐ Resource

| │ ┌───────────────┐ WLM-established stored │ ┌───────────┐

| ┌───────────────┐ │ │ │ procedures address space│EXTERNAL_ │ User ID= │

| │ User ID=yyyy │ │ │ │ ┌──────────────────┐ │SECURITY=Y │ yyyy │

| │ . │ │ │ User ID=yyyy │ │ ssnmWLM │ │ ┌─────5 │ │

| │ . │ │ │ │ │ User ID=xxxx │ │ │ │ │

| │ EXEC SQL │ │ │ ┌───────────┐ │ │ │ │ │ │ │

| │ CALL B ──┼──────────┼─┼5│ Package A │ │ │ ┌───────────┐ │ │ │ └───────────┘

| │ │ │ │ │ (Call B) ├─┼───┼5│ Program B ├────┼───┼───┤ ┌───────────┐

| │ │ │ │ └───────────┘ │ │ │ │ │ │ │ │ User ID= │

| └───────────────┘ │ │ ┌───────────┐ │ │ │ │ │ │ │ │ xxxx │

| │ │ │ Package B │%┼───┼─┤ │ │ │ └─────5 │ │

| │ │ │ │ │ │ └───────────┘ │ │EXTERNAL_ │ │

| │ │ └───────────┘ │ │ │ │SECURITY=N │ │

| │ └───────────────┘ └──────────────────┘ │ └───────────┘

| └──┘

| Figure 66. Accessing Non-DB2 Resources from a Stored Procedure

| For WLM-established stored procedures address spaces, enable the RACF check
| for the caller's ID when accessing non-DB2 resources by performing the following
| steps:

| 1. Update the row for the stored procedure in table SYSIBM.SYSPROCEDURES
| with EXTERNAL_SECURITY='Y'.

| 2. Ensure that the ID of the stored procedure's caller has RACF authority to the
| resources.

| 3. For the best performance, cache the RACF profiles in the virtual lookaside
| facility (VLF) of MVS. Do this by specifying the following keywords in the
| COFVLFxx member of library SYS1.PARMLIB.

| CLASS NAME(IRRACEE)

| EMAJ(ACEE)

| Establishing RACF Protection for TCP/IP
| The ID associated with DB2's distributed address space must be authorized to use
| OpenEdition MVS services if your DB2 is going to send or accept any requests
| over TCP/IP. To do this, you must Create an OMVS segment in the RACF user
| profile:

| ALTUSER (SYSDSP) OMVS(UID(ð))

| You must specify a UID of 0 to give root authority to the DDF address space.

| Establishing DCE Security for DB2
| DB2 for OS/390 can use DCE security services to authenticate remote users. With
| these services, remote end users can access DB2 for OS/390 by means of their
| DCE name and password. This same name and password is used for access
| throughout the network so that users do not have to maintain a separate MVS
| password to access DB2 for OS/390.

| The DCE security technology does not require passwords to flow in readable text,
| and is thus secure even when used in client/server configurations. Instead, DCE

3-106 Administration Guide

| uses an authentication technology that uses encrypted tickets that contain
| authentication information for the end user.

| Requirements: DB2 for OS/390 provides server support for DCE security. It
| requires that DB2 run on OS/390 Release 1 or subsequent releases.

| To enable DB2 to use DCE authentication, do the following steps:

| � “Step 1: Create a DCE Account for DB2”
| � “Step 2: Define DB2 to OpenEdition Security” on page 3-109
| � “Step 3: Cross-link RACF and DCE Security Information” on page 3-110
| � “Step 4: Manage DB2's Server Key” on page 3-110

| For more information about using DCE security, see OS/390 OpenEdition DCE
| Administration Guide.

| Step 1: Create a DCE Account for DB2
| To use DCE services, DB2 must have a DCE account with which it can
| authenticate itself to DCE. DB2's password (its DCE server key) is stored in the
| DCE security registry as part of its DCE account.

| To create a DCE account, you must create a principal for the DB2 for OS/390
| server. A principal is a user of the system. The DCE principal name for the DB2
| server is DB2's location name, in uppercase. For our example, the location name is
| DB2_MVS1.

| You must also create the DCE group and organization in which the account will be
| a member. Skip any of the steps in this procedure, as appropriate, if the principal,
| group, or organization have already been created.

| Use the DCE dcecp administrative interface to perform the operations on the
| security registry. With the dcecp commands, the backslash (\) is a line continuation
| character. A DCE security administrator must be authorized to execute the required
| DCE functions. See OS/390 OpenEdition DCE Administration Guide for information
| about the authorization required for each operation.

| 1. Create a DCE organization in which will be a member.

| dcecp> organization create \
| > -orgid /.../sanjose.ibm.com/org1 \

| > -fullname Sample Org 1

| The remaining commands assume the same cell, so you do not have to
| explicitly include the cell name. A cell is a group of users, systems, and
| resources that are grouped around a common purpose and that share common
| DCE services.

| 2. Create a DCE group of which DB2 is to be a member.

| The following example uses the dcecp command to create a group named
| grp1:

| dcecp> group create grp1 -fullname Sample Group 1

| The command generates a Universal Unique Identifier (UUID) for the
| organization and displays it to you.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-107

| 3. Create a DCE principal for DB2 in the Security Registry. The command
| generates a user ID and a UUID for the principal. Specify the principal name in
| uppercase.

| dcecp> principal create DB2_MVS1 -fullname Sample DB2 Server

| 4. Add DB2 to its DCE group:

| dcecp> group add grp1 -member DB2_MVS1

| 5. Add DB2 to its DCE organization:

| dcecp> organization add org1 -member DB2_MVS1

| 6. Create a server account for DB2:

| You must specify your DCE password (xxxxx in the example that follows) to
| execute this command. Part of the account information is the server's key,
| entered in the password attribute. In the following example, the key is
| represented by the string “temp.db2.key.”

| dcecp> account create DB2_MVS1 -group grp1 -org org1 \
| > -mypwd xxxxx -password temp.db2.key \

| > -acctvalid no -client no \

| > -home / -server yes

| 7. Add DB2's server key to the default key table. A key is like a password for
| noninteractive principals, like DB2. Its key is stored in a keytab file.

| a. Set the server key in the keytab file to the current password for the registry:

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self \
| > -member DB2_MVS1 -key temp.db2.key -version 1

| The version must match the current password version in the registry.

| b. Specify -registry and -random, to generate a random key for DB2 and to
| update both the DCE keytab file and the registry with this key.

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self -member \
| > DB2_MVS1 -random -registry

| where hostname1 is the DCE hostname of the MVS system.

| Data Sharing Considerations: All members of a data sharing group must belong
| to the same DCE cell. Each member of the data sharing group must use the same
| principal name, the location name in upper case. Each member has its own local
| keytab file, but all keytab files must share the same key.

| 1. Perform tasks 1 through 5 in “Step 1: Create a DCE Account for DB2” on
| page 3-107 You can perform these tasks from any host in the cell.

| 2. Create a server account for DB2.

| You must specify your DCE password (xxxxx in the following example) to
| execute this command. Part of the account information is DB2's server key,
| entered in the password attribute. In the following example, the key is
| represented by the string “real.db2.key.”

| dcecp> account create DB2_MVS1 -group grp1 -org org1 \
| > -mypwd xxxxx -password real.db2.key \

| > -acctvalid no -client no \

| > -home / -server yes

| 3. On each member of the data sharing group, add DB2's server key to the
| default local keytab file:

3-108 Administration Guide

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self \
| > -member DB2_MVS1 -key real.db2.key -version 1

| The key in the keytab must match the password for the server account in the
| registry, and each member of the Sysplex must share the same key.

| Step 2: Define DB2 to OpenEdition Security
| Define DB2 to OpenEdition security by using RACF, or an equivalent external
| security subsystem.

| The distributed data facility is a started-task address space named ssnmDIST,
| where ssnm is the subsystem name. In the following example, the ssnm.DIST
| address space has the RACF user ID SYSDSP in the RACF group DB2SYS.

| Define SYSDSP as an OpenEdition MVS (OMVS) user as follows:

| 1. Using the RACF ALTGROUP command, create an OMVS segment in the
| RACF group profile:

| ALTGROUP DB2SYS OMVS (GID(n))

| There is no correlation between the RACF group and the DCE group. Choose
| a value n for the RACF group. The value can be the same as the group ID
| generated for the DCE group, but it need not be. RACF does not require
| unique group IDs.

| 2. Create an OMVS segment in the RACF user profile:

| ALTUSER SYSDSP OMVS(UID(ð) HOME('/u/sysdsp') PROGRAM('/bin/sh'))

| There is no correlation between the RACF user ID and the DCE user ID (UID).
| The command above puts the home directory for SYSDSP in the user
| subdirectory named /u/sysdsp.

| You must specify a UID of 0 to give root authority to the DDF address space,
| which enables DDF to access the DCE default keytab, /krb5/v5srvtab.

| 3. Use the OMVS command mkdir to create the home directory (/u/sysdsp) to
| DDF.

| 4. Permit the SYSDSP user ID to access the RACF identity mapping function.
| The IRR.RDCERUID facility must already have been defined when RACF's
| DCE support was installed.

| PERMIT IRR.RDCERUID CLASS(FACILITY) ID(SYSDSP)

| 5. To allow DCE messages related to DCE processing to be displayed at the
| console, use the OMVS OEDIT command to create an default environment
| variable (envar) file in the user home directory (/u/sysdsp, in our example) . The
| envar file must contain the following statement:

| _EUV_SVC_MSG_LOGGING=CONSOLE_LOGGING

| See OS/390 OpenEdition DCE Administration Guide for more information about
| the envar file.

| Data Sharing Considerations: All members in the Sysplex can share the same
| RACF database, in which case no additional steps are required in a Sysplex.
| However, if the RACF database is not shared, then you must define DB2 as an
| OMVS user to each RACF database.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-109

| Step 3: Cross-link RACF and DCE Security Information
| In this step, you make sure that RACF users are known to DCE or vice versa. This
| section describes at a high level how you use the DCE MVSIMPT and MVSEXPT
| utilities to cross-link principals defined in the DCE registry with user IDs in the
| RACF database. For more information, see OS/390 OpenEdition DCE
| Administration Guide.

| The following example assumes that you are defining an existing set of RACF
| users to DCE and shows you how to import those users to DCE. DCE MVSIMPT
| and MVSEXPT utilities also let you export DCE users to RACF. To cross-link RACF
| and DCE users, perform the following steps:

| 1. In RACF, create a DCE segment for each RACF user who will be cross-linked
| to the DCE registry.

| 2. Run the RACF database unload utility to create a file containing these selected
| users.

| 3. Sort the unloaded file.

| 4. Copy the file to a hierarchical file system (HFS) file.

| 5. Log onto DCE.

| 6. If needed, edit the HFS file containing the RACF information.

| 7. Run the MVSIMPT utility, and specify Pass1 to create a file that contains dcecp
| command options with which to populate the DCE registry. Repeat this step as
| often as necessary to refine the output file. You can also edit the file to override
| or correct automatically generated options and values.

| 8. Run the MVSIMPT utility, and specify Pass2 to invoke dcecp with the options
| that were generated during Pass1.

| Data Sharing Considerations: If the RACF database is not shared, you must
| cross-link user information on each member of the data sharing group.

| Step 4: Manage DB2's Server Key
| To ensure the integrity of DB2's server key, change the key periodically. Each
| server key has a version number. Unexpired tickets that are created using the old
| server key are honored because they refer to a specific version of the server key.

| To change a key, add a new key to the default keytab:

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self
| > -member DB2_MVS1 -random -registry

| where hostname1 is the DCE hostname of the MVS system.

| If the DB2 server key is compromised, you must remove the server key, which
| invalidates all tickets created using that server key. To remove a server key from
| the keytab, enter the following decdp command:

| dcecp> keytab remove /.:/hosts/hostname1/config/keytab/self \
| > -member DB2_MVS1

| Data Sharing Considerations: To change the server key for DB2, perform the
| following steps:

3-110 Administration Guide

| 1. Add the new key to the default keytab on all except one member of the
| Sysplex. Specify a version number n to distinguish the new key from old keys.
| This operation updates only the local keytab.

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self \

| > -member DB2_MVS1 -key new.db2.key -version n

| 2. On the excluded system, enter the following command to update the registry
| and this DB2 member's local keytab:

| dcecp> keytab add /.:/hosts/hostname1/config/keytab/self \
| > -member DB2_MVS1 -key new.db2.key -version n \

| > -registry

| Tickets for DB2 are now generated using the new server key.

| To invalidate a server key that might have been compromised, you must remove
| the server key from each member system.

Other Methods of Controlling Access
You can also help control access to DB2 from within IMS or CICS.

 � IMS Security

IMS terminal security lets you limit the entry of a transaction code to a
particular logical terminal (LTERM) or group of LTERMs in the system. To
protect a particular program, you can authorize a transaction code to be
entered only from any terminal on a list of LTERMs. Alternatively, you can
associate each LTERM with a list of the transaction codes that a user can enter
from that LTERM. IMS then passes the validated LTERM name to DB2 as the
initial primary authorization ID.

 � CICS Security

CICS transaction code security works with RACF to control the transactions
and programs that can access DB2. Within DB2, you can use the ENABLE and
DISABLE options of the bind operation to limit access to specific CICS
subsystems.

 Chapter 3-4. Controlling Access to a DB2 Subsystem 3-111

3-112 Administration Guide

Chapter 3-5. Protecting Data Sets

To protect fully the data in DB2, you must take steps to ensure that no other
process has access to the data sets in which DB2 data resides. We recommend
using RACF, or a similar external security system, to control access to the data
sets just as it controls access to the DB2 system. “Controlling Data Sets through
RACF,” below, tells how to create RACF profiles for data sets and allow their use
through DB2.

Alternatively, you can protect data sets by VSAM or MVS passwords. “Protecting
Data Sets by Passwords” on page 3-116 tells how. Neither operating system nor
VSAM passwords are supported, however, for data sets controlled by the Storage
Management Subsystem (SMS). To protect those, you must use RACF or a similar
external security system.

Controlling Data Sets through RACF
Assume that the RACF groups DB2 and DB2USER, and the RACF user ID
DB2OWNER, have been set up for DB2 IDs, as described under “Defining DB2
Resources to RACF” on page 3-94, and shown in Figure 63 on page 3-93. Given
that setting, the examples that follow show you how to:

� Add RACF groups to control data sets that use the default DB2 qualifiers

� Create generic profiles for different types of DB2 data sets and permit their use
by DB2 started tasks

� Permit use of the profiles by specific IDs

� Allow certain IDs to create data sets.

Adding Groups to Control DB2 Data Sets
The default high-level qualifier for data sets containing DB2 databases and
recovery logs is DSNC510; for distribution, target, SMP, and other installation data
sets, it is DSN510. DB2OWNER can create groups that control those data sets, by
issuing:

ADDGROUP DSNC51ð SUPGROUP(DB2) OWNER(DB2OWNER)

ADDGROUP DSN51ð SUPGROUP(DB2) OWNER(DB2OWNER)

Creating Generic Profiles for Data Sets
DB2 uses specific names to identify data sets for special purposes. In “Define
RACF User IDs for DB2 Started Tasks” on page 3-97, we chose SYSDSP as the
RACF user ID for DB2 started tasks. DB2OWNER can issue the following
commands to create generic profiles for the data set names and give complete
control over the data sets to DB2 started tasks:

� For active logs:

ADDSD 'DSNC51ð.LOGCOPY\' UACC(NONE)

PERMIT 'DSNC51ð.LOGCOPY\' ID(SYSDSP) ACCESS(ALTER)

� For archive logs:

ADDSD 'DSNC51ð.ARCHLOG\' UACC(NONE)

PERMIT 'DSNC51ð.ARCHLOG\' ID(SYSDSP) ACCESS(ALTER)

 Copyright IBM Corp. 1982, 1997 3-113

� For bootstrap data sets:

ADDSD 'DSNC51ð.BSDS\' UACC(NONE)

PERMIT 'DSNC51ð.BSDS\' ID(SYSDSP) ACCESS(ALTER)

� For table spaces and index spaces:

ADDSD 'DSNC51ð.DSNDBC.\' UACC(NONE)

PERMIT 'DSNC51ð.DSNDBC.\' ID(SYSDSP) ACCESS(ALTER)

� For installation libraries (started tasks do not need control):

ADDSD 'DSN51ð.\' UACC(READ)

� For other general data sets:

ADDSD 'DSNC51ð.\' UACC(NONE)

PERMIT 'DSNC51ð.\' ID(SYSDSP) ACCESS(ALTER)

Although all of those are not absolutely necessary ('DSNC510.*' includes them
all), the sample shows how generic profiles can be created for different types of
data sets. Some parameters, such as universal access, could vary among the
types. In the example, installation data sets (DSN510.*) are universally available for
read access.

If you use generic profiles, specify NO on installation panel DSNTIPP for ARCHIVE
LOG RACF, or you might get an MVS error when DB2 tries to create the archive
log data set. If you specify YES, DB2 asks RACF to create a separate profile for
each and every archive log created, which means you cannot use generic profiles
for these data sets.

To protect VSAM data sets, use the cluster name. The data component names
need not be protected, because the cluster name is used for RACF checking.

Access by Stand-Alone DB2 Utilities: The DB2 utilities DSN1COPY and
DSN1PRNT access table space and index space data sets outside DB2 control.
DSN1LOGP accesses the recovery log data sets (active logs, archive logs, and the
bootstrap data sets) outside DB2 control. DSN1CHKR accesses DB2 directory and
catalog table spaces outside DB2 control. The Change Log Inventory and Print
Log Map utilities access the bootstrap data sets. Those are batch jobs, protected
by the USER and PASSWORD options on the JOB statement. To provide a value
for the USER option, say SVCAID, issue the following statements:

 � For DSN1COPY:

PERMIT 'DSNC51ð.\' ID(SVCAID) ACCESS(CONTROL)

 � For DSN1PRNT:

PERMIT 'DSNC51ð.\' ID(SVCAID) ACCESS(READ)

 � For DSN1LOGP:

PERMIT 'DSNC51ð.LOGCOPY\' ID(SVCAID) ACCESS(READ)

PERMIT 'DSNC51ð.ARCHLOG\' ID(SVCAID) ACCESS(READ)

PERMIT 'DSNC51ð.BSDS\' ID(SVCAID) ACCESS(READ)

 � For DSN1CHKR:

PERMIT 'DSNC51ð.DSNDBDC.\' ID(SVCAID) ACCESS(READ)

� For Change Log Inventory:

PERMIT 'DSNC51ð.BSDS\' ID(SVCAID) ACCESS(CONTROL)

3-114 Administration Guide

� For Print Log Map:

PERMIT 'DSNC51ð.BSDS\' ID(SVCAID) ACCESS(READ)

The level of access depends on the intended use, not on the type of data set
(VSAM KSDS, VSAM linear, or sequential). For update operations,
ACCESS(CONTROL) is required; for read-only operations, ACCESS(READ) is
sufficient.

With RACF, you can permit programs, rather than user IDs, to access objects.
Thus, IDs that are not authorized to access the log data sets can perhaps do so by
running the DSN1LOGP utility. Access to database data sets can be permitted
through DSN1PRNT or DSN1COPY.

Permitting DB2 Authorization IDs to Use the Profiles
Authorization IDs with installation SYSADM or installation SYSOPR authority need
access to most DB2 data sets. (For a list of the privileges that go with those
authorities, see “Explicit Privileges and Authorities” on page 3-14.) The following
command adds the two default IDs that have those authorities if no other IDs are
named when DB2 is installed:

ADDUSER (SYSADM SYSOPR)

The next two commands connect those IDs to the groups that control data sets,
with the authority to create new RACF database profiles. The ID that has
Installation SYSOPR authority (SYSOPR) does not need that authority for the
installation data sets.

CONNECT (SYSADM SYSOPR) GROUP(DSNC51ð) AUTHORITY(CREATE) UACC(NONE)

CONNECT (SYSADM) GROUP(DSN51ð) AUTHORITY(CREATE) UACC(NONE)

The next set of commands give the IDs complete control over DSNC510 data sets.
The system administrator IDs also have complete control over the installation
libraries. The system programmer IDs should also be given that control.

PERMIT 'DSNC51ð.LOGCOPY\' ID(SYSADM SYSOPR) ACCESS(ALTER)

PERMIT 'DSNC51ð.ARCHLOG\' ID(SYSADM SYSOPR) ACCESS(ALTER)

PERMIT 'DSNC51ð.BSDS\' ID(SYSADM SYSOPR) ACCESS(ALTER)

PERMIT 'DSNC51ð.DSNDBC.\' ID(SYSADM SYSOPR) ACCESS(ALTER)

PERMIT 'DSNC51ð.\' ID(SYSADM SYSOPR) ACCESS(ALTER)

PERMIT 'DSN51ð.\' ID(SYSADM) ACCESS(ALTER)

Allowing DB2 Authorization IDs to Create Data Sets
The next command connects several IDs, already connected to the DB2USER
group, to group DSNC510 with CREATE authority:

CONNECT (USER1 USER2 USER3 USER4 USER5)

GROUP(DSNC51ð) AUTHORITY(CREATE) UACC(NONE)

Those IDs can now explicitly create data sets whose names have DSNC510 as the
high-level qualifier. Any such data sets created by DB2 or these RACF user IDs are
protected by RACF. Other RACF user IDs are prevented by RACF from creating
such data sets.

If no option was supplied for PASSWORD on the ADDUSER command that added
those IDs, the first password for the new IDs is the name of the default group,

 Chapter 3-5. Protecting Data Sets 3-115

DB2USER. The first time that IDs sign on, they all use that password, but must
change it during their first session.

Protecting Data Sets by Passwords
As an alternative to defining data sets as RACF resources, you can use VSAM
passwords, as described below. For non-VSAM data sets you can use MVS
passwords. However, you cannot use MVS or VSAM passwords for data sets
controlled by the storage management subsystem (SMS).

Attention: Protecting data sets by passwords, rather than by a security subsystem,
is not recommended. A security subsystem provides far greater protection. Also, it
is possible that DB2 support for passwords might be removed in some later
release.

 VSAM Passwords
You can use VSAM passwords for the bootstrap data sets, active log data sets,
directory and catalog data sets, and data sets for user databases. To use the data
set, the user must supply the password. For example, in creating a table space,
you supply the password with the DSETPASS clause of CREATE TABLESPACE.

The password does not apply to data sets managed by SMS; data sets defined to
SMS should be protected by RACF or some similar external security system.

Bootstrap Data Sets
The bootstrap data sets (BSDSs) can contain passwords for the active and archive
log data sets and the system catalog. Therefore, they also must be
password-protected.

The BSDSs are allocated to DB2 and to the print log map and change log inventory
utilities, when they are running. The BSDSs can also be allocated to a stand-alone
utility, like DSN1LOGP. It is MVS that prompts for and verifies the BSDS password;
the process is not apparent to DB2.

Active Log Data Sets
Information about an active log data set, including its password, is put in the
BSDSs by the change log inventory utility.

DB2 provides the password for an active log data set when the data set is opened,
bypassing normal MVS operator intervention. If a utility job contains a DD
statement for the BSDS, the utility uses the passwords contained in the BSDS
Otherwise, if there is a DD statement for the log, it relies on password prompting
when the log data set is opened.

For information about the bootstrap data set and the log data sets, see “Chapter
4-3. Managing the Log and the Bootstrap Data Set” on page 4-83.

3-116 Administration Guide

Directory and Catalog Data Sets
At installation time, the DSNTIPP installation panel gives you the option of
overriding the default catalog and directory password. The resulting password,
whether defined by you or the default, is then stored in the BSDS as the password
for each catalog and directory table space.

When the catalog and directory data sets are installed, the passwords for each of
the data sets can be changed individually by using the SYSTEMDB statement of
the change log inventory utility.

Database Data Sets
When you create a data set to be used by a DB2 database, you can include the
VSAM master password (MASTERPW). You can establish a VSAM password for
such a data set by one of these methods:

� Define the data set and set the VSAM password. Then, when you issue a
CREATE TABLESPACE or CREATE INDEX statement, give the VSAM
password again in the DSETPASS clause.

� Issue CREATE TABLESPACE or CREATE INDEX without defining the data
set. Then DB2 defines the data set automatically, and you can establish a
VSAM password at that point. With this method, you need to give the password
only once.

All data sets associated with the same table space or index must have the same
password. The password is stored in the DB2 subsystem catalog and in the
integrated catalog facility catalog that lists the data sets. You can change it with
ALTER TABLESPACE or ALTER INDEX, but the change is not effective until you
use access method services to change it in the integrated catalog facility catalog
entry.

Integrated Catalog Facility Catalog
If your integrated catalog facility catalog is password protected, you must supply a
password when you create a storage group. That is the control or master password
of the integrated catalog facility catalog that lists all dynamically created data sets
in the storage group. For an example, see “CREATE STOGROUP Statement” on
page 2-83.

The integrated catalog facility passwords are used by DB2 in access method
services DEFINE, ALTER, and DELETE commands. They are stored in the
SYSIBM.SYSSTOGROUP table of the DB2 subsystem catalog.

 MVS Passwords
You can establish MVS passwords for archive log data sets and DB2 libraries.

Archive Log Data Sets
You can give a single password for all archive log data sets when DB2 is installed
by using the DSNTIPP installation panel. If you do, a dynamically-created archive
log data set is given the directory password, and the data set name and password
are put into the MVS password data set. DB2 uses the password and stores it in
the BSDS.

The password for the archive log data sets can be changed by using the ARCHIVE
statement in the change log inventory utility. All of the archive log data sets created

 Chapter 3-5. Protecting Data Sets 3-117

after the password is changed use the new archive log data set password.
Password protection for the archive log data sets can also be removed using
NOPASSWD in the ARCHIVE statement of the change log inventory utility.

 DB2 Libraries
You can give MVS passwords for all DB2 target and distribution libraries
immediately after they are created. For information about establishing MVS
passwords, refer to the appropriate MVS publication. For information about using
the TSO PROTECT command to create passwords, see TSO/E Command
Reference.

3-118 Administration Guide

 Chapter 3-6. Auditing Concerns

This chapter provides answers to some fundamental auditing concerns. Foremost
among them are these:

1. Who is privileged to access what objects?
2. Who has actually accessed the data?

Answers to the first question are found in the DB2 catalog, which is a primary audit
trail for the DB2 system. Most of the catalog tables describe the DB2 objects, such
as tables, views, table spaces, packages, and plans. Several other tables (every
one with the characters “AUTH” in its name) hold records of every grant of a
privilege or authority on different types of object. Every record of a grant contains
not only the name of the object and the ID that received the privilege, but the ID
that granted it, the time of the grant, and other information.

You can retrieve data from catalog tables by writing SQL queries. For examples,
see “Finding Catalog Information about Privileges” on page 3-45.

Answers to the second question are revealed by the audit trace, another primary
audit trail for DB2. The trace can record changes in authorization IDs for a security
audit and changes made to the structure of data (as in dropping a table) or data
values (as in updating or inserting records) for an audit of data access. The trace
can also audit access attempts by unauthorized IDs, the results of GRANT and

| REVOKE statements, the mapping of DCE IDs to RACF IDs, and other activities of
interest to auditors.

Other auditing concerns are dealt with later in this chapter; see:

“Other Sources of Audit Information” on page 3-125
“What Security Measures Are in Force?” on page 3-126
“What Helps Ensure Data Accuracy and Consistency?” on page 3-126
“How Can I Tell That Data is Consistent?” on page 3-129
“How Can DB2 Recover Data After Failures?” on page 3-131
“How Can I Protect the Software?” on page 3-132
“How Can I Ensure Efficient Usage of Resources?” on page 3-132.

How Can I Tell Who Has Accessed the Data?
The information under this heading, up to “Other Sources of Audit Information” on
page 3-125 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

The DB2 audit trace can tell who has accessed data. Briefly, the audit trace, when
started, creates records of actions of certain types and sends them to a named
destination. As with other DB2 traces, you can choose, by options of the audit
trace:

� Categories of events to trace
� Particular authorization IDs or plan IDs to audit
� Ways to start and stop the trace
� Destinations for audit records.

 Copyright IBM Corp. 1982, 1997 3-119

You can also choose whether to audit a table, by an option of the CREATE and
ALTER statements.

Options of the Audit Trace
You control most of what follows by the START TRACE and STOP TRACE
commands.

The Role of Authorization IDs
In general, audit trace records identify a process by its primary authorization ID.
The value is recorded both before and after invocation of an authorization exit
routine, therefore, you can identify a change. The exception to this is if a primary ID
has been translated many times. It might happen that the translated ID at the
requesting site is unknown to the server. In that case, the primary ID cannot be
used to gather all audit records for a user that accesses remote data. The
AUTHCHG record also shows the values of all secondary authorization IDs
established by an exit routine. See “Audit Class Descriptions,” Audit Class 7, for a
description of the AUTHCHG record.

With the trace, you can also determine which primary ID is responsible for the
action of a secondary ID, when that information might not appear in the catalog.
For example, suppose that the user with primary ID SMITHJ sets the current SQL
ID to TESTGRP, in order to grant privileges over the table TESTGRP.TABLE01 to
another user. The DB2 catalog records the grantor of the privileges as TESTGRP;
the audit trace, however, shows that the grant statement was issued by SMITHJ.

Use of Exit Routines: Because the trace identifies a process by its primary ID,
consider carefully the consequences of altering that ID by an exit routine. If the
primary ID identifies a unique user, then there are no problems of individual
accountability. But if several users share the same primary ID, say a RACF group
name, then you cannot tell which of them issued a particular GRANT statement or
ran a particular application plan.

Auditing Classes of Events
Not everything is recorded in the audit trace. The actual data changed is not
recorded (it is recorded in the log). If an agent or transaction accesses a table more
than once in a single unit of recovery, only the first access is recorded. And then
only if the audit trace is started for the appropriate class of events.

Not all utilities are audited. The first access of a table by LOAD is audited, but
access by COPY, RECOVER, and REPAIR is not. Access by stand-alone utilities is
not audited.

All of that is consistent with the aim of providing a moderate volume of data with a
low impact on performance. Even so, in choosing classes of events to audit,
consider that you might ask for more data than you care to process.

Audit Class Descriptions
You choose events to audit by giving one or more numbers, to identify classes of
events, when you start the trace. The trace records are limited to 5000 bytes, so
descriptions that contain long SQL statements might be truncated. The available
classes and the events they include are:

3-120 Administration Guide

Audit Class Events Traced

1 Access attempts denied by DB2 for inadequate authorization. This class is the
default, and can be started by choosing “1” or by choosing no class.

2 Explicit GRANT and REVOKE statements and their results. The class does
not include implicit grants and revokes.

3 CREATE, ALTER, and DROP operations affecting audited tables, and their
results. The class includes the dropping of a table caused by DROP
TABLESPACE or DROP DATABASE and the creation of a table with AUDIT
CHANGES or AUDIT ALL. ALTER TABLE statements are audited only when
they change the AUDIT option for the table.

4 Changes to audited tables. Only the first attempt to change a table, within a
unit of recovery, is recorded. (If the agent or the transaction issues more than
one COMMIT statement, there are correspondingly many audit records.) The
changed data is not recorded, only the attempt to make a change. If the
change is not successful, and is rolled back, the audit record remains; it is not
deleted. This class includes access by the LOAD utility.

Accesses to a dependent table that are caused by attempted deletions from a
parent table are also audited. The audit record is written even if the delete
rule is RESTRICT, and could only prevent the deletion from the parent table.
This is also true when the rule is CASCADE or SET NULL and could change
the dependent table.

5 All read accesses to tables identified as AUDIT ALL. As in class 4, only the
first access within a DB2 unit of recovery is recorded, and references to a
parent table are audited.

6 The bind of static and dynamic SQL statements of the following types:

� INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE
statements for audited tables. Except for the values of host variables, the
entire SQL statement is contained in the audit record.

� SELECT statements to tables identified as AUDIT ALL. Except for the
values of host variables, the entire SQL statement is contained in the
audit record.

7 Assignment or change of an authorization ID, through an exit routine (default
or user-written) or a SET CURRENT SQLID statement, through either an

| outbound or inbound authorization ID translation, or because the ID is being
| mapped to a RACF ID from a DCE ID.

8 The start of a utility job, and the end of each phase of the utility.

9 Various types of records written to IFCID 0146 by the IFI WRITE function.

Auditing Specific IDs
As with other DB2 traces, you can start an audit trace for a particular plan name, a
particular primary authorization ID, or a combination of the two. For examples, see
“DB2 Trace” on page X-177. It can be useful to have audit traces going at all times
for IDs with SYSADM authority, for instance, because they have complete access
to every table. If you have a network of DB2 systems, tracing multiple authorization
IDs might be necessary for those users whose primary authorization ID are
translated several times.

 Chapter 3-6. Auditing Concerns 3-121

Starting and Stopping the Audit Trace
You can cause an audit trace to start automatically whenever DB2 is started by
making a choice on the panel DSNTIPN when DB2 is installed. Set AUDIT TRACE
to NO, YES, or a list of audit trace classes.

� Use * to provide a complete audit trace.

� Use NO, the default, if you do not want an audit trace to start automatically.

� Use YES to start a trace automatically for the default class (class 1: access
denials) and the default destination (the SMF data set).

� Use a list of audit trace classes (for example, 1,3,5) to start a trace
automatically for those classes. It uses the default destination.

The START TRACE Command: As with other DB2 traces, you can start an audit
trace at any time with the -START TRACE command. You can choose the audit
classes to trace and the destination for trace records. You can also include an
identifying comment. For example, this command starts an audit trace for classes
4 and 6 with distributed activity:

-START TRACE (AUDIT) CLASS (4,6) DEST (GTF) LOCATION (\)

COMMENT ('Trace data changes; include text of dynamic DML statements.')

The STOP TRACE Command: You can have several different traces going at the
same time, including more than one audit trace. One way to stop a particular trace
is to issue the -STOP TRACE command with the same options that were used for
-START TRACE (or enough of them to identify a particular trace). For example, this
command stops the trace started by the last example:

-STOP TRACE (AUDIT) CLASS (4,6) DEST (GTF)

If you have not saved the text of the command, it might be simpler to find out the
identifying trace number and stop the trace by number. Use -DISPLAY TRACE to
find the number. For example, -DISPLAY TRACE (AUDIT) might return a message
something like this:

TNO TYPE CLASS DEST QUAL

ð1 AUDIT ð1 SMF NO

ð2 AUDIT ð4,ð6 GTF YES

The message indicates that there are two audit traces active. Trace 1 traces events
in class 1 and sends records to the SMF data set; it can be a trace that starts
automatically whenever DB2 is started. Trace 2 traces events in classes 4 and 6
and sends records to GTF; the trace started by the last example can be identified
like that.

You can stop either trace by its identifying number (TNO). Use commands like
these:

-STOP TRACE AUDIT TNO(1)

-STOP TRACE AUDIT TNO(2)

3-122 Administration Guide

Considerations for Distributed Data
The DB2 audit trace audits any access to your data, whether the request is from a
remote location or your local DB2. The authorization ID on a trace record for a
remote request is the ID that is the final result of any outbound translation, inbound
translation, or activity of an authorization exit routine; that is, it is the same ID to
which you have granted access privileges for your data.

Requests from your location to a remote DB2 are audited only if an audit trace is
active at the remote location. The output from the trace appears only in the records
at that location.

Auditing a Specific Table
The auditing described in this chapter takes place only when the audit trace is on
and, where it relates to tables, only for tables you specifically choose to audit. To
choose to audit a table, use the AUDIT clause in the CREATE TABLE or an
ALTER TABLE statement.

For example, the department table is audited whenever the audit trace is on, if you
create it with this statement:

CREATE TABLE DSN851ð.DEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION (CHAR16) ,

PRIMARY KEY (DEPTNO))

 IN DSN8D51A.DSN8S51D

 AUDIT CHANGES;

That example changes the one under “Department Table (DSN8510.DEPT)” on
page X-8 only by adding the last line. The option CHANGES causes the table to be
audited for accesses that would insert, update, or delete data (trace class 4).

To cause the table to be audited for read accesses also (class 5), issue:

ALTER TABLE DSN851ð.DEPT

 AUDIT ALL;

The statement is effective whether or not the table had been chosen for auditing
before.

To prevent all auditing of the table, issue:

ALTER TABLE DSN851ð.DEPT

 AUDIT NONE;

For CREATE TABLE, the default audit option is NONE. For ALTER TABLE, there is
no default; if you do not use the AUDIT clause in an ALTER TABLE statement, the
audit option for the table is unchanged.

When CREATE TABLE or ALTER TABLE statements affect the auditing of a table,
those statements can themselves be audited; but the results of those operations
are in audit class 3, not 4 or 5. Use audit class 3 to tell whether there has been an
interval when auditing was turned off for some table.

 Chapter 3-6. Auditing Concerns 3-123

If ALTER TABLE turns auditing on or off for a specific table, then plans and
packages that use the table are invalidated and must be rebound. Changing the
auditing status does not affect plans, packages, nor dynamic SQL statements that
are currently running. The change is effective only for plans, packages, or dynamic
SQL statements that begin running after ALTER TABLE has completed.

You do not create catalog tables and cannot alter them; hence, you cannot audit
the catalog tables.

Using Audit Records
Considerations for preparing the System Management Facility (SMF) or
Generalized Trace Facility (GTF) for accepting audit trace records are the same as
for performance or accounting trace records. See “Recording SMF Trace Data” on
page X-182 and “Recording GTF Trace Data” on page X-183 for information. The
records are of SMF type 102, as are performance trace records.

All of the DB2 trace records are identified by IFCIDs. For instructions on
interpreting trace output, and mapping records for the IFCIDs, see “Appendix D.
Interpreting DB2 Trace Output” on page X-107. The IFCIDs for each trace class
are listed with the description of the START TRACE command in Chapter 2 of
Command Reference.

If you send trace records to SMF (the default), it is possible to lose data in the
circumstances described below.

� SMF fails while DB2 continues running.

� An unexpected abend (like a TSO interrupt) occurs while DB2 is transferring
records to SMF.

In those circumstances, SMF records the number of records lost. MVS has an
option to stop the system rather than to lose SMF data.

Reporting the Records
Among other things, the audit trace records can tell you:

� The ID that initiated the activity

� The LOCATION of the ID that initiated the activity (if the access was initiated
from a remote location)

� The type of activity and the time the activity occurred

� The DB2 objects that were affected

� Whether access was denied

� Who owns a particular plan and package.

To extract, format, and print the records, you might:

� Use DB2PM. See “DB2 Performance Monitor (DB2 PM)” on page X-184 for
more information.

� Write your own application program to access the SMF data.

� Use the instrumentation facility interface (IFI) as an online resource to pull audit
records.

3-124 Administration Guide

Suggestions for Reports
If you regularly start the audit trace for all classes, you accumulate data from which
to draw reports like these:

� Usage of sensitive data

Tables containing sensitive data, like employee salary records, should probably
be defined with AUDIT ALL. You can report usage by table and by
authorization ID,7 to look for access by unusual IDs, at unusual times, or of
unexpected types. You also want to record any ALTER or DROP operations
that affect the data. Use audit classes 3, 4, and 5.

� Grants of critical privileges

Authorities, like SYSADM and DBADM, and explicit privileges over sensitive
data, like an update privilege on records of accounts payable, must be
monitored carefully. A query of the DB2 catalog can show who holds such a
privilege at a particular time. The audit records can reveal whether the privilege
was granted and then revoked in a period of time. Use audit class 2.

� Unsuccessful access attempts

Some of those are only user errors, but others can be attempts to violate
security. All must be investigated. If you have sensitive data, always use trace
audit class 1. You might report by table or by authorization ID.7

Other Sources of Audit Information
As well as the audit trace, there are DB2 traces for other purposes also. The
accounting, statistics, and performance traces might be of interest. Read about
them under “DB2 Trace” on page X-177. DB2PM is useful to print reports of those
traces, too; see “DB2 Performance Monitor (DB2 PM)” on page X-184.

The recovery log, though it is not an all-purpose log, can be useful for auditing.
Information from the log can be printed using the DSN1LOGP utility. For example,
the summary report can show what table spaces were updated within the range of
the log that was scanned. The REPORT utility can tell you what log information is
available and where it is located. For information on running DSN1LOGP and
REPORT, see Utility Guide and Reference.

Image copies of table spaces are generated in typical recovery procedures for use
by the RECOVER utility. You can inspect those copies, or use them to recover a
table space to a particular point in time, to help narrow the time period in which
some change was made. For guidance in using COPY and RECOVER, see
“Chapter 4-6. Backing Up and Recovering Databases” on page 4-123.

The MVS console log contains messages about exceptional conditions encountered
during DB2 operation. Inspect it for symptoms of problems.

7 For embedded SQL, the audited ID is the primary authorization ID of the person who bound the plan or package. For dynamic
SQL, the audited ID is the primary authorization ID.

 Chapter 3-6. Auditing Concerns 3-125

What Security Measures Are in Force?
As an auditor, you are interested in the privileges and authorities held by IDs in the
DB2 system. Read “Chapter 3-2. Controlling Access to DB2 Objects” on
page 3-13.

A first step might be to see that DB2 authorization checking is actually in
operation—it can be disabled. Follow the instructions for changing DB2 installation
parameters that are given in “The Update Process” in Section 2 of Installation
Guide. Without changing anything, look at panel DSNTIPP. If the value of USE
PROTECTION is YES, DB2 checks privileges and authorities before permitting any
activity.

To see what IDs hold particular privileges, look at the DB2 catalog. You can write
appropriate SQL queries. Instructions are given in “Finding Catalog Information
about Privileges” on page 3-45.

The audit trace, described above, should be running to check access attempts on
sensitive data. To see that the trace is running, display the status of the trace by
the command DISPLAY TRACE(AUDIT).

Some authorization IDs you encounter are probably group IDs, to which many
individual IDs can be connected. To see what IDs are connected to a group, you
need a report from RACF, or from whatever external security system is being used.
Similar reports can tell you what IDs are privileged to use DB2 data sets and other
resources. For instructions on obtaining such reports, you need the documentation
from the external security system; for example, Recource Access Control Facility
(RACF) System Programmer's Guide.

Another security measure, data definition control, provides additional constraints to
existing authorization checks. With it, you control how specific plans or collections
of packages can use SQL data definition (DDL) statements. Read “Chapter 3-3.
Controlling Access Through a Closed Application” on page 3-49 for a description of
this function. To determine if the control is active, look at option 1 on panel
DSNTIPZ. To determine how DDL statements are controlled, look at the complete
installation panel in Section 2 of Installation Guide.

What Helps Ensure Data Accuracy and Consistency?
DB2 provides many controls that can be applied to data entry and update. Some
of the controls are automatic, some optional. All prohibit certain operations and
provide error or warning messages if those operations are attempted. The headings
below relate the operations to typical auditing concerns.

Is Required Data Present? Is It of the Required Type?
The pertinent control on the presence of data is to define columns with the NOT
NULL attribute.

The assignment of column data types and lengths provides some control on the
type of data. Alphabetic data cannot be entered into a column with one of the
numeric data types, data entered into a DATE or TIME column must have an
acceptable format, and so on. For suggestions about assigning column data types
and the NOT NULL attribute, see “Column Specifications” on page 2-41.

3-126 Administration Guide

Are Data Values Unique Where Required?
The preferred control is to create a unique index on the column or set of columns in
question. The same method completes the definition of a primary key for a table.
For suggestions about indexes, see “Chapter 2-5. Designing Indexes” on
page 2-51.

Has Data a Required Pattern? Is It in a Specific Range?
Table check constraints enhance the ability to control data integrity. A check
constraint designates the values that specific columns of a base table can contain.
Written in SQL, it can express not only simple constraints such as a required
pattern or a specific range, but also rules that refer to other columns of the same
table.

As an auditor, you might check that required constraints on column values are
expressed as table check constraints in the table definition. For a full description of
the rules for those constraints, see "CREATE TABLE" in Chapter 6 of SQL
Reference.

General-use Programming Interface

An alternate technique is to create a view with the check option, and then insert or
update values only through that view. For example, suppose that, in table T, data in
column C1 must be a number between 10 and 20, and data in column C2 is an
alphanumeric code that must begin with A or B. Create the view V1 with the
following statement:

CREATE VIEW V1 AS

SELECT \ FROM T

WHERE C1 BETWEEN 1ð AND 2ð

AND (C2 LIKE 'A%' OR C2 LIKE 'B%')

WITH CHECK OPTION;

Only data satisfying the WHERE clause can be entered through V1. For more
information on creating and using views, see “Implementing Your Views” on
page 2-105.

End of General-use Programming Interface

However, a view cannot be used with the LOAD utility, but that restriction does not
apply to user-written exit routines. There are several types of user-written routines
that are pertinent here:

Validation routines are expected to be used for validating data values. They
access an entire row of data, can check the current plan name, and return a
nonzero code to DB2 to indicate an invalid row.

Edit routines have the same access, and can also change the row to be
inserted. They are typically used to encrypt data, substitute codes for lengthy
fields, and the like; but they can also validate data and return nonzero codes.

Field procedures access data intended for a single column, and apply only to
short string columns. But they accept input parameters, so generalized
procedures are possible. A column that is defined with a field procedure can be
compared only to another column that uses the same procedure.

 Chapter 3-6. Auditing Concerns 3-127

See “Appendix B. Writing Exit Routines” on page X-25 for information about using
exit routines.

Is New Data in a Specific Set? Is It Consistent with Other Tables?
This is exactly the question of referential integrity, a key feature of DB2. When
primary and foreign keys are defined, DB2 automatically enforces the rule that
every value of a foreign key in a dependent table must be a value of the primary
key of the appropriate parent table. For information about the means, implications,
and limitations of enforcing referential integrity, see “Chapter 2-3. Maintaining Data
Integrity” on page 2-19.

The method can be used to ensure that data in a column takes on only specific
values. Set up a master table of allowable values and define its primary key. Define
foreign keys in other tables that must have matching values in their columns; a
delete rule of SET NULL is probably appropriate.

DB2 does not enforce referential constraints across subsystems.

What Ensures That Concurrent Users Access Consistent Data?
If you do not use Uncommitted Read (UR) isolation, the control is done by locks
and is automatic. There is much you can do to trade locking resources among
concurrent users, but there is nothing you can do to violate the basic principle of
locking control. No program can access data that has been changed by another
program but not yet committed.

However, if you use Uncommitted Read (UR) isolation, you can violate that
principle. Uncommitted read (UR) isolation allows users to see uncommitted data.
Although the data is physically consistent, a number of logical inconsistencies can
occur, or the data could be wrong. The question for auditors then becomes, "How
can I tell what applications use UR isolation?" For static SQL, the question can be
answered by querying the catalog.

Use the following query to determine which plans use UR isolation.

SELECT DISTINCT Y.PLNAME

FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y

WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'

ORDER BY Y.PLNAME;

Use the following query to determine which packages use UR isolation.

SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION

FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y

WHERE (X.LOCATION = Y.LOCATION AND

X.LOCATION = ' ' AND

 X.COLLID = Y.COLLID AND

 X.NAME = Y.NAME AND

 X.VERSION = Y.VERSION AND

X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'

ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

For dynamic SQL statements, run with performance trace class 3 on.

3-128 Administration Guide

Consistency Between Systems: Where an application program writes data to
both DB2 and IMS, or DB2 and CICS, the subsystems prevent concurrent use until
the program declares a point of consistency. For a detailed description of how data
is kept consistent between systems, see “Consistency with Other Systems” on
page 4-109.

Have Any Transactions Been Lost or Left Incomplete?
Database balancing is a technique that helps to warn of such an occurrence. An
application program that uses it asks, for each set of data, whether the opening
balance and the control totals plus transactions processed equal the closing
balance and control totals.

DB2 has no automatic mechanism to calculate control totals and column balances
and compare them with transaction counts and field totals. Where the check is
wanted, it must be designed into the application program. For example, the
program can maintain a table containing control information that balances update
transaction control totals and field balances against a user's view. The table
contains the view name, authorization ID, number of logical rows in the view (not
the same as the number of physical rows in the table), numbers of insert and
update transactions, opening balances, totals of insert and update transaction
amounts, and any relevant audit trail information like the date, time, terminal ID, job
name, and so on. The program updates the transaction counts and amounts in the
control table each time it completes an insert or update to the view, and commits
the work only after updating the control table, to maintain coordination during
recovery. After processing all transactions, it writes a report that verifies control
total and balancing information.

 Summary
The set of techniques suggested to answer the foregoing questions is not
exhaustive. Other combinations are possible; for example, you can use table check
constraints or a view with the check option to ensure that data values are members
of a certain set, rather than set up a master table and define referential constraints.
In all cases, you can enforce the controls through application programs, and restrict
the INSERT and UPDATE privileges only to those programs.

How Can I Tell That Data is Consistent?
It is not enough to control data entry; the results must also be verified. The
suggestions that follow can help to uncover errors or problems. Additionally, the
DSN1CHKR utility verifies the integrity of the DB2 catalog and directory table
spaces by scanning the specified table space for broken links, damaged hash
chains, or orphan entries. For more information see Section 3 of Utility Guide and
Reference .

General-use Programming Interface

 Chapter 3-6. Auditing Concerns 3-129

 SQL Queries
One relevant feature of DB2 is the ease of writing an SQL query to search for a
specific type of error. For example, consider the view created on page 3-127,
designed to allow an insert or update to table T1 only if the value in column C1 is
between 10 and 20 and the value in C2 begins with A or B. To check that the
control has not been bypassed, issue this statement:

SELECT \ FROM T1

 WHERE NOT (C1 BETWEEN 1ð AND 2ð

 AND (C2 LIKE 'A%' OR C2 LIKE 'B%'));

Ideally, no rows are returned.

You can also use SQL statements to get information from the DB2 catalog about
referential constraints that exist. For several examples, see “Chapter 2-11. Using
the Catalog in Database Design” on page 2-117.

End of General-use Programming Interface

 Data Modifications
Whenever an operation is performed that changes the contents of a data page or
an index page, checks are made to verify that the modifications do not produce
inconsistent data.

 CHECK Utility
The CHECK utility is also pertinent.

� CHECK INDEX checks the consistency of indexes with the data that the
indexes must point to: Does each pointer point to a data row with the same
value of the index key?

� CHECK DATA checks referential constraints: Is each foreign key value in each
row actually a value of the primary key in the appropriate parent table?

� CHECK DATA checks table check constraints: Is each value in a row within the
range specified for that column when the table was created?

See Utility Guide and Reference for information on CHECK.

DISPLAY DATABASE Command
If a table is loaded without enforcing referential constraints on its foreign key
columns, it can contain data that violates the constraints. The table space
containing the table is placed in the “check pending” status. You can determine
what table spaces are in that status by using the DISPLAY DATABASE command
with the RESTRICT option. See Chapter 2 of Command Reference for information
about using this command.

 REPORT Utility
You might want to determine what table spaces contain a set of tables that are
interconnected by referential constraints. For that you can use the REPORT utility,
as described in “Implications for COPY, QUIESCE, RECOVER, and REPORT” on
page 2-34.

3-130 Administration Guide

 Operation Log
An operation log verifies that DB2 is operated reliably or reveals unauthorized
operation and overrides. It consists of an automated log of DB2 operator
commands (such as starting or stopping the system or its databases) and any
abend of DB2. The information recorded should include: command or condition
type, date, time, authorization ID of the person issuing the command, and database
condition code.

The information can be obtained from the system log (SYSLOG), the SMF data set,
or the automated job scheduling system, using SMF reporting, job scheduler
reporting, or a user-developed program. It should be reported daily and kept in a
history file for comparison. Where abnormal DB2 termination can indicate integrity
problems, an immediate notification procedure should be in place to alert the
appropriate personnel (DBA, systems supervisor, and so on).

Internal Integrity Reports
For Application Programs: Standardized procedures should exist to record any
DB2 return codes received that indicate possible data integrity
problems—inconsistency between index and table information, physical errors on
database disk, and so on. All programs must check SQLCODE or SQLSTATE for
the return code issued after an SQL statement has been run. DB2 records, on
SMF, the occurrence (but not the cause) of physical disk errors and application
program abends. The information can be retrieved and reported; other sources are
the system log (SYSLOG) and the DB2 job output listing. However, in some cases,
only the program can provide enough detail to identify the exact nature of problem.

The standardized procedure can be incorporated into application programs or exist
separately as part of an interface. The procedure records the incident in a history
file and writes a message to the operator's console, a database administrator's
TSO terminal, or a dedicated printer for certain codes. The information recorded
includes the date, time, authorization ID, terminal ID or job name, application, view
or table affected, error code, and error description. Reports by time and by
authorization ID can be produced and reviewed daily.

For Utilities: When a DB2 utility reorganizes or reconstructs data in the database,
it produces statistics to verify record counts and report errors. The LOAD and
REORG utilities produce data record counts and index counts to verify that no
records were lost. In addition to that, a history log should be kept of any DB2 utility
that updates data, particularly REPAIR. Reports of updates by utilities (obtained
through SMF customized reporting or a user-developed program) should be
produced and reviewed regularly.

How Can DB2 Recover Data After Failures?
DB2 provides extensive methods of recovering data after a subsystem, media, or
program failure. If there is a subsystem failure, a restart of DB2 automatically
restores the integrity of the data by backing out uncommitted changes and
completing the processing of committed changes. If there is a media failure (such
as physical damage to a data storage device), the RECOVER utility can recover
data to the current point. If there is a program error, the RECOVER utility can
recover data to a specific log record or to a specific image copy. For detailed

 Chapter 3-6. Auditing Concerns 3-131

information and recommendations, see “Recovering Table Spaces and Data Sets”
on page 4-141.

The recovery methods depend on adequate image copies of table spaces to be
recovered and on the integrity of the log data sets. A database administrator might
need to develop and use queries against the SYSIBM.SYSCOPY table to verify that
image copies were made appropriately. The REPORT utility can also provide some
of that information.

The bootstrap data set (BSDS) maintains an inventory of all archive log data sets,
including the time and date the log was created, the data set name, its status, and
other information. The print log map utility can list the log data set inventory from
the BSDS. It should be run daily and reviewed to assure that archive data sets
have been created properly and that they are readily available for use in recovery.

In the event that a program failure affects a COMMIT operation, a user-written
program can read the DB2 log to determine exactly what change was made.

If IMS, CICS, or a remote DBMS is attached to DB2 when a failure occurs, DB2
coordinates restart with the other subsystem, keeping data consistent across all
subsystems.

How Can I Protect the Software?
Whenever you install a new version, release, or maintenance of DB2, there is an
automatic record to provide an audit trail. The new release number is recorded by
the System Modification Program/Extended (SMP/E) when the DB2 subsystem
programs and libraries are loaded. Each major component subsystem of DB2 has a
“function module identifier” that uniquely qualifies that subsystem to SMP/E. As part
of the installation verification procedure, SMP/E records it in a history file along with
a date and time, and can produce a report for management review. The audit trail
aids in determining whether the changes are appropriate and whether they are
made by authorized personnel and can also aid in investigation of
application-related problems.

DB2 load modules need the same protection as those for any system program. For
ways of protecting the system, refer to the appropriate MVS publication. The DB2
subsystem initialization load module (typically DSNZPARM) deserves special
consideration, for it contains the IDs that hold the broad authorities of “installation
SYSADM” and “installation SYSOPR.”

How Can I Ensure Efficient Usage of Resources?
The DB2 tools that can help you make efficient use of your resources are described
under “Chapter 5-5. Improving Resource Utilization” on page 5-73. The three tools
mentioned below can be particularly useful:

1. The resource limit facility (governor) limits the amount of time a dynamically
issued query can use. The governor records these limits in a resource limit
specification table (RLST). For details, see “Resource Limit Facility (Governor)”
on page 5-76.

2. The accounting trace is similar to the audit trace described in this chapter. Use
it to collect start and stop times, numbers of commits, counts of the use of

3-132 Administration Guide

certain SQL statements, and CPU times. For details, see “DB2 Trace” on
page X-177.

3. The performance trace is also pertinent. It can provide an enormous amount of
detail, and is usually used for investigating particular problems. It also is
described in “DB2 Trace” on page X-177.

 Chapter 3-6. Auditing Concerns 3-133

3-134 Administration Guide

Chapter 3-7. A Sample Security Plan for Employee Data

This chapter shows one way in which authorization IDs, implicit privileges, granted
privileges and authorities, and the audit trace can all be used together to enforce a
security plan. For example, suppose that our sample enterprise, the Spiffy
Computer Company, decides upon a list of objectives for the security of employee
data. The list is a compromise between two basic motivations:

� Employees should not be able to browse the employee table to find out the
salary, bonus, or commission paid to other employees. They most particularly
should not be able to update those values, for themselves or others.

� Managers have legitimate reasons for knowing the compensations paid to
people who report to them. And there must be someone who can make
changes to salary data.

From that compromise, the Spiffy management derives the detailed list of
objectives that follows. Do not view it as a model security plan; it is only a sample,
chosen to illustrate various possibilities and expose certain problem areas. Your
own security plans will surely be different.

The Security Objectives: The following is the list of security objectives for Spiffy's
security plan:

� Managers can see, but not update, all the employee data for members of their
own departments. Managers of managers can see all the data for employees of
departments under them.

� The employee table resides at a central location. Managers at remote locations
can query the data in that table.

� Changes to the employee table are made by a Payroll Operations department.
(It is not listed in the sample department table.) Department members can
update any column of the employee table except for salary, bonus, and
commission, and any row except those for members of their own department.
Changes to the table are made only from the central location; hence, payroll
operations are not affected by distributed access.

� Changes to salary, bonus, and commission amounts are made through an
auxiliary table. The table lists an employee ID and a salary update, for
example; the row can be inserted by a member of Payroll Operations. When a
list of changes is complete, it must be verified by another group, Payroll
Management, who can then transfer the changes to the employee table.

� No one else can see the employee data. (It turns out that this objective cannot
be fully achieved. At the very least, some ID must sometime exercise powers
reserved to SYSADM authority, and at that time it can retrieve any data in the
system. The security plan uses the trace facility to monitor the use of that
power.)

 Copyright IBM Corp. 1982, 1997 3-135

 Managers' Access
Managers can retrieve, but not change, all information in the employee table for
members of their own departments. Managers of managers have the same
privileges for their own departments and the departments immediately under them.
Those restrictions can most easily be implemented by views.

For example, it is possible to create a view of employee data for every employee
reporting to a manager—even if he manages more than one department. Such a
view requires altering department table DSN8410.DEPT by adding a column to
contain managers' IDs:

ALTER TABLE DSN851ð.DEPT

ADD MGRID CHAR(8) FOR SBCS DATA NOT NULL WITH DEFAULT;

Every manager should have the SELECT privilege on a view created as follows:

CREATE VIEW DEPTMGR AS

SELECT \ FROM DSN851ð.EMP, DSN851ð.DEPT

WHERE WORKDEPT = DEPTNO

AND MGRID = USER;

To What ID Is the SELECT Privilege Granted?
We assume that virtually every employee of the Spiffy Computer Company uses a
terminal, has a TSO logon ID and a personal password, and can access DB2I or
QMF. The security planners can take two approaches to granting privileges:

1. Grant privileges to personal IDs and revoke them if the user of the ID leaves
the company or transfers to another position. We call this the individual
approach.

2. Create RACF groups and grant privileges to the group IDs, with the intention of
never revoking them. When a personal ID needs those privileges, connect it to
the group; disconnect it when its user leaves or transfers. We call this the
functional approach. Another example of grouping takes place when many
authorization IDs are translated into a single outbound ID. This is an implied
approach rather than explicit.

The functional approach is probably more convenient in the following situations:

� There are many different privileges required, and when they are revoked from
one individual they must be granted to another. In that case, the set of
privileges probably constitutes a function of the enterprise, which must persist
even though the individual now performing it leaves or transfers.

� There are several users that need the same set of privileges. Again, the set
probably constitutes a business function.

� The privileges are given with the grant option, or they allow users to create
objects that must persist after their original owners leave or transfer. In both
cases, it can be undesirable to have to revoke the privileges. The revokes
cascade to other users, and to change ownership it can be necessary to drop
objects and re-create them.

What, then, of the managers' views of their own departments? In theory, the
privilege of selecting from the view is part of the function of managing. If a manager
transfers, another is appointed. That suggests the functional approach.

3-136 Administration Guide

But in this case, there is only one privilege needed—SELECT on a particular view.
The privilege does not carry the grant option, and it does not allow creating new
objects. So the individual approach might be just as convenient.

Actually, Spiffy Computer does not have to make a permanent choice immediately.
Which approach to use is a matter of convenience; where both produce the same
results, either can be used. Or, both approaches can be used simultaneously; some
departments could be represented by their managers' personal IDs, others by
group IDs, and the company could change gradually from one approach to the
other.

So the security plan starts out by using the individual approach, with the intent of
re-examining the system later. Initially, all managers are given the SELECT
privilege on the views for their departments by statements like this one:

GRANT SELECT ON DEPTMGR TO EMPðð6ð;

That assumes that EMP0060 is the personal ID of employee 000060, who is the
manager of one or more departments.

Allowing Distributed Access
The security plan envisions that managers at remote locations will query data in the
employee table at a central, serving location. The restrictions on the data they are
allowed to query can most easily be implemented by views, just like the view for
managers who use the central DB2 location directly. The questions remaining are:

� What IDs should have privileges on those views?

� How is responsibility for those IDs divided between the central location and the
remote locations?

Spiffy's security plan answered those questions as follows (and, again, we remind
you that this is not a recommendation for your own security needs—it is merely an
example of what is possible):

� Privileges on views for departments at remote locations are given to IDs
managed at the central location. For example, the ID MGRD11 has the
SELECT privilege on the view DEPTD11.

| � If the manager of Department D11 uses a remote system, the ID there must be
| translated to MGRD11 before a request is sent to the central system. All other
| IDs are translated to CLERK before being sent to the central system.

� The translated IDs, like MGRD11, are managed through the communications
database.

| � An ID from a remote system must be authenticated on any request to the
| central system.

The means of implementing these decisions are described below, under:

“Actions at the Central Server Location” on page 3-138 and
“Actions at Remote Locations” on page 3-138.

 Chapter 3-7. A Sample Security Plan for Employee Data 3-137

Actions at the Central Server Location
To implement the provisions of the security plan, the central DB2 system must take
the following actions:

| � Authenticate every incoming ID with RACF.

| � For SNA connections, provide an entry in table SYSIBM.LUNAMES, in the
| CDB, for the LUNAME of every remote location. The entry must specify that
| connections must be verified. One such entry might look like this:

| (The security plan treats all remote locations alike, so it does not require
| encrypting passwords. That option is available only between two DB2 systems
| that use SNA connections.)

| � For TCP/IP connections, make sure the TCP/IP ALREADY VERIFIED field of
| installation panel DSNTIP5 is NO. This ensures that incoming requests that use
| TCP/IP are not accepted without authentication.

� Grant all privileges and authorities required by the manager of Department D11
to the ID MGRD11.

| Table 46. The SYSIBM.LUNAMES Table at the Central Location

| LUNAME| USERNAMES| SECURITY_IN| ENCRYPTPSWDS

| LUREMOTE| blank| V| N

Actions at Remote Locations
To implement the provisions of the security plan, a remote DB2 system must take

| the actions described below. (For a system other than DB2 for OS/390, the actions
might be somewhat different; check the documentation for the product you are
using. But in any case, the remote system must satisfy the requirements already
imposed by the central system.)

| � For SNA connections, provide an entry in table SYSIBM.LUNAMES for the
| LUNAME of the central location. The entry must specify outbound ID translation
| for attach requests to that location. Such an entry might look like this:

| � For TCP/IP connections, provide an entry in table SYSIBM.IPNAMES for the
| LUNAME used by the central location (the LUNAME is used to generate RACF
| PassTickets). The entry must specify outbound ID translation for requests to
| that location. Such an entry might look like this:

| � Provide entries in table SYSIBM.USERNAMES to translate outbound IDs. In
| this example, MEL1234 is translated to MGRD11 before being sent to the LU
| name specified in the LINKNAME column. All other IDs are translated to
| CLERK before being sent to that LU.

| Table 47. The SYSIBM.LUNAMES Table at the Remote Location

| LUNAME| USERNAMES| SECURITY_OUT

| LUCENTRAL| O| R

| Table 48. The SYSIBM.IPNAMES Table at the Remote Location

| LINKNAME| USERNAMES| SECURITY_OUT| IPADDR

| LUCENTRAL| O| R| central.vnet.ibm.com

3-138 Administration Guide

| Table 49. The SYSIBM.USERNAMES Table at the Remote Location

| TYPE| AUTHID| LINKNAME| NEWAUTHID

| O| MEL1234| LUCENTRAL| MGRD11
| O| blank| LUCENTRAL| CLERK

Auditing Managers' Use
The payroll data is extremely sensitive; therefore, the security plan calls for
automatically starting the audit trace for all classes whenever DB2 is started. The
employee table is to be created with AUDIT ALL, so there is an audit record of
every access to the table. Every week, the records are scanned to report the
number of accesses by each manager.

The report highlights any number outside an expected range. A summary of the
reports is made every two months, and scanned for any unusual patterns of
access. A large number of accesses, or an unusual pattern, might reveal use of a
manager's logon ID by another, unauthorized employee.

 Payroll Operations
To satisfy the stated security objectives for members of Payroll Operations, the
security plan again uses a view. The view shows all the columns of the table
except those for job, salary, bonus, and commission; and all rows except those for
members of the payroll department. Members of Payroll Operations have the
SELECT, INSERT, UPDATE, and DELETE privileges on the view; and the
privileges are granted WITH CHECK OPTION, so that they cannot insert values
that exceed the limits of the view.

A second, similar view gives Payroll Management the privilege of retrieving and
updating any record, including those of Payroll Operations. Neither view, though,
allows updates of compensation amounts. When a row is inserted for a new
employee, the compensation amounts are left null, to be changed later by an
update.

Both views are created and owned by, and privileges are granted by, the owner of
the employee table.

 Salary Updates
The plan does not allow members of Payroll Operations to update compensation
amounts directly. Instead, there is an auxiliary table, the “payroll update table,”
containing only the employee ID, job, salary, bonus, and commission. Members of
Payroll Operations make all job, salary, and bonus changes to the payroll update
table, except those for their own department. After the prospective changes are
verified, the manager of Payroll Operations runs an application program that reads
the payroll update table and makes the corresponding changes to the employee
table. Only that program, the “payroll update program,” has the privilege of updating
job, salary, and bonus in the employee table.

Commission amounts at Spiffy Computer Company are a separate problem. They
are calculated by a complicated arithmetic formula that considers the employee's
job, department, years of service with the company, and responsibilities for various
projects and project activities. The formula, of course, is embodied in an application
plan, the “commission program,” which must be run regularly to insert new

 Chapter 3-7. A Sample Security Plan for Employee Data 3-139

commission amounts in the payroll update table. The plan owner must have the
SELECT privilege on the employee table, and on several other tables as well.

 Additional Controls
The separation of potential salary changes into the payroll update table allows them
to be verified before they go into effect; at Spiffy Computer Company, they are
checked against a written change request that is signed by a required level of
management. That is considered the most important control on salary updates, but
the plan includes these other controls as well:

� The employee ID in the auxiliary table is a foreign key column that refers to the
employee ID in the employee table. Enforcing the referential constraint prevents
assigning a change to an invalid ID.

� The employee ID in the auxiliary table is also a primary key for that table, so its
values are unique. Because of that, in any one operating period (say, a week)
all the changes for any one employee must appear in the same row of the
table. No two rows can carry conflicting changes.

� There is an allowable range of salaries, bonuses, and commissions for each
job level. The security planners considered the following ways to ensure that
updates would stay within those ranges:

– Keep the ranges in a DB2 table and, as one step in verifying the updates,
query the payroll update table and the table of ranges, retrieving any rows
for which the planned update is outside the allowed range.

– Build the ranges into a validation routine, and apply it to the payroll update
table to reject automatically any insert or update outside its allowed range.

– Embody the ranges in a view of the payroll table, using WITH CHECK
OPTION, and make all updates to the view. The ID that owns the employee
table also owns the view.

– Create the table with table check constraints for the salaries, bonuses, and
commissions. The planners chose this approach because it is both simple
and easy to control. See Section 2 of Application Programming and SQL
Guide for information about using table check constraints.

To What ID Are Privileges Granted?
The plan for the Payroll Operations department strongly suggests the functional
approach, for these reasons:

� There are several privileges needed—the privileges on the views and probably
also the EXECUTE privilege on the application plan for the commission
program.

� There are several members of the department who must all have the same set
of privileges.

� If members of the department leave, others are hired or transfer in.

Therefore, the security plan calls for creating a RACF group for Payroll Operations.
All required privileges are granted to the group ID, with the intent not to revoke
them. The primary IDs of new members of the department are connected to the
group ID, which becomes a secondary ID for each of them (possibly their only
secondary ID). The primary IDs of members who leave the department are
disconnected from the group.

3-140 Administration Guide

DB2USER can define the group, as described in “Add RACF Groups” on
page 3-101. DB2USER could retain ownership of the group, or more probably
assign the ownership to an ID used by Payroll Management. The privileges that the
group needs can be granted by the owner of the employee table.

Auditing Use by Payroll Operations and Payroll Management
Like the employee table, the payroll update table is created with AUDIT ALL. For
both tables, the numbers of accesses by the payroll operations and payroll
management groups are reported. A summary of accesses of the employee table
by the payroll update program is also reported. Like the reports of managers'
accesses, the reports of payroll accesses are scanned for large numbers or
unusual patterns of access.

Others Who Have Access
In addition to the privileges used by managers, and by the members of the Payroll
Operations and Payroll Management groups, the security plan considers the
privileges of database administrators, system administrators, and owners of tables,
views, packages, and application plans.

IDs with Database Administrative Authority
An ID with DBADM authority over database DSN8D51A, which holds the employee
table, can select from, insert into, delete from, update, or alter any table in the
database, and create and drop indexes on the tables. The security planners were
pleased that they did not have to grant that authority to any ID at all. For regular
operations, it was enough to have an ID with DBCTRL authority. That ID could
copy tables, recover any table space, run the CHECK utility, and generally support
the continued availability of the database without actually being able to retrieve or
change the data.

A number of planners pointed out that database DSN8D51A contained several
other tables (actually, all of those described in “Appendix A. DB2 Sample Tables”
on page X-7). Some of the planners suggested putting the payroll tables into
another database. That way, those with access to DSN8D51A could not access
them. Others suggested that it might be convenient to have an administrative ID
that could access those fully. That observation suggested the functional approach
to privileges. Though the authorities that DB2 provides, like DBADM, are
convenient collections of privileges for many purposes, they are not the only
collections that can be needed. The security plan finally called for a RACF group
that had:

1. DBCTRL authority over DSN8D51A

2. The INDEX privilege on all tables in the database except the employee and
payroll update tables

3. The SELECT, INSERT, UPDATE, and DELETE privileges on selected tables.

The privileges are to be granted to the group ID by an ID with SYSADM authority.

 Chapter 3-7. A Sample Security Plan for Employee Data 3-141

IDs with System Administrative Authority
An ID with SYSADM authority can access sensitive data not only in the employee
and payroll update tables, but in any other table in the entire DB2 subsystem.
However, that authority can be needed only intermittently and for relatively short
periods.

Because such sweeping authority must be controlled at the highest level, the
security plan calls for giving it to DB2OWNER, which is responsible for DB2
security. That does not mean that only IDs connected to DB2OWNER exercise all
that authority, grant privileges on every plan and package, initiate every use of the
STOSPACE utility. Instead, DB2OWNER can grant privileges to a group, connect
other IDs to the group as needed, and later disconnect them.

Also, DB2OWNER can grant SYSCTRL authority to selected IDs. IDs with
SYSCTRL authority can exercise most of the privileges of SYSADM authority and
can assume much of the day-to-day work. Those IDs cannot access data directly or
run plans, unless the privileges for those actions are granted to them specifically;
but they can run utilities and examine the output data sets, or grant privileges that
would allow other IDs to access data. Thus it is somewhat inconvenient for them to
access sensitive data, but it is not impossible.

Grants of the BINDAGENT privilege can also relieve the need to have SYSADM
authority continuously available. IDs with the BINDAGENT privilege can bind plans
and packages on behalf of another ID, but cannot run the plans they bind without
being specifically granted the EXECUTE privilege.

The Employee Table Owner
We said earlier that Spiffy Computer Company can never fully achieve its stated
objective that only a manager can ever retrieve an employee's data record. In
planning the views and GRANT statements described above, the security planners
must consider the ID that owns the views and grants the privileges. That ID
implicitly has the SELECT privilege on the employee table.

The activities planned for the Payroll Operations and Payroll Management
departments require a new table and several new views. The security plan calls for
all of those to be owned by the owner of the employee table.

The planned activities also use these programs, whose owners must also have
certain privileges.

� The owner of the payroll update program must have the SELECT privilege on
the payroll update table and the UPDATE privilege on the employee table.

� The owner of the commission program must have the UPDATE privilege on the
payroll update table and the SELECT privilege on the employee table.

� There are several other payroll programs that do the usual payroll
processing—printing payroll checks, writing summary reports, and so on.

3-142 Administration Guide

At this point, the security planners adopt an additional objective for the plan: to limit
the number of IDs that have any privileges on the employee table or the payroll
update table to the smallest convenient value. To meet that objective, they decide
that all the CREATE VIEW and GRANT statements are to be issued by the owner
of the employee table. Hence, the security plan for employee data assigns several
key activities to that ID. The security plan considers the need to:

� Revoke and grant the SELECT privilege on a manager's view whenever a
department's manager is changed.

� Drop and create managers' views whenever a reorganization of responsibilities
changes the list of department identifiers.

� Maintain the view through which the employee table is updated.

The privileges for those activities are implicit in ownership of the employee table
and the views on it. The same ID must also:

� Own the application plans and packages for the payroll program, the payroll
update program, and the commission program.

� Occasionally acquire ownership of new application plans and packages.

For those activities, the ID requires the BIND or BINDADD privileges. For example,
an ID in Payroll Management can, through the SELECT privilege on the employee
table, write an SQL query to retrieve average salaries by department, for all
departments. To create an application plan that contains the query requires the
BINDADD privilege.

Again, the list of privileges suggests the functional approach. The owner of the
employee table is to be a RACF group ID.

Auditing for Other Users
Any access to the employee or payroll update tables by anyone other than the
department managers, the payroll operations and payroll management groups, and
the payroll update program, is considered an exception. Those accesses are listed
in full, and each is checked to see that it was a planned operation by the users with
SYSADM or DBADM authority, or the tables' owner.

Denials of access to the table are also listed. Those represent attempts by
unauthorized IDs to use the tables. Some are possibly accidental; others can be
attempts to break the security system.

After running the periodic reports, the audit records are archived. They provide a
complete audit trail of access to the employee data through DB2.

 Chapter 3-7. A Sample Security Plan for Employee Data 3-143

3-144 Administration Guide

Section 4. Operation and Recovery

Chapter 4-1. Basic Operation . 4-7
Entering Commands . 4-8

DB2 Operator Commands . 4-8
Authorities for DB2 Commands . 4-12

Starting and Stopping DB2 . 4-13
Starting DB2 . 4-13
Stopping DB2 . 4-15

Submitting Work to Be Processed . 4-16
Using DB2I (DB2 Interactive) . 4-16
Running TSO Application Programs . 4-17
Running IMS Application Programs . 4-18
Running CICS Application Programs . 4-18
Running Batch Application Programs . 4-19
Running Application Programs Using CAF 4-20

| Running Application Programs Using RRSAF 4-20
Receiving Messages . 4-21

Receiving Unsolicited DB2 Messages . 4-21
Determining Operational Control . 4-22

Chapter 4-2. Monitoring and Controlling DB2 and Its Connections . . . 4-23
Controlling DB2 Databases and Buffer Pools 4-23

Starting Databases . 4-24
Monitoring Databases . 4-25
Stopping Databases . 4-31
Altering Buffer Pools . 4-33
Monitoring Buffer Pools . 4-33

Controlling DB2 Utilities . 4-33
Controlling the IRLM . 4-34

Starting the IRLM . 4-35
Monitoring the IRLM Connection . 4-36
Stopping the IRLM . 4-36

Monitoring Threads . 4-37
DISPLAY THREAD Output . 4-38

Controlling TSO Connections . 4-38
Connecting to DB2 from TSO . 4-38
Monitoring TSO and CAF Connections . 4-39
Disconnecting from DB2 While under TSO 4-40

Controlling CICS Connections . 4-41
Connecting from CICS . 4-41
Controlling CICS Application Connections 4-43
Disconnecting from CICS . 4-48

Controlling IMS Connections . 4-49
Connecting to the IMS Control Region . 4-50
Controlling IMS Dependent Region Connections 4-54
Disconnecting from IMS . 4-56

| Controlling OS/390 RRS Connections . 4-58
| Connecting to OS/390 RRS Using RRSAF 4-59
| Monitoring RRSAF Connections . 4-60

Controlling Connections to Remote Systems 4-61
Starting DDF . 4-62

 Copyright IBM Corp. 1982, 1997 4-1

Monitoring Connections to Other Systems 4-63
Monitoring and Controlling Stored Procedures 4-72
Using NetView to Monitor Errors in the Network 4-75
Stopping DDF . 4-77

Controlling Traces . 4-78
Controlling the DB2 Trace . 4-78
Diagnostic Traces for the Attachment Facilities 4-79
Diagnostic Trace for the IRLM . 4-80

Controlling the Resource Limit Facility (Governor) 4-81

Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-83
How Database Changes Are Made . 4-83

Units of Recovery . 4-83
Rolling Back Work . 4-84

Establishing the Logging Environment . 4-84
Creation of Log Records . 4-84
Retrieval of Log Records . 4-85
Writing the Active Log . 4-86
Writing the Archive Log (Off-Loading) . 4-86

Managing the Bootstrap Data Set (BSDS) . 4-92
BSDS Copies with Archive Log Data Sets 4-93
Changing the BSDS Log Inventory . 4-94

Discarding Archive Log Records . 4-94
Deleting Archive Log Data Sets or Tapes Automatically 4-95
Locating Archive Log Data Sets to Delete 4-95

Chapter 4-4. Restarting DB2 After Termination 4-99
Termination . 4-99

Normal Termination . 4-99
Abends . 4-100

Normal Restart and Recovery . 4-101
Phase 1: Log Initialization . 4-101
Phase 2: Current Status Rebuild . 4-102
Phase 3: Forward Log Recovery . 4-103
Phase 4: Backward Log Recovery . 4-104
Restarting Automatically . 4-105

Deferring Restart Processing . 4-105
How to Defer Restart Processing . 4-106

Restarting with Conditions . 4-107
Recovery Operations You Can Choose for Conditional Restart 4-107
Records Associated with Conditional Restart 4-107

Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-109
Consistency with Other Systems . 4-109

The Two-phase Commit Process: Coordinator and Participant 4-109
Illustration of Two-Phase Commit . 4-110
Maintaining Consistency After Termination or Failure 4-111
Termination . 4-112
Normal Restart and Recovery . 4-112
Restarting with Conditions . 4-113

Resolving Indoubt Units of Recovery . 4-113
Resolution of Indoubt Units of Recovery from IMS 4-113
Resolution of Indoubt Units of Recovery from CICS 4-114

4-2 Administration Guide

Resolution of Indoubt Units of Recovery between DB2 and a Remote
System . 4-115

| Resolution of Indoubt Units of Recovery from OS/390 RRS 4-118
Consistency Across More than Two Systems 4-119

Commit Coordinator and Multiple Participants 4-119
Illustration of Multi-site Update . 4-120

Chapter 4-6. Backing Up and Recovering Databases 4-123
Planning for Backup and Recovery . 4-123

Considerations for Recovering Distributed Data 4-124
Preparing for Recovery . 4-124
What Happens during Recovery . 4-125

| Making Backup and Recovery Plans that Maximize Availability 4-128
How to Find Recovery Information . 4-130
Preparing to Recover to a Prior Point of Consistency 4-131
Preparing to Recover the Entire DB2 Subsystem to a Prior Point 4-133
Preparing for Disaster Recovery . 4-133
Ensuring More Effective Recovery from Inconsistency Problems 4-136
Running RECOVER Jobs in Parallel . 4-138
Reading the Log without RECOVER . 4-139

Copying Table Spaces and Data Sets . 4-139
Recovering Table Spaces and Data Sets . 4-141

Recovering the Work File Database . 4-142
Recovering the Catalog and Directory . 4-143
Recovering Data to a Prior Point of Consistency 4-144

Restoring Data by Using DSN1COPY . 4-146
Backing Up and Restoring Data with Non-DB2 Dump and Restore 4-147
Using RECOVER to Restore Data to a Previous Point in Time 4-147

Recovery of Dropped Objects . 4-149
Avoiding the Problem . 4-149
Limitations of the Procedures . 4-149
Recovery of an Accidentally Dropped Table 4-150
Recovery of an Accidentally Dropped Table Space 4-151

Discarding SYSCOPY and SYSLGRNX Records 4-154

Chapter 4-7. Recovery Scenarios . 4-155
IRLM Failure . 4-155
MVS or Power Failure . 4-156
DASD Failure . 4-156
Application Program Error . 4-158
IMS-Related Failures . 4-160

Extended Recovery Facility (XRF) Toleration 4-160
IMS Control Region (CTL) Failure . 4-160
Resolution of Indoubt Units of Recovery . 4-161
IMS Application Failure . 4-163

CICS-Related Failures . 4-164
Extended Recovery Facility (XRF) Toleration 4-164
CICS Application Failure . 4-164
CICS Is Not Operational . 4-165
CICS Inability to Connect to DB2 . 4-165
Manually Recovering CICS Indoubt Units of Recovery 4-166
CICS Attachment Facility Failure . 4-169

Subsystem Termination . 4-169
DB2 System Resource Failures . 4-171

 Section 4. Operation and Recovery 4-3

Active Log Failure . 4-171
Archive Log Failure . 4-175
BSDS Failure . 4-177
Recovering the BSDS from a Backup Copy 4-179

DB2 Database Failures . 4-182
Recovery from Down-Level Page Sets . 4-183
Table Space Input/Output Errors . 4-184
DB2 Catalog or Directory Input/Output Errors 4-185
Integrated Catalog Facility Catalog VSAM Volume Data Set Failures 4-187

VSAM Volume Data Set (VVDS) Destroyed 4-187
Out of DASD Space or Extent Limit Reached 4-188

Violations of Referential Constraints . 4-192
Failures Related to the Distributed Data Facility 4-192

Conversation Failure . 4-193
Communications Database Failure . 4-194
Failure of a Database Access Thread . 4-194
VTAM Failure . 4-195

| TCP/IP Failure . 4-195
Failure of a Remote Logical Unit . 4-196
Indefinite Wait Conditions for Distributed Threads 4-196
Security Failures for Database Access Threads 4-197

Remote Site Recovery from Disaster at a Local Site 4-197
| Using a Tracker Site for Disaster Recovery . 4-205
| Characteristics of a Tracker Site . 4-206
| Setting up a Tracker Site . 4-206
| Establishing a Recovery Cycle at the Tracker Site 4-207
| Maintaining the Tracker Site . 4-210
| The Distaster Happens: Making the Tracker Site the Takeover Site 4-210

Resolving Indoubt Threads . 4-211
Description of the Environment . 4-212
Communication Failure Between Two Systems 4-213
Making a Heuristic Decision . 4-214
IMS Outage Resulting in IMS Cold Start . 4-215
DB2 Outage at Application Requestor Resulting in DB2 Cold Start 4-216
DB2 Outage at Application Server Resulting in DB2 Cold Start 4-219
Correcting a Heuristic Decision . 4-219

Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-221
Failure during Log Initialization or Current Status Rebuild 4-223

Description of Failure during Log Initialization 4-224
Description of Failure during Current Status Rebuild 4-225
Restart by Truncating the Log . 4-226

Failure during Forward Log Recovery . 4-233
Starting DB2 by Limiting Restart Processing 4-235

Failure during Backward Log Recovery . 4-238
Bypassing Backout before Restarting . 4-239

Failure during a Log RBA Read Request . 4-241
Unresolvable BSDS or Log Data Set Problem during Restart 4-242

Preparing for Recovery of Restart . 4-242
Performing the Fall Back to a Prior Shutdown Point 4-243

Failure Resulting from Total or Excessive Loss of Log Data 4-244
Total Loss of Log . 4-245
Excessive Loss of Data in the Active Log 4-246

Resolving Inconsistencies Resulting from Conditional Restart 4-248

4-4 Administration Guide

Inconsistencies in a Distributed Environment 4-248
Procedures for Resolving Inconsistencies 4-248
Method 1. Recover to a Prior Point of Consistency 4-250
Method 2. Re-create the Table Space . 4-250
Method 3. Use the REPAIR Utility on the Data 4-250

 Section 4. Operation and Recovery 4-5

4-6 Administration Guide

 Chapter 4-1. Basic Operation

The information under this heading, up to “Running IMS Application Programs” on
page 4-18, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

The simplest elements of operation for DB2 for OS/390 are described in this
chapter; they include:

“Entering Commands” on page 4-8
“Starting and Stopping DB2” on page 4-13
“Submitting Work to Be Processed” on page 4-16
“Receiving Messages” on page 4-21.

Normal operation also requires more complex tasks. They are described in:

� “Chapter 4-2. Monitoring and Controlling DB2 and Its Connections” on
page 4-23, which considers the control of connections to IRLM, to TSO, to
IMS, and to CICS, as well as connections to other database management
systems.

� “Chapter 4-3. Managing the Log and the Bootstrap Data Set” on page 4-83,
which describes the roles of the log and the bootstrap data set in preparing for
restart and recovery.

� “Chapter 4-4. Restarting DB2 After Termination” on page 4-99, which tells
what happens when DB2 terminates normally or abnormally and how to restart
it while maintaining data integrity.

� “Chapter 4-5. Maintaining Consistency Across Multiple Systems” on
page 4-109, which explains the two-phase commit process and the resolution
of indoubt units of recovery.

� “Chapter 4-6. Backing Up and Recovering Databases” on page 4-123, which
explains how to prepare for recovery as well as how to recover.

Recovery after various types of failure is described in:

� “Chapter 4-7. Recovery Scenarios” on page 4-155

� “Chapter 4-8. Recovery from BSDS or Log Failure During Restart” on
page 4-221

Operating a Data Sharing Group: Although many of the commands and
operational procedures described here are the same in a data sharing environment,
there are some special considerations, which are described in Chapter 6 of Data
Sharing: Planning and Administration. In particular, there are the following things to
consider when operating a data sharing group:

� New commands used for data sharing, and the concept of command scope
� Logging and recovery operations
� Restart after an abnormal termination
� Disaster recovery procedures
� Recovery procedures for coupling facility resources.

 Copyright IBM Corp. 1982, 1997 4-7

 Entering Commands
You can control most of the operational environment by using DB2 commands.
You might need to use other types of commands, including:

� IMS commands that control IMS connections

� CICS commands that control CICS connections

� IMS and CICS commands that allow you to start and stop connections to DB2
and display activity on the connections

� MVS commands that allow you to start, stop, and change the internal resource
lock manager (IRLM).

Use of these commands is described in “Chapter 4-2. Monitoring and Controlling
DB2 and Its Connections” on page 4-23. For a full description of the commands
available, see Chapter 2 of Command Reference .

DB2 Operator Commands
The DB2 commands, as well as their functions, are:

ALTER BUFFERPOOL Sets or alters buffer pool size while DB2 is online.

ALTER GROUPBUFFERPOOL
Alters attributes of group buffer pools, which are used in
a data sharing environment.

| ALTER UTILITY Changes parameter values of the REORG utility while
| REORG is running.

ARCHIVE LOG Archives (off-loads) the current active log

| CANCEL THREAD Cancels processing for specific local or distributed
| threads. It can be used for parallel task threads.

DISPLAY ARCHIVE Displays information about the specifications for archive
parameters, status of allocated dedicated tape units,
volume and data set names associated with all active
tape units, and correlation ID of the requester.

DISPLAY BUFFERPOOL Displays buffer pool information while DB2 is online

DISPLAY DATABASE Displays the status of a database

DISPLAY GROUP Displays information about the data sharing group to
which a DB2 subsystem belongs

DISPLAY GROUPBUFFERPOOL
Displays status and statistical information about DB2
group buffer pools, which are used in a data sharing
environment

DISPLAY LOCATION Displays statistics about threads and conversations
between remote DB2 subsystem and the local
subsystem

DISPLAY PROCEDURE Displays statistics about stored procedures accessed by
DB2 applications.

DISPLAY RLIMIT Displays the status of the resource limit facility
(governor)

4-8 Administration Guide

| DISPLAY THREAD Displays information about DB2, distributed subsystem
| connections and parallel tasks.

DISPLAY TRACE Displays the status of DB2 traces

DISPLAY UTILITY Displays the status of a utility

MODIFY TRACE Changes the trace events (IFCIDs) being traced for a
specified active trace

RECOVER BSDS Reestablishes dual bootstrap data sets

RECOVER INDOUBT Recovers threads left indoubt after DB2 is restarted

RESET INDOUBT Purges DB2 information about indoubt threads

SET ARCHIVE Controls or sets the limits for the allocation and the
deallocation time of the tape units for archive log
processing

START DATABASE Starts a list of databases or table spaces and index
spaces

START DB2 Initializes the DB2 subsystem

START DDF Starts the distributed data facility

START PROCEDURE Starts a stored procedure that is stopped, or refreshes
one that is cached

START RLIMIT Starts the resource limit facility (governor)

START TRACE Starts DB2 traces

STOP DATABASE Stops a list of databases or table spaces and index
spaces

STOP DB2 Stops the DB2 subsystem

STOP DDF Stops the distributed data facility

| STOP PROCEDURE Prevents DB2 from accepting SQL CALL statements for
| a stored procedure

STOP RLIMIT Stops the resource limit facility (governor)

STOP TRACE Stops traces

TERM UTILITY Terminates execution of a utility.

Where DB2 Commands Are Entered
You can enter commands from the following sources:

� An MVS console or MVS application
� An IMS terminal or program
� A CICS terminal
� A TSO terminal
� An APF-authorized program
� An IFI application program.

� The DB2 Commands window of the DB2 PM Workstation Online Monitor

From an MVS console or MVS application: You can enter all DB2 commands
from an MVS console or MVS application program . The START DB2 command

can be entered only from the MVS console. The command group authorization level
must be SYS.

 Chapter 4-1. Basic Operation 4-9

More than one DB2 subsystem can run under MVS. You prefix a DB2 command
with special characters that identify which subsystem to direct the command to. The
1- to 8-character prefix is called the command prefix. Specify the command prefix
on installation panel DSNTIPM. The default character for the command prefix is
-DSN1. Most examples in this book use the old default, the hyphen (-).

From an IMS Terminal or Program: You can enter all DB2 commands except
-START DB2 from either an IMS terminal or program. The terminal or program
must be authorized to enter the /SSR command.

An IMS subsystem can attach to more than one DB2 subsystem, so you must
prefix a command that is directed from IMS to DB2 with a special character that
tells which subsystem to direct the command to. That character is called the
command recognition character (CRC); specify it when you define DB2 to IMS, in
the subsystem member entry in IMS.PROCLIB. (For details, see Section 2 of
Installation Guide.)

If it is possible in your configuration, it can be less confusing if you make the CRC
and the command prefix the same character for the same DB2 subsystem. If you
are using a command prefix of more than one character, this is not possible.

The examples in this book assume that both the command prefix and the CRC are
the hyphen (-). But if you can attach to more than one DB2 subsystem, you must
prefix your commands with the appropriate CRC. In the following example, the CRC
is a question mark character:

You enter:

/SSR ?DISPLAY THREAD

and DB2 returns the following messages:

DFSð58 SSR COMMAND COMPLETED

DSNV4ð1I ? DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I ? ACTIVE THREADS -

From a CICS Terminal: You can enter all DB2 commands except START DB2
from a CICS terminal authorized to enter the DSNC transaction code.

For example, you enter:

DSNC -DISPLAY THREAD

and DB2 returns the following messages:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

CICS can attach to only one DB2 subsystem at a time; therefore CICS does not
use the DB2 command prefix. Instead, each command entered through the CICS
attachment facility must be preceded by a hyphen (-), as in the example above.
The CICS attachment facility routes the commands to the connected DB2
subsystem and obtains the command responses.

From a TSO Terminal: You can enter all DB2 commands except -START DB2
from a DSN session.

4-10 Administration Guide

For example:

The system displays: READY

You enter: DSN SYSTEM (sysid)

The system displays: DSN

You enter: -DISPLAY THREAD

and DB2 returns the following messages:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

A TSO session can attach to only one DB2 subsystem at a time; therefore TSO
does not use the DB2 command prefix. Instead, each command entered through
the TSO attachment facility must be preceded by a hyphen, as in the example
above. The TSO attachment facility routes the command to DB2 and obtains the
command response.

All DB2 commands except START DB2 can also be entered from a DB2I panel
using option 7, DB2 Commands. For more information on using DB2I, see “Using
DB2I (DB2 Interactive)” on page 4-16.

From an APF-authorized Program: As with IMS, DB2 commands can be passed
from an APF-authorized program to multiple DB2 subsystems by the MGCRE (SVC

34) MVS service. Thus, the value of the command prefix identifies the particular
subsystem to which the command is directed. The subsystem command prefix is
specified, as in IMS, when DB2 is installed (in the SYS1.PARMLIB member

IEFSSNxx). DB2 supports the MVS WTO Command And Response Token (CART)
to route individual DB2 command response messages back to the invoking
application program. The CART token is required if multiple DB2 commands are
issued from a single application program.

For example, to issue DISPLAY THREAD to the default DB2 subsystem from an
APF-authorized program run as a batch job, you code:

MODESUPV DS ðH

 MODESET MODE=SUP,KEY=ZERO

SVC34 SR ð,ð

 MGCR CMDPARM

 EJECT

CMDPARM DS ðF

CMDFLG1 DC X'ðð'

CMDLENG DC AL1(CMDEND-CMDPARM)

CMDFLG2 DC X'ðððð'

CMDDATA DC C'-DISPLAY THREAD'

CMDEND DS ðC

and DB2 returns the following messages:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 :

 :

DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

From an IFI Application Program: An application program can issue DB2
commands using the instrumentation facility interface (IFI). The IFI application

 Chapter 4-1. Basic Operation 4-11

program protocols are available through the IMS, CICS, TSO, call attachment
| facility (CAF) attaches, and Recoverable Resource Manager Services attachment
| facility For an example in which the DB2 START TRACE command for monitor

class 1 is issued, see “COMMAND: Syntax and Usage” on page X-126.

Where Command Responses Go
In most cases, DB2 command responses are returned to the entering terminal or,
for batch jobs, appear in the printed listing.

In CICS, you can direct command responses to another terminal. Name the other
terminal as the destination (dest) in this command:

DSNC dest -START DATABASE

If a DB2 command is entered from an IMS or CICS terminal, the response
messages can be directed to different terminals. If the response includes more than
one message, the following cases are possible:

� If the messages are issued in a set, the entire set of messages is sent to the
IMS or CICS terminal that entered the command. For example, DISPLAY
THREAD issues a set of messages.

� If the messages are issued one after another, and not in a set, only the first
message is sent to the terminal that entered the command. Later messages are
routed to one or more MVS consoles via the WTO function. For example,
START DATABASE issues several messages one after another.

You can choose alternate consoles to receive the subsequent messages, by
assigning them the routing codes placed in the DSNZPxxx module when DB2
is installed. If you want to have all of the messages available to the person who
sent the command, route the output to a console near the IMS or CICS master
terminal.

For APF-authorized programs that run in batch jobs, command responses are
returned to the master console and to the system log, if hard copy logging is
available. Hard copy logging is controlled by the MVS system command VARY.
See MVS/ESA System Commands for more information.

Authorities for DB2 Commands
The ability to issue DB2 commands, such as STOP DB2, and to use most other
DB2 functions, requires the appropriate privilege or authority. Privileges and
authorities can be granted to authorization IDs in many combinations, and can also
be revoked.

The individual authorities are listed in Figure 53 on page 3-19. Each administrative
authority has the individual authorities shown in its box, and the individual
authorities for all the levels beneath it. For example, DBADM has ALTER, DELETE,
INDEX, INSERT, SELECT, and UPDATE authorities as well as those listed for
DBCTRL and DBMAINT.

Any user with the STOPALL privilege can issue the STOP DB2 command. Besides
those who have granted STOPALL explicitly, the privilege belongs implicitly to
anyone with SYSOPR authority or higher. When installing DB2, you can choose:

� One or two authorization IDs with installation SYSADM authority
� Zero, one, or two authorization IDs with installation SYSOPR authority.

4-12 Administration Guide

The IDs with those authorizations are contained in the load module for subsystem
parameters (DSNZPxxx).

The START DB2 command can be entered only at an MVS console authorized to
enter MVS system commands. The command group authorization level must be
SYS.

DB2 commands entered from an MVS console are not associated with any
secondary authorization IDs. The authorization ID associated with an MVS console
is SYSOPR, which carries the authority to issue all DB2 commands except the
following:

 RECOVER BSDS
 START DATABASE
 STOP DATABASE
 ARCHIVE LOG

APF-authorized programs that issue commands via MGCR (SVC 34) have
SYSOPR authority. The authority to start or stop any particular database must be
specifically granted to an ID with SYSOPR authority. Likewise, an ID with SYSOPR
authority must be granted specific authority to issue the RECOVER BSDS and
ARCHIVE LOG commands.

The SQL GRANT statement can be used to grant SYSOPR authority to other user
IDs such as the /SIGN user ID or the LTERM of the IMS master terminal.

For information about other DB2 authorization levels, see “Establishing RACF
Protection for DB2” on page 3-93. Command Reference also has authorization
level information for specific commands.

Starting and Stopping DB2
Starting and stopping DB2 is a simple process, and one that you will probably not
have to do often. Before DB2 is stopped, the system takes a shutdown checkpoint.
This checkpoint and the recovery log give DB2 the information it needs to restart.

This section describes the START DB2 and STOP DB2 commands, explains how
you can limit access to data at startup, and contains a brief overview of startup
after an abend.

 Starting DB2
When installed, DB2 is defined as a formal MVS subsystem. Afterward, the
following message appears during any IPL of MVS:

DSN31ððI - DSN3URðð - SUBSYSTEM ssnm READY FOR -START COMMAND

where ssnm is the DB2 subsystem name. At that point, you can start DB2 from an
MVS console that has been authorized to issue system control commands (MVS
command group SYS), by entering the command START DB2. The command must
be entered from the authorized console, and not submitted via JES or TSO.

It is not possible to start DB2 by a JES batch job or an MVS START command.
The attempt is likely to start an address space for DB2 that then abends, probably
with reason code X'00E8000F'.

 Chapter 4-1. Basic Operation 4-13

You can also start DB2 from an APF-authorized program, by passing a START
DB2 command to the MGCR (SVC 34) MVS service.

Messages at Start
The system responds with some or all of the following messages:

$HASP373 xxxxMSTR STARTED
DSNZðð2I - SUBSYS ssnm SYSTEM PARAMETERS

LOAD MODULE NAME IS dsnzparm-name
DSNYðð1I - SUBSYSTEM STARTING

DSNJ127I - SYSTEM TIMESTAMP FOR BSDS=87.267 14:24:3ð.6

DSNJðð1I - csect CURRENT COPY n ACTIVE LOG DATA
SET IS DSNAME=...,

 STARTRBA=...,ENDRBA=...

DSNJð99I - LOG RECORDING TO COMMENCE WITH

STARTRBA = xxxxxxxxxxxx

$HASP373 xxxxDBM1 STARTED
DSNRðð1I - RESTART INITIATED

DSNRðð3I - RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx
DSNRðð4I - RESTART...UR STATUS COUNTS...

IN COMMIT=nnnn, INDOUBT=nnnn, INFLIGHT=nnnn,
 IN ABORT=nnnn
DSNRðð5I - RESTART...COUNTS AFTER FORWARD RECOVERY

IN COMMIT=nnnn, INDOUBT=nnnn
DSNRðð6I - RESTART...COUNTS AFTER BACKWARD RECOVERY

INFLIGHT=nnnn, IN ABORT=nnnn
DSNRðð2I - RESTART COMPLETED

DSN9ð22I - DSNYASCP '-START DB2' NORMAL COMPLETION

If any of the nnnn values in message DSNR004I are not zero, message DSNR007I
is issued to provide the restart status table.

The START DB2 command starts the system services address space, the database
services address space, and, depending upon specifications in the load module for
subsystem parameters (DSNZPARM, by default), the distributed data facility

| address space and the DB2-established stored procedures address space.
Optionally, another address space—the internal resource lock manager
(IRLM)—can be started automatically.

Options at Start
Starting invokes the load module for subsystem parameters. This load module
contains information specified when DB2 was installed. For example, the module
contains the name of the IRLM to connect to. In addition, it indicates whether the
distributed data facility (DDF) is available, and, if it is, whether it should be
automatically started when DB2 is started. For information about using a command
to start DDF, see “Starting DDF” on page 4-62. You can specify PARM
(module-name) on the START DB2 command to provide a parameter module other
than the one specified at installation.

There is a conditional restart operation, but there are no parameters to indicate
normal or conditional restart on the START DB2 command. For information on
conditional restart, see “Restarting with Conditions” on page 4-107.

4-14 Administration Guide

Restricting Access to Data
You can restrict access to data with another option of the START DB2 command.
Use:

ACCESS(MAINT) To limit access to users who have installation SYSADM or
installation SYSOPR authority.

Users with those authorities can do maintenance operations
such as recovering a database or taking image copies. To
restore access to all users, stop DB2 and then restart it. Either
omit the ACCESS keyword or use:

ACCESS(*) To allow all authorized users to connect to DB2.

Wait State at Start
If a JCL error, such as device allocation or region size, occurs while trying to start
the database services address space, DB2 goes into wait status. To end the wait,
cancel the system services address space and the distributed data facility address
space from the console. After DB2 stops, check the start procedures of all three
DB2 address spaces for correct JCL syntax.

To accomplish the check, compare the expanded JCL in the SYSOUT output
against the correct JCL provided in MVS/ESA JCL User's Guide or MVS/ESA JCL
Reference. Then, take the member name of the erroneous JCL procedure also
provided in the SYSOUT to the system programmer who maintains your procedure
libraries. After finding out which proclib contains the JCL in question, locate the
procedure and correct it.

Starting after an Abend
Starting DB2 after it abends is different from starting it after the command STOP
DB2 has been issued. After STOP DB2, the system finishes its work in an orderly
way and takes a shutdown checkpoint before stopping. When DB2 is restarted, it
uses information from the system checkpoint and recovery log to determine the
system status at shutdown.

When a power failure occurs, DB2 abends without being able to finish its work or
take a shutdown checkpoint. When DB2 is restarted after an abend, it refreshes its
knowledge of its status at termination using information on the recovery log, and
notifies the operator of the status of various units of recovery.

Normally, the restart process resolves all inconsistent states. In some cases, you
have to take specific steps to resolve inconsistencies. There are steps you can take
to prepare for those actions. For example, you can limit the list of table spaces that
are recovered automatically when DB2 is started. For an explanation of the causes
of database inconsistencies, and how you can prepare to recover from them, see
“Chapter 4-4. Restarting DB2 After Termination” on page 4-99.

 Stopping DB2
Before stopping, all DB2-related write to operator with reply (WTOR) messages
must receive replies. Then one of the following commands terminates the
subsystem:

-STOP DB2 MODE(QUIESCE)

-STOP DB2 MODE(FORCE)

 Chapter 4-1. Basic Operation 4-15

For the effects of the QUIESCE and FORCE options, see “Normal Termination” on
page 4-99.

The following messages appear:

DSNYðð2I - SUBSYSTEM STOPPING

DSN9ð22I - DSNYASCP '-STOP DB2' NORMAL COMPLETION

DSN31ð4I - DSN3ECðð - TERMINATION COMPLETE

Before DB2 can be restarted, the following message must also appear at the MVS
console that is authorized to enter the START DB2 command.

DSN31ððI - DSN3ECðð - SUBSYSTEM ssnm READY FOR -START COMMAND

If the STOP DB2 command is not issued from an MVS console, messages
DSNY002I and DSN9022I are not sent to the IMS or CICS master terminal
operator. They are routed only to the MVS console which issued the START DB2
command.

Submitting Work to Be Processed
An application program running under TSO, IMS, or CICS can make use of DB2
resources by executing embedded SQL statements. How to run application
programs from those environments is explained under:

“Running TSO Application Programs” on page 4-17
“Running IMS Application Programs” on page 4-18
“Running CICS Application Programs” on page 4-18
“Running Batch Application Programs” on page 4-19
“Running Application Programs Using CAF” on page 4-20.

| “Running Application Programs Using RRSAF” on page 4-20

In each case, there are some conditions that the application program must meet to
embed SQL statements and to authorize the use of DB2 resources and data.

All application programming defaults, including the subsystem name that the
programming attachments discussed here use, are in the DSNHDECP load module.
Make sure your JCL specifies the proper set of program libraries.

Using DB2I (DB2 Interactive)
Using the interactive program DB2I, you can run application programs and perform
many DB2 operations by entering values on panels. DB2I runs under TSO using
ISPF (Interactive System Productivity Facility) services. To use it, follow your local
procedures for logging on to TSO, and enter ISPF. The DB2I menu is shown in
Section 2 of Application Programming and SQL Guide.

You control each operation by entering the parameters that describe it on the
panels provided. DB2 also provides help panels to do the following:

� Explain how to use each operation

� Provide the syntax for and examples of DSN subcommands, DB2 operator
commands, and DB2 utility control statements.

To access the help panels, press the HELP PF key. (The key can be set locally,
but typically is PF1.)

4-16 Administration Guide

Running TSO Application Programs
To run TSO application programs:

 1. Log on.
2. Enter the DSN command.
3. Respond to the prompt by entering the RUN subcommand.

The following example runs application program DSN8BC3. The program is in
library prefix.RUNLIB.LOAD, the name assigned to the load module library.

DSN SYSTEM (subsystem-name)
RUN PROGRAM (DSN8BC3) PLAN(DSN8BH51) LIB ('prefix.RUNLIB.LOAD')
END

A TSO application program run in a DSN session must be link-edited with the TSO
language interface program (DSNELI). The program cannot include IMS DL/I calls
because that requires the IMS language interface module (DFSLI000).

The terminal monitor program (TMP) attaches the DB2-supplied DSN command
processor, which in turn attaches the application program.

The DSN command starts a DSN session, which in turn provides a variety of
subcommands and other functions. The DSN subcommands are:

ABEND Causes the DSN session to terminate with a DB2 X'04E'
abend completion code and with a DB2 abend reason code of
X'00C50101'

BIND PACKAGE Generates an application package

BIND PLAN Generates an application plan

DCLGEN Produces SQL and host language declarations

END Ends the DB2 connection and returns to TSO

FREE PACKAGE Deletes a specific version of a package

FREE PLAN Deletes an application plan

REBIND PACKAGE Regenerates an existing package

REBIND PLAN Regenerates an existing plan

RUN Executes a user application program

SPUFI Invokes a DB2I facility for executing SQL statements not
embedded in an application program.

You can also issue the following DB2 and TSO commands from a DSN session:

� Any TSO command except TIME, TEST, FREE, and RUN.
� Any DB2 command except START DB2. For a list of those commands, see

“DB2 Operator Commands” on page 4-8.

DB2 uses the following sources to find an authorization for access by the
application program. DB2 checks the first source listed; if it is unavailable, it checks
the second source, and so on.

1. RACF USER parameter supplied at logon
2. TSO logon user ID
3. Site-chosen default authorization ID
4. IBM-supplied default authorization ID

 Chapter 4-1. Basic Operation 4-17

Either the RACF USER parameter or the TSO user ID can be modified by a locally
defined authorization exit routine.

Running IMS Application Programs
To run IMS application programs, enter transactions from IMS terminals.

Application programs that contain SQL statements run in message processing
program (MPP), batch message processing (BMP), Fast Path regions, or IMS batch
regions.

The program must be link-edited with the IMS language interface module
(DFSLI000). It can write to and read from other database management systems
using the distributed data facility, in addition to accessing DL/I and Fast Path
resources.

DB2 checks whether the authorization ID provided by IMS is valid. For
message-driven regions, IMS uses the SIGNON-ID or LTERM as the authorization
ID. For non-message-driven regions and batch regions, IMS uses ASXBUSER field

| (if RACF or another security package is active). The ASXBUSER field is defined by
| MVS as 7 characters. If the ASXBUSER field contains binary zeros or blanks

(RACF or another security package is not active), IMS uses the PSB name instead.
See “Chapter 3-4. Controlling Access to a DB2 Subsystem” on page 3-63 for more
information about DB2 authorization IDs.

An IMS terminal operator probably notices few differences between application
programs that access DB2 data and programs that access DL/I data, because no
messages relating to DB2 are sent to a terminal operator by IMS. However, your
program can signal DB2 error conditions with a message of your choice. For
example, at the program's first SQL statement, it receives an SQL error code if the
resources to run the program are not available or if the operator is not authorized to
use the resources. The program can interpret the code and issue an appropriate
message to the operator.

Running IMS Batch Work: You can run batch DL/I jobs to access DB2 resources;
DB2-DL/I batch support uses the IMS attach package.

See Section 5 of Application Programming and SQL Guide for more information
about application programs and DL/I batch. See IMS/ESA Application
Programming: Design Guide for more information about recovery and DL/I batch.

Running CICS Application Programs
To run CICS applications, enter transactions from CICS terminals.

CICS transactions that issue SQL statements must be link-edited with the CICS
attachment facility language interface module, DSNCLI, and the CICS command
language interface module. CICS application programs can issue SQL, DL/I, or
CICS commands. After CICS has connected to DB2, any authorized CICS
transaction can issue SQL requests that can write to and read from multiple DB2
instances using the distributed data facility. The application programs run as CICS
applications.

DB2 checks an authorization ID related to the transaction against a plan assigned
to it. The authorization ID for the transaction can be the operator ID, terminal ID,

4-18 Administration Guide

transaction ID, RACF-authenticated USERID, or another identifier explicitly provided
by the resource control table (RCT). See “Chapter 3-4. Controlling Access to a
DB2 Subsystem” on page 3-63 for more information about DB2 authorization IDs.

Running Batch Application Programs
Batch DB2 work can run in background under the TSO terminal monitor program
(TMP) or in an IMS batch message processing (BMP) region. IMS batch regions
can issue SQL statements.

Batch work is run in the TSO background under the TSO terminal monitor program
(TMP). The input stream can invoke TSO command processors, particularly the
DSN command processor for DB2, and include DSN subcommands such as RUN.
The following is an example of a TMP job.

//jobname JOB USER=SYSOPR ...

//GO EXEC PGM=IKJEFTð1,DYNAMNBR=2ð

.

user DD statements

.

//SYSTSPRT DD SYSOUT=A

//SYSTSIN DD \

DSN SYSTEM (ssid)
.

subcommand (for example, RUN)

subcommand

.

END

/\

In the example,

� IKJEFT01 identifies an entry point for TSO TMP invocation. Alternate entry
points defined by TSO are also available to provide additional return code and
ABEND termination processing options. These options permit the user to select
the actions to be taken by the TMP upon completion of command or program
execution.

Because invocation of the TSO TMP using the IKJEFT01 entry point might not
be suitable for all user environments, refer to the TSO publications to determine
which TMP entry point provides the termination processing options best suited
to your batch execution environment.

� USER=SYSOPR identifies the user ID (SYSOPR in this case) for authorization
checks.

� DYNAMNBR=20 indicates the maximum number of data sets (20 in this case)
that can be dynamically allocated concurrently.

� MVS checkpoint and restart facilities do not support the execution of SQL
statements in batch programs invoked by RUN. If batch programs stop because
of errors, DB2 backs out any changes made since the last commit point. For
information on backup and recovery, see “Chapter 4-6. Backing Up and
Recovering Databases” on page 4-123. For a explanation of backing out
changes to data when a batch program run in the TSO background abends,
see Section 5 of Application Programming and SQL Guide.

� (ssid) is the subsystem name or group attachment name.

 Chapter 4-1. Basic Operation 4-19

General-use Programming Interface

Running Application Programs Using CAF
The call attachment facility (CAF) allows you to customize and control your
execution environments more extensively than the TSO, CICS, or IMS attachment
facilities. Programs executing in TSO foreground or TSO background can use either
the DSN session or CAF; each has advantages and disadvantages. MVS batch and
started task programs can use only CAF.

It is also possible for IMS batch applications to access DB2 databases through
CAF, though this method does not coordinate the commitment of work between the
IMS and DB2 systems. We highly recommend that you use the DB2 DL/I batch
support for IMS batch applications.

In order to use CAF, you must first make available a load module known as the call
attachment language interface or DSNALI. When the language interface is
available, your program can use CAF in two ways:

� Implicitly, by including SQL statements or IFI calls in your program just as you
would any program

� Explicitly, by writing CALL DSNALI statements

For an explanation of CAF's capabilities and how to use it, see Section 6 of
Application Programming and SQL Guide.

End of General-use Programming Interface

General-use Programming Interface

| Running Application Programs Using RRSAF
| The Recoverable Resource Manager Services attachment facility (RRSAF) is a
| DB2 attachment facility that relies on an OS/390 component called OS/390
| Transaction Management and Recoverable Resource Manager Services (OS/390
| RRS). OS/390 RRS provides system-wide services for coordinating two-phase
| commit operations across MVS products.

| Before you can run an RRSAF application, OS/390 RRS must be started. OS/390
| RRS runs in its own address space and can be started and stopped independently
| of DB2.

| Applications that use RRSAF must do the following things:

| � Call DSNRLI to invoke RRSAF functions. Those functions establish a
| connection between DB2 and OS/390 RRS and allocate DB2 resources.

| � Link-edit or load the RRSAF language interface module, DSNRLI.

| See “Controlling OS/390 RRS Connections” on page 4-58 for a description of how
| applications connect to DB2 using RRSAF. For an explanation of RRSAF's
| capabilities and how to use it, see Section 6 of Application Programming and SQL
| Guide.

4-20 Administration Guide

End of General-use Programming Interface

 Receiving Messages
DB2 message identifiers have the form DSNcxxxt, where:

DSN Is the unique DB2 message prefix.

c Is a 1-character code identifying the DB2 subcomponent that issued the
message. For example:

M IMS attachment facility
U Utilities

xxx Is the message number

t Is the message type, with these values and meanings:

A Immediate action
D Immediate decision
E Eventual action
I Information only

See Messages and Codes for an expanded description of message types.

A command prefix, identifying the DB2 subsystem, follows the message identifier,
except in messages from the CICS and IMS attachment facilities (subcomponents
C for CICS Version 3 and below, 2 for CICS Version 4 and above, or M, for IMS).
CICS attachment facility messages identify the sending CICS subsystem and are
sent to the MVS console, the CICS terminal, or the CICS transient data destination
specified in the resource control table (RCT).

The IMS attachment facility issues messages that are identified as SSNMxxxx and
as DFSxxxx. The DFSxxxx messages are produced by IMS, under which the IMS
attachment facility operates.

Receiving Unsolicited DB2 Messages
Unsolicited subsystem messages are sent to the MVS console issuing the START
DB2 command, or to consoles assigned the routing codes that were listed in the
DSNZPxxx module when installing DB2. But the following messages from the IMS
and the CICS attachment facilities are exceptions to that rule:

� Specific IMS attachment facility messages are sent to the IMS master terminal.

� Unsolicited CICS messages are sent to the transient data entries specified in
the RCT (ERRDEST).

� CICS statistics messages that are issued because of shutdown are sent to the
transient data entry specified in the RCT (SHDDEST).

Some DB2 messages to the MVS console are defined as critical using the
MVS/WTO descriptor code (11). This code signifies “critical eventual action
requested” by DB2. Preceded by an at sign (@) or an asterisk (*), critical DB2
messages remain on the screen until specifically deleted. This prevents them from
being missed by the operator, who is required to take a specific action.

 Chapter 4-1. Basic Operation 4-21

Determining Operational Control
Table 50 summarizes the operational control that is available at the operator
console or terminal.

Table 50. Operational Control Summary

Type of
Operation

MVS
Console

TSO
Terminal

IMS
Master
Terminal

Authorized
CICSTerminal

Issue DB2 commands and receive
replies

Yes Yes1 Yes1 Yes1

Receive DB2 unsolicited output Yes No No No

Issue IMS commands Yes2 No Yes No

Receive IMS attachment facility
unsolicited output

No3 No Yes No

Issue CICScommands Yes4 No No Yes

Receive CICSattachment facility
unsolicited output

No3 No No Yes5

Notes:

1. Except START DB2. To enter commands from IMS, prefix them with /SSR; from
CICS, prefix with DSNC.

2. Using outstanding WTOR.

3. “Attachment facility unsolicited output” does not include “DB2 unsolicited output”;
for the latter, see “Receiving Unsolicited DB2 Messages” on page 4-21.

4. Use the MVS command MODIFY jobname, cics command. The MVS console
must already be defined as a CICS terminal.

5. Specify the output destination for the unsolicited output of the CICS attachment
facility in the RCT.

4-22 Administration Guide

Chapter 4-2. Monitoring and Controlling DB2 and Its
Connections

The information under this heading, up to “Controlling IMS Connections” on
page 4-49, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

“Chapter 4-1. Basic Operation” on page 4-7 tells you how to start DB2, submit
work to be processed, and stop DB2. The following operations, described in this
chapter, require more understanding of what DB2 is doing:

“Controlling DB2 Databases and Buffer Pools”
“Controlling DB2 Utilities” on page 4-33
“Controlling the IRLM” on page 4-34.

This chapter also introduces the concept of a thread, a DB2 structure that makes
the connection between another subsystem and DB2. A thread describes an
application's connection, traces its progress, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute under a thread structure. The
use of threads in making, monitoring, and breaking connections is described in the
following sections:

“Monitoring Threads” on page 4-37
“Controlling TSO Connections” on page 4-38
“Controlling CICS Connections” on page 4-41
“Controlling IMS Connections” on page 4-49

| “Controlling OS/390 RRS Connections” on page 4-58
“Controlling Connections to Remote Systems” on page 4-61.

“Controlling Traces” on page 4-78, tells you how to start and stop traces, and
points to other books for help in analyzing their results.

A final section, “Controlling the Resource Limit Facility (Governor)” on page 4-81,
tells how to start and stop the governor, and how to display its current status.

Examples of commands in this chapter do not necessarily illustrate all the available
options. For the complete syntax of any command or utility, see Command
Reference or Utility Guide and Reference.

Controlling DB2 Databases and Buffer Pools
DB2 databases are controlled by the following commands:

START DATABASE Makes a database, or individual partitions, available. For
its use, see “Starting Databases” on page 4-24.

DISPLAY DATABASE Displays status, user, and locking information for a
database. For its use, see “Monitoring Databases” on
page 4-25.

STOP DATABASE Makes a database, or individual partitions, unavailable
after existing users have quiesced. DB2 also closes and
deallocates the data sets. For its use, see “Stopping
Databases” on page 4-31.

 Copyright IBM Corp. 1982, 1997 4-23

The START and STOP DATABASE commands can be used with the SPACENAM
and PART options to control table spaces, index spaces, or partitions. For example,
the following command starts two partitions of table space DSN8S51E in the
database DSN8D51A:

-START DATABASE (DSN8D51A) SPACENAM (DSN8S51E) PART (1,2)

 Starting Databases
The command START DATABASE (*) starts all databases for which you have the
STARTDB privilege. The privilege can be explicitly granted, or can belong implicitly
to a level of authority (DBMAINT and above, as shown in Figure 53 on page 3-19).
The command starts the database, but not necessarily all the objects it contains.
Any table spaces or index spaces in a restricted mode remain in a restricted mode
and are not started. START DATABASE (*) does not start the DB2 directory
(DSNDB01), the DB2 catalog (DSNDB06), or the DB2 work file database (called
DSNDB07, except in a data sharing environment). These databases have to be
started explicitly using the SPACENAM option. Also, START DATABASE (*) does
not start table spaces or index spaces that have been explicitly stopped by the
STOP DATABASE command.

Starting an Object with a Specific Status
A database, table space, or index space can be started with a specific status that
limits access to it. The PART keyword of the command START DATABASE can be
used to start individual partitions of a table space. It can also be used to start
individual partitions of an partitioned index or logical partitions of a type 2
nonpartitioned index. The started or stopped state of other partitions is unchanged.

Status Provides this access
RW Read-write. This is the default value.
RO Read only. You cannot change the data.
UT Utility only. The object is available only to the DB2 utilities.

Databases, table spaces, and index spaces are started with RW status when they
are created. You make any of them unavailable by using the command STOP
DATABASE. DB2 also can make them unavailable when it detects an error.

In cases when the object was explicitly stopped, you can make them available
again using the command START DATABASE. For example, this command starts
all table spaces and index spaces in database DSN8D51A for read-only access.

-START DATABASE (DSN8D51A) SPACENAM(\) ACCESS(RO)

The system responds with this message:

DSN9ð22I - DSNTDDIS '-START DATABASE' NORMAL COMPLETION

Starting a Table Space or Index Space against Restrictions
DB2 can make an object unavailable for a variety of reasons. Typically, in those
cases, the data is unreliable and the object needs some attention before it can be
started. An example of such a restriction is when the table space is placed in copy
pending status. That status makes a table space or partition unavailable until an
image copy has been made of it.

These restrictions are a necessary part of protecting the integrity of the data. If you
start an object against restrictions, the data in the object might not be
reliable.

4-24 Administration Guide

However, in certain circumstances, it might be reasonable to force availability. For
example, a table might contain test data whose consistency is not critical. In those
cases, the objects can be started, no matter what restrictions are in force against
them, by using the ACCESS(FORCE) option of START DATABASE, as in:

-START DATABASE (DSN8D51A) SPACENAM (DSN8S51E) ACCESS(FORCE)

The command releases all restrictions for the named objects. These objects must
be explicitly named in a list following the SPACENAM option.

 Monitoring Databases
You can use the command DISPLAY DATABASE to obtain information about the
status of databases, and the table spaces and index spaces within each database.
If applicable, the output also includes information about physical I/O errors for those
objects. Use DISPLAY DATABASE as follows:

-DISPLAY DATABASE (dbname)

This results in the following messages:

11:44:32 DSNT36ðI - \\

11:44:32 DSNT361I - \ DISPLAY DATABASE SUMMARY

11:44:32 \ report_type_list
11:44:32 DSNT36ðI - \\

11:44:32 DSNT362I - DATABASE = dbname STATUS = xx
DBD LENGTH = yyyy

11:44:32 DSNT397I -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

-------- ---- ---- ---------------- --------- -------- -------- -----

D1 TS RW,UTRO

D2 TS RW

D3 TS STOP

D4 IX RO

D5 IX STOP

D6 IX UT

\\\\\\\ DISPLAY OF DATABASE dbname ENDED \\\\\\\\\\\\\\\\\\\\\\
11:45:15 DSN9ð22I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

In the preceding messages:

� Report_type_list indicates which options were included when the DISPLAY
DATABASE command was issued. The following options are described more in
this publication:

– USE (4-27)

– LOCKS (4-27)

– LPL (4-28)

See Chapter 2 of Command Reference for detailed descriptions of these and
other options.

� Dbname is an 8-byte character string indicating the database name.

� STATUS is a combination of one or more of the following strings delimited by a
comma. The maximum length of the string is 18 characters. Anything beyond
18 characters is truncated.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-25

CHKP The object (a table space or a partition within a table space) is in
the check pending state.

COPY The object (a table space or a partition within a table space) is in
the copy pending state. An image copy is required for this object.

GRECP The object (a table space, table space partition, index space, index
partition, or logical index partition) is in the group buffer pool
recovery pending state. You'll see this only when DB2 is part of a
data sharing group.

LPL The object (a table space, table space partition, index space, index
partition, or logical index partition) has pages on a logical page list.

PSRCP The index space is in a page set recovery pending state.

RECP The object (a table space, table space partition, index space, index
partition, or logical index partition) is in the recovery pending state.

If an asterisk (*) appears (RECP*), it indicates that a logical index
partition is in RECP, but that the entire index is inaccessible to SQL
requests.

RO The object (database, table space, table space partition, index
space, index partition, or logical index partition) is started for
read-only activity.

RW The object (database, table space, table space partition, index
space, index partition, or logical index partition) is started for read
and write activity.

STOP The object (database, table space, table space partition, index
space, index partition, or logical index partition) is stopped.

STOPE The table space or index space was implicitly stopped because DB2
detected an invalid log RBA or LRSN in one of its pages. Message
DSNT500I was issued when the error was detected and indicates
which page is in error.

STOPP A stop is pending for the object (database, table space, table space
partition, index space, index partition, or logical index partition).

UT The object (database, table space, table space partition, index
space, index partition, or logical index partition) is started for utility
processing only.

UTRO A utility is in process on an object (table space, table space
partition, index space, index partition, or logical index partition) that
allows only RO access.

UTRW A utility is in process on an object (table space, table space
partition, index space, index partition, or logical index partition) that
allows only RW access.

UTUT A utility is in process on an object (table space, table space
partition, index space, index partition, or logical index partition) that
allows only UT access.

4-26 Administration Guide

Obtaining Information about Application Programs
You can obtain various kinds of information about application programs using
particular databases or table or index spaces with the DISPLAY DATABASE
command. This section describes how you can identify who or what is using the
object and what locks are being held on the objects.

Who and What is Using the Object?: You can obtain the following information:

� The name of the application programs currently using the database or space

� The authorization IDs of the users of these application programs

� The logical unit of work IDs of the database access threads accessing data on
behalf of the remote locations specified.

To obtain this information, issue a command like the following, which names
| partitions 2, 5, and 67 in table space SALES_HX in database DSN8D51A:

| -DISPLAY DATABASE (DSN8D51A) SPACENAM (SALES_HX) PART(2,5,67) USE

DB2 returns a list similar to this one:

11:44:32 DSNT36ðI - \\

11:44:32 DSNT361I - \ DISPLAY DATABASE SUMMARY

11:44:32 \ GLOBAL USE

11:44:32 DSNT36ðI - \\

11:44:32 DSNT362I - DATABASE = DBPARTS STATUS = RW

DBD LENGTH = yyyy
11:44:32 DSNT397I -

| NAME TYPE PART STATUS CONNID CORRID USERID

| -------- ---- ---- ---------------- -------- ------------ ----------

| SALES_HX TS ðð2 RW BATCH TSOUSER1 BAT1

| DB2NET.LUNDð.143992156557=1 ACCESSING DATA FOR USIBMSTODB22

| SALES_HX TS ðð5 RW IMSA ðð12IMSPSBð1 BAT2

| SALEX_HX TS ð67 RO BATCH TSOUSER1 BAT1

| \\\\\\\ DISPLAY OF DATABASE DSN8D51A ENDED \\\\\\\\\\\\\\\\\\\\\\

11:45:15 DSN9ð22I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Which Programs are Holding Locks on the Objects?: To determine which
application programs are currently holding locks on the database or space, issue a
command like the following, which names table space TSPART in database DB01.

-DISPLAY DATABASE(DBð1) SPACENAM(TSPART) LOCKS

DB2 returns a list similar to this one:

17:45:42 DSNT36ðI - \\

17:45:42 DSNT361I - \ DISPLAY DATABASE SUMMARY

17:45:42 \ GLOBAL LOCKS

17:45:42 DSNT36ðI - \\

17:45:42 DSNT362I - DATABASE = DBð1 STATUS = RW

17:45:42 DBD LENGTH = yyyy
17:45:42 DSNT397I -

 NAME TYPE PART STATUS CONNID CORRID LOCKINFO

 -------- ---- ---- ------------------ -------- ------------ ---------

 TSPART TS ð1 RW LSSðð1 DSN2SQL H-IX,P,C

 TSPART TS ð2 RW LSSðð1 DSN2SQL H-IX,P,C

 TSPART TS ð3 RW LSSðð1 DSN2SQL H-IX,P,C

 TSPART TS ð4 RW LSSðð1 DSN2SQL H-IX,P,C

 \\\\\\\ DISPLAY OF DATABASE DBð1 ENDED \\\\\\\\\\\\\\\\\\\\\\

 17:45:44 DSN9ð22I . DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-27

For an explanation of the field LOCKINFO, see message DSNT396I in Section 3 of
Messages and Codes.

Obtaining Information about Pages in Error
There are two ways that pages can be in error: logically and physically.

� A page is logically in error if its problem can be fixed without redefining new
disk tracks or volumes. For example, if DB2 cannot write a page to DASD
because of a connectivity problem, the page is logically in error.

DB2 inserts entries for pages that are logically in error in a logical page list.
(LPL).

� A page is physically in error if there are physical errors, such as device errors.
Such errors appear on the error page range. The range has a low and high
page, which are the same if only one page has errors.

If the cause of the problem is undetermined, the error is first recorded in the LPL. If
recovery from the LPL is unsuccessful, the error is then recorded on the error page
range.

A program that tries to read data from a page listed on the LPL or error page range
receives an SQLCODE for “resource unavailable.” To access the page (or pages in
the error range), you must first recover the data from the existing database copy
and the log.

Displaying the Logical Page List: You can check the existence of LPL entries by
issuing the DISPLAY DATABASE command with the LPL option. For example:

-DISPLAY DB(DBFW84ð1) SPACENAM(\) LPL

Output similar to the following is produced:

4-28 Administration Guide

DSNT36ðI = \\\

DSNT361I = \ DISPLAY DATABASE SUMMARY

 \ GLOBAL LPL

DSNT36ðI = \\\

DSNT362I = DATABASE = DBFW84ð1 STATUS = RW

DBD LENGTH = 8ð66

DSNT397I =

NAME TYPE PART STATUS LPL PAGES

-------- ---- ---- ------------------ ------------------

TPFW84ð1 TS ð1 RW,LPL ðððððð-ððððð4

TPFW84ð1 TS ð2 RW

TPFW84ð1 TS ð3 RW

TPFW84ð1 TS ð4 RW

TPFW84ð1 TS ð5 RW

TPFW84ð1 TS ð6 RW

TPFW84ð1 TS ð7 RW
...

TPFW84ð1 TS 16 RW

ICFW84ð1 IX ð1 RW,LPL ðððððð,ððððð3

ICFW84ð1 IX ð2 RW

ICFW84ð1 IX ð3 RW

ICFW84ð1 IX ð4 RW
...

ICFW84ð1 IX 14 RW

ICFW84ð1 IX 15 RW

ICFW84ð1 IX 16 RW

IXFW84ð2 IX RW,LPL ðððððð,ððððð3-ððððð5

---- ððððð7,ððððð8-ðððððB

---- ðððð8ð-ðððð9ð

\\\\\\\ DISPLAY OF DATABASE DBFW84ð1 ENDED \\\\\\\\\\\\\\\\\\\\\\

DSN9ð22I = DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

The display indicates that the pages listed in the LPL PAGES column are
unavailable for access. For the syntax and description of DISPLAY DATABASE,
see Chapter 2 of Command Reference.

Removing Pages from the LPL: When an object has pages on the LPL, there are
several ways to remove those pages and make them available for access when
DB2 is up:

� Start the object with access (RW) or (RO). That command is valid even if the
table space is already started.

When you issue the command START DATABASE, you see message
DSNI006I, indicating that LPL recovery has begun. Message DSNI022I is
issued periodically to give you the progress of the recovery. When recovery is
complete, you see DSNI021I.

� Run the RECOVER utility on the object.

The only exception to this is when a logical partition of a type 2 nonpartitioned
index has both LPL and RECP status. If you want to recover the logical
partition using RECOVER INDEX with the PART keyword, you must first use
the command START DATABASE to clear the LPL pages.

� Run LOAD utility with the REPLACE option on the object.

� Issue an SQL DROP statement for the object.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-29

Only the following utilities can be run on an object with pages in the LPL:

LOAD with the REPLACE option
 MERGECOPY
 RECOVER INDEX

RECOVER TABLESPACE, except:
 RECOVER TABLESPACE...PAGE

RECOVER TABLESPACE...ERROR RANGE
REPAIR with the SET statement

 REPORT

LPL Combined with Other Restrictive Statuses: If the DISPLAY DATABASE
command shows a partitioned table space or index to have both LPL and RECP
statuses, run the RECOVER utility to remove them.

If the DISPLAY DATABASE command shows that a logical partition of a type 2
nonpartitioned index has both LPL and RECP statuses, you have two options:

� Run the RECOVER INDEX utility on the entire nonpartitioned index

� Issue START DATABASE for the index and then run the RECOVER INDEX
utility using the PART option on the logical index parts to remove the RECP
status.

If the DISPLAY DATABASE command shows the nonpartitioned index as having
both LPL and PSRCP statuses, run the RECOVER INDEX utility to recover the
entire nonpartitioned index and remove both the PSRCP and LPL statuses.

Resetting Recover Pending Status: If you must make an object available to DB2
without removing pages from the LPL, you can do it in either of these ways:

� Execute the REPAIR utility with the NORCVRPEND option on the object.

� Start the object with access (FORCE).

Resetting recover pending status without removing pages from the LPL is not
recommended.

Displaying a Write Error Page Range: Use DISPLAY DATABASE to display the
range of error pages. For example, this command:

-DISPLAY DATABASE (DBPARTS) SPACENAM (TSPARTð1)

might display a list such as this:

4-30 Administration Guide

11:44:32 DSNT36ðI - \\

11:44:32 DSNT361I - \ DISPLAY DATABASE SUMMARY

11:44:32 \ GLOBAL

11:44:32 DSNT36ðI - \\

11:44:32 DSNT362I - DATABASE = DBPARTS STATUS = RW

DBD LENGTH = yyyy
11:44:32 DSNT397I -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

-------- ---- ---- ---------------- -------- -------- -------- -----

TSPARTð1 TS ðð1 RW,UTRO ððððððð2 ððððððð4 DSNCAT ððð

TSPARTð1 TS ðð2 RW,UTRO ððððððð9 ðððððð13 DSNCAT ðð1

TSPARTð1 TS ðð3 RO

TSPARTð1 TS ðð4 STOP

TSPARTð1 TS ðð5 UT

\\\\\\\ DISPLAY OF DATABASE DBPARTS ENDED \\\\\\\\\\\\\\\\\\\\\\

11:45:15 DSN9ð22I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

In the previous messages:

� PHYERRLO and PHYERRHI identify the range of pages that were being read
when the I/O errors occurred. PHYERRLO is an 8-digit hexadecimal number
representing the lowest page found in error, while PHYERRHI represents the
highest page found in error.

� PIECE, a 3-digit integer, is a unique identifier for the data set supporting the
page set that contains physical I/O errors.

For additional information about this list, see the description of message DSNT392I
in Section 3 of Messages and Codes.

 Stopping Databases
Databases, table spaces, and index spaces can be made unavailable with the
STOP DATABASE command. You can also use STOP DATABASE with the PART
option to stop the following types of partitions:

� physical partitions within a table space

� physical partitions within an index space

� logical partitions within an unpartitioned type 2 index associated with a
partitioned table space.

This prevents access to individual partitions within a table or index space while
allowing access to the others. When you specify the PART option with STOP
DATABASE on physically partitioned spaces, the data sets supporting the given
physical partitions are closed and do not affect the remaining partitions. STOP
DATABASE with the PART option does not close data sets associated with logically
partitioned spaces, however. To close these data sets, you must execute STOP
DATABASE without the PART option.

The AT(COMMIT) option of STOP DATABASE determines when objects are
stopped. The AT(COMMIT) option is required to interrupt threads that are bound
with RELEASE(DEALLOCATE), especially in situations with high thread reuse.

If you specify AT(COMMIT), DB2 takes over access to an object when all jobs
release their claims on it, and all utilities release their drain locks on it. If you do not

specify AT(COMMIT), the objects are not stopped until all existing applications have
deallocated. New transactions continue to be scheduled, but they receive

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-31

SQLCODE -904 SQLSTATE '57011' (resource unavailable) on the first SQL
statement that references the object or when the plan is prepared for execution.
STOP DATABASE waits for a lock on an object that it is attempting to stop. If the
wait time limit for locks (15 timeouts) is exceeded, then the STOP DATABASE
command terminates abnormally and leaves the object in stop pending status
(STOPP).

Database DSNDB01 and table spaces DSNDB01.DBD01 and
DSNDB01.SYSLGRNX must be started in order to stop user-defined databases or
the work file database. The only exception to this is when the pending lock is held
by an indoubt unit of recovery. In this case, the STOP DATABASE command
terminates and the stop status of each object that was stopped by the command is
backed out. A DSNI003I message tells you the command was unable to stop an
object. You must resolve the indoubt unit of recovery and run the job again.

DB2 subsystem databases (catalog, directory, work file) can also be stopped. After
the directory is stopped, installation SYSADM authority is required to restart it.

The following examples illustrate ways to use the command:

-STOP DATABASE (*)
Stops all databases for which you have STOPDB authorization, except
the DB2 directory (DSNDB01), the DB2 catalog (DSNDB06), or the DB2
work file database (called DSNDB07, except in a data sharing
environment), all of which must be stopped explicitly.

-STOP DATABASE (database name)
Stops a database, and closes all of the data sets of the table spaces
and index spaces in the database.

-STOP DATABASE (database name1, database name2)
Stops the named databases and closes all of the table spaces and index
spaces in the databases. If DSNDB01 is named in the database list, it
should be last on the list because stopping the other databases requires
that DSNDB01 be available.

-STOP DATABASE (database name) SPACENAM (*)
Stops and closes all of the data sets of the table spaces and index
spaces in the database. The status of the named database does not
change.

-STOP DATABASE (database name) SPACENAM (table space or index space
name)
Stops and closes the data sets of the named table space or index
space. The status of the named database does not change.

-STOP DATABASE (database name) SPACENAM (table space or index space
name) PART(integer)
Stops and closes the specified partition of the named table space or
index space. The status of the named database does not change.

The data sets containing a table space are closed and deallocated by the
commands listed above.

4-32 Administration Guide

Altering Buffer Pools
DB2 maintains the buffer pool attributes that were defined during installation, such
as buffer pool and hiperpool sizes, in the DB2 bootstrap data set. These attributes
are the same each time DB2 starts.

You can use the ALTER BUFFERPOOL command to alter buffer pool attributes,
including the buffer pool sizes, sequential steal thresholds, deferred write

thresholds, parallel sequential thresholds, and hiperpool CASTOUT attributes for
active or inactive buffer pools. Altered buffer pool values are stored and used until
altered again.

See Chapter 2 of Command Reference for descriptions of the options you can use
with this command. See “Tuning Database Buffer Pools” on page 5-49 for guidance
on using buffer pools and examples of ALTER BUFFERPOOL.

Monitoring Buffer Pools
Use the DISPLAY BUFFERPOOL command to display the current status for one or
more active or inactive buffer pools. You can request a summary or detail report.

For example, the following command:

-DISPLAY BUFFERPOOL(BPð)

might produce a summary report such as this:

DSNB4ð1I BUFFERPOOL NAME BPð, BUFFERPOOL ID ð, USE COUNT 1ð

DSNB4ð2I VIRTUAL BUFFERPOOL SIZE = 1ððð BUFFERS

ALLOCATED = 1ððð TO BE DELETED = ð

 IN-USE/UPDATED = 2ðð

DSNB4ð3I HIPERPOOL SIZE = 1ððððð BUFFERS, CASTOUT = YES

ALLOCATED = 1ððððð TO BE DELETED = ð

BACKED BY ES = ð

DSNB4ð4I THRESHOLDS -

 VP SEQUENTIAL = 8ð HP SEQUENTIAL = 8ð

DEFERRED WRITE = 5ð VERTICAL DEFERRED WRT = 1ð

| PARALLEL SEQUENTIAL = 5ð ASSISTING PARALLEL SEQT= 8ð

DSNB4ð5I HIPERSPACE NAMES - @ðð1SSOP

 IOP SEQUENTIAL = ð

See Chapter 2 of Command Reference for descriptions of the options you can use
with this command and the information you find in the summary and detail reports.

Controlling DB2 Utilities
You can run DB2 utilities against databases, table spaces, index spaces, and
partitions.

DB2 utilities are classified into 2 groups: online and stand-alone. The online utilities
require DB2 to be running and can be invoked in several different ways. The
stand-alone utilities do not require DB2 to be up, and they can be invoked only by
means of MVS JCL. The online utilities are described in Section 2 of Utility Guide
and Reference, and the stand-alone utilities are described in Section 3 of of that
same publication.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-33

Starting Online Utilities: To start a DB2 utility, prepare an appropriate set of JCL
statements for a utility job and include DB2 utility statements in the input stream for
that job.

| Controlling Online Utilities: The following commands for monitoring and changing
| DB2 utility jobs are described in Chapter 2 of Command Reference.

ALTER UTILITY Alters parameter values of a running REORG utility
DISPLAY UTILITY Displays the status of utility jobs
TERM UTILITY Terminates a utility job before its normal completion

Read-only utilities are allowed on an object started RO. All utilities are allowed on
an object started RW; however, only DB2 utilities are permitted to access an object
started UT. If an object is started with no other indication, its status is RW. To
change the status of an object, start it with the new status using the ACCESS
option. For example:

-START DATABASE (DSN8D51A) ACCESS(RO)

Section 2 of Utility Guide and Reference shows, for each online utility, what classes
it drains and the other utilities or SQL operations with which it is compatible.

Stand-Alone Utilities: The following stand-alone utilities can be run only by means
of MVS JCL:

 DSN1CHKR
 DSN1COPY
 DSN1COMP
 DSN1PRNT
 DSN1SDMP
 DSN1LOGP

DSNJU003 (change log inventory)
DSNJU004 (print log map)

Most of the stand-alone utilities can be used while DB2 is running, but for
consistency of output it is recommended that DB2 be stopped first because these
utilities do not have access to the DB2 buffer pools.

The change log inventory utility (DSNJU003) enables you to change the contents of
the bootstrap data set (BSDS). This utility cannot be run while DB2 is up because
inconsistencies could result. Use STOP DB2 MODE(QUIESCE) to stop the DB2
subsystem, run the utility, and then restart DB2 with the START DB2 command.

The print log map utility (DSNJU004) enables you to print the the bootstrap data set
contents. The utility can be run when DB2 is active or inactive; however, when it is
run with DB2 active, the user's JCL and the DB2 started task must both specify
DISP=SHR for the BSDS data sets.

Controlling the IRLM
The internal resource lock manager (IRLM) subsystem manages DB2 locks. The
particular IRLM to which DB2 is connected is specified in DB2's load module for
subsystem parameters. It is also identified as an MVS subsystem in the
SYS1.PARMLIB member IEFSSNxx. That name is used as the IRLM procedure
name (irlmproc) in MVS commands.

4-34 Administration Guide

IMS and DB2 must use separate instances of IRLM.

Data Sharing: In a data sharing environment, the IRLM handles global locking, and
each DB2 member has its own corresponding IRLM. See Data Sharing: Planning
and Administration for more information about configuring IRLM in a data sharing
environment.

The following MVS commands can be used to monitor and control the IRLM:

| MODIFY irlmproc,ABEND,DUMP Abends the IRLM and generates a dump
| MODIFY irlmproc,ABEND,NODUMP Abends the IRLM but does not generate a
| dump
MODIFY irlmproc,DIAG,DELAY Initiates diagnostic dumps for IRLM
subsystems in a data sharing group when
there is a delay in the child-lock propagation
process
MODIFY irlmproc,SET Sets dynamically the maximum amount of
CSA storage or the number of trace buffers
used for this IRLM
MODIFY irlmproc,SET,CSA=nnn Sets dynamically the maximum amount of
CSA storage that this IRLM can use for lock
control structures
MODIFY irlmproc,SET,TRACE=nnn Sets dynamically the maximum number of
trace buffers used for this IRLM
| MODIFY irlmproc,STATUS Displays the status for the subsystems on this
| IRLM
MODIFY irlmproc,STATUS,irlmx Displays the status of a specific IRLM
| MODIFY irlmproc,STATUS,ALLD Displays the status of all subsystems known
| to this IRLM in the data sharing group
| MODIFY irlmproc,STATUS,ALLI Displays the status of all IRLMs known to this
| IRLM in the data sharing group
| MODIFY irlmproc,STATUS,STOR Displays the current and "high water"
| allocation for CSA and ECSA storage
MODIFY irlmproc,STATUS,TRACE Displays information about trace types of
IRLM subcomponents

START irlmproc Starts the IRLM
STOP irlmproc Stops the IRLM normally

TRACE CT,OFF,COMP=irlmx Stops IRLM tracing
TRACE CT,ON,COMP=irlmx Starts IRLM tracing for all subtypes
(DBM,SLM,XIT,XCF)
TRACE CT,ON,COMP=irlmx,SUB=(subname) Starts IRLM tracing for a single
subtype

Starting the IRLM
The IRLM must be available when DB2 starts, or DB2 abends with reason code
X'00E30079'.

When DB2 is installed, you normally specify that the IRLM be started automatically.
Then, if the IRLM is not available when DB2 is started, DB2 starts it, and
periodically checks whether it is up before attempting to connect. If the attempt to
start the IRLM fails, DB2 terminates.

If an automatic IRLM start has not been specified, start the IRLM before starting
DB2, using the MVS START irlmproc command.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-35

When started, the IRLM issues this message to the MVS console:

DXR117I irlmx INITIALIZATION COMPLETE

| Consider starting the IRLM manually if you are having problems starting DB2 for
| either of these reasons:

| � An IDENTIFY or CONNECT to a data sharing group fails.
| � DB2 expereriences a failure that involves the IRLM.

| When you start the IRLM manually, you can generate a dump to collect diagnostic
| information.

Monitoring the IRLM Connection
| To display the status of all subsystems connected to an IRLM, use this MVS

command:

MODIFY irlmproc,STATUS

In MVS, MODIFY is abbreviated by F; you can enter F irlmproc,STATUS.

Stopping the IRLM
If the IRLM is started automatically by DB2, it stops automatically when DB2 is
stopped. If the IRLM is not started automatically, you must stop it after DB2 stops.

If you try to stop the IRLM while DB2 or IMS is still using it, the following message
appears:

DXR1ð5E irlmx STOP COMMAND REJECTED. AN IDENTIFIED SUBSYSTEM
IS STILL ACTIVE

If that happens, issue the STOP irlmproc command again, when the subsystems
are finished with the IRLM.

Or, if you must stop the IRLM immediately, enter the following command to force
the stop:

MODIFY irlmproc,ABEND

The system responds with this message:

DXR124E irlmx ABENDED VIA MODIFY COMMAND

DB2 abends. An IMS subsystem using the IRLM does not abend, and can be
reconnected.

IRLM does exploit the MVS Automatic Restart Manager (ARM) services. However,
it de-registers from ARM for normal shutdowns. IRLM registers with ARM during
initialization and provides ARM with an event exit. The event exit must be in linklist.
It is part of the IRLM DXRRL183 load module. The event exit will make sure that
the IRLM name is defined to MVS when ARM restarts IRLM on a target MVS that
is different from the failing MVS. The IRLM element name used for the ARM
registration depends on the IRLM mode. For local mode IRLM, the element name is
a concatenation of the IRLM subsystem name and the IRLM ID. For global mode
IRLM, the element name is a concatenation of the IRLM data sharing group name,
IRLM subsystem name, and the IRLM ID.

IRLM will de-register from ARM during normal shutdowns using:

� a STOP command

4-36 Administration Guide

� a MODIFY irlmproc,ABEND,NODUMP command
� auto-stop of IRLM.

Use the MODIFY command listed above to FORCE the DMBSs using the IRLM
down and stop IRLM without having it automatically restarted by ARM. IRLM will
de-register DB2 from ARM before DB2 abends to prevent ARM from restarting DB2
and IRLM if using the auto-start feature.

 Monitoring Threads
The DB2 command DISPLAY THREAD displays current information about the
status of threads. It includes information about threads processing locally or those

| processing distributed requests. DISPLAY THREAD can also be used to monitor
| parallel tasks.

Threads can be active or inactive:

| � An active allied thread is a thread that is connected to DB2 from TSO, BATCH,
| IMS, CICS, CAF or RRSAF.

� An active database access thread is one connected via a network with another
system and performing work on behalf of that system.

� An inactive database access thread is one that is connected via a network to
another system and is idle, waiting for a new unit of work to begin from that
system. Inactive threads hold no database locks.

The output of the command DISPLAY THREAD can also indicate that a system
quiesce is in effect as a result of the ARCHIVE LOG command. For more
information, see “The Command ARCHIVE LOG” on page 4-88.

The command DISPLAY THREAD allows you to select which type of information
you wish to include in the display using one or more of the following standards:

� Active, indoubt or inactive threads
� Allied threads associated with the address spaces whose connection-names

are specified
 � Allied threads
 � Distributed threads
� Distributed threads associated with a specific remote location
� Detailed information about connections with remote locations
� A specific logical unit of work ID (LUWID).

The information returned by the DISPLAY THREAD command reflects a dynamic
status. By the time the information is displayed, it is possible that the status could
have changed. Moreover, the information is consistent only within one address
space and is not necessarily consistent across all address spaces.

To use the TYPE, LOCATION, DETAIL, and LUWID keywords you must have
SYSOPR authority or higher. For detailed information, see Chapter 2 of Command
Reference .

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-37

DISPLAY THREAD Output
DISPLAY THREAD shows active and inactive threads in a format like this:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS:

DSNV4ð2I - ACTIVE THREADS:

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

conn-name s \ req-ct corr-id auth-id pname asid token
conn-name s \ req-ct corr-id auth-id pname asid token
DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I - module_name '-DISPLAY THREAD' NORMAL COMPLETION

DISPLAY THREAD shows indoubt threads in a format like this:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð6I - INDOUBT THREADS -

| COORDINATOR STATUS RESET URID AUTHID

| coordinator-name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE

DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

More information about how to interpret this output can be found in the sections
describing the individual connections and in the description of message DSNV404I
in Section 3 of Messages and Codes.

Controlling TSO Connections
MVS provides no commands for controlling or monitoring a connection to DB2.
The connection is monitored instead by the DB2 command -DISPLAY THREAD,
which displays information about connections to DB2 (from other subsystems as
well as from MVS).

The command is generally entered from an MVS console or an administrator's TSO
session. See “Monitoring Threads” on page 4-37 for more examples of its use.

Connecting to DB2 from TSO
The MVS operator is not involved in starting and stopping TSO connections. Those
connections are made through the DSN command processor, which is invoked
either

� Explicitly, by the DSN command
� Implicitly, through DB2I (DB2 Interactive).

When a DSN session is active, you can enter DSN subcommands, DB2
commands, and TSO commands, as described under “Running TSO Application
Programs” on page 4-17.

The DSN command can be given in the foreground or background, when running
under the TSO terminal monitor program (TMP). The full syntax of the command is:

DSN SYSTEM (subsystemid) RETRY (n1) TEST (n2)

The parameters are optional, and have the following meanings:

subsystemid
Is the subsystem ID of the DB2 subsystem to be connected

4-38 Administration Guide

n1 Is the number of times to attempt the connection if DB2 is not up (one attempt
every 30 seconds)

n2 Is the DSN tracing system control that can be used if a problem is suspected

For example, this invokes a DSN session, requesting 5 retries at 30-second
intervals:

DSN SYSTEM (DB2) RETRY (5)

DB2I invokes a DSN session when you select any of these operations:

� SQL statements using SPUFI
 � DCLGEN
 � BIND/REBIND/FREE
 � RUN
 � DB2 commands
� Program preparation and execution.

In carrying out those operations, the DB2I panels invoke CLISTs, which start the
DSN session and invoke appropriate subcommands.

Monitoring TSO and CAF Connections
To display information about connections that use the TSO attach facility and call
attach facility (CAF), issue the command DISPLAY THREAD. Table 51 summarizes
how DISPLAY THREAD output differs for a TSO online application, a TSO batch
application, a QMF session, and a call attach facility application.

The name of the connection can have one of the following values:

Name Connection to
TSO Program running in TSO foreground
BATCH Program running in TSO background
DB2CALL Program using the call attachment facility and running in the same

address space as a program using the TSO attachment facility.

The correlation ID, corr-id, is either the foreground authorization ID or the
background job name. For a complete description of the list displayed, see the
description of message DSNV404I in Section 3 of Messages and Codes.

The following command displays information about TSO and CAF threads, including
those processing requests to or from remote locations:

Table 51. Differences in DISPLAY THREAD Information for TSO and Batch

Connection Name AUTHID ID 1 Plan1

DSN (TSO
Online)

TSO Logon ID Logon ID RUN .. Plan(x)

DSN (TSO
Batch)

BATCH Job
USER=

Job Name RUN .. Plan(x)

QMF DB2CALL Logon ID Logon ID 'QMFvr0'

CAF DB2CALL Logon ID Logon ID OPEN parm

Note:

1. After the application has connected to DB2 but before a plan has been allocated,
this field is blank.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-39

-DIS THD(BATCH,TSO,DB2CALL)

DSNV4ð1I = DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I = ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

.1/BATCH T \ 2997 TEP2 SYSADM DSNTEP41 ðð19 18818

.2/BATCH RA \ 1246 BINETEP2 SYSADM DSNTEP44 ðð22 2ð556

V445-DB2NET.LUND1.ABðC8FB44C4D=2ð556 ACCESSING DATA FOR SAN_JOSE

 .3/TSO T 12 SYSADM SYSADM DSNESPRR ðð28 557ð

.4/DB2CALL T \ 18472 CAFCOB2 SYSADM CAFCOB2 ðð1A 24979

| .5/BATCH T \ 1 PUPPY SYSADM DSNTEP51 ðð25 2ð499

| .6/ PT \ 641 PUPPY SYSADM DSNTEP51 ðð2D 2ð5ðð

| .7/ PT \ 592 PUPPY SYSADM DSNTEP51 ðð2D 2ð5ð1

| DISPLAY ACTIVE REPORT COMPLETE

| DSN9ð22I = DSNVDT '-DIS THREAD' NORMAL COMPLETION

Figure 67. DISPLAY THREAD Showing TSO and CAF Connections

Description of output:

Detailed information for assisting the console operator in identifying threads
involved in distributed processing may be found in “Monitoring Threads” on
page 4-37.

.1/ This is a TSO batch application.

.2/ This is a TSO batch application running at a remote location and accessing tables
at this location.

.3/ This is a TSO online application.

.4/ This is a call attach facility application.

| .5/| This is a TSO batch application originating thread.

| .6/| This is a parallel thread for the originating TSO batch application thread.

| .7/| This is a parallel thread for the originating TSO batch application thread.

Disconnecting from DB2 While under TSO
The connection to DB2 ends, and the thread is terminated, when:

� You enter the END subcommand.
� You enter DSN again. (A new connection is established immediately.)
� You enter the CANCEL THREAD command.
� You press the attention key (PA1).
� Any of the following operations end:

– SQL statements using SPUFI
 – DCLGEN
 – BIND/REBIND/FREE
 – RUN

� You are using any of the above operations and you enter END or RETURN.

A Simple Session: For example, the following command and subcommands
establish a connection to DB2, run a program, and terminate the connection:

TSO displays: READY

You enter: DSN SYSTEM (DSN)

DSN displays: DSN

4-40 Administration Guide

You enter: RUN PROGRAM (MYPROG)

DSN displays: DSN

You enter: END

TSO displays: READY

Controlling CICS Connections
The following CICS attachment facility commands can be entered from a CICS
terminal to control and monitor connections between CICS and DB2:

DSNC DISCONNECT Terminates threads using a specific DB2 plan

DSNC DISPLAY Displays thread information or statistics

DSNC MODIFY Modifies the maximum number of threads for a transaction
or group, or the DFHDCT DESTID entry associated with
the RCT ERRDEST parameter

DSNC STOP Disconnects CICS from DB2

DSNC STRT Starts the CICS attachment facility.

CICS command responses are sent to the terminal from which the corresponding
command was entered, unless the DSNC DISPLAY command or a DB2 command
specified an alternative destination. The DSNC STOP and DSNC STRT commands
cause the output to be sent to the error message transient data queue defined in
the DSNCRCT TYPE=INIT macro. For details on specifying alternate destinations
for output, see the descriptions of the DB2 command or the DSNC command in
Chapter 2 of Command Reference.

Authorization for the DSNC transaction code is controlled through use of:

� The AUTH= parameter on the DSNCRCT macro

� The EXTSEC= and TRANSEC= parameters on the CICS transaction entry for
DSNC

� The DB2 SYSOPR authority, which a user must have in order to use DB2
commands.

For details on the DSNCRCT macro, see Section 2 of Installation Guide. For details
on the CICS transaction entry parameters, see CICS/MVS Resource Definition
(Online). For details on the DB2 SYSOPR authority, see “Chapter 3-2. Controlling
Access to DB2 Objects” on page 3-13.

Connecting from CICS
A connection to DB2 can be started or restarted at any time after CICS
initialization. The CICS attachment facility is a set of modules DB2 provides that are
loaded into the CICS address space. The command you use to start the attachment
facility depends on which level of CICS you are running.

CICS Version 3.3 and earlier :

DSNC STRT x

CICS Version 4.1 and later :

DSNC STRT xx,ssid

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-41

x or xx names a particular resource control table suffix (DSNCRCTx or DSN2CTxx).
With the attachment shipped with Version 4.1, you can also specify a DB2
subsystem ID on the command. This overrides the subsystem ID specified in the
CICS INITPARM or DSNCRCT TYPE=INIT macro.

You can also start the attachment facility automatically at CICS initialization using a
program list table (PLT). For details, see Section 2 of Installation Guide .

 Messages
For information about messages that appear during connection, see Section 3 of
Messages and Codes. These messages begin with “DSNC,” unless you are running
with the attachment shipped with CICS Version 4.1. Those messages begin with
“DSN2.”

 Restarting CICS
| One function of the CICS attachment facility is to keep data in synchronization
| between the two systems. If DB2 completes phase 1 but does not start phase 2 of
| the commit process, the units of recovery being committed are termed indoubt. An
| indoubt unit of recovery might occur if DB2 terminates abnormally after completing
| phase 1 of the commit process. CICS might commit or roll back work without
| DB2's knowledge.

DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
changes made to DB2 resources) until the connection to CICS is restarted. This
means that CICS should always be auto-started (START=AUTO in the DFHSIT
table) to get all necessary information for indoubt thread resolution available from
its log. Avoid cold starting. The START option can be specified in the DFHSIT
table, as described in CICS/MVS Resource Definition (Macro).

In releases after CICS 4.1, the CICS attachment facility enables the
INDOUBTWAIT function to resolve indoubt units of recovery automatically. See
CICS/ESA Customization Guide for more information.

| If there are CICS requests active in DB2 when a DB2 connection terminates, the
| corresponding CICS tasks might remain suspended even after CICS is reconnected
| to DB2. You should purge those tasks from CICS using a CICS-supplied
| transaction such as:

| CEMT SET TASK(nn) FORCE

| See CICS/ESA CICS-Supplied Transactions for more information on CICS-supplied
| transactions.

If any unit of work is indoubt when the failure occurs, the CICS attachment facility
automatically resolves the unit of work when CICS is reconnected to DB2.

Displaying Indoubt Units of Recovery
To display a list of indoubt units of recovery, give the command:

-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

The command produces messages similar to these:

4-42 Administration Guide

DSNV4ð6I -STR INDOUBT THREADS - 48ð

COORDINATOR STATUS RESET URID AUTHID

CICS41 INDOUBT ððð19B8ADE9E ADMFðð1

 V449-HAS NID= CICS41.AACC9B739F125184 AND ID=GTððLE39

DISPLAY INDOUBT REPORT COMPLETE

DSN9ð22I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV408I
in Section 3 of Messages and Codes.

Recovering Indoubt URs Manually
Under some circumstances, CICS cannot resolve indoubt units of recovery. When
this happens, message DSNC001I, DSNC034I, DSNC035I, or DSNC036I is sent to
the user-named CICS destination, specified in the resource control table (RCT).
(These messages begin with “DSN2” if you are running with the CICS attachment
that is shipped with CICS Version 4.1.)

To recover an indoubt unit, issue the following command:

-RECOVER INDOUBT (connection-name) ACTION (COMMIT|ABORT) ID (correlation-id)

The default value for connection-name is the connection name from which you
entered the command. Correlation-id is the correlation ID of the thread to be
recovered. It can be determined by issuing the command DISPLAY THREAD. Your
choice for the ACTION parameter tells whether to commit or roll back the
associated unit of recovery. For more details, see “Resolving Indoubt Units of
Recovery” on page 4-113.

The following messages can occur after using the RECOVER command:

DSNV414I - THREAD correlation-id COMMIT SCHEDULED
or

DSNV415I - THREAD correlation-id ABORT SCHEDULED

For more information about manually resolving indoubt units of recovery, see
“Manually Recovering CICS Indoubt Units of Recovery” on page 4-166. For
information on the two-phase commit process, as well as indoubt units of recovery,
see “Consistency with Other Systems” on page 4-109.

Controlling CICS Application Connections
This section describes how CICS threads are defined, how you can monitor those
threads, and ways you can disconnect those threads.

Defining CICS Threads
Every CICS transaction that accesses DB2 requires a thread to service the DB2
requests. Each thread uses one MVS subtask to execute DB2 code for the CICS
application.

When the DSNC STRT command is processed, a limited number of subtasks are
attached and connected to DB2 as specified in the resource control table (RCT).
Additional subtasks can be created and connected during execution.

Threads are created at the first DB2 request from the application if there is not one
already available for the specific DB2 plan.

The THRDS parameter for an RCT entry establishes the following:

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-43

� The number of MVS subtasks to start when the attachment facility comes up
� The number of protected threads for the entry.

Both of these numbers have an impact on performance, as is described in
“Recommendations for RCT Definitions” on page 5-132. For more information on
specifying the THRDS parameter, see Section 2 of Installation Guide.

At any time during execution, thread subtasks can be created. If the following
message is displayed:

DSNCð17I ATTACHMENT OF A THREAD SUBTASK FAILED

it could mean that:

� The maximum allowable number of threads specified was reached. The RCT
parameter, THRDMAX, specifies the maximum allowable number of threads;
when THRDMAX-2 is reached, the attachment facility begins to purge unused
subtasks.

� Not enough storage space was provided for subtask creation. See Section 2 of
Installation Guide for more information about how to define storage for subtask
creation.

Monitoring the Threads
No operator intervention is required for connecting applications; CICS handles the
threads dynamically. You can monitor threads using CICS attachment facility
commands or DB2 commands.

Using CICS Attachment Facility Commands: Any authorized CICS user can
monitor the threads and change the connection parameters as needed. Operators
can use the following CICS attachment facility commands to monitor the threads:

DSNC DISPLAY PLAN plan-name destination

or

DSNC DISPLAY TRANSACTION transaction-id destination

These commands display the threads that the resource or transaction is using. The
following information is provided for each created thread:

� Authorization ID for the plan associated with the transaction (8 characters)

� PLAN/TRAN name (8 characters)

� A or I (1 character).

If A is displayed, the thread is within a unit of work. If I is displayed, the thread
is waiting for a unit of work, and the authorization ID is blank.

DSNC DISPLAY STATISTICS destination

This is an example of the output for the DSNC DISPLAY (STATISTICS) command:

4-44 Administration Guide

 DSNCð14I STATISTICS REPORT FOR 'DSNCRCTC' FOLLOWS

 -----COMMITS-----

TRAN PLAN CALLS AUTHS W/P HIGH ABORTS 1-PHASE 2-PHASE

DSNC 1 1 1 1 ð ð ð

POOL POOL ð ð ð ð ð ð ð

XCð1 DSNXCð1 22 1 11 2 ð 7 5

XCð2 DSNXCð2 ð ð ð ð ð ð ð

XA81 DSNA81 ð ð ð ð ð ð ð

XCD4 DSNCED4 ð ð ð ð ð ð ð

XPð3 DSNTPð3 1 1 ð 1 ð 1 ð

XA2ð DSNTA2ð 1 1 ð 1 ð ð 1

XA88 \\\\\\\\ ð ð ð ð ð ð ð

 DSNCð2ðI THE DISPLAY COMMAND IS COMPLETE

The DSNC DISPLAY STATISTICS command displays the following information for
each entry in the RCT:

Item Description

TRAN Transaction name. For group entries, this is the name of the
first transaction defined in the group. DSNC shows the
statistics for the TYPE=COMD RCT entry. POOL shows
statistics for the TYPE=POOL entry, unless the TYPE=POOL
entry contains the parameter TXID=x.

PLAN The plan name associated with this entry. Eight asterisks in
this field indicates that this transaction is using dynamic plan
allocation. The command processor transaction DSNC does
not have a plan associated with it because it uses a command
processor.

CALLS The total number of SQL statements issued by transactions
associated with this entry.

AUTHS The total number of sign-on invocations for transactions
associated with this entry. A sign-on does not indicate
whether a new thread is created or an existing thread is
reused. If the thread is reused, a sign-on occurs only if the
authorization ID or transaction ID has changed.

W/P The number of times that all available threads for this entry
were busy. This value depends on the value of TWAIT for the
entry.

If TWAIT was set to POOL in the RCT, W/P indicates the
number of times the transaction overflowed to the pool. An
overflow to the pool shows up in the transaction statistics only
and is not reflected in the pool statistics.

If TWAIT was set to YES, this reflects the number of times
that the thread both had to wait, and could not attach a new
subtask (number of started tasks has reached THRDA).

The only time W/P is updated for the pool is when a
transaction had to wait for a pool thread and a new subtask
could not be attached for the pool. The W/P statistic is useful
for determining if there are enough threads defined for the
entry.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-45

HIGH The maximum number of threads required by transactions
associated with this entry at any time since the connection
was started. This number includes the transactions that were
forced to wait or diverted to the pool. It provides a basis for
setting the maximum number of threads for the entry.

ABORTS The total number of units of recovery which were rolled back.
It includes both abends and SYNCPOINT ROLLBACKS,
including SYNCPOINT ROLLBACKS generated by -911 SQL
codes.

COMMITS One of the following two fields is incremented each time a
DB2 transaction associated with this entry has a real or
implied (such as EOT) syncpoint. Units of recovery that do
not process SQL calls are not reflected here.

ONE-PHASE The total number of single phase commits for transactions
associated with this entry. This total does not include any
2-phase commits (see the explanation for 2-PHASE below).
This total does include read-only commits as well as single
phase commits for units of recovery which have performed
updates. A 2-phase commit is needed only when CICS is the
recovery coordinator for more than one resource manager.

TWO-PHASE The total number of 2-phase commits for transactions
associated with this entry. This number does not include
1-phase commit transactions.

Using the DB2 Command DISPLAY THREAD: The DB2 command DISPLAY
THREAD can be used to display CICS attachment facility threads. Some of this
information differs depending on whether the connection to CICS is under a control
TCB or a transaction TCB.

Table 52 summarizes these differences.

The following command displays information about CICS threads, including those
accessing data at remote locations:

-DIS THD(applid)

Table 52. Differences in DISPLAY THREAD Information by CICS TCB Type

Connection Name AUTHID 2 ID1,2 Plan1,2

Control TCB APPLID N/A N/A N/A

Transaction
TCB

APPLID AUTH= on
RCT

THRD#TRANID PLAN= or PLNPGME=
on RCT

Notes:

1. After the application has connected to DB2 but before sign-on processing has
completed, this field is blank.

2. After sign-on processing has completed but before a plan has been allocated,
this field is blank.

4-46 Administration Guide

DSNV4ð1I = DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I = ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 .1/CICS41 N 3 SYSADM ðð1B ð

 .2/CICS41 T \ 9 PCððDSNC SYSADM ðð1B 89

 .3/CICS41 N 5 PTð1XP11 SYSADM ðð1B ð

 .4/CICS41 N ð ðð1B ð

 CICS41 N ð ðð1B ð

.5/CICS41 T 4 GTððXPð5 SYSADM TESTPð5 ðð1B 171

 CICS41 N ð ðð1B ð

 CICS41 N ð ðð1B ð

 CICS41 N ð ðð1B ð

 CICS41 N ð ðð1B ð

 CICS41 N ð ðð1B ð

.6/CICS41 TR 4 GTð1XPð5 SYSADM TESTPð5 ðð1B 235

| V444-DB2NET.LUNDð.AA8ðð7132465=16 ACCESSING DATA AT

| V446-SAN_JOSE:LUND1

 .7/CICS41 T \ 3 GCððDSNC SYSADM ðð1B 254

DISPLAY ACTIVE REPORT COMPLETE

Figure 68. DISPLAY THREAD Showing CICS Connections

Description of output:

.1/ This is the Control TCB.

.2/ This is a pool connection (first letter "P") space executing a command (second
letter "C"). "*" in the status column indicates that the thread is processing in DB2.

.3/ This is a pool connection that last ran transaction XP11 but the thread has
terminated.

.4/ This is a connection created by THRDS>0 but has not been used yet.

.5/ This is an active entry connection (first letter "G") in the CICS address space
running transaction XP05.

.6/ This is an active entry connection running transaction XP05 with remote activity.

.7/ This is an active TYPE=COMD connection executing a command. "*" in the
status column indicates that the thread is processing in DB2.

Changing Connection Parameters
You can use the DSNC MODIFY command to change:

� The destination entry for sending unsolicited messages, as given in the RCT.

DSNC MODIFY DESTINATION old new

� The actual maximum number of threads for the named transaction (THRDA).

DSNC MODIFY TRANSACTION transaction-id integer

The upper limit for this change is the THRDM specified in RCT. integer is a
new maximum value.

 Disconnecting Applications
There is no way to disconnect a particular CICS transaction from DB2 without
abending the transaction. There are two ways to disconnect an application that we
describe here:

� The DB2 command CANCEL THREAD can be used to cancel a particular
thread. CANCEL THREAD requires that you know the token for any thread

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-47

you want to cancel. Enter the following command to cancel the thread identified
by the token indicated in the display output:

-CANCEL THREAD(46)

When you issue CANCEL THREAD for a thread, that thread is scheduled to be
terminated in DB2. To terminate, that thread must be processing in DB2.

� The command DSNC DISCONNECT terminates the threads allocated to a plan
ID, but it does not prevent new threads from being created. This command
frees DB2 resources shared by the CICS transactions and allows exclusive
access to them for special-purpose processes such as utilities or data definition
statements.

To guarantee that no new threads are created for a plan ID, all CICS-related
transactions must be disabled before users enter DSNC DISCONNECT. All
transactions in a group have the same plan ID, unless dynamic plan selection
is specified in the RCT entry for the group. If dynamic plan selection is used,
the plan associated with a transaction is determined at execution time.

The thread is not canceled until the application releases it for reuse, either at
SYNCPOINT or end-of-task.

Disconnecting from CICS
This section describes how to do both an orderly and forced disconnection of the
attachment to CICS.

 Orderly Termination
It is recommended that you do orderly termination whenever possible. An orderly
termination of the connection allows each CICS transaction to terminate before
thread subtasks are detached. This means there should be no indoubt units of
recovery at reconnection time. An orderly termination occurs when you:

� Enter the DSNC STOP QUIESCE command. CICS and DB2 remain active.

� Enter the CICS command CEMT PERFORM SHUTDOWN, and CICS
attachment facility is also named to shut down during program list table (PLT)
processing. DB2 remains active. For information about the CEMT PERFORM
SHUTDOWN command, see CICS/ESA CICS-Supplied Transactions.

� Enter the DB2 command STOP DB2 MODE (QUIESCE). CICS remains active.

� Enter the DB2 command CANCEL THREAD. The thread is abended.

The following example stops the DB2 subsystem (QUIESCE), allows the currently
identified tasks to continue normal execution, and does not allow new tasks to
identify themselves to DB2:

-STOP DB2 MODE (QUIESCE)

This message appears when the stop process starts and frees the entering terminal
(option QUIESCE):

DSNCð12I THE ATTACHMENT FACILITY STOP QUIESCE IS PROCEEDING

When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:

DSNCð25I THE ATTACHMENT FACILITY IS INACTIVE

4-48 Administration Guide

 Forced Termination
Although it is not recommended, there might be times when it is necessary to force
the connection to end. A forced termination of the connection can abend CICS
transactions connected to DB2. Therefore, indoubt units of recovery can exist at
reconnect. A forced termination occurs in the following situations:

� You enter the DSNC STOP FORCE command. This command waits 15
seconds before detaching the thread subtasks, and, in some cases, can
achieve an orderly termination. DB2 and CICS remain active.

� You enter the CICS command CEMT PERFORM SHUTDOWN IMMEDIATE.
For information about this command, see CICS/ESA CICS-Supplied
Transactions. DB2 remains active.

� You enter the DB2 command STOP DB2 MODE (FORCE). CICS remains
active.

� A DB2 abend occurs. CICS remains active.

� CICS abend occurs. DB2 remains active.

� STOP is issued to the DB2 or CICS attachment facility, and the CICS
transaction overflows to the pool. The transaction issues an intermediate
commit. The thread is terminated at commit time, and further DB2 access is not
allowed.

This message appears when the stop process starts and frees the entering terminal
(option FORCE):

DSNCð22I THE ATTACHMENT FACILITY STOP FORCE IS PROCEEDING

When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:

DSNCð25I THE ATTACHMENT FACILITY IS INACTIVE

Controlling IMS Connections
IMS provides these operator commands for controlling and monitoring the
connection to DB2:

/START SUBSYS Connects the IMS control region to a DB2 subsystem
/TRACE Controls the IMS trace
/DISPLAY SUBSYS Displays connection status and thread activity
/DISPLAY OASN SUBSYS Displays outstanding units of recovery
/CHANGE SUBSYS Deletes an indoubt unit of recovery from IMS
/STOP SUBSYS Disconnects IMS from a DB2 subsystem

For more information about those commands, please refer, in the DB2 library, to
Chapter 2 of Command Reference or, in the IMS library, to IMS/ESA Operator's
Reference.

IMS command responses are sent to the terminal from which the corresponding
command was entered. Authorization to enter IMS commands is based on IMS
security.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-49

Connecting to the IMS Control Region
IMS makes one connection to its control region from each DB2 subsystem. IMS
can make the connection either:

� Automatically during IMS cold start initialization or at warm start of IMS, if DB2
connection was active when IMS is shut down

� In response to the command /START SUBSYS sysid, where sysid is the DB2
subsystem identifier.

The command causes the following message to be displayed at the logical
terminal (LTERM):

DFSð58 START COMMAND COMPLETED

The message is issued regardless of whether DB2 is active and does not imply
that the connection is established.

The order of starting IMS and DB2 is not vital. If IMS is started first, then when DB2
comes up, it posts the control region modify task, and IMS again tries to reconnect.

If DB2 is stopped by the STOP DB2 command, the /STOP SUBSYS command, or
a DB2 abend, then IMS cannot reconnect automatically. You must make the
connection by using the /START command.

The following messages can be produced when IMS attempts to connect a DB2
subsystem:

� If DB2 is active, these messages are sent:

– To the MVS console:

DFS3613I ESS TCB INITIALIZATION COMPLETE

– To the IMS master terminal:

DSNMðð1I IMS/VS imsid CONNECTED TO SUBSYSTEM ssnm

� If DB2 is not active, this message is sent to the master terminal:

DSNMðð3I IMS/VS imsid FAILED TO CONNECT TO SUBSYSTEM ssnm
 RC=ðð imsid

RC=00 means that a notify request has been queued. When DB2 starts, IMS is
also notified.

No message goes to the MVS console.

 Thread Attachment
Execution of the program's first SQL statement causes the IMS attachment facility
to create a thread and allocate a plan, whose name is associated with the IMS
application program module name. DB2 sets up control blocks for the thread and
loads the plan.

Using the DB2 Command DISPLAY THREAD: The DB2 command DISPLAY
THREAD can be used to display IMS attachment facility threads.

DISPLAY THREAD output for DB2 connections to IMS differs depending on
whether DB2 is connected to a DL/I Batch program, a control region, a
message-driven program, or a nonmessage-driven program. Table 53 on
page 4-51 summarizes these differences.

4-50 Administration Guide

The following command displays information about IMS threads, including those
accessing data at remote locations:

-DIS THD(applid)

Table 53. Differences in DISPLAY THREAD Information for IMS Connections

Connection Name AUTHID 2 ID1,2 Plan1,2

DL/I Batch DDITV02
statement

JOBUSER= Job Name DDITV02 statement

Control
Region

IMSID N/A N/A N/A

Message
Driven

IMSID Signon ID
or ltermid

PST+ PSB RTT or program

Non-message
Driven

IMSID AXBUSER
or
PSBNAME

PST+ PSB RTT or program

Notes:

1. After the application has connected to DB2 but before sign-on processing has
completed, this field is blank.

2. After sign-on processing has completed but before a plan has been allocated,
this field is blank.

DSNV4ð1I -STR DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I -STR ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

.1/SYS3 T \ 3 ððð2BMP255 ADMFðð1 PROGHR1 ðð19 99

SYS3 T \ 4 ððð1BMP255 ADMFðð1 PROGHR2 ðð18 97

 .2/SYS3 N 5 SYSADM ðð65 ð

DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

Figure 69. DISPLAY THREAD Showing IMS Connections

Description of output:

.1/ This is a message-driven BMP.

.2/ This thread has completed sign-on processing, but a DB2 plan has not been
allocated.

 Thread Termination
When an application terminates, IMS invokes an exit routine to disconnect the
application from DB2. There is no way to terminate a thread without abending the
IMS application with which it is associated. Two ways of terminating an IMS
application are described here:

� Termination of the application

The IMS commands /STOP REGION reg# ABDUMP or /STOP REGION reg#
CANCEL can be used to terminate an application running in an online
environment. For an application running in the DL/I batch environment, the
MVS command CANCEL can be used. See IMS/ESA Operator's Reference for
more information on terminating IMS applications.

� Use of the DB2 command CANCEL THREAD

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-51

CANCEL THREAD can be used to cancel a particular thread or set of threads.
CANCEL THREAD requires that you know the token for any thread you want to
cancel. Enter the following command to cancel the thread identified by a token
in the display output:

-CANCEL THREAD(46)

When you issue CANCEL THREAD for a thread, that thread is scheduled to be
terminated in DB2. To terminate, that thread must be processing in DB2.

General-use Programming Interface

Displaying Indoubt Units of Recovery
One function of the thread connecting DB2 to IMS is to keep data in
synchronization between the two systems. If the application program requires it, a
change to IMS data must also be made to DB2 data. If DB2 abends while
connected to IMS, it is possible for IMS to commit or back out work without DB2
being aware of it. When DB2 restarts, that work is termed indoubt. Typically, some
decision must be made about the status of the work.

The subject of indoubt units of recovery is treated in detail in “Chapter 4-4.
Restarting DB2 After Termination” on page 4-99. This chapter describes only the
operational steps used to list and recover indoubt units in relatively simple cases.

To display a list of indoubt units of recovery, give the command:

-DISPLAY THREAD (imsid) TYPE (INDOUBT)

The command produces messages similar to these:

DSNV4ð1I -STR DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð6I -STR INDOUBT THREADS - 92ð

COORDINATOR STATUS RESET URID AUTHID

SYS3 INDOUBT ððð17854FF6B ADMFðð1

 V449-HAS NID= SYS3.4ðððððððð AND ID= ððð1BMP255

BATCH INDOUBT ððð17854A8Að ADMFðð1

 V449-HAS NID= DSN:ððð1.ð AND ID= RUNP1ð

BATCH INDOUBT ððð17854AA2E ADMFðð1

 V449-HAS NID= DSN:ððð2.ð AND ID= RUNP9ð

BATCH INDOUBT ððð1785CD711 ADMFðð1

 V449-HAS NID= DSN:ððð4.ð AND ID= RUNP12

DISPLAY INDOUBT REPORT COMPLETE

DSN9ð22I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV408I
in Section 3 of Messages and Codes.

End of General-use Programming Interface

General-use Programming Interface

4-52 Administration Guide

Recovering Indoubt Units
To recover an indoubt unit, issue the following command:

-RECOVER INDOUBT (imsid) ACTION (COMMIT|ABORT) ID (pst#.psbname)

Here imsid is the connection name and pst#.psbname is the correlation ID listed by
the command DISPLAY THREAD. Your choice of the ACTION parameter tells
whether to commit or roll back the associated unit of recovery. For more details,
see “Resolving Indoubt Units of Recovery” on page 4-113.

The following messages can occur after using the RECOVER command:

DSNV414I - THREAD pst#.psbname COMMIT SCHEDULED
or

DSNV415I - THREAD pst#.psbname ABORT SCHEDULED

End of General-use Programming Interface

General-use Programming Interface

Duplicate Correlation IDs
It is possible for two threads to have the same correlation ID (pst#.psbname) if all
of these conditions occur:

� Connections have been broken several times
� Indoubt units of recovery were not recovered
� Applications were subsequently scheduled in the same region.

To uniquely identify threads which have the same correlation ID (pst#.psbname)
requires that you be able to identify and understand the network ID (NID). For
connections with IMS, you should also be able to identify and understand the IMS
originating sequence number (OASN).

The NID is shown in a condensed form on the messages issued by the DB2
DISPLAY THREAD command processor. The IMS subsystem name (imsid) is
displayed as the net_node. The net_node is followed by the 8-byte OASN,
displayed in hexadecimal format (16 characters), with all leading zeros omitted. The
net_node and the OASN are separated by a period.

For example, if the net_node is IMSA, and the OASN is 0003CA670000006E, the
NID is displayed as IMSA.3CA670000006E on the DB2 DISPLAY THREAD
command output.

If two threads have the same corr-id, use the NID instead of corr-id on the
RECOVER INDOUBT command. The NID uniquely identifies the work unit.

The OASN is a 4-byte number which represents the number of IMS schedulings
since the last IMS cold start. The OASN is occasionally found in an 8-byte format,
where the first four bytes contain the scheduling number, and the last four bytes
contain the number of IMS sync points (commits) during this schedule. The OASN
is part of the NID.

The NID is a 16-byte network ID which originates from IMS. The NID contains the
4-byte IMS subsystem name, followed by four bytes of blanks, followed by the

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-53

8-byte version of the OASN. In communications between IMS and DB2, the NID
serves as the recovery token.

End of General-use Programming Interface

Resolving Residual Recovery Entries
At given times, IMS builds a list of residual recovery entries (RREs). RREs are
units of recovery about which DB2 could be in doubt. They arise in several
situations:

� If DB2 is not operational, IMS has RREs that cannot be resolved until DB2 is
operational. Those are not a problem.

� If DB2 is operational and connected to IMS, and if IMS rolled back the work
that DB2 has committed, the IMS attachment facility issues message
DSNM005I. If the data in the two systems must be consistent, this is a problem
situation. Its resolution is discussed in “Resolution of Indoubt Units of
Recovery” on page 4-161.

� If DB2 is operational and connected to IMS, RREs can still exist, even though
no messages have informed you of this problem. The only way to recognize
this problem is to issue the IMS /DISPLAY OASN SUBSYS command after the
DB2 connection to IMS has been established.

To display the RRE information, give the command:

/DISPLAY OASN SUBSYS sysid

To purge the RRE, give one of these commands:

/CHANGE SUBSYS sysid RESET
/CHANGE SUBSYS sysid RESET OASN nnnn

where nnnn is the originating application sequence number listed in the display.
That is the schedule number of the program instance, telling its place in the
sequence of invocations of that program since the last cold start of IMS. IMS
cannot have two indoubt units of recovery with the same schedule number.

Those commands reset the status of IMS; they do not result in any
communication with DB2.

Controlling IMS Dependent Region Connections
Controlling IMS dependent region connections involves three activities:

� Connecting from dependent regions
� Monitoring the activity on connections
� Disconnecting from dependent regions.

Connecting from Dependent Regions
The IMS attachment facility used in the control region is also loaded into dependent
regions. A connection is made from each dependent region to DB2. This
connection is used to pass SQL statements and to coordinate the commitment of
DB2 and IMS work. The following process is used by IMS to initialize and connect.

1. Read the SSM from IMS.PROCLIB.

A subsystem member can be specified on the dependent region EXEC
parameter. If it is not specified, the control region SSM is used. If the region
will never connect to DB2, specify a member with no entries to avoid loading
the attachment facility.

4-54 Administration Guide

2. Load the DB2 attachment facility from prefix.SDSNLOAD

For a batch message processing (BMP) program, the load is not done until the
application issues its first SQL statement. At that time, IMS attempts to make
the connection. batch message processing (BMP) program

For a message processing program (MPP) region or IMS fast path (IFP) region,
the connection is made when the IMS region is initialized, and an IMS
transaction is available for scheduling in that region.

An IMS dependent region establishes two connections to DB2; a region
connection and an application connection which occurs at execution of the first
SQL statement.

If DB2 is not active, or if resources are not available when the first SQL statement
is issued from an application program, the action taken depends on the error option
specified on the SSM user entry. The options are:

Option Action

R The appropriate return code is sent to the application, and the SQL code is
returned.

Q The application is abended. This is a PSTOP transaction type; the input
transaction is re-queued for processing and new transactions are queued.

A The application is abended. This is a STOP transaction type; the input
transaction is discarded and new transactions are not queued.

The region error option can be overridden at the program level via the resource
translation table (RTT). See Section 2 of Installation Guide for further details.

General-use Programming Interface

Monitoring the Activity on Connections
A thread is established from a dependent region when an application makes its first
successful DB2 request. Information on connections and the applications currently
using them can be displayed by issuing one of these commands:

From DB2:
-DISPLAY THREAD (imsid)

From IMS:
/SSR -DISPLAY THREAD (imsid)

Either command produces the following messages:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

conn-name s \ req-ct corr-id auth-id pname asid token
conn-name s \ req-ct corr-id auth-id pname asid token
DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV404I
in Section 3 of Messages and Codes. More detailed information regarding use of

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-55

this command and the reports it produces is available in “The Command DISPLAY
THREAD” on page 4-64.

IMS provides a display command to monitor the connection to DB2. In addition to
showing which program is active on each dependent region connection, the display
also shows the LTERM user name and gives the control region connection status.
The command is:

/DISPLAY SUBSYS sysid

The status of the connection between IMS and DB2 is shown as one of the
following:

CONNECTED

NOT CONNECTED

CONNECT IN PROGRESS

STOPPED

STOP IN PROGRESS

INVALID SUBSYSTEM NAME=name
SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region is:

CONN

CONN, ACTIVE (includes LTERM of user)

Figure 70 on page 4-57 shows four examples of the output that might be
generated when an IMS /DISPLAY SUBSYS command is issued.

� Example 1 shows that the DSN subsystem is not yet connected. The message
DSNM003I was issued by the IMS attachment facility.

� Example 2 shows a connected status. The message DSNM001I was issued by
the IMS attachment facility.

� Example 3 shows both a /STOP SUBSYS command and a /DISPLAY SUBSYS
command. The output that was displayed in response to /DISPLAY SUBSYS
shows a stopped status. The message DSNM002I was issued by the IMS
attachment facility.

� Example 4 shows a connected status, and the region ID (1) is included. Use
the REGID (pst#) and PROGRAM (pstname) values to correlate the output of
the IMS /DIS SUBSYS command to the LTERM involved.

End of General-use Programming Interface

Disconnecting from Dependent Regions
Usually, IMS master terminal operators do not want to disconnect a dependent
region explicitly. However, they might want to change values in the SSM member of
IMS.PROCLIB. To do that, they can issue /STOP REGION, update the SSM
member, and issue /START REGION.

Disconnecting from IMS
The connection is ended when either IMS or DB2 terminates. Alternatively, the IMS
master terminal operator can explicitly break the connection by entering this
command:

/STOP SUBSYS sysid

4-56 Administration Guide

Example 1

ðððð 15.49.57 R 45,/DIS SUBSYS NEW

ðððð 15.49.57 IEE6ððI REPLY TO 45 IS;/DIS SUBSYS END

ðððð 15.49.57 JOB 56 DFSðððI DSNMðð3I IMS/TM V1 SYS3 FAILED TO CONNECT TO SUBSYSTEM DSN RC=ðð SYS3

ðððð 15.49.57 JOB 56 DFSðððI SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3

ðððð 15.49.57 JOB 56 DFSðððI DSN : NON CONN SYS3

ðððð 15.49.57 JOB 56 DFSðððI \83228/154957\ SYS3

ðððð 15.49.57 JOB 56 \46 DFS996I \IMS READY\ SYS3

Example 2

ðððð 15.58.59 R 46,/DIS SUBSYS ALL

ðððð 15.58.59 IEE6ððI REPLY TO 46 IS;/DIS SUBSYS ALL

ðððð 15.59.ð1 JOB 56 DFS551I MESSAGE REGION MPP1 STARTED ID=ððð1 TIME=1551 CLASS=ðð1,ðð2,ðð3,ðð4

ðððð 15.59.ð1 JOB 56 DFSðððI DSNMðð1I IMS/TM=V1 SYS3 CONNECTED TO SUBSYSTEM DSN SYS3

ðððð 15.59.ð1 JOB 56 DFSðððI SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3

ðððð 15.59.ð1 JOB 56 DFSðððI DSN : CONN SYS3

ðððð 15.59.ð1 JOB 56 DFSðððI \83228/1559ðð\ SYS3

ðððð 15.59.ð1 JOB 56 \47 DFS996I \IMS READY\ SYS3

Example 3

ðððð 15.59.28 R 47,/STO SUBSYS ALL

ðððð 15.59.28 IEE6ððI REPLY TO 47 IS;/STO SUBSYS ALL

ðððð 15.59.37 JOB 56 DFSð58I 15:59:37 STOP COMMAND IN PROGRESS SYS3

ðððð 15.59.37 JOB 56 \48 DFS996I \IMS READY\ SYS3

ðððð 15.59.44 R 48,/DIS SUBSYS ALL

ðððð 15.59.44 IEE6ððI REPLY TO 48 IS;/DIS SUBSYS ALL

ðððð 15.59.45 JOB 56 DFSðððI DSNMðð2I IMS/TM V1 SYS3 DISCONNECTED FROM SUBSYSTEM DSN RC = E. SYS3

ðððð 15.59.45 JOB 56 DFSðððI SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3

ðððð 15.59.45 JOB 56 DFSðððI DSN : STOPPED SYS3

ðððð 15.59.45 JOB 56 DFSðððI \83228/155945\ SYS3

ðððð 15.59.45 JOB 56 \49 DFS996I \IMS READY\ SYS3

Example 4

ðððð 16.ð9.35 JOB 56 R 59,/DIS SUBSYS ALL

ðððð 16.ð9.35 JOB 56 IEE6ððI REPLY TO 59 IS;/DIS SUBSYS ALL

ðððð 16.ð9.38 JOB 56 DFSðððI SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3

ðððð 16.ð9.38 JOB 56 DFSðððI DSN : CONN SYS3

ðððð 16.ð9.38 JOB 56 DFSðððI 1 CONN SYS3

ðððð 16.ð9.38 JOB 56 DFSðððI \83228/16ð938\ SYS3

ðððð 16.ð9.38 JOB 56 \6ð DFS996I \IMS READY\ SYS3

ðððð 16.ð9.38 JOB 56

Figure 70. Sample Output from IMS /DISPLAY SUBSYS Command

That command sends the following message to the terminal that entered it, usually
the master terminal operator (MTO):

DFSð58I STOP COMMAND IN PROGRESS

The /START SUBSYS sysid command is required to reestablish the connection.

In implicit or explicit disconnect, this message is sent to the IMS master terminal:

DSNMðð2I IMS/TM imsid DISCONNECTED FROM SUBSYSTEM sysid - RC=z

That message uses the following reason codes (RC):

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-57

Code Meaning

A IMS/TM is terminating normally (for instance, /CHE
FREEZE|DUMPQ|PURGE). Connected threads complete.

B IMS is abending. Connected threads are rolled back. DB2 data is backed
out now; DL/I data is backed out on IMS restart.

C DB2 is terminating normally after a -STOP DB2 MODE (QUIESCE)
command. Connected threads complete.

D DB2 is terminating normally after a -STOP DB2 MODE (FORCE)
command, or DB2 is abending. Connected threads are rolled back. DL/I
data is backed out now. DB2 data is backed out now if DB2 terminated
normally; otherwise, at restart.

E IMS is ending the connection because of a /STOP SUBSYS sysid
command. Connected threads complete.

If an application attempts to access DB2 after the connection ended and before a
thread is established, the attempt is handled according to the region error option
specification (R, Q, or A).

| Controlling OS/390 RRS Connections
|

General-use Programming Interface

| Application programs can use the following Recoverable Resource Manager
| Services attachment facility (RRSAF) functions to control connections to DB2:

| IDENTIFY Establishes the task (TCB) as a user of the named DB2
| subsystem. When the first task within an address space
| issues a connection request, the address space is
| initialized as a user of DB2.

| SIGNON Provides a user ID and optionally, one or more secondary
| authorization IDs to be associated with the connection.
| Invokes the signon exit routine.

| AUTH SIGNON Provides a user ID, an ACEE, and optionally, one or more
| secondary authorization IDs to be associated with the
| connection. Invokes the signon exit.

| CREATE THREAD Allocates a plan. If you provide a plan name, DB2 allocates
| that plan. If you provide a collection name, DB2 allocates a
| special plan named ?RRSAF and a package list that
| contains the collection name.

| After CREATE THREAD completes, DB2 can execute SQL
| statements.

| TERMINATE THREAD Deallocates the plan.

| TERMINATE IDENTIFY
| Removes the task as a user of DB2. If this is the last or
| only task in the address space with a DB2 connection,
| TERMINATE IDENTIFY terminates the address space
| connection to DB2.

4-58 Administration Guide

| TRANSLATE Returns an SQL code and printable text, in the SQLCA,
| that describes a DB2 error reason code.

| End of General-use Programming Interface

| For more information on those functions, see Section 6 of Application Programming
| and SQL Guide .

|
General-use Programming Interface

| Connecting to OS/390 RRS Using RRSAF
| An RRSAF connection can be started or restarted at any time after OS/390 RRS is
| started. If OS/390 RRS is not started, an IDENTIFY request fails with reason code
| X'00F30091'.

| Restarting DB2 and OS/390 RRS
| If DB2 abnormally terminates but OS/390 RRS remains active, OS/390 RRS might
| commit or roll back work without DB2's knowledge. In a similar manner, if OS/390
| RRS abnormally terminates after DB2 has completed phase 1 of commit processing
| for an application, then DB2 does not know whether to commit or roll back the
| work. In either case, when DB2 restarts, that work is termed indoubt.

| DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
| changes made to DB2 resources) until DB2 restarts with OS/390 RRS.

| If any unit of work is indoubt when a failure occurs, DB2 and OS/390 RRS
| automatically resolve the unit of work when DB2 restarts with OS/390 RRS.

| Displaying Indoubt Units of Recovery
| To display a list of indoubt units of recovery, issue the command:

| -DISPLAY THREAD (RRSAF) TYPE (INDOUBT)

| The command produces output similar to this:

| DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

| DSNV4ð6I - INDOUBT THREADS -

| COORDINATOR STATUS RESET URID AUTHID

| RRSAF INDOUBT ððð19B8ADE9E ADMFðð1

| V449-HAS NID= AD641ð1C7EED9ðððððððððð1ð1ð1ðððð AND ID= ST47653RRS

| DISPLAY INDOUBT REPORT COMPLETE

| DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

| For RRSAF connections, a network ID is the OS/390 RRS Unit of Recovery ID
| (URID) that uniquely identifies a unit of work. An OS/390 RRS URID is a 32
| character number. For an explanation of the output, see the description of message
| DSNV408I in Section 3 of Messages and Codes.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-59

| Recovering Indoubt Units of Recovery Manually
| Manual recovery of an indoubt unit of recovery might be required if the OS/390
| RRS log is lost. When that happens, message DSN3011I is displayed on the MVS
| console.

| To recover an indoubt unit of recovery, issue one of the following commands:

| -RECOVER INDOUBT (RRSAF) ACTION (COMMIT) ID (correlation-id)

| or

| -RECOVER INDOUBT (RRSAF) ACTION (ABORT) ID (correlation-id)

| correlation-id is the correlation ID of the thread to be recovered. You can determine
| the correlation ID by issuing the command DISPLAY THREAD.

| The ACTION parameter indicates whether to commit or roll back the associated
| unit of recovery. For more details, see “Resolving Indoubt Units of Recovery” on
| page 4-113.

| The following messages can occur when you issue the RECOVER INDOUBT
| command:

| DSNV414I - THREAD correlation-id COMMIT SCHEDULED

| DSNV415I - THREAD correlation-id ABORT SCHEDULED

| If the following DSNV418I message is issued:

| DSNV418I - RECOVER INDOUBT REJECTED FOR ID=correlation-id

| the NID option of RECOVER INDOUBT, as shown below, must be used.

| -RECOVER INDOUBT(RRSAF) ACTION(action) NID(nid)

| where nid is the 32 character field displayed in the DSNV449I message.

| For information on the two-phase commit process, as well as indoubt units of
| recovery, see “Consistency with Other Systems” on page 4-109.

| End of General-use Programming Interface

|
General-use Programming Interface

| Monitoring RRSAF Connections
| RRSAF allows an application or application monitor to disassociate a DB2 thread
| from a TCB and later associate the thread with the same or different TCB within the
| same address space. RRSAF uses the OS/390 RRS Switch Context (CTXSWCH)
| service to do this. Only authorized programs can execute CTXSWCH.

| DB2 stores information in an OS/390 RRS CONTEXT about an RRSAF thread so
| that DB2 can locate the thread later. An application or application monitor can then
| invoke CTXSWCH to dissociate the CONTEXT from the current TCB and then
| associate the CONTEXT with the same TCB or a different TCB.

| The following command displays information about RRSAF threads, including those
| that access data at remote locations:

4-60 Administration Guide

| -DISPLAY THREAD(RRSAF)

| DSNV4ð1I = DISPLAY THREAD REPORT FOLLOWS -

| DSNV4ð2I = ACTIVE THREADS -

| NAME ST A REQ ID AUTHID PLAN ASID TOKEN

| .1/RRSAF T 4 RRSTEST2-111 ADMFðð1 ?RRSAF ðð24 13

| .2/RRSAF T 6 RRSCDBTESTð1 USRTðð1 TESTDBD ðð24 63

| .3/RRSAF DI 3 RRSTEST2-1ðð USRTðð2 ?RRSAF ðð1B 99

| .4/RRSAF TR 9 GTð1XPð5 SYSADM TESTPð5 ðð1B 235

| V444-DB2NET.LUNDð.AA8ðð7132465=16 ACCESSING DATA AT

| V446-SAN_JOSE:LUND1

| DISPLAY ACTIVE REPORT COMPLETE

| Figure 71. DISPLAY THREAD Showing RRSAF Connections

| Description of output:

| .1/| This is an application that used CREATE THREAD to allocate the special plan
| used by RRSAF (plan name = ?RRSAF).
| .2/| This is an application that connected to DB2 and allocated a plan with the name
| TESTDBD.
| .3/| This is an application that is currently not connected to a TCB (shown by status
| DI).
| .4/| This is an active connection that is running plan TESTP05. The thread is
| accessing data at a remote site.

| Disconnecting Applications from DB2
| There is no way to disconnect an RRSAF transaction from DB2 without abending
| the transaction. You can use the DB2 command CANCEL THREAD to cancel a
| particular thread. CANCEL THREAD requires that you know the token for any
| thread that you want to cancel. Issue the command DISPLAY THREAD to obtain
| the token number, then enter the following command to cancel the thread:

| -CANCEL THREAD(token)

| When you issue CANCEL THREAD, DB2 schedules the thread for termination. The
| thread must be processing in DB2 to terminate.

| End of General-use Programming Interface

Controlling Connections to Remote Systems
The information under this heading, up to “Using NetView to Monitor Errors in the
Network” on page 4-75, is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page xi.

You can control connections to remote systems, which use distributed data, by
controlling the threads. Two types of threads are involved with connecting to other
systems, allied threads and database access threads. An allied thread is a thread

| that is connected locally to your DB2 subsystem, that is from TSO, CICS, IMS, or a
| stored procedures address space. A database access thread is a thread initiated by

a remote DBMS to your DB2 subsystem. The following topics are covered here:

“Starting DDF” on page 4-62
“Monitoring Connections to Other Systems” on page 4-63, which describes the
use of the following commands:
 � DISPLAY LOCATION

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-61

 � DISPLAY THREAD
 � CANCEL THREAD
� VARY NET,TERM (VTAM command)

“Monitoring and Controlling Stored Procedures” on page 4-72
“Using NetView to Monitor Errors in the Network” on page 4-75
“Stopping DDF” on page 4-77

Related Information: The following topics in this book contain information about
distributed connections:

“Chapter 5-11. Monitoring and Tuning in a Distributed Environment” on page
5-315
“Resolving Indoubt Units of Recovery” on page 4-113
“Failure of a Database Access Thread” on page 4-194

 Starting DDF
To start the distributed data facility (DDF), if it has not already been started, use the
following command:

-START DDF

When DDF is started and is responsible for indoubt thread resolution with remote
partners, one or both of messages DSNL432I and DSNL433I is generated. These
messages summarize DDF's responsibility for indoubt thread resolution with remote
partners. See “Chapter 4-5. Maintaining Consistency Across Multiple Systems” on
page 4-109 for information about resolving indoubt threads.

Using the START DDF command requires authority of SYSOPR or higher. The
command causes the following messages to appear:

DSNLðð3I - DDF IS STARTING

DSNLðð4I - DDF START COMPLETE LOCATION locname
 LU netname.luname

| GENERICLU netname.gluname
| DOMAIN domain
| TCPPORT tcpport
| RESPORT resport

If the distributed data facility has not been properly installed, the START DDF
command fails and message DSN9032I, - REQUESTED FUNCTION IS NOT
AVAILABLE, is issued. If the distributed data facility has already been started, the
START DDF command fails and message DSNL001I, - DDF IS ALREADY
STARTED, is issued.

When you install DB2, you can request that the distributed data facility start
automatically when DB2 starts. For information on starting the distributed data
facility automatically, see Section 2 of Installation Guide.

4-62 Administration Guide

Monitoring Connections to Other Systems
Two DB2 commands give you information about distributed threads. Use DISPLAY
LOCATION to get summary statistics about distributed threads. Use DISPLAY
THREAD to get more detailed information about specific threads.

The Command DISPLAY LOCATION
The command DISPLAY LOCATION displays summary information about
connections with other locations and can be used to display detailed information
about DB2 system conversations. System conversations are used either for DB2

| private protocol access or for supporting functions with DRDA access. Location
| names, SNA LU names or IP addresses can be specified and the DETAIL keyword

is supported. To issue the DISPLAY LOCATION command, you must have
SYSOPR authority or higher. To issue the command, enter the following:

-DISPLAY LOCATION(\)

DB2 returns output similar to this sample:

DSNL2ððI - DISPLAY LOCATION REPORT FOLLOWS-

| LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS

| USIBMSTODB22 DSNð5ð1ð LUNDð 1 ð 3

| USIBMSTODB23 DSNð4ð1ð LUND1 ð ð ð

| DRDALOC SQLð3ð3ð 124.63.51.17 3 ð 3

| 124.63.51.17 SQLð3ð3ð 124.63.51.17 ð 15 15

DISPLAY LOCATION REPORT COMPLETE

You can use an asterisk (*) in place of the end characters of a location name. For
example, use -DISPLAY LOCATION(SAN*) to display information about all active
connections between your DB2 and a remote location that begins with “SAN.” This
includes the number of conversations and the role for each non-system
conversation, requester or server.

When DB2 connects with a remote location, information about that location,
| including LOCATION, PRDID and LINKNAME (LUNAME or IP address), persists in

the report even if no active connections exist.

The DISPLAY LOCATION command displays the following types of information for
each DBMS that has active threads, except for the local subsystem:

| � The location name (or RDB_NAME) of the other connected system. If the
| RDBNAME is not known, the LOCATION column contains one of the following:

| – A VTAM LU name in this format: '<luname>'.

| – A dotted decimal IP address in this format: 'nnn.nnn.nnn.nnn'.

� The PRDID, which identifies the database product at the location in the form
nnnvvrrm:

– nnn - identifies the database product
– vv - product version
– rr - product release
– m - product modification level.

| � The corresponding LUNAME or IP address of the system.

� The number of threads at the local system that are requesting data from the
remote system.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-63

� The number of threads at the local system that are acting as a server to the
remote system.

� The total number of conversations in use between the local system and the
remote system. For USIBMSTODB23, in the sample output above, the
locations are connected and system conversations have been allocated, but
currently there are no active threads between the two sites.

DB2 does not receive a location name from non-DB2 requesting DBMSs that are
connected to DB2. In this case, it displays instead the LUNAME of the requesting
DBMS, enclosed in less-than (<) and greater-than (>) symbols.

For example, suppose there are two threads at location USIBMSTODB21. One is a
distributed access thread from a non-DB2 DBMS, and the other is an allied thread
going from USIBMSTODB21 to the non-DB2 DBMS. The DISPLAY LOCATION
command issued at USIBMSTODB21 would display output similar to the following:

DSNL2ððI - DISPLAY LOCATION REPORT FOLLOWS -

LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS

NONDB2DBMS LUND1 1 ð 1

<LULA> DSNð4ð1ð LULA ð 1 1

DISPLAY LOCATION REPORT COMPLETE

| The output below shows the result of a DISPLAY LOCATION(*) command when
| DB2 is connected to the following DRDA partners:

| � DB2A is connected to this DB2, using TCP/IP for DRDA connections and SNA
| for DB2 private protocal connections.

| � DB2SERV is connected to this DB2 using only SNA.

| DSNL2ððI - DISPLAY LOCATION REPORT FOLLOWS -

| LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS

| DB2A DSNð5ð1ð LUDB2A 3 4 9

| DB2A DSNð5ð1ð 124.38.54.16 2 1 3

| DB2SERV DSNð4ð1ð LULA 1 1 3

| DISPLAY LOCATION REPORT COMPLETE

The DISPLAY LOCATION command displays information for each remote location
that currently is, or once was, in contact with DB2. If a location is displayed with
zero conversations, this indicates one of the following:

� Sessions currently exist with the partner location but there are currently no
active conversations allocated to any of the sessions.

� Sessions no longer exist with the partner because contact with the partner has
been lost.

If you use the DETAIL parameter, each line is followed by information about
conversations owned by DB2 system threads, including those used for
resynchronization of indoubt units of work.

The Command DISPLAY THREAD
Displaying Information by Location: Use the LOCATION keyword, followed by a
list of location names, to display thread information for particular locations.

You can use an asterisk (*) after the THD and LOCATION keywords just as in the
DISPLAY LOCATION command previously described. For example, enter:

4-64 Administration Guide

| -DISPLAY THREAD(\) LOCATION(\) DETAIL

DB2 returns messages like these:

| DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

| DSNV4ð2I - ACTIVE THREADS -

| NAME ST.1/A.2/ REQ ID AUTHID PLAN ASID TOKEN

| SERVER RD \ ð ð28.DBAA SYSOPR ðð35 1ð

| V445-USIBMSY.SYEC81A.AD4F183D53ð3=1ð ACCESSING DATA FOR

| <SYEC81A>:SYEC81A

| BATCH TR \ 5 BKH2C SYSADM BKH2 ðððD 1.3/
| V444-DB2NET.LUNDð.9F6D9F459E92=1.3/ ACCESSING DATA AT
| V446-USIBMSTODB22:LUND1.4/
| V447-LOCATION SESSID A ST TIME

| V448-USIBMSTODB22 4ð19:446.5/ V R3 9ð15611253116

| DISPLAY ACTIVE REPORT COMPLETE

| DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

Example Label Description

| .1/ The ST (status) column contains characters that indicate the connection status
| of the local site. The TR indicates that an allied, distributed thread has been
| established. The RD indicates that a distributed thread is performing a remote
| access on behalf of another location (R) and is performing an operation
| involving DCE services (D). Currently, DB2 supports the optional use of DCE
| services to authenticate remote users.

.2/ The A (active) column contains an asterisk indicating that the thread is active
within DB2. It is blank when the thread is inactive within DB2 (active or waiting
within the application).

.3/ This LUWID is unique across all connected systems. This thread has a token
of 1 (it appears in two places in the display output).

| .4/ This is the location of the data that the local application is accessing. If the
| RDBNAME is not known, the location column contains either a VTAM
| LUNAME or a dotted decimal IP address.

| .5/ If the connection uses TCP/IP, the sessid column contains "local:remote",
| where "local" specifies DB2's TCP/IP port number and "remote" specifies the
| partner's TCP/IP port number.

For distributed server threads using DRDA access, the NAME column contains
SERVER, and the PLAN column contains DISTSERV for all application requesters
that are not DB2 for MVS Version 3 or later.

For more information about this sample output and connection status codes, see
message DSNV404I, DSNV444I, and DSNV446I, in Section 3 of Messages and
Codes .

| Non-DB2 Locations: Because DB2 does not receive a location name from non-DB2
| locations, you must enter the LUNAME or IP address of the location for which you
| want to display information. The LUNAME is enclosed by the less-than (<) and
| greater-than (>) symbols. The IP address is in the dotted decimal format. For

example, if you wanted to display information about a non-DB2 DBMS with the
LUNAME of LUSFOS2, you would enter the following command:

-DISPLAY THREAD (\) LOCATION (<LUSFOS2>)

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-65

| DB2 uses the <LUNAME> notation or dotted decimal format in messages displaying
information about non-DB2 requesters.

Displaying Conversation-level Information on Threads: Use the DETAIL
keyword with the LOCATION keyword to give you information about conversation
activity when distribution information is displayed for active threads. This keyword
has no effect on the display of indoubt threads. See Chapter 2 of Command
Referencefor more information on the DETAIL keyword.

For example issue:

-DIS THD(\) LOCATION(\) DETAIL

DB2 returns the following message, indicating that the local site application is
| waiting for a conversation to be allocated in DB2, and a DB2 server that is
| accessed by a DRDA client using TCP/IP.

| -DIS THD(\) LOC(\) DET

| DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

| DSNV4ð2I - ACTIVE THREADS -

| NAME ST A REQ ID AUTHID PLAN ASID TOKEN

| TSO TR \ 3 SYSADM SYSADM DSNESPRR ðð2E 2

V436-PGM=DSNESPRR.DSNESM68, SEC=1, STMNT=116

| V444-DB2NET.LUNDð.A238216C2FAE=2 ACCESSING DATA AT

| V446-USIBMSTODB22:LUND1

| V447--LOCATION SESSID .1/A ST TIME

| V448--USIBMSTODB22 ðððððððððððððððð V A1.2/ 9ð158165ð4776
TSO RA \ 11 SYSADM SYSADM DSNESPRR ðð1A 15

| V445-STLDRIV.SSLU.A23555366A29=15 ACCESSING DATA FOR 123.34.1ð1.98

| V447--LOCATION SESSID A ST TIME

| V448--123.34.1ð1.98 446:3171 .3/ S2 9ð156112531ð8

| DISPLAY ACTIVE REPORT COMPLETE

| DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

Example Label Description

.1/ The information on this line is part of message DSNV447I. The conversation A
(active) column for the server is useful in determining when a DB2 thread is
hung and whether processing is waiting in VTAM or in DB2. The value W
indicates that the thread is suspended in DB2 and is waiting for notification
from VTAM that the event has completed. A value V would indicate that control
of the conversation is in VTAM.

.2/ The information on this line is part of message DSNV448I. The A in the
conversation ST (status) column for a serving site indicates a conversation is
being allocated in DB2. The 1 indicates that the thread uses DB2 private
protocol access. A 2 would indicate DRDA access. An R in the status column
would indicate that the conversation is receiving or waiting to receive a request
or reply. An S in this column for a server indicates that the application is
sending or preparing to send a request or reply.

| .3/ The information on this line is part of message DSNV448I. The SESSID
| column has changed as follows. If the connection uses VTAM, the SESSID
| column contains a VTAM session identifier. If the connection uses TCP/IP, the
| sessid column contains "local:remote", where "local" specifies DB2's TCP/IP
| port number, and "remote" specifies the partner's TCP/IP port number.

For more DISPLAY THREAD message information, see messages DSNV447I and
DSNV448I, Section 3 of Messages and Codes.

4-66 Administration Guide

Monitoring All DBMSs in a Transaction: The DETAIL keyword of the command
DISPLAY THREAD allows you to monitor all of the requesting and serving DBMSs
involved in a transaction.

For example, you could monitor an application running at USIBMSTODB21
requesting information from USIBMSTODB22, which must establish conversations
with secondary servers USIBMSTODB23 and USIBMSTODB24 to provide the
requested information. See Figure 72. In the example, USIBMSTODB21 is
considered to be upstream from USIBMSTODB22. Similarly, USIBMSTODB22 is
considered to be upstream from USIBMSTODB23. Conversely, USIBMSTODB23
and USIBMSTODB22 are downstream from USIBMSTODB22 and
USIBMSTODB21 respectively.

 %────SDA───5 USIBMSTODB23

USIBMSTODB21 %───ADA───5 USIBMSTODB22

 %────SDA───5 USIBMSTODB24

Figure 72. Example of a DB2 transaction involving four sites. ADA refers to DRDA access,
SDA to DB2 private protocol access

The application running at USIBMSTODB21 is connected to a server at
USIBMSTODB22, using DRDA access. If you enter the DISPLAY THREAD
command with the DETAIL keyword from USIBMSTODB21, you receive output
similar to the following:

-DIS THD(\) LOC(\) DET

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH TR \ 6 BKH2C SYSADM YW1ð19C ððð9 2

V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4

V444-USIBMSY.SSLU.A23555366A29=2 ACCESSING DATA AT

| V446-USIBMSTODB22:SSURLU

V447--LOCATION SESSID A ST TIME

V448--USIBMSTODB22 ððððððð3ððððððð4 V R2 9ð15611253116

DISPLAY ACTIVE REPORT COMPLETE

11:26:23 DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

This output indicates that the application is waiting for data to be returned by the
server at USIBMSTODB22.

The server at USIBMSTODB22 is running a package on behalf of the application at
USIBMSTODB21, in order to access data at USIBMSTODB23 and
USIBMSTODB24 by DB2 private protocol access. If you enter the DISPLAY
THREAD command with the DETAIL keyword from USIBMSTODB22, you receive
output similar to the following:

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-67

-DIS THD(\) LOC(\) DET

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH RA \ ð BKH2C SYSADM YW1ð19C ððð8 2

V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4

| V445-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA FOR

| USIBMSTODB21:SSLU

V444-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA AT

| V446-USIBMSTODB23:OSSLU USIBMSTODB24:OSSURLU

V447--LOCATION SESSID A ST TIME

 V448--USIBMSTODB21 ððððððð3ððððððð4 S2 9ð156112531ð8

 V448--USIBMSTODB23 ððððððð6ððððððð2 S1 9ð15611253ð77

V448--USIBMSTODB24 ððððððð9ððððððð5 V R1 9ð156112539ð7

DISPLAY ACTIVE REPORT COMPLETE

11:26:34 DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

This output indicates that the server at USIBMSTODB22 is waiting for data to be
returned by the secondary server at USIBMSTODB24.

The secondary server at USIBMSTODB23 is accessing data for the primary server
at USIBMSTODB22. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB23, you receive output similar to the following:

-DIS THD(\) LOC(\) DET

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH RA \ 2 BKH2C SYSADM YW1ð19C ððð6 1

| V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR

| USIBMSTODB22:SSURLU

V447--LOCATION SESSID A ST TIME

V448--USIBMSTODB22 ððððððð6ððððððð2 W R1 9ð15611252369

DISPLAY ACTIVE REPORT COMPLETE

11:27:25 DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

This output indicates that the secondary server at USIBMSTODB23 is not currently
active.

The secondary server at USIBMSTODB24 is also accessing data for the primary
server at USIBMSTODB22. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB24, you receive output similar to the following:

-DIS THD(\) LOC(\) DET

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH RA \ 2 BKH2C SYSADM YW1ð19C ððð6 1

V436-PGM=\.BKH2C, SEC=1, STMNT=1

| V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR

| USIBMSTODB22:SSURLU

V447--LOCATION SESSID A ST TIME

 V448--USIBMSTODB22 ððððððð9ððððððð5 S1 9ð15611253ð75

DISPLAY ACTIVE REPORT COMPLETE

11:27:32 DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

4-68 Administration Guide

This output indicates that the secondary server at USIBMSTODB24 is currently
active.

It is possible that the conversation status might not change for a long time. The
conversation could be hung, or the processing could just be taking a long time. To
see whether the conversation is hung, issue DISPLAY THREAD again and
compare the new timestamp to the timestamps from previous output messages. If
the timestamp is changing, but the status is not, the job is still processing. If it
becomes necessary to terminate a distributed job, perhaps because it is hung and
has been holding database locks for a long period of time, you can use the
CANCEL DDF THREAD command if the thread is in DB2 (whether active or
suspended) or the VARY NET TERM command if the thread is within VTAM. See
“The Command CANCEL THREAD” on page 4-70.

Displaying Threads by LUWIDs: Use the LUWID optional keyword, which is only
valid when DDF has been started, to display threads by logical unit of work
identifiers. The LUWIDs are assigned to the thread by the site that originated the
thread.

You can use an asterisk (*) in an LUWID as in a LOCATION name. For example,
use -DISPLAY THREAD TYPE(INDOUBT) LUWID(NET1.*) to display all the
indoubt threads whose LUWID has a network name of NET1. The command
DISPLAY THREAD TYPE(INDOUBT) LUWID(IBM.NEW*) displays all indoubt
threads whose LUWID has a network name of "IBM" and whose LUNAME begins
with "NEW."

The DETAIL keyword can also be used with the DISPLAY THREAD LUWID
command to show the status of every conversation connected to each thread
displayed and to indicate whether a conversation is using DRDA access or DB2
private protocol access.

To issue this command enter:

-DIS THD(\) LUWID (luwid) DETAIL

DB2 returns the following message and output similar to the sample output
provided:

-DIS THD(\) LUWID (luwid) DET
DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH TR 5 TC3923Sð SYSADM TC392 ðððD 2

V436-PGM=\.TC3923Sð, SEC=1, STMNT=116

V444-DB2NET.LUNSITEð.A11A7D7B2ð57=2 .1/ACCESSING DATA AT
| V446-USIBMSTODB22:LUNSITE1

V447--LOCATION SESSID A ST TIME

 V448--USIBMSTODB22 ððC3F4228C5A244C S2.2/ 8929612225354

DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

Example Label Description

.1/ In the display output above, you can see that the LUWID has been assigned a
token of 2. You can use this token instead of the long version of the LUWID to
cancel or display the given thread. For example:

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-69

-DIS THD(\) LUWID(2) DET

.2/ In addition, the status column for the serving site contains a value of S2. The S
means that this thread can send a request or response, and the 2 means that
this is an DRDA access conversation.

The Command CANCEL THREAD
You can use the command CANCEL THREAD to terminate threads that are active
or suspended in DB2. The command has no effect if the thread is not active or
suspended in DB2. If the thread is suspended in VTAM, you can use VTAM
commands to terminate the conversations, as described in “Using VTAM
Commands to Cancel Threads” on page 4-71.

A database access thread can also be in the prepared state waiting for the commit
decision from the coordinator. When you issue CANCEL THREAD for a database
access thread in the prepared state, the thread is converted from active to indoubt.
The conversation with the coordinator, and all conversations with downstream
participants, are terminated and message DSNL450I is returned. The resources
held by the thread are not released until the indoubt state is resolved. This is
accomplished automatically by the coordinator or by using the command
RECOVER INDOUBT. See “Resolving Indoubt Units of Recovery” on page 4-113
for more information.

DISPLAY THREAD can be used to determine if a thread is hung in DB2 or VTAM.
If in VTAM, there is no reason to use the CANCEL command.

Using CANCEL THREAD requires SYSOPR authority or higher.

When the command is entered at the DB2 system that has a database access
thread servicing requests from a DB2 system that owns the allied thread, the
database access thread is terminated. Any active SQL request, and all later
requests, from the allied thread result in a "resource not available" return code.

To issue this command enter:

-CANCEL THREAD (token)

Or, if you like, you can use the following version of the command with either the
token or LUW ID:

-CANCEL DDF THREAD (token or luwid)

The token is a 1- to 5-character number that identifies the thread. When DB2
schedules the thread for termination, you will see one of the following messages:

DSNLð1ðI - DDF THREAD token/luwid HAS BEEN CANCELLED

for a distributed thread, or

DSNV426I - csect THREAD token HAS BEEN CANCELED

for a non-distributed thread.

For more information about CANCEL THREAD, see Chapter 2 of Command
Reference .

Diagnostic Dumps: CANCEL THREAD allows you to specify that a diagnostic
dump be taken.

4-70 Administration Guide

For more detailed information about diagnosing DDF failures see Section 4 of
Diagnosis Guide and Reference.

Messages: As a result of entering CANCEL THREAD, the following messages can
be displayed:

 DSNL009I
 DSNL010I
 DSNL022I

Using VTAM Commands to Cancel Threads
If the command CANCEL THREAD does not terminate the thread, it is possible that
it is hung up in VTAM, not in DB2. Use the VTAM VARY NET,TERM command to

| cancel the thread's VTAM sessions. The VTAM commands only work with SNA
| VTAM connections, not TCP/IP connections.

To do this, you need to know the VTAM session IDs that correspond to the thread.
Take the following steps:

1. Issue the DB2 command DISPLAY THREAD(nnnn) LOC(*) DETAIL.

This gives you the VTAM session IDs that must be canceled. As is shown in
the DISPLAY THREAD output in Figure 73, these sessions are identified by
the column header SESSID.

-DIS THD LOC(\) DETAIL

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH TR \ 5 BKH2C SYSADM BKH2 ðððD 123

V436-PGM=\.BKH2C, SEC, STMNT=116

| V445-DB2NET.LUNDð.9F6D9F459E92=123 ACCESSING DATA FOR

| USIBMSTODB21:LUND1

 V447--LOCATION SESSID A ST TIME

 V448--USIBMSTODB21 v ððD359ðEA1E897ð1 S1 88321ð846ð3ð2

 V448--USIBMSTODB21 ððD359ðEA1E89822 V R1 88321ð846ð431

DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I - DSNVDT '-DIS THD' NORMAL COMPLETION

Figure 73. Sample DISPLAY THREAD Output

2. Record positions 3 through 16 of SESSID for the threads to be canceled. (In
the DISPLAY THREAD output above, the values are D3590EA1E89701 and
D3590EA1E89822.)

3. Issue the VTAM command DISPLAY NET to display the VTAM session IDs
(SIDs). The ones you want to cancel match the SESSIDs in positions 3
through 16. In figure Figure 74 on page 4-72, the corresponding session IDs
are shown in bold.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-71

D NET,ID=LUNDð,SCOPE=ACT

ISTð97I DISPLAY ACCEPTED

ISTð75I NAME = LUNDð, TYPE = APPL

IST486I STATUS= ACTIV, DESIRED STATE= ACTIV

IST171I ACTIVE SESSIONS = ðððððððð1ð, SESSION REQUESTS = ðððð

 IST2ð6I SESSIONS:

 IST634I NAME STATUS SID SEND RECV

 IST635I LUND1 ACTIV-S D24B171ð32B76E65 ðð51 ðð43

 IST635I LUND1 ACTIV-S D24B171ð32B32545 ðð51 ðð43

 IST635I LUND1 ACTIV-S D24B171ð32144565 ðð51 ðð43

 IST635I LUND1 ACTIV-S D24B171ð32B73465 ðð51 ðð43

 IST635I LUND1 ACTIV-S D24B171ð32B88865 ðð51 ðð43

 IST635I LUND1 ACTIV-R D2D359ðEA1E897ð1 ðð22 ðð31
 IST635I LUND1 ACTIV-R D2D359ðEA1E898ð2 ðð22 ðð31

 IST635I LUND1 ACTIV-R D2D359ðEA1E898ð9 ðð22 ðð31

 IST635I LUND1 ACTIV-R D2D359ðEA1E89821 ðð22 ðð31

 IST635I LUND1 ACTIV-R D2D359ðEA1E89822 ðð22 ðð31
 IST314I END

Figure 74. Sample Output for VTAM DISPLAY NET Command

4. Issue the VTAM command VARY NET,TERM SID= for each of the VTAM SIDs
associated with the DB2 thread. For more information about VTAM commands,
see VTAM for MVS/ESA Operation.

Monitoring and Controlling Stored Procedures
| Stored procedures are user-written SQL programs that run at a DB2 server. Stored
| procedures can run in DB2-established or WLM-established address spaces. To
| monitor and control stored procedures in WLM-established address spaces, you
| might need to use WLM commands, rather than DB2 commands. When you
| execute a WLM command on an MVS system that is part of a Sysplex, the scope
| of that command is the Sysplex.

| This section discusses the following topics:

| � “Displaying Information About Stored Procedures and Their Environment”
| � “Refreshing the Stored Procedures Environment” on page 4-74
| � “Obtaining Diagnostic Information About Stored Procedures” on page 4-75

For more information about stored procedures, see Section 6 of Application
Programming and SQL Guide .

| Displaying Information About Stored Procedures and Their
| Environment
| Use the DB2 commands DISPLAY PROCEDURE and DISPLAY THREAD to obtain
| information about a stored procedure while it is running. In the WLM-established
| environment, use the MVS command DISPLAY WLM to obtain information about
| the application environment in which a stored procedure runs.

| The DB2 Command DISPLAY PROCEDURE: This command can display the
| following information about stored procedures:

| � Status (started, stop-queue, stop-reject, stop-abend)

| � Number of requests currently running and queued

4-72 Administration Guide

| � Maximum number of threads running a stored procedure load module and
| queued

| � Count of timed-out SQL CALLs

| The following command displays information about all stored procedures that have
| been accessed by DB2 applications:

| -DISPLAY PROCEDURE

| DSNX94ðI csect - DISPLAY PROCEDURE REPORT FOLLOWS-

| PROCEDURE MODULE STATUS ACTIVE MAXACT QUEUED MAXQUE TIMEOUT

| USERPRC1 MODULE1 STARTED ð 1 ð 1 ð

| USERPRC2 MODULE2 STOPQUE ð 2 5 5 3

| USERPRC3 MODULE3 STARTED 2 2 ð 6 ð

| USERPRC4 MODULE4 STOPREJ ð 1 ð 1 ð

| DISPLAY PROCEDURE REPORT COMPLETE

| You can also display information about specific stored procedures.

| The DB2 Command DISPLAY THREAD: This command tells whether:

| � a thread is waiting for a stored procedure to be scheduled
| � a thread is executing within a stored procedure

| Here is an example of DISPLAY THREAD output that shows a thread that is
| executing a stored procedure:

| DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

| DSNV4ð2I - ACTIVE THREADS - 176

| NAME ST A REQ ID AUTHID PLAN ASID TOKEN

| BATCH SP 3 RUNAPPL SYSADM PLð1APð1 ðð1D 43

| V429 CALLING PROCEDURE=PROC1, LOAD MODULE=LMPROC1

| PROC=V51ASPAS, ASID=ðð29, WLM_ENV=

| DISPLAY ACTIVE REPORT COMPLETE

| DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

| The SP status indicates that the thread is executing within the stored procedure. An
| SW status indicates that the thread is waiting for the stored procedure to be
| scheduled.

| The MVS Command DISPLAY WLM: Use the command DISPLAY WLM to
| determine the status of an application environment in which a stored procedure
| runs. The output from DISPLAY WLM lets you determine whether a stored
| procedure can be scheduled in an application environment.

| For example, you can issue this command to determine the status of application
| environment WLMENV1:

| D WLM,APPLENV=WLMENV1

| You might get results like this:

| IWMð29I 15.22.22 WLM DISPLAY

| APPLICATION ENVIRONMENT NAME STATE STATE DATA

| WLMENV1 AVAILABLE

| ATTRIBUTES: PROC=V51AWLM1 SUBSYSTEM TYPE: DB2

| The output tells you that WLMENV1 is available, so WLM can schedule stored
| procedures for execution in that environment.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-73

| Refreshing the Stored Procedures Environment
| Depending on what has changed in a stored procedures environment, you might
| need to perform one or more of these tasks:

| � Refresh the definition of a stored procedure.

| Do this when you change the definition of a stored procedure in catalog table
| SYSPROCEDURES.

| � Refresh Language Environment.

| Do this when someone has modified a load module for a stored procedure, and
| that load module is cached in a stored procedures address space. When you
| refresh Language Environment, the cached load module is purged. On the next
| invocation of the stored procedure, the new load module is loaded.

| � Restart a stored procedures address space.

| You might stop and then start a stored procedures address space because you
| need to make a change to the startup JCL for a stored procedures address
| space. You might need to start a stored procedures address space because
| the address space has abnormally terminated.

| To refresh the definition of a stored procedure in catalog table SYSPROCEDURES,
| issue the commands -STOP PROCEDURE and -START PROCEDURE. To validate
| the contents of one or more SYSPROCEDURES rows as you refresh them, specify:

| -START PROCEDURE(procedure-name)
| or

| -START PROCEDURE(partial-name\)

| When you use either of these forms of -START PROCEDURE, DB2 checks values
| in the corresponding rows of SYSPROCEDURES. If any rows contain invalid
| values, DB2 issues an error message, then looks for cached rows for
| procedure-name or partial-name*. If DB2 finds any cached rows, it uses the cached
| information to process stored procedure requests. See Chapter 2 of Command
| Reference for the complete syntax of -START PROCEDURE and -STOP
| PROCEDURE.

| The method that you use to perform these other tasks for stored procedures
| depends on whether you are using WLM-established or DB2-established address
| spaces.

| For DB2-Established Address Spaces: Use the DB2 commands -START
| PROCEDURE and -STOP PROCEDURE to perform all of these tasks.

| For WLM-Established Address Spaces:

| � If WLM is operating in goal mode:

| – Use the MVS command

| VARY WLM,APPLENV=name,REFRESH

| to refresh Language Environment when you need to load a new version of
| a stored procedure. name is the name of a WLM application environment
| associated with a group of stored procedures. This means that when you
| execute this command, you affect all stored procedures associated with the
| application environment.

| – Use the MVS command

4-74 Administration Guide

| VARY WLM,APPLENV=name,QUIESCE

| to stop all stored procedures address spaces associated with WLM
| application environment name.

| – Use the MVS command

| VARY WLM,APPLENV=name,RESUME

| to start all stored procedures address spaces associated with WLM
| application environment name.

| You also need to use the VARY WLM command with the RESUME option
| when WLM puts an application environment in the unavailable state. An
| application environment in which stored procedures run becomes
| unavailable when WLM detects 5 abnormal terminations within 10 minutes.
| When an application environment is in the unavailable state, WLM does not
| schedule stored procedures for execution in it.

| See OS/390 MVS Planning: Workload Management for more information on
| the command VARY WLM.

| � If WLM is operating in compatibility mode:

| – Use the MVS command

| CANCEL address-space-name

| to stop a WLM-established stored procedures address space.

| – Use the MVS command

| START address-space-name

| to start a WLM-established stored procedures address space.

| In compatibility mode, you must stop and start stored procedures address
| spaces when you need to refresh Language Environment.

Obtaining Diagnostic Information About Stored Procedures
If the startup procedures for your stored procedures address spaces contain a DD
statement for CEEDUMP, Language Environment writes a small diagnostic dump to
CEEDUMP when a stored procedure terminates abnormally. The output waits to
print until the stored procedures address space terminates.

| You can obtain the dump information by stopping the stored procedures address
| space in which the stored procedure is running. See “Refreshing the Stored
| Procedures Environment” on page 4-74 for information on how to stop and start
| stored procedures address spaces in the DB2-established and WLM-established
| environments.

Using NetView to Monitor Errors in the Network
The NetView program lets you have a single focal point from which to view
problems in the network. DDF sends an alert to NetView when a remote location is
either involved in the cause of the failure or affected by the failure. The following
major events generate alerts:

 � Conversation failures
� Distributed security failures

 � DDF abends
� DDM protocol errors
� Database access thread abends

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-75

� Distributed allied thread abends.

Alerts for DDF are displayed on NetView's Hardware Monitor panels and are logged
in the hardware monitor database. Figure 75 is an example of the Alerts-Static
panel in NetView.

à ð
 N E T V I E W SESSION DOMAIN: CNMð1 OPER2 11/ð3/89 1ð:29:55

 NPDA-3ðB \ ALERTS-STATIC \

 SEL# DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE

 (1) CNMð1 AS \RQST ð9:58 SOFTWARE PROGRAM ERROR:COMM/REMOTE NODE

 (2) CNMð1 AR \SRVR ð9:58 SOFTWARE PROGRAM ERROR:SNA COMMUNICATIONS

 (3) CNMð1 P13ðð8 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (4) CNMð1 P13ðð8 CTRL 12:11 RLSD OFF DETECTED:OUTBOUND LINE

 (5) CNMð1 P13ðð8 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (6) CNMð1 P13ðð8 CTRL 12:11 LINK ERROR:INBOUND LINE +

 (7) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (8) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (9) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:INBOUND LINE +

 (1ð) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (11) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (12) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (13) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (14) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

 (15) CNMð1 P13ðð8 CTRL 12:1ð LINK ERROR:REMOTE DCE INTERFACE CABLE +

PRESS ENTER KEY TO VIEW ALERTS-DYNAMIC OR ENTER A TO VIEW ALERTS-HISTORY

ENTER SEL# (ACTION),OR SEL# PLUS M (MOST RECENT), P (PROBLEM), DEL (DELETE)

á ñ

Figure 75. Alerts-Static Panel in NetView. DDF errors are denoted by the resource name
AS (application server) and AR (application requester). For DB2-only connections, the
resource names would be RS (server) and RQ (requester).

To see the recommended action for solving a particular problem, enter the selection
number, then press ENTER. This brings up the Recommended Action for Selected
Event panel shown in Figure 76.

à ð
 N E T V I E W SESSION DOMAIN: CNMð1 OPER2 11/ð3/89 1ð:3ð:ð6

 NPDA-45A \ RECOMMENDED ACTION FOR SELECTED EVENT \ PAGE 1 OF 1

 CNMð1 AR .A/ AS .B/
 +--------+ +--------+

 DOMAIN | RQST |---| SRVR |

 +--------+ +--------+

 USER CAUSED - NONE

 INSTALL CAUSED - NONE

 FAILURE CAUSED - SNA COMMUNICATIONS ERROR:

 RCPRI=ððð8 RCSEC=ððð1 .A/
FAILURE OCCURRED ON RELATIONAL DATA BASE USIBMSTODB21

ACTIONS - Iðð8 - PERFORM PROBLEM DETERMINATION PROCEDURE FOR REASON

 CODE .C/ððD31ð29 .B/
I168 - FOR RELATIONAL DATA BASE USIBMSTODB22

REPORT THE FOLLOWING LOGICAL UNIT OF WORK IDENTIFIER

 DB2NET.LUNDð.A1283FFBð476.ððð1

 ENTER DM (DETAIL MENU) OR D (EVENT DETAIL)

á ñ

Figure 76. Recommended Action for Selected Event Panel in NetView. In this example, the
AR (USIBMSTODB21) is reporting the problem, which is affecting the AS (USIBMSTODB22).

4-76 Administration Guide

Figure Label Description

.A/ The system reporting the error. The system reporting the error is always on the
left side of the panel. That system's name appears first in the messages.
Depending on who is reporting the error, either the LUNAME or the location
name is used.

.B/ The system affected by the error. The system affected by the error is always
displayed to the right of the system reporting the error. The affected system's
name appears second in the messages. Depending on what type of system is
reporting the error, either the LUNAME or the location name is used.

If no other system is affected by the error, then this system will not appear on
the panel.

.C/ DB2 reason code. For information about DB2 reason codes, see Section 4 of
Messages and Codes. For diagnostic information, see Section 4 of Diagnosis
Guide and Reference .

For more information about using NetView, see NetView User's Guide.

 Stopping DDF
General-use Programming Interface

You need SYSOPR authority or higher to stop the distributed data facility. Use one
of the following commands:

-STOP DDF MODE (QUIESCE)

-STOP DDF MODE (FORCE)

Use the QUIESCE option whenever possible; it is the default. With QUIESCE, the
| STOP DDF command does not complete until all VTAM or TCP/IP requests have
| completed. In this case, no resynchronization work is necessary when you restart

DDF. If there are indoubt units of work that require resynchronization, the
QUIESCE option produces message DSNL035I. Use the FORCE option only when
you must stop DDF quickly. Restart times are longer if you use FORCE.

When DDF is stopped with the FORCE option, and DDF has indoubt thread
responsibilities with remote partners, one or both of messages DSNL432I and
DSNL433I is generated.

DSNL432I shows the number of threads that DDF has coordination responsibility
over with remote participants who could have indoubt threads. At these participants,
database resources that are unavailable because of the indoubt threads remain
unavailable until DDF is started and resolution occurs.

DSNL433I shows the number of threads that are indoubt locally and need
resolution from remote coordinators. At the DDF location, database resources are
unavailable because the indoubt threads remain unavailable until DDF is started
and resolution occurs.

| To force the completion of outstanding VTAM or TCP/IP requests, use the FORCE
option, which cancels the threads associated with distributed requests.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-77

When the FORCE option is specified with STOP DDF, database access threads in
the prepared state that are waiting for the commit or abort decision from the
coordinator are logically converted to the indoubt state. The conversation with the
coordinator is terminated. If the thread is also a coordinator of downstream
participants, these conversations are terminated. Automatic indoubt resolution is
initiated when DDF is restarted. See “Resolving Indoubt Units of Recovery” on
page 4-113 for more information on this topic.

The STOP DDF command causes the following messages to appear:

DSNLðð5I - DDF IS STOPPING

DSNLðð6I - DDF STOP COMPLETE

If the distributed data facility has already been stopped, the STOP DDF command
fails and message DSNL002I - DDF IS ALREADY STOPPED appears.

Stopping DDF using VTAM Commands: Another way to force DDF to stop is to
issue the VTAM VARY NET,INACT command. This command makes VTAM
unavailable and terminates DDF. VTAM forces the completion of any outstanding
VTAM requests immediately.

The syntax for the command is as follows:

VARY NET,INACT,ID=db2lu,FORCE

where db2lu is the VTAM LU name for the local DB2 system.

When DDF has stopped, the following command must be issued before -START
DDF can be attempted:

VARY NET,ACT,ID=db2lu

End of General-use Programming Interface

 Controlling Traces
These traces can be used for problem determination:

 DB2 trace
IMS attachment facility trace

 CICS trace
Three TSO attachment facility traces
CAF trace stream

| OS/390 RRS trace stream
MVS component trace used for IRLM.

General-use Programming Interface

Controlling the DB2 Trace
DB2 trace allows you to trace and record subsystem data and events. There are
five different types of trace. For classes of events traced by each type see the
description of the START TRACE command in Chapter 2 of Command Reference .
For more information about the trace output produced, see “Appendix D.
Interpreting DB2 Trace Output” on page X-107. In brief, DB2 records the following
types of data:

4-78 Administration Guide

Statistics Data that allows you to conduct DB2 capacity planning and to tune
the entire set of DB2 programs.

Accounting Data that allows you to assign DB2 costs to individual authorization
IDs and to tune individual programs.

Performance Data about subsystem events, which can be used to do program,
resource, user, and subsystem-related tuning.

Audit Data that can be used to monitor DB2 security and access to data.

Monitor Data that is available for use by DB2 monitor application programs.

DB2 provides commands for controlling the collection of this data. To use the trace
commands you must have one of the following types of authority:

� SYSADM or SYSOPR authority
� Authorization to issue start and stop trace commands (the TRACE privilege)
� Authorization to issue the display trace command (the DISPLAY privilege).

The trace commands include:

START TRACE Invokes one or more different types of trace

DISPLAY TRACE Displays the trace options that are in effect

STOP TRACE Stops any trace that was started by either the START TRACE
command or the parameters specified when installing or
migrating

MODIFY TRACE Changes the trace events (IFCIDs) being traced for a
specified active trace.

Several parameters can be specified to further qualify the scope of a trace. Specific
events within a trace type can be traced as well as events within specific DB2
plans, authorization IDs, resource manager IDs and location. The destination to
which trace data is sent can also be controlled. For a discussion of trace
commands, see Chapter 2 of Command Reference.

When you install DB2, you can request that any trace type and class start
automatically when DB2 starts. For information on starting traces automatically, see
Section 2 of Installation Guide.

End of General-use Programming Interface

Diagnostic Traces for the Attachment Facilities
The following trace facilities are for diagnostic purposes only:

� IMS provides a trace facility that shows the flow of requests across the
connections from the control and dependent regions to DB2. The trace is
recorded on the IMS log if the appropriate options are specified, and then it is
printed with DFSERA10 plus a formatting exit module. For more information
about this trace facility, see IMS/ESA Utilities Reference: System.

In addition, the IMS attachment facility of DB2 provides an internal wrap-around
trace table that is always active. When certain unusual error conditions occur,
these trace entries are externalized on the IMS log.

� You can use the CICS trace facility to trace the CICS attachment facility.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-79

| Use the transaction CETR to control the CICS trace facility. CETR gives you a
| series of menus that you can use to set CICS trace options. For CICS 4.1 and
| later, to trace the CICS attachment facility, set these values in the Component
| Trace Options panel:

| – For CICS 4.1, specify the value 2 in the FC field.
| – For later releases, specify the value 2 in the RI field.

For information about using the CETR transaction to control CICS tracing, see
CICS/ESA CICS-Supplied Transactions.

� The TSO attachment facility provides three tracing mechanisms:

The DSN trace stream
The CLIST trace facility
The SPUFI trace stream.

� The call attachment facility trace stream uses the same ddname as the TSO
DSN trace stream, but is independent of TSO.

| � The RRSAF trace stream uses the same ddname as the TSO DSN trace
| stream, but is independent of TSO. An RRSAF internal trace will be included in
| any ABEND dump produced by RRSAF. This tracing facility provides a history
| of RRSAF usage which can aid in diagnosing errors in RRSAF.

Diagnostic Trace for the IRLM
The following MVS commands control diagnostic traces for the IRLM:

MODIFY irlmproc,SET,TRACE
Sets dynamically the maximum number of trace buffers for each trace type.
This value is used only when the external component trace writer is not
activated.

MODIFY irlmproc,STATUS,TRACE
Displays the status of traces and the number of trace buffers used for each
trace type. Also displays whether or not the external component trace writer is
active for the trace.

START irlmproc,TRACE=YES
Captures traces in wrap-around IRLM buffers at IRLM startup.

TRACE CT
Starts, stops, or modifies a diagnostic trace for IRLM. The TRACE CT command
does not know about traces that are started automatically during IRLM startup.

Recommendations:

� Do not use the external component trace writer to write traces to the data set.

� Activate all traces during IRLM startup. Use the command START
irlmproc,TRACE=YES to activate all traces.

See Chapter 2 of Command Reference for detailed information.

4-80 Administration Guide

Controlling the Resource Limit Facility (Governor)

General-use Programming Interface

The governor allows the system administrator to limit the amount of time permitted
for the execution of the SELECT, UPDATE, DELETE, and INSERT dynamic SQL
statements.

DB2 provides these commands for controlling the governor:

START RLIMIT Starts the governor and identifies a resource limit specification
table. You can also use START RLIMIT to switch resource
limit specification tables.

DISPLAY RLIMIT Displays the current status of the governor. If the governor
has been started, it also identifies the resource limit
specification table.

STOP RLIMIT Stops the governor and removes any set limits.

The limits are defined in resource limit specification tables and can vary for different
users. One resource limit specification table is used for each invocation of the
governor and is identified on the START RLIMIT command.

See “Resource Limit Facility (Governor)” on page 5-76 for more information about
the governor.

End of General-use Programming Interface

When you install DB2, you can request that the governor start automatically when
DB2 starts. For information on starting the governor automatically, see Section 2 of
Installation Guide.

 Chapter 4-2. Monitoring and Controlling DB2 and Its Connections 4-81

4-82 Administration Guide

Chapter 4-3. Managing the Log and the Bootstrap Data Set

The DB2 log registers data changes and significant events as they occur. The
bootstrap data set (BSDS) is a repository of information about the data sets that
contain the log.

DB2 writes each log record to a DASD data set called the active log. When the
active log is full, DB2 copies its contents to a DASD or tape data set called the
archive log. That process is called off-loading. This chapter describes:

“How Database Changes Are Made”
“Establishing the Logging Environment” on page 4-84
“Managing the Bootstrap Data Set (BSDS)” on page 4-92
“Discarding Archive Log Records” on page 4-94

For information about the physical and logical records that make up the log, see
“Appendix C. Reading Log Records” on page X-81. That appendix also contains
information about how to write a program to read log records.

How Database Changes Are Made
Before you can fully understand how logging works, you need to be familiar with
how database changes are made to ensure consistency. In this section, we discuss
units of recovery and rollbacks.

Units of Recovery
A unit of recovery is the work, done by a single DB2 DBMS for an application, that
changes DB2 data from one point of consistency to another. A point of consistency
(also, sync point or commit point) is a time when all recoverable data that an
application program accesses is consistent with other data. (For an explanation of
maintaining consistency between DB2 and another subsystem such as IMS or
CICS see “Consistency with Other Systems” on page 4-109.)

A unit of recovery begins with the first change to the data after the beginning of the
job or following the last point of consistency and ends at a later point of
consistency. An example of units of recovery within an application program is
shown in Figure 77.

 Application Process

 ┌───┐

│ Unit of Recovery │

 │ ┌──┐ │

│ │ SQL transaction 1 SQL transaction 2 │ │

 │ │ ┌───────────────┐ ┌───────────────┐ │ │

(Time Line) 6 6 6 6 6 6 6 6

──X────────────────────5

 & & & & & & &

 │ │ │ │ │ │ │

Application─┘ │ │ │ │ │ └──── Application

process SQLT1 SQLT1 SQLT2 SQLT2│ process ends

begins begins ends begins ends │

 └── COMMIT

 (Point of

 Consistency)

Figure 77. A unit of recovery within an application process

 Copyright IBM Corp. 1982, 1997 4-83

In this example, the application process makes changes to databases at SQL
transaction 1 and 2. The application process can include a number of units of
recovery or just one, but any complete unit of recovery ends with a commit point.

For example, a bank transaction might transfer funds from account A to account B.
First, the program subtracts the amount from account A. Next, it adds the amount
to account B. After subtracting the amount from account A, the two accounts are
inconsistent and DB2 can not commit. Not until the amount is added to account B
are they consistent again. When both steps are complete, the program can
announce a point of consistency and thereby make the changes visible to other
application programs.

Normal termination of an application program automatically causes a point of
consistency. The SQL COMMIT statement causes a point of consistency during
program execution under TSO. A sync point causes a point of consistency in CICS
and IMS programs.

Rolling Back Work
If failure occurs within a unit of recovery, DB2 backs out any changes to data,
returning the data to its state at the start of the unit of recovery; that is, DB2
undoes the work. The events are shown in Figure 78. The SQL ROLLBACK
statement, and deadlocks and timeouts (reported as SQLCODE -911, SQLSTATE
40001) cause the same events.

Point of New point of

 consistency consistency

 │ │

│%─────────────One unit of recovery───────────5│

 6 6

 ──5

Time Line Database updates Back out updates

 ──5

 & & &

 │ │ │

Begin unit of Begin Data is returned to

 recovery ROLLBACK its initial state;

end unit of recovery

Figure 78. Unit of Recovery (ROLLBACK)

Establishing the Logging Environment
The DB2 logging environment is established by using installation panels to specify
options, such as whether to have dual active logs (strongly recommended), what
media to use for archive log volumes, and how many log buffers to have. For
details of the installation process, see Section 2 of Installation Guide .

Creation of Log Records
The process of logging is shown schematically in Figure 79 on page 4-85. Log
records typically go through the following cycle:

1. DB2 registers changes to data and significant events in recovery log records.

2. DB2 processes recovery log records and breaks them into segments, if
necessary.

4-84 Administration Guide

3. Log records are placed sequentially in output log buffers, which are formatted
as VSAM control intervals (CIs). Each log record is identified by a continuously
increasing RBA in the range 0 to 248-1, where 248 represents 2 to the 48th
power. (In a data sharing environment, a log record sequence number (LRSN)
is used to identify log records. See Data Sharing: Planning and Administration
for more information.)

4. The CIs are written to a set of predefined DASD active log data sets, which are
used sequentially and recycled.

5. As each active log data set becomes full, its contents are automatically
off-loaded to a new archive log data set.

 ┌────────────────────────┐

DB2 registers events │ Recovery log records │ 1

in recovery log records │ │

 └───────────┬────────────┘

 6

 ┌────────────────────────┐

DB2 processes the │ Log record │ 2

recovery log records │ processing │

 └───────────┬────────────┘

 6

Output log buffers ┌───┬──────────────────────┬───┐

hold recovery log records │ │ Output log buffers │ │ 3

waiting to be written │ │ │ │

to the active log └───┴──────────┬───────────┴───┘

 6

The active log holds ┌───┬──────────────────────────┬───┐

records that have │ │ Active log data sets │ │ 4

been written but not │ │ │ │

yet archived └───┴────────────┬─────────────┴───┘

 6

The archive log ┌───┬──────────────────────────────┬───┐

holds records that │ │ Archive log data sets │ │ 5

have been archived │ │ │ │

 └───┴──────────────────────────────┴───┘

Figure 79. The Logging Process

If you change or create data that is compressed, the data logged is also
compressed. Changes to compressed rows like inserts, updates, and deletes are
also logged as compressed data.

Retrieval of Log Records
Log records are retrieved through the following events:

1. A log record is requested using its RBA.

2. DB2 searches for the log record in the locations listed below, in the order
given:

a. The log buffers.

b. The active logs. The bootstrap data set registers which log RBAs apply to
each active or archive log data set. If the record is in an active log, DB2
dynamically acquires a buffer, reads one or more CIs, and returns one
record for each request.

c. The archive logs. DB2 determines which archive volume contains the CIs,
dynamically allocates the archive volume, acquires a buffer, and reads the
CIs.

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-85

Writing the Active Log
The log buffers are written to an active log data set when they become full, when
the write threshold is reached (as specified on the DSNTIPL panel), or, more often,
when the DB2 subsystem forces the log buffer to be written (such as, at commit
time). In the last case, the same control interval can be written several times to the
same location. The use of dual active logs increases the reliability of recovery.

When DB2 is initialized, the active log data sets named in the BSDS are
dynamically allocated for exclusive use by DB2 and remain allocated exclusively to
DB2 (the data sets were allocated as DISP=OLD) until DB2 terminates. Those
active log data sets cannot be replaced, nor can new ones be added, without
terminating and restarting DB2. The size and number of log data sets is indicated
by what was specified by installation panel DSNTIPL.

Writing the Archive Log (Off-Loading)
The process of copying active logs to archive logs is called off-loading. The relation
of off-loading to other logging events is shown schematically in Figure 80.

┌──────────────┐ ┌──────────────┐

│ Write to │ │ Triggering │

│ active log ├─────5│ event │

└──────────────┘ └──────┬───────┘

 6

 ┌──────────────┐

│ Off─load │

 │ process │

 └──────┬───────┘ ┌──────────────┐

 │ │ Write to │

├─────────────5│ archive log │

 │ └──────────────┘

 │

 │ ┌──────────────┐

 │ │ Record on │

└─────────────5│ BSDS │

 └──────────────┘

Figure 80. Off-Load Process

 Triggering Off-Load
An off-load of an active log to an archive log can be triggered by several events.
The most common are when:

� An active log data set is full
� Starting DB2 and an active log data set is full
� The command ARCHIVE LOG is issued.

Off-load is also triggered by two uncommon events:

� An error occurring while writing to an active log data set. The data set is
truncated before the point of failure, and the record that failed to write becomes
the first record of the next data set. Off-load is triggered for the truncated data
set as in normal end-of-file. If there are dual active logs, both copies are
truncated so the two copies remain synchronized.

� Filling of the last unarchived active log data set. Message DSNJ110E is issued,
stating the percentage of its capacity in use. If all active logs become full, DB2
stops processing until off-loading occurs and issues this message:

DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

4-86 Administration Guide

The Off-Load Process
During the process, DB2 determines which data set to off-load. Using the last log
RBA off-loaded, as registered in the BSDS, DB2 calculates the log RBA at which to
start. DB2 also determines the log RBA at which to end, from the RBA of the last
log record in the data set, and registers that RBA in the BSDS.

When all active logs become full, the DB2 subsystem runs an off-load and halts
processing until the off-load is completed. If the off-load processing fails when the
active logs are full, then DB2 cannot continue doing any work that requires writing
to the log. For additional information, see “Active Log Failure” on page 4-171.

When an active log is ready to be off-loaded, a request can be sent to the MVS
console operator to mount a tape or prepare a DASD unit. The value of the field
WRITE TO OPER of the DSNTIPA installation panel determines whether the
request is received. If the value is YES, the request is preceded by a WTOR
(message number DSNJ008E) informing the operator to prepare an archive log
data set for allocating.

The operator need not respond to message DSNJ008E immediately. However,
delaying the response delays the off-load process. It does not affect DB2
performance unless the operator delays response for so long that DB2 runs out of
active logs.

The operator can respond by canceling the off-load. In that case, if the allocation is
for the first copy of dual archive data sets, the off-load is merely delayed until the
next active log data set becomes full. If the allocation is for the second copy, the
archive process switches to single copy mode, but for the one data set only.

Messages during Off-load: The following messages are sent to the MVS console
by DB2 and the off-load process. With the exception of the DSNJ139I message,
these messages can be used to find the RBA ranges in the various log data sets.

� The following message appears during DB2 initialization when the current
active log data set is found, and after a data set switch. During initialization, the
STARTRBA value in the message does not refer to the beginning of the data
set, but to the position in the log where logging will begin.

DSNJðð1I - csect-name CURRENT COPY n ACTIVE LOG DATA SET IS
 DSNAME=..., STARTRBA=..., ENDRBA=...

� The following message appears when an active data set is full:

DSNJðð2I - FULL ACTIVE LOG DATA SET DSNAME=...,

 STARTRBA=..., ENDRBA=...

� The following message appears when off-load reaches end-of-volume or
end-of-data-set in an archive log data set:

| Non-data sharing version is:

| DSNJðð3I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

| STARTTIME=..., ENDTIME=..., UNIT=..., COPYnVOL=...,

| VOLSPAN=..., CATLG=...

| Data sharing version is:

| DSNJðð3I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

| STARTLRSN=..., ENDLRSN=..., UNIT=..., COPYnVOL=...,

| VOLSPAN=..., CATLG=...

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-87

� The following message appears when one data set of the next pair of active
logs is not available because of a delay in off-loading, and logging continues on
one copy only:

DSNJðð4I - ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,
 ENDRBA=...

� The following message appears when dual active logging resumes after logging
has been carried on with one copy only:

DSNJðð5I - ACTIVE LOG COPY n IS ACTIVE, LOG IN DUAL MODE,
 STARTRBA=...

� The following message indicates that the off-load task has ended:

DSNJ139I LOG OFFLOAD TASK ENDED

Interruptions and Errors while Off-loading: Here is how DB2 handles the
following interruptions in the off-loading process:

� The command STOP DB2 does not take effect until off-loading is finished.

� A DB2 failure during off-load causes off-load to begin again from the previous
start RBA when DB2 is restarted.

� Off-load handling of read I/O errors on the active log is described under “Active
Log Failure” on page 4-171, or write I/O errors on the archive log, under
“Archive Log Failure” on page 4-175.

� An unknown problem that causes the off-load task to “hang” means that DB2
cannot continue processing the log. This problem might be resolved by retrying
the offload, which you can do by using the option CANCEL OFFLOAD of the
command ARCHIVE LOG, described in 4-90.

The Command ARCHIVE LOG
General-use Programming Interface

A properly authorized operator can archive the current DB2 active log data sets,
whenever required, by issuing the ARCHIVE LOG command. Using ARCHIVE LOG
can help with diagnosis by allowing you to quickly off-load the active log to the
archive log where you can use DSN1LOGP to further analyze the problem.

To issue this command, you must have either SYSADM authority, or have been
granted the ARCHIVE privilege.

-ARCHIVE LOG

When you issue the above command, DB2 truncates the current active log data
sets, then runs an asynchronous off-load, and updates the BSDS with a record of
the off-load. The RBA that is recorded in the BSDS is the beginning of the last
complete log record written in the active log data set being truncated.

You could use the ARCHIVE LOG command as follows to capture a point of
consistency for the MSTR01 and XUSR17 databases:

-STOP DATABASE (MSTRð1,XUSR17)

-ARCHIVE LOG

-START DATABASE (MSTRð1,XUSR17)

4-88 Administration Guide

In this simple example, the STOP command stops activity for the databases before
archiving the log.

Quiescing Activity before Off-Loading: Another method of ensuring that activity
has stopped before the log is archived is the MODE(QUIESCE) option of ARCHIVE
LOG. With this option, DB2 users are quiesced after a commit point, and the
resulting point of consistency is captured in the current active log before it is
off-loaded. Unlike the QUIESCE utility, ARCHIVE LOG MODE(QUIESCE) does not
force all changed buffers to be written to DASD and does not record the log RBA in
SYSIBM.SYSCOPY. It does record the log RBA in the boot strap data set.

Consider using MODE(QUIESCE) when planning for offsite recovery. It creates a
system-wide point of consistency, which can minimize the number of data
inconsistencies when the archive log is used with the most current image copy
during recovery.

| In a data sharing group, ARCHIVE LOG MODE(QUIESCE) might result in a delay
| before activity on all members has stopped. If this delay is unacceptable to you,
| consider using ARCHIVE LOG SCOPE(GROUP) instead. This command causes
| truncation and off-load of the logs for each active member of a data sharing group.
| Although the resulting archive log data sets do not reflect a point of consistency, all
| the archive logs are made at nearly the same time and have similar LRSN values
| in their last log records. When you use this set of archive logs to recover the data
| sharing group, you can use the ENDLRSN option in the CRESTART statement of
| the change log inventory utility (DSNJU003) to truncate all the logs in the group to
| the same point in time. See Data Sharing: Planning and Administration for more
| information.

The MODE(QUIESCE) option suspends all new update activity on DB2 up to the
maximum period of time specified on the installation panel DSNTIPA, described in
Section 2 of Installation Guide. If the time needed to quiesce is less than the time
specified, then the command completes successfully; otherwise, the command fails
when the time period expires. This time amount can be overridden, when you issue
the command, by using the TIME option, as shown below.

-ARCHIVE LOG MODE(QUIESCE) TIME(6ð)

The above command allows for a quiesce period of up to 60 seconds before
archive log processing occurs.

 Attention

Use of this option during prime time, or when time is critical, can cause a
significant disruption in DB2 availability for all jobs and users that use DB2
resources.

By default, the command is processed asynchronously from the time you submit
the command. (To process the command synchronously with other DB2 commands
use the WAIT(YES) option with QUIESCE; then the MVS console is locked from
DB2 command input for the entire QUIESCE period.)

During the quiesce period:

� Jobs and users on DB2 are allowed to go through commit processing, but are
suspended if they try to update any DB2 resource after the commit.

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-89

� Jobs and users that only read data can be affected, since they can be waiting
for locks held by jobs or users that were suspended.

� New tasks can start, but they are not allowed to update data.

As shown in the following example, the DISPLAY THREAD output issues message
DSNV400I to indicate that a quiesce is in effect:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ððI - ARCHIVE LOG QUIESCE CURRENTLY ACTIVE

DSNV4ð2I - ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 BATCH T \ 2ð TEPJOB SYSADM DSNTEP3 ðð12 12

DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated
with the date and time that the active log data sets were truncated, and with the
last-written RBA in the current active log data sets. DB2 truncates the current active
log data sets, switches to the next available active log data sets, and issues
message DSNJ311E, stating that off-load started.

If updates cannot be quiesced before the quiesce period expires, DB2 issues
message DSNJ317I, and archive log processing terminates. The current active log
data sets are not truncated and not switched to the next available log data sets,
and off-load is not started.

Whether the quiesce was successful or not, all suspended users and jobs are then
resumed, and DB2 issues message DSNJ312I, stating that the quiesce is ended
and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active
log data set, the command is not processed, and DB2 issues this message:

DSNJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST
AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING WILL

 BE TERMINATED.

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in
progress, the new command is not processed, and DB2 issues this message:

DSNJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS.

Canceling Log Offloads: It is possible for the offload of an active log to be
suspended when something goes wrong with the off-load process, such as a
problem with allocation or tape mounting. If the active logs cannot be off-loaded,
DB2's active log data sets fill up and DB2 stops logging.

To avoid this problem, use the following command to cancel (and retry) an off-load:

-ARCHIVE LOG CANCEL OFFLOAD

When you enter the command, DB2 restarts the offload again, beginning with the
oldest active log data set and proceeding through all active log data sets that need
off-loading. If the off-load fails again, you must fix the problem that is causing the
failure before the command can work.

End of General-use Programming Interface

4-90 Administration Guide

Archive Log Data Sets
Archive log data sets can be placed on standard label tapes or DASD and can be
managed by DFSMShsm (Data Facility Hierarchical Storage Manager). They are
always written by QSAM. Archive logs on tape are read by BSAM; those on DASD
are read by BDAM. Each MVS logical record in an archive log data set is a VSAM
CI from the active log data set. The block size is a multiple of 4KB. (For more
information, see information about installation panel DSNTIPA in Section 2 of
Installation Guide.)

Output archive log data sets are dynamically allocated, with names chosen by DB2.
The data set name prefix, block size, unit name, and DASD sizes needed for
allocation are specified when DB2 is installed, and recorded in the DSNZPxxx
module. You can also choose, at installation time, to have DB2 add a date and time
to the archive log data set name. See installation panel DSNTIPH in Section 2 of
Installation Guide for more information.

It is not possible to specify specific volumes for new archive logs. If allocation
errors occur, off-loading is postponed until the next time off-loading is triggered.

Using Dual Archive Logging: If you specify dual archive logs at installation time,
each log CI retrieved from the active log is written to two archive log data sets. The
log records that are contained on a pair of dual archive log data sets are identical,
but end-of-volumes are not synchronized for multi-volume data sets.

Archiving to DASD offers faster recoverability but is more expensive than archiving
to tape. If you use dual logging, you can specify on installation panel DSNTIPA that
the primary copy of the archive log go to DASD and the secondary copy go to tape.

This feature increases recovery speed without using as much DASD, and the tape
can be used as a backup.

Archiving to Tape: If the unit name reflects a tape device, DB2 can extend to a
maximum of twenty volumes. DB2 passes a file sequence number of 1 on the
catalog request for the first file on the next volume. Though that might appear to be
an error in the integrated catalog facility catalog, it causes no problems in DB2
processing.

If you choose to off-load to tape, consider adjusting the size of your active log data
sets such that each set contains the amount of space that can be stored on a
nearly full tape volume. That minimizes tape handling and volume mounts and
maximizes the use of tape resources. However, such an adjustment is not always
necessary.

If you want the active log data set to fit on one tape volume, consider that a copy of
the BSDS is placed on the same tape volume as the copy of the active log data
set. Adjust the size of the active log data set downward to offset the space required
for the BSDS.

Archiving to DASD Volumes: All archive log data sets allocated on DASD must
be cataloged. If you choose to archive to DASD, then the field CATALOG DATA of
installation panel DSNTIPA must contain YES. If this field contains NO, and you
decide to place archive log data sets on DASD, you receive message DSNJ072E
each time an archive log data set is allocated, although the DB2 subsystem still
catalogs the data set.

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-91

If the unit name reflects DASD, the archive log data sets cannot extend to another
volume.

If you use DASD, make the primary space allocation (both quantity and block size)
large enough to contain all of the data coming from the active log data sets. That
minimizes the possibility of unwanted MVS B37 or E37 ABENDs during the off-load
process. Primary space allocation is set with the PRIMARY QUANTITY field of the
DSNTIPA installation panel.

Using SMS to Archive Log Data Sets: If you have DFSMS/MVS (Data Facility
Storage Management Subsystem) installed, it is possible to write an ACS user exit
filter for your archive log data sets. Such a filter, for example, can route your output
to a DASD data set, which in turn can be managed by DFSMS. Be careful using an
ACS filter in this manner with archive log data sets to be managed by SMS.
Because SMS requires DASD data sets to be cataloged, you must make sure the
field CATALOG DATA on installation panel DSNTIPA contains YES. Even if it does
not, message DSNJ072E is returned and the data set is forced to be cataloged by
DB2.

| DB2 uses the basic direct access method (BDAM) to read archive logs from DASD.
| DFSMS/MVS does not support reading of compressed data sets using BDAM. You
| should not, therefore, use DFSMS/MVS hardware compression on your archive log
| data sets.

| Insure that DFSMS/MVS does not alter the LRECL or BLKSIZE of the archive log
| data sets. Altering these attributes could result in read errors when DB2 attempts to
| access the log data.

Managing the Bootstrap Data Set (BSDS)
The BSDS is a VSAM key-sequenced data set that contains information about the
log data sets and the records those data sets include. It also contains information
about buffer pool attributes. The BSDS is defined with access method services
when DB2 is installed, and allocated by a DD statement in the DB2 startup
procedure. It is deallocated when DB2 terminates.

Normally, DB2 keeps duplicate copies of the BSDS. If an I/O error occurs, it
deallocates the failing copy and continues with a single BSDS. However, you can
restore the dual mode as follows:

1. Use access method services to rename or delete the failing BSDS.
2. Define a new BSDS with the same name as the deleted BSDS.
3. Give the DB2 command RECOVER BSDS to make a copy of the good BSDS

in the newly allocated data set.

The active logs are first registered in the BSDS by job DSNTIJID, when DB2 is
installed. They cannot be replaced, nor new ones added, without terminating and
restarting DB2.

Archive log data sets are dynamically allocated. When one is allocated, the data set
name is registered in the BSDS in separate entries for each volume on which the
archive log resides. The list of archive log data sets expands as archives are
added, and wraps around when a user-determined number of entries has been

4-92 Administration Guide

reached. The maximum number of entries is 1000 for single archive logging and
2000 for dual logging.

The inventory of archive log data sets can be managed by use of the change log
inventory utility (DSNJU003). For further information, see “Changing the BSDS Log
Inventory” on page 4-94.

A wide variety of tape management systems exist, along with the opportunity for
external manual overrides of retention periods. Because of that, DB2 does not have
an automated method to delete the archive log data sets from the BSDS inventory
of archive log data sets. Thus, the information about an archive log data set can be
in the BSDS long after the archive log data set has been scratched by a tape
management system following the expiration of the data set's retention period.

Conversely, the maximum number of archive log data sets could have been
exceeded, and the data from the BSDS dropped long before the data set has
reached its expiration date. For additional information, refer to “Deleting Archive
Log Data Sets or Tapes Automatically” on page 4-95.

If you specified at installation that archive log data sets are cataloged when
allocated, the BSDS points to the integrated catalog facility catalog for the
information needed for later allocations. Otherwise, the BSDS entries for each
volume register the volume serial number and unit information that is needed for
later allocation.

BSDS Copies with Archive Log Data Sets
Each time a new archive log data set is created, a copy of the BSDS is also
created. If the archive log is on tape, the BSDS is the first file on the first output
volume. If the archive log is on DASD, the BSDS copy is a separate file which
could reside on a separate volume.

For better off-load performance and space utilization, it is recommended that you
use the default archive block size of 28672. If required, this value can be changed
in the BLOCK SIZE field on installation panel DSNTIPA. The PRIMARY QUANTITY
and SECONDARY QUANTITY fields should also be adjusted to reflect any changes
in block size.

The data set names of the BSDS copy and the archive log are the same, except
that the first character of the last data set name qualifier in the BSDS name is B
instead of A, as in the example below:

Archive Log name DSNCAT.ARCHLOG1.A0000001
BSDS copy name DSNCAT.ARCHLOG1.B0000001

If there is a read error while copying the BSDS, the copy is not created. Message
DSNJ125I is issued, and the off-load to the new archive log data set continues
without the BSDS copy.

The utility DSNJU004, print log map, lists the information stored in the BSDS. For
instructions on using it, see Section 3 of Utility Guide and Reference.

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-93

Changing the BSDS Log Inventory
You do not have to take special steps to keep the BSDS updated with records of
logging events—DB2 does that automatically. But you might want to change the
BSDS if you:

� Add more active log data sets

� Copy active log data sets to newly allocated data sets, as when providing
larger active log allocations

� Move log data sets to other devices

� Recover a damaged BSDS

� Discard outdated archive log data sets

� Create or cancel control records for conditional restart

� Add to or change the DDF communication record.

You can change the BSDS by running the DB2 batch change log inventory
(DSNJU003) utility. This utility should not be run when DB2 is active. If it is run
when DB2 is active, inconsistent results can be obtained. For instructions on how to
use the change log inventory utility, see Section 3 of Utility Guide and Reference .

You can copy an active log data set using the access method services IDCAMS
REPRO statement. The copy can only be performed when DB2 is down, since DB2
allocates the active log data sets as exclusive (DISP=OLD) at DB2 startup. For
more information on the REPRO statement, see DFSMS/MVS: Access Method
Services for the Integrated Catalog and DFSMS/MVS: Access Method Services for
VSAM Catalogs.

Discarding Archive Log Records
You must keep enough log records to recover units of work and databases.

To recover units of recovery, you need log records at least until all current actions
are completed. If DB2 abends, restart requires all log records since the previous
checkpoint or the beginning of the oldest UR that was active at the abend,
whichever is first on the log.

To tell whether all units of recovery are complete, read the status counts in the DB2
restart messages (shown in “Starting DB2” on page 4-13). If all counts are zero, no
unit of recovery actions are pending. If there are indoubt units of recovery
remaining, identify and recover them by the methods described in “Chapter 4-2.
Monitoring and Controlling DB2 and Its Connections” on page 4-23.

To recover databases, you need log records and image copies of table spaces.
How long you keep log records depends, then, on how often you make those
image copies. “Chapter 4-6. Backing Up and Recovering Databases” on
page 4-123 gives suggestions about recovery cycles; the following sections
assume that you know what records you want to keep and describe only how to
delete the records you do not want.

4-94 Administration Guide

Deleting Archive Log Data Sets or Tapes Automatically
You can use a DASD or tape management system to delete archive log data sets
or tapes automatically. The length of the retention period (in days), which is passed
to the management system in the JCL parameter RETPD, is determined by the
RETENTION PERIOD field on the DSNTIPA installation panel, discussed further in
Section 2 of Installation Guide.

The default for the retention period keeps archive logs forever. If you use any other
retention period, it must be long enough to contain as many recovery cycles as you
plan for. For example, if your operating procedures call for a full image copy every
sixty days of the least-frequently-copied table space, and you want to keep two
complete image copy cycles on hand at all times, then you need an archive log
retention period of at least 120 days. For more than two cycles, you need a
correspondingly longer retention period.

If archive log data sets or tapes are deleted automatically, the operation does not
update the archive log data set inventory in the BSDS. If you wish, you can update
the BSDS with the change log inventory utility, as described in “Changing the
BSDS Log Inventory” on page 4-94. The update is not really necessary; it wastes
space in the BSDS to record old archive logs, but does no other harm as the
archive log data set inventory "wraps" and automatically deletes the oldest entries.
See “Managing the Bootstrap Data Set (BSDS)” on page 4-92 for more details.

Locating Archive Log Data Sets to Delete
You must keep all the logs since the most recent checkpoint of DB2, so that DB2
can restart. You also must keep all the logs for two or more complete image copy
cycles of your least-frequently-copied table space. What, then, can you discard?

You need an answer in terms of the log RBA ranges of the archive data sets. The
earliest log record you want is identified by a log RBA. You can discard any archive
log data sets that contain only records with log RBAs less than that.

The procedure that follows locates those data sets:

Step 1: Resolve Indoubt Units of Recovery: If DB2 is running with TSO, continue
with Find the Startup Log RBA on page 4-96. If DB2 is running with IMS, CICS, or
distributed data, the following procedure applies:

1. The period between one startup and the next must be free of any indoubt units
of recovery. Ensure that no DB2 activity is going on until you finish this
procedure. (You might plan this procedure for a non-prime shift, for minimum
impact on users.) To find out whether indoubt units exist, issue the DB2
command DISPLAY THREAD TYPE(INDOUBT). If there are none, skip to Find
the Startup Log RBA on page 4-96.

2. If there are one or more indoubt units of recovery, do one of the following:

� Start IMS or CICS, causing that subsystem to resolve the indoubt units of
recovery. If the thread is a distributed indoubt unit of recovery, restart the
distributed data facility (DDF) to resolve the unit of work. If DDF does not
start or cannot resolve the unit of work, use the command RECOVER
INDOUBT to resolve the unit of work.

� Issue the DB2 command RECOVER INDOUBT.

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-95

These topics, including making the proper commit or abort decision, are
covered in greater detail in “Resolving Indoubt Units of Recovery” on
page 4-113.

3. Reissue the command DISPLAY THREAD TYPE(INDOUBT) to ensure that the
indoubt units have been recovered. When none remain, continue with Find the
Startup Log RBA on page 4-96.

Step 2: Find the Startup Log RBA: Keep at least all log records with log RBAs
greater than the one given in this message, issued at restart:

DSNRðð3I RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx

If you suspended DB2 activity while performing step 1, you can restart it now.

Step 3: Find the Minimum Log RBA Needed: Suppose that you have determined
to keep some number of complete image copy cycles of your
least-frequently-copied table space. You now need to find the log RBA of the
earliest full image copy you want to keep.

1. If you have any table spaces so recently created that no full image copies of
them have ever been taken, take full image copies of them. If you do not take
image copies of them, and you discard the archive logs that log their creation,
DB2 can never recover them.

General-use Programming Interface

The following SQL statement lists table spaces that have no full image copy:

SELECT X.DBNAME, X.NAME, X.CREATOR, X.NTABLES, X.PARTITIONS

FROM SYSIBM.SYSTABLESPACE X

WHERE NOT EXISTS (SELECT \ FROM SYSIBM.SYSCOPY Y

WHERE X.NAME = Y.TSNAME

AND X.DBNAME = Y.DBNAME

AND Y.ICTYPE = 'F')

ORDER BY 1, 3, 2;

End of General-use Programming Interface

2. Issue the following SQL statement to find START_RBA values:

General-use Programming Interface

SELECT DBNAME, TSNAME, DSNUM, ICTYPE, ICDATE, HEX(START_RBA)

 FROM SYSIBM.SYSCOPY

ORDER BY DBNAME, TSNAME, DSNUM, ICDATE;

End of General-use Programming Interface

The statement lists all databases and table spaces within them, in ascending
order by date.

Find the START_RBA for the earliest full image copy (ICTYPE=F) that you
intend to keep. If your least-frequently-copied table space is partitioned, and
you take full image copies by partition, use the earliest date for all the
partitions.

4-96 Administration Guide

If you are going to discard records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX, note the date of the earliest image copy you want to
keep.

Step 4: Copy Catalog and Directory Tables: Take full image copies of the DB2
table spaces listed below, to ensure that copies of them are included in the range
of log records you will keep.

Step 5: Locate and Discard Archive Log Volumes: Now that you know the
minimum LOGRBA, from step 3, suppose that you want to find archive log volumes
that contain only log records earlier than that. Proceed as follows:

1. Execute the print log map utility to print the contents of the BSDS. For an
example of the output, see the description of print log map (DSNJU004) in
Section 3 of Utility Guide and Reference.

2. Find the sections of the output titled “ARCHIVE LOG COPY n DATA SETS.” (If
you use dual logging, there are two sections.) The columns labelled
STARTRBA and ENDRBA show the range of log RBAs contained in each
volume. Find the volumes (two, for dual logging) whose ranges include the
minimum log RBA you found in step 3; these are the earliest volumes you need
to keep.

If no volumes have an appropriate range, one of these cases applies:

� The minimum LOGRBA has not yet been archived, and you can discard all
archive log volumes.

� The list of archive log volumes in the BSDS wrapped around when the
number of volumes exceeded the number allowed by the RECORDING
MAX field of installation panel DSNTIPA. If the BSDS does not register an
archive log volume, it can never be used for recovery. Therefore, you
should consider adding information about existing volumes to the BSDS.
For instructions, see Section 3 of Utility Guide and Reference .

You should also consider increasing the value of MAXARCH. For
information, see information about installation panel DSNTIPA in Section 2
of Installation Guide .

3. Delete any archive log data set or volume (both copies, for dual logging) whose
ENDRBA value is less than the STARTRBA value of the earliest volume you
want to keep.

Because BSDS entries wrap around, the first few entries in the BSDS archive
log section might be more recent than the entries at the bottom. Look at the
combination of date and time to compare age. Do not assume you can discard

Database Name Table Space Names

DSNDB01 DBD01
SCT02
SPT01

SYSUTILX
SYSLGRNX

DSNDB06 SYSCOPY
SYSDBASE
SYSDBAUT
SYSGPAUT
SYSGROUP
SYSPKAGE

SYSPLAN
SYSSTATS
SYSSTR
SYSUSER
SYSVIEWS

 Chapter 4-3. Managing the Log and the Bootstrap Data Set 4-97

all entries above the entry for the archive log containing the minimum
LOGRBA.

Delete the data sets. If the archives are on tape, scratch the tapes; if they are
on DASD, run an MVS utility to delete each data set. Then, if you want the
BSDS to list only existing archive volumes, use the change log inventory utility
to delete entries for the discarded volumes; for an example, see Section 3 of
Utility Guide and Reference.

4-98 Administration Guide

Chapter 4-4. Restarting DB2 After Termination

This chapter tells what to expect when DB2 terminates normally or abnormally, and
how to start it again. The concepts are important background for “Chapter 4-5.
Maintaining Consistency Across Multiple Systems” on page 4-109 and “Chapter
4-6. Backing Up and Recovering Databases” on page 4-123. This chapter includes
the following topics:

 “Termination”
“Normal Restart and Recovery” on page 4-101
“Deferring Restart Processing” on page 4-105
“Restarting with Conditions” on page 4-107

“Chapter 4-5. Maintaining Consistency Across Multiple Systems” on page 4-109
describes additional considerations for a DB2 subsystem that must be kept
consistent with some other system. The term “object,” used throughout this chapter,
refers to any database, table space, or index space.

Restarting in a Data Sharing Environment: In a data sharing environment, restart
processing is expanded to handle the coordination of data recovery across more
than one DB2 subsystem. When certain critical resources are lost, restart includes
additional processing to recovery and rebuild those resources. This process is
called group restart, which is described in Chapter 6 of Data Sharing: Planning and
Administration.

 Termination
DB2 terminates normally in response to the command STOP DB2. If DB2 stops for
any other reason, the termination is considered abnormal.

 Normal Termination
In a normal termination, DB2 stops all activity in an orderly way. You can use either
STOP DB2 MODE (QUIESCE) or STOP DB2 MODE (FORCE). The effects are
given in Table 54.

You can use either command to prevent new applications from connecting to DB2.

When you give the command STOP DB2 MODE(QUIESCE), current threads can
run to completion, and new threads can be allocated to an application that is
running.

With IMS and CICS, STOP DB2 MODE(QUIESCE) allows a current thread to run
| only to the end of the unit of recovery, unless either of the following conditions are
| true:

Table 54. Termination using QUIESCE and FORCE

Thread type QUIESCE FORCE

Active threads Run to completion Roll back

New threads Permitted Not permitted

New connections Not permitted Not permitted

 Copyright IBM Corp. 1982, 1997 4-99

� There are open, held cursors.
� Special registers are not in their original state.

Before DB2 can come down, all held cursors must be closed and all special
registers must be in their original state, or the transaction must complete.

With CICS, QUIESCE mode brings down the CICS attachment facility, so an active
task will not necessarily run to completion.

| For example, assume that a CICS transaction opens no cursors declared WITH
| HOLD and modifies no special registers. The transaction does the following:

| EXEC SQL

| . ← -STOP DB2 MODE(QUIESCE) issued here.
| .| .| .

| SYNCPOINT
| .| .| .

| EXEC SQL ← This receives an AETA abend.

The thread is allowed only to run through the first SYNCPOINT.

When you give the command STOP DB2 MODE(FORCE), no new threads are
allocated, and work on existing threads is rolled back.

During shutdown, use the command DISPLAY THREAD to check its progress. If
shutdown is taking too long, you can issue STOP DB2 MODE (FORCE), but rolling
back work can take as much or more time as the completion of QUIESCE.

When stopping in either mode, the following steps occur:

1. Connections are ended.
2. DB2 ceases to accept commands.
3. DB2 disconnects from the IRLM.
4. The shutdown checkpoint is taken and the BSDS is updated.

A data object could be left in an inconsistent state, even after a shutdown with
mode QUIESCE, if it was made unavailable by the command STOP DATABASE, or
if DB2 recognized a problem with the object. MODE (QUIESCE) does not wait for
asynchronous tasks that are not associated with any thread to complete, before it
stops DB2. This can result in data commands such as STOP DATABASE and
START DATABASE having outstanding units of recovery when DB2 stops. These
will become inflight units of recovery when DB2 is restarted, then be returned to
their original states.

 Abends
An abend can leave data in an inconsistent state for any of the following reasons:

� Units of recovery might be interrupted before reaching a point of consistency.
� Committed data might not be written to external media.
� Uncommitted data might be written to external media.

4-100 Administration Guide

Normal Restart and Recovery
DB2 uses its recovery log and the bootstrap data set (BSDS) to determine what to
recover when restarting. The BSDS identifies the active and archive log data sets,
the location of the most recent DB2 checkpoint on the log, and the high-level
qualifier of the integrated catalog facility catalog name.

After DB2 is initialized, the restart process goes through four phases, which are
described in the following sections:

“Phase 1: Log Initialization”
“Phase 2: Current Status Rebuild” on page 4-102
“Phase 3: Forward Log Recovery” on page 4-103
“Phase 4: Backward Log Recovery” on page 4-104.

In the descriptions that follow, the terms “inflight,” “indoubt,” “in-commit,” and
“in-abort” refer to statuses of a unit of work that is coordinated between DB2 and
another system, such as CICS, IMS, or a remote DBMS. For definitions of those
terms, see “Maintaining Consistency After Termination or Failure” on page 4-111.

At the end of the fourth phase recovery is complete, a checkpoint is taken, and
committed changes are reflected in the data.

| Application programs that do not commit often enough cause long running units of
| recovery (URs). These long running URs might be inflight after a DB2 failure.
| Inflight URs can extend DB2 restart time. If your DB2 subsystem has the UR
| checkpoint option enabled, DB2 generates console message DSNR035I and trace
| records for IFCID 0313 to inform you about long running URs. The UR checkpoint
| option is enabled at installation time, through field UR CHECK FREQ on panel
| DSNTIPN. See Section 2 of Installation Guide for more information about enabling
| the UR checkpoint option.

For an example of the messages that are written to the DB2 console during restart
processing, see “Messages at Start” on page 4-14.

Phase 1: Log Initialization
During phase 1, DB2 attempts to locate the last log RBA written before termination.
Logging continues at the next log RBA after that. In phase 1, DB2:

1. Compares the high-level qualifier of the integrated catalog facility catalog name,
in the BSDS, with the corresponding qualifier of the name in the current
subsystem parameter module (DSNZPxxx).

� If they are equal, processing continues with step 2 on page 4-102.

� If they are not equal, DB2 terminates with this message:

DSNJ13ðI ICF CATALOG NAME IN BSDS

DOES NOT AGREE WITH DSNZPARM.

BSDS CATALOG NAME=aaaaa,
DSNZPARM CATALOG NAME=bbbbb

Without the check, the next DB2 session could conceivably update an
entirely different catalog and set of table spaces. If the check fails, you
presumably have the wrong parameter module. Start DB2 with the
command START DB2 PARM(module-name), and name the correct
module.

 Chapter 4-4. Restarting DB2 After Termination 4-101

2. Checks the consistency of the timestamps in the BSDS.

� If both copies of the BSDS are current, DB2 tests whether the two
timestamps are equal.

– If they are equal, processing continues with step 3.

– If they are not equal, DB2 issues message DSNJ120I and terminates.
That can happen when the two copies of the BSDS are maintained on
separate DASD volumes (as recommended) and one of the volumes is
restored while DB2 is stopped. DB2 detects the situation at restart.

To recover, copy the BSDS with the latest timestamp to the BSDS on
the restored volume. Also recover any active log data sets on the
restored volume, by copying the dual copy of the active log data sets
onto the restored volume. For more detailed instructions, see “BSDS
Failure” on page 4-177.

� If one copy of the BSDS was deallocated, and logging continued with a
single BSDS, a problem could arise. If both copies of the BSDS are
maintained on a single volume, and the volume was restored, or if both
BSDS copies were restored separately, DB2 might not detect the
restoration. In that case, log records not noted in the BSDS would be
unknown to the system.

3. Finds in the BSDS the log RBA of the last log record written before termination.

The highest RBA field (as shown in the output of the print log map utility) is
updated only when the following events occur:

� When DB2 is stopped normally (-STOP DB2)
� When active log writing is switched from one data set to another
� When DB2 has reached the end of the log output buffer. The size of this

buffer is determined by the OUTPUT BUFFER field of installation panel
DSNTIPL described in Section 2 of Installation Guide.

4. Scans the log forward, beginning at the log RBA of the most recent log record,
up to the last control interval (CI) written before termination.

5. Prepares to continue writing log records at the next CI on the log.

6. Issues message DSNJ001I, which identifies the log RBA at which logging
continues for the current DB2 session. That message signals the end of the log
initialization phase of restart.

Phase 2: Current Status Rebuild
During phase 2, DB2 determines the statuses of objects at the time of termination.
By the end of the phase, DB2 has determined whether any units of recovery were
interrupted by the termination. In phase 2, DB2:

1. Checks the BSDS to find the log RBA of the last complete checkpoint before
termination.

2. Processes the RESTART or DEFER option of the parameter module of the
START DB2 command if any exist. The default is always RESTART ALL.

3. Reads every log record from that checkpoint up to the end of the log (which
was located during phase 1), and identifies:

4-102 Administration Guide

� All exception conditions existing for each database and all image copy
information related to the DSNDB01.SYSUTILX, DSNDB01.DBD01, and
DSNDB06.SYSCOPY table spaces.

� All objects open at the time of termination, and how far back in the log to
go to reconstruct data pages that were not written to DASD. It is possible
for a unit of recovery to be declared complete before all database
modifications are written to DASD.

The number of log records written between one checkpoint and the next is set
when DB2 is installed; see the field CHECKPOINT FREQ of installation panel
DSNTIPN, described in Section 2 of Installation Guide.

4. Issues message DSNR004I, which summarizes the activity required at restart
for outstanding units of recovery.

5. Issues message DSNR007I if any outstanding units of recovery are discovered.
The message includes, for each outstanding unit of recovery, its connection
type, connection ID, correlation ID, authorization ID, plan name, status, log
RBA of the beginning of the unit of recovery (URID), and the date and time of
its creation.

During phase 2, no database changes are made, nor are any units of recovery
completed. DB2 determines what processing is required by phase 3 forward log
recovery (and phase 4 backward log recovery in the case of multiple systems)
before access to databases is allowed.

Phase 3: Forward Log Recovery
During phase 3, DB2 completes the processing for all committed changes and
database write operations. This includes making all database changes for each
indoubt unit of recovery, and locking the data to prevent access to it after restart.
DB2 executes these steps:

1. Detects whether a page set being recovered is at the same level ID as it was
when the page set was last closed. If it is not, DB2 issues message DSNB232I
and places the pages for that object on the logical page list (LPL). DB2 does
not restart that object. In this case, you must recover from the down level page
set using one of the methods described in “Recovery from Down-Level Page
Sets” on page 4-183.

2. Scans the log forward, beginning at the lowest (earliest) log RBA that is either
required for completion of database writes or is associated with the “Begin Unit
of Recovery” of indoubt units of recovery.

That log RBA is determined during phase 2. REDO log records for all units of
recovery are processed in this phase.

3. Uses the log RBA of the earliest potential redo log record for each object
(determined during phase 2). All earlier changes to the object have been
written to DASD; therefore, DB2 ignores their log records.

4. Reads the data or index page for each remaining redo log record. The page
header registers the log RBA of the record of the last change to the page.

� If the log RBA of the page header is greater than or equal to that of the
current log record, the logged change has already been made and written
to DASD, and the log record is ignored.

 Chapter 4-4. Restarting DB2 After Termination 4-103

� If the log RBA in the page header is less than that of the current log record,
the change has not been made; DB2 makes the change to the page in the
buffer pool.

5. Writes pages to DASD as the need for buffers demands it.

6. Marks the completion of each unit of recovery processed. If restart processing
terminates later, those units of recovery do not reappear in status lists.

7. Stops scanning at the current end of the log.

8. Writes to DASD all modified buffers not yet written.

9. Issues message DSNR005I, which summarizes the number of remaining
in-commit or indoubt units of recovery. There should not be any in-commit units
of recovery, because all processing for these should have completed. The
number of indoubt units of recovery should be equal to the number specified in
the previous DSNR004I restart message.

10. Issues message DSNR007I (described in “Phase 2: Current Status Rebuild” on
page 4-102), which identifies any outstanding unit of recovery that still must be
processed.

If DB2 encounters a problem while applying log records to an object during phase
3, the affected pages are placed in the logical page list. Message DSNI001I is
issued once per page set or partition, and message DSNB250E is issued once per
page. Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

Phase 4: Backward Log Recovery
During phase 4, DB2 completes processing by reversing all changes performed for
inflight or in-abort units of recovery. In phase 4, DB2:

1. Scans the log backward, starting at the current end. The scan continues until
the earliest “Begin Unit of Recovery” record for any outstanding inflight or
in-abort unit of recovery.

2. Reads the data or index page for each remaining undo log record. The page
header registers the log RBA of the record of the last change to the page.

� If the log RBA of the page header is greater than or equal to that of the
current log record, the logged change has already been made and written
to DASD, therefore DB2 reverses it.

� If the log RBA in the page header is less than that of the current log record,
the change has not been made; DB2 ignores it.

3. Writes redo compensation information in the log for each undo log record, as it
does when backing out a unit of recovery. The redo records reverse the
changes and facilitate media recovery. They are written under all
circumstances, even when:

� The DASD version of the data did not need to be reversed.
� The page set has pages are on the LPL.
� An I/O error occurred on the DASD version of the data.
� The DASD version of the data could not be allocated or opened.

4. Writes pages to DASD as the need for buffers demands it.

5. Finally, writes to DASD all modified buffers that have not yet been written.

4-104 Administration Guide

6. Issues message DSNR006I, which summarizes the number of remaining
in-abort or inflight units of recovery. The number for each should be zero,
because all processing for them should have completed.

7. Marks the completion of each unit of recovery in the log so that, if restart
processing terminates, the unit of recovery is not processed again at the next
restart.

8. If necessary, reacquires write claims for the objects on behalf of the indoubt
units of recovery.

9. Takes a checkpoint, after all database writes have been completed.

If DB2 encounters a problem while applying a log record to an object during phase
4, the affected pages are placed in the logical page list. Message DSNI001I is
issued once per page set or partition, and message DSNB250E is issued once per
page. Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

 Restarting Automatically
If you are running DB2 in a sysplex, and on the appropriate level of MVS, you can
have the automatic restart function of MVS automatically restart DB2 after a failure.

When DB2 stops abnormally, MVS determines whether MVS failed, too, and where
DB2 should be restarted. It then restarts DB2 appropriately.

You must have DB2 installed with a command prefix scope of S to take advantage
of automatic restart. See Section 2 of Installation Guide for instruction on specifying
command scope.

Using an Automatic Restart Policy: You control how automatic restart works by
using automatic restart policies. When the automatic restart function is active, the
default action is to restart the subsystems when they fail. If this default action is not
what you want, then you must create a policy defining the action you want taken.

To create a policy, you need the ELEMENT name of the DB2 subsystem. For a
non data-sharing DB2, the ELEMENT is 'DB2$' concatenated by the subsystem
name (DB2$DB2A, for example). To specify that a DB2 subsystem is not to be
restarted after a failure, include RESTART_ATTEMPTS(0) in the policy for that DB2
element.

For instructions on defining automatic restart policies, see MVS/ESA Setting Up a
Sysplex.

Deferring Restart Processing
Usually, restarting DB2 activates restart processing for objects that were available
when DB2 terminated (in other words, not stopped with the command STOP
DATABASE). Restart processing applies or backs out log records for objects that
have unresolved work.

Restart processing is controlled by what you choose on installation panel DSNTIPS,
and the default is RESTART ALL.

 Chapter 4-4. Restarting DB2 After Termination 4-105

If some specific object is causing problems, you should consider deferring its restart
processing by starting DB2 without allowing that object to go through restart
processing. When you defer restart of an object, DB2 puts pages necessary for the
object's restart in the logical page list (LPL). Only those pages are inaccessible;
the rest of the object can still be accessed after restart.

There are exceptions: when you say DEFER ALL at a site that is designated as
RECOVERYSITE in DSNZPxxx, then all pages are placed in the LPL (as a page
range, not as a huge list of individual pages). Also, if any changes must be backed
out for a type 2 index, then all pages for the index are placed in the LPL.

DB2 can also defer restart processing for particular objects. DB2 puts pages in the
LPL for any object (or specific pages of an object) with certain problems, such as
an open or I/O error during restart. Again, only pages that are affected by the error
are placed on the LPL.

There are different ways to correct down level page set errors. See “Recovery from
Down-Level Page Sets” on page 4-183 for more information.

How to Defer Restart Processing
You can defer an object's restart processing with any of the following actions:

| � VARY the device (or volume) on which the objects reside OFFLINE. If the data
| sets containing an object are not available, and the object requires recovery
| during restart, DB2 flags it as stopped and requiring deferred restart. DB2 then
| restarts without it.

� Name the object with DEFER when installing DB2. On installation panel
DSNTIPS, you can use the following options:

– DEFER ALL defers restart log apply processing for all objects, including
DB2 catalog and directory objects.

– DEFER list_of_objects defers restart processing only for objects in the list.

Alternatively, you can specify RESTART list_of_objects, which limits restart
processing to the list of objects in the list.

DEFER does not affect processing of the log during restart. Therefore, even if you
specify DEFER ALL, DB2 still processes the full range of the log for both the
forward and backward log recovery phases of restart. However, logged operations
are not applied to the data set.

If you want to skip some portion of the log processing during DB2 restart, you can
use a conditional restart. However, if a conditional restart skips any database
change log records, data in the associated objects becomes inconsistent and any
attempt to process them for normal operations might cause unpredictable results.
The only operations that can safely be performed on the objects are recovery to a
prior point of consistency, total replacement, or dropping.

4-106 Administration Guide

Restarting with Conditions
In unusual cases, you might choose to make inconsistent objects available for use
without recovering them. For example, the only inconsistent object might be a table
space that is dropped as soon as DB2 is restarted, or the DB2 subsystem might be
used only for testing application programs still under development. In cases like
those, where data consistency is not critical, normal recovery operations can be
partially or fully bypassed by using conditional restart control records in the BSDS.
The procedure is:

1. While DB2 is stopped, run the change log inventory utility using the
CRESTART control statement to create a new conditional restart control record.

2. Restart DB2. The type of recovery operations that take place is governed by
the current conditional restart control record.

When considering a conditional restart, it is often useful to run the DSN1LOGP
utility and review a summary report of the information contained in the log.

This section gives an overview of the available options for conditional restart. For
more detail, see information about the change log inventory utility (DSNJU003) in

Section 3 of Utility Guide and Reference. For information on data sharing
considerations, see Restarting a DB2 member with Conditions in Chapter 6 of
Data Sharing: Planning and Administration.

Recovery Operations You Can Choose for Conditional Restart
The recovery operations that take place during restart are controlled by the
currently active conditional restart control record. An active control record is created
or deactivated by running the change log inventory utility with the CRESTART
control statement. You can choose:

� To retain a specific portion of the log for future DB2 processing

� To read the log forward to recover indoubt and uncommitted units of recovery

� To read the log backward to back out uncommitted and in-abort units of
recovery

� To do a cold start, not processing any log records.

Be careful about doing a conditional restart that discards log records. If the
discarded log records contain information from an image copy of the DB2 directory,
a future execution of the RECOVER utility on the directory will fail. For more
information, see “Recovering the Catalog and Directory” on page 4-143.

Records Associated with Conditional Restart
In addition to information describing the active and archive logs, the BSDS contains
two queues of records associated with conditional restart.

� A wrap-around queue of conditional restart control records. Each element in the
queue records the choices you made when you created the record and the
progress of the restart operation it controls. When the operation is complete,
the use count is set at 1 for the record and it is not used again.

� A queue of checkpoint descriptions. Because a conditional restart can specify
use of a particular log record range, the recovery process cannot automatically
use the most recent checkpoint. The recovery process must find the latest

 Chapter 4-4. Restarting DB2 After Termination 4-107

checkpoint within the specified range, and uses that checkpoint queue for that
purpose.

Use the utility DSN1LOGP to read information about checkpoints and conditional
restart control records. See Section 3 of Utility Guide and Reference for information
about that utility.

4-108 Administration Guide

Chapter 4-5. Maintaining Consistency Across Multiple
Systems

This chapter explains data consistency issues which arise when DB2 acts in
conjunction with other systems, either IMS, CICS, or remote DBMSs.

The following topics are covered:

� “Consistency with Other Systems”

� “Resolving Indoubt Units of Recovery” on page 4-113

� “Resolution of Indoubt Units of Recovery between DB2 and a Remote System”
on page 4-115

� “Consistency Across More than Two Systems” on page 4-119

| � “Resolution of Indoubt Units of Recovery from OS/390 RRS” on page 4-118

Consistency with Other Systems
DB2 can work with other database management systems, including IMS, CICS,
other DB2s through the distributed data facility (DDF), and other types of remote
DBMS through DDF.

If data in more than one subsystem is to be consistent, then all update operations
at all subsystems for a single logical unit of work must either be committed or
backed out.

The Two-phase Commit Process: Coordinator and Participant
In a distributed system, the actions of a logical unit of work might occur at more
than one system. When these actions update recoverable resources, the commit
process insures that either all the effects of the logical unit of work persist or that
none of the effects persist, despite component, system, or communications failures.

DB2 uses a two-phase commit process in communicating between subsystems.
That process is under the control of one of the subsystems, called the coordinator.
The other systems involved are the participants. IMS or CICS is always the
coordinator in interaction with DB2, and DB2 is always the participant. DB2 is
always the coordinator in interaction with TSO and, in that case, completely
controls the commit process. In interactions with other DBMSs, including other
DB2s, your local DB2 can be either the coordinator or a participant.

 Copyright IBM Corp. 1982, 1997 4-109

Figure 81. Time Line Illustrating Commit Coordinated with Another Subsystem

Illustration of Two-Phase Commit
Figure 81 illustrates the two-phase commit process. Events in the coordinator (IMS,
CICS, or DB2) are shown on the upper line, events in the participant on the lower
line. The numbers in the following discussion are keyed to those in the figure. The
resultant state of the update operations at the participant are shown between the
two lines.

1. The data in the coordinator is at a point of consistency.

2. An application program in the coordinator calls the participant to update some
data, by executing an SQL statement.

3. This starts a unit of recovery in the participant.

4. Processing continues in the coordinator until an application synchronization
point is reached.

5. The coordinator then starts commit processing. IMS can do that by using a DL/I
CHKP call, a fast path SYNC call, a GET UNIQUE call to the I/O PCB, or a
normal application termination. CICS uses a SYNCPOINT command or a
normal application termination. A DB2 application starts commit processing by
an SQL COMMIT statement or by normal termination. Phase 1 of commit
processing begins.

6. The coordinator informs the participant that it is to prepare for commit. The
participant begins phase 1 processing.

7. The participant successfully completes phase 1, writes this fact in its log, and
notifies the coordinator.

8. The coordinator receives the notification.

4-110 Administration Guide

9. The coordinator successfully completes its phase 1 processing. Now both
subsystems agree to commit the data changes, because both have completed
phase 1 and could recover from any failure. The coordinator records on its log
the instant of commit—the irrevocable decision of the two subsystems to make
the changes.

The coordinator now begins phase 2 of the processing—the actual
commitment.

10. It notifies the participant to begin its phase 2.

11. The participant logs the start of phase 2.

12. Phase 2 is successfully completed, which establishes a new point of
consistency for the participant. The participant then notifies the coordinator that
it is finished with phase 2.

13. The coordinator finishes its phase 2 processing. The data controlled by both
subsystems is now consistent and available to other applications.

There are occasions when the coordinator invokes the participant when no
participant resource has been altered since the completion of the last commit
process. This can happen, for example, when SYNCPOINT is issued after
performance of a series of SELECT statements or when end-of-task is reached
immediately after SYNCPOINT has been issued. When this occurs, the participant
performs both phases of the two-phase commit during the first commit phase and
records that the user or job is read-only at the participant.

Maintaining Consistency After Termination or Failure
If DB2 fails while acting as a coordinator it has the appropriate information to
determine commit or roll back decisions after restart. On the other hand, if DB2 fails
while acting as the participant, it must determine after restart whether to commit or
to roll back units of recovery that were active at the time of the failure. For certain
units of recovery, DB2 has enough information to make the decision. For others, it
does not, and must get information from the coordinator when the connection is
reestablished.

The status of a unit of recovery after a termination or failure depends upon the
moment at which the incident occurred. Figure 81 on page 4-110 helps to illustrate
the possible statuses listed below:

Status Description and Processing

Inflight The participant or coordinator failed before finishing phase 1 (period a
or b); during restart, both systems back out the updates.

Indoubt The participant failed after finishing phase 1 and before starting phase
2 (period c); only the coordinator knows whether the failure happened
before or after the commit (point 9). If it happened before, the
participant must back out its changes; if it happened afterward, it must
make its changes and commit them. After restart, the participant waits
for information from the coordinator before processing this unit of
recovery.

In-commit The participant failed after it began its own phase 2 processing
(period d); it makes committed changes.

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-111

In-abort The participant or coordinator failed after a unit of recovery began to
be rolled back but before the process was complete (not shown in the
figure). The operational system rolls back the changes; the failed
system continues to back out the changes after restart.

 Termination
Termination for multiple systems is like termination for single systems, but with
these added considerations:

� Using -STOP DB2 MODE(FORCE) could create indoubt units of recovery for
threads that are between commit processing phases. They are resolved upon
reconnection with the coordinator.

� Data updated by an indoubt unit of recovery is locked and unavailable for use
by others. The unit could be indoubt when DB2 was stopped, or could be
indoubt from an earlier termination and not yet resolved.

� A DB2 system failure can leave a unit of recovery in an indoubt state if the
failure occurs between phase 1 and phase 2 of the commit process.

Normal Restart and Recovery
When DB2 acts together with another system, the recovery log contains information
about units of recovery that are inflight, indoubt, in-abort, or in-commit. The phases
of restart and recovery deal with that information as follows:

Phase 1: Log Initialization
This phase proceeds as described in “Phase 1: Log Initialization” on page 4-101.

Phase 2: Current Status Rebuild
While reading the log, DB2 identifies:

� The coordinator and all participants for every unit of recovery.

� All units of recovery that are outstanding and their statuses (indoubt, in-commit,
in-abort, or inflight, as described under “Maintaining Consistency After
Termination or Failure” on page 4-111).

Phase 3: Forward Log Recovery
DB2 makes all database changes for each indoubt unit of recovery, and locks the
data to prevent access to it after restart. Later, when an indoubt unit of recovery is
resolved, processing is completed in one of these ways:

� For the ABORT option of the RECOVER INDOUBT command, DB2 reads and
processes the log, reversing all changes.

� For COMMIT option of the RECOVER INDOUBT command, DB2 reads the log
but does not process the records because all changes have been made.

At the end of this phase, indoubt activity is reflected in the database as though the
decision was made to commit the activity, but the activity has not yet been
committed. The data is locked and cannot be used until DB2 recognizes and acts
upon the indoubt decision. (For a description of indoubt units of recovery, see
“Resolving Indoubt Units of Recovery” on page 4-113.)

4-112 Administration Guide

Phase 4: Backward Log Recovery
As described in “Phase 4: Backward Log Recovery” on page 4-104 this phase
reverses changes performed for inflight or in-abort units of recovery. At the end of
this phase, interrupted inflight and in-abort changes have been removed from the
database. The data is consistent and can be used.

Restarting with Conditions
If conditional restart is performed when DB2 is acting together with other systems,
the following occurs:

1. All information about another coordinator and other participants known to DB2
is displayed by messages DSNL438I and DSNL439I.

2. This information is purged. Therefore the RECOVER INDOUBT command must
be used at the local DB2 when the local location is a participant, and at another
DB2 when the local location is the coordinator.

3. Indoubt database access threads continue to appear as indoubt and no
resynchronization with either a coordinator or a participant is allowed.

Methods for resolving inconsistencies caused by conditional restart and implications
in a distributed environment are described in “Resolving Inconsistencies Resulting
from Conditional Restart” on page 4-248.

Resolving Indoubt Units of Recovery
If DB2 loses its connection to another system, it normally attempts to recover all
inconsistent objects after restart. The information needed to resolve indoubt units of
recovery must come from the coordinating system. This section describes the
process of resolution for different types of other systems.

| Check the console for the newly added message - DSNR036I for unresolved UR
| encountered during a checkpoint. This message might occur to remind operators of
| existing indoubt threads. See section 2 of Installation Guide for details.

| Attention

| If the TCP/IP address associated with a DRDA server is subject to change,
| each DRDA server's domain name must be defined in the CDB. This allows
| DB2 to recover from situations where the server's IP address changes prior to
| successful resynchronization.

Resolution of Indoubt Units of Recovery from IMS
The resolution of indoubt units in IMS has no effect on DL/I resources. Since IMS
is in control of recovery coordination, DL/I resources are never indoubt. When IMS
restarts, it automatically commits or backs out incomplete DL/I work, based on
whether or not the commit decision was recorded on the IMS log. The existence of
indoubt units does not imply that DL/I records are locked until DB2 connects.

During the current status rebuild phase of DB2 restart, the DB2 participant makes a
list of indoubt units of recovery. IMS builds its own list of residual recovery entries
(RREs). The RREs are logged at IMS checkpoints until all entries are resolved.

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-113

When indoubt units are recovered, the following steps take place:

1. IMS either passes an RRE to the IMS attachment facility to resolve the entry or
informs the attachment facility of a cold start. The attachment facility passes the
required information to DB2.

2. If DB2 recognizes that an entry has been marked by DB2 for commit and by
IMS for roll back, it issues message DSNM005I. DB2 issues this message for
inconsistencies of this type between DB2 and IMS.

3. The IMS attachment facility passes a return code to IMS, indicating that it
should either destroy the RRE (if it was resolved) or keep it (if it was not
resolved). The procedure is repeated for each RRE.

4. Finally, if DB2 has any remaining indoubt units, the attachment facility issues
message DSNM004I.

The IMS attachment facility writes all the records involved in indoubt processing to
the IMS log tape as type X'5501FE'.

For all resolved units, DB2 updates databases as necessary and releases the
corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started.

DB2 maintains locks on indoubt work that was not resolved. This can create a
backlog for the system if important locks are being held. Use the DISPLAY
DATABASE LOCKS command to find out which tables and table spaces are locked
by indoubts. The connection remains active so you can clean up the IMS RREs.
Recover the indoubt threads by the methods described in “Controlling IMS
Connections” on page 4-49.

All indoubt work should be resolved unless there are software or operating
problems, such as with an IMS cold start. Resolution of indoubt units of recovery
from IMS can cause delays in SQL processing. Indoubt resolution by the IMS
control region takes place at two times:

� At the start of the connection to DB2, during which resolution is done
synchronously

� When a program fails, during which the resolution is done asynchronously.

In the first case, SQL processing is prevented in all dependent regions until the
indoubt resolution is completed. IMS does not allow connections between IMS
dependent regions and DB2 before the indoubt units are resolved.

Resolution of Indoubt Units of Recovery from CICS
The resolution of indoubt units has no effect on CICS resources. CICS is in control
of recovery coordination and, when it restarts, automatically commits or backs out
each unit, depending on whether there was or was not an end of unit of work log
record. The existence of indoubt work does not lock CICS resources until DB2
connection.

A process to resolve indoubt units of recovery is initiated during start up of the
attachment facility. During this process:

� The attachment facility receives a list of indoubt units of recovery for this
connection ID from the DB2 participant and passes them to CICS for resolution.

4-114 Administration Guide

� CICS compares entries from this list with entries in its own. CICS determines
from its own list what action it took for the indoubt unit of recovery.

� For each entry in the list, CICS creates a task that drives the attachment
facility, specifying the final commit or abort direction for the unit of recovery.

� If DB2 does not have any indoubt unit of recovery, a dummy list is passed.
CICS then purges any unresolved units of recovery from previous connections,
if any.

If the units of recovery cannot be resolved because of conditions described in
messages DSNC001I, DSNC034I, DSNC035I, or DSNC036I, CICS enables the
connection to DB2. For other conditions, it sends message DSNC016I and
terminates the connection.

For all resolved units, DB2 updates databases as necessary and releases the
corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started. Unresolved units can remain
after restart; resolve them by the methods described in “Manually Recovering CICS
Indoubt Units of Recovery” on page 4-166.

Resolution of Indoubt Units of Recovery between DB2 and a Remote
System

When communicating with a remote DBMS, indoubt units of recovery can result
from failure with either the participant or coordinator or with the communication link
between them even if the systems themselves have not failed.

Normally, if your subsystem fails while communicating with a remote system, you
should wait until both systems and their communication link become operational.
Your system then automatically recovers its indoubt units of recovery and continues
normal operation. When DB2 restarts while any unit of recovery is indoubt, the data
required for that unit remains locked until the unit of recovery is resolved.

If automatic recovery is not possible, DB2 alerts you to any indoubt units of
recovery that you need to resolve. If it is imperative that you release locked
resources and bypass the normal recovery process, you can resolve indoubt
situations manually.

 Attention

In a manual recovery situation, you must determine whether the coordinator
decided to commit or abort and ensure that the same decision is made at the
participant. In the recovery process, DB2 attempts to automatically
resynchronize with its participants. If you decide incorrectly what the
coordinator's recovery action is, data is inconsistent at the coordinator and
participant.

If you choose to resolve units of recovery manually you must:

� Commit changes made by logical units of work that were committed by the
other system

� Roll back changes made by logical units of work that were rolled back by the
other system

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-115

Making Heuristic Decisions
From DB2's point of view, a decision to commit or roll back an indoubt unit of
recovery by any means but the normal resynchronization process is a heuristic
decision. If you commit or roll back a unit of work and your decision is different
from the other system's decision, data inconsistency occurs. This type of damage is
called heuristic damage. If this situation should occur, and your system then
updates any data involved with the previous unit of work, your data is corrupted
and is extremely difficult to correct.

In order to make a correct decision, you must be absolutely sure that the action you
take on indoubt units of recovery is the same as the action taken at the coordinator.
Validate your decision with the administrator of the other systems involved with the
logical unit of work.

Methods for Determining the Coordinator's Commit or Abort
Decision
The first step is to communicate with the other system administrator. There are
several ways to ascertain the status of indoubt units at other systems:

� Use a NetView program. Write a program that analyzes NetView alerts for each
involved system, and returns the results through the NetView system.

� Use an automated MVS console to ascertain the status of the indoubt threads
at the other involved systems.

� Use the command DISPLAY THREAD TYPE(INDOUBT) LUWID(luwid).

If the coordinator DB2 system is started and no DB2 cold start was performed,
then DISPLAY THREAD TYPE(INDOUBT) can be used. If the decision was to
commit, the display thread indoubt report includes the LUWID of the indoubt
thread. If the decision was to abort, the thread is not displayed.

� Read the recovery log using DSN1LOGP.

If the coordinator DB2 cannot be started, then DSN1LOGP can determine the
commit decision. If the coordinator DB2 performed a cold start (or any type of
conditional restart) then the system log should contain messages DSNL438I or
DSNL439I which describe the status of the unit of recovery (LUWID).

Displaying Information on Indoubt Threads
Use DISPLAY THREAD TYPE(INDOUBT) to find information on allied and
database access indoubt threads. The command provides information about
threads where DB2 is a participant, a coordinator, or both. The TYPE(INDOUBT)
option tells you which systems still need indoubt resolution and provides the
LUWIDs you need to recover indoubt threads. A thread that has completed phase 1
of commit and still has a connection with its coordinator is in the prepared state and
is displayed as part of the display thread active report. If a prepared thread loses its
connection with its coordinator, it enters the indoubt state and terminates its
connections to any participants at that time. Any threads in the prepared or indoubt
state when DB2 terminates are indoubt after DB2 restart. However, if the participant
system is waiting for a commit or roll back decision from the coordinator, and the
connection is still active, DB2 considers the thread active.

If a thread is indoubt at a participant, you can determine whether a commit or abort
decision was made at the coordinator by issuing the DISPLAY THREAD command
at the coordinator as described previously. If an indoubt thread appears at one
system and does not appear at the other system, then the latter system backed out

4-116 Administration Guide

the thread, and the first system must therefore do the same. See “Monitoring
Threads” on page 4-37 for examples of output from the DISPLAY THREAD
command.

Recovering Indoubt Threads
After you determine whether you need to commit or roll back an indoubt thread,
recover it with the RECOVER INDOUBT command. This command does not erase
the thread's indoubt status. It still appears as an indoubt thread until the systems
go through the normal resynchronization process. An indoubt thread can be

| identified by its LUWID, LUNAME or IP address. You can also use the LUWID's
token with the command.

Committing or Rolling Back: Use the ACTION(ABORT|COMMIT) option of
RECOVER INDOUBT to commit or roll back a logical unit of work. If your system is
the coordinator of one or more other systems involved with the logical unit of work,
your action propagates to the other system associated with the LUW.

For example, to abort two indoubt threads, the first with
LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002 and the second with a token of
442, and commit the LUWs, enter:

-RECOVER INDOUBT ACTION(COMMIT) LUWID(DB2NET.LUNSITEð.A11A7D7B2ð57.ððð2,442)

Detailed scenarios describing indoubt thread resolution can be found in “Resolving
Indoubt Threads” on page 4-211.

Resetting an Indoubt Thread's Status
Following manual recovery of an indoubt thread, allow the systems to
resynchronize automatically; this resets the status of the indoubt thread. However, if
heuristic damage or a protocol error occurs, you must use the RESET INDOUBT
command to delete indoubt thread information for a thread whose reset status is
yes. DB2 maintains this information until normal automatic recovery. You can purge
information about threads where DB2 is either the coordinator or participant. If the
thread is an allied thread connected with IMS or CICS, the command only applies
to coordinator information about downstream participants. Information that is purged
does not appear in the next display thread report and is erased from DB2's logs.

For example, to purge information on two indoubt threads, the first with an
| LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002 and a resync port number of
| 123; and the second with a token of 442, enter:

| -RESET INDOUBT LUWID(DB2NET.LUNSITEð.A11A7D7B2ð57.ððð2:123,442)

| You can also use an LUNAME or IP address with the RESET INDOUBT command.
| A new keyword (IPADDR) can be used in place of LUNAME or LUW keywords,
| when the partner uses TCP/IP instead of SNA. The partner's resync port number is
| required when using the IP address. The DISPLAY THREAD output lists the resync
| port number. This allows you to specify a location, instead of a particular thread.

You can reset all the threads associated with that location with the (*) option.

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-117

| Resolution of Indoubt Units of Recovery from OS/390 RRS
| It is possible for a DB2 unit of recovery (for a thread that uses RRSAF) or for a
| OS/390 RRS unit of recovery (for a stored procedure) to enter the INDOUBT state.
| This is a state where a failure occurs when the participant (DB2 for a thread that
| uses RRSAF or OS/390 RRS for a stored procedure) has completed phase 1 of
| commit processing and is waiting for the decision from the commit coordinator. This
| failure could be a DB2 abnormal termination, an OS/390 RRS abnormal
| termination, or both.

| Normally, automatic resolution of indoubt units of recovery occurs when DB2 and
| OS/390 RRS reestablish communication with each other. If something prevents
| this, then it is possible to manually resolve an indoubt unit of recovery. This
| process is not recommended because it might lead to inconsistencies in
| recoverable resources.

| The following errors make manual recovery necessary:

| � An OS/390 RRS cold start where the OS/390 RRS log is lost.

| If DB2 is a participant and has one or more indoubt threads, then these indoubt
| threads must be manually resolved in order to commit or abort the data base
| changes and to release data base locks. If DB2 is a coordinator for an OS/390
| RRS unit of recovery, then DB2 knows the commit/abort decision but cannot
| communicate this information to the RRS compliant resource manager that has
| an indoubt unit of recovery.

| � If DB2 performs a conditional restart and loses information from its log, then
| there may be inconsistent DB2 managed data.

| � In a Sysplex, if DB2 is restarted on an MVS system where OS/390 RRS is not
| installed, then DB2 might have indoubt threads.

| This is a user error because OS/390 RRS must be started on all processors in
| a Sysplex on which OS/390 RRS work is to be performed.

| Both DB2 and OS/390 RRS can display information about indoubt units of recovery.
| Both also provide techniques for manually resolving these indoubt units of recovery.

| In DB2, the DISPLAY THREAD command provides information about indoubt DB2
| thread. The display output includes OS/390 RRS unit of recovery IDs for those DB2
| threads that have OS/390 RRS either as a coordinator or as a participant. If DB2
| is a participant, the OS/390 RRS unit of recovery ID displayed can be used to
| determine the outcome of the OS/390 RRS unit of recovery. If DB2 is the
| coordinator, you can determine the outcome of the unit of recovery from the
| DISPLAY THREAD output.

| In DB2, the RECOVER INDOUBT command lets you to manually resolve a DB2
| indoubt thread. You can use RECOVER INDOUBT to commit or roll back a unit of
| recovery after you determine what the correct decision is.

| OS/390 RRS provides an ISPF interface that provides a similar capability.

4-118 Administration Guide

Consistency Across More than Two Systems
The principles and methods for maintaining consistency across more than two
systems are similar to those used to ensure consistency across two systems. The
main difference involves a system's role as coordinator or participant when a unit of
work spans multiple systems.

Commit Coordinator and Multiple Participants
 The coordinator of a unit of work that involves two or more other DBMSs must
ensure that all systems remain consistent. After the first phase of the two-phase
commit process, the DB2 coordinator waits for the other participants to indicate that
they can commit the unit of work. If all systems are able, the DB2 coordinator
sends the commit decision and each system commits the unit of work.

If even one system indicates that it cannot commit, then the DB2 coordinator sends
out the decision to roll back the unit of work at all systems. This process ensures
that data among multiple DBMSs remains consistent. When DB2 is the participant,
it follows the decision of the coordinator, whether the coordinator is another DB2 or
another DBMS.

DB2 is always the participant when interacting with IMS or CICS systems.
However, DB2 can also serve as the coordinator for other DBMSs or DB2
subsystems in the same unit of work. For example, if DB2 receives a request from
a coordinating system that also requires data manipulation on another system, DB2
propagates the unit of work to the other system and serves as the coordinator for
that system.

For example, in Figure 82 DB2A is the participant for an IMS transaction, but
becomes the coordinator for the two application servers (AS1 and AS2), DB2B, and
its respective DB2 servers (DB2C, DB2D AND DB2E).

 ┌───────┐ ┌───────┐

 │ │ │ │

┌─────────────5 AS1 │ ┌─────────5 DB2C │

│ │ │ │ │ server│

│ └───────┘ │ └───────┘

 │ │

┌───────┐ ┌──┴───┐ ┌───────┐ │ ┌───────┐

│ │ │ │ │ │ │ │ │

│ IMS/ ├─────────5 DB2A ├─────────5 DB2B ├─────────┼─────────5 DB2D │

│ CICS │ │ │ │ │ │ │ server│

└───────┘ └──┬───┘ └───────┘ │ └───────┘

 │ │

│ ┌───────┐ │ ┌───────┐

│ │ │ │ │ │

└─────────────5 AS2 │ └─────────5 DB2E │

 │ │ │ server│

 └───────┘ └───────┘

Figure 82. Illustration of multi-site unit of work

If the connection goes down between DB2A and the coordinating IMS system, the
connection becomes an indoubt thread. However, DB2A's connections to the other
systems are still waiting and are not considered indoubt. Wait for automatic
recovery to occur to resolve the indoubt thread. When the thread is recovered, the
unit of work commits or rolls back and this action is propagated to the other
systems involved in the unit of work.

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-119

Illustration of Multi-site Update

C

P1

P2

F
o

rg
e

t

P
re

p
a

re

2

P
re

p
a

re

4

First Phase Second Phase

2 4

C
o

m
m

it
te

d

F
o

rg
e

t

R
e

q
u

e
s
t
C

o
m

m
it

5

C
o

m
m

it
te

d

F
o

rg
e

t

1 3

Figure 83. Illustration of multi-site update. C is the coordinator; P1 and P2 are the
participants.

Figure 83 illustrates a multi-site update involving one coordinator and two
participants.

Phase 1:

1. When an application commits a logical unit of work, it signals the DB2
coordinator. The coordinator starts the commit process by sending messages to
the participants to determine whether they can commit.

2. A participant (P1) that is willing to let the logical unit of work be committed, and
which has updated recoverable resources, writes a log record. It then sends a
request commit message to the coordinator and waits for the final decision
(commit or roll back) from the coordinator. The logical unit of work at the
participant is now in the prepared state.

If a participant (P2) has not updated recoverable resources, it sends a forget
message to the coordinator, releases its locks and forgets about the logical unit
of work. A read-only participant writes no log records. As far as this participant
is concerned, it does not matter whether the logical unit of work ultimately gets
rolled back or committed.

If a participant wants to have the logical unit of work rolled back, it writes a log
record and sends a message to the coordinator. Because a message to roll
back acts like a veto, the participant in this case knows that the logical unit of
work will be rolled back by the coordinator. The participant does not need any
more information from the coordinator and therefore rolls back the logical unit
of work, releases its locks, and forgets about the logical unit of work. (This case
is not illustrated in the figure.)

Phase 2:

3. After the coordinator receives request commit or forget messages from all its
participants, it starts the second phase of the commit process. If at least one of

4-120 Administration Guide

the responses is request commit, the coordinator writes a log record and sends
committed messages to all the participants who responded to the prepare
message with request commit. If neither the participants nor the coordinator
have updated any recoverable resources, there is no second phase and no log
records are written by the coordinator.

4. Each participant, after receiving a committed message, writes a log record,
sends a response to the coordinator, and then commits the logical unit of work.

If any participant responds with a roll back message, the coordinator writes a
log record and sends a roll back message to all participants. Each participant,
after receiving a roll back message writes a log record, sends an
acknowledgement to the coordinator, and then rolls back the logical unit of
work. (This case is not illustrated in the figure.)

5. The coordinator, after receiving the responses from all the participants that
were sent a message in the second phase, writes an 'end' record and forgets
the logical unit of work.

It is important to remember that if you try to resolve any indoubt threads manually,
you need to know whether the participants committed or rolled back their units of
work. With this information you can make an appropriate decision regarding
processing at your site.

 Chapter 4-5. Maintaining Consistency Across Multiple Systems 4-121

4-122 Administration Guide

Chapter 4-6. Backing Up and Recovering Databases

DB2 provides means for recovering data to its current state or to an earlier state.
The units of data that can be recovered are table spaces, partitions, and data sets.

This chapter explains the following topics:

“Planning for Backup and Recovery”
“Copying Table Spaces and Data Sets” on page 4-139
“Recovering Table Spaces and Data Sets” on page 4-141
“Recovering the Catalog and Directory” on page 4-143
“Recovering Data to a Prior Point of Consistency” on page 4-144
“Discarding SYSCOPY and SYSLGRNX Records” on page 4-154

For all commands and utility statements, the complete syntax and parameter
descriptions can be found in Command Reference and Utility Guide and Reference
.

Planning for Backup and Recovery
Development at your site of backup and recovery procedures is critical in order to
avoid costly and time-consuming losses of data. You should develop procedures to:

� Create a point of consistency
� Restore system and data objects to a point of consistency
� Back up the DB2 catalog and directory and your data
� Recover the DB2 catalog and directory and your data
� Recover from out-of-space conditions
� Recover from a hardware or power failure
� Recover from an MVS component failure.

In addition, you should consider a procedure for off-site recovery in case of a
disaster.

To improve recovery capability in the event of a DASD failure, it is advisable to use
dual active logging and to place the copies of the active log data sets and the
bootstrap data sets on different DASD volumes. These concepts are described in
“Establishing the Logging Environment” on page 4-84.

The principal tools for recovery are the utilities QUIESCE, REPORT, COPY,
RECOVER, and MERGECOPY. This section also gives an overview of these
utilities to help you with your backup and recovery planning.

This section covers the following topics, which you should consider when you plan
for backup and recovery:

� “Considerations for Recovering Distributed Data” on page 4-124
� “Preparing for Recovery” on page 4-124
� “Making Backup and Recovery Plans that Maximize Availability” on page 4-128
� “What Happens during Recovery” on page 4-125
� “How to Find Recovery Information” on page 4-130
� “Preparing to Recover to a Prior Point of Consistency” on page 4-131
� “Preparing to Recover the Entire DB2 Subsystem to a Prior Point” on

page 4-133

 Copyright IBM Corp. 1982, 1997 4-123

� “Preparing for Disaster Recovery” on page 4-133
� “Ensuring More Effective Recovery from Inconsistency Problems” on

page 4-136
� “Running RECOVER Jobs in Parallel” on page 4-138
� “Reading the Log without RECOVER” on page 4-139

Considerations for Recovering Distributed Data
Using distributed data, no matter where a unit of work originates, it is processed as
a whole at the target systems. At a DB2 server, the entire unit is either committed
or rolled back. It is not processed if it violates referential constraints defined within
the target system. Whatever changes it makes to data are logged. A set of related
table spaces can be quiesced at the same point in the log, and image copies can
be made of them simultaneously. If that is done, and if the log is intact, any data
can be recovered after a failure and be internally consistent.

However, DB2 provides no special means to coordinate recovery between different
subsystems; even if an application accesses data in several systems. To guarantee
consistency of data between systems, write your applications, as usual, to do all
related updates within one unit of work.

Point-in-time recovery (to the last image copy or to an RBA) presents other
problems. You cannot control a utility in one subsystem from another subsystem. In
practice, you cannot quiesce two sets of table spaces, or make image copies of
their members, in two different subsystems at exactly the same instant. Neither can
you recover them to exactly the same instant, because there are two different logs,
and a relative byte address (RBA) does not mean the same thing for both of them.

In planning, then, the best approach is to consider carefully what the QUIESCE,
COPY, and RECOVER utilities do for you and then plan not to place data that must
be so closely coordinated on separate subsystems. After that, recovery planning is
a matter of agreement among database administrators at separate locations.

Since DB2 is responsible for recovering DB2 data only, it does not recover
non-DB2 data. Non-DB2 systems do not always provide equivalent recovery
capabilities.

Preparing for Recovery
To ensure that a table space can be recovered to a particular point, there must be
a copy of it at some earlier state. That is called a backup copy. The DB2 recovery
log contains a record of all changes made to the table space. If DB2 fails, it can
recover the table space by restoring the backup copy and applying the log changes
to it from the point of the backup copy.

The DB2 catalog and directory table spaces must be copied at least as frequently
as the most critical user table spaces. Moreover, it is your responsibility to
periodically copy the tables in the communications database (CDB), the application
registration table, the object registration table, and the resource limit facility
(governor), or to maintain the information necessary to recreate them. Plan your
backup strategy accordingly.

A Recovery Preparation Scenario: The following backup scenario suggests how
DB2 utilities might be used:

4-124 Administration Guide

Imagine that you are the database administrator for DBASE1. Table space
TSPACE1 in DBASE1 has been available all week. On Friday, a disk write
operation for TSPACE1 fails. You need to recover the table space to the last
consistent point before the failure occurred. You can do that because you have
regularly followed a cycle of preparations for recovery. The most recent cycle
began on Monday morning.

Monday Morning: You start the DBASE1 database and make a full image copy of
TSPACE1 immediately. That gives you a starting point from which to recover. Use
the COPY utility, as described in Section 2 of Utility Guide and Reference.

Tuesday Morning: You run COPY again. This time you make an incremental
image copy, to record only the changes made since the last full image copy, made
Monday.

TSPACE1 can be accessed and updated while the image copy is being made. For
maximum efficiency, however, you schedule the image copies when online use is
minimal.

Wednesday, Thursday, and Friday Mornings: You make another incremental
image copy each morning.

Friday Afternoon: An unsuccessful write operation occurs and you need to recover
the table space. Run the RECOVER utility, as described in Section 2 of Utility
Guide and Reference. The utility restores the table space from the full image copy
made Monday and the incremental image copies made Tuesday through Friday,
and includes all changes made to the recovery log since Friday morning.

Later Friday Afternoon: The RECOVER utility issues a message announcing that
it has successfully recovered TSPACE1.

This imaginary scenario is somewhat simplistic. You might not have taken daily
incremental image copies on just the table space that failed. You might not
ordinarily recover an entire table space. However, it illustrates this important point:
With proper preparation, recovery from a failure is greatly simplified.

What Happens during Recovery
Figure 84 on page 4-126 shows an overview of the recovery process. To recover a
table space, the RECOVER utility uses these items:

� A full image copy; that is, a complete copy of the table space

� Any later incremental image copies; each summarizes all the changes made to
the table space from the time the previous image copy was made

� All log records created since the most recent image copy.

 The RECOVER utility uses information in the SYSIBM.SYSCOPY catalog table to:

� Restore the table space with the data in the most recent full image copy
(appearing, in Figure 84 on page 4-126, at X'40000').

� Apply all the changes summarized in any later incremental image copies.
(There are two in Figure 84, X'80020' and X'C0040'.)

� Apply all changes to the table space that are registered in the log, beginning at
the log RBA of the most recent image copy. (In Figure 84, X'C0040', that
address is also stored in SYSIBM.SYSCOPY.)

 Chapter 4-6. Backing Up and Recovering Databases 4-125

If the log has been damaged or discarded, you can recover to a particular point in
time by limiting the range of log records to be applied by the RECOVER utility.

Incremental image copy 2────────────────┐

 │

Incremental image copy 1─────┐ │

 │ │

Full image copy───┐ │ │

│ │ │

6 6 6

 5───5

 │ DB2 │ Recovery │ Log │

 5───5

RBA RBA RBA RBA

ð X'4ðððð' X'8ðð2ð' X'Cðð4ð'

 &

 │

LOGRBA of most recent │

incremental image copy──────┘

Figure 84. Overview of DB2 Recovery. The figure shows one complete cycle of image
copies; SYSIBM.SYSCOPY can record many complete cycles.

Complete Recovery Cycles
In planning for recovery, you determine how often to take image copies and how
many complete cycles to keep. Those values tell how long you must keep log
records and image copies for database recovery.

In deciding how often to take image copies, consider the time needed to recover a
table space. It is determined by all of the following:

� The amount of log to traverse
� The time it takes an operator to mount and remove archive tape volumes
� The time it takes to read the part of the log needed for recovery
� The time needed to reprocess changed pages.

In general, the more often you make image copies, the less time recovery takes;
| but, of course, the more time is spent making copies. If you use LOG(NO) without
| the COPYDDN keyword when you run the LOAD or REORG utilities, DB2 places
| the table space in copy pending status. You must remove the copy pending status
| of the table space by making an image copy before making further changes to the
| data. However, if you run REORG or LOAD REPLACE with the COPYDDN
| keyword, DB2 creates a full image copy during execution of the utility, so DB2 does
| not place the table space in copy pending status.

If you use LOG(YES), and log all updates, then an image copy is not required for
data integrity. However, taking an image copy makes the recovery process more
efficient. The process is still more efficient if you use MERGECOPY to merge
incremental image copies with the latest full image copy. You can schedule the
MERGECOPY operation at your own convenience, whereas the need for a
recovery can come upon you unexpectedly.

| Use the CHANGELIMIT option of the COPY utility to let DB2 determine when an
| image copy should be performed and whether a full or incremental copy should be
| taken. Use the CHANGELIMIT and REPORTONLY options together to let DB2
| recommend what types of image copies to make. When you specify both
| CHANGELIMIT and REPORTONLY, DB2 makes no image copies.

4-126 Administration Guide

In determining how many complete copy and log cycles to keep, you are guarding
against damage to a volume containing an important image copy. Typically, you
will want a retention period of at least two full cycles. When you take a scheduled
full image copy of a table space, the latest full image copy and at least one other
previous copy exists, plus the log created since the earliest image copy. For further
security, keep records for three or more copy cycles.

A Recovery Cycle Example
Table 55 suggests how often a user group with 10 locally defined table spaces
(one table per table space) might take image copies, based on frequency of
updating. Their least-frequently-copied table is EMPSALS, containing employee
salary data. If they choose to keep two complete image copy cycles on hand, then
each time they copy EMPSALS they can delete records prior to its previous copy or
copies, made two months ago. They will always have on hand between two months
and four months of log records.

In the example, the user's most critical tables are copied daily. Hence, the DB2
catalog and directory are also copied daily.

If you recover to the latest point of consistency, you do not need to recover the
indexes unless they are damaged. If you recover to a prior point in time, then you
do need to recover the indexes. See RECOVER INDEX in Section 2 of Utility Guide
and Reference for more information.

Table 55. DB2 Log Management Example

Table Space
Name

Content

Update
Activity

Full Image
Copy Period

ORDERINF Invoice line: part
and quantity
ordered

Heavy Daily

SALESINF Invoice description Heavy Daily

SALESQTA Quota information
for each sales
person

Moderate Weekly

SALESDSC Customer
descriptions

Moderate Weekly

PARTSINV Parts inventory Moderate Weekly

PARTSINF Parts suppliers Light Monthly

PARTS Parts descriptions Light Monthly

SALESCOM Commission rates Light Monthly

EMPLOYEE Employee
descriptive data

Light Monthly

EMPSALS Employee salaries Light Bimonthly

How DFSMShsm Affects Your Recovery Environment
The Data Facility Hierarchical Storage Manager (DFSMShsm) can automatically
manage space and data availability among storage devices in your system. If you
use it, you need to know that it automatically moves data to and from the DB2
databases.

 Chapter 4-6. Backing Up and Recovering Databases 4-127

DFSMShsm manages your DASD space efficiently by moving data sets that have
not been used recently to less expensive storage. It also makes your data available
for recovery by automatically copying new or changed data sets to tape or DASD. It
can delete data sets, or move them to another device. Its operations occur daily, at
a specified time, and allow for keeping a data set for a predetermined period before
deleting or moving it.

All DFSMShsm operations can also be performed manually. DFSMS/MVS:
DFSMShsm Managing Your Own Data tells how to use the DFSMShsm
commands.

DFSMShsm:

� Uses cataloged data sets
� Operates on user tables, image copies, and logs
� Supports VSAM data sets

If a volume has a DB2 storage group specified, the volume should only be recalled
to like devices of the same VOLSER defined by CREATE or ALTER STOGROUP.

DB2 can recall user table spaces that have been migrated. Whether DFSMShsm
recall occurs automatically is determined by the values of the RECALL DATABASE
and RECALL DELAY fields of installation panel DSNTIPO. If the value of the
RECALL DATABASE field is NO, automatic recall is not performed and the table
space is considered an unavailable resource. It must be recalled explicitly before it
can be used by DB2. If the value of the RECALL DATABASE field is YES,
DFSMShsm is invoked to recall the table space automatically. The program waits
for the recall for the amount of time specified by the RECALL DELAY parameter. If
the recall is not completed within that time, the program receives an error message
indicating the page set is unavailable but that recall was initiated.

The deletion of DFSMShsm migrated data sets and the DB2 log retention period
must be coordinated with use of the MODIFY utility. If not, you could need recovery
image copies or logs that have been deleted. See “Discarding Archive Log
Records” on page 4-94 for suggestions.

| Making Backup and Recovery Plans that Maximize Availability
| You need to develop a plan for backup and recovery, and you need to become
| familiar enough with that plan that when an outage occurs, you can get back in
| operation as quickly as possible. This topic contains some factors to consider when
| you develop and implement your plan.

| Decide on the level of availability you need: To do this, start by determining the
| primary types of outages you are likely to experience. Then, for each of those types
| of outages, decide on the maximum amount of time that you can spend on
| recovery. Consider the trade-off between cost and availability. Recovery plans for
| continuous availability are very costly, so you need to think about what percentage
| of the time your systems really need to be available.

| Practice for recovery: You cannot know whether a backup and recovery plan is
| workable unless you practice it. In addition, the pressure of a recovery situation can
| cause mistakes. The best way to minimize mistakes is to practice your recovery
| scenario until you know it well. The best time to practice is outside of regular
| working hours, when fewer key applications are running.

4-128 Administration Guide

| Minimize preventable outages: One aspect of your backup and recovery plan
| should be eliminating the need to recover whenever possible. One way to do that
| is to prevent outages caused by errors in DB2. Be sure to check available
| maintenance often and apply fixes for problems that are likely to cause outages.

| Determine the required backup frequency: Use your recovery criteria to decide
| how often to make copies of your databases. For example, if the maximum
| acceptable recovery time after you lose a volume of data is two hours, your
| volumes typically hold about four gigabytes of data, and you can read about two
| gigabytes of data per hour, then you should make copies after every four gigabytes
| of data written. You can use the COPY option SHRLEVEL CHANGE or DFSMS
| Concurrent Copy to make copies while transactions and batch jobs are running.
| You should also make copy after jobs that make large numbers of changes.

| Determine the right characteristics for your logs:

| � If you have enough DASD space, use more and larger active logs. Recovery
| from active logs is quicker than from archive logs.

| � To speed recovery from archive logs, consider archiving to disk.

| � If you archive to tape, be sure you have enough tape drives that DB2 does not
| have to wait for an available drive on which to mount an archive tape during
| recovery.

| � Make the buffer pools and the log buffers large enough to be efficient.

| Minimize DB2 restart time: Many recovery processes involve restart of DB2. You
| need to minimize the time that DB2 shutdown and startup take.

| These are some major factors that influence the speed of DB2 shutdown:

| � Number of open DB2 data sets

| During shutdown, DB2 must close and deallocate all data sets it uses if the fast
| shutdown feature (zparm SPRMFSTP) has been disabled. The default is to
| use the fast shutdown feature. The maximum number of concurrently open data
| sets is determined by the DB2 subsystem parameter DSMAX. Closing and
| deallocation of data sets generally takes .1 to .3 seconds per data set. See
| Section 5 (Volume 2) of Administration Guide for information on how to choose
| an appropriate value for DSMAX.

| Be aware that MVS global resource serialization (GRS) can increase the time
| to close DB2 data sets. If your DB2 data sets are not shared among more than
| one MVS system, set the GRS RESMIL parameter value to OFF or place the
| DB2 data sets in the SYSTEMS exclusion RNL. See MVS/ESA Planning:
| Global Resource Serialization for details.

| � Active threads

| DB2 cannot shut down until all threads have terminated. Issue the DB2
| command -DISPLAY THREAD to determine if there are any active threads
| while DB2 is shutting down. If possible, cancel those threads.

| � Processing of SMF data

| At DB2 shutdown, MVS does SMF processing for all DB2 data sets opened
| since DB2 startup. You can reduce the time that this processing takes by
| setting the MVS parameter DDCONS(NO).

 Chapter 4-6. Backing Up and Recovering Databases 4-129

| These are some major factors that influence the speed of DB2 startup:

| � DB2 checkpoint interval

| This is the factor that has the most influence on the speed of DB2 startup.
| This is the number of log records that DB2 writes between successive
| checkpoints. This value is controlled by the DB2 subsystem parameter
| LOGLOAD. The default of 50000 results in the fastest DB2 startup time in
| most cases.

| � Long running units of work

| DB2 rolls back uncommitted work during startup. The amount of time for this
| activity is roughly double the time that the unit of work was running before DB2
| shut down. For example, if a unit of work runs for two hours before a DB2
| abend, it will take at least four hours to restart DB2. Decide how long you can
| afford for startup, and avoid units of work that run for more than half that long.

| You can use accounting traces to detect long running units of work. For tasks
| that modify tables, divide the elapsed time by the number of commit operations
| to get the average time between commit operations. Add commit operations to
| applications for which this time is unacceptable.

| � Size of active logs

| If you archive to tape, you can avoid unnecessary startup delays by making
| each active log big enough to hold the log records for a typical unit of work.
| This lessens the probability that DB2 will have to wait for tape mounts during
| startup. See Section 5 (Volume 2) of Administration Guide for more information
| on choosing the size of the active logs.

How to Find Recovery Information
This section contains guidance on locating and reporting information needed for
recovery.

Where Recovery Information Resides
Information needed for recovery is contained in these locations:

� SYSIBM.SYSCOPY, a catalog table, contains information about full and
incremental image copies. If concurrent updates were allowed when making the
copy, the log RBA corresponds to the image copy start time; otherwise, it
corresponds to the end time. The RECOVER utility uses the log RBA to look
for log information after restoring the image copy.

SYSCOPY also contains entries with the same kinds of log RBAs recorded by
the utilities QUIESCE, REORG, LOAD, RECOVER TOCOPY, and RECOVER
TORBA (or TOLOGPOINT). For a summary of the information contained in the
DB2 catalog tables, see Appendix D of SQL Reference.

When the REORG utility is used, the time at which DB2 writes the log RBA to
SYSIBM.SYSCOPY depends on the value of the SHRLEVEL parameter:

– For SHRLEVEL NONE, the log RBA is written at the end of the reload
phase.

If a failure occurs before the end of the reload phase, the RBA is not
written to SYSCOPY.

If a failure occurs after the reload phase is complete (and thus, after the log
RBA is written to SYSCOPY), the RBA is not backed out of SYSCOPY.

4-130 Administration Guide

– For SHRLEVEL REFERENCE and SHRLEVEL CHANGE, the log RBA is
written at the end of the switch phase.

If a failure occurs before the end of the switch phase, the RBA is not
written to SYSCOPY.

If a failure occurs after the switch phase is complete (and thus, after the log
RBA is written to SYSCOPY), the RBA is not backed out of SYSCOPY.

 The log RBA is put in SYSCOPY whether the LOG option is YES or NO, or
whether the UNLOAD PAUSE option is indicated.

When DSNDB01.DBD01, DSNDB01.SYSUTILX, and DSNDB01.SYSCOPY are
quiesced or copied, a SYSCOPY record is created for each table space. For
recovery reasons, the SYSCOPY records for these three objects are placed in
the log.

� SYSIBM.SYSLGRNX, a directory table, contains records of the log RBA ranges
used during each period of time that any recoverable table space is open for
update. Those records speed recovery by limiting the scan of the log for
changes that must be applied.

If you discard obsolete image copies, you should consider removing their
records from SYSIBM.SYSCOPY and the obsolete log ranges from
SYSIBM.SYSLGRNX. “Discarding SYSCOPY and SYSLGRNX Records” on
page 4-154 describes the process.

Reporting Recovery Information
You can use the REPORT utility in planning for recovery. REPORT provides
information necessary for recovering a table space. REPORT displays:

� Recovery information from the SYSIBM.SYSCOPY catalog table
� Log ranges of the table space from the SYSIBM.SYSLGRNX directory
� Archive log data sets from the bootstrap data set
� The names of all members of a table space set

You can also use REPORT to obtain recovery information about the catalog and
directory.

Details about the REPORT utility and examples showing the results obtained when
using the RECOVERY option are contained in Section 2 of Utility Guide and
Reference .

Preparing to Recover to a Prior Point of Consistency
The major steps in preparing to recover to a particular point in time are:

1. Release the data from any exception status.
2. Copy the data, taking suitable precautions about concurrent activity.
3. Immediately after, establish a point when the data is consistent and no unit of

work is changing it.

With that preparation, recovery to the point of consistency is as quick and simple as
possible. DB2 begins recovery with the copy you made and reads the log only up
to the point of consistency. At that point, there are no indoubt units of recovery to
hinder restarting.

 Chapter 4-6. Backing Up and Recovering Databases 4-131

Step 1: Resetting Exception Status
You can use the QUIESCE utility to determine whether the data is in an exception
status. You cannot quiesce a table space that is in check pending, copy pending, or
recovery pending status. If the return code from QUIESCE is 8, investigate the
problems with the table space before copying it. See “Violations of Referential
Constraints” on page 4-192 and information on the COPY and RECOVER utilities
in Section 2 of Utility Guide and Reference for instructions on resetting those
statuses.

Also, if QUIESCE encounters an I/O error, if the table space has a write error
range, or if the table space has a pending deferred restart, QUIESCE issues a
warning message. In these cases, the table space is quiesced, but cannot be
copied.

Step 2: Copying the Data
You can copy the data and also establish a point of consistency, in one operation,
by using the COPY utility with the option SHRLEVEL REFERENCE. That operation
allows only read access to the data while it is copied. The data is consistent at the
moment when copying starts and remains consistent until copying ends. The
advantage of the method is that the data can be restarted at a point of consistency
by restoring the copy only, with no need to read log records. The disadvantage is
that updates cannot be made throughout the entire time that the data is being
copied.

| Copying data while updates occur is not recommended. However, to allow updates
| while the data is being copied, you can:

� Use the COPY utility with the option SHRLEVEL CHANGE.

� Use an offline program to copy the data, such as DSN1COPY, DFSMShsm, or
DASD dump.

You can use the CONCURRENT option of the COPY utility to make a backup
with DFSMS Concurrent Copy that is recorded in the DB2 catalog. For
guidance in using this option see Utility Guide and Reference.

If you allow updates while copying , then step 3 is essential. With concurrent
updates, the copy can include uncommitted changes. Those might be backed out
after copying ends. Thus, the copy is not necessarily consistent data, and recovery
cannot rely on the copy only. Recovery requires reading the log up to a point of
consistency, so you want to establish such a point as soon as possible.

Step 3: Establishing a Point of Consistency
Use the QUIESCE utility also to establish a single point of consistency (a quiesce
point) for one or more table spaces. Typically, you name all the table spaces in a
table space set, which you want to recover to the same moment to avoid referential
integrity violations. The following statement quiesces two table spaces in database
DSN8D51A:

QUIESCE TABLESPACE DSN8D51A.DSN8S51E

 TABLESPACE DSN8D51A.DSN8S51D

QUIESCE writes changed pages from the table spaces to DASD. The catalog table
SYSIBM.SYSCOPY records the current RBA and the timestamp of the quiesce
point. At that point, neither table space contains any uncommitted data. A row with
ICTYPE Q is inserted into SYSCOPY for each table space quiesced. (Table spaces

4-132 Administration Guide

DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01.SYSUTILX, are an
exception: their information is written in the log.)

QUIESCE allows concurrency with many other utilities; however, it does not allow
concurrent updates until it has quiesced all specified table spaces. Depending
upon the amount of activity, that can take considerable time. Try to run QUIESCE
when system activity is low.

Preparing to Recover the Entire DB2 Subsystem to a Prior Point
If there are problems during a restart of DB2, you might want to reset the entire
system to a point of consistency. You can prepare a point of consistency the
following procedure:

1. Display and resolve any indoubt units of recovery.

2. Use COPY to make image copies of all data, both user data and DB2 catalog
| and directory table spaces. Copy SYSLGRNX and SYSCOPY last. Install job
| DSNTIJIC creates image copies of the DB2 catalog and directory table spaces.
| See Section 2 of Installation Guide for a description of job DSNTIJIC.

Alternatively, you can use an offline method to copy the data. In that case, stop
DB2 first; that is, do step 3 before step 2. If you do not stop DB2 before
copying, you might have trouble restarting after restoring the system. If you do
a volume restore, verify that the restored data is cataloged in the integrated
catalog facility catalog. Use the access method services LISTCAT command to
get a listing of the integrated catalog.

3. Stop DB2 by the command -STOP DB2 MODE (QUIESCE). DB2 does not
actually stop until all currently executing programs have completed processing.
Be sure to use MODE (QUIESCE); otherwise, I/O errors can occur when the
steps listed in “Performing the Fall Back to a Prior Shutdown Point” on
page 4-243 are used to restart DB2.

4. When DB2 has stopped, use access method services EXPORT to copy all
BSDS and active log data sets. If you have dual BSDSs or dual active log data
sets, export both copies of the BSDS and the logs.

5. Save all the data that has been copied or dumped, and protect it and the
archive log data sets from damage.

Preparing for Disaster Recovery
In the case of a total loss of a DB2 computing center, you can recover on another
DB2 system at a recovery site. To do this, you must regularly back up the data sets
and the log for recovery. As with all data recovery operations, the objectives of
disaster recovery are to lose as little data, workload processing (updates), and time
as possible.

There are several levels of preparation for disaster recovery:

� Prepare the recovery site to recover to a fixed point in time.

For example, you could copy everything weekly with a DFSMSdss volume
dump (logical) and manually send it to the recovery site, then restore the data
there.

� For recovery through the last archive, copy and send the following objects to
the recovery site as you produce them:

 Chapter 4-6. Backing Up and Recovering Databases 4-133

– Image copies of all catalog, directory, and user table spaces
 – Archive logs

– Integrated catalog facility catalog EXPORT and list
 – BSDS lists

With this approach you can determine how often you want to make copies
of essential recovery elements and send them to the recovery site.

Once you establish your copy procedure and have it operating, you must
prepare to recover your data at the recovery site. See “Remote Site Recovery
from Disaster at a Local Site” on page 4-197 for step-by-step instructions on
the disaster recovery process.

� Use the log capture exit to capture log data in real time and send it to the
recovery site. See “Reading Log Records with the Log Capture Exit” on
page X-104 and “Log Capture Routines” on page X-68.

System-wide Points of Consistency
In any disaster recovery scenario, system-wide points of consistency are necessary
for maintaining data integrity and preventing a loss of data. There is a direct
relationship between the frequency with which you make and send copies to the
recovery site and the amount of data that you could potentially lose.

Figure 85 is an overview of the process of preparing to bring DB2 up at a recovery
site.

LOCALSITE timeline Disaster

5───┬──────────────┬───────────┬───────────────┬────────────┬─────────X

full│copy archive archive incremental copy archive

archive log log log archive log log

 │ │ │ │ │

 │ │ │ │ │ RECOVERYSITE

 │ │ │ │ │ time line

 │ │ │ │ │ 5──┬──────┬───5

 │ %──┘ %──┘ %──┘ %──┘ Start Recover

Take tapes to the DB2 DB2

recovery site │ │

 └────┬────┘

 │

data range lost

with first level

 of recovery

Figure 85. Preparing for Disaster Recovery. The information you need to recover is
contained in the copies of data (including the DB2 catalog and directory) and the archive log
data sets.

Essential Disaster Recovery Elements
Following is a list of essential disaster recovery elements and the steps you need to
take to create them. You must determine how often to make copies and send them
to the recovery site.

 � Image copies

1. Make copies of your data sets and DB2 catalogs and directories.

Use the COPY utility to make copies for the local subsystem and additional
copies for disaster recovery. Install your local subsystem with the
LOCALSITE option of the SITE TYPE field on installation panel DSNTIPO.
Use the RECOVERYDDN option when you run COPY to make additional
copies for disaster recovery. You can use those copies on any DB2

4-134 Administration Guide

subsystem which you have installed using the RECOVERYSITE option.8

For information about making multiple image copies, see COPY in Section
2 of Utility Guide and Reference.

Do not produce the copies by invoking COPY twice.

2. Catalog the image copies if you want to track them.

3. Create a QMF report or use SPUFI to issue a SELECT statement to list the
contents of SYSCOPY.

4. Send the image copies and report to the recovery site.

5. Record this activity at the recovery site when the image copies and the
report are received.

All table spaces should have valid image copies.

 � Archive logs

1. Make copies of the archive logs for the recovery site.

a. Use the ARCHIVE LOG command to archive all current DB2 active log
data sets. For more ARCHIVE LOG command information see “The
Command ARCHIVE LOG” on page 4-88.

Do not use dual logging for disaster recovery from a remote site. If the
first copy of an archive becomes unreadable, then DB2 requests a
second copy and waits until the second copy is mounted. The
requesting function fails if the second copy is not available.

b. Catalog the archive logs if you want to track them.

You will probably need some way to track the volume serial numbers
and data set names. One way of doing this is to catalog the archive
logs to create a record of the necessary information. You could also
create your own tracking method and do it manually.

2. Use the print log map utility to create a BSDS report.

3. Send the archive copy, the BSDS report, and any additional information
about the archive log to the recovery site.

4. Record this activity at the recovery site when the archive copy and the
report are received.

� Integrated catalog facility catalog backups

1. Back up all DB2-related integrated catalog facility catalogs with the VSAM
EXPORT command on a daily basis.

2. Synchronize the backups with the cataloging of image copies and archives.

3. Use the VSAM LISTCAT command to create a list of the DB2 entries.

4. Send the EXPORT backup and list to the recovery site.

5. Record this activity at the recovery site when the EXPORT backup and list
are received.

8 You can also use these copies on a subsystem installed with the LOCALSITE option if you run RECOVER with the
RECOVERYSITE option. Or you can use copies prepared for the local site on a recovery site, if you run RECOVER with the
option LOCALSITE.

 Chapter 4-6. Backing Up and Recovering Databases 4-135

 � DB2 libraries

1. Back up DB2 libraries to tape when they are changed. Include the SMP/E,
load, distribution, and target libraries, as well as the most recent user
applications and DBRMs.

2. Document your backups.

3. Send backups and corresponding documentation to the recovery site.

4. Record activity at the recovery site when the library backup and
documentation are received.

For disaster recovery to be successful, all copies and reports must be updated and
sent to the recovery site regularly. Data will be up to date through the last archive
sent. For disaster recovery start up procedures see “Remote Site Recovery from
Disaster at a Local Site” on page 4-197.

Ensuring More Effective Recovery from Inconsistency Problems
The DB2 RECOVER utility is often the quickest and easiest method of resolving
data inconsistency problems. However, these problems can involve data that the
RECOVER utility needs to use, such as the recovery log or image copy data sets.
If the data needed by the RECOVER utility is damaged or unavailable, you might
have to resolve the problem manually.

Actions to Take
To aid in successful recovery of inconsistent data:

� During the installation of, or migration to, Version 4, make a full image
copy of the DB2 directory and catalog using installation job DSNTIJIC. See
Section 2 of Installation Guide for DSNTIJIC information.

If you did not do this during installation or migration, use the COPY utility,
described in Section 2 of Utility Guide and Reference, to make a full image
copy of the DB2 catalog and directory. If you do not do this and you
subsequently have a problem with inconsistent data in the DB2 catalog or
directory, you will not be able to use the RECOVER utility to resolve the
problem.

� Periodically make an image copy of the catalog, directory, and user
databases.

This minimizes the time the RECOVER utility requires to perform recovery. In
addition, this increases the probability that the necessary archive log data sets
will still be available. You should keep two copies of each level of image copy
data set. This reduces the risk involved if one image copy data set is lost or
damaged. See Section 2 of Utility Guide and Reference for more information
about using the COPY utility.

� Use dual logging for your active log, archive log, and bootstrap data sets.

This increases the probability that you can recover from unexpected problems.
It is especially useful in resolving data inconsistency problems. See
“Establishing the Logging Environment” on page 4-84 for related dual logging
information.

� Before using RECOVER, rename your data sets.

4-136 Administration Guide

If the image copy or log data sets are damaged, you can compound your
problem by using the RECOVER utility. Therefore, before using RECOVER,
either:

– rename the data sets that contain the table spaces you want to recover, or
– copy your data sets using DSN1COPY or
– for user-defined data sets, use access method services to define a new

data set with the original name.

The RECOVER utility applies log records to the new data set with the old
name. Then, if a problem occurs during RECOVER utility processing, you will
have a copy (under a different name) of the data set you want to recover.

� Keep back-level image copy data sets.

If you make an image copy of a table space containing inconsistent data, the
RECOVER utility cannot resolve the data inconsistency problem. However,
RECOVER can be used to resolve the inconsistency if you have an older
image copy of that table space taken before the problem occurred. Use the
MODIFY utility with the RECOVERY option to delete image copy information
from SYSIBM.SYSCOPY. Image copy data sets must be deleted separately. To
retain a particular image copy for use by RECOVER, you can use the MODIFY
utility with the ICDATE of that image copy. This also retains any later image
copies. See Section 2 of Utility Guide and Reference for information about the
MODIFY utility.

� Maintain consistent referential structures.

A referential structure is a set of tables and their relationships. It must include
at least one table, and for every table in the set, include all of the relationships
in which the table participates, as well as all the tables to which it is related. To
help maintain referential consistency, keep the number of table spaces in a
table space set to a minimum, and avoid tables of different referential
structures in the same table space. REPORT TABLESPACESET reports all
members of a table space set defined by referential constraints.

A referential structure must be kept consistent with respect to point-in-time
recovery. Use the QUIESCE utility to establish a point of consistency for a table
space set, to which the table space set can later be recovered without
introducing referential constraint violations.

See “Chapter 2-3. Maintaining Data Integrity” on page 2-19 for information on
designing referential structures to help maintain the consistency of your data.

Actions to Avoid
� Do not discard archive logs you might need.

The RECOVER utility might need an archive log to recover from an inconsistent
data problem. If you have discarded it, you cannot use the RECOVER utility
and must resolve the problem manually. For information about determining
when you can discard archive logs, see “Discarding Archive Log Records” on
page 4-94.

� Do not make an image copy of a table space containing inconsistent data.

If you use the COPY utility to make an image copy of a table space containing
inconsistent data, the RECOVER cannot recover a problem involving that table
space unless you have an older image copy of that table space taken before
the problem occurred. You can run DSN1COPY with the CHECK option to
determine whether intra-page data inconsistency problems exist on table

 Chapter 4-6. Backing Up and Recovering Databases 4-137

spaces before making image copies of them. If you are taking a copy of a
catalog or directory table space, you can run DSN1CHKR which verifies the
integrity of the links, and the CHECK DATA utility which checks the DB2
catalog (DSNDB06). For information, see Utility Guide and Reference.

� Do not use the TERM UTILITY command on utility jobs you want to
restart.

If an error occurs while a utility is running, the data on which the utility was
operating might continue to be written beyond the commit point. If the utility is
restarted later, processing resumes at the commit point, creating a consistency
problem. If the utility stops while it has exclusive access to data, other
applications cannot access that data. In this case, you might want to issue the
TERM UTILITY command to terminate the utility and make the data available to
other applications. However, use the TERM UTILITY command only if you
cannot restart or do not need to restart the utility job.

When you issue the TERM UTILITY command, two different situations can
occur:

– If the utility is active, it terminates at its next commit point.
– If the utility is stopped, it terminates immediately.

If you use the TERM UTILITY command to terminate the COPY or RECOVER
utility, the objects on which the utility was operating are left in an indeterminate
state. Often, the same utility job cannot be rerun. The specific considerations
vary for each utility, depending on the phase in process when you issue the
command. For details, see Section 2 of Utility Guide and Reference.

Running RECOVER Jobs in Parallel
You can schedule jobs with the RECOVER utility in two ways:

� Schedule one RECOVER job to process the entire table space. This option
provides none of the benefits of parallel operation.

� Schedule concurrent RECOVER jobs that process different partitions. The
degree of parallelism in this case is limited by contention for both the image
copies and the required log data.

Image copies that reside on DASD are read in parallel. Image copies that
reside on tape are read serially by each RECOVER job in turn.

Log data is read by concurrent jobs as follows:

– Active logs and archive logs on DASD are read entirely in parallel.

– A data set controlled by DFSMShsm is first recalled. It then resides on
DASD and is read in parallel.

– A non-DFSMShsm data set that must be read from tape is read
sequentially by each job in turn. As soon as one job finishes with a tape,
the next job gains control and begins reading the same tape. Different jobs
can read different log tapes in parallel. DB2 optimizes the tape handling
process.

In general, scheduling RECOVER jobs in parallel significantly reduces the job
time.

4-138 Administration Guide

Reading the Log without RECOVER
The DATA CAPTURE(CHANGES) clause of the SQL statements CREATE TABLE
and ALTER TABLE captures all SQL data changes made to the table on the DB2
log. The captured data can be propagated to an IMS subsystem or remain in the
DB2 log. This allows the creation of duplicate data for recovery purposes. Although
SQL changes to tables defined for data capture are supported from any subsystem,
propagation is permitted only to an IMS subsystem. For further information see
“Appendix C. Reading Log Records” on page X-81.

Data written to the log for propagation to IMS uses an expanded format that is
much longer than the DB2 internal format. Using DATA CAPTURE(CHANGES) can
greatly increase the size of your log.

Copying Table Spaces and Data Sets
You can use the COPY utility to copy data from a table space to an MVS
sequential data set on DASD or tape. It makes a full or incremental image copy, as
you choose, and it can be used to make copies that will be used for offsite recovery
operations. It does not copy indexes, as that operation is unnecessary; indexes can
be recovered from recovered table spaces.

Use the MERGECOPY utility to merge several image copies.

| The CHANGELIMIT option of the COPY utility causes DB2 to make an image copy
| automatically when a table space has changed past a default limit or a limit you
| specify. DB2 determines whether to make a full or incremental image copy. DB2
| makes an incremental image copy if the percent of changed pages is greater that
| the low CHANGELIMIT value and less than the high CHANGELIMIT value. DB2
| makes a full image copy if the percent of changed pages is greater than or equal to
| the high CHANGELIMIT value.

| If you want DB2 to recommend what image copies should be made but not make
| the image copies, use the CHANGELIMIT and REPORTONLY options of the COPY
| utility.

| If you specify the parameter DSNUM ALL with CHANGELIMIT and REPORTONLY,
| DB2 reports information for each partition of a partitioned table space or each piece
| of a nonpartitioned table space.

| You can add conditional code to your jobs so that an incremental or full image
| copy, or some other step is performed depending on how much the table space
| has changed. When you use the COPY utility with the CHANGELIMIT option to
| display image copy statistics, the COPY utility uses the following return codes to
| indicate the degree that a table space or list of table spaces has changed:

| Code Meaning

| 1 Successful and the percent of changed pages is greater than the low
| CHANGELIMIT value and less than the high CHANGELIMIT value. An
| incremental image copy is recommended or taken.

| 2 Successful and the percent of changed pages is greater than or equal to
| the high CHANGELIMIT value. A full image copy is recommended or taken.

 Chapter 4-6. Backing Up and Recovering Databases 4-139

| 3 Successful and no CHANGELIMIT value is met. No image copy is
| recommended or taken.

| 8 Failure.

| When you use generation data groups (GDGs) and need to make an incremental
| image copy, there are new steps you can take to prevent an empty image copy
| output data set from being created if no pages have been changed. You can do the
| following:

| � Make a copy of your image copy step, but add the REPORTONLY and
| CHANGELIMIT options to the new COPY utility statement. The REPORTONLY
| keyword specifies that you only want image copy information displayed.
| Change the SYSCOPY DD card to DD DUMMY so that no output data set is
| allocated. Run this step to visually determine the change status of your table
| space.

| � Add this step before your existing image copy step, and add a JCL conditional
| statement to examine the return code and execute the image copy step if the
| table space changes meet either of the CHANGELIMIT values.

| You can also use the COPY utility with the CHANGELIMIT option to determine
| whether any space map pages are broken, or to identify any other problems that
| might prevent an image copy from being taken, such as the object being in recover
| pending status. You need to correct these problems before you run the image copy
| job.

| You can also make a full image copy when you run the LOAD or REORG utility.
| This technique is better than running the COPY utility separately from the LOAD or
| REORG utility because it decreases the time that your table spaces are
| unavailable.

| Related Information: For guidance in using COPY and MERGECOPY and making
| image copies during LOAD and REORG, see Section 2 of Utility Guide and

Reference.

Backup with DFSMS: The concurrent copy function of Data Facility Storage
Management Subsystem (DFSMS) can copy a data set concurrently with access by
other processes, without significant impact on application performance. The function
requires the 3990 Model 3 controller with the extended platform.

There are two ways to use the Concurrent Copy function of Data Facility Storage
Management Subsystem (DFSMS):

� Run the COPY utility with the CONCURRENT option. DB2 records the resulting
image copies in SYSIBM.SYSCOPY. To recover with these DFSMS copies, you
can run the RECOVER utility to restore those image copies and apply the
necessary log records to them to complete recovery.

� Make copies using DFSMS outside of DB2's control. To recover with these
copies, you must manually restore the data sets, and then run RECOVER with
the LOGONLY option to apply the necessary log records.

4-140 Administration Guide

Recovering Table Spaces and Data Sets
You can recover objects in either of these ways:

| � If you made backup copies using the DB2 COPY utility or the inline copy
| feature of the LOAD or REORG utility, use the RECOVER utility to restore the
| objects to the current or a previous state.

� If you made backup copies using a method outside of DB2's control, such as
with DSN1COPY or the Concurrent Copy function of DFSMS, use the same
method to restore the objects to a prior point in time. Then, if you wish to
restore the objects to currency, run the RECOVER utility with the LOGONLY
option.

The RECOVER utility performs these actions:

� Restore the most current full image copy
� Apply changes recorded in later incremental image copies
� Apply later changes from the archive or active log.

RECOVER can act on:

� An entire table space, or list of table spaces
� A specific data set within a table space (usually a partition)
� A single page
� A page range within a table space that DB2 has found in error

 � An index
� The catalog and directory

Typically, RECOVER restores an object to its current state by applying all image
copies and log records. It can also restore to a prior state, meaning one of the
following:

� A specified point on the log (use the TORBA or TOLOGPOINT keyword)
� A particular image copy (use the TOCOPY keyword).

The RECOVER utility can use image copies for the local site or the recovery site,
regardless of where you invoke the utility. The RECOVER utility locates all full and
incremental image copies.

The RECOVER utility first attempts to use the primary image copy data set. If an
error is encountered (allocation, open, or I/O), RECOVER attempts to use the
backup image copy, if it is present. If an error is encountered with the backup copy,
RECOVER falls back to an earlier recoverable point.

For guidance in using RECOVER TABLESPACE and RECOVER INDEX, see
Section 2 of Utility Guide and Reference.

Not every recovery operation requires RECOVER; see also

“Recovering Error Ranges for a Work File Table Space” on page 4-143
“Recovering the Work File Database” on page 4-142
“Recovering Data to a Prior Point of Consistency” on page 4-144.

A Caution about DASD Dump: Be very careful when using DASD dump and
restore for recovering a data set. DASD dump and restore can make one data set
inconsistent with DB2 subsystem tables in some other data set. Use DASD dump
and restore only to restore the entire subsystem to a previous point of consistency,

 Chapter 4-6. Backing Up and Recovering Databases 4-141

and prepare that point as described in the alternative in step 2 under “Preparing to
Recover to a Prior Point of Consistency” on page 4-131.

Recovering the Work File Database
You cannot use RECOVER with the work file database (called DSNDB07, except in
a data sharing environment). That database is used for temporary space for certain
SQL operations, such as join and ORDER BY. If DSNDB01.DBD01 is stopped or
otherwise inaccessible when DB2 is started, then the descriptor for the work file
database is not loaded into main storage and the work file database is not
allocated. In order to recover from this condition after DSNDB01.DBD01 has been
made available, it is necessary to stop and then start the work file database again.

Problem with User-Defined Work File Data Sets
If you have a problem on a volume of a user-defined data set for the work file
database, then:

1. Issue the following DB2 command:

-STOP DATABASE (DSNDBð7)

2. Use the DELETE and DEFINE functions of access method services to redefine
a user work file on a different volume and reconnect it to DB2.

3. Issue the following DB2 command:

-START DATABASE (DSNDBð7)

Problem with DB2-Managed Work File Data Sets
If you have a problem on a volume in a DB2 storage group for the work file
database, (such as a system I/O problem), then:

1. Enter the following SQL statement to remove the problem volume from the DB2
storage group:

ALTER STOGROUP stogroup-name
 REMOVE VOLUMES (xxxxxx);

2. Issue the following DB2 command:

-STOP DATABASE (DSNDBð7)

3. Enter the following SQL statement to drop the table space with the problem:

DROP TABLESPACE DSNDBð7.tsname:

4. Re-create the table space. You can use the same storage group, because the
problem volume has been removed, or you can use an alternate.

CREATE TABLESPACE tsname
 IN DSNDBð7

USING STOGROUP stogroup-name;

5. Issue the following command:

-START DATABASE (DSNDBð7)

4-142 Administration Guide

Recovering Error Ranges for a Work File Table Space
Page error ranges operate for work file table spaces in the same way as for other
DB2 table spaces, except for the process of recovering them. Error ranges in a
work file table space cannot be reset by RECOVER ERROR RANGE. Instead, do
the following:

1. Stop the work file table space.

2. Correct the DASD error, using the ICKDSF service utility or access method
services to delete and redefine the data set.

3. Start the work file table space. When the work file table space is started, DB2
automatically resets the error range.

Also, DB2 always resets any error ranges when the work file table space is
initialized, regardless of whether the DASD error has really been corrected or not.
Work file table spaces are initialized when:

� The work file table space is stopped and then started
� The work file database is stopped and then started, and the work file table

space was not previously stopped
� DB2 is started and the work file table space was not previously stopped

If the error range is reset while the DASD error still exists, and if DB2 has an I/O
error when using the work file table space again, then DB2 sets the error range
again.

Recovering the Catalog and Directory
Catalog and directory objects must be recovered in a particular order. Because the
recovery of some objects depends on information derived from others, recovery
cannot proceed until the logically prior objects are in an undamaged state. For this
reason, you cannot recover a catalog or directory table space as part of a list of
table spaces. See the description of RECOVER TABLESPACE in Section 2 of
Utility Guide and Reference for more information about the specific order of
recovery.

You can use the REPORT utility to report on recovery information about the catalog
and directory.

To avoid restart processing of any table spaces before attempts are made to
recover any of the members of the list of catalog and directory objects, use the
DEFER option when installing DB2 followed by the option ALL. For more
information on DEFER, see “Deferring Restart Processing” on page 4-105.

Point-in-time recovery: Full recovery of the catalog and directory table spaces and
indexes is strongly recommended. However, if you need to plan for point-in-time
recovery of the catalog and directory, then one method of creating a point of
consistency is to:

1. Quiesce all catalog and directory table spaces in a list, except for
DSNDB06.SYSCOPY and DSNDB01.SYSUTILX.

2. Quiesce DSNDB06.SYSCOPY.

We recommend that you quiesce DSNDB06.SYSCOPY in a separate utility
statement; when you recover DSNDB06.SYSCOPY to its own quiesce point, it

 Chapter 4-6. Backing Up and Recovering Databases 4-143

contains the ICTYPE = 'Q' (quiesce) SYSIBM.SYSCOPY records for the other
catalog and directory table spaces.

3. Quiesce DSNDB01.SYSUTILX in a separate job step.

If you need to recover to a point in time, recover DSNDB06.SYSCOPY and
DSNDB01.SYSUTILX to their own quiesce points, and recover other catalog and
directory table spaces to their common quiesce point. The catalog and directory
objects must be recovered in a particular order. See Section 2 of Utility Guide and
Referencefor more information.

Recovery after a Conditional Restart of DB2: After a DB2 conditional restart in
which a log record range is specified (such as with a cold start), a portion of the
DB2 recovery log is no longer available. If the unavailable portion includes
information that is needed for internal DB2 processing, an attempt to use the
RECOVER TABLESPACE utility to restore directory table spaces DSNDBD01 or
SYSUTILX, or catalog table space SYSCOPY will fail with abend 00E40119.
Instead of using the RECOVER TABLESPACE utility, use this procedure to recover
those table spaces and their indexes:

1. Run DSN1COPY to recover the table spaces from an image copy.

2. Run the RECOVER TABLESPACE utility with the LOGONLY option to apply
updates from the log records to the recovered table spaces.

3. Recover the indexes with the RECOVER INDEX utility.

4. Take a full image copy of the table spaces to establish a new recovery point.

Recovering Data to a Prior Point of Consistency
Data can be restored to its state at a prior point in time if it has been backed up
appropriately. There are several ways to restore data, described in the following
sections:

� “Restoring Data by Using DSN1COPY” on page 4-146

� “Backing Up and Restoring Data with Non-DB2 Dump and Restore” on
page 4-147

� “Using RECOVER to Restore Data to a Previous Point in Time” on page 4-147.

The following considerations apply to all methods for backing up and restoring data:

Be Aware of Table Space Sets: If you restore a table space to a prior state,
restore all related tables to the same point to avoid inconsistencies. The table
spaces that contain related tables are called a table space set. For example, in the
DB2 sample application, a column in the EMPLOYEE table identifies the
department to which each employee belongs. The departments are described by
records in the DEPARTMENT table, which is in a different table space. If only that
table space is restored to a prior state, a row in the unrestored EMPLOYEE table
might then identify a department that does not exist in the restored DEPARTMENT
table.

You can use the REPORT utility to determine all the table spaces that belong to a
single table space set and then restore those table spaces which are related.
However, if there are related table spaces that belong to more than one table
space set or there are table spaces that are logically related in application

4-144 Administration Guide

programs of which DB2 is not aware, you are responsible for identifying all the
table spaces on your own.

Recovering Indexes: Indexes do not have to be backed up the way data is.
Recovery of indexes does not rely on information in the log. Use RECOVER
INDEX to restore the indexes after the data has been recovered.

Check Consistency with Catalog Definitions: Catalog and data inconsistencies
are usually the result of one of the following:

� A catalog table space was restored.

� The definition of a table or table space changed after the data was last backed
up.

If restoring your data might have caused an inconsistency between your catalog
and data, you need to do the following:

1. Run the DSN1PRNT utility with the FORMAT option against all data sets that
might contain user table spaces. These data sets are of the form

catname.DSNDBC.dbname.tsname.Iððð1.Aððn.

2. Execute these SELECT statements to find a list of table space and table
definitions in the DB2 catalog:

Product-sensitive Programming Interface

SELECT NAME, DBID, PSID FROM SYSIBM.SYSTABLESPACE;

SELECT NAME, TSNAME, DBID, OBID FROM SYSIBM.SYSTABLES;

End of Product-sensitive Programming Interface

3. For each table space name in the catalog, check to see if there is a data set
with a corresponding name. If a data set exists,

� Find the field HGBOBID in the header page section of the DSN1PRNT
output. This field contains the DBID and PSID for the table space. See if
the corresponding table space name in the DB2 catalog has the same
DBID and PSID.

� If the DBID and PSID do not match, execute DROP TABLESPACE and
CREATE TABLESPACE to replace the incorrect table space entry in the
DB2 catalog with a new entry. Be sure to make the new table space
definition exactly like the old one. If the table space is segmented,
SEGSIZE must be identical for the old and new definitions.

� Find the PGSOBD fields in the data page sections of the DSN1PRNT
output. These fields contain the OBIDs for the tables in the table space.
For each OBID you find in the DSN1PRNT output, search the DB2 catalog
for a table definition with the same OBID.

� If any of the OBIDs in the table space do not have matching table
definitions, examine the DSN1PRNT output to determine the structure of
the tables associated with these OBIDs. If a table exists whose structure
matches a definition in the catalog, but the OBIDs differ, proceed to the
next step. The OBIDXLAT option of DSN1COPY will correct the mismatch.
If a table exists for which there is no table definition in the catalog, recreate

 Chapter 4-6. Backing Up and Recovering Databases 4-145

the table definition using CREATE TABLE. To recreate a table definition for
a table that has had columns added, first use the original CREATE TABLE
statement, then use ALTER TABLE to add columns to make the table
definition match the current structure of the table.

� Use the utility DSN1COPY with the OBIDXLAT option to copy the existing
data to the “new” tables and table space and translate the DBID, PSID, and
OBIDs.

If a table space name in the DB2 catalog does not have a data set with a
corresponding name, the table space was probably created after your backup
was taken, and you cannot recover the table space. Execute DROP
TABLESPACE to delete the entry from the DB2 catalog.

4. For each data set in the DSN1PRNT output, check to see if there is a
corresponding DB2 catalog entry. If no entry exists, follow the instructions in
“Recovery of an Accidentally Dropped Table Space” on page 4-151 to recreate
the entry in the DB2 catalog.

See Section 3 of Utility Guide and Reference for more information about
DSN1COPY and DSN1PRNT.

Recover of Segmented Table Spaces: When data is restored to a prior point in
time on a segmented table space, information in the DBD for the table space might
not match the restored table space. If you use the DB2 RECOVER utility, the DBD
is updated dynamically to match the restored table space on the next non-index
access of the table. The table space must be in WRITE access mode. If you use a
method outside of DB2's control, such as DSN1COPY, to restore the table space to
a prior point in time, run the REPAIR utility with the LEVELID option to force DB2 to
accept the down-level data, then run the REORG utility on the table space to
correct the DBD.

Catalog and Directory: If any table space in the DB2 catalog (DSNDB06) and
directory (DSNDB01) is recovered, then all table spaces (except SYSUTILX) must
be recovered.

The catalog and directory contain definitions of all databases. When databases
DSNDB01 and DSNDB06 are restored to a prior point, information about later

definitions, authorizations, binds, and recoveries is lost. If you restore the catalog
and directory, you might have to restore user databases; if you restore user
databases, you might have to restore the catalog and directory.

Restoring Data by Using DSN1COPY
You can use DSN1COPY to restore data that has been previously backed up by
DSN1COPY or by COPY. If you use DSN1COPY to restore data or move data, the
data definitions for the target object must be exactly the same as when the copy
was created. You cannot use DSN1COPY to restore data that was backed up with
the DFSMS Concurrent Copy facility.

Be careful when creating backups with DSN1COPY. You must ensure that the data
is consistent or you will end up with faulty backup copies. One advantage of using
COPY to create backups is that it does not allow you to copy data that is in check
or recovery pending status. COPY allows you to prepare an up-to-date image copy
of the table space, either by making a full image copy or by making an incremental
image copy and merging it with the most recent full image copy.

4-146 Administration Guide

Keep access method services LISTCAT listings of table space data sets that
correspond to each level of retained backup data.

For more information about using DSN1COPY, see Section 3 of Utility Guide and
Reference .

Backing Up and Restoring Data with Non-DB2 Dump and Restore
You can use certain non-DB2 facilities to dump and restore data sets and volumes.
But note carefully the limitations described below.

Even though DB2 data sets are defined as VSAM data sets, DB2 data cannot be
read or written by VSAM record processing because it has a different internal
format. The data can be accessed by VSAM control interval (CI) processing. If you
manage your own data sets, you can define them as VSAM linear data sets
(LDSs), and access them through services that support data sets of that type.

Access method services for CI and LDS processing are available in MVS. IMPORT
and EXPORT use CI processing; PRINT and REPRO do not, but do support LDSs.

DFSMS/MVS Data Set Services (DFSMSdss) is available on MVS and provides
dump and restore services that can be used on DB2 data sets. Those services do
use VSAM CI processing.

Using RECOVER to Restore Data to a Previous Point in Time
TOCOPY, TORBA and TOLOGPOINT are options of the RECOVER utility. All
terminate recovery at a specified point. Because they recover data to a prior time,
and not to the present, they are referred to as point-in-time recoveries. A recovery
to a prior point in time will use either the TOCOPY, TORBA, or TOLOGPOINT
options of RECOVER.

TOCOPY identifies an image copy. Recovery is restored to the value of that copy,
without applying subsequent changes from the log. If the image copy in TOCOPY
cannot be applied, RECOVER TOCOPY uses an earlier full image copy and
applies logged changes up to the specified point.

If the image copy data set is cataloged when the image copy is made, then the
entry for that copy in SYSIBM.SYSCOPY does not record the volume serial
numbers of the data set. Identify that copy by its name, using TOCOPY data set
name. If the image copy data set was not cataloged when created, then you can
identify the copy by its volume serial identifier, using TOVOLUME vol-ser.

In a non-data-sharing environment, TORBA and TOLOGPOINT are interchangeable
keywords that identify an RBA on the log at which recovery stops. TORBA can be
used in a data sharing environment only if the TORBA value is before the point at
which data sharing was enabled. In this publication, whenever we talk about using
the TORBA keyword, the TOLOGPOINT keyword can be used instead. If you are
planning to use data sharing eventually, start using TOLOGPOINT now, to prepare.

With TORBA and TOLOGPOINT, the most recent full image copy taken before that
point on the log is restored, and logged changes are applied up to, and including,
the record that contains the specified log point. If no full image copy exists before
the chosen log point, recovery is attempted entirely from the log, applying the log

 Chapter 4-6. Backing Up and Recovering Databases 4-147

from table space creation to the chosen log point. This assumes you have not
modified SYSLGRNX for that table space.

Planning for Point-in-Time Recovery: TOCOPY and TORBA are viable
alternatives in many situations in which recovery to the current point in time is not
possible or desirable. To make these options work best for you, take periodic
quiesce points at points of consistency that are appropriate to your applications.

When making copies, use SHRLEVEL(REFERENCE) to establish consistent points
for TOCOPY recovery. Copies made with SHRLEVEL(CHANGE) do not copy data
at a single instant, because changes can occur as the copy is made. A later
RECOVER TOCOPY operation can produce inconsistent data.

| An inline copy made during LOAD REPLACE can produce unpredictable results if
| that copy is used later in a RECOVER TOCOPY operation. DB2 makes the copy
| during the RELOAD phase of the LOAD operation. Therefore, the copy does not
| contain corrections for unique index violations, referential constraint violations, or
| check constraint violations because those corrections occur during the INDEXVAL,
| ENFORCE, and DISCARD phases.

To improve the performance of the recovery, take a full image copy of the table
space or table space set, and then quiesce them using the QUIESCE utility. This
allows RECOVER TORBA to recover the table spaces to the quiesce point with
minimal use of the log.

Authorization: Restrict use of TOCOPY and TORBA to personnel with a thorough
knowledge of the DB2 recovery environment.

Ensuring Consistency: RECOVER TORBA and RECOVER TOCOPY can be
used on a single partition of a partitioned table space or on a single data set of a
simple table space. In either case, all data sets must be restored to the same level
or the data will be inconsistent.

Point-in-time recovery does not restore related indexes to a consistent point, as
does recovery to the current point in time, when the indexes are already consistent.
Therefore, after a recovery made with TOCOPY or TORBA, indexes are placed in
recovery pending status. See information about RECOVER in Section 2 of Utility
Guide and Reference for information about resetting this status.

Point-in-time recovery can cause table spaces to be placed in check pending status
if they have table check constraints or referential constraints defined on them.
When recovering tables involved in a referential constraint, you should recover all
the table spaces involved in a constraint. This is the table space set. To avoid
setting check pending, you must do both of the following:

� Recover the table space set to a quiesce point.

If you do not recover each table space of the table space set to the same
quiesce point, and if any of the table spaces are part of a referential integrity
structure:

– All dependent table spaces that are recovered are placed in check pending
status with the scope of the whole table space.

– All dependent table spaces of the above recovered table spaces are placed
in check pending status with the scope of the specific dependent tables.

4-148 Administration Guide

� Do not add table check constraints or referential constraints after the quiesce
point or image copy.

If you recover each table space of a table space set to the same quiesce point,
but referential constraints were defined after the quiesce point, then the check
pending status is set for the table space containing the table with the referential
constraint.

For information about resetting the check pending status, see “Violations of
Referential Constraints” on page 4-192.

Compressed Data: Use caution when recovering a single data set of a
nonpartitioned page set to a prior point in time. If the data set being recovered was
compressed with a different dictionary from the rest of the page set, then you can
no longer read the data. The details of data compression are described in
“Compressing Data in a Table Space or Partition” on page 2-63. For important
information on loading and compressing data see the description of LOAD in
Section 2 of Utility Guide and Reference.

Recovery of Dropped Objects
The procedures described in this section can be used in the event that a table or
table space is inadvertently dropped.

Avoiding the Problem
To avoid the problem of accidentally dropping tables, you can create a table with
the clause WITH RESTRICT ON DROP. No one can drop the table, nor the table
space or database containing the table, until the restriction on the table is removed.
The ALTER TABLE statement includes a new clause to remove the restriction, as
well as one to impose it. See “WITH RESTRICT ON DROP Clause” on page 2-97
for more information about this clause.

Limitations of the Procedures
These procedures do not reclaim a dropped table in a segmented table space.
Because of the way space is reused for segmented table spaces, there is no
simple, predictable procedure to recover these tables. (Tables in a partitioned table
space cannot be dropped without dropping the table space.) If you have
accidentally dropped a table space, see “Recovery of an Accidentally Dropped
Table Space” on page 4-151.

The following terms are used throughout this discussion and are defined here:

Term Meaning

DBID Database identifier

OBID Data object identifier

PSID Table space identifier

To prepare for this procedure, it is a good idea to run regular catalog reports that
include a list of all OBIDs in the subsystem. In addition, it is also very useful to
have catalog reports listing dependencies on the table (such as referential
constraints, indexes, and so on). After a table is dropped, this information
disappears from the catalog.

 Chapter 4-6. Backing Up and Recovering Databases 4-149

If an OBID has been reused by DB2, you must run DSN1COPY to translate the
OBIDs of the objects in the data set. However, this is unlikely; DB2 reuses OBIDs
only when no image copies exist that contain data from that table.

Recovery of an Accidentally Dropped Table
In order to perform this procedure, you will need a full image copy or a DSN1COPY
file that contains the data from the dropped table.

1. If you know the DBID, the PSID, the original OBID of the dropped table, and
the OBIDs of all other tables contained in the table space, go to step 2.

If you do not know all of the items listed above, use the following steps to find
them. For later use with DSN1COPY, record the DBID, the PSID, and the
OBIDs of all the tables contained in the table space, not just the dropped table.

a. For the data set that contains the dropped table, run DSN1PRNT with the
FORMAT option. Record the HPGOBID field in the header page and the
PGSOBD field from the data records in the data pages.

� Field HPGOBID is four bytes long and contains the DBID in the first
two bytes and the PSID in the last two bytes.

� Field PGSOBD is two bytes long and contains the OBID of the table. If
your table space contains more than one table, check for all OBIDs. In
other words, search for all different PGSOBD fields. You need to
specify all OBIDs from the data set as input for the DSN1COPY utility.

b. Convert the hex values in the identifier fields to decimal so they can be
used as input for the DSN1COPY utility.

2. Use the SQL CREATE statement to recreate the table and any indexes on the
table.

3. To allow DSN1COPY to access the DB2 data set, stop the table space using
the following command:

-STOP DATABASE(database
name) SPACENAM(tablespace-name)

This is necessary to ensure that all changes are written out and that no data
updates occur during this procedure.

4. Find the new OBID for the table by querying the SYSIBM.SYSTABLES catalog
table. The following statement returns the object ID (OBID) for the table:

Product-sensitive Programming Interface

SELECT NAME, OBID FROM SYSIBM.SYSTABLES

 WHERE NAME='table_name'

 AND CREATOR='creator_name';

End of Product-sensitive Programming Interface

This value is returned in decimal format, which is the format you need for
DSN1COPY.

5. Run DSN1COPY with the OBIDXLAT option to perform the OBID translation
and to copy the data from the work data set back to the original data set. Use
the original OBIDs you recorded in step 1 and the new OBID you recorded in

4-150 Administration Guide

step 4 as the input records for the translation file (SYSXLAT). For more
information about DSN1COPY, see Section 3 of Utility Guide and Reference.

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

6. Start the table space for normal use using the following command:

-START DATABASE(database name) SPACENAM(tablespace
name)

7. Recover any indexes on the table.

8. Verify that you can access the table, perhaps by executing SELECT statements
to use the table.

9. Make a full image copy of the table space. See “Copying Table Spaces and
Data Sets” on page 4-139 for more information about the COPY utility.

10. Recreate the objects that are dependent on the table.

As explained in “Implications of Dropping a Table” on page 2-135, when a
table is dropped, all objects dependent on that table (synonyms, views, aliases,
indexes, referential constraints, and so on) are dropped. Privileges granted for
that table are dropped as well. Catalog reports or a copy of the catalog taken
prior to the DROP TABLE can make this task easier.

Recovery of an Accidentally Dropped Table Space
These procedures are for table spaces that were dropped accidentally. This can
happen, for example, when all tables in an implicitly-created table space are
dropped, or if someone unintentionally executes a DROP TABLESPACE statement
for a particular table space.

When a table space is dropped, DB2 loses all information about the image copies
of that table space. Although the image copy data set is not lost, locating it may
require examination of image copy job listings or manually recorded information
about the image copies.

Following are two separate procedures: one for user-managed data sets and one
for DB2-managed data sets.

User-Managed Data Sets
In this procedure, you copy the data sets containing data from the dropped table
space to redefined data sets using the “OBID translate” function of DSN1COPY.

1. Find the DBID for the database, the PSID for the dropped table space, and the
OBIDs for the tables contained in the dropped table space. For information
about how to do this, see step 1 of “Recovery of an Accidentally Dropped
Table” on page 4-150.

2. Rename the data set containing the dropped table space using the IDCAMS
ALTER command. Do not forget to rename both the CLUSTER and DATA
portion of the data set and to begin the data set name with the integrated
catalog facility catalog name or alias.

3. Redefine the original DB2 VSAM data sets.

Use the access method services LISTCAT command to obtain a list of data set
attributes. The data set attributes on the redefined data sets must be the same
as they were on the original data sets.

 Chapter 4-6. Backing Up and Recovering Databases 4-151

4. Use SQL CREATE statements to recreate the table space, tables and any
indexes on the tables.

5. To allow DSN1COPY to access the DB2 data sets, stop the table space using
the following command:

-STOP DATABASE(database name) SPACENAM(tablespace-name)

This is necessary to prevent updates to the table space during this procedure
in the event the table space has been left open.

6. Find the target OBIDs (the OBIDs for the tables and the PSID for the table
space) by querying the SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLES
catalog tables.

Product-sensitive Programming Interface

The following statement returns the object ID for a table space; this is the
PSID.

SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

WHERE NAME='tablespace_name' and DBNAME='database_name'

 AND CREATOR='creator_name';

The following statement returns the object ID for a table:

SELECT NAME, OBID FROM SYSIBM.SYSTABLES

 WHERE NAME='table_name'

 AND CREATOR='creator_name';

End of Product-sensitive Programming Interface

These values are returned in decimal format, which is the format you need for
DSN1COPY.

7. Run DSN1COPY with the RESET option to copy the data from the renamed
VSAM data set containing the dropped table space to the redefined VSAM data
set. Use of the RESET option prevents DB2 from marking data in the table
space you restore as down level. Use the OBIDs you recorded from steps 1
and 6 as the input records for the translation file (SYSXLAT). For more
information about DSN1COPY, see Section 3 of Utility Guide and Reference.

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

8. Start the table space for normal use using the following command:

-START DATABASE(database name) SPACENAM(tablespace-name)

9. Recover all indexes on the table space.

10. Verify that you can access the table space, perhaps by executing SELECT
statements to use each table.

11. Make a full image copy of the table space.

See “Copying Table Spaces and Data Sets” on page 4-139 for more
information about the COPY utility.

12. Recreate the objects that are dependent on the table.

See step 10 of “Recovery of an Accidentally Dropped Table” on page 4-150 for
more information.

4-152 Administration Guide

DB2-Managed Data Sets
If a consistent full image copy or DSN1COPY file is available, DSN1COPY can be
used to recover a dropped table space. To do this:

1. Find the original DBID for the database, the PSID for the table space, and the
OBIDs of all tables contained in the dropped table space. For information on
how to do this, see step 1 of “Recovery of an Accidentally Dropped Table” on
page 4-150.

2. Recreate the table space and all tables. This can be difficult for tables where
either:

� The table definition is not available
� The table is no longer required

In these cases, simply create a “dummy” table with any structure of columns.

3. To allow DSN1COPY to access the DB2 data set, stop the table space with the
following command:

-STOP DATABASE(database name) SPACENAM(tablespace-name)

4. Find the “new” DBID, PSID, and OBIDs by querying the DB2 catalog as
described in step 6 of “User-Managed Data Sets” on page 4-151.

5. Run DSN1COPY using OBIDXLAT to perform the OBID translation and to copy
the data from the full image copy data set or the DSN1COPY data set. Use the
OBIDs you recorded from steps 1 and 4 as the input records for the translation
file (SYSXLAT). For more information about DSN1COPY, see Section 3 of
Utility Guide and Reference .

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

6. Start the table space for normal use using the following command:

-START DATABASE(database name) SPACENAM(tablespace-name)

7. Drop all “dummy” tables. The row structure does not match the definition, so
these tables cannot be used.

8. Reorganize the table space to remove all rows from dropped tables.

9. Recover all indexes on the table space.

10. Verify that you can access the table space, perhaps by executing SELECT
statements to use each table.

11. Make a full image copy of the table space.

See “Copying Table Spaces and Data Sets” on page 4-139 for more
information about the COPY utility.

12. Recreate the objects that are dependent on the table.

See step 10 on page 4-151 of “Recovery of an Accidentally Dropped Table” on
page 4-150 for more information.

 Chapter 4-6. Backing Up and Recovering Databases 4-153

Discarding SYSCOPY and SYSLGRNX Records
Use the MODIFY utility to delete obsolete records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX.

1. Follow these steps of the procedure described under “Locating Archive Log
Data Sets to Delete” on page 4-95:

a. Resolve Indoubt Units of Recovery on page 4-95.
b. Find the Startup Log RBA on page 4-96.
c. Find the Minimum Log RBA Needed on page 4-96. In that step, note the

date of the earliest image copy you intend to keep.

What Copies to Keep:

The earliest image copies and log data sets you need for recovery to the
present date are not necessarily the earliest ones you want to keep. If you
foresee resetting the DB2 subsystem to its status at any earlier date, you also
need the image copies and log data sets that allow you to recover to that date.

If the most recent image copy of an object is damaged, the RECOVER utility
seeks a backup copy. If there is no backup copy, or the backup is lost or
damaged, RECOVER will use a previous image copy. It will continue searching
until it finds an undamaged image copy or there are no more image copies.
The process has important implications for keeping archive log data sets. At the
very least, you need all log records since the most recent image copy; to
protect against loss of data from damage to that copy, you need log records as
far back as the earliest image copy you keep.

2. Run the MODIFY utility for each table space whose old image copies you want
to discard, using the date of the earliest image copy you will keep. For
example, you could enter:

MODIFY RECOVERY TABLESPACE dbname.tsname
DELETE DATE date

The DELETE DATE option removes records written earlier than the given date.
You also can use DELETE AGE, to remove records older than a given number
of days.

You can delete SYSCOPY records for a single partition by naming it with the
DSNUM keyword. That option does not delete SYSLGRNX records and does
not delete SYSCOPY records that are later than the earliest point to which you
can recover the entire table space. Thus, you can still recover by partition after
that point.

You cannot run the MODIFY utility on a table space that is in the “recovery
pending” status.

Considerations for Table Space Set Recovery: To determine a valid quiesce
point for the table space set, use the procedure for determining a RECOVER
TORBA value. See RECOVER in Section 2 of Utility Guide and Reference for more
information.

4-154 Administration Guide

 Chapter 4-7. Recovery Scenarios

This chapter contains problem scenarios and the recommended procedures for
restarting and recovering DB2. The following situations are described:

“IRLM Failure”
“MVS or Power Failure” on page 4-156
“DASD Failure” on page 4-156
“Application Program Error” on page 4-158
“IMS-Related Failures” on page 4-160
“CICS-Related Failures” on page 4-164
“Subsystem Termination” on page 4-169
“DB2 System Resource Failures” on page 4-171

“Active Log Failure” on page 4-171
“Archive Log Failure” on page 4-175
“BSDS Failure” on page 4-177
“Recovering the BSDS from a Backup Copy” on page 4-179

“DB2 Database Failures” on page 4-182
“Recovery from Down-Level Page Sets” on page 4-183
“Table Space Input/Output Errors” on page 4-184
“DB2 Catalog or Directory Input/Output Errors” on page 4-185
“Integrated Catalog Facility Catalog VSAM Volume Data Set Failures” on page
4-187

“VSAM Volume Data Set (VVDS) Destroyed” on page 4-187
“Out of DASD Space or Extent Limit Reached” on page 4-188

“Violations of Referential Constraints” on page 4-192
“Failures Related to the Distributed Data Facility” on page 4-192
“Remote Site Recovery from Disaster at a Local Site” on page 4-197
“Resolving Indoubt Threads” on page 4-211

“Communication Failure Between Two Systems” on page 4-213
“Making a Heuristic Decision” on page 4-214
“IMS Outage Resulting in IMS Cold Start” on page 4-215
“DB2 Outage at Application Requestor Resulting in DB2 Cold Start” on
page 4-216
“DB2 Outage at Application Server Resulting in DB2 Cold Start” on page
4-219
“Correcting a Heuristic Decision” on page 4-219

 IRLM Failure
Problem: The IRLM fails in a wait, loop, or abend.

Symptom: The IRLM abends and the following message appears:

DXR122E irlmx ABEND UNDER IRLM TCB/SRB IN MODULE xxxxxxxx
ABEND CODE zzzz

System Action: If the IRLM abends, DB2 terminates. If the IRLM waits or loops,
then terminate the IRLM, and DB2 terminates automatically.

System Programmer Action: None.

 Copyright IBM Corp. 1982, 1997 4-155

Operator Action:

� Start the IRLM if you did not set it for automatic start when you installed DB2.
(For instructions on starting the IRLM, see “Starting the IRLM” on page 4-35.)

� Start DB2. (For instructions, see “Starting DB2” on page 4-13.)

� Give the command /START SUBSYS ssid to connect IMS to DB2.

� Give the command DSNC STRT to connect CICS to DB2. (See “Connecting
from CICS” on page 4-41.)

MVS or Power Failure
Problem: MVS or processor power fails.

Symptom: No processing is occurring.

System Action: None.

System Programmer Action: None.

Operator Action:

1. IPL MVS and initialize the job entry subsystem.

2. If you normally run VTAM with DB2, start VTAM at this point.

3. Start the IRLM if you did not set it for automatic start when you installed DB2.
(See “Starting the IRLM” on page 4-35.)

4. Start DB2. (See “Starting DB2” on page 4-13.)

5. Restart IMS or CICS.

a. IMS automatically connects and resynchronizes when it is restarted. (See
“Connecting to the IMS Control Region” on page 4-50.)

b. CICS automatically connects to DB2 if the CICS PLT contains an entry for
the attach module DSNCCOM0. Alternatively, use the command DSNC
STRT to connect the CICS attachment facility to DB2. (See “Connecting
from CICS” on page 4-41.)

If you know that a power failure is imminent, it is a good idea to issue -STOP DB2
MODE(FORCE) to allow DB2 to come down cleanly before the power is
interrupted. If DB2 is unable to stop completely before the power failure, the
situation is no worse than if DB2 were still up.

 DASD Failure
Problem: A DASD hardware failure occurs, resulting in the loss of an entire unit.

Symptom: No I/O activity for the affected DASD address. Databases and tables
residing on the affected unit are unavailable.

System Action: None

System Programmer Action: None

Operator Action: Attempt recovery by following these steps:

4-156 Administration Guide

1. Assure that there are no incomplete I/O requests against the failing device.
One way to do this is to force the volume off line by issuing the following MVS
command:

VARY xxx,OFFLINE,FORCE

where xxx is the unit address.

To check DASD status you can issue:

D U,DASD,ONLINE

A console message similar to the following is displayed after you have forced a
volume offline:

 UNIT TYPE STATUS VOLSER VOLSTATE

 4B1 339ð O-BOX XTRAð2 PRIV/RSDNT

The DASD unit is now available for service.

If you have previously set the I/O timing interval for the device class, the I/O
timing facility should terminate all incomplete requests at the end of the
specified time interval, and you can proceed to the next step without varying
the volume off line. You can set the I/O timing interval either through the
IECIOSxx MVS parmlib member or by issuing the MVS command

SETIOS MIH,DEV=devnum,IOTIMING=mm:ss.

For more information on the I/O timing facility, see MVS/ESA Initialization and
Tuning Reference and MVS/ESA System Commands.

2. An authorized operator issues the following command to stop all databases and
table spaces residing on the affected volume:

-STOP DATABASE(database-name) SPACENAM(space-name)

If the DASD unit must be disconnected for repair, all databases and table
spaces on all volumes in the DASD unit must be stopped.

3. Select a spare DASD pack and use ICKDSF to initialize from scratch a DASD
unit with a different unit address (yyy) and the same volser.

 // Job

 //ICKDSF EXEC PGM=ICKDSF

 //SYSPRINT DD SYSOUT=\

 //SYSIN DD \

REVAL UNITADDRESS(yyy) VERIFY(volser)

If you are initializing a 3380 or 3390 volume, use REVAL with the VERIFY
parameter to ensure you are initializing the volume you want, or to revalidate
the volume's home address and record 0. Details are provided in Device
Support Facilities User's Guide and Reference. Alternatively, use ISMF to
initialize the DASD unit.

4. Issue this MVS console command. yyy is the new unit address.

VARY yyy,ONLINE

5. To check DASD status you can issue:

D U,DASD,ONLINE

A console message similar to the following is displayed:

 Chapter 4-7. Recovery Scenarios 4-157

 UNIT TYPE STATUS VOLSER VOLSTATE

 7D4 339ð O XTRAð2 PRIV/RSDNT

6. Issue the following command to start all the appropriate databases and table
spaces that had been stopped previously:

-START DATABASE(database-name) SPACENAM(space-name)

7. Delete all table spaces (VSAM linear data sets) from the ICF catalog by issuing
the following access method services command for each one of them:

DELETE catnam.DSNDBC.dbname.tsname.Iððð1.Aððx CLUSTER NOSCRATCH

Access method services commands are described in detail in DFSMS/MVS:
Access Method Services for VSAM Catalogs.

8. For user-managed table spaces, the VSAM cluster and data components must
be defined for the new volume by issuing the following access method services
commands for each one of them:

DEFINE catnam.DSNDBC.dbname.tsname.Iððð1.Aððx CLUSTER

DEFINE catnam.DSNDBD.dbname.tsname.Iððð1.Aððx DATA

Detailed requirements for user-managed data sets are described in
“Requirements for Your Own Data Sets” on page 2-69.

For a user defined table space, the new data set must be defined before an
attempt to recover it. Table spaces defined in storage groups can be recovered
without prior definition.

9. Recover the table spaces using the RECOVER TABLESPACE utility. Additional
information and procedures for recovering data can be found in “Recovering
Table Spaces and Data Sets” on page 4-141.

Application Program Error
Problem: An application program placed a logically incorrect value in a table.

Symptom: SQL SELECT returns unexpected data.

System Action: The system returns SQLCODE 00 for the SELECT statement,
because the error was not in SQL or DB2, but in the application program. That
error can be identified and corrected, but the data in the table is now inaccurate.

System Programmer Action: You might be able to use RECOVER TORBA (or
RECOVER TOLOGPOINT) to restore the database to a point before the error
occurred, but there are many circumstances under which you must manually back
out the changes introduced by the application. Among those are:

� Other applications changed the database after the error occurred. If you
recover the table spaces modified by the bad application, you would lose all
subsequent changes made by the other applications.

� There were DB2 checkpoints after the error occurred. In this case, you can use
RECOVER TORBA to restore the data up to the last checkpoint before the
error occurred, but all subsequent changes to the database are lost.

If you have a situation in which it makes sense to use RECOVER TORBA, you can
use procedures similar to those that follow to back out the changes made by the

4-158 Administration Guide

bad application. For a discussion of RECOVER TORBA or TOLOGPOINT, see
“Using RECOVER to Restore Data to a Previous Point in Time” on page 4-147.

Procedure 1: If You Have Established a Quiesce Point

1. Run the REPORT utility twice, once using the RECOVERY option and once
using the TABLESPACESET option. On each run, specify the table space
containing the inaccurate data. If you want to recover to the last quiesce point,
specify the option CURRENT when running REPORT RECOVERY.

2. Examine the REPORT output to determine the RBA of the quiesce point.

3. Execute RECOVER TORBA (or TOLOGPOINT) with the RBA that you found,
specify the names of all related table spaces. Recovering all related table
spaces to the same quiesce point prevents violations of referential constraints.

Procedure 2: If You Have Not Established a Quiesce Point

If you use this procedure, you will lose any updates to the database that occurred
after the last checkpoint before the application error occurred.

1. Run the DSN1LOGP stand-alone utility on the log scope available at DB2
restart, using the SUMMARY(ONLY) option. For instructions on running
DSN1LOGP, see Section 3 of Utility Guide and Reference.

2. Determine the RBA of the most recent checkpoint before the first bad update
occurred, from one of the following sources:

� Message DSNR003I on the operator's console. It looks (in part) like this:

DSNRðð3I RESTART PRIOR CHECKPOINT

 RBA=ððððð7425468

The required RBA in this example is X'7425468'.

This technique works only if there have been no checkpoints since the
application introduced the bad updates.

� Output from the print log map utility. You must know the time that the first
bad update occurred. Find the last BEGIN CHECKPOINT RBA before that
time.

3. Run DSN1LOGP again, using SUMMARY(ONLY) and specify the checkpoint
RBA as the value of RBASTART. The output lists the work in the recovery log,
including information about the most recent complete checkpoint, a summary of
all processing occurring, and an identification of the databases affected by each
active user. Sample output is shown in Figure 91 on page 4-231.

4. One of the messages in the output (identified as DSN1151I or DSN1162I)
describes the unit of recovery in which the error was made. To find the unit of
recovery, use your knowledge of the time the program was run (START DATE=
and TIME=), the connection ID (CONNID=), authorization ID (AUTHID=), and
plan name (PLAN=). In that message, find the starting RBA as the value of
START=.

5. Execute RECOVER TORBA with the starting RBA you found in the previous
step.

6. Recover any related table spaces or indexes to the same point in time.

Operator Action: None.

 Chapter 4-7. Recovery Scenarios 4-159

 IMS-Related Failures
This section includes scenarios for problems that can be encountered in the IMS
environment:

� “IMS Control Region (CTL) Failure.”
� “Resolution of Indoubt Units of Recovery” on page 4-161.
� “IMS Application Failure” on page 4-163.

Extended Recovery Facility (XRF) Toleration
DB2 can be used in an XRF recovery environment with IMS. All DB2-owned data
sets (executable code, the DB2 catalog, user databases) must be on DASD shared
between the primary and alternate XRF processors. In the event of an XRF
recovery, DB2 must be stopped on the primary processor and started on the
alternate. That is a manual operation and must be done after the coordinating IMS
system has completed the processor switch. In that way, any work that includes
SQL can be moved to the alternate processor with the remaining non-SQL work.
Other DB2 work (interactive or batch SQL and DB2 utilities) must be completed or
terminated before DB2 can be switched to the alternate processor. Consider the
effect of this potential interruption carefully when planning your XRF recovery
scenarios.

Care must be taken to prevent DB2 from being started on the alternate processor
until the DB2 system on the active, failing processor terminates. A premature start
can cause severe integrity problems in data, the catalog, and the log. The use of
global resource serialization (GRS) helps avoid the integrity problems by preventing
simultaneous use of DB2 on the two systems. The bootstrap data set (BSDS) must
be included as a protected resource, and the primary and alternate XRF processors
must be included in the GRS ring.

IMS Control Region (CTL) Failure
Problem: The IMS control region fails.

Symptom:

� IMS waits, loops, or abends.

� DB2 attempts to send the following message to the IMS master terminal during
an abend:

DSNMðð2I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM
 yyyy RC=RC

This message cannot be sent if the failure prevents messages from being
displayed.

� DB2 does not send any messages related to this problem to the MVS console.

System Action:

� DB2 detects that IMS has failed.
� DB2 either backs out or commits work in process.
� DB2 saves indoubt units of recovery. (These must be resolved at reconnection

time.)

System Programmer Action: None.

4-160 Administration Guide

Operator Action:

1. Use normal IMS restart procedures, which include starting IMS by issuing the
MVS START IMS command.

2. The following results occur:

� All DL/I and DB2 updates that have not been committed are backed out.
� IMS is automatically reconnected to DB2.
� IMS passes the recovery information for each entry to DB2 through the IMS

attachment facility. (IMS indicates whether to commit or roll back.)
� DB2 resolves the entries according to IMS instructions.

Resolution of Indoubt Units of Recovery
This section describes two different problems.

Problem 1: There are unresolved indoubt units of recovery. When IMS connects
to DB2, DB2 has one or more indoubt units of recovery that have not been
resolved.

Symptom: If DB2 has indoubt units of recovery that IMS did not resolve, the
following message is issued at the IMS master terminal:

DSNMðð4I RESOLVE INDOUBT ENTRY(S) ARE OUTSTANDING FOR

 SUBSYSTEM xxxx

When this message is issued, IMS was either cold started or it was started with an
incomplete log tape. This message could also be issued if DB2 or IMS had
abended due to a software error or other subsystem failure.

System Action:

� The connection remains active.
� IMS applications can still access DB2 databases.
� Some DB2 resources remain locked out.

If the indoubt thread is not resolved, the IMS message queues can start to back up.
If the IMS queues fill to capacity, IMS terminates. Therefore, users must be aware
of this potential difficulty and must monitor IMS until the indoubt units of work are
fully resolved.

System Programmer Action:

1. Force the IMS log closed using /DBR FEOV, and then archive the IMS log.
Use the command DFSERA10 to print the records from the previous IMS log
tape for the last transaction processed in each dependent region. Record the
PSB and the commit status from the X'37' log containing the recovery ID.

2. Run the DL/I batch job to back out each PSB involved that has not reached a
commit point. The process might take some time because transactions are still
being processed. It might also lock up a number of records, which could impact
the rest of the processing and the rest of the message queues.

3. Enter the DB2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).

4. Compare the NIDs (IMSID + OASN in hexadecimal) displayed in the -DISPLAY
THREAD messages with the OASNs (4 bytes decimal) shown in the
DFSERA10 output. Decide whether to commit or roll back.

 Chapter 4-7. Recovery Scenarios 4-161

5. Use DFSERA10 to print the X'5501FE' records from the current IMS log tape.
Every unit of recovery that undergoes indoubt resolution processing is
recorded; each record with an 'IDBT' code is still indoubt. Note the correlation
ID and the recovery ID, since they will be used during step 6.

6. Enter the following DB2 command, choosing to commit or roll back, and
specifying the correlation ID:

-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because there are more network IDs associated,
use the same command again, substituting the recovery ID for the network ID.

(For a description of the OASN and the NID, see “Duplicate Correlation IDs” on
page 4-53.)

Operator Action: Contact the system programmer.

Problem 2: Committed units of recovery should be aborted. At the time IMS
connects to DB2, DB2 has committed one or more indoubt units of recovery that
IMS says should be rolled back.

Symptom: By DB2 restart time, DB2 has committed and rolled back those units of
recovery about which DB2 was not indoubt. DB2 records those decisions, and at
connect time, verifies that they are consistent with the IMS/VS decisions.

An inconsistency can occur when the DB2 -RECOVER INDOUBT command is
used before IMS attempted to reconnect. If this happens, the following message is
issued at the IMS master terminal:

DSNMðð5I IMS/TM RESOLVE INDOUBT PROTOCOL PROBLEM WITH

 SUBSYSTEM xxxx

Because DB2 tells IMS to retain the inconsistent entries, the following message is
issued when the resolution attempt ends:

DFS36ð2I xxxx SUBSYSTEM RESOLVE-INDOUBT FAILURE,
 RC=yyyy

System Action:

� The connection between DB2 and IMS remains active.
� DB2 and IMS continue processing.
� No DB2 locks are held.
� No units of work are in an incomplete state.

System Programmer Action: Do not use the DB2 command RECOVER
INDOUBT. The problem is that DB2 was not indoubt but should have been.

Database updates have most likely been committed on one side (IMS or DB2) and
rolled back on the other side. (For a description of the OASN and the NID, see
“Duplicate Correlation IDs” on page 4-53.)

1. Enter the IMS command /DISPLAY OASN SUBSYS DB2 to display the IMS list
of units of recovery that need to be resolved. The /DISPLAY OASN SUBSYS
DB2 command produces the OASNs in a decimal format, not a hexadecimal
format.

4-162 Administration Guide

2. Issue the IMS command /CHANGE SUBSYS DB2 RESET to reset all the
entries in the list. (No entries are passed to DB2.)

3. Use DFSERA10 to print the log records recorded at the time of failure and
during restart. Look at the X'37', X'56', and X'5501FE' records at reconnect
time. Notify the IBM support center about the problem.

4. Determine what the inconsistent unit of recovery was doing by using the log
information, and manually make the DL/I and DB2 databases consistent.

Operator Action: None.

IMS Application Failure
Problem 1: An IMS application abends.

Symptom: The following messages appear at the IMS master terminal and at the
LTERM that entered the transaction involved:

DFS555 - TRAN tttttttt ABEND (SYSIDssss);
MSG IN PROCESS: xxxx (up to 78 bytes of data) timestamp

DFS555A - SUBSYSTEM xxxx OASN yyyyyyyyyyyyyyyy STATUS COMMIT|ABORT

System Action:

The failing unit of recovery is backed out by both DL/I and DB2.
The connection between IMS and DB2 remains active.

System Programmer Action: None.

Operator Action: If you think the problem was caused by a user error, refer to
Section 3 of Application Programming and SQL Guide. For procedures to diagnose
DB2 problems, rather than user errors, refer to Section 4 of Diagnosis Guide and
Reference. If necessary, contact the IBM support center for assistance.

Problem 2: DB2 has failed or is not running.

Symptom: One of the following status situations exists:

� If you specified error option Q, the program terminates with a U3051 user
abend completion code.

� If you specified error option A, the program terminates with a U3047 user
abend completion code.

In both cases, the master terminal receives a message (IMS message number
DFS554), and the terminal involved also receives a message (DFS555).

System Action: None.

System Programmer Action: None.

Operator Action:

 1. Restart DB2.
2. Follow the standard IMS procedures for handling application abends.

 Chapter 4-7. Recovery Scenarios 4-163

 CICS-Related Failures
This section includes scenarios for problems that can be encountered in the CICS
environment:

“CICS Application Failure”
“CICS Is Not Operational” on page 4-165
“CICS Inability to Connect to DB2” on page 4-165
“Manually Recovering CICS Indoubt Units of Recovery” on page 4-166
“CICS Attachment Facility Failure” on page 4-169.

Extended Recovery Facility (XRF) Toleration
DB2 can be used in an XRF recovery environment with CICS. All DB2-owned data
sets (executable code, the DB2 catalog, user databases) must be on DASD shared
between the primary and alternate XRF processors. In the event of an XRF
recovery, DB2 must be stopped on the primary processor and started on the
alternate. That can be done automatically, by using the facilities provided by CICS,
or manually, by the system operator. In that way, any work that includes SQL can
be moved to the alternate processor with the remaining non-SQL work. Other DB2
work (interactive or batch SQL and DB2 utilities) must be completed or terminated
before DB2 can be switched to the alternate processor. Consider the effect of this
potential interruption carefully when planning your XRF recovery scenarios.

Care must be taken to prevent DB2 from being started on the alternate processor
until the DB2 system on the active, failing processor terminates. A premature start
can cause severe integrity problems in data, the catalog, and the log. The use of
global resource serialization (GRS) helps avoid the integrity problems by preventing
simultaneous use of DB2 on the two systems. The BSDS must be included as a
protected resource, and the primary and alternate XRF processors must be
included in the GRS ring.

CICS Application Failure
Problem: A CICS application abends.

Symptom: The following message is sent to the user's terminal.

DFH22ð6 TRANSACTION tranid ABEND abcode BACKOUT SUCCESSFUL

tranid can represent any abending CICS transaction and abcode is the abend code.

System Action:

The failing unit of recovery is backed out in both CICS and DB2.
The connection remains.

System Programmer Action: None.

Operator Action:

1. For information about the CICS attachment facility abend, refer to Section 3 of
Messages and Codes.

2. For an AEY9 abend, start the CICS attachment facility.
3. For an ASP7 abend, determine why the CICS SYNCPOINT was unsuccessful.
4. For other abends, see Diagnosis Guide and Reference or CICS/ESA Problem

Determination Guide for diagnostic procedures.

4-164 Administration Guide

CICS Is Not Operational
Problem: CICS is not operational.

Symptom: More than one symptom is possible.

� CICS waits or loops.

Because DB2 cannot detect a wait or loop in CICS, you must find the origin of
the wait or the loop. The origin can be in CICS, CICS applications, or in the
CICS attachment facility. For diagnostic procedures for waits and loops, see
Section 3 of Diagnosis Guide and Reference.

 � CICS abends.

– CICS issues messages indicating an abend occurred and requests abend
dumps of the CICS region. See CICS/ESA Problem Determination Guide
for more information.

– If threads are connected to DB2 when CICS terminates, DB2 issues
message DSN3201I. The message indicates that DB2 end-of-task (EOT)
routines have been run to clean up and disconnect any connected threads.

System Action: DB2 does the following:

Detects the CICS failure.
Backs out inflight work.
Saves indoubt units of recovery to be resolved when CICS is reconnected.

Operator Action:

1. Correct the problem that caused CICS to terminate abnormally.

2. Do an emergency restart of CICS. The emergency restart accomplishes the
following:

� Backs out inflight transactions that changed CICS resources
� Remembers the transactions with access to DB2 that might be indoubt.

3. Start the CICS attachment facility by entering the appropriate command for
your release of CICS. See “Connecting from CICS” on page 4-41. The CICS
attachment facility does the following:

� Initializes and reconnects to DB2.

� Requests information from DB2 about the indoubt units of recovery and
passes the information to CICS.

� Allows CICS to resolve the indoubt units of recovery.

CICS Inability to Connect to DB2
Problem: The CICS attachment facility cannot connect to DB2.

Symptom:

� CICS remains operative, but the CICS attachment facility abends.

� The CICS attachment facility issues a message giving the reason for the
connection failure, or it requests an X'04E' dump.

� The reason code in the X'04E' dump gives the reason for failure.

 Chapter 4-7. Recovery Scenarios 4-165

� CICS issues message DFH2206 indicating that the CICS attach facility has
terminated abnormally with the DSNC abend code.

� CICS application programs trying to access DB2 while the CICS attachment
facility is inactive are abnormally terminated. The code AEY9 is issued.

System Action: CICS backs out the abnormally terminated transaction and treats it
like an application abend.

Operator Action:

1. Start the CICS attachment facility by entering the appropriate command for
your release of CICS. See “Connecting from CICS” on page 4-41.

2. The CICS attachment facility initializes and reconnects to DB2.

3. The CICS attachment facility requests information about the indoubt units of
recovery and passes the information to CICS.

4. CICS resolves the indoubt units of recovery.

Manually Recovering CICS Indoubt Units of Recovery
When the attachment facility has abended, CICS and DB2 build indoubt lists either
dynamically or during restart, depending on the failing subsystem.

For CICS, a DB2 unit of recovery could be indoubt if the forget entry (X'FD59') of
the task-related installation exit is absent from the CICS system journal. The
indoubt condition applies only to the DB2 UR, since CICS will have already
committed or backed out any changes to its resources.

A DB2 unit of recovery is indoubt for DB2 if an End Phase 1 is present and the
Begin Phase 2 is absent.

Problem: When CICS connects to DB2, there are one or more indoubt units of
recovery that have not been resolved.

Symptom: One of the following messages is sent to the user-named CICS
destination specified in the ERRDEST field in the resource control table (RCT):
DSNC001I, DSNC034I, DSNC035I, or DSNC036I. (These messages begin with
“DSN2” if they are from a CICS Version 4.1 release, or later).

System Action: The system action is summarized in Table 56:

Table 56 (Page 1 of 2). CICS Abnormal Indoubt Unit of Recovery Situations

Message ID Meaning

DSNC001I The named unit of recovery cannot be resolved by CICS because CICS
was cold started. The CICS attachment facility continues the startup
process

DSNC034I The named unit of recovery is not indoubt for DB2, but is indoubt
according to CICS log information. The reason is probably a CICS
restart with the wrong tape. It could also be caused by a DB2 restart to
a prior point in time

4-166 Administration Guide

CICS retains details of indoubt units of recovery that were not resolved during
connection start up. An entry is purged when it no longer appears on the list
presented by DB2 or, when present, DB2 solves it.

System Programmer Action: Any indoubt unit of recovery that CICS cannot
resolve must be resolved manually by using DB2 commands. This manual
procedure should be used rarely within an installation, since it is required only
where operational errors or software problems have prevented automatic resolution.
Any inconsistencies found during indoubt resolution must be investigated.

To recover an indoubt unit, follow these steps:

Step 1: Obtain a list of the indoubt units of recovery from DB2:

Issue the following command:

-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

You will receive the following messages:

DSNV4ð1I - DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð6I - INDOUBT THREADS -

COORDINATOR STATUS RESET URID AUTHID

coordinator-name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE

DSN9ð22I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

The corr_id (correlation ID) consists of:

Byte 1 Connection type: G = group, P = pool
Byte 2 Thread type: T = transaction (TYPE=ENTRY), G = group, C =

command (TYPE=COMD)
Bytes 3 & 4 Thread number
Bytes 5 - 8 Transaction ID

 It is possible for two threads to have the same correlation ID when the connection
has been broken several times and the indoubt units of recovery have not been
resolved. In this case, the network ID (NID) must be used instead of the correlation
ID to uniquely identify indoubt units of recovery.

The network ID consists of the CICS connection name and a unique number
provided by CICS at the time the syncpoint log entries are written. This unique
number is an eight-byte store clock value that is stored in records written to both
the CICS system log and to the DB2 log at syncpoint processing time. This value is
referred to in CICS as the recovery token.

Table 56 (Page 2 of 2). CICS Abnormal Indoubt Unit of Recovery Situations

Message ID Meaning

DSNC035I The named unit of recovery is indoubt for DB2, but is not in the CICS
indoubt list. This is most likely due to an incorrect CICS restart. The
CICS attachment facility continues the startup process and provides a
transaction dump. It could also be caused by a DB2 restart to a prior
point in time

DSNC036I CICS indicates roll back for the named unit of recovery, but DB2 has
already committed the unit of recovery. The CICS attachment facility
continues the startup process

 Chapter 4-7. Recovery Scenarios 4-167

Step 2: Scan the CICS log for entries related to a particular unit of recovery:
To do this, search the CICS log, looking for a PREPARE record
(JCRSTRIDX'F959'), for the task-related installation where the recovery token field
(JCSRMTKN) equals the value obtained from the network-ID. The network ID is
supplied by DB2 in the DISPLAY THREAD command output.

Locating the prepare log record in the CICS log for the indoubt unit of recovery
provides the CICS task number. All other entries on the log for this CICS task can
be located using this number.

CICS journal print utility DFHJUP can be used when scanning the log. See
CICS/MVS Operations Guide for details on how to use this program.

Step 3: Scan the DB2 log for entries related to a particular unit ofrecovery: To
do this, scan the DB2 log to locate the End Phase 1 record with the network ID
required. Then use the URID from this record to obtain the rest of the log records
for this unit of recovery.

When scanning the DB2 log, note that the DB2 start up message DSNJ099I
provides the start log RBA for this session.

The DSN1LOGP utility can be used for that purpose. See Section 3 of Utility Guide
and Reference for details on how to use this program.

Step 4: If needed, do indoubt resolution in DB2: DB2 can be directed to take
the recovery action for an indoubt unit of recovery using a DB2 RECOVER
INDOUBT command. Where the correlation ID is unique, use the following
command:

DSNC -RECOVER INDOUBT (connection-name)
 ACTION (COMMIT/ABORT)

 ID (correlation-id)

If the transaction is a pool thread, use the value of the correlation ID (corr_id)
returned by DISPLAY THREAD for thread#.tranid in the command RECOVER
INDOUBT. In this case, the first letter of the correlation ID is P. The transaction ID
is in characters five through eight of the correlation ID.

If the transaction is assigned to a group (group is a result of using an entry thread),
use thread#.groupname instead of thread#.tranid. In this case, the first letter of the
correlation ID is a G and the group name is in characters five through eight of the
correlation ID. groupname is the first transaction listed in a group.

Where the correlation ID is not unique, use the following command:

DSNC -RECOVER INDOUBT (connection-name)
 ACTION (COMMIT/ABORT)

 NID (network-id)

When two threads have the same correlation ID, use the NID keyword instead of
the ID keyword. The NID value uniquely identifies the work unit.

To recover all threads associated with connection-name, omit the ID option.

The command results in either of the following messages to indicate whether the
thread is committed or rolled back:

4-168 Administration Guide

DSNV414I - THREAD thread#.tranid COMMIT SCHEDULED
DSNV415I - THREAD thread#.tranid ABORT SCHEDULED

When performing indoubt resolution, note that CICS and the attachment facility are
not aware of the commands to DB2 to commit or abort indoubt units of recovery,
since only DB2 resources are affected. However, CICS keeps details about the
indoubt threads which could not be resolved by DB2. This information is purged
either when the list presented is empty, or when the list does not include a unit of
recovery that CICS remembers.

Operator Action: Contact the system programmer.

CICS Attachment Facility Failure
Problem: The CICS attachment facility abends, or a CICS attachment thread
subtask abends. CICS and DB2 remain active.

Symptom:

� If the main subtask abends, an abend dump is requested. The contents of the
dump indicate the cause of the abend. When the dump is issued, shutdown of
the CICS attachment facility begins.

� If a thread subtask terminates abnormally, an X'04E' dump is issued and the
CICS application abends with a DSNC dump code. The X'04E' dump should
show the cause of the abend. The CICS attachment facility remains active.

System Action:

� The CICS attachment facility shuts down if there is a main subtask abend.

� The matching CICS application abends with a DSNC dump code if a thread
subtask abends.

System Programmer Action: None.

Operator Action: Correct the problem that caused the abend by analyzing the
CICS formatted transaction dump or subtask SNAP dump. For more information
about analyzing these dumps, see Section 3 of Messages and Codes. If the CICS
attachment facility shuts down, use CICS commands to stop the execution of any
CICS-DB2 applications.

 Subsystem Termination
Problem: Subsystem termination has been started by DB2 or by an operator
cancel.

Symptom: Subsystem termination occurs. Usually some specific failure is identified
by DB2 messages, and the following messages appear.

On the MVS console:

DSNVð86E - DB2 ABNORMAL TERMINATION REASON=XXXXXXXX

DSN31ð4I - DSN3ECðð - TERMINATION COMPLETE

DSN31ððI - DSN3ECðð - SUBSYSTEM ssnm READY FOR -START COMMAND

On the IMS master terminal:

 Chapter 4-7. Recovery Scenarios 4-169

DSNMðð2I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM
 yyyy RC=rc

On the CICS transient data error destination defined in the RCT:

DSNCð25I - THE ATTACHMENT FACILITY IS INACTIVE

System Action:

� IMS and CICS continue.

� In-process CICS and IMS applications receive SQLCODE -923 (SQLSTATE
'57015') when accessing DB2.

In most cases, if an IMS or CICS application program is running when a -923
SQLCODE is returned, an abend occurs. This is because the application
program generally terminates when it receives a -923 SQLCODE. To terminate,
some synchronization processing occurs (such as a commit). If DB2 is not
operational when synchronization processing is attempted by an application
program, the application program abends. In-process applications can abend
with an abend code X'04F'.

� New IMS applications are handled according to the error options.

– For option R, SQL return code -923 is sent to the application, and IMS
pseudoabends.

– For option Q, the message is enqueued again and the transaction is
abended.

– For option A, the message is discarded and the transaction is abended.

� New CICS applications are handled as follows:

– If the CICS attachment facility has not terminated, the application receives
a -923 SQLCODE.

– If the CICS attachment facility has terminated, the application abends (code
AEY9).

Operator Action:

1. Restart DB2 by issuing the command START DB2.

2. Reestablish the IMS connection by issuing the IMS command /START SUBSYS
DB2.

3. Reestablish the CICS connection by issuing the CICS attachment facility
command DSNC STRT.

System Programmer Action:

1. Use the IFCEREP1 service aid to obtain a listing of the SYS1.LOGREC data
set containing the SYS1.LOGREC entries. (For more information about this
service aid, refer to the MVS diagnostic techniques publication about
SYS1.LOGREC.)

2. If the subsystem termination was due to a failure, collect material to determine
the reason for failure (console log, dump, and SYS1.LOGREC).

4-170 Administration Guide

DB2 System Resource Failures
This section includes scenarios for problems that can be encountered in the DB2
environment:

“Active Log Failure”
“Archive Log Failure” on page 4-175
“BSDS Failure” on page 4-177
“Recovering the BSDS from a Backup Copy” on page 4-179.

Active Log Failure
This section covers some of the more likely active log problems. Problems not
covered here include the following:

� Active log dynamic allocation problems are indicated by message DSNJ103I at
startup time.

� Active log open/close problems are indicated by message DSNJ104I.

Those problems are covered in “Chapter 4-8. Recovery from BSDS or Log Failure
During Restart” on page 4-221.

Problem 1 - Out of Space in Active Logs
The available space in the active log is finite and can be exhausted. It can fill to
capacity for one of several reasons, such as delays in off-loading and excessive
logging.

Symptom: An out of space condition on the active log has very serious
consequences. When the active log becomes full, the DB2 subsystem cannot do
any work that requires writing to the log until an off-load is completed.

Due to the serious implications of this event, the DB2 subsystem issues the
following warning message when the last available active log data set is 5 percent
full and re-issues the message after each additional 5 percent of the data set space
is filled. Each time the message is issued, the off-load process is started.

DSNJ11ðE - LAST COPYn ACTIVE LOG DATA SET IS nnn PERCENT FULL

If the active log fills to capacity, after having switched to single logging, the
following message is issued, and an off-load is started. The DB2 subsystem then
halts processing until an off-load has completed.

DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

Corrective action is required before DB2 can continue processing.

System Action: DB2 waits for an available active log data set before resuming
normal DB2 processing. Normal shutdown, with either QUIESCE or FORCE, is not
possible because the shutdown sequence requires log space to record system
events related to shutdown (for example, checkpoint records).

Operator Action: Make sure off-load is not waiting for a tape drive. If it is, mount a
tape and DB2 will process the off-load command.

If you are uncertain about what is causing the problem, enter the following
command:

-ARCHIVE LOG CANCEL OFFLOAD

 Chapter 4-7. Recovery Scenarios 4-171

This command causes DB2 to restart the off-load task. This might solve the
problem.

If this command doesn't solve the problem, you must determine the cause of the
problem and then re-issue the command again. If the problem cannot be solved
quickly, have the system programmer define additional active logs.

System Programmer Action: Additional active log data sets can permit DB2 to
continue its normal operation while the problem causing the off-load failures is
corrected.

1. Use the MVS command CANCEL command to bring DB2 down.

2. Use the access method services DEFINE command to define new active log
| data sets. Run utility DSNJLOGF to initialize the new active log data sets.

To minimize the number of off-loads taken per day in your installation, consider
increasing the size of the active log data sets.

3. Define the new active log data sets in the BSDS by using the change log
inventory utility (DSNJU003). For additional details, see Section 3 of Utility
Guide and Reference .

4. Restart DB2. Off-load is started automatically during startup, and restart
processing occurs.

Problem 2 - Write I/O Error on Active Log Data Set
Symptom: The following message appears:

DSNJ1ð5I - csect-name LOG WRITE ERROR DSNAME=..., LOGRBA=...,
 ERROR STATUS=ccccffss

System Action:

Marks the failing log data set TRUNCATED in the BSDS.
Goes on to the next available data set.
If dual active logging is used, truncates the other copy at the same point.
The data in the truncated data set is off-loaded later, as usual.
The data set is not “stopped.” It is reused on the next cycle. However, if there
is a DSNJ104 message indicating that there is a CATUPDT failure, then the
data set is marked “stopped.”

System Programmer Action: If you get the DSNJ104 message indicating
CATUPDT failure, you must use access method services and the change log
inventory utility (DSNJU003) to add a replacement data set. This requires that you
bring DB2 down. When you do this depends on how widespread the problem is.

� If the problem is localized and does not affect your ability to recover from any
further problems, you can wait until the earliest convenient time.

� If the problem is widespread (perhaps affecting an entire set of active log data
sets), take DB2 down after the next off-load.

For instructions on using the change log inventory utility, see Section 3 of Utility
Guide and Reference.

4-172 Administration Guide

Problem 3 - Dual Logging is Lost
Symptom: The following message appears:

DSNJðð4I - ACTIVE LOG COPYn INACTIVE, LOG IN SINGLE MODE,
 ENDRBA=...

Having completed one active log data set, DB2 found that the subsequent (COPY
n) data sets were not off-loaded or were marked stopped.

System Action: Continues in single mode until off-loading completes, then returns
to dual mode. If the data set is marked “stopped,” however, then intervention is
required.

System Programmer Action: Check that off-load is proceeding and is not waiting
for a tape mount. It might be necessary to run the print log map utility to determine
the status of all data sets.

If there are “stopped” data sets, you must use IDCAMS to delete the data sets, and
then re-add them using the change log inventory utility (DSNJU003). See Section 3
of Utility Guide and Reference for information about using the change log inventory
utility.

Problem 4 - I/O Errors While Reading the Active Log
Symptom: The following message appears:

DSNJ1ð6I - LOG READ ERROR DSNAME=..., LOGRBA=...,

 ERROR STATUS=ccccffss

System Action:

� If the error occurs during off-load, off-load tries to pick the RBA range from a
second copy.

– If no second copy exists, the data set is stopped.

– If the second copy also has an error, only the original data set that
triggered the off-load is stopped. Then the archive log data set is
terminated, leaving a discontinuity in the archived log RBA range.

– The following message is issued.

DSNJ124I - OFFLOAD OF ACTIVE LOG SUSPENDED FROM RBA xxxxxx

TO RBA xxxxxx DUE TO I/O ERROR

– If the second copy is satisfactory, the first copy is not stopped.

� If the error occurs during recovery, DB2 provides data from specific log RBAs
requested from another copy or archive. If this is unsuccessful, recovery fails
and the transaction cannot complete, but no log data sets are stopped.
However, the table space being recovered is not accessible.

System Programmer Action: If the problem occurred during off-load, determine
which databases are affected by the active log problem and take image copies of
those. Then proceed with a new log data set.

Also, you can use IDCAMS REPRO to archive as much of the stopped active log
data set as possible. Then run the change log inventory utility to notify the BSDS of
the new archive log and its log RBA range. Repairing the active log does not solve
the problem, because off-load does not go back to unload it.

 Chapter 4-7. Recovery Scenarios 4-173

If the active log data set has been stopped, it is not used for logging. The data set
is not deallocated; it is still used for reading.

If the data set is not stopped, an active log data set should nevertheless be
replaced if persistent errors occur. The operator is not told explicitly whether the
data set has been stopped. To determine the status of the active log data set, run
the print log map utility (DSNJU004). For more information on the print log map
utility, see Section 3 of Utility Guide and Reference.

To replace the data set, take the following steps:

1. Be sure the data is saved.

If you have dual active logs, the data is saved on the other active log and it
becomes your new data set. Skip to step 4.

If you have not been using dual active logs, take the following steps to
determine whether the data set with the error has been off-loaded:

a. Use print log map to list information about the archive log data sets from
the BSDS.

b. Search the list for a data set whose RBA range includes the range of the
data set with the error.

2. If the data set with the error has been off-loaded (that is, if the value for High
RBA Offloaded in the print log map output is greater than the RBA range of the
data set with the error) you need to manually add a new archive log to the
BSDS using the change log inventory utility (DSNJU003). Use IDCAMS to
define a new log having the same LRECL and BLKSIZE values as that defined
in DSNZPxxx. You can use the access method services REPRO command to
copy a data set with the error to the new archive log. If the archive log is not
cataloged, DB2 can locate it from the UNIT and VOLSER values in the BSDS.

3. If an active log data set has been stopped, an RBA range has not been
off-loaded; copy from the data set with the error to a new data set. If further I/O
errors prevent you from copying the entire data set, a gap occurs in the log and
restart might fail, though the data still exists and is not overlaid. If this occurs,
see “Chapter 4-8. Recovery from BSDS or Log Failure During Restart” on
page 4-221.

4. Stop DB2, and use change log inventory to update information in the BSDS
about the data set with the error.

a. Use DELETE to remove information about the bad data set.

b. Use NEWLOG to name the new data set as the new active log data set
and to give it the RBA range that was successfully copied.

The DELETE and NEWLOG operations can be performed by the same job
step; put the DELETE statement before the NEWLOG statement in the
SYSIN input data set. This step will clear the stopped status and DB2 will
eventually archive it.

5. Delete the data set in error by using access method services.

| 6. Redefine the data set so you can write to it. Use access method services
| DEFINE command to define the active log data sets. Run utility DSNJLOGF to
| initialize the active log data sets. If using dual logs, use access method
| services REPRO to copy the good log into the redefined data set so that you
| have two consistent, correct logs again.

4-174 Administration Guide

Archive Log Failure
This section covers some of the more likely archive log problems. Problems not
covered here include archive log open/close problems that are indicated by the
message DSNJ104I. Most archive log problems are described in “Chapter 4-8.
Recovery from BSDS or Log Failure During Restart” on page 4-221.

Problem 1 - Allocation Problems
Symptom: The following message appears:

DSNJ1ð3I - csect-name LOG ALLOCATION ERROR DSNAME=dsname,
ERROR STATUS=eeeeiiii, SMS REASON CODE=ssssssss

MVS dynamic allocation provides the ERROR STATUS. If the allocation was for
off-load processing, the following is also displayed.

DSNJ115I - OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE DATA SET

System Action: One of the following occurs:

� The RECOVER utility is executing and requires an archive log. If neither log
can be found or used, recovery fails.

� The active log became full and an off-load was scheduled. Off-load tries again
the next time it is triggered. The active log does not wrap around; therefore, if
there are no more active logs, data is not going to be lost.

� The input is needed for restart, which fails; refer to “Chapter 4-8. Recovery
from BSDS or Log Failure During Restart” on page 4-221.

Operator Action: Check the allocation error code for the cause of the problem and
correct it. Ensure that drives are available and run the recovery job again. Caution
must be exercised if a DFP/DFSMS ACS user-exit filter has been written for an
archive log data set, since this can cause the DB2 subsystem to fail on a device
allocation error attempting to read the archive log data set.

Problem 2 - Write I/O Errors During Archive Log Off-load
Symptom: No specific DB2 message is issued for write I/O errors. Only an MVS
error recovery program message appears. If you get DB2 message DSNJ128I, the
off-load task has abended and you should consult Section 3 of Messages and
Codes .

System Action:

� Off-load abandons that output data set (no entry in BSDS).

� Off-load dynamically allocates a new archive and restarts off-loading from the
point at which it was previously triggered. If there is dual archiving, the second
copy waits.

� If an error occurs on the new data set, the following occurs.

– If in dual archive mode, message DSNJ114I is generated and the off-load
processing changes to single mode.

DSNJ114I - ERROR ON ARCHIVE DATA SET, OFFLOAD CONTINUING

WITH ONLY ONE ARCHIVE DATA SET BEING GENERATED

– If in single mode, it abandons the output data set. Another attempt to
off-load this RBA range is made the next time off-load is triggered.

 Chapter 4-7. Recovery Scenarios 4-175

– The active log does not wrap around; if there are no more active logs, data
is not lost.

Operator Action: Ensure that off-load is allocated on a good drive and control unit.

Problem 3 - Read I/O Errors on Archive Data Set During
RECOVER
Symptom: No specific DB2 message is issued, only the MVS error recovery
program message appears.

System Action:

� If a second copy exists, it is allocated and used.
� If a second copy does not exist, recovery fails.

Operator Action: If you are recovering from tape, try recovering using a different
drive. If this doesn't work, contact the system programmer.

System Programmer Action: The only option is to recover to the last image copy
or the last quiesce point RBA. See Section 2 of Utility Guide and Reference for
more information about using the RECOVER utility.

Problem 4 - Insufficient DASD Space for Off-load Processing
Symptom: While off-loading the active log data sets to DASD, DB2 off-load
processing terminates unexpectedly. DB2 does not issue any specific message
other than:

DSNJ128I - LOG OFFLOAD TASK FAILED FOR ACTIVE LOG nnnnn

The failure is preceded by MVS ABEND messages IEC030I, IEC031I, or IEC032I.

System Action: DB2 deallocates the data set on which the error occurred. If in
dual archive mode, DB2 changes to single archive mode and continues the
off-load. If the off-load cannot compete in single archive mode, the active log data
sets cannot be off-loaded, and the status of the active log data sets remains
NOTREUSEABLE. Another attempt to off-load the RBA range of the active log data
sets is made the next time off-load is invoked.

System Programmer Action: If DB2 is operating with restricted active log
resources (see message DSNJ110E), quiesce the DB2 subsystem to restrict
logging activity until the MVS ABEND is resolved.

This message is generated for a variety of reasons. When accompanied by the
MVS ABENDs mentioned above, the most likely failures are as follows:

� The size of the archive log data set is too small to contain the data from the
active log data sets during off-load processing. All secondary space allocations
have been used. This condition is normally accompanied by MVS ABEND
message IEC030I.

To solve the problem, increase the primary or secondary allocations (or both)
for the archive log data set in DSNZPxxx. Another option is to reduce the size
of the active log data set. If the data to be off-loaded is particularly large, you
can mount another online storage volume or make one available to DB2.
Modifications to DSNZPxxx require that you stop and start DB2 to take effect.

4-176 Administration Guide

� All available space on the DASD volumes to which the archive data set is being
written has been exhausted. This condition is normally accompanied by MVS
ABEND message IEC032I.

To solve the problem, make space available on the DASD volumes, or make
available another online storage volume for DB2. Then issue the DB2
command ARCHIVE LOG CANCEL OFFLOAD to get DB2 to retry the off-load.

� The primary space allocation for the archive log data set (as specified in the
load module for subsystem parameters) is too large to allocate to any available
online DASD device. This condition is normally accompanied by MVS ABEND
message IEC032I.

To solve the problem, make space available on the DASD volumes, or make
available another online storage volume for DB2. If this is not possible, an
adjustment to the value of PRIQTY in the DSNZPxxx module is required to
reduce the primary allocation. (For instructions, see Section 2 of Installation
Guide. If the primary allocation is reduced, the size of the secondary space
allocation might have to be increased to avoid future IEC030I ABENDs.

 BSDS Failure
For information about the BSDS, read “Managing the Bootstrap Data Set (BSDS)”
on page 4-92. Normally, there are two copies of the BSDS; but if one is damaged,
DB2 immediately falls into single BSDS mode processing. The damaged copy of
the BSDS must be recovered prior to the next restart. If you are in single mode and
damage the only copy of the BSDS, or if you are in dual mode and damage both
copies, DB2 stops until the BSDS is recovered. To proceed under these conditions
see “Recovering the BSDS from a Backup Copy” on page 4-179.

This section covers some of the BSDS problems that can occur. Problems not
covered here include:

� RECOVER BSDS command failure (messages DSNJ301I through DSNJ307I)
� Change log inventory utility failure (message DSNJ123E)
� Errors in the BSDS backup being dumped by off-load (message DSNJ125I).

See Section 3 of Messages and Codes for information about those problems.

Problem 1 - An I/O Error Occurs
Symptom: The following message appears:

DSNJ126I - BSDS ERROR FORCED SINGLE BSDS MODE

It is followed by one of these messages:

DSNJ1ð7I - READ ERROR ON BSDS

DSNAME=... ERROR STATUS=...

DSNJ1ð8I - WRITE ERROR ON BSDS

DSNAME=... ERROR STATUS=...

System Action: The BSDS mode changes from dual to single.

System Programmer Action:

1. Use access method services to rename or delete the damaged BSDS and to
define a new BSDS with the same name as the failing BSDS. Control
statements can be found in job DSNTIJIN.

 Chapter 4-7. Recovery Scenarios 4-177

2. Issue the DB2 command RECOVER BSDS to make a copy of the good BSDS
in the newly allocated data set and to reinstate dual BSDS mode.

Problem 2 - An Error Occurs While Opening
Symptom: The following message appears:

DSNJ1ððI - ERROR OPENING BSDSn DSNAME=..., ERROR STATUS=eeii

The error status is VSAM return code/feedback. For information about VSAM
codes, refer to DFSMS/MVS: Macro Instructions for Data Sets.

System Action: None.

System Programmer Action:

1. Use access method services to delete or rename the damaged data set, to
define a replacement data set, and to copy the remaining BSDS to the
replacement with the REPRO command.

2. Use the command START DB2 to start the DB2 subsystem.

Problem 3 - Unequal Timestamps Exist
Symptom: The following message appears:

DSNJ12ðI - DUAL BSDS DATA SETS HAVE UNEQUAL TIMESTAMPS,

BSDS1 SYSTEM=..., UTILITY=..., BSDS2 SYSTEM=..., UTILITY=...

The following are possible causes:

� One of the volumes containing the BSDS has been restored. All information of
the restored volume is down-level. If the volume contains any active log data
sets or DB2 data, their contents are also down-level. The down-level volume
has the lower timestamp.

For information about resolving this problem, see “Failure during a Log RBA
Read Request” on page 4-241.

� Dual BSDS mode has degraded to single BSDS mode, and you are trying to
start without recovering the bad BSDS.

� The DB2 subsystem abended after updating one copy of the BSDS, but prior to
updating the second copy.

System Action: None.

System Programmer Action:

1. Run the print log map utility (DSNJU004) on both copies of the BSDS; compare
the lists to determine which copy is accurate or current.

2. Rename the down-level data set and define a replacement for it.

3. Copy the good data set to the replacement data set, using the REPRO
command of access method services.

4. If the problem was caused by a restored down-level BSDS volume, and:

� if the restored volume contains active log data, and
� you were using dual active logs on separate volumes

then use access method services REPRO to copy the current version of the
active log to the down-level data set.

4-178 Administration Guide

If you were not using dual active logs, you must cold start the subsystem. (For
this procedure, see “Failure Resulting from Total or Excessive Loss of Log
Data” on page 4-244).

If the restored volume contains database data, use the RECOVER utility to
recover that data after successful restart.

Recovering the BSDS from a Backup Copy
If DB2 is operating in single BSDS mode and the BSDS is damaged, or if DB2 is
operating in dual BSDS mode and both BSDSs are damaged, DB2 stops and does
not restart until dual BSDS is restored. In this case, take the following steps:

1. Locate the BSDS associated with the most recent archive log data set. The
data set name of the most recent archive log appears on the MVS console in
the last occurrence of message DSNJ003I, which indicates that off-loading has
successfully completed. In preparation for the rest of this procedure, it is a
good practice to keep a log of all successful archives noted by that message.

� If archive logs are on DASD, the BSDS is allocated on any available
DASD. The BSDS name is like the corresponding archive log data set
name; change only the first letter of the last qualifier, from A to B, as in the
example below:

Archive Log name DSN.ARCHLOG1.A0000001
BSDS copy name DSN.ARCHLOG1.B0000001

� If archive logs are on tape, the BSDS is the first data set of the first archive
log volume. The BSDS is not repeated on later volumes.

2. If the most recent archive log data set has no copy of the BSDS (presumably
because an error occurred when off-loading it), then locate an earlier copy of
the BSDS from an earlier off-load.

3. Rename any damaged BSDS by using the access method services ALTER
command with the NEWNAME option. The BSDS is a VSAM key-sequenced
data set that has three components: cluster, index, and data. You must rename
all components of the data set. Avoid changing the high-level qualifier. See
DFSMS/MVS: Access Method Services for VSAM Catalogsfor detailed
information about using the access method services ALTER command.

If the decision is made to delete any damaged BSDS, use the access method
services DELETE command. For each damaged BSDS, use access method
services to define a new BSDS as a replacement data set. Job DSNTIJIN
contains access method services control statements to define a new BSDS.

4. Use the access method services REPRO command to copy the BSDS from the
archive log to one of the replacement BSDSs you defined in step 3. Do not
copy any data to the second replacement BSDS; data is placed in the second
replacement BSDS in a later step in this procedure.

a. Print the contents of the replacement BSDS.

Use the print log map utility (DSNJU004) to print the contents of the
replacement BSDS This enables you to review the contents of the
replacement BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.

 Chapter 4-7. Recovery Scenarios 4-179

Examine the print log map output and note that the replacement BSDS
does not obtain a record of the archive log from which the BSDS was
copied. If the replacement BSDS is a particularly old copy, it is missing all
archive log data sets which were created later than the BSDS backup copy.
Thus, the BSDS inventory of the archive log data sets must be updated to
reflect the current subsystem inventory.

Use the change log inventory utility (DSNJU003) NEWLOG statement to
update the replacement BSDS, adding a record of the archive log from
which the BSDS was copied. If the archive log data set is
password-protected, be certain to use the PASSWORD option of the
NEWLOG statement. Also, make certain the CATALOG option of the
NEWLOG statement is properly set to CATALOG = YES if the archive log
data set is cataloged. Also, use the NEWLOG statement to add any
additional archive log data sets which were created later than the BSDS
copy.

c. Update passwords in the replacement BSDS.

The BSDS contains passwords for the archive log data sets and for
selected DB2 databases. To ensure that the passwords in the replacement
BSDS reflect the current passwords used by your installation, use the
change log inventory ARCHIVE and SYSTEMDB statements with the
PASSWORD option.

d. Update DDF information in the replacement BSDS.

If your installation's DB2 is part of a distributed network, the BSDS contains
the DDF control record. You must review the contents of this record in the
output of the print log map utility. If changes are required, use the change
log inventory DDF statement to update the BSDS DDF record.

e. Update the archive log data set inventory in the replacement BSDS.

In unusual circumstances, your installation could have added, deleted, or
renamed active log data sets since the BSDS was copied. In this case, the
replacement BSDS does not reflect the actual number or names of the
active log data sets your installation has currently in use.

If you must delete an active log data set from the replacement BSDS log
inventory, use the change log inventory utility DELETE statement.

If you need to add an active log data set to the replacement BSDS log
inventory, use the change log inventory utility NEWLOG statement. Be
certain that the RBA range is specified correctly on the NEWLOG
statement. If the active log data set is password-protected, be certain to
use the PASSWORD option.

If you must rename an active log data set in the replacement BSDS log
inventory, use the change log inventory utility DELETE statement, followed
by the NEWLOG statement. Be certain that the RBA range is specified
correctly on the NEWLOG statement. If the active log data set is
password-protected, be certain to use the PASSWORD option.

f. Update the active log RBA ranges in the replacement BSDS.

Later, when a restart is performed, DB2 compares the RBAs of the active
log data sets listed in the BSDS with the RBAs found in the actual active
log data sets. If the RBAs do not agree, DB2 does not restart. The problem
is magnified when a particularly old copy of the BSDS is used. To resolve

4-180 Administration Guide

this problem, you can use the change log inventory utility to adjust the
RBAs found in the BSDS with the RBAs in the actual active log data sets.
This can be accomplished by the following:

� If you are not certain of the RBA range of a particular active log data
set, use DSN1LOGP to print the contents of the active log data set.
Obtain the logical starting and ending RBA values for the active log
data set from the DSN1LOGP output. The STARTRBA value you use in
the change log inventory utility must be at the beginning of a control
interval. Similarly, the ENDRBA value you use must be at the end of a
control interval. To get these values, round the starting RBA value from
the DSN1LOGP output down so that it ends in X'000'. Round the
ending RBA value up so that it ends in X'FFF'.

� When the RBAs of all active log data sets are known, compare the
actual RBA ranges with the RBA ranges found in the BSDS (listed in
the print log map utility output).

If the RBA ranges are equal for all active log data sets, you can
proceed to the next recovery step without any additional work.

If the RBA ranges are not equal, then the values in the BSDS must be
adjusted to reflect the actual values. For each active log data set which
needs to have the RBA range adjusted, use the change log inventory
utility DELETE statement to delete the active log data set from the
inventory in the replacement BSDS. Then use the NEWLOG statement
to redefine the active log data set to the BSDS. If the active log data
sets are password-protected, be certain to use the PASSWORD option
of the NEWLOG statement.

g. If only two active log data sets are specified in the replacement BSDS, add
a new active log data set for each copy of the active log and define each
new active log data set of the replacement BSDS log inventory.

If only two active log data sets are specified for each copy of the active log,
DB2 can have difficulty during restart. The difficulty can arise when one of
the active log data sets is full and has not been off-loaded, while the
second active log data set is close to filling. Adding a new active log data
set for each copy of the active log can alleviate difficulties on restart in this
scenario.

To add a new active log data set for each copy of the active log, use the
access method services DEFINE command to define a new active log data
set for each copy of the active log. The control statements to accomplish
this task can be found in job DSNTIJIN. Once the active log data sets are
physically defined and allocated, use the change log inventory utility
NEWLOG statement to define the new active log data sets of the
replacement BSDS. The RBA ranges need not be specified on the
NEWLOG statement; however, if the active log data sets are
password-protected, be certain to use the PASSWORD option of the
NEWLOG statement.

5. Copy the updated BSDS copy to the second new BSDS data set. The dual
bootstrap data sets are now identical.

You should consider using the print log map utility (DSNJU004) to print the
contents of the second replacement BSDS at this point.

 Chapter 4-7. Recovery Scenarios 4-181

6. See “Chapter 4-8. Recovery from BSDS or Log Failure During Restart” on
page 4-221 for information about what to do if you have lost your current active
log data set. For a discussion of how to construct a conditional restart record,
see “Step 4: Truncate the Log at the Point of Error” on page 4-232.

7. Restart DB2, using the newly constructed BSDS. DB2 determines the current
RBA and what active logs need to be archived.

DB2 Database Failures
Problem: Allocation or open problems occur.

Symptom 1: The following message indicates an allocation problem:

DSNB2ð7I - DYNAMIC ALLOCATION OF DATA SET FAILED.

 REASON=rrrr DSNAME=dsn

where rrrr is an MVS dynamic allocation reason code. For information about these
reason codes, see MVS/ESA Programming: Authorized Assembler Services Guide.

Symptom 2: The following messages indicate a problem at open:

IEC161I rc[(sfi)] - ccc, iii, sss, ddn,
ddd, ser, xxx, dsn, cat

 where:

rc Is a return code
sfi Is subfunction information (sfi only appears with certain return codes)
ccc Is a function code
iii Is a job name
sss Is a step name
ddn Is a ddname
ddd Is a device number (if the error is related to a specific device)
ser Is a volume serial number (if the error is related to a specific volume)
xxx Is a VSAM cluster name
dsn Is a data set name
cat Is a catalog name.

For information about these codes, see MVS/ESA System Messages Volume 1.

DSNB2ð4I - OPEN OF DATA SET FAILED. DSNAME = dsn

System Action:

� The table space is automatically stopped.
� Programs receive an -904 SQLCODE (SQLSTATE '57011').
� If the problem occurs during restart, the table space is marked for deferred

restart, and restart continues. The changes are applied later when the table
space is started.

System Programmer Action: None.

Operator Action:

1. Check reason codes and correct.
2. Ensure that drives are available for allocation.
3. Enter the command START DATABASE.

4-182 Administration Guide

Recovery from Down-Level Page Sets
When using a stand-alone or non-DB2 utility, such as DSN1COPY or DFSMShsm,
it is possible to replace a DB2 data set by mistake with an incorrect or outdated
copy. Such a copy is called down-level; using it can cause complex problems.

Performing a cold start of DB2 can also result in a down-level condition.

DB2 associates a level ID with every page set or partition. Most operations detect a
down-level ID, and return an error condition, when the page set or partition is first
opened for mainline or restart processing. The exceptions are operations that do
not use the data:

 LOAD REPLACE
 RECOVER TABLESPACE
 RECOVER INDEX
 DSN1COPY
 DSN1PRNT

The RESET option of DSN1COPY resets the level ID on its output to a neutral
value that passes any level check. Hence, you can still use DSN1COPY to move
data from one system or table space to another.

For index page sets, directory page sets, and the page sets for SYSIBM.SYSCOPY
and SYSIBM.SYSGROUP, a down-level ID is detected only at restart and not
during mainline operations.

Symptom: The following message appears:

DSNB232I csect-name - UNEXPECTED DATA SET LEVEL ID ENCOUNTERED

The message contains also the level ID of the data set, the level ID that DB2
expects, and the name of the data set.

System Action:

� If the error was reported during mainline processing, DB2 sends back a
'resource unavailable' SQL code to the application and a reason code
explaining the error.

� If the error was detected while a utility was processing, the utility gives a return
code 8.

System Programmer Action: You can recover in any of the following ways:

If the message occurs during restart:

� Replace the data set with one at the proper level, using DSN1COPY,
DFSMShsm, or some equivalent method. To check the level ID of the new data
set, run the stand-alone utility DSN1PRNT on it, with the options PRINT(0) (to
print only the header page) and FORMAT. The formatted print identifies the
level ID.

� Recover the data set to the current time, or to a prior time, using the
RECOVER utility.

� Replace the contents of the data set, using LOAD REPLACE.

 Chapter 4-7. Recovery Scenarios 4-183

If the message occurs during normal operation , use any of the methods listed
above, plus one more:

� Accept the down-level data set by changing its level ID.

The REPAIR utility contains a new statement for that purpose. Run a utility job
with the statement REPAIR LEVELID. The LEVELID statement cannot be used
in the same job step with any other REPAIR statement.

 Attention

Accepting a down-level data set or disabling down-level detection might well
cause data inconsistencies. Problems with inconsistent data resulting from
this action are the responsibility of the user.

For more information about using the utilities, see Utility Guide and Reference .

How to control down-level detection: Use the subsystem parameter DLDFREQ
to control how often the level ID of a page set or partition is updated. DB2 accepts
any value between 0 and 65535. For example, to update the level ID after every
checkpoint that a page set is open for update activity, set DLDFREQ=1. To update
the level ID after every fifth checkpoint that the page set is open for update activity,
set DLDFREQ=5. DLDFREQ=5 is the default. To disable down-level detection, set
DLDFREQ=0.

Consider the following when you choose a value for DLDFREQ:

� How often do you use backup and restore methods outside of DB2's control?

If you rarely use such methods, you do not need to update the level ID often.

� How many page sets are open for update at the same time?

If DB2 updates level IDs frequently, you have extra protection against
down-level page sets. However, if the level IDs for many page sets must be set
at every checkpoint, you might experience a performance degradation.

� How often does the subsystem take checkpoints?

If the subsystem takes checkpoints frequently, the level ID can be set after a
larger number of checkpoints.

To activate a new value of DLDFREQ, rerun job DSNTIJUZ and restart DB2. For
more information about subsystem parameters, see Section 2 of Installation Guide .

Table Space Input/Output Errors
Problem: A table space failed.

Symptom: The following message is issued:

DSNUð86I DSNUCDA1 READ I/O ERRORS ON SPACE= dddddddd.
DATA SET NUMBER= nnn.
I/O ERROR PAGE RANGE= aaaaaa, bbbbbb.

where dddddddd is a table space name.

Any table spaces identified in DSNU086I messages must be recovered using one
of the procedures in this section listed under “Operator Action.”

4-184 Administration Guide

System Action: DB2 remains active.

Operator Action: Fix the error range.

1. Use the command STOP DATABASE to stop the failing table space.

2. Use the command START DATABASE ACCESS (UT) to start the table space
for utility-only access.

3. Start a RECOVER utility step to recover the error range by using the DB2
RECOVER TABLESPACE (dddddddd) ERROR RANGE statement.

If you receive message DSNU086I again, indicating the error range recovery
cannot be performed, use the recovery procedure below.

4. Give the command START DATABASE to start the table space for RO or RW
access, whichever is appropriate. If the table space is recovered, you do not
need to continue with the procedure below.

If Error Range Recovery Fails: If the error range recovery of the table space
failed because of a hardware problem, proceed as follows:

1. Use the command STOP DATABASE to stop the table space or table space
partition which contains the error range. This causes all the in-storage data
buffers associated with the data set to be externalized to ensure data
consistency during the subsequent steps.

2. Use the INSPECT function of the IBM Device Support Facility, ICKDSF, to
check for track defects and to assign alternate tracks as necessary. The
physical location of the defects can be determined by analyzing the output of
messages DSNB224I, DSNU086I, IOS000I, which were displayed on the
system operator's console at the time the error range was created. If damaged
storage media is suspected, then request assistance from hardware support
personnel before proceeding. Refer to Device Support Facilities User's Guide
and Reference for information about using ICKDSF.

3. Use the command START DATABASE to start the table space with
ACCESS(UT) or ACCESS(RW).

4. Run the utility RECOVER ERROR RANGE which, from image copies, locates,
allocates, and applies the pages within the tracks affected by the error ranges.

DB2 Catalog or Directory Input/Output Errors
Problem: The DB2 catalog or directory failed.

Symptom: The following message is issued:

DSNUð86I DSNUCDA1 READ I/O ERRORS ON SPACE= dddddddd.
DATA SET NUMBER= nnn.
I/O ERROR PAGE RANGE= aaaaaa, bbbbbb.

where dddddddd is a table space name from the catalog or directory. dddddddd is
the table space that failed (for example, SYSCOPY, abbreviation for
SYSIBM.SYSCOPY, or SYSLGRNX, abbreviation for DSNDB01.SYSLGRNX). This
message can indicate either read or write errors. You can also get a DSNB224I or
DSNB225I message, which could indicate an input or output error for the catalog or
directory.

 Chapter 4-7. Recovery Scenarios 4-185

Any catalog or directory table spaces that are identified in DSNU086I messages
must be recovered with this procedure.

System Action: DB2 remains active.

If the DB2 directory or any catalog table is damaged, only user IDs with the
RECOVERDB privilege in DSNDB06, or an authority that includes that privilege,
can do the recovery. Furthermore, until the recovery takes place, only those IDs
can do anything with the subsystem. If an ID without proper authorization attempts
to recover the catalog or directory, message DSNU060I is displayed. If the
authorization tables are unavailable, message DSNT500I is displayed indicating the
resource is unavailable.

System Programmer Action: None.

Operator Action: Take the following steps for each table space in the DB2 catalog
and directory that has failed. If there is more than one, refer to the description of
RECOVER TABLESPACE in Section 2 of Utility Guide and Reference for more
information about the specific order of recovery.

1. Stop the failing table spaces.

2. Determine the name of the data set that failed. There are two ways to do this:

� Check prefix.SDSNSAMP (DSNTIJIN), which contains the JCL for installing
DB2. Find the fully qualified name of the data set that failed by searching
for the name of the table space that failed (the one identified in the
message as SPACE = dddddddd).

� Construct the data set name by doing one of the following:

– If the table space is in the DB2 catalog, the data set name format is:

DSNC51ð.DSNDBC.DSNDBð6.dddddddd.Iððð1.Aðð1

where dddddddd is the name of the table space that failed.

– If the table space is in the DB2 directory, the data set name format is:

DSNC51ð.DSNDBC.DSNDBð1.dddddddd.Iððð1.Aðð1

where dddddddd is the name of the table space that failed.

If you do not use the default (IBM-supplied) formats, the formats for data
set names can be different.

3. Use access method services DELETE to delete the data set, specifying the
fully qualified data set name.

4. After the data set has been deleted, use access method services DEFINE to
redefine the same data set, again specifying the same fully qualified data set
name. Use the JCL for installing DB2 to determine the appropriate parameters.

Note: The REUSE parameter must be coded in the DEFINE statements.

5. Give the command START DATABASE ACCESS(UT), naming the table space
involved.

6. Use the RECOVER utility to recover the table space that failed.

7. Give the command START DATABASE, specifying the table space name and
RO or RW access, whichever is appropriate.

4-186 Administration Guide

Integrated Catalog Facility Catalog VSAM Volume Data Set Failures
This section includes information regarding volume data set failures. The following
topics are described:

“VSAM Volume Data Set (VVDS) Destroyed”
“Out of DASD Space or Extent Limit Reached” on page 4-188

VSAM Volume Data Set (VVDS) Destroyed
Problem: A VSAM volume data set (VVDS) is either out of space or destroyed.

Symptom: DB2 sends the following message to the master console.

DSNPð12I - DSNPSCTð - ERROR IN VSAM CATALOG LOCATE FUNCTION

 FOR data_set_name
 CTLGRC=5ð

 CTLGRSN=zzzzRRRR
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUW-ID=logical-unit-of-work-id=token

For a detailed explanation of this message, see Section 3 of Messages and Codes
.

VSAM can also issue the following message.

IDC3ðð9I VSAM CATALOG RETURN CODE IS 5ð, REASON CODE IS

IGGOCLaa - yy

In this VSAM message, yy is 28, 30, or 32 for an out-of-space condition. Any other
values for yy indicate a damaged VVDS.

System Action: Your program is terminated abnormally and one or more
messages are issued.

System Programmer Action: None.

Operator Action : For information on recovering the VVDS, consult the appropriate
book for the level of DFSMS/MVS you are using:

DFSMS/MVS: Access Method Services for the Integrated Catalog
DFSMS/MVS: Managing Catalogs

The procedures given in these books describe three basic recovery scenarios. First
determine which scenario exists for the specific VVDS in error. Then, before
beginning the appropriate procedure, take the following steps:

1. Determine the names of all table spaces residing on the same volume as the
VVDS. To determine the table space names, look at the VTOC entries list for
that volume, which indicates the names of all the data sets on that volume. For
information on how to determine the table space name from the data set name,
refer to “ Section 2. Designing a Database” on page 2-1.

2. Use the DB2 COPY utility to take image copies of all table spaces of the
volume. Taking image copies minimizes reliance on the DB2 recovery log and
can speed up the processing of the DB2 RECOVER utility (to be mentioned in
a subsequent step).

 Chapter 4-7. Recovery Scenarios 4-187

If the COPY utility cannot be used, continue with this procedure. Be aware that
processing time increases because more information is obtained from the DB2
recovery log.

3. Use the command STOP DATABASE for all the table spaces that reside on the
volume, or use the command STOP DB2 to stop the entire DB2 subsystem if
an unusually large number or critical set of table spaces are involved. If you are
recovering objects created in an ROSHARE OWNER database that are
STOGROUP defined, and the physical VSAM data set does not exist, the
command STOP DATABASE cannot be used. In this case, stop the DB2
subsystem.

4. If possible, use access method services to export all non-DB2 data sets
residing on that volume. For more information, see DFSMS/MVS: Access
Method Services for the Integrated Catalog and DFSMS/MVS: Managing
Catalogs.

5. To recover all non-DB2 data sets on the volume, see DFSMS/MVS: Access
Method Services for the Integrated Catalog and DFSMS/MVS: Managing
Catalogs.

6. Use access method services DELETE and DEFINE commands to delete and
redefine the data sets for all user-defined table spaces and DB2-defined data
sets for shared read-only data (when the physical data set has been
destroyed). DB2 automatically deletes and redefines all other STOGROUP
defined table spaces.

You do not need to do this for those table spaces that are STOGROUP
defined; DB2 takes care of them automatically.

7. Issue the DB2 START DATABASE command to restart all the table spaces
stopped in step 3. If the entire DB2 subsystem was stopped, issue the -START
DB2 command.

8. Use the DB2 RECOVER utility to recover any table spaces and indexes. For
information on recovering table spaces, refer to “Chapter 4-6. Backing Up and
Recovering Databases” on page 4-123.

Out of DASD Space or Extent Limit Reached
Problem: There is no more space on the volume on which the data set is stored or
the data set might have reached its maximum DB2 size or its maximum number of
VSAM extents.

Symptom: One of the following messages:

1. Extend request failure

When an insert or update requires additional space, but the space is not
available in the current table or index space, DB2 issues the following
message:

DSNPðð7I - DSNPmmmm - EXTEND FAILED FOR
 data-set-name. RC=rrrrrrrr
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUWID-ID=logical-unit-of-work-id=token

2. Look ahead warning

4-188 Administration Guide

A look ahead warning occurs when there is enough space for a few inserts and
updates, but the index space or table space is almost full. On an insert or

update at the end of a page set, DB2 determines whether the data set has
enough available space. DB2 uses the following values in this space
calculation:

� The primary space quantity from the integrated catalog facility (ICF) catalog

� The secondary space quantity from the ICF catalog

� The allocation unit size

If there is not enough space, DB2 tries to extend the data set. If the extend
request fails, then DB2 issues the following message:

DSNPðð1I - DSNPmmmm - data-set-name IS WITHIN
nK BYTES OF AVAILABLE SPACE.

 RC=rrrrrrrr
 CONNECTION-ID=xxxxxxxx,
 CORRELATION-ID=yyyyyyyyyyyy
 LUW-ID=logical-unit-of-work-id=token

System Action: For a demand request failure during restart, the object supported
by the data set (an index space or a table space) is stopped with deferred restart
pending. Otherwise, the state of the object remains unchanged. Programs receive a
-904 SQL return code (SQLSTATE '57011').

System Programmer Action: None.

Operator Action: The appropriate choice of action depends on particular
circumstances. The following topics are described in this section; decision criteria
are outlined below:

� “Procedure 1. Extend a Data Set” on page 4-190

� “Procedure 2. Enlarge a Fully Extended Data Set (User-Managed)” on
page 4-190

� “Procedure 3. Enlarge a Fully Extended Data Set (in a DB2 Storage Group)”
on page 4-191

� “Procedure 4. Add a Data Set” on page 4-191

� “Procedure 5. Redefine a Partition” on page 4-191

� “Procedure 6. Enlarge a Fully Extended Data Set for the Work File Database”
on page 4-191

If the database qualifier of the data set name is DSNDB07, then the condition is on
your work file database. Use “Procedure 6. Enlarge a Fully Extended Data Set for
the Work File Database” on page 4-191.

In all other cases, if the data set has not reached its maximum DB2 size, then you
can enlarge it. (The maximum size is 2 gigabytes for a data set of a simple space,

| and 1, 2, or 4 gigabytes for a data set containing a partition. Large partitioned table
| spaces and indexes on large partitioned table spaces have a maximum data set
| size of 4 gigabytes.)

� If the data set has not reached the maximum number of VSAM extents, use
“Procedure 1. Extend a Data Set” on page 4-190.

 Chapter 4-7. Recovery Scenarios 4-189

� If the data set has reached the maximum number of VSAM extents, use either
“Procedure 2. Enlarge a Fully Extended Data Set (User-Managed)” on
page 4-190 or “Procedure 3. Enlarge a Fully Extended Data Set (in a DB2
Storage Group)” on page 4-191, depending on whether the data set is
user-managed or DB2-managed. User-managed data sets include essential
data sets such as the catalog and the directory.

If the data set has reached its maximum DB2 size, then your action depends on the
type of object it supports.

� If the object is a simple space, add a data set, using “Procedure 4. Add a Data
Set” on page 4-191.

� If the object is partitioned, each partition is restricted to a single data set. You
must redefine the partitions; use “Procedure 5. Redefine a Partition” on
page 4-191.

Procedure 1. Extend a Data Set
If the data set is user-defined, provide more VSAM space. You can add volumes
with the access method services command ALTER ADDVOLUMES or make room
on the current volume.

If the data set is defined in a DB2 storage group, add more volumes to the storage
group by using the SQL ALTER STOGROUP statement.

For more information on DB2 data set extension, refer to “Extending DB2-Managed
Data Sets” on page 5-100.

Procedure 2. Enlarge a Fully Extended Data Set (User-Managed)
1. For table spaces, be sure that you have a recent image copy to allow for

recovery in case of failure during this procedure. Use the DSNUM option to
identify the data set for table spaces.

2. Issue the command STOP DATABASE SPACENAM for the last data set of the
object supported.

3. Delete the last data set by using access method services. Then redefine it and
enlarge it as necessary.

4. Issue the command START DATABASE ACCESS (UT) to start the object for
utility-only access.

The object must be user-defined and a linear data set, and should not have
| reached the maximum number of 32 data sets. For non-partitioned indexes on
| a large partitioned table space the maximum is 128 data sets.

5. For a table space, use RECOVER to recover the data set that was redefined.
Identify the data set by the DSNUM option. RECOVER permits you to specify a
single data set number for a table space. Thus, only the last data set (the one
that needs extension) must be redefined and recovered. This can be better
than using REORG if the table space is very large and contains multiple data
sets, and if the extension must be done quickly.

For an index, use the REBUILD INDEX utility to rebuild the index.

6. Issue the command START DATABASE to start the object for either RO or RW
access, whichever is appropriate.

4-190 Administration Guide

Procedure 3. Enlarge a Fully Extended Data Set (in a DB2
Storage Group)

1. Use ALTER TABLESPACE or ALTER INDEX with a USING clause. You can
give new values of PRIQTY and SECQTY in either the same or a new DB2
storage group.

2. Use one of the following utilities on the data set for the table space: REORG,
RECOVER or LOAD REPLACE. Use the REBUILD INDEX utility on the index.

Keep in mind that no movement of data occurs until this step is completed.

Procedure 4. Add a Data Set
If the object supported is user-defined, use the access method services to define
another data set. The name of the new data set must continue the sequence begun
by the names of the existing data sets that support the object. The last four
characters of each name are a relative data set number: If the last name ended
with A001, the next must end with A002, and so on.

If the object is defined in a DB2 storage group, DB2 automatically tries to create an
additional data set. If that fails, access method services messages are sent to an
operator indicating the cause of the problem. Correcting that problem allows DB2 to
get the additional space.

Procedure 5. Redefine a Partition
1. Use SQL to create a table (B) identical to the one needing enlargement (A).

2. Use SQL to copy the data to the newly-created table B.

3. Drop the table space containing the data. That also drops the table and any
indexes, views, or synonyms dependent on it, and revokes all authorizations for
the table and views that are dropped.

4. Redefine the table space, the partitioned index (with different key range
values), the table (new A), and the nonclustering indexes.

5. Use SQL to copy the data of B to the new partitioned table A.

6. Re-create all the views and synonyms and re-grant authorization.

As an alternative to steps 2 and 5, you can do the following:

� Use SQL SELECT statements to unload the rows of the original table A into a
file. Use the LOAD utility to load the rows from the file into the newly created
table B.

� Use SQL SELECT statements to unload the rows of table B into a file. Use the
LOAD utility to load the rows from the file into the new partitioned table A.

For large table spaces, this technique might be faster than copying data directly
from one table to the other. For an example of using SQL to unload rows from a
table into a file, see sample program DSNTIAUL.

Procedure 6. Enlarge a Fully Extended Data Set for the Work
File Database

1. Use the command STOP DATABASE (DSNDB07) to ensure that no users are
accessing the database.

2. Add space for extension to the DB2 storage group by one of these methods:

� Use SQL to change the storage group, adding volumes as necessary.

 Chapter 4-7. Recovery Scenarios 4-191

� Use SQL to create more table spaces in database DSNDB07.

3. Use the command START DATABASE (DSNDB07).

Violations of Referential Constraints
Problem: A table space can contain violations of referential constraints.

Symptom: One of the following messages is issued at the end of utility processing,
depending upon whether or not the table space is partitioned.

DSNU561I csect-name - TABLESPACE= tablespace-name PARTITION= partnum
IS IN CHECK PENDING

DSNU563I csect-name - TABLESPACE= tablespace-name IS IN CHECK PENDING

System Action: None. The table space is still available; however, it is not available
to the COPY, REORG, and QUIESCE utilities, or to SQL select, insert, delete, or
update operations that involve tables in the table space.

System Programmer Action: None.

Operator Action:

1. Use the START DATABASE ACCESS (UT) command to start the table space
for utility-only access.

2. Run the CHECK DATA utility on the table space. Take the following into
consideration:

� If you do not believe that violations exist, specify DELETE NO. If, indeed,
violations do not exist, this resets the check pending status; however, if
violations do exist, the status is not going to be reset.

� If you believe that violations exist, specify the DELETE YES option and an
appropriate exception table (see Section 2 of Utility Guide and Referencefor
the syntax of this utility). This deletes all rows in violation, copies them to
an exception table, and resets the check pending status.

� If the check pending status was set during execution of the LOAD utility,
specify the SCOPE PENDING option. This checks only those rows added
to the table space by LOAD, rather than every row in the table space.

3. Correct the rows in the exception table, if necessary, and use the SQL INSERT
statement to insert them into the original table.

4. Give the command START DATABASE to start the table space for RO or RW
access, whichever is appropriate. The table space is no longer in check
pending status and is available for use. If you use the ACCESS (FORCE)
option of this command, the check pending status is reset. However, this is not
recommended because it does not correct violations of referential constraints.

Failures Related to the Distributed Data Facility
The following failures related to the DDF are discussed in this section:

“Conversation Failure” on page 4-193
“Communications Database Failure” on page 4-194
“Failure of a Database Access Thread” on page 4-194
“VTAM Failure” on page 4-195

4-192 Administration Guide

| “TCP/IP Failure” on page 4-195
“Failure of a Remote Logical Unit” on page 4-196
“Indefinite Wait Conditions for Distributed Threads” on page 4-196
“Security Failures for Database Access Threads” on page 4-197

 Conversation Failure
| Problem: A VTAM APPC or TCP/IP conversation failed during or after allocation
| and is unavailable for use.

| Symptom: VTAM or TCP/IP returns a resource unavailable condition along with the
| appropriate diagnostic reason code and message. A DSNL500 or DSNL511
| (conversation failed) message is sent to the console for the first failure to a location
| for a specific logical unit (LU) mode or TCP/IP address. All other threads detecting
| a failure from that LU mode or IP address are suppressed until communications to
| that LU using that mode are successful.

DB2 returns messages DSNL501I and DSNL502I. Message DSNL501I usually
means that the other subsystem is not up.

System Action: When the error is detected, it is reported by a console message
and the application receives an SQL return code. For DB2 private protocol access,
-904 SQL return code (SQLSTATE '57011') is returned with resource type 1001,
1002, or 1003. The resource name in the SQLCA contains VTAM return codes
such as RTNCD, FDBK2, RCPRI, and RCSEC, and any SNA SENSE information.
See VTAM for MVS/ESA Messages and Codes for more information.

For application directed access, a -30080 error status code is returned to the
application. The SQLCA contains the VTAM diagnostic information which contains
only the RCPRI and RCSEC codes.

The application can choose to request rollback or commit. Commit or rollback
processing deallocates all but the first conversation between the allied thread and
the remote database access thread. A commit or rollback message is sent over this
remaining conversation.

Errors during the conversation's deallocation process are reported via messages,
but do not stop the commit or rollback processing. If the conversation used for the
commit or roll back message fails, the error is reported. If the error occurred during
a commit process, the commit process continues, provided the remote database
access was read only; otherwise the commit process is rolled back.

| System Programmer Action: The system programmer needs to review the VTAM
| or TCP/IP return codes and might need to discuss the problem with a
| communications expert. Many VTAM or TCP/IP errors, besides the error of an
| inactive remote LU or TCP/IP errors, require a person who has a knowledge of
| VTAM or TCP/IP and the network configuration to diagnose them.

Operator Action: Correct the cause of the unavailable resource condition by taking
action required by the diagnostic messages appearing on the console.

 Chapter 4-7. Recovery Scenarios 4-193

Communications Database Failure
Problem 1: A failure occurs during an attempt to access the DB2 CDB (after DDF
is started).

Symptom: A DSNL700I message, indicating that a resource unavailable condition
exists, is sent to the console. Other messages describing the cause of the failure
are also sent to the console.

System Action: The distributed data facility (DDF) doesn't terminate if it has
already started and an individual CDB table becomes unavailable. Depending on
the severity of the failure, threads will either receive a -904 SQL return code
(SQLSTATE '57011') with resource type 1004 (CDB), or continue using VTAM
defaults. Only the threads that access locations that have not had any prior threads
will receive a -904 SQL return code. DB2 and DDF remain up.

Operator Action: Correct the error based on the messages received, then stop
and restart DDF.

Problem 2: The DB2 CDB is not defined correctly. This occurs when DDF is
started and the DB2 catalog is accessed to verify the CDB definitions.

Symptom: A DSNL701I, 702I, 703I, 704I, or 705I message is issued to identify the
problem. Other messages describing the cause of the failure are also sent to the
console.

System Action: DDF fails to start up. DB2 remains up.

Operator Action: Correct the error based on the messages received and restart
DDF.

Failure of a Database Access Thread
Problem: A database access thread has been deallocated and a conversation
failure occurs.

Symptom: In the event of a failure of a database access thread, the DB2 server
terminates the database access thread only if a unit of recovery exists. The server
deallocates the database access thread and then deallocates the conversation with
an abnormal indication (SQL code), which is subsequently returned to the
requesting application. The returned SQL code depends on the type of remote
access:

� DB2 private protocol access

The application program receives a -904 SQL return code (SQLSTATE
'57011') with a resource type 1005 at the requesting site. The SNA sense in
the resource name contains the DB2 reason code describing the failure.

 � DRDA access

For a database access thread or non-DB2 server, a DDM error message is
sent to the requesting site and the conversation is deallocated normally. The
SQL error status code is a -30020 with a resource type '1232' (agent
permanent error received from the server).

System Action: Normal DB2 error recovery mechanisms apply with the following
exceptions:

4-194 Administration Guide

� Errors caught in the functional recovery routine are automatically converted to
rollback situations. The allied thread sees conversation failures.

� Errors occurring during commit, roll back, and deallocate within the DDF
function do not normally cause DB2 to abend. Conversations are deallocated
and the database access thread is terminated. The allied thread sees
conversation failures.

System Programmer Action: All diagnostic information related to the failure must
be collected at the serving site. For a DB2 DBAT, a dump is produced at the
server.

Operator Action: Communicate with the operator at the other site to take the
appropriate corrective action, regarding the messages appearing on consoles at
both the requesting and responding sites. Operators at both sites should gather the
appropriate diagnostic information and give it to the programmer for diagnosis.

 VTAM Failure
Problem: VTAM terminates or fails.

Symptom: VTAM messages and DB2 messages are issued indicating that DDF is
terminating and explaining why.

System Action: DDF terminates.

An abnormal VTAM failure or termination causes DDF to issue a STOP DDF
MODE(FORCE) command. The VTAM commands Z NET,QUICK or Z
NET,CANCEL causes an abnormal VTAM termination. A Z NET,HALT causes a
-STOP DDF MODE(QUIESCE) to be issued by DDF.

System Programmer Action: None.

Operator Action: Correct the condition described in the messages received at the
console, restart VTAM and DDF.

| TCP/IP Failure
| Problem: TCP/IP terminates or fails.

| Symptom: TCP/IP messages and DB2 messages are issued indicating that TCP/IP
| is unavailable.

| System Action: DDF periodically attempts to reconnect to TCP/IP.

| System Programmer Action: None.

| Operator Action: Correct the condition described in the messages received at the
| console, restart TCP/IP.

 Chapter 4-7. Recovery Scenarios 4-195

Failure of a Remote Logical Unit
Problem: A series of conversation or change number of sessions (CNOS) failures
occur from a remote LU.

Symptom: Message DSNL501I is issued when a CNOS request to a remote LU
fails. The CNOS request is the first attempt to connect to the remote site and must
be negotiated before any conversations can be allocated. Consequently, if the
remote LU is not active, message DSNL500I is displayed indicating that the CNOS
request cannot be negotiated. Message DSNL500I is issued only once for all the
SQL conversations that fail because of a remote LU failure.

Message DSNL502I is issued for system conversations that are active to the
remote LU at the time of the failure. This message contains the VTAM diagnostic
information on the cause of the failure.

System Action: Any application communications with a failed LU receives a
message indicating a resource unavailable condition. The application programs
receive SQL return code -904 (SQLSTATE '57011') for DB2 private protocol
access and SQL return code -30080 for DRDA access. Any attempt to establish
communication with such an LU fails.

Operator Action: Communicate with the other sites involved regarding the
unavailable resource condition, and request that appropriate corrective action be
taken. If a DSNL502 message is received, the operator should activate the remote
LU.

Indefinite Wait Conditions for Distributed Threads
Problem: An allied thread is waiting indefinitely for a response from a remote
subsystem or a database access thread is waiting for a response from the local
subsystem.

Symptom: An application is in an indefinitely long wait condition. This can cause
other DB2 threads to fail due to resources held by the waiting thread. DB2 sends
an error message to the console and the application program receives an SQL
return code.

System Action: None.

System Programmer Action: None.

Operator Action: Use the DISPLAY THREAD command with the LOCATION and
DETAIL options to identify the LUWID and the session's allocation for the waiting
thread. Then use the CANCEL DDF THREAD command to cancel the waiting
thread. If the CANCEL DDF THREAD command fails to break the wait (because
the thread is not suspended in DB2), try using VTAM commands such as VARY
TERM,SID=xxx. For additional information concerning canceling DDF threads, see
“The Command CANCEL THREAD” on page 4-70 and “Using VTAM Commands to
Cancel Threads” on page 4-71.

To check for very long waits, look to see if the conversation timestamp is changing
from the last time used. If it is changing, the conversation thread is not hung, but is
taking more time for a long query. Also look for conversation state changes and
determine what they mean.

4-196 Administration Guide

Security Failures for Database Access Threads
Problem: During database access thread allocation, the remote user does not have
the proper security to access DB2 via the DDF.

Symptom: Message DSNL500I is issued at the requester (if it is a DB2 subsystem)
with return codes RTNCD=0, FDBK2=B, RCPRI=4, RCSEC=5 meaning "Security
Not Valid." The server has deallocated the conversation because the user is not
allowed to access the server. For conversations using DRDA access, LU 6.2
communications protocols present specific reasons for why the user failed, to be
returned to the application. If the server is a DB2 database access thread, message
DSNL030I is issued to describe what caused the user to be denied access into
DB2 via DDF.

System Action: If the server is a DB2 subsystem, message DSNL030I is issued.
Otherwise, the system programmer needs to refer to the documentation of the
server. If the application uses DB2 private protocol access, it receives SQL return
code -904 (SQLSTATE '57011') with a reason code 00D3103D, indicating that a
resource is unavailable. SQL return code -30080 is issued for applications using
application directed-access.

System Programmer Action: Refer to the description of 00D3103D in Section 4 of
Messages and Codes.

Operator Action: If it is a DB2 database access thread, the operator should
provide the DSNL030I message to the system programmer. If it is not a DB2
server, the operator needs to work with the operator or programmer at the server to
get diagnostic information needed by the system programmer.

Remote Site Recovery from Disaster at a Local Site
The procedures in this scenario differ from other recovery procedures in that the
hardware at your local DB2 site cannot be used to recover data. This scenario
bases recovery on the latest available archive log and assumes that all copies and
reports have arrived at the recovery site as specified in “Preparing for Disaster

Recovery” on page 4-133. For data sharing, see Chapter 6 of Data Sharing:
Planning and Administration for the data sharing specific disaster recovery
procedures.

Problem: Your local system experiences damage or disruption that prevents
recovery from that site.

Symptom: Your local system hardware has suffered physical damage and is
inoperable.

System Programmer Action: Coordinate activities detailed below.

Operator Action (at the recovery site):

1. If an integrated catalog facility catalog does not already exist, run job
DSNTIJCA to create a user catalog.

2. Use the access method services IMPORT command to import the integrated
catalog facility catalog.

 Chapter 4-7. Recovery Scenarios 4-197

3. Restore DB2 libraries, such as DB2 reslibs, SMP libraries, user program
libraries, user DBRM libraries, CLISTs, SDSNSAMP, or where the installation
jobs are, JCL for user-defined table spaces, and so on.

4. Delete any already existing DB2 VSAM data sets or VSAM catalog entries if
the data sets do not exist, that job DSNTIJIN defines. Obtain a copy of

installation job DSNTIJIN. This job creates DB2 VSAM and non-VSAM data
sets. Change the volume serial numbers in the job to volume serial numbers
that exist at the recovery site. Comment out the steps that create DB2
non-VSAM data sets, if these data sets already exist. Run DSNTIJIN.

5. Recover the BSDS:

a. Use the access method services REPRO command to restore the contents
of the two BSDS data sets (allocated in the previous step). The most recent
BSDS image will be found in the first file (file number one) on the latest
archive log tape.

| b. To determine the RBA range for this archive log use the print log map utility
| (DSNJU004) to list the current BSDS contents. Find the most recent
| archive log in the BSDS listing and add 1 to its ENDRBA value. Use this as
| the STARTRBA. Find the active log in the BSDS listing that starts with this
| RBA and use its ENDRBA as the ENDRBA.
Data Sharing

For data sharing, the LRSNs are also required.

c. Use the change log inventory utility (DSNJU003) to register this latest
archive log tape data set in the archive log inventory of the BSDS just
restored. This is necessary since the BSDS image on an archive log tape
does not reflect the archive log data set residing on that tape.

Data Sharing

| Running DSNJU003 is critical for data sharing. Group buffer pool
| checkpoint information is stored in the BSDS and needs to be included
| from the most recent archive log.

d. Use the change log inventory utility to adjust the active logs:

1) Use the DELETE option of the change log inventory utility (DSNJU003) to
delete all active logs in the BSDS. Use the BSDS listing produced in
the step above to determine the active log data set names.

2) Use the NEWLOG statement of the change log inventory utility
(DSNJU003) to add the active log data sets to the BSDS. Do not
specify a STARTRBA or ENDRBA value in the NEWLOG statement.
This indicates to DB2 that the new active logs are empty.

If you are using dual BSDSs, make sure both of them are included in the
jobs.

e. If you are using the DB2 distributed data facility, run the change log
inventory utility with the DDF statement to update the LOCATION,
LUNAME, and PASSWORD values in the BSDS.

f. Use the print log map utility (DSNJU004) to list the new BSDS contents
and ensure that the BSDS correctly reflects the active and archive log data
set inventories. In particular, ensure that:

4-198 Administration Guide

� All active logs show a status of NEW and REUSABLE

� The archive log inventory is complete and correct (for example, the
start and end RBAs should be correct).

6. Optionally, you can restore archive logs to DASD. Archive logs are typically
| stored on tape, but restoring them to DASD could speed later steps. If you
| elect this option, and the archive log data sets are not cataloged in the primary
| integrated catalog facility catalog, use the change log inventory utility to update
| the BSDS. If the archive logs are listed as cataloged in the BSDS, DB2
allocates them using the integrated catalog and not the unit or volser specified
in the BSDS. If you are using dual BSDSs, remember to update both copies.

7. Use the DSN1LOGP utility to determine which transactions were in process at
the end of the last archive log. Use the following job control language:

 //SAMP EXEC PGM=DSN1LOGP

 //SYSPRINT DD SYSOUT=\

 //SYSSUMRY DD SYSOUT=\

 //ARCHIVE DD DSN=last-archive,DISP=(OLD,KEEP),UNIT=TAPE,

 LABEL=(2,SL),VOL=SER=volser1

(NOTE FILE 1 is BSDS COPY)

 //SYSIN DD \

 STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)

 /\

Where yyyyyyyyyyyy is the STARTRBA of the last complete checkpoint within
the RBA range on the last archive log from the previous print log map.

DSN1LOGP gives a report. For sample output and information about how to
read it see Section 3 of Utility Guide and Reference.

Note whether any utilities were executing at the end of the last archive log. You
will have to determine the appropriate recovery action to take on each table
space involved in a utility job.

If DSN1LOGP showed that utilities are inflight (PLAN=DSNUTIL), you need
SYSUTILX to identify the utility status and determine the recovery approach.
See What to Do About Utilities in Progress on page 4-203.

8. Modify DSNZPxxx to defer processing of all databases:

a. Run the DSNTINST CLIST in UPDATE mode. See Section 2 of Installation
Guide .

b. From panel DSNTIPB select “Databases to Start Automatically.” You are
presented with panel DSNTIPS. Type DEFER in the first field, ALL in the
second and press Enter. You are returned to DSNTIPB.

c. From panel DSNTIPB select “Operator Functions.” You are presented with
panel DSNTIPO. Type RECOVERYSITE in the SITE TYPE field. Press
Enter to continue.

d. Reassemble DSNZPxxx using job DSNTIJUZ (produced by the CLIST
started in the first step).

At this point you have the log, but the table spaces have not been recovered.
With DEFER ALL, DB2 assumes that the table spaces are unavailable, but
does the necessary processing to the log. This step also handles the units of
recovery in process.

9. Use the change log inventory utility to create a conditional restart control
record. In most cases, you can use this form of the CRESTART statement:

 Chapter 4-7. Recovery Scenarios 4-199

 CRESTART CREATE,ENDRBA=nnnnnnnnnððð,FORWARD=YES,

 BACKOUT=YES

| where nnnnnnnnn000 equals a value one more than the ENDRBA of the latest
| archive log.
Data Sharing

| If you are recovering a data sharing group, and your logs are not at a single
| point of consistency, use this form of the CRESTART statement:

| CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES,
| BACKOUT=YES

where nnnnnnnnnnnn is the LRSN of the last log record to be used during
restart. Determine the ENDLRSN value using one of the following methods:

� Use the DSN1LOGP summary utility to obtain the ENDLRSN value. In
the 'Summary of Completed Events' section, find the lowest LRSN value
listed in the DSN1213I message, for the data sharing group. Use this
value for the ENDLRSN in the CRESTART statement.

� Use the print log map utility (DSNJU004) to list the BSDS contents.
Find the ENDLRSN of the last log record available for each active
member of the data sharing group. Subtract 1 from the lowest
ENDLRSN in the data sharing group. Use this value for the ENDLRSN
in the CRESTART statement.

� If only the console logs are available, use the archive offload message,
DSNJ003I to obtain the ENDLRSN. Compare the ending LRSN values
for all members' archive logs. Subtract 1 from the lowest LRSN in the
data sharing group. Use this value for the ENDLRSN in the CRESTART
statement.

DB2 discards any log information in the bootstrap dataset and the active logs
with an RBA greater than or equal to nnnnnnnnn000 or an LRSN greater than
nnnnnnnnnnnn as listed in the CRESTART statements above.

Use the print log map utility to verify that the conditional restart control record
that you created in the previous step is active.

10. Enter the command START DB2 ACCESS(MAINT).
Data Sharing

Start one DB2 with ACCESS(MAINT). DB2 will prompt you to start each
additional DB2 subsystem in the group.

Even though DB2 marks all table spaces for deferred restart, log records are
written so that inabort and inflight units of recovery are backed out. Incommit
units of recovery are completed, but no additional log records are written at
restart to cause this. This happens when the original redo log records are
applied by the RECOVER utility.

At the primary site, DB2 probably committed or aborted the inflight units of
recovery, but you have no way of knowing.

During restart, DB2 accesses two table spaces which result in DSNT501I,
| DSNT500I, and DSNL700I resource unavailable messages, regardless of

DEFER status. The messages are normal and expected and you can ignore
them.

4-200 Administration Guide

The return code accompanying the message might be one of the following,
although other codes are possible:

00C90081 This return code occurs if there is activity against the object
during restart as a result of a unit of recovery or pending writes.
In this case the status shown as a result of -DISPLAY is
STOP,DEFER.

00C90094 Since the table space is currently only a defined VSAM data
set, it is in an unexpected state to DB2.

00C900A9 This codes indicates that an attempt was made to allocate a
deferred resource.

11. Resolve the indoubt units of recovery.

The RECOVER utility, which you will soon invoke, will fail on any table space
that has indoubt units of recovery. Because of this, you must resolve them first.

Determine the proper action to take (commit or abort) for each unit of recovery.
To resolve indoubt units of recovery see “Resolving Indoubt Units of Recovery”
on page 4-113. From an install SYSADM authorization ID, enter the RECOVER
INDOUBT command for all affected transactions.

If you attempt this from an MVS console, you will receive messages resulting
from an attempt to do authorization checking when no tables exist yet.

12. To recover the catalog and directory, follow these instructions:

a. Recover DSNDB01.SYSUTILX. This must be a separate job step.

b. Recover all indexes on SYSUTILX. This must be a separate job step.

c. Your recovery strategy for an object depends on whether a utility was
running against it at the time of the disaster. To identify the utilities that
were running, you must recover SYSUTILX.

You cannot restart a utility at the recovery site that was interrupted at the
disaster site. You must use the TERM command to terminate it. The TERM
UTILITY command can be used on any object except
DSNDB01.SYSUTILX.

Determine which utilities were executing and the table spaces involved by
following these steps:

1) Enter the DISPLAY UTILITY(*) command and record the utility and the
current phase.

2) Run the DIAGNOSE utility with the DISPLAY SYSUTILX statement.
The output consists of information about each active utility, including
the table space name (in most instances). It is the only way to correlate
the object name with the utility. Message DSNU866I gives information
on the utility, while DSNU867I gives the database and table space
name in USUDBNAM and USUSPNAM respectively.

See What to Do About Utilities in Progress on page 4-203 for information
on how to recovery catalog and directory table spaces on which utilities
were running.

d. Use the command TERM UTILITY to terminate any utilities in progress on
catalog or directory table spaces.

 Chapter 4-7. Recovery Scenarios 4-201

e. Recover the rest of the catalog and directory objects starting with DBD01 in
the order shown in Section 2 of Utility Guide and Referenceunder
RECOVER utility topic "Recovering Catalog and Directory Objects".

13. Use any method desired to verify the integrity of the DB2 catalog and directory.
Migration step 1 in Section 2 of Installation Guide lists one option for
verification. The catalog queries in member DSNTESQ of data set
DSN510.SDSNSAMP can be used after the work file database is defined and
initialized.

14. Define and intialize the work file database.

a. Define temporary work files. Use installation job DSNTIJTM as a model.

| b. Issue the command -START DATABASE(work-file-database) to start the
| work file database.

15. If you use the distributed data facility, recover the objects in the
communications data base.

16. If you use data definition control support, recover the objects in the data
definition control support database.

17. If you use the resource limit facility, recover the objects in the resource limit
control facility database.

| 18. Modify DSNZPxxx to restart all databases:

| a. Run the DSNTINST CLIST in UPDATE mode. See Section 2 of Installation
| Guide .

| b. From panel DSNTIPB select “Databases to Start Automatically.” You are
| presented with panel DSNTIPS. Type RESTART in the first field, ALL in the
| second and press Enter. You are returned to DSNTIPB.

| c. Reassemble DSNZPxxx using job DSNTIJUZ (produced by the CLIST
| started in the first step).

19. Stop and start DB2.

20. Make a full image copy of the catalog and directory.

21. Recover user table spaces. See What to Do About Utilities in Progress on
page 4-203 for information on how to recover table spaces on which utilities
were running. You cannot restart a utility at the recovery site that was
interrupted a the disaster site. Use the TERM command to terminate any
utilities running against user table spaces.

a. Issue the SQL query

SELECT \ FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

to determine which, if any, of your table spaces are user-managed. To
allocate user-managed table spaces, use the access method services
DEFINE CLUSTER command.

b. If your user table spaces are STOGROUP-defined, and if the volume serial
numbers at the recovery site are different from those at the local site, use
ALTER STOGROUP to change them in the DB2 catalog.

c. Recover all user table spaces and index spaces.

d. Start all user table spaces and index spaces for read or write processing by
issuing the command -START DATABASE with the ACCESS(RW) option.

4-202 Administration Guide

e. Resolve any remaining check pending states that would prevent COPY
execution.

f. Run select queries with known results.

22. Make full image copies of all table spaces.

23. Finally, compensate for lost work since the last archive was created by
rerunning online transactions and batch jobs.

What to Do About Utilities in Progress: If any utility jobs were running after the
last time that the log was offloaded before the disaster, you might need to take
some additional steps. After restarting DB2, the following utilities only need to be
terminated with the TERM UTILITY command:

 � CHECK INDEX
 � MERGECOPY
 � MODIFY
 � QUIESCE
 � RECOVER
 � RUNSTATS
 � STOSPACE

It is preferable to allow the RECOVER utility to reset pending states. However, it is
occasionally necessary to use the REPAIR utility to reset them. Do not start the
table space with ACCESS(FORCE) since FORCE resets any page set exception
conditions described in “Database Page Set Control Records” on page X-86.

For the following utility jobs, take the actions indicated:

CHECK DATA
Terminate the utility and run it again after recovery is complete.

COPY After you enter the TERM command, DB2 places a record in the
SYSCOPY catalog table indicating that the COPY utility was
terminated. This makes it necessary for you to make a full image
copy. When you copy your environment at the completion of the
disaster recovery scenario, you fulfill that requirement.

| LOAD Find the options you specified in Table 57, and take the specified
| actions.

Table 57 (Page 1 of 2). Actions to Take when LOAD is Interrupted

LOAD options
specified# What to do

LOG YES# If the reload phase completed, then recover to the current time,
and recover the indexes.

If the reload phase did not complete, then recover to a prior
point in time. The SYSCOPY record inserted at the beginning of
the reload phase contains the RBA or LRSN.

LOG NO
copy spec
If the reload phase completed, then the table space is complete
after you recover it to the current time. Recover the indexes.

If the reload phase did not complete, then recover the table
space to a prior point in time. Recover the indexes.

 Chapter 4-7. Recovery Scenarios 4-203

| To avoid extra loss of data in a future disaster situation, run
| QUIESCE on table spaces before invoking LOAD. This enables you
| to recover a table space using TORBA instead of TOCOPY.

| REORG For a user table space, find the options you specified in Table 58,
| and take the specified actions.

| For a catalog or directory table space, follow these instructions:

| Table spaces with links can not use online REORG. For those table
| space that can use online REORG find the options you specified in
| Table 58, and take the specified actions.

Table 57 (Page 2 of 2). Actions to Take when LOAD is Interrupted

LOAD options
specified# What to do

LOG NO
copy spec
SORTKEYS

If the build phase completed, then recover to the current time,
and recover the indexes.

If the build phase did not complete, then recover to a prior point
in time. Recover the indexes.

LOG NO# Recover the table space to a prior point in time.

Table 58. Actions to Take when REORG is Interrupted

REORG options
specified# What to do

LOG YES# If the reload phase completed, then recover to the current time,
and recover the indexes.

If the reload phase did not complete, then recover to the current
time to restore the table space to the point before REORG
began. Recover the indexes.

LOG NO# If the reload phase completed, then recover to a prior point in
time.

If the reload phase did not complete, then recover to the current
time to restore the table space to the point before REORG
began. Recover the indexes.

LOG NO
copy spec
If the reload phase completed, then the table space is complete
after you recover it to the current time. Recover the indexes.

If the reload phase did not complete, then recover to the current
time to restore the table space to the point before REORG
began. Recover the indexes.

LOG NO
copy spec
SORTKEYS

If the build phase completed, then recover to the current time,
and recover the indexes.

If the reload phase did not complete, then recover to the current
time to restore the table space to the point before REORG
began. Recover the indexes.

| SHRLEVEL
| CHANGE
| If the switch phase completed, terminate the utility. Recover the
| table space to the current time. Recover the indexes.

| If the switch phase did not complete, recover the table space to
| the current time. Recover the indexes.

SHRLEVEL
REFERENCE
Same as for SHRLEVEL CHANGE.

4-204 Administration Guide

| If you have no image copies from immediately before REORG
| failed, use this procedure:

| 1. From your DISPLAY UTILITY and DIAGNOSE output,
| determine what phase REORG was in and which table space it
| was reorganizing when the disaster occurred.

| 2. Run RECOVER TABLESPACE on the catalog and directory in
| the order shown in Section 2 of Utility Guide and Reference.
| Recover all table spaces to the current time, except the table
| space that was being reorganized. If the reload phase of the
| REORG on that table space had not completed when the
| disaster occurred, recover the table space to the current time.
Because REORG does not generate any log records prior to the
RELOAD phase for ctalog and directory objects, the RECOVER
to current stops at the state before the REORG began. If the
| reload phase completed, do the following:

| a. Run DSN1LOGP against the archive log data sets from the
| disaster site.

| b. Find the begin-UR log record for the REORG that failed in
| the DSN1LOGP output.

| c. Run RECOVER with the TORBA option on the table space
| that was being reorganized. Use the URID of the begin-UR
| record as the TORBA value.

| 3. Recover all indexes.

| If you have image copies from immediately before REORG failed,
| run RECOVER TABLESPACE with the option TOCOPY to recover
| the catalog and directory, in the order shown in Section 2 of Utility
| Guide and Reference.

Recommendation: Make full image copies of the catalog and
directory before you run REORG on them.

| Using a Tracker Site for Disaster Recovery
| This section describes a different method for disaster recovery from that described
| in “Remote Site Recovery from Disaster at a Local Site” on page 4-197. Many
| steps are similar to a regular disaster recovery, so we don't go into detail on those
| steps.

| Recommendation: Test and document a disaster procedure that is customized for
| your location.

| Overview of the Method: A DB2 tracker site is a separate DB2 subsystem or data
| sharing group that exists solely for the purpose of keeping shadow copies of your
| primary site's data. No independent work can be run on the tracker site.

| From the primary site, you transfer the BSDS and the archive logs, and that tracker
| site runs periodic LOGONLY recoveries to keep the shadow data up-to-date. If a
| disaster occurs at the primary site, the tracker site becomes the takeover site.
| Because the tracker site has been shadowing the activity on the primary site, you
| don't have to constantly ship image copies, the takeover time for tracker site might
| be faster because DB2 recovery does not have to use image copies.

 Chapter 4-7. Recovery Scenarios 4-205

| The following topics are described in this section:

| � “Characteristics of a Tracker Site”

| � “Setting up a Tracker Site”

| � “Establishing a Recovery Cycle at the Tracker Site” on page 4-207

| � “Maintaining the Tracker Site” on page 4-210

| � “The Distaster Happens: Making the Tracker Site the Takeover Site” on
| page 4-210

| Characteristics of a Tracker Site
| Because the tracker site must use only the primary site's logs for recovery, you
| must not update the catalog and directory or the data at the tracker site. The
| tracker site DB2 disallows updates. In summary:

| � The following SQL statements are not allowed at a tracker site:

| – GRANT or REVOKE

| – DROP, ALTER, or CREATE

| – UPDATE, INSERT, or DELETE

| Dynamic read-only SELECT statements are allowed.

| � The only online utilities that are allowed are REPORT, DIAGNOSE, RECOVER,
| and REBUILD. Recovery to a prior point in time is not allowed.

| � BIND is not allowed.

| � TERM UTIL is not allowed for LOAD, REORG, REPAIR, and COPY.

| � The START DATABASE command is not allowed when LPL or GRECP status
| exists for the object of the command. It is not necessary to use START
| DATABASE to clear LPL or GRECP conditions, because you are going to be
| running RECOVERY jobs that clear the conditions.

| � The START DATABASE command with ACCESS(FORCE) is not allowed.

| � Downlevel detection is disabled.

| � Log archiving is disabled.

| Setting up a Tracker Site
| To set up the tracker site:

| 1. Create a mirror image of your primary DB2 subsystem or data sharing group.
| This process is described in steps 1 through 4 of the normal disaster recovery
| procedure, and includes such things as creating catalogs, restoring DB2
| libraries, and tailoring installation job DSNTIJIN to create DB2 catalog data
| sets.

| 2. Modify the subsystem parameters as follows:

| � Set the TRKSITE subsystem parameter to YES.

| � Optionally, set the SITETYP parameter to RECOVERYSITE fi the full image
| copies this site will be receiving are created as remote site copies.

| 3. Use the access method services command DEFINE CLUSTER to allocate data
| sets for all user-managed table spaces that you will be sending over from the
| primary site. Similarly, allocate data sets for any user-managed indexes that

4-206 Administration Guide

| you want to rebuild during recovery cycles. The main reason to rebuild indexes
| for recovery cycles is for running queries on the tracker site. If you don't require
| indexes, you don't have to rebuild them for recovery cycles.

| 4. Send full image copies of all the primary site's DB2 data the tracker site.

| Attention: Do not attempt to start the tracker site when you are setting it up. You
| must follow the procedure described in “Establishing a Recovery Cycle at the
| Tracker Site.”

| Establishing a Recovery Cycle at the Tracker Site
| When the tracker site has full image copies of all the data at the primary site, you
| periodically send the archive logs and BSDSs from the primary site to the tracker
| site and recover data from the log.

| The cycle of events is:

| 1. While your primary site continues its usual workload, send a copy of the
| primary site's BSDSs and archive logs to the tracker site.

| Send full image copies for any object when:

| � The table space or partition is reorganized, loaded, or repaired with the
| LOG(NO) option

| � The object has undergone a point-in-time recovery

| See “What to do about DSNDB01.SYSUTILX” on page 4-209 for information
| about options for preparing SYSUTILX for recovery.

| Recommendation: If you are taking incremental image copies, run the
| MERGECOPY utility at the primary site before sending the copy to the tracker
| site.

| 2. At the tracker site restore the BSDS that was received from the primary site.
| Find the most recent BSDS image on the latest archive log tape and use the
| change log inventory utility (DSNJU003) to register the latest archive log tape in
| the archive log inventory of this BSDS. You must also delete the tracker site's
| active logs and add new empty active logs to the BSDS inventory.

For more details on this step, see step 6 of “Remote Site Recovery from
Disaster at a Local Site” on page 4-197.

| 3. Use the change log inventory utility (DSNJU003) with a CRESTART statement
| that looks like this:

| CRESTART CREATE,ENDRBA=nnnnnnnnnððð,FORWARD=NO,BACKOUT=NO

| where nnnnnnnnn000 equals ENDRBA + 1 of the latest archive log. You must
| not specify STARTRBA, because you cannot cold start or skip logs in a tracker
| system.

 Chapter 4-7. Recovery Scenarios 4-207

| Data Sharing

| If you are recovering a data sharing group, you must use this form of the
| CRESTART statement on all members of the data sharing group. The
| ENDLRSN value must be the same for all members:

| CRESTART CREATE,ENDRBA=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

| where nnnnnnnnnnnn is the lowest ENDLRSN of all the members to be
| read during restart. The ENDLRSN value must be the same

| � If you get the ENDLRSN from the output of the print log map utility
| (DSNJU004) or from the console logs using message DSNJ003I, you
| must use ENDLRSN-1 as the input to the conditional restart.

| � If you get the ENDLRSN from the output of the DSN1LOGP utility
| (DSN1213I message), you can use the value as is.

| The ENDLRSN or ENDRBA value indicates the end log point for data recovery
| and for truncating the archive log. Wtih ENDLRSN, the "missing" log records
| between the lowest and highest ENDLRSN values for all the members are
| applied during the next recovery cycle.

| 4. If the tracker site is a data sharing group, delete all DB2 coupling facility
| structures before restarting the tracker members.

| 5. If you are using LOGONLY recovery for DSNDB01.SYSUTILX, use
| DSN1COPY to restore SYSUTILX from the previous tracker cycle (or the initial
| copy if this is the first tracker cycle.)

| 6. At the tracker site restart DB2 to begin a tracker site recovery cycle .
| Data Sharing

| For data sharing, restart every member of the data sharing group.

| 7. At the tracker site, run RECOVER jobs to recover the data from the image
| copies, if needed, or use the LOGONLY option to recover from the logs
| received from the primary site to keep the shadow DB2 data up-to-date. See
| “Media Failures during LOGONLY Recovery” on page 4-210 for information
| about what to do if a media failure occurs during LOGONLY recovery.

| a. Recover the catalog and directory

| See Utility Guide and Reference for information about the order of recovery
| for the catalog and directory objects.

| Recovering SYSUTILX: If you are doing a LOGONLY recovery on
| SYSUTILX from a previous DSN1COPY backup, make another
| DSN1COPY copy of that table space after the lOGONLY recovery is
| complete and before recovering any other catalog or directory objects.

| After you recover SYSUTILX and rebuild its indexes, and before recovering
| other system and user table spaces, find out what utilities were running at
| the primary site.

| 1) Enter DISPLAY UTIL(*) for a list of currently running utilities.

| 2) Run the DIAGNOSE utility with the DISPLAY SYSUTIL statement to
| find out the names of the object on which the utilities are running.
| Installation SYSOPR authority is required.

4-208 Administration Guide

Because the tracker DB2 prevents the TERM UTIL command from
removing the status of utilities, the following restrictions apply:

| � If a LOAD, REORG, REPAIR, or COPY is in progress on any catalog
| or directory object at the primary site, you cannot continue recovering
| through the list of catalog and directory objects. Therefore, you cannot
| recover any user data. Shut down and wait until the next recovery cycle
| when you have a full image copy with which to do recovery.

| � If a LOAD, REORG, REPAIR, or COPY utility is in progress on any
| user data, you cannot recover that object until the next cycle when you
| have a full image copy.

| User-defined catalog indexes: Unless you require them for catalog query
| performance, it is not necessary to rebuild user-defined catalog indexes
| until the tracker DB2 becomes the takeover DB2.

| b. If needed, recover other system data such as the data definition control
| support table spaces and the resource limit facility table spaces.

c. Recover user data and, optionally, rebuild your indexes.

| It is not necessary to rebuild indexes unless you intend to run dynamic
| queries on the data at the tracker site.

| Because this is a tracker site, DB2 stores the conditional restart ENDRBA or
| ENDLRSN in the page set after each recovery completes successfully. By
| storing the log truncation value in the page set, DB2 ensures that it does not
| skip any log records between recovery cycles.

| 8. After all recovery has completed at the tracker site, shut down the tracker site
| DB2. This is the end of the tracker site recovery cycle.

| If you choose to, you can stop and start the tracker DB2 several times before
| completeing a recovery cycle.

| What to do about DSNDB01.SYSUTILX
| DB2 does not write SYSLGRNX entries for DSNDB01.SYSUTILX, which can lead
| to long recovery times at the tracker site. In addition, SYSUTILX and its indexes
| are updated during the tracker cycle when you run your recoveries. Because
| SYSUTILX must remain in sync with the SYSUTILX at the primary site, the tracker
| cycle updates must be discarded before the next tracker cycle.

| There are two ways to play for recovering SYSUTILX:

| � Send a full image copy fo DSNDB01.SYSUTILX for each recovery cycle. At the
| tracker site, you would use normal recovery (that is fullimage copy and logs).

| � Use DSN1COPY copies of SYSUTILX at the tracker site and LOGONLY
| recoveries. tHe sequence of steps is:

| 1. Use DSN1COPY to restore a copy made during the last tracker cycle.

| 2. Run RECOVER with the LOGONLY option on the table space.

| 3. Before running any other utilities, use DSN1COPY to make a copy to be
| used during the next tracker cycle.

 Chapter 4-7. Recovery Scenarios 4-209

| Media Failures during LOGONLY Recovery
| As documented in Utility Guide and Reference, if there is an I/O error during a
| LOGONLY recovery, recover the object using the image copies and logs after you
| correct the media failure.

| If an entire volume is bad and you are using DB2 storage groups, you cannot use
| the ALTER STOGROUP statement to remove the bad volume and add another as
| is documented for a non-tracker system. Instead, you must remove the bad volume
| and reinitialize another volume with the same volume serial before invoking the
| RECOVER utility for all table spaces and indexes on that volume.

| Maintaining the Tracker Site
| It is recommended that the tracker site and primary site be at the same
| maintenance level to avoid unexpected problems. Between recovery cycles, you
| can apply maintenance as you normally do, by stopping and restarting the DB2 or
| DB2 member.

| If a tracker site fails, you can restart it normally.

| Because bringing up your tracker site as the takeover site destroys the tracker site
| environment, you should save your complete tracker site prior to takeover site
| testing. The tracker site can then be restored after the takeover site testing, and the
| tracker site recovery cycles can be resumed.

| Data Sharing Group Restarts

| During recovery cycles, the first member that comes up puts the ENDLRSN
| value in the shared communications area (SCA) of the coupling facility. If an
| SCA failure occurs during a recovery cycle, you must go through the recovery
| cycle again, using the same ENDLRSN value for your conditional restart.

| The Distaster Happens: Making the Tracker Site the Takeover Site
| If a disaster occurs at the primary site, the tracker site must become the "takeover"
| site.

| 1. Restore the BSDS and register the archive log from the last archive you
| received from the primary site.

| 2.
| Data Sharing

| If this is a data sharing system, delete the coupling facility structures.

| 3. Ensure that the DEFER ALL and TRKSITE NO subsystem parameters are
| specified.

| 4. If this is a non-data-sharing DB2, the log truncation point varies depending on
| whether you have received more logs from the primary since the last recovery
| cycle:

� If you received no more logs from the primary site:

| Start DB2 using the same ENDRBA you used on the last tracker cycle.
| Specify FORWARD=YES and BACKOUT=YES (this takes care of

4-210 Administration Guide

uncommitted work). Then run your recovery jobs as you did during recovery
cycles: that is, using LOGONLY recovery when possible.

| � If you did receive more logs from the primary site:

| Start DB2 using the truncated RBA nnnnnnnnn000, which is the ENDRBA +
| 1 of the latest archive log. Specify FORWARD=YES and BACKOUT=YES.
| Run your recoveries as you did during recovery cycles.
| Data Sharing

You must restart every member of the data sharing group, using this form
of the CRESTART statement:

| CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES, BACKOUT=YES

| where nnnnnnnnnnnn is the LRSN of the last log record to be used during
| restart. See step 3 of “Establishing a Recovery Cycle at the Tracker Site” on
| page 4-207 for more information about determining this value. The takeover
| DB2s must specify conditional restart with a common ENDLRSN value to
| allow all remote members to logically truncate the logs at a consistent point.

| 5. As described for a tracker recovery cycle, tecover SYSUTILX from an image
| copy from the primary site, or from a previous DSN1COPY taken at the tracker
| site.

| 6. Terminate any in-progress utilities using the following steps:

| a. Enter the command DISPLAY UTIL(*).

| b. Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of
| objects on which utilities are being run.

| c. Terminate in-progress utilities using the command TERM UTIL(*).

| See What to Do About Utilities in Progress on page 4-203 for more
| information about how to terminate in-progress utilities and how to recover
| an object on which a utility was running.

| 7. Continue with your recoveries either with the LOGONLY option or image
| copies. Don't forget to rebuild indexes, including user-defined indexes on the
| DB2 catalog.

Resolving Indoubt Threads
This section describes problem scenarios involving indoubt threads resulting from
the following types of error conditions:

“Communication Failure Between Two Systems” on page 4-213
“Making a Heuristic Decision” on page 4-214
“IMS Outage Resulting in IMS Cold Start” on page 4-215
“DB2 Outage at Application Requestor Resulting in DB2 Cold Start” on page
4-216
“DB2 Outage at Application Server Resulting in DB2 Cold Start” on page
4-219
“Correcting a Heuristic Decision” on page 4-219

All scenarios are developed in the context presented in “Description of the
Environment” on page 4-212. System programmer, operator and database
administrator actions are indicated for the examples as appropriate. In these

 Chapter 4-7. Recovery Scenarios 4-211

descriptions, the term “administrator” refers to the database administrator (DBA) if
not otherwise specified.

Description of the Environment

 Configuration
The configuration is composed of four systems at three geographic locations:
Seattle (SEA), San Jose (SJ) and Los Angeles (LA). The system descriptions are
as follows:

� DB2 subsystem at Seattle, Location name = IBMSEADB20001, Network name
= IBM.SEADB21

� DB2 subsystem at San Jose, Location name = IBMSJ0DB20001 Network name
= IBM.SJDB21

� DB2 subsystem at Los Angeles, Location name = IBMLA0DB20001 Network
name = IBM.LADB21

� IMS subsystem at Seattle, Connection name = SEAIMS01

 Applications
The following IMS and TSO applications are running at Seattle and accessing both
local and remote data.

� IMS application, IMSAPP01, at Seattle, accessing local data and remote data
by DRDA access at San Jose, which is accessing remote data on behalf of
Seattle by DB2 private protocol access at Los Angeles.

� TSO application, TSOAPP01, at Seattle, accessing data by DRDA access at
San Jose and at Los Angeles.

 Threads
The following threads are described and keyed to Figure 86 on page 4-213. Data
base access threads (DBAT) access data on behalf of a thread (either allied or
DBAT) at a remote requester.

� Allied IMS thread .A/ at Seattle accessing data at San Jose by DRDA access.

– DBAT at San Jose accessing data for Seattle by DRDA access .1/ and
requesting data at Los Angeles by DB2 private protocol access .2/.

– DBAT at Los Angeles accessing data for San Jose by DB2 private protocol
access .2/.

� Allied TSO thread .B/ at Seattle accessing local data and remote data at San
Jose and Los Angeles, by DRDA access.

– DBAT at San Jose accessing data for Seattle by DRDA access .3/.

– DBAT at Los Angeles accessing data for Seattle by DRDA access .4/.

4-212 Administration Guide

DB2 at SJ

 IBMSJðDB2ððð1

 ┌──────────────────┐

 ┌────────5 DBAT .1/ │

 │ │ CONNID=SEAIMSð1 │

 │ │ CORRID=xyz ├──┐

│ │ PLAN= IMSAPPð1 │ │

│ │ LUWID=15,TOKEN=8 │ │

 │ │ │ │

│ ├─ ── ── ── ── ── ─┤ │

 │ ┌────5 DBAT .3/ │ │

DB2 at SEA │ │ │ CONNID=BATCH │ │

 IBMSEADB2ððð1 │ │ │ CORRID=abc │ │

┌───┬──────────────────┐ │ │ │ PLAN= TSOAPPð1 │ │

│ │ ALLIED THREAD .A/├──┘ │ │ LUWID=16,TOKEN=6 │ │

│ │ CONNID=SEAIMSð1 │ │ │ │ │

│IMS│ CORRID=xyz │ │ └──────────────────┘ │

│ │ PLAN= IMSAPPð1 │ │ │

│ │ NID= A5 │ │ │

│ │ LUWID=15,TOKEN=1 │ │ │

├───┤ ── ── ── ── ── ──┤ │ │

│ │ ALLIED THREAD .B/├──────┘ DB2 at LA │

│ │ CONNID=BATCH │ IBMLAðDB2ððð1 │

│TSO│ CORRID=abc │ ┌──────────────────┐ │

│ │ PLAN= TSOAPPð1 │ │ DBAT .2/ %──┘

│ │ LUWID=16,TOKEN=2 │ │ CONNID=SERVER │

│ │ ├──────┐ │ CORRID=xyz │

└───┴──────────────────┘ │ │ PLAN= IMSAPPð1 │

│ │ LUWID=15,TOKEN=4 │

 │ │ │

│ ├─ ── ── ── ── ── ─┤

 └────5 DBAT .4/ │

 │ CONNID=BATCH │

 │ CORRID=abc │

│ PLAN= TSOAPPð1 │

│ LUWID=16,TOKEN=5 │

 │ │

 └──────────────────┘

Figure 86. Resolving Indoubt Threads. Results of issuing -DIS THD TYPE(ACTIVE) at
each DB2 system.

The results of issuing the DISPLAY THREAD TYPE(ACTIVE) command to display
the status of threads at all DB2 locations are summarized in the boxes of
Figure 86. The logical unit of work IDs (LUWIDs) have been shortened for
readability:

� LUWID=15 would be IBM.SEADB21.15A86A876789.0010

� LUWID=16 would be IBM.SEADB21.16B57B954427.0003

For the purposes of this section, assume that both applications have updated data
at all DB2 locations. In the following problem scenarios, the error occurs after the
coordinator has recorded the commit decision, but before the affected participants
have recorded the commit decision. These participants are therefore indoubt.

Communication Failure Between Two Systems
Problem: A communication failure occurred between Seattle and Los Angeles after
the DBAT at LA completed phase 1 of commit processing. At SEA, the TSO thread,
LUWID=16 and TOKEN=2 .B/, cannot complete the commit with the DBAT at
LA.4/.

 Chapter 4-7. Recovery Scenarios 4-213

Symptom: At SEA, NetView alert A006 is generated and message DSNL406 is
displayed, indicating an indoubt thread at LA because of communication failure. At
LA, alert A006 is generated and message DSNL405 is displayed, indicating a
thread has entered indoubt state because of communication failure with SEA.

System Action: At SEA, an IFCID 209 trace record is written. After the alert has
been generated, and after the message has been displayed, the thread completes
the commit, which includes the DBAT at SJ.3/. Concurrently, the thread is added
to the list of threads for which the SEA DB2 has an indoubt resolution
responsibility. The thread appears in a display thread report for indoubt threads.
The thread also appears in a display thread report for active threads until the
application terminates.

The TSO application is told that the commit succeeded. If the application continues
and processes another SQL request, it is rejected with an SQL code indicating it
must roll back before any more SQL requests can be processed. This is to insure
that the application does not proceed with an assumption based upon data
retrieved from LA, or with the expectation that cursor positioning at LA is still intact.

At LA, an IFCID 209 trace record is written. After the alert is generated and the
message displayed, the DBAT .4/ is placed into the indoubt state. All locks remain
held until resolution occurs. The thread appears in a display thread report for
indoubt threads.

The DB2 systems, at both SEA and LA, periodically attempt reconnection and
automatic resolution of the indoubt thread. If the communication failure only affects
the session being used by the TSO application, and other sessions are available,
automatic resolution occurs in a relatively short time. At this time, message
DSNL407 is displayed by both DB2 subsystems.

Operator Action: If message DSNL407 or DSNL415 for the thread identified in
message DSNL405 does not appear in a reasonable period of time, call the system
programmer. A communication failure is making database resources unavailable.

System Programmer Action: Determine and correct the cause of the
communication failure. When corrected, automatic resolution of the indoubt thread
occurs within a short time. If the failure cannot be corrected for a long time, call the
database administrator. The database administrator might want to make a heuristic
decision to release the database resources held for the indoubt thread. See
“Making a Heuristic Decision.”

Making a Heuristic Decision
Problem: The indoubt thread at LA is holding database resources which are
needed by other applications.

Symptom: Many symptoms can be present, including:

� Message DSNL405 indicating a thread in the indoubt state.

� A display thread report of active threads showing a larger than normal number
of threads.

� A display thread report of indoubt threads continuing to show the same thread.

� A display database report with the LOCKS option showing a large number of
threads waiting for the locks held by the indoubt thread.

4-214 Administration Guide

� Some threads terminating due to time out.

� IMS and CICS transactions not completing.

Database Administrator Action: Determine whether to commit or abort the
indoubt thread. First, determine the name of the commit coordinator for the indoubt
thread. This is the location name of the DB2 subsystem at SEA, and is included in
the DB2 indoubt thread display report at LA. Then, have an authorized person at
SEA perform one of the following:

� If the coordinator DB2 subsystem is active, or can be started, request a display
thread report for indoubt threads, specifying the LUWID of the thread.
(Remember that the token used at LA is different than the token used at SEA).
If there is no report entry for the LUWID, then the proper action is to abort. If
there is an entry for the LUWID, it shows the proper action to take.

� If the coordinator DB2 subsystem is not active and cannot be started, and if
statistics class 4 was active when DB2 was active, search the SEA SMF data
for an IFCID 209 event entry containing the indoubt LUWID. This entry
indicates whether the commit decision was commit or abort.

� If statistics class 4 is not available, then run, at SEA, the DSN1LOGP utility
requesting a summary report. The volume of log data to be searched can be
restricted if you can determine the approximate SEA log RBA value in effect at
the time of the communication failure. A DSN1LOGP entry in the summary
report for the indoubt LUWID indicates whether the decision was commit or
abort.

After determining the correct action to take, issue the -RECOVER INDOUBT
command at the LA DB2 subsystem, specifying the LUWID and the correct action.

System Action: Issuing the RECOVER INDOUBT command at LA results in
committing or aborting the indoubt thread. Locks are released. The thread does not
disappear from the indoubt thread display until resolution with SEA is completed.
The recover indoubt report shows that the thread is either committed or aborted by
a heuristic decision. An IFCID 203 trace record is written, recording the heuristic
action.

IMS Outage Resulting in IMS Cold Start
Problem: The abnormal termination of IMS has left one allied thread .A/ at the
SEA DB2 subsystem indoubt. This is the thread having LUWID=15. Because the
SEA DB2 still has effective communication with the DB2 subsystem at SJ, the
LUWID=15 DBAT .1/ at this system is waiting for the SEA DB2 to communicate
the final decision and is not aware that IMS has failed. Also, the LUWID=15 DBAT
at LA .2/ which is connected to SJ is also waiting for SJ to communicate the final
decision. This cannot be done until SEA communicates the decision to SJ.

Symptom: When IMS is cold started, and later reconnects with the SEA DB2
subsystem, IMS is not able to resolve the indoubt thread with DB2. Message
DSNM004I is displayed at the IMS master terminal. This is the same process as
described in “Resolution of Indoubt Units of Recovery” on page 4-161.

System Action: This is the same process as described in “Resolution of Indoubt
Units of Recovery” on page 4-161.

 Chapter 4-7. Recovery Scenarios 4-215

System Programmer Action: This is the same process as described in
“Resolution of Indoubt Units of Recovery” on page 4-161.

When the indoubt thread at the SEA DB2 subsystem is resolved by issuing the
RECOVER INDOUBT command, completion of the two-phase commit process with
the DB2 subsystems at SJ and LA occurs, and the unit of work commits or aborts.

Operator Action: This is the same process as described in “Resolution of Indoubt
Units of Recovery” on page 4-161.

DB2 Outage at Application Requestor Resulting in DB2 Cold Start
Problem: The abnormal termination of the SEA DB2 has left the two DBATs at SJ
.1/, .3/ and the LUWID=16 DBAT at LA .4/ indoubt. The LUWID=15 DBAT at LA
.2/, connected to SJ, is waiting for the SJ DB2 to communicate the final decision.

The IMS subsystem at SEA is operational and has the responsibility of resolving
indoubt units with the SEA DB2.

Symptom: The DB2 subsystem at SEA is started with a conditional restart record
in the BSDS indicating a cold start:

� When the IMS subsystem reconnects, it attempts to resolve the indoubt thread
identified in IMS as NID=A5. IMS has a resource recovery element (RRE) for
this thread. The SEA DB2 informs IMS that it has no knowledge of this thread.
IMS does not delete the RRE and it can be displayed via the IMS DISPLAY
OASN command. The SEA DB2 also:

– Generates message DSN3005 for each IMS RRE for which DB2 has no
knowledge.

– Generates an IFCID 234 trace event.

� When the DB2 subsystems at SJ and LA reconnect with SEA, each detects
that the SEA DB2 has cold started. Both the SJ DB2 and the LA DB2:

– Display message DSNL411.

– Generate alert A001.

– Generate an IFCID 204 trace event.

� A display thread report of indoubt threads at both the SJ and LA DB2
subsystems shows the indoubt threads and indicates that the coordinator has
cold started.

System Action: The DB2 subsystem at both SJ and LA accept the cold start
connection from SEA. Processing continues, waiting for a heuristic decision to
resolve the indoubt threads.

System Programmer Action: Call the database administrator.

Operator Action: Call the database administrator.

Database Administrator Action: At this point, neither the SJ nor the LA
administrator know if the SEA coordinator was a participant of another coordinator.
In this scenario, the SEA DB2 subsystem originated LUWID=16. However, it was a
participant for LUWID=15, being coordinated by IMS.

4-216 Administration Guide

Also not known to the administrator at LA is the fact that SEA distributed the
LUWID=16 thread to SJ where it is also indoubt. Likewise, the administrator at SJ
does not know that LA has an indoubt thread for the LUWID=16 thread. It is
important that both SJ and LA make the same heuristic decision. It is also
important that the administrators at SJ and LA determine the originator of the
two-phase commit.

The recovery log of the originator indicates whether the decision was commit or
abort. The originator may have more accessible functions to determine the
decision. Even though the SEA DB2 cold started, you may be able to determine the
decision from its recovery log. Or, if the failure occurred before the decision was
recorded, you may be able to determine the name of the coordinator, if the SEA
DB2 was a participant. A summary report of the SEA DB2 recovery log can be
provided by execution of the DSN1LOGP utility.

The LUWID contains the name of the logical unit (LU) where the distributed logical
unit of work originated. This logical unit is most likely in the system which originated
the two-phase commit.

If an application is distributed, any distributed piece of the application can initiate
the two-phase commit. In this type of application, the originator of two-phase
commit can be at a different system than that identified by the LUWID. With DB2
private protocol access, the two-phase commit can flow only from the system
containing the application that initiates distributed SQL processing. In most cases,
this is where the application originates.

The administrator must determine if the LU name contained in the LUWID is the
same as the LU name of the SEA DB2 subsystem. If this is not the case (it is the
case in this example), then the SEA DB2 is a participant in the logical unit of work,
and is being coordinated by a remote system. You must communicate with that
system and request that facilities of that system be used to determine if the logical
unit of work is to be committed or aborted.

If the LUWID contains the LU name of the SEA DB2 subsystem, then the logical
unit of work originated at SEA and is either an IMS, CICS, TSO, or BATCH allied
thread of the SEA DB2. The display thread report for indoubt threads at a DB2
participant includes message DSNV458 if the coordinator is remote. This line
provides external information provided by the coordinator to assist in identifying the
thread. A DB2 coordinator provides the following:

 connection-name.correlation-id

Where connection-name is:

� SERVER - the thread represents a remote application to the DB2 coordinator
and uses DRDA access.

� BATCH - the thread represents a local batch application to the DB2
coordinator.

Anything else represents an IMS or CICS connection name. The thread represents
a local application and the commit coordinator is the IMS or CICS system using this
connection name.

In our example, the administrator at SJ sees that both indoubt threads have an
LUWID with the LU name the same as the SEA DB2 LU name, and furthermore,

 Chapter 4-7. Recovery Scenarios 4-217

that one thread (LUWID=15) is an IMS thread and the other thread (LUWID=16) is
a batch thread. The LA administrator sees that the LA indoubt thread (LUWID=16)
originates at SEA DB2 and is a batch thread.

The originator of a DB2 batch thread is DB2. To determine the commit or abort
decision for the LUWID=16 indoubt threads, the SEA DB2 recovery log must be
analyzed, if it can be. The DSN1LOGP utility must be executed against the SEA
DB2 recovery log, looking for the LUWID=16 entry. There are three possibilities:

1. No entry is found - that portion of the DB2 recovery log was not available.
2. An entry is found but incomplete.
3. An entry is found and the status is committed or aborted.

In the third case, the heuristic decision at SJ and LA for indoubt thread LUWID=16
is indicated by the status indicated in the SEA DB2 recovery log. In the other two
cases, the recovery procedure used when cold starting DB2 is important. If
recovery was to a previous point in time, then the correct action is to abort. If
recovery included repairing the SEA DB2 database, then the SEA administrator
might know what decision to make.

The recovery logs at SJ and LA can help determine what activity took place. If it
can be determined that updates were performed at either SJ, LA or both (but not
SEA), then if both SJ and LA make the same heuristic action, there should be no
data inconsistency. If updates were also performed at SEA, then looking at the SEA
data might help determine what action to take. In any case, both SJ and LA should
make the same decision.

For the indoubt thread with LUWID=15 (the IMS coordinator) there are several
alternative paths to recovery. The SEA DB2 has been restarted. When it
reconnects with IMS, message DSN3005 is issued for each thread which IMS is
trying to resolve with DB2. The message indicates that DB2 has no knowledge of
the thread which is identified by the IMS assigned NID. The outcome for the thread,
commit or abort, is included in the message. Trace event IFCID=234 is also written
to statistics class 4 containing the same information.

If there is only one such message, or one such entry in statistics class 4, then the
decision for indoubt thread LUWID=15 is known and can be communicated to the
administrator at SJ. If there are multiple such messages, or multiple such trace
events, you must match the IMS NID with the network LUWID. Again, DSN1LOGP
should be used to analyze the SEA DB2 recovery log if possible. There are now
four possibilities:

1. No entry is found - that portion of the DB2 recovery log was not available.
2. An entry is found but incomplete because of lost recovery log.
3. An entry is found and the status is indoubt.
4. An entry is found and the status is committed or aborted.

In the fourth case, the heuristic decision at SJ for the indoubt thread LUWID=15 is
determined by the status indicated in the SEA DB2 recovery log. If an entry is
found whose status is indoubt, DSN1LOGP also reports the IMS NID value. The
NID is the unique identifier for the logical unit of work in IMS and CICS. Knowing
the NID allows correlation to the DSN3005 message, or to the 234 trace event,
which provides the correct decision.

4-218 Administration Guide

If an incomplete entry is found, the NID may or may not have been reported by
DSN1LOGP. If it was, use it as previously discussed. If no NID is found, or the
SEA DB2 has not been started, or reconnection with IMS has not occurred, then
the correlation-id used by IMS to correlate the IMS logical unit of work to the DB2
thread must be used in a search of the IMS recovery log. The SEA DB2 provided
this value to the SJ DB2 when distributing the thread to SJ. The SJ DB2 displays
this value in the report generated by -DISPLAY THREAD TYPE(INDOUBT).

For IMS, the correlation-id is:

 PST#.PSBNAME

In CICS, the correlation-id consists of four parts:

Byte 1 - Connection Type - G=Group, P=Pool

Byte 2 - Thread Type - T=transaction, G=Group, C=Command

Bytes 3-4 - Thread Number

Bytes 5-8 - Transaction-id

DB2 Outage at Application Server Resulting in DB2 Cold Start
Problem: This problem is similar to “DB2 Outage at Application Requestor
Resulting in DB2 Cold Start” on page 4-216. If the DB2 subsystem at SJ is cold
started instead of the DB2 at SEA, then the LA DB2 has the LUWID=15 .2/ thread
indoubt. The administrator would see that this thread did not originate at SJ, but did
originate at SEA. To determine the commit or abort action, the LA administrator
would request that -DISPLAY THREAD TYPE(INDOUBT) be issued at the SEA
DB2, specifying LUWID=15. IMS would not have any indoubt status for this thread,
since it would complete the two-phase commit process with the SEA DB2.

As described in “Communication Failure Between Two Systems” on page 4-213,
the DB2 at SEA tells the application that the commit succeeded.

When a participant cold starts, a DB2 coordinator continues to include in the
display of indoubt threads all committed threads where the cold starting participant
was believed to be indoubt. These entries must be explicitly purged by issuing the
RESET INDOUBT command. If a participant has an indoubt thread that cannot be
resolved because of coordinator cold start, it can request a display of indoubt
threads at the DB2 coordinator to determine the correct action.

Correcting a Heuristic Decision
Problem: Assume the conditions of “Communication Failure Between Two
Systems” on page 4-213. The LA administrator is called to make a heuristic
decision and decides to abort the indoubt thread with LUWID=16. The decision is
made without communicating with SEA to determine the proper action. The thread
at LA is aborted, while the threads at SEA and SJ are committed. Processing
continues at all systems. DB2 at SEA has indoubt resolution responsibility with LA
for LUWID=16.

Symptom: When the DB2 at SEA reconnects with the DB2 at LA, indoubt
resolution occurs for LUWID=16. Both systems detect heuristic damage and both
generate alert A004; each writes an IFCID 207 trace record. Message DSNL400 is
displayed at LA and message DSNL403 is displayed at SEA..

System Action: Processing continues. Indoubt thread resolution responsibilities
have been fulfilled and the thread completes at both SJ and LA.

 Chapter 4-7. Recovery Scenarios 4-219

System Programmer Action: Call the database administrator.

Operator Action: Call the database administrator.

Database Administrator Action: Correct the damage.

This is not an easy task. Since the time of the heuristic action, the data at LA might
have been read or written by many applications. Correcting the damage can involve
reversing the effects of these applications as well. The tools available are:

� DSN1LOGP - the summary report of this utility identifies the table spaces
modified by the LUWID=16 thread.

� The statistics trace class 4 contains an IFCID 207. entry. This entry identifies
the recovery log RBA for the LUWID=16 thread.

Notify the IBM support center about the problem.

4-220 Administration Guide

Chapter 4-8. Recovery from BSDS or Log Failure During
Restart

Use this chapter when you have reason to believe that the bootstrap data set
(BSDS) or part of the recovery log for DB2 is damaged or lost and that damage is
preventing restart. If the problem is discovered at restart, begin with one of these
recovery procedures:

“Active Log Failure” on page 4-171
“Archive Log Failure” on page 4-175
“BSDS Failure” on page 4-177.

If the problem persists, return to the procedures in this chapter.

When DB2 recovery log damage terminates restart processing, DB2 issues
messages to the console identifying the damage and giving an abend reason code.
(The SVC dump title includes a more specific abend reason code to assist in
problem diagnosis.) If the explanations in Section 3 of Messages and Codes
indicate that restart failed because of some problem not related to a log error, refer
to Section 3 of Diagnosis Guide and Reference and contact the IBM support center.

To minimize log problems during restart, the system requires two copies of the
BSDS. Dual logging is also recommended.

Basic Approaches to Recovery: There are two basic approaches to recovery
from problems with the log:

� Restart DB2, bypassing the inaccessible portion of the log and rendering some
data inconsistent. Then recover the inconsistent objects by using the
RECOVER utility, or re-create the data using REPAIR. Methods are described
below.

� Restore the entire DB2 subsystem to a prior point of consistency. The method
requires that you have first prepared such a point; for suggestions, see
“Preparing to Recover to a Prior Point of Consistency” on page 4-131. Methods
of recovery are described under “Unresolvable BSDS or Log Data Set Problem
during Restart” on page 4-242.

Bypassing the Damaged Log: Even if the log is damaged, and DB2 is started by
circumventing the damaged portion, the log is the most important source for

determining what work was lost and what data is inconsistent. For information on
data sharing considerations, see Chapter 6 of Data Sharing: Planning and
Administration.

Bypassing a damaged portion of the log generally proceeds with the following
steps:

1. DB2 restart fails. A problem exists on the log, and a message identifies the
location of the error. The following abend reason codes, which appear only in
the dump title, can be issued for this type of problem. This is not an exhaustive
list; other codes might occur.

00D10261
00D10262
00D10263

00D10264
00D10265
00D10266

00D10267
00D10268
00D10329

00D1032A
00D1032B

00D1032C
00E80084

 Copyright IBM Corp. 1982, 1997 4-221

Figure 87 on page 4-222 illustrates the general problem:

Log Log

start │Log │ end

│ │error│ │

├────────────────────────┤\\\\\├───────────────────────────┤

│ │ │ │

 RBA: X Y

Figure 87. General Problem of Damaged DB2 Log Information

2. DB2 cannot skip over the damaged portion of the log and continue restart
processing. Instead, you restrict processing to only a part of the log that is error
free. For example, the damage shown in Figure 87 occurs in the log RBA
range from X to Y. You can restrict restart to all of the log before X; then
changes later than X are not made. Or you can restrict restart to all of the log
after Y; then changes between X and Y are not made. In either case, some
amount of data is inconsistent.

3. You identify the data that is made inconsistent by your restart decision. With
the SUMMARY option, the DSN1LOGP utility scans the accessible portion of
the log and identifies work that must be done at restart, namely, the units of
recovery to be completed and the page sets that they modified. (For
instructions on using DSN1LOGP, see Section 3 of Utility Guide and
Reference.)

Because a portion of the log is inaccessible, the summary information might not
be complete. In some circumstances, your knowledge of work in progress is
needed to identify potential inconsistencies.

4. You use the change log inventory utility to identify the portion of the log to be
used at restart, and to tell whether to bypass any phase of recovery. You can
choose to do a cold start and bypass the entire log.

5. You restart DB2. Data that is unaffected by omitted portions of the log is
available for immediate access.

6. Before you allow access to any data that is affected by the log damage, you
resolve all data inconsistencies. That process is described under “Resolving
Inconsistencies Resulting from Conditional Restart” on page 4-248.

Where to Start: The specific procedure depends on the phase of restart that was
in control when the log problem was detected. On completion, each phase of
restart writes a message to the console. You must find the last of those messages
in the console log. The next phase after the one identified is the one that was in
control when the log problem was detected. Accordingly, start at:

� “Failure during Log Initialization or Current Status Rebuild” on page 4-223
� “Failure during Forward Log Recovery” on page 4-233
� “Failure during Backward Log Recovery” on page 4-238.

As an alternative, determine which, if any, of the following messages was last
received and follow the procedure for that message. Other DSN messages can be
issued as well.

Message ID Procedure to Use

DSNJ001I “Failure during Log Initialization or Current Status Rebuild” on
page 4-223.

4-222 Administration Guide

DSNJ100I “Unresolvable BSDS or Log Data Set Problem during Restart” on
page 4-242.

DSNJ107I “Unresolvable BSDS or Log Data Set Problem during Restart” on
page 4-242.

DSNJ1191 “Unresolvable BSDS or Log Data Set Problem during Restart” on
page 4-242.

DSNR002I None. Normal restart processing can be expected.

DSNR004I “Failure during Forward Log Recovery” on page 4-233.

DSNR005I “Failure during Backward Log Recovery” on page 4-238.

DSNR006I None. Normal restart processing can be expected.

Other “Failure during Log Initialization or Current Status Rebuild.”

Another scenario (“Failure Resulting from Total or Excessive Loss of Log Data” on
page 4-244) provides information to use if you determine (by using Failure during
Log Initialization or Current Status Rebuild) that an excessive amount (or all) of
DB2 log information (BSDS, active, and archive logs) has been lost.

The last scenario in this chapter (“Resolving Inconsistencies Resulting from
Conditional Restart” on page 4-248) can be used to resolve inconsistencies
introduced while using one of the restart scenarios in this chapter. If you decide to
use “Unresolvable BSDS or Log Data Set Problem during Restart” on page 4-242,
it is not necessary to use Resolving Inconsistencies Resulting from Conditional
Restart.

Because of the severity of the situations described, the scenarios identify
“Operations Management Action,” rather than “Operator Action.” Operations
management might not be performing all the steps in the procedures, but they must
be involved in making the decisions about the steps to be performed.

Failure during Log Initialization or Current Status Rebuild
Problem: A failure occurred during the log initialization or current status rebuild
phase of restart.

Symptom: An abend was issued indicating that restart failed. In addition, the last
restart message received was a DSNJ001I message indicating a failure during
current status rebuild, or none of the following messages was issued:

 DSNJ001I
 DSNR004I
 DSNR005I.

If none of the above messages was issued, the failure occurred during the log
initialization phase of restart.

System Action: The action depends on whether the failure occurred during log
initialization or during current status rebuild.

� Failure during log initialization: DB2 terminates because a portion of the log
is inaccessible, and DB2 cannot locate the end of the log during restart.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-223

� Failure during current status rebuild: DB2 terminates because a portion of
the log is inaccessible, and DB2 cannot determine the state of the subsystem
(such as outstanding units of recovery, outstanding database writes, or
exception database conditions) that existed at the prior DB2 termination.

Operations Management Action: To correct the problem, choose one of the
following approaches:

� Correct the problem that has made the log inaccessible and start DB2 again.
To determine if this approach is possible, refer to Messages and Codes for an
explanation of the messages and codes received. The explanation will identify
the corrective action that can be taken to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

� Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or Log Data Set Problem during
Restart” on page 4-242.

� Start DB2 without completing some database changes. Using a combination of
DB2 services and your own knowledge, determine what work will be lost by
truncating the log. The procedure for determining the page sets that contain
incomplete changes is described in “Restart by Truncating the Log” on
page 4-226. In order to obtain a better idea of what the problem is, read one of
the following sections, depending on when the failure occurred.

Description of Failure during Log Initialization
Figure 88 illustrates the problem on the log.

Log Begin Begin

start URID1 URID3 │Log │

│ │ │ │error│

├────────────────┼───────────────────────┼────────────┤\\\\\│

│ & │ & │ │ │

 │ │ RBA: X Y

 Page set Checkpoint

 B

Figure 88. Failure during Log Initialization

The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the log initialization phase, the following activities occur:

1. DB2 allocates and opens each active log data set that is not in a stopped state.

2. DB2 reads the log until the last log record is located.

3. During this process, a problem with the log is encountered, preventing DB2
from locating the end of the log. DB2 terminates and issues one of the abend
reason codes listed in Table 59 on page 4-226.

During its operations, DB2 periodically records in the BSDS the RBA of the last log
record written. This value is displayed in the print log map report as follows:

HIGHEST RBA WRITTEN: ððððð742989E

Because this field is updated frequently in the BSDS, the highest RBA written can
be interpreted as an approximation of the end of the log. The field is updated in
the BSDS when any one of a variety of internal events occurs. In the absence of
these internal events, the field is updated each time a complete cycle of log buffers
is written. A complete cycle of log buffers occurs when the number of log buffers

4-224 Administration Guide

written equals the value of the OUTPUT BUFFER field of installation panel
DSNTIPL. The value in the BSDS is, therefore, relatively close to the end of the
log.

To find the actual end of the log at restart, DB2 reads the log forward sequentially,
starting at the log RBA that approximates the end of the log and continuing until the
actual end of the log is located.

Because the end of the log is inaccessible in this case, some information has been
lost. Units of recovery might have successfully committed or modified additional
page sets past point X. Additional data might have been written, including those
that are identified with writes pending in the accessible portion of the log. New units
of recovery might have been created, and these might have modified data.
Because of the log error, DB2 cannot perceive these events.

How to restart DB2 is described under “Restart by Truncating the Log” on
page 4-226.

Description of Failure during Current Status Rebuild
Figure 89 illustrates the problem on the log.

Log Begin Begin Log

start URID1 URID2 │Log │ end

│ │ │ │error│ │

├───────────────┼─────────────────────┼─────┤\\\\\├─────────┤

│ & │ & │ │ │ │

 │ │ X Y

 Page set Checkpoint

 B

Figure 89. Failure during Current Status Rebuild

The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the current status rebuild phase, the following activities occur:

1. Log initialization completes successfully.

2. DB2 locates the last checkpoint. (The BSDS contains a record of its location on
the log.)

3. DB2 reads the log, beginning at the checkpoint and continuing to the end of the
log.

4. DB2 reconstructs the subsystem's state as it existed at the prior termination of
DB2.

5. During this process, a problem with the log is encountered, preventing DB2
from reading all required log information. DB2 terminates with one of the abend
reason codes listed in Table 59 on page 4-226.

Because the end of the log is inaccessible in this case, some information has been
lost. Units of recovery might have successfully committed or modified additional
page sets past point X. Additional data might have been written, including those
that are identified with writes pending in the accessible portion of the log. New units
of recovery might have been created, and these might have modified data.
Because of the log error, DB2 cannot perceive these events.

How to restart DB2 is described under “Restart by Truncating the Log” on
page 4-226.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-225

Restart by Truncating the Log
When a portion of the log is inaccessible, during the log initialization or current
status rebuild phases of restart, DB2 cannot identify precisely what units of
recovery failed to complete, what page sets those modified, and what page sets
have writes pending. This procedure tells how to gather that information and restart.

Step 1: Find the Log RBA after the Inaccessible Part of the Log
The log damage is illustrated in Figure 88 on page 4-224 and in Figure 89 on
page 4-225. The range of the log between RBAs X and Y is inaccessible to all DB2
processes.

Use the abend reason code accompanying the X'04E' abend and the message on
the title of the accompanying dump at the operator's console, to find the name and
page number of a procedure in Table 59. Use that procedure to find X and Y.

Procedure RBA 1: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates a logical error in the log record at log RBA X'7429ABA'.

DSNJð12I ERROR D1ð265 READING RBA ððððð7429ABA

IN DATA SET DSNCAT.LOGCOPY2.DSð1

 CONNECTION-ID=DSN,

 CORRELATION-ID=DSN

Table 59. Abend Reason Codes and Messages

Abend
Reason
Code

Message

Procedure
Name and
Page

General Error Description

00D10261 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10262 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10263 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10264 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10265 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10266 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10267 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10268 DSNJ012I RBA 1, page 4-226 Log record is logically damaged

00D10329 DSNJ106I RBA 2, page 4-227 I/O error occurred while log record
was being read

00D1032A DSNJ113E RBA 3, page 4-227 Log RBA could not be found in BSDS

00D1032B DSNJ103I RBA 4, page 4-227 Allocation error occurred for an
archive log data set

00D1032B DSNJ007I RBA 5, page 4-228 The operator canceled a request for
archive mount

00D1032C DSNJ104I RBA 4, page 4-227 Open error occurred for an archive
and active log data set

00E80084 DSNJ103I RBA 4, page 4-227 Active log data set named in the
BSDS could not be allocated during
log initialization

4-226 Administration Guide

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the log control interval
definition (LCID). DB2 stores logical records in blocks of physical records to
improve efficiency. When this type of an error on the log occurs during log
initialization or current status rebuild, all log records within the physical log record
are inaccessible. Therefore, the value of X is the log RBA that was reported in the
message rounded down to a 4KB boundary (X'7429000').

Continue with step 2 on page 4-229.

Procedure RBA 2: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates an I/O error in the log at RBA X'7429ABA'.

DSNJ1ð6I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DSð1,

 LOGRBA=ððððð7429ABA,ERROR STATUS=ð1ð832ðC

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during log initialization or current status rebuild,
all log records within the physical log record and beyond it to the end of the log
data set are inaccessible to the log initialization or current status rebuild phase of
restart. Therefore, the value of X is the log RBA that was reported in the message,
rounded down to a 4KB boundary (X'7429000').

Continue with step 2 on page 4-229.

Procedure RBA 3: The message accompanying the abend identifies the log RBA
of the inaccessible log record. This log RBA is not registered in the BSDS.

For example, the following message indicates that the log RBA X'7429ABA' is not
registered in the BSDS:

DSNJ113E RBA ððððð7429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

The print log map utility can be used to list the contents of the BSDS. For an
example of the output, see the description of print log map (DSNJU004) in Section
3 of Utility Guide and Reference.

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during log initialization or current status rebuild,
all log records within the physical log record are inaccessible.

Using the print log map output, locate the RBA closest to, but less than,
X'7429ABA' for the value of X. If there is not an RBA that is less than X'7429ABA',
a considerable amount of log information has been lost. If this is the case, continue
with “Failure Resulting from Total or Excessive Loss of Log Data” on page 4-244.

If there is a value for X, continue with step 2 on page 4-229.

Procedure RBA 4: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible, and the
STATUS field identifies the code that is associated with the reason for the data set

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-227

being inaccessible. For an explanation of the STATUS codes, see the explanation
for the message in Section 3 of Messages and Codes .

DSNJ1ð3I - csect-name LOG ALLOCATION ERROR

 DSNAME=DSNCAT.ARCHLOG1.Aðððððð9,ERROR

 STATUS=ð498ððð4

SMS REASON CODE=ðððððððð

To determine the value of X, run the print log map utility to list the log inventory
information. For an example of the output, see the description of print log map
(DSNJU004) in Section 3 of Utility Guide and Reference. The output provides each
log data set name and its associated log RBA range—the values of X and Y.

Verify the accuracy of the information in the print log map utility output for the
active log data set with the lowest RBA range. For this active log data set only, the
information in the BSDS is potentially inaccurate for the following reasons:

� When an active log data set is full, archiving is started. DB2 then selects
another active log data set, usually the data set with the lowest RBA. This
selection is made so that units of recovery do not have to wait for the archive
operation to complete before logging can continue. However, if a data set has
not been archived, nothing beyond it has been archived, and the procedure is
ended.

� When logging has begun on a reusable data set, DB2 updates the BSDS with
the new log RBA range for the active log data set, and marks it as Not
Reusable. The process of writing the new information to the BSDS can be
delayed by other processing. It is therefore possible for a failure to occur
between the time that logging to a new active log data set begins and the time
that the BSDS is updated. In this case, the BSDS information is not correct.

The log RBA that appears for the active log data set with the lowest RBA range in
the print log map utility output is valid, provided that the data set is marked Not
Reusable. If the data set is marked Reusable, it can be assumed for the purposes
of this restart that the starting log RBA (X) for this data set is one greater than the
highest log RBA listed in the BSDS for all other active log data sets.

Continue with step 2 on page 4-229.

Procedure RBA 5: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
operator canceled a request for archive mount, resulting in the following message:

DSNJðð7I OPERATOR CANCELED MOUNT OF ARCHIVE

 DSNCAT.ARCHLOG1.Aðððððð9 VOLSER=5B225.

To determine the value of X, run the print log map utility to list the log inventory
information. For an example of the output, see the description of print log map
(DSNJU004) in Section 3 of Utility Guide and Reference. The output provides each
log data set name and its associated log RBA range: the values of X and Y.

Continue with step 2 on 4-229.

4-228 Administration Guide

Step 2: Identify Lost Work and Inconsistent Data
1. Obtain available information to help you determine the extent of the loss.

It is impossible for DB2 to determine what units of recovery are not completed,
what database state information is lost, or what data is inconsistent in this
situation. The log contains all such information, but the information is not
available. The following steps explain what to do to obtain the information that
is available within DB2 to help determine the extent of the loss. The steps also
explain how to start DB2 in this situation.

After restart, data is inconsistent. Results of queries and any other operations
on such data vary from incorrect results to abends. Abends that occur either
identify an inconsistency in the data or incorrectly assume the existence of a
problem in the DB2 internal algorithms. If the inconsistent page sets cannot
be identified and the problems in them cannot be resolved after starting
DB2, there is a risk in following this procedure and allowing access to
inconsistent data .

a. Execute the print log map utility. The report it produces includes a
description of the last 100 checkpoints and provides, for each checkpoint:

The location in the log of the checkpoint (begin and end RBA)
The date and time of day that the checkpoint was performed.

b. Locate the checkpoint on the log prior to the point of failure (X). Do that by
finding the first checkpoint with an end RBA that is less than X.

If you cannot find such a checkpoint, this means that a considerable
amount of log has been lost. In this case, either follow the procedure under
“Failure Resulting from Total or Excessive Loss of Log Data” on
page 4-244 or the procedure under “Unresolvable BSDS or Log Data Set
Problem during Restart” on page 4-242.

If the checkpoint is found, look at the date and time it was performed. If the
checkpoint is several days old (and DB2 was operational during the
interim), either follow the procedure under “Failure Resulting from Total or
Excessive Loss of Log Data” on page 4-244 or the procedure under
“Unresolvable BSDS or Log Data Set Problem during Restart” on
page 4-242.

Otherwise, continue with the next step.

2. Determine what work is lost and what data is inconsistent.

The portion of the log representing activity that occurred before the failure
provides information about work that was in progress at that point. From this
information, it can be possible to deduce the work that was in progress within
the inaccessible portion of the log. If use of DB2 was limited at the time or if
DB2 was dedicated to a small number of activities (such as batch jobs
performing database loads or image copies), it can be possible to accurately
identify the page sets that were made inconsistent. To make the identification,
extracting a summary of the log activity up to the point of damage in the log by
using the DSN1LOGP utility described in Section 3 of Utility Guide and
Reference.

Use the DSN1LOGP utility to specify the “BEGIN CHECKPOINT” RBA prior to
the point of failure, which was determined in the previous step as the
RBASTART. End the DSN1LOGP scan prior to the point of failure on the log (X
- 1) by using the RBAEND specification.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-229

Specifying the last complete checkpoint is very important for ensuring that
complete information is obtained from DSN1LOGP.

Specify the SUMMARY(ONLY) option to produce a summary report.

Figure 90 is an example of a DSN1LOGP job to obtain summary information
for the checkpoint discussed previously.

//ONE EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSABEND DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSSUMRY DD SYSOUT=A

//BSDS DD DSN=DSNCAT.BSDSð1,DISP=SHR

//SYSIN DD \

RBASTART (7425468) RBAEND (7428FFF) SUMMARY (ONLY)

/\

Figure 90. Sample JCL for Obtaining DSN1LOGP Summary Output for Restart

3. Analyze the DSN1LOGP utility output.

The summary report that is placed in the SYSSUMRY file includes two sections
of information: a summary of completed events (not shown here) and a restart
summary shown in Figure 91 on page 4-231. Following this figure is a
description of the sample output.

4-230 Administration Guide

DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT

STARTRBA=ððððð7425468 ENDRBA=ððððð7426C6C STARTLRSN=AA527AA8ð9DF ENDLRSN=AA527AA829F4

 DATE=92.284 TIME=14:49:25

DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMFðð1 PLAN=TCEUð2

START DATE=92.284 TIME=11:12:ð1 DISP=INFLIGHT INFO=COMPLETE

STARTRBA=ððððð63DA17B STARTLRSN=A974FAFF27FF NID=\

 LUWID=DB2NET.LUNDð.A974FAFE6E77.ððð1 COORDINATOR=\

 PARTICIPANTS=\

 DATA MODIFIED:

 DATABASE=ð1ð1=STVDBð2 PAGESET=ððð2=STVTSð2

DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM5 AUTHID=ADMFðð1 PLAN=TCEUð2

START DATE=92.284 TIME=11:21:ð2 DISP=INFLIGHT INFO=COMPLETE

STARTRBA=ððððð6A57C57 STARTLRSN=A974FAFF28ð1 NID=\

 LUWID=DB2NET.LUNDð.A974FAFE6FFF.ððð3 COORDINATOR=\

 PARTICIPANTS=\

 DATA MODIFIED:

 DATABASE=ð1ð4=STVDBð5 PAGESET=ððð2=STVTSð5

DSN1162I DSN1LPRT UR CONNID=TESTððð1 CORRID=CTHDCORIDðð1 AUTHID=MULTðð2 PLAN=DONSQL1

START DATE=92.278 TIME=ð6:49:33 DISP=INDOUBT INFO=PARTIAL

STARTRBA=ððððð5FBCC4F STARTLRSN=A974FBAF23ð2 NID=\

 LUWID=DB2NET.LUNDð.B978FAFEFAB1.ðððð COORDINATOR=\

 PARTICIPANTS=\

NO DATA MODIFIED (BASED ON INCOMPLETE LOG INFORMATION)

DSN1162I UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMFðð1 PLAN=TCEUð2

START DATE=92.284 TIME=11:12:ð1 DISP=INFLIGHT INFO=COMPLETE

 START=ððððð63DA17B

DSN116ðI DATABASE WRITES PENDING:

DATABASE=ððð1=DSNDBð1 PAGESET=ðð4F=SYSUTIL START=ððððð7425468

DATABASE=ð1ð2 PAGESET=ðð15 START=ððððð7425468

Figure 91. Partial Sample of DSN1LOGP Summary Output

The heading message:

DSN1157I RESTART SUMMARY

is followed by messages that identify the units of recovery that have not yet
completed and the page sets that they modified.

Following the summary of outstanding units of recovery is a summary of page
sets with database writes pending.

In each case (units of recovery or databases with pending writes), the earliest
required log record is identified by the START information. In this context,
START information is the log RBA of the earliest log record required in order to
complete outstanding writes for this page set.

Those units of recovery with a START log RBA equal to, or prior to, the point Y
cannot be completed at restart. All page sets modified by such units of
recovery are inconsistent after completion of restart using this procedure.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-231

All page sets identified in message DSN1160I with a START log RBA value
equal to, or prior to, the point Y have database changes that cannot be written
to DASD. As in the case previously described, all such page sets are
inconsistent after completion of restart using this procedure.

At this point, it is only necessary to identify the page sets in preparation for
restart. After restart, the problems in the page sets that are inconsistent must
be resolved.

Because the end of the log is inaccessible, some information has been lost,
therefore, the information is inaccurate. Some of the units of recovery that
appear to be inflight might have successfully committed, or they could have
modified additional page sets beyond point X. Additional data could have been
written, including those page sets that are identified as having writes pending in
the accessible portion of the log. New units of recovery could have been
created, and these can have modified data. DB2 cannot detect that these
events occurred.

From this and other information (such as system accounting information and
console messages), it could be possible to determine what work was actually
outstanding and which page sets will be inconsistent after starting DB2, since
the record of each event contains the date and time to help determine how
recent the information is. In addition, the information is displayed in
chronological sequence.

Step 3: Determine What Status Information Has Been Lost
Some amount of system status information might have been lost. In some cases,
you will know what information has been lost (such as the case in which utilities are
in progress). In other cases, messages about the loss of status information (such
as in the cases of deferred restart pending or write error ranges) might be received.
If system status information has been lost, it could be possible to reconstruct this
information from recent console displays, messages, and abends that alerted you to
these conditions. The page sets that are in such a state must be identified because
they are inconsistent and inconsistencies must be resolved.

Step 4: Truncate the Log at the Point of Error
No DB2 process, including RECOVER, allows a gap in the log RBA sequence.
You cannot process up to point X, skip over points X through Y, and continue after
Y.

Use the change log inventory utility to create a conditional restart control record
(CRCR) in the BSDS, identifying the end of the log (X) to use on a subsequent
restart. The value is the RBA at which DB2 begins writing new log records. If point
X is X'7429000', on the CRESTART control statement specify ENDRBA=7429000.

At restart, DB2 discards the portion of the log beyond X'7429000' before processing
the log for completing work (such as units of recovery and database writes). Unless
otherwise directed, normal restart processing is performed within the scope of the
log. Because log information has been lost, DB2 errors can occur. For example, a
unit of recovery that has actually been committed can be rolled back. Also, some
changes made by that unit of recovery might not be rolled back because
information about data changes has been lost.

To minimize such errors, use this change log inventory control statement:

CRESTART CREATE,ENDRBA=7429ððð,FORWARD=NO,BACKOUT=NO

4-232 Administration Guide

When DB2 is started (in Step 6), it:

1. Discards from the checkpoint queue any entries with RBAs beyond the
ENDRBA value in the CRCR (X'7429000' in the previous example).

2. Reconstructs the system status up to the point of log truncation.

3. Completes all database writes that are identified by the DSN1LOGP summary
report and have not already been performed.

4. Completes all units of recovery that have committed or are indoubt. The
processing varies for different unit of recovery states as described in “Normal
Restart and Recovery” on page 4-101.

5. Does not back out inflight or in-abort units of recovery. Inflight units of recovery
might have been committed. Data modified by in-abort units of recovery could
have been modified again after the point of damage on the log. Thus,
inconsistent data can be left in tables modified by inflight or indoubt URs.
Backing out without the lost log information might introduce further
inconsistencies.

Step 5: Start DB2
At the end of restart, the conditional restart control record (CRCR) is marked
DEACTIVATED to prevent its use on a later restart. Until the restart has completed
successfully, the CRCR is in effect. Start DB2 with ACCESS (MAINT) until data is
consistent or page sets are stopped.

Step 6: Resolve Data Inconsistency Problems
After successfully restarting DB2, resolve all data inconsistency problems as
described in “Resolving Inconsistencies Resulting from Conditional Restart” on
page 4-248.

Failure during Forward Log Recovery
Problem: A failure occurred during the forward log recovery phase of restart.

Symptom: An abend was issued, indicating that restart had failed. In addition, the
last restart message received was a DSNR004I message indicating that log
initialization had completed and thus the failure occurred during forward log
recovery.

System Action: DB2 terminates because a portion of the log is inaccessible, and
DB2 is therefore unable to guarantee the consistency of the data after restart.

Operations Management Action: To start DB2 successfully, choose one of the
following approaches:

� Correct the problem that has made the log inaccessible and start DB2 again.
To determine if this approach is possible, refer to Messages and Codes for an
explanation of the messages and codes received. The explanation will identify
any corrective action that can be taken to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

� Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or Log Data Set Problem during
Restart” on page 4-242.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-233

� Start DB2 without completing some database changes. The exact changes
cannot be identified; all that can be determined is which page sets might have
incomplete changes. The procedure for determining which page sets contain
incomplete changes is described in “Starting DB2 by Limiting Restart
Processing” on page 4-235. Continue reading this chapter to obtain a better
idea of what the problem is.

Figure 92 illustrates the problem on the log.

Log Begin Begin Begin Begin Log

start URID1 URID2 ─Log ─ URID3 URID4 end

─ ─ ─ │error│ ─ ─ ─

─────────────&─────────────\\\\\│───&─────────&──────────────

─ ─ │ ─ ─ ─ │ ─ │ ─ ─

 ─ RBA: X Y ─ ─

 Page set Page set Checkpoint

 A B

Figure 92. Illustration of Failure during Forward Log Recovery

The portion of the log between log RBA X and Y is inaccessible. The log
initialization and current status rebuild phases of restart completed successfully.
Restart processing was reading the log in a forward direction beginning at some
point prior to X and continuing to the end of the log. Because of the inaccessibility
of log data (between points X and Y), restart processing cannot guarantee the
completion of any work that was outstanding at restart prior to point Y.

For purposes of discussion, assume the following work was outstanding at restart:

� The unit of recovery identified as URID1 was in-commit.

� The unit of recovery identified as URID2 was inflight.

� The unit of recovery identified as URID3 was in-commit.

� The unit of recovery identified as URID4 was inflight.

� Page set A had writes pending prior to the error on the log, continuing to the
end of the log.

� Page set B had writes pending after the error on the log, continuing to the end
of the log.

The earliest log record for each unit of recovery is identified on the log line in
Figure 92. In order for DB2 to complete each unit of recovery, DB2 requires access
to all log records from the beginning point for each unit of recovery to the end of
the log.

The error on the log prevents DB2 from guaranteeing the completion of any
outstanding work that began prior to point Y on the log. Consequently, database
changes made by URID1 and URID2 might not be fully committed or backed out.
Writes pending for page set A (from points in the log prior to Y) will be lost.

4-234 Administration Guide

Starting DB2 by Limiting Restart Processing
This procedure describes how to start DB2 when a portion of the log is inaccessible
during forward recovery. It also describes how to identify the units of recovery for
which database changes cannot be fully guaranteed (either committed or backed
out) and the page sets that these units of recovery changed. You must determine
which page sets are involved because after this procedure is used, the page sets
will contain inconsistencies that must be resolved. In addition, using this procedure
results in the completion of all database writes that are pending. For a description
of this process of writing database pages to DASD, see “Tuning Database Buffer
Pools” on page 5-49.

Step 1: Find the Log RBA after the Inaccessible Part of the Log
The log damage is shown in Figure 92 on page 4-234. The range of the log
between RBA X and RBA Y is inaccessible to all DB2 processes.

Use the abend reason code accompanying the X'04E' abend, and the message on
the title of the accompanying dump at the operator's console, to find the name and
page number of a procedure in Table 60. Use that procedure to find X and Y.

Procedure RBA 1: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates a logical error in the log record at log RBA X'7429ABA':

Table 60. Abend Reason Codes and Messages

Abend
Reason
Code

Message

Procedure
Name and
Page

General Error Description

00D10261 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10262 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10263 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10264 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10265 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10266 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10267 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10268 DSNJ012I RBA 1, page 4-235 Log record is logically damaged

00D10329 DSNJ106I RBA 2, page 4-236 I/O error occurred while log record
was being read

00D1032A DSNJ113E RBA 3, page 4-236 Log RBA could not be found in BSDS

00D1032B DSNJ103I RBA 4, page 4-237 Allocation error occurred for an
archive log data set

00D1032B DSNJ007I RBA 5, page 4-237 The operator canceled a request for
archive mount

00D1032C DSNJ104E RBA 4, page 4-237 Open error occurred for an archive
log data set

00E80084 DSNJ103I RBA 4, page 4-237 Active log data set named in the
BSDS could not be allocated during
log initialization.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-235

DSNJð12I ERROR D1ð265 READING RBA ððððð7429ABA

IN DATA SET DSNCAT.LOGCOPY2.DSð1

 CONNECTION-ID=DSN

 CORRELATION-ID=DSN

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the log control interval
definition (LCID). When this type of an error on the log occurs during forward log
recovery, all log records within the physical log record, as described, are
inaccessible. Therefore, the value of X is the log RBA that was reported in the
message, rounded down to a 4K boundary (that is, X'7429000').

For purposes of following the steps in this procedure, assume that the extent of
damage is limited to the single physical log record. Therefore, calculate the value of
Y as the log RBA that was reported in the message, rounded up to the end of the
4K boundary (that is, X'7429FFF').

Continue with step 2 on page 4-237.

Procedure RBA 2: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates an I/O error in the log at RBA X'7429ABA':

DSNJ1ð6I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DSð1,

LOGRBA=ððððð7429ABA, ERROR STATUS=ð1ð832ðC

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during forward log recovery, all log records within
the physical log record and beyond it to the end of the log data set are inaccessible
to the forward recovery phase of restart. Therefore, the value of X is the log RBA
that was reported in the message, rounded down to a 4K boundary (that is,
X'7429000').

To determine the value of Y, run the print log map utility to list the log inventory
information. For an example of this output, see the description of print log map
(DSNJU004) in Section 3 of Utility Guide and Reference. Locate the data set name
and its associated log RBA range. The RBA of the end of the range is the value Y.

Continue with step 2 on page 4-237.

Procedure RBA 3: The message accompanying the abend identifies the log RBA
of the inaccessible log record. This log RBA is not registered in the BSDS.

For example, the following message indicates that the log RBA X'7429ABA' isn't
registered in the BSDS:.

DSNJ113E RBA ððððð7429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility to list the contents of the BSDS. For an example of this
output, see the description of print log map (DSNJU004) in Section 3 of Utility
Guide and Reference.

Figure 167 on page X-87 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this

4-236 Administration Guide

type of error on the log occurs during forward log recovery, all log records within
the physical log record are inaccessible.

Using the print log map output, locate the RBA closest to, but less than,
X'7429ABA' This is the value of X. If an RBA less than X'7429ABA' cannot be
found, the value of X is zero. Locate the RBA closest to, but greater than,
X'7429ABA'. This is the value of Y.

Continue with step 2 on page 4-237.

Procedure RBA 4: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
STATUS field identifies the code that is associated with the reason for the data set
being inaccessible. For an explanation of the STATUS codes, see the explanation
for the message in Messages and Codes .

DSNJ1ð3I LOG ALLOCATION ERROR

 DSNAME=DSNCAT.ARCHLOG1.Aðððððð9, ERROR

 STATUS=ð498ððð4

SMS REASON CODE=ðððððððð

To determine the values of X and Y, run the print log map utility to list the log
inventory information. For an example of this output, see the description of print log
map (DSNJU004) in Section 2 of Utility Guide and Reference. The output provides
each log data set name and its associated log RBA range: the values of X and Y.

Continue with step 2 on page 4-237.

Procedure RBA 5: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
operator canceled a request for archive mount resulting in the following message.

DSNJðð7I OPERATOR CANCELED MOUNT OF ARCHIVE

 DSNCAT.ARCHLOG1.Aðððððð9 VOLSER=5B225.

To determine the values of X and Y, run the print log map utility to list the log
inventory information. For an example of the output, see the description of print log
map (DSNJU004) in Section 3 of Utility Guide and Reference. The output provides
each log data set name and its associated log RBA range: the values of X and Y.
Continue with Step 2 on page 4-237.

Step 2: Identify Incomplete Units of Recovery and Inconsistent
Page Sets
Units of recovery that cannot be fully processed are considered incomplete units of
recovery. Page sets that will be inconsistent following completion of restart are
considered inconsistent page sets. Take the following steps to identify them:

1. Determine the location of the latest checkpoint on the log. Determine this by
looking at one of the following sources, whichever is more convenient:

� The operator's console contains the following message, identifying the
location of the start of the last checkpoint on the log at log RBA
X'876B355'.

DSNRðð3I RESTART ... PRIOR CHECKPOINT

 RBA=ðððð7425468

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-237

� The print log map utility output identifies the last checkpoint, including its
BEGIN CHECKPOINT RBA.

2. Run the DSN1LOGP utility to obtain a report of the outstanding work that is to
be completed at the next restart of DB2. When you run the DSN1LOGP utility,
specify the checkpoint RBA as the STARTRBA and the SUMMARY(ONLY)
option. It is very important that you include the last complete checkpoint from
running DSN1LOGP in order to obtain complete information.

Figure 90 on page 4-230 shows an example of the DSN1LOGP job submitted
for the checkpoint that was reported in the DSNR003I message.

Analyze the output of the DSN1LOGP utility. The summary report that is placed in
the SYSSUMRY file contains two sections of information. For an example of
SUMMARY output, see Figure 91 on page 4-231; and for an example of the
program that results in the output, see Figure 90 on page 4-230.

Step 3: Restrict Restart Processing to the Part of the Log after
the Damage
Use the change log inventory utility to create a conditional restart control record
(CRCR) in the BSDS. Identify the accessible portion of the log beyond the damage
by using the STARTRBA specification, which will be used at the next restart.
Specify the value Y+1 (that is, if Y is X'7429FFF', specify STARTRBA=742A000).
Restart will restrict its processing to the portion of the log beginning with the
specified STARTRBA and continuing to the end of the log. A sample change log
inventory utility control statement is:

CRESTART CREATE,STARTRBA=742Aððð

Step 4: Start DB2
At the end of restart, the CRCR is marked DEACTIVATED to prevent its use on a
subsequent restart. Until the restart is complete, the CRCR will be in effect. Use
-START DB2 ACCESS(MAINT) until data is consistent or page sets are stopped.

Step 5: Resolve Inconsistent Data Problems
Following the successful start of DB2, all data inconsistency problems must be
resolved. “Resolving Inconsistencies Resulting from Conditional Restart” on
page 4-248 describes how to do this. At this time, all other data can be made
available for use.

Failure during Backward Log Recovery
Problem: A failure occurred during the backward log recovery phase of restart.

Symptom: An abend was issued that indicated that restart failed because of a log
problem. In addition, the last restart message received was a DSNR005I message,
indicating that forward log recovery completed and thus the failure occurred during
backward log recovery.

System Action: DB2 terminates because a portion of the log that it needs is
inaccessible, and DB2 is therefore unable to rollback some database changes
during restart.

Operations Management Action: To start DB2, choose one of the following
approaches:

4-238 Administration Guide

1. Correct the problem that has made the log inaccessible and start DB2 again.
To determine whether this approach is possible, refer to Messages and Codes
for an explanation of the messages and codes received. The explanation
identifies the corrective action to take to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

2. Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or Log Data Set Problem during
Restart” on page 4-242.

3. Start DB2 without rolling back some database changes. The exact database
changes cannot be identified. All that can be determined is which page sets
contain incomplete changes and which units of recovery made modifications to
those page sets. The procedure for determining which page sets contain
incomplete changes and which units of recovery made the modifications is
described in “Bypassing Backout before Restarting.” Continue reading this
chapter to obtain a better idea of how to fix the problem.

Figure 93 illustrates the problem on the log.

Log Begin Begin Begin Log

start URID5 URID6 │Log │ URID7 end

│ │ │ │error│ │ │

├─────────┼──────────────┼───────┤\\\\\├────────┼──────────┤

│ │ │ │ │ & │ │

 RBA: X Y │

 │

 Checkpoint

Figure 93. Illustration of Failure during Backward Log Recovery

The portion of the log between log RBA X and Y is inaccessible. Restart was
reading the log in a backward direction beginning at the end of the log and
continuing backward to the point marked by Begin URID5 in order to back out the
changes made by URID5, URID6, and URID7. You can assume that DB2
determined that these units of recovery were inflight or in-abort. The portion of the
log from point Y to the end has been processed. However, the portion of the log
from Begin URID5 to point Y has not been processed and cannot be processed by
restart. Consequently, database changes made by URID5 and URID6 might not be
fully backed out. All database changes made by URID7 have been fully backed out,
but these database changes might not have been written to DASD. A subsequent
restart of DB2 causes these changes to be written to DASD during forward
recovery.

Bypassing Backout before Restarting
This procedure describes how to start DB2 when a portion of the log is inaccessible
during backward recovery. It also describes how to identify the units of recovery
that cannot be fully backed out and the page sets that are inconsistent because
they were changed by the units of recovery that did not complete.

1. Determine the units of recovery that cannot be backed out and the page sets
that will be inconsistent following completion of restart. To do this, take the
following steps:

a. Determine the location of the latest checkpoint on the log. This can be
determined by looking at one of the following sources, whichever is more
convenient:

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-239

� The operator's console contains message DSNR003I, which identifies
the location of the start of the last checkpoint on the log at log RBA
X'7425468'.

DSNRðð3I RESTART ... PRIOR CHECKPOINT

 RBA=ðððð7425468

� Print log map utility output identifies the last checkpoint, including its
BEGIN CHECKPOINT RBA.

b. Execute the DSN1LOGP utility to obtain a report of the outstanding work
that is to be completed at the next restart of DB2. When you run
DSN1LOGP, specify the checkpoint RBA as the RBASTART and the
SUMMARY(ONLY) option. Include the last complete checkpoint in the
execution of DSN1LOGP in order to obtain complete information.

Figure 91 on page 4-231 shows an example of the DSN1LOGP job
submitted for the checkpoint that was reported in the DSNR003I message.

Analyze the output of the DSN1LOGP utility. The summary report that is placed
in the SYSSUMRY file contains two sections of information. The sample report
output shown in Figure 91 on page 4-231 resulted from the invocation shown
in Figure 90 on page 4-230. The following description refers to that sample
output:

The first section is headed by the following message:

DSN115ðI SUMMARY OF COMPLETED EVENTS

That message is followed by others that identify completed events, such as
completed units of recovery. That section does not apply to this procedure.

The second section is headed by this message:

DSN1157I RESTART SUMMARY

That message is followed by others that identify units of recovery that are not
yet completed and the page sets that they modified. An example of the
DSN1162I messages is shown in Figure 91 on page 4-231.

Following the summary of outstanding units of recovery is a summary of page
sets with database writes pending. An example of the DSN1160I message is
shown in Figure 91 on page 4-231.

The restart processing that failed was able to complete all units of recovery
processing within the accessible scope of the log following point Y. Database
writes for these units of recovery are completed during the forward recovery
phase of restart on the next restart. Therefore, do not bypass the forward
recovery phase. All units of recovery that can be backed out have been backed
out.

All remaining units of recovery to be backed out (DISP=INFLIGHT or
DISP=IN-ABORT) are bypassed on the next restart because their STARTRBA
values are less than the RBA of point Y. Therefore, all page sets modified by
those units of recovery are inconsistent following restart. This means that some
changes to data might not be backed out. At this point, it is only necessary to
identify the page sets in preparation for restart.

2. Direct restart to bypass backward recovery processing. Use the change log
inventory utility to create a conditional restart control record (CRCR) in the
BSDS. Direct restart to bypass backward recovery processing during the
subsequent restart by using the BACKOUT specification. At restart, all units of

4-240 Administration Guide

recovery requiring backout are declared complete by DB2, and log records are
generated to note the end of the unit of recovery. The change log inventory
utility control statement is:

CRESTART CREATE,BACKOUT=NO

3. Start DB2. At the end of restart, the CRCR is marked DEACTIVATED to prevent
its use on a subsequent restart. Until the restart is complete, the CRCR is in
effect. Use START DB2 ACCESS(MAINT) until data is consistent or page sets
are stopped.

4. Resolve all inconsistent data problems. Following the successful start of DB2,
all data inconsistency problems must be resolved. “Resolving Inconsistencies
Resulting from Conditional Restart” on page 4-248 describes how to do this. At
this time, all other data can be made available for use.

Failure during a Log RBA Read Request
Problem: The BSDS is wrapping around too frequently when log RBA read
requests are submitted; when the last archive log data sets were added to the
BSDS, the maximum allowable number of log data sets in the BSDS was
exceeded. This caused the earliest data sets in the BSDS to be displaced by the
new entry. Subsequently, the requested RBA containing the dropped log data set
cannot be read after the wrap occurs.

Symptom: Abend code 00D1032A and message DSNJ113E are displayed:

DSNJ113E RBA log-rba NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=aaaaaaaa, CORRELATION-ID=aaaaaaaa

System Programmer Action:

1. Stop DB2 with the -STOP DB2 command, if it has not already been stopped
automatically as a result of the problem.

2. Check any other messages and reason codes displayed and correct the errors
indicated. Locate the output from an old print log map run, and identify the data
set that contains the missing RBA. If the data set has not been reused, run the
change log inventory utility to add this data set back into the inventory of log
data sets.

3. Increase the maximum number of archive log volumes that can be recorded in
the BSDS. To do this, update the MAXARCH system parameter value as
follows:

a. Start the installation CLIST.

b. On panel DSNTIPA1, select UPDATE mode.

c. On panel DSNTIPT, change any data set names that are not correct.

d. On panel DSNTIPB, select the ARCHIVE LOG DATA SET PARAMETERS
option.

e. On panel DSNTIPA, increase the value of RECORDING MAX.

f. When the installation CLIST editing completes, rerun job DSNTIJUZ to
recompile the system parameters.

4. Start DB2 with the -START DB2 command.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-241

For more information on updating DB2 system parameters, see Section 2 of
Installation Guide.

For instructions about adding an old archive data set refer to “Changing the BSDS
Log Inventory” on page 4-94. Also see Section 3 of Utility Guide and Referencefor
additional information on the change log inventory utility.

Unresolvable BSDS or Log Data Set Problem during Restart
Use dual logging (active logs, archive logs, and bootstrap data sets) to reduce your
efforts in resolving the problem described in this section.

Problem: During restart of DB2, serious problems with the BSDS or log data sets
were detected and cannot be resolved.

Symptom: The following messages are issued:

 DSNJ100I
 DSNJ107I
 DSNJ119I.

Any of the following problems could be involved:

� A log data set is physically damaged.

� Both copies of a log data set could be physically damaged in the case of dual
logging mode.

� A log data set could be lost.

� An archive log volume could have been reused even though it was still needed.

� A log data set could contain records that are not recognized by DB2 because
they are logically broken.

System Action: DB2 cannot be restarted unless the following procedure is used:

Operations Management Action: In serious cases such as this, it can be
necessary to fall back to a prior shutdown level. If this procedure is used, all
database changes between the shutdown point and the present will be lost, but all
the data retained will be consistent within DB2.

If it is necessary to fall back, read “Preparing to Recover to a Prior Point of
Consistency” on page 4-131.

If too much log information has been lost, use the alternative approach described in
“Failure Resulting from Total or Excessive Loss of Log Data” on page 4-244.

Preparing for Recovery of Restart
See “Preparing to Recover to a Prior Point of Consistency” on page 4-131 for
preparation procedures.

4-242 Administration Guide

Performing the Fall Back to a Prior Shutdown Point
1. When a failure occurs and you decide to fall back, use the print log map utility

against the most current copy of the BSDS. Even if you are not able to do this,
continue with the next step. (If you are unable to do this, an error message will
be issued.)

2. Use access method services IMPORT to restore the backed-up versions of the
BSDS and active log data sets.

3. Use the print log map utility against the copy of the BSDS with which DB2 is to
be restarted.

4. Determine whether any archive log data sets must be deleted.

� If you have a copy of the most current BSDS, compare it to the BSDS with
which DB2 is to be restarted. Delete and uncatalog any archive log data
sets that are listed in the most current BSDS but are not listed in the
previous one. These archive log data sets are normal physical sequential
(SAM) data sets. If you are able to do this step, continue with step 5.

� If you were not able to print a copy of the most current BSDS and the
archive logs are cataloged, use access method services LISTCAT to check
for archive logs with a higher sequence number than the last archive log
shown in the BSDS being used to restart DB2.

– If no archive log data sets with a higher sequence number exist, you do
not have to delete or uncatalog any data sets, and you can continue
with step 5.

– Delete and uncatalog all archive log data sets that have a higher
sequence number than the last archive log data set in the BSDS being
used to restart DB2. These archive log data sets are SAM data sets.
Continue with the next step.

If the archive logs are not cataloged, it is not necessary to uncatalog them.

5. Give the command START DB2. Use -START DB2 ACCESS(MAINT) until data
is consistent or page sets are stopped. If DDL is required, the creator might not
be the same.

6. Now, determine what data needs to be recovered, what data needs to be
dropped, what data can remain unchanged, and what data needs to be
recovered to the prior shutdown point.

� For table spaces and indexes that might have been changed after the
shutdown point, use the DB2 RECOVER utility to recover these table
spaces and indexes. They must be recovered in the order indicated in
Section 2 of Utility Guide and Reference .

� For data that has not been changed after the shutdown point (data used
with RO access), it is not necessary to use RECOVER or DROP.

� For table spaces that were deleted after the shutdown point, issue the
DROP statement. These table spaces will not be recovered.

� Any objects created after the shutdown point should be re-created.

All data that has potentially been modified after the shutdown point must be
recovered. If the RECOVER utility is not used to recover modified data, serious
problems can occur because of data inconsistency.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-243

If an attempt is made to access data that is inconsistent, any of the following
events can occur (and the list is not comprehensive):

� It is possible to successfully access the correct data.

� Data can be accessed without DB2 recognizing any problem, but it might
not be the data you want (the index might be pointing to the wrong data).

� DB2 might recognize that a page is logically incorrect and abend the
subsystem with an X'04E' abend completion code and an abend reason
code of X'00C90102'.

� DB2 might notice that a page was updated after the shutdown point and
abend the requester with an X'04E' abend completion code and an abend
reason code of X'00C200C1'.

7. Analyze the CICS log and the IMS log to determine the work that must be
redone (work that was lost because of shut-down at the previous point). Inform
all TSO users, QMF users, and batch users for which no transaction log
tracking has been performed, about the decision to fall back to a previous
point.

8. When DB2 is started after being shut down, indoubt units of recovery can exist.
This occurs if transactions are indoubt when the command -STOP DB2 MODE
(QUIESCE) is given. When DB2 is started again, these transactions will still be
indoubt to DB2. IMS and CICS cannot know the disposition of these units of
recovery.

To resolve these indoubt units of recovery, use the command RECOVER
INDOUBT.

9. If a table space was dropped and re-created after the shutdown point, it should
be dropped and re-created again after DB2 is restarted. To do this, use SQL
DROP and SQL CREATE statements.

Do not use the RECOVER utility to accomplish this, because it will result in the
old version (which can contain inconsistent data) being recovered.

10. If any table spaces and indexes were created after the shutdown point, these
must be re-created after DB2 is restarted. There are two ways to accomplish
this:

� For data sets defined in DB2 storage groups, use the CREATE
TABLESPACE statement and specify the appropriate storage group names.
DB2 automatically deletes the old data set and redefines a new one.

� For user-defined data sets, use access method services DELETE to delete
the old data sets. After these data sets have been deleted, use access
method services DEFINE to redefine them; then use the CREATE
TABLESPACE statement.

Failure Resulting from Total or Excessive Loss of Log Data
Problem: Either all copies of the BSDS and logs have been destroyed or lost, or
an excessive amount of the active log has been destroyed or lost.

Symptom: Any messages or abends indicating that all or an excessive amount of
log information has been lost.

System Action: None.

4-244 Administration Guide

Operations Management Action: Restart DB2 without any log data by following
either the procedure in “Total Loss of Log” on page 4-245 or “Excessive Loss of
Data in the Active Log” on page 4-246.

Total Loss of Log
Even if all copies of the BSDS and either the active or archive log or both have
been destroyed or lost, DB2 can still be restarted and data that belongs to that DB2
subsystem can still be accessed, provided that all system and user table spaces

have remained intact and you have a recent copy of the BSDS. However, you must
rely on your own sources to determine what data is inconsistent, because DB2
cannot provide any hints of inconsistencies. We assume that you still have other
VSAM clusters on disk, such as the system databases DSNDB01, DSNDB04, and
DSNB06, as well as user databases. For example, you might know that DB2 was
dedicated to a few processes (such as utilities) during the DB2 session, and you
might be able to identify the page sets they modified. If you cannot identify the
page sets that are inconsistent, you must decide whether you are willing to assume
the risk involved in restarting DB2 under those conditions. If you decide to restart,
take the following steps:

1. Define and initialize the BSDSs. See step 2 in “Recovering the BSDS from a
Backup Copy” on page 4-179.

2. Define the active log data sets using the access method services DEFINE
| function. Run utility DSNJLOGF to initialize the new active log data sets.

3. Prepare to restart DB2 using no log data. See “Deferring Restart Processing”
on page 4-105.

Each data and index page contains the log RBA of the last log record applied
against the page. Safeguards within DB2 disallow a modification to a page that
contains a log RBA that is higher than the current end of the log. There are
two choices.

a. Run the DSN1COPY utility specifying the RESET option to reset the log
RBA in every data and index page. Depending on the amount of data in the
subsystem, this process can take quite a long time. Because the BSDS has
been redefined and reinitialized, logging begins at log RBA 0 when DB2
starts.

If the BSDS is not reinitialized, logging can be forced to begin at log RBA 0
by constructing a conditional restart control record (CRCR) that specifies a
STARTRBA and ENDRBA that are both equal to 0, as the following shows:

CRESTART CREATE,STARTRBA=ð,ENDRBA=ð

Continue with step 4.

b. Determine the highest possible log RBA of the prior log. From previous
console logs written when DB2 was operational, locate the last DSNJ001I
message. When DB2 switches to a new active log data set, this message
is written to the console, identifying the data set name and the highest
potential log RBA that can be written for that data set. Assume that this is
the value X'8BFFF'. Add one to this value (X'8C000'), and create a
conditional restart control record specifying the change log inventory control
statement as shown below:

CRESTART CREATE,STARTRBA=8Cððð,ENDRBA=8Cððð

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-245

When DB2 starts, all phases of restart are bypassed and logging begins at
log RBA X'8C000'. If this method is chosen, it is not necessary to use the
DSN1COPY RESET option and a lot of time is saved.

4. Start DB2. Use -START DB2 ACCESS(MAINT) until data is consistent or page
sets are stopped.

5. After restart, resolve all inconsistent data as described in “Resolving
Inconsistencies Resulting from Conditional Restart” on page 4-248.

Excessive Loss of Data in the Active Log
By studying “Total Loss of Log” on page 4-245, a procedure can be developed for
restarting that meets the requirements of the situation. Specifically, when an
excessive amount of the active log has been lost, the procedure can be adapted to
fit the situation, as described in “Total Loss of Log” on page 4-245. Do not delete
and redefine the BSDS. Instead, proceed as follows:

1. Use the print log map utility (DSNJU004) against the copy of the BSDS with
which DB2 is to be restarted.

2. Use the print log map output to obtain the data set names of all active log data
sets. Use access method services LISTCAT to determine which active log data
sets are no longer available or useable.

3. Use access method services DELETE to delete all active log data sets which
are no longer useable.

| 4. Use access method services DEFINE to define new active log data sets. Run
| utility DSNJLOGF to initialize the new active log data sets. One active log data

set must be defined for each one found to be no longer available or useable in
step 2 above. Use the active log data set name found in the BSDS as the data
set name for the access method services DEFINE statement.

5. Using the print log map utility (DSNJU004) output, note whether an archive log
data set exists which contains the RBA range of the redefined active log data
set. To do this, note the starting and ending RBA values for the active log data
set that was newly redefined, and look for an archive log data set with the
same starting and ending RBA values.

If no such archive log data sets exist, then:

a. Use the change log inventory utility (DSNJU003) DELETE statement to
delete the newly redefined active log data sets from the BSDS active log
data set inventory.

b. Next, use the change log inventory utility (DSNJU003) NEWLOG statement
to add the active log data set back into the BSDS active log data set
inventory. Do not specify RBA ranges on the NEWLOG statement.

If the corresponding archive log data sets exist, then there are two courses of
action:

� If you want to minimize the number of potential read operations against the
archive log data sets, then use access method services REPRO to copy
the data from each archive log data set into the corresponding active log
data set. Make certain you copy the proper RBA range into the active log
data set.

Be sure that the active log data set is big enough to hold all the data from
the archive log data set. When DB2 does an archive operation, it copies

4-246 Administration Guide

the log data from the active log data set to the archive log data set, then
pads the archive log data set with binary zeroes to fill a block. In order for
the access method services REPRO command to be able to copy all of the
data from the archive log data set to a newly defined active log data set,
the new active log data set might need to be bigger than the original one.
For example, if the block size of the archive log data set is 28 KB, and the
active log data set contains 80 KB of data, DB2 copies the 80 KB and pads
the archive log data set with 4 KB of nulls to fill the last block. Thus, the
archive log data set now contains 84 KB of data instead of 80 KB. In order
for the access method services REPRO command to complete
successfully, the active log data set must be able to hold 84 KB, rather
than just 80 KB of data.

� If you are not concerned about read operations against the archive log data
sets, then do the same two steps as indicated above (as though the
archive data sets did not exist).

6. Choose the appropriate point for DB2 to start logging (X'8C000') as described
in the preceding procedure.

7. To restart DB2 without using any log data, create a CRCR, as described for the
change log inventory utility (DSNJU003) in Section 3 of Utility Guide and
Reference .

8. Start DB2. Use -START DB2 ACCESS(MAINT) until data is consistent or page
sets are stopped.

9. After restart, resolve all inconsistent data as described in “Resolving
Inconsistencies Resulting from Conditional Restart” on page 4-248.

This procedure will cause all phases of restart to be bypassed and logging to begin
at log RBA X'8C000'. It will create a gap in the log between the highest RBA kept in
the BSDS and X'8C000', and that portion of the log will be inaccessible.

No DB2 process can tolerate a gap, including RECOVER. Therefore, all data must
be image copied after a cold start. Even data that is known to be consistent must
be image copied again when a gap is created in the log.

There is another approach to doing a cold start that does not create a gap in the
log. This is only a method for eliminating the gap in the physical record. It does not
mean that you can use a cold start to resolve the logical inconsistencies. The
procedure is as follows:

1. Locate the last valid log record by using DSN1LOGP to scan the log.
(Message DSN1213I identifies the last valid log RBA.)

2. Begin at an RBA that is known to be valid. If message DSN1213I indicated that
the last valid log RBA is at X'89158', round this value up to the next 4K
boundary (X'8A000').

3. Create a CRCR similar to the following.

CRESTART CREATE,STARTRBA=8Aððð,ENDRBA=8Aððð

4. Use -START DB2 ACCESS(MAINT) until data is consistent or page sets are
stopped.

5. Now, take image copies of all data for which data modifications were recorded
beyond log RBA X'8A000'. If you do not know what data was modified, take
image copies of all data.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-247

If image copies are not taken of data that has been modified beyond the log
RBA used in the CRESTART statement, future RECOVER operations can fail
or result in inconsistent data.

After restart, resolve all inconsistent data as described in Resolving Inconsistencies
Resulting from Conditional Restart.

Resolving Inconsistencies Resulting from Conditional Restart
When a conditional restart of the DB2 subsystem is done, the following can occur:

� Some amount of work is left incomplete
� Some data is left inconsistent
� Information about the status of the DB2 subsystem is made unusable.

Inconsistencies in a Distributed Environment
In a distributed environment, when a DB2 system restarts, it indicates its restart
status and the name of its recovery log to the systems with which it communicates.
There are two possible conditions for restart status, warm and cold.

A cold status for restart means that the DB2 system has no memory of previous
connections with its partner, and therefore has no memory of indoubt logical units
of work. The partner accepts the cold start connection and remembers the recovery
log name of the cold starting DB2. If the partner has indoubt thread resolution
requirements with the cold starting DB2, they cannot be achieved. The partner
terminates its indoubt resolution responsibility with the cold starting DB2. However,
as a participant, the partner has indoubt logical units of work which must be
resolved manually. The DB2 system has an incomplete record of resolution
responsibilities. It attempts to reconstruct as much resynchronization information as
possible and displays the information in one or more DSNL438 or DSNL439
messages. The displayed information is then forgotten.

A warm status for restart means the DB2 system does have memory of previous
connections with the partner and therefore does have memory of indoubt logical
units of work. The exchange of recovery log names validates that the correct
recovery logs are being used for indoubt resolution. Each partner indicates its
recovery log name and the recovery log name it believes to be the one the other
partner is using. A warm start connection where one system specifies a recovery
log name which is different than the name remembered by the other system is
rejected if indoubt resolution is required between the two partners.

Procedures for Resolving Inconsistencies
The following section explains what must be done to resolve any inconsistencies
that exist. Before reading this section, the procedures in the other sections of this
chapter must be considered. Each one provides important steps that must be
followed before using the information in this section.

The following three methods describe one or more steps that must be taken to
resolve inconsistencies in the DB2 subsystem. Before using these methods,
however, do the following:

1. Obtain image copies of all DB2 table spaces. You will need these image copies
if any of the following conditions apply:

4-248 Administration Guide

� You did a cold start
� You did a conditional restart that altered or truncated the log
� The log is damaged
� Part of the log is no longer accessible.

The first thing to do after a conditional restart is to take image copies of all DB2
table spaces, except those that are inconsistent. For those table spaces
suspected of being inconsistent, resolve the inconsistencies and then obtain
image copies of them.

A cold start might cause down-level page set errors. Some of these errors
cause message DSNB232I to be displayed during DB2 restart. After you restart
DB2, check the console log for down-level page set messages. If any of those
messages exist, correct the errors before you take image copies of the affected
data sets. Other down-level page set errors are not detected by DB2 during
restart. If you use the COPY utility with the SHRLEVEL REFERENCE option to
make image copies, the COPY utility will issue message DSNB232I when it
encounters down-level page sets. Correct those errors and continue making
image copies. If you use some other method to make image copies, you will
find out about down-level errors during normal DB2 operation. “Recovery from
Down-Level Page Sets” on page 4-183 describes methods for correcting
down-level page set errors.

Pay particular attention to DB2 subsystem table spaces. If any are inconsistent,
recover all of them in the order shown in the discussion on recovering catalog
and directory objects in Section 2 of Utility Guide and Reference.

When a portion of the DB2 recovery log becomes inaccessible, all DB2
recovery processes have difficulty operating successfully, including restart,
RECOVER, and deferred restart processing. Conditional restart allowed
circumvention of the problem during the restart process. To ensure that
RECOVER does not attempt to access the inaccessible portions of the log,
secure a copy (either full or incremental) that does not require such access. A
failure occurs any time a DB2 process (such as the RECOVER utility) attempts
to access an inaccessible portion of the log. You cannot be sure which DB2
processes must use that portion of the recovery log, and, therefore, you must
assume that all data recovery requires that portion of the log.

2. Resolve database inconsistencies. If you determine that the existing
inconsistencies involve indexes only (not data), use the utility RECOVER
INDEX. If the inconsistencies involve data (either user data or DB2 subsystem
data), continue reading this section.

Inconsistencies in DB2 subsystem databases DSNDB01 and DSNDB06 must
be resolved before inconsistencies in other databases can be resolved. This is
necessary because the subsystem databases describe all other databases, and
access to other databases requires information from DSNDB01 and DSNDB06.

If the table space that cannot be recovered (and is thus inconsistent) is being
dropped, either all rows are being deleted or the table is not necessary. In
either case, drop the table when DB2 is restarted, and do not bother to resolve
the inconsistencies before restarting DB2.

Any one of the following three procedures can be used to resolve data
inconsistencies. However, it is advisable to use one of the first two procedures
because of the complexity of the third procedure.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-249

Method 1. Recover to a Prior Point of Consistency
See “Recovering Data to a Prior Point of Consistency” on page 4-144 for a
description of how to successfully prepare for and do data recovery to a prior point
of consistency.

Method 2. Re-create the Table Space
Take the following steps to drop the table space and reconstruct the data using the
CREATE statement. This procedure is simple relative to “Method 3. Use the
REPAIR Utility on the Data.” However, if you want to use this procedure, you need
to plan ahead, because, when a table space is dropped, all tables in that table
space, as well as related indexes, authorities, and views, are implicitly dropped. Be
prepared to reestablish indexes, views, and authorizations, as well as the data
content itself.

DB2 subsystem tables, such as the catalog and directory, cannot be dropped.
Follow either “Method 1. Recover to a Prior Point of Consistency” or “Method 3.
Use the REPAIR Utility on the Data” for these tables.

1. Issue an SQL DROP TABLESPACE statement for all table spaces suspected
of being involved in the problem.

2. Re-create the table spaces, tables, indexes, synonyms, and views using SQL
CREATE statements.

3. Grant access to these objects as it was granted prior to the time of the error.

4. Reconstruct the data in the tables.

5. Run the RUNSTATS utility on the data.

6. Use COPY to acquire a full image copy of all data.

7. Use the REBIND process on all plans that use the tables or views involved in
this activity.

Method 3. Use the REPAIR Utility on the Data
The third method for resolving data inconsistencies involves the use of the REPAIR
utility. This method of resolving inconsistencies is not recommended unless the
inconsistency is limited to a small number of data or index pages for the following
reasons.

� For extensive data inconsistency, this method can be fairly time consuming and
complex, making the procedure more error prone than the two methods
described previously.

� DSN1LOGP can identify page sets that contain inconsistencies, but it cannot
identify the specific data modifications involved in the inconsistencies within a
given page set.

� DB2 provides no mechanism to tell users whether data is physically consistent
or damaged. If the data is damaged physically, you might learn this when you
attempt to use SQL to access the data and find that the data is inaccessible.

If you decide to use this method to resolve data inconsistencies, be sure to read
the following section carefully, because it contains information that is important to
the successful resolution of the inconsistencies.

4-250 Administration Guide

Considerations for Using the REPAIR Method:

� Any pages that are on the logical page list (perhaps caused by this restart)
cannot be accessed via the REPAIR utility. Because you have decided to use
the REPAIR utility to resolve the inconsistency, give the command -START
DATABASE (dbase) SPACENAM (space) ACCESS(FORCE), where space
names the table space involved. That allows access to the data.

� As noted in “Recovering Data to a Prior Point of Consistency” on page 4-144,
DB2 subsystem data (in the catalog and directory) exists in interrelated tables
and table spaces. Data in DB2 subsystem databases cannot be modified via
SQL, so the REPAIR utility must be used to resolve the inconsistencies that are
identified.

� For a description of stored data and index formats, refer to Section 7 of
Diagnosis Guide and Reference.

� DB2 stores data in data pages. The structure of data in a data page must
conform to a set of rules for DB2 to be able to process the data accurately.
Using a conditional restart process does not cause violations to this set of
rules; but, if violations existed prior to conditional restart, they will continue to
exist after conditional restart. Therefore, use DSN1COPY with the CHECK
option.

� DB2 uses several types of pointers in accessing data. Each type (indexes,
hashes, and links) is described in Section 7 of Diagnosis Guide and Reference.
Look for these pointers and manually ensure their consistency.

Hash and link pointers exist only in the DB2 directory database. DB2 uses
these pointers to access data. During a conditional restart, it is possible for
data pages to be modified without update of the corresponding pointers. When
this occurs, one of the following things can happen:

– If a pointer addresses data that is nonexistent or incorrect, DB2 abends the
request. If SQL is used to access the data, a message identifying the
condition and the page in question is issued.

– If data exists but no pointer addresses it, that data is virtually invisible to all
functions that attempt to access it via the damaged hash or link pointer.
The data might, however, be visible and accessible by some functions,
such as SQL functions that use some other pointer that was not damaged.
As might be expected, this situation can result in inconsistencies.

If a row containing a varying-length field is updated, it can increase in size. If
the page in which the row is stored does not contain enough available space to
store the additional data, the row is placed in another data page, and a pointer
to the new data page is stored in the original data page. After a conditional
restart, one of the following can occur.

– The row of data exists, but the pointer to that row does not exist. In this
case, the row is invisible and the data cannot be accessed.

– The pointer to the row exists, but the row itself no longer exists. DB2
abends the requester when any operation (for instance, a SELECT)
attempts to access the data. If termination occurs, one or more messages
will be received that identify the condition and the page containing the
pointer.

 When these inconsistencies are encountered, use the REPAIR utility to resolve
them, as described in Section 2 of Utility Guide and Reference.

 Chapter 4-8. Recovery from BSDS or Log Failure During Restart 4-251

� If the log has been truncated, there can be problems changing data via the
REPAIR utility. Each data and index page contains the log RBA of the last
recovery log record that was applied against the page. DB2 does not allow
modification of a page containing a log RBA that is higher than the current end
of the log. If the log has been truncated and you choose to use the REPAIR
utility rather than recovering to a prior point of consistency, the DSN1COPY
RESET option must be used to reset the log RBA in every data and index page
set to be corrected with this procedure.

� This last step is imperative. When all known inconsistencies have been
resolved, full image copies of all modified table spaces must be taken, in order
to use the RECOVER utility to recover from any future problems.

4-252 Administration Guide

Section 5. Performance Monitoring and Tuning

Chapter 5-1. Planning Your Performance Strategy 5-7
Further Topics in Monitoring and Tuning . 5-7
Managing Performance in General . 5-8
Establishing Performance Objectives . 5-9

Defining the Work Load . 5-9
Initial Planning . 5-10
Post-Development Review . 5-12

Planning for Monitoring . 5-13
Continuous Monitoring . 5-13
Periodic Monitoring . 5-14
Detailed Monitoring . 5-14
Exception Monitoring . 5-15
A Monitoring Strategy . 5-15

Reviewing Performance Data . 5-15
Typical Review Questions . 5-15
Are Your Performance Objectives Reasonable? 5-17

Tuning DB2 . 5-17
| Enhancements in DB2 Version 5 . 5-17

Chapter 5-2. Analyzing Performance Data 5-25
Investigating the Problem Overall . 5-25

Looking at the Entire System . 5-25
Beginning to Look at DB2 . 5-25

Reading Accounting Reports from DB2 PM . 5-26
The Accounting Report - Short . 5-26
The Accounting Report - Long . 5-27

A General Approach to Problem Analysis in DB2 5-32

Chapter 5-3. Improving Response Time and Throughput 5-37
Reducing I/O Operations . 5-37

Use RUNSTATS to Keep Data Access Statistics Current 5-37
Reserve Free Space in Table Spaces and Indexes 5-38
Make Buffer Pools Large Enough for the Work Load 5-40
Ensure Allocation in Cylinders . 5-40

Reducing the Time Needed to Perform I/O Operations 5-40
Create Additional Work File Table Spaces 5-41
Recommendations for Data Set Distribution 5-41
Ensure Sufficient Primary Allocation Quantity 5-42

Reducing the Amount of Processor Resources Consumed 5-43
Reuse Threads for your High-volume Transactions 5-43
Reduce the Number of CICS Threads per Region 5-43
Minimize the Use of DB2 Traces . 5-44
Use Fixed-length Records . 5-45
Considerations for Rebinding Certain Plans and Packages 5-45

How Response Time Is Reported . 5-46

Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-49
Tuning Database Buffer Pools . 5-49

Buffer Pools and Hiperpools . 5-49
Buffer Pool Pages . 5-51

 Copyright IBM Corp. 1982, 1997 5-1

Read Operations . 5-51
Write Operations . 5-51
Installation Options . 5-52
Assigning a Table Space or Index to a Virtual Buffer Pool 5-52
Buffer Pool Thresholds . 5-53
Determining Size and Number of Buffer Pools 5-57
Monitoring and Tuning Buffer Pools Using Online Commands 5-59
Using DB2 PM to Monitor Buffer Pool Statistics 5-63

Tuning the EDM Pool . 5-66
Using Packages to Aid EDM Pool Storage Management 5-66

Releasing thread storage . 5-66
EDM Pool Space Handling . 5-66

Increasing RID Pool Size . 5-69
Controlling Sort Pool Size and Sort Processing 5-70

Understanding How Sort Work Files Are Allocated 5-70
Factors That Influence Sort Processing . 5-71

Chapter 5-5. Improving Resource Utilization 5-73
Controlling Resource Usage . 5-73

| Prioritize Resources . 5-74
Limit Resources for Each Job . 5-74
Limit Resources for TSO Sessions . 5-75
Limit Resources for IMS and CICS . 5-75
Limit Resources for a Stored Procedure . 5-75
Limit Execution Time for Dynamic Statements 5-75
Reduce Locking Contention . 5-76
Evaluate Long-Term Resource Usage . 5-76
Predict Resource Consumption . 5-76

Resource Limit Facility (Governor) . 5-76
Where RLSTs Reside . 5-77
Creating an RLST . 5-78
What the RLST Contains . 5-80
Understanding RLST Search Order and Column Combinations 5-81
Using RLSTs at Your Local Subsystem . 5-86

Managing the Opening and Closing of Data Sets 5-87
Determining the Maximum Number of Open Data Sets 5-87
Understanding the CLOSE YES and CLOSE NO Options 5-90
Switching to Read-Only for Infrequently Updated Page Sets 5-91

Planning the Placement of DB2 Data Sets . 5-91
Crucial DB2 Data Sets . 5-92
Changing Catalog and Directory Size and Location 5-92
Monitoring I/O Activity of Data Sets . 5-93

| Work File Data Sets . 5-93
DB2 Logging . 5-94

Determining the Size of Active Logs . 5-96
Monitoring the Log . 5-98
Guidelines for Controlling Logging . 5-98

Improving DASD Utilization: Space and Device Utilization 5-99
Allocating and Extending Data Sets . 5-100
Compressing Your Data . 5-102

Improving Main Storage Utilization . 5-103
Performance and the Storage Hierarchy . 5-105

Central Storage . 5-105
Expanded Storage . 5-105

5-2 Administration Guide

3990 Cache . 5-105
Direct-access Storage Devices (DASD) . 5-107
Optical Storage . 5-107
Tape or Cartridge . 5-108

MVS Performance Options for DB2 . 5-108
Using SRM (Compatibility Mode) . 5-109
Using MVS Workload Management Velocity Goals 5-111

Chapter 5-6. Managing DB2 Threads . 5-115
Setting Thread Limits . 5-115
Allied Thread Allocation . 5-116

| Step 1: Thread Creation . 5-116
| Step 2: Resource Allocation . 5-117

Step 3: SQL Statement Execution . 5-117
Step 4: Commit and Thread Termination . 5-118
Variations on Thread Management . 5-119
Providing for Thread Reuse . 5-120

Database Access Threads . 5-121
Differences Between Allied Threads and Database Access Threads 5-121
Thread Limits for Database Access Threads 5-122
Comparing Active and Inactive Threads . 5-122
How a Database Access Thread Is Created 5-123
Thread Reuse for Database Access Threads 5-124

Using Workload Manager to Set Performance Objectives 5-124
CICS Design Options . 5-128

Overview of RCT Options . 5-128
Managing Plans for CICS Applications . 5-129
Thread Creation, Reuse, and Termination 5-129
Recommendations for RCT Definitions . 5-132
Recommendations for CICS System Definitions 5-134
Correlating Accounting Information for CICS Threads 5-134

IMS Design Options . 5-134
TSO Design Options . 5-135
QMF Design Options . 5-136

Chapter 5-7. Improving Concurrency . 5-137
What Is Concurrency? What Are Locks? . 5-138
Effects of DB2 Locks . 5-139

Suspension . 5-139
Timeout . 5-139
Deadlock . 5-140

Basic Recommendations to Promote Concurrency 5-141
Recommendations for System Options . 5-141
Recommendations for Database Design . 5-141
Recommendations for Application Design 5-143

Aspects of Transaction Locks . 5-144
The Size of a Lock . 5-144
The Duration of a Lock . 5-147
The Mode of a Lock . 5-148
The Object of a Lock . 5-151
What Lock Types DB2 Chooses . 5-153

Tuning Your Use of Locks . 5-161
Startup Procedure Options . 5-162
Installation Options for Wait Times . 5-162

 Section 5. Performance Monitoring and Tuning 5-3

Other Options that Affect Locking . 5-167
Bind Options . 5-171
Specifying Isolation by SQL Statement . 5-183
The Statement LOCK TABLE . 5-184

Controlling Concurrency for Utilities and Commands 5-185
Objects Subject to Takeover . 5-185
Definition of Claims and Drains . 5-186
Usage of Drain Locks . 5-187
Utility Locks on the Catalog and Directory 5-187
Compatibility of Utilities . 5-188

Controlling concurrency during REORG . 5-189
Utility Operations with Nonpartitioned Indexes 5-189

Monitoring DB2 Locking . 5-190
Using EXPLAIN to Tell Which Locks DB2 Chooses 5-190
Using the Statistics and Accounting Traces to Monitor Locking 5-191
Concurrency Scenario . 5-192

Deadlock Detection Scenarios . 5-197
Scenario 1: Two-way Deadlock, Two Resources 5-197
Scenario 2: Three-way Deadlock, Three Resources 5-199

Chapter 5-8. Tuning Your Queries . 5-203
General Tips and Questions . 5-203

Is the Query Coded as Simply as Possible? 5-203
Are All Predicates Coded Correctly? . 5-203
Are There Subqueries in Your Query? . 5-204
Does Your Query Involve Column Functions? 5-205
Do You Have an Input Variable in the Predicate of a Static SQL Query? . 5-205
Do You Have a Problem with Column Correlation? 5-205

Writing Efficient Predicates . 5-206
Properties of Predicates . 5-206
General Rules about Predicate Evaluation 5-209
Predicate Filter Factors . 5-215
DB2 Predicate Manipulation . 5-219
Column Correlation . 5-220

Using Host Variables Efficiently . 5-224
| Using REOPT(VARS) to Change the Access Path at Run Time 5-224

Rewriting Queries to Influence Access Path Selection 5-225
Writing Efficient Subqueries . 5-228

Correlated Subqueries . 5-229
Noncorrelated Subqueries . 5-230
Subquery Transformation into Join . 5-231
Subquery Tuning . 5-232

Special Techniques to Influence Access Path Selection 5-233
Obtaining Information About Access Paths 5-234
Using OPTIMIZE FOR n ROWS . 5-234
Reducing the Number of Matching Columns 5-236
Adding Extra Local Predicates . 5-239
Changing an Inner Join into an Outer Join 5-240
Updating Catalog Statistics . 5-240

Using a System Parameter to Enhance Outer Join Performance 5-242

Chapter 5-9. Maintaining Statistics in the Catalog 5-243
Statistics Used for Access Path Selection . 5-243

Filter Factors and Catalog Statistics . 5-248

5-4 Administration Guide

Statistics for Partitioned Table Spaces . 5-248
Using RUNSTATS to Monitor and Update Statistics 5-249
Updating the Catalog . 5-250

Correlations in the Catalog . 5-250
Recommendation for COLCARDF and FIRSTKEYCARDF 5-251
Recommendation for HIGH2KEY and LOW2KEY 5-251
Statistics for Uniform Distributions . 5-251
Recommendation for Using the TIMESTAMP Column 5-252

Querying the Catalog for Statistics . 5-252
Improving Index and Table Space Access . 5-253

How Clustering affects Access Path Selection 5-253
Other Index-Related Statistics . 5-255

| When to Reorganize Indexes and Table Spaces 5-256
| Is it Necessary to Rebind after Running RUNSTATS? 5-258

Modeling Your Production System . 5-258

Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-261
Obtaining Information from EXPLAIN . 5-262

Creating PLAN_TABLE . 5-262
Populating and Maintaining a Plan Table . 5-267
Reordering Rows from a Plan Table . 5-269

First Questions about Data Access . 5-270
Is Access Through an Index? (ACCESSTYPE is I, I1, N or MX) 5-270
Is Access Through More than One Index? (ACCESSTYPE is M, MX, MI,

or MU) . 5-271
How Many Columns of the Index Are Used in Matching? (ACCESSTYPE

is I, I1, N, or MX) . 5-272
Is the Query Satisfied Using Only the Index? (INDEXONLY=Y) 5-272
Is a View Materialized into a Work File? (TNAME names a view) 5-272
Was a Scan Limited to Certain Partitions? (PAGE_RANGE=Y) 5-273
What Kind of Prefetching Is Done? (PREFETCH is L, S, or blank) 5-273
Is Data Accessed or Processed in Parallel? (PARALLELISM_MODE is I,

C, or X) . 5-274
Are Sorts Performed? . 5-274
Is a Subquery Transformed into a Join? (QBLOCKNO Value) 5-274
When Are Column Functions Evaluated? . 5-275

Interpreting Access to a Single Table . 5-275
Table Space Scans (ACCESSTYPE=R PREFETCH=S) 5-275
Overview of Index Access . 5-276
Index Access Paths . 5-278
UPDATE Using an Index . 5-282

Interpreting Access to Two or More Tables . 5-282
Definitions and Examples . 5-283
Nested Loop Join (METHOD=1) . 5-285
Merge Scan Join (METHOD=2) . 5-287
Hybrid Join (METHOD=4) . 5-289

Interpreting Data Prefetch . 5-290
Sequential Prefetch (PREFETCH=S) . 5-291
List Sequential Prefetch (PREFETCH=L) . 5-291
Sequential Detection at Execution Time . 5-292

Determining Sort Activity . 5-294
Sorts of Data . 5-294
Sorts of RIDs . 5-295

| The Effect of Sorts on OPEN CURSOR . 5-295

 Section 5. Performance Monitoring and Tuning 5-5

View Processing . 5-296
View Merge . 5-296
View Materialization . 5-296
Using EXPLAIN to Determine the View Method 5-298
Performance of View Methods . 5-299
Performance of Table Expressions . 5-299

Parallel Operations and Query Performance 5-299
Comparing the Methods of Parallelism . 5-300

| Partitioning for Optimal Parallel Performance 5-303
Enabling Parallel Processing . 5-306
When Parallelism is Not Used . 5-307
Interpreting EXPLAIN Output . 5-308
Monitoring Parallel Operations . 5-309
Tuning Parallel Processing . 5-312
Disabling Query Parallelism . 5-313

Chapter 5-11. Monitoring and Tuning in a Distributed Environment . . . 5-315
Remote Access Types . 5-315
Considerations for Tuning Distributed Applications 5-316
How Block Fetch Improves Performance . 5-318

Using FOR FETCH ONLY to Ensure Block Fetch 5-319
Using CURRENTDATA(NO) to Ensure Block Fetch 5-320

Monitoring DB2 in a Distributed Environment 5-321
Using the DISPLAY Command . 5-321
Tracing Distributed Events . 5-321

Using DB2 PM Accounting Reports to Monitor Distributed Processing 5-325
Merged Accounting Trace . 5-326

Using RMF to Monitor Distributed Processing 5-326
Duration of an Enclave . 5-326
RMF Records for Enclaves . 5-326

Monitoring and Tuning Stored Procedures . 5-327
| Controlling Address Space Storage . 5-329
| Assigning Stored Procedures to WLM Application Environments 5-329

Accounting Trace . 5-331

5-6 Administration Guide

Chapter 5-1. Planning Your Performance Strategy

The first step toward improving performance is planning. This chapter describes:

� As an overview of the rest, “Further Topics in Monitoring and Tuning”

As elements of planning a strategy:

� “Managing Performance in General” on page 5-8
� “Establishing Performance Objectives” on page 5-9
� “Planning for Monitoring” on page 5-13
� “Reviewing Performance Data” on page 5-15
� “Tuning DB2” on page 5-17

And as a summary for users of previous versions of DB2 for MVS/ESA:

� “Enhancements in DB2 Version 5” on page 5-17

Information on performance monitoring and tuning in a data sharing environment is
presented in Data Sharing: Planning and Administration.

Further Topics in Monitoring and Tuning
“Chapter 5-2. Analyzing Performance Data” on page 5-25 is a general guide to
analyzing and investigating performance issues.

“Chapter 5-3. Improving Response Time and Throughput” on page 5-37 deals with
space allocation, buffer pool and data set usage, processor resources, and how
response time is reported.

“Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools” on page 5-49, has
recommendations for monitoring and tuning those objects.

“Chapter 5-5. Improving Resource Utilization” on page 5-73, deals with managing
data sets, logging, DASD, main storage, the resource limit facility, and performance
options in MVS.

“Chapter 5-6. Managing DB2 Threads” on page 5-115, deals with DB2 threads
and work load management.

“Chapter 5-7. Improving Concurrency” on page 5-137, deals with concurrency and
locking.

“Chapter 5-8. Tuning Your Queries” on page 5-203, deals with writing queries that
are as efficient as possible.

“Chapter 5-9. Maintaining Statistics in the Catalog” on page 5-243, deals with
| catalog statistics, when to reorganize, and when to rebind.

“Chapter 5-10. Using EXPLAIN to Improve SQL Performance” on page 5-261,
deals with the principal means of monitoring access path selection and improving
the performance of your SQL, especially queries.

 Copyright IBM Corp. 1982, 1997 5-7

“Chapter 5-11. Monitoring and Tuning in a Distributed Environment” on
page 5-315, deals with performance in a distributed environment and in particular
with stored procedures.

Throughout this section, bear in mind the following:

� We concentrate on performance objectives that can be reasonably measured
by tools now available. That might not adequately serve your purpose. If, for
example, you serve a diverse range of query users and want to measure “user
satisfaction,” you might need more than the techniques described here.

� DB2 is only a part of your overall system. Any change to programs, such as
MVS, IMS, or CICS, that share your machine and I/O devices can affect how
DB2 runs.

� The recommendations in this section are based on current knowledge of DB2
performance for “normal” circumstances and “typical” systems. We cannot
guarantee that this book provides the best or most appropriate advice for any
specific site. In particular, the advice in this section approaches situations from
a performance viewpoint only; at some sites, there can be other factors of
higher priority that make some recommendations in this section inappropriate.

� The recommendations are general. Actual performance statistics are not
included because such measurements are highly dependent on work load and
system characteristics external to DB2.

Managing Performance in General
Managing the performance of any system involves the following steps:

1. Establish performance objectives.

2. Plan how to monitor performance.

3. Carry out the plan.

4. Analyze performance reports to decide whether the objectives have been met.

If performance is thoroughly satisfactory, consider whether to:

� Monitor less, because monitoring itself uses resources; or

� Continue monitoring to generate a history of performance to compare with
future results.

If performance has not been satisfactory, then:

5. Determine the major constraints in the system.

6. Decide where you can afford to make trade-offs and which resources can bear
an additional load. Nearly all tuning involves trade-offs among system
resources.

7. Tune your system by adjusting its characteristics to improve performance.

8. Return to step 3 above and continue to monitor the system.

Periodically, or after significant changes to your system or work load, return to step
1, reexamine your objectives, and refine your monitoring and tuning strategy
accordingly.

5-8 Administration Guide

Establishing Performance Objectives
How you define good performance for your DB2 subsystem depends on your
particular data processing needs and their priority. Performance objectives should
be realistic, in line with your budget, understandable, and measurable.

Common objectives include values for:

� Acceptable response time (a duration within which some percentage of all
applications have completed)

� Average throughput (the total number of transactions completed within a given
time)

� System availability, including mean time to failure and the durations of down
times

Objectives such as those define the work load for the system and determine the
requirements for resources—processor speed, amount of storage, additional
software, and so on. Often, though, available resources limit the maximum
acceptable work load, which requires revising the objectives.

Service-Level Agreements: Presumably, your users have a say in your
performance objectives. A mutual agreement on acceptable performance, between
the data processing and user groups in an organization, is often formalized and
called a service-level agreement. Service-level agreements can include
expectations of query response time, the transaction throughput per day, hour, or
minute, and windows provided for batch jobs (including utilities). These agreements
list criteria for determining whether or not the system is performing adequately.

For example, a service-level agreement might require that 90% of all response
times sampled on a local network in the prime shift are under 2 seconds, or that
the average response time will not exceed 6 seconds even during peak periods.
(For a network of remote terminals, consider substantially higher response times.)

Performance objectives must reflect not only elapsed time, but also the amount of
processing expected. Consider whether to define your criteria in terms of the
average, the ninetieth percentile, or even the worst-case response time. Your
choice can depend on your site's audit controls and the nature of the your
transactions.

Defining the Work Load
To define the work load of the system, begin by assigning transactions to types.
For each type, describe a preliminary work load profile that includes:

� A definition of the transaction type in terms of its function and its volume. You
are likely to have many transactions that perform the same general function (for
example, order entry) and have an identifiable work load profile. There are also
diverse transactions, such as SPUFI or QMF queries. For a transaction that is
already processed by DB2, you can get a summary of work load volumes from
the DB2 statistics trace.

� The relative priority of the type, including periods during which the priorities
change.

� The resources required to do the work, including physical resources managed
by the operating system (such as real storage, DASD I/O, and terminal I/O) and

 Chapter 5-1. Planning Your Performance Strategy 5-9

logical resources managed by the subsystem (such as control blocks and
buffers).

Before installing DB2, gather design data during the phases of initial planning,
external design, internal design, and coding and testing. Keep reevaluating your
performance objectives with that information.

 Initial Planning
Begin establishing resource requirements by estimating the quantities listed below,
however uncertain they might seem at this stage.

ForTransactions:

� Availability of transaction managers, such as IMS or CICS
� Number of message pairs (inputs and outputs to a terminal) for each user

function
� Line speeds (bits per second) for remote terminals
� Number of terminals and operators needed to achieve the required throughput
� Maximum rate of transactions per minute, hour, day, or week
� Number of I/O operations per user transaction (DASD and terminals)
� Average and maximum processor usage per transaction, and total work load
� Size of tables
� Effects of objectives on operations and system programming

For Query Use:

� Time required to key in user data
� Online query processing load
� Limits to be set for the query environment or preformatted queries
� Size of tables
� Effects of objectives on operations and system programming

For Batch Processing:

� Windows for data reorganization, utilities, data definition activities, and BIND
processing

� Batch processing load

� Length of batch window

� Number of transactions (records to process, data reorganization, utilities, and
data definition activity)

� Size of tables

� Effects of objectives on operations and system programming

Look at the base estimate to find ways of reducing the work load. Changes in
design at this stage, before there is contention with other programs, are likely to be
the most effective. Later, you can compare the actual production profile against the
base.

5-10 Administration Guide

Translating Resource Requirements into Objectives
For each transaction type, convert the estimates of resource requirements into
measurable objectives. Include statements about the transaction rates to be
supported (including any peak periods) and the internal response time profiles to be
achieved. Make assumptions about I/O rates, paging rates, and work loads. Include
the following factors:

� System response time. You cannot guarantee requested response times before
any of the design has been done. Hence, plan to review your performance
targets along with designing and implementing the system.

Response times can vary for many reasons. Therefore, include acceptable
tolerances in your descriptions of targets. Remember that distributed data
processing adds overhead at both the local and remote locations.

Exclude from the targets any unusual transactions that have exceptionally
heavy requirements for processing or database access, or establish individual
targets for those transactions.

� Network response time. Responses in the processor are likely to be in fractions
of seconds, while responses in the network can amount to seconds. This
means that a system can never deliver fast responses through an overloaded
network, however fast the processor. Queries over the network to remote
systems will slow response further.

� DASD response time. I/O operations are generally responsible for much of the
internal processing time of a transaction. Consider all I/O operations that affect
a transaction.

� Existing work load. Consider the effects of additional work load on existing
applications. In planning the capacity of the system, consider the total load on
each major resource, not just the load for the new application.

� Business factors. When calculating performance estimates, concentrate on the
expected peak work load. Allow for daily peaks (for example, after receipt of
mail), weekly peaks (for example, a Monday peak after weekend mail), and
seasonal peaks as appropriate to the business. Also allow for peaks of work
after planned interruptions, such as preventive maintenance periods and public
holidays. Remember that the availability of input data is one of the constraints
on throughput.

 External Design
During the external design phase, you must:

1. Estimate the network, processor, and DASD subsystem work load based on
transaction dialogs.

2. Refine your estimates of logical disk accesses. Ignore physical accesses at this
stage; one of the major difficulties will be determining the number of I/Os per
statement.

 Internal Design
During the internal design phase, you must:

1. Refine your estimated work load against the actual work load.

2. Refine disk access estimates against database design. After internal design,
you can define physical data accesses for application-oriented processes and
estimate buffer hit ratios.

 Chapter 5-1. Planning Your Performance Strategy 5-11

3. Add the accesses for DB2 temporary database, DB2 log, program library, and
DB2 sorts.

4. Consider whether additional processor loads will cause a significant constraint.

5. Refine estimates of processor usage.

6. Estimate the internal response time as the sum of processor time and
synchronous I/O time or as asynchronous I/O time, whichever is larger.

7. Prototype your DB2 system. Before committing resources to writing code, you
can create a small database, update the statistics stored in the DB2 catalog
tables, run SELECT, UPDATE, INSERT, DELETE, and EXPLAIN statements,
and examine the results. This method, which relies on production-level
statistics, allows you to prototype index design and evaluate access path
selection for an SQL statement. Buffer pool size, the presence or absence of
the DB2 sort facility, and, to a lesser extent, processor size are also factors that
impact DB2 processing.

8. Use DB2 estimation formulas to develop estimates for processor resource
consumption and I/O costs for application processes that are high volume or
complex.

Coding and Testing
During this phase:

1. Refine the internal design estimates of disk and processing resources.

2. Run the monitoring tools you have selected and check the results against the
estimates. You might use a terminal network simulator such as TeleProcessing
Network Simulator (TPNS) to test the system and simulate load conditions.

 Post-Development Review
When you are ready to test the complete system, review its performance in detail.
Take the following steps to complete your performance review:

1. Validate system performance and response times against the objectives.

2. Identify resources whose usage requires regular monitoring.

3. Incorporate the observed figures into future estimates. This step requires:

a. Identifying discrepancies from the estimated resource usage

b. Identifying the transactions or combination of transactions that cause the
discrepancies

c. Assigning priorities to remedial actions

d. Identifying resources that are consistently heavily used

e. Setting up utilities to provide graphic representation of those resources

f. Projecting the processor usage against the planned future system growth to
ensure that adequate capacity will be available

g. Updating the design document with the observed performance figures

h. Modifying the estimation procedures for future systems

You need feedback from users and might have to solicit it. Establish reporting
procedures and teach your users how to use them. Consider logging incidents such
as these:

5-12 Administration Guide

� System, line, and transaction failures

� System unavailable time

� Response times that are outside the specified limits

� Incidents that imply performance constraints, such as deadlocks, deadlock
abends, and insufficient storage

� Situations, such as recoveries, that use additional system resources

The data logged should include the time, date, location, duration, cause (if it can be
determined), and the action taken to resolve the problem.

Planning for Monitoring
Your plan for monitoring DB2 should include:

� A master schedule of monitoring. Large batch jobs or utility runs can cause
activity peaks. Coordinate monitoring with other operations so that it need not
conflict with unusual peaks, unless that is what you want to monitor.

� The kinds of analysis to be performed and the tools to be used. Document the
data that is extracted from the monitoring output.

Some of the reports discussed later in this chapter are derived from the
products described in “Appendix G. Using Tools to Monitor Performance” on

| page X-173. These reports can be produced using Performance Reporter for
| MVS (formerly known as EPDM), DB2 Performance Monitor (DB2 PM), other

reporting tools, manual reduction, or a program of your own that extracts
information from standard reports.

� A list of people who should review the results. The results of monitoring and
the conclusions based on them should be available to the user support group
and to system performance specialists.

� A strategy for tuning DB2. Describe how often changes are permitted and
standards for testing their effects. Include the tuning strategy in regular system
management procedures.

Tuning recommendations could include generic database and application
design changes. You should update development standards and guidelines to
reflect your experience and to avoid repeating mistakes.

Typically, your plan will provide for four levels of monitoring: continuous, periodic,
detailed, and exception. These levels are discussed in the sections that follow. “A
Monitoring Strategy” on page 5-15 describes a plan that includes all of these
levels.

 Continuous Monitoring
For monitoring the basic load of the system, try continually running classes 1, 3,
and 4 of the DB2 statistics trace and classes 1 and 3 of the DB2 accounting trace.
In the data you collect, look for statistics or counts that differ from past records. Pay
special attention to peak periods of activity, both of any new application and of the
system as a whole.

 Chapter 5-1. Planning Your Performance Strategy 5-13

Running accounting class 2 as well as class 1 allows you to separate DB2 times
from application times. The overhead can be significant, however; for details, see
“Minimize the Use of DB2 Traces” on page 5-44.

| With CICS, there is less need to run with accounting class 2. Application and
| non-DB2 processing take place under the CICS main TCB. SQL activity takes place
| under the SQL TCB, so the class 1 and class 2 times are generally close. The
| CICS attachment work is spread across class 1, class 2, and not-in-DB2 time.
| Class 1 time thus reports on the SQL TCB time and some of the CICS attachment.
| If you are concerned about class 2 overhead and you use CICS, you can generally
| run without turning on accounting class 2.

 Periodic Monitoring
A typical periodic monitoring interval of about ten minutes provides information on
the work load achieved, resources used, and significant changes to the system. In
effect, you are taking “snapshots” at peak loads and under normal conditions. It is
always useful to monitor peak periods when constraints and response-time
problems are more pronounced.

The current peak is also a good indicator of the future average. You might have to
monitor more frequently at first to confirm that expected peaks correspond with
actual ones. Do not base conclusions on one or two monitoring periods, but on
data from several days representing different periods.

Both continuous and periodic monitoring serve to check system throughput, utilized
resources (processor, I/Os, and storage), changes to the system, and significant
exceptions that might affect system performance. You might notice that subsystem
response is becoming increasingly sluggish, or that more applications fail from lack
of resources (such as from locking contention or concurrency limits). You also
might notice an increase in the processor time DB2 is using, even though
subsystem responses seem normal. In any case, if the subsystem continues to
perform acceptably and you are not having any problems, DB2 might not need
further tuning.

For periodic monitoring, gather information from MVS, the transaction manager, and
DB2 itself. To compare the different results from each source, monitor each for the
same period of time. Because the monitoring tools require resources, you need to
consider processor overhead for using these tools. See “Minimize the Use of DB2
Traces” on page 5-44 for information on DB2 trace overhead.

 Detailed Monitoring
Add detailed monitoring to periodic monitoring when you discover or suspect a
problem. Use it also to investigate areas not covered periodically.

If you have a performance problem, first verify that it is not caused by faulty design
of an application or database. If you suspect a problem in application design,
consult Section 4 of Application Programming and SQL Guide; for information about
database design, see “ Section 2. Designing a Database” on page 2-1.

If you believe that the problem is caused by the choice of system parameters, I/O
device assignments, or other factors, begin monitoring DB2 to collect data about its
internal activity. “Appendix G. Using Tools to Monitor Performance” on page X-173
suggests various techniques and methods.

5-14 Administration Guide

If you have access path problems, refer to “Chapter 5-10. Using EXPLAIN to
Improve SQL Performance” on page 5-261 for information.

 Exception Monitoring
Exception monitoring looks for specific exceptional values or events, such as very
high response times or deadlocks. Perform exception monitoring for response-time
and concurrency problems. For an example, see “Concurrency Scenario” on
page 5-192.

A Monitoring Strategy
Consider the following cost factors when planning for monitoring and tuning:

 Trace overhead
Trace data reduction and reporting times
Time spent on report analysis and tuning action

“Minimize the Use of DB2 Traces” on page 5-44 discusses overhead for global,
accounting, statistics, audit, and performance traces.

Reviewing Performance Data
Inspect your performance data to determine whether performance has been
satisfactory, to identify problems, and to evaluate the monitoring process. When
establishing requirements and planning to monitor performance, also plan how to
review the results of monitoring.

Plan to review the performance data systematically. Review daily data weekly and
weekly data monthly; review data more often if a report raises questions that
require checking. Depending on your system, the weekly review might require
about an hour, particularly after you have had some experience with the process
and are able to locate quickly any items that require special attention. The monthly
review might take half a day at first, less time later on. But when new applications
are installed, transaction volumes increased, or terminals added, allow more time
for review.

Review the data on a gross level, looking for problem areas. Review details only if
a problem arises or if you need to verify measurements.

When reviewing performance data, try to identify the basic pattern in the work load,
then identify variations of the pattern. After a certain period, discard most of the
data you have collected, but keep a representative sample. For example, save the
report from the last week of a month for three months; at the end of the year,
discard all but the last week of each quarter. Similarly, keep a representative
selection of daily and monthly figures. Because of the potential volume of data,
consider using EPDM or a similar tool to track historical data in a manageable form.

Typical Review Questions
Use the questions listed below as a basis for your own checklist. They are not
limited strictly to performance items, but your historical data can provide most of
their answers. Pointers to more information are also listed.

How often was each function used?

 Chapter 5-1. Planning Your Performance Strategy 5-15

1. Considering variations in the transaction mix over time, are the monitoring
times appropriate?

2. Should monitoring be done more frequently during the day, week, or month
to verify this?

See “Accounting Trace” on page X-179.

How were processor and I/O resources used?

1. Has usage increased for functions that run at a higher priority than DB2
tasks? Examine CICS, IMS, MVS, JES, VTAM (if running above DB2), and
overall I/O because of the lower-priority regions. Evaluate the effectiveness
of I/O scheduling priority decisions as appropriate. See also “I/O Scheduling
Priority” on page 5-110 for more information on I/O priority scheduling.

2. Is the report of processor usage consistent with previous observations?

3. Are scheduled batch jobs able to run successfully?

4. Do any incident reports show that the first invocation of a function takes
much longer than later ones? This can happen when programs have to
open data sets.

See “Monitoring System Resources” on page X-175, “Using MVS, CICS, and
IMS Tools” on page X-175, and “Statistics Trace” on page X-178.

To what degree was DASD used?

Is the number of I/O requests increasing? DB2 records both physical and
logical requests. The number of physical I/Os depend on the configuration
of indexes, the data records per control interval, and the buffer allocations.

See “Monitoring System Resources” on page X-175 and “Statistics Trace” on
page X-178.

How much real storage was used?

Is the paging rate increasing? Adequate real storage is very important for
DB2 performance.

See “Monitoring System Resources” on page X-175.

To what extent were DB2 log resources used?

1. Is the log subject to undue contention from other data sets? In particular, is
the log on the same drive as any resource whose updates are logged?

It is bad practice to put a recoverable (updated) resource and a log on the
same drive—if that drive fails, you lose both the resource and the log, and
you are unable to carry out forward recovery.

2. What's the I/O rate for requests and physical blocks on the log?

See “Statistics Trace” on page X-178.

Do any figures indicate design, coding, or operational errors?

1. Are DASD, I/O, log, or processor resources heavily used? If so, was that
expected at design time? If not, can the heavy use be explained in terms of
heavier use of transactions?

2. Is the heavy usage associated with a particular application? If so, is there
evidence of planned growth or peak periods?

5-16 Administration Guide

3. What are your needs for concurrent read/write and query activity?

4. How often do locking contentions occur?

5. Are there any DASD, channel, or path problems?

6. Are there any abends or dumps?

See “Monitoring System Resources” on page X-175, “Statistics Trace” on
page X-178, and “Accounting Trace” on page X-179.

Were there any bottlenecks?

1. Were any critical thresholds reached?

2. Are any resources approaching high utilization?

See “Monitoring System Resources” on page X-175, and “Accounting Trace”
on page X-179.

Are Your Performance Objectives Reasonable?
After beginning to monitor, you need to find out if the objectives themselves are
reasonable. Are they achievable, given the hardware available? Are they based
upon actual measurements of the work load?

When you measure performance against initial objectives and report the results to
users, identify any systematic differences between the measured data and what the
user sees. This means investigating the differences between internal response time
(seen by DB2) and external response time (seen by the end user). If the
measurements differ greatly from the estimates, revise response-time objectives for
the application, upgrade your system, or plan a reduced application work load. If
the difference is not too large, however, you can begin tuning the entire system.

 Tuning DB2
Tuning DB2 can involve reassigning data sets to different I/O devices, spreading
data across a greater number of I/O devices, running the RUNSTATS utility and
rebinding applications, creating indexes, or modifying some of your subsystem
parameters. For instructions on modifying subsystem parameters, see Section 2 of
Installation Guide.

Tuning your system usually involves making trade-offs between DB2 and overall
system resources.

After modifying the configuration, monitor DB2 for changes in performance. The
changes might correct your performance problem. If not, repeat the process to
determine whether the same or different problems exist.

| Enhancements in DB2 Version 5
| These changes in DB2 Version 5 affect throughput, concurrency, resource usage,
| and performance.

| Sysplex Query Parallelism: DB2 Version 5 expands parallel processing power for
| queries across the parallel sysplex. Installations using data sharing can take
| advantage of this query enhancement. For information about query parallelism in
| general, see “Parallel Operations and Query Performance” on page 5-299.

 Chapter 5-1. Planning Your Performance Strategy 5-17

| Information specifically related to Sysplex query parallelism is in Chapter 7 of Data
| Sharing: Planning and Administration.

| Stored Procedures Enhancements:

| � A stored procedure can return multiple result sets.

| A stored procedure running at a DB2 for OS/390 server can issue multiple
| SELECT statements on behalf of a remote client. The result sets can be
| returned using a single network message, thus greatly reducing the elapsed
| time and processor cost of query result sets. See Application Programming and
| SQL Guide for more information about this feature.

| � You can set dispatching priority for stored procedures instead of having them
| all run under the priority of the stored procedures address space. See “Using
| Workload Manager to Set Performance Objectives” on page 5-124 for more
| information.

| � Stored procedures can run as subprograms, which take less time for
| initialization and termination.

| � The COMMIT_ON_RETURN column of the SYSIBM.SYSPROCEDURES
| catalog table indicates that DB2 issues an implicit COMMIT on behalf of the
| stored procedure upon return from the CALL statement. This can reduce the
| length of time locks are held and can reduce network traffic, especially when
| the request is from an application using DRDA level 1. See Section 6 of
| Application Programming and SQL Guide for more information.

| Better Performance for Applications that use DRDA: Network processing for
| distributed requests is one of the biggest contributors to overall application
| processing cost. The following changes reduce that cost:

| � The ability to cache authorizations for packages, described on 5-21

| � Fewer messages exchanged for dynamic SQL

| A single message exchange on the network is used to both send and receive a
| dynamic SQL query. For example, you could invoke a DB2 SELECT statement
| dynamically as shown below.

| DECLARE CURSOR C1 FOR S1;

| PREPARE S1 INTO :sqlda FROM :query;
| OPEN C1;

| FETCH C1;

| .| .| .

| With previous releases of DB2, the dynamic SQL SELECT statement requires
| two network message exchanges. Using Version 5, the dynamic SQL SELECT
| statement requires just a single network message exchange. Statements that
| do not use parameter markers will see this benefit. See Application
| Programming and SQL Guide for more information.

| � Reduced processing cost for VTAM messages

| When DB2 runs with VTAM Version 4 Release 4, DB2 is able to reduce its
| processing overhead. VTAM processing costs are reduced by approximately 15
| percent at the DB2 server and 10 percent at the DB2 requester. You will also
| see improved performance when a DB2 server transmits reply messages,
| because of enhancements in VTAM that reduce the number of times data is
| moved during network I/O operations.

5-18 Administration Guide

| � Faster block fetching

| Queries with large numbers of columns and rows will exhibit the greatest
| performance improvements. Improvements will be seen in the user's accounting
| trace data.

| � The clause OPTIMIZE FOR n ROWS available for DRDA applications

| As was previously available for local applications and for those using DB2
| private protocol, you can limit the number of rows returned in each block by
| using the OPTIMIZE FOR n ROWS clause on the SELECT statement.

| Quicker Exchange of Data between ASCII Client and DB2 Server: You can now
| store tables as ASCII on DB2 for OS/390. This means that for data that needs to
| be ordered in ASCII sequence, you don't have to use a field procedure to convert
| the data to ASCII and sequence it properly.

| DEFER(PREPARE) Available for Packages: The ability to defer statement
| preparation has been extended to packages (previously, it was just for plans). See
| Application Programming and SQL Guide for more information about using deferred
| PREPARE.

| Caching Prepared Statements: A new caching feature improves dynamic query
| performance by eliminating most of the cost of duplicate prepares for the same
| SQL statement. Prepared SQL statements are cached so subsequent PREPARE
| requests for the same SQL statement avoid the optimization process. Because the
| cache is global to the DB2 subsystem, different application processes can share
| prepared statements. For more information about caching prepared statements, see
| Section 6 of Application Programming and SQL Guide.

| Save Prepared Statements across Commits: At bind time, you can specify the
| KEEPDYNAMIC bind option which indicates that prepared SQL statements should
| be preserved past a commit point. This eliminates the need to repeat the
| PREPARE statement in your application. For more information, see Chapter 2 of
| Command Reference.

| Reoptimize at Run Time: At bind time, the real value of host variables, parameter
| markers, or special registers is not known, so a default factor is used to make
| access path decisions. In some cases, the default produces an access path that
| results in unacceptable performance. In DB2 Version 5, you can choose a new
| BIND option, REOPT(VARS), to have DB2 reconsider the access path at run time
| when the values are known. See “Using REOPT(VARS) to Change the Access
| Path at Run Time” on page 5-224 for more information.

Option for Index-only Retrieval of Varying-length Data: Previously, DB2 could
not retrieve varying-length data without going to the data page. Now, you can
specify YES on a new subsystem parameter, RETVLCFK, and DB2 can return data
to your application using only the index. When RETVLCFK is set to YES, data is
returned from the index and is padded with blanks to the maximum length of the
column. If your application is sensitive to these blanks, keep the default value, NO.

If you choose YES, you must rebind plans and packages to enable the change.

| Improvements for Queries That Use Correlated Columns: You can collect more
| statistics with DB2 to improve access path selection for indexes that have

 Chapter 5-1. Planning Your Performance Strategy 5-19

| correlated columns, such as CITY and STATE. For more information, see Section 2
| of Utility Guide and Reference.

| CASE Expressions: CASE expressions can reduce the elapsed time of queries
| that temporarily put data in “buckets” based on multiple returned values. See
| Section 2 of Application Programming and SQL Guide for more information.

| Improvements for Non-column Expressions: Predicates of the form “column op
| non_col_expression” can now be evaluated sooner. Predicates such as
| “DATE_COL < CURRENT DATE - 50 DAYS” can take advantage of the
| improvement. See “Summary of Predicate Processing” on page 5-210 for more
| information.

Index Access for IN Noncorrelated Subquery Predicates: DB2 can use an index
to access predicates with noncorrelated IN subqueries. For example, in the
following statement, DB2 uses TAB1's index on PROG for matching index access
for TAB1.

UPDATE TAB1

SET SDATE = ?, STIME = ?

WHERE PROG IN

(SELECT MASTER

FROM TAB2

WHERE INCLUDE = ?)

For another example, assume that a clustering, nonunique index exists on
PRODUCT_NBR. The index can be used for matching index access for the
predicate PRODUCT_NBR IN().

SELECT

FROM PRODUCT

WHERE PRODUCT_NBR IN

(SELECT S.PRODUCT_NBR

FROM SEARCH_TOKENS S

WHERE S.SEARCH_TOKEN LIKE 'SHOE%')

| Smarter Use of Implicitly Equal Unique Indexes: DB2 is better at recognizing
| when an index is unique. Assume the following:

| Unique Index IX1: COL1, COL2
| Index IX2: COL1, COL2, COL3, COL4, COL5

| In this situation, IX2 must also be unique because it contains a subset of columns
| that are defined as unique. However, before Version 5, DB2 did not recognize that
| situation in statements like the following:

| SELECT COL1, COL2, COL3, COL4, COL5

| FROM TABLE1

| WHERE COL1 = 'A'

| AND COL2 = 'B';

| Before Version 5 DB2 would choose Index IX1 because it returns one row using a
| fully matching unique index. However, Index IX2 is a better choice because it also
| returns only one row, and it provides index-only access. DB2 does not have to go
| to the data page at all to return the row.

5-20 Administration Guide

| Better estimates for filtering: DB2 improves its estimates of filtering for
| non-Boolean term predicates using AND, such as the following:

| SELECT \

| FROM TAB

| WHERE (C1 = A AND C2 = B) OR (C3 = C AND C4 = D).....

| This better filtering estimate also applies to predicates that use LIKE and a
| pattern-matching character, such as:

| WHERE NAME LIKE '%TIE%'

| DB2 Visual Explain: DB2 Version 5 includes a Visual Explain tool that uses the
| PLAN_TABLE to obtain information to display an access path in graphical or
| tabular format from a workstation client. The Visual Explain tool is invoked from a
| workstation to give you:

| � A display of a selected access path

| � A detailed description of the access path

| � Recommendations on access paths that might influence DB2 to change the
| access path after the recommendations are applied and the statements are
| rebound

| � The ability to invoke EXPLAIN for dynamic SQL statements

| � The ability to provide statistics for referenced objects of an access path

| A subsystem parameter browser is included with the Visual Explain tool. This
| workstation package enhances your ability to optimize SQL performance and
| provides a visual analysis of the performance of DB2 applications. For information
| on using the DB2 Visual Explain tool, which is a separately packaged CD-ROM
| provided with your DB2 license, see DB2 Visual Explain online help.

| EXPLAIN Information Available in Trace: You can obtain more information about
| the access path chosen at run time with IFCID 0022, so you can better analyze
| what changed in the access path from bind time to run time.

| Caching Authorizations for Packages: Caching information about package
| authorization avoids repeated checks on the catalog at run time for successive
| uses of the same package by the same user. See “ Section 3. Security and
| Auditing” on page 3-1 for more information.

| Locking and Concurrency Enhancements:

| � The LOCKPART option of CREATE and ALTER TABLESPACE lets you specify
| that only partitions that are accessed are locked. This option is useful for data
| sharing, in those cases in which you are routing work to specific members of
| the data sharing group to create affinity between a specific partition and a
| member, or when you run batch jobs on separate partitions to avoid locking
| conflicts. See Chapter 7 of Data Sharing: Planning and Administration for more
| information.

| For table spaces defined with LOCKPART YES, you can also the PART option
| of LOCK TABLE to lock individual partitions. This can help reduce the number
| of locks that are acquired for applications that access different partitions without
| affecting concurrency.

 Chapter 5-1. Planning Your Performance Strategy 5-21

| � The MAXROWS option of CREATE and ALTER TABLESPACE is an easier
| way to get the concurrency of row locking with the lower cost of page locks.
| Previously, you had to do this by using page locking and by padding rows to
| ensure that only one row would be placed on a page. Now, by specifying
| MAXROWS 1, you can tell DB2 to always keep one row on a page.

| � The PIECESIZE option of CREATE and ALTER INDEX gives you a way to
| reduce physical contention on nonpartitioned indexes. See Chapter 6 of for
| more information about the PIECESIZE option.

� The MEMBER CLUSTER option of CREATE TABLESPACE gives you a way to
reduce page P-lock contention on space map pages for applications that do
heavy sequential insert processing from different members of a data sharing
group. See Chapter 7 of for more information about MEMBER CLUSTER.

| � You can use a new KEEP UPDATE LOCKS clause when you specify a
| SELECT with FOR UPDATE OF. This option is only valid when you use WITH
| RR or WITH RS. By using this clause, you tell DB2 to acquire an X lock instead
| of the U or S lock on all the qualified pages or rows.

| Here is an example:

| SELECT ...

| FOR UPDATE OF WITH RS KEEP UPDATE LOCKS;

| When using read stability (RS) isolation, a row or page rejected during stage 2
| processing still has a lock held on it, even though it is not returned to the
| application.

| For repeatable read (RR) isolation, DB2 acquires the X locks on all pages or
| rows that fall within the range of the selection expression.

| All X locks are held until the application commits. Although this option can
| reduce concurrency, it can prevent some types of deadlocks and can better
| serialize access to data.

| More Partitions and Larger Tables: In Version 5, one table space can hold a
| terabyte of data, increased from 64 gigabytes and can have up to 254 partitions of
| 4 gigabytes each, increased from 64 partitions of 1 gigabyte each.

| By distributing data among more partitions, you can shorten processing time for
| utilities that can run on separate partitions of data. Very large table spaces also
| give your database the flexibility to grow without having to separate the data into
| separate table spaces.

| More Rows on a Page: The maximum number of rows per page is changed from
| 127 to 255 for all table spaces except those for the catalog and directory. This
| increase is available automatically without having to alter the table space for
| compression first. For existing table spaces, the change takes effect on a
| page-by-page basis when new data is inserted or deleted. Use REORG to change
| an entire table space.

| Greater Availability with REORG: REORG now gives you increased access to
| your data or indexes during REORG, including read/write access during most
| phases. Note however that increased access to data might cause the REORG
| utility to take longer to complete. For more information about new REORG options,
| see Section 2 of Utility Guide and Reference.

5-22 Administration Guide

| Faster LOAD and REORG: In addition to internal enhancements that mean
| reduced processor time, you can specify the new option SORTKEYS for LOAD and
| REORG to avoid writing index keys to work files. By not writing to an intermediate
| work data set, elapsed time is reduced. There is a new COPYDDN statement for
| both utilities that allows you to produce an image copy as part of running LOAD or
| REORG. This makes data available sooner by avoiding the separate copy step.
| See Section 2 of Utility Guide and Reference for more information about these
| options.

| Reduced Processing time for RECOVER INDEX: Changes to RECOVER INDEX
| save processing time in almost all cases. The one exception is for segmented table
| spaces when a list of indexes is specified. The ability to specify the piece size for
| nonpartitioned indexes can also help reduce the elapsed time needed to recover
| those indexes.

| Faster RUNSTATS using Sampling: A new sampling option improves
| performance by reducing the processing required to collect nonindexed column
| statistics. For example, you can define a percentage of the table rows, such as 10
| percent, to be used in calculating nonindexed column statistics.

| In general, you can expect the following reduction in processing time:

| (1ðð-samplepercent) × ð.5 = percent reduction

| For example, if you choose 50% sampling, the processing cost can be reduced up
| to 25 percent. See Section 2 of Utility Guide and Reference for more information.

| Striping for BSAM Data: DB2 online utilities can take advantage of extended
| sequential dataset support in DFSMS/MVS by using “striping” for BSAM data set
| access. BSAM striping transfers data between DASD and memory at a faster rate
| than an individual DASD can handle. BSAM striping performs best for large,
| physical sequential data sets with large block sizes and high sequential processing
| activity. This function requires certain specific hardware and software prerequisites.
| See Release Guide for more information.

| New Utility to Preformat Active Log Data Sets: DB2 provides a new stand-alone
| utility, DSNJLOGF, that allows you to preformat active log data sets before bringing
| them online to DB2. This can avoid delays when writes must occur to new active
| log data sets. For more information, see Section 3 of Utility Guide and Reference.

| New Option to Preformat Data Sets For applications that have heavy insert
| activity into new table spaces, you can preformat pages during LOAD or REORG
| instead of during insert processing. After data has been loaded or reorganized, DB2
| preformats the remaining pages up to the high allocated RBA in the table space or
| partition, and in the associated index spaces. If you can preallocate a table space
| before it is used, use PREFORMAT when preformatting is causing measurable
| delays in your insert processing, or if you must have predictable elapsed times for
| insert processing. For more information about the PREFORMAT option, see
| Section 2 of Utility Guide and Reference.

New DESCRIBE INPUT Statement for Better Performance DESCRIBE INPUT
obtains information about the input parameter markers of a prepared statement.
This support improves performance for dynamic SQL applications and many ODBC
applications by reducing the number of network messages that need to be
exchanged when an application is executing dynamic SQL with input host variables

 Chapter 5-1. Planning Your Performance Strategy 5-23

and does not know the correct data type of the input host variables ahead of time.
By using DESCRIBE INPUT, you can ask the DBMS to describe what an SQL
statement looks like and avoid the expense of catalog lookups for determining input
parameter marker data.

5-24 Administration Guide

Chapter 5-2. Analyzing Performance Data

This chapter presents:

1. An overview of problem investigation and analysis, in “Investigating the
Problem Overall”

2. A description of a major tool for analyzing problems in DB2, in “Reading
Accounting Reports from DB2 PM” on page 5-26

3. A suggested procedure for analyzing problems within DB2, in “A General
Approach to Problem Analysis in DB2” on page 5-32

Investigating the Problem Overall
When analyzing performance data, keep in mind that almost all symptoms of poor
performance are magnified when there is contention. If there is a slowdown in
DASD, for example:

� Transactions can pile up, waiting for data set activity
� Transactions can wait for I/O and locks
� Paging can be delayed

In addition, there are more transactions in the system, and therefore greater
processor overhead, greater virtual-storage demand, and greater real-storage
demand.

In such situations, the system shows heavy use of all its resources. However, it is
actually experiencing typical system stress, with a constraint that is yet to be found.

Looking at the Entire System
Start by looking at the overall system before you decide that you have a problem in
DB2. In general, look in some detail to see why application processes are
progressing slowly, or why a given resource is being heavily used. The best tool for
that is the resource measurement facility (RMF) of MVS.

Beginning to Look at DB2
Within DB2, the performance problem is either poor response time or an
unexpected and unexplained high use of resources. Check factors such as total
processor usage, DASD activity, and paging.

First, get a picture of task activity, from classes 1 and 3 of the accounting trace.
and then focus on particular activities, such as specific application processes or a
specific time interval. You might see problems such as these:

� Slow response time. You could look at detailed traces of one slow task, a
problem for which there could be several reasons. For instance, the users
could be trying to do too much work with certain applications, work that clearly
takes time, and the system simply cannot do all the work that they want done.

� Real storage constraints. Applications progress more slowly than expected
because of paging interrupts. The constraints show as delays between
successive requests recorded in the DB2 trace.

 Copyright IBM Corp. 1982, 1997 5-25

� Contention for a particular function. For example, there might be a wait on a
particular data set, or a certain application might cause many application
processes to enqueue the same item. Use the DB2 performance trace to
distinguish most of these cases.

To determine whether the problem is inside or outside DB2, activate classes 2 and
3 of the accounting trace for the troublesome transactions. For information about
packages or DBRMs, run accounting trace classes 7 and 8. Compare the elapsed
times for accounting classes 1 and 2.

A number greater than 1 in the QXMAXDEG field of the accounting trace indicates
that parallelism was used. There are special considerations for interpreting such
records, as described in “Monitoring Parallel Operations” on page 5-309.

| The easiest way to read and interpret the trace data is through the reports
| produced by DB2 Performance Monitor (DB2 PM). If you do not have DB2 PM or

an equivalent program, refer to “Appendix D. Interpreting DB2 Trace Output” on
page X-107 for information about the format of data from DB2 traces.

You can also use the tools for performance measurement described in “Appendix
G. Using Tools to Monitor Performance” on page X-173 to diagnose system
problems. See that appendix also for information on analyzing the DB2 catalog and
directory,

Reading Accounting Reports from DB2 PM
You can obtain DB2 PM reports of accounting data in long or short format and in
various levels of detail. The examples in this book are based on the default layouts,
which might have been modified for your installation. Furthermore, the DB2 PM
reports have been reformatted or modified for this publication. Refer to DB2 PM for
OS/390 Report Reference Volume 1 and DB2 PM for OS/390 Report Reference
Volume 2 for an exact description of each report.

The Accounting Report - Short
General Capabilities: The DB2 PM accounting report, short layout, allows you to
monitor application distribution, resources used by each major group of
applications, and the average DB2 elapsed time for each major group. The report
summarizes application-related performance data and orders the data by selected
DB2 identifiers.

Monitoring application distribution helps you to identify the most frequently used
transactions or queries, and is intended to cover the 20% of the transactions or
queries that represent about 80% of the total work load. The TOP list function of
DB2 PM lets you identify the report entries that represent the largest user of a
given resource.

To get an overall picture of the system work load, you can use the DB2 PM
GROUP command to group several DB2 plans together.

You can use the accounting report, short layout, to:

� Monitor the effect of each application or group on the total work load

� Monitor, in each application or group:

5-26 Administration Guide

– DB2 response time (elapsed time)
– Resources used (processor, I/Os)

 – Lock suspensions
– Application changes (SQL used)
– Usage of packages and DBRMs
– Processor, I/O wait, and lock wait time for each package

An accounting report in the short format can list results in order by package. Thus
you can summarize package or DBRM activity independently of the plan under
which the package or DBRM executed.

Only class 1 of the accounting trace is needed for a report of information only by
plan. Classes 2 and 3 are recommended for additional information. Classes 7 and
8 are needed to give information by package or DBRM.

Major Items in the Report: Figure 94 on page 5-28 shows a sample DB2 PM
accounting report, short layout. It contains selected fields from the accounting
record and gives overall totals.

The GRAND TOTAL shows all the packages and DBRMs executed for all the
accounting records included in this report.

Near the end of the report is a listing of the plans with the highest values for:

� Processing (TCB) time spent in DB2 (see .A/ in Figure 94 on page 5-28)
� Waiting time spent in DB2 (see .B/ in Figure 94 on page 5-28)

Those values were derived using the TOP List function of DB2 PM.

The Accounting Report - Long
Use the DB2 PM accounting report, short layout, to monitor your applications. Use
the DB2 PM accounting report, long layout, when an application seems to have a
problem, and you need a more detailed analysis. For a partial example of an
accounting report, long layout, see Figure 95 on page 5-29.

In analyzing a detailed accounting report, consider the following components of
response time. (Fields of the report that are referred to are labeled in Figure 95 on
page 5-29.)

Major Items on the Report
Class 1 Elapsed Time: Compare this with the CICS or IMS transit times:

� In CICS, you can use CMF to find the attach and detach times; use this time as
the transit time.

� In IMS, use the PROGRAM EXECUTION time reported in IMSPARS.

Differences between these CICS or IMS times, and the DB2 accounting times arise
mainly because the DB2 times do not include:

� Time before the first SQL statement

� DB2 create thread

� DB2 terminate thread

Differences can also arise from thread reuse in CICS or IMS, or through multiple
commits in CICS. If the class 1 elapsed time is significantly less than the CICS or

 Chapter 5-2. Analyzing Performance Data 5-27

LOCATION: SYS1DSN2 DB2 PERFORMANCE MONITOR (V5) PAGE: 1-1

GROUP: DSN2 ACCOUNTING REPORT - SHORT REQUESTED FROM: NOT SPECIFIED

MEMBER: SE11 TO: NOT SPECIFIED

SUBSYSTEM: SE11 ORDER: PLANNAME INTERVAL FROM: ð8/14/96 11:41:1ð.15

DB2 VERSION: V5 SCOPE: MEMBER TO: ð8/14/96 11:41:1ð.15

#OCCURS #ROLLBK SELECTS INSERTS UPDATES DELETES CLASS1 EL.TIME CLASS2 EL.TIME GETPAGES SYN.READ LOCK SUS

PLANNAME #DISTRS #COMMIT FETCHES OPENS CLOSES PREPARE CLASS1 CPUTIME CLASS2 CPUTIME BUF.UPDT TOT.PREF #LOCKOUT

--------------------------- ------- ------- ------- ------- ------- ------- -------------- -------------- -------- -------- --------

PLAN1 115 8 ð.97 1.91 22.65 1.89 7.48693ð 6.ð7ðð91 1585.19 15.1ð 9.22

ð 1ð7 29.61 1.97 ð.ðð ð.ðð ð.868575 ð.689688 29.65 61.66 ð

|PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|

|PU123ð1 DBRM 1 1ð.ðð ð.842631 ð.ð76351 ð.759ð55 7.ðð|

|PU123ð2 DBRM 4 14.ðð 2.728ð67 ð.139169 2.54581ð 13.75|

|PU123ð4 DBRM 5 59.2ð 2.399819 ð.773367 1.118798 5ð.8ð|

|PU123ð5 DBRM 4 69.ðð 6.716764 ð.71843ð 5.779797 92.5ð|

|PU123ð6 DBRM 4 37.5ð 3.729345 ð.765479 2.482ð65 7ð.25|

...

...

|PU12316 DBRM 2 31.ðð 3.194ð21 ð.646627 2.367ð49 121.5ð|

PLAN2 1116 9 ð.99 ð.99 6.ð4 ð.99 3.2ð6735 4.511614 23.51 ð.ð8 7.ð4

ð 11ð7 8.ð3 1.99 ð.ðð ð.ðð ð.146241 ð.ð9223ð 15.79 ð.72 2

|PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|

|PU223ð1 DBRM 45 ð.ðð ð.65ð992 ð.ðððððð ð.ðððððð ð.ðð|

|PU223ð2 DBRM 47 ð.ðð ð.15594ð ð.ðððððð ð.ðððððð ð.ðð|

...

...

\\\ GRAND TOTAL \\\

3165 17 1.36 ð.42 2.95 ð.42 2.885499 3.7879ð6 71.44 1.ð2 3.64

ð 3148 7.48 1.63 ð.ðð ð.ðð ð.1461ð2 ð.ð87293 6.68 2.76 4

|PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|

|ALL PROGRAMS BOTH 2563 1ð.42 ð.69ð285 ð.ð64153 ð.57886ð 3.95|

TOP FIELD: PROCESSING (TCB) TIME SPENT IN DB2 .A/ TOP NUMBER REQUESTED: 4

 PLANNAME VALUE PAGE

---- -- --------------- ----------

 1 PLAN1 ð.689688 1-1

 2 PLAN3 ð.ð67977 1-2

 3 PLAN4 ð.ð4568ð 1-2

 4 PLAN2 ð.ðð42ð5 1-1

TOP FIELD: WAITING TIME SPENT IN DB2 .B/ TOP NUMBER REQUESTED: 4

 PLANNAME VALUE PAGE

---- -- --------------- ----------

 1 PLAN1 5.38ð4ð3 1-1

 2 PLAN3 4.578372 1-2

 3 PLAN2 4.419383 1-1

 4 PLAN4 2.331325 1-2

ACCOUNTING REPORT COMPLETE

| Figure 94. Partial Accounting Report, Short Layout

IMS time, check the report from EPDM, IMSPARS, or equivalent reporting tool to
find out why. Elapsed time can occur:

� In DB2, during sign-on, create, or terminate thread

� Outside DB2, during CICS or IMS processing

5-28 Administration Guide

LOCATION: SYS1DSN2 DB2 PERFORMANCE MONITOR (V5) PAGE: 1-1

GROUP: DSN2 ACCOUNTING REPORT - LONG REQUESTED FROM: NOT SPECIFIED

MEMBER: SE11 TO: NOT SPECIFIED

SUBSYSTEM: SE11 ORDER: PLANNAME INTERVAL FROM: ð8/14/96 11:41:1ð.15

DB2 VERSION: V5 SCOPE: MEMBER TO: ð8/14/96 11:41:1ð.15

PLANNAME: PU223ð1

 AVERAGE APPL (CLASS 1) DB2 (CLASS 2) IFI (CLASS 5) CLASS 3 SUSP. AVERAGE TIME AV.EVENT HIGHLIGHTS

------------ -------------- -------------- -------------- -------------- ------------ -------- -------------------------

 .C/
 ELAPSED TIME 5.773449 3.619543 N/P LOCK/LATCH 1.ððð181 1.ð9 #OCCURRENCES : 8ð

CPU TIME ð.141721 ð.ð93469 N/P SYNCHRON. I/O .A/ ð.ðð2ð96 ð.13 #ALLIEDS : 8ð

TCB ð.ð48918 .B/ ð.ðð4176 N/P OTHER READ I/O .D/ ð.ðððððð ð.ðð #ALLIEDS DISTRIB: ð

TCB-STPROC ð.ð928ð2 ð.ð89294 N/A OTHER WRTE I/O .E/ ð.ðððððð ð.ðð #DBATS : ð

PAR.TASKS ð.ðððððð ð.ðððððð N/A SER.TASK SWTCH .F/ ð.86ð814 1.ð4 #DBATS DISTRIB. : ð

 SUSPEND TIME N/A 2.83292ð N/A ARC.LOG(QUIES) .G/ ð.ðððððð ð.ðð #NO PROGRAM DATA: ð

TCB N/A 2.83292ð N/A ARC.LOG READ .H/ ð.ðððððð ð.ðð #NORMAL TERMINAT: 8ð

PAR.TASKS N/A ð.ðððððð N/A DRAIN LOCK .I/ ð.ðððððð ð.ðð #ABNORMAL TERMIN: ð

 NOT ACCOUNT. L N/A 2.847ð6ð N/A CLAIM RELEASE .J/ ð.ðððððð ð.ðð #CP/X PARALLEL. : ð

 DB2 ENT/EXIT N/A 8.96 N/A PAGE LATCH .K/ ð.ðððððð ð.ðð #IO PARALLELISM : ð

 EN/EX-STPROC N/A 41.74 N/A STORED PROC. ð.629187 ð.ð4 #INCREMENT. BIND: ð

DCAPT.DESCR. N/A N/A N/P NOTIFY MSGS. ð.ðððððð ð.ðð #COMMITS : 8ð

 LOG EXTRACT. N/A N/A N/P GLOBAL CONT. ð.34ð642 7.37 #ROLLBACKS : ð

TOTAL CLASS 3 2.83292ð 9.67 UPDATE/COMMIT : 8.66

SQL DML AVERAGE TOTAL SQL DCL TOTAL SQL DDL CREATE DROP ALTER LOCKING AVERAGE TOTAL

-------- -------- -------- -------------- -------- ---------- ------ ------ ------ -------------- -------- --------

SELECT 1.ðð 8ð LOCK TABLE ð TABLE ð ð ð TIMEOUTS ð.ðð ð

INSERT 1.ðð 8ð GRANT ð TEMP TABLE ð N/A N/A DEADLOCKS ð.ðð ð

UPDATE 6.66 533 REVOKE ð INDEX ð ð ð ESCAL.(SHARED) ð.ðð ð

DELETE 1.ðð 8ð SET CURR.SQLID ð TABLESPACE ð ð ð ESCAL.(EXCLUS) ð.ðð ð

SET HOST VAR. ð DATABASE ð ð ð MAX LOCKS HELD 8.47 15

DESCRIBE ð.ðð ð SET CUR.DEGREE ð STOGROUP ð ð ð LOCK REQUEST 31.74 2539

DESC.TBL ð.ðð ð SET RULES ð SYNONYM ð ð N/A UNLOCK REQUEST 2.13 17ð

PREPARE ð.ðð ð CONNECT TYPE 1 ð VIEW ð ð N/A QUERY REQUEST ð.ðð ð

OPEN 2.ðð 16ð CONNECT TYPE 2 ð ALIAS ð ð N/A CHANGE REQUEST 1ð.46 837

FETCH 8.66 693 SET CONNECTION ð PACKAGE N/A ð N/A OTHER REQUEST ð.ðð ð

CLOSE ð.ðð ð RELEASE ð LOCK SUSPENS. ð.31 25

CALL ð TOTAL ð ð ð LATCH SUSPENS. ð.15 12

 ASSOC LOCATORS ð OTHER SUSPENS. ð.ðð ð

DML-ALL 2ð.32 1626 ALLOC CURSOR ð COMMENT ON ð TOTAL SUSPENS. ð.46 37

 DCL-ALL 8ð LABEL ON ð

...

| Figure 95. Partial Accounting Report, Long Layout

For CICS, the transaction could have been waiting outside DB2 for a thread. Issue
the DSNC DISPLAY STAT command to investigate this possibility. The column
W/P, which is displayed as part of the output from DSNC DISPLAY STAT, contains
the number of times all available threads for the RCT entry were busy and the
transaction had to wait (TWAIT=YES) or was diverted to the pool (TWAIT=POOL).

Not-in-DB2 Time: This is time calculated as the difference between the class 1
and the class 2 elapsed time. It is time spent outside DB2, but within the DB2
accounting interval. If it is lengthy, the problem is in the application program, CICS,
IMS, or the overall system.

Synchronous I/O Suspension Time: This is the total application wait time for
synchronous I/Os. In the DB2 PM accounting report, check the number reported for
SYNCHRON. I/O (.A/).

If the number of read I/Os is higher than expected, check for:

� A change in the access path to data. If you have data from accounting trace
class 8, the number of synchronous and asynchronous read I/Os is available
for individual packages. Determine which package or packages have
unacceptable counts for synchronous and asynchronous read I/Os. Activate the

 Chapter 5-2. Analyzing Performance Data 5-29

necessary performance trace classes for the DB2 PM SQL activity reports to
identify the SQL statement or cursor that is causing the problem. If you suspect
that your application has an access path problem, see “Chapter 5-10. Using
EXPLAIN to Improve SQL Performance” on page 5-261.

� Changes in the application. Check the “SQL ACTIVITY” section and compare
with previous data. There might have been some inserts which changed the
amount of data. Also, check the names of the packages or DBRMs being
executed to determine if the pattern of programs being executed has changed.

� Pages might be out of order so that sequential detection is not used, or data
might have been moved to other pages. We recommend running the REORG
utility in these situations.

� A system-wide problem in the database buffer pool. Refer to “Using DB2 PM to
Monitor Buffer Pool Statistics” on page 5-63.

� A RID pool failure. Refer to “Increasing RID Pool Size” on page 5-69.

� A system-wide problem in the EDM pool. Refer to “Tuning the EDM Pool” on
page 5-66.

If I/O time is greater than expected, and not caused by more read I/Os, check for:

� Synchronous write I/Os. See “Using DB2 PM to Monitor Buffer Pool Statistics”
on page 5-63.

� I/O contention. In general, each synchronous read I/O typically takes from 15 to
25 milliseconds, depending on the DASD device. This estimate assumes that
there are no prefetch or deferred write I/Os on the same device as the
synchronous I/Os. Refer to “Monitoring I/O Activity of Data Sets” on page 5-93.

Processor Resource Consumption: The problem might be caused by DB2 or
IRLM traces, or by a change in access paths. In the DB2 PM accounting report,
DB2 processor resource consumption is indicated in the field for class 2 TCB TIME
(.B/).

Lock/Latch Suspension Time: This shows contention for DB2 resources. If
contention is high, check the locking summary section of the report, and then
proceed with the locking reports. For more information, see “Concurrency Scenario”
on page 5-192.

In the DB2 PM accounting report, see the field LOCK/LATCH (.C/).

Asynchronous Read Suspensions: The accumulated wait time for read I/O done
under a thread other than this one. It includes time for:

 � Sequential prefetch
 � List prefetch
 � Sequential detection
� Synchronous read I/O performed by a thread other than the one being reported

As a rule of thumb, an asynchronous read I/O for sequential prefetch or sequential
detection takes 1.7 to 2.2 milliseconds per page. For list prefetch, the rule of thumb
is 3 to 4 milliseconds per page.

In the DB2 PM accounting report, asynchronous read suspensions are reported in
the field OTHER READ I/O (.D/).

5-30 Administration Guide

Asynchronous Write Suspensions: The accumulated wait time for write I/O done
under a thread other than this one. It includes time for:

� Asynchronous write I/O
� Synchronous write I/O performed by a thread other than the one being reported

As a rule of thumb, an asynchronous write I/O takes 3 to 4 milliseconds per page.

In the DB2 PM accounting report, asynchronous read suspensions are reported in
the field OTHER WRTE I/O (.E/).

Service Task Suspensions: The accumulated wait time from switching
synchronous execution units, by which DB2 switches from one execution unit to
another. The most common contributors to service task suspensions are:

� Log write I/Os for commit and abort processing
� The opening and closing of data sets
� Updating the SYSLGRNG directory table

 � Preformatting DASD
� The extension of data sets

In the DB2 PM accounting report, this information is reported in the field SER.TASK
SWTCH (.F/). If several types of suspensions overlap, the sum of their wait times
can exceed the total clock time that DB2 spends waiting. Therefore, when service
task suspensions overlap other types, the wait time for the other types of
suspensions is not counted.

Archive Log Mode (Quiesce): The accumulated time the thread was suspended
while processing ARCHIVE LOG MODE(QUIESCE). In the DB2 PM accounting
report, this information is reported in the field ARCH.LOG (QUIES) (.G/).

Archive Log Read Suspension: This is the accumulated wait time the thread was
suspended while waiting for a read from an archive log on tape. In the DB2 PM
accounting report, this information is reported in the field ARCHIVE LOG READ
(.H/).

Drain Lock Suspension: The accumulated wait time the thread was suspended
while waiting for a drain lock. If this value is high, see “Installation Options for Wait
Times” on page 5-162, and consider running the DB2 PM locking reports for
additional detail. In the DB2 PM accounting report, this information is reported in
the field DRAIN LOCK (.I/).

Claim Release Suspension: The accumulated wait time the drainer was
suspended while waiting for all claim holders to release the object. If this value is
high, see “Installation Options for Wait Times” on page 5-162, and consider running
the DB2 PM locking reports for additional details.

In the DB2 PM accounting report, this information is reported in the field CLAIM
RELEASE (.J/).

Page Latch Suspension: This field shows the accumulated wait time because of
page latch contention. As an example, when the RUNSTATS and COPY utilities
are run with the SHRLEVEL(CHANGE) option, they use a page latch (as do most
utilities) instead of a page lock in order to serialize the collection of statistics or the
copying of a page. The page latch is a short duration lock. If this value is high, the

 Chapter 5-2. Analyzing Performance Data 5-31

DB2 PM locking reports can provide additional data to help you determine which
object is the source of the contention.

In the DB2 PM accounting report, this information is reported in the field PAGE
LATCH (.K/).

Other DB2 Time: The DB2 accounting class 2 elapsed time that is not recorded as
class 2 TCB time or class 3 suspensions. The most common contributors to this
category are:

 � MVS paging
� Processor wait time

| In the DB2 PM accounting report, this information is reported in the field NOT
| ACCOUNT. (.L/).

Comparing Elapsed Times from the Report
| To analyze a response time problem you can isolate data from the DB2 PM
| accounting report to compare the breakdown of elapsed times. This method
| assumes that you are not analyzing operations that were performed in parallel.
| See “Using DB2 Trace” on page 5-310 for more information about accounting
| reports for parallel operations.

Table 61 illustrates the differences between the various accounting times reported
in Figure 95 on page 5-29.

Table 61. A Comparison of DB2 Accounting Times

Application
Times (Class 1)

In DB2 Times
(Class 2)

Not in DB2 Times

Processor
Resource
Consumption

TCB 0.048918 TCB 0.004176 Class 1 TCB Time
minus Class 2 TCB
Time

Wait Time (DB2
measured)

Class 3 2.832920 Class 3 2.832920 Not Applicable

Other Time Class 1 elapsed
minus Class 1
TCB minus Class
3 2.891611

Class 2 elapsed
minus Class 2
TCB minus Class

| 3 0.782447

Application and
transaction manager
wait time

Notes:

Application Times = In-DB2 Times + Not-in-DB2 Times
Elapsed Times = TCB Time + Wait Time + Other Time
In-DB2 Elapsed Time = Class 2 TCB Time + Class 3 + Other Class 2 Time
Wait time = Class 1 elapsed – Class 2 elapsed + Class 1 TCB – Class 2 TCB

A General Approach to Problem Analysis in DB2
The following is a suggested sequence for investigating a response-time problem:

1. If the problem is inside DB2, determine which plan has the longest response
time; if the plan can potentially allocate many different packages or DBRMs,
determine which packages or DBRMs have the longest response time. Or, if

5-32 Administration Guide

you have a record of past history, determine which transactions show the
largest increases.

Compare class 2 TCB time9, class 3 time, and “other” time. If your performance
monitoring tool does not specify times other than Class 2 and Class 3, then you
can determine “other” time with the following formula:

Other time = Class 2 elapsed time - Class 2 TCB time - Total class 3 time

2. If the class 2 TCB time is high, investigate by doing the following:

� Check to see if unnecessary trace options are enabled. Excessive
performance tracing can be the reason for a large increase in class 2 TCB
time.

� Check the SQL statement counts on the DB2 PM accounting report. If the
profile of the SQL statements has changed significantly, review the
application.

� Use the statistics report to check buffer pool activity, including the buffer
pool thresholds. If buffer pool activity has increased, be sure that your
buffer pools are properly tuned. For more information on buffer pools, see
“Tuning Database Buffer Pools” on page 5-49.

� Use EXPLAIN to check the efficiency of the access paths for your
application. Based on the EXPLAIN results:

– Use package-level accounting reports to determine which package or
DBRM has a long elapsed time. In addition, use the class 7 TCB time
for packages to determine which package or DBRM has the largest
TCB time or the greatest increase in TCB time.

– Use the DB2 PM SQL activity report to analyze specific SQL
statements.

– If you have a history of the performance of the affected application,
compare current EXPLAIN output to previous access paths and costs.

– Check that RUNSTATS statistics are current.

– Check that databases have been reorganized using the REORG utility.

– Check which indexes are used and how many columns are accessed.
Has your application used an alternative access path because an index
was dropped?

– Examine joins and subqueries for efficiency.

See “Chapter 5-10. Using EXPLAIN to Improve SQL Performance” on
page 5-261 for help in understanding access path selection and analyzing

| access path problems. See DB2 Visual Explain online help and the DB2
| Visual Explain that is packaged separately with your DB2 license for a
| workstation display of your EXPLAIN output.

� Check the counts in the locking section of the DB2 PM accounting report.
If locking activity has increased, see “Chapter 5-7. Improving Concurrency”

9 The majority of processor time is captured in the TCB time. When evaluating processor resource consumption under the allied
thread, use the TCB time as the indicator of processor utilization. The SRB time is collected across the entire allied address
space, and therefore it cannot be fully attributed to DB2. Because the SRB time cannot always be interpreted consistently and the
actual SRB time is relatively small compared to the TCB time, you can ignore the SRB time.

 Chapter 5-2. Analyzing Performance Data 5-33

on page 5-137. For a more detailed analysis, use the deadlock or timeout
traces from statistics trace class 3 and the lock suspension report or trace.

3. If class 3 time is high, check the individual types of suspensions in the “Class 3
Suspensions” section of the DB2 PM accounting report. (The fields referred to
here are in Figure 95 on page 5-29).

� If LOCK/LATCH (.C/), DRAIN LOCK (.I/), or CLAIM RELEASE (.J/) time
is high, see “Chapter 5-7. Improving Concurrency” on page 5-137.

� If SYNCHRON. I/O (.A/) time is high, see 5-29.

� If OTHER READ I/O (.D/) time is high, check prefetch I/O operations, disk
contention and the tuning of your buffer pools.

� If OTHER WRITE I/O (.E/) time is high, check the I/O path, disk
contention, and the tuning of your buffer pools.

� If SER.TASK SWTCH (.F/) is high, check open and close activity, as well
as commit activity. A high value could also be caused by preformatting data
sets for:

– Sort work files
– Tables in which rows are inserted beyond the formatted range
– Active log data sets (can occur when new active log added or by

frequent use of the command ARCHIVE LOG)

Consider also, the possibility that DB2 is waiting for Hierarchical Storage
Manager (HSM) to recall data sets that had been migrated to tape. The
amount of time that DB2 waits during the recall is specified on the RECALL
DELAY parameter on installation panel DSNTIPO.

If accounting class 8 trace was active, each of these suspension times is
available on a per-package or per-DBRM basis in the package block of the
DB2 PM accounting report.

4. If “other” time is high, check for paging activity and excessive processor waits.

� Use RMF reports to analyze paging.

� Check the SER.TASK SWTCH field in the “Class 3 Suspensions” section of
the DB2 PM accounting reports.

Figure 96 on page 5-35 shows which reports you might use, depending on the
nature of the problem, and the order in which to look at them.

If you suspect that the problem is in DB2, it is often possible to discover its general
nature from the accounting reports. You can then analyze the problem in detail
based on one of the branches shown in Figure 96 on page 5-35:

� Follow the first branch, Application or data problem , when you suspect that
the problem is in the application itself or in the related data. Also use this path
for a further breakdown of the response time when no reason can be identified.

� The second branch, Concurrency problem , shows the reports required to
investigate a lock contention problem. This is illustrated in “Concurrency
Scenario” on page 5-192.

� Follow the third branch for a Global problem . For example, an excessive
average elapsed time per I/O. There could be a wide variety of transactions
that suffer similar problems.

5-34 Administration Guide

 ┌──────────────┐

│ Accounting │

 └──────┬───────┘

 │

 Application or Concurrency Global
 data problem problem problem
 ┌──────────────────────────┼─────────────────────────┐

 │ │ │

 ┌──────┴──────┐ ┌──────┴───────┐ ┌──────┴───────┐

│ Explain │ │Deadlock trace│ │ Statistics │

 └──────┬──────┘ └──────┬───────┘ └──────┬───────┘

 │ │ │

 ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴───────┐

│ SQL activity│ │Timeout trace│ │ I/O activity │

 └──────┬──────┘ └──────┬──────┘ └──────┬───────┘

 │ │ │

┌──────┴───────┐ ┌──────┴──────┐ ┌──────┴───────┐

│ Record trace │ │ Locking │ │ CICS or IMS │

└──────────────┘ └──────┬──────┘ │ Monitor │

 │ └──────┬───────┘

 ┌──────┴──────┐ │

│ Record trace│ ┌──────┴───────┐

 └─────────────┘ │ RMF │

 └──────┬───────┘

 │

 ┌──────┴───────┐

│ Console log │

 └──────────────┘

Figure 96. DB2 PM Reports Used for Problem Analysis

Before starting the analysis in any of the branches, start the DB2 trace to support
the corresponding reports. When starting the DB2 trace:

� Refer to DB2 PM for OS/390 Report Reference Volume 1 and DB2 PM for
OS/390 Report Reference Volume 2 for the types and classes needed for each
report.

� To make the trace data available as soon as an experiment has been carried
out, and to avoid flooding the SMF data sets with trace data, use GTF or a
user-defined sequential data set as the destination for DB2 performance trace
data.

| Alternatively, use DB2 PM's Collect Report Data function to collect performance
| data. You specify only the report set, not the DB2 trace types or classes you
| need for a specific report. Collect Report Data lets you collect data in a TSO
| data set that is readily available for further processing. No SMF or GTF
| handling is required.

� To limit the amount of trace data collected, you can restrict the trace to
particular plans or users in the reports for SQL activity or locking. However, you
cannot so restrict the records for performance class 4, which traces
asynchronous I/O for specific page sets. You might want to consider turning on
selective traces and be aware of the added costs incurred by tracing.

If the problem is not in DB2, check the appropriate reports from a CICS or IMS
reporting tool.

When CICS or IMS reports identify a commit, the time stamp can help you locate
the corresponding DB2 PM accounting trace report.

 Chapter 5-2. Analyzing Performance Data 5-35

| You can match DB2 accounting records with CICS accounting records. If you
| specify TOKENE=YES on the DSNRCT macro, the CICS LU 6.2 token is included

in the DB2 trace records, in field QWHCTOKN of the correlation header. To help
match CICS and DB2 accounting records, specify the option TOKENE=YES or
TOKENI=YES in the resource control table. That writes a DB2 accounting record
after every transaction. As an alternative, you can produce DB2 PM accounting
reports that summarize accounting records by CICS transaction ID. Use the DB2
PM function Correlation Translation to select the subfield containing the CICS
transaction ID for reporting.

5-36 Administration Guide

Chapter 5-3. Improving Response Time and Throughput

Response time consists of the following three components:

� Processor resource consumption, which is shown on Figure 95 on page 5-29
as “TCB TIME.”

� Wait time traced in accounting class 3, which includes:
– I/O wait time (synchronous and asynchronous)
– Lock and latch wait time

 � Other time

In general, you can improve the response time and throughput of your DB2
applications and queries by:

� “Reducing I/O Operations”
� “Reducing the Time Needed to Perform I/O Operations” on page 5-40
� “Reducing the Amount of Processor Resources Consumed” on page 5-43

The following sections describe ways to accomplish these goals. The chapter
concludes with an overview of how various DB2 response times are reported.

Data Sharing: DB2 data sharing is also a possible solution for increasing
throughput in your system, as well as an opportunity for an improved price for
performance ratio. For more information about data sharing, see Data Sharing:
Planning and Administration.

Reducing I/O Operations
Reducing the number of I/O operations is one way to improve the response time of
your applications and queries. This section describes the following ways you can
minimize I/O operations:

� “Use RUNSTATS to Keep Data Access Statistics Current”
� “Reserve Free Space in Table Spaces and Indexes” on page 5-38
� “Make Buffer Pools Large Enough for the Work Load” on page 5-40
� “Ensure Allocation in Cylinders” on page 5-40

Using indexes can also minimize I/O operations. For information on indexes and
access path selection see “Overview of Index Access” on page 5-276.

Use RUNSTATS to Keep Data Access Statistics Current
The RUNSTATS utility collects statistics about DB2 objects. These statistics can be
stored in the DB2 catalog, and are used during the bind process to choose the path
in accessing data. If you never use RUNSTATS and subsequently rebind your
packages or plans, DB2 will not have the information it needs to choose the most
efficient access path. This can result in unnecessary I/O operations and excessive
processor consumption. See “Using RUNSTATS to Monitor and Update Statistics”
on page 5-249 for more information on using RUNSTATS.

Run RUNSTATS at least once against each table and its associated indexes. How
often you rerun the utility depends on how current you need the catalog data to be.
If data characteristics of the table vary significantly over time, you should keep the
catalog current with those changes. RUNSTATS is most beneficial for the following:

 Copyright IBM Corp. 1982, 1997 5-37

� Table spaces that contain frequently accessed tables

� Tables involved in a sort

� Tables with many rows

� Tables against which SELECT statements having many search arguments are
performed

General-use Programming Interface

Reserve Free Space in Table Spaces and Indexes
You can use the PCTFREE and FREEPAGE clauses of the CREATE and ALTER
TABLESPACE statements and CREATE and ALTER INDEX statements to improve
the performance of INSERT and UPDATE operations. The table spaces and
indexes for the DB2 catalog can also be altered to modify FREEPAGE and
PCTFREE.

You can change the values of PCTFREE and FREEPAGE for existing indexes and
table spaces using the ALTER INDEX and ALTER TABLESPACE statements, but
the change has no effect until you load or reorganize the index or table space.

When you specify a sufficient amount of free space, the advantages during normal
processing are:

Faster insertion of rows
Better clustering of rows (giving faster access)

 Fewer overflows
Less frequent reorganizations needed
Less information locked by a page lock
Fewer index page splits

The disadvantages are:

More DASD occupied
Less information transferred per I/O
More pages to scan
Possibly more index levels
Less efficient use of buffer pools and 3990 cache

Specifying Free Space on Pages
The PCTFREE clause specifies what percentage of each page in a table space or
index is left free when loading or reorganizing the data. DB2 uses the free space
later on when you insert or update your data; when no free space is available, DB2
holds your additional data on another page. When several records are physically
located out of sequence, performance suffers.

| The default for PCTFREE for table spaces is 5 (5 percent of the page is free). If
| you have previously used a large PCTFREE to force one row per page, you
| should instead use MAXROWS 1 on CREATE or ALTER TABLESPACE statement.

The default for indexes is 10. The maximum amount of space that is left free in
index nonleaf pages is 10 percent, even if you specify a value higher than 10 for
PCTFREE.

5-38 Administration Guide

To determine the amount of free space currently on a page, run the RUNSTATS
utility and examine the PERCACTIVE column of SYSIBM.SYSTABLEPART. See
Section 2 of Utility Guide and Reference for information about using RUNSTATS.

Determining Pages of Free Space
The FREEPAGE clause specifies how often DB2 leaves a full page of free space
when loading data or when reorganizing data or indexes. For example, if you
specify 10 for FREEPAGE, DB2 leaves every 10th page free.

The maximum value you can specify for FREEPAGE is 255; however, in a
segmented table space, the maximum value is 1 less than the segment size.

Recommendations for Allocating Free Space
The goal for allocating free space is to maintain the physical clustering of the data
and to reduce the need to frequently reorganize table spaces and indexes.
However, you do not want to allocate too much DASD space, because it might not
be cost-justified. Use of PCTFREE or FREEPAGE depends on the ratio of
insertions to deletions, and the distribution of that activity across the index or table
space.

When to Use FREEPAGE: Use FREEPAGE if:

� Inserts are concentrated in small areas of the table space or index.

For indexes where most of the inserts will be random, set FREEPAGE so that
when an index split occurs, the new page is often relatively close to the original
page. However, if the index is a type 2 index and the majority of the inserts
occur at the end of the index, set FREEPAGE to 0 to maintain sequential order
in the index leaf pages.

For table spaces, set FREEPAGE so that new data rows can be inserted into a
nearby page when the target page is full or locked. A nearby page for a
nonsegmented table space is within 16 pages on either side of the target page.
For a segmented table space, a nearby page is within the same segment as
the target page.

� Rows are larger than half a page, because you cannot insert a second row on
a page.

When to Use PCTFREE: Use PCTFREE if inserted rows are distributed evenly
and densely across the key or page range.

If the volume is heavy, use a PCTFREE value greater than the default.

Hints: Consider setting PCTFREE to 0 to save storage space if:

� Inserts are in ascending order by the key of the clustering index
� Inserts, and updates that lengthen the row, are few.

For concurrency, use larger PCTFREE values for small tables and shared table
spaces that use page locking. This reduces the number of rows per page, thus
reducing the frequency that any given page is accessed.

For the DB2 catalog table spaces and indexes, use the defaults for PCTFREE. If
additional free space is needed, use FREEPAGE.

For read-only tables or indexes, use PCTFREE 0 and FREEPAGE 0.

 Chapter 5-3. Improving Response Time and Throughput 5-39

End of General-use Programming Interface

Make Buffer Pools Large Enough for the Work Load
Make buffer pools as large as you can afford, because:

� It might mean fewer I/O operations and therefore faster access to your data.
� It can reduce I/O contention for the most frequently used tables and indexes.
� It can speed sorting by reducing I/O contention for work files.

However, there are many factors to consider when determining how many buffer
pools to have and how big they should be. See “Determining Size and Number of
Buffer Pools” on page 5-57 for more information.

Ensure Allocation in Cylinders
Specify your space allocation amounts to ensure allocation by CYLINDER. This can
reduce the time required to do SQL mass inserts and to recover a table space from
the log; it does not affect the time required to recover a table space from an image
copy or to run the RECOVER INDEX utility.

When inserting records, DB2 preformats space within a page set as needed. The
allocation amount, which is either CYLINDER or TRACK, determines the amount of
space that is preformatted at any one time.

Because less space is preformatted at one time for the TRACK allocation amount,
a mass insert can take longer when the allocation amount is TRACK than the same
insert when the allocation amount is CYLINDER.

The allocation amount is dependent on device type and the number of bytes you
specify for PRIQTY and SECQTY when you define table spaces and indexes. The
default SECQTY is 10 percent of the PRIQTY, or 3 times the page size, whichever
is larger. This default quantity is an efficient use of storage allocation. Choosing a
SECQTY value that is too small in relation to the PRIQTY value results in track
allocation.

For more information about how space allocation amounts are determined, see the
description of the DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

Reducing the Time Needed to Perform I/O Operations
You can reduce the time needed to perform individual I/O operations in several
ways:

� Create Additional Work File Table Spaces
� “Recommendations for Data Set Distribution” on page 5-41
� “Ensure Sufficient Primary Allocation Quantity” on page 5-42

| � “Parallel Operations and Query Performance” on page 5-299.

For information on I/O scheduling priority, see “MVS Performance Options for DB2”
on page 5-108.

5-40 Administration Guide

Create Additional Work File Table Spaces
If your applications require any of the following, allocate additional work file table
spaces on separate DASD volumes in a work file database (database DSNDB07 in

| a non data-sharing environment) to help minimize I/O contention:

� Large concurrent sorts or a single large sort (especially of table spaces defined
as LARGE)

| � Temporary tables

| The recommendation for work file DASD volumes is to have whichever is more:

| � Five
| � One-fifth the maximum number of data partitions

Place these volumes on different channel or control unit paths. Monitor the I/O
activity for the work file table spaces, because you might need to further separate
this work file activity to avoid contention.

During the installation or migration process, you allocated table spaces for 4KB
buffering, and for 32KB buffering. To create additional work file table spaces, use
SQL statements similar to those in job DSNTIJTM.

Steps to Create a Work File Table Space: Use the following steps to create a
| new work file table space, xyz. (If you are using DB2-managed data sets, omit the

step to create the data sets.)

1. Define the required data sets using the VSAM DEFINE CLUSTER statement
before creating the table space. You must specify a minimum of 26 4KB pages
for the work file table space. For more information on the size of sort work files
see “Understanding How Sort Work Files Are Allocated” on page 5-70. See
also Figure 38 on page 2-71 for more information on the DEFINE CLUSTER
statement.

2. Issue the following command to stop all current users of the work file database:

-STOP DATABASE (DSNDBð7)

3. Enter the following SQL statement:

CREATE TABLESPACE xyz IN DSNDBð7
 BUFFERPOOL BPð

 CLOSE NO

USING VCAT DSNC51ð

 DSETPASS DBADMIN;

4. Enter the following command:

-START DATABASE (DSNDBð7)

Recommendations for Data Set Distribution
| Avoid I/O contention and increase throughput through the I/O subsystem by placing
| frequently used data sets on fast DASD and by distributing I/O activity wisely.

 Chapter 5-3. Improving Response Time and Throughput 5-41

Use Partitioned Table Spaces
Assign the most frequently used data sets to the faster DASDs at your disposal.
One way to do this is by creating a partitioned table space, allowing you to split a
table into different data sets and to place the frequently used partition on a fast
device. If performance analysis shows excessive I/O contention for a nonpartitioned
table space, you can partition the tables and spread them around to different
volumes. Placing frequently used data sets on fast DASD devices also improves
performance for nonpartitioned table spaces.

Distribute the I/O
Frequently used data sets or partitions should be allocated across your available
DASDs so that I/O operations are distributed. You should also consider isolating
data sets with characteristics that do not complement other data sets. For example,
do not put high volume transaction work that uses synchronous reads on the same
volume as something of lower importance that uses list prefetch. Make sure that
device and control unit utilization is efficient. Put the more heavily accessed data
sets on faster, less utilized devices. This helps reduce I/O contention, and takes
more advantage of the benefits of parallel processing.

General-use Programming Interface

| Spread Data Sets of Nonpartitioning Indexes: For nonpartitioning indexes, use
| the PIECESIZE option of CREATE or ALTER INDEX to indicate how large DB2
| should make the data sets that make up a nonpartitioning index. By making this a
| small value, for example, you can end up with many more data sets than you would
| by using the default of 2 gigabytes (4 gigabytes for table spaces defined as
| LARGE). If you spread these data sets across the available I/O paths, you can
| reduce the physical contention on the nonpartitioning index.

Choosing a value for PIECESIZE: To choose a PIECESIZE value, divide the size of
the nonpartitioning index by the number of data sets that you want. For example, to
ensure that you have at least five datasets for the nonpartitioned index initially and
that your nonpartitioning index is 10MB, specify PIECESIZE 2M, which will give you
five data sets. If your nonpartitioned index is likely to grow, choose a larger value.
Remember that 32 pieces is the limit if the underlying tablespace is not defined as
LARGE and that 128 is the limit if the underlying tablespace is LARGE.

Keep your PIECESIZE value in mind when you are choosing values for primary and
secondary quantities. Ideally, the value of your primary quantity plus the secondary
quantities should be evenly divisible into PIECESIZE to avoid wasting space.

End of General-use Programming Interface

Ensure Sufficient Primary Allocation Quantity
Specifying sufficient primary allocation for frequently used data sets minimizes I/O
time, because the data is not physically located at different places on the DASD.

It can be helpful to list the VTOC occasionally to determine the number of
secondary allocations that have been made for your more frequently used data

sets. Or, you can use IFCID 0258 in the statistics class 3 trace to monitor data set
extensions.

5-42 Administration Guide

If you discover that the data sets backing frequently used table spaces or indexes
have an excessive number of extents, and if the data sets are user-defined, you
can use access method services to reallocate the affected data sets using a larger
primary allocation quantity. If the data sets were created using STOGROUPs, you
can use the procedure for modifying the definition of table spaces presented in
“Altering Table Spaces” on page 2-125.

| Specifying Primary Quantity for Nonpartitioning Indexes: To prevent wasted
| space for nonpartitioning indexes, make sure that the value of PRIQTY + (N ×
| SECQTY) is a value that that evenly divides into PIECESIZE. For more information
| about PIECESIZE, see Chapter 6 of SQL Reference.

Reducing the Amount of Processor Resources Consumed
Many factors affect the amount of processor resources that DB2 consumes. This
section describes ways to reduce DB2 consumption of these resources.

� Reuse Threads for your High-volume Transactions
� “Reduce the Number of CICS Threads per Region”
� “Minimize the Use of DB2 Traces” on page 5-44
� “Use Fixed-length Records” on page 5-45
� “Considerations for Rebinding Certain Plans and Packages” on page 5-45

Reuse Threads for your High-volume Transactions
For high volume transactions, reusing threads can help performance significantly.

� For IMS, process multiple input messages in one scheduling of the IMS
processing program by setting PROCLIM to a value greater than 1 and using
class priority scheduling. This shares the cost of thread creation and
termination among more than one transaction. Alternatively, you can reuse
threads with wait for input (WFI), or the IMS fast path and class scheduling.
See Section 2 of Installation Guide for more information.

� For CICS, you can enhance thread reuse through specifications for pool and
entry threads in the RCT. Consider using protected entry threads for high
volume transactions. See “CICS Design Options” on page 5-128 for details.

| � If you are using the Recoverable Resource Manager Services attachment
| facility, see Section 6 of Application Programming and SQL Guide for more
| information about reusing threads.

Reduce the Number of CICS Threads per Region
Avoid unnecessary CICS threads. A CICS thread is anchored in a TCB, and
unnecessary TCBs cause extra MVS dispatching overhead and inefficient use of
processor cache. To avoid creating a large number of TCBs when the CICS
attachment starts, do not specify a large number of protected threads (THRDS on
the RCT). When the attachment starts, it creates a TCB for each protected thread.

To determine the optimum number of threads for your work load, you must do
some experimentation. Much depends on the type of work load and the software
release levels you have. For example, with CICS Version 4 and MVS 5.1 and later
releases, you can probably have a larger number of threads than with earlier
releases.

 Chapter 5-3. Improving Response Time and Throughput 5-43

For more information about tuning for CICS, see “CICS Design Options” on
page 5-128. See also CICS/ESA Performance Guide.

Minimize the Use of DB2 Traces
Using the DB2 trace facility, particularly performance and global trace, can
consume a large amount of processing resources. Suppressing these trace options
significantly reduces additional processing costs.

 Global trace
Global trace requires 20 percent to 100 percent additional processor utilization. If
conditions permit at your site, the DB2 global trace should be turned off. You can
do this by specifying NO for the field TRACE AUTO START on panel DSNTIPN at
installation. Then, if the global trace is needed for serviceability, you can start it
using the START TRACE command.

Accounting and statistics traces
The DB2 accounting class 1 and 3 traces and statistics class 1, 3, 4, and 5 traces,
together, cost only about 2% to 5% of processing overhead, in general. We
recommend that you enable this collection of performance information, because it is
necessary for capacity planning. Activate the statistics information by specifying
YES for the fields SMF STATISTICS of installation panel DSNTIPN. For SMF
ACCOUNTING, you must explicitly specify 1,3 to activate both classes.

Attention: Do not run accounting class 3 by default if you have a significant
amount of latch contention in your system. If the number of latch contentions, as
reported by statistics, is close to 1000 per second, the overhead of class 3
accounting is significant.

Enabling accounting class 2 along with accounting classes 1 and 3 provides
additional detail relating directly to the accounting record IFCID 0003, as well as
recording thread level entry into and exit from DB2. This allows you to separate
DB2 times from application times. Running accounting class 2 does add to the cost
of processing. How much overhead occurs depends on how much SQL the
application issues. Typically, an online transaction incurs an additional 2.5 percent
when running with accounting class 2. A typical batch query application, which
accesses DB2 more often, incurs about 10 percent overhead when running with

| accounting class 2. If most of your work is through CICS, you most likely do not
| need to run with class 2, because the class 1 and class 2 times are very close.

 If your usage of DB2 is very light, you might consider using the MVS SMF 89
| records for measured usage pricing. There is added overhead with this trace; if you
| don't need it, don't turn it on. See the MVS SMF documentation for more

information. The SMF type 89 record counts DB2 processor time for the system
services, database services, and distributed data facility address spaces; the DB2
online utility, DSN1COPY; and cross-memory access to DB2. The record is
included as part of an MVS trace that is enabled at the MVS system level.

5-44 Administration Guide

 Audit trace
The performance impact of auditing is directly dependent on the amount of audit
data produced. When the audit trace is active, the more tables that are audited and
the more transactions that access them, the greater the performance impact. The
overhead of audit trace is typically less than 5 percent.

When estimating the performance impact of the audit trace, consider the frequency
of certain events. For example, security violations are not as frequent as table
accesses. The frequency of utility runs is likely to be measured in executions per
day. On the other hand, authorization changes can be numerous in a transaction
environment.

 Performance trace
Consider turning on only the performance trace classes required to address a
specific performance problem. The combined overhead of all performance classes
runs from about 20 percent to 100 percent.

The overhead for performance trace classes 1 through 3 is typically in the range of
5 percent to 30 percent.

Suppressing the IRLM, MVS, IMS, and CICS trace options also reduces overhead,
though not as significantly as suppressing the performance trace.

Use Fixed-length Records
Use fixed-length columns rather than varying-length columns, particularly in tables
that contain many columns. This can reduce processor use, but is offset by the

| need for more DASD. If you must use varying-length columns, there are two
| considerations: retrieval performance and update performance. For the best
| retrieval performance, place varying-length columns at the end of a row. For the
| best update performance, place the columns to be updated at the end of a row. If
| you use both both retrieval and update operations, place the columns to be
| updated at the end, followed by the read-only varying-length columns.

| If you use ALTER to add a fixed-length column to a table, that column is treated as
| variable-length until the table has been reorganized.

Considerations for Rebinding Certain Plans and Packages
SQL queries in applications that are bound in DB2 Version 3 or later releases,
automatically undergo an internal optimization that could improve their performance,
depending on the number of rows fetched. The SQL statements most likely to show
a decrease in elapsed time are those that select a large number of columns and
fetch hundreds of rows.

This optimization can be bypassed if service applied to DB2 has invalidated it. In
this case, you can rebind the appropriate plans to once again take advantage of the
internal optimization. To determine if the optimization has been invalidated by DB2
maintenance, check the BYPASS COL field in the Miscellaneous section of the

DB2 PM statistics report (field QISTCOLS in IFCID 0002). If this field contains
anything but zero, get the names of the plans or packages from IFCID 0224.

To start a trace for IFCID 0224, you must use one of the installation-defined trace
classes (30-32):

| -START TRACE (PERFM) CLASS(3ð) IFCID(224)

 Chapter 5-3. Improving Response Time and Throughput 5-45

IFCID 0224 is written whenever the invalidated optimization is detected. The
record contains the plan names or package names; rebind those plans or packages
to pick up the optimization again.

How Response Time Is Reported
To correctly monitor response time, you must understand how it is reported.
Response time can be measured in several different ways. Figure 97 on page 5-47
shows how some of the main measures relate to the flow of a transaction.

In Figure 97 on page 5-47, the following times can be distinguished:

End user response time

This is the time from the moment the end user presses the enter key until he or
she receives the first response back at the terminal.
DB2 Accounting Elapsed Times

These times are collected in the records from the accounting trace and can be
found in the DB2 PM accounting reports. They are taken over the accounting
interval between the point where DB2 starts to execute the first SQL statement,
and the point preceding thread termination or reuse by a different user
(sign-on).

This interval excludes the time spent creating a thread, and it includes a portion
of the time spent terminating a thread.

For parallelism, there are special considerations for doing accounting. See
“Monitoring Parallel Operations” on page 5-309 for more information.

Elapsed times for stored procedures separate the time spent in the allied
address space and the time spent in the stored procedures address space.

There are two elapsed times:

� Class 1 Elapsed Time

This time is always presented in the accounting record, and shows the
duration of the accounting interval. It includes time spent in DB2 as well as
time spent in the front end. In the accounting reports it is referred to as
“application time.”

� Class 2 Elapsed Time

Class 2 Elapsed time, produced only if the accounting class 2 is active,
counts only the time spent in the DB2 address space during the accounting
interval. It represents the sum of the times from any entry into DB2 until the
corresponding exit from DB2. It is also referred to as the time spent in DB2.
If class 2 is not active for the duration of the thread, the class 2 elapsed
time does not reflect the entire DB2 time for the thread, but only the time
when the class was active.

DB2 Total Transit Time

In the particular case of an SQL transaction or query, the “total transit time” is
the elapsed time from the beginning of create thread, or sign-on of another
authorization ID when reusing the thread, until either the end of the thread
termination, or the sign-on of another authorization ID.

5-46 Administration Guide

User receives
response

Create thread

Application
elapsed
(Class 1)

Wait
(Class 3)

Terminate thread

End user
response
time

CICS/IMS
elapsed
time

In DB2
elapsed
(Class 2)

Commit Phase 2

Commit Phase 1

Line transmit

Line transmit

In DB2

1st SQL statement

2nd SQL statement

End of transaction

TP monitor and
application code

TP monitor and
application code

DB2
total
transit
time

User presses
Enter

Figure 97. Transaction Response Times. Class 1 is standard accounting data. Class 2 is elapsed and processor
time in DB2. Class 3 is elapsed wait time in DB2. Standard accounting data is provided in IFCID 0003, which is turned
on with accounting class 1. When accounting classes 2 and 3 are turned on as well, IFCID 0003 contains additional
information about DB2 times and wait times.

 Chapter 5-3. Improving Response Time and Throughput 5-47

5-48 Administration Guide

Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools

Proper tuning of your virtual buffer pools, EDM pools, RID pools, and sort pools can
improve the response time and throughput for your applications and provide
optimum resource utilization. Using data compression can also improve buffer pool
hit ratios and reduce table space I/O rates. For more information on compression,
see “Compressing Data in a Table Space or Partition” on page 2-63 and
“Compressing Your Data” on page 5-102. This chapter covers the following topics:

� “Tuning Database Buffer Pools”
� “Tuning the EDM Pool” on page 5-66
� “Increasing RID Pool Size” on page 5-69
� “Controlling Sort Pool Size and Sort Processing” on page 5-70

Tuning Database Buffer Pools
Buffer pools are areas of virtual storage that temporarily store pages of table
spaces or indexes. When an application program accesses a row of a table, DB2
places the page containing that row in a buffer. If the requested data is already in a
buffer, the application program does not have to wait for it to be retrieved from
DASD. Avoiding the need to retrieve data from DASD results in faster performance.

If the row is changed, the data in the buffer must be written back to DASD
eventually. But that write operation might be delayed until DB2 takes a checkpoint,
or until one of the related write thresholds is reached.

The data remains in the buffer until DB2 decides to use the space for another
page. Until that time, the data can be read or changed without a DASD I/O
operation.

DB2 allows you to use up to 50 buffer pools that contain 4KB buffers and 10 buffer
pools that contain 32KB buffers. You can set the size of each of those buffer pools
separately when installing DB2. You can change the sizes and other characteristics
of a buffer pool at any time while DB2 is running, by using the ALTER
BUFFERPOOL command.

Buffer Pools and Hiperpools
If your DB2 subsystem is running under MVS Version 4 Release 3 or later, and the
Asynchronous Data Mover Facility of MVS is installed, you have the option of using
hiperspaces to extend DB2's virtual buffer pools. A hiperspace is a storage space
of up to 2GB that a program can use as a data buffer. Hiperspace is addressable in
4KB blocks; in other words, it is page addressable. For more information on
hiperspace, see MVS/ESA Programming: Extended Addressability Guide.

DB2 cannot directly manipulate data that resides in hiperspace, but it can transfer
the data from hiperspace into a regular DB2 buffer pool much faster than it could
get it from DASD. To distinguish between hiperpools and buffer pools, we now refer
to the regular DB2 buffer pools as virtual buffer pools.

On systems that have the prerequisite hardware and software, DB2 maintains two
levels of storage for each buffer pool:

 Copyright IBM Corp. 1982, 1997 5-49

� The first level of storage, the virtual buffer pool, is allocated from DB2's
ssnmDBM1 address space. A virtual buffer pool is backed by central storage,
expanded storage, or auxiliary storage. The sum of all DB2 virtual buffer pools
cannot exceed 1.6GB.

� The second level of storage, the hiperpool, uses the MVS/ESA hiperspace
facility to utilize expanded storage only (ESO) hiperspace. The sum of all
hiperpools cannot exceed 8GB. Hiperpools are optional.

Virtual buffer pools hold the most frequently accessed data, while hiperpools serve
as a cache for data that is accessed less frequently. When a row of data is needed
from a page in a hiperpool, the entire page is read into the corresponding virtual
buffer pool. If the row is changed, the page is not written back to the hiperpool until
it has been written to DASD: all read and write operations to data in the page, and
all DASD I/O operations, take place in the virtual buffer pool. The hiperpool holds
only pages that have been read into the virtual buffer pool and might have been
discarded; they are kept in case they are needed again.

Because DASD read operations are not required for accessing data that resides in
hiperspace, response time is shorter than for DASD retrieval. Retrieving pages
cached in hiperpools takes only microseconds, rather than the milliseconds needed
for retrieving a page from DASD, which reduces transaction and query response
time.

A hiperpool is an extension to a virtual buffer pool and must always be associated
with a virtual buffer pool. You can define a hiperpool to be larger than its
corresponding virtual buffer pool. Figure 98 illustrates the relationship between a
virtual buffer pool and its corresponding hiperpool.

 Expanded storage

 ┌──────────────────────────────────┐

 │ Hiperpool │

DB2's ssnmDBM1 address space │ ┌────────────────────────┐ │

┌─────────────────────────┐ │ ┌5 │ Buffer │ │

 │ Virtual buffer pool │ │ │ ├────────────────────────┤ │

 │ ┌────────────────┐ │ │ │ │ . │ │

 │┌5 │ Buffer page │ %──┼──────┼─┘ │ . │ │

 ││ ├────────────────┤ │ │ │ . │ │

 ││ │ . │ │ │ │ . │ │

 ││ │ . │ │ │ │ . │ │

 ││ │ . │ │ │ │ . │ │

 ││ │ │ │ │ │ . │ │

 ││ ├────────────────┤ │ │ │ . │ │

 ││ │ │ │ │ │ . │ │

 ││ └────────────────┘ │ │ │ │ │

││ │ │ ├────────────────────────┤ │

 └┼────────────────────────┘ │ │ │ │

│ │ └────────────────────────┘ │

 │ ┌────────────┐ │ │

 │ │ │ └──────────────────────────────────┘

└─5 │ DASD │

 │ │

 └────────────┘

Figure 98. Relationship between Virtual Buffer Pool and Hiperpool

Reducing the size of your virtual buffer pools and allocating hiperpools provides
better control over the use of central storage and can reduce overall contention for
central storage. The maximum expanded storage available on ES/9000 processors
is 8GB.

5-50 Administration Guide

A virtual buffer pool and its corresponding hiperpool, if defined, are built
dynamically when the first page set that references those buffer pools is opened.

Buffer Pool Pages
At any moment, a database virtual buffer pool can have three types of pages:

In-use Pages: These are pages that are currently being read or updated. The data
they contain is available for use by other applications.

Updated Pages: These are pages whose data has been changed but have not yet
been written to DASD. After the updated page has been written to DASD, it
remains in the virtual buffer pool available for migration to the corresponding
hiperpool. In this case, the page is not considered to be “updated” until it is
changed again.

Available pages: These pages can be considered for new use, to be overwritten
by an incoming page of new data. Both in-use pages and updated pages are
unavailable in this sense; they are not considered for new use.

 Read Operations
DB2 uses three read mechanisms: normal read, sequential prefetch, and list
sequential prefetch.

Normal Read: Normal read is used when just one or a few consecutive pages are
retrieved. The unit of transfer for a normal read is one page.

Sequential Prefetch: Sequential prefetch is performed concurrently with other
operations of the originating application program. It brings pages into the virtual
buffer pool before they are required and reads several pages with a single I/O
operation.

Sequential prefetch can be used to read data pages, by table space scans or index
scans with clustered data reference. It can also be used to read index pages in an
index scan. Sequential prefetch allows CP and I/O operations to be overlapped.

See “Sequential Prefetch (PREFETCH=S)” on page 5-291 for a complete
description of sequential prefetch.

List Sequential Prefetch: This mechanism is used to prefetch data pages that are
not contiguous (such as through non-clustered indexes). List prefetch can also be
used by incremental image copy. For a complete description of the mechanism, see
“List Sequential Prefetch (PREFETCH=L)” on page 5-291.

 Write Operations
Write operations are usually performed concurrently with user requests. Updated
pages are queued by data set until they are written when:

� A checkpoint is taken

� The percentage of updated pages in a virtual buffer pool for a single data set
exceeds a preset limit called the vertical deferred write threshold (VDWQT). For
more information on this threshold, see “Buffer Pool Thresholds” on page 5-53.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-51

� The percentage of unavailable pages in a virtual buffer pool exceeds a preset
limit called the deferred write threshold (DWQT). For more information on this
threshold, see “Buffer Pool Thresholds” on page 5-53.

Up to 32 4KB or 4 32KB pages can be written in a single I/O operation.

 Installation Options
With DB2, you can use up to 60 different virtual buffer pools and hiperpools. For
these virtual buffer pools and hiperpools, initially you specify the size and the
CASTOUT attribute on panels DSNTIP1 and DSNTIP2. For information about those
installation panels, see Installation Guide.

Virtual Buffer Pool and Hiperpool Sizes
Initially, you set the sizes (in number of pages) of your virtual buffer pools and
hiperpools on installation panels DSNTIP1 and DSNTIP2. You can modify the sizes
of virtual buffer pools and hiperpools using the ALTER BUFFERPOOL command,
so it is not important to choose an exact size initially.

The CASTOUT Attribute
Because expanded storage is a shared system resource, DB2 is not the only user
of your MVS system's hiperspace. If DB2 monopolizes the available hiperspace,
performance could be adversely affected. The CASTOUT attribute gives you some
control over DB2's use of hiperspace.

You can define a hiperpool with a CASTOUT attribute of YES or NO. If you specify
CASTOUT as YES, your MVS system can steal, or remove, pages from the
hiperpool when the need for expanded storage arises and usage of the hiperpool is
low. A stolen page is no longer available to DB2; the data can be recovered only
when it is read again from DASD into the virtual buffer pool. For that reason, a
page brought in from the hiperpool and updated in the virtual buffer pool cannot be
written back to the hiperpool unless it is first written to DASD.

Specifying CASTOUT as NO tells MVS to give high priority to keeping the data
cached in the hiperpool. CASTOUT(NO) places a heavy demand on expanded
storage. In general, specify NO to improve response time in only your most critical
applications. For example, it is possible to keep an entire index or table in
hiperspace almost constantly, by assigning it to a virtual buffer pool whose
hiperpool has CASTOUT as NO. Access to those pages is fast, but they might take
up a significant proportion of the available expanded storage.

The initial setting for the CASTOUT attribute is not critical, but CASTOUT YES is
recommended. You can change the CASTOUT attribute of a hiperpool with the
ALTER BUFFERPOOL command.

Assigning a Table Space or Index to a Virtual Buffer Pool
You assign a table space or an index to a particular virtual buffer pool by a clause
of the following SQL statements: CREATE TABLESPACE, ALTER TABLESPACE,

| CREATE INDEX, ALTER INDEX. The virtual buffer pool is actually allocated the
| first time a table space or index assigned to it is opened.

The table spaces and indexes of the directory (DSNDB01) and catalog (DSNDB06)
are assigned to BP0; you cannot change that assignment. BP0 is also the default

5-52 Administration Guide

virtual buffer pool for sorting. It has a default size of 2000 buffers, and a minimum
of 56 buffers.

Buffer Pool Thresholds
The information under this heading, up to “Determining Size and Number of Buffer
Pools” on page 5-57, is General-use Programming Interface and Associated
Guidance Information as defined in “Notices” on page xi.

DB2's use of a virtual buffer pool or hiperpool is governed by several preset values
called thresholds. Each threshold is a level of use which, when exceeded, causes
DB2 to take some action. When you reach some thresholds, it indicates a problem,
while reaching other thresholds merely indicates normal buffer management. The
level of use is usually expressed as a percentage of the total size of the virtual
buffer pool or hiperpool. For example, the “immediate write threshold” of a virtual
buffer pool (described in more detail later) is set at 97.5%; when the percentage of
unavailable pages in a virtual buffer pool exceeds that value, DB2 writes pages to
DASD when updates are completed.

Figure 99 shows the relationship between some of the virtual buffer pool thresholds
and the updated, in-use, and available pages.

% Unavailable pages: 9ð% 95% 97.5%

┌───┐ │ │ │

│BPn│ Fixed thresholds: 6 SPTH 6 DMTH 6 IWTH

 ├───┴──────────┬────────┬──────────────────────────┐

│ Updated │ In─use │ Available pages │

 │ pages │ pages │ │

 │ │ │ │ │

 │ ┌┐┌┐┌┐ 6 │ Being │ ┌┐┌┐┌┐┌┐┌┐ │

│ └┘└┘└┘ │ handled│ └┘└┘└┘└┘└┘ Normal read │

 │ │ │ queue │

 │ ┌┐┌┐┌┐┌┐ │ │ ┌┐┌┐┌┐ │

│ └┘└┘└┘└┘ │ │ └┘└┘└┘ Sequential │

 │ │ │ prefetch queue │

 │ Queued per │ │ │

 │ data set │ │ │

 └──────────────┴────────┴──────────────────────────┘

%── Unavailable pages ─5 %──── Available pages ────5

Figure 99. Database Virtual Buffer Pool. SPTH, DMTH, and IWTH are the performance
critical thresholds.

Thresholds for very small buffer pools: This section describes fixed and variable
thresholds that are in effect for buffer pools that are sized for the best performance;
that is, for buffer pools of 1000 buffers or more. For very small buffer pools, some
of the thresholds are lower to prevent “buffer pool full” conditions, but those
thresholds are not described.

 Fixed Thresholds
Some thresholds, like the immediate write threshold, you cannot change.
Monitoring buffer pool usage includes noting how often those thresholds are
reached. If they are reached too often, the remedy is to increase the size of the
virtual buffer pool or hiperpool, which you can do with the ALTER BUFFERPOOL
command. Increasing the size, though, can affect other buffer pools, depending on
the total amount of central and expanded storage available for your buffers.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-53

The fixed thresholds are more critical for performance than the variable thresholds.
Generally, you want to set virtual buffer pool sizes large enough to avoid reaching
any of these thresholds, except occasionally.

Each of the fixed thresholds is expressed as a percentage of the buffer pool that
might be occupied by unavailable pages.

The fixed thresholds are (from highest to lowest value):

� Immediate Write Threshold (IWTH)—97.5%

This threshold is checked whenever a page is to be updated. If it has been
exceeded, the updated page is written to DASD as soon as the update
completes. The write is synchronous with the SQL request; that is, the request
waits until the write has been completed and the two operations are not carried
out concurrently.

Reaching this threshold has a significant effect on processor usage and I/O
resource consumption. For example, updating three rows per page in 10
sequential pages ordinarily requires one or two write operations. When IWTH is
exceeded, however, the updates require 30 synchronous writes.

Sometimes DB2 uses synchronous writes even when the IWTH is not
exceeded; for example, when more than two checkpoints pass without a page
being written. Situations such as these do not indicate a buffer shortage.

� Data Management Threshold (DMTH)—95%

This threshold is checked before a page is read or updated. If the threshold
has not been exceeded, DB2 accesses the page in the virtual buffer pool once
for each page, no matter how many rows are retrieved or updated in that page.
If the threshold has been exceeded, DB2 accesses the page in the virtual
buffer pool once for each row that is retrieved or updated in that page. In other
words, retrieving or updating several rows in one page causes several page
access operations.

Avoid reaching this threshold, because it has a significant effect on processor
usage.

The DMTH is maintained for each individual virtual buffer pool. When the
DMTH is reached in one virtual buffer pool, DB2 does not release pages from
other virtual buffer pools.

� Sequential Prefetch Threshold (SPTH)—90%

This threshold is checked at two different times:

– Before scheduling a prefetch operation. If the threshold has been
exceeded, the prefetch is not scheduled.

– During buffer allocation for an already-scheduled prefetch operation. If the
threshold has been exceeded, the prefetch is canceled.

When the sequential prefetch threshold is reached, sequential prefetch is
inhibited until more buffers become available. Operations that use sequential
prefetch, such as those using large and frequent scans, are adversely affected.

5-54 Administration Guide

 Variable Thresholds
You can change some thresholds directly, by using the ALTER BUFFERPOOL
command. Changing a threshold in one virtual buffer pool or hiperpool has no effect
on any other virtual buffer pool or hiperpool.

The variable thresholds are (from highest to lowest default value):

� Sequential Steal Threshold (VPSEQT)

This threshold is a percentage of the virtual buffer pool that might be occupied
by sequentially accessed pages. These pages can be in any state: updated,
in-use, or available. Hence, any page might or might not count toward
exceeding any other buffer pool threshold.

The default value for this threshold is 80%. You can change that to any value
from 0% to 100% by using the VPSEQT option of the ALTER BUFFERPOOL
command.

This threshold is checked before stealing a buffer for a sequentially accessed
page instead of accessing the page in the virtual buffer pool. If the threshold
has been exceeded, DB2 tries to steal a buffer holding a sequentially accessed
page rather than one holding a randomly accessed page.

Setting the threshold to 0% would prevent any sequential pages from taking up
space in the virtual buffer pool. In this case, prefetch is disabled, and any
sequentially accessed pages are discarded as soon as they are released.

Setting the threshold to 100% would allow sequential pages to monopolize the
entire virtual buffer pool.

� Hiperpool Sequential Steal Threshold (HPSEQT)

This threshold is a percentage of the hiperpool that might be occupied by
sequentially accessed pages. The effect of this threshold on the hiperpool is
essentially the same as that of the sequential steal threshold on the virtual
pool.

The default value for this threshold is 80%. You can change that to any value
from 0% to 100% by using the HPSEQT option of the ALTER BUFFERPOOL
command.

Because changed pages are not written to the hiperpool, HPSEQT is the only
threshold for hiperpools.

� Virtual Buffer Pool Parallel Sequential Threshold (VPPSEQT)

This threshold is a portion of the virtual buffer pool that might be used to
support parallel operations. It is measured as a percentage of the sequential
steal threshold (VPSEQT). Setting VPPSEQT to zero disables parallel
operation.

The default value for this threshold is 50% of the sequential steal threshold
(VPSEQT). You can change that to any value from 0% to 100% by using the
VPPSEQT option on the ALTER BUFFERPOOL command.

| � Virtual Buffer Pool Assisting Parallel Sequential Threshold (VPXPSEQT)

| This threshold is a portion of the virtual buffer pool that might be used to assist
| with parallel operations initiated from another DB2 in the data sharing group. It
| is measured as a percentage of VPPSEQT. Setting VPXPSEQT to zero
| disallows this DB2 from assisting with Sysplex query parallelism at run time for

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-55

| queries that use this buffer pool. For more information about Sysplex query
| parallelism, see Chapter 7 of Data Sharing: Planning and Administration.

| The default value for this threshold is 0% of the parallel sequential threshold
| (VPPSEQT). You can change that to any value from 0% to 100% by using the
| VPXPSEQT option on the ALTER BUFFERPOOL command.

� Deferred Write Threshold (DWQT)

This threshold is a percentage of the virtual buffer pool that might be occupied
by unavailable pages, including both updated pages and pages in use.

The default value for this threshold is 50%. You can change that to any value
from 0% to 90% by using the DWQT option on the ALTER BUFFERPOOL
command.

DB2 checks this threshold when an update to a page is completed. If the
percentage of unavailable pages in the virtual buffer pool exceeds the
threshold, write operations are scheduled for enough data sets (at up to 128
pages per data set) to decrease the number of unavailable buffers to 10%
below the threshold. For example, if the threshold is 50%, the number of
unavailable buffers is reduced to 40%.

When the deferred write threshold is reached, the data sets with the oldest
updated pages are written asynchronously. DB2 continues writing pages until
the ratio goes below the threshold.

� Vertical Deferred Write Threshold (VDWQT)

This threshold is expressed as a percentage of the virtual buffer pool that might
be occupied by updated pages from a single data set.

The default value for this threshold is 10%. You can change that to any value
from 0% to 90% by using the VDWQT keyword on the ALTER BUFFERPOOL
command.

This threshold is checked whenever an update to a page is completed. If the
percentage of updated pages for the data set exceeds the threshold, writes are
scheduled for that data set.

Because any buffers that count toward VDWQT also count toward DWQT,
setting VDWQT higher than DWQT has no effect: DWQT is reached first, write
operations are scheduled, and VDWQT is never reached. Therefore, the
ALTER BUFFERPOOL command does not allow you to set VDWQT to a value
greater than DWQT.

This threshold is overridden by certain DB2 utilities, which use a constant limit
| of 64 pages rather than a percentage of the virtual buffer pool size. LOAD,
| REORG, and RECOVER use a constant limit of 128 pages.

Guidelines for Setting Buffer Pool Thresholds
Because increasing DWQT and VDWQT allows updated pages to use a larger
portion of the virtual buffer pool, setting DWQT and VDWQT to large values can
have a significant effect on the other thresholds. For example, for a work load in
which pages are frequently updated, and the set of pages updated exceeds the
size of the virtual buffer pool, setting both DWQT and VDWQT to 90% would
probably cause the sequential prefetch threshold (and possibly the data
management threshold and the immediate write threshold) to be reached
frequently.

5-56 Administration Guide

If a virtual buffer pool is large enough, it is unlikely that the default values of either
DWQT or VDWQT will ever be reached. In this case, there tend to be surges of
write I/Os as deferred writes are triggered by DB2 checkpoints. Lowering the
VDWQT and the DWQT could improve performance by distributing the write I/Os
more evenly over time.

If you set VPSEQT to 0%, the value of HPSEQT is essentially meaningless:
because when sequential pages are not kept in the virtual buffer pool, they have no
chance of ever going to the hiperpool. But there is no restriction against having a
non-zero value for HPSEQT with a zero value for VPSEQT.

Buffer Pools Used for Queries and Transactions: For a buffer pool used
exclusively for query processing, it is reasonable to set VPSEQT and HPSEQT to
100%.

For a buffer pool used for both query and transaction processing, the values you
set for VPSEQT and HPSEQT should depend on the respective priority of the two
types of processing. The higher you set VPSEQT and HPSEQT, the better queries
tend to perform, at the expense of transactions.

Determining Size and Number of Buffer Pools
Considering the real storage and expanded storage that is available to DB2, it can
help your applications and queries to make the virtual buffer pools large enough to
increase the buffer hit ratio, which is a measure of how often a page access (a
getpage) is satisfied without requiring an I/O operation.

Do not automatically assume a low buffer pool hit ratio is bad. The hit ratio is a
relative value, based on the type of application. For example, an application that
browses huge amounts of data using table space scans might very well have a
buffer pool hit ratio of 0. What you want to watch for is those cases where the hit
ratio drops significantly for the same application. In those cases, it might be helpful
to investigate further.

Calculating the Buffer Pool Hit Ratio
To determine the approximate buffer hit ratio, you first need to determine how many
getpage operations did not require an I/O operation. To do this, subtract the
number of pages read from DASD (both synchronously and using prefetch) from
the total number of getpage operations. Then divide this number by the total
number of getpage operations to determine the hit ratio.

For example, if you have 1000 getpages and 100 pages were read from DASD, the
equation would be as follows:

Hit ratio = (1ððð-1ðð)/1ððð

The hit ratio in this case is 0.9.

The highest possible value for the hit ratio is 1.0, which is achieved when every
page requested is always in the buffer pool.

The lowest hit ratio is when the requested page is not in the buffer pool; in this
case, the hit ratio is 0 or less. When the hit ratio is negative, it means that prefetch
has brought pages into the buffer pool that are not subsequently referenced, either
because the query stops before it reaches the end of the table space, or because

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-57

the prefetched pages are stolen by DB2 for reuse before the query can access
them.

Hit Ratios for Additional Processes: The hit ratio measurement becomes less
meaningful if the buffer pool is being used by additional processes, such as work
files or utilities. Some utilities use a special type of getpage request that reserve an
empty buffer without requiring that the page be read from DASD.

For work files, there is always a hit as DB2 reads the empty buffer for the input to
sort, and then there is a read for the output. The hit ratio can be calculated if the
work files are isolated in their own buffer pools. If they are, then the number of
getpages used for the hit ratio formula is divided in half as follows:

((getpages / 2) - I/O) / (getpages / 2)

| Hit Ratio in Buffer Pool Statistics Report: The DB2 PM buffer pool statistics
| report also indicates the buffer pool hit ratio as shown in field .H/ in Figure 102 on
| page 5-65.

Buffer Pool Size Guidelines
DB2 handles large virtual buffer pools very efficiently. Searching in large virtual
buffer pools (100MB or more) does not use any more of the processor's resources
than searching in smaller pools.

For processors dedicated to DB2, start with the default buffer pool sizes. You can
increase the buffer pool size as long as the number of I/Os continues to decrease,
or until paging becomes a problem. If your application uses random I/Os to access
the data, the number of I/Os might not decrease significantly unless the buffer pool
is larger than the table, and other applications require little concurrent buffer pool
usage.

Problems with Paging: When the buffer pool size requirements are excessive
(real storage plus expanded storage), the oldest buffer pool pages migrate to
auxiliary paging storage. Subsequent access to these pages results in a page fault.
I/O must bring the data into real storage. Paging of buffer pool storage impacts
DB2 performance. The statistics for PAGE-INS REQUIRED FOR WRITE and
PAGE-INS REQUIRED FOR READ shown in Figure 102 on page 5-65 are useful
in determining if the buffer pool size setting is too large for available real storage.

Advantages of Large Buffer Pools
 In general, larger buffer pool sizes can:

� Result in a higher buffer pool hit ratio, which can reduce the number of I/O
operations. Fewer I/O operations can reduce I/O contention, which can provide
better response time and reduce the processor resource needed for I/O
operations.

� Give an opportunity to achieve higher transaction rates with the same response
time. For any given response time, the transaction rate depends greatly on
buffer pool size.

� Prevent I/O contention for the most frequently used DASD devices, particularly
the catalog tables and frequently referenced user tables and indexes. In
addition, a large buffer pool is beneficial when a DB2 sort is used during a
query, because I/O contention on the devices containing the work file table
spaces is reduced.

5-58 Administration Guide

Watch for Storage Paging: If the large buffer pool size results in excessive real
storage paging to expanded storage, consider using hiperpools.

Choosing One or Many Buffer Pools
Reasons to Choose a Single Buffer Pool: If your system has any or all of the
following conditions, it is probably best to choose a single 4KB buffer pool:

� Not enough total buffer space for more than 10 000 4KB buffers.

� No people with the application knowledge necessary to do more specialized
tuning.

� It is a test system.

Reasons to Choose More than One Buffer Pool: The following are some
advantages to having more than one buffer pool:

� You can isolate data in separate buffer pools to favor certain applications, data,
and indexes.

For example, if you have large buffer pools, putting indexes into separate pools
from data might improve performance. You might want to put tables and
indexes that are updated frequently into a buffer pool with different
characteristics from those that are frequently accessed but infrequently
updated.

� You can put work files into a separate buffer pool. This can provide better
| performance for sort-intensive queries. Applications that use temporary tables
| use work files for those temporary tables. Keeping work files separate allows
| you to monitor temporary table activity more easily.

� This process of segregating different activities and data into separate buffer
pools has the advantage of providing good and relatively inexpensive
performance diagnosis data from statistics and accounting traces.

Using the 32KB Buffer Pool
We recommend that you provide at least the default storage value for at least one
32KB buffer pool, even when all the tables use 4KB pages. This is because some
SQL operations, such as joins, can create a result row that will not fit into a 4KB
page.

Though the default storage value for at least one 32KB buffer pool is
recommended, in general, the use of a 32KB buffer pool should be carefully
considered. Data in table spaces that use a 32KB buffer pool is stored and
allocated as 8 records, each 4KB in size. Inefficiencies can occur if small records
are stored in table spaces that use a 32KB buffer pool. On the other hand, a 32KB
page can be very good for predominately sequential processing where record size
is greater than 1 KB. For example, only one 2100-byte record can be stored in a
4KB page, wasting almost half of the space, but storing the record in a 32KB page
can significantly reduce this waste.

Monitoring and Tuning Buffer Pools Using Online Commands
The information under this heading, up to “Using DB2 PM to Monitor Buffer Pool
Statistics” on page 5-63, is General-use Programming Interface and Associated
Guidance Information as defined in “Notices” on page xi.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-59

The DISPLAY BUFFERPOOL and ALTER BUFFERPOOL commands allow you to
monitor and tune buffer pools and hiperpools on line, while DB2 is running, without
the overhead of running traces.

You can use the ALTER BUFFERPOOL command to change the size of a virtual
buffer pool or hiperpool, some of the threshold values, or the hiperpool CASTOUT
attribute for active or inactive virtual buffer pools or hiperpools.

You can use the DISPLAY BUFFERPOOL command to display the current status
of one or more active or inactive buffer pools. For example, the following command:

DISPLAY BUFFERPOOL(BP1) DETAIL

produces a detailed report of the status of BP1, as shown in Figure 100 on
page 5-61. The operation captured by this report is the processing of sort work files
for a query.

In Figure 100 on page 5-61, find the following fields:

� SYNC READ I/O (S) (.A/) shows the number of sequential synchronous read
I/O operations. Sequential synchronous read I/Os occur when prefetch is
disabled or when the requested pages are not consecutive. One way to
decrease the value of 326, which might be high for this application, is to
increase the buffer pool size until the number of read I/Os decreases while
avoiding paging between real storage and expanded storage.

To determine the total number of synchronous read I/Os, add SYNC READ I/O
(S) and SYNC READ I/O (R).

� In message DSNB412I, REQUESTS (.B/) shows the number of times that
sequential prefetch was triggered, and PREFETCH I/O (.C/) shows the number
of times that sequential prefetch occurred. PAGES READ (.D/) shows the
number of pages read using sequential prefetch. If you divide the PAGES
READ value by the PREFETCH I/O, you get 7.99. This is because the prefetch
quantity for sort work files is 8 pages. For operations other than sorts, the
prefetch quantity could be up to 32 pages, depending on the application.

� SYS PAGE UPDATES (.E/) corresponds to the number of buffer updates.

� SYS PAGES WRITTEN (.F/) is the number of pages written to DASD.

� DWT HIT (.G/) is the number of times the deferred write threshold (DWQT)
was reached. This number is workload dependent.

� VERTICAL DWT HIT (.H/) is the number of times the vertical deferred write
threshold (VDWQT) was reached. This value is per data set, and it is related to
the number of asynchronous writes.

Because the number of synchronous read I/Os (.A/) and the number of sequential
prefetch I/Os (.C/) are relatively high, you would want to tune the buffer pools by
changing the buffer pool specifications. For example, you could make the buffer
operations more efficient by defining a hiperpool if you have expanded storage on
your machine. To do that, enter the following command:

-ALTER BUFFERPOOL(BP1) VPSIZE(2ðððð) HPSIZE(2ðððð) CASTOUT(NO)

After issuing the previous ALTER BUFFERPOOL command, you can see the
resulting changes in the virtual buffer pool and hiperpool by issuing the DISPLAY

| BUFFERPOOL command again. The output is shown in Figure 101 on page 5-62.

5-60 Administration Guide

+DISPLAY BPOOL(BP1) DETAIL

DSNB4ð1I + BUFFERPOOL NAME BP1, BUFFERPOOL ID 1, USE COUNT 8

DSNB4ð2I + VIRTUAL BUFFERPOOL SIZE = 2ðððð BUFFERS

ALLOCATED = 2ðððð TO BE DELETED = ð

 IN-USE/UPDATED = 11

DSNB4ð3I + HIPERPOOL SIZE = ð BUFFERS, CASTOUT = YES

ALLOCATED = ð TO BE DELETED = ð

BACKED BY ES = ð

DSNB4ð4I + THRESHOLDS -

 VP SEQUENTIAL = 8ð HP SEQUENTIAL = 8ð

DEFERRED WRITE = 5ð VERTICAL DEFERRED WRT = 1ð

| PARALLEL SEQUENTIAL = ð ASSISTING PARALLEL SEQT= ð

DSNB4ð9I + INCREMENTAL STATISTICS SINCE 14:57:55 JAN 22, 1995

DSNB411I + RANDOM GETPAGE = 156 SYNC READ I/O (R) = 3

SEQ. GETPAGE = 132294 SYNC READ I/O (S) =.A/ 326

 DMTH HIT = ð

DSNB412I + SEQUENTIAL PREFETCH -

 .C/
REQUESTS.B/ = 8253 PREFETCH I/O = 4461

 PAGES READ.D/ = 3566ð

DSNB413I + LIST PREFETCH -

REQUESTS = ð PREFETCH I/O = ð

 PAGES READ = ð

DSNB414I + DYNAMIC PREFETCH -

REQUESTS = ð PREFETCH I/O = ð

 PAGES READ = ð

DSNB415I + PREFETCH DISABLED -

NO BUFFER = ð NO READ ENGINE = ð

 .F/
DSNB42ðI + SYS PAGE UPDATES =.E/137857 SYS PAGES WRITTEN = 6332ð

ASYNC WRITE I/O = 2ð57 SYNC WRITE I/O = ð

DSNB421I + DWT HIT.G/ = 27 VERTICAL DWT HIT .H/= 231

NO WRITE ENGINE = ð

DSNB43ðI + HIPERPOOL ACTIVITY (NOT USING ASYNCHRONOUS

DATA MOVER FACILITY) -

SYNC HP READS = ð SYNC HP WRITES = ð

ASYNC HP READS = ð ASYNC HP WRITES = ð

 READ FAILURES = ð WRITE FAILURES = ð

DSNB431I + HIPERPOOL ACTIVITY (USING ASYNCHRONOUS

DATA MOVER FACILITY) -

HP READS = ð HP WRITES = ð

 READ FAILURES = ð WRITE FAILURES = ð

DSNB44ðI + PARALLEL ACTIVITY -

 PARALLEL REQUEST = ð DEGRADED PARALLEL= ð

DSN9ð22I + DSNB1CMD '+DISPLAY BPOOL' NORMAL COMPLETION

Figure 100. Sample Output from the DISPLAY BUFFERPOOL Command. This sample
output shows buffer pool statistics for the processing of sort work files.

In Figure 101 on page 5-62, notice the following fields:

� You can verify the new hiperpool size by checking the HIPERPOOL SIZE field
(.M/).

� In this example, the hiperpool size allocated (ALLOCATED .N/) is larger than
the value for BACKED BY ES (.O/) because the hiperpool was larger than
necessary. The value for ALLOCATED can also be larger than the BACKED
BY ES value when there is not enough expanded storage available to support
the hiperpool size you specified. If the available expanded storage had been
exceeded, there would be a non-zero value in the WRITE FAILURES field
(.V/).

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-61

+DISPLAY BPOOL(BP1) DETAIL

DSNB4ð1I + BUFFERPOOL NAME BP1, BUFFERPOOL ID 1, USE COUNT 8

DSNB4ð2I + VIRTUAL BUFFERPOOL SIZE = 2ðððð BUFFERS

ALLOCATED = 2ðððð TO BE DELETED = ð

 IN-USE/UPDATED = 11

DSNB4ð3I + HIPERPOOL SIZE.M/ = 2ðððð BUFFERS, CASTOUT = NO
ALLOCATED.N/ = 2ðððð TO BE DELETED = ð

BACKED BY ES.O/ = 13929

DSNB4ð4I + THRESHOLDS -

 VP SEQUENTIAL = 8ð HP SEQUENTIAL = 8ð

DEFERRED WRITE = 5ð VERTICAL DEFERRED WRT = 1ð

PARALLEL SEQUENTIAL = ð ASSISTING PARALLEL SEQT= ð

DSNB4ð5I + HIPERSPACE NAME(S) - @ð11D31A

DSNB4ð9I + INCREMENTAL STATISTICS SINCE 16:16:16 JAN 23, 1995

DSNB411I + RANDOM GETPAGE = 156 SYNC READ I/O (R) = 11

SEQ. GETPAGE = 132294 SYNC READ I/O (S) =.P/ ð

 DMTH HIT = ð

DSNB412I + SEQUENTIAL PREFETCH -

REQUESTS = 8253 PREFETCH I/O.Q/ = 1ð3

 PAGES READ.R/ = 633

DSNB413I + LIST PREFETCH -

REQUESTS = ð PREFETCH I/O = ð

 PAGES READ = ð

DSNB414I + DYNAMIC PREFETCH -

REQUESTS = ð PREFETCH I/O = ð

 PAGES READ = ð

DSNB415I + PREFETCH DISABLED -

NO BUFFER = ð NO READ ENGINE = ð

DSNB42ðI + SYS PAGE UPDATES = 137857 SYS PAGES WRITTEN = 63338

ASYNC WRITE I/O = 2141 SYNC WRITE I/O = 2

DSNB421I + DWT HIT = 135 VERTICAL DWT HIT = 226

NO WRITE ENGINE = 2

DSNB43ðI + HIPERPOOL ACTIVITY (NOT USING ASYNCHRONOUS

DATA MOVER FACILITY) -

SYNC HP READS.S/= 327 SYNC HP WRITES = ð

ASYNC HP READS = ð ASYNC HP WRITES = ð

 READ FAILURES = ð WRITE FAILURES = ð

DSNB431I + HIPERPOOL ACTIVITY (USING ASYNCHRONOUS

DATA MOVER FACILITY) -

 .U/
HP READS.T/ = 35177 HP WRITES = 35657

 READ FAILURES = ð WRITE FAILURES =.V/ ð

DSNB44ðI + PARALLEL ACTIVITY -

PARALLEL REQUEST = ð DEGRADED PARALLEL= ð

DSN9ð22I + DSNB1CMD '+DISPLAY BPOOL' NORMAL COMPLETION

Figure 101. Sample Output from the DISPLAY BUFFERPOOL Command. This output
shows how the buffer pool statistics changed after the ALTER BUFFERPOOL command was
issued.

� The value for SYNC READ I/O (.P/), which was 326 before the ALTER
BUFFERPOOL command was issued, has decreased significantly.

� The values for PREFETCH I/O (.Q/) and PAGES READ(.R/) have decreased
significantly because most of the requested pages are in the hiperpool,
resulting in fewer pages that need to be fetched from DASD through sequential
prefetch.

� SYNC HP READS (.S/) corresponds to the SYNC READ I/O (S) (.A/) value in
Figure 100 on page 5-61.

5-62 Administration Guide

� HP READS (.T/) shows the number of times data was read from the hiperpool
into the virtual buffer pool.

� HP WRITES (.U/) shows the number of times data was written to the hiperpool
from the virtual buffer pool.

To obtain buffer pool information on a specific data set, you can use the LSTATS
option of the DISPLAY BUFFERPOOL command. For example, you can use the
LSTATS option to:

� Provide page count statistics for a certain index. With this information, you
could determine whether a query used the index in question, and perhaps drop
the index if it was not used.

� Monitor the response times on a particular data set. If you determine that I/O
contention is occurring, you could redistribute the data sets across your
available DASD.

For more information on the ALTER BUFFERPOOL or DISPLAY BUFFERPOOL
commands, see Chapter 2 of Command Reference.

Using DB2 PM to Monitor Buffer Pool Statistics
You can find information about the database buffer pools in the statistics report
produced by DB2 PM, as Figure 102 on page 5-65 shows

Increase the virtual buffer pool size or reduce the workload if:

� Sequential prefetch is inhibited. PREF.DISABLED-NO BUFFER (.A/) shows
how many times sequential prefetch is disabled because the sequential
prefetch threshold (90% of the pages in the buffer pool are unavailable) has
been reached.

� You detect poor update efficiency. You can determine update efficiency by
checking the values in both of the following fields:

– BUFF.UPDATES/PAGES WRITTEN (.B/)
– PAGES WRITTEN PER WRITE I/O (.C/)

In evaluating the values you see in these fields, keep in mind that there are no
absolute acceptable or unacceptable values. Each installation's workload is a
special case. To assess the update efficiency of your system, monitor for
overall trends rather than for absolute high values for these ratios.

The following factors impact buffer updates per pages written and pages written
per write I/O:

– Sequential nature of updates
– Number of rows per page
– Row update frequency

For example, a batch program that processes a table in skip sequential mode
with a high row update frequency in a dedicated environment can achieve very
good update efficiency. In contrast, update efficiency tends to be lower for
transaction processing applications, because transaction processing tends to be
random.

The following factors affect the ratio of pages written per write I/O:

– Checkpoint frequency. The CHECKPOINT FREQ field on panel DSNTIPN
specifies the number of consecutive log records written between DB2

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-63

system checkpoints. At checkpoint time, I/Os are scheduled to write all
updated pages on the deferred write queue to DASD. If system checkpoints
occur too frequently, the deferred write queue does not grow large enough
to achieve a high ratio of pages written per write I/O.

– Frequency of active log switch. DB2 takes a system checkpoint each time
the active log is switched. If the active log data sets are too small,
checkpoints occur often, which prevents the deferred write queue from
growing large enough to achieve a high ratio of pages written per write I/O.
For recommendations on active log data set size, see “Determining the
Size of Active Logs” on page 5-96.

– Buffer pool size. The deferred write thresholds (VDWQT and DWQT) are a
function of buffer pool size. If the buffer pool size is decreased, these
thresholds are reached more frequently, causing I/Os to be scheduled more
often to write some of the pages on the deferred write queue to DASD.
This prevents the deferred write queue from growing large enough to
achieve a high ratio of pages written per write I/O.

– Number of data sets, and the spread of updated pages across them. The
maximum number of pages written per write I/O is 32, subject to a limiting
scope of 150 pages (roughly one cylinder). For example, if your application
updates page 2 and page 149 in a series of pages, the two changed pages
could potentially be written with one write I/O. But if your application
updates page 2 and page 155 within a series of pages, writing the two
changed pages would require two write I/Os because of the 150-page limit.
Updated pages are placed in a deferred write queue based on the data set.
For batch processing it is possible to achieve a high ratio of pages written
per write I/O, but for transaction processing the ratio is typically lower.

| For LOAD, REORG, and RECOVER, the maximum number of pages
| written per write I/O is 64, and there is no limiting scope.

� SYNCHRONOUS WRITES (.D/) is a high value. This field counts the number
of immediate writes. However, immediate writes are not the only type of
synchronous write; thus, it is difficult to provide a monitoring value for the
number of immediate writes.

Ignore SYNCHRONOUS WRITES when DM CRITICAL THRESHOLD is zero.

� DM CRITICAL THRESHOLD (.E/) is reached. This field shows how many
times a page was immediately released because the data management
threshold was reached. The quantity listed for this field should be zero.

Also note the following fields:

� WRITE ENGINE NOT AVAILABLE (.F/)

This field records the number of times that asynchronous writes were deferred
because DB2 reached its maximum number of concurrent writes. You cannot
change this maximum value. This field has a nonzero value occasionally.

� PREF.DISABLED-NO READ ENG (.G/)

This field records the number of times that a sequential prefetch was not
performed because the maximum number of concurrent sequential prefetches
was reached. Instead, normal reads were done. You cannot change this
maximum value.

5-64 Administration Guide

TOT4K GENERAL QUANTITY TOT4K READ OPERATIONS QUANTITY

--------------------------- -------- --------------------------- --------

CURRENT ACTIVE BUFFERS 1217.18 BPOOL HIT RATIO (%) .H/ 73.12

UNAVAIL.BUFFER-VPOOL FULL ð.ðð

 GETPAGE REQUEST 1869.7K

NUMBER OF DATASET OPENS 1436.ðð GETPAGE REQUEST-SEQUENTIAL 1378.5K

 GETPAGE REQUEST-RANDOM 491.2K

BUFFERS ALLOCATED - VPOOL 755ðð.ðð

BUFFERS ALLOCATED - HPOOL 555ðð.ðð SYNCHRONOUS READS 54187.ðð

HPOOL BUFFERS BACKED 1972.91 SYNCHRON. READS-SEQUENTIAL 35994.ðð

 SYNCHRON. READS-RANDOM 18193.ðð

DFHSM MIGRATED DATASET ð.ðð

DFHSM RECALL TIMEOUTS ð.ðð GETPAGE PER SYN.READ-RANDOM 27.ðð

HPOOL EXPANS. OR CONTRACT. ð.ðð SEQUENTIAL PREFETCH REQUEST 418ðð.ðð

VPOOL EXPANS. OR CONTRACT. ð.ðð SEQUENTIAL PREFETCH READS 14473.ðð

VPOOL OR HPOOL EXP.FAILURE ð.ðð PAGES READ VIA SEQ.PREFETCH 444.ðK

 S.PRF.PAGES READ/S.PRF.READ 3ð.68

CONCUR.PREF.I/O STREAMS-HWM ð.ðð

PREF.I/O STREAMS REDUCTION ð.ðð LIST PREFETCH REQUESTS 9ð46.ðð

PARALLEL QUERY REQUESTS ð.ðð LIST PREFETCH READS 2263.ðð

PARALL.QUERY REQ.REDUCTION ð.ðð PAGES READ VIA LIST PREFTCH 3ð46.ðð

PREF.QUANT.REDUCED TO 1/2 ð.ðð L.PRF.PAGES READ/L.PRF.READ 1.35

PREF.QUANT.REDUCED TO 1/4 ð.ðð

DYNAMIC PREFETCH REQUESTED 668ð.ðð

DYNAMIC PREFETCH READS 142.ðð

PAGES READ VIA DYN.PREFETCH 1333.ðð

 D.PRF.PAGES READ/D.PRF.READ 9.39

PREF.DISABLED-NO BUFFER .A/ ð.ðð

PREF.DISABLED-NO READ ENG .G/ ð.ðð

 SYNC.HPOOL READ 7194.ðð

 ASYNC.HPOOL READ 1278.ðð

HPOOL READ FAILED ð.ðð

ASYN.DA.MOVER HPOOL READ-S 58983.ðð

ASYN.DA.MOVER HPOOL READ-F ð.ðð

PAGE-INS REQUIRED FOR READ 46ð.4K

TOT4K WRITE OPERATIONS QUANTITY TOT4K SORT/MERGE QUANTITY

--------------------------- -------- --------------------------- --------

BUFFER UPDATES 22ð.4K MAX WORKFILES CONCURR. USED ð.ðð

PAGES WRITTEN 35169.ðð MERGE PASSES REQUESTED ð.ðð

BUFF.UPDATES/PAGES WRITTEN .B/ 6.27 MERGE PASS DEGRADED-LOW BUF ð.ðð

WORKFILE REQ.REJCTD-LOW BUF ð.ðð

SYNCHRONOUS WRITES .D/ 1ðð3.ðð WORKFILE REQ-ALL MERGE PASS ð.ðð

ASYNCHRONOUS WRITES 5ð84.ðð WORKFILE NOT CREATED-NO BUF ð.ðð

WORKFILE PRF NOT SCHEDULED ð.ðð

PAGES WRITTEN PER WRITE I/O .C/ 5.78 WORKFILE PAGES TO DESTRUCT 443ð.ðð

WORKFILE PAGES NOT WRITTEN 443ð.ðð

HORIZ.DEF.WRITE THRESHOLD 2.ðð

VERTI.DEF.WRITE THRESHOLD ð.ðð

DM CRITICAL THRESHOLD .E/ ð.ðð

WRITE ENGINE NOT AVAILABLE .F/ ð.ðð

SYNC.HPOOL WRITE ð.ðð

ASYNC.HPOOL WRITE 5967.ðð

HPOOL WRITE FAILED ð.ðð

ASYN.DA.MOVER HPOOL WRITE-S 523.2K

ASYN.DA.MOVER HPOOL WRITE-F ð.ðð

PAGE-INS REQUIRED FOR WRITE 45.ðð

| Figure 102. DB2 PM Database Buffer Pool Statistics (Modified)

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-65

Tuning the EDM Pool
During the installation process, DSNTINST CLIST calculates the size of the EDM
pool, based on parameters specified on the DSNTIPD and DSNTIPE panels.

The EDM pool contains:

� Database descriptors (DBDs)

� Skeleton cursor tables (SKCTs)

� Cursor tables (CTs), or copies of the SKCTs

� Skeleton package tables (SKPTs)

� Package tables (PTs), or copies of the SKPTs

� An authorization cache block for each plan, excluding plans that you created
specifying CACHESIZE(0)

| � Skeletons of dynamic SQL if your installation has YES for the CACHE
| DYNAMIC SQL field of installation panel DSNTIP4.

Refer to “Allied Thread Allocation” on page 5-116 for information on how SKCTs,
CTs, and DBDs are handled.

You can check the calculated size of the EDM pool on panel DSNTIPC. Refer to
Installation Guide for more information on specifying the size of the EDM pool.

For data sharing, you might need to increase the EDM pool storage estimate. For
more information, see Chapter 3 of Data Sharing: Planning and Administration.

Because of an internal process that changes the size of plans initially bound in one
release and then are rebound in a later release, you should carefully monitor the
size of the EDM pool and increase its size, if necessary. For more information on
the internal process that could increase the size of your plans, see “Considerations
for Rebinding Certain Plans and Packages” on page 5-45. For information about
how to estimate the size of the EDM pool, see Installation Guide.

Using Packages to Aid EDM Pool Storage Management
By using multiple packages you can increase the effectiveness of EDM pool
storage management by decreasing the number of large objects in the pool.

Releasing thread storage
If your EDM pool storage grows continually, consider having DB2 periodically free
unused thread storage. To do this, specify YES for the CONTSTOR subsystem
parameter and then reassemble DSNTIJUZ. This option can affect performance
and is best used when your system has many long-running threads and your EDM
storage is constrained.

EDM Pool Space Handling
When pages are needed for the EDM pool, any pages that are available are
allocated first. If the available pages do not provide enough space to satisfy the

| request, pages are “stolen” from an inactive SKCT, SKPT, DBD, or dynamic SQL
| skeleton. If there is still not enough space, an SQL error code is sent to the

application program.

5-66 Administration Guide

You should design the EDM pool to contain:

� The CTs, PTs, and DBDs in use

� The SKCTs for the most frequently used applications

� The SKPTs for the most frequently used applications

� The DBDs referred to by these applications

� The cache blocks for your plans that have caches

| � The skeletons of the most frequently used dynamic SQL statements, if your
| system has enabled the dynamic statement cache.

By designing the EDM pool this way, you can avoid allocation I/Os, which can
represent a significant part of the total number of I/Os for a transaction. You can
also reduce the processing time necessary to check whether users attempting to
execute a plan are authorized to do so.

An EDM pool that is too small causes:

� Increased I/O activity in DSNDB01.SCT02, DSNDB01.SPT01, and
DSNDB01.DBD01

| � Increased response times, due to loading the SKCTs, SKPTs, and DBDs. If
| caching of dynamic SQL is used, and the needed SQL statement is not in the
| EDM pool, that statement has to be reprepared.

� Fewer threads used concurrently, due to a lack of storage

An EDM pool that is too large might use more virtual storage than necessary.

| Implications for Database Design: When you design your databases, be aware
| that a very large number of objects in your database means a larger DBD for that
| database. And when you drop objects, storage is not automatically reclaimed in that
| DBD, which can mean that DB2 must take more locks for the DBD. To reclaim
| storage in the DBD, use the MODIFY utility, as described in Section 2 of Utility
| Guide and Reference.

The DB2 statistics record provides information on the EDM pool. Figure 103 on
page 5-68 shows how DB2 PM presents this information in the statistics report.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-67

EDM POOL QUANTITY

--------------------------- --------

PAGES IN EDM POOL .A/16218.ðð
% PAGES IN USE 6.ð7

FREE PAGES IN FREE CHAIN .B/15233.96
PAGES USED FOR CT 36.16

PAGES USED FOR DBD 136.36

PAGES USED FOR SKCT 755.71

PAGES USED FOR PT 4.41

PAGES USED FOR SKPT 51.4ð

FAILS DUE TO POOL FULL ð.ðð

REQUESTS FOR CT SECTIONS 135.1K

CT NOT IN EDM POOL 984.ðð

CT REQUESTS/CT NOT IN EDM .C/ 137.31

REQUESTS FOR PT SECTIONS 283ð2.ðð

PT NOT IN EDM POOL 134.ðð

PT REQUESTS/PT NOT IN EDM .D/ 211.21

REQUESTS FOR DBD SECTIONS 45799.ðð

DBD NOT IN EDM POOL 38.ðð

DBD REQUESTS/DBD NOT IN EDM.E/12ð5.24

PREP_STMT_HIT_RATIO .F/ ð.67

PREP_STMT_CACHE_INSERTS ð.3ð

PREP_STMT_CACHE_REQUESTS ð.9ð

PREP_STMT_CACHE_PAGES_USED 47.11

| Figure 103. EDM Pool Utilization in the DB2 PM Statistics Report

The important values to monitor are:

Efficiency of the Pool: You can measure the efficiency of the EDM pool by using
the following ratios:

CT REQUESTS/CT NOT IN EDM .C/
PT REQUESTS/PT NOT IN EDM .D/
DBD REQUESTS/DBD NOT IN EDM .E/

These ratios for the EDM pool depend upon your location's work load. In most
DB2 subsystems, a value of 5 or more is acceptable. This means that at least 80%
of the requests were satisfied without I/O.

The number of free pages is shown in FREE PAGES IN FREE CHAIN .B/ in
Figure 103. If this value is more than 20% of PAGES IN EDM POOL .A/ during
peak periods, the EDM pool size is probably too large. In this case, you can reduce
its size without affecting the efficiency ratios significantly.

| Calculating the EDM Pool Hit Ratio for Cached Dynamic SQL: If you have
| caching turned on for dynamic SQL, the EDM pool statistics have information that
| can help you determine how successful your applications are at finding statements
| in the cache. See mapping macro DSNDQISE for descriptions of these fields.

| QISEDSG records the number of requests to search the cache. QISEDSI records
| the number of times that a statement was inserted into the cache, which can be
| interpreted as the number of times a statement was not found in the cache. Use
| the following calculation to determine how often the dynamic statement was used
| from the cache:

| (QISEDSG − QISEDSI) / QISEDSG = hit ratio

5-68 Administration Guide

| The hit ratio is also shown in .F/ in Figure 103.

Increasing RID Pool Size
The RID pool is used for all record identifier (RID) processing. It is used for sorting
RIDs during the following operations:

List prefetch, including single index list prefetch,
Access via multiple indexes

 Hybrid joins

RID pool storage is also used when DB2 enforces unique keys while updating
multiple rows.

SQL statements that use those methods of access can benefit from using the RID
pool. RID pool processing can help reduce I/O resource consumption and elapsed
time. However, if there is not enough RID pool storage, it is possible that the
statement might revert to a table space scan.

To determine if a transaction used the RID pool, see the RID Pool Processing
section of the DB2 PM accounting trace record.

The RID pool, which all concurrent work shares, is limited to a maximum of
1000MB. The RID pool is created at system initialization, but no space is allocated
until RID storage is needed. It is then allocated above the 16MB line in 16KB
blocks as needed, until the maximum size you specified on installation panel
DSNTIPC is reached.

The general formula for computing RID pool size is:

Number of concurrent RID processing activities ×
| average number of RIDs × 2 × 5 bytes per RID

For example, three concurrent RID processing activities, with an average of 4000
RIDs each, would require 120KB of storage, because:

| 3 × 4ððð × 2 × 5 = 12ðKB

Whether your SQL statements that use RID processing complete efficiently or not
depends on other concurrent work using the RID pool.

When the DSNTINST CLIST calculates the value for RID POOL SIZE on panel
DSNTIPC, the default is calculated as 50% of the sum of virtual buffer pools BP0,
BP1, BP2, and BP32K.

You can modify the maximum RID pool size that you specified on installation panel
DSNTIPC by using the installation panels in UPDATE mode, as follows:

� To favor the selection and efficient completion of list prefetch, multiple index
access, or hybrid join, you can increase the maximum RID pool size.

� To disable list prefetch, multiple index access, and hybrid join, specify a RID
pool size of 0.

If you do this, plans or packages that were previously bound with a non-zero
RID pool size might experience significant performance degradation. Rebind
any plans or packages that include SQL statements that use RID processing.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-69

Controlling Sort Pool Size and Sort Processing
Sort is invoked when a cursor is opened for a SELECT statement that requires
sorting. The maximum size of the sort work area allocated for each concurrent sort
user depends on the value you specified for the SORT POOL SIZE field on
installation panel DSNTIPC.

When the DSNTINST CLIST calculates the value for SORT POOL SIZE on panel
DSNTIPC, the default is calculated as 10% of the sum of virtual BP0, BP1, BP2,
and BP32K. The default is limited as follows:

MINIMUM = 24ðKB

MAXIMUM = 64ðððKB

You can change this value by using the installation panels in UPDATE mode. A
rough formula for determining the maximum sort pool size is as follows:

16ððð × (12 + sort key length + sort data length + 4 (if hardware sort))

For sort key length and sort data length, use values that represent the maximum
values for the queries you run. To determine these values, refer to fields
QW0096KL (key length) and QW0096DL (data length) in IFCID 0096, as mapped
by macro DSNDQW01. You can also determine these values from an SQL activity
trace.

If a column is in the ORDER BY clause that is not in the select clause, that column
should be included in the sort data length and the sort key length as shown in the
following example:

SELECT C1, C2, C3

FROM tablex

ORDER BY C1, C4;

If C1, C2, C3, and C4 are each 10 bytes in length for an MVS/ESA system, you
could estimate the sort pool size as follows:

16ððð × (12 + 4 + 2ð + (1ð + 1ð + 1ð + 1ð)) = 1216ððð bytes

where: 16ððð = maximum number of sort nodes

12 = size (in bytes) of each node

4 = number of bytes added for each node if

sort facility hardware used

2ð = sort key length (ORDER BY C1, C4)

1ð+1ð+1ð+1ð = sort data length (each column is 1ð bytes in length)

Understanding How Sort Work Files Are Allocated
The sort begins with the input phase when ordered sets of rows are written to work
files. At the end of the input phase, when all the rows have been sorted and
inserted into the work files, the work files are merged together, if necessary, into
one work file containing the sorted data. The merge phase is skipped if there is
only one work file at the end of the input phase. In some cases, intermediate
merging might be needed if the maximum number of sort work files has been
allocated.

The work files used in sort are logical work files, which reside in work file table
spaces in your work file database (which is DSNDB07 in a non data-sharing
environment). DB2 uses the buffer pool when writing to the logical work file. The

5-70 Administration Guide

number of work files that can be used for sorting is limited only by the buffer pool
size when you have the sort assist hardware.

If you do not have the sort hardware, up to 140 logical work files can be allocated
per sort, and up to 255 work files can be allocated per user.

It is possible for a sort to complete in the buffer pool without I/Os. This is the ideal
situation, but it might be unlikely, especially if the amount of data being sorted is
large. The sort row size is actually made up of the columns being sorted (the sort
key length) and the columns the user selects (the sort data length).

When your application needs to sort data, the work files are allocated on a least
recently used basis for a particular sort. For example, if five logical work files
(LWFs) are to be used in the sort, and the installation has three work file table
spaces (WFTSs) allocated, then:

� LWF 1 would be on WFTS 1.
� LWF 2 would be on WFTS 2.
� LWF 3 would be on WFTS 3.
� LWF 4 would be on WFTS 1.
� LWF 5 would be on WFTS 2.

To support large sorts, DB2 can allocate a single logical work file to several
physical work file table spaces.

Factors That Influence Sort Processing
You can influence the following factors that affect the performance of DB2 sort
processing:

� Design your configuration to ensure minimal I/O contention on the I/O paths to
the physical work files. Also, make sure that physical work files are allocated on
different I/O paths and packs to minimize I/O contention.

� Allocate additional physical work files in excess of the defaults, and put those
work files in their own buffer pool.

Segregating work file activity enables you to better monitor and tune sort
performance. It also allows DB2 to handle sorts more efficiently because these
buffers are available only for sort without interference from other DB2 work.

| Applications using temporary tables use work file space until a COMMIT or
| ROLLBACK occurs. (If a cursor is defined WITH HOLD, then the data is held
| past the COMMIT.) If sorts are happening concurrently with the temporary
| table's existence, then you probably need more space to handle the additional
| use of the work files.

For information about defining additional work file table spaces, refer to “Create
Additional Work File Table Spaces” on page 5-41.

� The size of the sort pool affects the performance of the sort. The larger the
work area, the more efficient the sort.

� When the sort occurs, the sort row size depends on the data fields that need to
be sorted. Therefore, your applications should only sort those columns that
need to be sorted, as these key fields appear twice in the sort row size. The
smaller the sort row size, the more rows that can fit.

 Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools 5-71

� VARCHARs are padded to their maximum length. Therefore, if VARCHAR
columns are not required, your application should not select them. This will
reduce the sort row size.

Other factors that influence sort performance include the following:

� The better sorted the data is, the more efficient the sort will be.

� If the buffer pool deferred write threshold (DWQT) or data set deferred write
threshold (VDWQT) are reached, writes are scheduled. For a large sort using
many logical work files, this is difficult to avoid, even if a very large buffer pool
is specified.

� If I/Os occur in the sorting process, in the merge phase DB2 uses sequential
prefetch to bring pages into the buffer pool with a prefetch quantity of one, two,
four, or eight pages. However, if the buffer pool is constrained, then prefetch
could be disabled because not enough pages are available.

� If your DB2 subsystem is running on a processor that has the sort facility
hardware instructions, you will see an improvement in the performance of SQL
statements that contain any of the following: ORDER BY clause, GROUP BY
clause, CREATE INDEX statement, DISTINCT clause of subselect, and joins
and queries that use sort.

For any SQL statement that initiates sort activity, the DB2 PM SQL activity reports
provide information on the efficiency of the sort involved.

5-72 Administration Guide

Chapter 5-5. Improving Resource Utilization

When system resources are shared among transactions, end user queries, and
batch programs, it is important to control how those resources are used. You need
to separate data and set priorities carefully. You might choose to emphasize
resource use, performance, concurrency, or data security.

Choose the controls that best match your goals. You may, for example, want to
minimize resource usage, maximize throughput or response time, ensure a certain
level of service to some users, or avoid conflicts between users. Your goal might be
to favor a certain class of users or to achieve the best overall system performance.

The number of I/Os and the I/O elapsed times are also important performance
considerations in a database system. When you design or tune your database, you
should optimize the number of I/Os by using an efficient buffer pool design, and
minimize I/O elapsed times by carefully selecting the placement of the DB2 data
sets.

Many of the things you currently do for a single DB2 to improve response time or
reduce processor consumption also hold true in the data sharing environment.
Thus, most of the information in this chapter holds true for data sharing as well. For
more information about tuning in a data sharing environment, see Chapter 7 of
Data Sharing: Planning and Administration.

This chapter covers the following topics:

� “Controlling Resource Usage”
� “Resource Limit Facility (Governor)” on page 5-76
� “Managing the Opening and Closing of Data Sets” on page 5-87
� “Planning the Placement of DB2 Data Sets” on page 5-91
� “DB2 Logging” on page 5-94
� “Improving DASD Utilization: Space and Device Utilization” on page 5-99
� “Improving Main Storage Utilization” on page 5-103
� “Performance and the Storage Hierarchy” on page 5-105
� “MVS Performance Options for DB2” on page 5-108

Controlling Resource Usage
DB2 includes a resource limit facility (governor), which helps control the use of DB2

| resources. Other facilities, such as MVS workload management (SRM and WLM),
and the QMF governor, complement the DB2 governor. Because DB2 is integrated
with the operating system and transaction subsystems, control definitions are used
in most cases. This simplifies the task of controlling resources for the user.

Each of the objectives presented in Table 62 on page 5-74 is matched with a
control facility that you can use to achieve the objective. Each objective is then
discussed separately in the sections that follow the table.

 Copyright IBM Corp. 1982, 1997 5-73

Table 62. Controlling the Use of Resources

Objective How to Accomplish It

Prioritize resources| MVS dispatching priority, MVS workload management
Limit resources for each job Time limit on job or step (through MVS or JCL)
Limit resources for TSO sessions Time limit for TSO logon
Limit resources for IMS and CICS IMS and CICS controls
Limit resources for a stored
procedure

ASUTIME column of SYSIBM.SYSPROCEDURES
catalog column.

| Limit dynamic statement execution
| time

QMF governor and DB2 resource limit facility

| Reduce locking contention DB2 locking parameters, DISPLAY DB LOCKS, lock
trace data, database design

| Evaluate long-term resource usage| Accounting trace data, DB2 PM reports
Predict resource consumption| DB2 EXPLAIN statement, Visual Explain, and DB2

| Estimator
Control use of parallelism DB2 resource limit facility, SET CURRENT DEGREE

| statement (See “Disabling Query Parallelism” on
page 5-313.)

| Prioritize Resources
| The MVS dispatching priority controls the execution of DB2 work. DB2 uses the
| processor and I/O dispatching priorities assigned to the requester's dispatchable
| unit (task or SRB) by MVS for all synchronous work done on behalf of the request.
| See MVS/ESA Initialization and Tuning Guide for information about assigning MVS
| processor and I/O dispatching priorities. Asynchronous I/O is governed by the MVS
| I/O dispatching priority of the address space requesting the I/O.

| In CICS environments, DB2 work is performed in subtasks; therefore, the task-level
| processor dispatching priority also influences the ability of the DB2 subtasks to use
| the processor resource. You can set the priority of the DB2 work relative to the
| CICS main task through the resource control table.

| In other environments such as batch and TSO, which typically have a single task
| requesting DB2 services, the task-level processor dispatching priority is irrelevant.
| Access to processor and I/O resources for synchronous portions of the request is
| governed solely by the MVS processor and I/O dispatching priorities assigned to
| the requester.

Limit Resources for Each Job
Because most of the resource usage occurs within the standard job structure, you
can control processor usage by changing the TIME parameter for the job or step.
The time limit applies even when DB2 is sorting the result rows. If the time limit is
exceeded, the job step abends, and any uncommitted work is rolled back. If you
want to control the total amount of resources used, rather than the amount used by
a single query, then use this control.

Refer to the MVS/ESA JCL User's Guide for more information on setting resource
limits.

5-74 Administration Guide

Limit Resources for TSO Sessions
Time limits can apply to either TSO sessions or to batch jobs. Your MVS system
programmer can provide a time parameter on the logon procedure or on a job
statement in the logon preprompt exit. This time limit is for the session, rather than
for an individual query or a single program. If you want to control the amount of
resources used for an entire TSO session, rather than the amount used by a single
query, then use this control.

You can find more information about setting the resource limit for a TSO session in
these manuals:

� TSO/E Programming Guide
 � TSO/E Customization

Limit Resources for IMS and CICS
You can use various IMS commands (including PROCLIM, or processing limit) to
limit the resources used by a transaction, a class, a program, a database, or a
subsystem. For more information, see IMS/ESA Operator's Reference.

For a detailed description of performance factors in a CICS system, see CICS/ESA
Performance Guide.

Limit Resources for a Stored Procedure
DB2 stored procedures are especially designed for high volume on-line
transactions. To establish limits for stored procedures, you can:

� Set a processor limit for each stored procedure, by updating the ASUTIME
column of SYSIBM.SYSPROCEDURES catalog table. This allows DB2 to
cancel procedures that loop.

� Set a limit for the number of times a procedure can terminate abnormally, by
specifying a value in field MAX ABEND COUNT on installation panel DSNTIPX.
This prevents a problem procedure from overwhelming the system with abend
dump processing.

For information about controlling the amount of storage used by stored procedures
address spaces, see “Controlling Address Space Storage” on page 5-329.

Limit Execution Time for Dynamic Statements
You can use either the QMF governor or the DB2 governor to set a limit on the
available resources that a single SELECT, INSERT, UPDATE, or DELETE can use.
The QMF governor handles only statements that are executed through QMF. The
DB2 governor handles all dynamic SELECT, INSERT, UPDATE and DELETE

| statements. For cursor processing, the governor includes the OPEN and FETCH
| processing as part of the SELECT.

For more information on the DB2 governor, see “Resource Limit Facility (Governor)”
on page 5-76. For more information about the QMF governor, see Query
Management Facility: Managing QMF for MVS.

 Chapter 5-5. Improving Resource Utilization 5-75

Reduce Locking Contention
DB2 uses locking to ensure the presentation of consistent data based on user
requirements and to avoid losing data updates. You should provide a balance
between concurrency, isolation, and resource usage. To accomplish this, you can
separate data, choose lock parameters, and monitor for contention. For more
information on locking contention, see “Chapter 5-7. Improving Concurrency” on
page 5-137.

Evaluate Long-Term Resource Usage
You can use DB2 accounting trace data to control the amount of resources a group
uses over a period of time. For example, you might want to ensure that a group
does not exceed its budget or forecast. This type of control depends upon resource
accounting. For more information about DB2 PM accounting records and DB2 PM
reports, see “DB2 Performance Monitor (DB2 PM)” on page X-184.

For a more general discussion of accounting information, see MVS/ESA Diagnosis:
Procedures.

Predict Resource Consumption
The best way to predict resource consumption for simple transactions and repetitive
jobs is to measure it for a given period, and then use that measure as a basis for
future forecasts. This method, however, does not work for dynamic queries.

You can use the EXPLAIN statement to understand the access path taken by an
SQL statement. By reviewing the access path and the statistics for the index and
data, you can estimate the expected resource usage for a given statement.

| Try also DB2 Estimator to do your capacity planning.

For more information on resource consumption, refer to:

“Initial Planning” on page 5-10
“Obtaining Information from EXPLAIN” on page 5-262
“Querying the Catalog for Statistics” on page 5-252.

Resource Limit Facility (Governor)
DB2's resource limit facility (governor) allows you to specify the maximum amount
of processor time that any dynamic, manipulative SQL statement (SELECT,
INSERT, UPDATE, and DELETE) from either the local DB2 subsystem or a remote
DBMS can consume in DB2. See Chapter 7 of Data Sharing: Planning and
Administration for information about special considerations for using the resource
limit facility in a data sharing group.

The resource limit facility governs the execution of packages as well as plans. The
resource limit facility also allows you to restrict bind and rebind operations. For
example, you can disallow all bind activity during prime shift when production data
is accessed. In addition, the DB2 governor allows you to restrict the use of

| parallelism. You can disallow CP parallelism, I/O parallelism, Sysplex query
| parallelism, or any combination of the three.

In some ways, the DB2 governor is very similar to the QMF governor; however, the
two products actually complement each other. Before mixing the two governors,

5-76 Administration Guide

determine your objectives for governing. Compare the differences in the
implementation and operation of both, and decide when to use each facility to meet
your governing requirements. The DB2 governor can limit the time spent processing
interactive SQL statements, but it cannot interact with users. The QMF governor, on
the other hand, governs all processor time consumed by the user address space,
as opposed to only “in DB2” time.

The SELECT, INSERT, UPDATE, or DELETE statement can originate from your
own location or from a remote DBMS, but the limit that you specify applies to your
local processor. The resource limit facility does not control static SQL statements
whether or not they are executed locally or remotely.

Queries that exceed the limit set by the governor are terminated with a -905
SQLCODE and a corresponding '57014' SQLSTATE. Termination prevents very
long queries from exhausting your resources. You can establish a single limit for all
users, different limits for individual users, or both. No limits apply to primary or
secondary authorization IDs with installation SYSADM or installation SYSOPR
authority. Remote site resource limits apply when accessing remote system data
through the distributed data facility.

One or more resource limit specification tables (RLSTs) define the limits. One
resource limit specification table (the one identified on the -START RLIMIT
command) is used each time the governor is invoked. You may, for example, want
to define one RLST for prime shift and one for evening shift, as in Figure 104;
however, only one can be active at a time. At installation time, you can specify a
default RLST to be used each time DB2 is restarted. For more information on
resource limit facility subsystem parameters, see Section 2 of Installation Guide .

 Prime Shift Night Shift

┌─────────────────────────────────────┐ ┌─────────────────────────────────────┐

│ SYSIBM.DSNRLSTð1 │ │ SYSIBM.DSNRLSTð2 │

├───────┬──────────┬─────────┬────────┤ ├───────┬──────────┬─────────┬────────┤

│AUTHID │ PLANNAME │ ASUTIME │ LUNAME │ │AUTHID │ PLANNAME │ ASUTIME │ LUNAME │

├───────┼──────────┼─────────┼────────┤ ├───────┼──────────┼─────────┼────────┤

│BADUSER│ │ ð │ LUDBD1 │ │BADUSER│ │ ð │ LUDBD1 │

│ROBYN │ │ 1ððððð │ LUDBD1 │ │ROBYN │ │ NULL │ LUDBD1 │

│ │QMF23ð │ 3ððððð │ LUDBD1 │ │ │QMF23ð │ NULL │ LUDBD1 │

│ │ │ 5ðððð │ LUDBD1 │ │ │ │ 3ððððð │ LUDBD1 │

└───────┴──────────┴─────────┴────────┘ └───────┴──────────┴─────────┴────────┘

Figure 104. Examples of RLST for Day and Night Shifts. During the night shift, AUTHID
ROBYN and all QMF users from LUDBD1 run without limit.

Where RLSTs Reside
Resource limit specification tables can reside in any database, but because a
database has some special attributes while the resource limit facility is active, we
recommend that they reside in a database of their own.

When you install DB2, install job DSNTIJSG creates a table space for the resource
limit specification tables by generating the following statements, which you can
tailor:

CREATE DATABASE DSNRLST;

CREATE TABLESPACE DSNRLSxx IN DSNRLST CLOSE NO;

For more information about job DSNTIJSG, see Section 2 of Installation Guide.

 Chapter 5-5. Improving Resource Utilization 5-77

While the governor is active, you cannot execute the following SQL statements on
the RLST, or the table space and database in which the RLST is contained:

 DROP DATABASE
 DROP INDEX
 DROP TABLE
 DROP TABLESPACE

You cannot stop a database or table space that contains an active RLST; nor can
you start the database or table space with ACCESS(UT).

Creating an RLST
To define a resource limit specification table, use the following statements:

CREATE TABLE authid.DSNRLSTxx
(AUTHID CHAR(8) NOT NULL WITH DEFAULT,

PLANNAME CHAR(8) NOT NULL WITH DEFAULT,

 ASUTIME INTEGER,

LUNAME CHAR(8) NOT NULL WITH DEFAULT,

RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,

RLFBIND CHAR(1) NOT NULL WITH DEFAULT,

RLFCOLLN CHAR(18) NOT NULL WITH DEFAULT,

RLFPKG CHAR(8) NOT NULL WITH DEFAULT)

 IN DSNRLST.DSNRLSxx;

The name of the table is authid.DSNRLSTxx, where xx is any 2-character
alphanumeric value, and authid is specified when DB2 is installed. Because the two
characters xx must be entered as part of the START command, they must be
alphanumeric—no special or DBCS characters.

When you create a resource specification table, it must include the AUTHID,
PLANNAME, and ASUTIME columns, defined as they are in the above example.
You can use the optional LUNAME column to specify limits for requests that
originate at remote locations. The last four columns—RLFFUNC, RLFBIND,
RLFCOLLN, and RLFPKG—are optional but mutually inclusive; any table that
contains one of these columns must contain all of them. In addition, any resource
limit specification table that contains RLFFUNC, RLFBIND, RLFCOLLN, and
RLFPKG must also contain the LUNAME column. You can add any other columns
you wish; they are ignored by the governor.

Table 63. Required and optional columns of a resource specification table

Column
name

Required
or
Optional Other columns required

AUTHID required none

PLANNAME required none

ASUTIME required none

LUNAME optional none

RLFFUNC optional LUNAME, RLFBIND, RLFCOLLN, RLFPKG

RLFBIND optional LUNAME, RLFFUNC, RLFCOLLN, RLFPKG

RLFCOLLN optional LUNAME, RLFFUNC, RLFBIND, RLFPKG

RLFPKG optional LUNAME, RLFFUNC, RLFBIND, RLFCOLLN

5-78 Administration Guide

All future column names defined by IBM will appear as RLFxxxxx. To avoid future
naming conflicts, begin your own column names with characters other than RLF.

You must also define a unique index on each RLST, using either of the following
statements, depending upon whether or not you created the optional columns in
your resource limit specification table. In either case, you must determine storage
and buffer pool attributes for your location.

Without optional columns:

CREATE UNIQUE INDEX authid.DSNARLxx
 ON authid.DSNRLSTxx
 (AUTHID, PLANNAME)

 CLUSTER;

Only one entry with the same AUTHID.PLANNAME is allowed in the table.

With optional columns:

CREATE UNIQUE INDEX authid.DSNARLxx
 ON authid.DSNRLSTxx

(RLFFUNC, AUTHID, PLANNAME, RLFCOLLN, RLFPKG, LUNAME)

CLUSTER CLOSE NO;

Only one entry is allowed in the table with the same
RLFFUNC.AUTHID.PLANNAME.RLFCOLLN.RLFPKG.LUNAME. The xx in the
index name (DSNARLxx) must match the xx in the table name (DSNRLSTxx).
Further, the index for the RLST must be ascending, which the previous sample
SQL statements provide.

The creator of the tables and indexes must have sufficient authority to define
objects in the DSNRLST database, and to specify the authorization identifier of
authid in the definition.

Populating the Resource Limit Specification Table: Use the SQL statements
INSERT, UPDATE, and DELETE to populate the resource limit specification table.
The limit that exists when a job makes its first dynamic SELECT, INSERT,
UPDATE, or DELETE statement applies throughout the life of the job. If you update
the resource limit specification table while a job is executing, that job's limit does
not change; instead, the updates are effective for all new jobs and for those that
have not issued their first dynamic SELECT, INSERT, UPDATE, or DELETE
statement.

If the governor is active and you restart it without stopping it, any jobs that are
active continue to use their original limits, and all new jobs use the limits in the new
table.

If you stop the governor while a job is executing, the job runs with no limit, but its
processing time continues to accumulate. If you later restart the governor, the new
limit takes effect for an active job only when the job passes one of several internal
checkpoints. A typical dynamic statement, which builds a result table and fetches
from it, passes those checkpoints at intervals that can range from moments to
hours. As a result, your change to the governor might not stop an active job within
the time you expect.

 Chapter 5-5. Improving Resource Utilization 5-79

Use the DB2 command CANCEL THREAD to stop an active job that does not pick
up the new limit when you restart the governor.

To insert, update, or delete from the resource limit specification table, you need
only the usual table privileges on the RLST. No higher authority is required.

What the RLST Contains
Each row in a resource limit specification table contains the following:

AUTHID The resource specification limits apply to this primary authorization ID. To
have the limit specifications in this row apply to all authids for the location
specified in LUNAME, this column must contain blank. If LUNAME is blank,
or the column is not included in the table, then the location is the local
location.

PLANNAME The resource specification limits apply to this plan. A blank value in this
column means that the limit specifications in this row apply to all plans for
the location specified in LUNAME. If LUNAME is blank, or the column is
not included in the table, then the location is the local location. If the
RLFFUNC column is present and contains a '1' or '2', then this column
must be blank; if it is not blank the row is ignored.

ASUTIME The number of system resource manager processor service units permitted
to any single dynamic SELECT, INSERT, UPDATE, or DELETE statement.
A null value in this column means there is no limit. A zero or a negative
value means that no dynamic SELECT, INSERT, UPDATE, or DELETE
statements are permitted.

LUNAME The LU name of the location where the request originated. A blank value in
this column represents the local location, not all locations. The value
PUBLIC represents all of the DBMS locations in the network; these
locations do not have to be DB2 subsystems.

RLFFUNC Specifies how the row is used:

� '1' means that the row governs bind operations.

� '2' means that the row governs dynamic DML by package or
collection name.

� '3' means that the row disables query I/O parallelism.

� '4' means that the row disables query CP parallelism.

| � '5' means that the row disables Sysplex query parallelism.

� Blank means that the row governs dynamic DML statements by plan
name.

� All other values are ignored.

RLFBIND Shows whether or not bind operations are allowed. An 'N' implies that
bind operations are not allowed. Any other value means that bind
operations are allowed. This column is used only if RLFFUNC is set to '1'.

RLFCOLLN The resource limit specifications apply to this package collection. A blank
value in this column means that the limit specifications apply to all package
collections from the location specified in LUNAME. If LUNAME is blank, or
the column is not included in the table, then the location is the local
location. If RLFFUNC=blank or RLFFUNC='1', then RLFCOLLN must be
blank. If RLFFUNC='2', then the resource limits apply to the package
collection named in this column.

5-80 Administration Guide

Processor Service Units (ASUTIME): The value for ASUTIME, which is specified
in service units rather than just processor time, is independent of processor
changes. The processing time for a particular SQL statement varies according to

| the processor on which it is executed, but the service units required remains
| constant. The governor samples the processing time in service units.

| To calculate ASUTIME, use the following formula:

| ASUTIME = Processor Time × Service Units per Second Value

| The value for service units per second depends on the processor model. You can
| find this value for your processor model in MVS/ESA Initialization and Tuning
| Guide, where SRM is discussed.

For example, if processor A is rated at 900 service units per second and you do not
want any single dynamic SQL statement to use more than 10 seconds of processor
time, you could set ASUTIME as follows:

ASUTIME = 1ð seconds × 9ðð service units/second = 9ððð service units

Later, you could upgrade to processor B, which is rated at 1000 service units per
second. If the value you set for ASUTIME remains the same (9000 service units),
your dynamic SQL is only allowed 9 seconds for processing time but an equivalent
number of processor service units:

ASUTIME = 9 seconds × 1ððð service units/second = 9ððð service units

As this example illustrates, after you establish an ASUTIME for your current
processor, there is no need to modify it when you change processors.

RLFPKG The resource limit specifications apply to this package. A blank value in
this column means that the limit specifications apply to all packages from
the location specified in LUNAME. If LUNAME is blank, or the column is
not included in the table, then the location is the local location. If
RLFFUNC=blank or RLFFUNC='1', then RLFPKG must be blank. If
RLFFUNC='2', then the resource limits apply to the package named in
this column.

Understanding RLST Search Order and Column Combinations
Table 64 on page 5-82, Table 65 on page 5-83, and Table 66 on page 5-83
show the search order, or precedence, of entries in the RLST for each method of
governing. If more than one entry exists with the same AUTHID and the same
PLANNAME, then the value of LUNAME determines the precedence order. The
value of LUNAME also determines the precedence order when more than one entry
exists with the same AUTHID and a blank PLANNAME.

If no row is found in the RLST, the default limit set at installation time for either
local or remote dynamic SELECT, INSERT, UPDATE, or DELETE statements is
used, according to the type of statement. You can set the default limits on panel
DSNTIPR (for statements originating at the remote location) or on panel DSNTIPO
(for statements originating at the local location).

 Chapter 5-5. Improving Resource Utilization 5-81

Governing by Plan Name or Package Name: Governing by plan name and
package name are mutually exclusive.

� In governing by plan name, the RLF governs the DBRMs in the MEMBER list
specified on the BIND PLAN command. To govern by plan name, your RLST
should contain blanks for columns RLFFUNC, RLFCOLLN, and RLFPKG.

� In governing by package name, the RLF governs the packages used during the
execution of the SQL application program. To govern by package name, your
RLST should contain a row with PLANNAME=BLANK and RLFFUNC=2.

RLST Combinations for SPUFI: Because SPUFI is bound as a package, SPUFI
users must have an RLST row with the values RLFFUNC=2 and
PLANNAME=BLANK. The values for RLFCOLLN and RLFPKG can be blank.

RLST Combinations for Distributed Processing: For distributed processing, keep
in mind the following guidelines:

� When dynamic SELECT, INSERT, UPDATE, or DELETE statements are issued
from a remote location to access data at your local location using DRDA
protocols, they are governed by a row in the RLST with RLFFUNC=2 and
LUNAME=originating location first, LUNAME=PUBLIC second. The value in the
PLANNAME column must be blank, but you can specify values for RLFPKG
and RLFCOLLN.

� When dynamic SELECT, INSERT, DELETE and UPDATE statements are
issued from a remote location to access data at your local location using DB2
private protocol access, they are governed by a row in the RLST with
RLFFUNC=Blank and LUNAME=originating location first, LUNAME= PUBLIC
second. For DB2 Version 2 Release 3, only PLANNAME=blank is valid. For
DB2 Version 3 and above, PLANNAME can be blank or the name of the plan
created at the requester's location. RLFPKG and RLFCOLLN must be blank.

� If no row is present in the RLST to govern access from a remote location, the
limit is the default set on panel DSNTIPR at installation time.

Table 64. Search Order of Entries in RLST When Governing Bind Operations

RLFFUNC AUTHID LUNAME Governs bind operations for

1 Name Name A specific AUTHID at a specific location

1 Name Blank A specific AUTHID at the local location

1 Name PUBLIC A specific AUTHID at all locations

1 Blank Name All AUTHIDs at a specific location

1 Blank Blank All AUTHIDs at the local location

1 Blank PUBLIC All AUTHIDs at all locations.

Note: When governing bind authority, columns PLANNAME, RLFCOLLN, and RLFPKG
must be blank.

5-82 Administration Guide

Table 65. Search Order of Entries in RLST When Governing by Plan Name

RLFFUNC AUTHID PLANNAME LUNAME Limit Applies to

Blank Name Name Name A specific AUTHID for the named PLANNAME at a
specific location

Blank Name Name Blank A specific AUTHID for the named PLANNAME at the
local location

Blank Name Name PUBLIC A specific AUTHID for the named PLANNAME at all
locations

Blank Name Blank Name A specific AUTHID for all PLANNAMEs at a specific
location

Blank Name Blank Blank A specific AUTHID for all PLANNAMEs at the local
location

Blank Name Blank PUBLIC A specific AUTHID for all PLANNAMEs at all locations

Blank Blank Name Name All AUTHIDs for the named PLANNAME at a specific
location

Blank Blank Name Blank All AUTHIDs for the named PLANNAME at the local
location

Blank Blank Name PUBLIC All AUTHIDs for the named PLANNAME at all
locations

Blank Blank Blank Name All AUTHIDs for all PLANNAMEs at a specific location

Blank Blank Blank Blank All AUTHIDs for all PLANNAMEs at the local location

Blank Blank Blank PUBLIC All AUTHIDs for all PLANNAMEs at all locations

Note: When governing by plan name, columns RLFFUNC, RLFCOLLN, and RLFPKG must be blank.

Table 66 (Page 1 of 2). Search Order of Entries in RLST When Governing by Collection and Package Name

RLFFUNC AUTHID LUNAME RLFCOLLN RLFPKG Limit Applies to

2 Name Name Name Name A specific AUTHID for a specific
collection and package at a specific
location

2 Name Blank Name Name A specific AUTHID for a specific
collection and package at the local
location

2 Name PUBLIC Name Name A specific AUTHID for a specific
collection and package at all locations

2 Name Name Name Blank A specific AUTHID for a specific
collection and all packages at a specific
location

2 Name Blank Name Blank A specific AUTHID for a specific
collection and all packages at the local
location

2 Name PUBLIC Name Blank A specific AUTHID for a specific
collection and all packages at all
locations

2 Name Name Blank Name A specific AUTHID for all collections and
a specific package at a specific location

2 Name Blank Blank Name A specific AUTHID for all collections and
a specific package at the local location

 Chapter 5-5. Improving Resource Utilization 5-83

Table 66 (Page 2 of 2). Search Order of Entries in RLST When Governing by Collection and Package Name

RLFFUNC AUTHID LUNAME RLFCOLLN RLFPKG Limit Applies to

2 Name PUBLIC Blank Name A specific AUTHID for all collections and
a specific package at all locations

2 Name Name Blank Blank A specific AUTHID for all collections and
packages at a specific location

2 Name Blank Blank Blank A specific AUTHID for all collections and
packages at the local location

2 Name PUBLIC Blank Blank A specific AUTHID for all collections and
packages at all locations

2 Blank Name Name Name All AUTHIDs for a specific collection and
package at a specific location

2 Blank Blank Name Name All AUTHIDs for a specific collection and
package at the local location

2 Blank PUBLIC Name Name All AUTHIDs for a specific collection and
package at all locations

2 Blank Name Name Blank All AUTHIDs for a specific collection and
all packages at a specific location

2 Blank Blank Name Blank All AUTHIDs for a specific collection and
all packages at the local location

2 Blank PUBLIC Name Blank All AUTHIDs for a specific collection and
all packages at all locations

2 Blank Name Blank Name All AUTHIDs for all collections and a
specific package at a specific location

2 Blank Blank Blank Name All AUTHIDs for all collections and a
specific package at the local location

2 Blank PUBLIC Blank Name All AUTHIDs for all collections and a
specific package at all locations

2 Blank Name Blank Blank All AUTHIDs for all collections and
packages at a specific location

2 Blank Blank Blank Blank All AUTHIDs for all collections and
packages at the local location

2 Blank PUBLIC Blank Blank All AUTHIDs for all collections and
packages at all locations

Note: When governing by collection and package name, column PLANNAME must be blank.

| Limit Values: If you do not have a limit for a combination of AUTHID and
| PLANNAME, or for a combination of AUTHID, RLFCOLLN, and RLFPKG, set
| ASUTIME to null. If you make the limit value less than or equal to zero, you disable
| operations for the specified combinations, because no time is permitted for dynamic

SELECT, INSERT, UPDATE, or DELETE statements. A positive value limits the
number of service units that a dynamic DML statement can use.

Locking Considerations for RLSTs: While the governor is active, DB2 issues an
implicit SELECT statement from the active resource limit specification table when a
job issues its first dynamic SELECT, INSERT, UPDATE, or DELETE statement.
The implicit SELECT acquires standard DB2 locks on the RLST and its table
space. This process could have an effect on any INSERT, UPDATE, or DELETE

5-84 Administration Guide

statements issued for the RLST, or for any other table in the same table space as
the active RLST.

For more information about DB2 locks, see “Chapter 5-7. Improving Concurrency”
on page 5-137.

RLST Combinations for Parallel Processing: When governing query parallelism
remember the following guidelines:

� The resource limit facility only governs query parallelism for dynamic queries
when the value of the CURRENT DEGREE special register is 'ANY'.

� To disable all query parallelism for a dynamic query, you need two rows in your
RLST. One row with RLFFUNC='3' and one row with RLFFUNC='4' for query

| I/O parallelism and query CP parallelism, respectively. If you have data sharing
| and have enabled Sysplex query parallelism, then an additional row containing
| RLFFUNC='5' disables that. See Chapter 7 of Data Sharing: Planning and
| Administration for more information about how governing works with Sysplex
| query parallelism.

� If no entry can be found in your RLST which applies to parallelism, or if your
RLST cannot be read, then the resource limit facility does not disable query
parallelism.

� Parallelism modes cannot be disabled for static statements through the
resource limit facility.

| In the example in Table 67 the resource limit facility searches the active RLST to
| determine whether or not the user has been disabled for any type of query
| parallelism.

| Table 67 (Page 1 of 2). Example RLST to Govern Query Parallelism. The authorization ID BADGUY is not allowed
| to do any type of query parallelism.

RLFFUNC AUTHID LUNAME PLANNAME RLFCOLLN RLFPKG Effect

3 IOHOG PUBLIC blank blank blank Disables query I/O
parallelism for AUTHID
IOHOG for all plans
and all packages in all
collections at all
locations.

4 CPUHOG PUBLIC blank blank blank Disables query CP
parallelism for AUTHID
CPUHOG for all plans
and all packages in all
collections at all
locations.

| 5| CPUHOG| PUBLIC| blank| blank| blank| Disables Sysplex
| query parallelism for
| AUTHID CPUHOG for
| all plans and all
| packages in all
| collections at all
| locations.

 Chapter 5-5. Improving Resource Utilization 5-85

| Table 67 (Page 2 of 2). Example RLST to Govern Query Parallelism. The authorization ID BADGUY is not allowed
| to do any type of query parallelism.

RLFFUNC AUTHID LUNAME PLANNAME RLFCOLLN RLFPKG Effect

3 blank blank blank GOODCPU blank Disables query I/O
parallelism for all
AUTHIDs for all
packages in the
GOODCPU collection
at the local location.

4 blank blank GOODIO blank blank Disables query CP
parallelism for all
AUTHIDs for the
GOODIO plan at the
local location.

3 BADGUY PUBLIC blank blank blank Disables query I/O
parallelism for AUTHID
BADGUY for all plans
and all packages in all
collections at all
locations.

4 BADGUY PUBLIC blank blank blank Disables query CP
parallelism for AUTHID
BADGUY for all plans
and all packages in all
collections at all
locations.

| 5| BADGUY| PUBLIC| blank| blank| blank| Disables Sysplex
| query parallelism for
| AUTHID BADGUY for
| all plans and all
| packages in all
| collections at all
| locations.

Using RLSTs at Your Local Subsystem
If you are a system administrator, you must determine how your location intends to
use the governor and create several local procedures. You should establish a
procedure for creating and maintaining your RLSTs, and for establishing limits for
any newly written applications. You also need to devise required procedures for
console operators, such as switching RLSTs every day at a certain time.

When dynamic SELECT, INSERT, UPDATE, or DELETE statements are issued
from your location to access data at a remote location using DB2 private protocol,

| they are governed by RLSTs at both locations.

In application programs that use dynamic SELECT, INSERT, UPDATE, or DELETE
statements, each statement in the program is subject to the same time limit, which
is the limit that exists when the job makes its first dynamic SQL request. If any
statement exceeds the limit, the statement is not executed, and a unique SQL error
code is returned. Code your application programs so that they continue a course of
action if a statement exceeds the limit.

5-86 Administration Guide

If the failed instruction has a cursor associated with it, the cursor's position is
unchanged, and the application can close the cursor. Any other operations that
have been made with that cursor are not executed, and the same SQL error code
is returned.

If the failed SQL statement does not have a cursor associated with it, all changes
the statement made are lost before the error code is returned to the application, but
the unit of work previous to that statement is not lost. The application can then
issue another SQL statement, or commit all work done so far.

For more information on the commands used to start and stop the governor, see
Chapter 2 of Command Reference.

Managing the Opening and Closing of Data Sets
The number of open data sets affects the amount of available storage as well as
restart and shutdown times. However, is it important for the performance of
transactions that needed data sets are open and available for use. This section
describes how this open and close activity is managed by DB2, and gives some
recommendations about how you can influence this processing. The following
topics are described:

“Determining the Maximum Number of Open Data Sets”
“Understanding the CLOSE YES and CLOSE NO Options” on page 5-90
“Switching to Read-Only for Infrequently Updated Page Sets” on page 5-91

Determining the Maximum Number of Open Data Sets
DB2 defers closing and deallocating the table spaces or indexes until the number of
open data sets reaches one of the following limits:

� The MVS limit for the number of concurrently open data sets.

� 99% of the value that you specified for DSMAX.

When DSMAX is reached, DB2 closes a number of data sets not in use equal
to 3% of the value DSMAX. So DSMAX controls not only the limit of open data
sets, but also how many data sets are closed when that limit is reached.

How DB2 Determines DSMAX
Initially, DB2 calculates DSMAX as follows:

� Let concdb be the number of concurrent databases specified on installation
panel DSNTIPE.

� Let tables be the number of tables per database specified on installation panel
DSNTIPD.

� Let indexes be the number of indexes per table. The installation CLIST sets
this variable to 2 .

� Let tblspaces be the number of table spaces per database specified on
installation panel DSNTIPD.

DB2 calculates the number of open data sets with the following formula:

concdb × {(tables × indexes) + tblspaces}

 Chapter 5-5. Improving Resource Utilization 5-87

 Modifying DSMAX
| The formula used by DB2 does not take partitions into account. If you have many
| partitioned table spaces, then evaluate DSMAX more carefully. A
| nonpartitioning index on a table space defined as LARGE can have up to 128 data
| sets; if you are using a small PIECESIZE for nonpartitioned indexes, you might
| need to increase DSMAX to account for those extra data sets. You can modify

DSMAX by updating field DSMAX - MAXIMUM OPEN DATA SETS on installation
panel DSNTIPC.

Calculating the Size of DSMAX: To reduce the open and close activity of data
sets, it is important to set DSMAX correctly. DSMAX should be larger than the
maximum number of data sets that are open and in use at one time. For the most
accurate count of open data sets, refer to the OPEN/CLOSE ACTIVITY section of
the DB2 PM statistics report. Make sure the statistics trace was run at a peak
period, so you can obtain the most accurate maximum figure.

To calculate the total number of data sets (rather than the number that are open
during peak periods), you can do the following:

1. To find the number of simple and segmented table spaces and the
accompanying indexes, add the results of the following two queries. (This
assumes one data set per each simple or segmented table space.)

| These catalog queries are included in DSNTESP in SDSNSAMP and can be
| used as input to SPUFI.

General-use Programming Interface

Query 1

SELECT CLOSERULE, COUNT(\)

 FROM SYSIBM.SYSTABLESPACE

WHERE PARTITIONS < 1

GROUP BY CLOSERULE;

End of General-use Programming Interface

General-use Programming Interface

Query 2

SELECT CLOSERULE, COUNT(\)

 FROM SYSIBM.SYSINDEXES T1, SYSIBM.SYSINDEXPART T2

WHERE T1.NAME = T2.IXNAME

 AND T1.CREATOR = T2.IXCREATOR

AND T2.PARTITION < 1

GROUP BY CLOSERULE;

End of General-use Programming Interface

2. To find the number of data sets for partitioned table spaces, use the following
query, which returns the number of partitioned table spaces and the number of
partitions.

5-88 Administration Guide

General-use Programming Interface

Query 3

SELECT CLOSERULE, COUNT(\), SUM(PARTITIONS)

 FROM SYSIBM.SYSTABLESPACE

WHERE PARTITIONS > ð

GROUP BY CLOSERULE;

End of General-use Programming Interface

| Partitioned table spaces can require up to 254 data sets for the data, 254 data
| sets for the partitioning index, and one data set for each piece of the
| nonpartitioning index.

3. To find the total number of data sets, add:

� The numbers that result from Query 1 and Query 2

| � Two times the sum of the partitions as obtained from Query 3. (This allows
| for data partitions and indexes.)

These queries give you the number of CLOSE NO and CLOSE YES data sets.
While CLOSE NO data sets tend to stay open when they have been opened, they
might never be opened. CLOSE YES data sets are open when they are in use, and
they stay open for a period of time after they have been used. For more information
about how the CLOSE value affects when data sets are closed, see “Understanding
the CLOSE YES and CLOSE NO Options” on page 5-90.

 Recommendations
As with many recommendations in DB2, you must weigh the cost of performance
versus availability when choosing a value for DSMAX. Consider the following:

� For best performance, you should leave enough margin in your specification of
DSMAX that frequently used CLOSE YES data sets can remain open after they
are no longer referenced. If data sets are opened and closed frequently, such
as every few seconds, you can improve performance by increasing DSMAX.

� For the best restart times after an abnormal termination, there can be
advantages in limiting the number of open data sets. A smaller number of open

| data sets means there are fewer data sets to open when you restart DB2 after
| an abnormal termination.

� The number of open data sets on your subsystem that are in read/write state
| affects checkpoint costs and log volumes. Use the PCLOSEN and PCLOSET
| subsystem parameters to control how long data sets stay open in a read/write
| state. See “Switching to Read-Only for Infrequently Updated Page Sets” on

page 5-91 for more information.

� Consider segmented table spaces to reduce the number of data sets.

To reduce open and close activity, you can try reducing the number of data
sets by combining tables into segmented table spaces. This approach is most
useful for development or end-user systems where there are a lot of smaller
tables that can be combined into single table spaces. For more information on
using segmented table spaces, see “Creating a Segmented Table Space” on
page 2-90.

 Chapter 5-5. Improving Resource Utilization 5-89

General-use Programming Interface

Understanding the CLOSE YES and CLOSE NO Options
This section describes how DB2 manages data set closing and how the CLOSE
value for a table space or index affects the process of closing an object's data sets.
We use the term page set to refer to a table space or index.

The Process of Closing
DB2 dynamically manages page sets using 2 levels of page set closure—logical
close and physical close.

Logical Close: This occurs when the application has been deallocated from that
page set. This is at either commit or deallocation time, depending on the
RELEASE(COMMIT/DEALLOCATE) option of the BIND command, and is driven by
the use count. When a page set is logically closed, the page set use count is
decremented. When the page set use count is zero, the page set is considered not
in use; this makes it a candidate for physical close.

Physical Close: This happens when DB2 closes and deallocates the data sets for
| the page set. SYSLGRNX is updated when a table space (not an index) in
| read/write mode is physically closed.

When the Data Sets are Closed
As described in “Determining the Maximum Number of Open Data Sets” on
page 5-87, it is the number of open data sets that determines when it is necessary
to close data sets. When DB2 closes data sets, all data sets for a particular table

| space, index, or partition are closed.

It is the value you specify for CLOSE that determines the order in which page sets
are closed. When the open data set count becomes greater than 99% of DSMAX,
DB2 first closes page sets defined with CLOSE YES. The least recently used page

| sets are closed first. To do this, DB2 must keep track of page set usage. This least
| recently used method is effective; you should have fewer CLOSE NO data sets
| than DSMAX.

| If the number of open data sets cannot be limited by closing page sets or partitions
| defined with CLOSE YES, DB2 then must close page sets or partitions defined
| with CLOSE NO. The least recently used CLOSE NO data sets are closed first.

| Delaying the physical closure of page sets or partitions until necessary is called
| deferred close. Deferred closing of a page set or partition that is no longer being
| used means that another application or user can access the table space and
| employ the accompanying indexes without DB2 reopening the data sets. Thus,
| deferred closing of page sets or partitions can improve your applications'
| performance by avoiding I/O processing.

Recommendation: For a table space whose data is continually referenced, in most
cases it does not matter whether it is defined with CLOSE YES or CLOSE NO; the
data sets remain open. This is also true, but less so, for a table space whose data
is not referenced for short periods of time; because DB2 uses deferred close to
manage data sets, the data sets are likely to be open when they are used again.

5-90 Administration Guide

You could find CLOSE NO appropriate for page sets that contain data you do not
frequently use but is so performance-critical that you cannot afford the delay of
opening the data sets. You should consider having a "priming job" that accesses
these crucial tables when you start DB2. This insures that these crucial page sets
are always open when DB2 is running.

End of General-use Programming Interface

Switching to Read-Only for Infrequently Updated Page Sets
For both CLOSE YES and CLOSE NO page sets, DB2 automatically converts
infrequently updated page sets or partitions from read-write to read-only state
according to the parameters PCLOSEN and PCLOSET. PCLOSEN is the number
of consecutive DB2 checkpoints since a page set or partition was last updated; the
default is 5. PCLOSET is the amount of elapsed time since a page set or partition
was last updated; the default is 10 minutes. If either the PCLOSEN or PCLOSET
condition is met, the page set or partition is converted from read-write to read-only
state.

Updating SYSLGRNX: For both CLOSE YES and CLOSE NO page sets,
SYSLGRNX entries are updated when the page set is converted from read-write
state to read-only state. When this conversion occurs for table spaces, the
SYSLGRNX entry is closed for and any updated pages are externalized to DASD.

| For indexes, there is no SYSLGRNX entry, but the updated pages are externalized
| to DASD.

Performance Benefits of Read-Only Switching: An infrequently used page set's
conversion from read-write to read-only state results in the following performance
benefits:

� Improved data recovery performance because SYSLGRNX entries are more
precise, closer to the last update transaction commit point. As a result, the
RECOVER utility has fewer log records to process.

� Minimized logging activities. Log records for page set open, checkpoint, and
close operations are only written for updated page sets or partitions. Log
records are not written for read-only page sets or partitions.

Recommendations for PCLOSET and PCLOSEN: In most cases, the default
values are adequate. However, if you find that the amount of R/O switching is
causing a performance problem for the updates to SYSLGRNX, consider increasing
the value of PCLOSET, perhaps to 30 minutes.

| To change PCLOSEN or PCLOSET, update the values in the DSNTIJUZ
| installation job, run DSNTIJUZ, and restart DB2.

Planning the Placement of DB2 Data Sets
To improve performance, plan the placement of DB2 data sets carefully.
Concentrate mainly on data sets for system files (especially the active logs), for the
DB2 catalog and directory, and for user data and indexes. The objective is to
balance I/O activity between different volumes, control units, and channels, which
minimizes the I/O elapsed time and I/O queuing.

 Chapter 5-5. Improving Resource Utilization 5-91

DB2 has a multi-tasking structure in which each user's request runs under a
different task control block (TCB). In addition, the DB2 system itself has its own
TCBs and SRBs for logging and database writes. When your DB2 system is loaded
with data, you can estimate the maximum number of concurrent I/O requests as:

MAX USERS + 300 sequential prefetches + 300 asynchronous writes

This figure is important when you calculate the number of data paths for your DB2
subsystem.

Crucial DB2 Data Sets
First, decide which data sets are crucial to DB2's functioning. To gather this
information, use the I/O reports from the DB2 performance trace. If these reports
are not available, consider these the most important data sets:

For transactions:

� DSNDB01.SCT02 and its index
� DSNDB01.SPT01 and its index

 � DSNDB01.DBD01
� DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH table

 � DSNDB06.SYSPKAGE
 � Active logs
� Most frequently used user table spaces and indexes

For queries:

 � DSNDB01.DBD01
� DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH

 � DSNDB06.SYSPKAGE
� DSNDB06.SYSDBASE table space and its indexes
� DSNDB06.SYSVIEWS table space and the index on SYSVTREE

| � Work file table spaces
� QMF system table data sets
� Most frequently used user table spaces and indexes

These lists do not include other data sets that are less crucial to DB2's
performance, such as those that contain program libraries, control blocks, and
formats. Those types of data sets have their own design recommendations. But
check whether the data sets have used secondary allocations. For best
performance, stay within the primary allocations.

Changing Catalog and Directory Size and Location
Consider changing the size or location of your DB2 catalog or directory if necessary
for your site. See “Appendix G. Using Tools to Monitor Performance” on
page X-173 for guidelines on when to do this.

To change the size or location of DB2 catalog or directory data sets for any one of
the situations listed above, you must run the RECOVER utility on the appropriate
data base, or the REORG utility on the appropriate table space. A hierarchy of
recovery dependencies determines the order in which you should try to recover
data sets. This order is discussed in the description of the RECOVER utility in
Section 2 of Utility Guide and Reference.

5-92 Administration Guide

Monitoring I/O Activity of Data Sets
One way to monitor data set I/O activity is to use the DB2 PM report titled I/O
Activity Report - Buffer Pool. For information on how to tune your environment to
improve I/O performance, see “Reducing the Time Needed to Perform I/O
Operations” on page 5-40 and 5-29.

For each database and page set, this report shows the:

� Total number of I/Os

� Average time required for reads

� Total number for each type of read request (such as dynamic prefetch, list
prefetch, sequential prefetch and synchronous)

� Average of the times required for reads by type of read

� The percentage of requests that required I/O by type of read

� Number of pages read per synchronous I/O or per prefetch request

� Percentage of prefetch requests without I/O. This can occur when all of the
requested pages are in the buffer pool.

� Number of synchronous and asynchronous write requests

� Average time required for writes

� Average number of pages written per request

| Work File Data Sets
| Work file data sets are used for sorting, for materializing views and nested table
| expressions, for temporary tables, and for other activities. DB2 does not distinguish
| or place priorities on these uses of the work file data sets. Excessive activity from
| one type of use can interfere and detract from the performance of others. It is
| important to monitor how work files use devices, both in terms of space use and I/O
| response times.

| More about Temporary Tables: Section 2 of Installation Guide contains
| information about how to estimate the DASD storage required for temporary tables.
| The storage is similar to that required for regular tables. When a temporary table is
| populated using an INSERT statement, it uses work file space.

| No other process can use the same work file space as that temporary table until
| the temporary table goes away. The space is reclaimed when the application
| process commits or rolls back, or when it is deallocated, depending which
| RELEASE option was used when the plan or package was bound.

| To best monitor temporary tables, keep work files in a separate buffer pool. Use
| IFCID 0311 in performance trace class 8 to distinguish temporary table work from
| other uses of the work file.

 Chapter 5-5. Improving Resource Utilization 5-93

 DB2 Logging
DB2 logs changes made to data, and other significant events, as they occur. You
can find background information on the DB2 log in “Chapter 4-3. Managing the Log
and the Bootstrap Data Set” on page 4-83. For the sake of performance, it is
important to understand the log requests that an application program makes, and
their effect on the number of I/Os.

Logging Options: Specify logging options at installation time on the Log Data Sets
panel DSNTIPL. On this panel, the most important options for tuning performance
are OUTPUT BUFFER and WRITE THRESHOLD.

� The OUTPUT BUFFER field specifies the size of the output buffer used for
writing active log data sets. The maximum size of OUTBUFF is 4000 KB. The
buffer must be large enough to prevent buffer shortages in order to decrease
the number of forced I/O operations (forced because there are no more buffers)
or wait conditions. We recommend that you use the maximum allowed value for
this field.

� The WRITE THRESHOLD field indicates the number of contiguous 4KB output
buffer pages that are allowed to fill before data is written to the active log data

set. The default is 20. We recommend that you use the default for this field.
Never choose a value that is greater than 20% of the number of buffers in the
output buffer.

� Under normal circumstances, use the default values for the fields NUMBER OF
LOGS, OUTPUT BUFFER, WRITE THRESHOLD and INPUT BUFFER.

DB2 uses two different types of requests when it logs data and events:

NOWAIT: NOWAIT requests are the most frequent. When data is updated, before-
and after-image records are usually moved to the log buffer, and control is returned
to the application. However, if no log buffer is available, the application must wait
for one. When the number of log buffers used reaches the WRITE THRESHOLD
value, the data is written; however, the application does not wait for the write.

Batch jobs might log a large amount of data before they commit. The amount of
data logged between FORCE requests can be larger than the total buffer size. If
so, we recommend that the write threshold (WRTHRSH) not exceed 20% of the
total number of buffers in the pool. This size allows DB2 to continue using buffers
while the filled buffers are being written to the active log data sets.

FORCE: FORCE requests occur at commit time, when an application has
performed database updates. If the log data set is not busy, all log buffers are
written to disk. The application must wait until the write is completed. If the log data
set is busy, the requests are queued until it is freed.

CICS and IMS attachment facilities use two FORCE requests during a commit;
TSO uses only one.

By the time a program reaches a commit point, the database change records might
already have been written, if the log buffer write threshold has been reached or
another process has made a FORCE request. Otherwise, the records are written at
commit time, as shown in Figure 105 on page 5-95.

5-94 Administration Guide

Figure 105 on page 5-95 shows that during two-phase commit, the two FORCE log
requests cause two waits. The first FORCE request forces all the log records of
changes to be written, if they have not already been written. When two logs are
used, the write to the first log must be completed before the write to the second log
begins.

 FORCE

End of phase 1 FORCE

│ │ Beginning of phase 2

 │ │ │ │

│ │ │ │ End of COMMIT

│ │ │ │ │

6 │ 6 │ │

 I/O │ I/O │ 6

Log 1 ───┤xxxxxxxxx│─────────────────┤xxxxxxxxx├───────────────

 6 6

 I/O I/O

Log 2 ─────────────┤xxxxxxxxx│─────────────────┤xxxxxxxxx├─────

 %───────────────────5 %───────────────────5

 Application waiting Application waiting

 for logging for logging

Figure 105. Dual Logging during Two-Phase Commit

You can design the DB2 log for better performance. In particular, try to:

� Minimize device contention on the log data sets by placing data sets correctly.

� Avoid waits that occur because no log buffer is available.

� Define enough active log data sets to prevent DB2 from waiting while a log is
archived.

� Make the active log large enough that backouts do not have to use the archive
log.

| � Whenever you allocate new active log data sets, preformat them using the
| DSNJLOGF utility described in Section 3 of Utility Guide and Reference. This
| avoids the overhead of preformatting the log, which normally occurs at
| unpredictable times.

Log Devices: Because the commit process is synchronized with the active log
writes, the devices assigned to the active log data sets must be fast ones. In
general, log data sets can make effective use of the DASD Fast Write feature of
IBM's 3990 cache.

Place the copy of the bootstrap data set and, if using dual active logging, the copy
of the active log data sets, on volumes that are accessible on a path different than
that of their primary counterparts. DB2 writes serially or in parallel to the log data
sets. If a 4KB log control interval is written for the first time to DASD, the write I/Os
to the log data sets are done in parallel. If the same 4KB log control interval is
again written to DASD, then the write I/Os to the log data sets must be done
serially to prevent any possibility of losing log data in case of I/O errors on both
copies simultaneously. This improves system integrity; there is no I/O overlap in
dual logging, except when the WRITE THRESHOLD value is reached, triggering full
output log buffers to be written, see Figure 105. For more information on volume
considerations, refer to Section 2 of Installation Guide.

 Chapter 5-5. Improving Resource Utilization 5-95

I/O Contention on Log Data Sets: Avoid device contention on log data sets. Place
your active log data sets on different volumes and I/O paths to avoid I/O contention
in periods of high concurrent log read activity.

When there are multiple concurrent readers of the active log, DB2 can ease
contention by assigning some readers to the second copy of the log. Therefore, for
performance and error recovery, use dual logging and place the active log data
sets on a number of different volumes and I/O paths. Whenever possible, put data
sets within a copy or within different copies on different volumes and I/O paths.
Ensure that no data sets for the first copy of the log are on the same volume as
data sets for the second copy of the log.

Determining the Size of Active Logs
The total capacity provided for the active log can affect DB2 performance
significantly. Four parameters affect the capacity of the active log. In each case,
increasing the value you specify for the parameter increases the capacity of the
active log. See Section 2 of Installation Guide for more information on updating the
active log parameters. The parameters are listed below:

� NUMBER OF LOGS on the Log Data Sets Panel (DSNTIPL) controls the
number of active log data sets you create.

� ARCHIVE LOG FREQ on the Log Data Sets Panel (DSNTIPL) provides an
estimate of how often active log data sets are copied to the archive log.

� UPDATE RATE on the Log Data Sets Panel (DSNTIPL) estimates the number
of database changes (inserts, updates, and deletes) expected per hour.

� CHECKPOINT FREQ on the Operator Functions Panel (DSNTIPN) specifies
the number of log records that DB2 writes between checkpoints.

The capacity you specify for the active log affects DB2 performance significantly. If
you specify a capacity that is too small, DB2 might need to access data in the
archive log during rollback and restart. This takes a considerable amount of time.
When you are deciding how many active log data sets to use and how large each
must be, consider that:

� Performance is negatively affected when DB2 must access data on an archive
log data set. This can occur during rollback or restart. Access to archived
information can be delayed for a considerable length of time if a unit is
unavailable or if a volume mount is required (for example, a tape mount).

During rollback, DB2 does not share access to an archive log data set with
multiple units of work. In other words, one unit of work retrieves all records from
an archive log data set before another unit of work is allowed to access that
archive log data set. Database locks, virtual storage, and other resources are
not freed until the rollback completes. DB2 is unavailable for new work until
restart processing is complete.

However, if the archive log data set resides on DASD, it can be shared by
many units of work.

� At least one checkpoint is taken each time DB2 switches to a new active log
data set. If the data sets are too small, checkpoints occur too frequently. As a
result, database writes are not efficient. Provide enough active log space for 10
checkpoint intervals. For estimation purposes, assume that a single checkpoint
writes 24KB (or 6 control intervals) of data to the log. A checkpoint interval is
defined by the number you specify for checkpoint frequency (see Section 2 of

5-96 Administration Guide

Installation Guide). Make sure that the number you specify multiplied by 10 is
less than the number of changes per hour multiplied by the number of hours
per archive.

� When selecting values for the parameters described above, avoid creating a
few very large active log data sets. This happens if you specify a large number
for ARCHIVE LOG FREQ on the Log Data Sets Panel (DSNTIPL), and a small
number for NUMBER OF LOGS (also found on panel DSNTIPL). This often
causes active log data set shortages.

� Avoid creating many very small data sets. This happens if you specify a small
number for ARCHIVE LOG FREQ and a large number for NUMBER OF LOGS.
This causes operational problems if you archive to tape.

� When archiving to tape, remember that the archive log contains the BSDS.
You can create an archive log data set that spans up to 20 tape volumes.

� When archiving to DASD, set the primary space quantity and block size for the
archive log data set so you can off-load the active log data set without forcing
the use of secondary extents in the archive log data set. This avoids space
abends when writing the archive log data set.

� We recommend that the number of records for the active log be divisible by the
blocking factor of the archive log (DASD or tape).

To determine the blocking factor of the archive log, divide the value specifed on
the BLOCK SIZE field of installation panel DSNTIPA by 4096 (that is, BLOCK
SIZE / 4096). Then modify the DSNTIJIN installation job so that the number of
records in the DEFINE CLUSTER for the active log data set is a multiple of the
blocking factor.

DB2 always writes complete blocks when it creates the archive log copy of the
active log data set. If you make the archive log blocking factor evenly divisible
into the number of active log records, DB2 does not have to pad the archive
log data set with nulls to fill the block. This can prevent REPRO errors if you
should ever have to REPRO the archive log back into the active log data set,
such as during disaster recovery.

� When you calculate the size of the log data set, identify the longest unit of work
in your application programs. For example, if a batch application program
commits only once every 20 minutes, the log data set should be twice as large
as the update information produced during this period by all of the application
programs that are running.

� The active log data set should be large enough to hold the data written while
the previous active logs are archived. When you estimate the time required for
archiving, also allow time for possible operator interventions, I/O errors, and
tape drive shortages if off-loading to tape. DB2 supports up to 20 tape volumes
for a single archive log data set. If your archive log data sets are under the
control of DFSMShsm, also consider the Hierarchical Storage Manager recall
time, if the data set has been migrated by Hierarchical Storage Manager.

� If you off-load to tape, consider adjusting the size of each of your active log
data sets to contain the same amount of space as can be stored on a nearly
full tape volume. This minimizes tape handling and volume mounts and
maximizes the use of the tape resource.

� If you change the size of your active log data set to fit on one tape volume,
remember that the bootstrap data set is copied to the tape volume along with
the copy of the active log data set. Therefore, decrease the size of your active

 Chapter 5-5. Improving Resource Utilization 5-97

log data set to offset the space required on the archive tape for the bootstrap
data set.

For more information on determining and setting the size of your active log data
sets, refer to Installation Guide.

Monitoring the Log
DB2 PM provides statistics about the DB2 log, as shown in Figure 106. In this
report, note especially the following fields:

READS SATISFIED FROM ARCHIVE LOG .A/: For optimal performance, when
data is backed out, it should still be available in the output buffer or in the active
log. If the data has already been off-loaded to the archive log, the active log is
probably too small.

UNAVAILABLE OUTPUT LOG BUFF .B/: This field shows how many times a write
request to the active log waited because no buffer was available. These waits
should not occur. If these waits do occur, the output buffer might be too small, or
the size of the write threshold might be too close to the size of the output buffer.

LOG ACTIVITY QUANTITY

--------------------------- --------

READS SATISFIED-OUTPUT BUFF 269.ðð

READS SATISFIED-OUTP.BUF(%) 98.18

READS SATISFIED-ACTIVE LOG 5.ðð

READS SATISFIED-ACTV.LOG(%) 1.82

READS SATISFIED-ARCHIVE LOG .A/ ð.ðð
READS SATISFIED-ARCH.LOG(%) ð.ðð

TAPE VOLUME CONTENTION WAIT ð.ðð

WRITE-NOWAIT 298.9K

WRITE OUTPUT LOG BUFFERS 192ðð.ðð

BSDS ACCESS REQUESTS 377.ðð

UNAVAILABLE OUTPUT LOG BUFF .B/ ð.ðð

CONTR.INTERV.CREATED-ACTIVE 698ð.ðð

ARCHIVE LOG READ ALLOCATION ð.ðð

ARCHIVE LOG WRITE ALLOCAT. ð.ðð

CONTR.INTERV.OFFLOADED-ARCH ð.ðð

READ DELAYED-UNAVAIL.RESOUR ð.ðð

READ DELAYED-ARCH.ALLOC.LIM N/A

LOOK-AHEAD MOUNT ATTEMPTED ð.ðð

LOOK-AHEAD MOUNT SUCCESSFUL ð.ðð

Figure 106. Log Statistics in the DB2 PM Statistics Report

Guidelines for Controlling Logging
Certain processes cause a large amount of information to be logged, requiring a
large amount of log space. To avoid wasting tape media, consider the following:

� The utility operations REORG and LOAD LOG(YES) cause all reorganized or
loaded data to be logged. For example, if a table space contains 200 million
rows of data, this data, along with control information, is logged when this table
space is the object of a REORG utility job.

5-98 Administration Guide

As a guideline, specify LOAD LOG(YES) when adding a small percentage of
records. This creates additional logging, but eliminates the need for a full image

| copy. When loading many records or issuing a REORG on large tables, specify
LOG(NO) and take a full image copy immediately after the LOAD or REORG

| (or use inline copy) .

� The amount of logging performed for applications depends on how much data
is changed. Certain SQL statements are quite powerful, making it easy to
modify a large amount of data with a single statement. These statements
include:

– INSERT with a subselect from another table
 – DELETE/UPDATE

For nonsegmented table spaces, each of these statements results in the
logging of all database data that change. For example, if a table contains 200
million rows of data, that data and control information are logged if all of the
rows are deleted in a table using the SQL DELETE statement. No intermediate
commit points are taken during this operation.

For segmented table spaces, the volume of log data written for mass DELETE
statements is much less than for nonsegmented table spaces.

When loading a large amount of data, use the LOAD utility rather than the SQL
INSERT statement whenever possible. This allows you to control the logging
performed for the utility. Because the utility takes intermediate commit points,
the demand for log information at rollback and restart is minimized.

Try to use segmented table spaces or create one table per table space. For
nonsegmented table spaces, use the SQL DROP statement to drop the entire
table space rather than delete all rows or drop the table itself. This operation
does not log the data involved.

� Another way to reduce log volume for updated variable-length columns
(including those that are compressed) is to place the updated columns near the
end of the row. DB2 logs from the first changed byte to the end of the record.
However, if you have columns defined as variable-length and they do not get
updated, keep in mind that DB2 accesses fixed length columns faster than
variable length columns. Generally, you should have fixed length columns
precede variable length columns because of the access time. Base your
optimization decisions on your specific environment.

Improving DASD Utilization: Space and Device Utilization
To use DASD space more efficiently, you can:

� Change your allocation of data sets to keep data sets within primary
allocations. To understand how DB2 extends data sets, see “Allocating and
Extending Data Sets” on page 5-100.

� Manage them with the Hierarchical Storage Management functional component
(DFSMShsm) of DFSMS/MVS, as described in “Using DFSMShsm to Manage
Data Sets” on page 5-101.

� Compress your data, as described in “Compressing Your Data” on page 5-102.

To manage the use of DASD, you can use RMF to monitor how your devices are
used. Watch for usage rates that are higher than 30% to 35%, and for devices with

 Chapter 5-5. Improving Resource Utilization 5-99

high activity rates. Log devices could have usage rates of up to 50% without having
serious performance problems.

Allocating and Extending Data Sets
Primary and secondary allocation sizes are the main factors that affect the amount
of DASD space that DB2 uses.

In general, the primary allocation must be large enough to handle the storage
needs that you anticipate. The secondary allocation must be large enough for your
applications to continue operating until the data set is reorganized.

If the secondary allocation space is too small, you might have more extends to
satisfy those activities that need a large space.

Extending DB2-Managed Data Sets
When the data set is created, DB2 always allocates a primary allocation space on a
volume that has space available and is specified in the DB2 storage group. Any
new extension always gets a secondary allocation space. When the extensions
reach the end of the volume, DB2 accesses all candidate volumes from the DB2
storage group and issues the access method services command ALTER
ADDVOLUMES to add all volumes in the integrated catalog as candidate volumes

for the data set. DB2 then makes a request to extend a secondary allocation. The
added volumes are only those that have not been used by DB2 for the data set.

After the extension is successful, DB2 issues the access method services
command ALTER REMOVEVOLUMES to remove all candidate volumes from the
integrated catalog for the data set.

DB2 extends data sets when:

� The requested space exceeds the remaining space

� 10 percent of the smaller allocation space (but not over 10 allocation units such
as tracks or cylinders) exceeds the remaining space

If DB2 fails to extend a data set with a secondary allocation space because there is
no secondary allocation space available on any single candidate volume of a DB2
storage group, DB2 tries again to extend with the requested space, if the requested
space is smaller than the secondary allocation space.

Extending Nonpartitioned Spaces: For a nonpartitioned table space or index
space, DB2 defines the first piece of the page set starting with a primary allocation
space, and extends that piece with secondary allocation spaces. When the end of
the first piece is reached, DB2 defines a new piece (which is a new data set) and

| extends to that new piece starting with a primary allocation space. However, to do
| the extension, the value of (PRIQTY + 118 × SECQTY) must be at least 2GB for
| nonpartitioned table spaces. For nonpartitioning indexes, that value must reach the
| user-specified PIECESIZE or the default of 2GB. If DB2 reaches the maximum
| number of extents (119) before reaching the PIECESIZE or 2GB limit, the extension
| fails.

| For nonpartitioning indexes on partitioned table spaces defined as LARGE, the
| value of PRIQTY + 118 × SECQTY must be at least the user-specified value of
| PIECESIZE, or the default value of 4GB. If DB2 reaches the maximum number of
| extents before reaching the PIECESIZE or 4GB limit, the extension fails.

5-100 Administration Guide

Monitoring Data Set Extensions: Use IFCID 0258 in statistics class 3 to monitor
extension activity. The record is written whenever a data set is extended, and it
includes such information as the primary and secondary quantity values, the
maximum number of extents this data set has reached, and the number of extents
both before and after the current extension.

Extending User-Managed Data Sets
User-managed data sets are extended using only volumes available in the
integrated catalog facility catalog. You must issue the access method services
commands ALTER ADDVOLUMES or ALTER REMOVEVOLUMES for candidate
volumes before running out of space in the current volume.

Using DFSMShsm to Manage Data Sets
The Hierarchical Storage Management functional component (DFSMShsm) of
DFSMS/MVS manages space and data availability among the storage devices in
your system. You can use DFSMShsm to move data sets that have not been
recently used to slower, less expensive storage devices; this helps to ensure that
DASD space is managed efficiently.

The storage manager reviews data storage daily. DFSMShsm can delete data sets
or move them to another device. The space manager specifies the time when it will
perform these tasks, as well as how long data sets are kept before they are deleted
or moved. You can initiate many DFSMShsm operations directly, rather than
waiting for the assigned processing window.

The following are some features of DFSMShsm and guidelines for using
DFSMShsm with DB2:

� DFSMShsm can automatically migrate and recall archive log and image copy
data sets. If DB2 needs an archive log data set or an image copy data set that
DFSMShsm has migrated, a recall begins automatically and DB2 waits for the
recall to complete before continuing.

For processes that read more than one archive log data set, such as the
RECOVER utility, DB2 anticipates a DFSMShsm recall of migrated archive log
data sets. When a DB2 process finishes reading one data set, it can continue
with the next data set without delay, because the data set might already have
been recalled by DFSMShsm.

� DB2 table spaces and index spaces can also be automatically migrated and
recalled.

� If you accepted the default value YES for the RECALL DATABASE parameter
on the Operator Functions panel (DSNTIPO), DB2 recalls migrated table
spaces and index spaces. At data set open time, DB2 waits for DFSMShsm to
perform the recall. The amount of time DB2 waits while the recall is being
performed is specified on the RECALL DELAY parameter, which is also on
panel DSNTIPO. If RECALL DELAY is set to zero, DB2 does not wait, and the
recall is performed asynchronously.

� DB2 subsystem data sets, including the DB2 catalog, DB2 directory, active
logs, and temporary databases, can reside on system managed storage (SMS)
but should be recalled via DFSMShsm before starting DB2. An alternative is to
avoid migrating by assigning a management class to these data sets that
prevents migration.

 Chapter 5-5. Improving Resource Utilization 5-101

� If a volume has a STOGROUP specified, it must be recalled only to volumes of
the same device type as others in the STOGROUP.

In addition, you must coordinate the DFSMShsm automatic purge period, the DB2
log retention period, and MODIFY utility usage. Otherwise, the image copies or logs
you might need during a recovery could already have been deleted.

For more information about DFSMShsm, see DFSMS/MVS: DFSMShsm Managing
Your Own Data.

Compressing Your Data
Using the COMPRESS clause of the CREATE TABLESPACE and ALTER
TABLESPACE SQL statements allows you to compress data in a table space or in
a partition of a partitioned table space. In many cases, using the COMPRESS
clause can significantly reduce the amount of DASD space needed to store data,
but the compression ratio you achieve depends on the characteristics of your data.
In addition, with compressed data, the amount of I/O required to scan a table space

| can be reduced.

For information on using compressed data, see “Compressing Data in a Table
Space or Partition” on page 2-63.

 Performance Considerations
To estimate how well a given table space will compress, run the standalone utility
DSN1COMP. Consider the following when making your decision:

� Compressing data can result in a higher processor cost, depending on the SQL
work load. However, if you use IBM's synchronous data compression hardware,
processor time is significantly less than if you use just the DB2-provided
software simulation or an edit or field procedure to compress the data. Indexes
are not compressed.

� The processor cost to decode a row using the COMPRESS clause is
significantly less than the cost to encode that same row. This rule applies
regardless of whether the compression uses the synchronous data
compression hardware or the software simulation built into DB2.

� When rows are accessed sequentially, fewer I/Os might be required to access
data stored in a compressed table space. However, there is a trade-off
between reduced I/O resource consumption and the extra processor cost for
decoding the data.

� If random I/O is necessary to access the data, the number of I/Os will not
decrease significantly, unless the associated buffer pool is larger than the table
and the other applications require little concurrent buffer pool usage.

� Depending on the SQL work load, as the degree of data compression
increases, it can lead to:

– Higher buffer pool hit ratios
 – Fewer I/Os

– Fewer getpage operations

� The data access path DB2 uses affects the processor cost for data
compression. In general, the relative overhead of compression is higher for
table space scans and less costly for index access.

5-102 Administration Guide

� Some types of data compress better than others. Data that contains
hexadecimal characters or strings that occur with high frequency compresses
quite well, while data that contains random byte frequencies might not
compress at all. For example, textual and decimal data tends to compress well
because of the high frequency of certain byte strings.

� In determining whether using the COMPRESS clause is advantageous,
examine the uncompressed length of a row. As row lengths become shorter,
compression yields diminishing returns because 8 bytes of overhead are
required to store each record in a data page. On the other hand, when row
lengths are very long, compression of the data portion of the row may yield little
or no reduction in data set size because DB2 rows cannot span data pages. In
the case of very long rows, using a 32KB page can enhance the benefits of
compression, especially if the data is accessed primarily in a sequential mode.

 Tuning Recommendations
In some cases using compressed data results in an increase in the number of
getpages, lock requests, and synchronous read I/Os. There are two possible
reasons for this:

� Sometimes updated compressed rows cannot fit in the home page, and they
| must be stored in the overflow page. This can cause additional getpage and
| lock requests. If a page contains compressed fixed-length rows with no free

space, there is a great probability that an updated row has to be stored in the
overflow page.

To avoid the potential problem of more getpage and lock requests, add more
free space within the page. Start with 10 percent additional free space and
adjust further as needed. If, for example, 10 percent free space was used
without compression, then start with 20 percent free space with compression
for most cases. This recommendation is especially important for data that is
heavily updated.

� With type 1 indexes, data compression can cause more lock requests with the
same number of getpages that would occur with no data compression. With
datacompressed, more rows are stored in a page. More rows means that DB2
must lock more index pages per data page. This action has a negligible
performance effect.

Improving Main Storage Utilization
This section provides specific information for both real and virtual storage tuning.
With DB2, the amount of real storage often needs to be close to the amount of
virtual storage. For a general overview of some factors relating to virtual storage
planning, refer to Section 2 of Installation Guide. If you use the distributed data
functions of DB2, you will probably find that you need more virtual storage. You can
expect your storage needs to increase in the extended common storage area
(ECSA) above the 16MB line by:

� 1KB for each conversation, plus
� 2KB for each thread that uses distributed processing, plus
� 1KB for each DB2 site in your network, plus
� 40KB for code that relates to distributed processing

Your virtual storage needs will probably not increase in the CSA below the 16MB
line. Any other increase in the amount of virtual storage needed occurs within the

 Chapter 5-5. Improving Resource Utilization 5-103

extended private area of the DB2 database address space and the extended
private area of the distributed data address space.

Use the techniques listed below to reduce your use of virtual storage.

Minimize Storage Needed for Locks: You can save main storage by using the
LOCKSIZE TABLESPACE option on the CREATE TABLESPACE statements for
large tables, which affects concurrency. This is most practical when concurrent read
activity without a write intent, or a single write process, is used.

You can use LOCKSIZE PAGE or LOCKSIZE ROW more efficiently when you
commit your data more frequently, use type 2 indexes, or use cursor stability with
CURRENTDATA NO. For more information on specifying LOCKSIZE
TABLESPACE, see “Monitoring DB2 Locking” on page 5-190.

Use Less Buffer Pool Storage: Using fewer and smaller virtual buffer pools
reduces the amount of central storage space DB2 requires. Virtual buffer pool size
can also affect the number of I/O operations performed; the smaller the virtual
buffer pool, the more I/O operations needed. Also, some SQL operations, such as
joins, can create a result row that will not fit on a 4KB page. For information about
this, see “Make Buffer Pools Large Enough for the Work Load” on page 5-40.

Reduce the Number of Open Data Sets: You can reduce the number of open
data sets by:

� Including multiple tables in segmented table spaces
� Using fewer indexes
� Reducing the value you use for DSMAX

Reduce the Unnecessary Use of DB2 Sort: DB2 sort uses buffer pool 0 and
database DSNDB07, which holds the temporary work files. However, to obtain
more specific information for tuning, you can assign the temporary work file table
spaces in DSNDB07 to another buffer pool.

 Using DB2 sort increases the load on the processor, on virtual and real storage,
and on I/O devices. For suggestions on reducing the need for sort, see
“Determining Sort Activity” on page 5-294.

Ensure ECSA Size Is Adequate: The extended common service area (ECSA) is a
system area that DB2 shares with other programs. Shortage of ECSA at the system
level leads to use of the common service area.

DB2 places some load modules and data into the common service area. These
modules require primary addressability to any address space, including the
application's address space. Some control blocks are obtained from common
storage and require global addressability. For more information, see Section 2 of
Installation Guide.

Ensure EDM Pool Space Is Being Used Efficiently: Monitor your use of EDM
pool storage using DB2 statistics; see “Tuning the EDM Pool” on page 5-66.

Reduce the value for EDMPOOL storage if possible. See “Releasing thread
storage” on page 5-66 for another option on controlling EDM pool storage.

5-104 Administration Guide

Performance and the Storage Hierarchy
To meet the diverse needs of application data, a range of storage options is
available, each with different access speeds, capacities, and costs per megabyte.
This broad selection of storage alternatives supports requirements for enhanced
performance and expanded online storage options, providing more options in terms
of performance and price.

The levels in the DB2 storage hierarchy include central storage, expanded storage,
3990 cache, DASD, optical storage, and tape or cartridge.

 Central Storage
Central storage refers to the processor storage where program instructions reside
while they are executing. Data in DB2's virtual buffer pools resides in central
storage only or in central and expanded storage, and thus provides the fastest data
access because no I/O operations are required. The maximum amount of central
storage that one DB2 subsystem can use is about 2GB.

 Expanded Storage
Expanded storage is optional high-speed processor storage. Data is moved in 4KB
blocks between central storage and expanded storage. Data cannot be transferred
to or from expanded storage without passing through central storage.

If your DB2 subsystem is running under MVS Version 4 Release 3, or later
releases, and the Asynchronous Data Mover Facility of MVS is installed, DB2 can
use up to 8GB of expanded storage by creating hiperpools. For more information
on how DB2 uses hiperpools, see “Buffer Pools and Hiperpools” on page 5-49.

 3990 Cache
DB2 can take advantage of cache in the 3990 Model 3 and the 3990 Model 6
Storage Controls. To understand how DB2 can use 3990 cache, you need to
understand how cache storage fits into the storage hierarchy. DB2's primary
“cache” is the central storage and expanded storage in the processor. Storage
pools that reside in processor storage include:

 � Hiperpools
 � Buffer pools
� Buffers for log data
� EDM pool for database descriptors, plans, and packages

 � RID pool
 � Sort pool

DB2's large capacity for buffers in processor storage and its write avoidance and
sequential access techniques allow applications to avoid a substantial amount of
read and write I/O, combining single accesses into sequential access, so that the
DASD devices are used more effectively.

The 3990 cache acts as a secondary buffer. It is not useful to store the same data
in processor storage and the 3990 cache. To be useful, the 3990 cache must be
significantly larger than the buffers in real storage, store different data, or provide
another performance advantage. Data can be retrieved more quickly from 3990
cache than it can be retrieved from DASD. In addition, 3990 cache enables

 Chapter 5-5. Improving Resource Utilization 5-105

extended functions such as DASD Fast Write, concurrent copy, and dual copy. You
can use DFSMS to provide dynamic management of the cache storage.

If you are using RAMAC DASD, then DASD Fast Write and 3990 caching are
always recommended.

How Much 3990 Cache?
The amount of 3990 cache to use for DB2 depends primarily on the relative
importance of price and performance. If the 3990 cache is substantially larger than
the DB2 buffer pools, DB2 can make effective use of the 3990 cache to reduce I/O
times for random I/O. For RAMAC DASD, specify a minimum of 256MB of cache
storage and use 3990 Model 6 control units for performance-sensitive work.

For sequential I/O, the improvement the 3990 cache provides is generally small.
However, data compression and parallel I/O streams can contribute to faster I/O
times. Compressing data reduces the amount of data that is sent across the
channel, through the controller, and onto DASD. Compression also allows you to
reduce buffer pool size without reducing buffer pool hit ratios.

Sequential Cache Installation Option
DB2 provides the option to use or bypass the 3990 cache for sequential prefetch.
On panel DSNTIPE, you can specify whether to use the sequential mode to read
cached data from a 3990 Model 3 or 3990 Model 6 cache. If you specify SEQ, DB2
sequential prefetch (including sequential detection) uses the cache. If you specify
BYPASS, which is the default, DB2 sequential prefetch bypasses the 3990 cache.
List prefetch always bypasses the cache.

Recommendation: If you have a cached 9343, 3990 Model 3 with the extended
platform, or 3990 Model 6, specify SEQ for the cache option on panel DSNTIPE.
This option can improve performance because 3990 extended platform caching can
transfer data between DASD and cache by the cylinder rather than by the track.

Sort Work Files: Sort work files can have a large number of concurrent processes
that can overload the 3990 cache and degrade system performance. For instance,
one large sort could use 100 sequential files, needing 60MB of storage. Unless the
3990 cache sizes are large, you might need to specify BYPASS or use DFSMS
controls to prevent the use of the cache during sort processing.

If the DASD is dedicated to sorting and is not RAMAC, you might want to turn off
caching on a volume basis. Separate units for sort work can give better
performance.

Utility Cache Option
If you are using 3990 caching, and you have the nonpartitioning indexes on
RAMAC, consider specifying YES on the UTILITY CACHE OPTION field of
installation panel DSNTIPE. This allows DB2 to use sequential prestaging when
reading data from RAMAC for the following utilities.

� LOAD PART integer RESUME
� REORG TABLESPACE PART

For these utilities, prefetch reads remain in the cache longer, thus possibly
improving performance of subsequent writes.

5-106 Administration Guide

DASD Fast Write
The DASD Fast Write function of the 3990 can be very effective for synchronous
writes. It is recommended especially for use with the DB2 log, improving response
times for the log writes that occur at the end of each transaction. For example, for
dual logging, response times for the four log writes that occur at commit can be
reduced from approximately 50 milliseconds total to approximately 10 milliseconds.
In addition, the shorter lock duration required for logging pages of data can provide
improved concurrency. Combining 3990 cache, including DASD Fast Write, with
3390-9 or RAMAC DASD can permit greater amounts of log data to be stored for
less cost. Storing adequate amounts of log data on DASD is crucial for restart and
recovery performance.

 Dual Copy
Dual copy, a 3990 extended function, can be useful for ensuring high availability of
some key DB2 data objects, most typically the DB2 catalog, directory, and some
key, large secondary indexes. If the DB2 catalog and directory are damaged, all of
the other data cannot be accessed. Some secondary indexes on very large,
partitioned tables can require dual copy to meet the service-level agreement for
recovery time.

 Concurrent Copy
DB2 can also benefit from the improvements in copy provided in the 3990 extended
platform. See Section 2 of Utility Guide and Reference for information about using
DFSMS Concurrent Copy to obtain consistent point-in-time concurrent backups of
DB2 data.

Direct-access Storage Devices (DASD)
DASD offers direct access to data at high speed and with high data transfer rates,
providing an excellent combination of price and performance among the various
permanent storage media. Within the range of DASD products, the 3990-6 storage
controller combined with RAMAC DASD offers the best performance for most work
loads.

 Optical Storage
Optical storage complements DASD and supplements tape by providing low-cost,
direct access to online information. As a storage alternative, it can cost less than
DASD, and, like tape, it is a mountable medium. Optical storage is not necessarily
a replacement for magnetic storage, but it can be cost effective in the following
cases:

� The application can tolerate longer response times. With optical storage, I/O
operations are significantly slower than with magnetic devices. The slower
response times could affect direct response times, indirect response elongation,
and batch windows. The impact of optical storage's slower I/O response time
varies. In cases where processor time dominates or I/O overlaps, the difference
is negligible. In other cases, the slower I/O operations result in longer response
times.

� The application needs large amounts of storage. With optical storage, the cost
per byte is only a fraction of that for standard DASD. For applications that
depend on tens or hundreds of gigabytes of data, optical storage is a feasible
option. In some cases, the lower storage costs allow data to be retained on line
rather than deleted or moved to tape.

 Chapter 5-5. Improving Resource Utilization 5-107

� The application's data is not accessed frequently. The key to achieving
acceptable performance with optical storage is to avoid mounts when possible.
The media used in optical storage devices is not permanently mounted in the
drives. If you access data on optical storage too frequently, contention for the
optical drives and excessive mount activity can occur, leading to extended
response times. Normally, you should store data that is accessed more
frequently on magnetic DASD.

Tape or Cartridge
Magnetic tape or cartridge storage, which offers sequential access to data, supports
data residing on DASD by providing back-up, recovery, and archive functions. It is
also appropriate for very large data sets that do not need to be on line. Tape is a
storage option for DB2 image copies and archive logs, for example. Although DB2
databases cannot be directly stored on tape, you can use DFSMShsm to migrate
and recall DB2 data from tape.

MVS Performance Options for DB2
You can set MVS performance options for DB2 in two ways:

� Using system resources manager (SRM)

This is called “compatibility mode” in MVS Version 5 Release 1 or later.

� Using goal mode, for MVS Version 5 Release 1 or later.

In goal mode , MVS's workload manager controls the dispatching priority based
on goals you supply. Workload manager raises or lowers the priority as needed
to meet the specified goal. A major objective of goal mode is to remove the
need to fine tune the exact priorities of every piece of work in the system and
to focus instead on business objectives.

There are three kinds of goals: response-time, velocity, and discretionary.
Response times are appropriate goals for “end user” applications, such as QMF
users running under the TSO address space goals, or users of CICS using the
CICS work load goals. If you have MVS Version 5 Release 2 or later, you can
also set response time goals for distributed users, as described in “Using
Workload Manager to Set Performance Objectives” on page 5-124. For more
information about setting response time goals for users, see MVS/ESA
Planning: Workload Management .

Setting response time goals does require certain levels of software for the
various transaction managers:

– CICS Version 4 Release 1

– IMS Version 5 Release 1

– For DDF threads, a combination of DB2 Version 4 Release 1 and MVS
Version 5 Release 2 for DDF threads

| – For threads using stored procedures, a combination of DB2 Version 5 and
| OS/390 Release 3.

For DB2 address spaces, velocity goals are more appropriate, and velocity goals
are what we focus on in this section. A small amount of the work done in DB2 is
counted toward this velocity goal (most of it applies to the end user goal described
above). Velocity goals indicate how quickly you want your work to be processed.

5-108 Administration Guide

This section describes two ways to set DB2 address space performance options:

� “Using SRM (Compatibility Mode)”
� “Using MVS Workload Management Velocity Goals” on page 5-111

Using SRM (Compatibility Mode)
You can run in compatibility mode in MVS Version 5 or subsequent releases with
few or no changes to existing SRM values.

Setting Address Space Priority
Review the following SRM options when installing or tuning a DB2 subsystem (see
also Installation Guide). Be aware that there are special considerations for where
you place the address space for the distributed data facility. Generally, set MVS
processor dispatching priorities in the following order, from highest to lowest
priority:

1. VTAM address space

2. IRLM address space (IRLMPROC)

| Attention: It is extremely important that IRLM's priority be higher than DB2's.
| Serious performance problems can occur if it is not.

3. IMS control address space or CICS terminal owning region

4. DB2 system services address space (ssnmMSTR)

5. DB2 database services address space (ssnmDBM1)

The DB2 system services and database services address spaces appear near
the top of the list because, though work done under DB2 is usually a small part
of the total, delaying it can delay other users. For example, writes to the log
might become a bottleneck if not performed with high priority.

| 6. DB2-established stored procedures address space (ssnmSPAS) and any
| WLM-established stored procedures address spaces.

| Stored procedures address spaces are special allied address spaces that allow
| DB2 to load and execute stored procedures in an environment that is isolated
| from the DB2 subsystem. For a DB2-established stored procedures address
| space, multiple stored procedures run in the single address space. The address
| space has the ability to manage work queues associated with each available
| stored procedure name. This should be set similarly to the application driving
| the stored procedure.

For WLM-established stored procedures address spaces, of which there can be
many, the work of the stored procedures is managed at the priority of the
stored procedures caller (IMS or CICS, for example). The priority you set here
for the WLM-established address spaces is used only for system work that is
not part of the stored procedure itself.

7. CICS application owning regions

8. IMS dependent regions or TSO address spaces

9. Distributed data facility address space (ssnmDIST)

| Although we have the DDF address space listed last here, where it goes
| depends on which release of MVS you are running. With MVS Version 5
| Release 1 and earlier releases, give the DDF address space a priority that is
| similar to other address spaces performing similar work. For example, if you

 Chapter 5-5. Improving Resource Utilization 5-109

| use DDF mainly for query work, assign a priority that is similar to the priority
| used for TSO QMF users. If DDF is used for light transaction work, assign a
| priority higher than TSO, perhaps similar to IMS dependent regions.

| With MVS Version 5 Release 2 and subsequent releases, DDF threads run at
| the priority of the caller, so we recommend that you place the DDF address
| space a higher priority, perhaps similar to ssnmDBM1.

I/O Scheduling Priority
If your DB2 subsystem is running with MVS/SP 4.3.0 or later and DFSMS/MVS 1.1
or later, DB2 can schedule synchronous read/write I/Os and prefetch read I/Os
under the application address space's I/O scheduling priority. To do this, you must
do both of the following:

� Enable MVS I/O priority scheduling by specifying IOQ=PRTY in the IEAIPSxx
member of SYS1.PARMLIB.

� Use the IOP parameter to set the I/O priority for the address space of a
performance group. The IOP parameter is in the IEAIPSxx member of
SYS1.PARMLIB.

When you do this, the following scheduling priorities are in effect:

� The application's address space determines the I/O scheduling priority for
single-page synchronous read and write I/Os, sequential prefetch, list
sequential prefetch, and sequential detection.

� DB2's database services address space (ssnmDBM1) determines the I/O
scheduling priority for asynchronous write I/Os.

If you specify IOQ=PRTY, it is critical that you specify the proper IOP value for
each address space. If IOQ=PRTY is specified and the IOP parameter is not set for
an address space, the I/O scheduling priority for that address space defaults to the
address space's processor scheduling priority; in other words, the IOP value
defaults to the dispatching priority (DP) value.

If you do not specify values for the IOP parameter, CICS and IMS regions might
have lower I/O scheduling priority than DB2's ssnmDBM1 address space. An I/O
scheduling priority lower than ssnmDBM1's I/O scheduling priority could result in
inconsistent I/O response time for transaction applications.

To improve response time for transaction processing, set the CICS- and
IMS-dependent IOP values higher than DB2's ssnmDBM1 address space. To favor
transaction processing over query users, set the IOP values for CICS and IMS
MPP regions higher than those for TSO and batch users.

Also be sure that ssnmDBM1 has a higher priority than TSO and batch. This helps
ensure that deferred write I/Os are scheduled before prefetch read I/Os, thereby
preventing a shortage of available buffers.

For more information on the IOP and IOQ parameters, see MVS/ESA Initialization
and Tuning Reference.

5-110 Administration Guide

 Storage Isolation
DB2 allows page faults to occur without significantly affecting overall system
performance. Therefore, DB2 storage does not need to be protected with the SRM
storage isolation. However, if other subsystems use SRM storage isolation, it
should also be provided for the DB2 address spaces and the IRLM.

Work Load Control
Performance groups and performance-group periods can be used effectively to
prioritize the TSO, batch, and QMF work loads. This way, long queries can be
dispatched with lower priority and can be swapped-out, allowing short queries to
complete. However, this approach causes DB2 resources used by these low priority
queries to be held for more time. Watch for lock contention and lock suspensions
caused by swapped-out users; perhaps your work load can be managed to avoid
resource usage swap-outs.

Using MVS Workload Management Velocity Goals
To determine velocity goals, you can start by determining an address space's
velocity while you are running your systems in compatibility mode. You can define a
report performance group for the address space, or group of address spaces, in
which you are interested, and review the RMF Monitor I workload activity report,
which shows the execution velocity of that report performance group in compatibility
mode. You should gather this information during peak work times.

As a starting point, you can then define a service goal with the same value for the
work defined in a service class.

In this section, we give recommendations for how to set velocity goals in two
situations: 1) an interim situation in which you have not yet determined response
time goals for applications or in which you do not have the prerequisite software to
do so, and 2) you have determined response time goals and are ready to fully
implement MVS WLM goal mode.

Recommendations for an Interim Situation
| If your installation is not yet managing CICS, IMS, DDF, or stored procedures

transactions according to MVS WLM response time goals, or if you have not yet
gotten the required release levels to do so, consider the following service class
definitions.

� The MVS workload manager default service class for started tasks (SYSSTC)
for the following address spaces:

VTAM address space
IRLM address space (IRLMPROC)

� A service class with a medium to high velocity goal with a name you define,
such as PRODCNTL, for the following:

IMS control address space
DB2 system services address space (ssnmMSTR)
DB2 database services address space (ssnmDBM1)
CICS terminal-owning regions

� A service class with a lower velocity or importance than PRODCNTL with a
name you define, such as PRODREGN, for the following:

 IMS-dependent regions

 Chapter 5-5. Improving Resource Utilization 5-111

CICS application-owning regions
| The DB2-established stored procedures address space (ssnmSPAS) and
| any WLM-established stored procedures address spaces

| � If your system is running MVS/ESA Version 5 Release 2 or a subsequent
| release, set the DB2 distributed data address space (ssnmDIST) in the same
| service class as ssnmDBM1. If you are running a release of MVS before
| Version 5 Release 2, use a velocity goal that reflects the requirements of your
| distributed work. Depending on what type of distributed work you do, this might
| be equal to or lower than the goal for PRODREGN. It is best to run ssnmDIST
| in a service class with other started tasks with similar business goals, such as
| PRODREGN or some other medium-level service class.

Recommendations for Full Implementation of MVS WLM
If your installation is managing CICS, IMS, or DDF transactions according to MVS

| WLM response time goals, and if you are set up to use WLM-established stored
| procedures address spaces we recommend the following service classes for

velocity:

� The default SYSSTC service class for:

VTAM address space
IRLM address space (IRLMPROC)

� A high velocity goal for a service class whose name you define, such as
PRODREGN, for the following:

| DB2 (all address spaces, except for the DB2-established stored procedures
| address space)

CICS (all region types)
IMS (all region types except BMPs)

When running with CICS Version 4 Release 1 or subsequent releases, or with IMS
Version 5 Release 1 or subsequent releases, both of which use workload manager,
the velocity goals for CICS and IMS regions are only important during startup or
restart. After transactions begin running, WLM ignores the CICS or IMS velocity
goals and assigns priorities based on the goals of the transactions that are running
in the regions. A high velocity goal is good for ensuring that startups and restarts
are performed as quickly as possible.

| Similarly, when you set response time goals for DDF threads or for stored
| procedures in a WLM-established address space, the only work controlled by the
| DDF or stored procedure velocity goals are the DB2 service tasks (work performed

for DB2 that cannot be attributed to a single user). The user work runs under
separate goals for the enclave, as described in “Using Workload Manager to Set
Performance Objectives” on page 5-124.

| For the DB2-established stored procedures address space, use a a velocity goal
| that reflects the requirements of your distributed work. Depending on what type of
| distributed work you do, this might be equal to or lower than the goal for
| PRODREGN.

IMS BMPs can be treated along with other batch jobs or given a velocity goal,
depending on what business and functional requirements you have at your site.

5-112 Administration Guide

 Other Considerations
� IRLM must be run as a started task to make it eligible for the SYSSTC service

| class. To make IRLM eligible for SYSSTC, do not classify IRLM to one of your
| own service classes.

� If you need to change a goal, changing the velocity by 2 or 3% is not
noticeable. Velocity goals don't translate directly to priority. Higher velocity
tends to have higher priority, but this is not always the case.

| � In releases of MVS before OS/390 Release 3, workload manager in goal mode
| uses the processor dispatching priority to set the I/O priority. With OS/390
| Release 3, and subsequent releases, WLM in goal mode can assign I/O priority
| (based on I/O delays) separately from processor priority. In compatibility mode,
| WLM assigns I/O priority based on what you specificy in the IPS PARMLIB
| member. Goal mode does not use the IPS PARMLIB member.

| If you are determining I/O priority for DB2 read I/Os, be aware of the
| relationship between the type of work DB2 is doing and how the I/O priority is
| determined. See Table 68.

� MVS workload management dynamically manages storage isolation to meet the
goals you set.

| Table 68. How I/O Dispatching Priority is Determined

| Request Type| Read I/O Priority is determined by...

| Not DDF| Application's address space

| DDF| DDF's address space

| Parallel task on assisting DB2 (Sysplex
| query parallelism only)
| ssnmDBM1 address space

 Chapter 5-5. Improving Resource Utilization 5-113

5-114 Administration Guide

Chapter 5-6. Managing DB2 Threads

Threads are an important DB2 resource. When you install DB2, you choose a
maximum number of active allied and database access threads that can be
allocated concurrently. Choosing a good number for this is important to keep
applications from queuing and to provide good response time.

When writing an application, you should know when threads are created and
terminated and when they can be reused, because thread allocation can be a
significant part of the cost in a short transaction.

This chapter provides a general introduction on how DB2 uses threads. It discusses
the following:

� A discussion of how to choose the maximum number of concurrent threads, in
“Setting Thread Limits.”

� A description of the steps in creating and terminating an allied thread, in “Allied
Thread Allocation” on page 5-116.

� An explanation of the differences between allied threads and database access
threads (DBATs), and a description of how DBATs are created, including how
they become active or inactive, and how to set performance goals for individual
DDF threads, under “Database Access Threads” on page 5-121.

� Design options for reducing thread allocations and improving performance
generally, under “CICS Design Options” on page 5-128, “IMS Design Options”
on page 5-134, and “TSO Design Options” on page 5-135.

Setting Thread Limits
You set the limit of the number of allied and database access threads that can be
allocated concurrently using fields MAX USERS and MAX REMOTE ACTIVE on
installation panel DSNTIPE. The combined maximum allowed for MAX USERS and
MAX REMOTE ACTIVE is 2000.

Set these values to provide good response time without wasting resources, such as
virtual and real storage. The value you specify depends upon your machine size,
your work load, and other factors. When specifying values for these fields, consider
the following:

� Fewer threads than needed under utilize the processor and cause queuing for
threads.

� More threads than needed do not improve the response time. They require
more real storage for the additional threads and might cause more paging and,
hence, performance degradation.

If real storage is the limiting factor, set MAX USERS and MAX REMOTE ACTIVE
according to the available storage. For more information on storage, refer to
Section 2 of Installation Guide.

Thread Limits for TSO and Call Attachment: For the TSO and call attachment
facilities, you limit the number of threads indirectly by choosing values for the MAX
TSO CONNECT and MAX BATCH CONNECT fields of installation panel DSNTIPE.

 Copyright IBM Corp. 1982, 1997 5-115

These values limit the number of connections to DB2. The number of threads and
connections allowed affects the amount of work that DB2 can process.

Allied Thread Allocation
| This section describes at a high level the steps in allocating an allied thread, and
| some of the factors related to the performance of those steps. This section does
| not explain how a database access thread is allocated. For more information on
| database access threads, see “Database Access Threads” on page 5-121.

| Step 1: Thread Creation
| If there is no existing thread that can be reused, the first execution of an SQL
| statement causes a thread to be created. During thread creation using
| ACQUIRE(ALLOCATE), the resources needed to execute the application are
| acquired. During thread creation using ACQUIRE(USE), only the thread is created.

| The list below shows the main steps in thread creation.

| 1. Check the maximum number of threads.

| DB2 checks whether the maximum number of active threads, specified as MAX
| USERS for local threads or MAX REMOTE ACTIVE for remote threads on the
| Storage Sizes panel (DSNTIPE) when DB2 was installed, has been exceeded.
| If it has been exceeded, the request waits. The wait for threads is not traced,
| but the number of requests queued is provided in the performance trace record
| with IFCID 0073.

| 2. Check the plan authorization.

| The authorization ID for an application plan is checked in the SYSPLANAUTH
| catalog table (IFCID 0015). If this check fails, the table SYSUSERAUTH is
| checked for the SYSADM special privilege.

| 3. For an application plan, load the control structures associated with the plan.

| The control block for an application plan is divided into sections. The header
| and directory contain control information; SQL sections contain SQL statements
| from the application. A copy of the plan's control structure is made for each
| thread executing the plan. Only the header and directory are loaded when the
| thread is created.

| 4. Load the descriptors necessary to process the plan.

| Some of the control structures describe the DB2 table spaces, tables, and
| indexes used by the application. If ACQUIRE(ALLOCATE) is used, all the
| descriptors referred to in the plan are loaded now. This plan is bound with
| ACQUIRE(USE), so the trace does not show the descriptors loaded; they are
| loaded when SQL statements are executed.

| Performance Factors in Thread Creation: The most relevant factors from a
| system performance point of view are:

| Thread reuse: Thread creation is a significant cost for small and medium
| transactions. When execution of a transaction is terminated, the thread can
| sometimes be reused by another transaction using the same plan. For more
| information on thread reuse, see “Providing for Thread Reuse” on page 5-120.

5-116 Administration Guide

| ACQUIRE option of BIND: ACQUIRE(ALLOCATE) causes all the resources
| referred to in the application to be allocated when the thread is created.
| ACQUIRE(USE) allocates the resources only when an SQL statement is about to
| be executed. If most of the SQL is used in every execution of the transaction,
| ALLOCATE is cheaper.

| EDM Pool Size : The size of the EDM pool influences the number of I/Os needed to
| load the control structures necessary to process the plan or package. To avoid a
| large number of allocation I/Os, the EDM pool must be large enough to contain the
| structures that are needed. See “Tuning the EDM Pool” on page 5-66 for more
| information.

| Step 2: Resource Allocation
| When a thread has been created, DB2 processes the first SQL statement executed.

| Some of the structures necessary to process the statement are stored in 4KB
| pages. If they are not already present, those are read into database buffer pool
| BP0 and copied from there into the EDM pool. If the plan was bound with
| ACQUIRE(USE), it acquires resources when the statement is about to execute.

| 1. Load the control structures necessary to process the SQL section.

| If it is not already in the EDM pool, DB2 loads the control structure's section
| corresponding to this SQL statement.

| 2. Load structures necessary to process statement.

| Load any structures referred to by this SQL statement that are not already in
| the EDM pool.

| 3. Allocate and open data sets.

| When the control structure is loaded, DB2 locks the resources used.

| Performance Factors in Resource Allocation: The most important factors are the
| same as that for thread creation.

Step 3: SQL Statement Execution
| When plan allocation ends, the statement is executed. If the statement resides in a
| package, the directory and header of the package's control structure is loaded at
| the time of the first execution of a statement in the package. The control structure
| for the package is allocated at statement execution time. This is contrasted with the
| control structures for plans bound with ACQUIRE(ALLOCATE), which are allocated
| at thread creation time. The header of the plan's control structures is allocated at
| thread creation time regardless of ACQUIRE(ALLOCATE) or ACQUIRE(USE).

| When the package is allocated, DB2 checks authorization using the package
| authorization cache or the SYSPACKAUTH catalog table. DB2 checks to see that
| the plan owner has execute authority on the package. On the first execution, the
| information is not in the cache; therefore, the catalog is used. Thereafter, the
| cache is used. For more information about package authorization caching, see
| “Caching Authorization IDs for Best Performance” on page 3-28.

| Authorization checking also occurs at statement execution time.

 Chapter 5-6. Managing DB2 Threads 5-117

| A summary record, produced at the end of the statement (IFCID 0058), contains
| information about each scan performed. Included in the record is the following
| information:

| � The number of rows updated
| � The number of rows processed
| � The number of rows deleted
| � The number of rows examined
| � The number of pages requested through a getpage operation
| � The number of rows evaluated during the first stage (stage 1) of processing
| � The number of rows evaluated during the second stage (stage 2) of processing
| � The number of getpage requests issued to enforce referential constraints
| � The number of rows deleted or set null to enforce referential constraints
| � The number of rows inserted

Performance Factors in SQL Statement Execution: From a system performance
perspective, the most important factor is the size of the database buffer pool. If the
buffer pool is large enough, some index and data pages can remain there and can
be accessed again without an additional I/O operation. For more information on
buffer pools, see “Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools” on
page 5-49.

Step 4: Commit and Thread Termination
Commit processing can occur many times while a thread is active. For example, an
application program running under the control structure of the thread could issue an
explicit COMMIT or SYNCPOINT several times during its execution. When the
application program or the thread terminates, an implicit COMMIT or SYNCPOINT
is issued.

When a COMMIT or SYNCPOINT is issued from an IMS application running with
DB2, the two-phase commit process begins if DB2 resources have been changed
since the last commit point. In a CICS application, the two-phase commit process
begins only if DB2 resources have changed and a non-DB2 resource has changed
within the same commit scope. For more information on the commit process for
IMS and CICS applications, see “Consistency with Other Systems” on page 4-109.

The significant events that show up in a performance trace of a commit and thread
termination operation are as follows:

1. Commit phase 1

In commit phase 1 (IFCID 0084), DB2 writes an end of phase 1 record to the
log (IFCIDs 0032 and 0033). There are two I/Os, one to each active log data
set (IFCIDs 0038 and 0039).

2. Commit phase 2

In commit phase 2 (IFCID 0070), DB2 writes a beginning of phase 2 record to
the log. Again, the trace shows two I/Os. Page and row locks (except those
protecting the current position of cursors declared with the WITH HOLD option),
held to a commit point, are released. An unlock (IFCID 0021) with a requested
token of zeros frees any lock for the specified duration. A summary lock record
(IFCID 0020) is produced, which gives the maximum number of page locks held
and the number of lock escalations. DB2 writes an end of phase 2 record to the
log.

If RELEASE(COMMIT) is used, the following events also occur:

5-118 Administration Guide

� Table space locks are released.

� All the storage used by the thread is freed, including storage for control
blocks, CTs and PTs, and working areas.

� The use counts of the DBDs are decreased by one. If space is needed in
the EDM pool, a DBD can be freed when its use count reaches zero.

| � Those table spaces and index spaces with no claimers are made
candidates for deferred close. See “Understanding the CLOSE YES and
CLOSE NO Options” on page 5-90 for more information on deferred close.

 3. Thread termination

When the thread is terminated, the accounting record is written. It does not
report transaction activity that takes place before the thread is created.

If RELEASE(DEALLOCATE) is used, this is when table space locks are
released, the DBD use count is decreased, and the thread storage is released.

Variations on Thread Management
There are minor differences in the transaction flow in different environments and
when the SQL statement originates dynamically.

TSO and Call Attachment Facility Differences
The TSO attachment facility and call attachment facility (CAF) can be used to
request that SQL statements be executed in TSO foreground and batch. The
processes differ from CICS or IMS transactions in that:

� There is no sign-on. The user is identified when the TSO address space is
connected.

� Commit requires only a single phase and only one I/O operation to each log.
Single phase commit records are IFCID 0088 and 0089.

� Threads cannot be reused, because the thread is allocated to the user address
space.

| Thread Management for Recoverable Resource Manager
| Services Attachment Facility (RRSAF)
| With RRSAF, you have sign-on capabilities, the ability to reuse threads, and the
| ability to coordinate commit processing across different resource managers. For
| more information, see Section 6 of Application Programming and SQL Guide.

Differences for SQL under QMF
QMF uses CAF to create a thread when a request for work, such as a SELECT
statement, is issued. A thread is maintained until the end of the session only if the
requester and the server reside in different DB2 subsystems. If the requester and
the server are both in the local DB2 subsystem, the thread is not maintained.

For more information on QMF connections, see Query Management Facility:
Managing QMF for MVS.

 Chapter 5-6. Managing DB2 Threads 5-119

Providing for Thread Reuse
In general, you want transactions to reuse threads when transaction volume is high
and the cost of creating threads is significant, but thread reuse is also useful for a
lower volume of priority transactions. For a transaction of five to ten SQL
statements (10 I/O operations), the cost of thread creation can be 10% of the
processor cost. But the steps needed to reuse threads can incur costs of their own.

Later in this chapter, the following sections cover thread reuse for specific
situations:

� “Thread Reuse for Database Access Threads” on page 5-124 provides
information on the conditions for thread reuse for database access threads.

� “CICS Design Options” on page 5-128 tells how to write CICS transactions to
reuse threads.

� “IMS Design Options” on page 5-134 tells how to write IMS transactions to
reuse threads.

Bind Options for Thread Reuse
In DB2, you can prepare allied threads for reuse by binding the plan with the
ACQUIRE(USE) and RELEASE(DEALLOCATE) options; otherwise, the allocation
cost is not eliminated but only slightly reduced. Be aware of the following effects:

� ACQUIRE(ALLOCATE) acquires all resources needed by the plan, including
locks, when the thread is created; ACQUIRE(USE) acquires resources only
when they are needed to execute a particular SQL statement. If most of the
SQL statements in the plan are executed whenever the plan is executed,
ACQUIRE(ALLOCATE) costs less. If only a few of the SQL statements are
likely to be executed, ACQUIRE(USE) costs less and improves concurrency.
But with thread reuse, if most of your SQL statements eventually get issued,
ACQUIRE(USE) might not be as much of an improvement.

� RELEASE(DEALLOCATE) does not free cursor tables (SKCTs) at a commit
| point; hence, the cursor table could grow as large as the plan. If you are using
| temporary tables, the logical work file space is not released until the thread is
| deallocated. Thus, many uses of the same temporary table do not cause
| reallocation of the logical work files, but be careful about holding onto this
| resource for long periods of time if you do not plan to use it.

Using Reports to Tell when Threads were Reused
The NORMAL TERM., ABNORMAL TERM., and IN DOUBT sections of the DB2
PM accounting report, shown in Figure 107 on page 5-121, can help you identify,
by plan, when threads were reused. In the figure:

� NEW USER (.A/) tells how many threads were not terminated at the end of the
previous transaction or query, and hence reused.

� DEALLOCATION (.B/) tells how many threads were terminated at the end of
the query or transaction.

� APPL. PROGR. END (.C/) groups all the other reasons for accounting. Since
the agent did not abend, these are considered normal terminations.

This technique is accurate in IMS but not in CICS, where threads are reused
frequently by the same user. For CICS, also consider looking at the number of
commits and aborts per thread. For CICS:

5-120 Administration Guide

� NEW USER (.A/) is thread reuse with a different authorization ID or transaction
code.

� RESIGN-ON (.D/) is thread reuse with the same authorization ID if
TOKENE=YES.

NORMAL TERM. TOTAL ABNORMAL TERM. TOTAL IN DOUBT TOTAL

---------------- ----- ------------------ ----- ----------------- ------

NEW USER .A/ 17 APPL.PROGR. ABEND ð APPL.PGM. ABEND ð

DEALLOCATION .B/ ð END OF MEMORY ð END OF MEMORY ð

APPL.PROGR. END .C/ ð RESOL.IN DOUBT ð END OF TASK ð

RESIGNON .D/ ð CANCEL FORCE ð CANCEL FORCE ð

DBAT INACTIVE ð

RRS COMMIT ð

| Figure 107. DB2 PM Accounting Report - Information about Thread Termination

Database Access Threads
This section describes:

� “Differences Between Allied Threads and Database Access Threads”
� “Thread Limits for Database Access Threads” on page 5-122
� “Comparing Active and Inactive Threads” on page 5-122
� “How a Database Access Thread Is Created” on page 5-123
� “Thread Reuse for Database Access Threads” on page 5-124
� “Using Workload Manager to Set Performance Objectives” on page 5-124

For information on performance considerations for distributed processing, see
“Considerations for Tuning Distributed Applications” on page 5-316.

Differences Between Allied Threads and Database Access Threads
Database access threads are created to access data at a DB2 server on behalf of
a requester using either DRDA or DB2 private protocol. A database access thread
is created when an SQL request is received from the requester. Allied threads
perform work at a requesting DB2.

Database access threads differ from allied threads in the following ways:

� Database access threads can be active or both active and inactive, depending
on what you specified for the DDF THREADS field on installation panel
DSNTIPR.

� Database access threads run in SRB mode.

� For database access threads, there is no create thread stage. A database
access thread persists until the connection between the two systems
terminates.

� If inbound translation is used, the sign-on audit trace record (0087) is cut to
audit the change of authorization IDs. There is no BEGIN SIGN-ON (0086)
record in this case.

 Chapter 5-6. Managing DB2 Threads 5-121

Thread Limits for Database Access Threads
When you install DB2, you choose a maximum number of active threads that can
be allocated concurrently; the MAX USERS field on panel DSNTIPE represents the
maximum number of allied threads, and the MAX REMOTE ACTIVE field on panel
DSNTIPE represents the maximum number of database access threads. Together,
the values you specify for these fields cannot exceed 2000.

In the MAX REMOTE CONNECTED field of panel DSNTIPE, you can specify up to
25 000 as the maximum number of active and inactive database access threads
that can concurrently exist within DB2. This upper limit is only obtainable if you
specify the recommended value INACTIVE for the DDF THREADS field of
installation panel DSNTIPR.

| For TCP/IP connections, it is a good idea to specify the IDLE THREAD TIMEOUT
| value in conjunction with a TCP/IP keep_alive timer of 5 minutes or less to make
| sure that resources aren't locked for a long time when a network outage occurs.

Comparing Active and Inactive Threads
A database access thread that does not hold any cursors or database resources
(such as storage) is known as an inactive thread. To allow a thread to become
inactive (what might be called a 'sometimes active' thread), the following conditions
must be true:

� The DDF THREADS field of installation panel DSNTIPR must contain
INACTIVE.

� The package must have been bound with RELEASE(COMMIT).

� There must be no open cursors defined WITH HOLD.

When the above conditions are true, the thread can become inactive when a
COMMIT is issued. A ROLLBACK makes a thread become inactive even if there
are open cursors defined WITH HOLD because ROLLBACK closes all cursors. The
advantages of sometimes active threads are:

� You can leave an application that is running on a workstation connected to DB2
from the time the application is first activated until the workstation is shut down,
thus avoiding the delay of repeated connections.

� DB2 can support a larger number of DDF threads (25 000 instead of 2000).

� Less storage is used for each DDF thread.

� You get an accounting trace record (IFCID 0003) each time a thread becomes
inactive rather than once for the entire time you are connected. When an
inactive thread becomes active, the accounting fields for that thread are
initialized again. As a result, the accounting record contains information about
active threads only. This makes it easier to study how distributed applications
are performing.

� Each time a thread becomes inactive, workload manager resets the information
it maintains on that thread. The next time that thread is activated, workload
manager begins managing to the goals you have set for transactions that run in
that service class. If you use multiple performance periods, it is possible to
favor short-running units of work that use fewer resources while giving fewer
resources over time to long running units of work. See “Establishing
Performance Periods for DDF Threads” on page 5-126 for more information.

5-122 Administration Guide

The response times reported by RMF do not include inactive periods between
requests.

� If using WLM goal mode, you can use response time goals, which is not
recommended when using threads that are always active.

� It makes it more practical to take advantage of the ability to time out idle active
threads, as described in “Timing Out Idle Active Threads.”

Accounting for Inactive Threads
The accounting trace record (IFCID 0003) is produced every time a thread
becomes inactive. You can see this count in the DBAT INACTIVE field of the
“Application Termination” section of the DB2 PM accounting report. (See
Figure 107 on page 5-121.)

Timing Out Idle Active Threads
Active server threads that have remained idle for a specified period of time (in
seconds) can be canceled by DB2. When you install DB2, you choose a maximum
IDLE THREAD TIMEOUT period, from 0 to 9999 seconds. The timeout period is an
approximation. If a server thread has been waiting for a request from the requesting
site for this period of time, it is canceled unless it is an inactive or an indoubt
thread. A value of 0, the default, means that the server threads cannot be canceled
because of an idle thread timeout.

We recommend that this option be used with the option INACTIVE for the DDF
THREADS field on DSNTIPR. If you specify a timeout interval with ACTIVE, an
application would have to start its next unit of work within the timeout period
specification, or risk being canceled.

How a Database Access Thread Is Created
The following steps occur during the creation of a database access thread:

1. Connection or signon.

| SNA network connections support connection and signon processing. TCP/IP
| network connections support just connection processing.

2. If you specified INACTIVE for the DDF THREADS option on installation panel
DSNTIPR, database access threads can be active or inactive, depending on
the limits you specified for the MAX REMOTE CONNECTED and MAX
REMOTE ACTIVE fields of panel DSNTIPE. DB2 checks the MAX REMOTE
CONNECTED limit you specified on panel DSNTIPE to see if it has been
reached.

If the limit has been reached, DB2 does not create an active or an inactive
thread; the create thread request is rejected, and the conversation is
deallocated.

If the MAX REMOTE CONNECTED limit has not been reached, the thread
creation process continues.

| 3. DB2 compares the MAX REMOTE ACTIVE limit you specified on panel
| DSNTIPE with the current number of active database access threads. If the
| MAX REMOTE ACTIVE limit is reached, DB2 queues the thread request until
| the MAX REMOTE ACTIVE value falls below the limit. Until that happens, this
| thread is an inactive thread. When the number of active threads falls below this

 Chapter 5-6. Managing DB2 Threads 5-123

| MAX REMOTE ACTIVE limit, the queued inactive thread completes the thread
| creation process and becomes an active thread.

| During this waiting period, you can check the status of the active threads using
| the command DISPLAY THREAD(*) TYPE(ACTIVE). You can check the status
| of inactive threads by using DISPLAY THREAD(*) TYPE(INACTIVE).

| 4. DB2 verifies the user through DCE, RACF or the communications database.

| SNA network connections support DCE, RACF, or the communications
| database. TCP/IP network connections support DCE or RACF user verification.

| 5. DB2 checks the user's authorization to connect to DDF through RACF or the
| communications database.

| SNA network connections can use RACF or the communications database to
| check authorization. TCP/IP network connections can use RACF to check
| authorization.

| 6. If the connection is using SNA, DB2 can use the communications database to
| translate the remote user ID to a DB2 authorization ID.

7. DB2 creates the MVS enclave.

The “Global DDF Activity” section of the DB2 PM statistics report shows information
about database access threads.

Thread Reuse for Database Access Threads
Only DB2 for OS/390 requesters support thread reuse. However, in the case of a
DB2 requester connected to a server DBMS other than DB2 for OS/390, thread
reuse causes the connection to be released and connected again using the new
authorization ID. As a result, there are no performance advantages for thread reuse
in connections to a server other than DB2 for OS/390.

Using Workload Manager to Set Performance Objectives
MVS/ESA Version 5 Release 2 and subsequent releases support enclave system
request blocks (SRBs). An MVS enclave lets each thread have its own performance
objective. Using MVS's workload management support, you can establish MVS
performance objectives for individual DDF server threads, including threads that run
in WLM-established stored procedures address spaces. (Stored procedures that run
in the DB2-established stored procedures address space always run at the
performance objective of that address space.) For details on using workload
management, see MVS/ESA Planning: Workload Management.

The MVS performance objective of the DDF address space or the WLM-established
stored procedures address spaces does not govern the performance objective of
the user thread. As described in “MVS Performance Options for DB2” on
page 5-108, you should assign the DDF address space and WLM-established
stored procedures address spaces to an MVS performance objective that is similar
to the DB2 database services address space (ssnmDBM1). The MVS performance
objective of the DDF and stored procedures address spaces determines how
quickly DB2 is able to perform operations associated with managing the distributed
DB2 work load, such as adding new users or removing users that have terminated
their connections.

Workload manager has two modes:

5-124 Administration Guide

� Compatibility mode
� Goal mode

Many of the concepts and actions required to manage enclaves are common to
both compatibility and goal modes; those are described first. Considerations
specific for compatibility mode are described in “Considerations for Compatibility
Mode” on page 5-127.

Classifying DDF Threads
You can classify DDF threads by, among other things, authorization ID and stored
procedure name. The stored procedure name is only used as a classification if the
first statement issued by the client after the CONNECT is an SQL CALL statement.
Use the workload manager administrative application to define the service classes
you want MVS to manage. These service classes are associated with performance
objectives. When a WLM-established stored procedure call originates locally, it
inherits the performance objective of the caller, such as TSO or CICS.

Classification Attributes: Each of the WLM classification attributes has a two or
three character abbreviation that you can use when entering the attribute on the
WLM menus. Here are WLM classification attributes that pertain to DB2 DDF
threads:

AI Accounting information. The value of the DB2 accounting string associated
with the DDF server thread. This is described by QMDAAINF in the
DSNDQMDA mapping macro.

CI The DB2 correlation ID of the DDF server thread. This is described by
QWHCCV in the DSNDQWHC mapping macro.

CN The DB2 collection name of the first SQL package accessed by the DRDA
requester in the unit of work.

LU The VTAM LUNAME of the system that issued the SQL request.

NET The VTAM NETID of the system that issued the SQL request.

PK The name of the first DB2 package accessed by the DRDA requester in the
unit of work.

PN The DB2 plan name associated with the DDF server thread. For DB2
private protocol requesters and DB2 DRDA requesters that are at Version 3
or subsequent releases, this is the DB2 plan name of the requesting
| application. For other DRDA requesters, you would use 'DISTSERV' for
| PN.

PRC Stored procedure name. This classification only applies if the first SQL
statement from the client is a CALL statement.

SI Subsystem instance. The DB2 server's MVS subsystem name.

UI User ID. The DDF server thread's primary authorization ID, after inbound
name translation.

Figure 108 on page 5-126 shows how you can associate DDF threads and stored
procedures with service classes.

 Chapter 5-6. Managing DB2 Threads 5-125

à# ð
Subsystem-Type Xref Notes Options Help

--

Create Rules for the Subsystem Type Row 1 to 5 of 5

Subsystem Type DDF (Required)

Description Distributed DB2

Fold qualifier names? Y (Y or N)

Enter one or more action codes: A=After B=Before C=Copy D=Delete

M=Move I=Insert rule IS=Insert Sub-rule R=Repeat

-------Qualifier------------- -------Class--------

Action Type Name Start Service Report

DEFAULTS: PRDBATCH ________

____ 1 SI DB2P ___ PRDBATCH ________

____ 2 CN ONLINE ___ PRDONLIN ________

____ 2 PRC PAYPROC ___ PRDONLIN ________

____ 2 UI SYSADM ___ PRDONLIN ________

____ 2 PK QMFOS2 ___ PRDQUERY ________

____ 1 SI DB2T ___ TESTUSER ________

____ 2 PRC PAYPROCT ___ TESTPAYR ________

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF DATA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

á# ñ

Figure 108. Classifying DDF Threads using Workload Manager. You assign performance
goals to service classes using the services classes menu of WLM.

In Figure 108, the following classifications are shown:

� All DB2P applications in COLLECTION ONLINE are in the PRDONLIN service
class.

� The stored procedure PAYPROC is in service class PRDONLIN.

� All work performed by DB2P user SYSADM is prioritized as online work.

� Users other than SYSADM that run the DB2P PACKAGE QMFOS2 are in the
PRDQUERY class. (The QMFOS2 package is not in collection ONLINE.)

� All other work on the production system is prioritized as batch work.

� All users of the test DB2 system are assigned to the TESTUSER class except
for the PAYPROCT stored procedure, which is in a test stored procedures
class.

Don't Create Too Many Stored Procedures Address Spaces: Workload manager
creates one stored procedures address space for every combination of service
class and WLM environment name for which work exists. See “Assigning Stored
Procedures to WLM Application Environments” on page 5-329 for more information.

Establishing Performance Periods for DDF Threads
| You can establish performance periods for DDF threads, including threads that run
| in the WLM-established stored procedures address space. By establishing multiple
performance periods, you can cause the thread's performance objectives to change
based upon the thread's processor consumption. So, a long-running unit of work
can move down the priority order and let short-running transactions get in and out
at a higher priority.

To design performance strategies for these threads, take into account the events
that cause a DDF thread to reset its MVS performance period. The MVS

5-126 Administration Guide

performance period is reset by terminating the MVS enclave for the thread, and
creating a new MVS enclave for the thread, as described in “Using RMF to Monitor
Distributed Processing” on page 5-326.

Because threads that are always active do not terminate the MVS enclave, we
recommended that you do not use multiple performance periods for always active
threads because the last period performance objective is used to manage most of
the work done by the thread.

Basic Procedure for Establishing Performance Objectives
To establish performance objectives for DDF threads and the related address
spaces:

1. Create a workload manager service definition that assigns service classes to
the DDF threads under subsystem type DDF and to the DDF address space
under subsystem type STC. If you are using WLM-established stored
procedures address spaces, assign a service class to them under subsystem
type STC.

2. Install the serivce definition using the MVS workload manager menus and
activate a policy (VARY WLM,POLICY=policy).

3. If your system is running in compatibility mode, follow the additional steps
described in “Considerations for Compatibility Mode.”

Considerations for Compatibility Mode
In compatibility mode, threads are given a service class by the classification rules in
the active WLM service policy. The MVS ICS maps service classes (SRVCLASS) to
a performance group number (PGN), which determines the performance group of
the enclave.When workload manager operates in compatibility mode, take the
following actions to establish performance objectives for DDF threads:

1. Define MVS performance groups (PGNs) for DDF threads in the IPS PARMLIB
member. Do the same for WLM-established stored procedures address spaces
if you are using them.

2. Create MVS ICS PARMLIB definitions to map the service classes assigned in
the workload manager classification rules to the corresponding performance
groups, using SUBSYS=DDF and the SRVCLASS keyword. The subsystem
default performance group for SUBSYS=DDF is ignored.

3. Create MVS PARMLIB definitions to assign a performance group to the
WLM-established stored procedures address spaces if you are using them. The
same performance group can be assigned to these stored procedures address
spaces as is assigned to DDF.

4. Activate the updated parmlib members (SET IPS=xx, ICS=yy).

Each of the PGN values in the MVS ICS must be defined in the IPS PARMLIB
member. The PGN definition can include information on the performance period,
which is used by SRM to change the performance objective of a DDF thread based
on the amount of processor resource the DDF thread consumes.

Stored Procedures: When you run in compatibility mode, you have to take on
more performance management issues. With stored procedures that run in
WLM-established address spaces, for example, WLM cannot automatically start
new stored procedures address space to handle additional high-priority stored
procedures requests, as it can when using goal mode. You must monitor the

 Chapter 5-6. Managing DB2 Threads 5-127

performance of the stored procedures to determine how many stored procedures
address spaces to start manually.

Considerations for Goal Mode
In goal mode, threads are assigned a service class by the classification rules in the
active WLM service policy. Each service class period has a performance objective
(goal), and workload manager raises or lowers that period's access to system
resources as needed to meet the specified goal. For example, the goal might be
“application APPL8 should run in less than 3 seconds of elapsed time 90% of the
time.”

The DDF address space and any WLM-established stored procedures address
spaces should be assigned to the same service class as the DB2 database
services address space (ssnmDBM1). This service class should be defined with a
velocity goal.

You can assign 'sometimes active' threads to any goal type and number of periods.
For always active threads, on the other hand, use velocity goals or discretionary
goals and use a single period service class. This is because the response times for
an always active thread are unrelated to the amount, duration, or resource
consumption of the underlying work.

Stored Procedures: When you are in goal mode, WLM automatically starts
WLM-established stored procedures address spaces to help meet the service class
goals you set. This is assuming you have defined the application environment, as
described in “Assigning Stored Procedures to WLM Application Environments” on
page 5-329.

CICS Design Options
The information under this heading, up to “IMS Design Options” on page 5-134, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

This section describes the following:

� “Overview of RCT Options”
� “Managing Plans for CICS Applications” on page 5-129
� “Thread Creation, Reuse, and Termination” on page 5-129
� “Recommendations for RCT Definitions” on page 5-132
� “Correlating Accounting Information for CICS Threads” on page 5-134

Overview of RCT Options
You can tune your CICS attachment facility by entering values in the resource
control table (RCT) with the following macros and options:

� DSNCRCT TYPE=INIT macro:

THRDMAX The maximum total number of CICS DB2 threads.

PURGEC The normal length of the purge cycle, specified in minutes and
seconds.

TXIDSO User sign-on preferences with transaction ID changes.

TOKENI See the description of TOKENE, below.

5-128 Administration Guide

� DSNCRCT TYPE=ENTRY and TYPE=POOL macros:

DPMODE Thread TCB priority relative to the CICS main TCB.

THRDM The maximum number of threads.

THRDA The current maximum number of threads. This value can be
changed dynamically, up to the value specified in THRDM.

THRDS The number of protected threads.

TWAIT The transaction disposition when THRDA has already been
reached (wait, abend, or divert to the pool).

AUTH The authorization ID to be used by the CICS attachment
facility when signing on to DB2.

TOKENE=(YES|NO)
YES means that DB2 produces an accounting record for every
CICS transaction, even those transactions that are reusing
threads. For more information about using TOKENE, see
“Correlating Accounting Information for CICS Threads” on
page 5-134.

For more information about specifying the CICS attachment facility macros, see
Section 2 of Installation Guide.

Managing Plans for CICS Applications
You can use either packages or dynamic plan selection to manage your CICS
applications, but packages offer more flexibility. See Application Programming and
SQL Guide for more information about using packages. See “Routines for Dynamic
Plan Selection in CICS” on page X-71 for more information about writing dynamic
plan selection exit routines.

Thread Creation, Reuse, and Termination
A thread is a structure that allows a non-DB2 address space to request work from
DB2. CICS threads are anchored in a TCB. The CICS attachment facility sets up a
number of TCBs in the CICS address space that application programs can use for
SQL calls.

Types of Threads: The attachment facility has 2 types of threads:

� An unprotected thread is terminated immediately after the transaction is through
with it (at SYNCPOINT or EOT). An unprotected thread can be reused before it
is terminated if a waiting transaction (TWAIT=YES) uses the same plan.

� A protected thread remains for a time after the transaction is through with it in
order to increase the chances of thread reuse. That time is determined by the
purge cycle, normally 30 seconds.

States of Threads: We use the following terms to identify the state a thread is in:

� Identified indicates that the TCB is known to DB2.

� Signed on indicates that DB2 has processed and approved the authorization ID
for the thread for the plan name.

� Created indicates that DB2 has allocated the plan and can process the SQL
requests.

 Chapter 5-6. Managing DB2 Threads 5-129

You can see these various states when you issue the DB2 command DISPLAY
THREAD. See Figure 68 on page 4-47 for an example of how CICS threads
appear in the output.

It is possible for a thread that has been created to be signed on again without
re-creating the thread. This is known as reusing the thread.

| Number of Threads: To limit the number of threads in a CICS environment, you
| should limit the transactions from CICS before they make DB2 requests. There are
| controls in CICS to determine how many tasks can be created for a transaction
| class. Use these controls to limit the number of CICS tasks accessing DB2 to the
| number of available threads as determined by the value in the MAX USERS field of
| installation panel DSNTIPE. By limiting this number, you avoid having threads
| queue at create thread time. See “Recommendations for CICS System Definitions”

on page 5-134 for information.

When CICS Threads are Created
When a transaction needs a thread, an existing thread can be reused, or a new
thread can be created. If no existing thread is available, and if the maximum
number of threads (THRDA) has not been reached, a thread is created.

This section describes both the creation of the TCBs and the sign-on activity.

Creating Thread TCBs: When the CICS attachment facility is started, some TCBs
could be attached to threads for each RCT entry. The number of TCBs for each
entry attached when the CICS attachment facility is started is given by THRDS.
Those threads are protected.

If THRDA is greater than THRDS, some TCBs are not attached when the
attachment facility is started, but only when needed by a task. The number of TCBs
for each entry attached only when needed by a thread is given by THRDA -
THRDS. Those threads are not protected.

Sign-on Processing: Threads sign on for the following reasons:

� To tell DB2 who the user is
� To create accounting trace records
� To put a thread back into its initial state.

When Sign-on Occurs: Sign-on occurs at the first SQL call when any of the
following is true:

� The authorization ID changed.

� The transaction ID changed and TXIDSO=YES.

� The parameter TOKENE is YES. For more information about TOKENE, see
“Correlating Accounting Information for CICS Threads” on page 5-134.

� The last transaction left a held cursor open.

� The last transaction left one of the modifiable special registers in use.

Using TXIDSO to Control Sign-on Processing: With CICS Version 4 or later,
you can use the option TXIDSO in the RCT with TYPE=INIT to specify your
preference for sign-on:

5-130 Administration Guide

� TXIDSO=YES means that the thread must sign-on even when the only thing
that has changed is the transaction ID.

� TXIDSO=NO means that if only the transaction ID has changed, the thread can
be reused with no sign-on.

This option affects only pool threads and those RCT entry threads with multiple
transaction IDs in one entry.

When CICS Threads are Released and Available for Reuse
An existing thread can be reused by a new transaction with the same plan and on
the same RCT entry. The thread is released for reuse (or for termination) at the
end of a task (EOT) or at SYNCPOINT.

� A transaction that is not terminal-driven releases its thread at the end of a task.

� A transaction that is terminal-driven can release its thread at SYNCPOINT, if
certain conditions are true. DB2 uses the following logic to determine whether a
thread can be released at SYNCPOINT, or if it must wait until EOT:

1. Is the thread terminal-driven?

If so, go to the next step. If not, the thread cannot be released until EOT.

2. Are the following special registers in their initial state?

 CURRENT SQLID
 CURRENT SERVER
 CURRENT PACKAGESET
 CURRENT RULES

CURRENT PRECISION

If yes, go to the next step. If no, the thread cannot be released until EOT.

3. Has the special register CURRENT DEGREE never been changed during
the life of the thread?

If it has not been changed, go to the next step. If it has been changed, the
thread cannot be released until EOT.

4. Are all cursors declared WITH HOLD closed?

If yes, this thread can be released at SYNCPOINT. If no, and this is a local
connection, this thread cannot be released until EOT.

If no, and this is a remote connection, look at the DISCONNECT bind
option:

AUTOMATIC
All connections (even those with open cursors) are released at
commit, and the thread can be released. However, the thread is
NOT reusable if you have a type 1 connection and the value of
the BIND option CURRENTSERVER is a remote location.

EXPLICIT
Does the application use the SQL statement RELEASE ALL? If
yes, the thread can be released. If not, the thread cannot be
released until EOT.

CONDITIONAL
The thread cannot be reused until EOT if there are any open
cursors defined WITH HOLD.

 Chapter 5-6. Managing DB2 Threads 5-131

When CICS Threads Terminate
This section describes when the two types of threads terminate.

Protected Thread Termination: When a protected thread (TYPE=ENTRY) is
released, it waits for two consecutive purge cycles, and terminates if it is unused at
the end of the second purge cycle.

The purge cycle is 5 minutes long when the CICS attachment facility first initializes.
For the remainder of the time that CICS is up, it uses the following, depending on
which version of the CICS attachment you are using:

� For the attachment used with CICS release prior to CICS Version 4, the purge
cycle is 30 seconds

� With CICS Version 4 (or later) you can determine the length of the normal
purge cycle using the RCT parameter PURGEC=(minutes,seconds). The
maximum specifiable length of a purge cycle is 59 minutes, 59 seconds. The
minimum length is 30 seconds, which is the default.

Threads remain available for reuse for an average of (purge cycle time × 1.5).

Unprotected Thread Termination: Unprotected threads terminate as soon as the
thread is released, unless another transaction with the same plan is queued for the
thread.

When TCBs are Detached: After a TCB has been attached to a thread, the TCB is
available until the attachment facility is stopped. TCBs are detached only when the
number of active TCBs reaches THRDMAX - 2. Thus when the thread is
terminated, the associated TCB is not detached.

Recommendations for RCT Definitions
We recommend that you first set the RCT parameters as follows:

� Make the sum of the THRDA values from all COMD, ENTRY, and POOL
threads less than THRDMAX - 2. Otherwise, a thread and its associated TCB,
whether protected or not, are terminated when the number of threads is
THRDMAX - 2. If not explicitly specified, the COMD thread has a default
THRDA value of one.

� For TYPE=POOL, set THRDA equal to the sum of the expected number of
threads for the pool. THRDA should be the sum of:

– Transactions with THRDA=0 that are forced to the pool
– Transactions that can overflow to the pool
– Transactions defined by the pool

� Use TYPE=ENTRY with THRDA=n and THRDS=n for high volume transaction
groups. Those transactions reuse threads. If queuing for a thread is acceptable,
use TWAIT=YES and make n large enough to handle the normal transaction
load with minimal queuing. If queuing for a thread is not acceptable, use
TWAIT=POOL.

� Use TYPE=ENTRY with THRDA=n, THRDS=0, and TWAIT=YES for a
transaction or group for which you want to do any of the following:

– Control the maximum number of concurrent transactions, n. If n is 1, you
are serializing the transaction or group. You can achieve similar results with

5-132 Administration Guide

the CICS controls, as described in “Recommendations for CICS System
Definitions” on page 5-134.

 – Force serialization

– Avoid “flooding” the pool threads with possibly high-volume transactions

– Provide dedicated entries for high priority transactions with a volume that
does not justify the use of protected threads. However, compared to a
THRDS>0 entry, you are not likely to achieve thread reuse unless the
transaction rate is high. In this case, using some number of protected entry
threads might be a better choice.

� For transactions that can use default TYPE=POOL parameters, allow them to
default to the pool. The fewer TYPE=ENTRY definitions you have, the less
maintenance there is on the RCT.

� Use TYPE=ENTRY with THRDA=0, THRDS=0, and TWAIT=POOL for those
transactions that need something special besides the default TYPE=POOL
definitions. For example, you might want a transaction to run in the POOL but
use TOKENE=YES.

Setting Thread TCB Priority using DPMODE: The RCT DPMODE parameter
controls the priority of the thread TCBs. In general, specify the default
DPMODE=HIGH for high-priority and high-volume transactions. The purpose is to
execute these transactions quickly, removing them from CICS and DB2. This helps
save virtual storage, and allows the transaction to release its locks to avoid causing
other transactions to deadlock or timeout.

However, if there is a risk that one or more SQL statements in the transaction will
consume a great deal of processor time, allowing the thread TCB to monopolize the
processor, the CICS main TCB might not be dispatched. (Processor
monopolization such as this causes the most impact on single-CP machines.)

The result of concurrent high priority CICS activity in DB2 can cause transactions to
appear to run longer in DB2. In such cases, CICS tracing shows the task as
“waiting for a DB2 ECB,” while the DB2 accounting trace reports the task as “not in
DB2” time. The reason this occurs is that CICS has not had a chance to dispatch
the task that DB2 has posted.

Do not misread this situation and then set DPMODE=HIGH, because the problem
will then get worse. Instead, weigh the importance of the concurrent CICS activity
versus the DB2 activity and adjust the task priorities and the DPMODE setting
accordingly (DPMODE=LOW or DPMODE=EQUAL). With DPMODE=EQUAL, the
thread TCBs actually have an MVS dispatching priority slightly lower than the CICS
main task TCB.

Recommendations for DPMODE: In general, use the following:

� DPMODE=HIGH for high-priority and high-volume transactions

� DPMODE=EQUAL for transactions that are more CICS-intensive than
DB2-intensive (such as short, simple SQL statements)

� DPMODE=LOW for low-priority, short SQL transactions, especially
non-terminal-driven transactions.

 Chapter 5-6. Managing DB2 Threads 5-133

Recommendations for CICS System Definitions
The following specifications control how many tasks can be created for a
transaction class:

� Maximum task class specification (CMXT) in the SIT (for CICS 3.3 and earlier
releases)

� CEDA DEFINE TRANCLASS() GROUP() MAXACTIVE() in the CSD (for CICS
Version 4 and later)

Recommendations for setting CMXT or MAXACTIVE are:

� When TWAIT=YES and there are unprotected threads, use the value of
THRDA plus one.

� When TWAIT=POOL, then use THRDA plus n where n is the number of
transactions that you want to be able to overflow to the pool.

� When TWAIT=NO, decide whether to allow more than the value in THRDA.

Correlating Accounting Information for CICS Threads
DB2 cuts accounting records when a thread signs on and when it terminates. CICS
cuts accounting records at end-of-task. The CICS LU6.2 token gives you a way to
correlate records between CICS and DB2.

Using TOKENE to Ensure Proper Accounting for Tasks: Because it is possible
for CICS tasks to reuse existing threads without signing on, one DB2 accounting
record might contain data for several CICS tasks. If you specify YES in the
DSNCRCT TYPE=ENTRY macro's TOKENE option, the CICS attachment facility
passes the CICS LU6.2 token to DB2. It also forces DB2 to sign-on each new
transaction so as to cut the accounting records. CICS generates an LU6.2 token for
every CICS transaction, including both terminal and non-terminal-driven tasks.

Specify YES in the RCT TYPE=INIT macro's TOKENI option to set this default for
all RCT entries.

The CICS accounting token is displayed on the DB2 PM Accounting Trace and the
DB2 PM Online Monitor Thread Identification panel.

Specifying YES slightly increases the overhead of an SQL request that reuses
threads, because of the additional sign-on activity.

IMS Design Options
Using the IMS attachment facility, you can:

� Control the number of IMS regions connected to DB2. For IMS, this is also the
maximum number of concurrent threads.

� Optimize the number of concurrent threads used by IMS.

A dependent region with a subsystem member (SSM) that is not empty is
connected to DB2 at start up time. Regions with a null SSM cannot create a
thread to DB2. A thread to DB2 is created at the first execution of an SQL
statement in an IMS application schedule; it is terminated when the application
terminates.

5-134 Administration Guide

The maximum number of concurrent threads used by IMS can be controlled by
the number of IMS regions which can connect to DB2 and by transaction class
assignments. We recommend that you:

– Minimize the number of regions needing a thread by the way in which you
assign applications to regions.

– Provide an empty SSM member for regions that will not connect to DB2.

� Provide efficient thread reuse for high volume transactions.

Thread creation and termination is a significant cost in IMS transactions. IMS
transactions identified as wait for input (WFI) can reuse threads: they create a
thread at the first execution of an SQL statement and reuse it until the region is
terminated. In general, though, use WFI only for transactions that reach a
region utilization of at least 75%.

Some degree of thread reuse can also be achieved with IMS class scheduling,
queuing, and a PROCLIM count greater than one. IMS Fast Path (IFP)
dependent regions always reuse the DB2 thread.

TSO Design Options
You can tune your TSO attachment facility by choosing values for the following
parameters on the Storage Sizes installation panel (DSNTIPE):

MAX TSO CONNECT The maximum number of TSO foreground connections
(including DB2I, QMF, and foreground applications).

MAX BATCH CONNECT The maximum number of TSO background connections
(including batch jobs and utilities).

Because DB2 must be stopped to set new values, consider setting a higher MAX
BATCH CONNECT for batch periods. The statistics record (IFCID 0001) provides
information on the create thread queue. The DB2 PM statistics report (in
Figure 109 on page 5-136) shows that information under the SUBSYSTEM
SERVICES section.

For TSO or batch environments, having 1% of the requests queued is probably a
good number to aim for by adjusting the MAX USERS value of installation panel
DSNTIPE. Queuing at create thread time is not desirable in the CICS and IMS
environments. If you are running IMS or CICS in the same DB2 subsystem as TSO
and batch, use MAX BATCH CONNECT and MAX TSO CONNECT to limit the
number of threads taken by the TSO and batch environments. The goal is to allow
enough threads for CICS and IMS so that their threads do not queue. To determine
the number of allied threads queued, see the QUEUED AT CREATE THREAD field
(.A/) of the DB2 PM statistics report.

 Chapter 5-6. Managing DB2 Threads 5-135

SUBSYSTEM SERVICES QUANTITY

--------------------------- --------

IDENTIFY 3ð757.ðð

CREATE THREAD 3ð889.ðð

SIGNON ð.ðð

TERMINATE 61661.ðð

ROLLBACK 644.ðð

COMMIT PHASE 1 ð.ðð

COMMIT PHASE 2 ð.ðð

READ ONLY COMMIT ð.ðð

UNITS OF RECOVERY INDOUBT ð.ðð

UNITS OF REC.INDBT RESOLVED ð.ðð

SYNCHS(SINGLE PHASE COMMIT) 3ð265.ðð

QUEUED AT CREATE THREAD .A/ ð.ðð

SUBSYSTEM ALLIED MEMORY EOT 1.ðð

SUBSYSTEM ALLIED MEMORY EOM ð.ðð

SYSTEM EVENT CHECKPOINT ð.ðð

Figure 109. Thread Queuing in the DB2 PM Statistics Report

QMF Design Options
Some of the significant performance options in QMF are:

� The DSQSIROW parameter of the ISPSTART command

� SPACE parameter of the user QMF profile (Q.PROFILES)

� QMF region size and the spill file attributes

� TRACE parameter of the user QMF profile (Q.PROFILES)

For more information on these aspects of QMF and how they affect performance,
see Query Management Facility: Managing QMF for MVS.

5-136 Administration Guide

 Chapter 5-7. Improving Concurrency

Before going into detail, this chapter begins by describing:

� “What Is Concurrency? What Are Locks?” on page 5-138,
� “Effects of DB2 Locks” on page 5-139, and
� “Basic Recommendations to Promote Concurrency” on page 5-141.

After the basic recommendations, the chapter tells what you can do about two
major techniques that DB2 uses to control concurrency. Those two techniques are
transaction locks and claims and drains.

� Transaction locks mainly control access by SQL statements. Those locks are
the ones over which you have the most control.

– “Aspects of Transaction Locks” on page 5-144 describes the various types
of transaction locks that DB2 uses and how they interact.

– “Tuning Your Use of Locks” on page 5-161 describes what you can change
to control locking. Your choices include:

- “Startup Procedure Options” on page 5-162
- “Installation Options for Wait Times” on page 5-162
- “Other Options that Affect Locking” on page 5-167
- “Bind Options” on page 5-171
- “Specifying Isolation by SQL Statement” on page 5-183
- “The Statement LOCK TABLE” on page 5-184

Under those headings, lock (with no qualifier) refers to transaction lock.

| � Latches are conceptually similar to locks in that they control serialization. They
| can improve concurrency because they are usually held for shorter duration
| than locks and they cannot “deadlatch.” However, page latches can wait, and
| this wait time is reported in accounting trace class 3. Because latches are not
| under your control, we don't describe them in any detail.

� Claims and drains control access by DB2 utilities and commands. An
application that accesses an object first makes a claim for it. By the process of
draining, a command or utility can quiesce existing claimers and prevent new
claims. After the drainer completes its operations, claimers can resume theirs.

“Controlling Concurrency for Utilities and Commands” on page 5-185
describes how to plan utility jobs and other activities to maximize efficiency.

We describe how you can monitor DB2's use of locks and show how to analyze
a particular sample problem in detail, under the heading:

“Monitoring DB2 Locking” on page 5-190

DB2 extends its concurrency controls to multiple subsystems for data sharing. For
information about that, see Data Sharing: Planning and Administration.

 Copyright IBM Corp. 1982, 1997 5-137

What Is Concurrency? What Are Locks?
Definition: Concurrency is the ability of more than one application process to
access the same data at essentially the same time.

Example: An application for order entry is used by many transactions
simultaneously. Each transaction makes inserts in tables of invoices and invoice
items, reads a table of data about customers, and reads and updates data about
items on hand. Two operations on the same data, by two simultaneous
transactions, might be separated only by microseconds. To the users, the
operations appear concurrent.

Conceptual Background: Concurrency must be controlled to prevent lost updates
and such possibly undesirable effects as unrepeatable reads and access to
uncommitted data.

Lost updates. Without concurrency control, two processes, A and B, might
both read the same row from the database, and both calculate new values for
one of its columns, based on what they read. If A updates the row with its new
value, and then B updates the same row, A's update is lost.

Access to uncommitted data. Also without concurrency control, process A
might update a value in the database, and process B might read that value
before it was committed. Then, if A's value is not later committed, but backed
out, B's calculations are based on uncommitted (and presumably incorrect)
data.

Unrepeatable reads. Some processes require the following sequence of
events: A reads a row from the database and then goes on to process other
SQL requests. Later, A reads the first row again and must find the same values
it read the first time. Without control, process B could have changed the row
between the two read operations.

To prevent those situations from occurring unless they are specifically allowed, DB2
might use locks to control concurrency.

What Do Locks Do? A lock associates a DB2 resource with an application process
in a way that affects how other processes can access the same resource. The
process associated with the resource is said to “hold” or “own” the lock. DB2 uses
locks to ensure that no process accesses data that has been changed, but not yet
committed, by another process.

What Do You Do about Locks? To preserve data integrity, your application
process acquires locks implicitly, that is, under DB2 control. It is not generally
necessary for a process to request a lock explicitly to conceal uncommitted data.
Therefore, sometimes you need not do anything about DB2 locks. Nevertheless
processes acquire, or avoid acquiring, locks based on certain general parameters.
You can make better use of your resources and improve concurrency by
understanding the effects of those parameters.

5-138 Administration Guide

Effects of DB2 Locks
The effects of locks that you want to minimize are suspension, timeout, and
deadlock.

 Suspension
Definition: An application process is suspended when it requests a lock that is
already held by another application process and cannot be shared. The suspended
process temporarily stops running.

Order of Precedence for Lock Requests: Incoming lock requests are queued.
Requests for lock promotion, and requests for a lock by an application process that
already holds a lock on the same object, precede requests for locks by new
applications. Within those groups, the request order is “first in, first out.”

Example: Using an application for inventory control, two users attempt to reduce
the quantity on hand of the same item at the same time. The two lock requests are
queued. The second request in the queue is suspended and waits until the first
request releases its lock.

Effects: The suspended process resumes running when:

� All processes that hold the conflicting lock release it.

� The requesting process times out or deadlocks and the process resumes to
deal with an error condition.

 Timeout
Definition: An application process is said to time out when it is terminated because
it has been suspended for longer than a preset interval.

Example: An application process attempts to update a large table space that is
| being reorganized by the utility REORG TABLESPACE with SHRLEVEL NONE. It

is likely that the utility job will not release control of the table space until the
application process times out.

Effects: DB2 terminates the process, issues two messages to the console, and
returns SQLCODE -911 or -913 to the process. (SQLSTATEs '40001' or '57033').

Reason code 00C9008E is returned in the SQLERRD(3) field of the SQLCA. If
statistics trace class 3 is active, DB2 writes a trace record with IFCID 0196.

COMMIT and ROLLBACK operations do not time out. The command STOP
DATABASE, however, may time out and send messages to the console, but it will
retry up to 15 times.

For more information about setting the timeout interval, see “Installation Options
for Wait Times” on page 5-162.

 Chapter 5-7. Improving Concurrency 5-139

 Deadlock
Definition: A deadlock occurs when two or more application processes each hold
locks on resources that the others need and without which they cannot proceed.

Example: Figure 110 illustrates a deadlock between two transactions.

 ┌───────────────────────────┐ ┌───────────────────────────┐

 │ │ │ ┌──────────────────┐ │

│ │ │ │ Table N │ │

│ ┌──────────────────┐ │ (3) │ ├──────────────────┤ │

│ │ Job EMPLJCHG │ ────────────────5 │ ðððð1ð Page A │ │

 │ └──────────────────┘ │ Suspend │ ├──────────────────┤ │

 │ (1) │ OK │ │ │ │ │

 │ 6 │ │ │ │ │

 │ ┌──────────────────┐ │ │ └──────────────────┘ │

│ │ Table M │ │ │ & │

 │ │ │ │ │ (2) │ OK │

│ ├──────────────────┤ │ (4) │ ┌──────────────────┐ │

 │ │ ððð3ðð Page B │ %───────────────── │ Job PROJNCHG │ │

 │ ├──────────────────┤ │ Suspend │ └──────────────────┘ │

 │ └──────────────────┘ │ │ │

 └───────────────────────────┘ └───────────────────────────┘

Notes:

1. Jobs EMPLJCHG and PROJNCHG are two transactions. Job EMPLJCHG accesses
table M, and acquires an exclusive lock for page B, which contains record
000300.

2. Job PROJNCHG accesses table N, and acquires an exclusive lock for page A,
which contains record 000010.

3. Job EMPLJCHG requests a lock for page A of table N while still holding the
lock on page B of table M. The job is suspended, because job PROJNCHG is
holding an exclusive lock on page A.

4. Job PROJNCHG requests a lock for page B of table M while still holding the
lock on page A of table N. The job is suspended, because job EMPLJCHG is
holding an exclusive lock on page B. The situation is a deadlock.

Figure 110. A Deadlock Example

Effects: After a preset time interval (the value of DEADLOCK TIME), DB2 can roll
back the current unit of work for one of the processes or request a process to
terminate. That frees the locks and allows the remaining processes to continue. If

statistics trace class 3 is active, DB2 writes a trace record with IFCID 0172. Reason
code 00C90088 is returned in the SQLERRD(3) field of the SQLCA. (The codes

that describe DB2's exact response depend on the operating environment; for
details, see Section 5 of Application Programming and SQL Guide.)

It is possible for two processes to be running on separate DB2 subsystems, each
trying to access a resource at the other location. In that case, neither subsystem
can detect that the two processes are in deadlock; the situation resolves only when
one process times out.

5-140 Administration Guide

Basic Recommendations to Promote Concurrency
The following recommendations are grouped by their scope:

� “Recommendations for System Options”
� “Recommendations for Database Design”
� “Recommendations for Application Design” on page 5-143

Recommendations for System Options
Reduce Swapping: If a task is waiting or is swapped out and the unit of work has
not been committed, then it still holds locks. When a system is heavily loaded,
contention for processing, I/O, and storage can cause waiting. Consider reducing
the number of initiators, increasing the priority for the DB2 tasks, and providing
more processing, I/O, or storage resources.

Make Way for the IRLM: Make sure that the IRLM has a high MVS-dispatching
priority. It should comes next after VTAM and before DB2.

If you can define more ECSA, then start the IRLM with PC=NO rather than
PC=YES. You can make this change without changing your application process.
This change can also reduce processing time.

Restrict Updating of Partitioning Key Columns: In systems with high concurrency
and long running transactions, allowing the updating of partitioning key columns
when the update moves the row from one partition to the other can cause
concurrency problems. Allow updating only when the row stays in the same
partition by setting the system parameter PARTKEYU to SAME.

Recommendations for Database Design
Keep Like Things Together: Cluster tables relevant to the same application into
the same database, and give each application process that creates private tables a
private database in which to do it. In the ideal model, each application process
uses as few databases as possible.

Keep Unlike Things Apart: Give users different authorization IDs for work with
different databases; for example, one ID for work with a shared database and
another for work with a private database. This effectively adds to the number of
possible (but not concurrent) application processes while minimizing the number of
databases each application process can access.

Cluster Your Data: Try to keep data that is accessed together on the same page.
A table that starts empty at the beginning of the job and is filled by insertions is not
effectively clustered. All of the insertions are at the end of the table and cause
conflicts, especially while the table is nearly empty and the index has only one or

| two levels. Type 2 indexes can help alleviate this situation.

For information on using clustering indexes to keep data clustered, see “Clustering
Indexes” on page 2-56.

On the other hand, if your application does sequential batch insertions for which the
input data is not in clustering sequence, there can be excessive contention on the
space map page for the table space. This problem is especially apparent in data
sharing, where contention on the space map means the added overhead of page
P-lock negotiation. For these types of applications, consider using the MEMBER

 Chapter 5-7. Improving Concurrency 5-141

CLUSTER option of CREATE TABLESPACE. This option causes DB2 to disregard
the clustering index (or implicit clustering index) for the SQL INSERT statement.
For more information about using this option in data sharing, see Chapter 7 of Data
Sharing: Planning and Administration. For the syntax, see Chapter 6 of SQL
Reference.

For Changes to Data, Consider Type 2 Indexes: INSERT, UPDATE, or DELETE
operations require a lock on every affected page or subpage of a type 1 index, but
not on pages of a type 2 index. If there are no type 1 indexes on the data, only the
affected data pages or rows are locked. Because there are usually fewer rows to a
data page than there are index entries to an index page or subpage, locking only
the data when you lock pages likely causes less contention than locking the index.
Locking only data rows would likely cause even less contention.

Changes can also split an index leaf page, which locks out concurrent access to a
type 1 index but not to a type 2. And if the page has more than one subpage, there
can be additional splitting for subpages. Type 2 indexes have no subpages.

If you have had contention problems on index pages, then switch to type 2 indexes.
That change alone is likely to solve the problems.

If you insert data with a constantly increasing key, use a type 2 index. The type 1
index splits the last index page in half and adds the new key at the end of the list
of entries. It continues to add new keys after that, wasting one-half of the old split
page. The type 2 index merely adds the new highest key to the top of a new page,
without splitting the page.

Be aware, however, that DB2 treats nulls as the highest value when deciding where
to insert values. When the existing high key contains a null value in the first column
that differentiates it from the new key that is inserted, then inserted non-null index
entries cannot take advantage of this special “highest value” split.

For example, if the existing high key is:

SMITH ROBERT J

and you insert:

SMITH ROBERT (null)

Then an insert of:

SMITH ROBERT Z

is not treated as the new high key.

Use LOCKSIZE ANY Until You Have Reason Not To: LOCKSIZE ANY is the
default for CREATE TABLESPACE. It allows DB2 to choose the lock size, and DB2
usually chooses LOCKSIZE PAGE and LOCKMAX SYSTEM. Before you use
LOCKSIZE TABLESPACE or LOCKSIZE TABLE, you should know why you do not
need concurrent access to the object. Before you choose LOCKSIZE ROW, you
should estimate whether there will be an increase in overhead for locking and
weigh that against the increase in concurrency.

Examine Small Tables: For small tables with high concurrency requirements,
estimate the number of pages in the data and in the index. If the index entries are
short or they have many duplicates, then the entire index can be one root page and

5-142 Administration Guide

a few leaf pages. In this case, spread out your data to improve concurrency. Or,
consider it a reason to use type 2 indexes and row locks.

Partition the Data: Online queries typically make few data changes, but they occur
often. Batch jobs are just the opposite; they run for a long time and change many
rows, but occur infrequently. The two do not run well together. You might be able to
separate online applications from batch, or two batch jobs from each other. To
separate online and batch applications, provide separate partitions. Partitioning can
also effectively separate batch jobs from each other.

| Fewer Rows of Data per Page: By using the MAXROWS clause of CREATE or
| ALTER TABLESPACE, you can specify the maximum number of rows that can be
| on a page. For example, if you use MAXROWS 1, each row occupies a whole
| page, and you confine a page lock to a single row. Consider this option if you have
| a reason to avoid using row locking, such as in a data sharing environment where
| row locking overhead can be excessive.

| MAXROWS does not apply to the index. If you are still using type 1 indexes, you
| can pad the index by adding a long column to the index. However, this technique
| does not force each index entry to a separate page or subpage.

Recommendations for Application Design
Access Data in a Consistent Order: When different applications access the same
data, try to make them do so in the same sequence. For example, make both
access rows 1,2,3,5 in that order. In that case, the first application to access the
data delays the second, but the two applications cannot deadlock. For the same
reason, try to make different applications access the same tables in the same
order.

Commit Work as Soon as Is Practical: To avoid unnecessary lock contentions,
issue a COMMIT statement as soon as possible after reaching a point of

| consistency, even in read-only applications. To prevent unsuccessful SQL
statements (such as PREPARE) from holding locks, issue a ROLLBACK statement
after a failure. Statements issued through SPUFI can be committed immediately by
the SPUFI autocommit feature.

Retry an Application After Deadlock or Timeout: Include logic in a batch
program so that it retries an operation after a deadlock or timeout. That could help

you recover from the situation without assistance from operations personnel. Field
SQLERRD(3) in the SQLCA returns a reason code that indicates whether a
deadlock or timeout occurred.

Close Cursors: If you define a cursor using the WITH HOLD option, the locks it
needs can be held past a commit point. Use the CLOSE CURSOR statement as
soon as possible in your program, to release those locks and free the resources
they hold.

Bind Plans with ACQUIRE(USE): That choice is best for concurrency. Packages
are always bound with ACQUIRE(USE), by default. ACQUIRE(ALLOCATE) gives
better protection against deadlocks for a high-priority job; if you need that option,
you might want to bind all DBRMs directly to the plan.

Bind with ISOLATION(CS) and CURRENTDATA(NO) Typically: ISOLATION(CS)
lets DB2 release acquired locks as soon as possible. CURRENTDATA(NO) lets

 Chapter 5-7. Improving Concurrency 5-143

DB2 avoid acquiring locks as often as possible. After that, in order of decreasing
preference for concurrency, use these bind options:

1. ISOLATION(CS) with CURRENTDATA(YES), when data you have accessed
must not be changed before your next FETCH operation.

2. ISOLATION(RS), when rows you have accessed must not be changed before
your application commits or rolls back. However, you do not care if other
application processes insert additional rows.

3. ISOLATION(RR), when rows you have accessed must not be changed before
your application commits or rolls back. New rows cannot be inserted into the
answer set.

Use ISOLATION(UR) Cautiously: UR isolation acquires almost no locks. It is fast
and causes little contention, but it reads uncommitted data. Do not use it unless
you are sure that your applications and end users can accept the logical
inconsistencies that can occur.

Aspects of Transaction Locks
Four Basic Aspects:

� “The Size of a Lock”
� “The Duration of a Lock” on page 5-147
� “The Mode of a Lock” on page 5-148
� “The Object of a Lock” on page 5-151

Knowing the aspects helps you understand why a process suspends or times out or
why two processes deadlock. To change the situation, you also need to know:

� “What Lock Types DB2 Chooses” on page 5-153

The Size of a Lock
Definition: The size (sometimes scope or level) of a lock on data in a table

| describes the amount of data controlled. The possible sizes of locks are table
| space, table, partition, page, and row.

Hierarchy of Lock Sizes: The same piece of data can be controlled by locks of
different sizes. A table space lock (the largest size) controls the most data, all the
data in an entire table space. A page or row lock controls only the data in a single
page or row.

As Figure 111 on page 5-145 suggests, row locks and page locks occupy an equal
place in the hierarchy of lock sizes.

5-144 Administration Guide

Segmented Table Space Simple Table Space
 ┌─────────────────────────┐ ┌─────────────────────────┐

│ Table space lock │ │ Table space lock │

 └────────────┬────────────┘ └────────────┬────────────┘

 ┌───────┴───────┐ │

 │ Table lock │ │

 └───────┬───────┘ │

 ┌───────┴───────┐ ┌───────┴───────┐

 ┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐

│ Row lock │ │Page lock │ │ Row lock │ │Page lock │

 └──────────┘ └──────────┘ └──────────┘ └──────────┘

Partitioned Table Space

 ┌────────────────────────────────┐

│ Partitioned table space lock │

 │ │

 └───────────┬────────────────────┘

 ┌───────────────────────────┬───────────────────────────┤

│ │ │

│ │ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐

│ Row lock │ │Page lock │ │ Row lock │ │Page lock │ │ Row lock │ │Page lock │

└──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘

Partitioned Table Space with LOCKPART YES
┌─────────────────────────┐ ┌─────────────────────────┐ ┌─────────────────────────┐

│ Partition Lock │ │ Partition lock │ │ Partition lock │

└────────────┬────────────┘ └────────────┬────────────┘ └────────────┬────────────┘

│ │ │

│ │ │

│ │ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐ ┌────┴─────┐ ┌─────┴────┐

│ Row lock │ │Page lock │ │ Row lock │ │Page lock │ │ Row lock │ │Page lock │

└──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘

| Figure 111. Sizes of Objects Locked

General Effects of Size: Locking larger or smaller amounts of data allows you to
trade performance for concurrency. When you use page or row locks instead of
table or table space locks:

� Concurrency usually improves, meaning better response times and higher
throughput rates for many users.

� Processing time and use of storage increases. That is especially evident in
batch processes that scan or update a large number of rows.

When you use only table or table space locks:

� Processing time and storage usage is reduced.

� Concurrency can be reduced, meaning longer response times for some users
but better throughput for one user.

Effects on Table Spaces of Different Types:

| � The LOCKPART clause of CREATE and ALTER TABLESPACE lets you control
| how DB2 locks partitioned table spaces . The default, LOCKPART NO, means
| that one lock is used to lock the entire partitioned table space when any
| partition is accessed. LOCKPART NO is the value you want in most cases.

| With LOCKPART YES, individual partitions are locked only as they are
| accessed.

 Chapter 5-7. Improving Concurrency 5-145

| One case for using LOCKPART YES is for some data sharing applications, as
| described in Chapter 7 of Data Sharing: Planning and Administration. There are
| also benefits to non-data-sharing applications that use partitioned table spaces.
| For these applications, it might be desirable to acquire gross locks (S, U, or X)
| on partitions to avoid numerous lower level locks, and yet still maintain
| concurrency. When locks escalate, and the table space is defined with
| LOCKPART YES, applications that access different partitions of the same table
| space are not affected by update activity.

| Restrictions: If any of the following conditions are true, DB2 must lock all
| partitions when LOCKPART YES is used:

| – A type 1 index is used in the access path
| – The plan is bound with ACQUIRE(ALLOCATE)
| – The table space is defined with LOCKSIZE TABLESPACE
| – When LOCK TABLE IN EXCLUSIVE MODE is used (without the PART
| option)

| No matter how LOCKPART is defined, utility jobs can control separate
| partitions of a table space or index space and can run concurrently with
| operations on other partitions.

� A simple table space can contain more than one table. A lock on the table
space locks all the data in every table. A single page of the table space can
contain rows from every table. A lock on a page locks every row in the page,

| no matter what tables the data belongs to. Thus, a lock needed to access data
from one table can make data from other tables temporarily unavailable. That
effect can be partly undone by using row locks instead of page locks. But that
step does not relieve the sweeping effect of a table space lock.

� In a segmented table space , rows from different tables are contained in
different pages. Locking a page does not lock data from more than one table.
Also, DB2 can acquire a table lock, which locks only the data from one specific
table. A single row, of course, contains data from only one table, so the effect
of a row lock is the same as for a simple or partitioned table space: it locks one
row of data from one table.

Differences between Simple and Segmented Table Spaces: Figure 112 on
page 5-147 illustrates the difference between the effects of page locks on simple
and segmented table spaces. Suppose that tables T1 and T2 reside in table space
TS1. Even a single page can contain rows from both T1 and T2. If User 1 and User
2 acquire locks on different pages, neither can access all the rows in T1 and T2
until one of the locks is released.

As the figure also shows, in a segmented table space, a table lock applies only to
segments assigned to a single table. Thus, User 1 can lock all pages assigned to
the segments of T1 while User 2 locks all pages assigned to segments of T2.
Similarly, User 1 can lock a page of T1 without locking any data in T2.

For information about controlling the size of locks, see:

� “LOCKSIZE Clause of CREATE and ALTER TABLESPACE” on page 5-168
� “The Statement LOCK TABLE” on page 5-184

5-146 Administration Guide

 ┌───┐

SIMPLE: │ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ │

│ │ Page 1 │ │ Page 2 │ │ Page 3 │ │ Page 4 │ │

Table space │ │ --------- │ │ ┌───────┐ │ │ --------- │ │ --------- │ │

lock applies │ │ --------- │ │ └───────┘ │ │ --------- │ │ --------- │ . . . │

to every table │ │ ┌───────┐ │ │ ┌───────┐ │ │ ┌───────┐ │ │ ┌───────┐ │ │

in the table │ │ └───────┘ │ │ └───────┘ │ │ └───────┘ │ │ └───────┘ │ │

space. │ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │

 └───────&───┘

│ Rows from T1: ---------

 ' ---------

Table User 1 Legend: Rows from T2: ┌───────┐

Space Locking Lock on TS1 └───────┘

 ──

Page Locking ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐

│ Page 1 │ │ Page 2 │ │ Page 3 │ │ Page 4 │

Page lock │ --------- │ │ ┌───────┐ │ │ --------- │ │ --------- │

applies to │ --------- │ │ └───────┘ │ │ --------- │ │ --------- │ . . .

data from │ ┌───────┐ │ │ ┌───────┐ │ │ ┌───────┐ │ │ ┌───────┐ │

every table │ └───────┘ │ │ └───────┘ │ │ └───────┘ │ │ └───────┘ │

on the page. └─────&─────┘ └───────────┘ └─────&─────┘ └───────────┘

 ' '

 User 1 User 2

Lock on page 1 Lock on page 3

 ===

 ┌──────────────────────────────┐ ┌──────────────────────────────┐

│ Segment for table T1 │ │ Segment for table T2 │

SEGMENTED: │ ┌───────────┐ ┌───────────┐ │ │ ┌───────────┐ ┌───────────┐ │

│ │ Page 1 │ │ Page 2 │ │ │ │ Page 3 │ │ Page 4 │ │

Table lock │ │ --------- │ │ --------- │ │ │ │ ┌───────┐ │ │ ┌───────┐ │ │

applies to │ │ --------- │ │ --------- │ │ │ │ └───────┘ │ │ └───────┘ │ │ . . .

only one │ │ --------- │ │ --------- │ │ │ │ ┌───────┐ │ │ ┌───────┐ │ │

table in the │ │ --------- │ │ --------- │ │ │ │ └───────┘ │ │ └───────┘ │ │

table space. │ └───────────┘ └───────────┘ │ │ └───────────┘ └───────────┘ │

 └───────&──────────────────────┘ └───────&──────────────────────┘ Legend:

│ │ Rows from T1: ---------

 ' ' ---------

User 1 User 2 Rows from T2: ┌───────┐

Table Locking Lock on table T1 Lock on table T2 └───────┘

 ──

 ┌──────────────────────────────┐ ┌──────────────────────────────┐

Page Locking │ Segment for table T1 │ │ Segment for table T2 │

│ ┌───────────┐ ┌───────────┐ │ │ ┌───────────┐ ┌───────────┐ │

Page lock │ │ Page 1 │ │ Page 2 │ │ │ │ Page 3 │ │ Page 4 │ │

applies to │ │ --------- │ │ --------- │ │ │ │ ┌───────┐ │ │ ┌───────┐ │ │

data from │ │ --------- │ │ --------- │ │ │ │ └───────┘ │ │ └───────┘ │ │ . . .

only one │ │ --------- │ │ --------- │ │ │ │ ┌───────┐ │ │ ┌───────┐ │ │

table. │ │ --------- │ │ --------- │ │ │ │ └───────┘ │ │ └───────┘ │ │

│ └─────&─────┘ └───────────┘ │ │ └─────&─────┘ └───────────┘ │

 └───────│──────────────────────┘ └───────│──────────────────────┘

 ' '

 User 1 User 2

Lock on page 1 Lock on page 3

Figure 112. Page Locking for Simple and Segmented Table Spaces

The Duration of a Lock
Definition: The duration of a lock is the length of time the lock is held. It varies
according to when the lock is acquired and when it is released.

Example: An application locates customers in a table of customer data and
changes their addresses. The statement locks the entire table space and the
specific rows that it changes. The application might acquire the lock on the table
space as soon as the program starts and hold the lock until the program ends. It
would acquire the lock on a specific row only when it accesses the row and can
release the row lock when it commits the change to that row.

 Chapter 5-7. Improving Concurrency 5-147

Effects: For maximum concurrency, locks on a small amount of data held for a
short duration are better than locks on a large amount of data held for a long
duration. However, acquiring a lock requires processor time, and holding a lock
requires storage; thus, acquiring and holding one table space lock is more
economical than acquiring and holding many page locks. Consider that trade-off to
meet your performance and concurrency objectives.

| Duration of Partition, Table, and Table Space Locks: Partition, table, and table
| space locks can be acquired when a plan is first allocated, or you can delay
| acquiring them until the resource they lock is first used. They can be released at
| the next commit point or be held until the program terminates.

| To use selective partition locking (LOCKPART YES), you must bind the plan to
| acquire the locks at the first use of the resource (the BIND option is
| ACQUIRE(USE). All locks on partitions of a particular table space acquired by a
| particular application are held for the same duration.

Duration of Page and Row Locks: If a page or row is locked, DB2 acquires the
lock only when it is needed. When the lock is released depends on many factors,
but it is rarely held beyond the next commit point.

For information about controlling the duration of locks, see “Bind Options” on
page 5-171.

The Mode of a Lock
Definition: The mode (sometimes state) of a lock tells what access to the locked
object is permitted to the lock owner and to any concurrent processes.

Figure 113 on page 5-149 lists the possible modes for page and row locks;
| Figure 114 on page 5-150 lists the modes for partition, table, and table space

locks.

| When a page or row is locked, the table, partition, or table space containing it is
| also locked. In that case, the table, partition, or table space lock has one of the
| intent modes: IS, IX, or SIX. The modes S, U, and X of table, partition, and table
| space locks are sometimes called gross modes. In the context of reading, SIX is a
| gross mode lock because you don't get page or row locks; in this sense, it is like
| an S lock.

Example: An SQL statement locates John Smith in a table of customer data and
changes his address. The statement locks the entire table space in mode IX and
the specific row that it changes in mode X.

5-148 Administration Guide

Modes of Page and Row Locks

Modes and their effects are listed in the order of increasing control over
resources.

S (SHARE) The lock owner and any concurrent processes can read, but not
change, the locked page or row. Concurrent processes can
acquire S or U locks on the page or row or might read data
without acquiring a page or row lock.

U (UPDATE)
The lock owner can read, but not change, the locked page or row.
Processes concurrent with the U lock can acquire S locks and can
read the page or row, but no concurrent process can acquire a U
lock.

U locks reduce the chance of deadlocks when the lock owner is
reading a page or row to determine whether to change it, because
the owner can start with the U lock and then promote the lock to
an X lock to change the page or row.

X (EXCLUSIVE)
The lock owner can read or change the locked page or row. A
concurrent process can access the data if the process runs with

| UR isolation. (A concurrent process that is bound with cursor
| stability and CURRENTDATA(NO) can also read X-locked data if
| DB2 can tell that the data is committed.)

Figure 113. Modes of Page and Row Locks

Effect of the Lock Mode: The major effect of the lock mode is to determine
whether one lock is compatible with another.

Definition: Locks of some modes do not shut out all other users. Assume that
application process A holds a lock on a table space that process B also wants to
access. DB2 requests, on behalf of B, a lock of some particular mode. If the mode
of A's lock permits B's request, the two locks (or modes) are said to be compatible.

Effects of Incompatibility: If the two locks are not compatible, B cannot proceed.
It must wait until A releases its lock. (And, in fact, it must wait until all existing
incompatible locks are released.)

Which Lock Modes are Compatible? Compatibility for page and row locks is easy
to define: Table 69 shows whether page locks of any two modes, or row locks of
any two modes, are compatible (Yes) or not (No). No question of compatibility of a
page lock with a row lock can arise, because a table space cannot use both page
and row locks.

Table 69. Compatibility of Page Lock and Row Lock Modes

Lock Mode S U X

S Yes Yes No

U Yes No No

X No No No

 Chapter 5-7. Improving Concurrency 5-149

Modes of Table, Partition, and Table Space Locks

Modes and their effects are listed in the order of increasing control over
resources.

IS (INTENT SHARE)
| The lock owner can read data in the table, partition, or table
| space, but not change it. Concurrent processes can both read and
| change the data. The lock owner might acquire a page or row lock
| on any data it reads.

IX (INTENT EXCLUSIVE)
| The lock owner and concurrent processes can read and change
| data in the table, partition, or table space. The lock owner might

acquire a page or row lock on any data it reads; it must acquire
one on any data it changes.

| S (SHARE) The lock owner and any concurrent processes can read, but not
| change, data in the table, partition, or table space. The lock owner

does not need page or row locks on data it reads.

U (UPDATE)
The lock owner can read, but not change, the locked data;
however, the owner can promote the lock to an X lock and then
can change the data. Processes concurrent with the U lock can
acquire S locks and read the data, but no concurrent process can
acquire a U lock. The lock owner does not need page or row
locks.

U locks reduce the chance of deadlocks when the lock owner is
reading data to determine whether to change it.

SIX (SHARE with INTENT EXCLUSIVE)
| The lock owner can read and change data in the table, partition, or
| table space. Concurrent processes can read data in the table,
| partition, or table space, but not change it. Only when the lock
| owner changes data does it acquire page or row locks.

X (EXCLUSIVE)
| The lock owner can read or change data in the table, partition, or
| table space. A concurrent process can access the data if the
| process runs with UR isolation. The lock owner does not need
| page or row locks.

| Figure 114. Modes of Table, Partition, and Table Space Locks

Compatibility for table space locks is slightly more complex. Table 70 on
page 5-151 shows whether or not table space locks of any two modes are
compatible.

5-150 Administration Guide

| Table 70. Compatibility of Table and Table Space (or Partition) Lock Modes

Lock Mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No

IX Yes Yes No No No No

S Yes No Yes Yes No No

U Yes No Yes No No No

SIX Yes No No No No No

X No No No No No No

The Object of a Lock
Definition: The object of a lock is the resource being locked.

 Examples
You might have to consider locks on any of the following objects:

� User data in target tables . A target table is a table that is accessed
specifically in an SQL statement, either by name or through a view. Locks on
those tables are the most common concern, and the ones over which you have
most control.

� User data in indexes . DB2 acquires locks on pages and subpages of type 1
indexes. An advantage of type 2 indexes is that they are protected by locks on
the underlying data pages or rows; the index pages themselves are not locked.
For more information, see “Locks on Indexes,” below.

� User data in related tables . Operations subject to referential constraints can
require locks on related tables. For example, if you delete from a parent table,
DB2 might delete rows from the dependent table as well. In that case, DB2
locks data in the dependent table as well as in the parent table.

� DB2 internal objects . Most of those you are never aware of. Some locks you
might notice are on:

– Portions of the DB2 catalog . For more information, see “Locks on the DB2
Catalog” on page 5-152.

– The skeleton cursor table (SKCT) representing an application plan.

– The skeleton package table (SKPT) representing a package. For more
information on skeleton tables, see “Locks on the Skeleton Tables (SKCT
and SKPT)” on page 5-153.

– The database descriptor (DBD) representing a DB2 database. For more
information, see “Locks on the Database Descriptors (DBDs)” on
page 5-153.

Locks on Indexes
Type 1 Indexes: A lock on a table or table space also protects every page or
subpage of every type 1 index on the table space, as though each one was locked
with the same mode. If DB2 acquires page locks in the table space, it might also

| acquire locks on pages or subpages of the indexes. (It cannot acquire row locks if
the table space has any type 1 indexes.)

Thus, if an application process has an S or X lock on a table space, the indexes
are inherently locked in S or X mode, and index pages or subpages are not locked

 Chapter 5-7. Improving Concurrency 5-151

separately. If the process has an IS, IX, or SIX lock on the table space, particular
index pages or subpages can be locked separately.

Type 1 Index Disadvantage: A single process accessing data through a type 1
index can sometimes experience a deadlock between a data page and an index
page.

Type 2 Indexes: The transaction lock acquired on a table space protects all type
2 indexes on all tables in the table space. If the process changes an index key,
only the data that the key points to is locked. That technique, called data-only
locking, greatly reduces contention for index pages. Transactions that insert high
key values at the end of an index benefit greatly.

| Type 2 Index Disadvantage: A query that uses index-only access might lock the
| data page or row if the index is type 2, and that lock can contend with other
| processes that lock the data. Index-only access with a type 1 index does not
| acquire any data page or row locks.

Locks on the DB2 Catalog
SQL data definition statements, GRANT statements, and REVOKE statements
require locks on the DB2 catalog. The catalog is designed to minimize contention
among application processes, but there are also active steps you can take to avoid
contention.

Contention within Table Space SYSDBASE: SQL statements that update the
| catalog table space SYSDBASE contend with each other when those statements
| are on the same table space. Those statements are:

CREATE, ALTER, and DROP TABLESPACE, TABLE, and INDEX
CREATE and DROP VIEW, SYNONYM, and ALIAS
COMMENT ON and LABEL ON
GRANT and REVOKE of table privileges

Recommendation: To reduce contention, convert the indexes on the catalog and
| directory to type 2, and reduce the concurrent use of statements that update
| SYSDBASE for the same table space.

Contention Independent of Databases: The following limitations on concurrency
are independent of the referenced database:

� CREATE and DROP statements for a table space or index that uses a storage
group contend significantly with other such statements.

� If a CREATE statement causes a page of a type 1 index to split, it limits
concurrency by locking more than one index page. That happens most often
when DB2 is first installed. We recommend converting all indexes on the DB2
catalog and directory to type 2.

� CREATE, ALTER, and DROP DATABASE, and GRANT and REVOKE
database privileges all contend with each other and with any other function that
requires a database privilege.

� CREATE, ALTER, and DROP STOGROUP contend with any SQL statements
that refer to a storage group, and with extensions to table spaces and indexes
that use a storage group.

5-152 Administration Guide

� GRANT and REVOKE for plan, package, system, or use privileges contend
with other GRANT and REVOKE statements for the same type of privilege, and
with data definition statements that require the same type of privilege.

Locks on the Skeleton Tables (SKCT and SKPT)
The SKCT of a plan, or the SKPT of a package, is locked while the plan or
package is running. The following operations require incompatible locks on the
SKCT or SKPT, whichever is applicable, and cannot run concurrently:

� Binding, rebinding, or freeing the plan or package

� Dropping a resource or revoking a privilege that the plan or package depends
on

� In some cases, altering a resource that the plan or package depends on

Locks on the Database Descriptors (DBDs)
Whether a process locks a target DBD depends largely on whether the DBD is
already in the EDM pool.

If the DBD is not in the EDM pool , most processes acquire locks on the
database descriptor table space (DBD01). That has the effect of locking the
DBD and can cause conflict with other processes.

If the DBD is in the EDM pool , the lock on the DBD depends on the type of
process, as shown in Table 71.

Table 71. Contention for Locks on a DBD in the EDM Pool

Process
Type Process

Lock
Acquired

Conflicts
with
Process
Type

1 Static DML statements (SELECT, DELETE,
INSERT, UPDATE)

None None

Note: Static DML statements can conflict with other processes because of locks on data.

2 Dynamic DML statements S 3

| Note: If caching of dynamic SQL is turned on, no lock is taken on the DBD when a
| statement is prepared for insertion in the cache or for a statement in the cache.

3 Data definition statements (ALTER, CREATE,
DROP)

X 2,3,4

4 Utilities S 3

What Lock Types DB2 Chooses
Overview: For the locks acquired on target tables and indexes by different types of
SQL data manipulation statements, see:

� “Modes of Locks Acquired for SQL Statements” on page 5-154, below

But the lock acquired because of an SQL statement is not always a constant
throughout the time of execution. For two situations in which DB2 can change
acquired locks during execution, see:

� “Lock Promotion” on page 5-158
� “Lock Escalation” on page 5-159

 Chapter 5-7. Improving Concurrency 5-153

For a summary of the locks acquired by other operations, see:

� “Modes of Transaction Locks for Various Processes” on page 5-160

Modes of Locks Acquired for SQL Statements
Table 72 on page 5-155 shows the modes of locks that a process acquires. The
mode depends on:

1. The type of processing being done
2. The value of LOCKSIZE for the target table
3. The value of ISOLATION with which the plan or package is bound
4. The method of access to data

For details about:

� LOCKSIZE, see “LOCKSIZE Clause of CREATE and ALTER TABLESPACE”
on page 5-168

� ISOLATION, see “The ISOLATION Option” on page 5-175

� Access methods, see “Chapter 5-10. Using EXPLAIN to Improve SQL
Performance” on page 5-261

Reading the Table: We illustrate the steps with the following example:

EXEC SQL DELETE FROM DSN851ð.EMP WHERE CURRENT OF C1;

Your steps are:

1. Find the section of the table for DELETE operations using a cursor. It is on
page 5-157.

2. Find the row for the appropriate values of LOCKSIZE and ISOLATION. Table
space DSN8510 is defined with LOCKSIZE ANY. If the value of ISOLATION
was not specifically chosen, it is RR by default. You are interested in the 4th
row of this section of the table.

3. Find the subrow for the expected access method. We can suppose the
operation uses the index on employee number, and for the example we
assume that is a type 1 index. Because the operation deletes a row, it must
update the index. Hence, you can read the locks acquired in the subrow for
“Type 1 index, updated”:

� An IX lock on the table space
� An IX lock on the table (but see the step that follows)
� An X lock on the page containing the row that is deleted
� An X lock on the index page (but only if that is a type 1 index)

4. Check the notes to the entries you use, at the end of the table. For this sample
operation, see:

� Note 3, on the column heading for “Table.” If the table is not segmented,
there is no separate lock on the table.

� Note 4, on the column heading for “Data Page or Row.” Because
LOCKSIZE for the table space is ANY, DB2 can choose whether to use
page locks, table locks, or table space locks. Typically it chooses page
locks. And because we assume that the index is type 1, the table space
cannot have row locks.

5-154 Administration Guide

Table 72 (Page 1 of 4). Modes of Locks Acquired for SQL Statements. Numbers in parentheses () refer to
numbered notes on page 5-158.

LOCKSIZE
(1)

ISO-
LATION Access Method (2)

Lock Mode

| Table
| Space
| (11) Table (3)

Data Page or
Row (4)

Index
Page

Processing statement: SELECT with read-only or ambiguous cursor, or with no cursor. UR isolation is
allowed and requires none of these locks.

| TABLESPACE CS RS
RR

Any S n/a n/a n/a

TABLE (3) CS RS
RR

Any IS S n/a n/a

PAGE, ROW,
or ANY

CS or
RS

Type 1 probe or scan IS(5) IS(5) n/a S

Type 1 data retrieval IS(5) IS(5) S(6) S

Type 2, any use| IS(5) (12) IS(5) S(6) n/a

Table space scan| IS(5) (12) IS(5) S(6) n/a

PAGE, ROW,
or ANY

RR

Type 1 probe IS(5) IS(5) n/a S

Type 1 data retrieval IS(5) IS(5) S S

Type 1 index scan (7) IS(3) or S S, IS, or n/a n/a S or n/a

Type 2 probe or data
retrieval

IS(5) IS(5) S n/a

Type 2 scan (7) IS(3) or S S, IS, or n/a S or n/a n/a

Table space scan (7) IS(3) or S S or n/a n/a n/a

Processing statement: INSERT ... VALUES(...) or INSERT ... subselect (8)

TABLESPACE CS RS
RR

Any X n/a n/a n/a

TABLE (3) CS RS
RR

Any IX X n/a n/a

PAGE, ROW,
or ANY

CS RS
RR

Type 1, any use IX IX X X

Type 2, any use IX IX X n/a

Processing statement: UPDATE or DELETE, without cursor. Data page and row locks apply only to
selected data.

TABLESPACE CS RS
RR

Any X n/a n/a n/a

TABLE (3) CS RS
RR

Any IX X n/a n/a

PAGE, ROW,
or ANY

CS

Type 1 index selection IX IX X U→X

Type 1 data selection IX IX U→X U→X

Type 2 index selecton IX IX
X (delete)
U→X
(update)

n/a

Type 2 data selection IX IX U→X n/a

Table space scan IX IX U→X n/a

 Chapter 5-7. Improving Concurrency 5-155

Table 72 (Page 2 of 4). Modes of Locks Acquired for SQL Statements. Numbers in parentheses () refer to
numbered notes on page 5-158.

LOCKSIZE
(1)

ISO-
LATION Access Method (2)

Lock Mode

| Table
| Space
| (11) Table (3)

Data Page or
Row (4)

Index
Page

PAGE, ROW,
or ANY

RS

Type 1 index selection IX IX X
S or
U(10)→X

Type 1 data selection IX IX
S or
U(10)→X

S or
U(10)→X

Type 2 index selection IX IX

S or
U(10)→X
(update)
S→X(10) or
X (delete)

n/a

Type 2 data selection IX IX
S or
U(10)→X

n/a

Table space scan IX IX
S or
U(10)→X

n/a

PAGE, ROW,
or ANY

RR

Type 1 index selection IX IX X
S or
U(10)→X

Type 1 data selection IX IX
S or
U(10)→X

S or
U(10)→X

Type 2 index selection IX IX

S or
U(10)→X
(update) X or
S(10)→X
(delete)

n/a

Type 2 data selection IX IX
S or
U(10)→X

n/a

Table space scan IX(3) or X X or n/a n/a n/a

Processing Statement: SELECT with FOR UPDATE OF. Data page and row locks apply only to selected
data.

TABLESPACE CS RS
RR

Any U n/a n/a n/a

TABLE (3) CS RS
RR

Any IS or IX U n/a n/a

PAGE, ROW,
or ANY

CS

Type 1 probe or scan IX IX n/a S or U(9)

Type 1 data retrieval IX IX U S or U(9)

Type 2 index, any use IX IX U n/a

Table space scan IX IX U n/a

5-156 Administration Guide

Table 72 (Page 3 of 4). Modes of Locks Acquired for SQL Statements. Numbers in parentheses () refer to
numbered notes on page 5-158.

LOCKSIZE
(1)

ISO-
LATION Access Method (2)

Lock Mode

| Table
| Space
| (11) Table (3)

Data Page or
Row (4)

Index
Page

PAGE, ROW,
or ANY

RS

Type 1 probe or scan IX IX n/a
| S, U, or
| X(10)

Type 1 data retrieval IX IX
S, U, or
X(10)

| S, U, or
| X(10)

Type 2 index, any use IX IX
| S, U, or
| X(10)

n/a

Table space scan IX IX
| S, U, or
| X(10)

n/a

PAGE, ROW,
or ANY

RR

Type 1 probe IX IX n/a
S, U, or
X(10)

Type 1 data retrieval IX IX
| S, U, or
| X(10)

S, U, or
X(10)

Type 1 scan (7) IX(3) or X X, IX, or n/a n/a
S, U(10),
X, or n/a

Type 2 probe or data
retrieval

IX IX
| S, U, or
| X(10)

n/a

Type 2 scan (7) IX(3) or X X, IX, or n/a
| S, U, X(10),
| or n/a

n/a

Table space scan (7) IX(3) or X X or n/a| n/a# n/a

Processing Statement: UPDATE or DELETE with cursor

TABLESPACE Any Any X n/a n/a n/a

TABLE (3) Any Any IX X n/a n/a

PAGE, ROW,
or ANY

CS, RS,
or RR

Type 1 index, updated IX IX X X

Type 2 index, updated IX IX X n/a

Index not updated IX IX X n/a

 Chapter 5-7. Improving Concurrency 5-157

Table 72 (Page 4 of 4). Modes of Locks Acquired for SQL Statements. Numbers in parentheses () refer to
numbered notes on page 5-158.

LOCKSIZE
(1)

ISO-
LATION Access Method (2)

Lock Mode

| Table
| Space
| (11) Table (3)

Data Page or
Row (4)

Index
Page

Notes:

1. If the database is defined with ROSHARE READER, DB2 ignores LOCKSIZE and acquires an S lock on the table
space.

2. Access methods are:

Probe The index alone is searched to find one or more entries.
Scan The index or table space is scanned for successive entries or rows.
Data retrieval Data rows are retrieved through index access.
Index selection The index alone identifies qualifying rows.
Data selection The index and data are both examined to identify qualifying rows.

Type 1 and type 2 refer to types of indexes.

3. Used for segmented table spaces only.

4. These locks are taken on pages if LOCKSIZE is PAGE or on rows if LOCKSIZE is ROW. When the maximum
number of locks per table space (LOCKMAX) is reached, locks escalate to a table lock for tables in a segmented
table space, or to a table space lock for tables in a non-segmented table space. Using LOCKMAX 0 in CREATE
or ALTER TABLESPACE disables lock escalation.

5. If the table or table space is started for read-only access, DB2 attempts to acquire an S lock. If an incompatible
lock already exists, DB2 acquires the IS lock.

6. SELECT statements that do not use a cursor, or that use read-only or ambiguous cursors and are bound with
CURRENTDATA(NO), might not require any lock if DB2 can determine that the data to be read is committed.

7. Even if LOCKMAX is 0, the bind process can promote the lock size to TABLE or TABLESPACE. If that occurs,
SQLCODE +806 is issued.

8. The locks listed are acquired on the object into which the insert is made. A subselect acquires additional locks on
the objects it reads, as if for SELECT with read-only cursor or ambiguous cursor, or with no cursor.

9. The U lock is taken if index columns are updated.

10. Whether the lock is S or U is determined by an installation option. For a full description, see “The Option U LOCK
| FOR RR/RS” on page 5-170. If you use the WITH clause to specify the isolation as RR or RS, you can use the
| KEEP UPDATE LOCKS option to obtain and hold an X lock instead of a U or S lock.

| 11. Includes partition locks, if selective partition locking is used.

| 12. If the table space is defined with LOCKPART YES, it is possible that locks can be avoided on the partitions.

 Lock Promotion
Definition: Lock promotion is the action of exchanging one lock on a resource for
a more restrictive lock on the same resource, held by the same application process.

Example: An application reads data, which requires an IS lock on a table space.
Based on further calculation, the application updates the same data, which requires
an IX lock on the table space. The application is said to promote the table space
lock from mode IS to mode IX.

Effects: When promoting the lock, DB2 first waits until any incompatible locks
held by other processes are released. When locks are promoted, it is in the

| direction of increasing control over resources: for page or row locks, from S or U to

5-158 Administration Guide

| X; for table, partition, or table space locks, from IS to either IX or S, or directly to U,
SIX, or X.

 Lock Escalation
Definition: Lock escalation is the act of releasing a large number of page or row

| locks, held by an application process on a single table or table space, to acquire a
| table or table space lock, or a set of partition locks, of mode S or X instead.

| For an application process that is using Sysplex query parallelism, the lock count is
| maintained on a member basis, not globally across the group for the process.

| Lock counts are always kept on a table or table space level, not on a partition level.
| For a table space defined with LOCKPART YES, lock escalation only occurs for
| partitions that are currently locked. Unlocked partitions remain unlocked. This
| means that for a partitioned table space defined with LOCKPART YES, different
| partitions can be locked with different lock modes. After lock escalation occurs, any
| unlocked partitions that are subsequently accessed are locked with a gross lock.

Example: If a table space is defined with LOCKSIZE ANY and LOCKMAX 2000,
DB2 can use page locks for a process that accesses the table space and can
escalate those locks. If the process attempts to lock more than 2000 pages in the

| table space at one time, DB2 promotes its intent locks on the table space or
| currently locked partitions to mode S or X and then releases its page locks.

| If the process is using Sysplex query parallelism, and each member has a
| LOCKMAX value of 2000, escalation does not occur until 2000 locks are held on
| any one of the members running tasks for that query.

When It Occurs: Lock escalation balances concurrency with performance by
using page or row locks while a process accesses relatively few pages or rows,

| then changing to table space, table, or partition locks when the process accesses
many. When it occurs, lock escalation varies by table space, depending on the
values of LOCKSIZE and LOCKMAX, as described in

� “LOCKSIZE Clause of CREATE and ALTER TABLESPACE” on page 5-168
� “LOCKMAX Clause of CREATE and ALTER TABLESPACE” on page 5-169

Lock escalation is suspended during the execution of SQL statements for ALTER,
CREATE, DROP, GRANT, and REVOKE.

Recommendations: The DB2 statistics and performance traces can tell you how
often lock escalation has occurred and whether it has caused timeouts or
deadlocks. As a rough estimate, if one quarter of your lock escalations cause
timeouts or deadlocks, then escalation is not effective for you. You might alter the
table to increase LOCKMAX and so decrease the number of escalations.
Alternatively, you might let the process that is causing them begin by locking the
entire table space, using the statement LOCK TABLE. That prevents concurrency,
but it is a reasonable solution for some end-of-month or end-of-year situations
when a process updates more pages than it normally does.

Example: Assume that a table space is used by transactions that require high
concurrency. There is also a batch job that updates almost every page in the table
space. For high concurrency, you should probably create the table space with
LOCKSIZE PAGE and make the batch job commit every few seconds.

 Chapter 5-7. Improving Concurrency 5-159

LOCKSIZE ANY is a possible choice, if you take other steps to avoid lock
| escalation. If you use LOCKSIZE ANY, specify a LOCKMAX value large enough so

that locks held by transactions are not normally escalated. Also, LOCKS PER
USER must be large enough that transactions do not reach that limit.

If the batch job is:

� Concurrent with transactions, then it must use page or row locks and commit
frequently: for example, every 100 updates. Review LOCKS PER USER to
avoid exceeding the limit. The page or row locking uses significant processing
time. Also, bind with ISOLATION(CS), described under “The ISOLATION
Option” on page 5-175, to avoid X locks on the table space when making
updates.

� Non-concurrent with transactions, then it need not use page or row locks. The
application could explicitly lock the table in exclusive mode, described under
“The Statement LOCK TABLE” on page 5-184.

Modes of Transaction Locks for Various Processes
The rows in Table 73 on page 5-161 show a sample of several types of DB2
processes. The columns show the most restrictive mode of locks used for different
objects and the possible conflicts between application processes.

5-160 Administration Guide

Table 73. Modes of DB2 Transaction Locks

Process

Catalog
Table

Spaces

Skeleton
Tables (SKCT

and SKPT)

Database
Descriptor
(DBD) (1)

Target Table
Space (2)

Transaction with static SQL IS (3) S n/a (4) Any (5)

Query with dynamic SQL IS (6) S S Any (5)

BIND process IX X S n/a

SQL CREATE TABLE statement IX n/a X n/a

SQL ALTER TABLE statement IX X (7) X n/a

SQL ALTER TABLESPACE statement IX# X (9) X n/a

| Note: Altering the LOCKPART clause requires an X lock on the table space.

SQL DROP TABLESPACE statement IX X (8) X X

SQL GRANT statement IX n/a n/a n/a

SQL REVOKE statement IX X (8) n/a n/a

Notes:

1. In a lock trace, these locks usually appear as locks on the DBD.

2. The target table space is the table space:

� Accessed and locked by an application process,
� Processed by a utility, or
� Designated in the data definition statement.

3. The lock is held briefly to check EXECUTE authority.

4. If the required DBD is not already in the EDM pool, locks are acquired on table space DBD01, which effectively
locks the DBD.

5. For details, see Table 72 on page 5-155.

6. Except while checking EXECUTE authority, IS locks on catalog tables are held until a commit point.

7. The plan or package using the SKCT or SKPT is marked invalid if a referential constraint (such as a new primary
key or foreign key) is added or changed, or the AUDIT attribute is added or changed for a table.

8. The plan or package using the SKCT or SKPT is marked invalid as a result of this operation.

9. These locks are not held when ALTER TABLESPACE is changing the following options: PRIQTY, SECQTY,
PCTFREE, FREEPAGE, CLOSE, and ERASE.

Tuning Your Use of Locks
This section describes what you can change to affect transaction locks, under:

� “Startup Procedure Options” on page 5-162
� “Installation Options for Wait Times” on page 5-162
� “Other Options that Affect Locking” on page 5-167
� “Bind Options” on page 5-171
� “Specifying Isolation by SQL Statement” on page 5-183
� “The Statement LOCK TABLE” on page 5-184

 Chapter 5-7. Improving Concurrency 5-161

Startup Procedure Options
The values of these options are passed to the startup procedure for the DB2
internal resource lock manager (IRLM) when you issue the MVS command START
irlmproc.

 Option List
The options relevant to DB2 locking are:

SCOPE Whether IRLM is used for data sharing (GLOBAL) or not (LOCAL). We
recommend LOCAL unless you are using data sharing. If you use data
sharing, specify GLOBAL.

DEADLOK The two values of this option specify:

1. The number of seconds between two successive scans for a local
deadlock

2. The number of local scans that occur before a scan for global
deadlock starts

PC Whether the IRLM locks are in the IRLM private address space (YES) or
in the extended common storage area (NO). If YES, DB2 uses cross
memory for IRLM requests.

MAXCSA The maximum amount of storage in the ECSA and CSA that IRLM uses
for locks. In a display of the IRLM storage, this storage is called
“accountable” storage, because it is accountable against the value you
set for MAXCSA.

ECSA is a shared area of which DB2 is not the only user; it is used until
no space is left, and then CSA is used. Lock requests that need more
storage are rejected and the corresponding unit of work is rolled back.

Estimating the Storage Needed for Locks
For a conservative figure, assume:

� 250 bytes of storage for each lock.

� All concurrent threads hold the maximum number of row or page locks (LOCKS
PER USER on installation panel DSNTIPJ). The number of table and table
space locks is negligible.

� The maximum number of concurrent threads are active.

Then calculate: Storage = 25ð × (LOCKS PER USER) × (MAX USERS).

That value is calculated when DB2 is installed. A warning message is issued if the
value of MAXCSA is less than the calculated value. That result might mean
rejecting lock requests.

Installation Options for Wait Times
These options determine how long it takes DB2 to identify that a process must be
timed out or is deadlocked. They affect locking in your entire DB2 subsystem.

These fields of the installation panels are relevant to transaction locks:

� “DEADLOCK TIME on Installation Panel DSNTIPJ” on page 5-163
� “RESOURCE TIMEOUT on Installation Panel DSNTIPI” on page 5-163
� “IDLE THREAD TIMEOUT on Installation Panel DSNTIPR” on page 5-165

5-162 Administration Guide

This field is relevant to drain locks:

� “UTILITY TIMEOUT on Installation Panel DSNTIPI” on page 5-165

DEADLOCK TIME on Installation Panel DSNTIPJ
Effect: DB2 scans for deadlocked processes at regular intervals. This field sets
the length of the interval, in seconds.

Default: 5 seconds.

| Recommendation: Detect deadlocks as quickly as possible. Specify a value of 1,
| in most cases.

RESOURCE TIMEOUT on Installation Panel DSNTIPI
Effect: Specifies a minimum number of seconds before a timeout can occur. A
small value can cause a large number of timeouts. With a larger value, suspended
processes more often resume normally, but they remain inactive for longer periods.

Default: 60 seconds.

Recommendation: If you can allow a suspended process to remain inactive for
60 seconds, use the defaults for both RESOURCE TIMEOUT and DEADLOCK
TIME. To specify a different inactive period, you must consider how DB2 times out
a process that is waiting for a transaction lock, as described in “Wait Time for
Transaction Locks,” below.

Wait Time for Transaction Locks
DB2 uses two factors,

� A timeout period and
� An operation multiplier,

in a scanning schedule to determine whether a process waiting for a transaction
lock has timed out.

The Timeout Period: From the value of RESOURCE TIMEOUT and DEADLOCK
TIME, DB2 calculates a timeout period as shown below. Assume that DEADLOCK
TIME is 5 and RESOURCE TIMEOUT is 18.

1. Divide RESOURCE TIMEOUT by DEADLOCK TIME (18/5 = 3.6). IRLM limits
the result of this division to 255.

2. Round the result to the next largest integer (Round up 3.6 to 4).

3. Multiply the DEADLOCK TIME by that integer (4 × 5 = 20).

The result, the timeout period (20 seconds), is always at least as large as the value
of RESOURCE TIMEOUT (18 seconds), except when the RESOURCE TIMEOUT
divided by DEADLOCK TIME exceeds 255.

The Timeout Multiplier: Requests from different types of processes wait for
different multiples of the timeout period. The timeout period and timeout multiplier
also apply to retained locks in a data sharing environment when the subsystem
parameter RETLWAIT is YES. See Data Sharing: Planning and Administration for
more information about RETLWAIT.

In some cases, you can modify the multiplier value. Table 74 on page 5-164
indicates the multiplier by type of process, and whether you can change it.

 Chapter 5-7. Improving Concurrency 5-163

See “UTILITY TIMEOUT on Installation Panel DSNTIPI” on page 5-165 for
information about modifying the utility timeout multiplier.

The timeout period and timeout multiplier also apply to retained locks in a data
sharing environment when the subsystem parameter RETLWAIT is YES. See
Chapter 3 of Data Sharing: Planning and Administration for more information about
RETLWAIT.

Changing the Multiplier for IMS BMP and DL/I Batch: You can modify the
multipliers for IMS BMP and DL/I batch by modifying the following parameters in
DSN6SPRM and reassembling DSNTIJUZ:

BMPTOUT
The timeout multiplier for IMS BMP connections. A value from 0-254 is
acceptable. A zero means use the default (4).

DLITOUT
The timeout multiplier for IMS DL/I batch connections. A value from 0-254
is acceptable. A zero means use the default (6).

The Scanning Schedule: Figure 115 on page 5-165 illustrates this example of
scanning to detect a timeout:

� DEADLOCK TIME has the default value of 5 seconds.

� RESOURCE TIMEOUT was chosen to be 18 seconds. Hence, the timeout
period is 20 seconds, as described above.

� A bind operation starts 4 seconds before the next scan. The operation multiplier
for a bind operation is 3.

The scans proceed through the following steps:

| 1. A scan starts 4 seconds after the bind operation requests a lock. As
| determined by the DEADLOCK TIME, scans occur every 5 seconds. The first

scan in the example detects that the operation is inactive.

| 2. IRLM allows at least one full interval of DEADLOCK TIME as a “grace period”
for an inactive process. After that, its lock request is judged to be waiting. At 9
seconds, the second scan detects that the bind operation is waiting.

3. The bind operation continues to wait for a multiple of the timeout period. In the
example, the multiplier is 3 and the timeout period is 20 seconds. The bind
operation continues to wait for 60 seconds longer.

Table 74. Timeout Multiplier by Type

Type Multiplier Modifiable?

IMS MPP, IMS Fast Path Message Processing,
CICS, QMF, CAF, TSO batch and online

1 No

IMS BMPs 4 Yes

IMS DL/I batch 6 Yes

IMS Fast Path Non-message processing 6 No

BIND subcommand processing 3 No

STOP DATABASE command processing 10 No

Utilities 6 Yes

5-164 Administration Guide

4. The scan that starts 69 seconds after the bind operation detects that the
process has timed out.

A Deadlock Example: DEADLOCK TIME = 5 seconds

RESOURCE TIMEOUT = 18 seconds

timeout period = 2ð seconds

ð seconds: BIND starts BIND times out at seconds = 69

│───────────────────── elapsed time = 69 seconds ──────────────────│

│ 1 2 3 │

│ │──timeout period───│ │ │

──┴──┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┴

 ð 4 9 14 19 24 29 34 39 44 49 54 59 64 69

│ ├──┬─┘ ─────time in seconds─────

 └──┬─┘ └─────DEADLOCK TIME

 └──────────grace period

Figure 115. How Long Until Timeout?

Effect: An operation can remain inactive for longer than the value of RESOURCE
TIMEOUT.

Recommendation: Consider that effect when choosing your own values of
DEADLOCK TIME and RESOURCE TIMEOUT.

IDLE THREAD TIMEOUT on Installation Panel DSNTIPR
Effect: Specifies a period for which an active distributed thread can hold locks
without doing any processing. After that period, a regular scan (at 3-minute
intervals) detects that the thread has been idle for the specified period, and DB2
cancels the thread.

The cancelation applies only to active threads. If your installation permits distributed
threads to be inactive and hold no resources, those threads are allowed to remain
idle indefinitely.

Default: 0. That value disables the scan to time out idle threads. The threads can
then remain idle indefinitely, as in DB2 Version 3.

Recommendation: If you have experienced distributed users leaving an
application idle while it holds locks, pick an appropriate value other than 0 for this
period. Because the scan occurs only at 3-minute intervals, your idle threads will
generally remain idle for somewhat longer than the value you specify.

UTILITY TIMEOUT on Installation Panel DSNTIPI
Effect: Specifies an operation multiplier for utilities waiting for a drain lock, for a
transaction lock, or for claims to be released.

 Default: 6.

Recommendation: With the default value, a utility generally waits longer for a
resource than does an SQL application. To specify a different inactive period, you
must consider how DB2 times out a process that is waiting for a drain, as described
in “Wait Time for Drains” on page 5-166.

 Chapter 5-7. Improving Concurrency 5-165

Wait Time for Drains
A process that requests a drain might wait for two events:

1. Acquiring the drain lock. If another user holds the needed drain lock in an
incompatible lock mode, then the drainer waits.

2. Releasing all claims on the object. Even after the drain lock is acquired, the
drainer waits until all claims are released before beginning to process.

If the process drains more than one claim class, it must wait for those events to
occur for each claim class it drains.

Hence, to calculate the maximum amount of wait time:

1. Start with the wait time for a drain lock
2. Add the wait time for claim release
3. Multiply the result by the number of claim classes drained

Wait Times for Drain Lock and Claim Release: Both wait times are based on
the timeout period that is calculated in “RESOURCE TIMEOUT on Installation
Panel DSNTIPI” on page 5-163.

Drainer Each wait time is:
Utility (timeout period) × (value of UTILITY TIMEOUT)
Other process timeout period

Maximum Wait Time: Because the maximum wait time for a drain lock is the
same as the maximum wait time for releasing claims, you can calculate the total
maximum wait time as follows:

 For utilities :

2 × (timeout period) × (UTILITY TIMEOUT) × (number of claim classes)

For other processes :

2 × (timeout period) × (operation multiplier) × (number of claim classes)

Example: How long might the LOAD utility be suspended before being timed out?
LOAD must drain 3 claim classes. If:

Timeout period = 20
Value of UTILITY TIMEOUT = 6

Then:
Maximum wait time = 2 × 20 × 6 × 3

or:
Maximum wait time = 720 seconds

Wait Times Less than Maximum: The maximum drain wait time is the longest
possible time a drainer can wait for a drain, not the length of time it always waits.

Example: Table 75 on page 5-167 lists the steps LOAD takes to drain the table
space and the maximum amount of wait time for each step. A timeout can occur at
any step. At step 1, the utility can wait 120 seconds for the repeatable read drain
lock. If that lock is not available by then, the utility times out after 120 seconds. It
does not wait 720 seconds.

5-166 Administration Guide

Table 75. Maximum Drain Wait Times: LOAD Utility

Step Maximum Wait
Time (seconds)

1. Get write drain lock 120

2. Wait for all write claims to be released 120

3. Get cursor stability read drain lock 120

4. Wait for all CS claims to be released 120

5. Get repeatable read drain lock 120

6. Wait for all RR claims to be released 120

Total 720

Other Options that Affect Locking
| There are various options that you can use to control such things as the number of
| locks that can be gotten and with which mode certain locks are taken. This section
| describes the following installation options:

� “LOCKS PER USER Field of Installation Panel DSNTIPJ”
� “LOCKSIZE Clause of CREATE and ALTER TABLESPACE” on page 5-168
� “LOCKMAX Clause of CREATE and ALTER TABLESPACE” on page 5-169
� “LOCKS PER TABLE(SPACE) Field of Installation Panel DSNTIPJ” on

page 5-170
� “The Option U LOCK FOR RR/RS” on page 5-170

| � “Option to Release Locks for Cursors Defined WITH HOLD” on page 5-170
� “Option XLOCK for Searched UPDATEs or DELETEs” on page 5-171

LOCKS PER USER Field of Installation Panel DSNTIPJ
Effect: Specifies the maximum number of page or row locks that can be held by a
single process at any one time. It includes locks on data pages, and on index
pages and subpages for type 1 indexes, both for the DB2 catalog and directory and
for user data.

When a request for a page or row lock exceeds the specified limit, it receives
SQLCODE -904: “resource unavailable” (SQLSTATE '57011'). The requested lock
cannot be acquired until some of the existing locks are released.

 Default: 10 000

Recommendation: We estimate that the default will be adequate for 90 percent of
the work load when using page locks. If you use row locks on very large tables,
you might want a higher value.

Review application processes that require higher values to see if they can use table
space locks rather than page or row locks. The accounting trace shows the
maximum number of page or row locks a process held while running.

General-use Programming Interface

 Chapter 5-7. Improving Concurrency 5-167

LOCKSIZE Clause of CREATE and ALTER TABLESPACE
Effect: Specifies the size for locks held on a table or table space by any
application process that accesses it. The options are:

LOCKSIZE TABLESPACE
A process acquires no table, page, or row locks within the table space. That
improves performance by reducing the number of locks maintained, but greatly
inhibits concurrency.

LOCKSIZE TABLE
A process acquires table locks on tables in a segmented table space. If the
table space contains more than one table, this option can provide acceptable
concurrency with little extra cost in processor resources.

LOCKSIZE PAGE
| A process acquires page locks, plus table, partition, or table space locks of
| modes that permit page locks (IS, IX, or SIX). The effect is not absolute: a
| process can still acquire a table, partition, or table space lock of mode S or X,

without page locks, if that is needed. In that case, the bind process issues a
message warning that the lock size has been promoted as described under
“Lock Promotion” on page 5-158.

LOCKSIZE ROW
| A process acquires row locks, plus table, partition, or table space locks of

modes that permit row locks (IS, IX, or SIX). The effect is not absolute: a
process can still acquire a table or table space lock of mode S or X, without
row locks, if that is needed. In that case, the bind process issues a message
warning that the lock size has been promoted as described under “Lock
Promotion” on page 5-158.

LOCKSIZE ANY.
DB2 chooses the size of the lock.

For a table space started with read-only access (RO mode), DB2 ignores the
LOCKSIZE option and implicitly uses LOCKSIZE TABLESPACE. Thus, the

| LOCKSIZE clause has no effect for sharers of read-only data. However, if a
| partition is started with read-only access, and the table space is defined with
| LOCKPART YES, then an S lock is acquired on the partition that is started RO. For

a complete description of how the LOCKSIZE clause affects lock attributes, see
“What Lock Types DB2 Chooses” on page 5-153.

Default: LOCKSIZE ANY

Catalog Record: Column LOCKRULE of table SYSIBM.SYSTABLESPACE.

Recommendation: If you do not use the default, base your choice upon the
results of monitoring applications that use the table space.

Row Locks or Page Locks? The question of whether to use row or page locks
depends on your data and your applications. If you are experiencing contention on
data pages of a table space now defined with LOCKSIZE PAGE, consider
LOCKSIZE ROW. But consider also the trade-offs.

The resource required to acquire, maintain, and release a row lock is about the
same as that required for a page lock. If your data has 10 rows per page, a table
space scan or an index scan can require nearly 10 times as much resource for row

5-168 Administration Guide

locks as for page locks. But locking only a row at a time, rather than a page, might
| reduce the chance of contention with some other process by 90%, especially if
| access is random. (Row locking is not recommended for sequential processing.)

Neither the resource multiple nor the reduction of contention is always the same,
however. In many cases, DB2 can avoid acquiring a lock when reading data that is
known to be committed. Thus, if only 2 of 10 rows on a page contain uncommitted
data, DB2 must lock the entire page when using page locks, but might ask for locks
on only the 2 rows when using row locks. Then, the resource required for row locks
would be only twice as much, not 10 times as much, as that required for page
locks.

| On the other hand, if two applications update the same rows of a page, and not in
the same sequence, then row locking might even increase contention. With page
locks, the second application to access the page must wait for the first to finish and
might time out. With row locks, the two applications can access the same page
simultaneously, and might deadlock while trying to access the same set of rows.

In short, no single answer fits all cases.

End of General-use Programming Interface

General-use Programming Interface

LOCKMAX Clause of CREATE and ALTER TABLESPACE
Effects of the Options: You can specify these values not only for tables of user
data but also, by using ALTER TABLESPACE, for tables in the DB2 catalog.

LOCKMAX n
Specifies the maximum number of page or row locks that a single application
process can hold on the table space before those locks are escalated as

| described in “Lock Escalation” on page 5-159. For an application that uses
| Sysplex query parallelism, a lock count is maintained on each member.

LOCKMAX SYSTEM
Specifies that n is effectively equal to the system default set by the field
LOCKS PER TABLE(SPACE) of installation panel DSNTIPJ.

LOCKMAX 0
Disables lock escalation entirely.

Default: Depends on the value of LOCKSIZE, as follows:

Catalog Record: Column LOCKMAX of table SYSIBM.SYSTABLESPACE.

Recommendations: If you do not use the default, base your choice upon the
results of monitoring applications that use the table space.

Aim to set the value of LOCKMAX high enough that, when lock escalation occurs,

LOCKSIZE Default for LOCKMAX

ANY SYSTEM

other 0

 Chapter 5-7. Improving Concurrency 5-169

one application already holds so many locks that it significantly interferes with
others. For example, if an application holds half a million locks on a table with a
million rows, it probably already locks out most other applications. Yet lock
escalation can prevent it from potentially acquiring another half million locks.

| If you alter a table space from LOCKSIZE PAGE or LOCKSIZE ANY to LOCKSIZE
| ROW, consider increasing LOCKMAX to allow for the increased number of locks
| that applications might require.

End of General-use Programming Interface

LOCKS PER TABLE(SPACE) Field of Installation Panel DSNTIPJ
Effect: The value becomes the default value (SYSTEM) for the LOCKMAX clause
of the SQL statements CREATE TABLESPACE and ALTER TABLESPACE.

 Default: 1000

Recommendation: Use the default or, if you are migrating from a previous
release of DB2, continue to use the existing value. When you create or alter a table
space, especially when you alter one to use row locks, use the LOCKMAX clause
explicitly for that table space.

The Option U LOCK FOR RR/RS
| This option, on installation panel DSNTIPI, determines the mode of the lock first
| acquired on a row or page, table, partition, or table space for certain statements

bound with RR or RS isolation. Those statements include:

� SELECT with FOR UPDATE OF

| If you specify the SELECT using WITH RS KEEP UPDATE LOCKS or WITH
| RR KEEP UPDATE LOCKS, an X lock is held on the rows or pages.

� UPDATE and DELETE, without a cursor

YES can avoid deadlocks but reduces concurrency.

Option Value Lock Mode

NO (default) S

YES U

| Option to Release Locks for Cursors Defined WITH HOLD
| Effect: A subsystem parameter RELCURHL lets you indicate that you want DB2
| to release a data page or row lock after a COMMIT is issued for cursors defined
| WITH HOLD. This lock is not necessary for maintaining cursor position.

| Default: NO

| Recommendation: The default, NO, causes DB2 to hold a data page or row lock
| for the row on which the cursor is positioned. This lock is unnecessary for
| maintaining cursor position. To improve concurrency, specify YES. The default NO
| is for those cases in which existing applications rely on that particular data lock.

| To modify this parameter, edit macro DSN6SPRM, and then run installation job
| DSNTIJUZ to reassemble the subsystem parameter module.

5-170 Administration Guide

Option XLOCK for Searched UPDATEs or DELETEs
Effect: A subsystem parameter XLKUPDLT lets you disable update lock (ULOCK)
on searched UPDATEs and DELETEs so that you do not have to issue a second
lock request to upgrade the lock from U to X (exclusive lock) for each updated row.

Default: NO

Recommendation: This feature is primarily beneficial in a data sharing
environment. It should be used when most or all searched UPDATEs/DELETEs use
an index or can be evaluated by state 1 processing. When NO is specified, DB2
uses an S lock or a U lock when scanning for qualifying rows. The lock on any
qualifying row or page is then upgraded to an X lock before performing the update
or delete. For non-qualifying rows or pages, the lock is released if ISOLATION(CS)
is used. For ISOLATION(RS) or ISOLATION(RR), an S lock is retained on the row
or page until the next commit point. This option is best for achieving the highest
rates of concurrency.

When YES is specified, DB2 uses an X lock on rows or pages that qualify during
stage 1 processing. With ISOLATION(CS), the lock is released if the row or page is
not updated or deleted because it is rejected by stage 2 processing. With
ISOLATION(RR) or ISOLATION(RS), DB2 acquires an X lock on all rows that fall
within the range of the selection expression. Thus, there is no need for a lock
upgrade request for qualifying rows.

 Bind Options
The information under this heading, up to “Specifying Isolation by SQL Statement”
on page 5-183, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

These options determine when an application process acquires and releases its
locks and to what extent it isolates its actions from possible effects of other
processes acting concurrently.

These options of bind operations are relevant to transaction locks:

� “The ACQUIRE and RELEASE Options”
� “The ISOLATION Option” on page 5-175
� CURRENTDATA, on page 5-178

The ACQUIRE and RELEASE Options
| Effects: The ACQUIRE and RELEASE options of bind operations determine when
| DB2 locks an object (table, partition, or table space) your application uses and
when it releases the lock. (The ACQUIRE and RELEASE options do not affect
page or row locks.) The options apply to static SQL statements, which are bound

before your program executes. If your program executes dynamic SQL statements,
the objects they lock are locked when first accessed and released at the next
commit point.

Option Effect

ACQUIRE(ALLOCATE)
Acquires the lock when the object is allocated. This option is not
allowed for BIND or REBIND PACKAGE.

ACQUIRE(USE) Acquires the lock when the object is first accessed.

 Chapter 5-7. Improving Concurrency 5-171

RELEASE(DEALLOCATE)
Releases the lock when the object is deallocated (the application

| ends). The value has no effect on dynamic SQL statements,
| which always use RELEASE(COMMIT), with one exception:
| When you use RELEASE(DEALLOCATE) and
| KEEPDYNAMIC(YES), and your subsystem is installed with YES
| for field CACHE DYNAMIC SQL on installation panel DSNTIP4,
| the RELEASE(DEALLOCATE) option is honored for dynamic
| SELECT, INSERT, UPDATE and DELETE statements. Locks
| acquired for dynamic statements are held until one of the
| following events occurs:

| � The application process ends (deallocation).

| � The application issues a PREPARE statement with the same
| statement identifier. (Locks are released at the next commit
| point.)

| � The statement is removed from the cache because it has not
| been used. (Locks are released at the next commit point.)

| � An object that the statement is dependent on is dropped or
| altered, or a privilege needed by the statement is revoked.
| (Locks are released at the next commit point.)

� RUNSTATS is run against an object that the statement is
dependent on

If a lock is to be held past commit and it is an S, SIX, or X lock
on a table space or a table in a segmented table space, DB2
sometimes demotes that lock to an intent lock (IX or IS). DB2
demotes a gross locks if the reason it was acquired was one of
the following:

� The gross lock was acquired because of lock escalation

� The application issued a LOCK TABLE

� The application issued a mass delete (DELETE * FROM
TABLE)

� The application issued a mass delete (DELETE FROM ...
without a WHERE clause)

For table spaces defined as LOCKPART YES, lock demotion
occurs as with other table spaces; that is, the lock is demoted at
the table space level, not the partition level.

RELEASE(COMMIT)
| Releases the lock at the next commit point, unless there are held
| cursors. If the application accesses the object again, it must

acquire the lock again.

Example: An application selects employee names and telephone numbers from a
table, according to different criteria. Employees can update their own telephone
numbers. They can perform several searches in succession. The application is
bound with the options ACQUIRE(USE) and RELEASE(DEALLOCATE), for these
reasons:

� The alternative to ACQUIRE(USE), ACQUIRE(ALLOCATE), gets a lock of
mode IX on the table space as soon as the application starts, because that is

5-172 Administration Guide

needed if an update occurs. But most uses of the application do not update the
table and so need only the less restrictive IS lock. ACQUIRE(USE) gets the IS
lock when the table is first accessed, and DB2 promotes the lock to mode IX if
that is needed later.

� Most uses of this application do not update and do not commit. For those uses,
there is little difference between RELEASE(COMMIT) and
RELEASE(DEALLOCATE). But administrators might update several phone
numbers in one session with the application, and the application commits after
each update. In that case, RELEASE(COMMIT) releases a lock that DB2 must
acquire again immediately. RELEASE(DEALLOCATE) holds the lock until the
application ends, avoiding the processing needed to release and acquire the
lock several times.

| Effect of LOCKPART YES: Partition locks follow the same rules as table space
| locks, and all partitions are held for the same duration. Thus, if one package is
| using RELEASE(COMMIT) and another is using RELEASE(DEALLOCATE), all
| partitions use RELEASE(DEALLOCATE).

Defaults: The defaults differ for different types of bind operations:

Operation Default values

BIND PLAN ACQUIRE(USE) and RELEASE(COMMIT).

BIND PACKAGE There is no option for ACQUIRE; ACQUIRE(USE) is always
used. At the local server the default for RELEASE is the
value used by the plan that includes the package in its
package list. At a remote server the default is COMMIT.

REBIND PLAN OR PACKAGE
The existing values for the plan or package being rebound.

Recommendation: Choose a combination of values for ACQUIRE and RELEASE
based on the characteristics of the particular application.

Advantages and Disadvantages of the Combinations
| ACQUIRE(ALLOCATE) / RELEASE(DEALLOCATE): Avoids deadlocks by
| locking all needed resources as soon as the program starts to run.

� All tables or table spaces used in DBRMs bound directly to the plan are locked
when the plan is allocated.

� All tables or table spaces are unlocked only when the plan terminates.

� The locks used are the most restrictive needed to execute all SQL statements
in the plan regardless of whether the statements are actually executed.

� Restrictive states for page sets are not checked until the page set is accessed.
Locking when the plan is allocated insures that the job is compatible with other
SQL jobs. Waiting until the first access to check restrictive states provides
greater availability; however, it is possible that an SQL transaction could:

| – Hold a lock on a table space or partition that is stopped

| – Acquire a lock on a table space or partition that is started for DB2 utility
| access only (ACCESS(UT))

– Acquire an exclusive lock (IX, X) on a page set or partition that is started
for read access only (ACCESS(RO)), thus prohibiting access by readers

 Chapter 5-7. Improving Concurrency 5-173

Disadvantages: This combination reduces concurrency. It can lock resources in
| high demand for longer than needed. Also, the option ACQUIRE(ALLOCATE) turns
| off selective partition locking; if you are accessing a table space defined with
| LOCKPART YES, all partitions are locked.

Restriction: This combination is not allowed for BIND PACKAGE. Use this
combination if processing efficiency is more important than concurrency. It is a
good choice for batch jobs that would release table and table space locks only to
reacquire them almost immediately. It might even improve concurrency, by allowing
batch jobs to finish sooner. Generally, do not use this combination if your
application contains many SQL statements that are often not executed.

ACQUIRE(USE) / RELEASE(DEALLOCATE): Results in the most efficient use of
processing time in most cases.

| � A table, partition, or table space used by the plan or package is locked only if it
| is needed while running.

� All tables or table spaces are unlocked only when the plan terminates.

� The least restrictive lock needed to execute each SQL statement is used;
except that, if a more restrictive lock remains from a previous statement, that
lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks.
Because all locks are acquired in a sequence that is predictable only in an actual
run, more concurrent access delays might occur.

ACQUIRE(USE) / RELEASE(COMMIT): Is the default combination and provides
the greatest concurrency, but it requires more processing time if the application
commits frequently.

� A table or table space is locked only when needed. That is important if the
process contains many SQL statements that are rarely used, or statements that
are intended to access data only in certain circumstances.

� Locks held by cursors that are defined WITH HOLD are kept past commit
| points. Except for those, table, partition, or table space locks are released at
| the next commit point. See “Option to Release Locks for Cursors Defined WITH
| HOLD” on page 5-170 for more information about an option that lets you avoid
| the cursor position locks.

� The least restrictive lock needed to execute each SQL statement is used;
except that, if a more restrictive lock remains from a previous statement, that
lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks.
Because all locks are acquired in a sequence that is predictable only in an actual
run, more concurrent access delays might occur.

ACQUIRE(ALLOCATE) / RELEASE(COMMIT): This combination is not allowed; it
results in an error message from BIND.

5-174 Administration Guide

The ISOLATION Option
Effects: Specifies the degree to which operations are isolated from the possible
effects of other operations acting concurrently. Based on this information, DB2
chooses table and table space locks as nonrestrictive as possible, and releases S
and U locks on rows or pages as soon as possible.

Option Effect

ISOLATION(RR) Repeatable read: A row or page lock is held for all accessed
rows, qualifying or not, at least until the next commit point. If the
application process returns to the same page and reads the same
row again, the data cannot have changed and no new rows can
have been inserted.

ISOLATION(RS) Read stability: A row or page lock is held for pages or rows that
are returned to an application at least until the next commit point.
If a row or page is rejected during stage 2 processing, its lock is
still held, even though it is not returned to the application.

If the application process returns to the same page and reads the
same row again, the data cannot have changed, although
additional rows might have been inserted by another application
process. A similar situation can also occur if a row or page that is
not returned to the application is updated by another application
process. If the row now satisfies the search condition, it appears.

ISOLATION(CS) Cursor stability: A row or page lock is held only long enough to
allow the cursor to move to another row or page. For data that
satisfies the search condition of the application, the lock is held
until the application locks the next row or page. For data that
does not satisfy the search condition the lock is immediately
released.

If DB2 can determine that the data it is reading has already been
committed, it can avoid taking the lock altogether. For rows that
do not satisfy the search condition, this lock avoidance is possible
with CURRENTDATA(YES) or CURRENTDATA(NO). For rows
that satisfy the search condition, lock avoidance is possible only
when you use the option CURRENTDATA(NO).

Rows are returned to an application from either a result table
residing in a work file, or directly from the base table. For
example, if DB2 has to put an answer set in a result table (such
as for a sort), DB2 releases the lock immediately after it puts the
row or page in the result table in the work file. Using cursor
stability, the base table can change while your application is
processing the result of the sort output.

| ISOLATION(UR) Uncommitted read: The application acquires no page or row locks
and can run concurrently with most other operations.10 But the
application is in danger of reading data that was changed by
another operation but not yet committed.

There are restrictions on isolation UR. See Restrictions on
page 5-181.

10 The exceptions are mass delete operations and utility jobs that drain all claim classes.

 Chapter 5-7. Improving Concurrency 5-175

Default: The default differs for different types of bind operations:

Operation Default value

BIND PLAN ISOLATION(RR)

BIND PACKAGE The value used by the plan that includes the package in its
package list

REBIND PLAN OR PACKAGE
The existing value for the plan or package being rebound.

For more detailed examples, see Section 4 of Application Programming and SQL
Guide.

Recommendations: Choose a value of ISOLATION based on the characteristics
of the particular application.

Advantages and Disadvantages of the Isolation Values
The various isolation levels offer less or more concurrency at the cost of more or
less protection from other application processes. The values you choose should be
based primarily on the needs of the application. This section presents the isolation
levels in order from the one offering the least concurrency (RR) to that offering the
most (UR).

ISOLATION (RR)
Allows the application to read the same pages or rows more than once without
allowing any UPDATE, INSERT, or DELETE by another process. All accessed
rows or pages are locked, even if they do not satisfy the predicate.

Figure 116 shows that all locks are held until the application commits.

Figure 116. How An Application using RR Isolation Acquires Locks. All locks are held until
the application commits.

Applications using repeatable read can leave rows or pages locked for longer
periods, especially in a distributed environment, and they can claim more
logical partitions than similar applications using cursor stability.

They are not compatible with utility operations that drain all claim classes on a
logical partition.

| Because so many locks can be taken, lock escalation might take place.
| Frequent commits releases the locks and can help avoid lock escalation.

| With repeatable read, lock promotion occurs for table space scans. DB2 takes
| the table, partition, or table space lock to avoid accumulating many locks
| during the scan.

5-176 Administration Guide

An installation option determines the mode of lock chosen for a cursor defined
with the clause FOR UPDATE OF and bound with repeatable read. For details,
see “The Option U LOCK FOR RR/RS” on page 5-170.

ISOLATION (RS)
Allows the application to read the same pages or rows more than once without
allowing qualifying rows to be updated or deleted by another process. It offers
possibly greater concurrency than repeatable read, because although other
applications cannot change rows that are returned to the original application,
they can insert new rows, or update rows that did not satisfy the original
application's search condition. Only those rows or pages that qualify for the
stage 1 predicate are locked until the application commits. Figure 117
illustrates this.

Figure 117. How An Application using RS Isolation Acquires Locks. Locks L2 and L4 are
held until the application commits.

Applications using read stability can leave rows or pages locked for long
periods, especially in a distributed environment.

If you do use read stability, plan for frequent commit points.

An installation option determines the mode of lock chosen for a cursor defined
with the clause FOR UPDATE OF and bound with read stability. For details,
see “The Option U LOCK FOR RR/RS” on page 5-170.

ISOLATION (CS)
Allows maximum concurrency with data integrity. However, after the process
leaves a row or page, another process can change the data. If the first process
returns to read the same row or page, the data is not necessarily the same.
Consider these consequences of that possibility:

� For table spaces created with LOCKSIZE ROW, PAGE, or ANY, a change
can occur even while executing a single SQL statement, if the statement
reads the same row more than once. In the following example:

SELECT \ FROM T1

WHERE COL1 = (SELECT MAX(COL1) FROM T1);

data read by the inner SELECT can be changed by another transaction
before it is read by the outer SELECT. Therefore, the information returned
by this query might be from a row that is no longer the one with the
maximum value for COL1.

� In another case, if your process reads a row and returns later to update it,
that row might no longer exist or might not exist in the state that it did
when your application process originally read it. That is, another application
might have deleted or updated the row. If your application is doing

 Chapter 5-7. Improving Concurrency 5-177

non-cursor operations on a row under the cursor, make sure the
application can tolerate “not found” conditions .

Similarly, assume another application updates a row after you read it. If
your process returns later to update it based on the value you originally
read, you are, in effect, erasing the update made by the other process. If
you use isolation (CS) with update, your process might need to lock
out concurrent updates. One method is to declare a cursor with the
clause FOR UPDATE OF.

CURRENTDATA
This option has two effects:

� For local access, it tells whether the data upon which your cursor is
positioned must remain identical to (or “current with”) the data in the
local base table. For cursors positioned on data in a work file, the
CURRENTDATA option has no effect. This effect only applies to
read-only or ambiguous cursors in plans or packages bound with CS

| isolation. For SELECT statements in which no cursor is used, such as
| those that return a single row, a lock is not held on the row unless you
| specify WITH RS or WITH RR on the statement.

� For a request to a remote system, CURRENTDATA has an effect for
ambiguous cursors using isolation levels RR, RS, or CS. For
ambiguous cursors, it turns block fetching on or off. (Read-only cursors
and UR isolation always use block fetch.) Turning on block fetch offers
best performance, but it means the cursor is not current with the base
table at the remote site.

A cursor is “ambiguous” if DB2 cannot definitely determine whether or not it
is read-only.

Problems with ambiguous cursors: If your program has an ambiguous
cursor and performs the following operations, your program can receive a
-510 SQLCODE:

� The plan or package is bound with CURRENTDATA(NO)

� An OPEN CURSOR statement is performed before a dynamic DELETE
WHERE CURRENT OF statement against that cursor is prepared

� One of the following conditions is true for the open cursor:

– Lock avoidance is successfully used on that statement.

– Query parallelism is used.

– The cursor is distributed, and block fetching is used.

In all cases, it is a good programming technique to eliminate the ambiguity
by declaring the cursor with one of the clauses FOR FETCH ONLY or FOR
UPDATE OF.

YES
Locally, CURRENTDATA(YES) means that the data upon which the
cursor is positioned cannot change while the cursor is positioned on it.
If the cursor is positioned on data in a local base table or index, then
the data returned with the cursor is current with the contents of that
table or index. If the cursor is positioned on data in a work file, the
data returned with the cursor is current only with the contents of the

5-178 Administration Guide

work file; it is not necessarily current with the contents of the
underlying table or index.

Similarly, if the cursor uses query parallelism, data is not necessarily
current with the contents of the table or index, regardless of whether a
work file is used. Therefore, for work file access or for parallelism on
read-only queries, the CURRENTDATA option has no effect.

If you are using parallelism but want to maintain currency with the
data, you have the following options:

� Disable parallelism (Use SET DEGREE = '1' or bind with
DEGREE(1))

� Use isolation RR or RS (parallelism can still be used)

� Use the LOCK TABLE statement (parallelism can still be used)

For access to a remote table or index, CURRENTDATA(YES) turns off
block fetching for ambiguous cursors. The data returned with the
cursor is current with the contents of the remote table or index for
ambiguous cursors. See “Using CURRENTDATA(NO) to Ensure Block
Fetch” on page 5-320 for information about the effect of
CURRENTDATA on block fetch.

Figure 118 shows locking with CURRENTDATA(YES).

Figure 118. How An Application using Isolation CS with CURRENTDATA(YES) Acquires
Locks. This figure shows access to the base table. The L2 and L4 locks are released after
DB2 moves to the next row or page. When the application commits, the last lock is released.

NO
For local access, CURRENTDATA(NO) is similar to
CURRENTDATA(YES) except for the case where a cursor is accessing
a base table rather than a result table in a work file. In those cases,
although CURRENTDATA(YES) can guarantee that the cursor and the
base table are current, CURRENTDATA(NO) makes no such
guarantee.

With CURRENTDATA(NO), you have much greater opportunity for
avoiding locks. DB2 can test to see if a row or page has committed
data on it. If it has, DB2 does not have to obtain a lock on the data at
all. Unlocked data is returned to the application, and the data can be
changed while the cursor is positioned on the row.

To take the best advantage of this method of avoiding locks, make
sure all applications that are accessing data concurrently issue
COMMITs frequently.

 Chapter 5-7. Improving Concurrency 5-179

Figure 119 on page 5-180 shows how DB2 can avoid taking locks.

Figure 119. Best Case of Avoiding Locks using CS Isolation with CURRENTDATA(NO).
This figure shows access to the base table. If DB2 must take a lock, then locks are released
when DB2 moves to the next row or page, or when the application commits (the same as
CURRENTDATA(YES)).

For remote access, CURRENTDATA(NO) turns on block fetching for
ambiguous cursors.

Table 76 summarizes the effects of CURRENTDATA and cursor type on lock
avoidance. See “Using CURRENTDATA(NO) to Ensure Block Fetch” on
page 5-320 for information about the effect of CURRENTDATA on block fetch.

ISOLATION (UR)
Allows the application to read while acquiring few locks, at the risk of reading
uncommitted data. UR isolation applies only to read-only operations: SELECT,
SELECT INTO, or FETCH from a read-only result table.

There is an element of uncertainty about reading uncommitted data.

| Table 76. Lock Avoidance Factors. “Returned data” means data that satisfies the predicate.
| “Rejected data” is that which does not satisfy the predicate.

Isolation CURRENTDATA Cursor Type

Avoid
locks on
returned
data?

Avoid
locks on
rejected
data?

UR N/A Read-only N/A N/A

CS

YES

Read-only

No

Yes

Updatable

Ambiguous

NO

Read-only Yes

Updatable No

Ambiguous Yes

RS N/A

Read-only

No YesUpdatable

Ambiguous

RR N/A

Read-only

No NoUpdatable

Ambiguous

5-180 Administration Guide

Example : An application tracks the movement of work from station to station
along an assembly line. As items move from one station to another, the
application subtracts from the count of items at the first station and adds to the
count of items at the second. Now you want to query the count of items at all
the stations, while the application is running concurrently.

What can happen if your query reads data that the application has changed but
has not committed?

If the application subtracts an amount from one record before adding it to
another, the query could miss the amount entirely.

If the application adds first and then subtracts, the query could add the
amount twice.

If those situations can occur, and are unacceptable, do not use UR isolation.

Restrictions: You cannot use UR isolation for the types of statement listed
below. If you bind with ISOLATION(UR), and the statement does not specify
WITH RR or WITH RS, then DB2 uses CS isolation for:

� INSERT, UPDATE, and DELETE
� Any cursor defined with FOR UPDATE OF

If you bind with isolation UR or specify WITH UR on a statement, DB2 does
not choose a type 1 index as a candidate for the access path. For packages
bound without specifying an isolation, DB2 might choose a type 1 index for the
access path. If it does, and then you run the package under a plan bound with
UR, DB2 changes the isolation level to cursor stability.

When Can You Use Uncommitted Read (UR)? Probably in cases like these:

� When errors cannot occur .

Example : A reference table, like a table of descriptions of parts by part
number. It is rarely updated, and reading an uncommitted update is
probably no more damaging than reading the table 5 seconds earlier. Go
ahead and read it with ISOLATION(UR).

Example : The employee table of Spiffy Computer, our hypothetical user.
For security reasons, they allow updates to be made to the table only by
members of a single department. And that department is also the only one
that can query the entire table. It is easy for them to restrict their queries to
times when no updates are being made, and then they can run with UR
isolation.

� When an error is acceptable .

Example : Spiffy wants to do some statistical analysis on their employee
data. A typical question is, “What is the average salary by sex within
education level?” They estimate that reading an occasional uncommitted
record cannot affect the averages much, so they use UR isolation.

� When the data already contains inconsistent information .

Example : Spiffy gets sales leads from various sources. The data is often
inconsistent or wrong, and end users of the data are accustomed to
dealing with that. Inconsistent access to a table of data on sales leads
does not add to the problem.

Do NOT use uncommitted read (UR):

 Chapter 5-7. Improving Concurrency 5-181

When the computations must balance.
When the answer must be accurate.
When you are not sure it can do no damage.

Plans and Packages That Use UR Isolation: Auditors and others might need to
determine what plans or packages are bound with UR isolation. For queries that
select that information from the catalog, see “What Ensures That Concurrent Users
Access Consistent Data?” on page 3-128.

Restrictions on Concurrent Access: An application using UR isolation cannot
run concurrently with a utility that drains all claim classes. Also, the application
must acquire two types of lock:

� A special mass delete lock acquired in S mode on the target table or table
space. A “mass delete” is a DELETE statement without a WHERE clause; that
operation must acquire the lock in X mode and so cannot run concurrently.

� An IX lock on any table space used in the work file database. That lock
prevents dropping the table space while the application is running.

When Plan and Package Options Differ
A plan bound with one set of options can include packages in its package list that
were bound with different sets of options. In general, statements in a DBRM bound
as a package use the options that the package was bound with, and statements in
DBRMs bound to a plan use the options that the plan was bound with.

| For example, the plan value for CURRENTDATA has no effect on the packages
| executing under that plan. If you do not specify a CURRENTDATA option explicitly
| when you bind a package, the default is CURRENTDATA(YES).

The rules are slightly different for the bind options RELEASE and ISOLATION. The
values of those two options are set when the lock on the resource is acquired and
usually stay in effect until the lock is released. But a conflict can occur if a
statement that is bound with one pair of values requests a lock on a resource that
is already locked by a statement that is bound with a different pair of values. DB2
resolves the conflict by resetting each option with the available value that causes
the lock to be held for the greatest duration.

If the conflict is between RELEASE(COMMIT) and RELEASE(DEALLOCATE) then
the value used is RELEASE(DEALLOCATE).

Table 77 shows how conflicts between isolation levels are resolved. The first
column is the existing isolation level, and the remaining columns show what
happens when another isolation level is requested by a new application process.

Table 77. Resolving Isolation Conflicts

 UR CS RS RR

UR n/a CS RS RR

CS CS n/a RS RR

RS RS RS n/a RR

RR RR RR RR n/a

5-182 Administration Guide

The Effect of WITH HOLD for a Cursor
For a cursor defined as WITH HOLD, the cursor position is maintained past a
commit point. Hence, locks and claims needed to maintain that position are not
released immediately, even if they were acquired with ISOLATION(CS) or
RELEASE(COMMIT).

For locks and claims needed for cursor position , the rules described above differ
as follows:

Page and Row Locks: If you specify NO on subsystem parameter RELCURHL,
described in “Option to Release Locks for Cursors Defined WITH HOLD” on
page 5-170, the page or row lock, if that lock is not successfully avoided through
lock avoidance, is held past the commit point. However, an X or U lock is demoted
to an S lock at that time. (Because changes have been committed, exclusive
control is no longer needed.) After the commit point, the lock is released according
to the isolation level at which it was acquired: for CS, when all cursors on the page
are moved or closed; for RR or RS, at the next commit point, provided that no
cursor is still positioned on that page or row.

| If you specify YES for RELCURHL, no data page or row locks are held past
| commit.

Table, Table Space, and DBD Locks: All necessary locks are held past the
commit point. After that, they are released according to the RELEASE option under
which they were acquired: for COMMIT, at the next commit point after the cursor is
closed; for DEALLOCATE, when the application is deallocated.

Claims: All claims, for any claim class, are held past the commit point. They are
released at the next commit point after all held cursors have moved off the object
or have been closed.

Specifying Isolation by SQL Statement
The information under this heading, up to “The Statement LOCK TABLE” on
page 5-184 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page xi.

Function of the WITH Clause: You can override the isolation level with which a
plan or package is bound by the WITH clause on certain SQL statements.

Example: This statement:

SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG

 FROM DSN851ð.EMP

 WITH UR;

finds the maximum, minimum, and average bonus in the sample employee table.
The statement is executed with uncommitted read isolation, regardless of the value
of ISOLATION with which the plan or package containing the statement is bound.

Rules for the WITH Clause: The WITH clause:

� Can be used on these statements:

 – select-statement
 – SELECT INTO

 Chapter 5-7. Improving Concurrency 5-183

 – Searched delete
– INSERT from subselect

 – Searched update

� Cannot be used on subqueries.

� Can specify the isolation levels that specifically apply to its statement. (For
example, because WITH UR applies only to read-only operations, you cannot
use it on an INSERT statement).

� Overrides the isolation level for the plan or package only for the statement in
which it appears.

| Using KEEP UPDATE LOCKS on the WITH Clause: You can use the clause
| KEEP UPDATE LOCKS clause when you specify a SELECT with FOR UPDATE
| OF. This option is only valid when you use WITH RR or WITH RS. By using this
| clause, you tell DB2 to acquire an X lock instead of an U or S lock on all the
| qualified pages or rows.

| Here is an example:

| SELECT ...

| FOR UPDATE OF WITH RS KEEP UPDATE LOCKS;

| With read stability (RS) isolation, a row or page rejected during stage 2 processing
| still has the X lock held on it, even though it is not returned to the application.

| With repeatable read (RR) isolation, DB2 acquires the X locks on all pages or rows
| that fall within the range of the selection expression.

| All X locks are held until the application commits. Although this option can reduce
| concurrency, it can prevent some types of deadlocks and can better serialize
| access to data.

The Statement LOCK TABLE
The information under this heading, up to “Controlling Concurrency for Utilities and
Commands” on page 5-185 is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page xi.

Purpose: The statement overrides DB2 rules for choosing initial lock attributes.
Two examples are:

| LOCK TABLE table-name IN SHARE MODE;
| LOCK TABLE table-name PART n IN EXCLUSIVE MODE;

Executing the statement requests a lock immediately, unless a suitable lock exists
already, as described below.

When To Use It: The statement is often appropriate for a particularly high-priority
application. The statement can improve performance if LOCKMAX disables lock
escalation or sets a high threshold for it.

Example: You intend to execute an SQL statement to change job code 21A to
code 23 in a table of employee data. The table is defined with:

� The name PERSADM1.EMPLOYEE_DATA
 � LOCKSIZE ROW
� LOCKMAX 0, which disables lock escalation

5-184 Administration Guide

The change affects about 15% of the employees, so the statement can require
many row locks of mode X. To avoid the overhead for locks, first execute:

LOCK TABLE PERSADM1.EMPLOYEE_DATA IN EXCLUSIVE MODE;

| If EMPLOYEE_DATA is a partitioned table space that is defined with LOCKPART
| YES, you could choose to lock individual partitions as you update them. The PART
| option is available only for table spaces defined with LOCKPART YES. See Effects
| on Table Spaces of Different Types on page 5-145 for more information about
| LOCKPART YES. An example is:

| LOCK TABLE PERSADM1.EMPLOYEE_DATA PART 1 IN EXCLUSIVE MODE;

| When the statement is executed, DB2 locks partition 1 with an X lock. The lock has
| no effect on locks that already exist on other partitions in the table space.

Effects: Table 78 shows the modes of locks acquired in segmented and
| nonsegmented table spaces for the SHARE and EXCLUSIVE modes of LOCK

TABLE. LOCK TABLE has no effect on locks acquired at a remote server.

Duration of the Locks: The bind option RELEASE determines when locks
| acquired by LOCK TABLE or LOCK TABLE with the PART option are released.

Option Releases locks ...

RELEASE(COMMIT) At the next commit point. Page or row locking resumes
in the next unit of work.

RELEASE(DEALLOCATE) Only when the program ends.

| Table 78. Modes of Locks Acquired by LOCK TABLE. Partition locks behave the same as
| locks on a nonsegmented table space.

LOCK TABLE IN
Nonsegmented
Table Space

Segmented Table Space

Table Table Space

EXCLUSIVE MODE X X IX

SHARE MODE S or SIX S or SIX IS

Note: The SIX lock is acquired if the process already holds an IX lock. SHARE MODE has
no effect if the process already has a lock of mode SIX, U, or X.

Controlling Concurrency for Utilities and Commands
DB2 utilities and commands can take over access to some objects independently of
any transaction locks that are held on the object.

Objects Subject to Takeover
� Simple and segmented table spaces
� Partitions of table spaces
� Nonpartitioned index spaces
� Partitions of index spaces
� Logical partitions of nonpartitioned type 2 indexes

This section describes the effects of those takeovers under:

� “Definition of Claims and Drains” on page 5-186
� “Usage of Drain Locks” on page 5-187
� “Utility Locks on the Catalog and Directory” on page 5-187

 Chapter 5-7. Improving Concurrency 5-185

� “Compatibility of Utilities” on page 5-188
� “Utility Operations with Nonpartitioned Indexes” on page 5-189

Definition of Claims and Drains

 Definition
A claim is a notification to DB2 that an object is being accessed.

 Example
When an application first accesses an object, within a unit of work, it makes a claim
on the object. It releases the claim at the next commit point.

Effects of a Claim
Unlike a transaction lock, a claim normally does not persist past the commit point.
To access the object in the next unit of work, the application must make a new
claim.

(There is an exception, however; if a cursor defined with the clause WITH HOLD is
positioned on the claimed object, the claim is not released at a commit point. For
more about cursors defined as WITH HOLD, see “The Effect of WITH HOLD for a
Cursor” on page 5-183.)

A claim indicates to DB2 that there is activity on or interest in a particular page set
or partition. Claims prevent drains from occurring until the claim is released.

Three Classes of Claims
Claim Class Actions Allowed
Write Reading, updating, inserting, and deleting
Repeatable read Reading only, with repeatable read (RR) isolation
Cursor stability read Reading only, with read stability (RS), cursor stability (CS),

or uncommitted read (UR) isolation

 Definition
A drain is the action of taking over access to an object by preventing new claims
and waiting for existing claims to be released.

 Example
A utility can drain a partition when applications are accessing it.

Effects of a Drain
The drain quiesces the applications by allowing each one to reach a commit point,
but preventing any of them, or any other applications, from making a new claim.
When no more claims exist, the utility controls access to the partition. The
applications that were drained can still hold transaction locks on the partition, but
they cannot make new claims until the utility has finished.

Claim Classes Drained
If you are getting deadlocks when you use REORG with the SHRLEVEL CHANGE
option, run the REORG utility with the DRAIN ALL option. The default is DRAIN
WRITERS, which is done in the log phase. The specification of DRAIN ALL
indicates that both writers and readers will be drained when the MAXRO threshold
is reached. The DRAIN ALL option should be considered in environments where a

5-186 Administration Guide

lot of update activity occurs during the log phase. With this specification, there is no
need for a subsequent drain in the switch phase.

A drainer does not always need complete control. It could drain:

Only the write claim class
Only the repeatable read claim class
All claim classes

For example, the CHECK INDEX utility needs to drain only writers from an index
space and its associated table space. RECOVER, however, must drain all claim

classes from its table space.The REORG utility can drain either writers (with DRAIN
WRITERS) or all claim classes (with DRAIN ALL).

Usage of Drain Locks

 Definition
A drain lock prevents conflicting processes from trying to drain the same object at
the same time. Processes that drain only writers can run concurrently; but a
process that drains all claim classes cannot drain an object concurrently with any
other process. In order to drain an object, a drainer first acquires one or more drain
locks on the object, one for each claim class it needs to drain. When the locks are
in place, the drainer can begin, at the next commit point or when all held cursors
are released.

A drain lock also prevents new claimers from accessing an object while a drainer
has control of it.

Types of Drain Locks
There are three types of drain locks on an object, which correspond to the three
claim classes:

 Write
 Repeatable read

Cursor stability read

In general, after an initial claim has been made on an object by a user, no other
user in the system needs a drain lock. When the drain lock is granted, no drains on
the object are in process for the claim class needed, and the claimer can proceed.11

Utility Locks on the Catalog and Directory
When the target of a utility is an object in the catalog or directory, such as a
catalog table, the utility either drains or claims the object.

When the target is a user-defined object, the utility claims or drains it but also uses
the directory and, perhaps, the catalog; for example, to check authorization. In

11 The claimer of an object requests a drain lock in two exceptional cases:

� A drain on the object is in process for the claim class needed. In this case, the claimer waits for the drain lock.

� The claim is the first claim on an object before its data set has been physically opened. Here, acquiring the drain lock ensures
that no exception states prohibit allocating the data set.

When the claimer gets the drain lock, it makes its claim and releases the lock before beginning its processing.

 Chapter 5-7. Improving Concurrency 5-187

those cases, the utility uses transaction locks on catalog and directory tables. It
acquires those locks in the same way as an SQL transaction does.

The UTSERIAL Lock: Access to the SYSUTILX table space in the directory is
controlled by a unique lock called UTSERIAL. A utility must acquire the UTSERIAL
lock to read or write in SYSUTILX, whether SYSUTILX is the target of the utility or
is used only incidentally.

Compatibility of Utilities

 Definition
Two utilities are considered compatible if they do not need access to the same
object at the same time in incompatible modes.

 Compatibility Rules
The concurrent operation of two utilities is not typically controlled by either drain
locks or transaction locks, but merely by a set of compatibility rules. (An exception
occurs when the utility processes a nonpartitioned type 1 index; for details, see
“Utility Operations with Nonpartitioned Indexes” on page 5-189.)

Before a utility starts, it is checked against all other utilities running on the same
target object. The utility starts only if all the others are compatible.

The check for compatibility obeys the following rules:

� The check is made for each target object, but only for target objects. Typical
utilities access one or more table spaces or indexes, but if two utility jobs use
none of the same target objects, the jobs are always compatible.

An exception is a case in which one utility must update a catalog or directory
table space that is not the direct target of the utility. For example, the LOAD
utility on a user table space updates DSNDB06.SYSCOPY. Therefore, other
utilities that that have DSNDB06.SYSCOPY as a target might not be
compatible.

� Individual data and index partitions are treated as distinct target objects.
Utilities operating on different partitions in the same table or index space are
compatible.

� When two utilities access the same target object, their most restrictive access
modes determine whether they are compatible. For example, if utility job 1
reads a table space during one phase, and writes during the next, it is
considered a writer. It cannot start concurrently with utility 2, which allows only
readers on the table space. (Without this restriction, utility 1 might start and run
concurrently with utility 2 for one phase; but then it would fail in the second
phase, because it could not become a writer concurrently with utility 2.)

For details on which utilities are compatible, refer to each utility's description in
Utility Guide and Reference.

Figure 120 on page 5-189 illustrates how SQL applications and DB2 utilities can
operate concurrently on separate partitions of the same table space.

5-188 Administration Guide

 ┌────┬────┬────┬────┬────┬────┬────┬────┬────┬─5

time (t) 1 2 3 4 5 6 7 8 9 1ð

SQL APPLICATION

 allocate X

write claim, P1 |─────────| |─────────|

 commit X X

 deallocate X

LOAD RESUME YES

 LOAD, P2 |──────────────|

 LOAD, P1 |wait|──────────────|

Time Event

t1 An SQL application obtains a transaction lock on every partition in the table space.
The duration of the locks extends until the table space is deallocated.

t2 The SQL application makes a write claim on data partition 1 and index partition 1.

t3 The LOAD jobs begin draining all claim classes on data partitions 1 and 2 and index
partitions 1 and 2. LOAD on partition 2 operates concurrently with the SQL
application on partition 1. LOAD on partition 1 waits.

t4 The SQL application commits, releasing its write claims on partition 1. LOAD on
partition 1 can begin.

t6 LOAD on partition 2 completes.

t7 LOAD on partition 1 completes, releasing its drain locks. The SQL application (if it
has not timed out) makes another write claim on data partition 1.

t10 The SQL application deallocates the table space and releases its transaction locks.

Figure 120. SQL and Utility Concurrency. Two LOAD jobs execute concurrently on two
partitions of a table space

Controlling concurrency during REORG

Utility Operations with Nonpartitioned Indexes
In the example of Figure 120, two LOAD jobs execute concurrently on different
partitions of the same table space. When the jobs proceed to build the partitioning
index, they operate on different partitions of the index and can again operate
concurrently.

But in a nonpartitioned index, an entry can refer to any partition in the underlying
table space. That fact presents no problem if the index is a type 2 index. Using
type 2 indexes, DB2 can process a set of entries of a nonpartitioned index that all
refer to a single partition and achieve the same results as for a partition of a
partitioned index. (Such a set of entries is called a logical partition of the index.)

If the example included a nonpartitioned type 1 index, however, the two LOAD jobs
could not build it concurrently. Each needs a drain lock on the entire index; the first
job to reach that phase acquires the lock and locks out the other job.

SQL Claims on Nonpartitioning Indexes: If DB2 must access the nonpartitioning
index to process SQL statements, it tries to claim the entire nonpartitioning index. If
it cannot get a claim on the entire nonpartitioning index (perhaps because of a
drain or an exception state on one or more of the logical partitions), DB2 claims just
the logical partitions that it needs to process the SQL.

 Chapter 5-7. Improving Concurrency 5-189

What this means is that the order of events can lead to different activities being
allowed to complete. For example, if an SQL application that accesses the
nonpartitioning index is started before a utility job is started, the SQL application
claims the entire nonpartitioning index and a utility must wait if that utility needs any
part of that nonpartitioning index.

On the other hand, if the utility job starts first, and it needs only some of the
partitions in the nonpartitioning index, the SQL application only claims the logical
partitions that it needs.

If the entire nonpartitioning index is drained, or if there is an incompatible exception
state on each logical partition, DB2 does not try to claim logical partitions for SQL.
If the entire nonpartitioning index is drained, the application can time out on the
drain lock. If there is an incompatible exception state on every logical partition, the
application receives a “resource unavailable” SQLCODE.

Monitoring DB2 Locking
If you have problems with suspensions, timeouts, or deadlocks, you will want to
monitor DB2's use of locks.

Use the -DISPLAY DATABASE command to find out what locks are held or waiting
at any moment on any table space, partition, or index. The report can include
claims and drain locks on logical partitions of type 2 indexes. For an example, see
“Monitoring Databases” on page 4-25.

Use EXPLAIN to monitor the locks required by a particular SQL statement, or all
the SQL in a particular plan or package, and see:

“Using EXPLAIN to Tell Which Locks DB2 Chooses.”

Use the statistics trace to monitor the system-wide use of locks, the accounting
trace to monitor locks used by a particular application process, and see:

“Using the Statistics and Accounting Traces to Monitor Locking” on
page 5-191.

The final section of this chapter gives an example of resolving a particular locking
problem. See “Concurrency Scenario” on page 5-192.

Using EXPLAIN to Tell Which Locks DB2 Chooses
The information under this heading, up to “Using the Statistics and Accounting
Traces to Monitor Locking” on page 5-191, is Product-sensitive Programming
Interface and Associated Guidance Information, as defined in “Notices” on page xi.

Procedure:

1. Use the EXPLAIN statement, or the EXPLAIN option of the BIND and REBIND
subcommands, to determine which modes of table and table space locks DB2
initially assigns for an SQL statement. Follow the instructions under “Obtaining
Information from EXPLAIN” on page 5-262.

2. EXPLAIN stores its results in a table called PLAN_TABLE. To review the
results, query PLAN_TABLE. After running EXPLAIN, each row of
PLAN_TABLE describes the processing for a single table, either one named
explicitly in the SQL statement that is being explained or an intermediate table

5-190 Administration Guide

that DB2 has to create. The column TSLOCKMODE of PLAN_TABLE shows an
initial lock mode for that table. The lock mode applies to the table or the table
space, depending on the value of LOCKSIZE and whether the table space is
segmented or nonsegmented.

3. In Table 79, find what table or table space lock is used and whether page or
row locks are used also, for the particular combination of lock mode and
LOCKSIZE you are interested in.

For Statements Executed Remotely: EXPLAIN gathers information only about
data access in the DBMS where the statement is run or the bind operation is
carried out. To analyze the locks obtained at a remote DB2 location, you must run
EXPLAIN at that location. For more information on running EXPLAIN, and a fuller
description of PLAN_TABLE, see “Chapter 5-10. Using EXPLAIN to Improve SQL
Performance” on page 5-261.

Table 79. Which Locks DB2 Chooses. N/A = Not applicable; Yes = Page or row locks are
acquired; No = No page or row locks are acquired.

Table Space Structure

Lock Mode from EXPLAIN

IS S IX U X

For nonsegmented table spaces:
Table space lock acquired is:
Page or row locks acquired?

IS

Yes

S

No

IX

Yes

U

No

X

No

| Note: For partitioned table spaces defined with LOCKPART YES and for which selective
| partition locking is used, the lock mode applies only to those partitions that are
| locked.

For segmented table spaces with:
LOCKSIZE ANY, ROW, or PAGE

Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

IS
IS

Yes

IS
S

No

IX
IX

Yes

n/a
n/a
No

IX
X

No

 LOCKSIZE TABLE
Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

n/a
n/a
No

IS
S

No

n/a
n/a
No

IX
U

No

IX
X

No

 LOCKSIZE TABLESPACE
Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

n/a
n/a
No

S

n/a
No

n/a
n/a
No

U

n/a
No

X

n/a
No

Using the Statistics and Accounting Traces to Monitor Locking
The statistics and accounting trace records contain information on locking. The IBM
licensed program, DATABASE 2 Performance Monitor (DB2 PM), provides one way
to view the trace results. Figure 121 on page 5-192 contains extracts from the DB2
PM reports Accounting Trace and Statistics Trace. Each of those corresponds to a
single DB2 trace record. (Details of those reports are subject to change without
notification from DB2 and are available in the appropriate DB2 PM documentation).
As the figure shows:

� Statistics Trace tells how many suspensions, deadlocks, timeouts, and lock
escalations occur in the trace record.

 Chapter 5-7. Improving Concurrency 5-191

� Accounting Trace gives the same information for a particular application. It
also shows the maximum number of concurrent page locks held and acquired
during the trace. Review applications with a large number to see if this value
can be lowered. This number is the basis for the proper setting of LOCKS PER
USER and, indirectly, LOCKS PER TABLE(SPACE).

Recommendations: Check the results of the statistics and accounting traces for
the following possibilities:

� Lock escalations are generally undesirable and are caused by processes that
use a large number of page or row locks. In some cases, it is possible to
improve system performance by using table or table space locks.

� Timeouts can be caused by a small value of RESOURCE TIMEOUT. If there
are many timeouts, check whether a low value for RESOURCE TIMEOUT is
causing them. Sometimes the problem suggests a need for some change in
database design.

 ||

LOCKING ACTIVITY QUANTITY /MINUTE /THREAD /COMMIT || LOCKING TOTAL

--------------------------- -------- ------- ------- ------- || ------------ --------

SUSPENSIONS (ALL) 2 1.28 1.ðð ð.4ð || TIMEOUTS ð

SUSPENSIONS (LOCK ONLY) 2 1.28 1.ðð ð.4ð || DEADLOCKS ð

SUSPENSIONS (LATCH ONLY) ð ð.ðð ð.ðð ð.ðð || ESCAL.(SHAR) ð

SUSPENSIONS (OTHER) ð ð.ðð ð.ðð ð.ðð || ESCAL.(EXCL) ð

 || MAX.LCK HELD 2

TIMEOUTS ð ð.ðð ð.ðð ð.ðð || LOCK REQUEST 8

DEADLOCKS 1 ð.64 ð.5ð ð.2ð || UNLOCK REQST 2

 || QUERY REQST ð

LOCK REQUESTS 17 1ð.92 8.5ð 3.4ð || CHANGE REQST 5

UNLOCK REQUESTS 12 7.71 6.ðð 2.4ð || OTHER REQST ð

QUERY REQUESTS ð ð.ðð ð.ðð ð.ðð || LOCK SUSP. 1

CHANGE REQUESTS 5 3.21 2.5ð 1.ðð || LATCH SUSP. ð

OTHER REQUESTS ð ð.ðð ð.ðð ð.ðð || OTHER SUSP. ð

 || TOTAL SUSP. 1

LOCK ESCALATION (SHARED) ð ð.ðð ð.ðð ð.ðð ||

LOCK ESCALATION (EXCLUSIVE) ð ð.ðð ð.ðð ð.ðð || DRAIN/CLAIM TOTAL

 || ------------ --------

DRAIN REQUESTS ð ð.ðð ð.ðð ð.ðð || DRAIN REQST ð

DRAIN REQUESTS FAILED ð ð.ðð ð.ðð ð.ðð || DRAIN FAILED ð

CLAIM REQUESTS 7 4.5ð 3.5ð 1.4ð || CLAIM REQST 4

CLAIM REQUESTS FAILED ð ð.ðð ð.ðð ð.ðð || CLAIM FAILED ð

Figure 121. Locking Activity Blocks from Statistics Trace and Accounting Trace

 Concurrency Scenario
The concurrency problem analyzed in this section illustrates the approach
described in “A General Approach to Problem Analysis in DB2” on page 5-32. It
follows the CONCURRENCY PROBLEM branch of Figure 96 on page 5-35 and
makes use of DB2 PM reports. In DB2 PM, a report titled “Trace” corresponds to a
single DB2 trace record; a report titled “Report” summarizes information from
several trace records. This scenario makes use of:

� Accounting Report - Long
� Locking Report - Suspension
� Locking Report - Lockout
� Locking Trace - Lockout

First, we describe the scenario. Next, we show how each report helps to analyze
the situation. We end with some general information about corrective approaches.

5-192 Administration Guide

 Scenario Description
An application (PARALLEL), which has recently been moved into production, is
experiencing timeouts. Other applications have not been significantly affected in this
example.

To investigate the problem, determine a period when the transaction is likely to time
out. When that period begins:

1. Start the GTF.

2. Start the DB2 accounting classes 1, 2, and 3 to GTF. This allows the
production of DB2 PM accounting reports.

3. Stop GTF and the traces after about 15 minutes.

4. Produce and analyze the DB2 PM Accounting Report - Long.

5. Use the DB2 performance trace selectively for detailed problem analysis.

In some cases, the initial and detailed stages of tracing and analysis presented in
this chapter can be consolidated into one. In other cases, the detailed analysis
might not be required at all.

To analyze the problem, generally start with Accounting Report - Long. (If you have
enough information from program and system messages, you can skip this first
step.)

 Accounting Report
Figure 122 on page 5-194 shows a portion of Accounting Report - Long.

 Chapter 5-7. Improving Concurrency 5-193

LOCATION: SYS1DSN2 DB2 PERFORMANCE MONITOR (V4 R2) PAGE: 1-1

GROUP: DSN2 ACCOUNTING REPORT - LONG REQUESTED FROM: NOT SPECIFIED

MEMBER: SE11 TO: NOT SPECIFIED

SUBSYSTEM: SE11 ORDER: PLANNAME INTERVAL FROM: ð8/14/96 11:41:1ð.15

DB2 VERSION: V4 R2 SCOPE: MEMBER TO: ð8/14/96 11:41:1ð.15

PLANNAME: PARALLEL

AVERAGE APPL (CLASS 1) DB2 (CLASS 2) IFI (CLASS 5) CLASS 3 SUSP. AVERAGE TIME AV.EVENT HIGHLIGHTS .D/
------------ -------------- -------------- -------------- -------------- ------------ -------- --------------------------

 .A/ .B/ .C/
ELAPSED TIME 5:ð3.5754ðð 5:ð3.3833ðð N/P LOCK/LATCH 5:ð3.2778ð5 1.ðð #OCCURRENCES : 2

CPU TIME ð.ð46199 ð.ð21565 N/P SYNCHRON. I/O ð.ðððððð ð.ðð #ALLIEDS : 2

 TCB ð.ð46199 ð.ð21565 N/P OTHER READ I/O ð.ðððððð ð.ðð #ALLIEDS DISTRIB: ð

 TCB-STPROC ð.ðððððð ð.ðððððð N/A OTHER WRTE I/O ð.ðððððð ð.ðð #DBATS : ð

PAR.TASKS ð.ðððððð ð.ðððððð N/A SER.TASK SWTCH ð.ð822ð5 5.ðð #DBATS DISTRIB. : ð

SUSPEND TIME N/A 5:ð3.36ðð1ð N/A ARC.LOG(QUIES) ð.ðððððð ð.ðð #NO PROGRAM DATA: ð

 TCB N/A 5:ð3.36ðð1ð N/A ARC.LOG READ ð.ðððððð ð.ðð #NORMAL TERMINAT: 2

 PAR.TASKS N/A ð.ðððððð N/A DRAIN LOCK ð.ðððððð ð.ðð #ABNORMAL TERMIN: ð

NOT ACCOUNT. N/A ð.ðð1725 N/A CLAIM RELEASE ð.ðððððð ð.ðð #CP/X PARALLEL. : ð

DB2 ENT/EXIT N/A 5.ðð N/A PAGE LATCH ð.ðððððð ð.ðð #IO PARALLELISM : ð

EN/EX-STPROC N/A ð.ðð N/A STORED PROC. ð.ðððððð ð.ðð #INCREMENT. BIND: ð

DCAPT.DESCR. N/A N/A N/P NOTIFY MSGS. ð.ðððððð ð.ðð #COMMITS : 2

LOG EXTRACT. N/A N/A N/P GLOBAL CONT. ð.ðððððð ð.ðð #ROLLBACKS : 1

TOTAL CLASS 3 5:ð3.36ðð1ð 6.ðð UPDATE/COMMIT : ð.ðð

SQL DML AVERAGE TOTAL SQL DCL TOTAL SQL DDL CREATE DROP ALTER LOCKING AVERAGE TOTAL

-------- -------- -------- -------------- -------- ---------- ------ ------ ------ -------------- -------- --------

SELECT ð.ðð ð LOCK TABLE ð TABLE ð ð ð TIMEOUTS 1.ðð 2

INSERT ð.ðð ð GRANT ð TEMP TABLE ð N/A N/A DEADLOCKS ð.ðð ð

UPDATE ð.ðð ð REVOKE ð INDEX ð ð ð ESCAL.(SHARED) ð.ðð ð

DELETE ð.ðð ð SET CURR.SQLID ð TABLESPACE ð ð ð ESCAL.(EXCLUS) ð.ðð ð

SET HOST VAR. ð DATABASE ð ð ð MAX LOCKS HELD 1.ðð 1

DESCRIBE ð.ðð ð SET CUR.DEGREE ð STOGROUP ð ð ð LOCK REQUEST 5.ðð 1ð

DESC.TBL ð.ðð ð SET RULES ð SYNONYM ð ð N/A UNLOCK REQUEST 5.ðð 1ð

PREPARE ð.ðð ð CONNECT TYPE 1 ð VIEW ð ð N/A QUERY REQUEST ð.ðð ð

OPEN 1.ðð 2 CONNECT TYPE 2 ð ALIAS ð ð N/A CHANGE REQUEST 1.ðð 2

FETCH ð.ðð ð SET CONNECTION ð PACKAGE N/A ð N/A OTHER REQUEST ð.ðð ð

CLOSE ð.ðð ð RELEASE ð LOCK SUSPENS. 1.ðð 2

CALL ð TOTAL ð ð ð LATCH SUSPENS. ð.ðð ð

 ASSOC LOCATORS ð

DML-ALL 1.ðð 2 ALLOC CURSOR ð COMMENT ON ð OTHER SUSPENS. ð.ðð ð

 DCL-ALL ð LABEL ON ð TOTAL SUSPENS. 1.ðð 2

| Figure 122. Excerpt from Accounting Report - Long

Accounting Report - Long shows the average elapsed times and the average
number of suspensions per plan execution. In Figure 122:

� The class 1 average elapsed time .A/ (AET) is 5 minutes, 3.575 seconds
(rounded). The class 2 times show that 5 minutes, 3.383 seconds .B/ of that
are spent in DB2; the rest is spent in the application.

� The class 2 AET is spent mostly in lock or latch suspensions (LOCK/LATCH
.C/ is 5 minutes, 3.278 seconds).

� The HIGHLIGHTS section .D/ of the report (upper right) shows
| #OCCURRENCES as 2; that is the number of accounting (IFCID 3) records.

 Lock Suspension
To prepare for Locking Report - Suspension, start DB2 performance class 6 to
GTF. Because that class traces only suspensions, it does not significantly reduce
performance. Figure 123 on page 5-195 shows the DB2 PM Locking Report -
Suspension.

5-194 Administration Guide

...

--SUSPEND REASONS-- ---------- R E S U M E R E A S O N S -----------

PRIMAUTH --- L O C K R E S O U R C E --- TOTAL LOCAL GLOB. S.NFY ---- NORMAL ---- TIMEOUT/CANCEL --- DEADLOCK ---

PLANNAME TYPE NAME SUSPENDS LATCH IRLMQ OTHER NMBR AET NMBR AET NMBR AET

------------------ --------- ----------------------- -------- ----- ----- ----- ---- ----------- ---- ----------- ---- -----------

FPB

PARALLEL PARTITION DB =PARADABA 2 2 ð ð ð N/C 2 3ð3.2778ð5 ð N/C

OB =TAB1TS ð ð ð

 PART= 1

LOCKING REPORT COMPLETE

| Figure 123. Portion of DB2 PM Locking Report - Suspension

This report shows:

� Which plans are suspended, by plan name within primary authorization ID. For
statements bound to a package, see the information about the plan that
executes the package.

� What IRLM requests and which lock types are causing suspensions.

� Whether suspensions are normally resumed or end in timeouts or deadlocks.

� Average elapsed time (AET) per suspension.

The report also shows the reason for the suspensions:

Reason Includes...
LOCAL Contention for a local resource.
LATCH Contention for latches within IRLM; suspension is usually brief.
GLOB. Contention for a global resource.
IRLMQ An IRLM queued request.
S.NFY Intersystem message sending.

| OTHER Page latch or drain suspensions, suspensions because of
| incompatible retained locks in data sharing, or a value for service
| use.

The list above shows only the first reason for a suspension. When the original
reason is resolved, the request could remain suspended for a second reason.

Each suspension results in either a normal resume, a timeout, or a deadlock.

The report shows that the suspension causing the delay involves access to partition
1 of table space PARADABA.TAB1TS by plan PARALLEL. Two LOCAL
suspensions time out after an average of 5 minutes, 3.278 seconds (303.278
seconds).

 Lockout Report
Figure 124 on page 5-196 shows the DB2 PM Locking Report - Lockout. This
report shows that plan PARALLEL contends with the plan DSNESPRR. It also
shows that contention is occurring on partition 1 of table space
PARADABA.TAB1TS.

 Chapter 5-7. Improving Concurrency 5-195

PRIMAUTH --- L O C K R E S O U R C E --- ---------------- A G E N T S ---------------

 PLANNAME TYPE NAME TIMEOUTS DEADLOCKS MEMBER PLANNAME CONNECT CORRNAME CORRNMBR HOLDER WAITER

------------------ --------- ----------------------- -------- --------- -------- -------- -------- -------- -------- ------ ------

FPB

PARALLEL PARTITION DB =PARADABA 2 ð N/P DSNESPRR TSO EOA 'BLANK' 2 ð

 OB =TAB1TS

 PART= 1

\\ LOCKOUTS FOR PARALLEL \\ 2 ð

Figure 124. Portion of DB2 PM Locking Report - Lockout

 Lockout Trace
Figure 125 shows the DB2 PM Locking Trace - Lockout report.

This report produces one line for each lock contender. It shows the contenders,
database object, lock state (mode), and duration for each contention for a
transaction lock.

...

PRIMAUTH CORRNAME CONNTYPE

ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---

PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA

------------------------------ ----------------- -------- --------- ----------------------- --

FPB FPBPARAL TSO 15:25:27.2369235ð TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL

FPB 'BLANK' ABð9C533F92E N/P OB =TAB1TS STATE =S ZPARM INTERVAL= 3ðð

PARALLEL BATCH PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

 HASH =X'ðððð2ðEð'

------------ HOLDERS/WAITERS -----------

 HOLDER

 LUW='BLANK'.IPSAQ421.ABð9C51F32CB

 MEMBER =N/P CONNECT =TSO

 PLANNAME=DSNESPRR CORRNAME=EOA

 DURATION=COMMIT CORRNMBR='BLANK'

 STATE =X

FPB FPBPARAL TSO 15:3ð:32.97267562 TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL

FPB 'BLANK' ABð9C65528E6 N/P OB =TAB1TS STATE =IS ZPARM INTERVAL= 3ðð

PARALLEL BATCH PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

 HASH =X'ðððð2ðEð'

------------ HOLDERS/WAITERS -----------

 HOLDER

 LUW='BLANK'.IPSAQ421.ABð9C51F32CB

 MEMBER =N/P CONNECT =TSO

 PLANNAME=DSNESPRR CORRNAME=EOA

 DURATION=COMMIT CORRNMBR='BLANK'

 STATE =X

LOCKING TRACE COMPLETE

| Figure 125. Portion of PM Locking Trace - Lockout

At this point in the investigation, the following information is known:

� The applications that contend for resources
� The page sets for which there is contention
� The impact, frequency, and type of the contentions

The application or data design must be reviewed to reduce the contention.

Making Corrective Decisions
The above discussion is a general approach when lock suspensions are
unacceptably long or timeouts occur. In such cases, the DB2 performance trace for
locking and the DB2 PM reports can be used to isolate the resource causing the
suspensions. Locking Report - Lockout identifies the resources involved. Locking
Trace - Lockout tells what contending process (agent) caused the timeout.

5-196 Administration Guide

In Figure 123 on page 5-195, the number of suspensions is low (only 2) and both
have ended in a timeout. Rather than use the DB2 performance trace for locking,
the preferred option is to use DB2 statistics class 3 and DB2 performance trace
class 1. Then produce the DB2 PM locking timeout report to obtain the information
necessary to reduce overheads.

For specific information about DB2 PM reports and their usage, see DB2 PM for
OS/390 Report Reference Volume 1, DB2 PM for OS/390 Report Reference
Volume 2 and DB2 PM for OS/390 Online Monitor User's Guide.

Deadlock Detection Scenarios
Here we examine two different deadlock scenarios and tell how to use the DB2 PM
deadlock detail report to determine the cause of the deadlock.

The DB2 PM report Locking Trace - Deadlock formats the information contained in
trace record IFCID 172 (statistics class 3). The report outlines all the resources and
agents involved in a deadlock and the significant locking parameters, such as lock
state and duration, related to their requests.

These examples assume that statistics class 3 and performance class 1 are
activated. Performance class 1 is activated to get IFCID 105 records, which contain
the translated names for the database ID and the page set OBID.

The scenarios that follow use three of the DB2 sample tables, DEPT, PROJ, and
ACT. They are all defined with LOCKSIZE ANY. Type 2 indexes are used to

| access all three tables. As a result, we see contention for locks only on data pages.

Scenario 1: Two-way Deadlock, Two Resources
In this classic deadlock example, two agents contend for resources; the result is a
deadlock in which one of the agents is rolled back. There are two transactions and
two resources involved.

First, transaction LOC2A acquires a lock on one resource while transaction LOC2B
acquires a lock on another. Next, the two transactions each request locks on the
resource held by the other.

The transactions execute as follows:

LOC2A

1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC2B

1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 8.
4. Update page 2.

 Chapter 5-7. Improving Concurrency 5-197

5. Close both cursors and commit.

Events take place in the following sequence:

│ LOC2A - obtains a U lock on page 2 in table DEPT,

│ to open its cursor for update

 │

│ LOC2B - obtains a U lock on a page 8 in table PROJ,

│ to open its cursor for update

 Time │

│ LOC2A - attempts to access page 8, to open its cursor

│ (Cannot proceed, because of the lock held by LOC2B.)

 │

│ LOC2B - attempts to access page 2, to open its cursor

6 (Cannot proceed, because of the lock held by LOC2B.)

DB2 selects one of the transactions and rolls it back, releasing its locks. That
allows the other transaction to proceed to completion and release its locks also.

Figure 126 shows the DB2 PM Locking Trace - Deadlock report produced for this
situation.

From the report we see that the only transactions involved came from plans LOC2A
| and LOC2B. Both transactions came in from BATCH.

...

PRIMAUTH CORRNAME CONNTYPE

ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---

PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA

------------------------------ ----------------- -------- --------- ----------------------- --

SYSADM RUNLOC2A TSO 2ð:32:3ð.6885ðð25 DEADLOCK COUNTER = 2 WAITERS = 2

SYSADM 'BLANK' AADD32FD8A8C N/P TSTAMP =ð4/ð2/95 2ð:32:3ð.68

LOC2A BATCH DATAPAGE DB =DSN8D42A HASH =X'ð1ð6ð3ð4'

.A/ OB =DEPT ---------------- BLOCKER IS HOLDER -----

 PAGE=X'ððððð2' LUW='BLANK'.EGTVLU2.AADD32FD8A8C

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC2A CORRNAME=RUNLOC2A

 DURATION=MANUAL CORRNMBR='BLANK'

 STATE =U
---------------- WAITER ----------------

 LUW='BLANK'.EGTVLU2.AA65FEDC1ð22

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC2B CORRNAME=RUNLOC2B

 DURATION=MANUAL CORRNMBR='BLANK'

REQUEST =LOCK WORTH = 18

 STATE =U

DATAPAGE DB =DSN8D42A HASH =X'ð1ð6ð312'

OB =PROJ ---------------- BLOCKER IS HOLDER -----

 PAGE=X'ððððð8' LUW='BLANK'.EGTVLU2.AA65FEDC1ð22

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC2B CORRNAME=RUNLOC2B

 DURATION=MANUAL CORRNMBR='BLANK'

 STATE =U
---------------- WAITER -------\VICTIM\-

 LUW='BLANK'.EGTVLU2.AADD32FD8A8C

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC2A CORRNAME=RUNLOC2A

 DURATION=MANUAL CORRNMBR='BLANK'

REQUEST =LOCK WORTH = 17

 STATE =U

| Figure 126. Deadlock scenario 1: Two transactions and two resources

The lock held by transaction 1 (LOC2A) is a data page lock on the DEPT table and
is held in U state. (The value of MANUAL for duration means that, if the plan was
bound with isolation level CS and the page was not updated, then DB2 is free to
release the lock before the next commit point.)

5-198 Administration Guide

Transaction 2 (LOC2B) was requesting a lock on the same resource, also of mode
U and hence incompatible.

The specifications of the lock held by transaction 2 (LOC2B) are the same.
Transaction 1 was requesting an incompatible lock on the same resource. Hence,
the deadlock.

Finally, we note that the entry in the trace, identified at .A/, is LOC2A. That is the
| selected thread whose work is rolled back to let the other proceed (the “victim”).

Scenario 2: Three-way Deadlock, Three Resources
In this scenario, three agents contend for resources and the result is a deadlock in
which one of the agents is rolled back. There are three transactions and three
resources involved.

First, the three transactions each acquire a lock on a different resource. LOC3A
then requests a lock on the resource held by LOC3B, LOC3B requests a lock on
the resource held by LOC3C, and LOC3C requests a lock on the resource held by
LOC3A.

The transactions execute as follows:

LOC3A

1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC3B

1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on ACT and fetch from page 6.
3. Update page 6.
4. Update page 8.
5. Close both cursors and commit.

LOC3C

1. Declare and open a cursor for update on ACT and fetch from page 6.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 6.
4. Update page 2.
5. Close both cursors and commit.

Events take place in the following sequence:

 Chapter 5-7. Improving Concurrency 5-199

│ LOC3A - obtains a U lock on page 2 in DEPT,

│ to open its cursor for update

 │

│ LOC3B - obtains a U lock on page 8 in PROJ,

│ to open its cursor for update

 Time │

│ LOC3C - obtains a U lock on page 6 in ACT,

│ to open its cursor for update

 │

│ LOC3A - attempts to access page 8 in PROJ

│ (Cannot proceed, because of the lock held by LOC3.)

 │

│ LOC3B - attempts to access page 6 in ACT

│ (Cannot proceed, because of the lock held by LOC3C.)

 │

│ LOC3C - attempts to access page 2 in DEPT

6 (Cannot proceed, because of the lock held by LOC3A.)

DB2 rolls back one of the transactions, plan LOC3C, and releases its locks. That
allows another transaction to complete and release its locks. And that allows the
third (and final) transaction to complete.

Figure 127 on page 5-201 shows the DB2 PM Locking Trace - Deadlock report
produced for this situation.

5-200 Administration Guide

...

PRIMAUTH CORRNAME CONNTYPE

ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---

PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA

------------------------------ ----------------- -------- --------- ----------------------- --

SYSADM RUNLOC3C TSO 15:1ð:39.33ð61694 DEADLOCK COUNTER = 3 WAITERS = 3

SYSADM 'BLANK' AADE2CF16F34 N/P TSTAMP =ð4/ð3/95 15:1ð:39.31

LOC3C BATCH DATAPAGE DB =DSN8D42A HASH =X'ð1ð6ð312'

OB =PROJ ---------------- BLOCKER IS HOLDER------

 PAGE=X'ððððð8' LUW='BLANK'.EGTVLU2.AAD15D373533

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3B CORRNAME=RUNLOC3B

 DURATION=MANUAL CORRNMBR='BLANK'

 STATE =U

---------------- WAITER ----------------

 LUW='BLANK'.EGTVLU2.AB33745CE357

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3A CORRNAME=RUNLOC3A

 DURATION=MANUAL CORRNMBR='BLANK'

REQUEST =LOCK WORTH = 18

 STATE =U

DATAPAGE DB =DSN8D42A HASH =X'ð1ð6ð711'

OB =ACT ---------------- BLOCKER IS HOLDER -----

 PAGE=X'ððððð6' LUW='BLANK'.EGTVLU2.AADE2CF16F34

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3C CORRNAME=RUNLOC3C

 DURATION=COMMIT CORRNMBR='BLANK'

 STATE =X

---------------- WAITER ----------------

 LUW='BLANK'.EGTVLU2.AAD15D373533

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3B CORRNAME=RUNLOC3B

 DURATION=COMMIT CORRNMBR='BLANK'

REQUEST =LOCK WORTH = 18

 STATE =X

...

SYSADM RUNLOC3C TSO DATAPAGE DB =DSN8D42A HASH =X'ð1ð6ð3ð4'

SYSADM 'BLANK' AADE2CF16F34 OB =DEPT ---------------- BLOCKER IS HOLDER------

LOC3C BATCH PAGE=X'ððððð2' LUW='BLANK'.EGTVLU2.AB33745CE357

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3A CORRNAME=RUNLOC3A

 DURATION=MANUAL CORRNMBR='BLANK'

 STATE =U

---------------- WAITER -------\VICTIM\-

 LUW='BLANK'.EGTVLU2.AADE2CF16F34

 MEMBER =DB1A CONNECT =BATCH

 PLANNAME=LOC3C CORRNAME=RUNLOC3C

 DURATION=MANUAL CORRNMBR='BLANK'

REQUEST =LOCK WORTH = 17

 STATE =U

| Figure 127. Deadlock scenario 2: Three transactions and three resources

 Chapter 5-7. Improving Concurrency 5-201

5-202 Administration Guide

Chapter 5-8. Tuning Your Queries

The information under this heading, up to the end of this chapter, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

This chapter tells you how to improve the performance of your queries. It begins
with:

� “General Tips and Questions”

For more detailed information and suggestions, see:

� “Writing Efficient Predicates” on page 5-206
� “Using Host Variables Efficiently” on page 5-224
� “Writing Efficient Subqueries” on page 5-228

If you still have performance problems after you have tried the suggestions in these
sections, there are other, more risky techniques you can use. See “Special
Techniques to Influence Access Path Selection” on page 5-233 for information.

General Tips and Questions
Recommendation: If you have a query that is performing poorly, first go over the
following checklist to see that you have not overlooked some of the basics.

Is the Query Coded as Simply as Possible?
Make sure the SQL query is coded as simply and efficiently as possible. Make
sure that no unused columns are selected and that there is no unneeded ORDER
BY or GROUP BY.

Are All Predicates Coded Correctly?
Indexable Predicates: Make sure all the predicates that you think should be
indexable are coded so that they can be indexable. Refer to Table 80 on
page 5-211 to see which predicates are indexable and which are not.

Unintentionally Redundant or Unnecessary Predicates: Try to remove any
predicates that are unintentionally redundant or not needed; they can slow down
performance.

Declared Lengths of Host Variables: Make sure that the declared length of any
host variable is no greater than the length attribute of the data column it is
compared to. If the declared length is greater, the predicate is stage 2 and cannot
be a matching predicate for an index scan.

For example, assume that a host variable and an SQL column are defined as
follows:

Assembler Declaration SQL definition
MYHOSTV DS PLn 'value' COL1 DECIMAL(6,3)

When 'n' is used, the precision of the host variable is '2n-1'. If n = 4 and value =
'123.123', then a predicate such as WHERE COL1 = :MYHOSTV is not a matching
predicate for an index scan because the precisions are different. One way to avoid

 Copyright IBM Corp. 1982, 1997 5-203

an inefficient predicate using decimal host variables is to declare the host variable
without the 'Ln' option:

 MYHOSTV DS P'123.123'

This guarantees the same host variable declaration as the SQL column definition.

Are There Subqueries in Your Query?
If your query uses subqueries, see “Writing Efficient Subqueries” on page 5-228 to
understand how DB2 executes subqueries. There are no absolute rules to follow
when deciding how or whether to code a subquery. But these are general
guidelines:

� If there are efficient indexes available on the tables in the subquery, then a
correlated subquery is likely to be the most efficient kind of subquery.

� If there are no efficient indexes available on the tables in the subquery, then a
noncorrelated subquery would likely perform better.

� If there are multiple subqueries in any parent query, make sure that the
subqueries are ordered in the most efficient manner.

Consider the following illustration. Assume that there are 1000 rows in
MAIN_TABLE.

SELECT \ FROM MAIN_TABLE

WHERE TYPE IN (subquery 1)

 AND

PARTS IN (subquery 2);

Assuming that subquery 1 and subquery 2 are the same type of subquery (either
correlated or noncorrelated), DB2 evaluates the subquery predicates in the order
they appear in the WHERE clause. Subquery 1 rejects 10% of the total rows, and
subquery 2 rejects 80% of the total rows.

The predicate in subquery 1 (which we will refer to as P1) is evaluated 1,000 times,
and the predicate in subquery 2 (which we will refer to as P2) is evaluated 900
times, for a total of 1,900 predicate checks. However, if the order of the subquery
predicates is reversed, P2 is evaluated 1000 times, but P1 is evaluated only 200
times, for a total of 1,200 predicate checks.

It appears that coding P2 before P1 would be more efficient if P1 and P2 take an
equal amount of time to execute. However, if P1 is 100 times faster to evaluate
than P2, then it might be advisable to code subquery 1 first. If you notice a
performance degradation, consider reordering the subqueries and monitoring the
results. Consult “Writing Efficient Subqueries” on page 5-228 to help you
understand what factors make one subquery run more slowly than another.

If you are in doubt, run EXPLAIN on the query with both a correlated and a
noncorrelated subquery. By examining the EXPLAIN output and understanding your
data distribution and SQL statements, you should be able to determine which form
is more efficient.

This general principle can apply to all types of predicates. However, because
subquery predicates can potentially be thousands of times more processor- and
I/O-intensive than all other predicates, it is most important to make sure they are
coded in the correct order.

5-204 Administration Guide

DB2 always performs all noncorrelated subquery predicates before correlated
subquery predicates, regardless of coding order.

Refer to “DB2 Predicate Manipulation” on page 5-219 to see in what order DB2 will
evaluate predicates and when you can control the evaluation order.

Does Your Query Involve Column Functions?
If your query involves column functions, make sure that they are coded as simply
as possible; this increases the chances that they will be evaluated when the data is
retrieved, rather than afterward. In general, a column function performs best when
evaluated during data access and next best when evaluated during DB2 sort. Least
preferable is to have a column function evaluated after the data has been retrieved.
Refer to “When Are Column Functions Evaluated?” on page 5-275 for help in using
EXPLAIN to get the information you need.

For column functions to be evaluated during data retrieval, the following conditions
must be met for all column functions in the query:

� There must be no sort needed for GROUP BY. Check this in the EXPLAIN
output.

� There must be no stage 2 (residual) predicates. Check this in your application.

� There must be no distinct set functions such as COUNT(DISTINCT C1).

� If the query is a join, all set functions must be on the last table joined. Check
this by looking at the EXPLAIN output.

� All column functions must be on single columns with no arithmetic expressions.

If your query involves the functions MAX or MIN, refer to “One-Fetch Access
(ACCESSTYPE=I1)” on page 5-281 to see whether your query could take
advantage of that method.

Do You Have an Input Variable in the Predicate of a Static SQL Query?
When host variables or parameter markers are used in a query, the actual values
are not known when you bind the package or plan that contains the query. DB2
therefore uses a default filter factor to determine the best access path for an SQL
statement. If that access path proves to be inefficient, there are several things you
can do to obtain a better access path.

See “Using Host Variables Efficiently” on page 5-224 for more information.

Do You Have a Problem with Column Correlation?
Two columns in a table are said to be correlated if the values in the columns do not
vary independently.

DB2 might not determine the best access path when your queries include
correlated columns. If you think you have a problem with column correlation, see
“Column Correlation” on page 5-220 for ideas on what to do about it.

 Chapter 5-8. Tuning Your Queries 5-205

Writing Efficient Predicates
Definition: Predicates are found in the clauses WHERE, HAVING or ON of SQL
statements; they describe attributes of data. They are usually based on the
columns of a table and either qualify rows (through an index) or reject rows
(returned by a scan) when the table is accessed. The resulting qualified or rejected
rows are independent of the access path chosen for that table.

Example: The query below has three predicates: an equal predicate on C1, a
BETWEEN predicate on C2, and a LIKE predicate on C3.

SELECT \ FROM T1

WHERE C1 = 1ð AND

C2 BETWEEN 1ð AND 2ð AND

C3 NOT LIKE 'A%'

Effect on Access Paths: This section explains the effect of predicates on access
paths. Because SQL allows you to express the same query in different ways,
knowing how predicates affect path selection helps you write queries that access
data efficiently.

This section describes:

� “Properties of Predicates”
� “General Rules about Predicate Evaluation” on page 5-209
� “Predicate Filter Factors” on page 5-215
� “DB2 Predicate Manipulation” on page 5-219
� “Column Correlation” on page 5-220

Properties of Predicates
Predicates in a HAVING clause are not used when selecting access paths; hence,
in this section the term 'predicate' means a predicate after WHERE or ON.

A predicate influences the selection of an access path because of:

� Its type , as described in “Predicate Types” on page 5-207

� Whether it is indexable , as described in “Indexable and Nonindexable
Predicates” on page 5-207

� Whether it is stage 1 or stage 2

There are special considerations for “Predicates in the ON Clause” on page 5-209.

Definitions: We identify predicates as:

Simple or Compound
A compound predicate is the result of two predicates, whether simple or
compound, connected together by AND or OR Boolean operators. All others
are simple.

Local or join
Local predicates reference only one table. They are local to the table and
restrict the number of rows returned for that table. Join predicates involve
more than one table or correlated reference. They determine the way rows
are joined from two or more tables. For examples of their use, see
“Interpreting Access to Two or More Tables” on page 5-282.

5-206 Administration Guide

Boolean term
Any predicate that is not contained by a compound OR predicate structure is
a Boolean term. If a Boolean term is evaluated false for a particular row, the
whole WHERE clause is evaluated false for that row.

 Predicate Types
The type of a predicate depends on its operator or syntax, as listed below. The
type determines what type of processing and filtering occurs when the predicate is
evaluated.

Type Definition

Subquery Any predicate that includes another SELECT statement. Example:
C1 IN (SELECT C10 FROM TABLE1)

Equal Any predicate that is not a subquery predicate and has an equal
operator and no NOT operator. Also included are predicates of the
form C1 IS NULL. Example: C1=100

Range Any predicate that is not a subquery predicate and has an operator
in the following list: >, >=, <, <=, LIKE, or BETWEEN. Example:
C1>100

IN-list A predicate of the form column IN (list of values). Example: C1 IN
(5,10,15)

NOT Any predicate that is not a subquery predicate and contains a NOT
operator. Example: COL1 <> 5 or COL1 NOT BETWEEN 10 AND
20.

Example: Influence of Type on Access Paths: The following two examples show
how the predicate type can influence DB2's choice of an access path. In each one,
assume that a unique index I1 (C1) exists on table T1 (C1, C2), and that all values
of C1 are positive integers.

The query,

SELECT C1, C2 FROM T1 WHERE C1 >= ð;

has a range predicate. However, the predicate does not eliminate any rows of T1.
Therefore, it could be determined during bind that a table space scan is more
efficient than the index scan.

The query,

SELECT \ FROM T1 WHERE C1 = ð;

has an equal predicate. DB2 chooses the index access in this case, because only
one scan is needed to return the result.

Indexable and Nonindexable Predicates
Definition: Indexable predicate types can match index entries; other types cannot.
Indexable predicates might not become matching predicates of an index; it depends
on the indexes that are available and the access path chosen at bind time.

Examples: If the employee table has an index on the column LASTNAME, the
following predicate can be a matching predicate:

SELECT \ FROM DSN851ð.EMP WHERE LASTNAME = 'SMITH';

 Chapter 5-8. Tuning Your Queries 5-207

The following predicate cannot be a matching predicate, because it is not
indexable.

SELECT \ FROM DSN851ð.EMP WHERE SEX <> 'F';

Recommendation: To make your queries as efficient as possible, use indexable
predicates in your queries and create suitable indexes on your tables. Indexable
predicates allow the possible use of a matching index scan, which is often a very
efficient access path.

Stage 1 and Stage 2 Predicates
Definition: Rows retrieved for a query go through two stages of processing.

1. Stage 1 predicates (sometimes called sargable) can be applied at the first
stage.

2. Stage 2 predicates (sometimes called nonsargable or residual) cannot be
applied until the second stage.

| The following items determine whether a predicate is stage 1:

| � Predicate syntax

| See Table 80 on page 5-211 for a list of simple predicates and their types.
| See Examples of Predicate Properties for information on compound predicate
| types.

| � Type and length of constants in the predicate

| A simple predicate whose syntax classifies it as stage 1 might not be stage 1
| because it contains constants and columns whose types or lengths disagree.
| For example, the following predicates are not stage 1:

| – CHARCOL='ABCDEFG', where CHARCOL is defined as CHAR(6)
| – SINTCOL>34.5, where SINTCOL is defined as SMALLINT

| The first predicate is not stage 1 because the length of the column is shorter
| than the length of the constant. The second predicate is not stage 1 because
| the data types of the column and constant are not the same.

Examples: All indexable predicates are stage 1. The predicate C1 LIKE %BC is
also stage 1, but is not indexable.

Recommendation: Use stage 1 predicates whenever possible.

Boolean Term (BT) Predicates
Definition: A Boolean term predicate, or BT predicate, is a simple or compound
predicate that, when it is evaluated false for a particular row, makes the entire
WHERE clause false for that particular row.

Examples: In the following query P1, P2 and P3 are simple predicates:

SELECT \ FROM T1 WHERE P1 AND (P2 OR P3);

� P1 is a simple BT predicate.
� P2 and P3 are simple non-BT predicates.
� P2 OR P3 is a compound BT predicate.
� P1 AND (P2 OR P3) is a compound BT predicate.

5-208 Administration Guide

Effect on Access Paths: In single index processing, only Boolean term predicates
are chosen for matching predicates. Hence, only indexable Boolean term predicates
are candidates for matching index scans. To match index columns by predicates
that are not Boolean terms, DB2 considers multiple index access.

In join operations, Boolean term predicates can reject rows at an earlier stage than
can non-Boolean term predicates.

Recommendation: For join operations, choose Boolean term predicates over
non-Boolean term predicates whenever possible.

Predicates in the ON Clause
The ON clause supplies the join condition in an outer join. For a full outer join, the
clause can use only equal predicates. For other outer joins, the clause can use
range predicates also.

For left and right outer joins, and for inner joins, predicates in the ON clause are
treated the same as other stage 1 and stage 2 predicates. A stage 2 predicate in
the ON clause is treated as a stage 2 predicate of the inner table.

For full outer join, the ON clause is evaluated during the join operation like a stage
2 predicate.

In an outer join, most predicates in the WHERE clause are evaluated AFTER the
join, and are therefore stage 2 predicates. Predicates in a table expression can be
evaluated before the join and can therefore be stage 1 predicates.

For example, in the following statement,

SELECT \ FROM (SELECT \ FROM DSN851ð.EMP

WHERE EDLEVEL > 1ðð) AS X FULL JOIN DSN851ð.DEPT

 ON X.WORKDEPT = DSN851ð.DEPT.DEPTNO;

the predicate “EDLEVEL > 100” is evaluated before the full join and is a stage 1
predicate. For more information on join methods, see “Interpreting Access to Two
or More Tables” on page 5-282.

General Rules about Predicate Evaluation
Recommendations:

1. In terms of resource usage, the earlier a predicate is evaluated, the better.

2. Stage 1 predicates are better than stage 2 predicates because they qualify
rows earlier and reduce the amount of processing needed at stage 2.

3. When possible, try to write queries that evaluate the most restrictive predicates
first. When predicates with a high filter factor are processed first, unnecessary
rows are screened as early as possible, which can reduce processing cost at a
later stage. However, a predicate's restrictiveness is only effective among
predicates of the same type and the same evaluation stage. For information
about filter factors, see “Predicate Filter Factors” on page 5-215.

 Chapter 5-8. Tuning Your Queries 5-209

Order of Evaluating Predicates
Two sets of rules determine the order of predicate evaluation.

The first set:

1. Indexable predicates are applied first. All matching predicates on index key
columns are applied first and evaluated when the index is accessed.

2. Other stage 1 predicates are applied next.

a. First, stage 1 predicates that have not been picked as matching predicates
but still refer to index columns are applied to the index. This is called index

screening. In general, DB2 chooses the most restrictive predicate as the
matching predicate. All other predicates become index screening
predicates.

b. After data page access, stage 1 predicates are applied to the data.

3. Finally, the stage 2 predicates are applied on the returned data rows.

The second set of rules describes the order of predicate evaluation within each of
the above stages:

1. All equal predicates a (including column IN list, where list has only one
element).

2. All range predicates and predicates of the form column IS NOT NULL

3. All other predicate types are evaluated.

After both sets of rules are applied, predicates are evaluated in the order in which
they appear in the query. Because you specify that order, you have some control
over the order of evaluation.

Summary of Predicate Processing
Table 80 on page 5-211 lists many of the simple predicates and tells whether
those predicates are indexable or stage 1. The following terms are used:

� non subq means a noncorrelated subquery.

� cor subq means a correlated subquery.

� op is any of the operators >, >=, <, <=, ¬>, ¬<.

� value is a constant, host variable, or special register.

� pattern is any character string that does not start with the special characters for
percent (%) or underscore (_).

� char is any character string that does not include the special characters for
percent (%) or underscore (_).

� expression is any expression that contains arithmetic operators, scalar
functions, column functions, concatenation operators, columns, constants, host
variables, special registers, or date or time expressions.

| � noncol expr is a noncolumn expression, which is any expression that does not
| contain a column. That expression can contain arithmetic operators, scalar
| functions, concatenation operators, constants, host variables, special registers,
| or date or time expressions.

| An example of a noncolumn expression is

| CURRENT DATE - 5ð DAYS

5-210 Administration Guide

� predicate is a predicate of any type.

In general, if you form a compound predicate by combining several simple
predicates with OR operators, the result of the operation has the same
characteristics as the simple predicate that is evaluated latest. For example, if two
indexable predicates are combined with an OR operator, the result is indexable. If a
stage 1 predicate and a stage 2 predicate are combined with an OR operator, the
result is stage 2.

Table 80. Predicate Types and Processing Table 80. Predicate Types and Processing

|
| Predicate Type
| Index-
| able?
| Stage
| 1?| Notes

|
| Predicate Type
| Index-
| able?
| Stage
| 1?| Notes

| COL = value| Y| Y| # COL=(non subq)# Y# Y# 13

| COL = noncol expr| Y| Y| 9, 11,
| 12

COL = ANY (non subq) N N

COL = ALL (non subq) N N
COL IS NULL Y Y # COL op (non subq)# Y# Y# 13

| COL op value| Y| Y|
COL op ANY (non subq) Y Y

COL op noncol expr Y Y 9, 11
COL op ALL (non subq) Y Y

COL BETWEEN value1
 AND value2

Y Y
COL <> (non subq) N Y

| COL <> ANY (non subq)| N| N|
COL BETWEEN noncol expr1
 AND noncol expr2

Y Y 9, 11
| COL <> ALL (non subq)| N| N|

COL IN (non subq)# Y# Y# | value BETWEEN COL1
| AND COL2
| N| N|

COL NOT IN (non subq) N N
COL BETWEEN COL1
 AND COL2

N N 10 COL = (cor subq) N N 5

COL = ANY (cor subq) N N
COL BETWEEN expression1
 AND expression2

N N 7
COL = ALL (cor subq) N N

COL op (cor subq) N N 5COL LIKE 'pattern' Y Y 6

COL op ANY (cor subq) N N COL IN (list) Y Y

COL op ALL (cor subq) N N COL <> value N Y 8

COL <> (cor subq) N N 5| COL <> noncol expr| N| Y| 8, 11

COL <> ANY (cor subq) N N COL IS NOT NULL N Y

COL <> ALL (cor subq) N N COL NOT BETWEEN value1
 AND value2

N Y

COL IN (cor subq) N N
| COL NOT BETWEEN noncol
| expr1
| AND noncol expr2

| N| Y| 11 COL NOT IN (cor subq) N N

| EXISTS (subq)| N| N|

NOT EXISTS (subq) N N | value NOT BETWEEN
| COL1 AND COL2
| N| N|

COL = expression N N 7

COL NOT IN (list) N Y expression = value N N

COL NOT LIKE ' char' N Y 6 expression <> value N N

COL LIKE '%char' N Y 1, 6 expression op value N N

COL LIKE '_char' N Y 1, 6 expression op (subquery) N N

COL LIKE host variable Y Y 2, 6

| T1.COL = T2.COL| Y| Y| 14

T1.COL op T2.COL Y Y 3

T1.COL <> T2.COL N Y 3

| T1.COL1 = T1.COL2| N| N| 4

T1.COL1 op T1.COL2 N N 4

T1.COL1 <> T1.COL2 N N 4

 Chapter 5-8. Tuning Your Queries 5-211

Notes to Table 80:

1. Indexable only if an ESCAPE character is specified and used in the LIKE
predicate. For example, COL LIKE '+%char' ESCAPE '+' is indexable.

2. Indexable only if the pattern in the host variable is an indexable constant (for
example, host variable='char%').

3. Within each statement, the columns are of the same type. Examples of different
column types include:

� Different data types, such as INTEGER and DECIMAL
� Different column lengths, such as CHAR(5) and CHAR(20)
� Different precisions, such as DECIMAL(7,3) and DECIMAL(7,4).

| The following are considered to be columns of the same type:

| � Columns of the same data type but different subtypes.

| � Columns of the same data type, but different nullability attributes. (For
| example, one column accepts nulls but the other does not.)

4. If both COL1 and COL2 are from the same table, access through an index on
either one is not considered for these predicates. However, the following query
is an exception:

SELECT \ FROM T1 A, T1 B WHERE A.C1 = B.C2;

By using correlation names, the query treats one table as if it were two
separate tables. Therefore, indexes on columns C1 and C2 are considered for
access.

5. If the subquery has already been evaluated for a given correlation value, then
the subquery might not have to be reevaluated.

6. Not indexable or stage 1 if a field procedure exists on that column.

7. Under any of the following circumstances, the predicate is stage 1 and
indexable:

� COL is of type INTEGER or SMALLINT, and expression is of the form:

integer-constant1 arithmetic-operator integer-constant2

� COL is of type DATE, TIME, or TIMESTAMP, and:

– expression is of any of these forms:

datetime-scalar-function(character-constant)
datetime-scalar-function(character-constant) + labeled-duration
datetime-scalar-function(character-constant) - labeled-duration

– The type of datetime-scalar-function(character-constant) matches the
type of COL.

– The numeric part of labeled-duration is an integer.

 – character-constant is:

- Greater than 7 characters long for the DATE scalar function; for
example, '1995-11-30'.

- Greater than 14 characters long for the TIMESTAMP scalar
function; for example, '1995-11-30-08.00.00'.

- Any length for the TIME scalar function.

5-212 Administration Guide

8. The processing for WHERE NOT COL = value is like that for WHERE COL <>
value, and so on.

| 9. If noncol expr, noncol expr1, or noncol expr2 is a noncolumn expression of one
| of these forms, then the predicate is not indexable:

| � noncol expr + 0
| � noncol expr - 0
| � noncol expr * 1
| � noncol expr / 1
| � noncol expr CONCAT empty string

10. COL, COL1, and COL2 can be the same column or different columns. The
columns can be in the same table or different tables.

| 11. To ensure that the predicate is indexable and stage 1, make the data type and
| length of the column and the data type and length of the result of the
| noncolumn expression the same. For example, if the predicate is:

| COL op scalar function

| and the scalar function is HEX, SUBSTR, DIGITS, CHAR, or CONCAT, then
| the type and length of the result of the scalar function and the type and length
| of the column must be the same for the predicate to be indexable and stage 1.

12. Under these circumstances, the predicate is stage 2:

� noncol expr is a case expression.

� non col expr is the product or the quotient of two noncolumn expressions,
that product or quotient is an integer value, and COL is a FLOAT or a
DECIMAL column.

13. Not indexable and not stage 1 if COL is not null and the noncorrelated
subquery SELECT clause entry can be null.

14. If the columns are numeric columns, they must have the same data type,
length, and precision to be stage 1 and indexable. For character columns, the
columns can be of different types and lengths. For example, predicates with the
following column types and lengths are stage 1 and indexable:

� CHAR(5) and CHAR(20)
� VARCHAR(5) and CHAR(5)
� VARCHAR(5) and CHAR(20)

Examples of Predicate Properties
Assume that predicate P1 and P2 are simple, stage 1, indexable predicates:

P1 AND P2 is a compound, stage 1, indexable predicate.
P1 OR P2 is a compound, stage 1 predicate, not indexable except by a union
of RID lists from two indexes.

The following examples of predicates illustrate the general rules shown in Table 80
on page 5-211. In each case, assume that there is an index on columns
(C1,C2,C3,C4) of the table and that 0 is the lowest value in each column.

� WHERE C1=5 AND C2=7

Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

� WHERE C1=5 AND C2>7

 Chapter 5-8. Tuning Your Queries 5-213

Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

� WHERE C1>5 AND C2=7

Both predicates are stage 1, but only the first matches the index. A matching
index scan could be used with C1 as a matching column.

� WHERE C1=5 OR C2=7

Both predicates are stage 1 but not Boolean terms. The compound is not
indexable except by a union of RID lists from two indexes and cannot be
considered for matching index access.

� WHERE C1=5 OR C2<>7

The first predicate is indexable and stage 1, and the second predicate is stage
1 but not indexable. The compound predicate is stage 1.

� WHERE C1>5 OR C2=7

Both predicates are stage 1 but not Boolean terms. The compound is not
indexable except by a union of RID lists from two indexes and cannot be
considered for matching index access.

� WHERE C1 IN (subquery) AND C2=C1

Both predicates are stage 2 and not indexable. The index is not considered for
matching index access, and both predicates are evaluated at stage 2.

� WHERE C1=5 AND C2=7 AND (C3 + 5) IN (7,8)

The first two predicates only are stage 1 and indexable. The index is
considered for matching index access, and all rows satisfying those two
predicates are passed to stage 2 to evaluate the third predicate.

� WHERE C1=5 OR C2=7 OR (C3 + 5) IN (7,8)

The third predicate is stage 2. The compound predicate is stage 2 and all three
predicates are evaluated at stage 2. The simple predicates are not Boolean
terms and the compound predicate is not indexable.

� WHERE C1=5 OR (C2=7 AND C3=C4)

The third predicate is stage 2. The two compound predicates (C2=7 AND
C3=C4) and (C1=5 OR (C2=7 AND C3=C4)) are stage 2. All predicates are
evaluated at stage 2.

� WHERE (C1>5 OR C2=7) AND C3 = C4

The compound predicate (C1>5 OR C2=7) is not indexable but stage 1; it is
evaluated at stage 1. The simple predicate C3=C4 is not stage1; so the index
is not considered for matching index access. Rows that satisfy the compound
predicate (C1>5 OR C2=7) are passed to stage 2 for evaluation of the
predicate C3=C4.

� WHERE T1.COL1=T2.COL1 AND T3.COL2=T4.COL2

Assume that T1.COL1 and T2.COL1 have the same data types, and T3.COL2
and T4.COL2 have the same data types. If T1.COL1 and T2.COL1 have
different nullability attributes, but T3.COL2 and T4.COL2 have the same
nullability attributes, and DB2 chooses a merge scan join to evaluate the
compound predicate, the compound predicate is stage 1. However, if T3.COL2
and T4.COL2 also have different nullability attributes, and DB2 chooses a
merge scan join, the compound predicate is not stage 1.

5-214 Administration Guide

Predicate Filter Factors
Definition: The filter factor of a predicate is a number between 0 and 1 that
estimates the proportion of rows in a table for which the predicate is true. Those
rows are said to qualify by that predicate.

Example: Suppose that DB2 can determine that column C1 of table T contains
only five distinct values: A, D, Q, W and X. In the absence of other information,
DB2 estimates that one-fifth of the rows have the value D in column C1. Then the
predicate C1='D' has the filter factor 0.2 for table T.

How DB2 Uses Filter Factors: Filter factors affect the choice of access paths by
estimating the number of rows qualified by a set of predicates.

For simple predicates, the filter factor is a function of three variables:

1. The literal value in the predicate; for instance, 'D' in the previous example.

2. The operator in the predicate; for instance, '=' in the previous example and '<>'
in the negation of the predicate.

3. Statistics on the column in the predicate. In the previous example, those
include the information that column T.C1 contains only five values.

Recommendation: You control the first two of those variables when you write a
predicate. Your understanding of DB2's use of filter factors should help you write
more efficient predicates.

Values of the third variable, statistics on the column, are kept in the DB2 catalog.
You can update many of those values, either by running the utility RUNSTATS or
by executing UPDATE for a catalog table. For information about using RUNSTATS,
see “Using RUNSTATS to Monitor and Update Statistics” on page 5-249. For
information on updating the catalog manually, see “Updating Catalog Statistics” on
page 5-240.

If you intend to update the catalog with statistics of your own choice, you should
understand how DB2 uses:

� “Default Filter Factors for Simple Predicates”
� “Filter Factors for Uniform Distributions” on page 5-216
� “Interpolation Formulas” on page 5-216
� “Filter Factors for All Distributions” on page 5-218

Default Filter Factors for Simple Predicates
Table 81 lists default filter factors for different types of predicates. DB2 uses those
values when no other statistics exist.

Example: The default filter factor for the predicate C1 = 'D' is 1/25 (0.04). If D is
actually one of only five distinct values in column C1, the default probably does not
lead to an optimal access path.

Table 81 (Page 1 of 2). DB2 Default Filter Factors by Predicate Type

Predicate Type Filter Factor

Col = literal 1/25

Col IS NULL 1/25

 Chapter 5-8. Tuning Your Queries 5-215

Table 81 (Page 2 of 2). DB2 Default Filter Factors by Predicate Type

Predicate Type Filter Factor

Col IN (literal list) (number of literals)/25

Col Op literal 1/3

Col LIKE literal 1/10

Col BETWEEN literal1 and literal2 1/10

Note:

Op is one of these operators: <, <=, >, >=.
Literal is any constant value that is known at bind time.

Filter Factors for Uniform Distributions
DB2 uses the filter factors in Table 82 if:

| � There is a positive value in column COLCARDF of catalog table
| SYSIBM.SYSCOLUMNS for the column “Col.”

� There are no additional statistics for “Col” in SYSIBM.SYSCOLDIST.

Example: If D is one of only five values in column C1, using RUNSTATS will put
the value 5 in column COLCARDF of SYSCOLUMNS. If there are no additional
statistics available, the filter factor for the predicate C1 = 'D' is 1/5 (0.2).

Filter Factors for Other Predicate Types: The examples selected in Table 81 on
page 5-215 and Table 82 represent only the most common types of predicates. If
P1 is a predicate and F is its filter factor, then the filter factor of the predicate NOT
P1 is (1 - F). But, filter factor calculation is dependent on many things, so a specific
filter factor cannot be given for all predicate types.

Table 82. DB2 Uniform Filter Factors by Predicate Type

Predicate Type Filter Factor

Col = literal 1/COLCARDF

Col IS NULL 1/COLCARDF

Col IN (literal list) number of literals /COLCARDF

Col Op1 literal interpolation formula

Col Op2 literal interpolation formula

Col LIKE literal interpolation formula

Col BETWEEN literal1 and literal2 interpolation formula

Note:

Op1 is < or <=, and the literal is not a host variable.
Op2 is > or >=, and the literal is not a host variable.
Literal is any constant value that is known at bind time.

 Interpolation Formulas
Definition: For a predicate that uses a range of values, DB2 calculates the filter
factor by an interpolation formula. The formula is based on an estimate of the ratio
of the number of values in the range to the number of values in the entire column
of the table.

5-216 Administration Guide

The Formulas: The formulas that follow are rough estimates, subject to further
modification by DB2. They apply to a predicate of the form col op. literal. The
value of (Total Entries) in each formula is estimated from the values in columns
HIGH2KEY and LOW2KEY in catalog table SYSIBM.SYSCOLUMNS for column
col: Total Entries = (HIGH2KEY value - LOW2KEY value).

� For the operators < and <=, where the literal is not a host variable:

(Literal value - LOW2KEY value) / (Total Entries)

� For the operators > and >=, where the literal is not a host variable:

(HIGH2KEY value - Literal value) / (Total Entries)

� For LIKE or BETWEEN:

(High literal value - Low literal value) / (Total Entries)

Example: For column C2 in a predicate, suppose that the value of HIGH2KEY is
1400 and the value of LOW2KEY is 200. For C2, DB2 calculates (Total Entries) =
1200.

For the predicate C1 BETWEEN 8ðð AND 11ðð, DB2 calculates the filter factor F as:

F = (11ðð - 8ðð)/12ðð = 1/4 = ð.25

Interpolation for LIKE: DB2 treats a LIKE predicate as a type of BETWEEN
predicate. Two values that bound the range qualified by the predicate are
generated from the literal string in the predicate. Only the leading characters found
before the escape character ('%' or '_') are used to generate the bounds. So if the
escape character is the first character of the string, the filter factor is estimated as
1, and the predicate is estimated to reject no rows.

Defaults for Interpolation: DB2 might not interpolate in some cases; instead, it
can use a default filter factor. Defaults for interpolation are:

� Relevant only for ranges, including LIKE and BETWEEN predicates

� Used only when interpolation is not adequate

� Based on the value of COLCARDF

� Used whether uniform or additional distribution statistics exist on the column if
either of the following conditions is met:

– The predicate does not contain constants, host variables, or special
registers.

– COLCARDF < 4.

Table 83 on page 5-218 shows interpolation defaults for the operators <, <=, >, >=
and for LIKE and BETWEEN.

 Chapter 5-8. Tuning Your Queries 5-217

Table 83. Default Filter Factors for Interpolation

COLCARDF Factor for Op
Factor for LIKE
or BETWEEN

≥100,000,000 1/10,000 3/100,000

≥10,000,000 1/3,000 1/10,000

≥1,000,000 1/1,000 3/10,000

≥100,000 1/300 1/1,000

≥10,000 1/100 3/1,000

≥1,000 1/30 1/100

≥100 1/10 3/100

≥0 1/3 1/10

Note: Op is one of these operators: <, <=, >, >=.

Filter Factors for All Distributions
RUNSTATS can generate additional statistics for a column or set of concatenated

key columns of an index. DB2 can use that information to calculate filter factors.
DB2 collects two kinds of distribution statistics:

Frequency The percentage of rows in the table that contain a value for a
column or combination of values for concatenated columns

Cardinality The number of distinct values in concatenated columns

| When They are Used: Table 84 lists the types of predicates on which these
statistics are used.

How They are Used: Columns COLVALUE and FREQUENCYF in table
SYSCOLDIST contain distribution statistics. Regardless of the number of values in
those columns, running RUNSTATS deletes the existing values and inserts rows for

Table 84. Predicates for Which Distribution Statistics are Used

Type of Statistic

Single Column or
Concatenated
Columns Predicates

Frequency Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal

Frequency Concatenated COL=literal

Cardinality Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal
COL=host-variable
COL1=COL2

Cardinality Concatenated COL=literal
COL=:host-variable
COL1=COL2

Note: op is one of these operators: <, <=, >, >=.

5-218 Administration Guide

| the most frequent values. If you run RUNSTATS without the FREQVAL option,
| RUNSTATS inserts rows for the 10 most frequent values for the first column of the
| specified index. If you run RUNSTATS with the FREQVAL option and its two
| keywords, NUMCOLS and COUNT, RUNSTATS inserts rows for concatenated
| columns of an index. NUMCOLS specifies the number of concatenated index
| columns. COUNT specifies the number of most frequent values. See Section 2 of
| Utility Guide and Reference for more information about RUNSTATS. DB2 uses the
| frequencies in column FREQUENCYF for predicates that use the values in column
| COLVALUE and assumes that the remaining data are uniformly distributed.

Example: Filter Factor for a Single Column

Suppose that the predicate is C1 IN ('3','5') and that SYSCOLDIST contains
these values for column C1:

 COLVALUE FREQUENCYF

 '3' .ð153

 '5' .ð859

 '8' .ð627

The filter factor is .0153 + .0859 = .1012.

| Example: Filter Factor for Correlated Columns

Suppose that columns C1 and C2 are correlated and are concatenated columns of
an index. Suppose also that the predicate is C1='3' AND C2='5' and that
SYSCOLDIST contains these values for columns C1 and C2:

 COLVALUE FREQUENCYF

 '1' '1' .1176

 '2' '2' .ð588

 '3' '3' .ð588

 '3' '5' .1176

 '4' '4' .ð588

 '5' '3' .1764

 '5' '5' .3529

 '6' '6' .ð588

The filter factor is .1176.

DB2 Predicate Manipulation
In some specific cases, DB2 either modifies some predicates, or generates extra
predicates. Although these modifications are transparent to you, they have a direct
impact on the access path selection and your PLAN_TABLE results. This is
because DB2 always uses an index access path when it is cost effective.
Generating extra predicates provides more indexable predicates potentially, which
creates more chances for an efficient index access path.

Therefore, to understand your PLAN_TABLE results, you must understand how
DB2 manipulates predicates. The information in Table 80 on page 5-211 is also
helpful.

 Chapter 5-8. Tuning Your Queries 5-219

 Predicate Modifications
If an IN-list predicate has only one item in its list, the predicate becomes an EQUAL
predicate.

A set of simple, Boolean term, equal predicates on the same column that are
connected by OR predicates can be converted into an IN-list predicate. For
example: C1=5 or C1=1ð or C1=15 converts to C1 IN (5,1ð,15).

Predicates Generated Through Transitive Closure
When the set of predicates that belong to a query logically imply other predicates,
DB2 can generate additional predicates to provide more information for access path
selection.

Rules for Generating Predicates: DB2 generates predicates for transitive closure
if:

� The query has an equal type predicate: C1=C2. This could be a join predicate
or a local predicate.

� The query has another equal or range type predicate on one of the columns in
the first predicate: C1 BETWEEN 3 AND 5. This predicate cannot be a LIKE
predicate and must be a Boolean term predicate.

When these conditions are met, DB2 generates a new predicate, whether or not it
already exists in the WHERE clause. In the above case, DB2 generates the
predicate C2 BETWEEN 3 AND 5.

Extra join predicates are not generated if more than nine tables are joined in a
query.

Predicate Redundancy: A predicate is redundant if evaluation of other predicates
in the query already determines the result that the predicate provides. You can
specify redundant predicates or DB2 can generate them. DB2 does not determine
that any of your query predicates are redundant. All predicates that you code are
evaluated at execution time regardless of whether they are redundant. If DB2
generates a redundant predicate to help select access paths, that predicate is
ignored at execution.

Adding Extra Predicates: DB2 performs predicate transitive closure only on equal
and range predicates. Other types of predicates, such as IN or LIKE predicates,
might be needed in the following case:

SELECT \ FROM T1,T2

 WHERE T1.C1=T2.C1

AND T1.C1 LIKE 'A%';

In this case, add the predicate T2.C1 LIKE 'A%'.

 Column Correlation
Two columns of data, A and B of a single table, are correlated if the values in
column A do not vary independently of the values in column B.

The following is an excerpt from a large single table. Columns CITY and STATE
are highly correlated, and columns DEPTNO and SEX are entirely independent.

5-220 Administration Guide

TABLE CREWINFO

CITY STATE DEPTNO SEX EMPNO ZIPCODE

--

Fresno CA A345 F 27375 9365ð

Fresno CA J123 M 12345 9371ð

Fresno CA J123 F 93875 9365ð

Fresno CA J123 F 52325 93792

New York NY J123 M 19823 ð9ðð1

New York NY A345 M 15522 ð953ð

Miami FL B499 M 83825 33116

Miami FL A345 F 35785 34ð99

Los Angeles CA X987 M 12131 9ðð77

Los Angeles CA A345 M 38251 9ðð91

In this simple example, for every value of column CITY that equals 'FRESNO',
there is the same value in column STATE ('CA').

How to Detect Column Correlation
The first indication that column correlation is a problem is because of poor
response times when DB2 has chosen an inappropriate access path. If you suspect
two columns in a table (CITY and STATE in table CREWINFO) are correlated, then
you can issue the following SQL queries that reflect the relationships between the
columns:

SELECT COUNT (DISTINCT CITY) FROM CREWINFO; (RESULT1)
SELECT COUNT (DISTINCT STATE) FROM CREWINFO; (RESULT2)

The result of the count of each distinct column is the value of COLCARDF in the
DB2 catalog table SYSCOLUMNS. Multiply the above two values together to get a
preliminary result:

RESULT1 x RESULT2 = ANSWER1

Then issue the following SQL statement:

SELECT COUNT(\) FROM

(SELECT DISTINCT CITY,STATE

FROM CREWINFO) AS V1; (ANSWER2)

Compare the result of the above count (ANSWER2) with ANSWER1. If ANSWER2
is less than ANSWER1, then the suspected columns are correlated.

Impacts of Column Correlation
DB2 might not determine the best access path, table order, or join method when
your query uses columns that are highly correlated. Column correlation can make
the estimated cost of operations cheaper than they actually are. Column correlation
affects both single table queries and join queries.

Column Correlation on the Best Matching Columns of an Index: The following
query selects rows with females in department A345 from Fresno, California. There

| are 2 indexes defined on the table, Index 1 (CITY,STATE,ZIPCODE) and Index 2
| (DEPTNO,SEX).

Query 1

SELECT ... FROM CREWINFO WHERE

CITY = 'FRESNO' AND STATE = 'CA' (PREDICATE1)

AND DEPTNO = 'A345' AND SEX = 'F'; (PREDICATE2)

 Chapter 5-8. Tuning Your Queries 5-221

Consider the two compound predicates (labeled PREDICATE1 and PREDICATE2),
their actual filtering effects (the proportion of rows they select), and their DB2 filter
factors. Unless the proper catalog statistics are gathered, the filter factors are
calculated as if the columns of the predicate are entirely independent (not
correlated).

Table 85. Effects of Column Correlation on Matching Columns

INDEX 1 INDEX 2

Matching Predicates Predicate1
CITY=FRESNO AND STATE=CA

Predicate2
DEPTNO=A345 AND SEX=F

Matching Columns 2 2

DB2 estimate for
matching columns
(Filter Factor)

column=CITY, COLCARDF=4
Filter Factor=1/4
column=STATE, COLCARDF=3
Filter Factor=1/3

column=DEPTNO,
COLCARDF=4
Filter Factor=1/4
column=SEX, COLCARDF=2
Filter Factor=1/2

Compound Filter Factor
for matching columns

1/4 × 1/3 = 0.083 1/4 × 1/2 = 0.125

Qualified leaf pages
based on DB2 estimations

0.083 × 10 = 0.83
INDEX CHOSEN (.8 < 1.25)

0.125 × 10 = 1.25

Actual filter factor based on data
distribution

4/10 2/10

Actual number of qualified leaf pages
based on compound predicate

4/10 × 10 = 4 2/10 × 10 = 2
BETTER INDEX CHOICE
(2 < 4)

DB2 chooses an index that returns the fewest rows, partly determined by the
smallest filter factor of the matching columns. Assume that filter factor is the only
influence on the access path. The combined filtering of columns CITY and STATE
seems very good, whereas the matching columns for the second index do not
seem to filter as much. Based on those calculations, DB2 chooses Index 1 as an
access path for Query 1.

The problem is that the filtering of columns CITY and STATE should not look good.
Column STATE does almost no filtering. Since columns DEPTNO and SEX do a
better job of filtering out rows, DB2 should favor Index 2 over Index 1.

Column Correlation on Index Screening Columns of an Index: Correlation
might also occur on nonmatching index columns, used for index screening. See
“Nonmatching Index Scan (ACCESSTYPE=I and MATCHCOLS=0)” on page 5-279
for more information. Index screening predicates help reduce the number of data
rows that qualify while scanning the index. However, if the index screening
predicates are correlated, they do not filter as many data rows as their filter factors
suggest. To illustrate this, use the same Query 1 (see page 5-221) with the
following indexes on table CREWINFO (page 5-220):

Index 3 (EMPNO,CITY,STATE)

Index 4 (EMPNO,DEPTNO,SEX)

In the case of Index 3, because the columns CITY and STATE of Predicate 1 are
correlated, the index access is not improved as much as estimated by the
screening predicates and therefore Index 4 might be a better choice. (Note that
index screening also occurs for indexes with matching columns greater than zero.)

5-222 Administration Guide

Multiple Table Joins: In Query 2, an additional table is added to the original query
(see Query 1 on page 5-221) to show the impact of column correlation on join
queries.

TABLE DEPTINFO

CITY STATE MANAGER DEPT DEPTNAME

--

FRESNO CA SMITH J123 ADMIN

LOS ANGELES CA JONES A345 LEGAL

Query 2
SELECT ... FROM CREWINFO T1,DEPTINFO T2

WHERE T1.CITY = 'FRESNO' AND T1.STATE='CA' (PREDICATE 1)

AND T1.DEPTNO = T2.DEPT AND T2.DEPTNAME = 'LEGAL';

The order that tables are accessed in a join statement affects performance. The
estimated combined filtering of Predicate1 is lower than its actual filtering. So table
CREWINFO might look better as the first table accessed than it should.

Also, due to the smaller estimated size for table CREWINFO, a nested loop join
might be chosen for the join method. But, if many rows are selected from table
CREWINFO because Predicate1 does not filter as many rows as estimated, then
another join method might be better.

| What to Do About Column Correlation
| If column correlation is causing DB2 to choose an inappropriate access path, try
| one of these techniques to alter the access path:

| � If the correlated columns are concatenated key columns of an index, run the
| utility RUNSTATS with options KEYCARD and FREQVAL. This is the preferred
| technique.

| � Update the catalog statistics manually.

| � Use SQL that forces access through a particular index.

| The last two techniques are discussed in “Special Techniques to Influence Access
| Path Selection” on page 5-233.

| The utility RUNSTATS collects the statistics DB2 needs to make proper choices
| about queries. With RUNSTATS, you can collect statistics on the concatenated key
| columns of an index and the number of distinct values for those concatenated
| columns. This gives DB2 accurate information to calculate the filter factor for the
| query.

| For example, RUNSTATS collects statistics that benefit queries like this:

| SELECT \ FROM T1

| WHERE C1 = 'a' AND C2 = 'b' AND C3 = 'c' ;

| where:

| � The first three index keys are used (MATCHCOLS = 3).
| � An index exists on C1, C2, C3, C4, C5.
| � Some or all of the columns in the index are correlated in some way.

| See “Use RUNSTATS to Keep Data Access Statistics Current” on page 5-37 for
| information on using RUNSTATS to influence access path selection. See “Updating

 Chapter 5-8. Tuning Your Queries 5-223

| Catalog Statistics” on page 5-240 for information on updating catalog statistics
| manually.

Using Host Variables Efficiently
Host Variables Require Default Filter Factors: When you bind a static SQL
statement that contains host variables, DB2 uses a default filter factor to determine
the best access path for the SQL statement. For more information on filter factors,
including default values, see “Predicate Filter Factors” on page 5-215.

DB2 often chooses an access path that performs well for a query with several host
variables. However, in a new release or after maintenance has been applied, DB2
might choose a new access path that does not perform as well as the old access
path. In most cases, the change in access paths is due to the default filter factors,
which might lead DB2 to optimize the query in a different way.

| There are two ways to change the access path for a query that contains host
| variables:

| � Bind the package or plan that contains the query with the option
| REOPT(VARS).

| � Rewrite the query.

| Using REOPT(VARS) to Change the Access Path at Run Time
| Specify the bind option REOPT(VARS) when you want DB2 to determine access
| paths at both bind time and run time for statements that contain one or more of the
| following:

| � host variables
| � parameter markers
| � special registers

| At run time, DB2 uses the values in those variables to determine the access paths.

| Because there is a performance cost to reoptimizing the access path at run time,
| you should use the bind option REOPT(VARS) only on packages or plans
| containing statements that perform poorly.

| Be careful when using REOPT(VARS) for a statement executed in a loop; the
| reoptimization occurs with every execution of that statement. However, if you are
| using a cursor, you can put the FETCH statements in a loop because the
| reoptimization only occurs when the cursor is opened.

| To use REOPT(VARS) most efficiently, first determine which SQL statements in
| your applications perform poorly. Separate the code containing those statements
| into units that you bind into packages with the option REOPT(VARS). Bind the rest
| of the code into packages using NOREOPT(VARS). Then bind the plan with the
| option NOREOPT(VARS). Only statements in the packages bound with
| REOPT(VARS) are candidates for reoptimization at run time.

| To determine which queries in plans and packages bound with REOPT(VARS) will
| be reoptimized at run time, execute the following SELECT statements:

5-224 Administration Guide

| SELECT PLNAME, STMTNO, SEQNO, TEXT

| FROM SYSIBM.SYSSTMT

| WHERE STATUS IN ('B','F','G','J')

| ORDER BY PLNAME, STMTNO, SEQNO;

| SELECT COLLID, NAME, VERSION, STMTNO, SEQNO, STMT

| FROM SYSIBM.SYSPACKSTMT

| WHERE STATUS IN ('B','F','G','J')

| ORDER BY COLLID, NAME, VERSION, STMTNO, SEQNO;

| If you specify the bind option VALIDATE(RUN), and a statement in the plan or
| package is not bound successfully, that statement is incrementally bound at run
| time. If you also specify the bind option REOPT(VARS), DB2 reoptimizes the
| access path during the incremental bind.

| To determine which plans and packages have statements that will be incrementally
| bound, execute the following SELECT statements:

| SELECT DISTINCT NAME

| FROM SYSIBM.SYSSTMT

| WHERE STATUS = 'F' OR STATUS = 'H';

| SELECT DISTINCT COLLID, NAME, VERSION

| FROM SYSIBM.SYSPACKSTMT

| WHERE STATUS = 'F' OR STATUS = 'H';

Rewriting Queries to Influence Access Path Selection
The examples that follow identify potential performance problems and offer

| suggestions for tuning the queries. However, before you rewrite any query, you
| should consider whether the bind option REOPT(VARS) can solve your access
| path problems. See “Using REOPT(VARS) to Change the Access Path at Run

Time” on page 5-224 for more information on REOPT(VARS).

Example 1: An Equal Predicate

An equal predicate has a default filter factor of 1/COLCARDF. The actual filter
factor might be quite different.

Query:

SELECT \ FROM DSN851ð.EMP

WHERE SEX = :HV1;

Assumptions: Because there are only two different values in column SEX, 'M' and
'F', the value COLCARDF for SEX is 2. If the numbers of male and female
employees are not equal, the actual filter factor of 1/2 is larger or smaller than the
default, depending on whether :HV1 is set to 'M' or 'F'.

Recommendation: One of these two actions can improve the access path:

| � Bind the package or plan that contains the query with the option
| REOPT(VARS). This action causes DB2 to reoptimize the query at run time,
| using the input values you provide.

� Write predicates to influence DB2's selection of an access path, based on your
knowledge of actual filter factors. For example, you can break the query above
into three different queries, two of which use constants. DB2 can then
determine the exact filter factor for most cases when it binds the plan.

 Chapter 5-8. Tuning Your Queries 5-225

SELECT (HV1);

 WHEN ('M')

 DO;

EXEC SQL SELECT \ FROM DSN851ð.EMP

WHERE SEX = 'M';

 END;

 WHEN ('F')

 DO;

EXEC SQL SELECT \ FROM DSN851ð.EMP

WHERE SEX = 'F';

 END;

 OTHERWISE

 DO:

EXEC SQL SELECT \ FROM DSN851ð.EMP

WHERE SEX = :HV1;

 END;

END;

Example 2: Known Ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:

SELECT \ FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2

AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that:

� The application always provides a narrow range on C1 and a wide range on
C2.

� The desired access path is through index T1X1.

Recommendation: If DB2 does not choose T1X1, rewrite the query as follows, so
that DB2 does not choose index T1X2 on C2:

SELECT \ FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2

AND (C2 BETWEEN :HV3 AND :HV4 OR ð=1);

Example 3: Variable Ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:

SELECT \ FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2

AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that the application provides both narrow and wide
ranges on C1 and C2. Hence, default filter factors do not allow DB2 to choose the
best access path in all cases. For example, a small range on C1 favors index T1X1
on C1, a small range on C2 favors index T1X2 on C2, and wide ranges on both C1
and C2 favor a table space scan.

5-226 Administration Guide

Recommendation: If DB2 does not choose the best access path, try either of the
following changes to your application:

� Use a dynamic SQL statement and embed the ranges of C1 and C2 in the
statement. With access to the actual range values, DB2 can estimate the actual
filter factors for the query. Preparing the statement each time it is executed
requires an extra step, but it can be worthwhile if the query accesses a large
amount of data.

� Include some simple logic to check the ranges of C1 and C2, and then execute
one of these static SQL statements, based on the ranges of C1 and C2:

SELECT \ FROM T1 WHERE C1 BETWEEN :HV1 AND :HV2

AND (C2 BETWEEN :HV3 AND :HV4 OR ð=1);

SELECT \ FROM T1 WHERE C2 BETWEEN :HV3 AND :HV4

AND (C1 BETWEEN :HV1 AND :HV2 OR ð=1);

SELECT \ FROM T1 WHERE (C1 BETWEEN :HV1 AND :HV2 OR ð=1)

AND (C2 BETWEEN :HV3 AND :HV4 OR ð=1);

Example 4: ORDER BY

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:

SELECT \ FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2

ORDER BY C2;

In this example, DB2 could choose one of the following actions:

� Scan index T1X1 and then sort the results by column C2

| � Scan the table space in which T1 resides and then sort the results by column
| C2

� Scan index T1X2 and then apply the predicate to each row of data, thereby
avoiding the sort

| Which choice is best depends on the following factors:

� The number of rows that satisfy the range predicate
� Which index has the higher cluster ratio

If the actual number of rows that satisfy the range predicate is significantly different
from the estimate, DB2 might not choose the best access path.

Assumptions: You disagree with DB2's choice.

Recommendation: In your application, use a dynamic SQL statement and embed
the range of C1 in the statement. That allows DB2 to use the actual filter factor
rather than the default, but requires extra processing for the PREPARE statement.

Example 5: A Join Operation

Tables A, B, and C each have indexes on columns C1, C2, C3, and C4.

Query:

 Chapter 5-8. Tuning Your Queries 5-227

SELECT \ FROM A, B, C

WHERE A.C1 = B.C1

AND A.C2 = C.C2

AND A.C2 BETWEEN :HV1 AND :HV2

AND A.C3 BETWEEN :HV3 AND :HV4

AND A.C4 < :HV5

AND B.C2 BETWEEN :HV6 AND :HV7

AND B.C3 < :HV8

AND C.C2 < :HV9;

Assumptions: The actual filter factors on table A are much larger than the default
factors. Hence, DB2 underestimates the number of rows selected from table A and
wrongly chooses that as the first table in the join.

Recommendations: You can:

� Reduce the estimated size of Table A by adding predicates

� Disfavor any index on the join column by making the join predicate on table A
nonindexable

The query below illustrates the second of those choices.

SELECT \ FROM T1 A, T1 B, T1 C

WHERE (A.C1 = B.C1 OR ð=1)

AND A.C2 = C.C2

AND A.C2 BETWEEN :HV1 AND :HV2

AND A.C3 BETWEEN :HV3 AND :HV4

AND A.C4 < :HV5

AND B.C2 BETWEEN :HV6 AND :HV7

AND B.C3 < :HV8

AND C.C2 < :HV9;

The result of making the join predicate between A and B a nonindexable predicate
(which cannot be used in single index access) disfavors the use of the index on
column C1. This, in turn, might lead DB2 to access table A or B first. Or, it might
lead DB2 to change the access type of table A or B, thereby influencing the join
sequence of the other tables.

Writing Efficient Subqueries
Definitions: A subquery is a SELECT statement within the WHERE or HAVING
clause of another SQL statement.

Decision Needed: You can often write two or more SQL statements that achieve
identical results, particularly if you use subqueries. The statements have different
access paths, however, and probably perform differently.

Topic Overview: The topics that follow describe different methods to achieve the
results intended by a subquery and tell what DB2 does for each method. The
information should help you estimate what method performs best for your query.

The first two methods use different types of subqueries:

� “Correlated Subqueries” on page 5-229
� “Noncorrelated Subqueries” on page 5-230

5-228 Administration Guide

A subquery can sometimes be transformed into a join operation. Sometimes DB2
does that to improve the access path, and sometimes you can get better results by
doing it yourself. The third method is:

� “Subquery Transformation into Join” on page 5-231

Finally, for a comparison of the three methods as applied to a single task, see:

� “Subquery Tuning” on page 5-232

 Correlated Subqueries
Definition: A correlated subquery refers to at least one column of the outer query.

Any predicate that contains a correlated subquery is a stage 2 predicate.

Example: In the following query, the correlation name, X, illustrates the subquery's
reference to the outer query block.

SELECT \ FROM DSN851ð.EMP X

WHERE JOB = 'DESIGNER'

AND EXISTS (SELECT 1

 FROM DSN851ð.PROJ

WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = 'MA21ðð');

What DB2 Does: A correlated subquery is evaluated for each qualified row of the
outer query that is referred to. In executing the example, DB2:

1. Reads a row from table EMP where JOB='DESIGNER'.

2. Searches for the value of WORKDEPT from that row, in a table stored in
memory.

The in-memory table saves executions of the subquery. If the subquery has
already been executed with the value of WORKDEPT, the result of the
subquery is in the table and DB2 does not execute it again for the current row.
Instead, DB2 can skip to step 5.

3. Executes the subquery, if the value of WORKDEPT is not in memory. That
requires searching the PROJ table to check whether there is any project, where
MAJPROJ is 'MA2100', for which the current WORKDEPT is responsible.

4. Stores the value of WORKDEPT and the result of the subquery in memory.

5. Returns the values of the current row of EMP to the application.

DB2 repeats this whole process for each qualified row of the EMP table.

Notes on the In-Memory Table: The in-memory table is applicable if the operator
of the predicate that contains the subquery is one of the following:

< <= > >= = <> EXISTS NOT EXISTS

The table is not used, however, if:

� There are more than 16 correlated columns in the subquery

� The sum of the lengths of the correlated columns is more than 256 bytes

� There is a unique index on a subset of the correlated columns of a table from
the outer query

 Chapter 5-8. Tuning Your Queries 5-229

The in-memory table is a wrap-around table and does not guarantee saving the
results of all possible duplicated executions of the subquery.

 Noncorrelated Subqueries
Definition: A noncorrelated subquery makes no reference to outer queries.

Example:

SELECT \ FROM DSN851ð.EMP

 WHERE JOB = 'DESIGNER'

AND WORKDEPT IN (SELECT DEPTNO

 FROM DSN851ð.PROJ

WHERE MAJPROJ = 'MA21ðð');

What DB2 Does: A noncorrelated subquery is executed once when the cursor is
opened for the query. What DB2 does to process it depends on whether it returns a
single value or more than one value. The query in the example above can return
more than one value.

 Single-value Subqueries
When the subquery is contained in a predicate with a simple operator, the subquery
is required to return 1 or 0 rows. The simple operator can be one of the following:

< <= > >= = <> EXISTS NOT EXISTS

The following noncorrelated subquery returns a single value:

 SELECT \

 FROM DSN851ð.EMP

 WHERE JOB = 'DESIGNER'

AND WORKDEPT <= (SELECT MAX(DEPTNO)

 FROM DSN851ð.PROJ);

What DB2 Does: When the cursor is opened, the subquery executes. If it returns
more than one row, DB2 issues an error. The predicate that contains the subquery
is treated like a simple predicate with a constant specified, for example,
WORKDEPT <= 'value'.

Stage 1 and Stage 2 Processing: The rules for determining whether a predicate
with a noncorrelated subquery that returns a single value is stage 1 or stage 2 are
generally the same as for the same predicate with a single variable. However, the
predicate is stage 2 if:

� The value returned by the subquery is nullable and the column of the outer
query is not nullable.

� The data type of the subquery is higher than that of the column of the outer
query. For example, the following predicate is stage 2:

WHERE SMALLINT_COL < (SELECT INTEGER_COL FROM ...

 Multiple-Value Subqueries
A subquery can return more than one value if the operator is one of the following:

op ANY op ALL op SOME IN EXISTS

where op is any of the operators >, >=, <, or <=.

5-230 Administration Guide

What DB2 Does: If possible, DB2 reduces a subquery that returns more than one
row to one that returns only a single row. That occurs when there is a range
comparison along with ANY, ALL, or SOME. The following query is an example:

SELECT \ FROM DSN851ð.EMP

WHERE JOB = 'DESIGNER'

AND WORKDEPT <= ANY (SELECT DEPTNO

 FROM DSN851ð.PROJ

WHERE MAJPROJ = 'MA21ðð');

DB2 calculates the maximum value for DEPTNO from table DSN8510.PROJ and
removes the ANY keyword from the query. After this transformation, the subquery
is treated like a single-value subquery.

That transformation can be made with a maximum value if the range operator is:

� > or >= with the quantifier ALL
� < or <= with the quantifier ANY or SOME

The transformation can be made with a minimum value if the range operator is:

� < or <= with the quantifier ALL
� > or >= with the quantifier ANY or SOME

The resulting predicate is determined to be stage 1 or stage 2 by the same rules as
for the same predicate with a single-valued subquery.

When a Subquery Is Sorted: A noncorrelated subquery is sorted in descending
order when the comparison operator is IN, NOT IN, = ANY, <> ANY, = ALL, or <>
ALL. The sort enhances the predicate evaluation, reducing the amount of scanning
on the subquery result. When the value of the subquery becomes smaller or equal
to the expression on the left side, the scanning can be stopped and the predicate
can be determined to be true or false.

When the subquery result is a character data type and the left side of the predicate
is a datetime data type, then the result is placed in a work file without sorting. For
some noncorrelated subqueries using the above comparison operators, DB2 can
more accurately pinpoint an entry point into the work file, thus further reducing the
amount of scanning that is done.

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is sorted, see “When Are Column Functions Evaluated?” on
page 5-275.

Subquery Transformation into Join
A subquery can be transformed into a join between the result table of the subquery
and the result table of the outer query, provided that the transformation does not
introduce redundancy.

DB2 makes that transformation only if:

� The subquery appears in a WHERE clause.

� The subquery does not contain GROUP BY, HAVING, or column functions.

� The subquery has only one table in the FROM clause.

� The subquery select list has only one column, guaranteed by a unique index to
have unique values.

 Chapter 5-8. Tuning Your Queries 5-231

� The transformation results in 15 or fewer tables in the join.

� The comparison operator of the predicate containing the subquery is IN, =
ANY, or = SOME.

� For a noncorrelated subquery, the left side of the predicate is a single column
with the same data type and length as the subquery's column. (For a correlated
subquery, the left side can be any expression.)

Example: The following subquery could be transformed into a join:

SELECT \ FROM EMP

WHERE DEPTNO IN (SELECT DEPTNO FROM DEPT

WHERE LOCATION IN ('SAN JOSE', 'SAN FRANCISCO')

AND DIVISION = 'MARKETING');

If there is a department in the marketing division which has branches in both San
Jose and San Francisco, the result of the above SQL statement is not the same as
if a join were done. The join makes each employee in this department appear twice
because it matches once for the department of location San Jose and again of
location San Francisco, although it is the same department. Therefore, it is clear
that to transform a subquery into a join, the uniqueness of the subquery select list
must be guaranteed. For this example, a unique index on any of the following sets
of columns would guarantee uniqueness:

 � (DEPTNO)
 � (DIVISION, DEPTNO)
 � (DEPTNO, DIVISION).

The resultant query is:

SELECT EMP.\ FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO AND

DEPT.LOCATION IN ('SAN JOSE', 'SAN FRANCISCO') AND

DEPT.DIVISION = 'MARKETING';

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is transformed into a join operation, see “Is a Subquery Transformed
into a Join? (QBLOCKNO Value)” on page 5-274.

 Subquery Tuning
The following three queries all retrieve the same rows. All three retrieve data about
all designers in departments that are responsible for projects that are part of major
project MA2100. These three queries show that there are several ways to retrieve a
desired result.

Query A: A join of two tables

SELECT DSN851ð.EMP.\ FROM DSN851ð.EMP, DSN851ð.PROJ

WHERE JOB = 'DESIGNER'

AND WORKDEPT = DEPTNO

AND MAJPROJ = 'MA21ðð';

Query B: A correlated subquery

5-232 Administration Guide

SELECT \ FROM DSN851ð.EMP X

WHERE JOB = 'DESIGNER'

AND EXISTS (SELECT 1 FROM DSN851ð.PROJ

WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = 'MA21ðð');

Query C: A noncorrelated subquery

SELECT \ FROM DSN851ð.EMP

WHERE JOB = 'DESIGNER'

AND WORKDEPT IN (SELECT DEPTNO FROM DSN851ð.PROJ

WHERE MAJPROJ = 'MA21ðð');

If you need columns from both tables EMP and PROJ in the output, you must use
a join.

PROJ might contain duplicate values of DEPTNO in the subquery, so that an
equivalent join cannot be written.

In general, query A might be the one that performs best. However, if there is no
index on DEPTNO in table PROJ, then query C might perform best. If you decide
that a join cannot be used and there is an available index on DEPTNO in table
PROJ, then query B might perform best.

When looking at a problem subquery, see if the query can be rewritten into another
format or see if there is an index that you can create to help improve the
performance of the subquery.

It is also important to know the sequence of evaluation, for the different subquery
predicates as well as for all other predicates in the query. If the subquery predicate
is costly, perhaps another predicate could be evaluated before that predicate so
that the rows would be rejected before even evaluating the problem subquery
predicate.

Special Techniques to Influence Access Path Selection
 ATTENTION

This section describes tactics for rewriting queries and modifying catalog
statistics to influence DB2's method of selecting access paths. In a later release
of DB2, the selection method might change, causing your changes to degrade
performance. Save the old catalog statistics or SQL before you consider making
any changes to control the choice of access path. Before and after you make
any changes, take performance measurements. When you migrate to a new
release, examine the performance again. Be prepared to back out any changes
that have degraded performance.

This section contains the following information about determining and changing
access paths:

� Obtaining Information About Access Paths
� “Using OPTIMIZE FOR n ROWS” on page 5-234
� “Reducing the Number of Matching Columns” on page 5-236
� “Adding Extra Local Predicates” on page 5-239
� “Changing an Inner Join into an Outer Join” on page 5-240

 Chapter 5-8. Tuning Your Queries 5-233

� “Updating Catalog Statistics” on page 5-240

Obtaining Information About Access Paths
| There are several ways to obtain information about DB2 access paths:

� Use Visual Explain

The DB2 Visual Explain tool, which is invoked from a workstation client, can be
used to display and analyze information on access paths chosen by DB2. The
tool provides you with an easy-to-use interface to the PLAN_TABLE output and
allows you to invoke EXPLAIN for dynamic SQL statements. You can also
access the catalog statistics for certain referenced objects of an access path. In
addition, the tool allows you to archive EXPLAIN output from previous SQL
statements to analyze changes in your SQL environment. See DB2 Visual
Explain online help for more information.

� Run DB2 Performance Monitor accounting reports

Another way to track performance is with the DB2 Performance Monitor
accounting reports. The accounting report, short layout, ordered by
PLANNAME, lists the primary performance figures. Check the plans that
contain SQL statements whose access paths you tried to influence. If the
elapsed time, TCB time, or number of getpage requests increases sharply
without a corresponding increase in the SQL activity, then there could be a
problem. You can use DB2 PM Online Monitor to track events after your
changes have been implemented, providing immediate feedback on the effects
of your changes.

� Specify the bind option EXPLAIN

You can also use the EXPLAIN option when you bind or rebind a plan or
package. Compare the new plan or package for the statement to the old one. If
the new one has a table space scan or a nonmatching index space scan, but
the old one did not, the problem is probably the statement. Investigate any
changes in access path in the new plan or package; they could represent
performance improvements or degradations. If neither the accounting report
ordered by PLANNAME or PACKAGE nor the EXPLAIN statement suggest
corrective action, use the DB2 PM SQL activity reports for additional
information. For more information on using EXPLAIN, see “Obtaining
Information from EXPLAIN” on page 5-262.

Using OPTIMIZE FOR n ROWS
When an application executes a SELECT statement, DB2 assumes that the
application will retrieve all the qualifying rows. This assumption is most appropriate

for batch environments. However, for interactive SQL applications, such as SPUFI,
it is common for a query to define a very large potential result set but retrieve only
the first few rows. The access path that DB2 chooses might not be optimal for
those interactive applications.

This section discusses the use of OPTIMIZE FOR n ROWS to affect the
performance of interactive SQL applications. Unless otherwise noted, this
information pertains to local applications. For more information on using OPTIMIZE
FOR n ROWS in distributed applications, see Section 4 of Application
Programming and SQL Guide.

5-234 Administration Guide

What OPTIMIZE FOR n ROWS Does: The OPTIMIZE FOR n ROWS clause lets
an application declare its intent to do either of these things:

� Retrieve only a subset of the result set
� Give priority to the retrieval of the first few rows

DB2 uses the OPTIMIZE FOR n ROWS clause to choose access paths that
minimize the response time for retrieving the first few rows. For distributed queries,
the value of n determines the number of rows that DB2 sends to the client on each
DRDA network transmission. See Section 4 of Application Programming and SQL
Guide for more information on using OPTIMIZE FOR n ROWS in the distributed
environment.

Use OPTIMIZE FOR 1 ROW to Avoid Sorts: You can influence the access path
most by using OPTIMIZE FOR 1 ROW. OPTIMIZE FOR 1 ROW tells DB2 to

select an access path that returns the first qualifying row quickly. This means that
DB2 avoids any access path that involves a sort. If you specify a value for n that is
anything but 1, DB2 chooses an access path based on cost, and you won't
necessarily avoid sorts.

How to Specify OPTIMIZE FOR n ROWS for a CLI Application: For a Call Level
Interface (CLI) application, you can specify that DB2 uses OPTIMIZE FOR n
ROWS for all queries. To do that, specify the keyword OPTIMIZEFORNROWS in
the initialization file. For more information, see Section 4 of Call Level Interface
Guide and Reference.

How Many Rows You Can Retrieve with OPTIMIZE FOR n ROWS: The
OPTIMIZE FOR n ROWS clause does not prevent you from retrieving all the
qualifying rows. However, if you use OPTIMIZE FOR n ROWS, the total elapsed
time to retrieve all the qualifying rows might be significantly greater than if DB2 had
optimized for the entire result set.

When OPTIMIZE FOR n ROWS is Effective: OPTIMIZE FOR n ROWS is effective
only on queries that can be performed incrementally. If the query causes DB2 to
gather the whole result set before returning the first row, DB2 ignores the
OPTIMIZE FOR n ROWS clause, as in the following situations:

� The query uses SELECT DISTINCT or a set function distinct, such as
COUNT(DISTINCT C1).

� Either GROUP BY or ORDER BY is used, and there is no index that can give
the ordering necessary.

� There is a column function and no GROUP BY clause.

� The query uses UNION.

Example: Suppose you query the employee table regularly to determine the
employees with the highest salaries. You might use a query like this:

SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

 FROM EMPLOYEE

ORDER BY SALARY DESC;

An index is defined on column EMPNO, so employee records are ordered by
EMPNO. If you have also defined a descending index on column SALARY, that
index is likely to be very poorly clustered. To avoid many random, synchronous I/O
operations, DB2 would most likely use a table space scan, then sort the rows on

 Chapter 5-8. Tuning Your Queries 5-235

SALARY. This technique can cause a delay before the first qualifying rows can be
returned to the application. If you add the OPTIMIZE FOR n ROWS clause to the
statement, as shown below:

SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

 FROM EMPLOYEE

ORDER BY SALARY DESC

OPTIMIZE FOR 2ð ROWS;

DB2 would most likely use the SALARY index directly because you have indicated
that you will probably retrieve the salaries of only the 20 most highly paid
employees. This choice avoids a costly sort operation.

Effects of Using OPTIMIZE FOR n ROWS:

� The join method could change. Nested loop join is the most likely choice,
because it has low overhead cost and appears to be more efficient if you want
to retrieve only one row.

� An index that matches the ORDER BY clause is more likely to be picked. This
is because no sort would be needed for the ORDER BY.

� List prefetch is less likely to be picked.

� Sequential prefetch is less likely to be requested by DB2 because it infers that
you only want to see a small number of rows.

� In a join query, the table with the columns in the ORDER BY clause is likely to
be picked as the outer table if there is an index on that outer table that gives
the ordering needed for the ORDER BY clause.

Recommendation: For both local and distributed queries, specify OPTIMIZE FOR
n ROWS only in applications that frequently read only a small percentage of the
total rows in a query result set. For example, an application might read only enough
rows to fill the end user's terminal screen. In cases like this, the application might
read the remaining part of the query result set only rarely. For an application like
this, OPTIMIZE FOR n ROWS can result in better performance by:

� Causing DB2 to favor SQL access paths that deliver the first n rows as fast as
possible

� Limiting the number of rows that flow across the network on any given
transmission

To influence the access path most, specify OPTIMIZE for 1 ROW. This value does
not have a detrimental effect on distributed queries. To increase the number of
rows returned in a single network transmission, you can specify a larger value for n,
such as the number of rows that fit on a terminal screen, without negatively
influencing the access path.

Reducing the Number of Matching Columns
Discourage the use of a poorer performing index by reducing the index's matching
predicate on its leading column. Reducing the number of best matching columns for
a statement has varying effects depending on how the predicate is altered.

Changing an Equal Predicate to a BETWEEN Predicate: Use the original query
on table CREWINFO:

5-236 Administration Guide

Old Query 1
SELECT ... FROM CREWINFO WHERE

CITY = 'FRESNO' AND STATE = 'CA'

AND DEPTNO = 'A345' AND SEX = 'F';

with Index 1 (CITY,STATE) and Index 2 (DEPTNO,SEX) but with the following
change:

New Query 1
SELECT ... FROM CREWINFO WHERE

CITY BETWEEN 'FRESNO' AND 'FRESNO' (MODIFIED PREDICATE)
AND STATE = 'CA'

AND DEPTNO = 'A345' AND SEX = 'F'; (PREDICATE2)

The original Query 1 had a MATCHCOLS value of 2 because there were matching
predicates on the two leading columns of the index. The new Query 1 has a
MATCHCOLS value of 1 because of the BETWEEN predicate on the leading index
column of Index 1. Index 2, which still has MATCHCOLS of 2, is now the optimal
choice.

DB2 might not choose Index 2 if there are statistics for table CREWINFO. If
statistics exist, the choice of index depends on the filter factors of these two
predicates:

CITY BETWEEN 'FRESNO' AND 'FRESNO'

DEPTNO = 'A345' AND SEX = 'F'

Discouraging Use of a Particular Index: You can discourage a particular index
from being used by reducing the number of MATCHCOLS it has. Consider the
example in Figure 128 on page 5-239, where the index that DB2 picks is less than
optimal.

DB2 picks IX2 to access the data, but IX1 would be roughly 10 times quicker. The
| problem is that 50% of all parts from center number 3 are still in Center 3; they
| have not moved. Assume that there are no statistics on the correlated columns in
| catalog table SYSCOLDIST. Therefore, DB2 assumes that the parts from center

number 3 are evenly distributed among the 50 centers.

You can get the desired access path by changing the query. To discourage the use
of IX2 for this particular query, you can change the third predicate to be
nonindexable.

SELECT \ FROM PART_HISTORY

 WHERE

PART_TYPE = 'BB'

AND W_FROM = 3

AND (W_NOW = 3 + ð) <-- PREDICATE IS MADE NONINDEXABLE

Now index I2 is not picked, because it has only one match column. The preferred
index, I1, is picked. The third predicate is checked as a stage 2 predicate, which is
more expensive than a stage 1 predicate. However, if most of the filtering is already
done by the first and second predicates, having the third predicate as a stage 2
predicate should not degrade performance significantly.

This technique for discouraging index usage can be used in the same way to
discourage the use of multiple index access. Changing a join predicate into a stage
2 predicate would prevent it from being used during a join.

 Chapter 5-8. Tuning Your Queries 5-237

| There are many ways to make a predicate stage 2. The recommended way is to
| make the predicate a non-Boolean term by adding an OR predicate as follows:

Adding this OR predicate does not affect the result of the query. It is valid for use
with columns of all data types, and causes only a small amount of overhead.

| The preferred technique for improving the access path when a table has correlated
| columns is to generate catalog statistics on the correlated columns. You can do
| that either by running RUNSTATS or by updating catalog table SYSCOLDIST or
| SYSCOLDISTSTATS manually.

Stage 1 Stage 2

T1.C1=T2.C2 (T1.C1=T2.C2 OR ð=1)

T1.C1=5 (T1.C1=5 OR ð=1)

5-238 Administration Guide

CREATE TABLE PART_HISTORY (

PART_TYPE CHAR(2), IDENTIFIES THE PART TYPE

PART_SUFFIX CHAR(1ð), IDENTIFIES THE PART

W_NOW INTEGER, TELLS WHERE THE PART IS

W_FROM INTEGER, TELLS WHERE THE PART CAME FROM

DEVIATIONS INTEGER, TELLS IF ANYTHING SPECIAL WITH THIS PART

 COMMENTS CHAR(254),

 DESCRIPTION CHAR(254),

 DATE1 DATE,

 DATE2 DATE,

 DATE3 DATE);

CREATE UNIQUE INDEX IX1 ON PART_HISTORY

 (PART_TYPE,PART_SUFFIX,W_FROM,W_NOW);

CREATE UNIQUE INDEX IX2 ON PART_HISTORY

 (W_FROM,W_NOW,DATE1);

┌────────────────────────────────┬───┐

│ Table statistics │ Index statistics IX1 IX2 │

├────────────────────────────────┼───┤

│ CARDF 1ðð,ððð │ FIRSTKEYCARDF 1ððð 5ð │

│ NPAGES 1ð,ððð │ FULLKEYCARDF 1ðð,ððð 1ðð,ððð │

│ │ CLUSTERRATIO 99% 99% │

│ │ NLEAF 3ððð 2ððð │

│ │ NLEVELS 3 3 │

├────────────────────────────────┴───┤

│ columnn cardinality HIGH2KEY LOW2KEY │

│ -------- ----------- -------- ------- │

│ Part_type 1ððð 'ZZ' 'AA' │

│ w_now 5ð 1ððð 1 │

│ w_from 5ð 1ððð 1 │

└──┘

Q1:

SELECT \ FROM PART_HISTORY -- SELECT ALL PARTS

WHERE PART_TYPE = 'BB' P1 -- THAT ARE 'BB' TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3

AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

┌──┐

│ Filter factor of these predicates. │

│ P1 = 1/1ððð= .ðð1 │

│ P2 = 1/5ð = .ð2 │

│ P3 = 1/5ð = .ð2 │

├───────────────────────────────────┬──┤

│ ESTIMATED VALUES │ WHAT REALLY HAPPENS │

│ filter data │ filter data │

│ index matchcols factor rows │ index matchcols factor rows │

│ ix2 2 .ð2\.ð2 4ð │ ix2 2 .ð2\.5ð 1ððð │

│ ix1 1 .ðð1 1ðð │ ix1 1 .ðð1 1ðð │

└───────────────────────────────────┴──┘

Figure 128. Reducing the Number of MATCHCOLS

Adding Extra Local Predicates
Adding local predicates on columns that have no other predicates generally has the
following effect on join queries.

1. The table with the extra predicates is more likely to be picked as the outer
table. That is because DB2 estimates that fewer rows qualify from the table if
there are more predicates. It is generally more efficient to have the table with
the fewest qualifying rows as the outer table.

 Chapter 5-8. Tuning Your Queries 5-239

2. The join method is more likely to be nested loop join. This is because nested
loop join is more efficient for small amounts of data, and more predicates make
DB2 estimate that less data is to be retrieved.

The proper type of predicate to add is WHERE TX.CX=TX.CX.

This does not change the result of the query. It is valid for a column of any data
type, and causes a minimal amount of overhead. However, DB2 uses only the best
filter factor for any particular column. So, if TX.CX already has another equal
predicate on it, adding this extra predicate has no effect. You should add the extra
local predicate to a column that is not involved in a predicate already. If index-only
access is possible for a table, it is generally not a good idea to add a predicate that
would prevent index-only access.

Changing an Inner Join into an Outer Join
You can discourage the use of hybrid joins by making your inner join statement into
an outer join statement, then using a WHERE clause to eliminate the unneeded
rows. An outer join does not use the hybrid join method. You can also make use of
outer join to force a particular join sequence.

For example, suppose you want to obtain the results of the following inner join
operation on the PARTS and PRODUCTS tables:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

DB2 creates a more efficient access path if the PARTS table is the outer table in
the join operation. To make the PARTS table the outer table, use a left outer join
operation. Include a WHERE clause in the query to remove the extraneous rows:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS LEFT OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#

WHERE PRODUCTS.PROD# IS NOT NULL;

For more information on outer joins, see Section 2 of Application Programming and
SQL Guide.

Updating Catalog Statistics
If you have the proper authority, it is possible to influence access path selection by
using an SQL UPDATE or INSERT statement to change statistical values in the
DB2 catalog. However, this is not generally recommended except as a last resort.
While updating catalog statistics can help a certain query, other queries can be
affected adversely. Also, the UPDATE statements must be repeated after
RUNSTATS resets the catalog values. You should be very careful if you attempt to
update statistics. For a list of catalog statistics that you can update, see Table 86
on page 5-244.

The example shown in Figure 128 on page 5-239, involving this query:

SELECT \ FROM PART_HISTORY -- SELECT ALL PARTS

WHERE PART_TYPE = 'BB' P1 -- THAT ARE 'BB' TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3

AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

5-240 Administration Guide

is a problem with data correlation. DB2 does not know that 50% of the parts that
were made in Center 3 are still in Center 3. It was circumvented by making a
predicate nonindexable. But suppose there are hundreds of users writing queries
similar to that query. It would not be possible to have all users change their
queries. In this type of situation, the best solution is to change the catalog statistics.

| For the query in Figure 128 on page 5-239, where the correlated columns are
| concatenated key columns of an index, you can update the catalog statistics in one
| of two ways:

| � Run the RUNSTATS utility, and request statistics on the correlated columns
| W_FROM and W_NOW. This is the preferred method. See “Using RUNSTATS
| to Monitor and Update Statistics” on page 5-249 and Section 2 of Utility Guide
| and Referencefor more information.

| � Update the catalog statistics manually.

| A good catalog table to update is SYSIBM.SYSCOLDIST, which gives information
| about the first key column or concatenated columns of an index key. Assume that
| because columns W_NOW and W_FROM are correlated, there are only 100
| distinct values for the combination of the two columns, rather than 2500 (50 for
| W_FROM * 50 for W_NOW). Insert a row like this to indicate the new cardinality:

| INSERT INTO SYSIBM.SYSCOLDIST

| (FREQUENCY, FREQUENCYF, IBMREQD,

| TBOWNER, TBNAME, NAME, COLVALUE,

| TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

| VALUES(ð, -1, 'N',

| 'USRTðð1','PART_HISTORY','W_FROM',' ',

| 'C',1ðð,X'ððð4ððð3',2);

Because W_FROM and W_NOW are concatenated key columns of an index, you
can also put this information in SYSCOLDIST using the RUNSTATS utility. See
Utility Guide and Reference for more information.

You can also tell DB2 about the frequency of a certain combination of column
values by updating SYSIBM.SYSCOLDIST. For example, you can indicate that 1%
of the rows in PART_HISTORY contain the values 3 for W_FROM and 3 for
W_NOW by inserting this row into SYSCOLDIST:

INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, STATSTIME, IBMREQD,

TBOWNER, TBNAME, NAME, COLVALUE,

TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

 VALUES(ð, .ð1ðð, '1996-12-ð1-12.ðð.ðð.ðððððð','N',

 'USRTðð1','PART_HISTORY','W_FROM',X'ðð8ðððððð3ðð8ðððððð3',

 'F',-1,X'ððð4ððð3',2);

Please remember that updating catalog statistics might cause extreme
performance problems if the statistics are not updated correctly. Monitor
performance, and be prepared to reset the statistics to their original values if
performance problems arise.

 Chapter 5-8. Tuning Your Queries 5-241

Using a System Parameter to Enhance Outer Join Performance
DB2 provides a system parameter that enables several performance enhancements
for outer join operations. Those enhancements include:

� Optimization of view merging and table expression merging
� Increasing the number of predicates that can be evaluated before join
operations
� Optimization of transitive closure across join operations

The system parameter is named OJPERFEH and is in macro DSN6SPRM. To
enable the performance enhancements, add OJPERFEH=YES to the DSN6SPRM
invocation in step DSNTIZA of installation job DSNTIJUZ. Then rerun DSNTIJUZ
and restart DB2.

5-242 Administration Guide

Chapter 5-9. Maintaining Statistics in the Catalog

Statistics stored in the DB2 catalog help DB2 determine the access paths selected
for your SQL statements.

� Table 86 on page 5-244 lists the tables and columns in the catalog that
contain those statistics.

� “Statistics Used for Access Path Selection” describes some of those columns in
more detail.

You can update some of the values in those columns by executing UPDATE
statements, and the DB2 utility RUNSTATS can update all of the values.

� “Using RUNSTATS to Monitor and Update Statistics” on page 5-249 has some
advice about running RUNSTATS.

� “Updating the Catalog” on page 5-250 warns of items to watch for if you make
your own updates.

� “Querying the Catalog for Statistics” on page 5-252 tells how to find out what
values are in place.

The statistics have other uses as well as access path selection. For those, see

� “Improving Index and Table Space Access” on page 5-253, and

� “Modeling Your Production System” on page 5-258.

Other Considerations for Access Path Selection: Two other pieces of
information that influence access path selection are not stored in the DB2 catalog:
the size of the buffer pool and the model type of the central processor (CP).

Access path selection uses buffer pool statistics for several calculations. One is
the estimation of the maximum amount of the RID storage pool that can be used.
Access path selection also considers the central processor model. These two
factors can change your queries' access paths from one system to another, even if
all the catalog statistics are identical. You should keep this in mind when migrating
from a test system to a production system, or when modeling a new application.

Mixed central processor models in a data sharing group can also affect access path
selection. For more information on data sharing, see Data Sharing: Planning and
Administration .

Statistics Used for Access Path Selection
Table 86 lists the statistics in the DB2 catalog that are used for access path
selection, the values that trigger the use of a default value, and the corresponding
defaults.

Information in the catalog tables SYSTABLES and SYSTABLESPACE tells how
much data is in your table and how many pages hold data. Information in
SYSINDEXES lets you compare the available indexes on a table to determine
which one is the most efficient for a query. SYSCOLUMNS and SYSCOLDIST
provide information to estimate filter factors for predicates.

 Copyright IBM Corp. 1982, 1997 5-243

| Table 86 (Page 1 of 4). Catalog Data Used for Access Path Selection or Collected by RUNSTATS. Some Version
| 4 columns are no longer used in Version 5 and are not shown here. They are updated by RUNSTATS but are only
| used in case of fallback.

Column Name
Set by
RUNSTATS?

User Can
Update?

Used for
Access
Paths? Description

In every table updated by RUNSTATS:

STATSTIME Yes Yes No If updated most recently by RUNSTATS, the
date and time of that update; not updatable in
SYSINDEXPART and SYSTABLEPART. Used
for access path selection for SYSCOLDIST if
duplicate column values exist for the same
column (by user insertion).

SYSIBM.SYSCOLDIST

COLVALUE Yes Yes Yes Frequently occurring value in a non-uniform
distribution

| FREQUENCYF| Yes| Yes| Yes| A number which, multiplied by 100, gives the
| percentage of rows that contain the value of
| COLVALUE. For example, 1 means 100% of the
| rows contain the value. .15 indicates that 15% of
| the rows contain the value.

| TYPE| Yes| Yes| Yes| The type of statistics gathered, either cardinality
| (C) or frequent value (F).

| CARDF| Yes| Yes| Yes| The number of distinct values for the column
| group. -1 if TYPE is F.

| COLGROUPCOLNO| Yes| Yes| Yes| The set of columns associated with the statistics.
| Contains an empty string if NUMCOLUMNS = 1.

| NUMCOLUMNS| Yes| Yes| Yes| The number of columns associated with the
| statistics. The default value is 1.

SYSIBM.SYSCOLDISTSTATS: contains statistics by partition.

COLVALUE Yes Yes No Frequently occurring value in a non-uniform
distribution.

| FREQUENCYF| Yes| Yes| No| A number which, multiplied by 100, gives the
| percentage of rows that contain the value of
| COLVALUE. For example, 1 means 100% of the
| rows contain the value. .15 indicates that 15% of
| the rows contain the value.

| TYPE| Yes| Yes| No| The type of statistics gathered, either cardinality
| (C) or frequent value (F).

| CARDF| Yes| Yes| No| The number of distinct values for the column
| group. -1 if TYPE is F.

| COLGROUPCOLNO| Yes| Yes| No| The set of columns associated with the statistics.

| NUMCOLUMNS| Yes| Yes| No| The number of columns associated with the
| statistics. The default value is 1.

SYSIBM.SYSCOLSTATS: contains statistics by partition.

| COLCARD Yes Yes No The number of distinct values in the partition. Do
not update this column manually without first
updating COLCARDDATA to a value of length 0.

5-244 Administration Guide

| Table 86 (Page 2 of 4). Catalog Data Used for Access Path Selection or Collected by RUNSTATS. Some Version
| 4 columns are no longer used in Version 5 and are not shown here. They are updated by RUNSTATS but are only
| used in case of fallback.

Column Name
Set by
RUNSTATS?

User Can
Update?

Used for
Access
Paths? Description

| COLCARDDATA| Yes| Yes| No| The internal representation of the estimate of the
| number of distinct values in the partition. A value
| appears here only if RUNSTATS TABLESPACE
| is run on the partition. Otherwise, this column
| contains a string of length 0, indicating that the
| actual value is in COLCARD.

HIGHKEY Yes Yes No First 8 bytes of the highest value of the column
within the partition

| HIGH2KEY Yes Yes No First 8 bytes of the second highest value of the
column within the partition

| LOWKEY| Yes| Yes| No| First 8 bytes of the lowest value of the column
| within the partition

| LOW2KEY| Yes| Yes| No| First 8 bytes of the second lowest value of the
| column within the partition

SYSIBM.SYSCOLUMNS

| COLCARDF| Yes| Yes| Yes| Estimated number of distinct values in the
| column; -1 to trigger DB2's use of the default
| value (25)

| HIGH2KEY Yes Yes Yes First 8 bytes of the second highest value in this
column

| LOW2KEY Yes Yes Yes First 8 bytes of the second lowest value in this
column

SYSIBM.SYSINDEXES

CLUSTERED Yes No No Whether the table is actually clustered by the
index

CLUSTERING No No Yes Whether the index was created using CLUSTER

CLUSTERRATIO Yes Yes Yes Percentage of rows that are in clustering order

| FIRSTKEYCARDF| Yes| Yes| Yes| Number of distinct values of the first key column,
| or an estimate if updated while collecting
| statistics on a single partition; -1 to trigger DB2's
| use of the default value (25)

| FULLKEYCARDF| Yes| Yes| Yes| Number of distinct values of the full key; -1 to
| trigger DB2's use of the default value (25)

NLEAF Yes Yes Yes Number of active leaf pages in the index; -1 to
trigger DB2's use of the default value
(SYSTABLES.CARD/300)

NLEVELS Yes Yes Yes Number of levels in the index tree; -1 to trigger
DB2's use of the default value (2)

SYSIBM.SYSINDEXPART: contains statistics for space utilization.

| CARDF| Yes| No| No| Number of rows referenced by the index or
| partition

| FAROFFPOSF| Yes| No| No| Number of referenced rows far from the optimal
| position because of an insert into a full page

 Chapter 5-9. Maintaining Statistics in the Catalog 5-245

| Table 86 (Page 3 of 4). Catalog Data Used for Access Path Selection or Collected by RUNSTATS. Some Version
| 4 columns are no longer used in Version 5 and are not shown here. They are updated by RUNSTATS but are only
| used in case of fallback.

Column Name
Set by
RUNSTATS?

User Can
Update?

Used for
Access
Paths? Description

LEAFDIST Yes No No 100 times the number of pages between
successive leaf pages. See “How LEAFDIST is
Calculated” on page 5-256 for more information.

| LIMITKEY| No| No| Yes| The limit key of the partition in an internal format.
| 0 if the index is not partitioned.

| NEAROFFPOSF| Yes| No| No| Number of referenced rows near but not at the
| optimial position because of an insert into a full
| page

PQTY# Yes# No# No# The primary space allocation in 4K blocks for the
dataset

SPACE# Yes# No# No# The number of kilobytes of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a
pageset contains multiple pieces)

SQTY# Yes# No# No# The secondary space allocation in 4K blocks for
the dataset

SYSIBM.SYSINDEXSTATS: contains statistics by partition.

CLUSTERRATIO Yes Yes No Percentage of rows that are in clustering order

FIRSTKEYCARD Yes Yes No Number of distinct values of the first key column,
or an esimate if updated while collecting
statistics on a single partition

FULLKEYCARD Yes Yes No Number of distinct values of the full key

NLEAF Yes Yes No Number of leaf pages in the index

NLEVELS Yes Yes No Number of levels in the index tree

KEYCOUNT Yes Yes No Number of rows in the partition

SYSIBM.SYSTABLEPART: contains statistics for space utilization.

CARD Yes No No Total number of rows in the table space or
partition

FARINDREF Yes No No Number of rows relocated far from their original
page

NEARINDREF Yes No No Number of rows relocated near their original
page

PAGESAVE Yes No No Percentage of pages, times 100, saved in the
table space or partition as a result of using data
compression

PERCACTIVE Yes No No Percentage of space occupied by active rows,
containing actual data from active tables

PERCDROP Yes No No For nonsegmented table spaces, the percentage
of space occupied by rows of data from dropped
tables; for segmented table spaces, 0

PQTY# Yes# No# No# The primary space allocation in 4K blocks for the
dataset

5-246 Administration Guide

| Table 86 (Page 4 of 4). Catalog Data Used for Access Path Selection or Collected by RUNSTATS. Some Version
| 4 columns are no longer used in Version 5 and are not shown here. They are updated by RUNSTATS but are only
| used in case of fallback.

Column Name
Set by
RUNSTATS?

User Can
Update?

Used for
Access
Paths? Description

SPACE# Yes# No# No# The number of kilobytes of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a
pageset contains multiple pieces)

SQTY# Yes# No# No# The secondary space allocation in 4K blocks for
the dataset

SYSIBM.SYSTABLES:

| CARDF| Yes| Yes| Yes| Total number of rows in the table; -1 to trigger
| DB2's use of the default value (10 000)

EDPROC No No Yes Nonblank value if an edit exit routine is used

NPAGES Yes Yes Yes Total number of pages on which rows of this
table appear; -1 to trigger DB2's use of the
default value (CEILING(1 + CARD/20))

PCTPAGES Yes Yes No For nonsegmented table spaces, percentage of
total pages of the table space that contain rows
of the table; for segmented table spaces, the
percentage of total pages in the set of segments
assigned to the table that contain rows of the
table

PCTROWCOMP Yes Yes Yes Percentage of rows compressed within the total
number of active rows in the table

SYSIBM.SYSTABLESPACE:

NACTIVE Yes Yes Yes Number of active pages in the table space; the
number of pages touched if a cursor is used to
scan the entire file; 0 to trigger DB2's use of the
default value (CEILING(1 + CARD/20))

SYSIBM.SYSTABSTATS: contains statistics by partition

CARD Yes Yes Yes Total number of rows in the partition; -1 to trigger
DB2's use of the default value (10 000)

NPAGES Yes Yes Yes Total number of pages on which rows of the
partition appear; -1 to trigger DB2's use of the
default value (CEILING(1 + CARD/20))

PCTPAGES Yes Yes No Percentage of total active pages in the partition
that contain rows of the table

NACTIVE Yes Yes No Number of active pages in the partition

PCTROWCOMP Yes Yes No Percentage of rows compressed within the total
number of active rows inthe partition; -1 to
trigger DB2's use of the default value (0)

 Chapter 5-9. Maintaining Statistics in the Catalog 5-247

Filter Factors and Catalog Statistics
The catalog tables SYSIBM.SYSCOLUMNS and SYSIBM.SYSCOLDIST are the
main source of statistics for calculating predicate filter factors. The following
columns are particularly important:

� SYSCOLUMNS.COLCARDF indicates whether statistics exist for a column or
not. A value of '-1' results in the use of default statistics. A positive value is an
estimate of the number of distinct values in the column.

The value of COLCARDF generated by RUNSTATS TABLESPACE is an
estimate determined by a sampling method. If you know a more accurate
number for COLCARDF, you can supply it by updating the catalog. If the
column is the first column of an index, the value generated by RUNSTATS
INDEX is exact.

| � Columns in SYSCOLDIST contain statistics about distributions and correlated
| key values. Specifying the KEYCARD option of RUNSTATS allows you to
| collect key cardinality statistics between FIRSTKEYCARDF and
| FULLKEYCARDF (which are collected by default). Specifying the FREQVAL
| option of RUNSTATS allows you to specify how many key columns to
| concatenate and how many frequently occurring values to collect. By default,
| the 10 most frequently occurring values on the first column of each index are
| collected. For more information, see Section 2 of Utility Guide and Reference.

� LOW2KEY and HIGH2KEY columns are limited to storing the first 8 bytes of a
key value. If the column is nullable, values are limited to 7 bytes.

� The closer SYSINDEXES.CLUSTERRATIO is to 100%, the more closely the
ordering of the index entries matches the physical ordering of the table rows.
Refer to Figure 130 on page 5-254 to see how an index with a high cluster
ratio differs from an index with a low cluster ratio.

Statistics for Partitioned Table Spaces
For a partitioned table space, DB2 keeps statistics separately by partition and also
collectively for the entire table space. If you run RUNSTATS for separate partitions
of a table space, DB2 uses the results to update the aggregate statistics for the
entire table space.

The list below names the catalog tables that contain statistics by partition and, for
each one, the table that contains the corresponding aggregate statistics.

Statistics by partition are in: Aggregate statistics are in:
SYSTABSTATS SYSTABLES
SYSINDEXSTATS SYSINDEXES
SYSCOLSTATS SYSCOLUMNS
SYSCOLDISTSTATS SYSCOLDIST

Recommendation: Before you run RUNSTATS on separate partitions, run
RUNSTATS once on the entire object to generate statistics for all partitions and
also aggregate statistics for the entire table space.

5-248 Administration Guide

Using RUNSTATS to Monitor and Update Statistics
The DB2 utility RUNSTATS can update the DB2 catalog tables with statistical
information about data and indexes. For a list of the catalog columns for which
RUNSTATS collects statistics, see Table 86 on page 5-244. For instructions on
using RUNSTATS, see Section 2 of Utility Guide and Reference.

You can choose which DB2 catalog tables you want RUNSTATS to update: those
used to optimize the performance of SQL statements or those used by database
administrators to assess the status of a particular table space or index. You can
monitor these catalog statistics in conjunction with EXPLAIN to make sure that your
queries access data efficiently.

Why Use RUNSTATS: Maintaining your statistics is a critical part of performance
monitoring and tuning. DB2 must have correct statistical information to make the
best choices for the access path.

When to Use RUNSTATS: To ensure that information in the catalog is current,
invoke RUNSTATS in situations in which the data or index changes significantly,
such as in the following situations:

� After loading a table, and before binding application plans and packages that
access the table.

� After creating an index with the CREATE INDEX statement, in order to update
catalog statistics related to the new index. (Before an application can use a
new index, you must rebind the application plan or package.)

� After reorganizing a table space or an index. Then rebind plans or packages for
which performance remains a concern. See “Is it Necessary to Rebind after
Running RUNSTATS?” on page 5-258 for more information.

� After heavy insert, update, and delete activity. Again, rebind plans or packages
for which performance is critical.

� Periodically. By comparing the output of one execution with previous
executions, you can detect a performance problem early.

� Against the DB2 catalog to provide DB2 with more accurate information for
access path selection of users' catalog queries.

To obtain information from the catalog tables, use a SELECT statement, or specify
REPORT YES when you invoke RUNSTATS. When used routinely, RUNSTATS
provides data about table spaces and indexes over a period of time. for example,
when you create or drop tables or indexes or insert many rows, run RUNSTATS to
update the catalog. Then rebind your applications so that DB2 can choose the most
efficient access paths.

Collecting Statistics by Partition: You can use RUNSTATS to collect statistics for
a single data partition or index partition. This allows you to avoid the cost of running
RUNSTATS against unchanged partitions. When you run RUNSTATS by partition,
DB2 uses the results to update the aggregate statistics for the entire table space or
index. DB2 cannot calculate the aggregate statistics unless statistics exist for each
separate partition. Before you run RUNSTATS on separate partitions, run
RUNSTATS once on the entire object to generate statistics for all partitions and
also aggregate statistics for the entire table space.

 Chapter 5-9. Maintaining Statistics in the Catalog 5-249

| Recommendation for Performance: To reduce the processor consumption of
| RUNSTATS when collecting column statistics, use the SAMPLE option. The
| SAMPLE option allows you to specify a percentage of the rows to examine for
| column statistics. Consider the effect on access path selection before choosing
| sampling. There is likely to be little or no effect on access path selection if the
| access path has a matching index scan and very few predicates. However, if the
| access path joins of many tables with matching index scans and many predicates,
| the amount of sampling can affect the access path. In these cases, start with 25
| percent sampling and see if there is a negative effect on access path selection. If
| not, you could consider reducing the sampling percent until you find the percent
| that gives you the best reduction in processing time without negatively affecting the
| access path.

Updating the Catalog
If you have sufficient privileges, you can change all of the values listed in Table 86
on page 5-244 by executing SQL UPDATE statements.

Running RUNSTATS after UPDATE: If you change values in the catalog and later
run RUNSTATS to update those values, your changes are lost.

Recommendation: Keep track of the changes you make and of the plans or
packages that have an access path change due to changed statistics.

Correlations in the Catalog
| There are relationships among certain columns of the catalog tables:

� Columns within table SYSCOLUMNS
� Columns in the tables SYSCOLUMNS and SYSINDEXES
� Columns in the tables SYSCOLUMNS and SYSCOLDIST

| � Columns in the tables SYSCOLUMNS, SYSCOLDIST, and SYSINDEXES
| � Columns with table space statistics and columns for partition-level statistics, as
| described in “Statistics for Partitioned Table Spaces” on page 5-248.

If you plan to update some values, keep in mind the following correlations:

� COLCARDF and FIRSTKEYCARDF. For a column that is the first column of an
index, those two values are equal. If the index has only that one column, the
two values are also equal to the value of FULLKEYCARDF.

� COLCARDF, LOW2KEY, and HIGH2KEY. If the COLCARDF value is not '-1',
DB2 assumes that statistics exist for the column. In particular, it uses the
values of LOW2KEY and HIGH2KEY in calculating filter factors.

| � The CARDF column in SYSCOLDIST is related to COLCARDF in
| SYSIBM.SYSCOLUMNS and to FIRSTKEYCARDF and FULLKEYCARDF in
| SYSIBM.SYSINDEXES. CARDF must be the minimum of the following:

| – A value between FIRSTKEYCARDF and FULLKEYCARDF if the index
| contains the same set of columns.

| – A value between MAX(COLCARDF of each column in the column group)
| and the product of multiplying together the COLCARDF of each column in
| the column group.

| For example, assume a set of statistics as shown in Figure 129 on
| page 5-251. The range between FIRSTKEYCARDF and FULLKEYCARDF os

5-250 Administration Guide

| 100 and 10 000. The maximum of the COLCARDF values is 50 000. Thus, the
| allowable range is between 100 and 10 000.

| CARDF = 1ððð

| NUMCOLUMNS = 3

| COLGROUPCOLNO = 2,3,5

| INDEX1 on columns 2,3,5,7,8

| FIRSTKEYCARDF = 1ðð CARDF must be between 1ðð

| FULLKEYCARDF = 1ðððð and 1ðððð

| column 2 COLCARDF = 1ðð

| column 3 COLCARDF = 5ð

| column 5 COLCARDF = 1ð

| Figure 129. Determining Valid Values for CARDF. In this example, CARDF is bounded by
| 100 and 10 000.

Recommendation for COLCARDF and FIRSTKEYCARDF
On partitioned indexes, RUNSTATS INDEX calculates the number of distinct
column values and saves it in SYSCOLSTATS.COLCARD by partition. When the
statistics by partition are used to form the aggregate, the aggregate might not be
exact because some column values could occur in more than one partition. Without
scanning all parts of the index, DB2 cannot detect that overlap. The overlap never
skews COLCARD by more than the number of partitions, which should not be a

| problem for large values. For small values, you might want to update the aggregate
| COLCARDF value in SYSCOLUMNS, because DB2 uses the COLCARD value

when determining access paths.

The exception and remedy described above for COLCARD and COLCARDF is also
true for the FIRSTKEYCARDF column in SYSIBM.SYSINDEXES and the
FIRSTKEYCARD column in SYSIBM.SYSINDEXSTATS.

Recommendation for HIGH2KEY and LOW2KEY
| If you update the COLCARDF value for a column, also update HIGH2KEY and
| LOW2KEY for the column. HIGH2KEY and LOW2KEY are defined as CHAR(8); so
| an UPDATE statement must provide a character or hexadecimal value.Entering a

character value is quite straightforward: SET LOW2KEY = 'ALAS', for instance. But
to enter a numeric, date, or time value you must use the hexadecimal value of the
DB2 internal format; see “Internal Formats for Dates, Times, and Timestamps” on
page X-78 and “DB2 Codes for Numeric Data” on page X-80. Be sure to allow for
a null indicator in keys that allow nulls; see also “Null Values” on page X-77.

Statistics for Uniform Distributions
Statistics for distributions are stored in the catalog tables SYSCOLDIST and

| SYSCOLDISTSTATS. By default, DB2 inserts the 10 most frequent values as well
| as the first and last key values. See Section 2 of Utility Guide and Reference for
| information about collecting more statistics related to columns that are correlated.

You can insert, update, or delete that information for any column, whether or not it
is a first key column of an index. But to enter a numeric, date, or time value you
must use the hexadecimal value of the DB2 internal format; see “Internal Formats
for Dates, Times, and Timestamps” on page X-78 and “DB2 Codes for Numeric

 Chapter 5-9. Maintaining Statistics in the Catalog 5-251

Data” on page X-80. Be sure to allow for a null indicator in keys that allow nulls;
see also “Null Values” on page X-77.

Recommendation for Using the TIMESTAMP Column
Statistics gathered by RUNSTATS include timestamps. Every row updated or
inserted during a particular invocation of RUNSTATS contains the same timestamp
value. We recommend that you update column STATSTIME whenever you update
statistics in the catalog, so you can always determine when they were last updated.

Querying the Catalog for Statistics
The SELECT statements below show you how to retrieve some of the important

| statistics for access path selection. The catalog queries shown here are included in
| DSNTESP in SDSNSAMP and can be used as input to SPUFI. See “Chapter 5-10.

Using EXPLAIN to Improve SQL Performance” on page 5-261 for more information
about how these statistics are used in access path selection. See Appendix D of
SQL Reference for the table definitions and descriptions of all DB2 catalog tables.

Product-sensitive Programming Interface

To access information about your data and how it is organized, use the following
queries:

| SELECT CREATOR, NAME, CARDF, NPAGES, PCTPAGES

| FROM SYSIBM.SYSTABLES

| WHERE DBNAME = 'xxx'
| AND TYPE = 'T';

| SELECT NAME, UNIQUERULE, CLUSTERRATIO, FIRSTKEYCARDF, FULLKEYCARDF,

| NLEAF, NLEVELS, PGSIZE

| FROM SYSIBM.SYSINDEXES

| WHERE DBNAME = 'xxx';

SELECT NAME, DBNAME, NACTIVE, CLOSERULE, LOCKRULE

 FROM SYSIBM.SYSTABLESPACE

WHERE DBNAME = 'xxx';

| SELECT NAME, TBNAME, COLCARDF, HIGH2KEY, LOW2KEY, HEX(HIGH2KEY),

| HEX(LOW2KEY)

| FROM SYSIBM.SYSCOLUMNS

| WHERE TBCREATOR = 'xxx' AND COLCARDF <> -1;

| SELECT NAME, FREQUENCYF, COLVALUE, HEX(COLVALUE), CARDF,

| COLGROUPCOLNO, HEX(COLGROUPCOLNO), NUMCOLUMNS, TYPE

| FROM SYSIBM.SYSCOLDIST

| WHERE TBNAME = 'ttt'

| ORDER BY NUMCOLUMNS, NAME, COLGROUPCOLNO, TYPE, FREQUENCYF DESC;

SELECT NAME, TSNAME, CARD, NPAGES

 FROM SYSIBM.SYSTABSTATS

 WHERE DBNAME='xxx';

End of Product-sensitive Programming Interface

If the statistics in the DB2 catalog no longer correspond to the true organization of
your data, you should reorganize the necessary tables, run RUNSTATS, and rebind
the plans or packages that contain any affected queries. See “When to Reorganize

5-252 Administration Guide

Indexes and Table Spaces” on page 5-256 and the description of REORG in
Section 2 of Utility Guide and Reference for information on how to determine which
table spaces and indexes qualify for reorganization. This includes the DB2 catalog
table spaces as well as user table spaces. Then DB2 has accurate information to
choose appropriate access paths for your queries. Use the EXPLAIN statement to
verify the chosen access paths for your queries.

Improving Index and Table Space Access
Statistics from the DB2 catalog help determine the most economical access path.
The statistics described in this section are used to determine index access cost and
are found in the corresponding columns of the SYSIBM.SYSINDEXES catalog
table.

The statistics show distribution of data within the allocated space, from which you
can judge clustering and the need to reorganize.

| Space utilization statistics can also help you make sure that access paths that use
| the index or table space are as efficient as possible. By reducing gaps between leaf
| pages in an index, or to ensure that data pages are close together, you can reduce
| sequential I/Os.

| To provide the most accurate data, use RUNSTATS routinely to provide data about
| table spaces and indexes over a period of time. One recommendation is to run
| RUNSTATS some time after reorganizing the data or indexes. This can ensure that
| access paths reflect a more “average” state of the data.

| This section describes the following topics:

| � “How Clustering affects Access Path Selection”
| � “Other Index-Related Statistics” on page 5-255
| � “When to Reorganize Indexes and Table Spaces” on page 5-256
| � “Is it Necessary to Rebind after Running RUNSTATS?” on page 5-258

How Clustering affects Access Path Selection
In general, CLUSTERRATIO gives an indication of how closely the order of the
index entries on the index leaf pages matches the actual ordering of the rows on
the data pages. The closer CLUSTERRATIO is to 100%, the more closely the
ordering of the index entries matches the actual ordering of the rows on the data
pages. The actual formula is quite complex and accounts for indexes with many
duplicates; in general, for a given index, the more duplicates, the higher the
CLUSTERRATIO value.

Here are some things to remember about the effect of CLUSTERRATIO on access
paths:

� CLUSTERRATIO is an important input to the cost estimates that are used to
determine whether an index is used for an access path, and, if so, which index
to use.

� If the access is INDEXONLY, then this value does not apply.

� The higher the CLUSTERRATIO value, the lower the cost of referencing data
pages during an index scan.

 Chapter 5-9. Maintaining Statistics in the Catalog 5-253

� For an index that has a CLUSTERRATIO less than 80%, sequential prefetch is
not used to access the data pages.

Figure 130 shows an index scan on an index with a high cluster ratio. Compare
that with Figure 131 on page 5-255, which shows an index scan on an index with
a low cluster ratio.

 ┌───────────┐

 CLUSTERED │ │ Root

INDEX SCAN │- 25 - 61 -│ page

 └┼────┼────┼┘

┌───────────────┘ │ └───────────────┐

6 6 6

 ┌───────────┐ ┌───────────┐ ┌───────────┐

 │ │ │ │ │ │ Intermediate

│- 8 - 13 -│ │- 33 - 45 -│ │- 75 - 86 -│ pages

 └┼────┼────┼┘ └┼────┼────┼┘ └┼────┼────┼┘

┌─┘ └┐ └─┐ ┌─┘ │ └─┐ ┌──┘ │ └┐

6 6 6 6 6 6 6 6 6

┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐

│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ │ Leaf

│ │ │ │ │----│ │----│ │----│ │----│ │----│ │ │ │ │ pages

└────┘ └────┘ └───┼┘ └┼┼┼┼┘ └┼┼┼┼┘ └┼┼┼┼┘ └┼───┘ └────┘ └────┘

│ ││││ ││││ ││││ └─────────┐

┌────────┘ ││││ ││││ │││└───────────┐ │

│ ┌──────────┘│││ ││││ ││└──────────┐ │ │

│ │ ┌─────────┘││ ││││ │└─────────┐ │ │ │

│ │ │ ┌─┘│ ││││ └───┐ │ │ │ │

│ │ │ │ ┌┘ │││└─────┐ │ │ │ │ │

│ │ │ │ │ ││└────┐ │ │ │ │ │ │

│ │ │ │ │ ┌──┘└───┐ │ │ │ │ │ │ │

 ┌─────────┼─┼─┼────────┼─┼─┼───────┼─┼─┼─┼──────┼─┼─┼─┼─────────────┐

 T │ ┌─────┼─┼─┼────────┼─┼─┼───────┼─┼─┼─┼──────┼─┼─┼─┼────┐ │

A │ │ ┌──┼─┼─┼──┐ ┌──┼─┼─┼──┐ ┌─┼─┼─┼─┼─┐ ┌─┼─┼─┼─┼─┐ │ │

B │ │ │ 6 6 6 │ │ 6 6 6 │ │ 6 6 6 6 │ │ 6 6 6 6 │ │ │

L │ T │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ │ │ │

E │ A │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ │

│ B │ │ └─┘ │ │ └─┘ │ │ └─┘ │ │ └─┘%┼──┼───Row │

S │ L │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ ┌─┐ │ │ ┌─┐ ┌─┐ │ │ │

P │ E │ │ └─┘ │ │ └─┘ │ │ └─┘ └─┘ │ │ └─┘ └─┘ │ │ │

A │ │ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │ │

C │ │ Data page Data page Data page Data page │ │

 E │ └──┘ │

 └───┘

Figure 130. A Clustered Index Scan. This figure assumes that the index is 100% clustered

5-254 Administration Guide

 ┌───────────┐

 NONCLUSTERED │ │ Root

INDEX SCAN │- 25 - 61 -│ page

 └┼────┼────┼┘

┌───────────────┘ │ └───────────────┐

6 6 6

 ┌───────────┐ ┌───────────┐ ┌───────────┐

 │ │ │ │ │ │ Intermediate

│- 8 - 13 -│ │- 33 - 45 -│ │- 75 - 86 -│ pages

 └┼────┼────┼┘ └┼────┼────┼┘ └┼────┼────┼┘

┌─┘ └┐ └─┐ ┌─┘ │ └─┐ ┌──┘ │ └┐

6 6 6 6 6 6 6 6 6

┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐ ┌────┐

│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ ├5│ │ Leaf

│ │ │ │ │----│ │----│ │----│ │----│ │----│ │ │ │ │ pages

└────┘ └────┘ └────┘ └┼┼┼┼┘ └┼┼┼┼┘ └────┘ └────┘ └────┘ └────┘

 ┌────────────┼┼┼┼───┘││└──────────────┐

 │ └┼┼┼────┼┼───────────────┼─┐

 │ ┌───────────┘││ │└───────────────┼─┼───┐

│ │ └┼────┼───┐ │ │ │

│ │ ┌───────────┘ └───┼───┐ │ │ │

 ┌─────────┼─┼─┼────────────────────┼───┼────────┼─┼───┼─────────────┐

 T │ ┌─────┼─┼─┼────────────────────┼───┼────────┼─┼───┼────┐ │

A │ │ ┌──┼─┼─┼──┐ ┌─────────┐ ┌─┼───┼───┐ ┌─┼─┼───┼─┐ │ │

B │ │ │ 6 6 6 │ │ │ │ 6 6 │ │ 6 6 6 │ │ │

L │ T │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ │ │ │

E │ A │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ └─┘ ┌─┐ │ │ │

│ B │ │ └─┘ │ │ └─┘ │ │ └─┘ │ │ └─┘%┼──┼───Row │

S │ L │ │ ┌─┐ │ │ ┌─┐ │ │ ┌─┐ ┌─┐ │ │ ┌─┐ ┌─┐ │ │ │

P │ E │ │ └─┘ │ │ └─┘ │ │ └─┘ └─┘ │ │ └─┘ └─┘ │ │ │

A │ │ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │ │

C │ │ Data page Data page Data page Data page │ │

 E │ └──┘ │

 └───┘

Figure 131. A Nonclustered Index Scan. In some cases, DB2 can access the data pages in
order even when a nonclustered index is used.

Other Index-Related Statistics
The following statistics in SYSINDEXES also give information about costs to
process the index.

| FIRSTKEYCARDF: The number of distinct values of the first index key column.
| When an indexable equal predicate is specified on the first index key column,
| 1/FIRSTKEYCARDF is the filter factor for the predicate and the index. The higher
| the number, the less the cost.

| FULLKEYCARDF: The number of distinct values for the entire index key. When
| indexable equal predicates are specified on all the index key columns,
| 1/FULLKEYCARDF is the filter factor for the predicates and the index. The higher
| the number, the less the cost.

When the number of matching columns is greater than 1 and less than the number
| of index key columns, the filtering of the index is located between
| 1/FIRSTKEYCARDF and 1/FULLKEYCARDF.

| NLEAF: The number of active leaf pages in the index. NLEAF is a portion of the
| cost to scan the index. The smaller the number is, the less the cost. It is also less

when the filtering of the index is high, which comes from FIRSTKEYCARDF,
FULLKEYCARDF, and other indexable predicates.

NLEVELS: The number of levels in the index tree. NLEVELS is another portion of
the cost to traverse the index. The same conditions as NLEAF apply. The smaller
the number is, the less the cost.

 Chapter 5-9. Maintaining Statistics in the Catalog 5-255

| When to Reorganize Indexes and Table Spaces
| Data that is organized well physically can improve the performance of access paths
| that rely on index or data scans, and it can also help reduce the amount of DASD
| used by the index or table space. If your main reason for reorganizing is
| performance, the best way to determine when to reorganize is to watch your
| statistics for increased I/O, getpages, and processor consumption. When
| performance degrades to an unacceptable level, analyze the statistics described in
| the rules of thumb in this section to help you develop your own rules for when to
| reorganize in your particular environment. Here are some general rules of thumb for
| when to consider running REORG. See Section 2 of Utility Guide and Reference for
| more information.

| Useful Catalog Queries: Catalog queries you can use to help you determine
| when to reorganize are included in DSNTESP in SDSNSAMP and can be used as
| input to SPUFI.

| Indexes
| To understand index organization, you must understand the LEAFDIST column of
| SYSIBM.SYSINDEXPART. This section describes how to interpret that value and
| then describes some rules of thumb for determining when to reorganize the index.

| How LEAFDIST is Calculated: The LEAFDIST column of
| SYSIBM.SYSINDEXPART indicates the average number of pages that are between
| successive leaf pages in the index. Leaf pages can have page gaps whenever
| index keys are deleted, as shown in Figure 134 on page 5-257 or when there are
| index leaf page splits caused by an insert that cannot fit onto a full page. If the key
| cannot fit on the page, DB2 moves half the index entries onto a new page, which
| might be far away from the “home” page.

| The optimal value of the LEAFDIST catalog column is zero. However, immediately
| after you run the REORG and RUNSTATS utilities, LEAFDIST might be greater
| than zero, because of empty pages for FREEPAGE and non-leaf pages.

| DB2 determines LEAFDIST by multiplying the average number of pages between
| consecutive leaf pages by 100. The average number of pages between consecutive
| leaf pages is equal to the sum of “not-used” pages divided by the total number of
| leaf pages and then multiplied by 100.

| For example, Figure 132 shows 10 leaf pages with 0 pages (gaps) between
| successive leaf pages. The average number of pages between leaf pages is 0
| divided by 10, or 0. So in this case, LEAFDIST is 0.

| ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

| │ 1│ 2│ 3│ 4│ 5│ 6│ 7│ 8│ 9│1ð│

| Index leaf │ │ │ │ │ │ │ │ │ │ │

| pages=1ð └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

| Figure 132. Index in which LEAFDIST=0

| However, Figure 133 on page 5-257 shows that if pages 4, 6, 7, and 8 are
| deleted, there are now 4 pages (gaps) between successive leaf pages. The
| average number of pages is 4 divided by 6, or 0.66. Using these numbers, the
| formula for calculating LEAFDIST is 0.66 × 100. So, in this case, LEAFDIST is 66.

5-256 Administration Guide

| ┌──┬──┬──┐ ┌──┐ ┌──┬──┐

| │ 1│ 2│ 3│ │ 5│ │ 9│1ð│

| Active leaf │ │ │ │ │ │ │ │ │

| pages=6 └──┴──┴──┘ └──┘ └──┴──┘

| ┌──┐ ┌──┬──┬──┐

| │X │ │X │X │X │

| Gaps between │ │ │ │ │ │

| leaf pages=4 └──┘ └──┴──┴──┘

| Figure 133. Gaps Caused by Deleted Index Keys

| Figure 134 shows that for an index scan which has had a page split, LEAFDIST
| can be a fairly large value, even though in this case there is only one extra I/O to
| DASD to find the page that is out of order.

| ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐

| │

| │Root │ . . . │Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5 ... ──5│Leaf │

| │

| └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘

| &

| └─── Attempt to insert into a full index page

| ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐

| │

| │Root │ │Leaf │ │Leaf │ │Leaf │ │Leaf │ │Leaf │ │Leaf │ │Leaf │ │Leaf │ ... │Leaf │ │Leaf │

| │

| └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘

| & &

| │ │

| └──────Rows are split between these two pages ──┘

| 1ðð-page gap

| ┌───┐

| ┌─────┐ ┌─────┐ ┌─────┐ │┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐│ ┌─────┐

| │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │ │ │ ││ │ │

| │Root │ . . . │Leaf ├──5│Leaf ├──┘│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5│Leaf ├──5 ... ──5│Leaf │└─5│Leaf ├┐

| ││

| └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘│

| & │

| └───┘

| 99-page gap

| 1ð3 leaf pages

| 199 gaps

| LEAFDIST = 1ðð x (199/1ð3) = 193

| Figure 134. How LEAFDIST is Affected by Index Page Splits. When a key cannot be inserted, DB2 splits the page
| and puts half of the key values from the original page somewhere else. In this case, it is at the end of the page set.
| An index scan of the leaf pages must skip ahead to read in the values that were moved.

| Rules of Thumb: Consider running REORG INDEX in the following cases:

| � LEAFDIST > 200

| Again, as Figure 134 shows, a large LEAFDIST is not always a cause to
| automatically run REORG. If you don't have free pages, for example,
| LEAFDIST can grow rapidly. If you have FREEPAGE 0, LEAFDIST can
| increase by 100 on each split (on average), assuming random distribution.

| If a particular LEAFDIST value seems to correlate with degraded performance
| for statements on that table space, make that LEAFDIST value your cue to
| reorganize the index.

| � When the data set has multiple extents

 Chapter 5-9. Maintaining Statistics in the Catalog 5-257

| Many secondary extents can detract from performance of index scans because
| the data on those extents is not necessarily physically located near the rest of
| the index data.

| Table Spaces
| SYSIBM.SYSTABLEPART contains information about how the data in the table
| space is physically stored. Consider running REORG TABLESPACE in the
| following situations:

| � FAROFFPOSF / CARDF is greater than 10%. Or,if the index is a clustering
| index, the CLUSTERRATIO column of SYSIBM.SYSINDEXES is less than 90%

| � (NEARINDREF + FARINDREF) / CARDF is greater than 10%.

| � PERCDROP is greater than 10%

| � When the data set has multiple extents

| Is it Necessary to Rebind after Running RUNSTATS?
| It is not always necessary to rebind all applications after running RUNSTATS. A
| rebind is necessary only if the access path statistics change significantly from the
last time you bound the applications and if performance suffers as a result.

When performance degrades to an unacceptable level, analyze the statistics
described in the rules of thumb in this section to help you develop your own
guidelines for when to rebind.

Consider the following rules of thumb about when to rebind:

| � CLUSTERRATIO changes to less or more than 80%

| � NLEAF changes more than 20% from the previous value

| � NLEVELS changes (only if it was more than a 2-level index to begin with)

| � NPAGES changes more than 20% from the previous value

| � NACTIVE changes more than 20% from the previous value

| � The range of HIGH2KEY to LOW2KEY range changes more than 20% from the
| range previously recorded

| � Cardinality changes more than 20% from previous range

| � Distribution statistics change the majority of the frequent column values

Modeling Your Production System
In order to see what access paths your production queries will use, consider
updating the catalog statistics on your test system to be the same as your
production system.

To do that, run RUNSTATS on your production tables to get current statistics for
access path selection. Then retrieve them and use them to build SQL statements to
update the catalog of the test system. You can use queries modelled on those in
Figure 135 on page 5-259 to build those statements. Use the information in
Table 86 on page 5-244 to generate a complete set of SQL statements.

Notes to Figure 135 on page 5-259:

5-258 Administration Guide

Product-sensitive Programming Interface

SELECT DISTINCT 'UPDATE SYSIBM.SYSTABLESPACE SET NACTIVE='

| CONCAT DIGITS(NACTIVE)

| CONCAT ' WHERE NAME=''' CONCAT TS.NAME

| CONCAT ''' AND CREATOR ='''CONCAT TS.CREATOR CONCAT'''\'

| FROM SYSIBM.SYSTABLESPACE TS, SYSIBM.SYSTABLES TBL

| WHERE TS.NAME = TSNAME

| AND TBL.NAME IN ('table list')

| AND TBL.CREATOR IN ('creator list')

| AND NACTIVE >=ð;

| SELECT 'UPDATE SYSIBM.SYSTABLES SET CARDF='

| CONCAT DIGITS(DECIMAL(CARDF,31,ð))

| CONCAT',NPAGES='CONCAT DIGITS(NPAGES)

| CONCAT ' WHERE NAME='''CONCAT NAME

| CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT'''\'

| FROM SYSIBM.SYSTABLES

| WHERE NAME IN ('table list')

| AND CREATOR IN ('creator list')

| AND CARDF >= ð;

| SELECT 'UPDATE SYSIBM.SYSINDEXES SET FIRSTKEYCARDF='

| CONCAT DIGITS(DECIMAL(FIRSTKEYCARDF,31,ð))

| CONCAT ',FULLKEYCARDF='CONCAT DIGITS(DECIMAL(FULLKEYCARDF,31,ð))

| CONCAT',NLEAF='CONCAT DIGITS(NLEAF)

| CONCAT',NLEVELS='CONCAT DIGITS(NLEVELS)

| CONCAT',CLUSTERRATIO='CONCAT DIGITS(CLUSTERRATIO)

| CONCAT' WHERE NAME='''CONCAT NAME

| CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT'''\'

| FROM SYSIBM.SYSINDEXES

| WHERE TBNAME IN ('table list')

| AND CREATOR IN ('creator list')

| AND FULLKEYCARDF >= ð;

| SELECT 'UPDATE SYSIBM.SYSCOLUMNS SET COLCARDF='

| CONCAT DIGITS(DECIMAL(COLCARDF,31,ð))

| CONCAT',HIGH2KEY=''' CONCAT HIGH2KEY

| CONCAT''',LOW2KEY=''' CONCAT LOW2KEY

| CONCAT''' WHERE TBNAME=''' CONCAT TBNAME CONCAT ''' AND COLNO='

| CONCAT DIGITS(COLNO)

| CONCAT ' AND TBCREATOR =''' CONCAT TBCREATOR CONCAT'''\'

| FROM SYSIBM.SYSCOLUMNS

| WHERE TBNAME IN ('table list')

| AND TBCREATOR IN ('creator list')

| AND COLCARDF >= ð;

| DELETE \ FROM (test_system).SYSCOLDIST;

| SELECT \ FROM (production_system).SYSCOLDIST;

| Using values from the production system's SYSCOLDIST table:

| INSERT INTO (test_system).SYSCOLDIST;

End of Product-sensitive Programming Interface

Figure 135. Statements to Generate Update Statistics on Test System

� The third SELECT is 215 columns wide; you might need to change your default
character column width if you are using SPUFI.

 Chapter 5-9. Maintaining Statistics in the Catalog 5-259

� Asterisks (*) appear in the examples to avoid having the semicolon interpreted
as the end of the SQL statement. Edit the result to change the asterisk to a
semicolon.

Access Path Differences from Test to Production: When you bind applications
on the test system with production statistics, access paths should be similar to what
you see when the same query is bound on your production system. If the access
paths from test to production are different, there are the following possible causes:

� The processor models are different.
� The buffer pool sizes are different.
� There is mismatching data in SYSIBM.SYSCOLDIST. (This is only possible if

some of the steps mentioned above were not followed exactly).

Tools to Help: If your production system is accessible from your test system you
can use DB2 PM EXPLAIN on your test system to request EXPLAIN information
from your production system. This can reduce the need to simulate a production
system by updating the catalog.

You can also use the DB2 Visual Explain feature to display the current
| PLAN_TABLE output or the graphed access paths for statements within any
| particular subsystem from your workstation environment. For example, if you have
| your test system on one subsystem, and your production system on another
| subsystem, you can visually compare the PLAN_TABLE outputs or access paths
| simultaneously with some window or view manipulation. You can then access the
| catalog statistics for certain referenced objects of an access path from either of the
| displayed PLAN_TABLEs or access path graphs. For information on using Visual
| Explain, see DB2 Visual Explain online help.

5-260 Administration Guide

Chapter 5-10. Using EXPLAIN to Improve SQL Performance

The information under this heading, up to the end of this chapter, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page xi.

Definitions and Purpose: EXPLAIN is a monitoring tool that produces information
about a plan, package, or SQL statement when it is bound. The output appears in
a user-supplied table called PLAN_TABLE, which we refer to as a plan table. The
information can help you to:

� Design databases, indexes, and application programs
� Determine when to rebind an application
� Determine the access path chosen for a query

For each access to a single table, EXPLAIN tells you if an index access or table
space scan is used. If indexes are used, EXPLAIN tells you how many indexes and
index columns are used and what I/O methods are used to read the pages. For
joins of tables, EXPLAIN tells you the join method and type, the order in which DB2
joins the tables, and when and why it sorts any rows.

The primary use of EXPLAIN is to observe the access paths for the SELECT parts
of your statements. For UPDATE and DELETE WHERE CURRENT OF, and for
INSERT, you receive somewhat less information in your plan table. And some
accesses EXPLAIN does not describe: for example, the access to parent or
dependent tables needed to enforce referential constraints.

The access paths shown for the example queries in this chapter are intended only
to illustrate those examples. If you execute the queries in this chapter on your
system, the access paths chosen can be different.

Chapter Overview: This chapter includes the following topics:

� “Obtaining Information from EXPLAIN” on page 5-262
� “First Questions about Data Access” on page 5-270
� “Interpreting Access to a Single Table” on page 5-275
� “Interpreting Access to Two or More Tables” on page 5-282
� “Interpreting Data Prefetch” on page 5-290
� “Determining Sort Activity” on page 5-294
� “View Processing” on page 5-296
� “Parallel Operations and Query Performance” on page 5-299

| DB2 Visual Explain: DB2 Visual Explain is a graphical workstation feature of DB2
| Version 5 that is used for analyzing and optimizing DB2 SQL statements. This
| feature provides:

| � An easy to understand display of a selected access path
| � Suggestions for changing an SQL statement
| � An ability to invoke EXPLAIN for dynamic SQL statements
| � An ability to provide DB2 catalog statistics for referenced objects of an access
| path
| � A subsystem parameter browser with keyword 'Find' capabilities

Working from a workstation client, you can display and analyze the PLAN_TABLE
output or graphs of access paths chosen by DB2. Visual Explain uses the

 Copyright IBM Corp. 1982, 1997 5-261

PLAN_TABLE to obtain the information that is displayed. The relationships between
database objects such as tables or indexes, or operations such as table space
scans, sorts, or joins are easier to understand with this graphical view. Visual
Explain not only displays the details of the access path of an SQL statement, it also
allows you to invoke EXPLAIN for dynamic SQL statements. In some cases, Visual
Explain provides suggestions that can enhance the application's or the statement's
efficiency or performance. By using Visual Explain, you can access the catalog
statistics for certain referenced objects of an access path.

In addition, the subsystem parameters can be displayed, with the current values,
ranges of values that are possible, and descriptions of each parameter that is
selected. The current values of the subsystem parameters used along with the
access path information can provide you with a more complete understanding of
your SQL environment. For information on using DB2 Visual Explain, which is a
separately packaged CD-ROM provided with your DB2 Version 5 license, see DB2
Visual Explain online help.

An Alternative Tool: DB2 Performance Monitor (PM) for Version 5 is a
performance monitoring tool that formats performance data. DB2 PM combines
information from EXPLAIN and from the DB2 catalog. It displays access paths,
indexes, tables, table spaces, plans, packages, DBRMs, host variable definitions,
ordering, table access and join sequences, and lock types. Output is presented in a
dialog rather than as a table, making the information easy to read and understand.

Obtaining Information from EXPLAIN
To obtain information to interpret, you must:

1. Have appropriate access to a plan table. To create the table, see “Creating
PLAN_TABLE.”

2. Populate the table with the information you want. For instructions, see
“Populating and Maintaining a Plan Table” on page 5-267.

3. Select the information you want from the table. For instructions, see
“Reordering Rows from a Plan Table” on page 5-269.

 Creating PLAN_TABLE
Before you can use EXPLAIN, you must create a table called PLAN_TABLE to hold
the results of EXPLAIN. A copy of the statements needed to create the table are in
the DB2 sample library, under the member name DSNTESC.

Figure 136 on page 5-263 shows the format of a plan table. Table 87 on
page 5-263 shows the content of each column.

Your plan table can use the 25-column format, the 28-column format, the
| 30-column format, the 34-column format, the 43-column format, or the 46-column
| format. We recommend the 46-column format because it gives you the most

information. If you alter an existing plan table to add new columns, specify the
columns as NOT NULL WITH DEFAULT, so that default values are included for the
rows already in the table. However, as you can see in Figure 136 on page 5-263,
certain columns do allow nulls. Do not specify those columns as NOT NULL WITH
DEFAULT.

5-262 Administration Guide

QUERYNO INTEGER NOT NULL PREFETCH CHAR(1) NOT NULL

 QBLOCKNO SMALLINT NOT NULL COLUMN_FN_EVAL CHAR(1) NOT NULL

APPLNAME CHAR(8) NOT NULL MIXOPSEQ SMALLINT NOT NULL

PROGNAME CHAR(8) NOT NULL -------28 column format --------

 PLANNO SMALLINT NOT NULL VERSION VARCHAR(64) NOT NULL

 METHOD SMALLINT NOT NULL COLLID CHAR(18) NOT NULL

CREATOR CHAR(8) NOT NULL -------3ð column format --------

 TNAME CHAR(18) NOT NULL ACCESS_DEGREE SMALLINT

 TABNO SMALLINT NOT NULL ACCESS_PGROUP_ID SMALLINT

 ACCESSTYPE CHAR(2) NOT NULL JOIN_DEGREE SMALLINT

 MATCHCOLS SMALLINT NOT NULL JOIN_PGROUP_ID SMALLINT

ACCESSCREATOR CHAR(8) NOT NULL -------34 column format --------

 ACCESSNAME CHAR(18) NOT NULL SORTC_PGROUP_ID SMALLINT

 INDEXONLY CHAR(1) NOT NULL SORTN_PGROUP_ID SMALLINT

 SORTN_UNIQ CHAR(1) NOT NULL PARALLELISM_MODE CHAR(1)

 SORTN_JOIN CHAR(1) NOT NULL MERGE_JOIN_COLS SMALLINT

 SORTN_ORDERBY CHAR(1) NOT NULL CORRELATION_NAME CHAR(18)

 SORTN_GROUPBY CHAR(1) NOT NULL PAGE_RANGE CHAR(1) NOT NULL

 SORTC_UNIQ CHAR(1) NOT NULL JOIN_TYPE CHAR(1) NOT NULL

 SORTC_JOIN CHAR(1) NOT NULL GROUP_MEMBER CHAR(8) NOT NULL

 SORTC_ORDERBY CHAR(1) NOT NULL IBM_SERVICE_DATA VARCHAR(254) NOT NULL

SORTC_GROUPBY CHAR(1) NOT NULL ------43 column format --------

 TSLOCKMODE CHAR(3) NOT NULL WHEN_OPTIMIZE CHAR(1) NOT NULL

 TIMESTAMP CHAR(16) NOT NULL QBLOCK_TYPE CHAR(6) NOT NULL

 REMARKS VARCHAR(254) NOT NULL BIND_TIME TIMESTAMP NOT NULL;

-------25 column format -------- ------46 column format -----------

Figure 136. Format of PLAN_TABLE

Table 87 (Page 1 of 5). Descriptions of Columns in PLAN_TABLE

Column Name Description

QUERYNO A number intended to identify the statement being explained. For a row produced by
an EXPLAIN statement, you can specify the number in the SET QUERYNO clause;
otherwise, DB2 assigns a number based on the line number of the SQL statement in
the source program. FETCH statements do not each have an individual QUERYNO
assigned to them. Instead, DB2 uses the QUERYNO of the DECLARE CURSOR
statement for all corresponding FETCH statements for that cursor. Values of
QUERYNO greater than 32767 are reported as 0. Hence, in a very long program, the
value is not guaranteed to be unique. If QUERYNO is not unique, the value of
TIMESTAMP is unique.

QBLOCKNO The position of the query in the statement being explained (1 for the outermost query,
2 for the next query, and so forth). For better performance, DB2 might merge a query
block into another query block. When that happens, the position number of the
merged query block will not be in QBLOCKNO.

APPLNAME The name of the application plan for the row. Applies only to embedded EXPLAIN
statements executed from a plan or to statements explained when binding a plan.
Blank if not applicable.

PROGNAME The name of the program or package containing the statement being explained.
Applies only to embedded EXPLAIN statements and to statements explained as the
result of binding a plan or package. Blank if not applicable.

PLANNO The number of the step in which the query indicated in QBLOCKNO was processed.
This column indicates the order in which the steps were executed.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-263

Table 87 (Page 2 of 5). Descriptions of Columns in PLAN_TABLE

Column Name Description

METHOD A number (0, 1, 2, 3, or 4) that indicates the join method used for the step:

0 First table accessed, continuation of previous table accessed, or not used.

1 Nested loop join. For each row of the present composite table, matching
rows of a new table are found and joined.

2 Merge scan join. The present composite table and the new table are
scanned in the order of the join columns, and matching rows are joined.

| 3 Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a
| quantified predicate, or an IN predicate. This step does not access a new

table.

4 Hybrid join. The current composite table is scanned in the order of the
join-column rows of the new table. The new table is accessed using list
prefetch.

CREATOR The creator of the new table accessed in this step; blank if METHOD is 3.

TNAME| The name of a table, temporary table, materialized view, table expression, or an
| intermediate result table for an outer join that is accessed in this step; blank if

METHOD is 3.

For an outer join, this column contains the temporary table name of the work file in
the form DSNWFQB(qblockno). Merged views show the base table names and
correlation names. A materialized view is another query block with its own
materialized views, tables, and so forth.

TABNO Values are for IBM use only.

ACCESSTYPE The method of accessing the new table:

I By an index (identified in ACCESSCREATOR and ACCESSNAME)
I1 By a one-fetch index scan
N By an index scan when the matching predicate contains the IN keyword
R By a table space scan
M By a multiple index scan; followed by MX, MI, or MU
MX By an index scan on the index named in ACCESSNAME
MI By an intersection of multiple indexes
MU By a union of multiple indexes
blank Not applicable to the current row.

MATCHCOLS For ACCESSTYPE I, I1, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, I1, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, I1, N, or MX, the name of the index; otherwise, blank.

INDEXONLY Whether access to an index alone is enough to carry out the step, or whether data
too must be accessed. Y=Yes; N=No. For exceptions, see “Is the Query Satisfied
Using Only the Index? (INDEXONLY=Y)” on page 5-272.

SORTN_UNIQ Whether the new table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTN_JOIN Whether the new table is sorted for join method 2 or 4. Y=Yes; N=No.

SORTN_ORDERBY Whether the new table is sorted for ORDER BY. Y=Yes; N=No.

SORTN_GROUPBY Whether the new table is sorted for GROUP BY, Y=Yes; N=No.

SORTC_UNIQ Whether the composite table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTC_JOIN Whether the composite table is sorted for join method 1, 2 or 4. Y=Yes; N=No.

SORTC_ORDERBY Whether the composite table is sorted for an ORDER BY clause or a quantified
predicate. Y=Yes; N=No.

5-264 Administration Guide

Table 87 (Page 3 of 5). Descriptions of Columns in PLAN_TABLE

Column Name Description

SORTC_GROUPBY Whether the composite table is sorted for a GROUP BY clause. Y=Yes; N=No.

TSLOCKMODE| An indication of the mode of lock to be acquired on either the new table, or its table
| space or table space partitions. If the isolation can be determined at bind time, the

values are:

IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock

 If the isolation cannot be determined at bind time, then the lock mode determined by
the isolation at run time is shown by the following values.

NS For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR, an S lock.

The data in this column is right justified. For example, IX appears as a blank followed
by I followed by X. If the column contains a blank, then no lock is acquired.

TIMESTAMP Usually, the time at which the row is processed, to the last .01 second. If necessary,
DB2 adds .01 second to the value to ensure that rows for two successive queries
have different values.

REMARKS A field into which you can insert any character string of 254 or fewer characters.

PREFETCH Whether data pages are to be read in advance by prefetch. S = pure sequential
prefetch; L = prefetch through a page list; blank = unknown or no prefetch.

COLUMN_FN_EVAL# When an SQL column function is evaluated. R = while the data is being read from
the table or index; S = while performing a sort to satisfy a GROUP BY clause; blank
= after data retrieval and after any sorts.

MIXOPSEQ The sequence number of a step in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure (ACCESSTYPE is MX,
MI, or MU.)

0 For any other rows (ACCESSTYPE is I, I1, M, N, R, or blank.)

VERSION The version identifier for the package. Applies only to an embedded EXPLAIN
statement executed from a package or to a statement that is explained when binding
a package. Blank if not applicable.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
executed from a package or to a statement that is explained when binding a
package. Blank if not applicable.

Note: The following nine columns, from ACCESS_DEGREE through CORRELATION_NAME, contain the null value if
the plan or package was bound using a plan table with fewer than 43 columns. Otherwise, each of them can
contain null if the method it refers to does not apply.

ACCESS_DEGREE The number of parallel tasks or operations activated by a query. This value is
determined at bind time, and can be 0 if there is a host variable. The actual number
of parallel operations used at execution time could be different. This column contains
0 if there is a host variable.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-265

Table 87 (Page 4 of 5). Descriptions of Columns in PLAN_TABLE

Column Name Description

ACCESS_PGROUP_ID The identifier of the parallel group for accessing the new table. A parallel group is a
set of consecutive operations, executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it could change at execution
time.

JOIN_DEGREE The number of parallel operations or tasks used in joining the composite table with
the new table. This value is determined at bind time, and can be 0 if there is a host
variable. The actual number of parallel operations or tasks used at execution time
could be different.

JOIN_PGROUP_ID The identifier of the parallel group for joining the composite table with the new table.
This value is determined at bind time; it could change at execution time.

SORTC_PGROUP_ID The parallel group identifier for the parallel sort of the composite table.

SORTN_PGROUP_ID The parallel group identifier for the parallel sort of the new table.

PARALLELISM_MODE The kind of parallelism, if any, that is used at bind time;

I Query I/O parallelism
C Query CP parallelism

| X Sysplex query parallelism

MERGE_JOIN_COLS The number of columns that are joined during a merge scan join (Method=2).

CORRELATION_NAME The correlation name of a table or view that is specified in the statement. If there is
no correlation name then the column is blank.

PAGE_RANGE Whether the table qualifies for page range screening, so that plans scan only the
partitions that are needed. Y = Yes; blank = No.

JOIN_TYPE The type of an outer join.

F FULL OUTER JOIN
L LEFT OUTER JOIN
blank INNER JOIN or no join

 RIGHT OUTER JOIN converts to a LEFT OUTER JOIN when you use it, so that
JOIN_TYPE contains L.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN. The column is blank if the
DB2 subsystem was not in a data sharing environment when EXPLAIN was
executed.

IBM_SERVICE_DATA Values are for IBM use only.

| WHEN_OPTIMIZE| When the access path was determined:

| blank At bind time, using a default filter factor for any host variables, parameter
| markers, or special registers.
| B At bind time, using a default filter factor for any host variables, parameter
| markers, or special registers; however the statement will be reoptimized at
| run time using input variable values for input host variables, parameter
| markers, or special registers. The bind option REOPT(VARS) must be
| specified for reoptimization to occur.
| R At run time, using input variables for any host variables, parameter markers,
| or special registers. The bind option REOPT(VARS) must be specified for
| this to occur.

5-266 Administration Guide

Table 87 (Page 5 of 5). Descriptions of Columns in PLAN_TABLE

Column Name Description

| QBLOCK_TYPE| For each query block, the type of SQL operation performed. For the outermost query,
| it identifies the statement type. Possible values:

| SELECT SELECT
| INSERT INSERT
| UPDATE UPDATE
| DELETE DELETE
| SELUPD SELECT with FOR UPDATE OF
| DELCUR DELETE WHERE CURRENT OF CURSOR
| UPDCUR UPDATE WHERE CURRENT OF CURSOR
| CORSUB Correlated subquery
| NCOSUB Noncorrelated subquery

BIND_TIME The time at which the plan or package for this statement or query block was bound.
| For static SQL statements, this is a full-precision timestamp value. For dynamic SQL
| statements, this is the value contained in the TIMESTAMP column of PLAN_TABLE
| appended by 4 zeroes.

Populating and Maintaining a Plan Table
For the two distinct ways to populate a plan table, see:

� “Execute the SQL Statement EXPLAIN”
� “Bind with the Option EXPLAIN(YES)”

For a variation on the first way, see “Executing EXPLAIN Under QMF” on
page 5-268.

For tips on maintaining a growing plan table, see “Maintaining a Plan Table” on
page 5-269.

Execute the SQL Statement EXPLAIN
You can populate PLAN_TABLE by executing the SQL statement EXPLAIN. In the
statement, specify a single explainable SQL statement in the FOR clause.

You can execute EXPLAIN either statically from an application program, or
dynamically, using QMF or SPUFI. For instructions and for details of the
authorization you need on PLAN_TABLE, see SQL Reference.

Bind with the Option EXPLAIN(YES)
You can populate a plan table when you bind or rebind a plan or package. Specify
the option EXPLAIN(YES). EXPLAIN obtains information about the access paths for
all explainable SQL statements in a package or the DBRMs of a plan. The
information appears in table package_owner.PLAN_TABLE or
plan_owner.PLAN_TABLE. For dynamically prepared SQL, the qualifier of
PLAN_TABLE is the current SQLID.

Performance Considerations: EXPLAIN as a bind option should not be a
performance concern. The same processing for access path selection is performed,
regardless of whether you use EXPLAIN(YES) or EXPLAIN (NO). With
EXPLAIN(YES), there is only a small amount of overhead processing to put the
results in a plan table.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-267

If a plan or package that was previously bound with EXPLAIN(YES) is automatically
rebound, the value of field EXPLAIN PROCESSING on installation panel DSNTIPO
determines whether EXPLAIN is run again during the automatic rebind. Again, there
is a small amount of overhead for inserting the results into a plan table.

EXPLAIN for Remote Binds: A remote requester that accesses DB2 can specify
EXPLAIN(YES) when binding a package at the DB2 server. The information
appears in a plan table at the server, not at the requester. If the requester does not
support the propagation of the option EXPLAIN(YES), rebind the package at the
requester with that option to obtain access path information. You cannot get
information about access paths for SQL statements that use private protocol.

Executing EXPLAIN Under QMF
You can use QMF to display the results of EXPLAIN to the terminal. You can
create your own form to display the output or use QMF's default form.

Use Parameter Markers for Host Variables: If you have host variables in a
predicate for an original query in a static application, and if you are using QMF or

| SPUFI to execute EXPLAIN for the query, in most cases, use parameter markers
where you use host variables in the original query. If you a literal value instead, you
might see different access paths for your static and dynamic queries. For instance,
compare the following queries:

QMF Query Using Parameter QMF Query Using
Original Static SQL Marker Literal

DECLARE C1 EXPLAIN PLAN SET EXPLAIN PLAN SET

CURSOR FOR QUERYNO=1 FOR QUERYNO=1 FOR

SELECT \ SELECT \ SELECT \

 FROM T1 FROM T1 FROM T1

 WHERE C1 > HOST VAR. WHERE C1 > ? WHERE C1 > 1ð

Using the literal '10' would likely produce a different filter factor and maybe a
different access path from the original static SQL. (A filter factor is the proportion of
rows that remain after a predicate has "filtered out" the rows that do not satisfy it.
For more information on filter factors, see “Predicate Filter Factors” on
page 5-215.) The parameter marker behaves just like a host variable, in that the
predicate is assigned a default filter factor.

| When to Use a Literal: If you know that the static plan or package was bound
| with REOPT(VARS), and you have some idea of what is returned in the host
| variable, it can be more accurate to include the literal in the QMF EXPLAIN.
| REOPT(VARS) means that DB2 will replace the value of the host variable with the
| true value at run time and then determine the access path. For more information
| about REOPT(VARS) see “Using REOPT(VARS) to Change the Access Path at
| Run Time” on page 5-224.

Expect These Differences: Even when using parameter markers, you could see
different access paths for static and dynamic queries. DB2 assumes that the value
that replaces a parameter marker has the same length and precision as the column
it is compared to. That assumption determines whether the predicate is indexable
or stage 1. However, if a host variable definition does not match the column
definition, then the predicate may become a stage 2 predicate and, hence,
nonindexable.

The host variable definition fails to match the column definition if:

5-268 Administration Guide

� The length of the host variable is greater than the length attribute of the
column.

� The precision of the host variable is greater than that of the column.

� The data type of the host variable is not compatible with the data type of the
column. For example, you cannot use a host variable with data type DECIMAL
with a column of data type SMALLINT. But you can use a host variable with
data type SMALLINT with a column of data type INT or DECIMAL.

Maintaining a Plan Table
DB2 adds rows to PLAN_TABLE as you choose; it does not automatically delete
rows. To clear the table of obsolete rows, use DELETE, just as you would for
deleting rows from any table. You can also use DROP TABLE to drop a plan table
completely.

Reordering Rows from a Plan Table
Several processes can insert rows into the same plan table. To understand access
paths, you must retrieve the rows for a particular query in an appropriate order.

Retrieving Rows for a Plan
The rows for a particular plan are identified by the value of APPLNAME. The
following query to a plan table returns the rows for all the explainable statements in
a plan in their logical order:

SELECT \ FROM JOE.PLAN_TABLE

WHERE APPLNAME = 'APPL1'

ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

The result of the ORDER BY clause shows whether there are:

� Multiple QBLOCKNOs within a QUERYNO
� Multiple PLANNOs within a QBLOCKNO
� Multiple MIXOPSEQs within a PLANNO

All rows with the same non-zero value for QBLOCKNO and the same value for
QUERYNO relate to a step within the query. QBLOCKNOs are not necessarily
executed in the order shown in PLAN_TABLE. But within a QBLOCKNO, the
PLANNO column gives the substeps in the order they execute.

For each substep, the TNAME column identifies the table accessed. Sorts can be
shown as part of a table access or as a separate step.

What if QUERYNO=0? In a program with more than 32767 lines, all values of
QUERYNO greater than 32767 are reported as 0. For entries containing
QUERYNO=0, use the timestamp, which is guaranteed to be unique, to distinguish
individual statements.

Retrieving Rows for a Package
The rows for a particular package are identified by the values of PROGNAME,
COLLID, and VERSION. Those columns correspond to the following four-part
naming convention for packages:

LOCATION.COLLECTION.PACKAGE_ID.VERSION

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-269

COLLID gives the COLLECTION name, and PROGNAME gives the PACKAGE_ID.
The following query to a plan table return the rows for all the explainable
statements in a package in their logical order:

SELECT \ FROM JOE.PLAN_TABLE

WHERE PROGNAME = 'PACK1' AND COLLID = 'COLL1' AND VERSION = 'PROD1'

ORDER BY QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

First Questions about Data Access
When you examine your EXPLAIN results, try to answer the following questions:

� “Is Access Through an Index? (ACCESSTYPE is I, I1, N or MX)”

� “Is Access Through More than One Index? (ACCESSTYPE is M, MX, MI, or
MU)” on page 5-271

� “How Many Columns of the Index Are Used in Matching? (ACCESSTYPE is I,
I1, N, or MX)” on page 5-272

� “Is the Query Satisfied Using Only the Index? (INDEXONLY=Y)” on page 5-272

� “Is a View Materialized into a Work File? (TNAME names a view)” on
page 5-272

� “Was a Scan Limited to Certain Partitions? (PAGE_RANGE=Y)” on page 5-273

� “What Kind of Prefetching Is Done? (PREFETCH is L, S, or blank)” on
page 5-273

� “Is Data Accessed or Processed in Parallel? (PARALLELISM_MODE is I, C, or
X)” on page 5-274

� “Are Sorts Performed?” on page 5-274

� “Is a Subquery Transformed into a Join? (QBLOCKNO Value)” on page 5-274

� “When Are Column Functions Evaluated?” on page 5-275

As explained in this section, they can be answered in terms of values in columns of
a plan table.

Is Access Through an Index? (ACCESSTYPE is I, I1, N or MX)
ACCESSTYPE is I, I1, N or MX.

If the column ACCESSTYPE in the plan table has one of those values, DB2 uses
an index to access the table named in column TNAME. The columns
ACCESSCREATOR and ACCESSNAME identify the index. For a description of
methods of using indexes, see “Index Access Paths” on page 5-278.

The plan table does not identify whether the index is type 1 or type 2. To determine
that, query the column INDEXTYPE in the catalog table SYSIBM.SYSINDEXES:
the value is 2 for a type 2 index or blank for a type 1 index.

5-270 Administration Guide

Is Access Through More than One Index? (ACCESSTYPE is M, MX, MI,
or MU)

Those values indicate that DB2 uses a set of indexes to access a single table. A
set of rows in the plan table contain information about the multiple index access.
The rows are numbered in column MIXOPSEQ in the order of execution of steps in
the multiple index access. (If you retrieve the rows in order by MIXOPSEQ, the
result is similar to postfix arithmetic notation.)

The examples in Figure 137 and Figure 138 have these indexes: IX1 on T(C1) and
IX2 on T(C2). DB2 processes the query in these steps:

1. Retrieve all the qualifying row identifiers (RIDs) where C1=1, using index IX1.

2. Retrieve all the qualifying RIDs where C2=1, using index IX2. The intersection
of those lists is the final set of RIDs.

3. Access the data pages needed to retrieve the qualified rows using the final RID
list.

SELECT \ FROM T

WHERE C1 = 1 AND C2 = 1;

Figure 137. PLAN_TABLE Output for Example with Intersection (AND) Operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX2 Y 2

T MI 0 N 3

The same index can be used more than once in a multiple index access, because
more than one predicate could be matching, as in Figure 138.

SELECT \ FROM T

WHERE C1 BETWEEN 1ðð AND 199 OR

C1 BETWEEN 5ðð AND 599;

Figure 138. PLAN_TABLE Output for Example with Union (OR) Operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX1 Y 2

T MU 0 N 3

The steps are:

1. Retrieve all RIDs where C1 is between 100 and 199, using index IX1.

2. Retrieve all RIDs where C1 is between 500 and 599, again using IX1. The
union of those lists is the final set of RIDs.

3. Retrieve the qualified rows using the final RID list.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-271

How Many Columns of the Index Are Used in Matching?
(ACCESSTYPE is I, I1, N, or MX)

If MATCHCOLS is 0, the access method is called a nonmatching index scan. All
the index keys and their RIDs are read.

If MATCHCOLS is greater than 0, the access method is called a matching index
scan: the query uses predicates that match the index columns.

In general, the matching predicates on the leading index columns are equal or IN
| predicates. The predicate that matches the final index column can be an equal, IN,
| or range predicate (<, <=, >, >=, LIKE, or BETWEEN).

The following example illustrates matching predicates:

SELECT \ FROM EMP

WHERE JOBCODE = '5' AND SALARY > 6ðððð AND LOCATION = 'CA';

 INDEX XEMP5 on (JOBCODE, LOCATION, SALARY, AGE);

The index XEMP5 is the chosen access path for this query, with MATCHCOLS = 3.
There are two equal predicates on the first two columns and a range predicate on
the third column. Though there are four columns in the index, only three of them
can be considered matching columns.

Is the Query Satisfied Using Only the Index? (INDEXONLY=Y)
In this case, the method is called index-only access. For a SELECT operation, all
the columns needed for the query can be found in the index and DB2 does not
access the table. For an UPDATE or DELETE operation, only the index is required
to read the selected row.

Index-only access to data is not possible for any step that uses list prefetch
(described under “What Kind of Prefetching Is Done? (PREFETCH is L, S, or
blank)” on page 5-273. Index-only access is not possible for varying-length data,
unless the RETVLCFK subsystem parameter is set to YES. See Section 2 of
Installation Guide for more information.

If access is by more than one index, INDEXONLY is Y for a step with access type
MX, because the data pages are not actually accessed until all the steps for
intersection (MI) or union (MU) take place.

Is a View Materialized into a Work File? (TNAME names a view)
TNAME names a view.

A view is materialized if the data rows it selects are put into a work file to be
processed like a table. If a view in your query is materialized, that step appears in
the plan table with a separate value of QBLOCKNO and the name of the view in
TNAME. When DB2 can process the view by referring only to the base table, there
is no view name in the column TNAME. (For a more detailed description of view
materialization, see “View Processing” on page 5-296.)

5-272 Administration Guide

Was a Scan Limited to Certain Partitions? (PAGE_RANGE=Y)
DB2 can limit a scan of data in a partitioned table space to one or more partitions.
The method is called a limited partition scan. The query must provide a predicate

| on the first key column of the partitioning index. Only the first key column is
| significant for limiting the range of the partition scan.

A limited partition scan can be combined with other access methods. For example,
consider the following query:

SELECT .. FROM T

WHERE C1 BETWEEN '2ðð2' AND '328ð'

| AND C1 BETWEEN '6ððð' AND '8ððð'

AND C2 = '6';

Assume that table T has a partitioned index on column C1 and that values of C1
| between 2002 and 3280 all appear in partitions 3 and 4 and the values between
| 6000 and 8000 appear in partitions 8 and 9. Assume also that T has another index

on column C2. DB2 could choose either of these access methods:

� A matching index scan on column C1. The scan reads index values and data
only from partitions 3, 4, 8, and 9.

� A matching index scan on column C2. (DB2 might choose that if few rows have
C2=6.) The matching index scan alone reads all RIDs for C2=6 from the index
on C2 and all corresponding data pages.

� For a table space scan, DB2 avoids reading data pages from any partitions
except 3, 4, 8 and 9.

Joins: Limited partition scan can be used for each table accessed in a join.

Restrictions: Limited partition scan is not supported when host variables or
parameter markers are used on the first key of the primary index. This is because

| the qualified partition range based on such a predicate is unknown at bind time. If
| you think you can benefit from limited partition scan but you have host variables or
| parameter markers, consider binding with REOPT(VARS).

| If you have predicates using an OR operator and one of the predicates refers to a
| column of the partitioning index that is not the first key column of the index, then
| DB2 does not use limited partition scan.

What Kind of Prefetching Is Done? (PREFETCH is L, S, or blank)
Prefetching is a method of determining in advance that a set of data pages is about
to be used, and then reading the entire set into a buffer with a single asynchronous
I/O operation. If the value of PREFETCH is:

� S, the method is called sequential prefetch. The data pages that are read in
advance are sequential. A table space scan always uses sequential prefetch.
An index scan might not use it. For a more complete description, see
“Sequential Prefetch (PREFETCH=S)” on page 5-291.

� L, the method is called list sequential prefetch. One or more indexes are used
to select the RIDs for a list of data pages to be read in advance; the pages
need not be sequential. Usually, the RIDs are sorted. The exception is the
case of a hybrid join (described under “Hybrid Join (METHOD=4)” on
page 5-289) when the value of column SORTN_JOIN is N. For a more

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-273

complete description, see “List Sequential Prefetch (PREFETCH=L)” on
page 5-291.

� Blank, prefetching is not chosen as an access method. However, depending on
the pattern of the page access, data can be prefetched at execution time
through a process called sequential detection. For a description of that, see
“Sequential Detection at Execution Time” on page 5-292.

Is Data Accessed or Processed in Parallel? (PARALLELISM_MODE is I,
C, or X)

Parallel processing applies only to read-only queries.

If mode is: DB2 plans to use:
I Parallel I/O operations
C Parallel CP operations

| X Sysplex query parallelism

Non-null values in columns ACCESS_DEGREE and JOIN_DEGREE indicate to
what degree DB2 plans to use parallel operations. At execution time, however, DB2
might not actually use parallelism, or it might use fewer operations in parallel than
was planned. For a more complete description , see “Parallel Operations and Query
Performance” on page 5-299.

Are Sorts Performed?
SORTN_JOIN and SORTC_JOIN: SORTN_JOIN indicates that the new table of a
join is sorted before the join. (For hybrid join, this is a sort of the RID list.) When
SORTN_JOIN and SORTC_JOIN are both 'Y', two sorts are performed for the join.
The sorts for joins are indicated on the same row as the new table access.

METHOD 3 Sorts: These are used for ORDER BY, GROUP BY, SELECT
DISTINCT, UNION, or a quantified predicate. They are indicated on a separate row.
A single row of the plan table can indicate two sorts of a composite table, but only
one sort is actually done.

SORTC_UNIQ and SORTC_ORDERBY: SORTC_UNIQ indicates a sort to remove
duplicates, as might be needed by a SELECT statement with DISTINCT or UNION.
SORTC_ORDERBY usually indicates a sort for an ORDER BY clause. But
SORTC_UNIQ and SORTC_ORDERBY also indicate when the results of a
noncorrelated subquery are sorted, both to remove duplicates and to order the
results. One sort does both the removal and the ordering.

Is a Subquery Transformed into a Join? (QBLOCKNO Value)
A plan table shows that a subquery is transformed into a join by the value in
column QBLOCKNO. If the subquery is executed in a separate operation, its value
of QBLOCKNO is greater than the value for the outer query. If the subquery is
transformed into a join, it and the outer query have the same value of QBLOCKNO.
A join is also indicated by a value of 1, 2, or 4 in column METHOD.

5-274 Administration Guide

When Are Column Functions Evaluated?
When the column functions (SUM, AVG, MAX, MIN, COUNT) are evaluated is
based on the access path chosen for the SQL statement.

� If the ACCESSTYPE column is I1, then a MAX or MIN function can be
evaluated by one access of the index named in ACCESSNAME.

� For other values of ACCESSTYPE, the COLUMN_FN_EVAL column tells when
DB2 is evaluating the column functions.

Value Functions Are Evaluated ...
S While performing a sort to satisfy a GROUP BY clause
R While the data is being read from the table or index
blank After data retrieval and after any sorts

Generally, values of R and S are considered better for performance than a blank.

Interpreting Access to a Single Table
The following sections describe different access paths that values in a plan table
can indicate, along with suggestions for supplying better access paths for DB2 to
choose from. The topics are:

� Table Space Scans (ACCESSTYPE=R PREFETCH=S)
� “Overview of Index Access” on page 5-276
� “Index Access Paths” on page 5-278
� “UPDATE Using an Index” on page 5-282

Table Space Scans (ACCESSTYPE=R PREFETCH=S)
Table space scan is most often used for one of the following reasons:

| � Access is through a temporary table. (Index access is not possible for
| temporary tables.)

� A matching index scan is not possible because an index is not available, or
there are no predicates to match the index columns.

� A high percentage of the rows in the table is returned. In this case an index is
not really useful, because most rows need to be read anyway.

� The indexes that have matching predicates have low cluster ratios and are
therefore efficient only for small amounts of data.

Assume that table T has no index on C1. The following is an example that uses a
table space scan:

SELECT \ FROM T WHERE C1 = VALUE;

| In this case, at least every row in T must be examined in order to determine
| whether the value of C1 matches the given value.

Table Space Scans of Nonsegmented Table Spaces
DB2 reads and examines every page in the table space, regardless of which table
the page belongs to. It might also read pages that have been left as free space and
space not yet reclaimed after deleting data.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-275

Table Space Scans of Segmented Table Spaces
If the table space is segmented, DB2 first determines which segments need to be
read. It then reads only the segments in the table space that contain rows of T. If
the prefetch quantity, which is determined by the size of your buffer pool, is greater
than the SEGSIZE, and if the segments for T are not contiguous, DB2 might read
unnecessary pages. Use a SEGSIZE value that is as large as possible, consistent
with the size of the data. A large SEGSIZE value is best to maintain clustering of
data rows. For very small tables, specify a SEGSIZE value that is equal to the
number of pages required for the table.

| Recommendation for SEGSIZE Value: Table 88 summarizes the
| recommendations for SEGSIZE, depending on how large the table is.

| Table 88. Recommendations for SEGSIZE

| Number of Pages| SEGSIZE Recommendation

| ≤ 28| 4 to 28

| > 28 < 128 pages| 32

| ≥ 128 pages| 64

Table Space Scans of Partitioned Table Spaces
Partitioned table spaces are nonsegmented. A table space scan on a partitioned
table space is more efficient than on a nonpartitioned table space. DB2 takes
advantage of the partitions by a limited partition scan, as described under “Was a
Scan Limited to Certain Partitions? (PAGE_RANGE=Y)” on page 5-273.

Table Space Scans and Sequential Prefetch
Regardless of the type of table space, DB2 plans to use sequential prefetch for a
table space scan. For a segmented table space, DB2 might not actually use
sequential prefetch at execution time if it can determine that fewer than four data
pages need to be accessed. For guidance on monitoring sequential prefetch, see
“Sequential Prefetch (PREFETCH=S)” on page 5-291.

| If you do not want to use sequential prefetch for a particular query, consider adding
| to it the clause OPTIMIZE FOR 1 ROW.

Overview of Index Access
Both type 1 and type 2 indexes can provide efficient access to data. In fact, that is
the only purpose of nonunique indexes. Unique indexes have the additional
purpose of ensuring that key values are unique.

Using Indexes to Avoid Sorts
As well as providing selective access to data, indexes can also order data,
sometimes eliminating the need for sorting. Some sorts can be avoided if index
keys are in the order needed by ORDER BY, GROUP BY, a join operation, or
DISTINCT in a column function. In other cases, as when list sequential prefetch is
used, the index does not provide useful ordering, and the selected data might have
to be sorted.

When it is absolutely necessary to prevent a sort, consider creating an index on the
column or columns necessary to provide that ordering.

Consider the following query:

5-276 Administration Guide

SELECT C1,C2,C3 FROM T

WHERE C1 > 1

ORDER BY C1 OPTIMIZE FOR 1 ROW;

An ascending index on C1 or an index on (C1,C2,C3) could eliminate a sort. (For
more information on OPTIMIZE FOR n ROWS, see “Using OPTIMIZE FOR n
ROWS” on page 5-234.)

Not all sorts are inefficient. For example, if the index that provides ordering is not
an efficient one and many rows qualify, it is possible that using another access path
to retrieve and then sort the data could be more efficient than the inefficient,
ordering index.

Costs of Indexes
Before you begin creating indexes, consider carefully their costs:

� Indexes require storage space.

� Each index requires an index space and a data set, and there are operating
system restrictions on the number of open data sets.

� If you have concurrent users of the same table, locking problems are likely with
multiple type 1 indexes. Type 2 indexes can sometimes give high concurrency
and better performance by locking the underlying data page or record instead
of locking the index page.

� Indexes must be changed to reflect every insert or delete operation on the base
table. If an update operation updates a column that is in the index, then the
index must also be changed. The time required by these operations increases
accordingly, especially for type 1 indexes with many duplicate values, either for
particular keys or across the whole key range. A type 2 index is the better
choice.

| Because the RIDs are not ordered, to delete (or update) one type 1 index entry
| from a set of duplicates requires more processing than to delete a unique entry.

With a type 2 nonunique index, searching a long chain of duplicate key values
| to locate a specific key to be deleted from the index is very efficient because
| the RIDs are kept in order.

� Indexes can be built automatically when loading data, but this takes time. They
must be recovered if the underlying table space is recovered, which is also time
consuming.

The costs to be considered for indexes are relevant for type 1 or type 2 indexes.
However, it is a general recommendation that you make all your indexes type 2.
Type 2 indexes can reduce some concurrency problems by their use of data-only
locking. Many other functions in DB2, such as CP-parallelism and row locking,
cannot be used without type 2 indexes.

Recommendation: In reviewing the access paths described in the next section,
consider indexes as part of your database design, See “ Section 2. Designing a
Database” on page 2-1 for details about database design in general. For a query
with a performance problem, ask yourself:

� Would adding a column to an index allow the query to use index-only access?

� Do you need a new index?

� Is your choice of clustering index correct?

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-277

Index Access Paths
DB2 uses the following index access paths:

� “Matching Index Scan (MATCHCOLS>0)”
� “Index Screening” on page 5-279
� “Nonmatching Index Scan (ACCESSTYPE=I and MATCHCOLS=0)” on

page 5-279
� “IN-list Index Scan (ACCESSTYPE=N)” on page 5-279
� “Multiple Index Access (ACCESSTYPE is M, MX, MI, or MU)” on page 5-280
� “One-Fetch Access (ACCESSTYPE=I1)” on page 5-281
� “Index-only Access (INDEXONLY=Y)” on page 5-282
� “Equal Unique Index (MATCHCOLS=number of index columns)” on page 5-282

Matching Index Scan (MATCHCOLS >0)
In a matching index scan, predicates are specified on either the leading or all of the
index key columns. These predicates provide filtering; only specific index pages
and data pages need to be accessed. If the degree of filtering is high, the matching
index scan is efficient.

In the general case, the rules for determining the number of matching columns are
simple, although there are a few exceptions.

� Look at the index columns from leading to trailing. For each index column, if
there is at least one indexable Boolean term predicate on that column, it is a
match column. (See “Properties of Predicates” on page 5-206 for a definition of
Boolean term.)

Column MATCHCOLS in a plan table shows how many of the index columns
are matched by predicates.

� If no matching predicate is found for a column, the search for matching
predicates stops.

� If a matching predicate is a range predicate, then there can be no more
matching columns. For example, in the matching index scan example that
follows, the range predicate C2>1 prevents the search for additional matching
columns.

The exceptional cases are:

� At most one IN-list predicate can be a matching predicate on an index.

� For MX accesses and index access with list prefetch, IN-list predicates cannot
be used as matching predicates.

Matching Index Scan Example: Assume there is an index on T(C1,C2,C3,C4):

SELECT \ FROM T

WHERE C1=1 AND C2>1

 AND C3=1;

There are two matching columns in this example. The first one comes from the
predicate C1=1, and the second one comes from C2>1. The range predicate on C2
prevents C3 from becoming a matching column.

5-278 Administration Guide

 Index Screening
In index screening, predicates are specified on index key columns but are not part
of the matching columns. Those predicates improve the index access by reducing
the number of rows that qualify while searching the index. For example, with an
index on T(C1,C2,C3,C4):

SELECT \ FROM T

WHERE C1 = 1

AND C3 > ð AND C4 = 2

AND C5 = 8;

C3>0 and C4=2 are index screening predicates. They can be applied on the index,
but they are not matching predicates. C5=8 is not an index screening predicate,
and it must be evaluated when data is retrieved. The value of MATCHCOLS in the
plan table is 1.

The index is not screened when list prefetch is used or during the MX phases of
multiple index access. EXPLAIN does not directly tell when an index is screened;
however, you can tell from the query, the indexes used, and the value of
MATCHCOLS in the plan table.

Nonmatching Index Scan (ACCESSTYPE=I and MATCHCOLS=0)
In a nonmatching index scan there are no matching columns in the index. Hence,
all the index keys must be examined.

Because a nonmatching index usually provides no filtering, there are only a few
cases when it is an efficient access path. The following situations are examples:

� When there are index screening predicates

In that case, not all of the data pages are accessed.

� When the clause OPTIMIZE FOR n ROWS is used

That clause can sometimes favor a nonmatching index, especially if the index
gives the ordering of the ORDER BY clause.

� When there is more than one table in a nonsegmented table space

In that case, a table space scan reads irrelevant rows. By accessing the rows
through the nonmatching index, there are fewer rows to read.

IN-list Index Scan (ACCESSTYPE=N)
An IN-list index scan is a special case of the matching index scan, in which a single
indexable IN predicate is used as a matching equal predicate.

You can regard the IN-list index scan as a series of matching index scans with the
values in the IN predicate being used for each matching index scan. The following
example has an index on (C1,C2,C3,C4) and might use an IN-list index scan:

SELECT \ FROM T

WHERE C1=1 AND C2 IN (1,2,3)

AND C3>ð AND C4<1ðð;

The plan table shows MATCHCOLS = 3 and ACCESSTYPE = N. The IN-list scan
is performed as the following three matching index scans:

 (C1=1,C2=1,C3>ð), (C1=1,C2=2,C3>ð), (C1=1,C2=3,C3>ð)

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-279

Multiple Index Access (ACCESSTYPE is M, MX, MI, or MU)
Multiple index access uses more than one index to access a table. It is a good
access path when:

� No single index provides efficient access.
� A combination of index accesses provides efficient access.

RID lists are constructed for each of the indexes involved. The unions or
intersections of the RID lists produce a final list of qualified RIDs that is used to
retrieve the result rows, using list prefetch. You can consider multiple index access
as an extension to list prefetch with more complex RID retrieval operations in its
first phase. The complex operators are union and intersection.

DB2 chooses multiple index access for the following query:

SELECT \ FROM EMP

WHERE (AGE = 34) OR

(AGE = 4ð AND JOB = 'MANAGER');

For this query:

� EMP is a table with columns EMPNO, EMPNAME, DEPT, JOB, AGE, and SAL.
� EMPX1 is an index on EMP with key column AGE.
� EMPX2 is an index on EMP with key column JOB.

The plan table contains a sequence of rows describing the access. For this query,
the values of ACCESSTYPE are:

Value Meaning
M Start of multiple index access processing
MX Indexes are to be scanned for later union or intersection
MI An intersection (AND) is performed
MU A union (OR) is performed

The following steps relate to the previous query and the values shown for the plan
table in Figure 139 on page 5-281:

1. Index EMPX1, with matching predicate AGE= 34, provides a set of candidates
for the result of the query. The value of MIXOPSEQ is 1.

2. Index EMPX1, with matching predicate AGE = 40, also provides a set of
candidates for the result of the query. The value of MIXOPSEQ is 2.

3. Index EMPX2, with matching predicate JOB='MANAGER', also provides a set
of candidates for the result of the query. The value of MIXOPSEQ is 3.

4. The first intersection (AND) is done, and the value of MIXOPSEQ is 4. This MI
removes the two previous candidate lists (produced by MIXOPSEQs 2 and 3)
by intersecting them to form an intermediate candidate list, IR1, which is not
shown in PLAN_TABLE.

5. The last step, where the value MIXOPSEQ is 5, is a union (OR) of the two
remaining candidate lists, which are IR1 and the candidate list produced by
MIXOPSEQ 1. This final union gives the result for the query.

5-280 Administration Guide

| Figure 139. Plan Table Output for a Query that Uses Multiple Indexes. Depending on the
filter factors of the predicates, the access steps can appear in a different order.

PLAN-
NO TNAME

ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME PREFETCH

MIXOP-
SEQ

1 EMP M 0 L 0

1 EMP MX 1 EMPX1 1

1 EMP MX 1 EMPX1 2

1 EMP MI 0 3

1 EMP MX 1 EMPX2 4

1 EMP MU 0 5

In this example, the steps in the multiple index access follow the physical sequence
of the predicates in the query. This is not always the case. The multiple index steps
are arranged in an order that uses RID pool storage most efficiently and for the
least amount of time.

One-Fetch Access (ACCESSTYPE=I1)
One-fetch index access requires retrieving only one row. It is the best possible
access path and is chosen whenever it is available. It applies to a statement with a
MIN or MAX column function: the order of the index allows a single row to give the
result of the function.

One-fetch index access is a possible access path when:

� There is only one table in the query.

� There is only one column function (either MIN or MAX).

� Either no predicate or all predicates are matching predicates for the index.

� There is no GROUP BY.

� There is an ascending index column for MIN, and a descending index column
for MAX.

� Column functions are on:

– The first index column if there are no predicates

– The last matching column of the index if the last matching predicate is a
range type

– The next index column (after the last matching column) if all matching
predicates are equal type.

Queries Using One-fetch Index Access: The following queries use one-fetch
index scan with an index existing on T(C1,C2 DESC,C3):

SELECT MIN(C1) FROM T;

SELECT MIN(C1) FROM T WHERE C1>5;

SELECT MIN(C1) FROM T WHERE C1>5 AND C1<1ð;

SELECT MAX(C2) FROM T WHERE C1=5;

SELECT MAX(C2) FROM T WHERE C1=5 AND C2>5;

SELECT MAX(C2) FROM T WHERE C1=5 AND C2>5 AND C2<1ð;

SELECT MAX(C2) FROM T WHERE C1=5 AND C2 BETWEEN 5 AND 1ð;

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-281

Index-only Access (INDEXONLY=Y)
With index-only access, the access path does not require any data pages because
the access information is available in the index. Conversely, when an SQL
statement requests a column that is not in the index, updates any column in the
table, or deletes a row, DB2 has to access the associated data pages. Because the
index is almost always smaller than the table itself, an index-only access path
usually processes the data efficiently.

With an index on T(C1,C2), the following queries can use index-only access:

SELECT C1, C2 FROM T WHERE C1 > ð;
SELECT C1, C2 FROM T;

SELECT COUNT(\) FROM T WHERE C1 = 1;

Equal Unique Index (MATCHCOLS=number of index columns)
An index that is fully matched and unique, and in which all matching predicates are
equal-predicates, is called an equal unique index case. This case guarantees that
only one row is retrieved. If there is no one-fetch index access available, this is
considered the most efficient access over all other indexes that are not equal
unique. (The uniqueness of an index is determined by whether or not it was defined
as unique.)

UPDATE Using an Index
If no index key columns are updated, you can use an index while performing an
UPDATE operation.

To use a matching index scan to update an index in which its key columns are
being updated, the following conditions must be met:

� Each updated key column must have a corresponding predicate of the form
"index_key_column = constant" or "index_key_column IS NULL".

� If a view is involved, WITH CHECK OPTION must not be specified.

With list prefetch or multiple index access, any index or indexes can be used in an
UPDATE operation. Of course, to be chosen, those access paths must provide
efficient access to the data

Interpreting Access to Two or More Tables
A join operation retrieves rows from more than one table and combines them. The
operation specifies at least two tables, but they need not be distinct.

This section begins with “Definitions and Examples” on page 5-283, below, and
continues with descriptions of the methods of joining that can be indicated in a plan
table:

� “Nested Loop Join (METHOD=1)” on page 5-285
� “Merge Scan Join (METHOD=2)” on page 5-287
� “Hybrid Join (METHOD=4)” on page 5-289

5-282 Administration Guide

Definitions and Examples
A join operation can involve more than two tables. But the operation is carried out
in a series of steps. Each step joins only two tables.

Definitions: The composite table (or outer table) in a join operation is the table
remaining from the previous step, or it is the first table accessed in the first step. (In
the first step, then, the composite table is composed of only one table.) The new
table (or inner table) in a join operation is the table newly accessed in the step.

Example: Figure 140 on page 5-284 shows a subset of columns in a plan table. In
four steps, DB2:

1. Accesses the first table (METHOD=0), named TJ (TNAME), which becomes the
composite table in step 2.

2. Joins the new table TK to TJ, forming a new composite table.

3. Sorts the new table TL (SORTN_JOIN=Y) and the composite table
(SORTC_JOIN=Y), and then joins the two sorted tables.

4. Sorts the final composite table (TNAME is blank) into the desired order
(SORTC_ORDERBY=Y).

Definitions: A join operation typically matches a row of one table with a row of
another on the basis of a join condition. For example, the condition might specify
that the value in column A of one table equals the value of column X in the other
table (WHERE T1.A = T2.X).

Two kinds of joins differ in what they do with rows in one table that do not match
on the join condition with any row in the other table:

� An inner join discards rows of either table that do not match any row of the
other table.

� An outer join keeps unmatched rows of one or the other table, or of both. A row
in the composite table that results from an unmatched row is filled out with null
values. Outer joins are distinguished by which unmatched rows they keep.

This outer join: Keeps unmatched rows from:
Left outer join The composite (outer) table
Right outer join The new (inner) table
Full outer join Both tables

Example: Figure 141 on page 5-284 shows an outer join with a subset of the
values it produces in a plan table for the applicable rows. Column JOIN_TYPE
identifies the type of outer join with one of these values:

� F for FULL OUTER JOIN
� L for LEFT OUTER JOIN
� Blank for INNER JOIN or no join

At execution, DB2 converts every right outer join to a left outer join, so JOIN_TYPE
never identifies a right outer join specifically.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-283

 ┌─────┐ ┌─────┐

 │ │ (Method 1) │ │

│ │ Nested │ │

 composite │ TJ ├────5 Loop %────┤ TK │ new

│ │ Join │ │

 └─────┘ │ └─────┘

 6

 ┌─────┐ ┌─────┐

 │ │ (Method 2) │ │

composite │work ├──────5 Merge Scan %───────┤ TL │ new

 │file │ Join │ │

│ │ │ │ │

 └─────┘ (Sort) └─────┘

 │

 6

 Result

Figure 140. Join Methods as Displayed in a Plan Table

METHOD TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

TSLOCK-
MODE

0 TJ I 1 TJX1 N IS

1 TK I 1 TKX1 N IS

2 TL I 0 TLX1 Y S

3 0 N

SORTN
UNIQ

SORTN
JOIN

SORTN
ORDERBY

SORTN
GROUPBY

SORTC
UNIQ

SORTC
JOIN

SORTC
ORDERBY

SORTC
GROUPBY

N N N N N N N N

N N N N N N N N

N Y N N N Y N N

N N N N N N Y N

EXPLAIN PLAN SET QUERYNO = 1ð FOR

SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS

FROM PROJECTS LEFT JOIN

 (SELECT PART,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,

 PRODUCTS.PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP

ON PROJECTS.PROD# = PRODNUM

Figure 141. Plan Table Output for an Example with Outer Joins

QUERYNO QBLOCKNO PLANNO TNAME JOIN_TYPE

10 1 1 PROJECTS

10 1 2 TEMP L

10 2 1 PRODUCTS

10 2 2 PARTS F

Table Names for Work Files: DB2 creates a temporary work file for subquery with
several joins, at least one of which is an outer join. If you do not specify a

| correlation name, DB2 gives the work file a name, which appears in column
TNAME of the plan table. The name of the work file is DSNWFQB(xx), where xx is
the number of the query block (QBLOCKNO) that produced the work file.

5-284 Administration Guide

Nested Loop Join (METHOD=1)
This section describes this common join method.

Method of Joining
DB2 scans the composite (outer) table. For each row in that table that qualifies (by
satisfying the predicates on that table), DB2 searches for matching rows of the new
(inner) table. It concatenates any it finds with the current row of the composite
table. If no rows match the current row, then:

For an inner join, DB2 discards the current row.
For an outer join, DB2 concatenates a row of null values.

Stage 1 and stage 2 predicates eliminate unqualified rows during the join. (For an
explanation of those types of predicate, see “Stage 1 and Stage 2 Predicates” on
page 5-208.) DB2 can scan either table using any of the available access methods,
including table space scan.

 Performance Considerations
The nested loop join repetitively scans the inner table. That is, DB2 scans the outer
table once, and scans the inner table as many times as the number of qualifying
rows in the outer table. Hence, the nested loop join is usually the most efficient join
method when the values of the join column passed to the inner table are in
sequence and the index on the join column of the inner table is clustered, or the
number of rows retrieved in the inner table through the index is small.

When It Is Used
Nested loop join is often used if:

� The outer table is small.

� Predicates with small filter factors reduce the number of qualifying rows in the
outer table.

� An efficient, highly clustered index exists on the join columns of the inner table.

� The number of data pages accessed in the inner table is small.

Example: Left Outer Join: Figure 142 on page 5-286 illustrates a nested loop
for a left outer join. The outer join preserves the unmatched row in OUTERT with
values A=10 and B=6. The same join method for an inner join differs only in
discarding that row.

Example: One-row Table Priority: For a case like the example below, with a
unique index on T1.C2, DB2 detects that T1 has only one row that satisfies the
search condition. DB2 makes T1 the first table in a nested loop join.

SELECT \ FROM T1, T2

WHERE T1.C1 = T2.C1 AND

T1.C2 = 5;

Example: Cartesian Join with Small Tables First: A Cartesian join is a form of
nested loop join in which there are no join predicates between the two tables. DB2
usually avoids a Cartesian join, but sometimes it is the most efficient method, as in
the example below. The query uses three tables: T1 has 2 rows, T2 has 3 rows,
and T3 has 10 million rows.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-285

 ┌──────────────────────────────────────┐

│ SELECT A, B, X, Y │

│ FROM (SELECT FROM OUTERT WHERE A=1ð) │

│ LEFT JOIN INNERT ON B=X; │

 └───────────────┬──────────────────────┘

 6

Left outer join using nested loop join

Table: OUTERT INNERT COMPOSITE

Columns: A B X Y A B X Y

 ┌───────────────────┐ ┌───────────────────┐ ┌───────────────┐

│ 1ð 3 │ ────────┐ │ 5 A │ ────────5 │ 1ð 3 3 B │

│ │ └───5│ 3 B │ │ 1ð 1 1 D │

│ 1ð 1 │ ───┐ ┌─────5│ 2 C │ │ 1ð 2 2 C │

│ │ ├────────5│ 1 D │ │ 1ð 2 2 E │

│ │ │ ├─────5│ 2 E │ ┌───5 │ 1ð 6 - - │

│ 1ð 2 │ ───┼──┘ │ 9 F │ │ │ 1ð 1 1 D │

│ 1ð 6 │ ─┐ │ │ 7 G │ │ └───────────────┘

│ 1ð 1 │ ─│─┘ └───────────────────┘ │

 └───────────────────┘ │ │

 └───────────────────────────────────────┘

 Scan the outer table. The nested loop join

 For each qualifying row..............find all matching rows produces this result,

in the inner table, by a preserving the values

table space or index scan. of the outer table.

Figure 142. Nested Loop Join for a Left Outer Join

SELECT \ FROM T1, T2, T3

WHERE T1.C1 = T3.C1 AND

T2.C2 = T3.C2 AND

T3.C3 = 5;

There are join predicates between T1 and T3 and between T2 and T3. There is no
join predicate between T1 and T2.

Assume that 5 million rows of T3 have the value C3=5. Processing time is large if
T3 is the outer table of the join and tables T1 and T2 are accessed for each of 5
million rows.

But if all rows from T1 and T2 are joined, without a join predicate, the 5 million
rows are accessed only six times, once for each row in the Cartesian join of T1 and
T2. It is difficult to say which access path is the most efficient. DB2 evaluates the
different options and could decide to access the tables in the sequence T1, T2, T3.

Sorting the Composite Table: Your plan table could show a nested loop join that
includes a sort on the composite table. DB2 might sort the composite table (the
outer table in Figure 142) if:

� The join columns in the composite table and the new table are not in the same
sequence.

� There is no index on the join column of the composite table.

� There is an index, but it is poorly clustered.

Nested loop join with a sorted composite table uses sequential detection efficiently
to prefetch data pages of the new table, reducing the number of synchronous I/O
operations and the elapsed time.

5-286 Administration Guide

Merge Scan Join (METHOD=2)
Merge scan join is also known as merge join or sort merge join. For this method,
there must be one or more predicates of the form TABLE1.COL1=TABLE2.COL2, where
the two columns have the same data type and length attribute.

Method of Joining
Figure 143 on page 5-288 illustrates a merge scan join.

DB2 scans both tables in the order of the join columns. If no efficient indexes on
the join columns provide the order, DB2 might sort the outer table, the inner table,
or both. The inner table is put into a work file; the outer table is put into a work file
only if it must be sorted. When a row of the outer table matches a row of the inner
table, DB2 returns the combined rows.

DB2 then reads another row of the inner table that might match the same row of
the outer table and continues reading rows of the inner table as long as there is a
match. When there is no longer a match, DB2 reads another row of the outer table.

� If that row has the same value in the join column, DB2 reads again the
matching group of records from the inner table. Thus, a group of duplicate
records in the inner table is scanned as many times as there are matching
records in the outer table.

� If the outer row has a new value in the join column, DB2 searches ahead in the
inner table. It can find:

– Unmatched rows in the inner table, with lower values in the join column.

– A new matching inner row. DB2 then starts the process again.

– An inner row with a higher value of the join column. Now the row of the
outer table is unmatched. DB2 searches ahead in the outer table, and can
find:

- Unmatched rows in the outer table.

- A new matching outer row. DB2 then starts the process again.

- An outer row with a higher value of the join column. Now the row of the
inner table is unmatched, and DB2 resumes searching the inner table.

If DB2 finds an unmatched row:

For an inner join, DB2 discards the row.

For a left outer join, DB2 discards the row if it comes from the inner table and
keeps it if it comes from the outer table.

For a full outer join, DB2 keeps the row.

When DB2 keeps an unmatched row from a table, it concatenates a set of null
values as if that matched from the other table. A merge scan join must be used for
a full outer join.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-287

 ┌────────────────────────┐

│SELECT A, B, X, Y │

 │FROM OUTER, INNER │

│WHERE A = 1ð AND B = X;│

 └───────────┬────────────┘

 6

Merge scan join

Condense and sort the

outer table, or access

it through an index on Condense and sort the

 column B. inner table.

Table: OUTER INNER COMPOSITE

Columns: A B X Y A B X Y

 ┌────────┐ ┌──────┐ ┌───────────────┐

│ 1ð 1 │ ─────────┬────────5│ 1 D │ ────────────────5 │ 1ð 1 1 D │

│ 1ð 1 │ ─────────┘ ┌─────5│ 2 C │ │ 1ð 1 1 D │

│ 1ð 2 │ ────────────┴─────5│ 2 E │ │ 1ð 2 2 C │

│ 1ð 3 │ ──────────────────5│ 3 B │ │ 1ð 2 2 E │

│ 1ð 6 │ │ 5 A │ │ 1ð 3 3 B │

 └────────┘ │ 7 G │ └───────────────┘

 │ 9 F │

 └──────┘

 Scan the outer table. The merge scan join

 For each row,scan a group of matching produces this result.

rows in the inner table.

Figure 143. Merge Scan Join

 Performance Considerations
A full outer join by this method uses all predicates in the ON clause to match the
two tables and reads every row at the time of the join. Inner and left outer joins use
only stage 1 predicates in the ON clause to match the tables. If your tables match
on more than one column, it is generally more efficient to put all the predicates for
the matches in the ON clause, rather than to leave some of them in the WHERE
clause.

For an inner join, DB2 can derive extra predicates for the inner table at bind time
and apply them to the sorted outer table to be used at run time. The predicates can
reduce the size of the work file needed for the inner table.

If DB2 has used an efficient index on the join columns, to retrieve the rows of the
inner table, those rows are already in sequence. DB2 puts the data directly into the
work file without sorting the inner table, which reduces the elapsed time.

When It Is Used
A merge scan join is often used if:

� The qualifying rows of the inner and outer table are large, and the join
predicate does not provide much filtering; that is, in a many-to-many join.

� The tables are large and have no indexes with matching columns.

� Few columns are selected on inner tables. This is the case when a DB2 sort is
used. The fewer the columns to be sorted, the more efficient the sort.

5-288 Administration Guide

Hybrid Join (METHOD=4)
The method applies only to an inner join and requires an index on the join column
of the inner table.

Method of Joining
The method requires obtaining RIDs in the order needed to use list prefetch. The
steps are shown in Figure 144 on page 5-290. In that example, both the outer
table (OUTER) and the inner table (INNER) have indexes on the join columns.

In the successive steps, DB2:

.1/ Scans the outer table (OUTER).

.2/ Joins the outer tables with RIDs from the index on the inner table. The
result is the phase 1 intermediate table. The index of the inner table is scanned
for every row of the outer table.

.3/ Sorts the data in the outer table and the RIDs, creating a sorted RID list
and the phase 2 intermediate table. The sort is indicated by a value of Y in
column SORTN_JOIN of the plan table. If the index on the inner table is a
clustering index, DB2 can skip this sort; the value in SORTN_JOIN is then N.

.4/ Retrieves the data from the inner table, using list prefetch.

.5/ Concatenates the data from the inner table and the phase 2 intermediate
table to create the final composite table.

Possible Results from EXPLAIN for Hybrid Join
Column Value Explanation

METHOD='4' A hybrid join was used.

SORTC_JOIN='Y' The composite table was sorted.

SORTN_JOIN='Y' The intermediate table was sorted in the order of inner table
RIDs. A non-clustered index accessed the inner table RIDs.

SORTN_JOIN='N' The intermediate table RIDs were not sorted. A clustered
index retrieved the inner table RIDs, and the RIDs were
already well ordered.

PREFETCH='L' Pages were read using list prefetch.

 Performance Considerations
Hybrid join uses list prefetch more efficiently than nested loop join, especially if
there are indexes on the join predicate with low cluster ratios. It also processes
duplicates more efficiently because the inner table is scanned only once for each
set of duplicate values in the join column of the outer table.

If the index on the inner table is highly clustered, there is no need to sort the
intermediate table (SORTN_JOIN=N). The intermediate table is placed in a table in
memory rather than in a work file.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-289

 ┌─────────────────────────┐

│ SELECT A, B, X, Y │

 │ FROM OUTER, INNER │

│ WHERE A = 1ð AND X = B │

 └──────────┬──────────────┘

 │

 6

 INNER

 X Y RIDs

 OUTER ┌──────────┐

A B │ 1 Davis │ P5

 Index ┌────────┐ 1 Index │ 2 Jones │ P2

 ┌───┐ │ 1ð 1 │ │ ┌───┐ │ 2 Smith │ P7

 │ │ │ 1ð 1 │ │ │ │ │ │ 3 Brown │ P4

 │ │ │ 1ð 2 │ │ │ │ │ │ 5 Blake │ P1 5
 │ │ │ 1ð 3 │ │ │ │ │ │ 7 Stone │ P6 ────────────────5

 │ │ │ 1ð 6 │ 6 6 │ │ │ 9 Meyer │ P3 ┌──────5 Composite Table

 └───┴──┴────────┘ ─ ─ ──┐ ┌── ─ ─ └───┘ └──────────┘ │

│ │ & │ A B X Y

 6 6 │ │ ┌────────┬───────────┐

 ┌───────┴───────┐ │ │ 1ð 2 │ 2 Jones│

2 X=B │ List Prefetch │ 4 │ │ 1ð 3 │ 3 Brown│

 └───────────────┘ │ │ 1ð 1 │ 1 Davis│

Intermediate table (phase 1) & │ │ 1ð 1 │ 1 Davis│

 │ │ │ 1ð 2 │ 2 Jones│

 OUTER Data INNER RIDs │ │ └────────┴───────────┘

 ┌────────┬────────────┐ RID list │ │

 │ 1ð 1 │ P5 │ -------- │ │

 │ 1ð 1 │ P5 │ P5 │ │

 │ 1ð 2 │ P2 │ P2 │ │

 │ 1ð 2 │ P7 │ P7 │ │

 │ 1ð 3 │ P4 │ P4 │ │

 └────────┴──┬─────────┘ │ │

 6 │ │

┌──────────┐ │ │

3 │ SORT │ │ │

└─┬──────┬─┘ │ │

│ │ ┌──────────┐ │ │

│ └────5 │ RID list ├───┘ │

│ │ -------- │ │

│ │ P2 │ │

6 │ P4 │ │

│ P5 │ │

Intermediate table (phase 2) │ P7 │ │

 │ │ │

 OUTER Data INNER RID └──────────┘ │

 ┌────────┬────────────┐ │

 │ 1ð 2 │ P2 │ │

 │ 1ð 3 │ P4 │ │

 │ 1ð 1 │ P5 ├──┘

 │ 1ð 1 │ P5 │

 │ 1ð 2 │ P7 │

 └────────┴────────────┘

Figure 144. Hybrid Join (SORTN_JOIN='Y')

When It Is Used
Hybrid join is often used if:

� A nonclustered index or indexes are used on the join columns of the inner table

� There are duplicate qualifying rows in the outer table

Interpreting Data Prefetch
Prefetch is a mechanism for reading a set of pages, usually 32, into the buffer pool
with only one asynchronous I/O operation. Prefetch can allow substantial savings in
both processor cycles and I/O costs. To achieve those savings, monitor the use of
prefetch.

5-290 Administration Guide

A plan table can indicate the use of two kinds of prefetch:

� “Sequential Prefetch (PREFETCH=S)”

� “List Sequential Prefetch (PREFETCH=L)”

If DB2 does not choose prefetch at bind time, it can sometimes use it at execution
time nevertheless. The method is described in:

� “Sequential Detection at Execution Time” on page 5-292

Sequential Prefetch (PREFETCH=S)
Sequential prefetch reads a sequential set of pages. The maximum number of
pages read by a request issued from your application program is determined by the
size of the buffer pool used:

� For 4KB buffer pools

Buffer Pool Size Pages Read by Prefetch
<=223 buffers 8 pages for each asynchronous I/O
224-999 buffers 16 pages for each asynchronous I/O
1000+ buffers 32 pages for each asynchronous I/O

� For 32KB buffer pools

Buffer Pool Size Pages Read by Prefetch
<=16 buffers 0 pages (prefetch disabled)
17-99 buffers 2 pages for each asynchronous I/O
100+ buffers 4 pages for each asynchronous I/O

| For certain utilities (LOAD, REORG, RECOVER), the prefetch quantity can be twice
| as much.

When It Is Used: Sequential prefetch is generally used for a table space scan.

For an index scan that accesses 8 or more consecutive data pages, DB2 requests
sequential prefetch at bind time. The index must have a cluster ratio of 80% or
higher. Both data pages and index pages are prefetched.

List Sequential Prefetch (PREFETCH=L)
List sequential prefetch reads a set of data pages determined by a list of RIDs
taken from an index. The data pages need not be contiguous. List prefetch can be
used in conjunction with either single or multiple index access.

The Access Method
The three steps in list sequential prefetch are:

1. RID retrieval: A list of RIDs for needed data pages is found by matching index
scans of one or more indexes.

2. RID sort: The list of RIDs is sorted in ascending order by page number.

3. Data retrieval: The needed data pages are prefetched in order using the sorted
RID list.

List sequential prefetch does not preserve the data ordering given by the index.
Because the RIDs are sorted in page number order before accessing the data, the
data is not retrieved in order by any column. If the data must be ordered for an
ORDER BY clause or any other reason, it requires an additional sort.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-291

In a hybrid join, if the index is highly clustered, the page numbers might not be
sorted before accessing the data.

List sequential prefetch can be used with most matching predicates for an index
scan. IN-list predicates are the exception; they cannot be the matching predicates
when list sequential prefetch is used.

When It Is Used
List sequential prefetch is used:

� Usually with a single index that has a cluster ratio lower than 80%.

� Sometimes on indexes with a high cluster ratio, if the estimated amount of data
to be accessed is too small to make sequential prefetch efficient, but large
enough to require more than one regular read.

� Always to access data by multiple index access.

� Always to access data from the inner table during a hybrid join.

Bind Time and Execution Time Thresholds
DB2 does not consider list sequential prefetch if the estimated number of RIDs to
be processed would take more than 50% of the RID pool when the query is
executed. You can change the size of the RID pool in the field RID POOL SIZE on
installation panel DSNTIPC. The maximum size of a RID pool is 1000MB. The
maximum size of a single RID list is approximately 16 million RIDs. For information
on calculating RID pool size, see “Increasing RID Pool Size” on page 5-69.

During execution, DB2 ends list sequential prefetching if more than 25% of the
rows in the table (with a minimum of 4075) must be accessed. Record IFCID 0125
in the performance trace, mapped by macro DSNDQW01, indicates whether list
prefetch ended.

When list sequential prefetch ends, the query continues processing by a method
that depends on the current access path.

� For access through a single index or through the union of RID lists from two
indexes, processing continues by a table space scan.

� For index access before forming an intersection of RID lists, processing
continues with the next step of multiple index access. If there is no remaining
step, and no RID list has been accumulated, processing continues by a table
space scan.

While forming an intersection of RID lists, if any list has 32 or fewer RIDs,
intersection stops, and the list of 32 or fewer RIDs is used to access the data.

Sequential Detection at Execution Time
If DB2 does not choose prefetch at bind time, it can sometimes use it at execution
time nevertheless. The method is called sequential detection.

5-292 Administration Guide

When It Is Used
DB2 can use sequential detection for both index leaf pages and data pages. It is
most commonly used on the inner table of a nested loop join, if the data is
accessed sequentially.

If a table is accessed repeatedly using the same statement (for example, DELETE
in a do-while loop), the data or index leaf pages of the table can be accessed
sequentially. This is common in a batch processing environment. Sequential
detection can then be used if access is through:

� SELECT or FETCH statements
� UPDATE and DELETE statements
� INSERT statements when existing data pages are accessed sequentially

DB2 can use sequential detection if it did not choose sequential prefetch at bind
time because of an inaccurate estimate of the number of pages to be accessed.

Sequential detection is not used for an SQL statement that is subject to referential
constraints.

How to Tell Whether It Was Used
A plan table does not indicate sequential detection, which is not determined until
run time. You can determine whether sequential detection was used, from record
IFCID 0003 in the accounting trace or record IFCID 0006 in the performance trace.

How To Tell If It Might Be Used
The pattern of accessing a page is tracked when the application scans DB2 data
through an index. Tracking is done to detect situations where the access pattern
that develops is sequential or nearly sequential.

The most recent 8 pages are tracked. A page is considered page-sequential if it is
within P/2 advancing pages of the current page, where P is the prefetch quantity. P
is usually 32.

If a page is page-sequential, DB2 determines further if data access is sequential or
nearly sequential. Data access is declared sequential if more than 4 out of the last
8 pages are page-sequential; this is also true for index-only access. The tracking is
continuous, allowing access to slip into and out of data access sequential.

When data access sequential is first declared, which is called initial data access
sequential, three page ranges are calculated as follows:

� Let A be the page being requested. RUN1 is defined as the page range of
length P/2 pages starting at A.

� Let B be page A + P/2. RUN2 is defined as the page range of length P/2 pages
starting at B.

� Let C be page B + P/2. RUN3 is defined as the page range of length P pages
starting at C.

For example, assume page A is 10, the following figure illustrates the page ranges
that DB2 calculates.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-293

 A B C

 ┌─────────────┬──────────────┬────────────────────────────┐

 │ Run1 │ Run2 │ Run3 │

 └─────────────┴──────────────┴────────────────────────────┘

 Page # 1ð 26 42

 P = 32 pages | 16 | 16 | 32 |

Figure 145. Initial Page Ranges to Determine When to Prefetch

For initial data access sequential, prefetch is requested starting at page A for P
pages (RUN1 and RUN2). The prefetch quantity is always P pages.

For subsequent page requests where the page is 1) page sequential and 2) data
access sequential is still in effect, prefetch is requested as follows:

� If the desired page is in RUN1, then no prefetch is triggered because it was
already triggered when data access sequential was first declared.

� If the desired page is in RUN2, then prefetch for RUN3 is triggered and RUN2
becomes RUN1, RUN3 becomes RUN2, and RUN3 becomes the page range
starting at C+P for a length of P pages.

If a data access pattern develops such that data access sequential is no longer in
effect and, thereafter, a new pattern develops that is sequential as described
above, then initial data access sequential is declared again and handled
accordingly.

Because, at bind time, the number of pages to be accessed can only be estimated,
sequential detection acts as a safety net and is employed when the data is being
accessed sequentially.

In extreme situations, when certain buffer pool thresholds are reached, sequential
prefetch can be disabled. See “Buffer Pool Thresholds” on page 5-53 for a
description of these thresholds.

Determining Sort Activity
There are two general types of sorts that DB2 can use when accessing data. One
is a sort of data rows; the other is a sort of row identifiers (RIDs) in a RID list.

Sorts of Data
After you run EXPLAIN, DB2 sorts are indicated in PLAN_TABLE. The sorts can be
either sorts of the composite table or the new table. If a single row of PLAN_TABLE
has a 'Y' in more than one of the sort composite columns, then one sort
accomplishes two things. (DB2 will not perform two sorts when two 'Y's are in the
same row.) For instance, if both SORTC_ORDERBY and SORTC_UNIQ are 'Y' in
one row of PLAN_TABLE, then a single sort puts the rows in order and removes
any duplicate rows as well.

The only reason DB2 sorts the new table is for join processing, which is indicated
by SORTN_JOIN.

5-294 Administration Guide

Sorts for Group by and Order by
These sorts are indicated by SORTC_ORDERBY, and SORTC_GROUPBY in
PLAN_TABLE. If there is both a GROUP BY clause and an ORDER BY clause,
and if every item in the ORDER-BY list is in the GROUP-BY list, then only one sort
is performed, which is marked as SORTC_ORDERBY.

The performance of the sort by the GROUP BY clause is improved when the query
accesses a single table and when there is no index on the GROUP BY column.

Sorts to Remove Duplicates
This type of sort is used for a query with SELECT DISTINCT, with a set function
such as COUNT(DISTINCT COL1), or to remove duplicates in UNION processing.
It is indicated by SORTC_UNIQ in PLAN_TABLE.

Sorts Used in Join Processing
Before joining two tables, it is often necessary to first sort either one or both of
them. For hybrid join (METHOD 4) and nested loop join (METHOD 1), the
composite table can be sorted to make the join more efficient. For merge join
(METHOD 2), both the composite table and new table need to be sorted unless an
index is used for accessing these tables that gives the correct order already. The
sorts needed for join processing are indicated by SORTN_JOIN and SORTC_JOIN
in the PLAN_TABLE.

Sorts Needed for Subquery Processing
When a noncorrelated IN or NOT IN subquery is present in the query, the results of
the subquery are sorted and put into a work file for later reference by the parent
query. The results of the subquery are sorted because this allows the parent query
to be more efficient when processing the IN or NOT IN predicate. Duplicates are
not needed in the work file, and are removed. Noncorrelated subqueries used with
=ANY or =ALL, or NOT=ANY or NOT=ALL also need the same type of sort as IN
or NOT IN subqueries. When a sort for a noncorrelated subquery is performed, you
see both SORTC_ORDERBY and SORTC_UNIQUE in PLAN_TABLE. This is
because DB2 removes the duplicates and performs the sort.

SORTN_GROUPBY, SORTN_ORDERBY, and SORTN_UNIQ are not currently
used by DB2.

Sorts of RIDs
DB2 sorts RIDs into ascending page number order in order to perform list prefetch.
This sort is very fast and is done totally in memory. A RID sort is usually not
indicated in the PLAN_TABLE, but a RID sort normally is performed whenever list
prefetch is used. The only exception to this rule is when a hybrid join is performed
and a single, highly clustered index is used on the inner table. In this case
SORTN_JOIN is 'N', indicating that the RID list for the inner table was not sorted.

| The Effect of Sorts on OPEN CURSOR
| The type of sort processing required by the cursor affects the amount of time it can
| take for DB2 to process the OPEN CURSOR statement. This section outlines the
| effect of sorts and parallelism on OPEN CURSOR.

| Without Parallelism:

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-295

| � If no sorts are required, then OPEN CURSOR does not access any data. It is
| at the first fetch that data is returned.

| � If a sort is required, then the OPEN CURSOR causes the materialized result
| table to be produced. Control returns to the application after the result table is
| materialized. If a cursor that requires a sort is closed and reopened, the sort is
| performed again.

| � If there is a RID sort, but no data sort, then it is not until the first row is fetched
| that the RID list is built from the index and the first data record is returned.
| Subsequent fetches access the RID pool to access the next data record.

| With Parallelism:

| � At OPEN CURSOR, parallelism is asynchronously started, regardless of
| whether a sort is required. Control returns to the application immediately after
| the parallelism work is started.

| � If there is a RID sort, but no data sort, then parallelism is not started until the
| first fetch. This works the same way as with no parallelism.

 View Processing
There are two methods used to satisfy your queries that reference views:

 � View merge
 � View materialization

You can determine the methods used by executing EXPLAIN for the referencing
view statement. The following information helps you understand your EXPLAIN
output about views, and helps you tune your queries that reference views.

 View Merge
In the view merge process, the statement that references the view is combined with
the subselect that defined the view. This combination creates a logically equivalent
statement. This equivalent statement is executed against the database. Consider
the following statements:

View defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC21,VC32) AS SELECT VC1,VC21

SELECT C1,C2,C3 FROM T1 FROM VIEW1

WHERE C1 > C3; WHERE VC1 IN (A,B,C);

The subselect of the view defining statement can be merged with the view
referencing statement to yield the following logically equivalent statement:

 Merged statement:

SELECT C1,C2 FROM T1

WHERE C1 > C3 AND C1 IN (A,B,C);

 View Materialization
Views cannot always be merged. In the following statements:

View defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC2) AS SELECT MAX(VC1)

SELECT SUM(C1),C2 FROM T1 FROM VIEW1;

GROUP BY C2;

5-296 Administration Guide

column VC1 occurs as the argument of a column function in the view referencing
statement. The values of VC1, as defined by the view defining subselect, are the
result of applying the column function SUM(C1) to groups after grouping the base
table T1 by column C2. No equivalent single SQL SELECT statement can be
executed against the base table T1 to achieve the intended result. There is no way
to specify that column functions should be applied successively.

Two Steps of View Materialization
In the previous example, DB2 performs view materialization, which is a two step
process.

| 1. The view's defining subselect is executed against the database and the results
are placed in a temporary copy of a result table.

| 2. The view's referencing statement is then executed against the temporary copy
| of the result table to obtain the intended result.

Whether a view needs to be materialized depends upon the attributes of the view
referencing statement, or logically equivalent referencing statement from a prior
view merge, and the view's defining subselect.

When Views or Nested Table Expressions are Materialized
In general, DB2 uses materialization to satisfy a reference to a view or nested table
expression when there is aggregate processing (grouping, column functions,
distinct), indicated by the defining subselect, in conjunction with either aggregate
processing indicated by the statement referencing the view or nested table
expression, or by the view or nested table expression participating in a
join.Table 89 indicates some cases in which materialization occurs. DB2 can also

use materialization in statements that contain multiple outer joins, or outer joins
combined with inner joins.

Table 89. Cases when DB2 Performs View or Table Expression Materialization. The "X" indicates a case of
materialization. Notes follow the table.

A SELECT FROM a view or
a nested table expression
uses...(1)

View definition or nested table expression uses...(2)

GROUP BY# DISTINCT# Column
function
Column
function
DISTINCT

| Outer join

Inner join# X# X# X# X# X
Outer join (3)# X# X# X# X# X
GROUP BY# X# X# X# X# X
DISTINCT# -# X# -# X# -
Column function# X# X# X# X# X
Column function DISTINCT# X# X# X# X# X
SELECT subset of view or
nested table expression
columns

-# X# -# -# -

Notes to Table 89:

1. If the view is referenced as the target of an INSERT, UPDATE, or DELETE,
then view merge is used to satisfy the view reference. Only updatable views
can be the target in these statements. See Chapter 6 of SQL Reference for
information on which views are read-only (not updateable).

An SQL statement can reference a particular view multiple times where some
of the references can be merged and some must be materialized.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-297

2. If a SELECT list contains a host variable in a nested table expression, then
materialization occurs. For example:

SELECT C1 FROM

(SELECT :HV1 AS C1 FROM T1) X;

3. Additional details about materialization with outer joins:

� If a WHERE clause exists in a view or nested table expression, and it does
not contain a column, materialization occurs. For example:

SELECT X.C1 FROM

(SELECT C1 FROM T1

WHERE 1=1) X LEFT JOIN T2 Y
 ON X.C1=Y.C1;

� If the outer join is a full outer join and the SELECT list of the view or
nested table expression does not contain a standalone column for the
column that is used in the outer join ON clause, then materialization occurs.
For example:

SELECT X.C1 FROM

(SELECT C1+1ð AS C2 FROM T1) X FULL JOIN T2 Y
 ON X.C2=Y.C2;

� If there is no column in a SELECT list of a view or nested table expression,
materialization occurs. For example:

SELECT X.C1 FROM

(SELECT 1+2+:HV1. AS C1 FROM T1) X LEFT JOIN T2 Y
 ON X.C1=Y.C1;

� Most cases of nested outer join statements cause views and nested table
expressions to be materialized.

� If the result of an outer join undergoes another join of any type, the result
of the first outer join is materialized before the next join begins.

� If the result of an inner join undergoes a further outer join, the result of the
first inner join is materialized before the next join begins.

Using EXPLAIN to Determine the View Method
For each reference to a view that is materialized, rows describing the access path
for both steps of the materialization process appear in the PLAN_TABLE. These
rows describe the access path used to formulate the temporary result indicated by
the view's defining subselect, and they describe the access to the temporary result
as indicated by the view referencing statement. The defining subselect can also
reference views that need to be materialized.

Another indication that DB2 chose view materialization is that the view name
appears as a TNAME attribute for rows describing the access path for the view
referencing query block. When DB2 chooses view merge, EXPLAIN data for the
merged statement appears in PLAN_TABLE; only the names of the base tables on
which the view is defined appear.

5-298 Administration Guide

Performance of View Methods
Merge performs better than materialization. For materialization, DB2 uses a table
space scan to access the materialized temporary result. DB2 materializes a view or
table expression only if it cannot merge.

As described above, view materialization is a two-step process with the first step
resulting in the formation of a temporary result. The smaller the temporary result,
the more efficient is the second step. To reduce the size of the temporary result,
DB2 attempts to evaluate certain predicates from the WHERE clause of the view
referencing statement at the first step of the process rather than at the second step.
Only certain types of predicates qualify. First, the predicate must be a simple
Boolean term predicate. Second, it must have one of the forms shown in Table 90.

Implied predicates generated through predicate transitive closure are also
considered for first step evaluation.

Table 90. Predicate Candidates for First-Step Evaluation

Predicate Example

COL op literal V1.C1 > hv1

COL IS (NOT) NULL V1.C1 IS NOT NULL

COL (NOT) BETWEEN literal AND literal V1.C1 BETWEEN 1 AND 10

COL (NOT) LIKE constant (ESCAPE constant) V1.C2 LIKE 'p\%%' ESCAPE '\'

| Note: Where "op" is =, <>, >, <, <=, or >=, and literal is either a host variable, constant, or
| special register. The literals in the BETWEEN predicate need not be identical.

Performance of Table Expressions
A table expression is the specification of a subquery in the FROM clause of an
SQL SELECT statement. This subquery can be used as an operand of an outer
join operation. The table expression is similar to a view in that it can be merged or
materialized. A table expression is merged after a view merge. The following simple
example of a table expression uses “TX” as the expression for the subquery:

SELECT \ FROM

(SELECT C1 FROM T1) AS TX;

See Table 89 on page 5-297 for the cases when table expressions are
materialized.

Parallel Operations and Query Performance
When DB2 plans to access data from a table or index in a partitioned table space,
it can initiate multiple parallel operations. The response time for data or
processor-intensive queries can be significantly reduced.

Query I/O parallelism manages concurrent I/O requests for a single query, fetching
pages into the buffer pool in parallel. This processing can significantly improve the

| performance of I/O-bound queries. I/O parallelism is used only when one of the
| other parallelism modes cannot be used.

Query CP parallelism enables true multi-tasking within a query. A large query can
be broken into multiple smaller queries. These smaller queries run simultaneously

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-299

on multiple processors accessing data in parallel. This reduces the elapsed time for
a query.

| To expand even farther the processing capacity available for processor-intensive
| queries, DB2 can split a large query across different DB2 members in a data
| sharing group. This is known as Sysplex query parallelism. For more information
| about Sysplex query parallelism, see Data Sharing: Planning and Administration.

DB2 can use parallel operations for processing:

� Static and dynamic queries.
� Local and remote data access.
� Queries using single table scans and multi-table joins.
� Access through an index, by table space scan or by list prefetch.

 � Sort operations.

Parallel operations usually involve at least one table in a partitioned table space.
Scans of large partitioned table spaces have the greatest performance
improvements where both I/O and central processor (CP) operations can be carried
out in parallel.

Partitioned vs. Nonpartitioned Table Spaces: Although partitioned table spaces
show the most performance improvements, nonpartitioned table spaces might
benefit in processor-intensive queries:

� For a merge scan join, the join phase can be processed in parallel because the
sort work files can be partitioned before performing the join.

The partitioning of the work files is possible only if the hardware sort facility is
available at run time.

� In the nested loop join, DB2 is more likely to choose parallelism if the outer
table is partitioned.

Comparing the Methods of Parallelism
The figures in this section show how the parallel methods compare with sequential
prefetch and with each other. All three techniques assume access to a table space
with three partitions, P1, P2, and P3. The notations P1, P2, and P3 are partitions of
a table space. R1, R2, R3, and so on, are requests for sequential prefetch. The
combination P2R1, for example, means the first request from partition 2.

Figure 146 on page 5-301 shows sequential processing . With sequential
processing, DB2 takes the 3 partitions in order, completing partition 1 before
starting to process partition 2, and completing 2 before starting 3. Sequential
prefetch allows overlap of CP processing with I/O operations, but I/O operations do
not overlap with each other. In the example in Figure 146 on page 5-301, a
prefetch request takes longer than the time to process it. The processor is
frequently waiting for I/O.

5-300 Administration Guide

CP processing: %───5 %───5 %───5 ... %───5 %───5 %───5 ... %───5

P1R1 P1R2 P1R3 P2R1 P2R2 P2R3 P3R1

I/O: %───5 %───5 %───5 ... %───5 %───5 %───5 ... %───5 %───5

P1R1 P1R2 P1R3 P2R1 P2R2 P2R3 P3R1 P3R2

Time: ───5

Figure 146. CP and I/O Processing Techniques. Sequential processing.

Figure 147 shows parallel I/O operations . With parallel I/O, DB2 prefetches data
from the 3 partitions at one time. The processor processes the first request from
each partition, then the second request from each partition, and so on. The
processor is not waiting for I/O, but there is still only one processing task.

CP processing: %───5 %───5 %───5 %───5 %───5 %───5 %───5...

P1R1 P2R1 P3R1 P1R2 P2R2 P3R2 P1R3

I/O: %───────────────5 %───────────────5 %─────────────────5

 P1 R1 R2 R3

 %───────────────5 %───────────────5 %─────────────────5

 P2 R1 R2 R3

 %───────────────5 %───────────────5 %─────────────────5

 P3 R1 R2 R3

Time: ───5

Figure 147. CP and I/O Processing Techniques. Parallel I/O processing.

Figure 148 on page 5-302 shows parallel CP processing . With CP parallelism,
DB2 can use multiple parallel tasks to process the query. Three tasks working
concurrently can greatly reduce the overall elapsed time for data-intensive and

| processor-intensive queries. The same principle applies for Sysplex query
| parallelism , except that the work can cross the boundaries of a single CPC.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-301

CP task 1: %───5 %───5 %───5 ...

P1R1 P1R2 P1R3

I/O: %───5 %───5 %───5 ...

P1R1 P1R2 P1R3

CP task 2: %───5 %───5 %───5 ...

P2R1 P2R2 P2R3

I/O: %───5 %───5 %───5 ...

P2R1 P2R2 P2R3

CP task 3: %───5 %───5 %───5 ...

P3R1 P3R2 P3R3

I/O: %───5 %───5 %───5 ...

P3R1 P3R2 P3R3

Time: ───5

| Figure 148. CP and I/O Processing Techniques. Query processing using CP parallelism.
| The tasks can be contained within a single CPC or can be spread out among the members
| of a data sharing group.

Queries That are Most Likely to Take Advantage of Parallel Operations:
Queries that can take advantage of parallel processing are:

� Those in which DB2 spends most of the time fetching pages—an I/O-intensive
query

| A typical I/O-intensive query is something like the following query, assuming
| that a table space scan is used on many pages:

| SELECT COUNT(\) FROM ACCOUNTS

| WHERE BALANCE > ð AND

| DAYS_OVERDUE > 3ð;

� Those in which DB2 spends most of the time using processor time to process
rows. Those include:

 –

– Queries with intensive data scans and high selectivity. Those queries
involve large volumes of data to be scanned but relatively few rows that
meet the search criteria.

– Queries containing aggregate functions. Column functions (such as MIN,
MAX, SUM, AVG, and COUNT) usually involve large amounts of data to be
scanned but return only a single aggregate result.

– Queries accessing long data rows. Those queries access tables with long
data rows, and the ratio of rows per page is very low (one row per page,
for example).

– Queries requiring large amounts of central processor time. Those queries
might be read-only queries that are complex, data intensive, or that involve
a sort.

| A typical processor-intensive query is something like:

5-302 Administration Guide

| SELECT MAX(QTY_ON_HAND) AS MAX_ON_HAND,

| AVG(PRICE) AS AVG_PRICE,

| AVG(DISCOUNTED_PRICE) AS DISC_PRICE,

| SUM(TAX) AS SUM_TAX,

| SUM(QTY_SOLD) AS SUM_QTY_SOLD,

| SUM(QTY_ON_HAND - QTY_BROKEN) AS QTY_GOOD,

| AVG(DISCOUNT) AS AVG_DISCOUNT,

| ORDERSTATUS,

| COUNT(\) AS COUNT_ORDERS

| FROM ORDER_TABLE

| WHERE SHIPPER = 'OVERNIGHT' AND

| SHIP_DATE < DATE('1996-ð1-ð1')

| GROUP BY ORDERSTATUS

| ORDER BY ORDERSTATUS;

Terminology: When the term task is used with information on parallel processing,
| the context should be considered. When using parallel query CP processing or
| Sysplex query parallelism, a task is an actual MVS execution unit used to process

a query. When using parallel I/O processing, a task simply refers to the processing
of one of the concurrent I/O streams.

A parallel group is the term used to name a set of parallel operations. The degree
of parallelism is the number of parallel tasks or I/O operations that DB2
determines can be used for the operations on the parallel group.

In a parallel group, an originating task is the primary agent that receives data from
multiple execution units (referred to as parallel tasks). The originating task controls
the creation of the parallel tasks and maintains the status of each parallel task.

| Partitioning for Optimal Parallel Performance
| In this section, we describe some general considerations for how to partition data
| for the best performance when using parallel processing. Bear in mind that DB2
| does not always choose parallelism, even if you partition the data.

| This exercise assumes the following:

| � You have narrowed the focus to a few, critical queries that are running
| sequentially. It is best to include a mix of I/O-intensive and processor-intensive
| queries into this initial set. You know how long those queries take now and
| what your performance objectives for those queries are. Although tuning for
| one set of queries might not work for all queries, overall performance and
| throughput can be improved.

| � You are optimizing for query-at-a-time operations, and you want a query to
| make use of all the processor and I/O resources available to it.

| When running many queries at the same time, you will probably have to
| increase the number of partitions and the amount of processing power to
| achieve similar elapsed times.

| This section guides you through the following analyses:

| 1. Determining the nature of the query (what balance of processing and I/O
| resources it needs)

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-303

| 2. Determining how many partitions the table space should have to meet your
| performance objective. This number is based on the nature of the query and on
| the processor and I/O configuration at your site.

| Determining if a Query is I/O- or Processor-Intensive
| To determine if your sequential queries are I/O or processor-intensive, examine the
| DB2 accounting reports:

| � If the “other read I/O time” is close to the total query elapsed time, then the
| query is I/O-intensive. “Other read I/O time” is the time that DB2 is waiting for
| pages to be read in to the buffer pools.

| � If “CPU time” is close to the total query elapsed time, then the query is
| processor-intensive.

| � If the processor time is somewhere between 30 and 70 percent of the elapsed
| time, then the query is pretty well-balanced.

| Determining the Number of Partitions
| This section is intended to give you some rules of thumb. Again, you must take into
| account the I/O subsystem, the nature of the queries you run, and, if necessary,
| plan for the data to grow. If your physical and logical design are not closely tied
| together, thus allowing you to specify any number of partitions, it does no harm to
| specify more partitions than you need immediately. This allows for data and
| processing resources to grow without you having to repartition the table in the
| future.

| Consider also the operational complexity of managing many partitions. This may
| not be as much of an issue at sites that use tools such as the DB2 Automated
| Utilities Generator and job schedulers.

| In general, the number of partitions falls in a range between the number of CPs
| and the maximum number of I/O paths to the data. When determining the number
| of partitions that use a mixed set of processor- and I/O-intensive queries, always
| choose the largest number of partitions in the range you determine.

| � For processor-intensive queries , specify, at a minimum, a number that is
| equal to the number of CPs in the system, whether you have a single CPC or
| multiple CPCs in a data sharing group. If the query is processor-intensive, it
| can use all CPs available in the system. If you plan to use Sysplex query
| parallelism, then choose a number that is close to the total number of CPs
| (including partial allocation of CPs) that you plan to allocate for decision
| support processing across the data sharing group. Do not include processing
| resources that are dedicated to other, higher priority, work.

| � For I/O-intensive queries, calculate the ratio of elapsed time to processor
| time. Multiply this ratio by the number of processors allocated for decision
| support processing. Round up this number to determine how many partitions
| you can use to the best advantage, assuming that these partitions can be on
| separate devices and have adequate paths to the data. (See “Example
| Configurations for an I/O-Intensive Query” on page 5-305 for more about I/O
| path configurations.) This calculation also assumes that you have adequate
| processing power to handle the increase in partitions. (This might not be much
| of an issue with an extremely I/O-intensive query.)

| By partitioning the amount indicated above, the query is brought into balance
| by reducing the I/O wait time. If the number of partitions is less than the

5-304 Administration Guide

| number of CPs available on your system, increase this number close to the
| number of CPs available. By doing so, other queries that read this same table,
| but that are more processor-intensive, can take advantage of the additional
| processing power.

| For example, suppose you have a 10-way CPC and the calculated number of
| partitions is five. Instead of limiting the table space to five partitions, use 10, to
| equal the number of CPs in the CPC.

| Example Configurations for an I/O-Intensive Query
| If the I/O cost of your queries is about twice as much as the processing cost, the
| optimal number of partitions when run on a 10-way processor is 20 (2 * number of
| processors). Figure 149 shows an I/O configuration that minimizes the elapsed
| time and allows the CPC to run at 100% busy. It assumes a rule of thumb of four
| devices per control unit and four channels per control unit.12

| Figure 149. I/O Configuration that Maximizes Performance for an I/O-Intensive Query

| What if the Table Space is Already Partitioned?
| Assume that a table space already has 10 partitions and a particular query uses
| CP parallelism on a 10-way CPC. When you add “other read I/O wait time” (from
| accounting class 3) and processing time (from accounting class 2) you determine
| that I/O cost is three times more than the processing cost. In this case, the optimal
| number of partitions is 30 (three times more I/O paths). However, if you can run on
| a data sharing group and you add another DB2 to the group that is running on a
| 10-way CPC, the I/O configuration that minimizes the elapsed time and allows both
| CPCs to run at 100% would be 60 partitions.

| Make the Partitions the Same Size
| The degree of parallelism is influenced by the size of the largest physical partition.
| In most cases, DB2 divides the table space into logical pieces, called work ranges
| to differentiate these from physical pieces, based on the size of the largest physical
| partition of a given table. Suppose that a table consists of 10 000 pages and 10
| physical partitions, the largest of which is 5000 pages. DB2 is most likely to create
| only two work ranges, and the degree of parallelism would be 2. If the same table

| 12 A lower-cost configuration could use as few as two to three channels per control unit shared among all controllers using an
| ESCON director. However, using four paths minimizes contention and provides the best performance. Paths might also need to be
| taken offline for service.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-305

| has evenly sized partitions of 1000 pages each, and the query is I/O-intensive, then
| ten logical work ranges might be created. This would result in a degree of
| parallelism of 10 and reduced elapsed time.

Because logical partition sizes are based on what the catalog says their size is, the
catalog should be up to date.

DB2 tries to create equal work ranges by dividing the total cost of running the work
by the logical partition cost. This division often has some left over work. In this
case, DB2 creates an additional task to handle the extra work, rather than making
all the work ranges larger, which would reduce the degree of parallelism.

Enabling Parallel Processing
Queries can only take advantage of parallelism if you enable parallel processing.
To enable parallel processing:

� For static SQL , specify DEGREE(ANY) on BIND or REBIND. This bind option
affects static SQL only and does not enable parallelism for dynamic statements.

� For dynamic SQL , set the CURRENT DEGREE special register to 'ANY'.
Setting the special register affects dynamic statements only. It will have no
effect on your static SQL statements. You should also make sure that
parallelism is not disabled for your plan, package, or authorization ID in the
RLST. You can set the special register with the following SQL statement:

SET CURRENT DEGREE='ANY';

It is also possible to change the special register default from 1 to ANY for the
| entire DB2 subsystem by modifying the CURRENT DEGREE field on
| installation panel DSNTIP4.

� The virtual buffer pool parallel sequential threshold (VPPSEQT) value must be
large enough to provide adequate buffer pool space for parallel processing.
For more information on VPPSEQT, see “Buffer Pool Thresholds” on
page 5-53.

� If you bind with isolation CS, choose also the option CURRENTDATA(NO), if
possible. This option can improve performance in general, but it also ensures
that DB2 will consider parallelism for ambiguous cursors. If you bind with
CURRENDATA(YES) and DB2 cannot tell if the cursor is read-only, DB2 does
not consider parallelism. It is best to always indicate when a cursor is read-only
by indicating FOR FETCH ONLY or FOR READ ONLY on the DECLARE
CURSOR statement.

If you enable parallel processing, when DB2 estimates a given query's I/O and
central processor cost is high, it can activate multiple parallel tasks if it estimates
that elapsed time can be reduced by doing so.

Special Requirements for CP Parallelism: DB2 must be running on a central
processor complex that contains two or more tightly-coupled processors
(sometimes called central processors, or CPs). If only one CP is online when the
query is bound, DB2 considers only parallel I/O operations. Also needed are
functions available in MVS/ESA Version 5 Release 2 or subsequent releases.
Without these, DB2 considers only parallel I/O operations.

5-306 Administration Guide

DB2 also considers only parallel I/O operations if you declare a cursor WITH HOLD
and bind with isolation RR or RS. For further restrictions on parallelism, see
Table 91 on page 5-307.

When Parallelism is Not Used
Parallelism is not used for all queries; for some access paths, it doesn't make
sense to incur parallelism overhead. If you are selecting from a temporary table,
you won't get parallelism for that, either. If you are not getting parallelism, check
Table 91 to see if your query uses any of the access paths that do not allow
parallelism.

Table 91. Checklist of Parallel Modes and Query Restrictions

If query uses this...

Is parallelism allowed?

I/O# CP# Sysplex# Comments

| Access via RID list (list
| prefetch and multiple
| index access)

Yes# Yes# No# Indicated by an “L” in the PREFETCH column of
PLAN_TABLE, or an M, MX, MI, or MQ in the
ACCESSTYPE column of PLAN_TABLE.

| Access through a type 1
| index.
Yes# No# No#

Correlated subquery# No# No# No| There is virtually no benefit in using parallelism on the
| correlated subquery. DB2 tries to run the outer query in
| parallel. (For noncorrelated queries, DB2 tries to run both
| the inner and outer queries in parallel.)

IN-list index access# No# No# No# Indicated by N in the ACCESSTYPE column of
PLAN_TABLE.

Outer join# No# No# No# Indicated by an F or L in the JOIN_TYPE column of
PLAN_TABLE.

Merge scan join on more
than one column
No# No# No#

Materialized views or
materialized nested table
expressions at reference
time.

No# No# No#

EXISTS within WHERE
predicate
No# No# No#

| DB2 Avoids Certain Hybrid Joins when Parallelism is Enabled: To ensure that
| you can take advantage of parallelism, DB2 does not pick one type of hybrid join
| (SORTN_JOIN=Y) when the plan or package is bound with CURRENT
| DEGREE=ANY or if the CURRENT DEGREE special register is set to 'ANY'.

| Effect of Nonpartitioning Indexes: DB2 does not use parallelism when there is
| direct index access through a nonpartitioning index to the first base table in a
| parallel group.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-307

Interpreting EXPLAIN Output
To understand how DB2 uses parallel operations, and how the contents of the
PLAN_TABLE columns relate to these parallel operations, consider the following
examples. The columns mentioned in these examples are described in Table 87 on
page 5-263.

All steps with the same value for ACCESS_PGROUP_ID, JOIN_PGROUP_ID,
SORTN_PGROUP_ID, OR SORTC_PGROUP_ID indicate that a set of operations
are in the same parallel group. Usually, the set of operations involves various types
of join methods and sort operations. For a complete description of join methods,
see “Interpreting Access to Two or More Tables” on page 5-282. For each of these
examples you could have data in the column PARALLELISM_MODE. This tells you
the kind of parallelism that is doing the processing. Within a query block
(QBLOCKNO column of PLAN_TABLE), you cannot have a mixture of “I” and “C”
parallel modes. However, a statement that uses more than one query block, such

| as a UNION, can have “I” for one query block and “C” for another. It is possible to
| have a mixture of “C” and “X” modes in a query block but not in the same parallel
| group.

| For these examples, the other values would not change whether the
| PARALLELISM_MODE I, C, or X.

� Example 1: Single table access

Assume that DB2 decides at bind time to initiate three concurrent requests to
retrieve data from table T1. Part of PLAN_TABLE appears as follows. If DB2
decides not to use parallel operations for a step, ACCESS_DEGREE and
ACCESS_PGROUP_ID contain null values.

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

� Example 2: Nested loop join

Consider a query that results in a series of nested loop joins for three tables,
T1, T2 and T3. T1 is the outermost table, and T3 is the innermost table. DB2
decides at bind time to initiate three concurrent requests to retrieve data from
each of the three tables. For the nested loop join method, all the retrievals are
in the same parallel group. Part of PLAN_TABLE appears as follows:

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 1 3 1 3 1 (null) (null)

T3 1 3 1 3 1 (null) (null)

� Example 3: Merge scan join

Consider a query that causes a merge scan join between two tables, T1 and
T2. DB2 decides at bind time to initiate three concurrent requests for T1 and
six concurrent requests for T2. The scan and sort of T1 occurs in one parallel
group. The scan and sort of T2 occurs in another parallel group. Furthermore,

5-308 Administration Guide

the merging phase can potentially be done in parallel. Here, a third parallel
group is used to initiate three concurrent requests on each intermediate sorted
table. Part of PLAN_TABLE appears as follows:

| TNAME| METHOD
| ACCESS_
| DEGREE

| ACCESS_
| PGROUP_
| ID
| JOIN_
| DEGREE

| JOIN_
| PGROUP_
| ID

| SORTC_
| PGROUP_
| ID

| SORTN_
| PGROUP_
| ID

| T1| 0| 3| 1| (null)| (null)| (null)| (null)

| T2| 2| 6| 2| 3| 3| 1| 2

 � Example 4: Hybrid join

Consider a query that results in a hybrid join between two tables, T1 and T2.
Furthermore, T1 needs to be sorted; as a result, in PLAN_TABLE the T2 row
has SORTC_JOIN=Y. DB2 decides at bind time to initiate three concurrent
requests for T1 and six concurrent requests for T2. Parallel operations are used
for a join through a clustered index of T2.

Because T2's RIDs can be retrieved by initiating concurrent requests on the
partitioned index, the joining phase is a parallel step. The retrieval of T2's RIDs
and T2's rows are in the same parallel group. Part of PLAN_TABLE appears as
follows:

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 4 6 2 6 2 1 (null)

Monitoring Parallel Operations
The number of parallel operations or tasks used to access data is initially
determined at bind time, and later adjusted when the query is executed.

Bind Time: At bind time, DB2 collects partition statistics from the catalog,
estimates the processor cycles for the costs of processing the partitions, and
determines the optimal number of parallel tasks to achieve minimum elapsed time.

When a planned degree exceeds the number of online CPs, it can mean that the
query is not completely processor-bound, and is instead approaching the number of
partitions because it is I/O-bound. In general, the more I/O-bound a query is, the
closer the degree of
parallelism is to the number of partitions.

In general, the more processor-bound a query is, the closer the degree of
parallelism is to the number of online CPs, and it can even exceed the number of
CPs by one. For example, assume that you have a processor-intensive query on a
10-partition table, and that this query is running on a 6-way CPC. It is possible for
the degree of parallelism to be up to 7 in this case.

To help DB2 determine the optimal degree of parallelism, use the utility
RUNSTATS to keep your statistics current.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-309

PLAN_TABLE shows the planned degree of parallelism in the columns
ACCESS_DEGREE and JOIN_DEGREE.

Execution Time: For each parallel group, parallelism (either CP or I/O) can
execute at a reduced degree or degrade to sequential operations for the following
reasons:

� Amount of virtual buffer pool space available
� Host variable values
� Availability of the MVS/ESA sort

 � Ambiguous cursors

| At execution time, it is possible for a plan using Sysplex query parallelism to use
| CP parallelism. All parallelism modes can degenerate to a sequential plan. No other
| changes are possible.

Using DISPLAY BUFFERPOOL
You can use the output from DISPLAY BUFFERPOOL DETAIL report to see how
well the buffer pool is able to satisfy parallel operations.

DSNB44ðI = PARALLEL ACTIVITY -

PARALLEL REQUEST = 282 DEGRADED PARALLEL= 5

The PARALLEL REQUEST field in this example shows that DB2 was negotiating
buffer pool resource for 282 parallel groups. Of those 282 groups, only 5 were
degraded because of a lack of buffer pool resource. A large number in the
DEGRADED PARALLEL field could indicate that there are not enough buffers that
can be used for parallel processing.

| Using DISPLAY THREAD
| DISPLAY THREAD displays parallel tasks. Whereas previously you would only see
| information about the originating task, now you can see information about the
| parallel tasks associated with that originating task. The status field contains PT for
| parallel tasks. All parallel tasks are displayed immediately after their corresponding
| originating thread.

| See Chapter 2 of Command Reference for information about the syntax of the
| command DISPLAY THREAD.

Using DB2 Trace
| The statistics trace indicates when parallel groups do not run to the planned degree
| or run sequentially. These are possible indicators that there are queries that are not
| achieving the best possible response times. Use the accounting trace to ensure

that your parallel queries are meeting their response time goals. If there appears to
be a problem with a parallel query, then use the performance trace to do further
analysis.

Accounting Trace: By default, DB2 accounting trace records are created for each
parallel task, and there is no accumulation of trace record fields. If this generates
too many trace records, you can choose to have DB2 roll up those parallel task
accounting records into a single accounting record that is cut by the originating
task. The originating task's record is still separate from those of the parallel tasks.

5-310 Administration Guide

To roll up records, add the subsystem parameter PTASKROL to the DSN6SYSP
macro invocation in the edited version of your DSNTIJUZ (in
prefix.NEW.SDSNSAMP) as shown here:

DSN6SYSP AUDITST=NO,

 BACKODUR=5,

 ...

 PCLOSET=1ð,

 PTASKROL=YES,
 ...

If you add PTASKROL before the end of the invokation, add a continuation marker
in column 72. Reassemble and re-linkedit DSNTIJUZ, and stop and restart DB2 to
make the change effective.

DB2 PM summarizes all accounting records generated for a parallel CP query and
presents them as one logical accounting record. DB2 PM presents the times for the
originating tasks separately from the accumulated times for all the parallel tasks.

As shown in Figure 150 CPU TIME-TCB is the time for the originating tasks, while
| CPU TIME-PAR.TASKS (.A/) is the accumulated processing time for the parallel

tasks.

TIMES/EVENTS APPL (CLASS 1) DB2 (CLASS 2) CLASS 3 SUSP. ELAPSED TIME

------------ -------------- -------------- -------------- ------------

ELAPSED TIME 32.578741 32.312218 LOCK/LATCH 25.461371

CPU TIME 1:29.6ð2498 1:29.554733 SER.TASK SWTCH ð.ðððððð

 TCB ð.132351 ð.ð88834 SYNCHRON. I/O ð.142382

 TCB-STPROC ð.ð928ð2 ð.ð89294 OTHER READ I/O 3:ðð.4ð4769

 PAR.TASKS .A/1:29.47ð147 1:29.465898 OTHER WRTE I/O ð.ðððððð

...

... QUERY PARALLEL. TOTAL

 --------------- --------

 MAXIMUM MEMBERS 1

 MAXIMUM DEGREE 1ð

 GROUPS EXECUTED 1

RAS AS PLANNED .B/ 1

RAN REDUCED .C/ ð

ONE DB2 COOR=N ð

ONE DB2 ISOLAT ð

SEQ - CURSOR .D/ ð

SEQ - NO ESA .E/ ð

SEQ - NO BUF .F/ ð

SEQ - ENCL.SER. .G/ ð

MEMB SKIPPED(%) .H/ ð

DISABLED BY RLF .I/ NO

| Figure 150. Partial Accounting Trace, Query Parallelism

As you can see in the report, the values for CPU TIME and I/O WAIT TIME are
larger than the elapsed time. It is possible for processor and suspension time to be
larger than elapsed time because these times are accumulated from multiple
parallel tasks, while the elapsed time is less than it would be if run sequentially.

If you have baseline accounting data for the same thread run without parallelism,
the elapsed times and processor times should not be significantly larger when that
query is run in parallel. If it is significantly larger, or if response time is poor, you
will need to examine the accounting data for the individual tasks. Use the DB2 PM
Record Trace for the IFCID 0003 records of the thread you want to examine. Use

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-311

the performance trace if you need more information to determine the cause of the
response time problem.

Performance Trace: The performance trace can give you information about tasks
within a group. To determine the actual number of parallel tasks used, refer to field
QW0221AD in IFCID 0221, as mapped by macro DSNDQW03. The 0221 record
also gives you information about the key ranges used to partition the data.

 IFCID 0222 contains the elapsed time information for each parallel task and each
parallel group in each SQL query. DB2 PM presents this information in its SQL
Activity trace.

| If your queries are running sequentially or at a reduced degree because of a lack of
| buffer pool resources, the QW0221XC field of IFCID 0221 indicates which buffer
| pool is constrained.

Tuning Parallel Processing
Much of the information in this section applies also to Sysplex query parallelism.
See Chapter 7 of Data Sharing: Planning and Administration for more information.

If there are many parallel groups that do not run at the planned degree (see .B/ in
Figure 150 on page 5-311), check the following factors:

� Buffer pool availability

| Depending on buffer pool availability, DB2 could reduce the degree of
| parallelism (see .C/ in Figure 150 on page 5-311) or revert to a sequential
| plan before executing the parallel group (.F/ in the figure).

| To determine which buffer pool is short on storage, see section QW0221C in
| IFCID 0221. You can use the ALTER BUFFERPOOL command to increase the
| buffer pool space available for parallel operations by modifying the following
| parameters:

| – VPSIZE, the size of the virtual buffer pool
| – VPSEQT, the sequential steal threshold
| – VPPSEQT, the parallel sequential threshold
| – VPXPSEQT, the assisting parallel sequential threshold, used only for
| Sysplex query parallelism.

If the buffer pool is busy with parallel operations the sequential prefetch
quantity might also be reduced.

The parallel sequential threshold also has an impact on work file processing
for parallel queries. DB2 assumes that you have all your work files of the same
size (4KB or 32KB) in the same buffer pool and makes run time decisions
based on a single buffer pool. A lack of buffer pool resources for the work files
can lead to a reduced degree of parallelism or cause the query to run
sequentially.

If increasing the parallel thresholds does not help solve the problem of reduced
degree, you can increase the total buffer pool size (VPSIZE). Use information
from the statistics trace to determine the amount of buffer space you need. Use
the following formula:

(QBSTJIS / QBSTPQF) × 32 = buffer increase value

| QBSTJIS is the total number of requested prefetch I/O streams that were
| denied because of a storage shortage in the buffer pool. (There is one I/O

5-312 Administration Guide

| stream per parallel task.) QBSTPQF is the total number of times that DB2 could
| not allocate enough buffer pages to allow a parallel group to run to the planned
| degree.

As an example, assume QBSTJIS is 100000 and QBSTPQF is 2500:

1ððððð / 25ðð × 32 = 128ð

Use ALTER BUFFERPOOL to increase the current VPSIZE by 2560 buffers to
alleviate the degree degradation problem. Use the DISPLAY BUFFERPOOL
command to see the current VPSIZE.

 � Physical contention

As much as possible, put data partitions on separate physical devices to
| minimize contention. Try not to use more partitions than there are internal paths
| in the controller.

� Run time host variables

A host variable can determine the qualifying partitions of a table for a given
query. In such cases, DB2 defers the determination of the planned degree of
parallelism until run time, when the host variable value is known.

 � Updatable cursor

At run time, DB2 might determine that an ambiguous cursor is updatable. This
appears in .D/ in the accounting report.

� Proper hardware and software support

If you do not have the hardware sort facility at run time, and a sort merge join
| is needed, you see a value in .E/. If MVS Version 5 Release 2 is not

available, you see a value in .G/.

Locking Considerations for Repeatable Read Applications: When using CP
parallelism, locks are obtained independently by each task. Be aware that this can
possibly increase the total number of locks taken for applications that:

� Use an isolation level of repeatable read
� Use CP parallelism
� Repeatedly access the table space using a lock mode of IS without issuing

COMMITs

As is recommended for all repeatable-read applications, be sure to issue frequent
| COMMITs to release the lock resources that are held. Repeatable read or read
| stability isolation cannot be used with Sysplex query parallelism.

Disabling Query Parallelism
To disable parallel operations, do any of the following actions:

� For static SQL, rebind to change the option DEGREE(ANY) to DEGREE(1).
You can do this by using the DB2I panels, the DSN subcommands, or the
DSNH CLIST. The default is DEGREE(1).

� For dynamic SQL, execute the following SQL statement:

SET CURRENT DEGREE = '1';

The default value for CURRENT DEGREE is 1 unless your installation has
changed the default for the CURRENT DEGREE special register.

� Set the parallel sequential threshold (VPPSEQT) to 0.

 Chapter 5-10. Using EXPLAIN to Improve SQL Performance 5-313

� Add a row to your resource limit facility's specification table (RLST) for your
plan, package, or authorization ID with the RLFFUNC value set to “3” to disable

| I/O parallelism, “4” to disable CP parallelism, or “5” to disable Sysplex query
| parallelism. To disable all types of parallelism, you would need a row for all
| three types (assuming that Sysplex query parallelism is enabled on your
| system.) In a system with a very high processor utilization rate (that is, greater
| than 98 percent), I/O parallelism might be a better choice because of the
| increase in processor overhead with CP parallelism. So, in this case, you could
| disable CP parallelism for your dynamic queries by putting a “4” in the resource

limit specification table for the plan or package.

| If you have a Sysplex, you might want to use a “5” to disable Sysplex query
| parallelism, depending on how high processor utilization is in the members of
| the data sharing group.

To determine if parallelism has been disabled by a value in your resource limit
specification table (RLST), you will see a non-zero value in field QXRLFDPA in
IFCID 0002 or 0003 (shown in .I/ in Figure 150 on page 5-311). The
QW0022RP field in IFCID 0022 indicates whether this particular statement was
disabled. For more information on how the resource limit facility governs modes
of parallelism, see “What the RLST Contains” on page 5-80.

5-314 Administration Guide

Chapter 5-11. Monitoring and Tuning in a Distributed
Environment

DB2 can access distributed data. If requesters and servers support two-phase
commit and Distributed Relational Database Architecture (DRDA), your DB2
subsystem can read from and update many locations in a single unit of work,
regardless of where your application originates. We call this level of capability
distributed unit of work.

Remote Access Types
DB2 supports two different types of remote access between the requesting
relational database management system (DBMS) and the serving relational
database management system. The two types of access are DB2 private protocol
access and DRDA access. DB2 chooses between the two connection types based
on the SQL statements contained in the application process.

DB2 Private Protocol Access: For distributed work between the two subsystems,
DB2 uses communications connections that are specific to DB2. Access using DB2
private protocol has these characteristics:

� Only DB2 subsystems can communicate using this connection.

� An application is not limited to a single location per unit of work.

� An application can direct a query to another DB2 subsystem by using an alias
or a three-part name. DB2 determines the remote location from the object
name in the query and connects to that subsystem.

� When a static SQL statement is passed to the server, it is dynamically bound
and then executed. The statement is dynamically bound only the first time it is
executed within a unit of recovery. Subsequent executions of the statement in
the unit of recovery do not pay the cost of the dynamic bind. However, if the
statement is executed again after a COMMIT or ROLLBACK, another dynamic
bind occurs.

� Within a unit of work, updates can be made to any number of DB2 subsystems.
An application can also read at several sites within a unit of work.

| � Updates at a server DB2 can be made from TSO/BATCH, CAF, IMS, CICS or
| the Recoverable Resource Manager Services attachment facility (RRSAF)

DRDA Access: For more information on DRDA, see Distributed Relational
Database Architecture: Connectivity Guide.

With access using DRDA, an application can explicitly connect with another
non-DB2 database management and remotely bind and execute packages of static
or dynamic SQL that have previously been bound at that location. (A package is a
single, bound, database request module.) Distributed processing using DRDA has
the following characteristics:

� The application is not restricted to accessing data only at DB2 subsystems.

� An application is not limited to a single location per unit of work.

� The application can use remote BIND to bind SQL into packages at the serving
relational database management system.

 Copyright IBM Corp. 1982, 1997 5-315

� The application can use the SQL CONNECT statement to connect to other
relational database management systems in the network and execute packages
at those database management systems.

| � Applications running in TSO/Batch, CAF, IMS, CICS, or RRSAF can use
| DRDA.

| � Updates at a server can be made from TSO/Batch, CAF, IMS, CICS, or
| RRSAF.

Considerations for Tuning Distributed Applications
A query sent to a remote system can sometimes take longer to execute than the
same query, accessing tables of the same size, on the local DB2 subsystem. The
principal reasons for this potential increase in execution time are:

� The time required to send messages across the network

� Overhead processing, including startup, and negotiating session limits (change
number of sessions processing)

Some aspects of overhead processing, for instance, network processing, are not
under DB2 control. (You can, however, tune VTAM to improve the performance of
your network. For more information on VTAM, refer to Section 3 of Installation
Guide .)

Monitoring and tuning performance in a distributed environment is a complex task
involving knowledge of several products. Some guidelines follow for improving the
performance of distributed applications. The guidelines are divided into the following
areas:

� The application and the system on which the application resides
� The serving system or server
� The connection between the requesting system and the server

The Application and the Requesting System: This includes the application
making the distributed request and that part of the database management system
that handles distributed processing.

Minimizing the number of messages sent between the requester and the server is a
primary way to improve performance. The following measures help reduce
message traffic:

� Use the RELEASE SQL statement to release remote connections that are no
longer needed. This saves the resources that are required to maintain remote
connections. The RELEASE statement does not close cursors, release any
resources, or prevent further use of the connection.

However, when the application issues the RELEASE statement, the database
access thread is terminated during commit processing. If the application
connects to the same location again, a new database access thread must be
created at the server.

| � Use DEFER(PREPARE). Using DEFER(PREPARE) can reduce the number of
| messages that must be sent back and forth across the network. For more
| information on using the DEFER(PREPARE) option, see Section 4 of
| Application Programming and SQL Guide.

5-316 Administration Guide

� Use FOR FETCH ONLY on SELECT statements. See “Using FOR FETCH
ONLY to Ensure Block Fetch” on page 5-319 for more information.

� Bind application plans and packages with ISOLATION(CS) whenever possible,
which can reduce contention and message overhead.

| � If possible, avoid using parameter markers in dynamic SELECT statements.

� Consider using the BIND or REBIND DISCONNECT option to release remote
connections if the application is not expected to reuse remote connections after
commit. If you are going to release a connection, issue the SQL RELEASE
before committing your transaction. This reduces network message traffic.

� Avoid using several SQL statements when one SQL statement can retrieve the
desired results. Alternatively, put your SQL statements in a stored procedure,
issue your SQL statements at the server through the stored procedure, and
return the result. This creates only one send and receive operation (for the
CALL statement) instead of a potential send and receive operation for each
SQL statement.

This can significantly lower your processor and elapsed time costs. The greater
| the number of SQL statements in your application, the greater the performance
| improvement. For more information on how to use stored procedures, see

Section 6 of Application Programming and SQL Guide.

| � Do not request more columns or rows than you need. Also, use the OPTIMIZE
| FOR n ROWS clause to reduce the number of rows that are returned to the
| application in each cursor block. See Application Programming and SQL Guide

for more information about using this clause in distributed applications.

| � Consider carefully using the COMMIT_ON_RETURN column of the
| SYSIBM.SYSPROCEDURES catalog table to indicate that DB2 should issue an
| implicit COMMIT on behalf of the stored procedure upon return from the CALL
| statement. This can reduce the length of time locks are held and can reduce
| network traffic, especially when the request is from an application using DRDA
| level 1. When you use COMMIT_ON_RETURN, any updates made by the
| client before calling the stored procedure are committed with the stored
| procedure changes. See Section 6 of Application Programming and SQL Guide
| for more information.

� For applications using private protocol, you can achieve the best performance
for distributed applications if every read-only cursor uses its own conversation.
Resource constraints could conflict with making multiple conversations available
to an application. For more information, see Installation Guide .

The Serving System: This is the system on which the data resides. For access
using DB2 private protocol, this is the DB2 system on which the SQL is dynamically
executed. For access using DRDA, this is the system on which your remotely
bound package executes.

If you are executing a package on a remote DBMS, then improving performance on
the server depends on the nature of the server. If the remote DBMS on which the
package executes is another DB2, then the information in “Chapter 5-10. Using
EXPLAIN to Improve SQL Performance” on page 5-261 is appropriate for access
path considerations.

Other considerations that could affect performance on a DB2 server are:

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-317

� The maximum number of database access threads that the server allows to be
allocated concurrently. (This is the MAX REMOTE ACTIVE option on
installation panel DSNTIPE.) Your request could be queued while waiting for an
available thread.

� The dispatching priority of database access threads on the remote system. A
low dispatching priority could impede your application's distributed performance.
See “Prioritize Resources” on page 5-74 for more information.

� For instructions on avoiding RACF calls at the server, see “Controlling
Requests from Remote Applications” on page 3-71, and more particularly “Do
You Manage Inbound IDs Through DB2 or RACF?” on page 3-76.

When DB2 is the server, it is a good idea to activate accounting trace class 7. This
provides accounting information at the package level, which can be very useful in
determining problems.

The Logical and Physical Connection Between the Requester and Server: DB2
can use two types of logical connections between requesters and servers:

� System Network Architecture LU6.2 DB2 uses APPC/VTAM to implement
LU6.2 architecture.

| Using ACF/VTAM Version 4 Release 4 or later releases reduces the processing
| costs of VTAM overhead associated with DRDA conversations. The reductions
| benefit both requesters and servers but is not shown in the accounting data for
| the end user.

� Transmission Control Protocol/Internet Protocol (TCP/IP)

For information on tuning these connections, see Section 3 of Installation Guide .

How Block Fetch Improves Performance
DB2 has an important capability called block fetch that can significantly affect the
number of messages sent across the network. Used with cursors that will not
update data, DB2 groups the rows retrieved by an SQL query into as large a
“block” of rows as will fit in a message buffer, and transmits it over the network
without requiring a message for every row.

DB2 employs two different types of block fetch:

� Limited block fetch is used for both access using DRDA or DB2 private
protocol.

� Continuous block fetch is only used by DB2 private protocol.

In terms of response times, the continuous block method is more efficient than the
limited block method because fewer messages are transmitted and because
overlapped processing is performed at the requester and server. But the continuous
block method also uses more resources in the form of conversations. Switching
from continuous block to limited block allows applications to run when resources
(conversations) are critical.

Both forms of blocking can be in use at the same time by the same agent.

Limited Block Fetch: Limited block fetch guarantees the transfer of a minimum
amount of data in response to each request from the requesting system. In the

5-318 Administration Guide

limited block method, a single conversation is used to transfer messages and data
between the requester and server for multiple cursors. Processing at the requester
and server is synchronous. The requester sends a request to the server, which
causes the server to send a response back to the requester. The server must then
wait for another request to tell it what should be done next.

Continuous Block Fetch (Private Protocol Only): Continuous block fetch is a
DB2-defined method that uses one conversation for each open cursor. When using
this method, a single request message is sent from the requester to the server. The
server then fills a buffer with response information and transmits the buffer back to
the requester. Processing at the requester is asynchronous with processing at the
server. The server continues to fill buffers and transmit them to the requester until
suspended by VTAM because of the pacing limits defined for the conversation. The
continuous block method, then, only requires a single request message.

To understand what happens, consider the sequence of events in an application
that both reads and updates data at a remote location:

1. The local subsystem, A, sends a message to open a cursor and begin a fetch
at the remote subsystem, B.

2. A receives the row from B and processes it.

3. A sends a message to update the row at B.

4. A repeats steps 2 and 3 for the second and later rows.

But if the application does not need to update subsystem B, then step 3 can be
eliminated. Using continuous block fetch, the sequence would go like this:

1. A sends a message to open a cursor and begin a fetch at B.

2. B sends back a block of rows and A begins processing the first row.

3. B continues to send blocks of rows to A without further prompting. A processes
the second and later rows as usual, but fetches them from a buffer on system
A.

Updatable cursors cannot use either type of block fetch, which can retrieve the data
before the application actually asks for it. Updates using cursors require that the
application be synchronized with the cursor position at the responding location.

General-use Programming Interface

Using FOR FETCH ONLY to Ensure Block Fetch
You can ensure block fetching by including the clause FOR FETCH ONLY in your
DECLARE CURSOR statement, as in the following example:

EXEC SQL

DECLARE THISEMP CURSOR FOR

SELECT EMPNO, LASTNAME, WORKDEPT, JOB

 FROM DSN851ð.EMP

WHERE WORKDEPT = 'D11'

FOR FETCH ONLY

END-EXEC.

If you use FOR FETCH ONLY, you cannot also use FOR UPDATE OF.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-319

In general, DB2 can use block fetch for a query if:

� The declare cursor statement includes a SELECT that is specified to be FOR
FETCH ONLY.

� The result table of the cursor is read-only. This applies to static and dynamic
cursors except for read-only views. See Chapter 6 of SQL Reference for more
information about declaring a cursor as read-only.

� FOR FETCH ONLY was not specified and the result table of the cursor is not
read-only, and no static DELETE WHERE CURRENT OF or UPDATE WHERE
CURRENT OF is in the query, and there are no dynamic statements in the
program.

DB2 triggers block fetch for static SQL only when it can detect that no updates or
deletes are in the application. For dynamic statements, because DB2 cannot detect
what follows in the program, the decision to use block fetch is based on the
declaration of the cursor.

End of General-use Programming Interface

General-use Programming Interface

Using CURRENTDATA(NO) to Ensure Block Fetch
If any of the following are true, the cursors are read-only and NOT ambiguous, and
block fetch is automatically used for the query:

� The cursor is based on a read-only SELECT statement.
� The cursor is declared with a DISTINCT, ORDER BY, or GROUP BY clause.
� The cursor is declared FOR FETCH ONLY.

A cursor is considered updatable if:

� The cursor is declared with a FOR UPDATE clause.
� A DELETE WHERE CURRENT statement is associated with the cursor.

If none of the above are true, and a PREPARE or EXECUTE IMMEDIATE
statement appears in the same program, the cursor is considered ambiguous.

When you specify CURRENTDATA(NO) on either the BIND PACKAGE or BIND
PLAN commands, block fetching is allowed for ambiguous cursors. The default is
CURRENTDATA(YES); therefore, to take advantage of block fetching for
ambiguous cursors, you must be sure to specify CURRENTDATA(NO).

Table 92 on page 5-321 summarizes the effects of CURRENTDATA and cursor
type on block fetch.

5-320 Administration Guide

End of General-use Programming Interface

Table 92. Effect of CURRENTDATA and Cursor Type on Block Fetch

Isolation CURRENTDATA Cursor Type Block Fetch

CS, RR, or RS

Yes

Read-only Yes

Updatable No

Ambiguous No

No

Read-only Yes

Updatable No

Ambiguous Yes

UR
Yes Read-only Yes

No Read-only Yes

Monitoring DB2 in a Distributed Environment
DB2 provides several ways to monitor DB2 data and events in a distributed
environment. You can use the DISPLAY command and the trace facility to obtain
information.

Using the DISPLAY Command
The DB2 DISPLAY command gives you information about the status of threads,
databases, tracing, allied subsystems, and applications. Several forms of the
DISPLAY command are particularly helpful for monitoring DB2: DISPLAY THREAD,
DISPLAY LOCATION, DISPLAY DATABASE, and DISPLAY TRACE. For the

| detailed syntax of each command, refer to Chapter 2 of Command Reference. See
| also:

“Monitoring Threads” on page 4-37
“The Command DISPLAY LOCATION” on page 4-63

Tracing Distributed Events
A number of IFCIDs, including IFCID 0001 (statistics) and IFCID 0003 (accounting),
record distributed data and events.

If your applications update data at other sites, we recommend that you turn on the
statistics class 4 trace and always keep it active. This statistics trace covers error
situations surrounding indoubt threads; it provides a history of events that might
impact data availability and data consistency.

DB2 accounting records are created separately at the requester and each server.
Events are recorded in the accounting record at the location where they occur.
When a thread becomes active, the accounting fields are reset. Later, when the
thread becomes inactive or is terminated, the accounting record is created.

Figure 151 on page 5-322 shows the relationship of the accounting class 1 and 2
times and the requester and server accounting records. Figure 152 on page 5-324
and Figure 153 on page 5-324 show the server and requester distributed data
facility blocks from the DB2 PM accounting long trace.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-321

User DB2 DB2 ├───── Accounting Elapsed Times ──────┤

Address Requesting Serving ├── Server───┤ ├─Requester──┤

" Requester " System System

Space Network SERV REQ Cls1 Cls2 Cls3 Cls3 Cls2 Cls1

(1) (2) (3) (4) (5) (6) (7) (8)

 ┬

 │

(1st SQL statement)

 │

 └────────────┐

 │

 Create

 Thread

 ┼ ┬ ┬

│ │ │ │

 └──────────┐ ┬ │ │

└───────┐ ┬ │ ┬ ┬ │ │

│ │ │ │ │ │ │ │

SQL │ │ │ │ │ │ │

┌───────┘ ┴ │ │ ┴ │ │

 ┌──────────┘ ┴ │ │ │

 ┌────────────┘ │ ┴ │

 │ │ │

 │ │ │

 └────────────┐ │ ┬ │

 │ │ │ │

SQL │ │ │ │

 │ │ │ │

 ┌────────────┘ │ ┴ │

 │ │ │

 │ │ │

 └────────────┐ │ ┬ │

└──────────┐ ┬ │ │ │ │

└───────┐ ┬ │ │ ┬ │ │

SQL │ │ │ │ │ │ │ │

┌───────┘ ┴ │ │ ┴ │ │

 ┌──────────┘ ┴ │ │ │

 ┌────────────┘ │ ┴ │

 │ │ │

 │ │ │

 └───────────┐ │ ┬ │

 ├───────────┐ │ │ │

│ └───────┐ │ ┬ │ │ │

 COMMIT │ │ │ │ │ │

 ┼ COMMIT │ │ ┴ │

 Term Thread ┼ ┴ ┴ │

 │ Term Thread ┴

 ┌───────────┘ │

 │ │

 ┴ ┴

Figure 151. Elapsed Times in a DDF Environment as Reported by DB2 PM. These times are valid for access that
uses either DRDA or private protocol (except as noted).

This figure is a very simplified picture of the processes that go on in the serving
system. It does not show block fetch statements and is only applicable to a single
row retrieval.

The various elapsed times referred to in the header are:

� (1) - SERV

This time is reported in the SERVER ELAPSED TIME (.A/) field in the DDF
block of the DB2 PM accounting long trace. It represents the amount of
elapsed time spent at the server between the receipt of the SQL statement until
the answer is sent to VTAM. (This does not apply to access that uses DRDA.)

5-322 Administration Guide

� (2) - REQ

This time is reported in the REQUESTER ELAP.TIME (.B/) field in the DDF
block of the DB2 PM accounting long trace. It represents the amount of elapsed
time spent at the requester between the sending of the SQL statement and the
receipt of the answer from the server.

� (3) - Server Cls1

This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the DB2 PM accounting long trace for the serving DB2
system. It represents the elapsed time from the creation of the database
access thread until the termination of the database access thread.

� (4) - Server Cls2

This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the DB2 PM accounting long trace of the serving DB2
subsystem. It represents the elapsed time to process the SQL statement and
the commit at the server.

� (5) - Server Cls3

This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP.
column near the top of the DB2 PM accounting long trace for the for the
serving DB2 subsystem. It represents the amount of time the serving DB2
system spent suspended waiting for locks or I/O.

� (6) - Requester Cls3

This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP.
column near the top of the DB2 PM accounting long trace for the requesting
DB2 system. It represents the amount of time the requesting DB2 system spent
suspended waiting for locks or I/O.

� (7) - Requester Cls2

This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the DB2 PM accounting long trace for the requesting
DB2 system. It represents the elapsed time from when the application passed
the SQL statement to the local DB2 system until return. This is considered “In
DB2” time.

� (8) - Requester Cls1

This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the DB2 PM accounting long trace for the requesting
DB2 system. It represents the elapsed time from the creation of the allied
distributed thread until the termination of the allied distributed thread.

Figure 151 on page 5-322 highlights that the Class 2 "in DB2" elapsed time at the
requester includes the time that elapses while the requester is waiting for a
response from the server. To remove that time, subtract the requester elapsed time
(see the REQ column in Figure 151) from the Class 2 elapsed time.

However, the Class 2 processing time (the TCB time) at the requester does not
include processing time at the server. To determine the total Class 2 processing
time, add the Class 2 time at the requester to the Class 2 time at the server.

Likewise, add the getpage counts, prefetch counts, locking counts, and I/O counts
of the requester to the equivalent counts at the server. For private protocol, SQL

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-323

activity is counted at both the requester and server. For DRDA, SQL activity is
counted only at the server.

---- DISTRIBUTED ACTIVITY ---

SERVER : VTAMA CONVERSATIONS INITIATED:.D/ 1 TRANSACT.SENT: 1 MESSAGES SENT : 2

PRODUCT ID : DB2 #CONVERSATIONS QUEUED :.C/ ð #COMMT(1)SENT: 1 MESSAGES RECEIVED: 2

PRODUCT VERSION : V4 R1 Mð SUCCESSFULLY ALLOC.CONV:.E/N/A #ROLLB(1)SENT: ð BYTES SENT : 736

METHOD : APPL DIRECTED CONVERSATION TERMINATED: N/A SQL SENT: 1 BYTES RECEIVED : 292

REQUESTER ELAP.TIME:.B/ ð.119155 MAX OPEN CONVERSATIONS : N/A ROWS RECEIVED: 1 BLOCKS RECEIVED : ð

.A/ .F/ .H/ .G/
SERVER ELAPSED TIME: N/A #CONT->LIM.BL.FTCH SWCH: N/A MSG.IN BUFFER: ð STMT BOUND AT SER: ð

SERVER CPU TIME : N/A #DDF ACCESSES : 1

#COMMIT(2) SENT : ð #COMMIT(2) RESP.RECV. : ð #PREPARE SENT: ð #FORGET RECEIVED : ð

#BACKOUT(2) SENT : ð #BACKOUT(2) RESP.RECV. : ð #LASTAGN.SENT: ð

Figure 152. DDF Block of a Requester Thread from a DB2 PM Accounting Long Trace

---- DISTRIBUTED ACTIVITY ---

REQUESTER : VTAMB TRANSACTIONS RECV. : 1.ðð MESSAGES SENT : 2.ðð MSG.IN BUFFER : ð.ðð

PRODUCT ID : DB2 #COMMIT(1) RECEIVED: 1 MESSAGES RECEIVED: 2.ðð ROWS SENT : 1.ðð

PRODUCT VERSION : V4 R1 Mð #ROLLBK(1) RECEIVED: ð BYTES SENT : 292.ðð BLOCKS SENT : ð.ðð

METHOD : APPL DIRECTED SQL RECEIVED : 1.ðð BYTES RECEIVED : 736.ðð CONV.INITIATED: 1.ðð

#COMMIT(2) RECEIVED: ð #COMMIT(2) RES.SENT: ð #PREPARE RECEIVED: ð #DDF ACCESSES : 1

#BCKOUT(2) RECEIVED: ð #BACKOUT(2)RES.SENT: ð #LAST AGENT RECV.: ð #FORGET SENT : ð

#COMMIT(2) PERFORM.: 1 #BACKOUT(2)PERFORM.: ð #THREADS INDOUBT : ð

Figure 153. DDF Block of a Server Thread from a DB2 PM Accounting Long Trace

The accounting distributed fields for each serving or requesting location are
collected from the viewpoint of this thread communicating with the other location
identified. For example, SQL sent from the requester is SQL received at the server.
Do not add together the distributed fields from the requester and the server.

Several fields in the distributed section merit specific attention. The number of
VTAM conversations is reported in several fields:

� The number of conversation requests queued during allocation is reported as
CONVERSATIONS QUEUED (.C/).

� The number of conversation allocations is reported as CONVERSATIONS
INITIATED (.D/).

� The number of successful conversation allocations is reported as
SUCCESSFULLY ALLOC.CONV (.E/).

� The number of times a switch was made from continuous block fetch to limited
block fetch is reported as CONT->LIM.BL.FTCH (.F/). This is only applicable to
access that uses DB2 private protocol.

You can use the difference between initiated allocations and successful allocations
to identify a session resource constraint problem. If the number of conversations
queued is high, or if the number of times a switch was made from continuous to
limited block fetch is high, you might want to tune VTAM to increase the number of
conversations. VTAM and network parameter definitions are important factors in the
performance of DB2 distributed processing. For more information, see VTAM for
MVS/ESA Network Implementation Guide.

5-324 Administration Guide

Bytes sent, bytes received, messages sent, and messages received are recorded
at both the requester and the server. They provide information on the volume of
data transmitted. However, because of the way distributed SQL is processed for
private protocol, more bytes may be reported as sent than are reported as
received.

The number of SQL statements bound for remote access is the number of
statements dynamically bound at the server for private protocol. This field is
maintained at the requester and is reported as STMT BOUND AT SER (.G/).

To determine the percentage of the rows transmitted by block fetch, compare the
total number of rows sent to the number of rows sent in a block fetch buffer, which
is reported as MSG.IN BUFFER (.H/). The number of rows sent is reported at the
server, and the number of rows received is reported at the requester. Block fetch
can significantly affect the number of rows sent across the network.

Because of the manner in which distributed SQL is processed, there may be a
small difference in the number of rows reported as sent versus received. However,
a significantly lower number of rows received may indicate that the application did
not fetch the entire answer set. This is especially true for access that uses DB2
private protocol.

Using DB2 PM Accounting Reports to Monitor Distributed Processing
The DB2 PM accounting report, short layout, can be used to monitor the distributed
activity between your DB2 subsystem and other database management systems in
the network.

The accounting report, short layout, is often ordered by PRIMAUTH/PLANNAME as
the default. With distributed activity, ordering by PRIMAUTH/PLANNAME/REQLOC
provides additional separation of data according to the requesting locations.
Additionally, it provides separation of server thread accounting records from
non-distributed accounting records and requester accounting records.

Accounting records that have a SERVER location block are created by any activity
involving one or more allied distributed threads. This type of thread executes on the
local (requesting) DB2, which is requesting data from a remote (serving) DB2
location. Work done at the serving location is performed by a database access
thread (DBAT).

Accounting records that have a REQUESTER location block are created when
processing activity involves one or more database access threads. This type of
thread executes on the local (serving) DB2 and is created in response to a request
for data from a remote (requesting) DB2 location.

| With access using DRDA, it is possible that a database access thread subsequently
| makes a request of another DB2 by using private protocol. In this case, DB2 PM
| calls that thread a DBAT distributed thread, and the accounting record contains
| both a requester location block for the DRDA access activity and a server location
| block for the private protocol access activity.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-325

Merged Accounting Trace
With DB2 PM, you can create merged accounting traces based on job input from
both the requester and server subsystem accounting records. For multi-site update,
trace records from more than one remote site can be included.

Using RMF to Monitor Distributed Processing
If you use RMF to monitor DDF work, it's important to understand how DDF is
using the enclave SRBs described in “Using Workload Manager to Set Performance
Objectives” on page 5-124. The information that is reported using RMF or an
equivalent product in the SMF 72 records are the portions of the client's request
that are covered by individual enclaves. The way DDF uses enclaves relates
directly to whether the DDF thread can become inactive.

Duration of an Enclave
“Comparing Active and Inactive Threads” on page 5-122 describes the difference
between threads that are always active and those that can become inactive
(sometimes active threads). From an MVS enclave point of view, an enclave only
lasts as long as the thread is active. Any inactive period, such as think time, is not
using an enclave and is not managed by MVS's SRM. Inactive periods are
therefore not reported in the SMF 72 record.

Active threads that cannot become inactive (always active threads) are treated as a
single enclave from the time it is created until the time it is terminated. This means
that the entire life of the database access thread is reported in the SMF 72 record,
regardless of whether SQL work is actually being processed. Figure 154 on
page 5-327 contrasts the two types of threads and how they are managed by
SRM.

Queue Time: Note that the information reported back to RMF includes queue time.
This particular queue time includes waiting for a new or existing thread to become
available. This queue time is also reported in DB2 class 3 times, but class 3 times
also include time waiting for locks or I/O after the thread is processing work.

RMF Records for Enclaves
The two most frequently used SMF records are types 30 and 72. The type 30
record contains resource consumption at the address space level. You can pull out
total enclave usage from the record, but you must use DB2 accounting traces to
see resource consumption for a particular enclave.

Type 72 records contain data collected by RMF monitor 1. There is one type 72
record for each service class period, report class, performance group number
(PGN) period, and report performance group (RPGN) per RMF monitor 1 interval.
Each enclave conributes its data to one type 72 for the service class or PGN and to
zero or one 0 or 1 type 72 records for the report class or RPGN. By using WLM
classification rules, you can segregate enclaves into different service classes or
report classes (or PGNs or RPGNs, if using compatibility mode). By doing this, you
can understand the DDF work better.

5-326 Administration Guide

Figure 154. Contrasting 'Always Active' vs. 'Sometimes Active' Threads

Monitoring and Tuning Stored Procedures
| Table 93 on page 5-328 summarizes the differences between stored procedures
| that run in WLM-established stored procedures address spaces and those that run
| in DB2-established stored procedure address space.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-327

| Table 93. Comparing WLM-established and DB2-established Stored Procedures

| DB2-established| WLM-established| More Information

| There is a single stored procedure
| address space:

| � A failure in one stored procedure
| can affect other stored
| procedures that are running in
| that address space.

| � Because of storage that
| language products need below
| the 16MB line, it can be difficult
| to support more than 50 stored
| procedures running at the same
| time.

| There can be many stored
| procedures address spaces:

| � It is possible to isolate stored
| procedures from one another
| so that failures do not affect
| other stored procedures.

| � Reduces demand for storage
| below the 16MB line and
| thereby removes the limitation
| on the number of stored
| procedures that can run
| concurrently.

| “Controlling Address Space Storage”
| on page 5-329

| Incoming requests for stored
| procedures are handled in a first-in,
| first-out order.

| Requests are handled in priority
| order.
| “Using Workload Manager to Set
| Performance Objectives” on page
| 5-124

| Stored procedures run at the priority
| of the stored procedures address
| space.

| Stored procedures inherit the MVS
| dispatching priority of the DB2
| thread that issues the CALL
| statement.

| “Using Workload Manager to Set
| Performance Objectives” on page
| 5-124

| No ability to customize the
| environment.
| Each stored procedures address
| space is associated with a WLM
| environment that you specify. An
| environment is an attribute
| associated with one or more stored
| procedures. The environment
| determines which JCL procedure is
| used to run a particular stored
| procedure.

| “Assigning Stored Procedures to
| WLM Application Environments” on
| page 5-329

| Must run as a MAIN program.| Can run as a MAIN or SUB
| program. SUB programs can run
| significantly faster, but the
| subprogram must do more
| initialization and cleanup
| processing itself rather than relying
| on LE/370 to handle that.

| Section 6 of Application
| Programming and SQL Guide

| You can access non-relational data,
| but that data is not included in your
| SQL unit of work. It is a separate unit
| of work.

| You can access non-relational
| data. If the non-relational data is
| managed by OS/390 RRS, the
| updates to that data are part of
| your SQL unit of work.

| Section 6 of Application
| Programming and SQL Guide

| Stored procedures access protected
| MVS resources with the authority of
| the stored procedures address
| space.

| Stored procedures can access
| protected MVS resources with the
| SQL user's RACF authority.

| Section 3 (Volume 1) of
| Administration Guide

5-328 Administration Guide

| Controlling Address Space Storage
| To maximize the number of stored procedures that can run concurrently in a stored
| procedures address space, use the following guidelines:

| � Set REGION size for the stored procedures address spaces to REGION=0 to
| obtain the largest possible amount of storage below the 16MB line.

| � Limit storage required by application programs below the 16MB line by:

| – Link editing programs above the line with AMODE(31) and RMODE(ANY)
| attributes
| – Using the RES and DATA(31) compiler options for COBOL programs

| � Limiting storage required by IBM Language Environment for MVS & VM by
| using these runtime options:

| – HEAP(,,ANY) to allocate program heap storage above the 16MB line
| – STACK(,,ANY,) to allocate program stack storage above the 16MB line
| – STORAGE(,,,4K) to reduce reserve storage area below the line to 4KB
| – BELOWHEAP(4K,,) to reduce the heap storage below the line to 4KB
| – LIBSTACK(4K,,) to reduce the library stack below the line to 4KB
| – ALL31(ON) to indicate all programs contained in the stored procedure run
| with AMODE(31) and RMODE(ANY)

| If you follow these guidelines, each TCB that runs in the DB2-established stored
| procedures address space requires approximately 100KB below the 16MB line.
| Each TCB that runs in a WLM-established stored procedures address space uses
| approximately 200KB.

| DB2 needs extra storage for stored procedures in the WLM-established address
| space because you can create both main and sub programs, and DB2 must create
| an environment for each.

| You must have Language Environment to run stored procedures. Your
| requirements can differ significantly depending on your release of Language
| Environment.

| Dynamically Extending Load Libraries: We recommend using partitioned data
| set extended (PDSEs) for load libraries containing stored procedures. Using PDSEs
| may eliminate your need to stop and start the stored procedures address space
| due to growth of the load libraries. If a load library grows from additions or
| replacements, the library may have to be extended.

| If you use PDSEs for the load libraries, the new extent information is dynamically
| updated and you do not need to stop and start the address space. If PDSs are
| used, load failures may occur because the new extent information is not available.

| Assigning Stored Procedures to WLM Application Environments
| Workload manager routes work to stored procedure address spaces based on the
| environment name and service class associated with the stored procedure. You
| must use WLM panels to associate an application environment name with the JCL
| procedure used to start an address space. See MVS/ESA Planning: Workload
| Management for details about workload management panels.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-329

| There are other tasks that must be completed before a stored procedure can run in
| a WLM-established stored procedures address space. Here is a summary of those
| tasks:

| 1. Make sure you have a numeric value specified in the TIMEOUT VALUE field of
| installation panel DSNTIPX. If you have problems with setting up the
| environment, this timeout value ensures that your stored procedures will not
| hang for an unlimited amount of time.

| 2. If you want to migrate any stored procedures that use the DB2-established
| stored procedure address space (ssnmSPAS), you must link edit them or code
| them so that they use the Recoverable Resource Manager Services attachment
| facility (RRSAF) instead of the call attachment facility. Use the JCL startup
| procedure for WLM-established stored procedures address space that was
| created when you installed or migrated as a model. (The default name is
| ssnmWLM.)

| Unless a particular environment or service class is not used for a long time,
| WLM creates on demand at least one address space for each combination of
| WLM environment name and service class that is encountered in the workload.
| For example, if there are five environment names that each have six possible
| service classes, and all those combinations are in demand, it is possible to
| have 30 stored procedure address spaces.

| To prevent creating too many address spaces, create a relatively small number
| of WLM environments and MVS service classes.

| 3. Use the WLM application environment panels to associate the environment
| name with the JCL procedure. Figure 155 is an example of this panel.

| à| ð
| Application-Environment Notes Options Help

| --

| Create an Application Environment

| Command ===> ___

| Application Environment Name . : WLMENV2

| Description Large Stored Proc Env.

| Subsystem Type DB2

| Procedure Name WLMENV2

| Start Parameters DB2SSN=DB2A,NUMTCB=2,APPLENV=WLMENV2

| _______________________________________

| ___________________________________

| Select one of the following options.

| 1 1. Multiple server address spaces are allowed.

| 2. Only 1 server address space per MVS system is allowed.

| á| ñ

| Figure 155. WLM Panel to Create an Application Environment. You can also use the
variable &IWMSSNM for the DB2SSN parameter (DB2SSN=&IWMSSNM). This variable
represents the name of the subsystem for which you are starting this address space. This
variable is useful for using the same JCL procedure for multiple DB2 subsystems.

| 4. Update the WLM_ENV column of SYSIBM.SYSPROCEDURES to associate a
| stored procedure with an application environment.

UPDATE SYSIBM.SYSPROCEDURES

SET WLM_ENV='WLM_ENV2'

WHERE PROCEDURE='BIGPROC';

5-330 Administration Guide

| 5. Using the WLM install utility, install the WLM service definition that contains
| information about this application environment into the couple data set.

| 6. Activate a WLM policy from the installed service definition.

| 7. Issue STOP PROCEDURE and START PROCEDURE for any stored
| procedures that run in the ssnmSPAS address space. This allows those
| procedures to pick up the application environment from the WLM_ENV column
| of SYSIBM.SYSPROCEDURES.

| 8. Begin running stored procedures.

 Accounting Trace
Through a stored procedure one SQL statement generates other SQL statements
under the same thread. The processing done by the stored procedure is included in

| DB2's class 1 and class 2 times for accounting.

The accounting report on the server has several fields that specifically relate to
stored procedures processing, as shown in Figure 156.

PRIMAUTH: USRTðð1 PLANNAME: IT8EC

AVERAGE APPL (CLASS 1) DB2 (CLASS 2) IFI (CLASS 5) CLASS 3 SUSP. AVERAGE TIME AV.EVENT

------------ -------------- -------------- -------------- -------------- ------------ --------

ELAPSED TIME ð.123676 ð.ð534ðð N/P LOCK/LATCH ð.ðððððð ð.ðð

CPU TIME ð.ð12648 ð.ðð9332 N/P SYNCHRON. I/O ð.ð4ð742 1.ðð

 TCB ð.ðð4ð97 ð.ðð1719 N/P OTHER READ I/O ð.ðððððð ð.ðð

 TCB-STPROC .A/ ð.ðð8551 ð.ðð7613 N/A OTHER WRTE I/O ð.ðððððð ð.ðð

CPU-PARALL ð.ðððððð ð.ðððððð N/A SER.TASK SWTCH ð.ðððððð ð.ðð

SUSPEND TIME N/A ð.ð4ð742 N/A ARC.LOG(QUIES) ð.ðððððð ð.ðð

 TCB N/A ð.ð4ð742 N/A ARC.LOG READ ð.ðððððð ð.ðð

 CPU-PARALL N/A ð.ðððððð N/A DRAIN LOCK ð.ðððððð ð.ðð

NOT ACCOUNT. N/A ð.ðð3327 N/A CLAIM RELEASE ð.ðððððð ð.ðð

DB2 ENT/EXIT N/A 8.ðð N/A PAGE LATCH ð.ðððððð ð.ðð

EN/EX-STPROC N/A 36.ðð N/A STORED PROC. .B/ ð.ðððððð ð.ðð

DCAPT.DESCR. N/A N/A N/P NOTIFY MSGS. ð.ðððððð ð.ðð

LOG EXTRACT. N/A N/A N/P GLOBAL CONT. ð.ðððððð ð.ðð

NOT NULL 1 1 ð TOTAL CLASS 3 ð.ð4ð742 1.ðð

...

STORED PROCEDURES AVERAGE TOTAL

----------------- -------- --------

CALL STATEMENTS .C/ 1.ðð 1

PROCEDURE ABENDS ð.ðð ð

CALL TIMEOUT .D/ ð.ðð ð

CALL REJECT ð.ðð ð

...

Figure 156. Partial Long Accounting Report, Server - Stored Procedures

Descriptions of Fields:

� The number of calls to stored procedures is indicated in .C/.

� The part of the total CPU time that was spent satisfying stored procedures
requests is indicated in .A/.

� The amount of time spent waiting for a stored procedure to be scheduled is
indicated in .B/.

 Chapter 5-11. Monitoring and Tuning in a Distributed Environment 5-331

� The number of times a stored procedure timed out waiting to be scheduled is
shown in .D/.

What to Do for Excessive Timeouts or Wait Time: If you have excessive wait
time (.B/) or timeouts (.D/), there are several possible causes.

| For stored procedures in a DB2-established address space, the causes for
| excessive wait time include:

| � Someone issued the DB2 command STOP PROCEDURE ACTION(QUEUE)
| that caused requests to queue up for a long time and time out.

| � The stored procedures are hanging onto the ssnmSPAS TCBs for too long. In
| this case, you need to find out why this is happening.

| If you are getting many DB2 lock suspensions, maybe you have too many
| ssnmSPAS TCBs, causing them to encounter too many lock conflicts with one
| another. Or, maybe you just need to make code changes to your application.
| Or, you might need to change your database design to reduce the number of
| lock suspensions.

| � If the stored procedures are getting in and out quickly, maybe you don't have
| enough ssnmSPAS TCBs to handle the work load. In this case, increase the
| number on field NUMBER OF TCBS on installation panel DSNTIPX.

| For stored procedures in a WLM-established address space, the causes for
| excessive wait time include:

| � The priority of the service class that is running the stored procedure is not high
| enough.

| � You are running in compatibility mode, which means you might have to
| manually start more address spaces.

| � If you are using goal mode, make sure that the application environment is
| available by using the MVS command DISPLAY WLM,APPLENV=applenv. If
| the application environment is quiesced, WLM does not start any address
| spaces for that environment; CALL statements are queued or be rejected.

5-332 Administration Guide

 Appendixes

Appendix A. DB2 Sample Tables . X-7
Activity Table (DSN8510.ACT) . X-7

Content . X-7
Relationship to Other Tables . X-8

Department Table (DSN8510.DEPT) . X-8
Content . X-8
Relationship to Other Tables . X-9

Employee Table (DSN8510.EMP) . X-10
Content . X-10
Relationship to Other Tables . X-11

Project Table (DSN8510.PROJ) . X-14
Content . X-14
Relationship to Other Tables . X-15

Project Activity Table (DSN8510.PROJACT) X-15
Content . X-15
Relationship to Other Tables . X-16

Employee to Project Activity Table (DSN8510.EMPPROJACT) X-16
Content . X-16
Relationship to Other Tables . X-17

Relationships Among the Tables . X-17
Views on the Sample Tables . X-18

Storage of Sample Application Tables . X-22
Storage Group . X-22
Databases . X-22
Table Spaces . X-23

Appendix B. Writing Exit Routines . X-25
Connection and Sign-On Routines . X-25

General Considerations . X-25
Specifying the Routines . X-25
Sample Exit Routines . X-26
When Exits Are Taken . X-26
EXPL for Connection and Sign-on Routines X-27
Exit Parameter List . X-28
Authorization ID Parameter List . X-28
Input Values . X-29
Expected Output . X-30
Processing in the Sample Routines . X-31
Performance Considerations . X-32
Debugging Your Exit Routine . X-33

| Access Control Authorization Exit . X-34
| General Considerations . X-34
| Specifying the Routine . X-35
| The Default Routine . X-35
| When the Exit Is Taken . X-35
| Other Considerations for Using the Access Control Authorization Exit . . . X-35
| Parameter List for the Access Control Authorization Routine X-37
| Expected Output . X-43
| Exit Abend . X-44
| Debugging Your Exit Routine . X-44

 Copyright IBM Corp. 1982, 1997 X-1

Edit Routines . X-44
General Considerations . X-45
Specifying the Routine . X-45
When Exits Are Taken . X-45
Parameter Lists on Entry . X-46
Processing Requirements . X-46
Incomplete Rows . X-46
Expected Output . X-47

Validation Routines . X-48
General Considerations . X-48
Specifying the Routine . X-48
When Exits Are Taken . X-48
Parameter Lists on Entry . X-49
Processing Requirements . X-49
Incomplete Rows . X-49
Expected Output . X-50

Date and Time Routines . X-51
General Considerations . X-51
Specifying the Routine . X-51
When Exits Are Taken . X-52
Parameter Lists on Entry . X-53
Expected Output . X-53

Conversion Procedures . X-54
General Considerations . X-54
Specifying the Routine . X-54
When Exits Are Taken . X-55
Parameter Lists on Entry . X-55
Expected Output . X-56

Field Procedures . X-57
Field Definition . X-58
General Considerations . X-58
Specifying the Procedure . X-58
When Exits Are Taken . X-59
Control Blocks for Execution . X-60
Field-Definition (Function Code 8) . X-63
Field-Encoding (Function Code 0) . X-65
Field-Decoding (Function Code 4) . X-67

Log Capture Routines . X-68
General Considerations . X-69
Specifying the Routine . X-69
When Exits Are Taken . X-69
Parameter Lists on Entry . X-70

Routines for Dynamic Plan Selection in CICS X-71
What the Exit Routine Does . X-71
General Considerations . X-71
Execution Environment . X-71
Specifying the Routine . X-72
Sample Exit Routine . X-72
When Exits Are Taken . X-73
Dynamic Plan Switching . X-73
Coding the Exit Routine . X-73
Parameter List on Entry . X-74

General Considerations for Writing Exit Routines X-74
Coding Rules . X-74

X-2 Administration Guide

Modifying Exit Routines . X-75
Execution Environment . X-75
Registers at Invocation . X-76
Parameter Lists . X-76

Row Formats for Edit and Validation Routines X-77
Column Boundaries . X-77
Null Values . X-77
Fixed-length Rows . X-77
Varying-length Rows . X-77
Varying-length Rows with Nulls . X-78
Internal Formats for Dates, Times, and Timestamps X-78
Parameter List for Row Format Descriptions X-79
DB2 Codes for Numeric Data . X-80

Appendix C. Reading Log Records . X-81
What the Log Contains . X-81

Unit of Recovery Log Records . X-82
Checkpoint Log Records . X-85
Database Page Set Control Records . X-86

The Physical Structure of the Log . X-86
Physical and Logical Log Records . X-86
The Log Record Header . X-87
The Log Control Interval Definition (LCID) X-88
Log Record Type Codes . X-90
Log Record Subtype Codes . X-90
Interpreting Data Change Log Records . X-92

Reading Log Records . X-92
Reading Log Records with IFI . X-92
Reading Log Records with OPEN, GET, and CLOSE X-96
Reading Log Records with the Log Capture Exit X-104

Appendix D. Interpreting DB2 Trace Output X-107
Processing Trace Records . X-107

SMF Writer Header Section . X-108
GTF Writer Header Section . X-110
Self-Defining Section . X-117
Product Section . X-118

Trace Field Descriptions . X-122

Appendix E. Programming for the Instrumentation Facility Interface
(IFI) . X-123

What IFI Can Do . X-123
Submitting DB2 Commands through IFI . X-124
Obtaining Trace Data . X-124
Passing Data to DB2 through IFI . X-125
IFI Functions . X-125
Invoking IFI from Your Program . X-125
Using IFI from Stored Procedures . X-126
COMMAND: Syntax and Usage . X-126
READS: Syntax and Usage . X-129
READA: Syntax and Usage . X-140
Authorization . X-140
Syntax . X-140
Usage Notes . X-141

 Appendixes X-3

Asynchronous Data . X-141
Example . X-142
WRITE: Syntax and Usage . X-142
Authorization . X-142
Syntax . X-143
Usage Notes . X-143
Common Communication Areas . X-143
IFCA . X-144
Return Area . X-146
IFCID area . X-146
Output Area . X-147
Interpreting Records Returned by IFI . X-147
Trace Data Record Format . X-147
Command Record Format . X-149
Data Integrity . X-149
Auditing Data . X-150
Locking Considerations . X-150
Recovery Considerations . X-150
Errors . X-150

Appendix F. Sharing Read-Only Data . X-153
Overview of Shared Read-Only Data . X-153

Prerequisites for Shared Read-Only Data X-153
Benefits of Shared Read-Only Data . X-154
Costs of Shared Read-Only Data . X-154
Comparing Shared Read-Only Data and Distributed Data X-155

Implementing Shared Read-Only Data . X-155
Steps for Sharing an Existing Database X-155
Steps for Sharing a New Database . X-156

Plan to Set Up and Maintain Data Definitions X-156
Tune GRS for DB2 . X-157

Excluding Data Sets . X-157
Alter an Existing Database to be Shared . X-157
Create DB2 Objects to be Shared . X-158

Create DB2 Storage Groups . X-158
Create a Database . X-159
Create Table Spaces . X-159
Create Tables . X-161
Using Referential Constraints . X-162
Create Indexes . X-162

Load Data in the Owner . X-163
Starting and Stopping a Shared Database . X-164

Starting a Shared Database . X-166
Stopping a Shared Database . X-167

Maintaining Shared Read-Only Data . X-167
Updating . X-167
Adding . X-168
Dropping . X-168
Altering . X-169
Running Utilities . X-170
Recovering . X-171

Appendix G. Using Tools to Monitor Performance X-173
Using MVS, CICS, and IMS Tools . X-175

X-4 Administration Guide

Monitoring System Resources . X-175
Monitoring Transaction Manager Throughput X-177

DB2 Trace . X-177
Types of Traces . X-178
Effect on DB2 Performance . X-181

Recording SMF Trace Data . X-182
Activating SMF . X-182
Allocating Additional SMF Buffers . X-182
Reporting Data in SMF . X-183

Recording GTF Trace Data . X-183
DB2 Performance Monitor (DB2 PM) . X-184
Performance Reporter for MVS . X-184
Monitoring Application Plans and Packages X-185

 Appendixes X-5

X-6 Administration Guide

Appendix A. DB2 Sample Tables

The information in this appendix is General-use Programming Interface and
Associated Guidance Information as defined in “Notices” on page xi.

Most of the examples in this book refer to the tables described in this appendix. As
a group, the tables include information that describes employees, departments,
projects, and activities, and make up a sample application that exemplifies most of
the features of DB2. The sample storage group, databases, tablespaces, tables,
and views are created when you run the installation sample job DSNTEJ1. The
CREATE INDEX statements for the sample tables are not shown here; they, too,
are created by the DSNTEJ1 sample job.

Authorization on all sample objects is given to PUBLIC in order to make the sample
programs easier to run. The contents of any table can easily be reviewed by
executing an SQL statement, for example SELECT * FROM DSN8510.PROJ. For
convenience in interpreting the examples, the department and employee tables are
listed here in full.

Activity Table (DSN8510.ACT)
The activity table describes the activities that can be performed during a project.
The table resides in database DSN8D51A and is created with:

CREATE TABLE DSN851ð.ACT

 (ACTNO SMALLINT NOT NULL,

 ACTKWD CHAR(6) NOT NULL,

 ACTDESC VARCHAR(2ð) NOT NULL,

PRIMARY KEY (ACTNO))

 IN DSN8D41A.DSN8S41P:

 Content
Table 94 shows the content of the columns.

The activity table has these indexes:

Table 94. Columns of the Activity Table

Column
Column
Name Description

1 ACTNO Activity ID (the primary key)

2 ACTKWD Activity keyword (up to six characters)

3 ACTDESC Activity description

Table 95. Indexes of the Activity Table

Name
On
Column Type of Index

DSN8510.XACT1 ACTNO Primary, ascending

DSN8510.XACT2 ACTKWD Unique, ascending

 Copyright IBM Corp. 1982, 1997 X-7

Relationship to Other Tables
The activity table is a parent table of the project activity table, through a foreign key
on column ACTNO.

Department Table (DSN8510.DEPT)
The department table describes each department in the enterprise and identifies its
manager and the department to which it reports.

The table, shown in Table 98 on page X-9, resides in table space
DSN8D51A.DSN8S51D and is created with:

CREATE TABLE DSN851ð.DEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16) ,

PRIMARY KEY (DEPTNO))

 IN DSN8D51A.DSN8S51D;

Because the table is self-referencing, and also is part of a cycle of dependencies,
its foreign keys must be added later with these statements:

ALTER TABLE DSN851ð.DEPT

FOREIGN KEY RDD (ADMRDEPT) REFERENCES DSN851ð.DEPT

ON DELETE CASCADE;

ALTER TABLE DSN851ð.DEPT

FOREIGN KEY RDE (MGRNO) REFERENCES DSN851ð.EMP

ON DELETE SET NULL;

 Content
Table 96 shows the content of the columns.

Table 96. Columns of the Department Table

Column
Column
Name Description

1 DEPTNO Department ID, the primary key

2 DEPTNAME A name describing the general activities of the department

3 MGRNO Employee number (EMPNO) of the department manager

4 ADMRDEPT ID of the department to which this department reports; the department at the
highest level reports to itself

5 LOCATION The remote location name

X-8 Administration Guide

The department table has these indexes:

Table 97. Indexes of the Department Table

Name
On
Column Type of Index

DSN8510.XDEPT1 DEPTNO Primary, ascending

DSN8510.XDEPT2 MGRNO Ascending

DSN8510.XDEPT3 ADMRDEPT Ascending

Relationship to Other Tables
The table is self-referencing: the value of the administering department must be a
department ID.

The table is a parent table of:

� The employee table, through a foreign key on column WORKDEPT
� The project table, through a foreign key on column DEPTNO.

It is a dependent of the employee table, through its foreign key on column MGRNO.

The LOCATION column contains nulls until sample job DSNTEJ6 updates this
column with the location name.

Table 98. DSN8510.DEPT: Department Table

DEPTNO DEPTNAME MGRNO ADMRDEPTLOCATION

A00 SPIFFY COMPUTER
SERVICE DIV.

000010 A00 ----------------

B01 PLANNING 000020 A00 ----------------

C01 INFORMATION CENTER 000030 A00 ----------------

D01 DEVELOPMENT CENTER ------ A00 ----------------

E01 SUPPORT SERVICES 000050 A00 ----------------

D11 MANUFACTURING
SYSTEMS

000060 D01 ----------------

D21 ADMINISTRATION
SYSTEMS

000070 D01 ----------------

E11 OPERATIONS 000090 E01 ----------------

E21 SOFTWARE SUPPORT 000100 E01 ----------------

F22 BRANCH OFFICE F2 ------ E01 ----------------

G22 BRANCH OFFICE G2 ------ E01 ----------------

H22 BRANCH OFFICE H2 ------ E01 ----------------

I22 BRANCH OFFICE I2 ------ E01 ----------------

J22 BRANCH OFFICE J2 ------ E01 ----------------

 Appendix A. DB2 Sample Tables X-9

Employee Table (DSN8510.EMP)
The employee table identifies all employees by an employee number and lists basic
personnel information.

The table shown in Table 101 on page X-12 and Table 102 on page X-13 resides
in the partitioned table space DSN8D51A.DSN8S51E. Because it has a foreign key
referencing DEPT, that table and the index on its primary key must be created first.
Then EMP is created with:

CREATE TABLE DSN851ð.EMP

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) ,

PHONENO CHAR(4) CONSTRAINT NUMBER CHECK

(PHONENO >= 'ðððð' AND

PHONENO <= '9999') ,

 HIREDATE DATE ,

 JOB CHAR(8) ,

 EDLEVEL SMALLINT ,

 SEX CHAR(1) ,

 BIRTHDATE DATE ,

 SALARY DECIMAL(9,2) ,

 BONUS DECIMAL(9,2) ,

 COMM DECIMAL(9,2) ,

PRIMARY KEY (EMPNO) ,

FOREIGN KEY RED (WORKDEPT) REFERENCES DSN851ð.DEPT

ON DELETE SET NULL)

 EDITPROC DSN8EAE1

 IN DSN8D51A.DSN8S51E;

 Content
Table 99 on page X-11 shows the content of the columns. The table has a check
constraint, NUMBER, which checks that the phone number is in the numeric range
0000 to 9999.

X-10 Administration Guide

Table 99. Columns of the Employee Table

Column
Column
Name Description

1 EMPNO Employee number (the primary key)

2 FIRSTNME First name of employee

3 MIDINIT Middle initial of employee

4 LASTNAME Last name of employee

5 WORKDEPT ID of department in which the employee works

6 PHONENO Employee telephone number

7 HIREDATE Date of hire

8 JOB Job held by the employee

9 EDLEVEL Number of years of formal education

10 SEX Sex of the employee (M or F)

11 BIRTHDATE Date of birth

12 SALARY Yearly salary in dollars

13 BONUS Yearly bonus in dollars

14 COMM Yearly commission in dollars

The table has these indexes:

Table 100. Indexes of the Employee Table

Name
On
Column Type of Index

DSN8510.XEMP1 EMPNO Primary, partitioned,
ascending

DSN8510.XEMP2 WORKDEPT Ascending

Relationship to Other Tables
The table is a parent table of:

� The department table, through a foreign key on column MGRNO
� The project table, through a foreign key on column RESPEMP.

It is a dependent of the department table, through its foreign key on column
WORKDEPT.

 Appendix A. DB2 Sample Tables X-11

Table 101. Left Half of DSN8510.EMP: Employee Table. Note that a blank in the MIDINIT column is an actual value
of ' ' rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000010 CHRISTINE I HAAS A00 3978 1965-01-01

000020 MICHAEL L THOMPSON B01 3476 1973-10-10

000030 SALLY A KWAN C01 4738 1975-04-05

000050 JOHN B GEYER E01 6789 1949-08-17

000060 IRVING F STERN D11 6423 1973-09-14

000070 EVA D PULASKI D21 7831 1980-09-30

000090 EILEEN W HENDERSON E11 5498 1970-08-15

000100 THEODORE Q SPENSER E21 0972 1980-06-19

000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16

000120 SEAN O'CONNELL A00 2167 1963-12-05

000130 DOLORES M QUINTANA C01 4578 1971-07-28

000140 HEATHER A NICHOLLS C01 1793 1976-12-15

000150 BRUCE ADAMSON D11 4510 1972-02-12

000160 ELIZABETH R PIANKA D11 3782 1977-10-11

000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15

000180 MARILYN S SCOUTTEN D11 1682 1973-07-07

000190 JAMES H WALKER D11 2986 1974-07-26

000200 DAVID BROWN D11 4501 1966-03-03

000210 WILLIAM T JONES D11 0942 1979-04-11

000220 JENNIFER K LUTZ D11 0672 1968-08-29

000230 JAMES J JEFFERSON D21 2094 1966-11-21

000240 SALVATORE M MARINO D21 3780 1979-12-05

000250 DANIEL S SMITH D21 0961 1969-10-30

000260 SYBIL P JOHNSON D21 8953 1975-09-11

000270 MARIA L PEREZ D21 9001 1980-09-30

000280 ETHEL R SCHNEIDER E11 8997 1967-03-24

000290 JOHN R PARKER E11 4502 1980-05-30

000300 PHILIP X SMITH E11 2095 1972-06-19

000310 MAUDE F SETRIGHT E11 3332 1964-09-12

000320 RAMLAL V MEHTA E21 9990 1965-07-07

000330 WING LEE E21 2103 1976-02-23

000340 JASON R GOUNOT E21 5698 1947-05-05

200010 DIAN J HEMMINGER A00 3978 1965-01-01

200120 GREG ORLANDO A00 2167 1972-05-05

200140 KIM N NATZ C01 1793 1976-12-15

200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15

200220 REBA K JOHN D11 0672 1968-08-29

200240 ROBERT M MONTEVERDE D21 3780 1979-12-05

200280 EILEEN R SCHWARTZ E11 8997 1967-03-24

200310 MICHELLE F SPRINGER E11 3332 1964-09-12

200330 HELENA WONG E21 2103 1976-02-23

200340 ROY R ALONZO E21 5698 1947-05-05

X-12 Administration Guide

Table 102. Right Half of DSN8510.EMP: Employee Table

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000010) PRES 18 F 1933-08-14 52750.00 1000.00 4220.00

(000020) MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00

(000030) MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00

(000050) MANAGER 16 M 1925-09-15 40175.00 800.00 3214.00

(000060) MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00

(000070) MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00

(000090) MANAGER 16 F 1941-05-15 29750.00 600.00 2380.00

(000100) MANAGER 14 M 1956-12-18 26150.00 500.00 2092.00

(000110) SALESREP 19 M 1929-11-05 46500.00 900.00 3720.00

(000120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00

(000130) ANALYST 16 F 1925-09-15 23800.00 500.00 1904.00

(000140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00

(000150) DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00

(000160) DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00

(000170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00

(000180) DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00

(000190) DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00

(000200) DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00

(000210) DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00

(000220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00

(000230) CLERK 14 M 1935-05-30 22180.00 400.00 1774.00

(000240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00

(000250) CLERK 15 M 1939-11-12 19180.00 400.00 1534.00

(000260) CLERK 16 F 1936-10-05 17250.00 300.00 1380.00

(000270) CLERK 15 F 1953-05-26 27380.00 500.00 2190.00

(000280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00

(000290) OPERATOR 12 M 1946-07-09 15340.00 300.00 1227.00

(000300) OPERATOR 14 M 1936-10-27 17750.00 400.00 1420.00

(000310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00

(000320) FIELDREP 16 M 1932-08-11 19950.00 400.00 1596.00

(000330) FIELDREP 14 M 1941-07-18 25370.00 500.00 2030.00

(000340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

(200010) SALESREP 18 F 1933-08-14 46500.00 1000.00 4220.00

(200120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00

(200140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00

(200170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00

(200220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00

(200240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00

(200280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00

(200310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00

(200330) FIELDREP 14 F 1941-07-18 25370.00 500.00 2030.00

(200340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

 Appendix A. DB2 Sample Tables X-13

Project Table (DSN8510.PROJ)
The project table describes each project that the business is currently undertaking.
Data contained in each row include the project number, name, person responsible,
and schedule dates.

The table resides in database DSN8D51A. Because it has foreign keys referencing
DEPT and EMP, those tables and the indexes on their primary keys must be
created first. Then PROJ is created with:

CREATE TABLE DSN841ð.PROJ

(PROJNO CHAR(6) PRIMARY KEY NOT NULL,

PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT

'PROJECT NAME UNDEFINED',

DEPTNO CHAR(3) NOT NULL REFERENCES

DSN841ð.DEPT ON DELETE RESTRICT,

RESPEMP CHAR(6) NOT NULL REFERENCES

DSN841ð.EMP ON DELETE RESTRICT,

 PRSTAFF DECIMAL(5, 2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6))

 IN DSN8D41A.DSN8S41P;

Because the table is self-referencing, the foreign key for that restraint must be
added later with:

ALTER TABLE DSN851ð.PROJ

FOREIGN KEY RPP (MAJPROJ) REFERENCES DSN851ð.PROJ

ON DELETE CASCADE;

 Content
Table 103 shows the content of the columns.

Table 103. Columns of the Project Table

Column Column Name Description

1 PROJNO Project ID (the primary key)

2 PROJNAME Project name

3 DEPTNO ID of department responsible for the project

4 RESPEMP ID of employee responsible for the project

5 PRSTAFF Estimated mean number of persons needed between
PRSTDATE and PRENDATE to achieve the whole
project, including any subprojects

6 PRSTDATE Estimated project start date

7 PRENDATE Estimated project end date

8 MAJPROJ ID of any project of which this project is a part

X-14 Administration Guide

The project table has these indexes:

Table 104. Indexes of the Project Table

Name
On
Column Type of Index

DSN8510.XPROJ1 PROJNO Primary, ascending

DSN8510.XPROJ2 RESPEMP Ascending

Relationship to Other Tables
The table is self-referencing: a nonnull value of MAJPROJ must be a project
number. The table is a parent table of the project activity table, through a foreign
key on column PROJNO. It is a dependent of:

� The department table, through its foreign key on DEPTNO
� The employee table, through its foreign key on RESPEMP.

Project Activity Table (DSN8510.PROJACT)
The project activity table lists the activities performed for each project. The table
resides in database DSN8D51A. Because it has foreign keys referencing PROJ and
ACT, those tables and the indexes on their primary keys must be created first.
Then PROJACT is created with:

CREATE TABLE DSN851ð.PROJACT

 (PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 ACSTAFF DECIMAL(5,2) ,

 ACSTDATE DATE NOT NULL,

 ACENDATE DATE ,

PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),

FOREIGN KEY RPAP (PROJNO) REFERENCES DSN851ð.PROJ

ON DELETE RESTRICT,

FOREIGN KEY RPAA (ACTNO) REFERENCES DSN851ð.ACT

ON DELETE RESTRICT)

 IN DSN8D41A.DSN8S41P;

 Content
Table 105 shows the content of the columns.

Table 105. Columns of the Project Activity Table

Column
Column
Name Description

1 PROJNO Project ID

2 ACTNO Activity ID

3 ACSTAFF Estimated mean number of employees needed to staff
the activity

4 ACSTDATE Estimated activity start date

5 ACENDATE Estimated activity completion date

 Appendix A. DB2 Sample Tables X-15

The project activity table has this index:

Table 106. Index of the Project Activity Table

Name On Columns Type of Index

DSN8510.XPROJAC1 PROJNO, ACTNO,
ACSTDATE

primary, ascending

Relationship to Other Tables
The table is a parent table of the employee to project activity table, through a
foreign key on columns PROJNO, ACTNO, and EMSTDATE. It is a dependent of:

� The activity table, through its foreign key on column ACTNO
� The project table, through its foreign key on column PROJNO

Employee to Project Activity Table (DSN8510.EMPPROJACT)
The employee to project activity table identifies the employee who performs an
activity for a project, tells the proportion of the employee's time required, and gives
a schedule for the activity.

The table resides in database DSN8D51A. Because it has foreign keys referencing
EMP and PROJACT, those tables and the indexes on their primary keys must be
created first. Then EMPPROJACT is created with:

CREATE TABLE DSN851ð.EMPPROJACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2) ,

 EMSTDATE DATE ,

 EMENDATE DATE ,

FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

 REFERENCES DSN851ð.PROJACT

ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN851ð.EMP

ON DELETE RESTRICT)

 IN DSN8D41A.DSN8S41P;

 Content
Table 107 shows the content of the columns.

Table 107. Columns of the Employee to Project Activity Table

Column Column Name Description

1 EMPNO Employee ID number

2 PROJNO Project ID of the project

3 ACTNO ID of the activity within the project

4 EMPTIME A proportion of the employee's full time (between 0.00
and 1.00) to be spent on the activity

5 EMSTDATE Date the activity starts

6 EMENDATE Date the activity ends

X-16 Administration Guide

The table has these indexes:

Table 108. Indexes of the Employee to Project Activity Table

Name On Columns Type of Index

DSN8510.XEMPPROJACT1 PROJNO, ACTNO,
EMSTDATE,
EMPNO

Unique, ascending

DSN8510.XEMPPROJACT2 EMPNO Ascending

Relationship to Other Tables
The table is a dependent of:

� The employee table, through its foreign key on column EMPNO

� The project activity table, through its foreign key on columns PROJNO,
ACTNO, and EMSTDATE.

Relationships Among the Tables
Figure 157 shows relationships among the tables. These are established by foreign
keys in dependent tables that reference primary keys in parent tables. You can find
descriptions of the columns with descriptions of the tables.

 ┌────────┐

 6 CASCADE

 ┌───────────┐ │

 ┌─────┤ DEPT ├─────┘

 │ │ │

 │ └─┬─────────┘

 │ SET &

 │ NULL SET

 │ 6 NULL

 │ ┌────────┴──┐

 │ │ EMP ├───────────────────────────────────────┐

 │ │ │ │

 │ └─┬─────────┘ │

 │ RESTRICT RESTRICT

 RESTRICT │ ┌────────┐ ┌───────────┐ │

│ 6 6 CASCADE │ ACT │ │

 │ ┌───────────┐ │ │ │ │

 └────5│ PROJ ├─────┘ └─────┬─────┘ │

 │ │ RESTRICT │

 └─────┬─────┘ 6 │

 RESTRICT ┌───────────┐ │

└────────────────────────5│ PROJACT │ │

 │ │ │

 └─────┬─────┘ │

 RESTRICT │

 6 │

 ┌───────────┐ │

 │EMPPROJACT │%──────┘

 │ │

 └───────────┘

Figure 157. Relationships among Tables in the Sample Application. Arrows point from
parent tables to dependent tables.

 Appendix A. DB2 Sample Tables X-17

Views on the Sample Tables
DB2 creates a number of views on the sample tables for use in the sample
applications. Table 109 indicates the tables on which each view is defined and the
sample applications that use the view. All view names have the qualifier DSN8510.

The SQL statements that create the sample views are shown below.

CREATE VIEW DSN851ð.VDEPT

AS SELECT ALL DEPTNO ,

DEPTNAME,

MGRNO ,

ADMRDEPT

FROM DSN851ð.DEPT;

Table 109. Views on sample tables

View name
On tables or
views# Used in application

VDEPT# DEPT# Organization
Project

VHDEPT# DEPT# Distributed organization

VEMP# EMP# Distributed organization
Organization
Project

VPROJ# PROJ# Project

VACT# ACT# Project

VEMPPROJACT# EMPROJACT# Project

VDEPMG1# DEPT
EMP
Organization

VEMPDPT1# DEPT
EMP
Organization

VASTRDE1# DEPT

VASTRDE2# VDEPMG1
EMP
Organization

VPROJRE1# PROJ
EMP
Project

VPSTRDE1# VPROJRE1
VPROJRE2
Project

VPSTRDE2# VPROJRE1# Project

VSTAFAC1# PROJACT
ACT
Project

VSTAFAC2# EMPPROJACT
ACT
EMP

Project

VPHONE# EMP
DEPT
Phone

VEMPLP# EMP# Phone

X-18 Administration Guide

CREATE VIEW DSN851ð.VHDEPT

AS SELECT ALL DEPTNO ,

DEPTNAME,

MGRNO ,

ADMRDEPT,

LOCATION

FROM DSN851ð.DEPT;

CREATE VIEW DSN851ð.VEMP

AS SELECT ALL EMPNO ,

FIRSTNME,

MIDINIT ,

LASTNAME,

WORKDEPT

FROM DSN851ð.EMP;

CREATE VIEW DSN851ð.VPROJ

AS SELECT ALL

PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,

PRSTDATE, PRENDATE, MAJPROJ

FROM DSN851ð.PROJ ;

CREATE VIEW DSN851ð.VACT

AS SELECT ALL ACTNO ,

ACTKWD ,

ACTDESC

FROM DSN851ð.ACT ;

CREATE VIEW DSN851ð.VPROJACT

AS SELECT ALL

PROJNO,ACTNO, ACSTAFF, ACSTDATE, ACENDATE

FROM DSN851ð.PROJACT ;

CREATE VIEW DSN851ð.VEMPPROJACT

AS SELECT ALL

EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE, EMENDATE

FROM DSN851ð.EMPPROJACT ;

CREATE VIEW DSN851ð.VDEPMG1

(DEPTNO, DEPTNAME, MGRNO, FIRSTNME, MIDINIT, LASTNAME, ADMRDEPT)

AS SELECT ALL

DEPTNO, DEPTNAME, EMPNO, FIRSTNME, MIDINIT, LASTNAME, ADMRDEPT

FROM DSN851ð.DEPT LEFT OUTER JOIN DSN851ð.EMP

ON MGRNO = EMPNO ;

CREATE VIEW DSN851ð.VEMPDPT1

(DEPTNO, DEPTNAME, EMPNO, FRSTINIT, MIDINIT,

LASTNAME, WORKDEPT)

AS SELECT ALL

DEPTNO, DEPTNAME, EMPNO, SUBSTR(FIRSTNME, 1, 1), MIDINIT,

LASTNAME, WORKDEPT

FROM DSN851ð.DEPT RIGHT OUTER JOIN DSN851ð.EMP

ON WORKDEPT = DEPTNO ;

 Appendix A. DB2 Sample Tables X-19

CREATE VIEW DSN851ð.VASTRDE1

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,

DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)

AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,

D1.LASTNAME, '1',

D2.DEPTNO,D2.DEPTNAME,D2.MGRNO,D2.FIRSTNME,D2.MIDINIT,

D2.LASTNAME

FROM DSN851ð.VDEPMG1 D1, DSN851ð.VDEPMG1 D2

WHERE D1.DEPTNO = D2.ADMRDEPT ;

CREATE VIEW DSN851ð.VASTRDE2

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,

DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)

AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,

D1.LASTNAME,'2',

D1.DEPTNO,D1.DEPTNAME,E2.EMPNO,E2.FIRSTNME,E2.MIDINIT,

E2.LASTNAME

FROM DSN851ð.VDEPMG1 D1, DSN851ð.EMP E2

WHERE D1.DEPTNO = E2.WORKDEPT;

CREATE VIEW DSN851ð.VPROJRE1

(PROJNO,PROJNAME,PROJDEP,RESPEMP,FIRSTNME,MIDINIT,LASTNAME,MAJPROJ)

AS SELECT ALL

PROJNO,PROJNAME,DEPTNO,EMPNO,FIRSTNME,MIDINIT,LASTNAME,MAJPROJ

FROM DSN851ð.PROJ, DSN851ð.EMP

WHERE RESPEMP = EMPNO ;

CREATE VIEW DSN851ð.VPSTRDE1

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,

PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)

AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,

P1.LASTNAME,

P2.PROJNO,P2.PROJNAME,P2.RESPEMP,P2.FIRSTNME,P2.MIDINIT,

P2.LASTNAME

FROM DSN851ð.VPROJRE1 P1,

DSN851ð.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ ;

CREATE VIEW DSN851ð.VPSTRDE2

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,

PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)

AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,

P1.LASTNAME,

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,

P1.LASTNAME

FROM DSN851ð.VPROJRE1 P1

WHERE NOT EXISTS

(SELECT \ FROM DSN851ð.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ) ;

X-20 Administration Guide

CREATE VIEW DSN851ð.VFORPLA

(PROJNO,PROJNAME,RESPEMP,PROJDEP,FRSTINIT,MIDINIT,LASTNAME)

AS SELECT ALL

F1.PROJNO,PROJNAME,RESPEMP,PROJDEP, SUBSTR(FIRSTNME, 1, 1),

MIDINIT, LASTNAME

FROM DSN851ð.VPROJRE1 F1 LEFT OUTER JOIN DSN851ð.EMPPROJACT F2

ON F1.PROJNO = F2.PROJNO;

CREATE VIEW DSN851ð.VSTAFAC1

(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,

EMPTIME,STDATE,ENDATE, TYPE)

AS SELECT ALL

PA.PROJNO, PA.ACTNO, AC.ACTDESC,' ', ' ', ' ', ' ',

PA.ACSTAFF, PA.ACSTDATE,

PA.ACENDATE,'1'

FROM DSN851ð.PROJACT PA, DSN851ð.ACT AC

WHERE PA.ACTNO = AC.ACTNO ;

CREATE VIEW DSN851ð.VSTAFAC2

(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,

EMPTIME,STDATE, ENDATE, TYPE)

AS SELECT ALL

EP.PROJNO, EP.ACTNO, AC.ACTDESC, EP.EMPNO,EM.FIRSTNME,

EM.MIDINIT, EM.LASTNAME, EP.EMPTIME, EP.EMSTDATE,

EP.EMENDATE,'2'

FROM DSN851ð.EMPPROJACT EP, DSN851ð.ACT AC, DSN851ð.EMP EM

WHERE EP.ACTNO = AC.ACTNO AND EP.EMPNO = EM.EMPNO ;

CREATE VIEW DSN851ð.VPHONE

(LASTNAME,

FIRSTNAME,

MIDDLEINITIAL,

PHONENUMBER,

EMPLOYEENUMBER,

DEPTNUMBER,

DEPTNAME)

AS SELECT ALL LASTNAME,

FIRSTNME,

MIDINIT ,

VALUE(PHONENO,' '),

EMPNO,

DEPTNO,

DEPTNAME

FROM DSN851ð.EMP, DSN851ð.DEPT

WHERE WORKDEPT = DEPTNO;

CREATE VIEW DSN851ð.VEMPLP

(EMPLOYEENUMBER,

PHONENUMBER)

AS SELECT ALL EMPNO ,

PHONENO

FROM DSN851ð.EMP ;

 Appendix A. DB2 Sample Tables X-21

Storage of Sample Application Tables
Figure 158 shows how the sample tables are related to databases and storage
groups. Two databases are used to illustrate the possibility. Normally, related data
is stored in the same database.

 ┌──────────┐

 Storage group: │ DSN8G51ð │

 └────┬─────┘

 │

 ┌───────────┴────────────────┐

 │ │

 ┌──────┴──────┐ ┌──────┴──────┐

 Databases: │ DSN8D51A │ │ DSN8D51P │

│ application │ │ common for │

│ data │ │ programming │

 └──────┬──────┘ │ tables │

 │ └──────┬──────┘

 │ │

 ┌────────────┴───┬────────────────────┐ └────────────┐

 │ │ │ │

Table │ │ ┌──────┴──────┐ │

spaces: │ │ ┌─┴───────────┐ │ │

┌──────┴──────┐ ┌──────┴──────┐ ┌─┴───────────┐ │ │ ┌──────┴──────┐

 │ DSN8S51D │ │ DSN8S51E │ │ Separate │ │ │ │ DSN8S51P │

 │ department │ │ employee │ │ spaces for │ │ │ │ Common for │

 │ table │ │ table │ │ other │ │ │ │ programming │

└─────────────┘ └─────────────┘ │ application │ │─┘ │ tables │

│ tables │─┘ └─────────────┘

 └─────────────┘

Figure 158. Relationship among Sample Databases and Table Spaces

In addition to the storage group and databases shown in Figure 158, the storage
group DSN8G51U and database DSN8D51U are created when you run
DSNTEJ2A.

 Storage Group
The default storage group, SYSDEFLT, created when DB2 is installed, is not used
to store sample application data. The storage group used to store sample
application data is defined by this statement:

CREATE STOGROUP DSN8G51ð

 VOLUMES (DSNVð1)

 VCAT DSNC51ð

 PASSWORD DSNDEFPW;

 Databases
The default database, created when DB2 is installed, is not used to store the
sample application data. Two databases are used: one for tables related to
applications, the other for tables related to programs. They are defined by the
following statements:

CREATE DATABASE DSN8D51A

 STOGROUP DSN8G51ð

 BUFFERPOOL BPð;

CREATE DATABASE DSN8D51P

 STOGROUP DSN8G51ð

 BUFFERPOOL BPð;

X-22 Administration Guide

 Table Spaces
The following table spaces are explicitly defined by the statements shown below.
The table spaces not explicitly defined are created implicitly in the DSN8D51A
database, using the default space attributes.

CREATE TABLESPACE DSN8S51D

 IN DSN8D51A

USING STOGROUP DSN8G51ð

 PRIQTY 2ð

 SECQTY 2ð

 ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8;

CREATE TABLESPACE DSN8S51E

 IN DSN8D51A

USING STOGROUP DSN8G51ð

 PRIQTY 2ð

 SECQTY 2ð

 ERASE NO

 NUMPARTS 4

(PART 1 USING STOGROUP DSN8G51ð

 PRIQTY 12

 SECQTY 12,

PART 3 USING STOGROUP DSN8G51ð

 PRIQTY 12

 SECQTY 12)

LOCKSIZE PAGE LOCKMAX SYSTEM

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8

 COMPRESS YES;

CREATE TABLESPACE DSN8S51C

 IN DSN8D51P

USING STOGROUP DSN8G51ð

 PRIQTY 16ð

 SECQTY 8ð

 SEGSIZE 4

 LOCKSIZE TABLE

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8;

CREATE TABLESPACE DSN8S41P

 IN DSN8D51A

USING STOGROUP DSN8G51ð

 PRIQTY 16ð

 SECQTY 8ð

 SEGSIZE 4

 LOCKSIZE ROW

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8;

 Appendix A. DB2 Sample Tables X-23

CREATE TABLESPACE DSN8S51R

 IN DSN8D51A

USING STOGROUP DSN8G51ð

 PRIQTY 2ð

 SECQTY 2ð

 ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8;

CREATE TABLESPACE DSN8S41S

 IN DSN8D41A

USING STOGROUP DSN8G41ð

 PRIQTY 2ð

 SECQTY 2ð

 ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM

 BUFFERPOOL BPð

 CLOSE NO

 DSETPASS DSN8;

X-24 Administration Guide

Appendix B. Writing Exit Routines

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page xi.

DB2 provides installation-wide exit points to routines that you provide. They are
described under the following headings:

“Connection and Sign-On Routines”
| “Access Control Authorization Exit” on page X-34

“Edit Routines” on page X-44
“Validation Routines” on page X-48
“Date and Time Routines” on page X-51
“Conversion Procedures” on page X-54
“Field Procedures” on page X-57
“Log Capture Routines” on page X-68
“Routines for Dynamic Plan Selection in CICS” on page X-71

Connection and Sign-On Routines
Your DB2 system has two exit points for authorization routines, one in connection
processing and one in sign-on processing. They perform crucial steps in the
assignment of values to the primary, secondary, and SQL IDs. You must have a
routine for each exit. Default routines are provided for both—DSN3@ATH for
connections and DSN3@SGN for sign-ons.

For a general view of the roles of the exit routines in assigning authorization IDs,
see “Chapter 3-4. Controlling Access to a DB2 Subsystem” on page 3-63. That
description can show that you can most easily provide the security features you
want by assigning identifiers through RACF or some similar program and using the
sample connection and sign-on routines provided by IBM. This section describes
the interfaces for those routines and the functions they provide. If you want to have
secondary authorization IDs, you must replace the default routines with the sample
routines or with routines of your own.

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to these
routines, but with the following exception to the description of execution
environments:

The routines execute in non-cross-memory mode.

Specifying the Routines
Your connection routine must have a CSECT name and entry point of DSN3@ATH.
Its load module name can be the same, but need not be. Your sign-on routine must
have a CSECT name and entry point of DSN3@SGN. Its load module name can
be the same, but need not be.

You can use an ALIAS statement of the linkage editor to provide the entry point
name.

 Copyright IBM Corp. 1982, 1997 X-25

Default routines with those names and entry points already exist in library
prefix.SDSNLOAD; to use your routines instead, place them in library
prefix.SDSNEXIT. You can use the install job DSNTIJEX to assemble and link-edit
the routines and place them in the new library. If you use any other library, you
could have to change the STEPLIB or JOBLIB concatenations in the DB2 start-up
procedures.

You can combine both routines into one CSECT and load module if you wish, but
the module must include both entry points, DSN3@ATH and DSN3@SGN. Use
standard assembler and linkage editor control statements to define the entry points.
DB2 loads the module twice at startup, by issuing the MVS LOAD macro first for
entry point DSN3@ATH and then for entry point DSN3@SGN. But, because the
routines are reentrant, only one copy of each remains in virtual storage.

Sample Exit Routines
The sample exit routines provide examples of the functions and interfaces
described below. They are provided in source code as members of
prefix.SDSNSAMP. To examine the sample connection routine, list or assemble
member DSN3SATH; for the sample sign-on routine, member DSN3SSGN. To
assemble, you must use Assembler H; both routines use features not available in
Assembler XF.

Change Required for Some CICS Users: If you attach to DB2 with an AUTH
parameter in the RCT other than AUTH=GROUP, you also have the RACF
list-of-groups option active, and you have transactions whose initial primary
authorization ID is not defined to RACF, then you must change the sample sign-on
exit routine (DSN3SSGN) before assembling and using it. Proceed as follows:

1. In the source code, locate this statement:

SSGNð35 DS ðH BLANK BACKSCAN LOOP REENTRY

2. Nearby, locate this statement:

B SSGNð37 ENTIRE NAME IS BLANK, LEAVE

(At this writing, its line number is 03664000, but that is subject to change.)

3. Replace the previous statement with this one:

B SSGNð9ð NO GROUP NAME... BYPASS RACF CHECK

The change avoids an abend with SQLCODE -922 in the situation described above.
With the change, DB2 does not use RACF group names unless you use
AUTH=GROUP; for other values of AUTH, the routine provides no secondary IDs.

When Exits Are Taken
Different local processes enter the access control procedure at different points,
depending on the environment they originate from. (Quite different criteria apply to
remote requests; they are described in “Controlling Requests from Remote
Applications” on page 3-71.)

� These processes go through connection processing only:

– Requests originating in TSO foreground and background (including online
utilities and requests through the call attachment facility)

– JES-initiated batch jobs

X-26 Administration Guide

– Requests through started task control address spaces (from the MVS
START command)

� These processes go through connection processing and can later go through
the sign-on exit also.

– The IMS control region
– The CICS recovery coordination task

 – DL/I batch
| – Requests through the Recoverable Resource Manager Services attachment
| facility (RRSAF)

� These processes go through sign-on processing:

– Requests from IMS dependent regions (including MPP, BMP, and Fast
Path)

– CICS transaction subtasks

For instructions on controlling the IDs associated with connection requests, see
“Processing Connections” on page 3-64. For instructions on controlling the IDs
associated with sign-on requests, see “Processing Sign-ons” on page 3-68.

EXPL for Connection and Sign-on Routines
Figure 159 shows how the parameter list points to other information.

 EXPL

 ┌──────────────────┐ ┌──────────────────────┐

 Register 1─5 │ Address of EXPL ├─────5 │ Address of work area ├──5 ┌──────────────┐

 ├──────────────────┤ ├──────────────────────┤ │ Work area │

│ Address of │ │ Length of work area │ │ (2ð48 bytes) │

┌──────────┤ authorization ID │ ├──────────────────────┤ └──────────────┘

│ │ list │ │ Access return code │

 │ └──────────────────┘ ├──────────────────────┤

│ │ DB2 subsystem name │

 6 Authorization ID List ├──────────────────────┤

 ┌───────────────────────────────┐ │ Connection name │

 │ Primary ID │ ├──────────────────────┤

 ├───────────────────────────────┤ │ Connection type │

 │ Control block information │ ├──────────────────────┤

 ├───────────────────────────────┤ │ Location name │

 │ SQL ID │ ├──────────────────────┤

 ├───────────────────────────────┤ │ LU name │

 │ Maximum number of secondary │ ├──────────────────────┤

 │ ID entries │ │ Network name │

 ├───────────────────────────────┤ └──────────────────────┘

 │ Reserved │

 ├───────────────────────────────┤

 │ ACEE address or zero │

 ├───────────────────────────────┤

 │ Space for secondary ID list │

 │ (= maximum x 8 bytes) │

 └───────────────────────────────┘

Figure 159. How a Connection or Sign-on Parameter List Points to Other Information

 Appendix B. Writing Exit Routines X-27

Exit Parameter List
Connection and sign-on routines use 28 bytes more of the exit parameter list EXPL
than do other routines. The table that follows shows the entire list. The exit
parameter list is described by macro DSNDEXPL.

Table 110. Exit Parameter List for Connection and Sign-On Routines

Name
Hex.
Offset Data Type Description

EXPLWA 0 Address Address of a 2048-byte work area to be
used by the routine

EXPLWL 4 Signed 4-byte
integer

Length of the work area, in bytes; value is
2048.

EXPLRSV1 8 Signed 2-byte
integer

Reserved

EXPLRC1 A Signed 2-byte
integer

Not used

EXPLRC2 C Signed 4-byte
integer

Not used

EXPLARC 10 Signed 4-byte
integer

Access return code. Values can be:

 0 Access allowed; DB2 continues
processing.

12 Access denied; DB2 terminates
processing with an error.

EXPLSSNM 14 Character, 8
bytes

DB2 subsystem name, left justified; for
example, 'DSN '

EXPLCONN 1C Character, 8
bytes

Connection name for requesting location

EXPLTYPE 24 Character, 8
bytes

Connection type for requesting location. For
DDF threads, the connection type is
'DIST '.

EXPLSITE 2C Character, 16
bytes

| For SNA protocols, this is the location name
| of the requesting location or <luname>. For
| TCP/IP protocols, this is the dotted decimal
| IP address of the requester.

EXPLLUNM 3C Character, 8
bytes

| For SNA protocols, this is the locally known
| LU name of the requesting location. For
| TCP/IP protocols, this is the character string
| 'TCPIP '.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location.

| For TCP/IP protocols, this field is reserved.

Authorization ID Parameter List
The second parameter list, which is specific to connection and sign-on routines, is
called an authorization ID list. Its contents are shown in Table 111 on page X-29.
The description is given by macro DSNDAIDL.

X-28 Administration Guide

Table 111. Authorization ID List for a Connection or Sign-on Exit Routine

Name
Hex.
Offset Data Type Description

AIDLPRIM 0 Character, 8
bytes

Primary authorization ID for input and
output; see descriptions in the text.

AIDLCODE 8 Character, 2
bytes

Control block identifier

AIDLTLEN A Signed 2-byte
integer

Total length of control block

AIDLEYE C Character, 4
bytes

Eyecatcher for block, “AIDL”

AIDLSQL 10 Character, 8
bytes

On output, the current SQL ID

AIDLSCNT 18 Signed 4-byte
integer

Number of entries allocated to secondary
authorization ID list. Always equal to 245.

AIDLSAPM 1C Address For a sign-on routine only, the address of
an 8-character additional authorization ID. If
RACF is active, the ID is the user ID's
connected group name. If the address was
not provided, the field contains zero.

AIDLCKEY 20 Character, 1
byte

Storage key of the ID pointed to by
AIDLSAPM. To move that ID, use the
“move with key” (MVCK) instruction,
specifying this key.

AIDLRSV1 21 Character, 3
bytes

Reserved

AIDLRSV2 24 Signed 4-byte
integer

Reserved

AIDLACEE 28 Signed 4-byte
integer

The address of the ACEE structure, if
known; otherwise, zero

AIDLRACL 2C Signed 4-byte
integer

Length of data area returned by RACF, plus
4 bytes

AIDLRACR 30 26 bytes Reserved

AIDLSEC 4A Character,
maximum x 8
bytes

List of the secondary authorization IDs, 8
bytes each

 Input Values
The primary authorization ID has been placed first in the authorization ID list for
compatibility with DB2 Version 1. The default routines, and any authorization
routine you might have written for DB2 Version 1, accept only the first item for
input.

The input values of the several authorization IDs are as follows:

 Appendix B. Writing Exit Routines X-29

For a Connection Routine
1. The initial primary authorization ID for a local request can be obtained from the

MVS address space extension block (ASXB).

The ASXB contains at most only a 7-character value. That is always sufficient
for a TSO user ID or a user ID from an MVS JOB statement, and the ASXB is
always used for those cases.

| For CICS, IMS, or other started tasks, MVS can also pass an 8-character ID. If
| an 8-character ID is available, and if its first 7 characters agree with the ASXB
| value, then DB2 uses the 8-character ID. Otherwise it uses the ASXB value.

You can alter the sample exit routine to use the ASXB value always. For
instructions, see “Processing in the Sample Routines” on page X-31.

If RACF is active, the field used contains a verified RACF user ID; otherwise, it
contains blanks.

| 2. The primary ID for a remote request is the ID passed in the conversation attach
| request header (SNA FMH5) or in the DRDA SECCHK command.

3. The SQL ID contains blanks.

4. The list of secondary IDs contains blanks.

For a Sign-On Routine
| 1. The initial primary ID is determined. See “Processing Sign-ons” on page 3-68

for information about how the primary ID is determined.

2. The SQL ID and all secondary IDs contain blanks.

3. Field AIDLSAPM in the authorization ID list can contain the address of an
8-character additional authorization ID, obtained by the CICS attachment facility
using the RACROUTE REQUEST=EXTRACT service with the requester's user
ID. If RACF is active, this ID is the RACF-connected group name from the
ACEE corresponding to the requester's user ID. Otherwise, this field is blanks.
IMS Version 2 Release 2 does not pass this parameter.

4. Field AIDLCKEY contains the storage key of the identifier pointed to by
AIDLSAPM. To move that ID, use the “move with key” (MVCK) instruction,
specifying this key.

5. Field AIDLACEE contains the ACEE address only for a sign-on through the
CICS attachment facility and only when the CICS RCT uses AUTH=GROUP.

 Expected Output
DB2 uses the output values of the primary, SQL, and secondary IDs. Your routines
can set those to any value that is an SQL short identifier. If your identifier does not
meet the 8-character criteria, the request is abended. Pad shorter identifiers on the
right with blanks. If the values returned are not blank, DB2 interprets them as
follows:

1. The primary ID becomes the primary authorization ID.

2. The list of secondary IDs, down to the first blank entry or to a maximum of 245
entries, becomes the list of secondary authorization IDs. The space allocated
for the secondary ID list is only large enough to contain the maximum number
of authorization IDs. This number is in field AIDLSCNT and is currently 245. If
you do not restrict the number of secondary authorization IDs to 245,
disastrous results (like abends and storage overlays) can occur.

X-30 Administration Guide

3. The SQL ID is checked to see if it is the same as the primary or one of the
secondary IDs. If it is not, the connection or sign-on process abends.
Otherwise, the validated ID becomes the current SQL ID.

If the returned value of the primary ID is blank, DB2 takes the following steps:

� In connection processing, the default ID defined when DB2 was installed
(UNKNOWN AUTHID on panel DSNTIPP) is substituted as the primary
authorization ID and the current SQL ID. The list of secondary IDs is set to
blanks.

� Sign-on processing abends; there is no default value of the primary ID.

If the returned value of the SQL ID is blank, DB2 makes it equal to the value of the
primary ID. If the list of secondary IDs is blank, it is left so; there are no default
secondary IDs.

Your routine must also set a return code in word 5 of the exit parameter list to allow
or deny access (field EXPLARC). By those means you can deny the connection
altogether. The code must have one of the following values; any other value causes
abends:

Value Meaning
0 Access allowed; continue processing
12 Access denied; terminate

Processing in the Sample Routines
The sample routines provided by IBM can serve as models of the processing
required in connection and sign-on routines. To write a routine that implements your
own choices, it can be easiest to modify the samples. Both routines have similar
sections for setup, constants, and storage areas. Both routines set values of the
primary, SQL, and secondary IDs in three numbered sections, which perform the
following functions:

In the Sample Connection Routine (DSN3SATH):

Section 1 provides the same function as in the default connection routine. It
tests whether the first character of the input primary ID is greater than blank.
� If the first character is greater, the value is not changed.
� If the first character is not greater, the value is set to:

– The logon ID, if the request is from a TSO foreground address space.
– The job user ID from the JES job control table.

If, after the above processing is done, no primary ID has been located,
Section 2 is bypassed.

At the beginning of Section 2, you can restore one commented-out instruction
that then truncates the primary authorization ID to 7 characters. (The
instruction is identified by comments in the code.) Section 2 next tests RACF
options and makes the following changes in the list of secondary IDs, which is
initially blank:

� If RACF is not active, leave the list blank.

� If the list of groups option is not active, but there is an ACEE, copy the
connected group name as the only secondary ID.

� If the list of groups option is active, copy the list of group names from the
ICHPCGRP block into AIDLSEC in the authorization ID list.

 Appendix B. Writing Exit Routines X-31

Section 3 takes the following steps:

1. Make the SQL ID equal to the primary ID.

If a TSO data set name prefix cannot be found, bypass the remainder
of Section 3.

2. If the TSO data set name prefix is a valid primary or secondary ID, replace
the SQL ID with the TSO data set name prefix. Otherwise, leave the default
(primary ID) as the SQL ID.

In the Sample Sign-on Routine (DSN3SSGN):

Section 1 leaves the primary ID alone.
Section 2 sets the SQL ID to the value of the primary ID.
Section 3 tests RACF options and makes the following changes in the list of
secondary IDs, which is initially blank:

� If RACF is not active, leave the list blank.

� If the list of groups option is active, attempt to find an existing ACEE from
which to copy the authorization ID list.

– If AIDLACEE contains a value other than zero, validate that it is an
ACEE and use it.

Otherwise, look for a valid ACEE chained from the TCB or from the
ASXB or, if no usable ACEE exists, issue RACROUTE to have RACF
build an ACEE structure for the primary ID.

Copy the list of group names from the ACEE structure into the
secondary authorization list.

– If the exit issued RACROUTE to build an ACEE, issue another
RACROUTE macro to have the structure deleted.

� If a list of secondary authorization IDs has not been built, and AIDLSAPM
is not zero, copy the data pointed to by AIDLSAPM into AIDLSEC.

 Performance Considerations
Your sign-on exit routine is part of the critical path for transaction processing in IMS
or CICS, so you want it to execute as quickly as possible. Avoid writing SVC calls
like GETMAIN, FREEMAIN, and ATTACH, or I/O operations to any data set or
database. You might want to delete the list of groups processing in Section 3 of the
sample sign-on exit.

The sample sign-on exit routine can issue the RACF RACROUTE macro with the
default option SMC=YES. If another product issues RACROUTE with SMC=NO, a
deadlock could occur. The situation has been of concern in the CICS environment
and might occur in IMS.

Your routine can also possibly enhance the performance of later authorization
checking. Authorization for dynamic SQL statements is checked first for the
CURRENT SQLID, then the primary authorization ID, and then the secondary
authorization IDs. If you know that a user's privilege most often comes from a
secondary authorization ID, then set the CURRENT SQLID to this secondary ID
within your exit routine.

X-32 Administration Guide

Debugging Your Exit Routine
The diagnostic aids described below can assist in debugging connection and
sign-on exit routines.

Subsystem Support Identify Recovery: The Identify ESTAE recovery routine,
DSN3IDES, generates the following VRADATA entries. The last entry, key
VRAIMO, is generated only if the abend occurred within the connection exit routine.

Subsystem Support Sign-on Recovery: The sign-on ESTAE recovery routine
DSN3SIES generates the following VRADATA entries. The last entry, key VRAIMO,
is generated only if the abend occurred within the sign-on exit routine.

Diagnostics for Connection and Sign-on Exits: The connection (identify) and
sign-on recovery routines provide diagnostics for the corresponding exit routines.
The diagnostics are produced only when the abend occurred in the exit routine.

 � Dump Title:

The component failing module name is “DSN3@ATH” for a connection exit or
“DSN3@SGN” for a sign-on exit.

� MVS and RETAIN symptom data:

SDWA symptom data fields SDWACSCT (CSECT/) and SDWAMODN (MOD/)
are set to “DSN3@ATH” or “DSN3@SGN,” as appropriate.

The component subfunction code (SUB1/ or VALU/C) is set to
“SSSC#DSN3@ATH#IDENTIFY” or “SSSC#DSN3@SGN#SIGNON”, as appropriate.

� Summary Dump Additions.

VRA
Keyname

Key
HEX
Value

Data
Length Content

VRAFPI 22 8 Constant 'IDESTRAK'

VRAFP 23 24 32-bit recovery tracking flags. 32-bit integer AGNT
block unique identifier. AGNT block address. AIDL
block address. Initial primary authorization ID as
copied from ASXBUSER.

VRAIMO 7C 10 Connection exit load module load point address.
Connection exit entry point address. Offset of
failing address in the PSW from the connection
exit entry point address.

VRA
Keyname

Key
HEX
Value

Data
Length Content

VRAFPI 22 8 Constant 'SIESTRAK'

VRAFP 23 20 Primary authorization ID (CCBUSER). AGNT block
address. Identify-level CCB block address.
Sign-on-level CCB block address

VRAIMO 7C 10 Sign-on exit load module load point address.
Sign-on exit entry point address. Offset of failing
address in the PSW from the sign-on exit entry
point address.

 Appendix B. Writing Exit Routines X-33

The AIDL, if addressable, and the SADL, if present, are included in the
summary dump for the failing allied agent. If the failure occurred in connection
or sign-on processing, the exit parameter list (EXPL) is also included. If the
failure occurred in the system services address space, the entire SADL storage
pool is included in the summary dump.

| Access Control Authorization Exit
| DB2 provides an exit point that lets you provide your own access control
| authorization exit routine, or lets RACF (Security Server for OS/390 Release 4, or
| subsequent releases), or an equivalent security system perform DB2 authorization
| checking for SQL and utilities. Your routine specifies whether the authorization
| checking should all be done by RACF, or partly by RACF and DB2. (Also, the
| routine can be called and still let all checking be performed by DB2.) For more
| information about how to use the routine provided by the Security Server, see
| OS/390 Security Server (RACF) Security Administrator's Guide.

| When DB2 invokes the routine, it passes three possible functions to the routine:

| � Initialization (DB2 startup)
| � Authorization check
| � Termination (DB2 shutdown)

| The bulk of the work in the routine is for authorization checking. When DB2 must
| determine the authorization for a privilege, it invokes your routine. The routine
| determines the authorization for the privilege and then indicates to DB2 whether
| authorized, not authorized, or whether DB2 should do its own authorization check,
| instead.

| When the Exit Routine is Bypassed : In the following situations, the exit routine is
| not called to check authorization:

| � The user has installation SYSADM or installation SYSOPR authority. This
| authorization check is made strictly within DB2.

| � DB2 security has been disabled (NO on the USE PROTECTION field of
| installation panel DSNTIPP).

| � Authorization has been cached from a prior check.

| � From a prior invocation of the exit routine, the routine had indicated that it
| should not be called again.

| General Considerations
| The routine executes in the ssnmDBM1 address space of DB2.

| “General Considerations for Writing Exit Routines” on page X-74 applies to this
| routine, but with the following exceptions to the description of execution
| environments:

| � The routine executes in non-cross-memory mode during initialization and
| termination (XAPLFUNC of 1 or 3, described in Table 112 on page X-37).

| � During authorization checking the routine can execute under a TCB or SRB in
| cross-memory or non-cross-memory mode.

X-34 Administration Guide

| Specifying the Routine
| Your access control authorization routine must have a CSECT name and entry
| point of DSNX@XAC. The load module name or alias name must also be
| DSNX@XAC. A default routine with this name and entry point exists in library
| prefix.SDSNLOAD; to use your routine instead, place it in library prefix.SDSNEXIT.
| Use installation job DSNTIJEX to assemble and link-edit the routine and to place it
| in the new APF-authorized library. If you use any other library, you might have to
| change the STEPLIB or JOBLIB concatenations in the DB2 start-up procedures.

| The source code for the default routine is in prefix.SDSNSAMP as DSNXSXAC.
| You can use it to write your own exit routine. To assemble it, you must use
| Assembler H.

| The Default Routine
| The default exit routine returns a code to the DB2 authorization module indicating
| that a user-defined access control authorization exit routine is not available. DB2
| then performs normal authorization checking and does not attempt to invoke this
| exit again.

| When the Exit Is Taken
| This exit is taken in three instances:

| � At DB2 startup.

| When DB2 is started up this exit is taken to allow the external authorization
| checking application to perform any required setup prior to authorization
| checking, like loading authorization profiles into storage, and so on.

| � When an authorization check is to be performed on a privilege.

| At the point when DB2 would access security tables in the catalog, to check
| authorization on a privilege, this exit is taken. This exit is only taken if none of
| the prior invocations have indicated that the exit must not be called again.

| � At DB2 shutdown.

| When DB2 is stopping, this exit is taken to let the external authorization
| checking application perform its cleanup before DB2 stops.

| Other Considerations for Using the Access Control Authorization Exit
| Here are some other things to be aware of when you use an access control
| authorization exit routine:

| � Plan for what to do if DB2 cannot provide an ACEE

| Sometimes DB2 cannot provide an ACEE. For example, if you are not using
| external security in CICS (that is, SEC=NO is specified in the DFHSIT), CICS
| does not pass an ACEE to the CICS attachment facility. When DB2 does not
| have an ACEE, it passes zeros in the XAPLACEE field. If this happens, your
| routine can return a 4 in the EXPLRC1 field, and let DB2 handle the
| authorization check.

DB2 does not pass the ACEE address for DB2 commands or IMS transactions.
The ACEE address is passed for CICS transactions, if available.

| � Changing IDs by using SET CURRENT SQLID

 Appendix B. Writing Exit Routines X-35

| People often use the SET CURRENT SQLID statement to change the ID that is
| used to create objects. The CURRENT SQLID can be the primary ID, one of
| the secondary IDs, or, if SYSADM is running the job, any character string.

| The exit routine receives the ACEE of the primary authorization ID (field
| XAPLUPRM), and it also receives the value of the CURRENT SQLID (in field
| XAPLUCHK). DB2 performs the authorization on the value in field XAPLUCHK.

| � Invalidating plans or packages

| In DB2, when a privilege required by a plan or package is revoked, the plan or
| package is invalidated. If you use an authorization access control routine, it
| cannot tell DB2 that a privilege is revoked. Therefore, DB2 cannot know to
| invalidate the plan or package.

| If a privilege that the plan or package depends on is revoked, and if you want
| to invalidate the plan or package, you must use the SQL GRANT statement to
| grant the revoked privilege and then use the SQL statement REVOKE to
| revoke it.

| � Dropping views

| In DB2, when a privilege required to create a view is revoked the view is
| dropped. Similar to the revocation of plan privileges, such an event is not
| communicated to DB2 by the authorization checking routine.

| If you want DB2 to drop the view when a privilege is revoked, you must use the
| SQL statements GRANT and REVOKE.

| � Caching of plans and packages

| The results of authorization checks on EXECUTE authority are not cached
| when those checks are performed by the exit routine.

� Caching of EXECUTE on plans

The results of authorization checks on the EXECUTE privilege are not cached
when those checks are performed by the exit routine.

� Caching of EXECUTE on packages

The results of authorization checks on the EXECUTE privilege for packages are
cached (assuming that package authorization caching is enabled on your
system). If this privilege is revoked in the exit routine, the cached information is
not updated to reflect the revoke. You must use the SQL GRANT and REVOKE
statements to update the cached information.

| � Caching of dynamic SQL statements

| Dynamic statements can be cached when they have passed the authorization
| checks (assuming that dynamic statement caching is enabled on your system).
| If the privileges that this statement requires are revoked from the authorization
| ID that is cached with the statement, then this cached statement must be
| invalidated. If the privilege is revoked in the exit routine this does not happen,
| and you you must use the SQL statements GRANT and REVOKE to refresh
| the cache.

X-36 Administration Guide

| Parameter List for the Access Control Authorization Routine
| Figure 160 shows how the parameter list points to other information.

| EXPL

| ┌──────────────────┐ ┌──────────────────────┐

| Register 1─5 │ Address of EXPL ├─────5 │ Address of work area ├──5 ┌──────────────┐

| ├──────────────────┤ ├──────────────────────┤ │ Work area │

| │ Address of XAPL │ │ Length of work area │ │ (4ð96 bytes) │

| ┌──────────┤ authorization │ ├──────────────────────┤ └──────────────┘

| │ │ checking list │ │ Return code - EXPLRC1│

| │ └──────────────────┘ ├──────────────────────┤

| │ │ Reason code - EXPLRC2│

| │ └──────────────────────┘

| 6

| Parameter list for DSNX@XAC routine

| ┌───────────────────────────────┐

| │ Control block information │

| ├───────────────────────────────┤

| │ DB2 level information │

| ├───────────────────────────────┤

| │ Store Clock at exit invocation│

| ├───────────────────────────────┤

| │ STOKEN of ACEE address space │

| ├───────────────────────────────┤

| │ ACEE address of prim auth ID │

| ├───────────────────────────────┤

| │ Primary authorization ID │

| ├───────────────────────────────┤

| │ Auth ID DB2 uses for check │

| ├───────────────────────────────┤

| │ Function code │

| ├───────────────────────────────┤

| │ . │

| │ . │

| │ . │

| └───────────────────────────────┘

| Figure 160. How an Authorization Routine's Parameter List Points to Other Information

| The work area (4096 bytes) is obtained once during the startup of DB2 and only
| released when DB2 is shut down. The work area is shared by all invocations to the
| exit routine.

| Exit Parameter List (XAPL)
| At invocation, registers are set as described in “Registers at Invocation” on
| page X-76, and the authorization checking routine uses the standard exit
| parameter list (EXPL) described there. Table 112 shows the exit-specific parameter
| list, described by macro DSNDXAPL.

| talign=left'.
| Table 112 (Page 1 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLCBID*| 0| Character,
| 2-byte
| integer

| Input| Control block identifier; value
| X'216A'.

| XAPLLEN *| 2| Signed,
| 2-byte
| integer

| Input| Length of XAPL; value
| X'100' (decimal 256).

 Appendix B. Writing Exit Routines X-37

| Table 112 (Page 2 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLEYE *| 4| Character,
| 4 bytes
| Input| Control block eye catcher;
| value “XAPL.”

| XAPLLVL *| 8| Character,
| 8 bytes
| Input| DB2 version and level; for
| example, “VxRxMx .”

| XAPLSTCK *| 10| Character,
| 8 bytes
| Input| The store clock value when
| the exit is invoked. Use this
| to correlate information to
| this specific invocation.

| XAPLSTKN *| 18| Character,
| 8 bytes
| Input| STOKEN of the address
| space in which XAPLACEE
| resides. Binary zeroes
| indicate that XAPLACEE is
| in the home address space.

| XAPLACEE *| 20| Address| Input| ACEE address:

| � Of the DB2 address
| space (ssnmDBM1)
| when XAPLFUNC is 1
| or 3.

| � Of the primary
| authorization ID
| associated with this
| agent when XAPLFUNC
| is 2.

| There may be cases
| were an ACEE address
| is not available for an
| agent. In such cases
| this field contains zero.

| XAPLUPRM
| *
| 24| Character,
| 8 bytes
| Input| One of the following IDs:

| � When XAPLFUNC is 1
| or 3, it contains the User
| ID of the DB2 address
| space (ssnmDBM1)

| � When XAPLFUNC is 2,
| it contains the primary
| authorization ID
| associated with the
| agent

| XAPLUCHK| 2C| Character,
| 8 bytes
| Input| Authorization ID on which
| DB2 performs the check. It
| could be the primary,
| secondary or some other ID.

X-38 Administration Guide

| Table 112 (Page 3 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLFUNC *| 34| Signed,
| 2-byte
| integer

| Input| Function to be performed by
| exit routine

| 1 Initialization

| 2 Authorization Check

| 3 Termination

| XAPLGPAT *| 36| Character,
| 4 bytes
| Input| DB2 group attachment name
| for data sharing. The DB2
| subsystem name if not data
| sharing.

| XAPLRSV1| 3A| Character,
| 4 bytes
| Reserved

| XAPLTYPE| 3E| Character,1| Input| DB2 object type:

| D Database

| R Table space

| T Table

| P Application plan

| K Package

| S Storage group

| C Collection

| B Buffer pool

| U System privilege

| XAPLFLG1| 3F| Character,1| Input| The highest-order bit, bit 8,
| (XAPLCHKS) is on if the
| secondary IDs associated
| with this authorization ID
| (XAPLUCHK) are included in
| DB2's authorization check. If
| it is off, only this
| authorization ID is checked.

| The next highest-order bit,
| bit 7, (XAPLUTB) is on if this
| is a table privilege (SELECT,
| INSERT, and so on) and if
| SYSCTRL is not sufficient
| authority to perform the
| specified operation on a
| table. SYSCTRL does not
| have the privilege of
| accessing user data unless
| specifically granted to it.

| The remaining 6 bits are
| reserved.

 Appendix B. Writing Exit Routines X-39

| Table 112 (Page 4 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLOBJN| 40| Character,
| 20 bytes
| Input| Unqualified name of the
| object with which the
| privilege is associated. It is
| one of the following names:

| Name Length

| Database 8

| Table space 8

| Table 18

| Application Plan 8

| Package 8

| Storage Group 8

| Collection 18

| Buffer pool 8

| For special system privileges
| (SYSADM, SYSCTRL, and
| so on) this field might be
| blank. See macro
| DSNXAPRV.

| This parameter is
| left-justified and padded with
| blanks. If not applicable, it
| contains blanks or binary
| zeros.

| XAPLOWNQ| 54| Character,
| 20 bytes
| Input| Object owner (creator) or
| object qualifier. The contents
| of this parameter depends
| on either the privilege being
| checked or the object. See
| Table 113 on page X-42.

| This parameter is
| left-justified and padded with
| blanks. If not applicable, it
| contains blanks or binary
| zeros.

| XAPLREL1| 68| Character,
| 20 bytes
| Input| Other related information.
| The contents of this
| parameter depends on either
| the privilege being checked
| or the object. See Table 113
| on page X-42.

| This parameter is
| left-justified and padded with
| blanks. If not applicable, it
| contains blanks or binary
| zeros.

X-40 Administration Guide

| Table 112 (Page 5 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLREL2| 7C| Character,
| 64 bytes
| Input| Other related information.
| The contents of this
| parameter depends on the
| privilege being checked. See
| Table 113 on page X-42.

| This parameter is
| left-justified and padded with
| blanks. If not applicable, it
| contains blanks or binary
| zeros.

| XAPLPRIV| BC| Signed,
| 2-byte
| integer

| Input| DB2 privilege being
| checked. See macro
| DSNXAPRV for a complete
| list of privileges.

| XAPLFROM| BE| Character,
| 1
| Input| Source of the request:

| S Remote request that
| uses DB2 private
| protocol.

| ' ' Not a remote request
| that uses DB2 private
| protcol.

| DB2 authorization
| restricts remote requests
| that use DB2 private
| protocol to the SELECT,
| UPDATE, INSERT and
| DELETE privileges.

| XAPLRSV2| BF| Character,
| 15
| Reserved

| XAPLONWT| CE| Character,
| 1
| Output| Information required by DB2
| from the exit routine for the
| UPDATE and
| REFERENCES table
| privileges:

| Value Explanation

| ' ' Requester has
| privilege on the
| entire table

| * Requester has
| privilege on just
| this column

| See macro DSNXAPRV for
| definition of these privileges.

| XAPLDIAG| CF| Character,
| 40 bytes
| Output| Information returned by the
| exit routine to help diagnose
| problems.

 Appendix B. Writing Exit Routines X-41

| XAPLOWNQ, XAPLREL1 and XAPLREL2 might further qualify the object or may
| provide additional information that can be used in determining authorization for
| certain privileges. These privileges and the contents of XAPLOWNQ, XAPLREL1
| and XAPLREL2 are shown in Table 113.

| Table 112 (Page 6 of 6). Parameter List for the Access Control Authorization Routine.
| Field names indicated by an asterisk (*) apply to initialization, termination, and authorization
| checking. Other fields apply to authorization checking only.

| Name| Hex Offset| Data Type| Input or
| Output
| Description

| XAPLRSV3| F7| Character,
| 9
| | Reserved

| Table 113 (Page 1 of 2). Related information for Certain Privileges

| Privilege| Object
| Type
| (XAPLTYPE)

| XAPLOWNQ| XAPLREL1| XAPLREL2

| 0053 (UPDATE)
| 0054 (REFERENCES)
| T| Table
| Name
| Qualifier

| Column
| Name if
| applicable

| Database
| Name

| 0022 (CATMAINT
| CONVERT)
| 0050 (SELECT)
| 0051 (INSERT)
| 0052 (DELETE)
| 0056 (CREATE INDEX)
| 0061 (ALTER)
| 0073 (DROP)
| 0075 (LOAD)
| 0076 (CHANGE NAME
| QUALIFIER)
| 0097 (COMMENT ON)
| 0098 (LOCK)
| 0102 (CREATE
| SYNONYM)
| 0233 (ANY TABLE
| PRIVILEGE)

| T| Table
| name
| qualifier

| blank| Database
| name

| 0020 (DROP ALIAS)
| 0103 (ALTER INDEX)
| 0104 (DROP SYNONYM)
| 0105 (DROP INDEX)

| T| Object
| name
| qualifier

| blank| blank

| 0065 (BIND)| P| Plan owner| blank| blank

| 0064 (EXECUTE)| K| Collection
| ID
| blank| blank

| 0065 (BIND)| K| Collection
| ID
| Package
| owner
| blank

| 0073 (DROP)| K| Collection
| ID
| blank| Version ID

| 0225 (COPY ON PKG)| K| Collection
| ID
| Package
| owner
| blank

| 0228 (ALLPKAUT)| K| Collection
| ID
| blank| blank

X-42 Administration Guide

| The data types and field lengths of the information shown in Table 113 on
| page X-42 is shown in Table 114.

| Table 113 (Page 2 of 2). Related information for Certain Privileges

| Privilege| Object
| Type
| (XAPLTYPE)

| XAPLOWNQ| XAPLREL1| XAPLREL2

| 0229 (SUBPKAUT)| K| Collection
| ID
| blank| blank

| 0061 (ALTER)| R| Database
| name
| blank| blank

| 0073 (DROP)| R| Database
| name
| blank| blank

| 0087 (USE)| R| Database
| name
| blank| blank

| 0227 (BIND AGENT)| U| Package
| owner
| blank| blank

| Table 114. Data Types and Field Lengths

| Resource Name or Other| Type| Length

| Database Name| Character| 8

| Table name qualifier| Character| 8

| Object name qualifier| Character| 8

| Column name| Character| 18

| Collection ID| Character| 18

| Plan owner| Character| 8

| Package owner| Character| 8

| Package version ID| Character| 64

| Expected Output
| Your authorization exit routine is expected to return certain fields when it is called.
| These output fields are indicated in Table 112 on page X-37. If an unexpected
| value is returned in any of these fields an abend occurs. Register 3 points to the
| field in error, and abend code 00E70009 is issued.

| Field| Required or Optional

| EXPLRC1| Required

| EXPLRC2| Optional

| XAPLONWT| Required only for UPDATE and
| REFERENCES table privileges

| XAPLDIAG| Optional

 Appendix B. Writing Exit Routines X-43

| Handling Return Codes
| Place return codes from the exit routine in the EXPL field named EXPLRC1.

| Return codes during initialization: EXPLRC1 must have one of the following
| values during initialization:

| Value Meaning
| 0 Initialization successful
| 12 Unable to service request; don't call exit again

| Any other value returned in this field causes an abend. Register 3 points to
| EXPLRC1. If an abend occurs, the exit routine is not called again.

| Return codes during termination: DB2 does not check EXPLRC1 on return from
| the exit routine.

| Return codes during authorization check: Make sure that EXPLRC1 has one of
| the following values during the authorization check:

| Value Meaning
| 0 Access permitted
| 4 Unable to determine; perform DB2 authorization checking
| 8 Access denied
| 12 Unable to service request; don't call exit again

| Any other value returned in this field causes an abend, and register 3 points to
| EXPLRC1. If an abend occurs, the exit routine is not called again. On authorization
| failures, the return code is included in IFCID 0140.

| Handling Reason Codes
| Field EXPLRC2 lets you put in any code that would be of use in determining why
| the authorization check in the exit routine failed. On authorization failures, the
| reason code is included in IFCID 0140.

| Exit Abend
| In the event that the exit routine abends, the authorization component of DB2
| abends, and the exit is not called again. This applies to initialization, termination,
| and authorization checking.

| Debugging Your Exit Routine
| You can use IFCID 0314 to provide a trace record of the parameter list on return
| from the exit routine. You can activate this trace by turning on performance trace
| class 22.

 Edit Routines
Edit routines are assigned to a table by the EDITPROC clause of CREATE TABLE.
An edit routine receives the entire row of the base table in internal DB2 format; it
can transform that row when it is stored by an INSERT or UPDATE SQL statement,
or by the LOAD utility. It also receives the transformed row during retrieval
operations and must change it back to its original form. Typical uses are to
compress the storage representation of rows to save space on DASD and to
encrypt the data.

X-44 Administration Guide

The transformation your edit routine performs on a row (possibly encryption or
compression) is called edit-encoding. The same routine is used to undo the
transformation when rows are retrieved; that operation is called edit-decoding.

 Attention

The edit-decoding function must be the exact inverse of the edit-encoding
function. For example, if a routine encodes 'ALABAMA' to '01', it must
decode '01' to 'ALABAMA'. A violation of this rule can lead to an abend of the
DB2 connecting thread, or other undesirable effects.

Your edit routine can encode the entire row of the table, including any index keys.
However, index keys are extracted from the row before the encoding is done,
therefore, index keys are stored in the index in edit-decoded form. Hence, for a
table with an edit routine, index keys in the table are edit-coded; index keys in the
index are not edit-coded.

The sample application contains a sample edit routine, DSN8EAE1. To print it, use
ISPF facilities, IEBPTPCH, or a program of your own. Or, assemble it and use the
assembly listing.

There is also a sample routine that does Huffman data compression, DSN8HUFF in
library prefix.SDSNSAMP. That routine not only exemplifies the use of the exit
parameters, it also has potentially some use for data compression. If you intend to
use the routine in any production application, please pay particular attention to the
warnings and restrictions given as comments in the code. You might prefer to let
DB2 compress your data. For instructions, see “Compressing Data in a Table
Space or Partition” on page 2-63.

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to edit
routines.

Specifying the Routine
To name an edit routine for a table, use the EDITPROC clause of the CREATE
TABLE statement, followed by the name of the routine. If you plan to use an edit
routine, specify it when you create the table. In operation, the routine is loaded on
demand.

You cannot add an edit routine to a table that already exists: you must drop the
table and re-create it. Also, you cannot alter a table with an edit routine to add a
column. Again, you must drop the table and re-create it, and presumably also alter
the edit routine in some way to account for the new column.

When Exits Are Taken
An edit routine is invoked to edit-code a row whenever DB2 inserts or updates one,
including inserts made by the LOAD utility. It is invoked after any date routine, time
routine, or field procedure. If there is also a validation routine, the edit routine is
invoked after the validation routine. Any changes made to the row by the edit
routine do not change entries made in an index.

 Appendix B. Writing Exit Routines X-45

The same edit routine is invoked to edit-decode a row whenever DB2 retrieves one.
On retrieval, it is invoked before any date routine, time routine, or field procedure. If
retrieved rows are sorted, the edit routine is invoked before the sort. An edit routine
is not invoked for a DELETE operation without a WHERE clause that deletes an
entire table in a segmented table space.

Parameter Lists on Entry
At invocation, registers are set as described in “Registers at Invocation” on
page X-76, and the edit routine uses the standard exit parameter list (EXPL)
described there. Table 115 shows the exit-specific parameter list, described by
macro DSNDEDIT. Figure 161 on page X-47 shows how the parameter list points
to other row information.

Table 115. Parameter List for an Edit Routine

Name
Hex.
Offset Data Type Description

EDITCODE 0 Signed 4-byte
integer

Edit code telling the type of function to be
performed, as follows:

0 Edit-encode row for insert or update
4 Edit-decode row for retrieval

EDITROW 4 Address Address of a row description. Its format is
shown in Table 126 on page X-79.

8 Signed 4-byte
integer

Reserved

EDITILTH C Signed 4-byte
integer

Length of the input row

EDITIPTR 10 Address Address of the input row

EDITOLTH 14 Signed 4-byte
integer

Length of output row. On entry, this is the
size of the area in which to place the output
row. The exit must not modify storage
beyond this length.

EDITOPTR 18 Address Address of the output row

 Processing Requirements
Your routine must be based on the DB2 data formats; see “Row Formats for Edit
and Validation Routines” on page X-77.

 Incomplete Rows
Sometimes DB2 passes, to an edit routine, an input row that has fewer fields than
there are columns in the table. In that case, the routine must stop processing the
row after the last input field. Columns for which no input field is provided are always
at the end of the row and are never defined as NOT NULL; either they allow nulls
or they are defined as NOT NULL WITH DEFAULT.

Use macro DSNDEDIT to get the starting address and row length for edit exits. Add
the row length to the starting address to get the first invalid address beyond the
end of the input buffer; your routine must not process any address as large as that.

X-46 Administration Guide

 EXPL

 ┌────────────┐ ┌───────────────┐ ┌─────────────┐

Register 1 ─5│ Address of ├───────────5│ Address of ├──5│ Work area │

│ EXPL │ │ work area │ │ (256 bytes) │

 ├────────────┤ ├───────────────┤ └─────────────┘

│ Address of │ │ Length of │

┌────────────┤ edit │ │ work area │

│ │ parameter │ ├───────────────┤

│ │ list │ │ (Reserved) │

│ └────────────┘ ├───────────────┤

│ │ Return code │

│ Parameter list ├───────────────┤

│ ┌─────────────────────────────┐ │ Reason code │

└──5│ EDITCODE: tells the function│ └───────────────┘

│ to be performed │

 ├─────────────────────────────┤ Row descriptions

│ Address of row description ├───────────5┌───────────────────┐

├─────────────────────────────┤ │ Number of columns │

│ (Reserved) │ │ in row (n) │

 ├─────────────────────────────┤ ├───────────────────┤

│ Length of input row │ ┌─┤ Address of column │

├─────────────────────────────┤ │ │ list │

┌───┤ Address of input row │ │ ├───────────────────┤

│ ├─────────────────────────────┤ │ │ Row type │

│ │ Length of output row │ │ └───────────────────┘

│ ├─────────────────────────────┤ │

│ ┌─┤ Address of output row │ │ Column descriptions

│ │ └─────────────────────────────┘ │ ┌─────────────────┐

│ │ │ ┌─┴────────────────┐│

│ └──5┌─────────────┐ └5┌──┴─────────────────┐││

│ │ Output row │ │ Column length │││

│ └─────────────┘ ├────────────────────┤││

│ │ Data type │││

└────5┌─────────────┐ ├────────────────────┤├┘...n

│ Input row │ │ Data attribute ││

 └─────────────┘ ├────────────────────┼┘

│ Column name │

 └────────────────────┘

Figure 161. How the Edit Exit Parameter List Points to Row Information. The address of
the nth column description is given by: RFMTAFLD + (n−1)×(FFMTE−FFMT); see “Parameter
List for Row Format Descriptions” on page X-79.

 Expected Output
If EDITCODE contains 0 , the input row is in decoded form. Your routine must
encode it.

In that case, the maximum length of the output area, in EDITOLTH, is 10 bytes
more than the maximum length of the record. In counting the maximum length,
“record” includes fields for the lengths of VARCHAR and VARGRAPHIC
columns, and for null indicators, but does not include the 6-byte record header.

If EDITCODE contains 4 , the input row is in coded form. Your routine must decode
it.

In that case, EDITOLTH contains the maximum length of the record. As before,
“record” includes fields for the lengths of VARCHAR and VARGRAPHIC
columns, and for null indicators, but not the 6-byte record header.

In either case , put the result in the output area, pointed to by EDITOPTR, and put
the length of your result in EDITOLTH. The length of your result must not be
greater than the length of the output area, as given in EDITOLTH on invocation,
and your routine must not modify storage beyond the end of the output area.

 Appendix B. Writing Exit Routines X-47

Required Return Code: Your routine must also leave a return code in EXPLRC1,
with the following meanings:

Value Meaning
0 Function performed successfully.
Nonzero Function failed.

If the function fails, the routine might also leave a reason code in EXPLRC2. DB2
returns SQLCODE -652 (SQLSTATE '23506') to the application program and puts
the reason code in field SQLERRD(6) of the SQL communication area (SQLCA).

 Validation Routines
Validation routines are assigned to a table by the VALIDPROC clause of CREATE
TABLE and ALTER TABLE. A validation routine receives an entire row of a base
table as input, and can return an indication of whether or not to allow a following
INSERT, UPDATE, or DELETE operation. Typically, a validation routine is used to
impose limits on the information that can be entered in a table; for example,
allowable salary ranges, perhaps dependent on job category, for the employee
sample table.

The return code from a validation routine is checked for a 0 value before any insert,
update, or delete is allowed.

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to
validation routines.

Specifying the Routine
To name a validation routine for a table, use the VALIDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the routine.
In operation, the routine is loaded on demand.

You can add a validation routine to a table that is already in existence, but it is not
invoked to validate data already in the table. For suggestions about existing data,
see “Checking Rows of a Table with a New Validation Routine” on page 2-133.
You can also cancel any validation routine for a table, by using VALIDPROC NULL
in an ALTER TABLE statement.

When Exits Are Taken
A validation routine for a table is invoked when DB2 inserts or updates a row,
including inserts made by the LOAD utility. The routine is invoked for most delete
operations, but NOT for a mass delete of all the rows of a table made by a
DELETE statement without a WHERE clause. If there are other exit routines, the
validation routine is invoked before any edit routine, and after any date routine, time
routine, or field procedure.

X-48 Administration Guide

Parameter Lists on Entry
At invocation, registers are set as described in “Registers at Invocation” on
page X-76, and the validation routine uses the standard exit parameter list (EXPL)
described there. Table 116 shows the exit-specific parameter list, described by
macro DSNDRVAL.

Table 116. Parameter List for a Validation Routine

Name
Hex.
Offset Data Type Description

0 Signed 4-byte
integer

Reserved

RVALROW 4 Address Address of a row description. The format of the row
description is shown in Table 126 on page X-79.

8 Signed 4-byte
integer

Reserved

RVALROWL C Signed 4-byte
integer

Length of the input row to be validated

RVALROWP 10 Address Address of the input row to be validated

14 Signed 4-byte
integer

Reserved

18 Signed 4-byte
integer

Reserved

RVALPLAN 1C Character, 8 bytes Name of the plan issuing the request

RVALOPER 24 Unsigned 1-byte
integer

Code identifying the operation being performed, as
follows:

1 Insert, update, or load
2 Delete

RVALFL1 25 Character, 1 byte The high-order bit is on if the requester has installation
SYSADM authority. The remaining 7 bits are reserved.

RVALCSTC 26 Character, 2 bytes Connection system type code. Values are defined in
macro DSNDCSTC.

 Processing Requirements
Your routine must be based on the DB2 data formats; see “Row Formats for Edit
and Validation Routines” on page X-77.

 Incomplete Rows
Sometimes DB2 passes, to a validation routine, an input row that has fewer fields
than there are columns in the table. In that case, the routine must stop processing
the row after the last input field. Columns for which no input field is provided are
always at the end of the row and are never defined as NOT NULL; either they allow
nulls or they are defined as NOT NULL WITH DEFAULT.

Use macro DSNDRVAL to get the starting address and row length for validation
exits. Add the row length to the starting address to get the first invalid address
beyond the end of the input buffer; your routine must not process any address as
large as that.

 Appendix B. Writing Exit Routines X-49

 Expected Output
Your routine must leave a return code in EXPLRC1, with the following meanings:

Value Meaning
0 Allow insert, update, or delete
Nonzero Do not allow insert, update, or delete

If the operation is not allowed, the routine might also leave a reason code in
EXPLRC2. DB2 returns SQLCODE -652 (SQLSTATE '23506') to the application
program and puts the reason code in field SQLERRD(6) of the SQL communication
area (SQLCA).

Figure 162 shows how the parameter list points to other information.

 EXPL

 ┌────────────┐ ┌───────────────┐ ┌─────────────┐

Register 1 ─5│ Address of ├───────────5│ Address of ├──5│ Work area │

│ EXPL │ │ work area │ │ (256 bytes) │

 ├────────────┤ ├───────────────┤ └─────────────┘

│ Address of │ │ Length of │

┌────────────┤ validation │ │ work area │

│ │ parameter │ ├───────────────┤

│ │ list │ │ (Reserved) │

│ └────────────┘ ├───────────────┤

│ │ Return code │

│ Parameter List ├───────────────┤

│ ┌─────────────────────────────┐ │ Reason code │

└─5│ (Reserved) │ └───────────────┘

 ├─────────────────────────────┤

│ Address of row description ├─────┐ Row descriptions

 ├─────────────────────────────┤ └─────5┌───────────────────┐

│ (Reserved) │ │ Number of columns │

├─────────────────────────────┤ │ in row (n) │

│ Length of input row │ ├───────────────────┤

│ to be validated │ ┌─┤ Address of column │

├─────────────────────────────┤ │ │ list │

┌──┤ Address of input row │ │ ├───────────────────┤

│ │ to be validated │ │ │ Row type │

│ ├─────────────────────────────┤ │ └───────────────────┘

│ │ . │ │

│ │ . │ │ Column descriptions

│ │ . │ │ ┌─────────────────┐

│ └─────────────────────────────┘ │ ┌─┴────────────────┐│

│ └5┌──┴─────────────────┐││

│ │ Column length │││

│ ├────────────────────┤││

└─5┌──────────────┐ │ Data type │││

│ Input row │ ├────────────────────┤├┘...n

└──────────────┘ │ Data attribute ││

 ├────────────────────┼┘

│ Column name │

 └────────────────────┘

Figure 162. How a Validation Parameter List Points to Information. The address of the nth
column description is given by: RFMTAFLD + (n−1)×(FFMTE−FFMT); see “Parameter List for
Row Format Descriptions” on page X-79.

X-50 Administration Guide

Date and Time Routines
A date routine is a user-written exit routine to change date values from a
locally-defined format into a format recognized by DB2, when loading or inserting
them into a column with data type DATE; and from the ISO format into the
locally-defined format, when retrieving the values and assigning them to a host
variable. Similarly, a time routine changes time values from a locally-defined format
into one recognized by DB2, and from ISO into the locally-defined format. The
following table shows the formats recognized by DB2:

For an example of the use of an exit routine, suppose you want to insert and
retrieve dates in a format like “September 21, 1992.” You might have a date routine
that transforms that date to a format recognized by DB2—say ISO,
“1992-09-21”—on insertion, and transforms “1992-09-21” to “September 21, 1992”
on retrieval.

You can have either a date routine, a time routine, or both. These routines do not
apply to timestamps. Both types of routine follow the rules given below. Special
rules apply if you execute queries at a remote DBMS, through the distributed data
facility; for that case, see Queries Sent to a Distributed System on page 2-49.

Table 117. Date and Time Formats

Format Name Abbreviation
Typical
Date Typical Time

IBM European standard EUR 25.12.1992 13.30.05

International Standards Organization ISO 1992-12-25 13.30.05

Japanese Industrial Standard Christian
Era

JIS 1992-12-25 13:30:05

IBM USA standard USA 12/25/1992 1:30 PM

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to date
and time routines.

Specifying the Routine
To establish a date or time routine , set LOCAL DATE LENGTH or LOCAL TIME
LENGTH, when installing DB2, to the length of the longest field required to hold a
date or time in your local format. Allowable values range from 10 to 254. For
example, if you intend to insert and retrieve dates in the form “September 21,
1992,” then you need an 18-byte field. Set LOCAL DATE LENGTH to 18.

Also, replace the IBM-supplied exit routines, using CSECTs DSNXVDTX for a date
routine and DSNXVTMX for a time routine. The routines are loaded when DB2
starts.

To make the local date or time format the default for retrieval , set DATE
FORMAT or TIME FORMAT to LOCAL when installing DB2. That has the effect
that DB2 always takes the exit routine when you retrieve from a DATE or TIME
column. In our example, suppose that you want to retrieve dates in your local
format only occasionally; most of the time you use the USA format. Set DATE
FORMAT to USA.

 Appendix B. Writing Exit Routines X-51

The install parameters for LOCAL DATE LENGTH, LOCAL TIME LENGTH, DATE
FORMAT, and TIME FORMAT can also be updated after DB2 is installed. For
instructions, see Section 2 of Installation Guide. If you change a length parameter,
you may have to rebind applications.

When Exits Are Taken
On Insertion: A date or time routine is invoked to change a value from the
locally-defined format to a format recognized by DB2 in the following
circumstances:

� When a date or time value is entered by an INSERT or UPDATE statement, or
by the LOAD utility

� When a constant or host variable is compared to a column with a data type of
DATE, TIME, or TIMESTAMP

� When the DATE or TIME scalar function is used with a string representation of
a date or time in LOCAL format

� When a date or time value is supplied for a limit of a partitioned index in a
CREATE INDEX statement.

The exit is taken before any edit or validation routine.

� If the default is LOCAL , DB2 takes the exit immediately. If the exit routine
does not recognize the data (EXPLRC1=8), DB2 then tries to interpret it as a
date or time in one of the recognized formats (EUR, ISO JIS, or USA). DB2
rejects the data only if that interpretation also fails.

� If the default is not LOCAL , DB2 first tries to interpret the data as a date or
time in one of the recognized formats. If that interpretation fails, DB2 then takes
the exit routine, if it exists.

DB2 checks that the value supplied by the exit routine represents a valid date or
time in some recognized format, and then converts it into an internal format for
storage or comparison. If the value is entered into a column that is a key column in
an index, the index entry is also made in the internal format.

On Retrieval: A date or time routine can be invoked to change a value from ISO to
the locally-defined format when a date or time value is retrieved by a SELECT or
FETCH statement. If LOCAL is the default, the routine is always invoked unless
overridden by a precompiler option or by the CHAR function, as by specifying
CHAR(HIREDATE, ISO); that specification always retrieves a date in ISO format. If
LOCAL is not the default, the routine is invoked only when specifically called for by
CHAR, as in CHAR(HIREDATE, LOCAL); that always retrieves a date in the format
supplied by your date exit routine.

On retrieval, the exit is invoked after any edit routine or DB2 sort. A date or time
routine is not invoked for a DELETE operation without a WHERE clause that
deletes an entire table in a segmented table space.

X-52 Administration Guide

Parameter Lists on Entry
At invocation, registers are set as described in “Registers at Invocation” on
page X-76, and the date or time routine uses the standard exit parameter list
(EXPL) described there. Table 118 shows its exit-specific parameter list, described
by macro DSNDDTXP.

Table 118. Parameter List for a Date or Time Routine

Name
Hex.
Offset Data Type Description

DTXPFN 0 Address Address of a 2-byte integer containing a
function code. The codes and their
meanings are:

4 Convert from local format to ISO.
8 Convert from ISO to local format.

DTXPLN 4 Address Address of a 2-byte integer containing the
length in bytes of the local format. This is
the length given as LOCAL DATE LENGTH
or LOCAL TIME LENGTH when installing
DB2.

DTXPLOC 8 Address Address of the date or time value in local
format

DTXPISO C Address Address of the date or time value in ISO
format (DTXPISO). The area pointed to is
10 bytes long for a date, 8 bytes for a time.

 Expected Output
If the function code is 4 , the input value is in local format, in the area pointed to
by DTXPLOC. Your routine must change it to ISO, and put the result in the area
pointed to by DTXPISO.

If the function code is 8 , the input value is in ISO, in the area pointed to by
DTXPISO. Your routine must change it to your local format, and put the result in
the area pointed to by DTXPLOC.

Your routine must also leave a return code in EXPLRC1, a 4-byte integer and the
third word of the EXPL area. The return code has the following meanings:

Value Meaning

0 No errors; conversion was completed.

4 Invalid date or time value.

8 Input value not in valid format; if the function is insertion, and LOCAL
is the default, DB2 next tries to interpret the data as a date or time in
one of the recognized formats (EUR, ISO, JIS, or USA).

12 Error in exit routine.

Figure 163 on page X-54 shows how the parameter list points to other information.

 Appendix B. Writing Exit Routines X-53

 EXPL

 ┌────────────┐ ┌───────────────┐ ┌─────────────┐

 Register 1 ─5│ Address of ├───────────5│ Address of ├──5│ Work area │

│ EXPL │ │ work area │ │ (512 bytes) │

 ├────────────┤ ├───────────────┤ └─────────────┘

│ Address of │ │ Length of │

 ┌────────────┤ parameter │ │ work area │

 │ │ list │ ├───────────────┤

│ └────────────┘ │ Return code │

 │ └───────────────┘

 │ Parameter list

 │ ┌─────────────────────────────┐

 └──5│ Address of function code ├────5 ┌────────────────────┐

├─────────────────────────────┤ │ Function code: │

│ Address of format length ├──┐ │ tells the function │

├─────────────────────────────┤ │ │ to be performed │

 ┌───┤ Address of LOCAL value │ │ └────────────────────┘

 │ ├─────────────────────────────┤ │

 │ ┌─┤ Address of ISO value │ └──5┌────────────────────┐

 │ │ └─────────────────────────────┘ │ Length of local │

 │ │ │ format │

 │ └5┌─────────────┐ └────────────────────┘

 │ │ ISO value │

 │ └─────────────┘

 └──5┌─────────────┐

│ LOCAL value │

 └─────────────┘

Figure 163. How a Date or Time Parameter List Points to Other Information

 Conversion Procedures
A conversion procedure is a user-written exit routine that converts characters from
one coded character set to another coded character set. (For a general discussion
of character sets, and definitions of those terms, see Appendix B of Installation
Guide.) In most cases, any conversion that is needed can be done by routines
provided by IBM. The exit for a user-written routine is available to handle
exceptions.

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to
conversion routines.

Specifying the Routine
To establish a conversion procedure , insert a row into the catalog table
SYSIBM.SYSSTRINGS. The row must contain values for the following columns:

INCCSID The coded character set identifier (CCSID) of the source string.

OUTCCSID The CCSID of the converted string.

TRANSTYPE The nature of the conversion. Values can be:

GG ASCII GRAPHIC to EBCDIC GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED

| MP EBCDIC MIXED to ASCII MIXED
MS EBCDIC MIXED to EBCDIC SBCS
PM ASCII MIXED to EBCDIC MIXED

| PP ASCII MIXED to ASCII MIXED
PS ASCII MIXED to EBCDIC SBCS
SM EBCDIC SBCS to EBCDIC MIXED

X-54 Administration Guide

| SP SBCS (ASCII or EBCDIC) to ASCII MIXED
SS EBCDIC SBCS to EBCDIC SBCS

TRANSPROC The name of your conversion procedure.

IBMREQD Must be N.

DB2 does not use the following columns, but checks them for the allowable values
listed. Values you insert can be used by your routine in any way. If you insert no
value in one of these columns, DB2 inserts the default value listed.

ERRORBYTE Any character, or null. Default: null.

SUBBYTE Any character not equal to the value of ERRORBYTE, or null.
Default: null.

TRANSTAB Any character string of length 256 or the empty string. Default:
the empty string.

When Exits Are Taken
The exit is taken, and your procedure invoked, whenever a conversion is required
from the coded character set identified by INCCSID to the coded character set
identified by OUTCCSID.

Parameter Lists on Entry
At invocation, registers are set as described in “Registers at Invocation” on
page X-76, and the conversion procedure uses the standard exit parameter list
(EXPL) described there. A conversion procedure does not use an exit-specific
parameter list, as described in “Parameter Lists” on page X-76. Instead, the area
pointed to by register 1 at invocation includes three words, which contain the
addresses of the following items:

1. The EXPL parameter list

2. A string value descriptor, described below, that contains the character string to
be converted

3. A copy of a row from SYSIBM.SYSSTRINGS, described below, that names the
conversion procedure identified in TRANSPROC.

The length of the work area pointed to by the exit parameter list is generally 512
bytes. However, if the string to be converted is ASCII MIXED data (the value of
TRANSTYPE in the row from SYSSTRINGS is PM or PS), then the length of the
work area is 256 bytes, plus the length attribute of the string.

The String Value Descriptor: The descriptor has the format shown in Table 119.

Table 119 (Page 1 of 2). Format of String Value Descriptor for a Conversion Procedure

Name
Hex.
Offset Data Type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
20 VARCHAR
28 VARGRAPHIC

FPVDVLEN 2 Signed 2-byte
integer

The maximum length of the string

 Appendix B. Writing Exit Routines X-55

The Row from SYSSTRINGS: The row copied from the catalog table
SYSIBM.SYSSTRINGS is in the standard DB2 row format described in “Row
Formats for Edit and Validation Routines” on page X-77. The fields ERRORBYTE
and SUBBYTE each include a null indicator. The field TRANSTAB is of varying
length and begins with a 2-byte length field.

Table 119 (Page 2 of 2). Format of String Value Descriptor for a Conversion Procedure

Name
Hex.
Offset Data Type Description

FPVDVALE 4 None The string. The first halfword is the string's
actual length in characters. If the string is
ASCII MIXED data, it is padded out to the
maximum length by undefined bytes.

 Expected Output
Except in the case of certain errors, described below, your conversion procedure
should replace the string in FPVDVALE with the converted string. When converting
MIXED data, your procedure must ensure that the result is well-formed. In any
conversion, if you change the length of the string, you must set the length control
field in FPVDVALE to the proper value. Over-writing storage beyond the maximum
length of the FPVDVALE causes an abend.

Your procedure must also set a return code in field EXPLRC1 of the exit parameter
list, as shown below.

With these two codes, provide the converted string in FPVDVALE:

Code Meaning
0 Successful conversion
4 Conversion with substitution

For the remaining codes, DB2 does not use the converted string:

Code Meaning
8 Length exception
12 Invalid code point
16 Form exception
20 Any other error

| 24 Invalid CCSID

Exception Conditions: Return a length exception (code 8) when the converted
string is longer than the maximum length allowed.

For an invalid code point (code 12), place the 1- or 2-byte code point in field
EXPLRC2 of the exit parameter list.

Return a form exception (code 16) for EBCDIC MIXED data when the source string
does not conform to the rules for MIXED data.

Any other uses of codes 8 and 16, or of EXPLRC2, are optional.

Error Conditions: On return, DB2 considers any of the following conditions as a
“conversion error”:

� EXPLRC1 is greater than 16.

X-56 Administration Guide

� EXPLRC1 is 8, 12, or 16 and the operation that required the conversion is not
an assignment of a value to a host variable with an indicator variable.

� FPVDTYPE or FPVDVLEN has been changed.

� The length control field of FPVDVALE is greater than the original value of
FPVDVLEN or is negative.

In the case of a conversion error, DB2 sets the SQLERRMC field of the SQLCA to
HEX(EXPLRC1) CONCAT X'FF' CONCAT HEX(EXPLRC2).

Figure 164 shows how the parameter list points to other information.

 EXPL

 ┌────────────┐ ┌───────────────┐ ┌─────────────┐

 Register 1 ─5│ Address of ├───────────5│ Address of ├──5│ Work area │

│ EXPL │ │ work area │ │ │

 ├────────────┤ ├───────────────┤ └─────────────┘

│ Address of │ │ Length of │

 ┌────────────┤string value│ │ work area │

 │ │ list │ ├───────────────┤

│ ├────────────┤ │ (Reserved) │

 │ │ Address of │ ├───────────────┤

 │ │ SYSSTRINGS ├───────┐ │ Return code │

 │ │ row copy │ │ ├───────────────┤

 │ └────────────┘ │ │ Invalid code │

 │ │ └───────────────┘

 │ │

 │ String Value Descriptor │

│ ┌────────────────────────┐ │ ┌────────────────────┐

 └──5│ Data type of string │ └───5│ Copy of row from │

 ├────────────────────────┤ │ SYSIBM.SYSSTRINGS │

│ Maximum string length │ └────────────────────┘

 ├────────────────────────┤

│ String length │

 ├────────────────────────┤

│ String value │

 └────────────────────────┘

Figure 164. Pointers at Entry to a Conversion Procedure

 Field Procedures
Field procedures are assigned to a table by the FIELDPROC clause of CREATE
TABLE and ALTER TABLE. A field procedure is a user-written exit routine to
transform values in a single short-string column. When values in the column are
changed, or new values inserted, the field procedure is invoked for each value, and
can transform that value (encode it) in any way. The encoded value is then stored.
When values are retrieved from the column, the field procedure is invoked for each
value, which is encoded, and must decode it back to the original string value.

Any indexes, including partitioned indexes, defined on a column that uses a field
procedure are built with encoded values. For a partitioned index, the encoded value
of the limit key is put into the LIMITKEY column of the SYSINDEXPART table.
Hence, a field procedure might be used to alter the sorting sequence of values
entered in a column. For example, telephone directories sometimes require that
names like “McCabe” and “MacCabe” appear next to each other, an effect that the
standard EBCDIC sorting sequence does not provide. And languages that do not
use the Roman alphabet have similar requirements. But, if a column is provided
with a suitable field procedure, it can be correctly ordered by ORDER BY.

 Appendix B. Writing Exit Routines X-57

The transformation your field procedure performs on a value is called
field-encoding. The same routine is used to undo the transformation when values
are retrieved; that operation is called field-decoding. Values in columns with a field
procedure are described to DB2 in two ways:

1. The description of the column as defined in CREATE TABLE or ALTER TABLE
appears in the catalog table SYSIBM.SYSCOLUMNS. That is the description of
the field-decoded value, and is called the column description.

2. The description of the encoded value, as it is stored in the data base, appears
in the catalog table SYSIBM.SYSFIELDS. That is the description of the
field-encoded value, and is called the field description.

Attention: The field-decoding function must be the exact inverse of the
field-encoding function. For example, if a routine encodes 'ALABAMA' to '01', it
must decode '01' to 'ALABAMA'. A violation of this rule can lead to an abend of
the DB2 connecting thread, or other undesirable effects.

 Field Definition
The field procedure is also invoked when the table is created or altered, to define
the data type and attributes of an encoded value to DB2; that operation is called
field-definition. The data type of the encoded value can be any valid SQL data type
except DATE, TIME, TIMESTAMP, LONG VARCHAR, or LONG VARGRAPHIC; the
allowable types are listed in the description of field FPVDTYPE in Table 122 on
page X-63. The length, precision, or scale of the encoded value must be
compatible with its data type.

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies to field
procedures.

Specifying the Procedure
To name a field procedure for a column, use the FIELDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the
procedure and, optionally, a list of parameters. You can use a field procedure only
with a short string column. You cannot use a field procedure on a column defined
using NOT NULL WITH DEFAULT.

If you plan to use a field procedure, specify it when you create the table. In
operation, the procedure is loaded on demand. You cannot add a field procedure to
an existing column of a table; you can, however, use ALTER TABLE to add to an
existing table a new column that uses a field procedure.

The optional parameter list that follows the procedure name is a list of constants,
enclosed in parentheses, called the literal list. The literal list is converted by DB2
into a data structure called the field procedure parameter value list (FPPVL). That
structure is passed to the field procedure during the field-definition operation. At
that time, the procedure can modify it or return it unchanged. The output form of
the FPPVL we call the modified FPPVL; it is stored in the DB2 catalog as part of
the field description. The modified FPPVL is passed again to the field procedure
whenever that procedure is invoked for field-encoding or field-decoding.

X-58 Administration Guide

When Exits Are Taken
A field procedure specified for a column is invoked in three general situations:

1. For field-definition , when the CREATE TABLE or ALTER TABLE statement
that names the procedure is executed. During this invocation, the procedure is
expected to:

� Determine whether the data type and attributes of the column are valid.

� Verify the literal list, and change it if wanted.

� Provide the field description of the column.

� Define the amount of working storage needed by the field-encoding and
field-decoding processes.

2. For field-encoding , when a column value is to be field-encoded. That occurs
for any value that:

� Is inserted in the column by an SQL INSERT statement, or loaded by the
DB2 LOAD utility.

� Is changed by an SQL UPDATE statement.

� Is compared to a column with a field procedure, unless the comparison
operator is LIKE. The value being encoded is a host variable or constant.
(When the comparison operator is LIKE, the column value is decoded.)

� Defines the limit of a partition of an index. The value being encoded follows
VALUES in the PART clause of CREATE INDEX.

If there are any other exit routines, the field procedure is invoked before any of
them.

3. For field-decoding , when a stored value is to be field-decoded back into its
original string value. This occurs for any value that is:

� Retrieved by an SQL SELECT or FETCH statement, or by the unload
phase of the REORG utility.

� Compared to another value with the LIKE comparison operator. The value
being decoded is from the column that uses the field procedure.

In this case, the field procedure is invoked after any edit routine or DB2 sort.

A field procedure is never invoked to process a null value, nor for a DELETE
operation without a WHERE clause on a table in a segmented table space.

A Warning about Blanks: When DB2 compares the values of two strings with
different lengths, it temporarily pads the shorter string with blanks (in EBCDIC or
double-byte characters, as needed) up to the length of the longer string. If the
shorter string is the value of a column with a field procedure, the padding is done to
the encoded value, but the pad character is not encoded. Therefore, if the
procedure changes blanks to some other character, encoded blanks at the end of
the longer string are not equal to padded blanks at the end of the shorter string.
That situation can lead to errors; for example, some strings that ought to be equal
might not be recognized as such. Therefore, we recommend not encoding blanks
by a field procedure.

 Appendix B. Writing Exit Routines X-59

Control Blocks for Execution
This section describes certain control blocks that are used to communicate to a
field procedure, under the following headings:

“The Field Procedure Parameter List (FPPL)”
“The Work Area” on page X-61
“The Field Procedure Information Block (FPIB)” on page X-61
“The Field Procedure Parameter Value List (FPPVL)” on page X-61
“Value Descriptors” on page X-62.

Following that are the specific requirements for the three operations of
field-definition:

“Field-Definition (Function Code 8)” on page X-63
“Field-Encoding (Function Code 0)” on page X-65
“Field-Decoding (Function Code 4)” on page X-67.

The contents of registers at invocation and at exit are different for each of those
operations, and are described with the requirements for the operations.

The Field Procedure Parameter List (FPPL)
The field procedure parameter list is pointed to by register 1 on entry to a field
procedure. It, in turn, contains the addresses of five other areas, as shown in
Figure 165. Those areas are described in the following pages. The FPPL and the
areas it points to are all described by the mapping macro DSNDFPPB.

┌────────────┐ ┌──────────────────┐

│ Register 1 │ ┌───5│ Work area │

└─────┬──────┘ FPPL │ └──────────────────┘

 │ ┌────────────┐ │

 └───────5│ ├────┘

 ├────────────┤ ┌──────────────────┐

│ ├────────5│ Field procedure │

 ├────────────┤ │ information │

│ ├──────┐ │ block (FPIB) │

 ├────────────┤ │ └──────────────────┘

 │ ├────┐ │

 ├────────────┤ │ │ ┌──────────────────┐

│ ├──┐ │ └─5│ Column value │

└────────────┘ │ │ │ descriptor (CVD) │

 │ │ └──────────────────┘

 │ │

 │ │ ┌──────────────────┐

│ └───5│ Field value │

│ │ descriptor (FVD) │

 │ └──────────────────┘

 │

 │ ┌──────────────────┐

└─────5│ Field procedure │

│ parameter value │

│ list (FPPVL) or │

│ literal list │

 └──────────────────┘

Figure 165. Field Procedure Parameter List

X-60 Administration Guide

The Work Area
The work area is a contiguous, uninitialized area of locally-addressable, pageable,
swappable, fetch-protected storage, obtained in storage key 7 and subpool 229.
The area can be used by a field procedure as working storage. A new area is
provided each time the procedure is invoked.

The size of the area you need depends on the way you have programmed your
field-encoding and field-decoding operations. Suppose, for example, that the
longest work area you need for either of those operations is 1024 bytes. DB2
passes to your routine, for the field-definition operation, a value of 512 bytes for the
length of the work area; your field-definition operation must change that to 1024.
Thereafter, whenever your field procedure is invoked for encoding or decoding,
DB2 makes available to it an area of 1024 bytes.

If 512 bytes is sufficient for your operations, your field-definition operation need not
change the value supplied by DB2. If you need less than 512 bytes, your
field-definition can return a smaller value.

The Field Procedure Information Block (FPIB)
The field procedure information block communicates general information to a field
procedure. For example, it tells what operation is to be done, allows the field
procedure to signal errors, and gives the size of the work area.

It has the format shown in Table 120.

Table 120. Format of FPIB, Defined in Copy Macro DSNDFPPB

Name
Hex.
Offset Data Type Description

FPBFCODE 0 Signed 2-byte
integer

Function code

Code Means
0 Field-encoding
4 Field-decoding
8 Field-definition

FPBWKLN 2 Signed 2-byte
integer

Length of work area; the maximum is 32767
bytes.

FPBSORC 4 Signed 2-byte
integer

Reserved

FPBRTNC 6 Character, 2
bytes

Return code set by field procedure

FPBRSNCD 8 Character, 4
bytes

Reason code set by field procedure

FPBTOKPT C Address Address of a 40-byte area, within the work
area or within the field procedure's static
area, containing an error message

The Field Procedure Parameter Value List (FPPVL)
The field procedure parameter value list communicates the literal list, supplied in
the CREATE TABLE or ALTER TABLE statement, to the field procedure during
field-definition. At that time the field procedure can reformat the FPPVL; it is the
reformatted FPPVL that is stored in SYSIBM.SYSFIELDS and communicated to the
field procedure during field-encoding and field-decoding as the modified FPPVL.

 Appendix B. Writing Exit Routines X-61

The FPPVL has the format shown in Table 121 on page X-62.

Table 121. Format of FPPVL, Defined in Copy Macro DSNDFPPB

Name
Hex.
Offset Data Type Description

FPPVLEN 0 Signed 2-byte
integer

Length in bytes of the area containing
FPPVCNT and FPPVVDS. At least 254 for
field-definition.

FPPVCNT 2 Signed 2-byte
integer

Number of value descriptors that follow,
equal to the number of parameters in the
FIELDPROC clause. Zero if no parameters
were listed.

FPPVVDS 4 Structure For each parameter in the FIELDPROC
clause, there is:

1. A signed 4-byte integer giving the length
of the following value descriptor, which
includes the lengths of FPVDTYPE,
FPVDLEN, and FPVDVALE.

2. A value descriptor

 Value Descriptors
A value descriptor describes the data type and other attributes of a value. Value
descriptors are used with field procedures in these ways:

� During field-definition, they describe each constant in the field procedure
parameter value list (FPPVL). The set of these value descriptors is part of the
FPPVL control block.

� During field-encoding and field-decoding, the decoded (column) value and the
encoded (field) value are described by the column value descriptor (CVD) and
the field value descriptor (FVD).

The column value descriptor (CVD) contains a description of a column value and, if
appropriate, the value itself. During field-encoding, the CVD describes the value to
be encoded. During field-decoding, it describes the decoded value to be supplied
by the field procedure. During field-definition, it describes the column as defined in
the CREATE TABLE or ALTER TABLE statement.

The field value descriptor (FVD) contains a description of a field value and, if
appropriate, the value itself. During field-encoding, the FVD describes the encoded
value to be supplied by the field procedure. During field-decoding, it describes the
value to be decoded. Field-definition must put into the FVD a description of the
encoded value.

Value descriptors have the format shown in Table 122 on page X-63.

X-62 Administration Guide

Table 122. Format of Value Descriptors

Name
Hex.
Offset Data Type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
0 INTEGER
4 SMALLINT
8 FLOAT
12 DECIMAL
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN 2 Signed 2-byte
integer

� For a varying-length string value, its
maximum length

� For a decimal number value, its
precision (byte 1) and scale (byte 2)

� For any other value, its length

FPVDVALE 4 None The value. The value is in external format,
not DB2 internal format. If the value is a
varying-length string, the first halfword is the
value's actual length in bytes. This field is
not present in a CVD, or in an FVD used as
input to the field-definition operation. An
empty varying-length string has a length of
zero with no data following.

Field-Definition (Function Code 8)
The input provided to the field-definition operation, and the output required, are as
follows:

 On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see

Figure 165 on page X-60 for a schematic diagram.
2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area consists of 512 contiguous uninitialized bytes.

The FPIB has the following information:

Field Contains
FPBFCODE 8, the function code
FPBWKLN 512, the length of the work area

 Appendix B. Writing Exit Routines X-63

The CVD has the following information:

Field Contains
FPVDTYPE One of these codes for the data type of the column value:

Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN The length attribute of the column

The FPVDVALE field is omitted.

The FVD provided is 4 bytes long.

The FPPVL has the following information:

Field Contains

FPPVLEN The length, in bytes, of the area containing the parameter value
list. The minimum value is 254, even if there are no
parameters.

FPPVCNT The number of value descriptors that follow; zero if there are no
parameters.

FPPVVDS A contiguous set of value descriptors, one for each parameter
in the parameter value list, each preceded by a 4-byte length
field.

 On EXIT
The registers must have the following information:

Register Contains

2 through 12 The values they contained on entry.

15 The integer zero if the column described in the CVD is valid for
the field procedure; otherwise the value must not be zero.

Fields listed below must be set as shown; all other fields must remain as on entry.

The FPIB must have the following information:

Field Contains

FPBWKLN The length, in bytes, of the work area to be provided to the
field-encoding and field-decoding operations; 0 if no work area
is required.

FPBRTNC An optional 2-byte character return code, defined by the field
procedure; blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field
procedure; blanks if no reason code is given.

X-64 Administration Guide

FPBTOKP Optionally, the address of a 40-byte error message residing in
the work area or in the field procedure's static area; zeros if no
message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE
'23507'), which is set in the SQL communication area (SQLCA). The contents
of FPBRTNC and FPBRSNC, and the error message pointed to by FPBTOKP,
are also placed into the tokens, in SQLCA, as field SQLERRMT. The meaning
of the error message is determined by the field procedure.

The FVD must have the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field value. Any of
the data types listed in Table 122 on page X-63 is valid.

FPVDVLEN The length of the field value.

Field FPVDVALE must not be set; the length of the FVD is 4 bytes only.

The FPPVL can be redefined to suit the field procedure, and returned as the
modified FPPVL, subject to the following restrictions:

The field procedure must not increase the length of the FPPVL.
FPPVLEN must contain the actual length of the modified FPPVL, or 0 if no
parameter list is returned.

The modified FPPVL is recorded in the catalog table SYSIBM.SYSFIELDS, and is
passed again to the field procedure during field-encoding and field-decoding. The
modified FPPVL need not have the format of a field procedure parameter list, and it
need not describe constants by value descriptors.

Field-Encoding (Function Code 0)
The input provided to the field-encoding operation, and the output required, are as
follows:

 On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see

Figure 165 on page X-60 for a schematic diagram.
2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

 Appendix B. Writing Exit Routines X-65

Field Contains
FPBFCODE 0, the function code
FPBWKLN the length of the work area

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column value, as
shown in Table 122 on page X-63.

FPVDVLEN The length of the column value.

FPVDVALE The column value; if the value is a varying-length string, the
first halfword contains its length.

The FVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the field value.
FPVDVLEN The length of the field value.
FPVDVALE An area of unpredictable content that is as long as the field

value.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

 On EXIT
The registers have the following information:

Register Contains
2 through 12 The values they contained on entry.
15 The integer zero if the column described in the CVD is valid for

the field procedure; otherwise the value must not be zero.

The FVD must contain the encoded (field) value in field FPVDVALE. If the value is
a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Field Contains

FPBRTNC An optional 2-byte character return code, defined by the field
procedure; blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field
procedure; blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in
the work area or in the field procedure's static area; zeros if no
message is given.

X-66 Administration Guide

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE
'23507'), which is set in the SQL communication area (SQLCA). The contents
of FPBRTNC and FPBRSNC, and the error message pointed to by FPBTOKP,
are also placed into the tokens, in SQLCA, as field SQLERRMT. The meaning
of the error message is determined by the field procedure.

All other fields must remain as on entry.

Field-Decoding (Function Code 4)
The input provided to the field-decoding operation, and the output required, are as
follows:

 On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see

Figure 165 on page X-60 for a schematic diagram.
2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains
FPBFCODE 4, the function code
FPBWKLN the length of the work area

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column value, as
shown in Table 122 on page X-63.

FPVDVLEN The length of the column value.

FPVDVALE An area of unpredictable content that is as long as the column
value.

FPVDVALE The column value; if the value is a varying-length string, the
first halfword contains its length.

The FVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the field value.

 Appendix B. Writing Exit Routines X-67

FPVDVLEN The length of the field value.
FPVDVALE The field value; if the value is a varying-length string, the first

halfword contains its length.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

 On EXIT
The registers have the following information:

Register Contains
2 through 12 The values they contained on entry.
15 The integer zero if the column described in the FVD is valid for

the field procedure; otherwise the value must not be zero.

The CVD must contain the decoded (column) value in field FPVDVALE. If the value
is a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Field Contains

FPBRTNC An optional 2-byte character return code, defined by the field
procedure; blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field
procedure; blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in
the work area or in the field procedure's static area; zeros if no
message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE
'23507'), which is set in the SQL communication area (SQLCA). The contents
of FPBRTNC and FPBRSNC, and the error message pointed to by FPBTOKP,
are also placed into the tokens, in SQLCA, as field SQLERRMT. The meaning
of the error message is determined by the field procedure.

All other fields must remain as on entry.

Log Capture Routines
A log capture exit routine makes DB2 log data available for recovery purposes in
real time. The routine receives data when DB2 writes data to the active log. Your
local specifications determine what the routine does with that data. The routine
does not enter or return data to DB2.

Performance Concern: Your log capture routine receives control often. Design it
with care: a poorly designed routine can seriously degrade system performance.
Whenever possible, use the instrumentation facility interface (IFI), rather than a log
capture exit routine, to read data from the log. For instructions, see “Reading Log
Records with IFI” on page X-92.

X-68 Administration Guide

 General Considerations
“General Considerations for Writing Exit Routines” on page X-74 applies, but with
the following exceptions to the description of execution environments:

A log capture routine can execute in either TCB mode or SRB mode,
depending on the function it is performing. When in SRB mode, it must not
perform any I/O operations nor invoke any SVC services or ESTAE routines.

Specifying the Routine
The module name for the routine is DSNJL004. Its entry point is DSNJW117.

The module is loaded during DB2 initialization and deleted during DB2 termination.
You must link the module into either the prefix.SDSNEXIT or the DB2
prefix.SDSNLOAD library. Specify the REPLACE parameter of the link-edit job to
replace a module that is part of the standard DB2 library for this release. The
module should have attributes AMODE(31) and RMODE(ANY).

When Exits Are Taken
The log capture exit is taken in three possible situations, identified by a character in
the exit parameter list. In two of those situations, processing operates in TCB
mode; in one situation, processing operates in SRB mode. The two modes have
different processing capabilities, which your routine must be aware of. The
character identifications, situations, and modes are:

 � I=Initialization, Mode=TCB

The TCB mode allows all MVS/DFP functions to be utilized, including ENQ,
ALLOCATION, and OPEN. No buffer addresses are passed in this situation.
The routine runs in supervisor state, key 7, and enabled.

This is the only situation in which DB2 checks a return code from the user's log
capture exit routine. The DB2 subsystem is sensitive to a return code of X'20'
here. Never return X '20' in register 15 in this situation.

� W=Write, Mode=SRB (service request block)

The SRB mode restricts the exit routine's processing capabilities. No supervisor
call (SVC) instructions can be used, including ALLOCATION, OPEN, WTO, any
I/O instruction, and so on. At the exit point, DB2 is running in supervisor state,
key 7, and is enabled.

Upon entry, the exit routine has access to buffers that have log control intervals
with “blocked log records.” The first and last buffer address and control interval
size fields can be used to determine how many buffers are being passed.

See MVS/ESA Programming: Authorized Assembler Services Guide for
additional material on SRB-mode processing.

Performance Concern : All processing time required by the exit routine
lengthens the time required to write the DB2 log. The DB2 address space
usually has a high priority, and all work done in it in SRB mode precedes all
TCB access, so any errors or long processing times can impact all DB2
processing and cause system-wide performance problems. The performance of
your routine is extremely critical in this phase.

 � T=Termination, Mode=TCB

Processing capabilities are the same as for initialization.

 Appendix B. Writing Exit Routines X-69

A log control interval can be passed more than once. Use the time stamp to
determine the last occurrence of the control interval. This last occurrence should
replace all others. The time stamp is found in the control interval.

Parameter Lists on Entry
At invocation, registers are set as described in “Registers at Invocation” on
page X-76, and the log capture routine uses the standard exit parameter list
(EXPL) described there. (The reason and return codes in that list can be ignored.)
Table 123 shows the exit-specific parameter list; it is mapped by macro
DSNDLOGX.

Table 123 (Page 1 of 2). Log Capture Routine Specific Parameter List

Name
Hex
Offset Data Type Description

LOGXEYE 00 Character, 4
bytes

Eye catcher: LOGX

LOGXLNG 04 Signed 2-byte
integer

Length of parameter list

06 Reserved

08 Reserved

LOGXTYPE 10 Character, 1
byte

Situation identifier:

I Initialization
W Write
T Termination

| P Partial control interval (CI) call

LOGXFLAG 11 Hex Mode identifier.

X'00' SRB mode
X'01' TCB mode

LOGXSRBA 12 Character, 6
bytes

First log RBA, set when DB2 is started. The
value remains constant while DB2 is active.

LOGXARBA 18 Character, 6
bytes

Highest log archive RBA used. The value is
updated after completion of each log
archive operation.

1E Reserved

LOGXRBUF 20 Character, 8
bytes

Range of consecutive log buffers:

Address of first log buffer
Address of last log buffer

LOGXBUFL 28 Signed 4-byte
integer

Length of single log buffer (constant 4096)

LOGXSSID 2C Character, 4
bytes

DB2 subsystem id, 4 characters left justified

LOGXSTIM 30 Character, 8
bytes

DB2 subsystem startup time (TIME format
with DEC option: 0CYYDDDFHHMMSSTH)

LOGXREL 38 Character, 3
bytes

| DB2 subsystem release level

LOGXMAXB 3B Character, 1
byte

Maximum number of buffers that can be
passed on one call. The value remains
constant while DB2 is active.

X-70 Administration Guide

Table 123 (Page 2 of 2). Log Capture Routine Specific Parameter List

Name
Hex
Offset Data Type Description

3C 8 bytes Reserved

LOGXUSR1 44 Character, 4
bytes

First word of a doubleword work area for
the user routine. (The content is not
changed by DB2.)

LOGXUSR2 48 Character, 4
bytes

Second word of user work area.

Routines for Dynamic Plan Selection in CICS
CICS transactions can select plans dynamically by an exit routine.

First, reconsider: The function was originally intended to ease two problems that
can occur, for a program running under a CICS transaction, when all SQL calls are
bound into a single large plan. First, changing one DBRM requires all of them to be
bound again. Second, binding a large plan can be very slow, and the entire
transaction is unavailable for processing during the operation. An application that is
designed around small packages avoids both those problems. For guidance on
using packages, see Section 5 of Application Programming and SQL Guide.

What the Exit Routine Does
Normally, the parameter PLAN=planname in the RCT names the plan associated
with the thread for a transaction. However, if the RCT has PLNEXIT=YES, the
specified exit routine names the plan dynamically.

The exit routine can name the plan during execution of the transaction at one of
two times:

� When the first SQL statement in the transaction is about to be executed. That
action is called dynamic plan selection.

� When the first SQL statement following a sync point is about to be executed, if
the sync point releases a thread for reuse and if several other conditions are
satisfied. That action is called dynamic plan switching. If you think you need
that function, see particularly “Dynamic Plan Switching” on page X-73 and then
consider packages again.

 General Considerations
You can specify the same exit routine for all entries in the resource control table
(RCT), or different routines for different entries. You can select plans dynamically
for RCT entries of both TYPE=ENTRY and TYPE=POOL.

 Execution Environment
The execution environment is:

� Problem program state

� Enabled for interrupts

 Appendix B. Writing Exit Routines X-71

� PSW Key: the CICS main key for CICS 3.2 and earlier releases, or the key as
specified in the CICS RDO definition "DEFINE PROGRAM
EXECKEY(USER|CICS)".

 � Non-cross-memory mode

� No MVS locks held

� Under the main TCB in the CICS address space

� 24-bit addressing mode, for any release of CICS earlier than CICS Version 4

Specifying the Routine
To specify an exit routine for dynamic plan selection, take these steps:

1. Code the routine (or use the IBM-provided sample exit routine).

2. Link-edit the routine into a load library. Concatenate that library in the DD
statement DFHRPL of the JCL that initializes CICS.

3. Define the routine to CICS with resource definition on line (RDO) or by updating
and re-assembling the processing program table (PPT).

4. Update the RCT with these parameters for DSNCRCT TYPE=ENTRY or
TYPE=POOL:

PLNEXIT= YES
PLNPGME= Name of the exit routine

Consider these parameters also for DSNCRCT TYPE=INIT:

PLNPGMI= Name of the default exit routine for dynamic plan selection
PLNXTR1= Integer ID for the CICS trace of entry points for plan selection
PLNXTR2= Integer ID for the CICS trace of exit points for plans

For detailed information on coding those parameters, see Section 2 of
Installation Guide.

5. Reassemble the RCT.

The exit routine can change the plan that is allocated by changing the contents of
field CPRMPLAN in its parameter list. If the routine does not change the value of
CPRMPLAN, the plan that is allocated has the DBRM name of the first SQL
statement executed.

Sample Exit Routine
A sample exit routine is available in two versions:

Version Member and Library Name
Source code DSNC@EXT in prefix.SDSNSAMP
Executable DSNCUEXT in prefix.SDSNLOAD

The sample routine does not change the parameter list. As a result, the name of
the plan selected is, by default, the DBRM of the first SQL statement. The sample
establishes addressability to the parameter list and then issues EXEC CICS
RETURN.

X-72 Administration Guide

When Exits Are Taken
The first SQL statement executed in a CICS transaction creates (or reuses) a
thread to DB2. The dynamic plan exit is always taken at the first SQL statement in
a transaction, for dynamic plan selection.

The exit can also be taken at the first SQL statement following a sync point, for
dynamic plan switching. Whether the exit is taken at that time is determined by the
rules described below.

Dynamic Plan Switching
For you to use dynamic plan switching:

� The sync point must release the thread for reuse.

� The pool thread definition must specify PLNEXIT=YES.

� The transaction must be terminal driven.

� The transaction must use a pool thread or an unprotected entry thread that has
been diverted to the pool. To use a pool thread, do not use an RCT entry, thus
using TYPE=POOL as the default, or code the RCT entry in either of these
ways:

 – TYPE=POOL
– TYPE=ENTRY, THRDM=0, TWAIT=POOL

� You must not code either of these combinations in your RCT:

– THRDS>0, TWAIT=POOL, and PLNEXIT=YES

– THRDA>THRDS and PLNEXIT=YES (where THRDA and THRDS are both
greater than 0)

Coding the Exit Routine
An exit routine for dynamic plan selection is a user-written CICS command-level
program. To use different exit routines for different RCT entries, define each routine
in the RCT.

You can use the sample program, DSNC@EXT, as an example for coding your
own exit routine. Your routine:

� Must adhere to normal CICS conventions for command-level programs

� Can be written in any language supported by CICS, such as assembler,
COBOL, or PL/I

� Must establish addressability to the parameter list DFHCOMMAREA, using
standard CICS command-level conventions

� Can update the parameter list if necessary

� Can change the plan that is allocated by changing the contents of field
CPRMPLAN in the parameter list

� Must not contain SQL statements

� Must not issue the command EXEC CICS SYNCPOINT

� Must terminate by using the command EXEC CICS RETURN

 Appendix B. Writing Exit Routines X-73

Parameter List on Entry
When linking, CICS passes a parameter list to the exit routine in the CICS control
block DFHCOMMAREA. Table 124 shows the contents of the list.

The field CPRMUSER can be used for such purposes as addressing a user table
or even a CICS GETMAIN area. There is a unique field called CPRMUSER for
each RCT entry with PLNEXIT=YES.

The following sample macros in prefix.SDSNMACS map the parameter list in the
languages shown:

DSNCPRMA assembler
DSNCPRMC COBOL
DSNCPRMP PL/I

Table 124. Parameter List for an Exit Routine for Dynamic Plan Selection

Name
Hex
Offset Data Type Description

CRPMPLAN 0 Character, 8
bytes

The DBRM or plan name for the first SQL
statement to be executed after the exit
routine. The routine can change this field to
establish a new plan.

CPRMAUTH 8 Character, 8
bytes

The primary authorization ID that is passed
to DB2 during sign-on. CICS ignores any
changes made to this field by the exit
routine.

CPRMUSER 10 Character, 4
bytes

Reserved for use by the exit routine. CICS
preserves this field from one exit to the
next.

General Considerations for Writing Exit Routines
The rules, requirements, and suggestions below apply to most of the foregoing exit
routines.

Attention: Using an exit routine requires coordination with your system
programmers. An exit routine runs as an extension of DB2 and has all the
privileges of DB2. It can impact the security and integrity of the database.
Conceivably, an exit routine could also expose the integrity of the operating system.
Instructions for avoiding that exposure can be found in the appropriate MVS/ESA or
OS/390 publication.

 Coding Rules
An exit routine must conform to these rules:

� It must be written in assembler.

� It must reside in an authorized program library, either the library containing DB2
modules (prefix.SDSNLOAD) or in a library concatenated ahead of
prefix.SDSNLOAD in the procedure for the database services started task (the
procedure named ssnmDBM1, where ssnm is the DB2 subsystem name).
Authorization routines must be accessible to the ssnmMSTR procedure. For all
routines, we recommend using the library prefix.SDSNEXIT, which is
concatenated ahead of prefix.SDSNLOAD in both started-task procedures.

X-74 Administration Guide

� Routines listed below must have the names shown. The name of other routines
should not start with “DSN,” to avoid conflict with the DB2 modules.

Type of Routine Required Load Module Name
Date DSNXVDTX
Time DSNXVTMX
Connection DSN3@ATH
Sign-on DSN3@SGN

� It must be written to be reentrant and must restore registers before return.

� It must be link-edited with the REENTRANT parameter.

� In the MVS/ESA environment, it must be written and link-edited to execute
AMODE(31),RMODE(ANY).

� It must not invoke any DB2 services—for example, through SQL statements.

� It must not invoke any SVC services or ESTAE routines.

Even though DB2 has functional recovery routines of its own, you can establish
your own functional recovery routine (FRR), specifying MODE=FULLXM and
EUT=YES.

Modifying Exit Routines
Since exit routines operate as extensions of DB2, they should not be changed or
modified while DB2 is running.

 Execution Environment
Exit routines are invoked by standard CALL statements. With some exceptions,
which are noted under “General Considerations” in the description of particular
types of routine, the execution environment is:

 � Supervisor state

� Enabled for interrupts

� PSW key 7

� No MVS locks held

� For local requests, under the TCB of the application program that requested the
DB2 connection

� For remote requests, under a TCB within the DB2 distributed data facility
address space

� 31-bit addressing mode

 � Cross-memory mode

In cross-memory mode, the current primary address space is not equal to the
home address space. Hence, some MVS macro services you cannot use at all,
and some you can use only with restrictions. For more information about
cross-memory restrictions for macro instructions, which macros can be used
fully, and the complete description of each macro, refer to the appropriate
MVS/ESA or OS/390 publication.

 Appendix B. Writing Exit Routines X-75

Registers at Invocation
When DB2 passes control to an exit routine, the registers are set as follows:

Register Contents

1 Address of pointer to the exit parameter list (shown in Table 125).
For a field procedure, the address is that of the field procedure
parameter list (see Figure 165 on page X-60).

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

 Parameter Lists
Register 1 points to the address of parameter list EXPL, described by macro
DSNDEXPL and shown in Figure 166. The word following points to a second
parameter list, which differs for each type of exit routine.

Register 1──5┌──┐

│ Address of EXPL parameter list │

 ├──┤

│ Address of exit─specific parameter list │

 └──┘

Figure 166. Use of Register 1 on Invoking an Exit Routine. (Field procedures and translate
procedures do not use the standard exit-specific parameter list.)

The EXPL parameter list is shown below; its description is given by macro
DSNDEXPL.

Table 125 (Page 1 of 2). Contents of EXPL Parameter List

Name
Hex.
Offset Data Type Description

EXPLWA 0 Address Address of a work area to be used by the
routine

EXPLWL 4 Signed 4-byte
integer

Length of the work area. The value is:

2048 for connection and sign-on
routines
512 for date and time routines and
translate procedures (see Note 1).
256 for edit, validation, and log capture
routines

EXPLRSV1 8 Signed 2-byte
integer

Reserved

EXPLRC1 A Signed 2-byte
integer

Return code

EXPLRC2 C Signed 4-byte
integer

Reason code

EXPLARC 10 Signed 4-byte
integer

Used only by connection and sign-on
routines

EXPLSSNM 14 Character, 8
bytes

Used only by connection and sign-on
routines

EXPLCONN 1C Character, 8
bytes

Used only by connection and sign-on
routines

X-76 Administration Guide

Table 125 (Page 2 of 2). Contents of EXPL Parameter List

Name
Hex.
Offset Data Type Description

EXPLTYPE 24 Character, 8
bytes

Used only by connection and sign-on
routines

Notes:

1. When translating a string of type PC MIXED, a translation procedure has a work
area of 256 bytes plus the length attribute of the string.

Row Formats for Edit and Validation Routines
In writing an edit or validation routine, you must be aware of the format in which
DB2 stores the rows of tables. This section describes the special features of that
format.

 Column Boundaries
DB2 stores all columns contiguously, regardless of word boundaries in physical
storage.

 Null Values
If null values are allowed for a column, an extra byte is stored before the actual
column value. This byte is X'00' if the column value is not null; it is X'FF' if the
value is null.

The extra byte is included in the column length attribute (parameter FFMTFLEN in
Table 127 on page X-79).

 Fixed-length Rows
If all columns in a table are fixed-length, its rows are stored in fixed-length format.
The rows are merely byte strings.

For example, the sample project activity table has five fixed-length columns. The
first two columns do not allow nulls; the last three do. Here is how a row in the
table looks:

│ Column │Column│ Column │ Column │ Column │

│ 1 │ 2 │ 3 │ 4 │ 5 │

 ├────────┼──────┼─────┬────┼────┬───────┼────┬────────┤

│ MA21ðð │ 1ð │ ðð │ .5 │ ðð │82ð1ð1 │ ðð │ 8211ð1 │

 └────────┴──────┴─────┴────┴────┴───────┴────┴────────┘

 Varying-length Rows
If a table has any varying-length columns, its rows contain varying-length values,
and are varying-length rows. Each varying-length value has a 2-byte length field in
front of it. Those 2 bytes are not included in the column length attribute
(FFMTFLEN).

Here is how a row of the sample department table looks:

 Appendix B. Writing Exit Routines X-77

│ Col │ Column 2 │ Column │ Col │

│ 1 │ Column length (hex) │ 3 │ 4 │

 │ │ │ │ │ │

 ├─────┼──────┬────────────────────┼────────┼─────┤

│ Cð1 │ ðð12 │ Information center │ ðððð3ð │ Aðð │

 └─────┴──────┴────────────────────┴────────┴─────┘

There are no gaps after varying-length columns. Hence, columns that appear after
varying-length columns are at variable offsets in the row. To get to such a column,
you must scan the columns sequentially after the first varying-length column. An
empty string has a length of zero with no data following.

Varying-length Rows with Nulls
A varying-length column can also allow null values. The value in the length field
includes the null indicator byte but does not include the length field itself.

Here is how the same row would look in storage if nulls were allowed in the
DEPTNAME column:

│ Col │ Column 2 │ Column │ Col │

│ 1 │ Column length (hex) │ 3 │ 4 │

 │ │ │ │ │ │

 ├─────┼──────┬────┬────────────────────┼────────┼─────┤

│ Cð1 │ ðð13 │ ðð │ Information center │ ðððð3ð │ Aðð │

 └─────┴──────┴────┴────────────────────┴────────┴─────┘

An empty string has a length of one, a X'00' null indicator, and no data following.

Internal Formats for Dates, Times, and Timestamps
The values in columns with data types of DATE, TIME, and TIMESTAMP are
stored in the formats shown in the following figure. In each format, each byte
consists of two packed decimal digits.

DATE format: 4 bytes TIME format: 3 bytes

 Content Content

┌─────────┬─────────┬─────────┐ ┌─────────┬─────────┬─────────┐

│ Year │ Month │ Day │ │ Hours │ Minutes │ Seconds │

├─────────┼─────────┼─────────┤ ├─────────┼─────────┼─────────┤

│ 2 │ 1 │ 1 │ │ 1 │ 1 │ 1 │

└─────────┴─────────┴─────────┘ └─────────┴─────────┴─────────┘

Number of bytes Number of bytes

TIMESTAMP format: 1ð bytes

 Content

┌─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬──────────────┐

│ Year │ Month │ Day │ Hours │ Minutes │ Seconds │ Microseconds │

├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼──────────────┤

│ 2 │ 1 │ 1 │ 1 │ 1 │ 1 │ 3 │

└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴──────────────┘

Number of bytes

X-78 Administration Guide

Parameter List for Row Format Descriptions
DB2 passes a description of the row format to an edit or validation routine through
a parameter list, generated by macro DSNDROW. The description includes both
the general row characteristics and the characteristics of each column. Table 126
shows the general row description, and Table 127 shows the description of each
column.

Table 126. Description of a Row Format

Name
Hex.
Offset Data Type Description

RFMTNFLD 0 Signed
fullword
integer

Number of columns in a row

RFMTAFLD 4 Address Address of a list of column descriptions.
The format of each column is shown in
Table 127.

RFMTTYPE 8 Character, 1
byte

Row type:

X'00' = row with fixed-length columns
X'04' = row with varying-length
columns

9 Character, 3
bytes

Reserved

Table 127. Description of a Column Format

Name
Hex.
Offset Data Type Description

FFMTFLEN 0 Signed
fullword
integer

Column length attribute (see Table 128)

FFMTFTYP 4 Character, 1
byte

Data type code (see Table 128)

FFMTNULL 5 Character, 1
byte

Data attribute:

X'00' = Null values are allowed.
X'04' = Null values are not allowed.

FFMTFNAM 6 Character, 18
bytes

Column name

Table 128 (Page 1 of 2). Description of Data Type Codes and Length Attributes

Data Type
Code
(FFMTFTYP) Length Attribute (FFMTFLEN)

INTEGER X'00' 4

SMALLINT X'04' 2

FLOAT (single precision) X'08' 4

FLOAT (double precision) X'08' 8

DECIMAL X'0C' INTEGER(p/2), where p is the
precision

 Appendix B. Writing Exit Routines X-79

Table 128 (Page 2 of 2). Description of Data Type Codes and Length Attributes

Data Type
Code
(FFMTFTYP) Length Attribute (FFMTFLEN)

CHAR X'10' The length of the string

VARCHAR X'14' The length of the string

DATE X'20' 4

TIME X'24' 3

TIMESTAMP X'28' 10

DB2 Codes for Numeric Data
DB2 stores numeric data in a specially encoded format. That format is called
DB2-coded. To retrieve numeric data in its original form, you must DB2-decode it,
according to its data type, as follows:

Data Type DB2 Decoding Procedure

SMALLINT Invert the sign bit (high order bit).

Value Means ...
8001 0001 (+1 decimal)
7FF3 FFF3 (-13 decimal)

INTEGER Invert the sign bit (high order bit).

Value Means ...
800001F2 000001F2 (+498 decimal)
7FFFFF85 FFFFFF85 (-123 decimal)

FLOAT If the sign bit (high order bit) is 1, invert only that bit. Otherwise,
invert all bits.

Value Means ...
C110000000000000 4110000000000000 (+1.0 decimal)
3EEFFFFFFFFFFFFF C110000000000000 (-1.0 decimal)

DECIMAL Save the high-order hexadecimal digit (sign digit). Shift the number
to the left one hexadecimal digit. If the sign digit is X'F', put X'C' in
the low-order position. Otherwise, invert all bits in the number and
put X'D' in the low-order position.

Value Means ...
F001 001C (+1)
0FFE 001D (-1)

X-80 Administration Guide

Appendix C. Reading Log Records

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page xi.

This appendix discusses the following information about the log:

“What the Log Contains”
“The Physical Structure of the Log” on page X-86

For diagnostic or recovery purposes, it can be useful to read DB2 log records. This
appendix also discusses three approaches to writing programs that read log
records:

� “Reading Log Records with IFI” on page X-92

This is an online method using the instrumentation facility interface (IFI) when
DB2 is running. You use the READA (read asynchronously) command of IFI to
read log records into a buffer and the READS (read synchronously) command
to pick up specific log control intervals from a buffer.

� “Reading Log Records with OPEN, GET, and CLOSE” on page X-96

This is a stand-alone method that can be used when DB2 is down. You use the
assembler language macro DSNJSLR to submit OPEN, GET, and CLOSE
functions. This method can be used to capture log records that you cannot
pick up with IFI after DB2 goes down.

� “Reading Log Records with the Log Capture Exit” on page X-104

This is an online method using the log capture exit when DB2 is running. You
write an exit routine to use this exit to capture and transfer log records in real
time.

What the Log Contains
The log contains the information needed to recover the results of program
execution, the contents of the database, and the DB2 subsystem. It does not
contain information for accounting, statistics, traces, or performance evaluation.

There are three types of log records, described under these headings:

“Unit of Recovery Log Records” on page X-82
“Checkpoint Log Records” on page X-85
“Database Page Set Control Records” on page X-86

Each log record has a header that tells its type, the DB2 subcomponent that made
the record, and, for unit of recovery records, the unit of recovery identifier. The log
records can be extracted and printed by the DSN1LOGP program. For instructions,
refer to Section 3 of Utility Guide and Reference.

| The Log Relative Byte Address and Log Record Sequence Number: The DB2
| log can contain up to 248 bytes, where 248 is 2 to the 48th power. Each byte is
| addressable by its offset from the beginning of the log. That offset is known as its
| relative byte address (RBA).

 Copyright IBM Corp. 1982, 1997 X-81

A log record is identifiable by the RBA of the first byte of its header; that RBA is
called the relative byte address of the record. The record RBA is like a timestamp
because it uniquely identifies a record that starts at a particular point in the
continuing log.

| In the data sharing environment, each member has its own log. A means is
| therefore needed to identify log records uniquely across the data sharing group.
| The log record sequence number (LRSN) provides that means. The LRSN is a
| 6-byte hexadecimal value derived from a store clock timestamp. DB2 uses the
| LRSN for recovery in the data sharing environment.

Effects of ESA Data Compression: Log records can contain compressed data if a
table contains compressed data. For example, if the data in a DB2 row are
compressed, all data logged because of changes to that row (resulting from inserts,
updates and deletes) are compressed. If logged, the record prefix is not
compressed, but all of the data in the record are in compressed format. Reading
compressed data requires access to the dictionary that was in use when the data
was compressed.

Unit of Recovery Log Records
Most of the log records describe changes to the DB2 database. All such changes
are made within units of recovery. We first describe those, and their effects, and
then the corresponding log records.

Undo and Redo Records
When a change is made to the database, DB2 logs an undo/redo record that
describes the change. The redo information is required if the work is committed and
later must be recovered. The undo information is used to back out work that is not
committed.

If the work is rolled back, the undo/redo record is used to remove the change. At
the same time that the change is removed, a new redo/undo record is created that
contains information, called compensation information, that is used if necessary to
reverse the change. For example, if a value of 3 is changed to 5, redo
compensation information changes it back to 3.

If the work must be recovered, DB2 scans the log forward and applies the redo
portions of log records and the redo portions of compensation records, without
keeping track of whether the unit of recovery was committed or rolled back. If the
unit of recovery had been rolled back, DB2 would have written compensation redo
log records to record the original undo action as a redo action. Using this
technique, the data can be completely restored by applying only redo log records
on a single forward pass of the log.

DB2 also logs the creation and deletion of data sets. If the work is rolled back, the
operations are reversed. For example, if a table space is created using
DB2-managed data sets, DB2 creates a data set; if rollback is necessary, the data
set is deleted. If a table space using DB2-managed data sets is dropped, DB2
deletes the data set when the work is committed, not immediately. If the work is
rolled back, DB2 does nothing.

X-82 Administration Guide

Typical Unit of Recovery Log Records
Table 129 shows a sequence of log records that might be written for an insert of
one row via TSO. The following record types are included:

Begin_UR The first request to change a database begins a unit of
recovery. The log record of that event is identified by its
log RBA. That same RBA serves as an ID for the entire
unit of recovery (the URID). All records related to that unit
have that RBA in their log record headers (LRH). For rapid
backout, the records are also linked by a backward chain
in the LRH.

Undo/Redo Log records are written for each insertion, deletion, or
update of a row. They register the changes to the stored
data, but not the SQL statement that caused the change.
Each record identifies one data or index page and its
changes.

End Phase 2 records The end of a UR is marked by log records that tell whether
the UR was committed or rolled back, and whether DB2
has completed the work associated with it. If DB2
terminates before a UR has completed, it completes the
work at the next restart.

Table 130 shows the log records for processing and rolling back an insertion.

Table 129. Example of a Log Record Sequence for an Insert of One Row using TSO

Type of Record Information Recorded

1. Begin_UR Beginning of the unit of recovery. Includes the connection
name, correlation name, authorization ID, plan name, and
LUWID.

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set ID,
page number, internal record identifier (RID), and the data
inserted.

3. Undo/Redo for Index Insertion of index entry. Includes the DBID, index space object
ID, page number, and index entry to be added.

4. Begin Commit 1 The beginning of the commit process. The application has
requested a commit either explicitly (EXEC SQL COMMIT) or
implicitly (for example, by ending the program).

5. Phase 1-2 Transition The agreement to commit in TSO. In CICS and IMS, an End
Phase 1 record notes that DB2 agrees to commit. If both
parties agree, a Begin Phase 2 record is written; otherwise, a
Begin Abort record is written, noting that the unit of recovery is
to be rolled back.

6. End Phase 2 Completion of all work required for commit.

Table 130 (Page 1 of 2). Log Records Written for Rolling Back an Insertion

Type of Record Information Recorded

1. Begin_UR Beginning of the unit of recovery

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set ID,
page number, internal record identifier, and the data inserted

3. Begin_Abort Beginning of the rollback process

 Appendix C. Reading Log Records X-83

Table 130 (Page 2 of 2). Log Records Written for Rolling Back an Insertion

Type of Record Information Recorded

4. Compensation
Redo/Undo

Backing-out of data. Includes the database ID (DBID), page set
ID, page number, internal record ID (RID), and data to undo the
previous change

5. End_Abort End of the unit of recovery, with rollback complete

Classes of Changes to Data
Table 131 summarizes the information logged for data and index changes.

There are three basic classes of changes to a data page:

� Changes to control information. Those changes include pages that map
available space and indicators that show that a page has been modified. The
COPY utility uses that information when making incremental image copies.

� Changes to database pointers. Pointers are used in two situations:

– The DB2 catalog and directory, but not user databases, contain pointers
that connect related rows. Insertion or deletion of a row changes pointers in
related data rows.

– When a row in a user database becomes too long to fit in the available
space, it is moved to a new page. An address, called an overflow pointer,
that points to the new location is left in the original page. With this
technique, index entries and other pointers do not have to be changed.
Accessing the row in its original position gives a pointer to the new location.

� Changes to data. In DB2, a row is confined to a single page. Each row is
uniquely identified by a RID containing:

– The number of the page

Table 131. Information Logged for Database Changes

Operation Information Logged

Insert data The new row

� On redo, the row is inserted with its original RID.
� On undo, the row is deleted and the RID is made available for another

row.

Delete data The deleted row

� On redo, the RID is made available for another row.

� On undo, the row is inserted again with its former RID.

Update data The old and new values of the changed data.

� On redo, the new data is replaced
� On undo, the old data is replaced

Note: If an update occurs to a table defined with DATA CAPTURE(CHANGES), the entire
before-image and after-image of the data row is logged.

Insert index
entry

The offset in the index page, the new key value, and the data RID

Delete index
entry

The offset in the index page, the deleted key value, and the RID of the
data that was pointed to

X-84 Administration Guide

– A 1-byte ID that identifies the row within the page. A single page can
| contain up to 255 rows;13 IDs are reused when rows are deleted.

The log record identifies the RID, the operation (insert, delete, or update), and the
data. Depending on the data size and other variables, DB2 can write a single log
record with both undo and redo information, or it can write separate log records for
undo and redo.

Checkpoint Log Records
To reduce restart time, DB2 takes periodic checkpoints during normal operation, in
the following circumstances:

� When a predefined number of log records have been written

This number is defined by field CHECKPOINT FREQ on installation panel
DSNTIPN described in Section 2 of Installation Guide.

� When switching from one active log data set to another

� At the end of a successful restart

� At normal termination

At a checkpoint, DB2 logs its current status and registers the log RBA of the
checkpoint in the bootstrap data set (BSDS). At restart, DB2 uses the information in
the checkpoint records to reconstruct its state when it terminated.

Many log records can be written for a single checkpoint. DB2 can write one to
begin the checkpoint; others can then be written, followed by a record to end the
checkpoint. Table 132 summarizes the information logged.

Table 132. Contents of Checkpoint Log Records

Type of Log Record Information Logged

Begin_Checkpoint Marks the start of the summary information. All later records in the
checkpoint have type X'0100' (in the LRH).

Unit of Recovery
Summary

Identifies an incomplete unit of recovery (by the log RBA of the
Begin_UR log record). Includes the date and time of its creation, its
connection ID, correlation ID, authorization ID, the plan name it
used, and its current state (inflight, indoubt, in-commit, or in-abort).

Page Set Summary Contains information for allocating and opening objects at restart,
and identifies (by the log RBA) the earliest checkpoint interval
containing log records about data changes that have not been
applied to the DASD version of the data or index. There is one
record for each open page set (table space or index space).

Page Set Exception
Summary

Identifies the type of exception state. For descriptions of the states,
see “Database Page Set Control Records” on page X-86 below.
There is one record for each database and page set with an
exception state.

Page Set UR
Summary Record

Identifies page sets modified by any active UR (inflight, in-abort, or
in-commit) at the time of the checkpoint.

End_Checkpoint Marks the end of the summary information about a checkpoint.

| 13 A page in a catalog table space that has links can contain up to 127 rows.

 Appendix C. Reading Log Records X-85

Database Page Set Control Records
These register several types of information, described below.

Page Set Allocate, Open, and Close: Page set control records primarily register
the allocation, opening, and closing of every page set (table space or index space).
That same information is in the DB2 directory (SYSIBM.SYSLGRNX). It is also
registered in the log so that it is available at restart.

Exception States: Page set control records also register whether any database,
table space, index space, or partition is in an exception state. An object can be in
an exception state for any of these reasons:

� It is stopped.

� It is started for read-only (RO) or utility-only (UT) access. Read-write (RW)
access is considered the normal condition.

� A write error range applies to it. If a write error occurs on a page, the page
becomes unavailable. If more than one write error occurs, the error range
spans all pages involved. All pages within the range are unavailable until the
pages in error have been recovered.

� A DB2 utility has control of it. The object is unavailable to other processes.

� An image copy is required to make it recoverable.

� It is in check pending or recover pending state.

To list all objects in a database that are in an exception state, use the command
DISPLAY DATABASE (database name) RESTRICT. For a further explanation of
the list produced and of the exception states, see the description of message
DSNT392I in Section 3 of Messages and Codes.

Image Copies of Special Table Spaces: Image copies of DSNDB01.SYSUTILX,
DSNDB01.DBD01, and DSNDB06.SYSCOPY are registered in the log, rather than
in SYSCOPY. During recovery, they are recovered from the log, and then image
copies of other table spaces are located from the recovered SYSCOPY.

The Physical Structure of the Log
Each active log data set must be a VSAM linear data set (LDS). The physical
output unit written to the active log data set is a control interval (CI) of 4096 bytes
(4KB). Each CI contains one VSAM record.

Physical and Logical Log Records
The VSAM CI provides 4089 bytes to hold DB2 information. We refer to that space
as a physical record. The information to be logged at a particular time forms a
logical record, whose length varies independently of the space available in the CI.
Hence, one physical record can contain several logical records, one or more logical
records and part of another, or only part of one logical record. The physical record
must also contain 21 bytes of DB2 control information, called the log control interval
definition (LCID), which is further described in “The Log Control Interval Definition
(LCID)” on page X-88.

X-86 Administration Guide

Figure 167 on page X-87 shows a VSAM CI containing four log records or
segments, namely:

� The last segment of a log record of 768 bytes (X'0300'). The length of the
segment is 100 bytes (X'0064').

� A complete log record of 40 bytes (X'0028').

� A complete log record of 1024 bytes (X'0400').

� The first segment of a log record of 4108 bytes (X'100C'). The length of the
segment is 2911 bytes (X'0B5F').

 ┌──────┬──────┬──┐

 │ ðð64 │ 8ððð │ data from last segment of log record 1 │

 ├──────┴─────┬┴─────┬──────┬───┤

 │ │ ðð28 │ ðð64 │ data from log record 2 │

 ├──────┬─────┴┬─────┴┬─────┴───┤

 │ │ ð4ðð │ ðð28 │ data from log record 3 │

 ├──────┴─────┬┴─────┬┴─────┬───┤

 │ │ ðB5F │ 44ðð │ data from first segment of log │

 ├────────────┴──────┴──────┴───┤

 │ record 4 │

 │ . . . │

 │ │

 ├────┬────┬──────┬──────┬──────┬─────────────┬────┬────────────────────┤

 │ │ FF │ 1ððC │ ð3ðð │ ð48C │ log RBA │ ðð │ timestamp │

 └────┴────┴──────┴──────┴──────┴─────────────┴────┴────────────────────┘

 & & & & & &

└─────┼─────log control interval definition (LCID)───┼────────────┘

│ │ │ │ &

│ │ │ │ │

│ │ │ │ VSAM record

│ │ │ │ ends here

│ │ │ │

│ │ │ └──For data sharing, the LRSN

│ │ │ of the last log record in this CI

│ │ │

│ │ └─────────────Offset of last segment in this CI

│ │ (beginning of log record 4)

 │ │

│ └────────Total length of spanned record

│ that ends in this CI (log record 1)

 │

└────Total length of spanned record

that begins in this CI (log record 4)

Figure 167. A VSAM CI and Its Contents

We use the term log record to refer to a logical record, unless the term physical log
record is used. A part of a logical record that falls within one physical record is
called a segment.

The Log Record Header
Each logical record includes a prefix, called a log record header (LRH), which
contains control information. For the contents of the log record header see
Table 133 on page X-88.

The first segment of a log record must contain the header and some bytes of data.
If the current physical record has too little room for the minimum segment of a new
record, the remainder of the physical record is unused, and a new log record is
written in a new physical record.

The log record can span many VSAM CIs. For example, a minimum of nine CIs are
required to hold the maximum size log record of 32815 bytes. Only the first
segment of the record contains the entire LRH; later segments include only the first

 Appendix C. Reading Log Records X-87

two fields. When a specific log record is needed for recovery, all segments are
retrieved and presented together as if the record were stored continuously.

Table 133. Contents of the Log Record Header

Hex
Offset

Length Information

00 2 Length of this record or segment

02 2 Length of any previous record or segment in this CI; 0 if this is the
first entry in the CI. The two high-order bits tell the segment type:

B'00' A complete log record
B'01' The first segment
B'11' A middle segment
B'10' The last segment

04 2 Type of log record 1

06 2 Subtype of the log record 1

08 1 Resource manager ID (RMID) of the DB2 component that created
the log record

09 1 Flags

0A 6 Unit of recovery ID, if this record relates to a unit of recovery2;
otherwise, 0

10 6 Log RBA of the previous log record, if this record relates to a unit of
recovery3; otherwise, 0

16 1 Release identifier

17 1 Length of header

18 6 Undo next LSN

1E 8 LRHTIME

Note:

1 For record types and subtypes, see “Log Record Type Codes” on page X-90 and “Log
Record Subtype Codes” on page X-90.
2 For a description of units of recovery, see “Unit of Recovery Log Records” on
page X-82.

The Log Control Interval Definition (LCID)
Each physical log record includes a suffix called the log control interval definition
(LCID), which tells how record segments are placed in the physical control interval.
For the contents of the LCID, see Table 134.

Table 134 (Page 1 of 2). Contents of the Log Control Interval Definition

Hex
Offset

Length Information

00 1 Whether the CI contains free space: X'00' = Yes, X'FF' = No

01 2 Total length of a segmented record that begins in this CI; 0 if no
segmented record begins in this CI

03 2 Total length of a segmented record that ends in this CI; 0 if no
segmented record ends in this CI

05 2 Offset of the last record or segment in the CI

X-88 Administration Guide

Each recovery log record consists of two parts: a header, which describes the
record, and data. Figure 168 shows the format schematically; the list below it
describes each field.

Table 134 (Page 2 of 2). Contents of the Log Control Interval Definition

Hex
Offset

Length Information

07 6 Log RBA of the start of the CI

0D 1 Reserved

0E 7 Timestamp, reflecting the date and time the log buffer was written to
the active log data set. The timestamp is the high order seven bytes
of the Store Clock value (STCK).

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───────────────────────┐

│ │ │ │ │ │ │ │ │ │ │ │ │ │

└─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴───────────────────────┘

│ │ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │ └─Data (32777 max)

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ └─ STCK, or LRSN + member ID (8)

│ │ │ │ │ │ │ │ │ │ └─ Undo next LSN (6)

│ │ │ │ │ │ │ │ │ └─ Length of header (1)

│ │ │ │ │ │ │ │ └─ Release identifier (1)

│ │ │ │ │ │ │ └─ LINK (6)

│ │ │ │ │ │ └─ Unit of recovery ID (6)

│ │ │ │ │ └─ Flags (1)

│ │ │ │ └─ Resource manager ID (1)

│ │ │ └─ Record subtype (2)

│ │ └─ Record type (2)

│ └─ Length of previous record or segment (2)

└─ Length of this record or segment (2)

Figure 168. Format of a DB2 Recovery Log Record

The fields are:

Field Description

Length of this record The total length of the record in bytes.

Length of previous record The total length of the previous record in bytes.

Type The code for the type of recovery log record. See
“Log Record Type Codes” on page X-90.

Subtype Some types of recovery log records are further
divided into subtypes. See “Log Record Subtype
Codes” on page X-90.

Resource manager ID Identifier of the resource manager that wrote the
record into the log. When the log is read, the record
can be given for processing to the resource
manager that created it.

Unit of recovery ID A unit of recovery to which the record is related.
Other log records can be related to the same unit of
recovery; all of them must be examined to recover
the data. The URID is the RBA (relative byte

 Appendix C. Reading Log Records X-89

address) of the Begin-UR log record, and indicates
the start of that unit of recovery in the log.

LINK Chains all records written using their RBAs. For
example, the link in an end checkpoint record links
the chains back to the begin checkpoint record.

Release identifier Identifies in which release the log was written.

Log record header length The total length of the header of the log record.

Undo next LSN Identifies the log RBA of the next log record to be
undone during backwards (UNDO processing)
recovery.

STCK, or LRSN+member ID. In a non data-sharing environment, this is a 6-byte
store clock value (STCK) reflecting the date and
time the record was placed in the output buffer. The
last two bytes contain zeros.

In a data sharing environment, this contains a 6-byte
log record sequence number (LRSN) followed by a
2-byte member ID.

Data Data associated with the log record. The contents of
the data field depend on the type and subtype of the
recovery log record.

Log Record Type Codes
The type code of a log record tells what kind of DB2 event the record describes:

Code Type of Event
0002 Page set control
0004 SYSCOPY utility
0010 System event
0020 Unit of recovery control
0100 Checkpoint
0200 Unit of recovery undo
0400 Unit of recovery redo
0800 Archive log command
1000 to 8000 Assigned by DB2

A single record can contain multiple type codes that are combined. For example,
0600 is a combined UNDO/REDO record; F400 is a combination of four
DB2-assigned types plus a REDO.

Log Record Subtype Codes
The log record subtype code provides a more granular definition of the event that
occurred to produce the log record. Log record subtype codes are unique only
within the scope of the corresponding log record type code.

Log record type 0004 (SYSCOPY utility) has log subtype codes that correspond to
the page set ID values of the table spaces that have their SYSCOPY records in the
log (SYSIBM.SYSUTILX, SYSIBM.SYSCOPY and DSNDB01.DBD01).

X-90 Administration Guide

For a description of log record types 0200 (unit of recovery undo) and 0400 (unit of
recovery redo), see the SUBTYPE option of DSN1LOGP in Section 3 of Utility
Guide and Reference.

Log record type 0800 (quiesce) does not have subtype codes.

Some log record types (1000 to 8000 assigned by DB2) can have proprietary log
record subtype codes assigned.

Subtypes for Type 0002 (Page Set Control):

Code Type of Event
0001 Page set open
0002 Data set open
0003 Page set close
0004 Data set close
0005 Page set control checkpoint
0006 Page set set write
0007 Page set write I/O
0008 Page set reset write
0009 Page set status

Subtypes for Type 0010 (System Event):

Code Type of Event
0001 Begin checkpoint
0002 End checkpoint
0003 Begin current status rebuild
0004 Begin historic status rebuild
0005 Begin active unit of recovery backout

| 0006 Pacing record

Subtypes for Type 0020 (Unit of Recovery Control):

Code Type of Event
0001 Begin unit of recovery
0002 Begin commit phase 1 (Prepare)
0004 End commit phase 1 (Prepare)
0008 Begin commit phase 2
000C Commit phase 1 to commit phase 2 transition
0010 End commit phase 2
0020 Begin abort
0040 End abort
0081 End undo
0084 End todo
0088 End redo

Subtypes for Type 0100 (Checkpoint):

Code Type of Event
0001 Unit of recovery entry
0002 Restart unit of recovery entry

 Appendix C. Reading Log Records X-91

Interpreting Data Change Log Records
DB2 provides the mapping and description of specific log record types that allow
you to interpret data changes made to DB2 tables from the log. A list of DB2
mapping macros is provided in Appendix H of Application Programming and SQL
Guide . The macros are contained in the data set library prefix.SDSNMACS and
are documented by comments in the macros themselves.

Log record formats for the record types and subtypes listed above are detailed in
the mapping macro DSNDQJ00. DSNDQJ00 provides the mapping of specific data
change log records, UR control log records, and page set control log records that
you need to interpret data changes by the UR. DSNDQJ00 also explains the
content and usage of the log records.

Reading Log Records
DB2 provides three methods of reading or capturing log records:

� Using the instrumentation facility interface (IFI). Your program can run only
when DB2 is also running.

� Using the DSNJSLR macro and three stand-alone log services, OPEN, GET,
and CLOSE. Your program can run even if DB2 is not also running.

� Using the log capture exit. Your program can run only when DB2 is also
running.

Reading Log Records with IFI
You can write a program that uses IFI to capture log records while DB2 is running.
You can read the records asynchronously, by starting a trace that reads the log
records into a buffer and then issuing an IFI call to read those records out of the
buffer. Or, you can read those log records synchronously, by using an IFI call that
returns those log records directly to your IFI program.

This section describes both methods, in the following topics:

� “Reading Log Records into a Buffer”

� “Reading Specific Log Records (IFCID 0129)” on page X-93

� “Reading Complete Log Data (IFCID 0306)” on page X-94

Either the primary or one of the secondary authorization IDs must have MONITOR2
privilege. For details on how to code an IFI program, see “Appendix E.
Programming for the Instrumentation Facility Interface (IFI)” on page X-123.

Reading Log Records into a Buffer
To begin gathering active log records into a buffer, issue the following command in
your IFI program:

-START TRACE(P) CLASS(3ð) IFCID(126) DEST(OPX)

Where:

� P signifies to start a DB2 performance trace. Any of the DB2 trace types can
be used.

� CLASS(30) is a user-defined trace class (31 and 32 are also user-defined
classes).

X-92 Administration Guide

� IFCID(126) activates DB2 log buffer recording.

� DEST(OPX) starts the trace to the next available DB2 online performance (OP)
buffer. The size of this OP buffer can be explicitly controlled by the BUFSIZE
keyword of the START TRACE command. Valid sizes range from 8KB to 1MB
in 4KB increments.

When the START TRACE command takes effect, from that point forward, until DB2
terminates, DB2 will begin writing 4KB log buffer VSAM control intervals (CIs) to the
OP buffer as well as to the active log. As part of the IFI COMMAND invocation, the
application specifies an ECB to be posted and a threshold to which the OP buffer is
filled when the application is posted to obtain the contents of the buffer. The IFI
READA request is issued to obtain OP buffer contents.

Reading Specific Log Records (IFCID 0129)
IFCID 129 can be used with an IFI READS request to return a specific range of log
records from the active log into the return area your program has initialized. Enter
the following command into your IFI program:

CALL DSNWLI(READS,ifca,return_area,ifcid_area,qual_area)

IFCID 129 must appear in the IFCID area.

To retrieve the log control interval, your program must initialize certain fields in the
qualification area:

WQALLTYP
This is a 3-byte field in which you must specify CI (with a trailing blank),
which stands for “control interval.”

WQALLMOD
In this 1-byte field, you specify whether you want the first log CI of the
restarted DB2 subsystem, or whether you want a specific control interval
as specified by the value in the RBA field.

F The “first” option is used to retrieve the first log CI of this DB2
instance. This option ignores any value in WQALLRBA and
WQALLNUM.

| P The“partial” option is used to retrieve partial log CIs for the log capture
| exit which is described in Appendix B. DB2 places a value in field
| IFCAHLRS of the IFI communication area, as follows:

| � The RBA of the log CI given to the log capture exit, if the last CI
| written to the log was not full.

| � 0, if the last CI written to the log was full.

| When you specify option P, DB2 ignores values in WQALLRBA and
| WQALLNUM.

R The “read” option is used to retrieve a set of up to 7 continuous log
CIs. If you choose this option, you must also specify the WQALLRBA
and WQALLNUM options explained below.

WQALLRBA
In this 8-byte field, you specify the starting log RBA of the control intervals
to be returned. This value must end in X'000' to put the address on a

 Appendix C. Reading Log Records X-93

valid boundary. This field is ignored when using the WQALLMOD=F
option.

If you specify an RBA that is not in the active log, reason code 00E60854
is returned in the field IFCARC2, and the RBA of the first CI of the active
log is returned in field IFCAFCI of the IFCA. These 6 bytes contain the
IFCAFCI field.

WQALLNUM
In this 2-byte field, specify the number of control intervals you want
returned. The valid range is from X'0001' through X'0007', which means
that you can request and receive up to seven 4KB log control intervals.
This field is ignored when using the WQALLMOD=F option. For a
complete description of the qualification area, see Table 147 on
page X-131.

If you specify a range of log CIs, but some of those records have not yet been
written to the active log, DB2 returns as many log records as possible. You can
find the number of CIs returned in field QWT02R1N of the self-defining section of
the record. For information about interpreting trace output, see “Appendix D.
Interpreting DB2 Trace Output” on page X-107.

Reading Complete Log Data (IFCID 0306)
| The major benefits for using IFCID 0306 are:

| � IFCID 0306 can request DB2 to decompress log records if compressed, before
| passing them to the return area of your IFI program.

� In a data sharing environment, DB2 merges log records if the value of the IFI
READS qualification WQALFLTR is X'00'. If WQALFLTR is X'01', log records
are not merged.

| � IFCID can retrieve log records from the archive data sets.

| � Complete log records are always returned.

To use this IFCID, use the same call as described in “Reading Specific Log
Records (IFCID 0129)” on page X-93. IFCID 0306 must appear in the IFCID area.

| IFCID 0306 returns complete log records and the spanned record indicatiors in
| bytes 2 will have no meaning, if present. Multi-segmented control interval log
| records are combined for a complete log record.

| Specifying the Return Area: For IFCID 0306 requests, your program's return
| area must reside in ECSA key 7 storage. The IFI application program must set the
| eye-catcher to 'I306' at offset 4 in the Return Area before making the IFCID 0306
| call. There is an additional 60 byte area that must be included after the 4–byte
| length indicator and the 'I306' eye-catcher. This area is used by DB2 between
| successive application calls and must not be modified by the application. The return
| area mapping is documented later in this section.

| The IFI application program needs to run in supervisor state to request the ECSA
| key 7 return area. The return area storage size need be a minimum of the largest
| DB2 log record returned plus the additional area defined in DSNDQW04. Minimize
| the number of IFI calls required to get all log data but do not over use ECSA by the
| IFI program. The other IFI storage areas can remain in user storage key 8. The IFI
| application must be in supervisor state and key 0 when making IFCID 0306 calls.

X-94 Administration Guide

| Qualifying Log Records: To retrieve IFCID 0306 log records , your program must
initialize certain fields in the qualification area mapped by DSNDWQAL. These
qualification fields are described here:

WQALLMOD
In this 1-byte field, specify one of the following modes:

| D Retrieves the single log record whose RBA value and member id is
| specified in WQALLRBA. Issuing a D request while holding a position
| in the log, causes the request to fail and terminates the log position
| held.

F Used as a first call to request log records beyond the LRSN or RBA
specified in WQALLRBA that meet the criteria specified in
WQALLCRI.

H Retrieves the highest LRSN or log RBA in the active log. The value is
returned in field IFCAHLRS of the IFI communications area (IFCA).

| There is no data returned in the return area and the return code for
| this call will indicate that no data was returned.

N Used following mode F or N calls to request any remaining log
records that meet the criteria specified in WQALLCRI. * and any
option specified in WQALLOPT. As many log records as fit in the
program's return area are returned.

T Terminates the log position that was held by any previous F or N
request. This allows held resources to be released.

Mode R is not used for IFCID 0306.

For both F or N requests, each log record returned contains a record-level
feedback area recorded in QW0306L. The number of log records retrieved
is in QW0306CT. The ending log RBA or LRSN of the log records to be
returned is in QW0306ES.

WQALLRBA
In this 8-byte field, specify the starting log RBA or LRSN of the control
records to be returned. For IFCID 0306, this is used on the “first” option
(F) request to request log records beyond the LRSN or RBA specified in

| this field. Determine the RBA or LRSN value from the H request. For
| RBAs, the value plus one should be used. For IFCID 0306 with D request
| of WQALLMOD, the high order 2 bytes must specify member id and the
| low order 6 bytes contain the RBA.

WQALLCRI
In this 1-byte field, indicate what types of log records you want:

X'00' Tells DB2 to retrieve only log records for changed data capture
and unit of recovery control.

| X'FF' Tells DB2 to retrieve all types of log records. Use of this option
| can retrieve large data volumes and degrade DB2.

WQALLOPT
In this 1-byte field, indicate whether you want the returned log records to
be decompressed.

 Appendix C. Reading Log Records X-95

X'01' Tells DB2 to decompress the log records before they are
returned.

X'00' Tells DB2 to leave the log records in the compressed format.

| A typical sequence of IFCID 0306 calls is:

| WQALLMOD=H
| This is only necessary if you want to find the current position in the log. The
| LRSN or RBA is returned in IFCAHLRS. The return area is not used.

| WQALLMOD=F
| The WQALLLRBA, WQALLLCRI and WQALLLOPT should be set. If 00E60812
| is returned, you have all the data for this scope. You should wait a while before
| issuing another WQALLMOD=F call. In data sharing, log buffers are flushed
| when the F request is issued.

| WQALLMOD=N
| If the 00E60812 has not been returned, you issue this call until it is. You
| should wait a while before issuing another WQALLMOD=F call.

| WQALLMOD=T
| This should only be used if you do not want to continue with the
| WQALLMOD=N before the end is reached. It has no use if a position is not
| held in the log.

| IFCID 0306 Return Area Mapping: IFCID 0306 has a unique return area format.
| The first section is mapped by QW0306OF instead of the writer header
| DSNDQWIN. See “Appendix E. Programming for the Instrumentation Facility
| Interface (IFI)” on page X-123 for details.

Reading Log Records with OPEN, GET, and CLOSE
DB2 provides three offline stand-alone log services that user-written application
programs can use to read DB2 recovery log records and control intervals even
when DB2 is not running:

� OPEN initializes stand-alone log services.
� GET returns a pointer to the next log record or log record control interval.
� CLOSE deallocates data sets and frees storage.

To invoke these services, use the assembler language macro, DSNJSLR,
specifying one of the above functions.

These log services use a request block, which contains a feedback area in which
information for all stand-alone log GET calls is returned. The request block is
created when a stand-alone log OPEN call is made. The request block must be
passed as input to all subsequent stand-alone log calls (GET and CLOSE). The
request block is mapped by the DSNDSLRB macro and the feedback area is
mapped by the DSNDSLRF macro.

See Figure 169 on page X-104 for an example of an application program that
includes these various stand-alone log calls.

When you issue an OPEN request, you can indicate whether you want to get log
records or log record control intervals. Each GET request returns a single logical
record or control interval depending on which you selected with the OPEN request.

X-96 Administration Guide

If neither is specified, the default, RECORD, is used. DB2 reads the log in the
| forward direction of ascending relative byte addresses or log record sequence
| numbers (LRSNs).

If a bootstrap data set (BSDS) is allocated before stand-alone services are invoked,
appropriate log data sets are allocated dynamically by MVS, and passwords are
provided. If the bootstrap data set is not allocated before stand-alone services are
invoked, the JCL for your user-written application to read a log must specify and
allocate the log data sets to be read. If the data sets are password protected, the
operator must supply a password when OPEN is executed.

Table 135 lists and describes the JCL DD statements used by stand-alone
services.

Table 135 (Page 1 of 2). JCL DD Statements for DB2 Stand-Alone Log Services

JCL DD
Statement Explanation

JOBCAT or
STEPCAT

Specifies the catalog in which the BSDS and the active log data sets are
cataloged. Required if the BSDS or any active log data set is to be
accessed, unless the data sets are cataloged in the system master catalog.

BSDS Specifies the bootstrap data set (BSDS). Optional. Another ddname can be
used for allocating the BSDS, in which case the ddname must be specified
as a parameter on the FUNC=OPEN (see “Stand-Alone Log OPEN
Request” on page X-100 for more information). Using the ddname in this
way causes the BSDS to be used. If the ddname is omitted on the
FUNC=OPEN request, the processing uses DDNAME=BSDS when
attempting to open the BSDS.

ARCHIVE Specifies the archive log data sets to be read. Required if an archive data
set is to be read and the BSDS is not available (the BSDS DD statement is
omitted). Should not be present if the BSDS DD statement is present. If
multiple data sets are to be read, specify them as concatenated data sets
in ascending log RBA order.

ACTIVEn (Where n is a number from 1 to 7). Specifies an active log data set that is
to be read. Should not be present if the BSDS DD statement is present. If
only one data set is to be read, use ACTIVE1 as the ddname. If multiple
active data sets are to be read, use DDNAMEs ACTIVE1, ACTIVE2, ...
ACTIVEn to specify the data sets. Specify the data sets in ascending log
RBA order with ACTIVE1 being the lowest RBA and ACTIVEn being the
highest.

| DD Statements for Data Sharing Users

GROUP If you are reading logs from every member of a data sharing group in
LRSN sequence, you can use this statement to locate the BSDSs and log
data sets needed. You must include the data set name of one BSDS in the
statement. DB2 can find the rest of the information from that one BSDS.

All members' logs and BSDS data sets must be available. If you use this
DD statement, you must also use the LRSN and RANGE parameters on
the OPEN request. The GROUP DD statement overrides any MxxBSDS
statements that are used.

(DB2 searches for the BSDS DD statement first, then the GROUP
statement, and then the MxxBSDS statements. If for some reason you want
to use a particular member's BSDS for your own processing, you must call
that DD statement something other than BSDS.)

 Appendix C. Reading Log Records X-97

| The DD statements must specify the log data sets in ascending order of log RBA
| (or LRSN) range. If both ARCHIVE and ACTIVEn DD statements are included, the
| first archive data set must contain the lowest log RBA or LRSN value. If the JCL
| specifies the data sets in a different order, the job terminates with an error return
| code with a GET request that tries to access the first record breaking the
| sequence. If the log ranges of the two data sets overlap, this is not considered an
| error; instead, the GET function skips over the duplicate data in the second data
| set and returns the next record. The distinction between out-of-order and overlap is
| as follows:

| � Out-of-order condition occurs when the log RBA or LRSN of the first record in
| a data set is greater than that of the first record in the following data set.

| � Overlap condition occurs when the out-of-order condition is not met but the
| log RBA or LRSN of the last record in a data set is greater than that of the first
| record in the following data set.

Table 135 (Page 2 of 2). JCL DD Statements for DB2 Stand-Alone Log Services

JCL DD
Statement Explanation

| MxxBSDS| Names the BSDS data set of a member whose log must participate in the
| read operation and whose BSDS is to be used to locate its log data sets.
| Use a separate MxxBSDS DD statement for each DB2 member. xx can be
| any 2 valid characters.

| Use these statements if logs from selected members of the data sharing
| group are required and the BSDSs of those members are available. These
| statements are ignored if you use the GROUP DD statement.

| For one MxxBSDS statement, you can use either RBA or LRSN values to
| specify a range. If you use more than one MxxBSDS statement, you must
| use the LRSN to specify the range.

| MyyARCHV| Names the archive log data sets of a member to be used as input. yy can
| be any 2 valid characters that do not duplicate any xx used in an
| MxxBSDS DD statement.

| Concatenate all required archived log data sets of a given member in time
| sequence under one DD statement. Use a separate MyyARCHV DD
| statement for each member. You must use this statement if the BSDS data
| set is unavailable or if you want only some of the log data sets from
| selected members of the group.

| If you name the BSDS of a member by a MxxBSDS DD statement, do not
| name the log of the same member by an MyyARCHV statement. If both
| MyyARCHV and MxxBSDS identify the same log data sets, the service
| request fails. MyyARCHV statements are ignored if you use the GROUP
| DD statement.

| MyyACTn| Names the active log data set of a member to be used as input. yy can be
| any 2 valid characters that do not duplicate any xx used in an MxxBSDS
| DD statement. Use the same characters that identify the MyyARCHV
| statement for the same member; do not use characters that identify the
| MyyARCHV statement for any other member. n is a number from 1 to 16.
| Assign values of n in the same way as for ACTIVEn DD statements.

| You can use this statement if the BSDS data sets are unavailable or if you
| want only some of the log data sets from selected members of the group.

| If you name the BSDS of a member by a MxxBSDS DD statement, do not
| name the log of the same member by an MyyACTn statement. MyyACTn
| statements are ignored if you use the GROUP DD statement.

X-98 Administration Guide

Gaps within the log range are permitted. A gap is created when one or more log
data sets containing part of the range to be processed are not available. This can
happen if the data set was not specified in the JCL or is not reflected in the BSDS.
When the gap is encountered, an exception return code value is set, and the next
complete record following the gap is returned.

Normally, the BSDS ddname will be supplied in the JCL, rather than a series of
ACTIVE ddnames or a concatenated set of data sets for the ARCHIVE ddname.
This is commonly referred to as “running in BSDS mode.”

| Data Sharing Users: Which Members Participate in the READ?
| The number of members whose logs participate in a particular read request is
| determined by:

| � The number of members in the group, if you use the GROUP DD statement
| � Otherwise, the number of different xxs and yys used in the Mxx and Myy type
| DD statements.

| For example, assume you need to read log records from members S1, S2, S3, S4,
| S5 and S6.

| S1 and S2 locate their log data sets by their BSDSs.
| S3 and S4 need both archive and active logs.
| S4 has two active log data sets.
| S5 needs only its archive log.
| S6 needs only one of its active logs.

| Then you need the following DD statements to specify the required log data sets:

| The order of the DD statements in the JCL stream is not important.

| MS1BSDS| MS2BSDS| MS3ARCHV| MS4ARCHV| MS5ARCHV| MS6ACT1
| | | MS3ACT1| MS4ACT1
| MS4ACT2

Registers and Return Codes
The request macro invoking these services can be used by reentrant programs.
The macro requires that register 13 point to an 18-word save area at invocation. In
addition, registers 0, 1, 14, and 15 are used as work and linkage registers. A return
code is passed back in register 15 at the completion of each request. When the
return code is nonzero, a reason code is placed in register 0. Return codes identify
a class of errors, while the reason code identifies a specific error condition of that
class. The stand-alone log return codes are shown in Table 136.

Table 136. Stand-Alone Log Return Codes

Return
Code Explanation

0 Successful completion.

4 Exception condition (for example, end of file), not an error. This return code is
not applicable for OPEN and CLOSE requests.

8 Unsuccessful completion due to improper user protocol.

12 Unsuccessful completion. Error encountered during processing of a valid
request.

 Appendix C. Reading Log Records X-99

The stand-alone log services invoke executable macros that can execute only in
24-bit addressing mode and reference data below the 16MB line. User-written
applications should be link-edited as AMODE(24), RMODE(24).

Stand-Alone Log OPEN Request
Issue this request when you want to initialize the stand-alone log services. The
syntax for the stand-alone log OPEN request is:

{label} DSNJSLR FUNC=OPEN

 ,LRSN=YES|NO

,DDNAME= address or (Reg. 2-12) optional

,RANGE= address or (Reg. 2-12) optional

,PMO=CI or RECORD

Keyword Explanation

FUNC=OPEN Requests the stand-alone log OPEN function.

LRSN Tells DB2 how to interpret the log range:

NO: the log range is specified as RBA values. This is the
default.
YES: the log range is specified as LRSN values.

DDNAME Specifies the address of an 8-byte area which contains the
ddname to be used as an alternate to a ddname of the BSDS
when the BSDS is opened, or a register that contains that address.

RANGE Specifies the address of a 12-byte area containing the log range to
be processed by subsequent GET requests against the request
block generated by this request, or a register that contains that
address.

If LRSN=NO, then the range is specified as RBA values. If
LRSN=YES, then the range is specified as LRSN values.

The first 6 bytes contain the low RBA or LRSN value. The first
complete log record with an RBA or LRSN value equal to or
greater than this value is the record accessed by the first log GET
request against the request block. The last 6 bytes contain the end
of the range or high RBA or LRSN value. An end-of-data condition
is returned when a GET request tries to access a record with a
starting RBA or LRSN value greater than this value. A value of 6
bytes of X'FF' indicates that the log is to be read until either the
end of the log (as specified by the BSDS) or the end of the data in
the last JCL-specified log data set is encountered.

| If BSDS, GROUP, or MxxBSDS DD statements are used for
| locating the log data sets to be read, the RANGE parameter is
| required. If the JCL determines the log data sets to be read, the
| RANGE parameter is optional.

PMO Specifies the processing mode. You can use OPEN to retrieve
either log records or control intervals in the same manner. Specify
PMO=CI or RECORD, then use GET to return the data you have
selected. The default is RECORD.

The rules remain the same regarding control intervals and the
range specified for the OPEN function. Control intervals must fall
within the range specified on the RANGE parameter.

X-100 Administration Guide

Output Explanation

GPR 1 General-purpose register 1 contains the address of a request block
on return from this request. This address must be used for
subsequent stand-alone log requests. When no more log GET
operations are required by the program, this request block should
be used by a FUNC=CLOSE request.

GPR 15 General-purpose register 15 contains a return code upon
completion of a request. For nonzero return codes, a
corresponding reason code is contained in register 0. The return
codes are listed and explained in Table 136 on page X-99.

GPR 0 General-purpose register 0 contains a reason code associated with
a nonzero return code in register 15.

See Section 4 of Messages and Codes for reason codes that are issued with the
return codes.

Log Control Interval Retrieval: You can use the PMO option to retrieve log
control intervals from archive log data sets. DSNJSLR also retrieves log control
intervals from the active log if the DB2 system is not active. During OPEN, if
DSNJSLR detects that the control interval range is not within the archive log range
available (for example, the range purged from BSDS), an error condition is
returned.

Specify CI and use GET to retrieve the control interval you have chosen. The rules
remain the same regarding control intervals and the range specified for the OPEN
function. Control intervals must fall within the range specified on the RANGE
parameter.

Log Control Interval Format: A field in the last 7 bytes of the control interval,
offset 4090, contains a 7-byte timestamp. This field reflects the time at which the
control interval was written to the active log data set. The timestamp is in store
clock (STCK) format and is the high order 7 bytes of the 8-byte store clock value.

Stand-Alone Log GET Request
This request returns a pointer to a buffer containing the next log record based on
position information in the request block.

A log record is available in the area pointed to by the request block until the next
GET request is issued. At that time, the record is no longer available to the
requesting program. If the program requires reference to a log record's content
after requesting a GET of the next record, the program must move the record into a
storage area that is allocated by the program.

The first GET request, after a FUNC=OPEN request that specified a RANGE
parameter, returns a pointer in the request feedback area. This points to the first
record with a log RBA value greater than or equal to the low log RBA value
specified by the RANGE parameter. If the RANGE parameter was not specified on
the FUNC=OPEN request, then the data to be read is determined by the JCL
specification of the data sets. In this case, a pointer to the first complete log record
in the data set that is specified by the ARCHIVE, or by ACTIVE1 if ARCHIVE is
omitted, is returned. The next GET request returns a pointer to the next record in
ascending log RBA order. Subsequent GET requests continue to move forward in
log RBA sequence until the function encounters the end of RANGE RBA value, the

 Appendix C. Reading Log Records X-101

end of the last data set specified by the JCL, or the end of the log as determined
by the bootstrap data set.

The syntax for the stand-alone log GET request is:

{label} DSNJSLR FUNC=GET

 ,RBR=(Reg. 1-12)

Keyword Explanation

FUNC=GET Requests the stand-alone log GET function.

RBR Specifies a register that contains the address of the request block
this request is to use. Although you can specify any register
between 1 and 12, using register 1 (RBR=(1)) avoids the
generation of an unnecessary load register and is therefore more
efficient. The pointer to the request block (that is passed in register
n of the RBR=(n) keyword) must be used by subsequent GET and
CLOSE function requests.

Output Explanation

GPR 15 General-purpose register 15 contains a return code upon
completion of a request. For nonzero return codes, a
corresponding reason code is contained in register 0. Return
codes are listed and explained in Table 136 on page X-99.

GPR 0 General-purpose register 0 contains a reason code associated with
a nonzero return code in register 15.

See Section 4 of Messages and Codes for reason codes that are issued with the
return codes.

Reason codes 00D10261 - 00D10268 reflect a damaged log. In each case, the
RBA of the record or segment in error is returned in the stand-alone feedback block
field (SLRFRBA). A damaged log can impair DB2 restart; special recovery
procedures are required for these circumstances. For recovery from these errors,
refer to “Chapter 4-7. Recovery Scenarios” on page 4-155.

Information about the GET request and its results is returned in the request
feedback area, starting at offset X'00'. If there is an error in the length of some
record, the control interval length is returned at offset X'0C' and the address of the
beginning of the control interval is returned at offset X'08'.

On return from this request, the first part of the request block contains the feedback
information that this function returns. Mapping macro DSNDSLRF defines the
feedback fields which are shown in Table 137. The information returned is status
information, a pointer to the log record, the length of the log record, and the 6-byte
log RBA value of the record.

Table 137 (Page 1 of 2). Stand-Alone Log GET Feedback Area Contents

Field Name
Hex
Offset

Length
(bytes) Field Contents

SLRFRC 00 2 Log request return code

SLRFINFO 02 2 Information code returned by dynamic allocation.
Refer to the MVS SPF job management publication
for information code descriptions

X-102 Administration Guide

Table 137 (Page 2 of 2). Stand-Alone Log GET Feedback Area Contents

Field Name
Hex
Offset

Length
(bytes) Field Contents

SLRFERCD 04 2 VSAM or dynamic allocation error code, if register
15 contains a nonzero value.

SLRFRG15 06 2 VSAM register 15 return code value.

SLRFFRAD 08 4 Address of area containing the log record or CI

SLRFRCLL 0C 2 Length of the log record or RBA

SLRFRBA 0E 6 Log RBA of the log record

SLRFDDNM 14 8 ddname of data set on which activity occurred

Stand-Alone Log CLOSE Request
This request deallocates any log data sets that were dynamically allocated by
previous processing. Also, all storage that was obtained by previous functions,
including the request block specified on this request, is freed.

The syntax for the stand-alone log CLOSE request is:

{label} DSNJSLR FUNC=CLOSE

 ,RBR=(Reg. 1-12)

Keyword Explanation

FUNC=CLOSE Requests the CLOSE function.

RBR Specifies a register that contains the address of the request block
that this function uses. Although you can specify any register
between 1 and 12, using register 1 (RBR=(1)) avoids the
generation of an unnecessary load register and is therefore more
efficient.

Output Explanation

GPR 15 Register 15 contains a return code upon completion of a request.
For nonzero return codes, a corresponding reason code is
contained in register 0. The return codes are listed and explained
in Table 136 on page X-99.

GPR 0 Register 0 contains a reason code that is associated with a
nonzero return code that is contained in register 15. The only
reason code used by the CLOSE function is 00D10030.

See Section 4 of Messages and Codes for reason code details.

Sample Application Program Using Stand-Alone Log Services
Figure 169 on page X-104 shows sample segments of an assembler program that
uses the three stand-alone log services (OPEN, GET, and CLOSE) to process one
log record.

 Appendix C. Reading Log Records X-103

TSTJSLR5 CSECT
...

OPENCALL EQU \

LA R2,NAME GET BSDS DDNAME ADDRESS

LA R3,RANGER GET ADDRESS OF RBA RANGE

 DSNJSLR FUNC=OPEN,DDNAME=(R2),RANGE=(R3)

LTR R15,R15 CHECK RETURN CODE FROM OPEN

BZ GETCALL OPEN OK, DO GET CALLS
...

\\\

\ HANDLE ERROR FROM OPEN FUNCTION AT THIS POINT \

\\\
...

 GETCALL EQU \

 DSNJSLR FUNC=GET,RBR=(R1)

C Rð,=X'ððD1ðð2ð' END OF RBA RANGE ?

BE CLOSE YES, DO CLEANUP

C Rð,=X'ððD1ðð21' RBA GAP DETECTED ?

BE GAPRTN HANDLE RBA GAP

LTR R15,R15 TEST RETURN CODE FROM GET

 BNZ ERROR
...
...

\\

\ PROCESS RETURNED LOG RECORD AT THIS POINT. IF LOG RECORD \

\ DATA MUST BE KEPT ACROSS CALLS, IT MUST BE MOVED TO A \

\ USER-PROVIDED AREA. \

\\

USING SLRF,1 BASE SLRF DSECT

L R8,SLRFFRAD GET LOG RECORD START ADDR

 LR R9,R8

AH R9,SLRFRCLL GET LOG RECORD END ADDRESS

 BCTR R9,Rð
...

CLOSE EQU \

 DSNJSLR FUNC=CLOSE,RBR=(1)
...

NAME DC C'DDBSDS'

RANGER DC X'ððððððððððððððððððð5FFFF'
...

 DSNDSLRB

 DSNDSLRF

 EJECT

Rð EQU ð

R1 EQU 1

R2 EQU 2
...

R15 EQU 15

 END

Figure 169. Excerpts from a Sample Program Using Stand-Alone Log Services

Reading Log Records with the Log Capture Exit
You can use the log capture exit to capture DB2 log data in real time. This
installation exit presents log data to a log capture exit routine when the data is
written to the DB2 active log. This exit is not intended to be used for general
purpose log auditing or tracking. The IFI interface (see “Reading Log Records with
IFI” on page X-92) is designed (and is more appropriate) for this purpose.

The log capture exit executes in an area of DB2 that is critical for performance. As
such, it is primarily intended as a mechanism to capture log data for recovery
purposes such as with the Remote Recovery Data Facility (RRDF) Release 2

X-104 Administration Guide

program offering. In addition, the log capture exit operates in a very restrictive MVS
environment, which severely limits its capabilities as a stand-alone routine.

To capture log records with this exit, you must first write an exit routine (or use the
one provided by the program offering mentioned above) that can be loaded and
called under the various processing conditions and restrictions required of this exit.
See “Log Capture Routines” on page X-68 and refer to the previous sections of this
appendix, “What the Log Contains” on page X-81 and “The Physical Structure of
the Log” on page X-86.

 Appendix C. Reading Log Records X-105

X-106 Administration Guide

Appendix D. Interpreting DB2 Trace Output

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page xi.

When you activate a DB2 trace, it produces trace records based on the parameters
you specified for the -START TRACE command. Each record identifies one or more
significant DB2 events. You can use DB2 Performance Monitor (DB2 PM), a
separately licensed program, to format, print, and interpret DB2 trace output.
However, if you do not have DB2 PM or you want to do your own analysis of the
trace output, you can use the information in this appendix and the trace field
descriptions which are shipped to you as part of the DB2 product. By examining a
DB2 trace record, you can determine the type of trace that produced the record
(statistics, accounting, audit, performance, monitor, or global) and the event the
record reports.

| Please note that where the trace output indicates a particular release level, you will
| see 'xx' to show that this information varies according to the actual release of DB2
| that you are using.

Processing Trace Records
Trace records can be written to SMF or GTF. Regardless of whether you write the
record to SMF or GTF, it contains up to four basic sections:

� An SMF or GTF writer header section
� A self-defining section
� A product section
� Zero or more data sections

Figure 170 shows the format of DB2 trace records.

Writer Header Section Self─Defining Section

 %───────────────────────────────────5 %──────────────────────────────5

┌─────────────────────────────────────┬──────────┬───────┬────┬───────┐

│ For SMF: record length, record type,│Pointer to│Pointer│....│Pointer│

│ timestamp, system and subsystem ID │ product │to data│ │to data│

│ For GTF: record length, timestamp, │ section │section│ │section│

│ and event ID │ │ #1 │ │ #n │

└─────────────────────────────────────┴────┬─────┴───┬───┴────┴───┬───┘

 ┌──────────────────────────────┼─────────┘ │

 │ └────────────────────┐ │

 │ │ │

 │ ┌───────────────────┴─┘

 6 6 6

─┬─────────────────┬────────────────┬────────────────┬───────────────┐

│ │ │ │ │

│ Data section │ │ Data section │ Product │

 │ #1 │ │ #n │ section │

│ │ │ │ │

─┴─────────────────┴────────────────┴────────────────┴───────────────┘

 %───5 %─────────────5

 Data Sections Product Section

Figure 170. General Format of Trace Records Written by DB2

 Copyright IBM Corp. 1982, 1997 X-107

The writer header section begins at the first byte of the record and continues for a
fixed length. (The GTF writer header is longer than the SMF writer header.)

The self-defining section follows the writer header section (both GTF and SMF) and
is further described in “Self-Defining Section” on page X-117. The first self-defining
section always points to a special data section called the product section. Among
other things, the product section contains an instrumentation facility component
identifier (IFCID). Descriptions of the records differ for each IFCID. For a list of
records, by IFCID, for each class of a trace, see the description of the START
TRACE command in Command Reference.

To interpret a record, find its description, by IFCID, in one of the following mapping
macros:

The product section also contains field QWHSNSDA, which indicates how many
self-defining data sections the record contains. You can use this field to keep from
trying to access data sections that do not exist. In trying to interpret the trace
records, remember that the various keywords you specified when you started the
trace determine whether any data is collected. If no data has been collected, field
QWHSNSDA shows a data length of zero.

IFCID Mapped by Macro

0001 DSNDQWST, subtype=0

0002 DSNDQWST, subtype=1

0003 DSNDQWAS

0004—0057 DSNDQW00

0058—0139 (except
0106)

DSNDQW01

0106 DSNDQWPZ

0140—196, 198 DSNDQW02

0201—0249 (except
0202, 230 and 239)

DSNDQW03

0202 DSNDQWS2, subtype=2

0230 DSNDQWST, subtype=3

0239 DSNDQWAS and
DSNDQWA1

| 0250—0314 DSNDQW04

SMF Writer Header Section
In SMF, writer headers for statistics records are mapped by macro DSNDQWST,
for accounting records by DSNDQWAS, and for performance, audit, and monitor
records by DSNDQWSP. When these macros are assembled, they include the
other macros necessary to map the remainder of the trace records sent to SMF.

The SMF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the header fields. The fields are
described in Table 138 on page X-109. Figure 171 on page X-109 is a sample of
the first record of DB2 performance trace output sent to SMF.

X-108 Administration Guide

Table 138. Contents of SMF Writer Header Section

Hex
Offset

Macro
DSNDQWST,
Statistics
Field

Macro
DSNDQWAS,
Accounting
Field

Macro
DSNDQWSP,
Monitor, Audit, &
Performance
Field

Description

0 SM100LEN SM101LEN SM102LEN Total length of SMF record

2 SM100SGD SM101SGD SM102SGD Segment descriptor

4 SM100FLG SM101FLG SM102FLG System indicator

5 SM100RTY SM101RTY SM102RTY SMF record type

Statistics=100(dec),
Accounting=101(dec),
Monitor=102(dec), Audit=102(dec),
Performance=102(dec)

6 SM100TME SM101TME SM102TME SMF record timestamp, time portion

A SM100DTE SM101DTE SM102DTE SMF record timestamp, date portion

E SM100SID SM101SID SM102SID System ID

12 SM100SSI SM101SSI SM102SSI Subsystem ID

16 SM100STF SM101STF SM102STF Reserved

17 SM100RI SM101RI SM102RI Reserved

18 SM100BUF SM101BUF SM102BUF Reserved

1C SM100END SM101END SM102END End of SMF header

 .A/ .B/ .C/ .D/ .E/ .F/ .G/.H/
 ðððððð ð124ðððð ðE66ðð3ð 9EECðð93 ð18FF3Fð F9FðE2E2 D6D7ðððð ðððððððð ðððððð8C

.I/ .J/ .K/ .L/ .M/ .N/
 ðððð2ð ðð98ððð1 ðððððð2C ðð5Dððð1 ðð55ðð53 4DE2E3C1 D9E34ðE3 D9C1C3C5 4ð4DE2E3

 ðððð4ð C1E34ð5D C3D3C1E2 E24ð4D5C 4ð5DD9D4 C9C44ð4D 5C4ð5DD7 D3C1D54ð 4D5C4ð5D

 ðððð6ð C1E4E3C8 C9C44ð4D 5C4ð5DC9 C6C3C9C4 4ð4D5C4ð 5DC2E4C6 E2C9E9C5 4ð4D5C4ð

 .O/ .P/ .Q/.R/
 ðððð8ð 5Dðððððð ð1ððð1ð1 ð1ðððððð ðð4Cð11ð ððð4ð2xx ððB3AB78 E2E2D6D7 A6E9BACB

 .S/
 ððððAð F6485Eð2 ððððððð3 ðððððð21 ððððððð1 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2

 ððððCð C4C2F2D5 C5E34ð4ð D3E4D5C4 Fð4ð4ð4ð A6E9BACB F457ððð1 ðð4Cð2ðð E2E8E2D6

 ððððEð D7D94ð4ð FðF2F34B C7C3E2C3 D5F6FðF2 E2E2D6D7 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð

 ððð1ðð E2E8E2D6 D7D94ð4ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð12ð ðððððððð.T/

Figure 171. DB2 trace output sent to SMF (printed with DFSERA10 print program of IMS)

Key to Figure 171 Description

.A/0124 Record length (field SM102LEN);
beginning of SMF writer header
section

.B/66 Record type (field SM102RTY)

.C/0030 9EEC Time (field SM102TME)

.D/0093 018F Date (field SM102DTE)

.E/F3F0 F9F0 System ID (field SM102SID)

.F/E2E2 D6D7 Subsystem ID (field SM102SSI)

.G/ End of SMF writer header section

 Appendix D. Interpreting DB2 Trace Output X-109

Key to Figure 171 on page X-109 Description

.H/0000008C Offset to product section; beginning
of self-defining section

.I/0098 Length of product section

.J/0001 Number of times the product section
is repeated

.K/0000002C Offset to first (in this case, only) data
section

.L/005D Length of data section

.M/0001 Number of times the data section is
repeated

.N/00550053 Beginning of data section

.O/ Beginning of product section

.P/0004 IFCID (field QWHSIID)

.Q/02 Number of self-defining sections in
the record (field QWHSNSDA)

| .R/xx Release indicator number (field
QWHSRN); this varies according to
the actual level of DB2 you are using.

.S/E2C1D5E3... Local location name (16 bytes)

.T/ End of first record

GTF Writer Header Section
The length and content of the writer header section differs between SMF and GTF
records, but the other sections of the records are the same for SMF and GTF.

The GTF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the fields of the header. The writer
headers for trace records sent to GTF are always mapped by macro DSNDQWGT.
The fields are described in Table 139.

Table 139 (Page 1 of 2). Contents of GTF Writer Header Section

Offset

Macro
DSNDQWGT
Field

Description

0 QWGTLEN Length of Record

2 Reserved

4 QWGTAID Application identifier

5 QWGTFID Format ID

6 QWGTTIME Timestamp; you must specify TIME=YES when you start
GTF.

14 QWGTEID Event ID: X'EFB9'

16 QWGTASCB ASCB address

20 QWGTJOBN Job name

28 QWGTHDRE Extension to header

28 QWGTDLEN Length of data section

30 QWGTDSCC Segment control code

0=Complete 2=Last 1=First 3=Middle

X-110 Administration Guide

Figure 172 on page X-112 contains trace output sent to GTF.

Table 139 (Page 2 of 2). Contents of GTF Writer Header Section

Offset

Macro
DSNDQWGT
Field

Description

31 QWGTDZZ2 Reserved

32 QWGTSSID Subsystem ID

36 QWGTWSEQ Sequence number

40 QWGTEND End of GTF header

 Appendix D. Interpreting DB2 Trace Output X-111

DFSERA1ð - PRINT PROGRAM

 ðððððð ðð1Aðððð ððð1FFFF 94B6A6E9 BD6636FA 5Cð21ððð ððð1ðððð ðððð

 .A/ .B/ .C/ .D/ .E/ .F/
 ðððððð ð11Cðððð FFððA6E9 C33E28F7 DDð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð1ððð1ðð

 .G/ .H/ .I/ .J/ .K/ .L/ .M/ .N/ .O/
 ðððð2ð E2E2D6D7 ððððððð1 ððððððAð ðð98ððð1 ðððððð38 ðð68ððð1 ðð6ððð5E 4DE2E3C1

 ðððð4ð D9E34ðE3 D9C1C3C5 4ð4DE2E3 C1E34ð5D C3D3C1E2 E24ð4D5C 4ð5DD9D4 C9C44ð4D

 ðððð6ð 5C4ð5DC4 C5E2E34ð 4DC7E3C6 4ð5DD7D3 C1D54ð4D 5C4ð5DC1 E4E3C8C9 C44ð4D5C

 ðððð8ð 4ð5DC9C6 C3C9C44ð 4D5C4ð5D C2E4C6E2 C9E9C54ð 4D5C4ð5D FFFFFFFF ððð4ð1ð1

 .P/ .Q/ .R/.S/
 ððððAð ðð4Cð11ð ððð4ð2xx ððB3ADB8 E2E2D6D7 A6E9C33E 28EF44ð3 ððððððð6 ððððððð1

 .T/
 ððððCð ððððððð1 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34ð4ð D3E4D5C4

 ððððEð Fð4ð4ð4ð A6E9C33E 271Fððð1 ðð4Cð2ðð E2E8E2D6 D7D94ð4ð FðF2F34B C7C3E2C3

 ððð1ðð D5F6FðF2 E2E2D6D7 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð E2E8E2D6 D7D94ð4ð

 .U/
 ðððððð ðð44ðððð FFððA6E9 C33E29ð1 13ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ðð28ð2ðð

 ðððð2ð E2E2D6D7 ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ðððð4ð ðððððððð.V/
 .W/ .X/
 ðððððð ð11Cðððð FFððA6E9 C33E2948 E2ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð1ððð1ðð

 ðððð2ð E2E2D6D7 ððððððð2 ððððð6D8 ðð4Cððð1 ðððððð9ð ðð1Cððð4 ððððð1ðð ðð1CðððE

 ðððð4ð ððððð288 ðð18ðððE ððððð59ð ðð4ðððð1 ððððð5Dð ðð74ððð1 ððððð48ð ðð44ððð1

 ðððð6ð ððððð3D8 ðð8ðððð1 ððððð458 ðð28ððð1 ððððð644 ðð48ððð1 ððððð4E4 ððACððð1

 ðððð8ð ððððð68C ðð4Cððð1 ððððð4C4 ðð2ðððð1 D4E2E3D9 ððððððð1 762236F2 ðððððððð

 ððððAð 59F489ðð ðð1Eðð1E ððF914ðð C4C2D4F1 ððððððð1 1A789573 ðððððððð 958261ðð

 ððððCð ðð1Fðð1F ððF9ðEðð C4C9E2E3 ðððððððð 3413C6ðE ðððððððð 1C4DðAðð ðð22ðð22

 ððððEð ððF9ð48ð C9D9D3D4 ðððððððð ð629E2BC ðððððððð 145CEððð ðð1Dðð1D ððF916ðð

 ððð1ðð E2D4C64ð ðððððð46 ðððððð46 ðððððððð ðððððððð ðððððððð ðððððððð

 .Y/
 ðððððð ð11Cðððð FFððA6E9 C33E294B 16ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð1ððð3ðð

 ðððð2ð E2E2D6D7 ððððððð2 D9C5E24ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ðððð4ð ðððððððð C7E3C64ð ððððððð1 ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð

 ðððð6ð E2D9E54ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð E2D9F14ð

 ðððð8ð ððððð156 ððððððD2 ðððððð36 ðððððð36 ðððððððð ððððððð4 E2D9F24ð ðððððððð

 ððððAð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F14ð ðððððððð ðððððððð

 ððððCð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F24ð ðððððððð ðððððððð ðððððððð

 ððððEð ðððððððð ðððððððð ðððððððð D6D7F34ð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð1ðð ðððððððð ðððððððð D6D7F44ð ðððððððð ðððððððð ðððððððð ðððððððð

 .Y/
 ðððððð ð11Cðððð FFððA6E9 C33E294D 3Cð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð1ððð3ðð

 ðððð2ð E2E2D6D7 ððððððð2 ðððððððð ðððððððð D6D7F54ð ðððððððð ðððððððð ðððððððð

 ðððð4ð ðððððððð ðððððððð ðððððððð D6D7F64ð ðððððððð ðððððððð ðððððððð ðððððððð

 ðððð6ð ðððððððð ðððððððð D6D7F74ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ðððð8ð ðððððððð D6D7F84ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððððAð ððð1ðððð ðððððððE ðððððððD ðððððððð ðððððððð ðððððððð ððð2ðððð ðððððððD

 ððððCð ðððððððD ðððððððð ðððððððð ðððððððð ððð3ðððð ððððððð3 ððððððð3 ðððððððð

 ððððEð ðððððððð ðððððððð ððð4ðððð ððððððð6 ððððððð6 ðððððððð ðððððððð ðððððððð

 ððð1ðð ððð5ðððð ððððððð5 ððððððð5 ðððððððð ðððððððð ðððððððð ðð6Aðððð

 .Y/
 ðððððð ð11Cðððð FFððA6E9 C33E294F 61ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð1ððð3ðð

 ðððð2ð E2E2D6D7 ððððððð2 ððððððð5 ððððððð5 ðððððððð ðððððððð ðððððððð ðð8Cðððð

 ðððð4ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðð8Dðððð ðððððððð ðððððððð

...

 .Z/
 ðððððð ðð78ðððð FFððA6E9 C33E2957 D1ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ðð5Cð2ðð

 .AA/
 ðððð2ð E2E2D6D7 ððððððð2 ðððððððð ðð4Cð11A ððð1ðD31 ð2523ð38 E2E2D6D7 A6E9C33E

 ðððð4ð 29469Að3 ðððððððE ððððððð2 ððððððð1 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2

 ðððð6ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð A6E9B6B4 9A2Bððð1

Figure 172. DB2 trace output sent to GTF (spanned records printed with DFSERA10 print program of IMS)

Key to Figure 172 Description

.A/011C Record length (field QWGTLEN);
beginning of GTF writer header
section

X-112 Administration Guide

GTF records are blocked to 256 bytes. Because some of the trace records exceed
the GTF limit of 256 bytes, they have been blocked by DB2. Use the following logic
to process GTF records:

Key to Figure 172 on page X-112 Description

.B/A6E9 C33E28F7 DD03 Timestamp (field QWGTTIME)

.C/EFB9 Event ID (field QWGTEID)

.D/E2E2D6D7 D4E2E3D9 Job name (field QWGTJOBN)

.E/0100 Length of data section

.F/01 Segment control code (01 = first
segment of the first record)

.G/E2E2D6D7 Subsystem ID (field QWGTSSID)

.H/ End of GTF writer header section

.I/000000A0 Offset to product section; beginning
of self-defining section

.J/0098 Length of product section

.K/0001 Number of times the product
section is repeated

.L/00000038 Offset to first (in this case, only)
data section

.M/0068 Length of data section

.N/0001 Number of times the data section is
repeated

.O/0060005E Beginning of data section

.P/004C0110... Beginning of product section

.Q/0004 IFCID (field QWHSIID)

.R/02 Number of self-defining sections in
the record (field QWHSNSDA)

| .S/xx Release indicator number (field
QWHSRN); this varies according to
the actual release level of DB2 you
are using.

.T/E2C1D5E3... Local location name (16 bytes)

.U/02 Last segment of the first record

.V/ End of first record

.W/ Beginning of GTF header for new
record

.X/01 First segment of a spanned record
(QWGTDSCC = QWGTDS01)

.Y/03 Middle segment of a spanned
record (QWGTDSCC =
QWGTDS03)

.Z/02 Last segment of a spanned record
(QWGTDSCC = QWGTDS02)

.AA/004C Beginning of product section

 Appendix D. Interpreting DB2 Trace Output X-113

1. Is the GTF event ID of the record equal to the DB2 ID (that is, does QWGTEID
= X'xFB9')?

If it is not equal, get another record.

If it is equal, continue processing.

2. Is the record spanned?

If it is spanned (that is, QWGTDSCC ¬ = QWGTDS00), test to determine
whether it is the first, middle, or last segment of the spanned record.

a. If it is the first segment (that is, QWGTDSCC = QWGTDS01), save the
entire record including the sequence number (QWGTWSEQ) and the
subsystem ID (QWGTSSID).

b. If it is a middle segment (that is, QWGTDSCC = QWGTDS03), find the first
segment matching the sequence number (QWGTSEQ) and on the
subsystem ID (QWTGSSID). Then move the data portion immediately after
the GTF header to the end of the previous segment.

c. If it is the last segment (that is, QWGTDSCC = QWGTDS02), find the first
segment matching the sequence number (QWGTSEQ) and on the
subsystem ID (QWTGSSID). Then move the data portion immediately after
the GTF header to the end of the previous record.

Now process the completed record.

If it is not spanned, process the record.

Figure 173 on page X-115 shows the same output after it has been processed by
a user-written routine, which follows the logic outlined above.

X-114 Administration Guide

 ðððððð ð138ðððð FFððA6E9 DCA7E275 12ð4EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð11Cðððð

 ðððð2ð E2E2D6D7 ðððððð19 ððððððAð ðð98ððð1 ðððððð38 ðð68ððð1 ðð6ððð5E 4DE2E3C1

 ðððð4ð D9E34ðE3 D9C1C3C5 4ð4DE2E3 C1E34ð5D C3D3C1E2 E24ð4D5C 4ð5DD9D4 C9C44ð4D

 ðððð6ð 5C4ð5DC4 C5E2E34ð 4DC7E3C6 4ð5DD7D3 C1D54ð4D 5C4ð5DC1 E4E3C8C9 C44ð4D5C

 ðððð8ð 4ð5DC9C6 C3C9C44ð 4D5C4ð5D C2E4C6E2 C9E9C54ð 4D5C4ð5D ððððððð1 ððð4ð1ð1

 ððððAð ðð4Cð11ð ððð4ð2xx ððB3ADB8 E2E2D6D7 ðð93ð18F 1122331ð ðððððððC ðððððð19

 ððððCð ððððððð1 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34ð4ð D3E4D5C4

 ððððEð Fð4ð4ð4ð A6E9DCA7 DF96ððð1 ðð4Cð2ðð E2E8E2D6 D7D94ð4ð FðF2F34B C7C3E2C3

 ððð1ðð D5F6FðF2 E2E2D6D7 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð E2E8E2D6 D7D94ð4ð ðððððððð

 ððð12ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .A/ .B/
 ðððððð ð724ðððð FFððA6E9 DCA8ð6ðC 28ð3EFB9 ððF914ðð E2E2D6D7 D4E2E3D9 ð7ð8ðððð

 .C/.D/ .E/
 ðððð2ð E2E2D6D7 ðððððð1A ððððð6D8 ðð4Cððð1 ðððððð9ð ðð1Cððð4 ððððð1ðð ðð1CðððE

 ðððð4ð ððððð288 ðð18ðððE ððððð59ð ðð4ðððð1 ððððð5Dð ðð74ððð1 ððððð48ð ðð44ððð1

 ðððð6ð ððððð3D8 ðð8ðððð1 ððððð458 ðð28ððð1 ððððð644 ðð48ððð1 ððððð4E4 ððACððð1

 .F/
 ðððð8ð ððððð68C ðð4Cððð1 ððððð4C4 ðð2ðððð1 D4E2E3D9 ððððððð3 27BCFDBC ðððððððð

 ððððAð ABððð3ðð ðð1Eðð1E ððF914ðð C4C2D4F1 ððððððð1 1DE8AEE2 ðððððððð DBðCB2ðð

 ððððCð ðð1Fðð1F ððF9ðEðð C4C9E2E3 ðððððððð 4928674B ðððððððð 217F6ððð ðð22ðð22

 ððððEð ððF9ð48ð C9D9D3D4 ðððððððð ð7165F79 ðððððððð 3C2EF5ðð ðð1Dðð1D ððF916ðð

 ððð1ðð E2D4C64ð ðððððð4D ðððððð4D ðððððððð ðððððððð ðððððððð ðððððððð D9C5E24ð

 ððð12ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð C7E3C64ð ðððððð19

 ððð14ð ðððððð19 ðððððððð ðððððððð ðððððððð ðððððððð E2D9E54ð ðððððððð ðððððððð

 ððð16ð ðððððððð ðððððððð ðððððððð ðððððððð E2D9F14ð ððððð156 ððððððD2 ðððððð36

 ððð18ð ðððððð36 ðððððððð ððððððð4 E2D9F24ð ðððððð92 ððððððð1 ðððððð91 ðððððð91

 ððð1Að ðððððððð ðððððððC D6D7F14ð ððððððð2 ððððððð1 ððððððð1 ðððððððð ððð1ðððð

 ððð1Cð 2ðððððð4 D6D7F24ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð1Eð D6D7F34ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F44ð

 ððð2ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F54ð ðððððððð

 ððð22ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F64ð ðððððððð ðððððððð

 ððð24ð ðððððððð ðððððððð ðððððððð ðððððððð D6D7F74ð ðððððððð ðððððððð ðððððððð

 ððð26ð ðððððððð ðððððððð ðððððððð D6D7F84ð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð28ð ðððððððð ðððððððð ððð1ðððð ðððððð42 ðððððð11 ðððððð3ð ðððððððð ðððððððð

 ððð2Að ððð2ðððð ðððððð41 ðððððð11 ðððððð3ð ðððððððð ðððððððð ððð3ðððð ððððððð3

 ððð2Cð ððððððð3 ðððððððð ðððððððð ðððððððð ððð4ðððð ðððððððC ðððððððC ðððððððð

 ððð2Eð ðððððððð ðððððððð ððð5ðððð ðððððððB ðððððððA ððððððð1 ðððððððð ðððððððð

 ððð3ðð ðð6Aðððð ðððððððC ðððððððB ððððððð1 ðððððððð ðððððððð ðð8Cðððð ðððððððð

 ððð32ð ðððððððð ðððððððð ðððððððð ðððððððð ðð8Dðððð ðððððððð ðððððððð ðððððððð

 ððð34ð ðððððððð ðððððððð ðð8Eðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

Figure 173 (Part 1 of 2). DB2 trace output sent to GTF (assembled with a user-written routine and printed with
DFSERA10 print program of IMS)

 Appendix D. Interpreting DB2 Trace Output X-115

 ððð36ð ðð8Fðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðð9ððððð ðððððððð

 ððð38ð ðððððððð ðððððððð ðððððððð ðððððððð ðð91ðððð ðððððððð ðððððððð ðððððððð

 ððð3Að ðððððððð ðððððððð ðð92ðððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð3Cð ððCAðððð ðððððð41 ðððððð11 ðððððð3ð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð3Eð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð4ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð42ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð44ð ðððððððð ðððððððð ðððððððð ððððððð4 ðððððððð ðððððððð ððððð5D4 ððððð13ð

 ððð46ð ðððððððD ðððððððA ðððððð29 ððððððð9 ððððððC3 ðððððððð ðððððððð ðððððððð

 ððð48ð ððððððð1 ðððððððC ðððððððð ð4A2974ð ðððððððð ðððððððð ððððððð1 ðððððððð

 ððð4Að ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð4Cð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð4Eð ðððððððð E2C1D56D D1D6E2C5 4ð4ð4ð4ð 4ð4ð4ð4ð ðððððððð ððððððð2 ððððððð3

 ððð5ðð ðððððððð ððððð4A8 ððððð5C7 ðððððððð ððððððð1 ððððððð3 ððððððð3 ðððððððð

 ððð52ð ððððððð1 ðððððððð ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð54ð ððððððð2 ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð56ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð58ð ðððððððð ðððððððð ððððððð2 ðððððððð ððððððð3 ðððððððð ððððððð3 ððððððð6

 ððð5Að ðððððððð ðððððððð ðððððððð ðððððððð ððððððð5 ððððððð3 ðððððððð ðððððððð

 ððð5Cð ðððððððð ððððððð3 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð5Eð ðððððððð ðððððððð ðððððððC ððððððð1 ðððððððð ððððððð7 ðððððððð ðððððððð

 ððð6ðð ðððððððð ðððððððð ðððððððð ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð

 ððð62ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð64ð ðððððððð ðð3Cðð48 D8E2E2E3 ðððððð35 ððððððð6 ððððððð2 ðððððð9E ðððððð2B

 ððð66ð ðððððð78 ðððððð42 ðððððð48 ððððððEE ðððððð1B ðððððð7B ðððððð4B ðððððððð

 ððð68ð ðððððððð ðððððððð ðððððððð ðð93ðð4C D8D1E2E3 ðððððððð ððððððFC ðððððððE

 ððð6Að ðððððððð ðððððððð ðððððð9D ðððððððð ðððððððð ðððððð16 ðððððððF ðððððð18

 .G/
 ððð6Cð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðð4Cð11A ððð1ðDxx

 ððð6Eð ð2523ð38 E2E2D6D7 ðð93ð18F 11223324 ðððððð42 ðððððð1A ððððððð1 E2C1D5E3

 ððð7ðð C16DE3C5 D9C5E2C1 6DD3C1C2 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð A6E9B6B4

 ððð72ð 9A2Bððð1.H/

Figure 173 (Part 2 of 2). DB2 trace output sent to GTF (assembled with a user-written routine and printed with
DFSERA10 print program of IMS)

Key to Figure 173 on page X-115 Description

.A/0724 Length of assembled record; beginning of
GTF writer header section of second record
(field QWGTLEN)

.B/EFB9 GTF event ID (field QWGTEID)

.C/ End of GTF writer header section of second
record

.D/000006D8 Offset to product section

.E/00000090 Offset to first data section

.F/000004C4 Offset to last data section

.G/004C011A Beginning of product section

.H/ End of second record

X-116 Administration Guide

 Self-Defining Section
The self-defining section following the writer header contains pointers that enable
you to find the product and data sections, which contain the actual trace data.

Each “pointer” is a descriptor containing 3 fields, which are:

1. A fullword containing the offset from the beginning of the record to the data
section.

2. A halfword containing the length of each item in the data section.

3. A halfword containing the number of times the data section is repeated. If that
field contains “0,” the data section is not in the record. If it contains a number
greater than 1, multiple data items are stored contiguously within that data
section. To find the second data item, add the length of the first data item to
the address of the first data item (and so forth). Multiple data items within a
specific data section always have the same length and format.

Pointers occur in a fixed order, and their meanings are determined by the IFCID of
the record. Different sets of pointers can occur, and each set is described by a
separate DSECT. Therefore, to examine the pointers, you must first establish
addressability using the DSECT that provides the appropriate description of the
self-defining section. To do this:

1. Compute the address of the self-defining section.

The self-defining section begins at label “SM100END” for statistics records,
“SM101END” for accounting records, and “SM102END” for performance and
audit records. It does not matter which mapping DSECT you use, because the
length of the SMF writer header is always the same.

For GTF, use QWGTEND.

2. Determine the IFCID of the record.

Use the first field in the self-defining section; it contains the offset from the
beginning of the record to the product section. The product section contains the
IFCID.

The product section is mapped by DSNDQWHS; the IFCID is mapped by
QWHSIID.

For statistics records having IFCID 0001, establish addressability using label
“QWS0”; for statistics records having IFCID 0002, establish addressability using
label “QWS1.” For accounting records, establish addressability using label
“QWA0.” For performance and audit records, establish addressability using
label “QWT0.”

After establishing addressability using the appropriate DSECT, use the pointers in
the self-defining section to locate the record's data sections.

To help make your applications independent of possible future releases of DB2,
always use the length values contained in the self-defining section rather than
symbolic lengths that you may find in the macro expansions.

The relationship between the contents of the self-defining section “pointers” and the
items in a data section is shown in Figure 174 on page X-118.

 Appendix D. Interpreting DB2 Trace Output X-117

"Pointer" to Data Section #n

 %──5

 ┌────────────5┌──────────────┬───────────────┬───────────────┐

 │ │Offset from │Length of │Number of │

│ │start of the │each item in │items (m) in │

│ │record to data│data section #n│data section #n│

│ │section #n │ │ │

 │ ┌─5└───────┬──────┴────────┬──────┴────────┬──────┘

│ │ │ │ │

│ │ └──────────┐ │ │

 │ │ │ └──────┐ │

 │ │ │ │ └──────┐

 │ │ │ │ │

 │ │ 6 %───┴───5 6

 ─────┬──────────┬───────┬───────┬─────┬───────┬───────┬───────┬───────┐

│"Pointer" │ Data │ Data │ │Item #1│Item #2│ │Item #m│

.... │ to data │section│section│ ... ├───────┴───────┴───────┴───────┤

│section #n│ #1 │ #2 │ │ Data section #n │

 ─────┴──────────┴───────┴───────┴─────┴───────────────────────────────┘

─────────────────5 %───5

 Self─Defining Data Sections

 Section

Figure 174. Relationship Between Self-Defining Section and Data Sections

 Product Section
The product section for all record types contains the standard header. The other
headers—correlation, CPU, distributed, and data sharing data—may also be
present.

Table 140 (Page 1 of 2). Contents of Product Section Standard Header

Hex
Offset

Macro
DSNDQWHS
Field

Description

0 QWHSLEN Length of standard header

2 QWHSTYP Header type

3 QWHSRMID RMID

4 QWHSIID IFCID

6 QWHSRELN Release number section

6 QWHSNSDA Number of self-defining sections

7 QWHSRN DB2 release identifier

8 QWHSACE ACE address

C QWHSSSID Subsystem ID

10 QWHSSTCK Timestamp—STORE CLOCK value assigned by DB2

18 QWHSISEQ IFCID sequence number

1C QWHSWSEQ Destination sequence number

20 QWHSMTN Active trace number mask

24 QWHSLOCN Local location Name

34 QWHSLWID Logical unit of work ID

34 QWHSNID Network ID

3C QWHSLUNM LU name

X-118 Administration Guide

Table 140 (Page 2 of 2). Contents of Product Section Standard Header

Hex
Offset

Macro
DSNDQWHS
Field

Description

44 QWHSLUUV Uniqueness value

4A QWHSLUCC Commit count

4C QWHSEND End of product section standard header

Table 141. Contents of Product Section Correlation Header

Hex
Offset

Macro
DSNDQWHC
Field

Description

0 QWHCLEN Length of correlation header

2 QWHCTYP Header type

3 Reserved

4 QWHCAID Authorization ID

C QWHCCV Correlation ID

18 QWHCCN Connection name

20 QWHCPLAN Plan name

28 QWHCOPID Original operator ID

30 QWHCATYPE The type of system that is connecting

34 QWHCTOKN Trace accounting token field

4A Reserved

4C# QWHCEUID# End user's user ID at the user's workstation

5C# QWHCEUTX# End user's transaction name

7C# QWHCEUWN# End user's workstation name

8E# QWHCEND# End of product section correlation header

Table 142. Contents of CPU Header

Hex
Offset

Macro
DSNDQWHU
Field

Description

0 QWHULEN Length of CPU header

2 QWHUTYP Header type

3 Reserved

4 QWHUCPU CPU time of MVS TCB or SRB dispatched

C QWHUCNT Count field reserved

E QWHUEND End of header

Table 143 (Page 1 of 2). Contents of Distributed Data Header

Hex
Offset

Macro
DSNDQWHD
Field

Description

0 QWHDLEN Length of the distributed header

2 QWHDTYP Header type

3 Reserved

4 QWHDRQNM Requester location name

14 QWHDTSTP Timestamp for DBAT trace record

 Appendix D. Interpreting DB2 Trace Output X-119

Figure 175 on page X-121 is an actual sample of accounting trace for a distributed
transaction sent to SMF.

Table 143 (Page 2 of 2). Contents of Distributed Data Header

Hex
Offset

Macro
DSNDQWHD
Field

Description

1C QWHDSVNM EXCSAT SRVNAM parameter

2C QWHDPRID ACCRDB PRDID parameter

30 QWHDEND End of distributed header

Table 144. Contents of Trace Header

Hex
Offset

Macro
DSNDQWHT
Field

Description

0 QWHTLEN Length of the trace header

2 QWHTTYP Header type

3 Reserved

4 QWHTTID Event ID

6 QWHTTAG ID specified on DSNWTRC macro

7 QWHTFUNC Resource manager function code. Default is 0.

8 QWHTEB Execution block address

C QWHTPASI Prior address space ID - EPAR

E QWHTR14A Register 14 address space ID

10 QWHTR14 Contents of register 14

14 QWHTR15 Contents of register 15

18 QWHTR0 Contents of register 0

1C QWHTR1 Contents of register 1

20 QWHTEXU Address of MVS execution unit

24 QWHTDIM Number of data items

26 QWHTHASI Home address space ID

28 QWHTDATA Address of the data

2C QWHTFLAG Flags in the trace list

2E QWHTDATL Length of the data list

30 QWHTEND End of header

Table 145. Contents of Data Sharing Header

Hex
Offset

Macro
DSNDQWHA
Field

Description

0 QWHALEN Length of the data sharing header

2 QWHATYP Header type

3 Reserved

4 QWHAMEMN DB2 member name

C QWHADSGN DB2 data sharing group name

14 QWHAEND End of header

X-120 Administration Guide

 .A/
 ðððððð ð65Cðððð ðE65ðð3ð C8ABðð93 ð18FF3Fð F9FðE2E2 D6D7ðððð ðððððððð ððððð59ð

.B/ .C/ .D/ .E/ .F/ .G/ .H/ .I/
 ðððð2ð ððCCððð1 ðððððð64 ððE4ððð1 ððððð46C ððE4ððð1 ððððð55ð ðð4ðððð1 ððððð414

 .J/ .K/ .L/ .M/
 ðððð4ð ðð58ððð1 ððððð148 ððDCððð1 ððððð224 ð1ððððð1 ðððððððð ðððððððð ððððð324

 .N/
 ðððð6ð ððFðððð1 A6E9BB19 BDF7ACð4 A6E9BB31 D42217ð3 ðððððððð ððACCFðð ðððððððð

 ðððð8ð ð65826ðð ðððððððð 12C41ððð ðððððððð 19EA6Aðð ðððððððC 4ð4ð4ð4ð 4ð4ð4ð4ð

 ððððAð ðððððððð ðððððððð ððððððð1 ðððððððð ðððððð13 BC47FFð9 ðððððððð ð51Dð7ðð

 ððððCð ðððððððð ð5ð9B3ðð ðððððððð ðððððððð ðððððððð ðððBD2ðð ððððððð8 ðððððððð

 ððððEð ððððððð2 6ADF15ð3 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð1ðð ððððððð2 ððððððð2 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð12ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .O/
 ððð14ð ðððððððð ððð3ððð1 E2C1D56D D1D6E2C5 4ð4ð4ð4ð 4ð4ð4ð4ð ðððððððð ððððððð2

 ððð16ð ððððððð3 ðððððððð ððððð4A8 ððððð5C7 ðððððððð ððððððð1 ððððððð3 ððððððð3

 ððð18ð ðððððððð ððððððð1 ðððððððð ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð

 ððð1Að ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ððððððð2

 ððð1Cð ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð 8ðððð113 ðððððððð ðððððððð

 ððð1Eð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð2ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ððððððð2 ðððððððð C4E2D5Fð

 .P/
 ððð22ð F3FðF1Fð 54C4E2D5 FðF3FðF1 FðE2C1D5 6DD1D6E2 C54ð4ð4ð 4ð4ð4ð4ð 4ðC4C2F2

 ððð24ð D5C5E34ð 4ðD3E4D5 C4F14ð4ð 4ðE3E2D6 4ð4ð4ð4ð 4ðC2C1E3 C3C84ð4ð 4ðE2E8E2

 ððð26ð C1C4D44ð 4ð4ð4ð4ð 4ðE2E8E2 C1C4D44ð 4ðC4E2D5 C5E2D7D9 D9ðððððð ðððððððð

 ððð28ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð2Að ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð2Cð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð2Eð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð3ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .Q/
 ððð32ð ðððððððð ððð1ðð3A 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð

 ððð34ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ðC4E2 D5C5E2D4 F6F84ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 14D7D8F5

 ððð36ð 1525F5F4 ððððððð8 A6E9BB2F 4A9646ðð A6E9BB3ð 7E95B7ð4 ðððððð13 BC41EFð9

 ððð38ð ðððððððð ð58EA2ðð ðððððððð ð6ðDDBðð ðððððððð ð516F7ðð ððððððð6 ðððððððð

 ððð3Að ðððððððð ðððððððð ðððððððð ðððBD2ðð ððððððð2 6ADF15ð3 ðððððððð ðððððððð

 ððð3Cð ðððððððð ðððððððð ðððððððð ðððððððð ððððððð2 ððððððð2 ðððððððð ðððððððð

 ððð3Eð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .R/
 ððð4ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð42ð ðððððððð ðððððððð ððððððð3 ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð44ð ððððððð1 ðððððððð ððððððð8 ððððððð2 ðððððððð ððððððð1 ðððððððð ððððððð4

 .S/
 ððð46ð ðððððððð ðððððððð ðððððððð 2ð95ððE4 D8E7E2E3 ðððððððð ðððððððð ðððððððð

 ððð48ð ðððððððð ððððððð1 ððððððð1 ððððððð1 ððððððð1 ðððððððð ðððððððð ðððððððð

 ððð4Að ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð4Cð ðððððððð ðððððððð ðððððððð ðððððððð ððððððð3 ðððððððð ðððððððð ðððððððð

 ððð4Eð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð5ðð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð52ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .T/
 ððð54ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððB ðððððððð ðððððððð

 ððð56ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 .U/
 ððð58ð ðððððððð ðððððððð ððððððð9 ðððððððð ðð4Cð11A ððð3ð931 ððB3ADB8 E2E2D6D7

 ððð5Að A6E9BB31 Eð74C6ð5 ððððððð3 ðððððð2D ððððððð2 E2C1D5E3 C16DE3C5 D9C5E2C1

 .V/
 ððð5Cð 6DD3C1C2 C4C2F2D5 C5E34ð4ð D3E4D5C4 F14ð4ð4ð A6E9BAEC C4D9ððð2 ðð4Cð2ðð

 ððð5Eð E2E8E2C1 C4D44ð4ð E2E8E2C1 C4D44ð4ð 4ð4ð4ð4ð E3E2D64ð 4ð4ð4ð4ð C4E2D5C5

 ððð6ðð E2D7D9D9 E2E8E2C1 C4D44ð4ð ððððððð7 ðððððððð ðððððððð ðððððððð ðððððððð

 .W/
 ððð62ð ðððððððð ðððððððð ðð341ððð E2C1D56D D1D6E2C5 4ð4ð4ð4ð 4ð4ð4ð4ð A6E9BB2F

 ððð64ð 38CCACð1 E2C1D56D D1D6E2C5 4ð4ð4ð4ð 4ð4ð4ð4ð C4E2D5Fð F3FðF1Fð

Figure 175. DB2 Distributed Data Trace Output Sent to SMF (printed with DFSERA10 print program of IMS). In this
example there is one accounting record (IFCID 0003) from the server site (SANTA_TERESA_LAB). The self-defining
section for IFCID 0003 is mapped by DSNDQWA0.

 Appendix D. Interpreting DB2 Trace Output X-121

Key to Figure 175 Description

.A/ 00000590 Offset to product section; beginning of
self-defining section

.B/ 00CC Length of product section

.C/ 0001 Number of times product section is repeated

.D/ 00000064 Offset to accounting section

.E/ 00E4 Length of accounting section

.F/ 0001 Number of times accounting section is
repeated

.G/ 0000046C Offset to SQL accounting section

.H/ 00000550 Offset to buffer manager accounting section

.I/ 00000414 Offset to locking accounting section

.J/ 00000148 Offset to distributed section

.K/ 00000224 Offset to MVS/DDF accounting section

.L/ 00000000 Offset to IFI accounting section

.M/ 00000324 Offset to package/DBRM accounting section

.N/ A6E9BB19... Beginning of accounting section
(DSNDQWAC)

.ð/ E2C1D56D... Beginning of distributed section
(DSNDQLAC)

.P/ 54C4E2D5... Beginning of MVS/DDF accounting section
(DSNDQMDA)

.Q/ 0001003A... Beginning of package/DBRM accounting
section (DSNDQPAC)

.R/ 00000000... Beginning of locking accounting section
(DSNDQTXA)

.S/ 209500E4... Beginning of SQL accounting section
(DSNDQXST)

.T/ 00000000... Beginning of buffer manager accounting
section (DSNDQBAC)

.U/ 004C011A... Beginning of product section (DSNDQWHS);
beginning of standard header

.V/ 004C0200... Beginning of correlation header
(DSNDQWHC)

.W/ 00341000... Beginning of distributed header
(DSNDQWHD)

Trace Field Descriptions
If you intend to write a program to read DB2 trace records, use the assembler
mapping macros listed in Appendix H of Application Programming and SQL Guide.

You can use the TSO or ISPF browse function to look at the field descriptions in
the trace record mapping macros online, even when DB2 is down. If you prefer to
look at the descriptions in printed form, you can use ISPF to print a listing of the
data set.

X-122 Administration Guide

Appendix E. Programming for the Instrumentation Facility
Interface (IFI)

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page xi.

This appendix helps you to use the instrumentation facility interface (IFI). The
following topics are discussed in this appendix:

“What IFI Can Do,” below
“Invoking IFI from Your Program” on page X-125
“Interpreting Records Returned by IFI” on page X-147
“Recovery Considerations” on page X-150.

| IFI can be accessed through any of the DB2 attachment facilities, including the
| Resource Recovery Services (RRS) of MVS.

IFI uses the standard security mechanisms that DB2 uses—connection
authorization, plan authorization, and so forth. For more information about security,
see “ Section 3. Security and Auditing” on page 3-1. Security checks specifically
related to IFI are included in the descriptions of the functions.

Before using IFI, you should be familiar with the material in “DB2 Trace” on
page X-177, which includes information on the DB2 trace facility and
instrumentation facility component identifiers (IFCIDs).

| Please note that where the trace output indicates a particular release level, you will
| see 'xx' to show that this information varies according to the actual release of DB2
| that you are using.

What IFI Can Do
The DB2 instrumentation facility gathers trace data that can be written to one or
more destinations that you specify. IFI is designed for a program needing online
information about DB2. You can use IFI in a monitor program (a program or
function outside of DB2 that receives information about DB2) to perform the
following tasks:

� “Submitting DB2 Commands through IFI” on page X-124
� “Obtaining Trace Data” on page X-124
� “Passing Data to DB2 through IFI” on page X-125

When a DB2 trace is active, internal events trigger the creation of trace records.
The records, identified by instrumentation facility component identifiers (IFCIDs),
can be written to buffers, and you can read them later with the IFI READA function.
This means you are collecting the data asynchronously; you are not reading the
data at the time it was written.

When the DB2 monitor trace is started for class 1, you can trigger the creation of
certain types of trace records by an external event—your use of the IFI READS
function. The records, identified as usual by IFCIDs, do not need a buffer; they are
passed immediately to your monitor program through IFI. This means you are

 Copyright IBM Corp. 1982, 1997 X-123

collecting the data synchronously. The data is collected at the time of the request
for the data.

Submitting DB2 Commands through IFI
You can submit any DB2 command through IFI, but this capability is most useful for
submitting DB2 trace commands to start, stop, display, and modify traces.

Using specified trace classes and IFCIDs, a monitor program can control the
amount and type of its data. You can design your monitor program to:

� Activate and deactivate pre-defined trace classes.

� Activate and deactivate a trace record or group of records (identified by
IFCIDs).

� Activate and deactivate predefined trace classes and trace records (identified
by IFCIDs) restricting tracing to a set of DB2 identifiers (plan name,
authorization ID, resource manager identifier (RMID), and so on).

Obtaining Trace Data
You might want to collect trace data from DB2:

� To obtain accounting information for online billing.

� To periodically obtain system-wide information about DB2, highlight exceptional
conditions, or provide throughput information.

The following illustrates the logic flow:

 1. Initialize

2. Set a timer

3. Wait for the timer to expire

4. Call IFI to obtain statistics data via a READS request

5. Do delta calculations to determine activity

6. Display the information on a terminal

7. Loop back to the timer

� To learn which processes have been connected to DB2 the longest, or which
processes have used the most CPU time in DB2.

� To obtain accounting records as transactions terminate.

� To determine the access and processing methods for an SQL statement. Start
a trace, issue a PREPARE statement, and then use the resulting trace data as
an alternative to using EXPLAIN.

� To capture log buffers online for use in remote recovery, as described in
“Appendix C. Reading Log Records” on page X-81.

� To retrieve SQL changes synchronously from the log for processing in an
application. See “Reading Log Records” on page X-92 for more information.

X-124 Administration Guide

Passing Data to DB2 through IFI
You can use IFI to pass data to the destination of a DB2 trace. For example, you
can:

� Extend accounting data collected within DB2. For example, a monitor program
can collect batch file I/O counts, store them in a user-defined trace record, and
process them along with standard DB2 accounting data.

� Include accounting data from QMF, IMS, or CICS.

� Permit CICS users to write the CICS accounting token and task number into
| the DB2 trace, assuming TOKENE=NO.

 IFI Functions
A monitor program can use the following IFI functions:

COMMAND To submit DB2 commands. For more information, see “COMMAND:
Syntax and Usage” on page X-126.

READS To obtain monitor trace records synchronously. The READS request
causes those records to be returned immediately to the monitor
program. For more information, see “READS: Syntax and Usage” on
page X-129.

READA To obtain trace records of any trace type asynchronously. DB2
records trace events as they occur and places that information into a
buffer; a READA request moves the buffered data to the monitor
program. For more information, see “READA: Syntax and Usage” on
page X-140.

WRITE To write information to a DB2 trace destination that was previously
activated by a START TRACE command. For more information, see
“WRITE: Syntax and Usage” on page X-142.

Invoking IFI from Your Program
IFI can be used by assembler and PL/I programs. To use IFI, include a call to
DSNWLI in your monitor program.

The following example depicts an IFI call in an assembler program. All examples in
this appendix are given for assembler.

CALL DSNWLI,(function,ifca,parm-1,...parm-n),VL

The parameters passed on the call indicate the function wanted (as described in
“IFI Functions”), point to communication areas used by the function, and provide
other information that depends on the function specified. Because the parameter list
may vary in length, the high-order bit of the last parameter must be on to signal
that it is the last parameter in the list. To do this in Assembler for example, use the
VL option to signal a variable length parameter list. The communication areas used
by IFI are described in “Common Communication Areas” on page X-143.

After you insert this call in your monitor program, you must link-edit the program
with the correct language interface. Each of the following language interface
modules has an entry point of DSNWLI for IFI:

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-125

A second entry point of DSNWLI2 has been added to the CAF (call attachment
facility) language interface module, DSNALI. The monitor program that link-edits
DSNALI with the program can make IFI calls directly to DSNWLI. The monitor
program that loads DSNALI must also load DSNWLI2 and remember its address.
When the monitor program calls DSNWLI, the program must have a dummy entry
point to handle the call to DSNWLI and then call the real DSNWLI2 routine. See
Section 6 of Application Programming and SQL Guide for additional information
about using CAF.

Considerations for Writing a Monitor Program: A monitor program issuing IFI
requests must be connected to DB2 at the thread level. If the program contains
SQL statements, you must precompile the program and create a DB2 plan using
the BIND process. If the monitor program does not contain any SQL statements, it

| does not have to be precompiled. But, as is the case in all the attachment
| environments, even though an IFI only program (one with no SQL statements) does
| not have a plan of its own, it can use any plan to get the thread level connection to
| DB2.

The monitor program can run in either 24- or 31-bit mode.

Monitor Trace Classes: Monitor trace classes 1 through 8 can be used to collect
information related to DB2 resource usage. Use monitor trace class 5, for example,
to find out how much time is spent processing IFI requests. Monitor trace classes 2,
3, and 5 are identical to accounting trace classes 2, 3, and 5. For more information
about these traces, see “Monitor Trace” on page X-180.

Monitor Authorization: On the first READA or READS call from a user, an
authorization is checked to determine if the primary authorization ID or one of the
secondary authorization IDs of the plan executor has MONITOR1 or MONITOR2

| privilege. If your installation is using the access control authorization
| exit routine, then that exit might be controlling the privileges that can use the
| monitor trace. If you have an authorization failure, an audit trace (class 1) record
| is generated that contains the return and reason codes from the exit. This is
| included in IFCID 0140. See :hdref refid=dxexits. for more information on the
| access control authorization exit routine.

CAF DSNALI TSO DSNELI
CICS DSNCLI IMS DFSLI000

| RRSAF DSNRLI

Using IFI from Stored Procedures
You can use the IFI interface from a stored procedure. The output of the trace can
be returned to the client. It is also possible to issue DB2 commands, such as
“DISPLAY THREAD,” from a stored procedure and get the results returned to the
client.

COMMAND: Syntax and Usage
A DB2 command resides in the output area; a monitor program can submit that
command by issuing a COMMAND request to IFI. The DB2 command is processed
and the output messages are returned to the monitor program in the return area.

Any DB2 command can be submitted, including START TRACE, STOP TRACE,
DISPLAY TRACE, and MODIFY TRACE. Because the program can also issue

X-126 Administration Guide

other DB2 commands, you should be careful about which commands you use. For
example, do not use STOP DB2.

 Authorization
For an application program to submit a command, the primary authorization ID or
one of the secondary authorization IDs of the process must have the appropriate
DB2 command authorization, or the request is denied. An application program
might have the authorization to issue DB2 commands, but not the authorization to
issue READA requests.

 Syntax
CALL DSNWLI,('COMMAND ',ifca,return-area,output-area,buffer-info .),VL

ifca IFCA (instrumentation facility communication area) is an area of storage that
contains the return code and reason code indicating the success or failure of
the request, the number of bytes moved to the return area, and the number of
bytes of the message segments that did not fit in the return area. It is
possible for some commands to complete and return valid information and yet
result in the return code and reason code being set to a non-zero value. For
example, the DISPLAY DATABASE command may indicate that more
information could be returned than was allowed.

If multiple errors occur, the last error is returned to the caller. For example, if
the command was in error and the error message did not fit in the area, the
error return code and reason code would indicate the return area was too
small.

If a monitor program issues START TRACE, the ownership token
(IFCAOWNR) in the IFCA determines the owner of the asynchronous buffer.
The owner of the buffer is the only process that can obtain data through a
subsequent READA request. See “IFCA” on page X-144 for a description of
the IFCA.

return-area
When the issued command finishes processing, it places messages (if any) in
the return area. The messages are stored as varying-length records, and the
total number of bytes in the records is placed in the IFCABM (bytes moved)
field of the IFCA. If the return area is too small, as many message records as
will fit are placed into the return area.

It is the monitor program's responsibility to analyze messages returned by the
command function. See “Return Area” on page X-146 for a description of the
return area.

output-area
Contains the varying-length command. See “Output Area” on page X-147 for
a description of the output area.

buffer-info
This parameter is required for starting traces to an OP buffer. Otherwise, it is
not needed. This parameter is used only on COMMAND requests. It points to
an area containing information about processing options when a trace is
started by an IFI call to an unassigned OPn destination buffer. An OPn
destination buffer is considered unassigned if it is not owned by a monitor
program.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-127

If the OPn destination buffer is assigned, then the buffer information area is
not used on a later START or MODIFY TRACE command to that OPn
destination. For more information about using OPn buffers, see “Usage Notes”
on page X-141.

When you use buffer-info on START TRACE, you can specify the number of
bytes that can be buffered before the monitor program ECB is posted. The
ECB is posted when the amount of trace data collected has reached the value
specified in the byte count field. The byte count field is also specified in the
buffer information area.

Table 146. Buffer Information Area Fields. This area is mapped by assembler mapping macro DSNDWBUF.

Name

Hex
Offset

Data Type

Description

WBUFLEN 0 Signed two-byte integer Length of the buffer information area, plus 4. A zero
indicates the area does not exist.

 2 Signed two-byte integer Reserved.

WBUFEYE 4 Character, 4 bytes Eye catcher for block, WBUF.

WBUFECB 8 Address The ECB address to post when the buffer has reached
the byte count specification (WBUFBC, below). The ECB
must reside in monitor key storage. A zero indicates not
to post the monitor program. In this case, the monitor
program should use its own timer to determine when to
issue a READA request.

WBUFBC C Signed four-byte integer The records placed into the instrumentation facility must
reach this value before the ECB will be posted. If the
number is zero, and an ECB exists, posting occurs when
the buffer is full.

X-128 Administration Guide

 Example
This example issues a DB2 START TRACE command for MONITOR Class 1.

CALL DSNWLI,('COMMAND ',IFCAAREA,RETAREA,OUTAREA,BUFAREA),VL
...

COMMAND DC CL8 'COMMAND '

\\

\ Function parameter declaration \

\\

\ Storage of LENGTH(IFCA) and properly initialized \

\\

IFCAAREA DS ðCL18ð
 . . .

\\

\ Storage for length and returned info. \

\\

RETAREA DS CL6ð8

\\

\ Storage for length and DB2 Command \

\\

OUTAREA DS ðCL42

OUTLEN DC X'ðð2Aðððð'

OUTCMD DC CL38'-STA TRAC(MON) DEST(OPX) BUFSIZE(32)

\\

\ Storage of LENGTH(WBUF) and properly initialized \

\\

BUFAREA DS ðCL16
 . . .

Figure 176. Starting a Trace Using IFI

READS: Syntax and Usage
READS allows your monitor program to read DB2 status information that is
collected at the time of the IFI call. Monitor class 1 must be activated prior to any
READS requests. The records available are for IFCIDs 0001, 0002, 0106, 0124,

0129, 0147, 0148, 0149, 0150, 0185, 0202, 0230, 0254 0306, 0316, and 0317. For
a description of the data these records provide, see “Synchronous Data” on

page X-137. IFCID 0124, 0129, 0147 through 0150, 0197, 0254, 0316, and 0317
can be obtained only through the IFI READS interface.

Monitor class 1 need not be started by the program that issues the READS
request, because no ownership of an OP buffer is involved when obtaining data via
the READS interface. Data is written directly to the application program's return
area, bypassing the OP buffers. This is in direct contrast to the READA interface
where the application that issues READA must first issue a START TRACE
command to obtain ownership of an OP buffer and start the appropriate traces.

 Authorization
On a READS request, a check is made to see if monitor class 1 is active; if it is not
active, the request is denied. The primary authorization ID or one of the secondary
authorization IDs of the process running the application program must have
MONITOR1 or MONITOR2 privilege. If neither the primary authorization ID nor one
of the secondary authorization IDs has authorization, the request is denied. IFCID
185 requests are an exception—they do not require the MONITOR1 or MONITOR2

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-129

privilege. READS requests are checked for authorization once for each user
(ownership token) of the thread. (Several users can use the same thread, but an
authorization check is performed each time the user of the thread changes.)

If you use READS to obtain your own data (IFCID 0124, 0147, 0148, or 0150 not
qualified), then no authorization check is performed.

 Syntax
CALL DSNWLI,('READS ',ifca,return-area,ifcid-area,qual-area),VL

ifca Contains information about the success of the call. See “IFCA” on
page X-144 for a description of the IFCA.

return-area
Contains the varying-length records returned by the instrumentation facility. IFI
monitor programs might need large enough READS return areas to
accommodate the following:

� Larger IFCID 0147 and 0148 records containing distributed thread data
(both allied and database access) that is returned to them.

� Additional records returned when database access threads exist that
satisfy the specified qualifications on the READS request.

� Log record control intervals with IFCID 129. For more information about
using IFI to return log records, see “Reading Specific Log Records (IFCID
0129)” on page X-93.

| � Log records based on user-specified criteria with IFCID 306. For example,
| the user can retrieve compressed or decompressed log records. For more
| information about reading log records, see “Appendix C. Reading Log
| Records” on page X-81.

� Data descriptions and changed data returned with IFCID 185.

If the return area is too small to hold all the records returned, it contains as
many records as will fit. The monitor program obtains the return area for
READS requests in its private address space. See “Return Area” on
page X-146 for a description of the return area.

ifcid-area
Contains the IFCIDs of the information wanted. The number of IFCIDs can be
variable. If the length specification of the IFCID area is exceeded or an IFCID
of X'FFFF' is encountered, the list is terminated. If an invalid IFCID is
specified no data is retrieved. See “IFCID area” on page X-146 for a
description of the IFCID area.

qual-area
This parameter is optional, and is used only on READS requests. It points to
the qualification area, where a monitor program can specify constraints on the
data that is to be returned. If the qualification area does not exist (length of
binary zero), information is obtained from all active allied threads and
database access threads. Information is not obtained for any inactive
database access threads that might exist.

The length constants for the qualification area are provided in the
DSNDWQAL mapping macro. If the length is not equal to the value of one of
these constants, IFI considers the call invalid.

X-130 Administration Guide

The following trace records, identified by IFCID, cannot be qualified;

 if you attempt to qualify them, the qualification is ignored: 0001, 0002, 0106,
0202, 0230.

The rest of the synchronous records can be qualified. See “Synchronous
Data” on page X-137 for information about these records. However, not all
the qualifications in the qualification area can be used for these IFCIDs. See
“Which Qualifications are Used?” on page X-135 for qualification restrictions.
Unless the qualification area has a length of binary zero (in which case the
area does not exist), the address of qual-area supplied by the monitor
program points to an area formatted by the monitor program as shown in
Table 147.

Table 147 (Page 1 of 5). Qualification Area Fields. This area is mapped by the assembler mapping macro
DSNDWQAL.

Name

Hex
Offset

Data Type

Description

WQALLEN 0 Signed two-byte
integer

Length of the qualification area, plus 4. The following
constants set the qualification area length field:

� WQALLN21. When specified, the location name
qualifications (WQALLOCN and WQALLUWI) are
ignored.

� WQALLN22. When specified, the location name
qualifications (WQALLOCN and WQALLUWI) are used.

� WQALLN23. When specified, the log data access fields
(WQALLTYP, WQALLMOD, WQALLRBA, and
WQALLNUM) are used for READS calls using IFCID
129.

� WQALLN4. When specified, the location name
qualifications (WQALLOCN and WQALLUWI), the group
buffer pool qualifier (WQALGBPN) and the read log
fields are used.

� WQALLN5. When specified, the dynamic statement
cache fields (WQALFFLD, WQALFVAL, WQALSTNM,
and WQALSTID) are used for READS calls for IFCID
0316 and 0317.

 2 Signed two-byte
integer

Reserved.

WQALEYE 4 Character, 4 bytes Eye catcher for block, WQAL.

WQALACE 8 Address Thread identification token value. This value indicates the
specific thread wanted; binary zero if it is not to be used.

WQALAIT2 C Address Reserved.

WQALPLAN 10 Character, 8 bytes| Plan name; binary zero if it is not to be used.

WQALAUTH 18 Character, 8 bytes| The current primary authorization ID; binary zero if it is not
to be used.

WQALOPID 20 Character, 8 bytes| The original authorization ID; binary zero if it is not to be
used.

WQALCONN 28 Character, 8 bytes| Connection name; binary zero if it is not to be used.

WQALCORR 30 Character, 12 bytes| Correlation ID; binary zero if it is not to be used.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-131

Table 147 (Page 2 of 5). Qualification Area Fields. This area is mapped by the assembler mapping macro
DSNDWQAL.

Name

Hex
Offset

Data Type

Description

WQALREST 3C Character, 32 bytes Resource token for a specific lock request when IFCID 0149
is specified. The field must be set by the monitor program.
The monitor program can obtain the information from a
previous READS request for IFCID 0150 or from a READS
request for IFCID 0147 or 0148.

WQALHASH 5C Hex, 4 bytes Resource hash value specifying the resource token for a
specific lock request when IFCID 0149 is specified. The field
must be set by the monitor program. The monitor program
can obtain the information from a previous READS request
for IFCID 0150 or possibly from a READS request for IFCID
0147 or 0148.

WQALASID 60 Hex, 2 bytes ASID specifying the address space of the process wanted.

 62 Hex, 2 bytes Reserved.

64 Character, 24 bytes LUWID (logical unit of work ID) of the thread wanted; binary
zero if it is not to be used

7C Character, 16 bytes Location name. If specified, then data is returned only for
distributed agents, which originate at the specified location.
For example, if site A is located where the IFI program is
running and SITE A is specified in the WQALLOCN, then
distributed agents, both database access threads and
distributed allied agents, executing at SITE A are reported.
Local non-distributed agents are not reported. If site B is
specified and the IFI program is still executing at site A,
then information on database access threads which are
executing in support of a distributed allied agent at site B
are reported. If WQALLOCN is not specified, then
information on all threads executing at SITE A (the site
where the IFI program is executing) is returned. This
includes local non-distributed threads, local database
access agents, and local distributed allied agents.

WQALLTYP 8C Character, 3 bytes Specifies the type of log data access. 'CI ' must be
specified to obtain log record control intervals (CIs).

X-132 Administration Guide

Table 147 (Page 3 of 5). Qualification Area Fields. This area is mapped by the assembler mapping macro
DSNDWQAL.

Name

Hex
Offset

Data Type

Description

WQALLMOD 8F Character, 1 byte The mode of log data access:

� 'D' means to return the direct log record specified in
WQALLRBA if the IFCID is 0306.

� 'F' means to access the first log CI of the restarted
DB2 system if the IFCID is 0129. One CI is returned,
and the WQALLNUM and WQALLRBA fields are
ignored. It indicates to return the first set of qualified log
records if the IFCID is 0306.

� 'R' means to access the CI as specified by the value in
the WQALLRBA field. If the requested number of CIs
(as specified in WQALLNUM) is not currently available,
no data is returned and a reason code is returned to the
IFCA.

� 'H' means to return the highest LRSN or log RBA in
the active log. The value is returned in the field
IFCAHLRS in the IFCA.

� 'N' means to return the next set of qualified log
records.

� 'T' means to terminate the log position that is held to
anticipate a future mode 'N' call.

| � 'P' means that the last partial CI written to the active
| log is given to the Log Capture Exit. If the last CI written
| to the log was not full, the RBA of the log CI given to
| the Log Exit is returned in the IFCAHLRS field of the IFI
| communication area (IFCA). Otherwise, an RBA of zero
| is returned in IFCAHLRS. This option ignores
| WQALLRBA and WQALLNUM.

WQALLNUM 90 Hex, 2 bytes The number of log CIs to be returned. The valid range is
X'0001' to X'0007'.

WQALCDCD 92 Character, 1 byte Data description request flag (A,Y,N):

� 'A' indicates that a data description will only be
returned the first time a DATA request is issued from
the region or when it was changed for a given table.
This is the default.

� 'Y' indicates that a data description will be returned for
each table in the list for every new request.

� 'N' indicates that a data description will not be
returned.

 93 Hex, 1 byte Reserved.

WQALLRBA 94 Hex, 8 bytes � If the IFCID is 0129, the starting log RBA of the CI to be
returned. The CI starting log RBA value must end in
X'000'. The RBA value must be right-justified.

� If the IFCID is 0306, this is the log RBA or LRSN to be
used in mode 'F'.

WQALGBPN 9C Character, 8 bytes Group Buffer Pool Qualifier

WQALLCRI A4 Hex, 1 byte Log Record Selection Criteria

� '00' indicates the return DB2CDC and UR control log
records.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-133

Table 147 (Page 4 of 5). Qualification Area Fields. This area is mapped by the assembler mapping macro
DSNDWQAL.

Name

Hex
Offset

Data Type

Description

WQALLOPT A5 Hex, 1 byte Processing Options relating to decompression

� '01' indicates to decompress the log records if they are
compressed.

� '00' indicates that decompression should not occur.

WQALFLTR# A6# Hex, 1 byte# For an IFCID 0316 request, identifies the filter method:

� X'00' indicates no filtering. This value tells DB2 to
return information for as many cached statements as fit
in the return area.

� X'01' indicates that DB2 returns information about the
cached statements that have the highest values for a
particular statistics field. Specify the statistics field in
WQALFFLD. DB2 returns information for as many
statements as fit in the return area. For example, if the
return is large enough for information about 10
statements, the statements with the ten highest values
for the specified statistics field are reported.

� X'02' indicates that DB2 returns information about the
cached statements that exceed a threshold value for a
particular statistics field. Specify the name of the
statistics field in WQALFFLD. Specify the threshold
value in WQALFVAL. DB2 returns information for as
many qualifying statements as fit in the return area.

For an IFCID 0306 request, indicates whether DB2 merges
log records in a data sharing environment:

� X'00' indicates that DB2 merges log records from data
sharing members.

� X'03' indicates that DB2 does not merge log records
from data sharing members.

X-134 Administration Guide

Table 147 (Page 5 of 5). Qualification Area Fields. This area is mapped by the assembler mapping macro
DSNDWQAL.

Name

Hex
Offset

Data Type

Description

WQALFFLD# A7# Character, 1 byte# For an IFCID 0316 request, when WQALFLTR is X'01' or
X'02', this field specifies the statistics field used to
determine the cached statements about which DB2 reports.
The following list shows the values you can enter and the
statistics fields they represent:

� 'E' - the number of executions of the statement
(QW0316NE)

� 'B' - the number of buffer reads (QW0316NB)

� 'G' - the number of GETPAGE requests (QW0316NB)

� 'R' - the number of rows examined (QW0316NR)

� 'P' - the number of rows processed (QW0316NP)

� 'S' - the number of sorts performed (QW0316NS)

� 'I' - the number of index scans (QW0316NI)

� 'T' - the number of table space scans (QW0316NT)

� 'L' - the number of parallel groups (QW0316NL)

� 'W' - the number of buffer writes (QW0316NW)

� 'A' - the accumulated elapsed time (QW0316AE). This
option is valid only when QWALFLTR=X'01'.

WQALFVAL# A8# Signed 4-byte integer# For an IFCID 0316 request, when WQALFLTR is X'02',
this field and WQALFFLD determine the cached statements
about which DB2 reports. To be eligible for reporting, a
cached statement must have a value for the statistics field
specified by WQALFFLD that is no smaller than the value
you specify in this field. DB2 reports information on as many
eligible statements as fit in the return area.

WQALSTNM# AC# Character, 16 bytes# For an IFCID 0317 request, this field specifies the name of
a cached statement about which DB2 reports. This is a
name that DB2 generates when it caches the statement. To
obtain this name, issue a READS request for IFCID 0316.
The name is in field QW0316NM. This field and WQALSTID
uniquely identify a cached statement.

WQALSTID# BC# Unsigned 4-byte
integer
For an IFCID 0317 request, this field specifies the ID of a
cached statement about which DB2 reports. This is an ID
that DB2 generates when it caches the statement. To obtain
this ID, issue a READS request for IFCID 0316. The ID is
in field QW0316TK. This field and WQALSTNM uniquely
identify a cached statement.

Note: If your monitor program does not initialize the qualification area, the READS request is denied.

Which Qualifications are Used?
Not all qualifications are used for all IFCIDs. The following table lists the
qualification fields that are used for each IFCID.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-135

Table 148. Qualification Fields for IFCIDs

These IFCIDs... Are allowed to use these qualification fields

0124, 0147,
0148, 0150

 WQALACE
 WQALAIT2
 WQALPLAN1

 WQALAUTH1

 WQALOPID1

 WQALCONN1

 WQALCORR1

 WQALASID
 WQALLUWI1
 WQALLOCN1

| WQALD147

0149 WQALREST
 WQALHASH

0129 WQALLTYP
 WQALLMOD
 WQALLRBA
 WQALLNUM

0185 WQALCDCD

0254 WQALGBPN

0306# WQALFLTR
WQALLMOD
WQALLRBA
WQALLCRI
WQALLOPT

0316# WQALFLTR
WQALFFLD
WQALFVAL

0317# WQALSTNM
WQALSTID

Note: 1DB2 allows you to partially qualify a field and fill the rest of the field with binary
zero. For example, the 12-byte correlation value for a CICS thread contains the
4-character CICS transaction code in positions 5-8. Assuming a CICS
transaction code of AAAA, the following hexadecimal qual-area correlation

| qualification can be used to find the first transaction with a correlation value of
| AAAA in positions 5-8: X'00000000C1C1C1C100000000'.

 Usage Notes
Due to performance considerations, the majority of data obtained by a monitor
program probably comes over the synchronous interface: summarized DB2
information is easier for a monitor program to process, and the monitor program
logic is simpler since a smaller number of records are processed.

After you issue the START TRACE command to activate monitor class 1, you can
issue a READS request to obtain information immediately and return the
information to your monitor program in the return area. Start monitor classes 2, 3,
5, 7, and 8 to collect additional summary and status information for later probing. In

X-136 Administration Guide

this case an instrumentation facility trace is started and information is summarized
by the instrumentation facility, but not returned to the caller until requested by a
READS call.

The READS request may reference data being updated during the retrieval
process. It might be necessary to do reasonability tests on data obtained through
READS. The READS function does not suspend activity taking place under
structures being referred to. Thus, an abend can occur. If so, the READS function
is terminated without a dump and the monitor program is notified through the return
code and reason code information in the IFCA. However, the return area can
contain valid trace records, even if an abend occurred; therefore, your monitor
program should check for a non-zero value in the IFCABM (bytes moved) field of
the IFCA.

| When using a READS with a query parallelism task, keep in mind that each parallel
| task is a separate thread. Each parallel thread has a separate READS output. See
| “Parallel Operations and Query Performance” on page 5-299 for more information
| on tracing the parallel tasks. It is also possible that a READS request might return
| thread information for parallel tasks on a DB2 data sharing member without the
| thread information for the originating task in a Sysplex query parallelism case. See
| Data Sharing: Planning and Administration.

When starting monitor trace class 1, specifying a PLAN, an AUTHID, an RMID, or a
LOCATION has no effect on the number of records returned on IFI READS
requests. The qual-area parameter, mapped by DSNDWQAL, is the only means of
qualifying the trace records to be returned on IFI READS requests.

 Synchronous Data
There are certain types of records that you can read synchronously, as long as
monitor trace class 1 is active. Identified by IFCID, these records are:

| 0001 Statistical data on the systems services address space, including task control
| block (TCB) and service request block (SRB) times for system services,
| database services, including DDF statistics, and Internal Resource Lock
| Manager (IRLM) address spaces.

0002 Statistical data on the database services address space.

0106 Static system parameters.

0124 An active SQL snapshot giving status information about the process, the
SQL statement text, the relational data system input parameter list (RDI)
block, and status flags to indicate certain bind and locking information.

It is possible to obtain a varying amount of data because the request
requires the process to be connected to DB2, have a cursor table allocated
(RDI and status information is provided), and be active in DB2 (SQL text is
provided if available). The SQL text provided does not include the SQL host
variables.

For dynamic SQL, IFI provides the original SQL statement. The RDISTYPE
field contains the actual SQL function taking place. For example, for a
SELECT statement, the RDISTYPE field can indicate that an open cursor,
fetch, or other function occurred. For static SQL, you can see the DECLARE
CURSOR statement, and the RDISTYPE indicates the function. The
RDISTYPE field is mapped by mapping macro DSNXRDI.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-137

0129 Returns one or more VSAM control intervals (CIs) containing DB2 recovery
log records. For more information about using IFI to return these records for
use in remote site recovery, see “Appendix C. Reading Log Records” on
page X-81.

0147 An active thread snapshot giving a status summary of processes at a DB2
thread or non-thread level.

0148 An active thread snapshot giving more detailed status of processes at a DB2
thread or non-thread level.

0149 Information indicating who (the thread identification token) is holding locks
and waiting for locks on a particular resource and hash token. The data
provided is in the same format defined for IFCID 0150.

0150 All the locks held and waited on by a given user or owner (thread
identification token).

0202 Dynamic system parameters.

0230 Global statistics for data sharing.

0254 Group buffer pool usage in the data sharing group.

0316 Returns information about the contents of the dynamic statement cache. The
IFI application can request information for all statements in the cache, or
provide qualification parameters to limit the data returned. DB2 reports the
following information about a cached statement:

� A statement name and ID that uniquely identify the statement

� If IFCID 0318 is active, performance statistics for the statement

� The first 60 bytes of the statement text

| 0317 Returns the complete text of an SQL statement in the dynamic statement
| cache. To identify a statement for which you want the complete text, you
| must the statement name and statement ID from IFCID 0316 output. For
| more information on using IFI to obtain information about the dynamic
| statement cache, see “Using READS Calls to Monitor the Dynamic
| Statement Cache” on page X-139.

You can read another type of record synchronously as long as monitor trace class
6 is active:

0185 Data descriptions for each table for which captured data is returned on this
DATA request. IFCID 0185 data is only available through a propagation exit
routine triggered by DB2.

| 0306 Returns compressed or decompressed log records in both a data sharing or
| non data-sharing environment. For IFCID 306 requests, your program's
| return area must reside in ECSA key 7 storage with the IFI application
| program running in key 0 supervisor state. The IFI application program must
| set the eye-catcher to “I306” before making the IFCID 306 call. See “IFCA”
| on page X-144 for more information on the instrumentation facility
| communication area (IFCA) and what is expected of the monitor program.

For more information on IFCID field descriptions, refer to data set
prefix.SDSNSAMP(DSNWMSGS), which is shipped to you as part of the product.
See also “DB2 Trace” on page X-177 and “Appendix D. Interpreting DB2 Trace
Output” on page X-107 for additional information.

X-138 Administration Guide

Using READS Calls to Monitor the Dynamic Statement Cache
You can use READS requests from an IFI application to monitor the contents of the
dynamic statement cache, and optionally, to see some accumulated statistics for
those statements. This can help you detect and diagnose performance problems for
those cached dynamic SQL statements.

An IFI program that monitors the dynamic statement cache should include these
steps:

1. Acquire and initialize storage areas for common IFI communication areas.

2. Issue an IFI COMMAND call to start monitor trace class 1.

This lets you make READS calls for IFCID 0316 and IFCID 0317.

3. Issue an IFI COMMAND call to start performance trace class 30 for IFCID
0318.

This enables statistics collection for statements in the dynamic statement
cache. See “Controlling Collection of Dynamic Statement Cache Statistics with
IFCID 0318” for information on when you should start a trace for IFCID 0318.

4. Put the IFI program into a wait state.

During this time, SQL applications in the subsystem execute dynamic SQL
statements using the dynamic statement cache.

5. Resume the IFI program after enough time has elapsed for a reasonable
amount of activity to occur in the dynamic statement cache.

6. Set up the qualification area for a READS call for IFCID 0316 as described in
Table 147 on page X-131.

7. Set up the IFCID area to request data for IFCID 0316.

8. Issue an IFI READS call to retrieve the qualifying cached SQL statements.

9. Examine the contents of the return area.

For a statement with unexpected statistics values:

a. Obtain the statement name and statement ID from the IFCID 0316 data.

b. Set up the qualification area for a READS call for IFCID 0317 as described
in Table 147 on page X-131.

c. Set up the IFCID area to request data for IFCID 0317.

d. Issue a READS call for IFCID 0317 to get the entire text of the statement.

e. Obtain the statement text from the return area.

f. Use the statement text to execute an SQL EXPLAIN statement.

g. Fetch the EXPLAIN results from the PLAN_TABLE.

10. Issue an IFI COMMAND call to stop monitor trace class 1.

11. Issue an IFI COMMAND call to stop performance trace class 30 for IFCID
0318.

Controlling Collection of Dynamic Statement Cache Statistics with IFCID
0318: The collection of statistics for statements in the dynamic statement cache
can increase the processing cost for those statements. To minimize this increase,
use IFCID 0318 to enable and disable the collection of dynamic statement cache
statistics. When IFCID 0318 is inactive, DB2 does not collect those statistics. DB2

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-139

tracks the statements in the dynamic statement cache, but does not accumulate the
statistics as those statements are used. When you are not actively monitoring the
cache, you should turn off the trace for IFCID 0318.

If you issue a READS call for IFCID 0316 while IFCID 0318 is inactive, DB2 returns
identifying information for all statements in the cache, but returns 0 in all the IFCID
0316 statistics counters.

When you stop or start the trace for IFCID 0318, DB2 resets the IFCID 0316
statistics counters for all statements in the cache to 0.

READA: Syntax and Usage
The READA function allows a monitor program to asynchronously read data that
has accumulated in an OPn buffer.

 Authorization
On a READA request the application program must own the specified destination
buffer, or the request is denied. You can obtain ownership of a storage buffer by
issuing a START TRACE to an OPn destination. The primary authorization ID or
one of the secondary authorization IDs of the process must have MONITOR1 or
MONITOR2 privilege or the request is denied. READA requests are checked for
authorization once for each user of the thread. (Several users can use the same
thread, but an authorization check is performed each time the user of the thread
changes.)

 Syntax
CALL DSNWLI,('READA ',ifca,return-area),VL

ifca Contains information about the OPn destination and the ownership token
value (IFCAOWNR) at call initiation. After the READA call has been
completed, the IFCA contains the return code, reason code, the number of
bytes moved to the return area, the number of bytes not moved to the return
area if the area was too small, and the number of records lost. See “Common
Communication Areas” on page X-143 for a description of the IFCA.

return-area
Contains the varying-length records returned by the instrumentation facility. If
the return area is too small, as much of the output as will fit is placed into the
area (a complete varying-length record). Reason code 00E60802 is returned
in cases where the monitor program's return area is not large enough to hold
the returned data. See “Return Area” on page X-146 for a description of the
return area.

IFI allocates up to 8 OP buffers upon request from storage above the line in
extended CSA. IFI uses these buffers to store trace data until the owning
application performs a READA request to transfer the data from the OP buffer
to the application's return area. An application becomes the owner of an OP
buffer when it issues a START TRACE command and specifies a destination
of OPN or OPX. Each buffer can be of size 4K to 1M. IFI allocates a
maximum of 4MB of storage for the 8 OP buffers. The default monitor buffer
size is determined by the MONSIZE parameter in the DSNZPARM module.

X-140 Administration Guide

 Usage Notes
You can use a monitor trace that uses any one of eight online performance monitor
destinations, OPn, (where n is equal to a value from 1 to 8). Typically, the
destination of OPn is only used with commands issued from a monitor program. For
example, the monitor program can pass a specific online performance monitor
destination (OP1, for example) on the START TRACE command to start
asynchronous trace data collection.

If the monitor program passes a generic destination of OPX, the instrumentation
facility assigns the next available buffer destination slot and returns the OPn
destination name to the monitor program. To avoid conflict with another trace or
program that might be using an OP buffer, we strongly recommended that you use
the generic OPX specification when you start tracing. You can then direct the data
to the destination specified by the instrumentation facility with the START or
MODIFY TRACE commands.

There are times, however, when you should use a specific OPn destination initially:

� When you plan to start numerous asynchronous traces to the same OPn
destination. To do this, you must specify the OPn destination in your monitor
program. The OPn destination started is returned in the IFCA.

� When the monitor program specifies that a particular monitor class (defined as
available) together with a particular destination (for example OP7) indicates that
certain IFCIDs are started. An operator can use the DISPLAY TRACE
command to determine which monitors are active and what events are being
traced.

Buffering Data: To have trace data go to the OPn buffer, you must start the trace
from within the monitor program. After the trace is started, DB2 collects and buffers
the information as it occurs. The monitor program can then issue a read
asynchronous (READA) request to move the buffered data to the monitor program.
The buffering technique ensures that the data is not being updated by other users
while the buffer is being read by the READA caller. For more information, see “Data
Integrity” on page X-149.

Possible Data Loss: Although it is possible to activate all traces and have the
trace data buffered, it is definitely not recommended, because performance might
suffer and data might be lost.

Data loss occurs when the buffer fills before the monitor program can obtain the
data. DB2 does not wait for the buffer to be emptied, but, instead, informs the
monitor program on the next READA request (in the IFCARLC field of the IFCA)
that the data has been lost. It is the user's responsibility to have a high enough
dispatching priority that the application can be posted and then issue the READA
request before significant data is lost.

 Asynchronous Data
DB2 buffers all IFCID data that is activated by the START TRACE command and
passes it to a monitor program on a READA request. The IFCID events include all
of the following:

 � Serviceability
 � Statistics
 � Accounting

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-141

 � Performance
 � Audit data
� IFCIDs defined for the IFI write function

IFCID events are discussed in “DB2 Trace” on page X-177.

Your monitor program can request an asynchronous buffer, which records trace
data as trace events occur. The monitor program is then responsible for unloading
the buffer on a timely basis. One method is to set a timer to wake up and process
the data. Another method is to use the buffer information area on a START TRACE
command request, shown in Table 146 on page X-128, to specify an ECB address
to post when a specified number of bytes have been buffered.

 Example
The following depicts the logic flow for monitoring DB2 accounting and for
displaying the information on a terminal:

 1. Initialize.

2. Use GETMAIN to obtain a storage area equal to BUFSIZE.

3. Start an accounting trace by issuing a DB2 START TRACE=ACCTG
DEST=OPX command through IFI indicating to wake up this routine by a POST
whenever the buffer is 20% full.

4. Check the status in the IFCA to determine if the command request was
successful.

5. WAIT for the buffer to be posted.

6. Clear the post flag.

7. Call IFI to obtain the buffer data via a READA request.

8. Check the status of the IFCA to determine if the READA request was
successful.

9. De-block the information provided.

10. Display the information on a terminal.

11. Loop back to the WAIT.

WRITE: Syntax and Usage
A monitor program can write information to a DB2 trace destination by issuing a
write (WRITE) request for a specific IFCID.

 Authorization
WRITE requests are not checked for authorization, but a DB2 trace must be active
for the IFCID being written. If the IFCID is not active, the request is denied. For a
WRITE request, no other authorization checks are made.

X-142 Administration Guide

 Syntax
CALL DSNWLI,('WRITE ',ifca,output-area,ifcid-area),VL

The write function must specify an IFCID area. The data written is defined and
interpreted by your site.

ifca Contains information regarding the success of the call. See “IFCA” on
page X-144 for a description of the IFCA.

output-area
Contains the varying-length of the monitor program's data record to be
written. See “Output Area” on page X-147 for a description of the output area.

ifcid-area
Contains the IFCID of the record to be written. Only the IFCIDs defined to the
write function (see Table 149) are allowed. If an invalid IFCID is specified or
the IFCID is not active (was not started by a TRACE command), no data is
written. See Table 149 for IFCIDs that can be used by the write function.

Table 149. Valid IFCIDs for WRITE Function

IFCID
(Decimal)

IFCID
(Hex)

Trace Type

Class

Comment

0146 0092 Auditing 9 Write to IFCID 146

0151 0097 Accounting 4 Write to IFCID 151

0152 0098 Statistics 2 Write to IFCID 152

0153 0099 Performance 1 Background events and write to IFCID 153

0154 009A Performance 15 Write to IFCID 154

0155 009B Monitoring 4 Write to IFCID 155

0156 009C Serviceability 6 Reserved for user-defined serviceability trace

See “IFCID area” on page X-146 for a description of the IFCID area.

 Usage Notes
The information is written to the destination that was previously activated by a
START TRACE command for that ID.

If your site uses the IFI write function, you should establish usage procedures and
standards. Procedures are necessary to ensure that the correct IFCIDs are active
when DB2 is performing the WRITE function. Standards are needed to determine
what records and record formats a monitor program should send to DB2. You
should place your site's record type and sub-type in the first fields in the data
record since your site can use one IFCID to contain many different records.

Common Communication Areas
The following communication areas are used on all IFI calls:

“IFCA” on page X-144, below
“Return Area” on page X-146
“IFCID area” on page X-146
“Output Area” on page X-147

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-143

 IFCA
The program's IFCA (instrumentation facility communication area) is a
communications area between the monitor program and IFI. A required parameter
on all IFI requests, the IFCA contains information about the success of the call in
its return code and reason code fields.

The monitor program is responsible for allocating storage for the IFCA and
initializing it. The IFCA must be initialized to binary zeros and the eye catcher,
4-byte owner field, and length field must be set by the monitor program. Failure to
properly initialize the IFCA results in denying any IFI requests.

The monitor program is also responsible for checking the IFCA return code and
reason code fields to determine the status of the request.

The IFCA fields are described in Table 150.

Table 150 (Page 1 of 2). Instrumentation Facility Communication Area. The IFCA is mapped by assembler
mapping macro DSNDIFCA.

Name

Hex
Offset

Data Type

Description

IFCALEN 0 Hex, 2 bytes Length of IFCA.

 2 Hex, 2 bytes Reserved.

IFCAID 4 Character, 4 bytes Eye catcher for block, IFCA.

IFCAOWNR 8 Character, 4 bytes Owner field, provided by the monitor program. This value is used
to establish ownership of an OPn destination and to verify that a
requester can obtain data from the OPn destination. This is not
the same as the owner ID of a plan.

IFCARC1 C Four-byte signed
integer

Return code for the IFI call. Binary zero indicates a successful
call. See Section 4 of Messages and Codes for information
about reason codes.

IFCARC2 10 Four-byte signed
integer

Reason code for the IFI call. Binary zero indicates a successful
call. See Section 4 of Messages and Codes for information
about reason codes.

IFCABM 14 Four-byte signed
integer

Number of bytes moved to the return area. A non-zero value in
this field indicates information was returned from the call. Only
complete records are moved to the monitor program area.

IFCABNM 18 Four-byte signed
integer

Number of bytes that did not fit in the return area and still
remain in the buffer. Another READA request will retrieve that
data. Certain IFI requests return a known quantity of information.
Other requests will terminate when the return area is full.

IFCAOPWS 1C Four-byte signed
integer

Reserved.

IFCARLC 20 Four-byte signed
integer

Indicates the number of records lost prior to a READA call.
Records are lost when the OP buffer storage is exhausted
before the contents of the buffer are transferred to the
application program via an IFI READA request. Records that do
not fit in the OP buffer are not written and are counted as
records lost.

X-144 Administration Guide

Table 150 (Page 2 of 2). Instrumentation Facility Communication Area. The IFCA is mapped by assembler
mapping macro DSNDIFCA.

Name

Hex
Offset

Data Type

Description

IFCAOPN 24 Character, 4 bytes Destination name used on a READA request. This field identifies
the buffer requested, and is required on a READA request. Your
monitor program must set this field. The instrumentation facility
fills in this field on START TRACE to an OPn destination from
an monitor program. If your monitor program started multiple
OPn destination traces, the first one is placed in this field. If your
monitor program did not start an OPn destination trace, the field
is not modified. The OPn destination and owner ID are used on
subsequent READA calls to find the asynchronous buffer.

IFCAOPNL 28 Two-byte signed
integer

Length of the OPn destinations started. On any command
entered by IFI, the value is set to X'0004'. If an OPn
destination is started, the length is incremented to include all
OPn destinations started.

 2A Two-byte signed
integer

Reserved.

IFCAOPNR 2C Character, 8 fields
of 4 bytes each

Space to return 8 OPn destination values.

IFCATNOL 4C Two-byte signed
integer

Length of the trace numbers plus 4. On any command entered
by IFI the value is set to X'0004'. If a trace is started, the
length is incremented to include all trace numbers started.

 4E Two-byte signed
integer

Reserved.

IFCATNOR 50 Character, 8 fields
of 2 bytes each.

Space to hold up to eight EBCDIC trace numbers that were
started. The trace number is required if the MODIFY TRACE
command is used on a subsequent call.

IFCADL 60 Hex, 2 bytes Length of diagnostic information.

 62 Hex, 2 bytes Reserved.

IFCADD 64 Character, 80
bytes

Diagnostic information.

| � IFCAFCI, offset 64, 6 bytes

| This contains the RBA of the first CI in the active log if
| IFCARC2 is 00E60854. See “Reading Specific Log Records
| (IFCID 0129)” on page X-93 for more information.

| � IFCAGBPN, offset 74, 8 bytes

| This is the group buffer pool name in error if IFCARC2 is
| 00E60838 or 00E60860

| � IFCABSRQ, offset 88, 4 bytes

| This is the size of the return area required when the reason
| code is 00E60864.

| � IFCAHLRS, offset 8C, 6 bytes

| This field can contain the highest LRSN or log RBA in the
| active log (when WQALLMOD is 'H'). Or, it can contain the
| RBA of the log CI given to the Log Exit when the last CI
| written to the log was not full, or an RBA of zero (when
| WQALLMOD is 'P').

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-145

 Return Area
You must specify a return area on all READA, READS, and COMMAND requests.
IFI uses the return area to return command responses, synchronous data, and
asynchronous data to the monitor program.

Table 151. Return Area

Hex.
Offset

Data Type

Description

0 Signed four-byte integer The length of the return area, plus 4. This must be set by the monitor
program. The valid range for READA requests is 100 to 1048576
(X'00000064' to X'00100000'). The valid range for READS requests is
100 to 2147483647 (X'00000064' to X'7FFFFFFF').

4 Character, varying-length DB2 places as many varying-length records as it can fit into the area
following the length field. The monitor program's length field is not
modified by DB2. Each varying-length trace record has a 2-byte length
field.

| Table 152. Return Area using IFCID 306

| Hex| Data type| Description

| 0| Signed four-byte integer| The length of the return area

| 4| Character, 4 bytes| The eye-catcher, a constant, I306. Beginning of
| QW0306OF mapping.

| 8| Character, 60 bytes.| Reserved

| 44| Signed four-byte integer| The length of the returned data.

| Note: For more information about reading log records, see “Appendix C. Reading Log Records” on page X-81

| The destination header for data returned on a READA or READS request is
| mapped by macro DSNDQWIW or the header QW0306OF for IFCID 306 requests.
| Please refer to prefix.SDSNSAMP(DSNWMSGS) for the format of the trace record
| and its header. The size of the return area for READA calls should be as large as
| the buffer specified on the BUFSIZE keyword when the trace is started.

Data returned on a COMMAND request consists of varying-length segments
(X'xxxxrrrr' where the length is 2 bytes and the next 2 bytes are reserved),
followed by the message text. More than one record can be returned.

The monitor program must compare the number of bytes moved (IFCABM in the
IFCA) to the sum of the record lengths to determine when all records have been
processed.

 IFCID area
You must specify the IFCID area on READS and WRITE requests. The IFCID area
contains the IFCIDs to process.

X-146 Administration Guide

Table 153. IFCID Area

Hex
Offset

Data Type

Description

0 Signed two-byte integer Length of the IFCID area, plus 4. The length can range from X'0006' to
X'0044'. For WRITE requests, only one IFCID is allowed, so the length
must be set to X'0006'.

For READS requests, you can specify multiple IFCIDs. If so, you must be
aware that the returned records can be in a different sequence than
requested and some records can be missing.

2 Signed two-byte integer Reserved.

4 Hex, n fields of 2 bytes
each

The IFCIDs to be processed. Each IFCID is placed contiguous to the
previous IFCID for a READS request. The IFCIDs start at X'0000' and
progress upward. You can use X'FFFF' to signify the last IFCID in the
area to process.

 Output Area
The output area is used on command and WRITE requests. The area can contain a
DB2 command or information to be written to the instrumentation facility. The first
two bytes of area contain the length of the monitor program's record to write or the
DB2 command to be issued, plus 4 additional bytes. The next two bytes are
reserved. You can specify any length from 10 to 4096 (X'000A0000' to
X'10000000'). The rest of the area is the actual command or record text.

For example, a START TRACE command is formatted as follows in an assembler
program:

DC X'ðð2Aðððð' LENGTH INCLUDING LLðð + COMMAND

DC CL38'-STA TRACE(MON) DEST(OPX) BUFSIZE(32) '

Interpreting Records Returned by IFI
The following section describes the format of the records returned by IFI as a result
of READA, READS, and COMMAND requests.

Trace Data Record Format
Trace records returned from READA and READS requests contain:

� A writer header that reports the length of the entire record, whether the record
was in the first, middle, or last section of data, and other specific information for
the writer.

| The writer header for IFI is mapped by DSNDQWIW or the header QW0306OF
| for IFCID 306 requests. Refer to prefix.SDSNSAMP(DSNWMSGS) for the
| format of the trace record and its header.

� A self-defining section

� A product section containing specific DB2 information based on the active trace

� Data areas containing the actual recorded data are mapped by multiple
mapping macros described in prefix.SDSNSAMP(DSNWMSGS).

For detailed information about the format of trace records and their mapping
macros, see “Appendix D. Interpreting DB2 Trace Output” on page X-107, or

| Appendix H of Application Programming and SQL Guide.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-147

The following example, in dump format, shows the return area after a READS
request successfully executed.

DFSERA1ð - PRINT PROGRAM
...

 .A/ .B/ .C/
 ðððððð ð5A8ðððð ððððð51ð ðð98ððð1 ðððððð54 ððB8ððð1 ððððð1ðC ð1ððððð1 ððððð2ðC

 ðððð2ð ð116ððð1 ððððð324 ð1Bðððð1 ððððð4D4 ðððððððð ððððð4D4 ððð8ððð1 ððððð4DC

 .D/
 ðððð4ð ððð1ððð1 ððððð4Eð ðððððððð ððððð4Eð ðð3ðððð1 8ððððð18 ðððððð1ð ððððð3E8

 ðððð6ð ðð64ðð64 ðððAðð28 ðð3Dðððð ððððAððð ððð33ððð ððð33ððð ððð1ðððð Eððððððð

 ðððð8ð ðððððððð ðððððððð ðððððððð C1C4D4C6 FðFðF14ð FðF2ðð8ð ðððð3ð84 ðððððððð

 ððððAð ðððð2ððð ððð5ðð3C ðð28Fð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð 4ð4ð4ð4ð

...

 ððð32ð Bððððððð 2ð27ð1Dð E2D7D9D4 D2C4C4Fð FðF1F94ð ð198ðð64 ðððððððð E7C14ððð

 ððð34ð ðð4ðð28ð C5E2E8E2 C1C4D44ð 4ððððððð ðððE1ððð ððððð1BC ððððð1Bð C9C2D4E4

 ððð36ð E2C5D94ð C9D9D3D4 D7D9D6C3 C9D9D3D4 ðððððð3C ððððð12C ðððððððA 8ð8ððð8C

 ððð38ð ððFAðððð ðððð7Dðð ðððAðð14 ððð5ðð28 ðððEððð2 ððð8ððð8 ðð4ððð77 ððððð514

 ððð3Að ððððð3E8 ð12Cðððð ðððððððE ðððAð1F4 ððFAðððð ðððððð32 ððððð3E8 ðððð271ð

 ððð3Cð E2E8E2C1 C4D44ð4ð E2E8E2D6 D7D94ð4ð E2E8E2D6 D7D94ð4ð ðððAðð8ð ðð14ðððð

 ððð3Eð ðððððð8ð ððð5ðððA 1388ðð78 ððð8ðððA ððð4ððð4 ððð4ððð5 ððð1ðððA ððð2ððð5

 ððð4ðð ðððð3ððð ðððð78ðð ððððððð1 ððððð7Dð ððð4ð4ðð ðð78ðð78 ððð1ððð3 ððð19ððð

 ððð42ð ðððððððA ðððððð2ð ðððððð19 ðððððððð ððð5ðððA ððð6ðððA ðð64ðð64 ððð4ðð63

 ððð44ð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð46ð 3ðC4E2D5 D9C7C3D6 D3C4E2D5 6DD9C5C7 C9E2E3C5 D96DC1D7 D7D3C4E2 D56DD9C5

 ððð48ð C7C9E2E3 C5D96DD6 C2D1E38ð C4E2D5D9 C7C6C4C2 ððððð9FD C5ðððððð ðððð1ð6ð

 ððð4Að ððð2ðððð ðððð1ððð 4ððððððð ðððððððð ðððððððð ðððððððð ðððððððð ðððððððð

 ððð4Cð ðððððððð ðððððððð ðððððððð F1F161F1 F361F9F2 C4E2D5C3 F3F1Fð4ð 8ððððððð

 ððð4Eð ðð16ðð3ð C6C1C34ð ððð1ðððð C4C4C64ð 4ð4ð4ð4ð C18ðððð2 ðððððððð C1C3E3C9

 .E/ .F/
 ððð5ðð E5C54ð4ð ðððððððð ðððððððð ðððððððð ðð4Cð11A ðð6AðA31 ððB45B78 E2E2D6D7

 ððð52ð A6E9C7D5 EBDB11ð4 ððððððð8 ððððððð2 ððððððð1 E2C1D5E3 C16DE3C5 D9C5E2C1

 ððð54ð 6DD3C1C2 C4C2F2D5 C5E34ð4ð D3E4D5C4 Fð4ð4ð4ð A6E9C7D2 E73Cððð1 ðð4Cð2ðð

 ððð56ð E2E8E2C1 C4D44ð4ð D4D7C9E3 E2F14ð4ð 4ð4ð4ð4ð C2C1E3C3 C84ð4ð4ð C4E2D5C5

 ððð58ð C4C3D34ð E2E8E2C1 C4D44ð4ð ððððððð1 ðððððððð ðððððððð ðððððððð ðððððððð

 ððð5Að ðððððððð ðððððððð

Figure 177. Example of IFI return area after READS request (IFCID 106). This output was assembled by a
user-written routine and printed with the DFSERA10 print program of IMS.

For more information on IFCIDs and mapping macros, see “DB2 Trace” on
page X-177 and “Appendix D. Interpreting DB2 Trace Output” on page X-107.

Figure Label Description

.A/05A8 Length of record. The next two bytes are
reserved.

.B/00000510 Offset to product section standard header.

.C/00000054 Offset to first data section.

.D/80000018 Beginning of first data section.

.E/004C011A Beginning of product section standard
header.

.F/006A IFCID (decimal 106).

X-148 Administration Guide

Command Record Format
The record returned from a command request can contain none or many message
text segments. Each segment is a varying-length message (LLZZ, where LL is the
2-byte length and ZZ is a 2-byte reserved area) followed by message text. The
IFCA's IFCABM field contains the total number of bytes moved.

The following example, in dump format, shows the return area after a START
TRACE command successfully executed.

DFSERA1ð - PRINT PROGRAM
...

.A/ .B/ .C/ .D/
 ðððððð ðð7Eðððð ðððððð7A ðð3Cððð1 C4E2D5E6 F1F3FðC9 4ð6F4ðD4 D6D54ðE3 D9C1C3C5

 ðððð2ð 4ðE2E3C1 D9E3C5C4 6B4ðC1E2 E2C9C7D5 C5C44ðE3 D9C1C3C5 4ðD5E4D4 C2C5D94ð

 .E/ .F/
 ðððð4ð FðF24ð15 ðð3Aððð1 C4E2D5F9 FðF2F2C9 4ð6F4ðC4 E2D5E6E5 C3D4F14ð 7D6ðE2E3

 ðððð6ð C1D9E34ð E3D9C1C3 C57D4ðD5 D6D9D4C1 D34ðC3D6 D4D7D3C5 E3C9D6D5 4ð15

Figure 178. Example of IFI Return Area after a START TRACE Command. This output was assembled with a
user-written routine and printed with DFSERA10 program of IMS.

Figure Label Description

.A/007E0000 Field entered by print program

.B/0000007A Length of return area

.C/003C Length of record (003C). The next two bytes are reserved.

.D/C4E2D5E6 Beginning of first message

.E/003A Length of record. The next two bytes are reserved.

.F/C4E2D5F9 Beginning of second message

The IFCABM field in the IFCA would indicate that X'00000076' (.C/ + .E/) bytes
have been moved to the return area.

 Data Integrity
Although IFI displays DB2 statistics, agent status, and resource status data, it does
not change or display DB2 database data. When a process retrieves data,
information is moved from DB2 fetch-protected storage to the user's address space,
or from the address space to DB2 storage, in the storage key of the requester.
Data moved by the READA request is serialized so that only clean data is moved
to the address space of the requester.

The serialization techniques used to obtain data for a given READA request could
have a minor performance impact on processes that are storing data into the
instrumentation facility buffer simultaneously. Failures during the serialization
process are handled by DB2.

The DB2 structures searched on a READS request are validated before they are
used. If the DB2 structures are updated while being searched, inconsistent data
might be returned. If the structures are deleted while being searched, users might
access invalid storage areas, causing an abend. If an abend does occur, the

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-149

functional recovery routine of the instrumentation facility traps the abend and
returns information about it to the application program's IFCA.

 Auditing Data
Starting, stopping, or modifying trace through IFI might cause changes to the
events being traced for audit. Each time these trace commands are processed a
record is sent to the destination processing the trace type. In the case of audit, the
audit destination receives a record indicating a trace status has been changed.
These records are IFCID 0004 and 0005.

 Locking Considerations
When designing your application to use IFI, you need to consider the potential for
locking delays, deadlocks, and time-out conflicts. Locks are obtained for IFI in the
following situations:

� When READS and READA requests are checked for authorization, short
duration locks on the DB2 catalog are obtained. When the check is made,
subsequent READS or READA requests are not checked for authorization.

| Remember, if you are using the access control exit routine, then that routine
| might be controlling the privileges that the monitor trace can use.

� When DB2 commands are submitted, each command is checked for
authorization. DB2 database commands obtain additional locks on DB2 objects.

A program can issue SQL statements through an attachment facility and DB2
commands through IFI. This environment creates the potential for an application to
deadlock or time-out with itself over DB2 locks acquired during the execution of
SQL statements and DB2 database commands. You should ensure that all DB2
locks acquired by preceding SQL statements are no longer held when the DB2
database command is issued. You can do this by:

� Binding the DB2 plan with ACQUIRE(USE) and RELEASE(COMMIT) bind
parameters

� Initiating a commit or rollback to free any locks your application is holding,
before issuing the DB2 command

If you use SQL in your application, the time between commit operations should be
short. For more information on locking, see “Chapter 5-7. Improving Concurrency”
on page 5-137.

 Recovery Considerations
When an application program issues an IFI call, the function requested is
immediately performed. If the application program subsequently abends, the IFI
request is not backed out. In contrast, requests that do not use IFI are committed
and abended as usual. For example, if an IFI application program also issues SQL
calls, a program abend causes the SQL activity to be backed out.

 Errors
While using IFI, you might encounter any of these types of error:

� Connection failure, because the user is not authorized to connect to DB2
� Authorization failure, because the process is not authorized to access the DB2

resources specified

X-150 Administration Guide

Requests sent through IFI can fail for a variety of reasons, including:

� One or more parameters are invalid.
� The IFCA area is invalid.
� The specified OPn is in error.
� The requested information is not available.
� The return area is too small.

Return code and reason code information is stored in the IFCA in fields IFCARC1
and IFCARC2. Further return and reason code information is contained in Section 4
of Messages and Codes.

 Appendix E. Programming for the Instrumentation Facility Interface (IFI) X-151

X-152 Administration Guide

Appendix F. Sharing Read-Only Data

DB2 allows you to read common DB2 data from a number of DB2 subsystems
using shared read-only data. With shared read-only data, you can share the
physical data for a given database among DB2 subsystems, but one DB2
subsystem has exclusive control over updating the data in that shared database.
The database in the system that can update is called the owner. The same
database in any other system is called a reader. A system can only read the data
in a reader. Data cannot be read from a reader while the owner is being updated.

Occasionally, we use the term “owning DB2” to refer to the DB2 subsystem
containing the owner. We also use the term “read-only DB2” or “reading DB2” to
refer to the DB2 subsystem containing a reader.

We recommend that you use full read-write data sharing, rather than shared
read-only data. For information on full read-write data sharing, see Data Sharing:
Planning and Administration.

Overview of Shared Read-Only Data
� “Implementing Shared Read-Only Data” on page X-155

This section gives an overview of the entire process of setting up global
resource serialization (GRS), creating objects in the owner and the readers,
and running utilities.

� “Create DB2 Objects to be Shared” on page X-158

You do not create any physical data objects for the reader, but you do perform
data definitions for it. These make the DB2 catalog for the reader mimic the
catalog for the owner. This allows applications running on the read-only DB2 to
access the physical data belonging to the owner.

� “Starting and Stopping a Shared Database” on page X-164

This is an important topic to understand before you begin working with shared
read-only data. To update data in an owner, you must first stop any relevant
index and table spaces in the readers.

� “Maintaining Shared Read-Only Data” on page X-167

This section describes how you can update data, and add, alter or drop objects
in a shared database. It also describes recovery considerations and special
considerations for running utilities in a shared read-only data environment.

Prerequisites for Shared Read-Only Data
The sharing DB2 subsystems can be on the same processor, or on separate
processors.

If the subsystems are on separate MVS systems or processors, you must tell the
Data Facility Product that the integrated catalog facility catalog is shared. See
DFSMS/MVS: Access Method Services for the Integrated Catalog for information
about how to do that.

 Copyright IBM Corp. 1982, 1997 X-153

The shared data must be stored on DASD that is channel-connected to the
subsystems that access the data. Data integrity is enforced through MVS's global
resource serialization (GRS), or an equivalent, and VSAM sharing options.

If you are using GRS, the processors must communicate with dedicated
channel-to-channel connections; in other words, you cannot use the same channel
connections as you would use for the distributed data facility.

Benefits of Shared Read-Only Data
If you have a substantial amount of common shared data, and you can tolerate the
operational complexity, consider shared read-only data in the following situations:

� You need faster performance than you can get by distributing data, and you do
not need all the function the distributed data facility offers. See Section 3 of
Installation Guide for more information about the distributed data facility. See
“Comparing Shared Read-Only Data and Distributed Data” on page X-155 for a
comparison of the distributed data facility and shared read-only data.

� You want to conserve DASD. Without shared read-only data, if you want to
share your data across DB2 subsystems, you must replicate the data in all the
sharing systems. With shared read-only data, you only need one copy of the
data.

� You need to improve capacity throughout the system.

By sharing the query processing load among more than one DB2 subsystem,
you ease the load on the query applications during prime work hours. By
running update transactions in a batch window—without the additional
overhead of the query processing—you improve the capacity of the update
transactions.

Alternatively, you can run daily transactions that update the data in one owning
subsystem, and then run batch data analysis and reports at night on several
readers.

Costs of Shared Read-Only Data
We recommend that you carefully consider the following drawbacks to shared
read-only data:

� Shared read-only data is operationally complex. You must stop index and table
spaces or partitions before you can update the data, and you must restart them
again to read data on multiple DB2 subsystems.

Consider using NetView CLISTs to ensure that commands are entered in the
correct sequence on the correct subsystems. Also, you must devise a method
to make sure that definitions for the owner are also created for the readers.

� The data is not available for update continuously. Shared read-only data does
not allow for concurrent read/write access.

� In order for a nonpartitioned index to be connected in read-only (RO) mode, all
logical partitions must be started for read-only access.

X-154 Administration Guide

Comparing Shared Read-Only Data and Distributed Data
Both the distributed data facility and shared read-only data give you ways to access
data outside a single DB2 environment. The following table summarizes the main
differences between the two methods:

Using DDF and Shared Read-Only Data Together: You can use a DDF and a
shared read-only data configuration for the same shared data. For example, you
might want a non-DB2 requester to have occasional access to the shared data.
However, be aware that operating such a configuration can become very complex.

Table 154. Comparing Shared Read-only Data and DDF

 Shared read-only data DDF

Update flexibility Not flexible. There is a strict
window for update activity.

More flexibility for update.

Physical
proximity

Must be close enough for
channel-to-channel connections
between DB2s.

With proper connections, distance
is not a problem (except, perhaps,
for performance).

DASD All participating DB2s need
access to shared DASD.

DASD does not have to be shared.

Setup and
operational
complexity

GRS setup can be complicated if
GRS expertise is lacking.
Procedures for starting and
stopping objects are complex.

VTAM configurations must be
established, and VTAM expertise
is needed.

Performance No real difference from normal
DB2 performance.

Network overhead can be high,
especially for single selects and
updates. Block fetch can alleviate
overhead for large selects with no
intention for updating.

Accounting All DB2 activity in the readers is
collected in the SMF log of the
MVS system on which the DB2
subsystem resides.

DB2 activity records are cut in
both the requesting and the
serving subsystems—they must be
combined for proper charging.

Implementing Shared Read-Only Data
To implement your setup for shared read-only data, first make sure your GRS
environment is ready for use with DB2. Second, plan how you will set up and
maintain data definitions for the owner and the readers. Then, create the owner,
either by altering an existing database to be shared or by defining a new one and
loading it with data. Finally, create the counterpart objects (with no data) in the
reader.

Steps for Sharing an Existing Database
1. “Tune GRS for DB2” on page X-157.

2. “Plan to Set Up and Maintain Data Definitions” on page X-156.

3. “Alter an Existing Database to be Shared” on page X-157.

4. Create Objects for the Readers.

See “Create DB2 Objects to be Shared” on page X-158.

5. Re-create statistics in the readers.

 Appendix F. Sharing Read-Only Data X-155

You do this by performing RUNSTATS on all DB2s for shared objects, as
described in “Appendix G. Using Tools to Monitor Performance” on
page X-173. Or, you can use SQL to update the statistics in the DB2 catalog
for each reader. The columns you can update are shown in Table 86 on
page 5-244.

Steps for Sharing a New Database
1. “Tune GRS for DB2” on page X-157.

2. “Plan to Set Up and Maintain Data Definitions.”

3. Create Objects for the Owner.

See “Create DB2 Objects to be Shared” on page X-158.

4. “Load Data in the Owner” on page X-163.

5. Create Objects for the Readers.

See “Create DB2 Objects to be Shared” on page X-158.

6. Re-create statistics in the readers.

You do this by performing RUNSTATS on all DB2s for shared objects, as
described in “Appendix G. Using Tools to Monitor Performance” on
page X-173. Or, you can use SQL to update the statistics in the DB2 catalog
for each reader. The columns you can update are shown in Table 86 on
page 5-244.

Plan to Set Up and Maintain Data Definitions
If you are creating a new database to be shared, make sure that you do not have
any existing databases, table spaces, or index spaces on a sharing DB2 that have
the same fully qualified name as those you want to create for sharing.

Although there is only one physical copy of the DB2 objects in a shared database,
the DB2 catalogs for the readers must also contain information about the objects.
Thus, you must create counterparts in all readers for all, or a subset of, the owner
database: table spaces, indexes, and tables.

Optionally, you can create counterparts for authorizations, views, synonyms, and
aliases. The decision to re-create this information depends on whether your
application plans and packages need this information to be the same. You must
re-create the catalog entries for any item that an application running against a
reader makes use of.

Recommendation: Because you must keep DB2 catalog information the same for
both readers and owners, we recommend that you keep all data definition
statements in a centralized location. Saving the data definition statements makes
the task of re-creating those definitions much easier.

Anything you drop or alter in the owner must also be dropped or altered in the
readers. The reader must not contain any objects that are not also in the owner.

X-156 Administration Guide

Tune GRS for DB2
We recommend that someone experienced with GRS perform this step. To create
DB2 sharing in an existing GRS complex (cross-MVS sharing), specify VSAM
SHAREOPTIONS (1,3) in the access method services DEFINE statement for the
VSAM data sets for table spaces and index spaces and the integrated catalog
facility catalog. For cross-MVS sharing, the “3” means the data set can be used by
multiple users, with each user responsible for maintaining data integrity. For shared
read-only data, DB2 relies on GRS to maintain data integrity.

See “Managing Your Data Sets Using Access Method Services” on page 2-69 for
information about creating data sets with access method services. If you use DB2
storage groups, this is taken care of automatically.

Excluding Data Sets
For read-only data sharing, you must exclude from sharing the bootstrap data set,
the catalog and directory, and all user data sets that are not shared resources. Also
exclude the MVS system catalog. To exclude these VSAM data sets from sharing,
add entries to your GRS SYSTEMS exclusion resource name list. Use
TYPE(GENERIC) entries with QNAME(SYSDSN) and RNAME(data set high level
qualifier).

If you enable full data sharing at a later time, you must remove the bootstrap data
set, the catalog, and the directory from the exclusion resource name list.

If you have too many VSAM data sets to exclude (perhaps because your naming
convention doesn't make it convenient), you can create a unique high level qualifier
for shared read-only data sets. You can modify the GRS ISGGREX0 exit at entry
point ISGGSEEX to allow only the data sets with the new unique high level qualifier
to participate in GRS sharing. For information about changing the high level
qualifier, see “Changing the High-Level Qualifier for DB2 Data Sets” on
page 2-139. For information about the ISGGREX0 exit, see MVS/ESA Installation
Exits. See MVS/ESA Planning: Global Resource Serialization for more information
about planning for and implementing global resource serialization.

Alter an Existing Database to be Shared
If you have SYSADM or SYSCTRL authority, you can convert the status of a
database from non-shared to owner. However, when you have created a reader
database, you cannot use SQL to convert its shared status. Instead, you must
drop the database and redefine it. For information about altering or dropping a
database, see “Altering DB2 Databases” on page 2-125.

Converting a Non-Shared Database to Sharing Owner:

To convert a database from non-shared to owner, do the following:

1. Make sure all user-managed data sets for table spaces and indexes are
defined with VSAM SHAREOPTIONS(1,3). If they are not, use access method
services to alter the SHAREOPTIONS values for all existing user-managed
data sets in the database. (DB2-managed data sets are converted when you
alter the database.)

 Appendix F. Sharing Read-Only Data X-157

2. Use the DISPLAY DATABASE command to make sure there is no check
pending or recover pending status set for the objects in the database.

3. Make sure no users are accessing the database by entering the following
command:

-STOP DATABASE (dbname) SPACENAM (\)

4. Start the database for read-write access by entering the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RW)

5. Enter the ALTER DATABASE statement and specify ROSHARE OWNER:

ALTER DATABASE NEWDB

 ROSHARE OWNER;

6. Stop the database by entering the following command:

-STOP DATABASE (dbname) SPACENAM (\)

This make the VSAM SHAREOPTIONS effective on the owner's storage
group's data sets.

Create DB2 Objects to be Shared
The information under this heading, up to “Starting and Stopping a Shared
Database” on page X-164, is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page xi.

Create DB2 Storage Groups
You can use user-defined or DB2-defined data sets with shared read-only data.
This section describes specific information about creating DB2 storage groups for
DB2-defined data sets in a shared read-only environment. General information
about creating storage groups is described in “Implementing Your Storage Groups”
on page 2-82. The VCAT and password values should be the same for both the
reader and owner. The volumes clause does not have to be the same, but having it
the same allows users on a reading DB2 subsystem to query the catalog for
volume information.

When creating objects on the owning DB2 subsystem, make sure the selected
volumes are on shared DASD.

When you create the DB2 storage group, specify the serial numbers of the volumes
needed for the table space or index. When a data set is defined in the shared
read-only environment, all volume serial numbers from the DB2 storage group are
stored in the VSAM catalog and used for data set extension.

If you are using SMS to manage your data sets, use an asterisk to specify each
volume you expect to use. For example, if you anticipate needing three volumes to
extend the data set, list three asterisks in the VOLUMES clause of your CREATE
STOGROUP statement:

CREATE STOGROUP stogroupname (VOLUMES('\','\','\')...

For each asterisk, SMS uses a volume from the storage group you defined for
SMS.

X-158 Administration Guide

If you do not list enough volumes, data set extension fails. In that case, you can
alter the storage group to contain more volumes, using the ALTER STOGROUP
statement. New volumes added to a DB2 storage group are not available to a data
set until you do one of the following:

� Execute a CREATE TABLESPACE or CREATE INDEX statement
� Run the LOAD REPLACE, REORG, or RECOVER utility

Unlike the case with normal DB2-managed data sets, when you create a table
space in the reader that has the same name as one in the owner, DB2 does not
delete and redefine the data set.

Create a Database
Use the ROSHARE clause in the SQL CREATE DATABASE statement to define a
database as shared and to specify either that it is an owner (which can update
data), or is a reader (which can only read, not update, data). To use the ROSHARE
clause, you must have SYSADM or SYSCTRL authority.

After you create a database, the ROSHARE column in the
SYSIBM.SYSDATABASE catalog table indicates whether a database is an owner
or reader (or neither) and includes the time when the owner was created. The
catalog entry for the reader is not updated with this timestamp until you create the
first table space in the reader.

For ease of use, we recommend that you use the same storage group attributes for
both the owner and the readers and that you make the buffer pool page size
attributes compatible. For example, specify both buffer pools as 4KB pages, or both
buffer pools as 32KB pages.

Create the Owner:
Issue CREATE DATABASE with the ROSHARE OWNER option in the owning
subsystem. The following example creates a database named DONSDB and makes
it an owner:

CREATE DATABASE DONSDB

 ROSHARE OWNER;

Create the Readers:
Issue CREATE DATABASE with the ROSHARE READ option in the each reading
subsystem. The following example creates DONSDB and defines it as read-only.

CREATE DATABASE DONSDB

 ROSHARE READ;

You must not create any objects for the readers that differ from the objects in the
owner.

Create Table Spaces
You can create all types of table spaces (simple, segmented, and partitioned) in a
shared database. After creating a table space in the owner, you can use the same
data definition statement to create the counterpart table space in the readers, or
you can specify different values for some options.

 Appendix F. Sharing Read-Only Data X-159

For both DB2-managed data sets and user-managed data sets, be sure the data
sets are on shared volumes (use the same integrated catalog facility catalog name)
that are accessible to both owning and reading DB2 subsystems.

Create Table Spaces for the Owner
1. If you are managing your own data sets, define all data sets for the owner's

shared table spaces with VSAM SHAREOPTIONS(1,3), which allows either
multiple readers or a single updater at any given time. If you let DB2 create
data sets, this is taken care of automatically.

2. Issue CREATE TABLESPACE in the owning DB2 subsystem. The following
example creates a simple table space in the shared database called DONSDB:

CREATE TABLESPACE TS1

 IN DONSDB

 BUFFERPOOL BPð

 LOCKSIZE TABLESPACE

 CLOSE NO

USING VCAT DONSCAT;

Create Table Spaces for the Readers
1. Stop the table space in the owner by entering the following command for the

owner:

-STOP DATABASE (dbname) SPACENAM (\)

This writes the changes to DASD and closes the data sets. More information
about the STOP DATABASE and START DATABASE commands for shared
databases is included in “Starting and Stopping a Shared Database” on
page X-164.

Optionally, if you want read access to the owner's data, enter the following
command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RO)

2. Issue your CREATE TABLESPACE statement in the reading DB2 subsystem,
specifying the same values as in the owner for these options:

 NAME IN
 USING NUMPARTS
 SEGSIZE DSETPASS

You can specify different values for the following options:

 � BUFFERPOOL

Although you can specify a different buffer pool for the reader, both buffer
pool values must have the same page size attribute (4KB pages, for
example).

 � CLOSE

With shared read-only data, you usually control the closing of data sets
using the STOP command. However, you can use the CLOSE option to
determine the order in which data sets are closed in those cases when
DB2 has to close data sets to control the number of open data sets. See
“CLOSE Clause” on page 2-89 for more information about the CLOSE
option.

 � LOCKSIZE

X-160 Administration Guide

For all table spaces accessed in read-only mode (including non-shared
table spaces), DB2 implicitly uses LOCKSIZE TABLESPACE when
accessing table spaces in read-only mode. DB2 honors the LOCKSIZE
attribute in the owner when a table space is accessed in read-write mode.
For more information about locking, see “Chapter 5-7. Improving
Concurrency” on page 5-137.

� FREEPAGE and PCTFREE

It does not matter what values you specify for FREEPAGE and PCTFREE
in the reader because you cannot load and reorganize data in that
database.

 � COMPRESS

It does not matter what you specify for COMPRESS in the reader because
compression only occurs with UPDATE and INSERT SQL statements, or
with the LOAD and REORG utilities, none of which you can perform on the
reader. Because the data sets themselves contain information about
compression, DB2 processes compressed data correctly for the read-only
queries.

 Create Tables
To create shared tables, first define the tables in the owner and then create their
counterparts in the readers. To create a counterpart table, you must append the
object identifier (OBID) of the table in the owner to your data definition statement.

Create Tables for the Owner
1. Stop the table space for the table in all readers and start it read-write in the

owner.

2. Issue the SQL CREATE TABLE statement in the owning DB2 subsystem. The
following example creates a table named DON.EMP in DONSDB.TS1.

CREATE TABLE DON.EMP

 (EMPNAME CHAR(18),

EMPID CHAR(8) NOT NULL,

 EMPATTR CHAR(8))

 IN DONSDB.TS1;

Create Tables for the Readers
1. Stop the table space for the table in the owner.

2. Find the OBID for the table in the owner by querying SYSIBM.SYSTABLES in
the owning DB2 subsystem. The following example queries the OBID of
DON.EMP.

SELECT OBID

 FROM SYSIBM.SYSTABLES

WHERE CREATOR='DON' AND

 NAME='EMP';

3. After you know the OBID, use that identifier in the CREATE TABLE statement
in the reading subsystem, as shown below.

 Appendix F. Sharing Read-Only Data X-161

CREATE TABLE DON.EMP

 (EMPNAME CHAR(18),

EMPID CHAR(8) NOT NULL,

 EMPATTR CHAR(8))

 IN DONSDB.TS1

 OBID 14;

You must specify the same values in the reader and the owner for the following
options:

� The IN clause, which must be specified
� The column data types
� The order of the columns
� The edit procedure, if you use one.

You will probably want to keep the table name and column names the same,
as well, so that the systems can share plans and packages.

Consider using the same FIELDPROCs in the reader and owner tables to
maintain a consistent look in all sharing subsystems. The VALIDPROC, AUDIT
CHANGES and DATA CAPTURE clauses are of no use in a reader, because
the reader cannot be updated.

Using Referential Constraints
There are no restrictions for enforcing referential integrity in a shared database,
unless the referential structure crosses database boundaries. Two tables
participating in a referential relationship across databases must either be:

� Updateable, as when both tables are in owners or one table is in an owner,
and the other is in a non-sharing database

� Read-only, which means both tables are in readers.

As with regular non-sharing databases, when a parent table resides in one
database and a dependent table resides in a different database, then you must
define both databases before creating the referential constraint.

For more information about referential integrity, see “Chapter 2-3. Maintaining Data
Integrity” on page 2-19.

Re-creating Referential Relationships in the Reader: Optionally, you can
re-create referential relationships in the DB2 catalog in the reading DB2 subsystem
so that users can query that catalog and view the referential relationships.
RELOBID1 and RELOBID2 contain the value zero, because no object descriptors
are generated for the reader. The reading DB2 subsystem does not actually need
the catalog information about referential relationships because it does not update
the data.

 Create Indexes
If you are using DB2 storage groups, define the storage group for both the owner
and the readers with the same integrated catalog facility catalog name, even
though the data sets are defined only in the DB2 subsystem containing the owner.

X-162 Administration Guide

Create Indexes for the Owner
1. Start the database and table space related to the index for read-write access.

2. If you are managing your own data sets, define all data sets for the owner's
shared indexes with VSAM SHAREOPTIONS(1,3), which allows either multiple
readers or a single updater. If you let DB2 create data sets, this is taken care
of automatically.

3. Issue CREATE INDEX in the owning DB2 subsystem, as shown in the following
example:

CREATE UNIQUE INDEX EMPIX1

 ON DON.EMP

 (EMPID ASC)

USING VCAT DONSCAT

 CLUSTER

 CLOSE NO

 BUFFERPOOL BP1;

Hint: Create the index name with eight or fewer characters, and make sure
that the name you choose does not exist already in the database for
any other table spaces or indexes. By doing this, you can avoid having
DB2 randomly generate the index space name part of the VSAM data
set name.

Create Indexes for the Readers
1. Stop the index space in the owner.

2. If you didn't specify an index space name for the owner, you must determine
the DB2-generated name. To determine the name used by DB2, use the
following query against the owning DB2's catalog:

SELECT INDEXSPACE FROM SYSIBM.SYSINDEXES

WHERE CREATOR = 'index_creator'
AND NAME = 'index_name';

3. Issue your CREATE INDEX statement in the reading subsystem, specifying the
same values as in the owner, except that you can specify a different value for
BUFFERPOOL and CLOSE. PCTFREE and FREEPAGE are used when
reorganizing an index and thus have no meaning for a reader.

Load Data in the Owner
Use the LOAD utility or SQL INSERT statements to put records into the owner's
tables. For more information about the LOAD utility, see “Chapter 2-10. Loading
Data into DB2 Tables” on page 2-113.

Run COPY and, optionally, RUNSTATS on the data. The COPY utility prepares you
for recovery and the RUNSTATS utility updates catalog statistics. COPY prepares
you for recovery. See “Appendix G. Using Tools to Monitor Performance” on
page X-173 for information about RUNSTATS, and Utility Guide and Reference for
information about COPY.

 Appendix F. Sharing Read-Only Data X-163

Starting and Stopping a Shared Database
This section discusses special considerations and recommendations for starting
and stopping shared databases. As shown in Figure 179, an owner, DBX in this
case, can be started for read-only access from the owning DB2 (DB2A) and can be
read concurrently by the reading DB2s (DB2B and DB2C).

Shared
DataDBX

(Owner)

DBX
(Reader)

DBX
(Reader)

DB2A

DB2B

DB2CRead

Read

Read

Figure 179. DB2s Reading Shared Data Concurrently. Any or all of the sharing databases,
including the owner, can read the shared data, except when the owner is being updated.
data to be read.

As Figure 180 on page X-165 illustrates, to update DBX, you must first stop any
relevant index spaces and table spaces in all readers. Though you only need to
stop index spaces, table spaces or partitions that need to be accessed, its easier to
stop the entire database. Use the STOP DATABASE command with the
SPACENAM option. Then, start the objects for read-write access in the owner.

Because no other DB2 can access shared data while it is being updated in the
owner, you should schedule updates for a specified window of time.

X-164 Administration Guide

DB2A

DB2B

DB2C

Shared
Data

DBX
(Owner)

Update

DBX
(Stopped)

DBX
(Stopped)

Figure 180. The Owning DB2 Updates Shared Data. The reading DB2s must stop access
to the shared data while the owner is being updated.

When DB2 is through updating the data in the owner, you must stop access to the
data by stopping the table spaces and index spaces. Then, the database can be
restarted for read-only shared access by all sharing subsystems that read the data.

A single DB2 can have both owners and readers. For example, DB2A's database
DBX can be the owner, and, at the same time, DB2A's DBY can be a reader. This
configuration is shown in Figure 181, where you can see that DBY is defined as an
owner in DB2B and DBX is defined as a reader. It also shows that shared data
cannot be read and updated at the same time.

DBX
(Owner)

DBX
(Stopped)

DBY
(Stopped)

DB2A DB2B

Shared
Data

DBY
(Owner)

Update

Figure 181. A Single DB2 Can Contain a Reader and an Owner. Because read and update
activity cannot occur concurrently on a single shared database, the reader is stopped while
the owner is updated.

Starting and stopping table spaces or partitions and index spaces in a shared
database is an essential part of managing a shared database. For example, to
update data in a specified table space or partition or index space, you have to stop
the readers from accessing that object. If you do not, the object you want to update
is not available for update access. Indeed, whenever you switch access modes in
the owner (from read-write to read-only, or from read-only to read-write), you have
to first stop the database (using the SPACENAM option) in the owner.

We recommend that you use START DATABASE and STOP DATABASE
commands on the index space, rather than on the logical partition. For example,
use:

START DB(dbname) SPACE (npi)

 Appendix F. Sharing Read-Only Data X-165

instead of

START DB(dbname) SPACE(npi) PART(n)

Also, if you switch from read-only to read-write, you must stop all shared
databases, including the owner. If a table space or partition or index in the owner is
started for read-write access, applications on the owner's DB2 cannot have any
access to the data until all the readers have been stopped.

Starting a Shared Database
All the access options in the START DATABASE (dbname) SPACENAM (*)
command (such as RO, RW, UT, FORCE) can be used for a shared database as
well. These options are described in detail in Chapter 2 of Command Reference .
Some of these options can have a different effect on shared databases:

� If you start table spaces or partitions and index spaces in a read-only database
with ACCESS(RW) (the default), DISPLAY DATABASE shows that it is in
read-write mode even though only read access is allowed. This is not an error
condition; DB2 recognizes this as a read-only system and acts accordingly.

� You can enter a START DATABASE command with ACCESS(UT) on table
spaces or partitions and index spaces in a reader, but this still allows only read
access. (DISPLAY DATABASE shows the database started for UT access.)
Thus, the only utilities that can work are those that do not actually update data.
See “Running Utilities” on page X-170 for more information about running
utilities on shared databases.

� Although we generally do not recommend it, there might be times when you
need to enter a START DATABASE command with ACCESS(FORCE) on an
owner's table spaces and index spaces to reset conditions that made the
database unavailable. This puts the database into read-write mode. If you just
want to read data, we recommend that you do the following after you start the
database with ACCESS(FORCE):

1. Enter the following command:

-STOP DATABASE (dbname) SPACENAM (\)

2. Enter the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RO)

Starting a Database for Update: Before updating an owner, stop all readers by
entering the following command for all the reading DB2s:

-STOP DATABASE (dbname) SPACENAM (\)

Although it is possible to start the owner for read-write access before stopping the
readers, you must stop the readers before updating because VSAM
SHAREOPTIONS (1,3) allows only one updater or multiple readers. If you do not
stop the readers, update requests in the owner fail with a “resource unavailable”
reason code.

Starting a Database for Read-Only Access: When you want other systems to
have read-only access to the data, enter the following command for the owner:

-STOP DATABASE (dbname) SPACENAM (\)

This quiesces all update activity. Then you can start the database spaces for
read-only access for both the owner and the readers.

X-166 Administration Guide

When you want to start a reader, we recommend that you explicitly specify
ACCESS(RO). Even though a START DATABASE command with ACCESS(RW) is
allowed for the reader, applications on the reader's DB2 are not allowed to update
the data. Update requests for a read-only database fail with a “resource
unavailable” reason code regardless of access mode.

Stopping a Shared Database
You can enter -STOP DATABASE (dbname) SPACENAM (*) from batch or from
the console. We recommend that you enter the command from batch. When you
enter the command from batch, you can submit a batch job stream that notifies
someone to take action if the STOP DATABASE command cannot succeed. The
request is handled synchronously, and DB2 waits for all activity to finish before
returning control to the requester. If there is data inconsistency with the owner
database, such as a permanent I/O error, the return code is set to 8.

When you enter -STOP DATABASE (dbname) SPACENAM (*) from the console,
the request is handled asynchronously, and control returns to the operator before
the database has stopped. For this reason, use a DISPLAY DATABASE command
to ensure that all spaces are really stopped.

Maintaining Shared Read-Only Data
It is more complex to maintain and operate a shared database than a non-shared
database. When planning a maintenance strategy for a shared read-only data
system, consider the following:

� Rebinding plans and packages that use shared data

Any time a change necessitates a rebind of a plan or package, rebind any
equivalent plans or packages on the sharing DB2s. Do not share a
PLAN_TABLE with a reader, because BIND with EXPLAIN(YES) fails when DB2
attempts to write to the table.

 � “Updating,” below

� “Adding” on page X-168

� “Dropping” on page X-168

� “Altering” on page X-169

� “Running Utilities” on page X-170

� “Recovering” on page X-171

 Updating
An application on the owner's DB2 cannot change the data until all sharing DB2s
have stopped reading the shared data. This means you must stop the relevant
table spaces or partitions and index spaces in all sharing DB2s. For this reason,
we recommend that you schedule the owner's updates to occur in a specified time
window.

Use the following steps to update the shared database:

1. Stop access to the shared databases by entering the following command for all
shared databases, including the owner:

-STOP DATABASE (dbname) SPACENAM (\)

 Appendix F. Sharing Read-Only Data X-167

If the data sets are being accessed by non-DB2 facilities, such as access
method services, then you must wait for those jobs to end before you can
begin updating the database in the owner.

2. Enable the owner to be updated by entering the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RW)

3. Update the data in the owner.

4. If the changes are significant, you could make an image copy and run
RUNSTATS again on the owner. Also, consider rebinding plans and packages.

5. Enter the following command for the owner:

 -STOP DATABASE (dbname) SPACENAM (\)

6. Allow read-only access by entering the following command for all shared
databases, including the owner:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RO)

7. If you ran RUNSTATS on the owner's DB2 in step 4, now would be a good
time to run RUNSTATS on the readers' DB2s. You might also consider
rebinding plans and packages.

 Adding
Before you add an object to a shared database, you must stop the database's table
spaces and index spaces. The following procedure can be used to add an object to
an existing shared database:

1. For all shared databases (including the owner), enter the following command:

-STOP DATABASE (dbname) SPACENAM (\)

2. Start the database spaces for read-write access by entering the following
command for the owner:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RW)

3. Create the objects in the owner.

4. Stop the index spaces and table spaces in the owner by entering the following
command:

-STOP DATABASE (dbname) SPACENAM (\)

5. Start the readers for read-only access by entering the following command:

 -START DATABASE (dbname) SPACENAM (\) ACCESS(RO)

6. Re-create the objects in the readers.

 Dropping
To drop a shared database, or any object in the shared database:

1. Make sure no users are accessing the database by entering the following
command for all shared databases, including the owner:

-STOP DATABASE (dbname) SPACENAM (\)

2. Drop the object from all the readers.

3. Drop the object from the owner.

X-168 Administration Guide

If you do not follow the above steps in the given order, you can have unpredictable
results because of the lack of synchronization between DB2 and VSAM.

 Altering
With the ALTER DATABASE statement, you can change the default buffer pool,
DB2 storage group, and shared status of the database. In this section, we describe
how you change the shared status of a database, and some considerations for
adding a column to an existing shared table.

Altering the Sharing Status of a Database
If you have SYSADM or SYSCTRL authority, you can convert the status of a
database from non-shared to owner, or from owner to non-shared. However, when
you have created a reader database, you cannot use SQL to convert its shared
status. Instead, you must drop the database and redefine it. For information about
altering or dropping a database, see “Altering DB2 Databases” on page 2-125.

Converting a Non-Shared Database to Sharing Owner: Follow the instructions in
“Alter an Existing Database to be Shared” on page X-157.

Converting an Owner to Non-Shared:

To convert a database from sharing owner to non-shared:

1. Stop the database in all sharing DB2s (including the owning DB2) by entering
the following command:

-STOP DATABASE (dbname) SPACENAM (\)

2. Drop this database from the reading subsystems. See “Dropping and
Re-creating DB2 Objects” on page 2-123 for information about what happens
when you drop a database.

3. For user-managed data sets, you can alter the VSAM SHAREOPTIONS from
(1,3) to (3,3). DB2 does this for you with DB2-managed data sets.

4. Start the owner for read-write access by entering the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RW)

5. Enter the ALTER DATABASE statement, specifying ROSHARE NONE:

ALTER DATABASE DONSDB

 ROSHARE NONE;

6. Enter the following command for the owner:

-STOP DATABASE (dbname) SPACENAM (\)

This makes the VSAM SHAREOPTIONS effective on the owner's storage
group's data sets.

Adding a Column to a Table
For general information about altering tables, including information about adding
columns to a table, see “Altering Tables” on page 2-128. Generally, the procedure
is like that for adding objects to a database described in “Adding” on page X-168.

In the following procedure, we specify just the table space name on the -STOP
command, but you can stop all the spaces in the database if you want.

1. For all shared databases (including the owner), enter the following command:

 Appendix F. Sharing Read-Only Data X-169

-STOP DATABASE (dbname) SPACENAM (tsname)

2. Start the table space for read-write access by entering the following command
for the owner:

-START DATABASE (dbname) SPACENAM (tsname) ACCESS(RW)

3. Use ALTER TABLE to add the column to the table in the owner. See Chapter 6
of SQL Reference for more information about the ALTER TABLE statement.

4. Stop the table space on the owner by entering the following command:

-STOP DATABASE (dbname) SPACENAM (tsname)

5. Start the readers for read-only access by entering the following command:

 -START DATABASE (dbname) SPACENAM (tsname) ACCESS(RO)

6. Alter the table in the readers.

DB2 does allow you to alter the table in the reader before altering it in the owner,
but this is not recommended. You cannot add values to the column from the
reader, and the column cannot be updated until it is added on the owner. If a
column exists in the reader and not in the owner, a SELECT * from the reader
returns that column. This can lead people to assume the column exists in the
owner when it does not.

 Running Utilities
All utilities that you can normally run on a database can be run on an owner.
However, because the following utilities update data, you need to take special steps
before running them:

Use the following steps to run the above utilities:

1. For all shared databases (including the owner), enter the following command:

 -STOP DATABASE (dbname) SPACENAM (\)

2. Enable utilities to be run on the owner by entering the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(UT)

3. Run the utility on the owner.

4. Enter the following command for the owner:

 -STOP DATABASE (dbname) SPACENAM (\)

5. Allow read-only access by entering the following command on all shared
databases, including the owner:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RO)

Because you cannot update a reader's data, the only utilities you can run on a
reader are:

RECOVER COPY
REORG REPAIR (DELETE and REPLACE)
LOAD CHECK (DATA with DELETE option)

DIAGNOSE DSN1COPY RUNSTATS
DSN1COMP DSN1PRNT STOSPACE
DSN1CHKR REPAIR DBD

X-170 Administration Guide

A note about STOSPACE: You can run the STOSPACE utility on both owners
and readers because it makes the distinction between owner and reader
data sets. If a given table space or index space is owned by the issuing
system, then STOSPACE performs as it normally does for non-shared data
sets. However, if it determines that the space is not owned by the issuing
system, then it issues a message stating that fact and continues processing
on the next table space or index space.

 Recovering
When you perform a recovery, it is for the owner. If you use the DB2 RECOVER
utility, then there are no changes for recovering shared data. However, if you use
DB2's DSN1COPY utility or non-DB2 facilities to recover the database, then there
are some additional steps:

 DSN1COPY Utility
After you use DSN1COPY to restore some version of data:

1. Enter the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(RW)

2. Enter the following command:

-STOP DATABASE (dbname) SPACENAM (\)

After these steps, the data is in a consistent state, and you can start the database
in any mode you want. If you do not follow the above steps, the data is considered
inconsistent and is unavailable for access.

 Non-DB2 Facilities
If you use non-DB2 facilities for data recovery (such as volume dump and restore),
dump the data sets after you alter a database's shared status. This prevents
recovering a data set to a state inconsistent with the current shared status of the
database. This could occur when you recover to a time before the database was
converted to shared.

However, if you do get a consistency error, the header page must be reformatted to
reset the status indicator, and the VSAM SHAREOPTIONS must be made
consistent with the shared status of the database. To do this:

1. Stop all shared databases, (including the owner), by entering the following
command:

-STOP DATABASE (dbname) SPACENAM (\)

2. Start the owner for utility access by entering the following command:

-START DATABASE (dbname) SPACENAM (\) ACCESS(UT)

3. Run REPAIR REPLACE RESET on table spaces and indexes in the owner:

� If the spaces are not partitioned, reset only the header page.
� If spaces are partitioned, reset the header page of each partition.

For more information about the REPAIR utility, see Section 1 of Utility Guide
and Reference.

4. Enter the following command for the owner:

 -STOP DATABASE (dbname) SPACENAM (\)

 Appendix F. Sharing Read-Only Data X-171

5. Use the access method services LISTCAT command to check the VSAM
SHAREOPTIONS of the data sets. Ensure that the SHAREOPTIONS of the
recovered data sets are consistent with the ROSHARE attribute of the
database:

If the database is ROSHARE OWNER, then the VSAM SHAREOPTIONS
should be (1,3).
If the database is not shared, then the VSAM SHAREOPTIONS should be
(3,3).

 If the SHAREOPTIONS are inconsistent, use the access method services
ALTER command with the SHAREOPTIONS option to change the values.

After you have done the above steps, the data is in a consistent state, and you can
start the database in any mode you want.

X-172 Administration Guide

Appendix G. Using Tools to Monitor Performance

This section describes the various facilities for monitoring DB2 activity and
performance. It includes information on facilities within the DB2 product as well as
tools available outside of DB2. Figure 182 shows various monitoring tools that can
be used in a DB2 environment.

Data Source Data Writer Reporting Tool Reduction and
 History
┌──────────────┐ ┌──────────────┐

│ CICS │─5SMF or CICS─5│ Performance │

│ monitoring │ JOURNAL │ Reporter for │──────────────┐

│ facility │──────────────5│ MVS │ │

├──────────────┤ ├──────────────┤ │

│ IMS │ │ IMS │ │

│ DC monitor │ │ DFSUTR2ð │───5 Reports │

│ │ │ utility │ │

├──────────────┤ ├──────────────┤ │

│ IMS log │────5 IMS ────5│ IMSPARS │───5 Reports │

│ records │ LOG ├──────────────┤ │

│ │──────────────5│ DBFULTAð │───5 Reports │

├──────────────┤ ├──────────────┤ │

│ DB2 trace │────5 SMF ────5│ DB2 PM │───5 Reports │

│ facility\ │ or GTF │ │ Graphics │

├──────────────┤ └──────────────┘ Online │

│ DB2 RUNSTATS │ Monitor │

│ utility\ │ │

├──────────────┤ │

│ DB2 STOSPACE │ │

│ utility\ │ │

├──────────────┤ │

│ DB2 EXPLAIN │ │

│ statement\ │ │ ┌─────────────────┐

├──────────────┤ │ │Performance │

│ DB2 DISPLAY │─────────────────5 Online ├─────5 │Reporter for MVS │

│ command\ │ │ └─────────────────┘

├──────────────┤ │

│ DB2 catalog │ │

│ queries\ │ │

├──────────────┤ ┌──────────────┐ │

│ CICS attach │ │ RMF ├───5 Online │

│ statistics\ │ │ Monitor III │ or reports │

├──────────────┤ ├──────────────┤ │

│ │ │ RMF ├───5 Online │

│ MVS RMF │──────────────5│ Monitor II │ or reports │

│ │ ├──────────────┤ │

│ │────5 SMF ────5│ RMF Monitor I│───5 Reports │

├──────────────┤ └──────────────┘ │

│ GTF ├───┘

└──────────────┘

\ Facilities available within the DB2 product

| Figure 182. Monitoring Tools in a DB2 Environment

CICS monitoring facility (CMF) provides performance information about each
CICS transaction executed. It can be used to investigate the resources used
and the time spent processing transactions. Be aware that overhead is
significant when CMF is used to gather performance information.

IMS DC monitor , part of the IMS product, can be used to monitor DB2
processor time in IMS transactions.

 Copyright IBM Corp. 1982, 1997 X-173

IMS Performance Analysis and Reporting System (IMSPARS) , a separately
licensed program, can be used to produce transit time information based on the
IMS log data set. It can also be used to investigate response-time problems of
IMS DB2 transactions.

Fast Path Log Analysis Utility (DBFULTA0) , an IMS utility, provides
performance data.

DB2 trace facility provides DB2 performance and accounting information. It is
described under “DB2 Trace” on page X-177.

System management facility (SMF) is an MVS service aid used to collect
information from various MVS subsystems. This information is dumped and
reported periodically, such as once a day. Refer to “Recording SMF Trace
Data” on page X-182 for more information.

Generalized trace facility (GTF) is an MVS service aid that collects
information to analyze particular situations. GTF can also be used to analyze
seek times and Supervisor Call instruction (SVC) usage, and for other services.
See “Recording GTF Trace Data” on page X-183 for more information.

| DB2 Performance Monitor (DB2 PM) is an orderable feature of DB2 used to
| analyze DB2 trace records. DB2 PM is described under “DB2 Performance

Monitor (DB2 PM)” on page X-184.

DB2 RUNSTATS utility can report space use and access path statistics in the
DB2 catalog. See “Using RUNSTATS to Monitor and Update Statistics” on
page 5-249 and Section 2 of Utility Guide and Reference.

DB2 STOSPACE utility provides information about the actual space allocated
for storage groups, table spaces, table space partitions, index spaces, and
index space partitions. See in Section 2 of Utility Guide and Reference .

DB2 EXPLAIN statement provides information about the access paths used by
DB2. See “Chapter 5-10. Using EXPLAIN to Improve SQL Performance” on
page 5-261 and Chapter 6 of SQL Reference.

DB2 DISPLAY command gives you information about the status of threads,
databases, buffer pools, traces, allied subsystems, applications, and the
allocation of tape units for the archive read process. For information about the
DISPLAY BUFFERPOOL command, see “Monitoring and Tuning Buffer Pools
Using Online Commands” on page 5-59. For information about using the
DISPLAY command to monitor distributed data activity, see “Using the
DISPLAY Command” on page 5-321. For the detailed syntax of each
command, refer to Chapter 2 of Command Reference.

| Performance Reporter for MVS , formerly known as EPDM, is a licensed
program that collects SMF data into a DB2 database and allows you to create
reports on the data. See “Performance Reporter for MVS” on page X-184.

DB2 catalog queries help you determine when to reorganize table spaces and
indexes. See the description of the REORG utility in Section 2 of Utility Guide
and Reference.

CICS attachment facility statistics provide information about the use of CICS
threads. This information can be displayed on a terminal or printed in a report.

| Resource Measurement Facility (RMF) is an optional feature of OS/390 that
provides system-wide information on processor utilization, I/O activity, storage,
and paging. There are three basic types of RMF sessions: Monitor I, Monitor II,
and Monitor III. Monitor I and Monitor II sessions collect and report data

X-174 Administration Guide

primarily about specific system activities. Monitor III sessions collect and report
data about overall system activity in terms of work flow and delay.

Using MVS, CICS, and IMS Tools
To monitor DB2 and CICS, you can use:

� RMF Monitor II for physical resource utilizations
� GTF for detailed I/O monitoring when needed

| � Performance Reporter for MVS for application processor utilization, transaction
| performance, and system statistics.

You can use RMF Monitor II to dynamically monitor system-wide physical resource
utilizations, which can show queuing delays in the I/O subsystem.

In addition, the CICS attachment facility DSNC DISPLAY command allows any
authorized CICS user to dynamically display statistical information related to thread
usage and situations when all threads are busy. For more information about the
DSNC DISPLAY command, see Chapter 2 of Command Reference .

Be sure that the number of threads reserved for specific transactions or for the pool
is large enough to handle the actual load. You can dynamically modify the value
specified in the resource control table (RCT) with the DSNC MODIFY
TRANSACTION command. You might also need to modify the maximum number of
threads specified for the MAX USERS field on installation panel DSNTIPE.

To monitor DB2 and IMS, you can use:

� RMF Monitor II for physical resource utilizations
� GTF for detailed I/O monitoring when needed
� IMSPARS or its equivalent for response-time analysis
� IMS DC Monitor or its equivalent for tracking all IMS-generated requests to

DB2.
� Fast Path Log Analysis Utility (DBFULTA0) for performance data.

In addition, the DB2 IMS attachment facility allows you to use the DB2 command
DISPLAY THREAD command to dynamically observe DB2 performance.

Monitoring System Resources
Monitor system resources to:

� Detect resource constraints (processor, I/O, storage)
� Determine how resources are consumed
� Check processor, I/O, and paging rate to detect a bottleneck in the system
� Detect changes in resource use over comparable periods.

 Figure 183 shows an example of a suggested system resources report.

 Appendix G. Using Tools to Monitor Performance X-175

SYSTEM RESOURCES REPORT DATE xx/xx/xx

 ─────────────────────── FROM xx:xx:xx

 TO xx:xx:xx

 TOTAL CPU Busy 74.3 %

DB2 & IRLM 9.3 %

 IMS/CICS 45.3 %

 QMF Users 8.2 %

DB2 Batch & Util 2.3 %

 OTHERS 9.2 %

 SYSTEM AVAILABLE 98.ð %

 TOTAL I/Os/sec. 75.5

 TOTAL Paging/sec. 6.8

 Short Medium Long

 Transaction Transaction Transaction

 Average Response Time 3.2 secs 8.6 secs 15.ð secs

 MAJOR CHANGES:

DB2 application DESTð7 moved to production

Figure 183. User-Created System Resources Report

The RMF reports used to produce the information in Figure 183 were:

� The RMF CPU activity report, which lists TOTAL CPU Busy and the TOTAL
I/Os per second.

� RMF paging activity report, which lists the TOTAL Paging rate per second for
main storage.

� The RMF work load activity report, which is used to estimate where resources
are spent. Each address space or group of address spaces to be reported on
separately must have different SRM reporting or performance groups. The
following SRM reporting groups are considered:

– DB2 address spaces:
| DB2 Database Address Space (ssnmDBM1)

DB2 System Services Address Space (ssnmMSTR)
Distributed Data Facility (ssnmDIST)

 IRLM (IRLMPROC)
– IMS or CICS

 – TSO-QMF
– DB2 batch and utility jobs

The CPU for each group is obtained using the ratio (A/B) × C, where:

A is the sum of CPU and service request block (SRB) service units for the
specific group
B is the sum of CPU and SRB service units for all the groups
C is the total processor utilization.

The CPU and SRB service units must have the same coefficient.

You can use a similar approach for an I/O rate distribution.

X-176 Administration Guide

MAJOR CHANGES shows the important environment changes, such as:

� DB2 or any related software-level change

� DB2 changes in the load module for system parameters

� New applications put into production

� Increase in the number of QMF users

� Increase in batch and utility jobs

 � Hardware changes

MAJOR CHANGES is also useful for discovering the reason behind different
monitoring results.

Monitoring Transaction Manager Throughput
Use IMS or CICS monitoring facilities to determine throughput, in terms of
transactions processed, and transaction response times. Depending on the
transaction manager, you can use the following reports:

� IMSPARS Management Exception Report
� IMS DC Monitoring
� Fast Path Log Analysis Utility (DBFULTA0)

| � Performance Reporter for MVS

In these reports:

� The transactions processed include DB2 and non-DB2 transactions.

� The transaction processor time includes the DB2 processor time for IMS but not
for CICS.

� The transaction transit response time includes the DB2 transit time.

A historical database is useful for saving monitoring data from different periods.
Such data can help you track the evolution of your system. You can use

| Performance Reporter for MVS or write your own application based on DB2 and
QMF when creating this database.

 DB2 Trace
The information under this heading, up to “Recording SMF Trace Data” on
page X-182, is General-use Programming Interface and Associated Guidance
Information as defined in “Notices” on page xi.

DB2's instrumentation facility component (IFC) provides a trace facility that you can
use to record DB2 data and events. With the IFC, however, analysis and reporting
of the trace records must take place outside of DB2. You can use another licensed
program, IBM DATABASE 2 Performance Monitor (DB2 PM), to format, print, and

| interpret DB2 trace output. You can view an online snapshot from trace records by
| using DB2 PM or other online monitors. For more information on DB2 PM, see DB2
| PM for OS/390 General Information. For the exact syntax of the trace commands

see Chapter 2 of Command Reference .

If you do not have DB2 PM, or if you want to do your own analysis of the DB2 trace
output, refer to “Appendix D. Interpreting DB2 Trace Output” on page X-107. Also
consider writing your own program using the instrumentation facility interface (IFI).

 Appendix G. Using Tools to Monitor Performance X-177

Refer to “Appendix E. Programming for the Instrumentation Facility Interface (IFI)”
on page X-123 for more information on using IFI.

| Each trace class captures information on several subsystem events. These events
| are identified by many instrumentation facility component identifiers (IFCIDs). The

IFCIDs are described by the comments in their mapping macros, contained in
| prefix.SDSNMACS, which is shipped to you with DB2.

Types of Traces
DB2 trace can record six types of data: statistics, accounting, audit, performance,
monitor, and global. The description of the START TRACE command in Chapter 2
of Command Reference indicates which IFCIDs are activated for the different types

| of trace and the classes within those trace types. For details on what information
| each IFCID returns, see the mapping macros in prefix.SDSNMACS.

The trace records are written using GTF or SMF records. See “Recording SMF
Trace Data” on page X-182 and “Recording GTF Trace Data” on page X-183

| before starting any traces. Trace records can also be written to storage, if you are
| using the monitor trace class.

 Statistics Trace
The statistics trace reports information about how much the DB2 system services
and database services are used. It is a system-wide trace and should not be used
for chargeback accounting. Use the information the statistics trace provides to plan
DB2 capacity, or to tune the entire set of active DB2 programs.

Statistics trace classes 1, 3, 4, and 5 are the default classes for the statistics trace
if you specified YES for SMF STATISTICS in panel DSNTIPN. If the statistics trace
is started using the START TRACE command, then class 1 is the default class.

� Class 1 provides information about system services and database statistics. It
also includes the system parameters that were in effect when the trace was
started.

| � Class 3 provides information about deadlocks and timeouts.

� Class 4 provides information about exceptional conditions.

| � Class 5 provides information about data sharing.

If you specified YES in the SMF STATISTICS field on the Tracing Panel
(DSNTIPN), the statistics trace starts automatically when you start DB2, sending
class 1, 3, 4 and 5 statistics data to SMF. SMF records statistics data in both SMF

| type 100 and 102 records. IFCIDs 0001, 0002, 0202, and 0230 are of SMF type
100. All other IFCIDs in statistics trace classes are of SMF type 102. From panel
DSNTIPN, you can also control the statistics collection interval (STATISTICS TIME
field).

The statistics trace is written on an interval basis, and you can control the exact
time that statistics traces are taken.

X-178 Administration Guide

 Accounting Trace
| The DB2 accounting trace provides information related to application programs,
| including such things as:

| Start and stop times
| Number of commits and aborts
| The number of times certain SQL statements are issued
| Number of buffer pool requests
| Counts of certain locking events
| Processor resources consumed
| Thread wait times for various events
| RID pool processing
| Distributed processing
| Resource limit facility statistics

DB2 trace begins collecting this data at successful thread allocation to DB2, and
writes a completed record when the thread terminates or when the authorization ID
changes.

During CICS thread reuse, a change in the authid or transaction code initiates the
sign-on process, which terminates the accounting interval and creates the
accounting record. In CICS Version 4 and subsequent releases, TXIDSO=NO
eliminates the sign-on process when only the transaction code changes. When a
thread is reused without initiating sign-on, several transactions are accumulated into
the same accounting record, which can make it very difficult to analyze a specific
transaction occurrence and correlate DB2 accounting with CICS accounting.
However, applications that use TOKENE=YES or TOKENI=YES initiate a “partial
sign-on,” which creates an accounting record for each transaction. You can use this
data to perform program-related tuning and assess and charge DB2 costs.

Accounting data for class 1 (the default) is accumulated by several DB2
components during normal execution. This data is then collected at the end of the
accounting period; it does not involve as much overhead as individual event tracing.

On the other hand, when you start class 2, 3, 7, or 8, many additional trace points
are activated. Every occurrence of these events is traced internally by DB2 trace,
but these traces are not written to any external destination. Rather, the accounting
facility uses these traces to compute the additional total statistics that appear in the
accounting record, IFCID 003, when class 2 or class 3 is activated. Accounting
class 1 must be active to externalize the information.

To turn on accounting for packages and DBRMs, accounting trace classes 1 and 7
must be active. Though you can turn on class 7 while a plan is being executed,
accounting trace information is only gathered for packages or DBRMs executed

| after class 7 is activated. Activate accounting trace class 8 with class 1 to collect
information about the amount of time an agent was suspended in DB2 for each
executed package. If accounting trace classes 2 and 3 are activated, there is
minimal additional performance cost for activating accounting trace classes 7 and 8.

If you want information from either, or both, accounting class 2 and 3, be sure to
activate classes 2 and/or 3 before your application starts. If these classes are
activated during the application, the times gathered by DB2 trace are only from the
time the class was activated.

 Appendix G. Using Tools to Monitor Performance X-179

Accounting trace class 5 provides information on the amount of elapsed time and
TCB time that an agent spent in DB2 processing instrumentation facility interface
(IFI) requests. If an agent did not issue any IFI requests, these fields are not
included in the accounting record.

If you specified YES for SMF ACCOUNTING on the Tracing Panel (DSNTIPN), the
accounting trace starts automatically when you start DB2, and sends IFCIDs that

| are of SMF type 100 to SMF. The accounting record IFCID 0003 is of SMF type
101.

 Audit Trace
The audit trace collects information about DB2 security controls and is used to
ensure that data access is allowed only for authorized purposes. On the CREATE
TABLE or ALTER TABLE statements, you can specify whether or not a table is to
be audited, and in what manner; you can also audit security information such as
any access denials, grants, or revokes for the table. The default causes no auditing
to take place. For descriptions of the available audit classes and the events they
trace, see “Audit Class Descriptions” on page 3-120.

If you specified YES for AUDIT TRACE on the Tracing Panel (DSNTIPN), audit
trace class 1 starts automatically when you start DB2. By default, DB2 will send
audit data to SMF. SMF records audit data in type 102 records. When you invoke
the -START TRACE command, you can also specify GTF as a destination for audit
data. “Chapter 3-6. Auditing Concerns” on page 3-119 describes the audit trace in
detail.

 Performance Trace
The performance trace provides information about a variety of DB2 events,
including events related to distributed data processing. You can use this information
to further identify a suspected problem, or to tune DB2 programs and resources for
individual users or for DB2 as a whole.

You cannot automatically start collecting performance data when you install or
migrate DB2. To trace performance data, you must use the -START
TRACE(PERFM) command. For more information about the -START
TRACE(PERFM) command, refer to Chapter 2 of Command Reference.

The performance trace defaults to GTF.

 Monitor Trace
The monitor trace records data for online monitoring with user-written programs.
This trace type has several predefined classes; those that are used explicitly for
monitoring are listed here:

� Class 1 (the default) allows any application program to issue an instrumentation
facility interface (IFI) READS request to the IFI facility. If monitor class 1 is
inactive, a READS request is denied. Activating class 1 has a minimal impact
on performance.

| � Class 2 collects processor and elapsed time information. The information can
| be obtained by issuing a READS request for IFCID 0147 or 0148. In addition,
| monitor trace class 2 information is available in the accounting record, IFCID
| 0003. Monitor class 2 is equivalent to accounting class 2 and results in
| equivalent overhead. Monitor class 2 times appear in IFCIDs 0147, 0148, and
| 0003 if either monitor trace class 2 or accounting class 2 is active.

X-180 Administration Guide

� Class 3 activates DB2 wait timing and saves information about the resource
causing the wait. The information can be obtained by issuing a READS request
for IFCID 0147 or 0148. In addition, monitor trace class 3 information is
available in the accounting record, IFCID 0003. As with monitor class 2, monitor
class 3 overhead is equivalent to accounting class 3 overhead.

When monitor trace class 3 is active, DB2 can calculate the duration of a class
3 event, such as when an agent is suspended due to an unavailable lock.
Monitor class 3 times appear in IFCIDs 0147, 0148, and 0003, if either monitor
class 3 or accounting class 3 is active.

� Class 5 traces the amount of time spent processing IFI requests.

� Class 7 traces the amount of time an agent spent in DB2 to process each
package. If monitor trace class 2 is active, activating class 7 has minimal
performance impact.

� Class 8 traces the amount of time an agent was suspended in DB2 for each
package executed. If monitor trace class 3 is active, activating class 8 has
minimal performance impact.

For more information on the monitor trace, refer to “Appendix E. Programming for
the Instrumentation Facility Interface (IFI)” on page X-123.

Effect on DB2 Performance
The volume of data DB2 trace collects can be quite large. Consequently, the
number of trace records you request will affect system performance. In particular,
when you activate a performance trace, you should qualify the -START TRACE
command with the particular classes, plans, authorization IDs, and IFCIDs you want
to trace.

The following recommendations apply:

� When starting a performance trace, be sure that you know what you want to
report, for example, I/O only or SQL only. See DB2 PM for examples of which
classes produce which reports. Otherwise, you might have incomplete reports
and have to rerun or collect too much data, overloading the data collector.

| � When the statistics trace is active, statistics are collected by SMF at all times.
| Use the default statistics frequency of 30 minutes.

� Decide if the continuous collection of accounting data is needed. If a
transaction manager provides enough accounting information, DB2 accounting
might not be needed. In environments where the processor is heavily loaded,
consider not running accounting on a continuous basis.

� When using accounting on a continuous basis, start classes 1 and 3 to SMF
(SMF ACCOUNTING on panel DSNTIPN). You might also want to start
accounting class 2 because it provides additional information that can be useful
in resolving problems. Accounting class 2 does introduce some additional
processor cost.

� Use the performance trace for short periods of time (START/STOP TRACE)
and restrict it to certain users, applications, and classes. Use the default
destination GTF to allow immediate analysis of the trace information.

� Start the global trace only if a problem is under investigation, and IBM service
personnel have requested a trace.

 Appendix G. Using Tools to Monitor Performance X-181

For more detailed information about the amount of processor resources consumed
by DB2 trace, see “Reducing the Amount of Processor Resources Consumed” on
page 5-43.

Recording SMF Trace Data
Each location is responsible for processing the SMF records produced by DB2
trace.

For example, during DB2 execution, you can use the MVS operator command
SETSMF or SS to alter SMF parameters you specified previously. The following
command records statistics (record type 100), accounting (record type 101), and
performance (record type 102) data to SMF. To execute this command, specify
PROMPT(ALL) or PROMPT(LIST) in the SMFPRMxx member used from
SYS1.PARMLIB.

SETSMF SYS(TYPE(1ðð:1ð2))

You can use the SMF program IFASMFDP to dump these records to a sequential
data set. You might want to develop an application or use DB2 PM to process
these records. For a sample DB2 trace record sent to SMF, see Figure 171 on
page X-109. For more information about SMF, refer to MVS/ESA System
Management Facilities (SMF).

 Activating SMF
SMF must be running before you can send data to it. To make it operational,
update member SMFPRMxx of SYS1.PARMLIB, which indicates whether SMF is
active and which types of records SMF accepts. For member SMFPRMxx, xx are
two user-defined alphanumeric characters appended to 'SMFPRM' to form the
name of an SMFPRMxx member. To update this member, specify the ACTIVE
parameter and the proper TYPE subparameter for SYS and SUBSYS.

You can also code an IEFU84 SMF exit to process the records that are produced.

Allocating Additional SMF Buffers
When you specify a performance trace type, the volume of data that DB2 can
collect can be quite large. If you are sending this data to SMF, you must allocate
adequate SMF buffers; the default buffer settings will probably be insufficient.

If an SMF buffer shortage occurs, SMF rejects any trace records sent to it. DB2
sends a message (DSNW133I) to the MVS operator when this occurs. DB2 treats
the error as temporary and remains active even though data could be lost. DB2
sends another message (DSNW123I) to the MVS operator when the shortage has
been alleviated and trace recording has resumed.

You can determine if trace data has been lost by examining the DB2 statistics
records with an IFCID of 0001, as mapped by macro DSNQWST. These records
show:

� The number of trace records successfully written
� The number of trace records that could not be written
� The reason for the failure

If your location uses SMF for performance data or global trace data, be sure that:

X-182 Administration Guide

� Your SMF data sets are large enough to hold the data.
� SMF is set up to accept record type 102. (Specify member SMFPRMxx, for

which 'xx' are two user-defined alphanumeric characters.)
� Your SMF buffers are large enough.

Specify SMF buffering on the VSAM BUFSP parameter of the access method
services DEFINE CLUSTER statement. Do not use the default settings if DB2
performance or global trace data is sent to SMF. Specify CISZ(4096) and
BUFSP(81920) on the DEFINE CLUSTER statement for each SMF VSAM data set.
These values are the minimum required for DB2; you might have to increase them,
depending on your MVS environment.

DB2 runs above the 16MB line of virtual storage in a cross-memory environment.

Reporting Data in SMF
There are several ways to report trace records sent to SMF:

| � Use Performance Reporter for MVS to collect the data and create graphical or
| tabular reports.

� Write an application program to read and report information from the SMF data
set. You can tailor it to fit your exact needs.

� Use DB2 PM. See“DB2 Performance Monitor (DB2 PM)” on page X-184 for a
discussion of DB2 PM's capabilities.

In any of those ways you can compare any report for a current day, week, or month
with an equivalent sample, as far back as you want to go. The samples become
more widely spaced but are still available for analysis.

Recording GTF Trace Data
The default destination for the performance trace classes is the generalized trace
facility (GTF). The MVS operator must start GTF before you can send data to it.
When starting GTF, specify TIME=YES, and then TRACE=USRP. Start GTF as
follows to ensure that offsets map correctly. Be sure that no GTF member exists in
SYS1.PARMLIB.

If a GTF member exists in SYS1.PARMLIB, the GTF trace option USR might not be
in effect. When no other member exists in SYS1.PARMLIB, you are sure to have
only the USR option activated, and no other options that might add unwanted data
to the GTF trace.

When starting GTF, if you use the JOBNAMEP option to obtain only those trace
records written for a specific job, trace records written for other agents are not

You enter... System responds...

S GTF,,,(TIME=YES) AHL100A SPECIFY TRACE OPTIONS

TRACE=USRP AHL101A SPECIFY TRACE EVENT KEYWORDS --USR=

USR=(FB9) AHL102A CONTINUE TRACE DEFINITION OR REPLY END

END AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

U AHL031I GTF INITIALIZATION COMPLETE

Note: To make stopping GTF easier, you can give the GTF session a name when you start it. For
example, you could specify S GTF.GTF,,,(TIME=YES).

 Appendix G. Using Tools to Monitor Performance X-183

written to the GTF data set. This means that a trace record that is written by a
system agent that is processing for an allied agent is discarded if the JOBNAMEP
option is used. For example, after a DB2 system agent performs an IDENTIFY
request for an allied agent, an IFCID record is written. If the JOBNAMEP keyword
is used to collect trace data for a specific job, however, the record for the
IDENTIFY request is not written to GTF, even if the IDENTIFY request was
performed for the job named on the JOBNAMEP keyword.

You can record DB2 trace data in GTF using a GTF event ID of X'FB9'.

Trace records longer than the GTF limit of 256 bytes are spanned by DB2. For
instructions on how to process GTF records, refer to “Appendix D. Interpreting DB2
Trace Output” on page X-107.

DB2 Performance Monitor (DB2 PM)
DB2 PM is a performance analysis tool for DB2. Its primary objective is to report
DB2 instrumentation data in a form that is easy to understand and analyze.

DB2 PM presents this instrumentation data in the following ways:

� The Batch report sets present the data you select in comprehensive reports or
graphs containing system-wide and application-related information for both
single DB2 subsystems and DB2 members of a data sharing group. You can
combine instrumentation data from several different DB2 locations into one
report.

Batch reports can be used to examine performance problems and trends over a
period of time.

� The Online Monitor gives a current “snapshot” view of a running DB2
subsystem, including applications that are running. Its history function displays
information about subsystem and application activity in the recent past.

| See DB2 PM for OS/390 General Information for more information about the latest
| features in DB2 PM.

Performance Reporter for MVS
| Performance Reporter for MVS, formerly known as EPDM, collects data into a DB2
| database and allows you to create graphical and tabular reports to use in managing
| systems performance. The data can come from different sources, including SMF,
| the IMS log, the CICS journal, RMF, and DB2.

When considering the use of Performance Reporter for MVS, consider the
following:

� Performance Reporter data collection and reporting are based on user
specifications. Therefore, an experienced user can produce more suitable
reports than the predefined reports produced by other tools.

� Performance Reporter provides historical performance data that you can use to
compare a current situation with previous data.

� Performance Reporter can be used very effectively for reports based on the
DB2 statistics and accounting records. When using it for the performance trace
consider that:

X-184 Administration Guide

– Because of the large number of different DB2 performance records, a
substantial effort is required to define their formats to Performance
Reporter. Changes in the records require review of the definitions.

– Performance Reporter not handle information from paired records, such as
“start event” and “end event.” These record pairs are used by DB2 PM to
calculate elapsed times, such as the elapsed time of I/Os and lock
suspensions.

The general recommendation for Performance Reporter and DB2 PM use in a DB2
subsystem is:

� If Performance Reporter is already used or there is a plan to use it at the
location:

– Extend Performance Reporter usage to the DB2 accounting and statistics
records.

– Use DB2 PM for the DB2 performance trace.

� If Performance Reporter is not used and there is no plan to use it:

– Use DB2 PM for the statistics, accounting, and performance trace.
– Consider extending DB2 PM with user applications based on DB2 and

QMF, to provide historical performance data.

Monitoring Application Plans and Packages
The following statements identify plans and packages that:

� Possibly redo validity checks at run time; if an invalid object or missing authority
is found, DB2 issues a warning and checks again for the object or authorization
at run time.

� Use repeatable read.

� Are invalid (must be rebound before use), for example, the deleting an index or
revoking authority can render a plan or package invalid.

� Are inoperative (require an explicit BIND or REBIND before use). A plan or
package can be marked inoperative after an unsuccessful REBIND.

General-use Programming Interface

SELECT NAME, VALIDATE, ISOLATION, VALID, OPERATIVE

 FROM SYSIBM.SYSPLAN

WHERE VALIDATE = 'R' OR ISOLATION = 'R'

OR VALID = 'N' OR OPERATIVE = 'N';

SELECT COLLID, NAME, VERSION, VALIDATE, ISOLATION, VALID, OPERATIVE

 FROM SYSIBM.SYSPACKAGE

WHERE VALIDATE = 'R' OR ISOLATION = 'R'

OR VALID = 'N' OR OPERATIVE = 'N';

End of General-use Programming Interface

 Appendix G. Using Tools to Monitor Performance X-185

X-186 Administration Guide

Glossary and Bibliography

 Copyright IBM Corp. 1982, 1997 G-1

G-2 Administration Guide

 abend � archive log

 Glossary

The following terms and abbreviations are defined as
they are used in the DB2 library. If you do not find the
term you are looking for, refer to the index or to
Dictionary of Computing.

A
abend . Abnormal end of task.

abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with DB2. A complete list
of DB2 abend reason codes and their explanations is
contained in Messages and Codes.

abnormal end of task (abend) . Termination of a task,
a job, or a subsystem because of an error condition that
cannot be resolved during execution by recovery
facilities.

access method services . A utility program that
defines and manages VSAM data sets (or files).

access path . The path used to get to data specified in
SQL statements. An access path can involve an index
or a sequential search.

active log . The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer will fit on the active log.

address space . A range of virtual storage pages
identified by a number (ASID) and a collection of
segment and page tables which map the virtual pages
to real pages of the computer's memory.

address space connection . The result of connecting
an allied address space to DB2. Each address space
containing a task connected to DB2 has exactly one
address space connection, even though more than one
task control block (TCB) can be present. See allied
address space and task control block.

alias . An alternate name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied address space . An area of storage external to
DB2 that is connected to DB2 and is therefore capable
of requesting DB2 services.

allied thread . A thread originating at the local DB2
subsystem that may access data at a remote DB2
subsystem.

already verified . An LU 6.2 security option which
allows DB2 to provide the user's verified authorization
ID when allocating a conversation. The user is not
validated by the partner DB2.

ambiguous cursor . A database cursor that is not
defined with either the clauses FOR FETCH ONLY or
FOR UPDATE OF, is not defined on a read-only result
table, is not the target of a WHERE CURRENT clause
on an SQL UPDATE or DELETE statement, and is in a
plan or package that contains SQL statements
PREPARE or EXECUTE IMMEDIATE.

APAR . Authorized program analysis report.

APAR fix corrective service . A temporary correction
of a DB2 defect. The correction is temporary because it
is usually replaced at a later date by a more permanent
correction such as a program temporary fix (PTF).

APF. Authorized program facility.

API. Application programming interface.

APPL . A VTAM network definition statement used to
define DB2 to VTAM as an application program using
SNA LU 6.2 protocols.

application . A program or set of programs that
perform a task; for example, a payroll application.

application plan . The control structure produced
during the bind process and used by DB2 to process
SQL statements encountered during statement
execution.

application process . The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application program interface (API) . A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
licensed program.

application requester (AR) . See requester.

application server . See server.

AR. application requester. See requester.

archive log . The portion of the DB2 log that contains
log records that have been copied from the active log.

 Copyright IBM Corp. 1982, 1997 G-3

 AS � central processor complex (CPC)

AS. Application server. See server.

ASCII. An encoding scheme used to represent strings
in many environments, typically on PCs and
workstations. Contrast with EBCDIC.

attachment facility . An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute . A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee's attributes.

authorization ID . A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current release of a program.

authorized program facility (APF) . A facility that
permits the identification of programs that are
authorized to use restricted functions.

B
backward log recovery . The fourth and final phase of
restart processing during which DB2 scans the log in a
backward direction to apply UNDO log records for all
aborted changes.

base table . A table created by the SQL CREATE
TABLE statement that is used to hold persistent data.
Contrast with result table and temporary table.

basic sequential access method (BSAM) . An access
method for storing or retrieving data blocks in a
continuous sequence, using either a sequential access
or a direct access device.

bind . The process by which the output from the DB2
precompiler is converted to a usable control structure
called a package or an application plan. During the
process, access paths to the data are selected and
some authorization checking is performed.

automatic bind . (More correctly automatic rebind).
A process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind . A process by which SQL statements
are bound as they are entered.

incremental bind . A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind . A process by which SQL statements
are bound after they have been precompiled. All
static SQL statements are prepared for execution at
the same time. Contrast with dynamic bind.

BMP. Batch Message Processing (IMS).

bootstrap data set (BSDS) . A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive
log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart and
checkpoint records.

BSAM . Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool . Main storage reserved to satisfy the
buffering requirements for one or more table spaces or
indexes.

built-in function . Scalar function or column function.

C
CAF. Call attachment facility.

call attachment facility (CAF) . A DB2 attachment
facility for application programs running in TSO or MVS
batch. The CAF is an alternative to the DSN command
processor and allows greater control over the execution
environment.

cascade delete . The enforcement of referential
constraints by DB2 when it deletes all descendent rows
of a deleted parent row.

catalog . In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table . Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. See communications database.

CEC. See central processor complex.

central electronic complex (CEC) . See central
processor complex.

central processor complex (CPC) . A physical
collection of hardware (such as an ES/3090) that

G-4 Administration Guide

 character set � committed phase

consists of main storage, one or more central
processors, timers, and channels.

character set . A defined set of characters.

character string . A sequence of bytes representing bit
data, single-byte characters, or a mixture of single and
double-byte characters.

check clause . An extension to the SQL CREATE
TABLE and SQL ALTER TABLE statements that
specifies a table check constraint.

check constraint . See table check constraint.

check integrity . The condition that exists when each
row in a table conforms to the table check constraints
defined on that table. Maintaining check integrity
requires enforcing table check constraints on operations
that add or change data.

check pending . A state of a table space or partition
that prevents its use by some utilities and some SQL
statements, because it can contain rows that violate
referential constraints, table check constraints, or both.

checkpoint . A point at which DB2 records internal
status information on the DB2 log that would be used in
the recovery process if DB2 should abend.

CI. Control interval.

CICS. Represents (in this publication) CICS/MVS and
CICS/ESA.

CICS/MVS: Customer Information Control
System/Multiple Virtual Storage.
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture.

CICS attachment facility . A DB2 subcomponent that
uses the MVS Subsystem Interface (SSI) and cross
storage linkage to process requests from CICS to DB2
and to coordinate resource commitment.

CIDF. Control interval definition field.

claim . To register to DB2 that an object is being
accessed. This registration is also called a claim. A
claim is used to ensure that an object cannot be
drained until a commit is reached. Contrast with drain.

claim class . A specific type of object access which
can be one of the following:

cursor stability (CS)
repeatable read (RR)

 write

claim count . A count of the number of agents that are
accessing an object.

class of service . A VTAM term for a list of routes
through a network, arranged in an order of preference
for their use.

clause . In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

client . See requester.

CLIST. Command list. A language for performing TSO
tasks.

CLPA . Create link pack area.

clustering index . An index that determines how rows
are physically ordered in a table space.

coded character set . A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID) . A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding
scheme identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

column . The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function . An SQL operation that derives its
result from a collection of values across one or more
rows. Contrast with scalar function.

"come from " checking . An LU 6.2 security option
which defines a list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command . A DB2 operator command or a DSN
subcommand. Distinct from an SQL statement.

command recognition character (CRC) . A character
that permits an MVS console operator or an IMS
subsystem user to route DB2 commands to specific
DB2 subsystems.

commit . The operation that ends a unit of work by
releasing locks so that the database changes made by
that unit of work can be perceived by other processes.

commit point . A point in time when data is considered
consistent.

committed phase . The second phase of the multi-site
update process that requests all participants to commit
the effects of the logical unit of work.

 Glossary G-5

 common service area (CSA) � cycle

common service area (CSA) . In MVS, a part of the
common area that contains data areas addressable by
all address spaces.

communications database (CDB) . A set of tables in
the DB2 catalog that are used to establish
conversations with remote database management
systems.

comparison operator . A token (such as =, >, <) used
to specify a relationship between two values.

compression dictionary . The dictionary that controls
the process of compression and decompression. This
dictionary is created from the data in the table space or
table space partition.

concurrency . The shared use of resources by more
than one application process at the same time.

conditional restart . A DB2 restart that is directed by a
user-defined conditional restart control record (CRCR).

connection ID . An identifier supplied by the
attachment facility that is associated with a specific
address space connection.

consistency token . A timestamp used to generate the
version identifier for an application. See also version.

constraint . A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, uniqueness constraint, and table check
constraint.

control interval (CI) . A fixed-length area or direct
access storage in which VSAM stores records and
creates distributed free space. Also, in a key-sequenced
data set or file, the set of records pointed to by an entry
in the sequence-set index record. The control interval
is the unit of information that VSAM transmits to or from
direct access storage. A control interval always includes
an integral number of physical records.

control interval definition field (CIDF) . In VSAM, a
field located in the four bytes at the end of each control
interval; it describes the free space, if any, in the control
interval.

conversation . (1) A VTAM term for a dialog between
two application processes, on different DB2
subsystems, that is specified by a particular session
name, mode name, and LU name. (2) An LU 6.2
security option which allows DB2 to require the user's
authorization ID and password when allocating a

conversation to a partner DB2. The user is validated by
the partner DB2.

coordinator . The system component that coordinates
the commit or rollback of a unit of work that includes
work done on one or more other systems.

correlated subquery . A subquery (part of a WHERE
or HAVING clause) applied to a row or group of rows of
a table or view named in an outer sub-SELECT
statement.

correlation ID . An identifier associated with a specific
thread. In TSO, it is either an authorization ID or the job
name.

correlation name . An identifier that designates a
table, a view, or individual rows of a table or view within
a single SQL statement. It can be defined in any FROM
clause or in the first clause of an UPDATE or DELETE
statement.

CPC. See central processor complex.

CRC. Command recognition character.

CRCR. Conditional restart control record.

cross-memory linkage . A method for invoking a
program in a different address space. The invocation is
synchronous with respect to the caller.

CSA. Common service area.

current status rebuild . The second phase of restart
processing during which the status of the subsystem is
reconstructed from information on the log.

cursor . A named control structure used by an
application program to point to a row of interest within
some set of rows, and to retrieve rows from the set,
possibly making updates or deletions.

cursor stability (CS) . The isolation level that provides
maximum concurrency without the ability to read
uncommitted data. With cursor stability, a unit of work
holds locks only on its uncommitted changes and on the
current row of each of its cursors.

cursor table (CT) . The cursor table is the copy of the
skeleton cursor table used by an executing application
process.

cycle . A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
is a descendent of the last. A self-referencing table is a
cycle with a single member.

G-6 Administration Guide

 DASD � declarations generator (DCLGEN)

D
DASD. Direct access storage device.

database . A collection of tables, or a collection of
table spaces and index spaces.

database access thread . A thread accessing data at
the local subsystem on behalf of a remote subsystem.

database administrator (DBA) . An individual
responsible for the design, development, operation,
safeguarding, maintenance, and use of a database.

database descriptor (DBD) . An internal
representation of DB2 database definition which reflects
the data definition found in the DB2 catalog. The
objects defined in a database descriptor are table
spaces, tables, indexes, index spaces, and
relationships.

database management system (DBMS) . A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

database request module (DBRM) . A data set
member created by the DB2 precompiler that contains
information about SQL statements. DBRMs are used in
the bind process.

DATABASE 2 Interactive (DB2I) . The DB2 facility that
provides for the execution of SQL statements, DB2
(operator) commands, programmer commands, and
utility invocation.

data definition name (DD name) . The name of a data
definition (DD) statement that corresponds to a data
control block containing the same name.

Data Language/I (DL/I) . The IMS data manipulation
language; a common high-level interface between a
user application and IMS.

data sharing . The ability of two or more DB2
subsystems to directly access and change a single set
of data.

data sharing group . A collection of one or more DB2
subsystems that directly access and change the same
data while maintaining data integrity.

data sharing member . A DB2 subsystem assigned by
XCF services to a data sharing group.

data type . An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

date . A three-part value that designates a day, month,
and year.

date duration . A decimal integer that represents a
number of years, months, and days.

datetime value . A value of the data type DATE, TIME,
or TIMESTAMP.

DBA . Database administrator.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog . Tables maintained by DB2 that contain
descriptions of DB2 objects such as tables, views, and
indexes.

DB2 command . An instruction to the DB2 subsystem
allowing a user to start or stop DB2, to display
information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2I. DATABASE 2 Interactive.

DB2I Kanji Feature . The tape that contains the panels
and jobs that allow a site to display DB2I panels in
Kanji.

DB2 PM. DATABASE 2 Performance Monitor.

DB2 private protocol access . A method of accessing
distributed data by which you can direct a query to
another DB2 system by using an alias or a three-part
name to identify the DB2 subsystems at which the
statements are executed. Contrast with DRDA access.

DB2 private protocol connection . A DB2 private
connection of the application process. See also private
connection.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

DD name . Data definition name.

deadlock . Unresolvable contention for the use of a
resource such as a table or an index.

declarations generator (DCLGEN) . A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that
conform to the table. The declarations are generated

 Glossary G-7

 default value � embedded SQL

from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

default value . A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

degree of parallelism . The number of concurrently
executed operations that are initiated to process a
query.

| delete rule . The rule that tells DB2 what to do to a
| dependent row when a parent row is deleted. For each
| relationship, the rule might be CASCADE, RESTRICT,
| SET NULL, or NO ACTION.

dependent . An object (row, table, or table space) is a
dependent if it has at least one parent. The object is
also said to be a dependent (row, table, or table space)
of its parent. See parent row, parent table, parent table
space.

dependent row . A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table . A table that is dependent in at least
one referential constraint.

descendent . An object is a descendent of another
object if it is a dependent of the object, or if it is the
dependent of a descendent of that object.

descendent row . A row that is dependent on another
row or a row that is a dependent of a descendent row.

descendent table . A table that is a dependent of
another table or a dependent of a descendent table.

DFHSM. Data Facility Hierarchical Storage Manager.

DFP. Data Facility Product (MVS).

direct access storage device (DASD) . A device in
which access time is independent of the location of the
data.

directory . The system database that contains internal
objects such as database descriptors and skeleton
cursor tables.

distributed data facility (DDF) . A set of DB2
components through which DB2 communicates with
another RDBMS.

distributed relational database architecture
(DRDA). A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for

communication between relational database
management systems.

DL/I. Data Language/I. The IMS data manipulation
language; a common high-level interface between a
user application and IMS.

double-byte character set (DBCS) . A set of
characters used by national languages such as
Japanese and Chinese that have more symbols than
can be represented by a single byte. Each character is
two bytes in length, and therefore requires special
hardware to be displayed or printed.

drain . To acquire a locked resource by quiescing
access to that object.

drain lock . A lock on a claim class which prevents a
claim from occurring.

DRDA. Distributed relational database architecture.

DRDA access . A method of accessing distributed data
by which you can explicitly connect to another location,
using an SQL statement, to execute packages that have
been previously bound at that location. The SQL
CONNECT statement is used to identify application
servers, and SQL statements are executed using
packages that were previously bound at those servers.
Contrast with DB2 private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration . A number that represents an interval of time.
See date duration, labeled duration, and time duration.

dynamic SQL . SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution.

E
EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme used to represent character
data in the MVS, VM, VSE, and OS/400 environments.
Contrast with ASCII.

EDM pool . A pool of main storage used for database
descriptors and application plans.

EID. Event identifier.

embedded SQL . SQL statements coded within an
application program. See static SQL.

G-8 Administration Guide

 EOM � host structure

EOM. End of memory.

EOT. End of task.

error page range . Range of pages considered to be
physically damaged. DB2 will not allow a user to access
any pages that fall within this range.

equi-join . A join operation in which the join-condition
has the form expression = expression.

ESDS. Entry sequenced data set.

ESMT. External subsystem module table (IMS).

EUR. IBM European Standards.

exception table . A table that holds rows that violate
referential constraints or table check constraints found
by the CHECK DATA utility.

exclusive lock . A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with shared lock.

exit routine . A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

expression . An operand or a collection of operators
and operands that yields a single value.

F
fallback . The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

field procedure . A user-written exit routine designed
to receive a single value and transform (encode or
decode) it in any way the user can specify.

fixed-length string . A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key . A key that is specified in the definition of
a referential constraint. Because of the foreign key, the
table is a dependent table. The key must have the
same number of columns, with the same descriptions,
as the primary key of the parent table.

forward log recovery . The third phase of restart
processing during which DB2 processes the log in a
forward direction to apply all REDO log records.

free space . The total unused space in a page, that is,
the space not used to store records or control
information.

full outer join . The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of both tables. See
also join.

function . A scalar function or column function. Same
as built-in function.

G
GB. Gigabyte (1,073,741,824 bytes).

generalized trace facility (GTF) . An MVS service
program that records significant system events such as
I/O interrupts, SVC interrupts, program interrupts, or
external interrupts.

generic resource name . A name used by VTAM that
represents several application programs that provide the
same function in order to handle session distribution
and balancing in a Sysplex.

getpage . An operation in which DB2 accesses a data
page.

GIMSMP. The load module name for the System
Modification Program/Extended, a basic tool for
installing, changing, and controlling changes to
programming systems.

graphic string . A sequence of DBCS characters.

gross lock . The shared, update, or exclusive mode
locks on a table, partition, or table space.

group buffer pool . A coupling facility cache structure
used by a data sharing group to cache data and to
ensure that the data is consistent for all members.

GTF. Generalized trace facility.

H
help panel . A screen of information presenting tutorial
text to assist a user at the terminal.

home address space . The area of storage that MVS
currently recognizes as “dispatched.”

host language . A programming language in which you
can embed SQL statements.

host program . An application program written in a
host language that contains embedded SQL statements.

host structure . In an application program, a structure
referenced by embedded SQL statements.

 Glossary G-9

 host variable � instrumentation facility component identifier (IFCID)

host variable . In an application program, an
application variable referenced by embedded SQL
statements.

HSM. Hierarchical storage manager.

I
ICF. Integrated catalog facility.

IDCAMS. An IBM program used to process access
method services (AMS) commands. It can be invoked
as a job or jobstep, from a TSO terminal, or from within
a user's application program.

IDCAMS LISTCAT . A facility for obtaining information
contained in the access method services catalog.

identify . A request that an attachment service program
in an address space separate from DB2 issues via the
MVS subsystem interface to inform DB2 of its existence
and initiate the process of becoming connected to DB2.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call . An invocation of the instrumentation facility
interface (IFI) by means of one of its defined functions.

IFP. IMS Fast Path.

image copy . An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS. Information Management System.

IMS attachment facility . A DB2 subcomponent that
uses MVS Subsystem Interface (SSI) protocols and
cross-memory linkage to process requests from IMS to
DB2 and to coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System Transaction
Manager.

in-abort . A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled back, but
before the process is completed, DB2 will continue to
back out the changes during restart.

in-commit . A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit processing, it
“knows,” when restarted, that changes made to data are
consistent. Such units of recovery are termed
in-commit.

independent . An object (row, table, or table space) is
independent if it is neither a parent nor a dependent of
another object.

index . A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access
to data and can enforce uniqueness on the rows in a
table.

index key . The set of columns in a table used to
determine the order of index entries.

index partition . A VSAM data set that is contained
within a partitioned index space.

index space . A page set used to store the entries of
one index.

indicator variable . A variable used to represent the
null value in an application program. If the value for the
selected column is null, a negative value is placed in
the indicator variable.

indoubt . A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if this unit of recovery is to be
committed or rolled back. At emergency restart, if DB2
does not have the information needed to make this
decision, its unit of recovery is indoubt until DB2 obtains
this information from the coordinator.

indoubt resolution . The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inflight . A status of a unit of recovery. If DB2 fails
before its unit of recovery completes phase 1 of the
commit process, it merely backs out the updates of its
unit of recovery when it is restarted. These units of
recovery are termed inflight.

inner join . The result of a join operation that includes
only the matched rows of both tables being joined. See
also join.

install . The process of preparing a DB2 subsystem to
operate as an MVS subsystem.

installation verification scenario . A sequence of
operations that exercises the main DB2 functions and
tests whether DB2 was correctly installed.

instrumentation facility component identifier
(IFCID). Names a traceable event and identifies the
trace record of that event. As a parameter on the
-START TRACE and -MODIFY TRACE commands, it
specifies tracing the corresponding event.

G-10 Administration Guide

 Interactive System Productivity Facility (ISPF) � log

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that provides interactive dialog
services.

internal resource lock manager (IRLM) . An MVS
subsystem used by DB2 to control communication and
database locking.

IRLM. internal resource lock manager.

ISO. International Standards Organization.

isolation level . The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, repeatable read,
uncommitted read, and read stability.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

J
JCL . Job control language.

JES. MVS Job Entry Subsystem.

JIS. Japanese Industrial Standard.

join . A relational operation that allows retrieval of data
from two or more tables based on matching column
values. See also full outer join, inner join, left outer join,
outer join, right outer join, equi-join.

K
KB . Kilobyte (1024 bytes).

key . A column or an ordered collection of columns
identified in the description of a table, index, or
referential constraint.

KSDS. Key sequenced data set.

L
labeled duration . A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

latch . A DB2 internal mechanism for controlling
concurrent events or the use of system resources.

LCID. Log control interval definition.

LDS. Linear data set.

leaf page . A page that contains pairs of keys and
RIDs and that points to actual data. Contrast with
nonleaf page.

left outer join . The result of a join operation that
includes the matched rows of both tables being joined,
and preserves the unmatched rows of the first table.
See also join.

linear data set (LDS) . A VSAM data set that contains
data but no control information. A linear data set can be
accessed as a byte-addressable string in virtual
storage.

link-edit . To create a loadable computer program
using a linkage editor.

L-lock . See logical lock.

load module . A program unit that is suitable for
loading into main storage for execution. The output of a
linkage editor.

local subsystem . The unique RDBMS to which the
user or application program is directly connected (in the
case of DB2, by one of the DB2 attachment facilities).

lock . A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration . The interval over which a DB2 lock is
held.

lock escalation . The promotion of a lock from a row
or page lock to a table space lock because the number
of page locks concurrently held on a given resource
exceeds a preset limit.

locking . The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode . A representation for the type of access
concurrently running programs can have to a resource
held by a DB2 lock.

lock object . The resource that is controlled by a DB2
lock.

lock promotion . The process of changing the size or
mode of a DB2 lock to a higher level.

lock size . The amount of data controlled by a DB2
lock on table data; the value can be a row, a page, a
table, or a table space.

log . A collection of records that describe the events
that occur during DB2 execution and their sequence.
The information thus recorded is used for recovery in
the event of a failure during DB2 execution.

 Glossary G-11

 logical index partition � nonpartitioned index

logical index partition . The set of all keys that
reference the same data partition.

logical lock . The lock type used by transactions to
control intra- and inter-DB2 data concurrency between
transactions.

logical recovery pending (LRECP) . The state in
which the data and the index keys that reference the
data are inconsistent.

logical unit . An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW) . In IMS, the processing
that program performs between synchronization points.

logical unit of work identifier (LUWID) . A name that
uniquely identifies a thread within a network. This name
consists of a fully-qualified LU network name, an LUW
instance number, and an LUW sequence number.

log initialization . The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record sequence number (LRSN) . A number
DB2 generates and associates with each log record.
DB2 also uses the LRSN for page versioning. The
LRSNs generated by a given DB2 data sharing group
form a strictly increasing sequence for each DB2 log
and a strictly increasing sequence for each page across
the DB2 group.

log truncation . A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data will be written.

long string . A string whose actual length, or a
varying-length string whose maximum length, is greater
than 255 bytes or 127 double-byte characters.

LRECP. Logical recovery pending.

LRH. Log record header.

LRSN. See log record sequence number.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M
materialize . The process of putting rows from a view
or nested table expression into a work file for further
processing by a query.

MB. Megabyte (1,048,576 bytes).

migration . The process of converting a DB2
subsystem with a previous release of DB2 to an
updated or current release. In this process, you can
acquire the functions of the updated or current release
without losing the data you created on the previous
release.

mixed data string . A character string that can contain
both single-byte and double-byte characters.

MLPA . Modified link pack area.

MODEENT. A VTAM macro instruction which
associates a logon mode name with a set of parameters
representing session protocols. A set of MODEENT
macro instructions defines a logon mode table.

mode name . A VTAM name for the collection of
physical and logical characteristics and attributes of a
session.

MPP. Message processing program (IMS).

MSS. Mass Storage Subsystem

MTO. Master terminal operator.

multi-site update . Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

must-complete . A state during DB2 processing in
which the entire operation must be completed to
maintain data integrity.

MVS. Multiple Virtual Storage.

MVS/ESA. Multiple Virtual Storage/Enterprise Systems
Architecture.

MVS/XA. Multiple Virtual Storage/Extended
Architecture.

N
nested table expression . A subselect in a FROM
clause (surrounded by parentheses).

| NID (network identifier) . The network ID assigned by
| IMS or CICS, or if the connection type is RRSAF, the
| OS/390 RRS Unit of Recovery ID (URID).

nonleaf page . A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

nonpartitioned index . Any index that is not the
partitioned index of a partitioned table space.

G-12 Administration Guide

 NRE � partner logical unit

NRE. Network recovery element.

NUL. In C, a single character that denotes the end of
the string.

null . A special value that indicates the absence of
information.

NUL-terminated host variable . A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator . In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
OASN (origin application schedule number) . In IMS,
a 4-byte number assigned sequentially to each IMS
schedule since the last cold start of IMS and used as
an identifier for a unit of work. In an 8-byte format, the
first four bytes contain the schedule number and the
last four contain the number of IMS sync points (commit
points) during the current schedule. The OASN is part
of the NID for an IMS connection.

OBID. Data object identifier.

originating task . In a parallel group, the primary agent
that receives data from other execution units (referred
to as parallel tasks) that are executing portions of the
query in parallel.

outer join . The result of a join operation that includes
the matched rows of both tables being joined and
preserves some or all of the unmatched rows of the
tables being joined. See also join.

P
package . Also application package. An object
containing a set of SQL statements that have been
bound statically and that are available for processing.

package list . An ordered list of package names that
may be used to extend an application plan.

package name . The name given an object created by
a BIND PACKAGE or REBIND PACKAGE command.
The object is a bound version of a database request
module (DBRM). The name consists of a location
name, a collection ID, a package ID, and a version ID.

page . A unit of storage within a table space (4KB or
32KB) or index space (4KB). In a table space, a page
contains one or more rows of a table.

page set . A table space or index space consisting of
pages that are either 4KB or 32KB in size. Each page
set is made from a collection of VSAM data sets.

page set recovery pending (PSRCP) . A restrictive
state of an index space in which the page set is in a
recovery pending state. In this case, the entire page set
must be recovered. Recovery of a logical part is
prohibited.

parallel group . A set of consecutive operations
executed in parallel that have the same number of
parallel tasks.

parallel I/O processing . A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel), on multiple data partitions.

parallel task . The execution unit that is dynamically
created to process a query in parallel. It is implemented
by an MVS service request block.

parent row . A row whose primary key value is the
foreign key value of a dependent row.

parent table . A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space . A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

participant . An entity other than the commit
coordinator that takes part in the commit process.
Synonymous with agent in SNA.

partition . A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 gigabytes, depending upon the number of
partitions in the partitioned page set. All partitions of a
given page set have the same maximum size.

partitioned data set (PDS) . A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. Synonymous with program library.

partitioned page set . A partitioned table space or an
index space. Header pages, space map pages, data
pages, and index pages reference data only within the
scope of the partition.

partitioned table space . A table space subdivided
into parts (based upon index key range), each of which
may be processed by utilities independently.

partner logical unit . An access point in the SNA
network that is connected to the local DB2 by way of a
VTAM conversation.

 Glossary G-13

 PCT � query I/O parallelism

PCT. Program control table (CICS).

PDS. Partitioned data set.

piece . A data set of a nonpartitioned page set.

physical consistency . The state of a page that is not
in a partially changed state.

plan . See application plan.

plan allocation . The process of allocating DB2
resources to a plan in preparation to execute it.

plan name . The name of an application plan.

plan segmentation . The dividing of each plan into
sections. When a section is needed, it is independently
brought into the EDM pool.

PLT. Program list table (CICS).

point of consistency . A time when all recoverable
data an application accesses is consistent with other
data. Synonymous with sync point or commit point.

PPT. (1) Processing program table (CICS).
(2) Program properties table (MVS).

precompilation . A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

predicate . An element of a search condition that
expresses or implies a comparison operation.

prefix . A code at the beginning of a message or
record.

primary authorization ID . The authorization ID used
to identify the application process to DB2.

primary index . An index that enforces the uniqueness
of a primary key.

primary key . A unique, nonnull key that is part of the
| definition of a table. A table cannot be defined as a
| parent unless it has a unique key or primary key.

private connection . A communications connection
that is specific to DB2.

privilege . The capability of performing a specific
function, sometimes on a specific object. The term
includes:

explicit privileges , which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges , which accompany the
ownership of an object, such as the privilege to
drop a synonym one owns, or the holding of an
authority, such as the privilege of SYSADM
authority to terminate any utility job.

privilege set . For the installation SYSADM ID, the set
of all possible privileges. For any other authorization ID,
the set of all privileges recorded for that ID in the DB2
catalog.

process . A general term for a unit that depends on the
environment, but has the same basic properties in every
environment. A process involves the execution of one or
more programs, and is the unit to which resources and
locks are allocated. The execution of an SQL statement
is always associated with some process.

program . A single compilable collection of executable
statements in a programming language.

program temporary fix (PTF) . A solution or bypass of
a problem diagnosed as a result of a defect in a current
unaltered release of a licensed program. An authorized
program analysis report (APAR) fix is corrective service
for an existing problem. A PTF is preventive service for
problems that might be encountered by other users of
the product. A PTF is “temporary” because a permanent
fix is usually not incorporated into the product until its
next release.

protected conversation . A VTAM conversation that
supports two-phase commit flows.

PSRCP. Page set recovery pending.

PTF. Program temporary fix.

Q
QMF. Query Management Facility.

QSAM. Queued Sequential Access Method.

query CP parallelism . Parallel execution of a single
query accomplished by using multiple tasks. See also
Sysplex query parallelism.

query I/O parallelism . Parallel access of data
accomplished by triggering multiple I/O requests within
a single query.

G-14 Administration Guide

 RACF � remote subsystem

R
RACF. OS/VS2 MVS Resource Access Control
Facility.

RAMAC . IBM family of enterprise disk storage system
products.

RBA . Relative byte address.

RCT. Resource control table (CICS attachment
facility).

RDB. See relational database.

RDBMS. Relational database management system.

RDBNAM . See relational database name.

RDF. Record definition field.

read stability (RS) . An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently executing
application processes. Under level RS, an application
that issues the same query more than once might read
additional rows, known as phantom rows, that were
inserted and committed by a concurrently executing
application process.

rebind . To create a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table
accessed by your application, you must rebind the
application in order to take advantage of that index.

record . The storage representation of a row or other
data.

record identifier (RID) pool . An area of main storage
above the 16MB line that is reserved for sorting record
identifiers during list prefetch processing.

recovery . The process of rebuilding databases after a
system failure.

recovery log . A collection of records that describes
the events that occur during DB2 execution and their
sequence. The information recorded is used for
recovery in the event of a failure during DB2 execution.

recovery pending (RECP) . This condition prevents
SQL access to a table space or index space that may
need to be recovered.

recovery token . An identifier for an element used in
recovery. For example, NID or URID.

RECP. Recovery pending.

redo . A state of a unit of recovery which indicates that
changes made are to be reapplied to the DASD media
to ensure data integrity.

referential constraint . The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity . The condition that exists when all
intended references from data in one column of a table
to data in another column of the same or a different
table are valid. Maintaining referential integrity requires
enforcing referential constraints on all LOAD,
RECOVER, INSERT, UPDATE, and DELETE
operations.

referential structure . A set of tables and relationships
that includes at least one table and, for every table in
the set, all the relationships in which that table
participates and all the tables to which it is related.

relational database . A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system (RDBMS) .
A relational database manager that operates
consistently across supported IBM systems.

relational database name (RDBNAM) . A unique
identifier for an RDBMS within a network. In DB2, this
must be the value in the LOCATION column of table
SYSIBM.LOCATIONS in the CDB. DB2 publications
refer to the name of another RDBMS as a LOCATION
value or a location name.

relationship . A defined connection between the rows
of a table or the rows of two tables. A relationship is the
internal representation of a referential constraint.

relative byte address (RBA) . The offset of a data
record or control interval from the beginning of the
storage space allocated to the data set or file to which it
belongs.

remigration . The process of returning to a current
release of DB2 following a fallback to a previous
release. This procedure constitutes another migration
process.

remote attach request . A request by a remote
location to attach to the local DB2subsystem.
Specifically, the request sent is an SNA Function
Management Header 5.

remote subsystem . Any RDBMS, except the local
subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and may even operate on the same
processor under the same MVS system.

 Glossary G-15

 repeatable read (RR) � self-referencing constraint

repeatable read (RR) . The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows referenced by the
program cannot be changed by other programs until the
program reaches a commit point.

request commit . The vote submitted to the prepare
phase if the participant has modified data and is
prepared to commit or roll back.

requester . Also application requester (AR). The
source of a request to a remote RDBMS, the system
that requests the data.

request unit (RU) . The part of a basic information unit
that follows a request header and contains the data.

resource allocation . The part of plan allocation that
deals specifically with the database resources.

resource control table (RCT) . A construct of the
CICS attachment facility, created by site-provided macro
parameters, that defines authorization and access
attributes for transactions or transaction groups.

resource definition online . A CICS feature that
allows you to define CICS resources on line without
assembling tables.

resource limit facility (RLF) . A portion of DB2 code
that prevents dynamic manipulative SQL statements
from exceeding specified time limits.

resource limit specification table . A site-defined
table that specifies the limits to be enforced by the
resource limit facility.

result table . The set of rows specified by a SELECT
statement.

RID pool . Record identifier pool.

right outer join . The result of a join operation that
includes the matched rows of both tables being joined
and preserves the unmatched rows of the second join
operand. See also join.

RLF. Resource limit facility.

RMID. Resource manager identifier.

RO. Read-only access.

rollback . The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

root page . The page of an index page set that follows
the first index space map page. A root page is the
highest level (or the beginning point) of the index.

row . The horizontal component of a table. A row
consists of a sequence of values, one for each column
of the table.

row lock . A lock on a single row of data.

RRE. Residual recovery entry (IMS).

RRSAF. Recoverable Resource Manager Services
attachment facility. A DB2 subcomponent that uses
OS/390 Transaction Management and Recoverable
Resource Manager Services to coordinate resource
commitment between DB2 and all other resource
managers that also use OS/390 RRS in an OS/390
system.

RTT. Resource translation table.

RU. Request unit.

S
SBCS. Single-byte character set.

scalar function . An SQL operation that produces a
single value from another value and is expressed as a
function name followed by a list of arguments enclosed
in parentheses. See also column function.

search condition . A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID . An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

section . The segment of a plan or package that
contains the executable structures for a single SQL
statement. For most SQL statements, there is one
section in the plan for each SQL statement in the
source program. However, for cursor-related
statements, the DECLARE, OPEN, FETCH, and
CLOSE reference the same section because they each
refer to the SELECT statement named in the DECLARE
CURSOR statement. SQL statements such as
COMMIT, ROLLBACK, and some SET statements do
not use a section.

segmented table space . A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

self-referencing constraint . A referential constraint
that defines a relationship in which a table is a
dependent of itself.

G-16 Administration Guide

 self-referencing table � stored procedure

self-referencing table . A table with a self-referencing
constraint.

sequential data set . A non-DB2 data set whose
records are organized on the basis of their successive
physical positions, such as on magnetic tape. Several of
the DB2 database utilities require sequential data sets.

sequential prefetch . A mechanism that triggers
consecutive asynchronous I/O operations. Pages are
fetched before they are required, and several pages are
read with a single I/O operation.

server . Also application server (AS). The target for a
request from a remote RDBMS, the RDBMS that
provides the data.

session . A link between two nodes in a VTAM
network.

session protocols . The available set of SNA
communication requests and responses.

shared lock . A lock that prevents concurrently
executing application processes from changing data, but
not from reading data.

short string . A string whose actual length, or a
varying-length string whose maximum length, is 255
bytes (127 double-byte characters) or less.

sign-on . A request made on behalf of an individual
CICS or IMS application process by an attach facility to
enable DB2 to verify that it is authorized to use DB2
resources.

simple page set . A nonpartitioned page set. A simple
page set initially consists of a single data set (page set
piece). If and when that data set is extended to 2
gigabytes, another data set is created, and so on up to
a total of 32 data sets. The data sets are considered by
DB2 to be a single contiguous linear address space
containing a maximum of 64 gigabytes. Data is stored
in the next available location within this address space
without regard to any partitioning scheme.

simple table space . A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS) . A set of characters
in which each character is represented by a single byte.

SMF. System management facility.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

SNA network . The part of a network that conforms to
the formats and protocols of Systems Network
Architecture (SNA).

special register . A storage area that is defined for a
process by DB2 and is used to store information that
can be referenced in SQL statements. Examples of
special registers are USER, CURRENT DATE, and
CURRENT TIME.

SPUFI. SQL Processor Using File Input. A facility of
the TSO attachment subcomponent that enables the
DB2I user to execute SQL statements without
embedding them in an application program.

SQL. Structured Query Language.

SQL authorization ID (SQL ID) . The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQL Communication Area (SQLCA) . A structure
used to provide an application program with information
about the execution of its SQL statements.

SQL Descriptor Area (SQLDA) . A structure that
describes input variables, output variables, or the
columns of a result table.

SQL processing conversation . Any conversation that
requires access of DB2 data, either through an
application or by dynamic query requests.

SQLCA . SQL communication area.

SQLDA . SQL descriptor area.

SQL/DS. SQL/Data System. Also known as DB2/VSE
& VM.

SSI. MVS subsystem interface.

SSM. Subsystem member.

stand-alone . An attribute of a program that means it is
capable of executing separately from DB2, without
using DB2 services.

static SQL . SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables specified by
the statement might change).

storage group . A named set of DASD volumes on
which DB2 data can be stored.

stored procedure . A user-written application program,
that can be invoked through the use of the SQL CALL
statement.

 Glossary G-17

 string � time

string . See character string or graphic string.

Structured Query Language (SQL) . A standardized
language for defining and manipulating data in a
relational database.

subcomponent . A group of closely related DB2
modules that work together to provide a general
function.

subpage . The unit into which a physical index page
can be divided.

subquery . A SELECT statement within the WHERE or
HAVING clause of another SQL statement; a nested
SQL statement.

subselect . That form of a query that does not include
ORDER BY clause, UPDATE clause, or UNION
operators.

subsystem . A distinct instance of a RDBMS.

sync point . See commit point.

synonym . In SQL, an alternative name for a table or
view. Synonyms can only be used to refer to objects at
the subsystem in which the synonym is defined.

Sysplex . A set of MVS systems that communicate and
cooperate with each other through certain multisystem
hardware components and software services to process
customer workloads.

Sysplex query parallelism . Parallel execution of a
single query accomplished by using multiple tasks on
more than one DB2. See also query CP parallelism.

system administrator . The person having the second
highest level of authority within DB2. System
administrators make decisions about how DB2 is to be
used and implement those decisions by choosing
system parameters. They monitor the system and
change its characteristics to meet changing
requirements and new data processing goals.

system agent . A work request that DB2 creates
internally.

system conversation . The conversation that two
DB2s must establish to process system messages
before any distributed processing can begin.

system diagnostic work area (SDWA) . The data that
is recorded in a SYS1.LOGREC entry that describes a
program or hardware error.

System Modification Program/Extended (SMP/E) . A
tool for making software changes in programming

systems (such as DB2 or MVS), and for controlling
those changes.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
through and controlling the configuration and operation
of networks.

SYS1.DUMPxx data set . A data set that contains a
system dump.

SYS1.LOGREC. A service aid that contains important
information about program and hardware errors.

T
table . A named data object consisting of a specific
number of columns and some number of unordered
rows. Synonymous with base table or temporary table.

table check constraint . A user-defined constraint that
specifies the values that specific columns of a base
table can contain.

table space . A page set used to store the records in
one or more tables.

table space set . A set of table spaces and partitions
that should be recovered together because each of
them contains a table that is a parent or descendent of
a table in one of the others.

task control block (TCB) . A control block used to
communicate information about tasks within an address
space that are connected to DB2. An address space
can support many task connections (as many as one
per task), but only one address space connection. See
address space connection.

TCB. MVS task control block.

temporary table . A table created by the SQL
CREATE GLOBAL TEMPORARY TABLE statement that
is used to hold temporary data. Contrast with result
table and temporary table.

thread . The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

three-part name . The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name separated by a period.

time . A three-part value that designates a time of day
in hours, minutes, and seconds.

G-18 Administration Guide

 time duration � VTAM

time duration . A decimal integer that represents a
number of hours, minutes, and seconds.

timeout . Abnormal termination of either the DB2
subsystem or of an application because of the
unavailability of resources. Installation specifications are
set to determine both the amount of time DB2 will wait
for IRLM services after starting, and the amount of time
IRLM will wait if a resource requested by an application
is unavailable. If either of these time specifications is
exceeded, a timeout is declared.

time-sharing option (TSO) . Provides interactive time
sharing from remote terminals.

timestamp . A seven-part value that consists of a date
and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

to-do . A state of a unit of recovery that indicates that
the unit of recovery's changes to recoverable DB2
resources are indoubt and must either be applied to the
DASD media or backed out, as determined by the
commit coordinator.

trace . A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

TSO. Time-sharing option.

TSO attachment facility . A DB2 facility consisting of
the DSN command processor and DB2I. Applications
that are not written for the CICS or IMSenvironments
can run under the TSO attachment facility.

type 1 indexes . Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast with
type 2 indexes.

type 2 indexes . A new type of indexes available in
Version 4. They differ from type 1 indexes in several
respects; for example, they are the only indexes
allowed on a table space that uses row locks.

U
uncommitted read (UR) . The isolation level that
allows an application to read uncommitted data.

undo . A state of a unit of recovery that indicates that
the changes made by the unit of recovery to
recoverable DB2 resources must be backed out.

UNION. An SQL operation that combines the results of
two select statements. UNION is often used to merge
lists of values obtained from several tables.

unique index . An index which ensures that no
identical key values are stored in a table.

uniqueness constraint . The rule that no two values in
a primary key or key of a unique index can be the
same.

unlock . To release an object or system resource that
was previously locked and return it to general
availability within DB2.

URE. Unit of recovery element.

URID (unit of recovery ID) . The LOGRBA of the first
log record for a unit of recovery. The URID also
appears in all subsequent log records for that unit of
recovery.

UT. Utility-only access.

V
value . The smallest unit of data manipulated in SQL.

varying-length string . A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

version . A member of a set of similar programs,
DBRMs, or packages.

A version of a program is the source code
produced by precompiling the program. The
program version is identified by the program name
and a timestamp (consistency token).
A version of a DBRM is the DBRM produced by
precompiling a program. The DBRM version is
identified by the same program name and
timestamp as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.

view . An alternative representation of data from one or
more tables. A view can include all or some of the
columns contained in tables on which it is defined.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.

VSAM. Virtual storage access method.

VTAM. MVS Virtual telecommunication access
method.

 Glossary G-19

 WTO � XRF

W
WTO. Write to operator.

WTOR. Write to operator with reply.

X
XRF. Extended recovery facility.

G-20 Administration Guide

 Bibliography

DB2 for OS/390 Version 5

� Administration Guide, SC26-8957

� Application Programming and SQL Guide,
SC26-8958

� Call Level Interface Guide and Reference,
SC26-8959

� Command Reference, SC26-8960

� Data Sharing: Planning and Administration,
SC26-8961

� Data Sharing Quick Reference Card, SX26-3841

� Diagnosis Guide and Reference, LY27-9659

� Diagnostic Quick Reference Card, LY27-9660

� Installation Guide, GC26-8970

� Application Programming Guide and Reference for
Java, SC26-9547

� Licensed Program Specifications, GC26-8969

� Messages and Codes, GC26-8979

� Reference for Remote DRDA Requesters and
Servers, SC26-8964

� Reference Summary, SX26-3842

� Release Guide, SC26-8965

� SQL Reference, SC26-8966

� Utility Guide and Reference, SC26-8967

� What's New?, GC26-8971

 � Program Directory

DB2 PM for OS/390 Version 5

� Batch User's Guide, SC26-8991

� Command Reference, SC26-8987

� General Information, GC26-8982

� Getting Started on the Workstation, SC26-8989

� Master Index, SC26-8984

� Messages Manual, SC26-8988

� Online Monitor User's Guide, SC26-8990

� Report Reference Volume 1, SC26-8985

� Report Reference Volume 2, SC26-8986

 � Program Directory

Ada/370

� IBM Ada/370 Language Reference, SC09-1297
� IBM Ada/370 Programmer's Guide, SC09-1414
� IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2

� APL2 Programming Guide, SH21-1072
� APL2 Programming: Language Reference,

SH21-1061
� APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400

� DB2 for OS/400 SQL Programming, SC41-4611
� DB2 for OS/400 SQL Reference, SC41-4612

BASIC

� IBM BASIC/MVS Language Reference, GC26-4026
� IBM BASIC/MVS Programming Guide, SC26-4027

C/370

� IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1356

� IBM SAA AD/Cycle C/370 Programming Guide for
Language Environment/370, SC09-1840

� IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

� SAA CPI C Reference, SC09-1308

Character Data Representation Architecture

� Character Data Representation Architecture
Overview, GC09-2207
� Character Data Representation Architecture
Reference, SC09-2190

CICS/ESA

� CICS/ESA Application Programming Guide,
SC33-1169

� CICS/ESA Application Programming Reference,
SC33-1170

� CICS/ESA CICS - RACF Security Guide,
SC33-1185

� CICS/ESA CICS-Supplied Transactions, SC33-1168
� CICS/ESA Customization Guide, SC33-1165
� CICS/ESA Data Areas, LY33-6083
� CICS/ESA Installation Guide, SC33-1163
� CICS/ESA Intercommunication Guide, SC33-1181
� CICS/ESA Messages and Codes, SC33-1177
� CICS/ESA Operations and Utilities Guide,

SC33-1167
� CICS/ESA Performance Guide, SC33-1183
� CICS/ESA Problem Determination Guide,

SC33-1176
� CICS/ESA Resource Definition Guide, SC33-1166
� CICS/ESA System Definition Guide, SC33-1164
� CICS/ESA System Programming Reference,

GC33-1171

 Copyright IBM Corp. 1982, 1997 G-21

CICS/MVS

� CICS/MVS Application Programming Primer,
SC33-0139

� CICS/MVS Application Programmer's Reference,
SC33-0512

� CICS/MVS Facilities and Planning Guide,
SC33-0504

� CICS/MVS Installation Guide, SC33-0506
� CICS/MVS Operations Guide, SC33-0510
� CICS/MVS Problem Determination Guide,

SC33-0516
� CICS/MVS Resource Definition (Macro), SC33-0509
� CICS/MVS Resource Definition (Online), SC33-0508

IBM C/C++ for MVS/ESA or OS/390

� IBM C/C++ for MVS/ESA Library Reference,
SC09-1995

� IBM C/C++ for MVS/ESA Programming Guide,
SC09-1994

� IBM C/C++ for OS/390 User's Guide, SC09-2361

IBM COBOL for MVS & VM

� IBM COBOL for MVS & VM Language Reference,
SC26-4769

� IBM COBOL for MVS & VM Programming Guide,
SC26-4767

Conversion Guides

� DBMS Conversion Guide: DATACOM/DB to DB2,
GH20-7564

� DBMS Conversion Guide: IDMS to DB2,
GH20-7562

� DBMS Conversion Guide: Model 204 to DB2 or
SQL/DS, GH20-7565

� DBMS Conversion Guide: VSAM to DB2,
GH20-7566

� IMS-DB and DB2 Migration and Coexistence Guide,
GH21-1083

Cooperative Development Environment

� CoOperative Development Environment/370: Debug
Tool, SC09-1623

DATABASE 2 for Common Servers

� DATABASE 2 Administration Guide for common
servers, S20H-4580

� DATABASE 2 Application Programming Guide for
common servers, S20H-4643

� DATABASE 2 Software Developer's Kit for AIX:
Building Your Applications, S20H-4780

� DATABASE 2 Software Developer's Kit for OS/2:
Building Your Applications, S20H-4787

� DATABASE 2 SQL Reference for common servers,
S20H-4665

� DATABASE 2 Call Level Interface Guide and
Reference for common servers, S20H-4644

Data Extract (DXT)

� Data Extract Version 2: General Information,
GC26-4666

� Data Extract Version 2: Planning and Administration
Guide, SC26-4631

DataPropagator NonRelational

� DataPropagator NonRelational MVS/ESA
Administration Guide, SH19-5036

� DataPropagator NonRelational MVS/ESA
Reference, SH19-5039

DataPropagator Relational

� DataPropagator Relational User's Guide,
SC26-3399

� IBM An Introduction to DataPropagator Relational,
GC26-3398

Data Facility Data Set Services

� Data Facility Data Set Services: User's Guide and
Reference, SC26-4125

Database Design

� DB2 Database Design and Implementation Using
DB2, SH24-6101

� DB2 Design and Development Guide, Gabrielle
Wiorkowski and David Kull, Addison Wesley

� Handbook of Relational Database Design, C.
Fleming and B Von Halle, Addison Wesley

� Principles of Database Systems, Jeffrey D. Ullman,
Computer Science Press

DataHub

� IBM DataHub General Information, GC26-4874

DB2 Universal Database

� DB2 Universal Database Administration Guide,
S10J-8157

� DB2 Universal Database API Reference, S10J-8167
� DB2 Universal Database Building Applications for

UNIX Environments, S10J-8161
� DB2 Universal Database Building Applications for

Windows and OS/2 Environments, S10J-8160
� DB2 Universal Database CLI Guide and Reference,

S10J-8159
� DB2 Universal Database SQL Reference,

S10J-8165

Device Support Facilities

� Device Support Facilities User's Guide and
Reference, GC35-0033

DFSMS/MVS

� DFSMS/MVS: Access Method Services for the
Integrated Catalog, SC26-4906

G-22 Administration Guide

� DFSMS/MVS: Access Method Services for VSAM
Catalogs, SC26-4905

� DFSMS/MVS: Administration Reference for
DFSMSdss, SC26-4929

� DFSMS/MVS: DFSMShsm Managing Your Own
Data, SH21-1077

� DFSMS/MVS: Diagnosis Reference for DFSMSdfp,
LY27-9606

� DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

� DFSMS/MVS: Managing Catalogs, SC26-4914
� DFSMS/MVS: Program Management, SC26-4916
� DFSMS/MVS: Storage Administration Reference for

DFSMSdfp, SC26-4920
� DFSMS/MVS: Using Advanced Services for Data

Sets, SC26-4921
� DFSMS/MVS: Utilities, SC26-4926
� MVS/DFP: Managing Non-VSAM Data Sets,

SC26-4557

DFSORT

� DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database

� Data Stream and OPA Reference, SC31-6806
� Distributed Relational Database Architecture:

Application Programming Guide, SC26-4773
� Distributed Relational Database Architecture:

Connectivity Guide, SC26-4783
� Distributed Relational Database Architecture:

Evaluation and Planning Guide, SC26-4650
� Distributed Relational Database Architecture:

Problem Determination Guide, SC26-4782
� Distributed Relational Database: Every Manager's

Guide, GC26-3195
� IBM SQL Reference, SC26-8416
� Open Group Technical Standard (the Open Group

presently makes the following books available
through their website at www.opengroup.org):

– DRDA Volume 1: Distributed Relational
Database Architecture (DRDA), ISBN
1-85912-295-7

– DRDA Volume 3: Distributed Database
Management (DDM) Architecture, ISBN
1-85912-206-X

Education

� Dictionary of Computing, SC20-1699
� IBM Enterprise Systems Training Solutions Catalog,

GR28-5467

Enterprise System/9000 and Enterprise System/3090

� Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System Manager
Planning Guide, GA22-7123

FORTRAN

� VS FORTRAN Version 2: Language and Library
Reference, SC26-4221

� VS FORTRAN Version 2: Programming Guide for
CMS and MVS, SC26-4222

High Level Assembler

� High Level Assembler/MVS and VM and VSE
Language Reference, SC26-4940

� High Level Assembler/MVS and VM and VSE
Programmer's Guide, SC26-4941

Parallel Sysplex Library

� System/390 MVS Sysplex Application Migration,
GC28-1211

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

� System/390 MVS Sysplex Overview: An Introduction
to Data Sharing and Parallelism, GC28-1208

� System/390 MVS Sysplex Systems Management,
GC28-1209

� System/390 MVS 9672/9674 System Overview,
GA22-7148

ICSF/MVS

� ICSF/MVS General Information, GC23-0093

IMS/ESA

� IMS Batch Terminal Simulator General Information,
GH20-5522

� IMS/ESA Administration Guide: System, SC26-8013
� IMS/ESA Application Programming: Database

Manager, SC26-8727
� IMS/ESA Application Programming: Design Guide,

SC26-8016
� IMS/ESA Application Programming: Transaction

Manager, SC26-8729
� IMS/ESA Customization Guide, SC26-8020
� IMS/ESA Installation Volume 1: Installation and

Verification, SC26-8023
� IMS/ESA Installation Volume 2: System Definition

and Tailoring, SC26-8024
� IMS/ESA Messages and Codes, SC26-8028
� IMS/ESA Operator's Reference, SC26-8030
� IMS/ESA Utilities Reference: System, SC26-8035

ISPF

� ISPF Version 4 Messages and Codes, SC34-4450
� ISPF Version 4 for MVS Dialog Management Guide,

SC34-4213
� ISPF/PDF Version 4 for MVS Guide and Reference,

SC34-4258
� ISPF and ISPF/PDF Version 4 for MVS Planning

and Customization, SC34-4134

 Bibliography G-23

Language Environment for MVS & VM

� Language Environment for MVS & VM Concepts
Guide, GC26-4786

� Language Environment for MVS & VM Debugging
and Run-Time Messages Guide, SC26-4829

� Language Environment for MVS & VM Installation
and Customization, SC26-4817

� Language Environment for MVS & VM
Programming Guide, SC26-4818

� Language Environment for MVS & VM
Programming Reference, SC26-3312

MVS/ESA

� MVS/ESA Analyzing Resource Measurement
Facility Monitor I and Monitor II Reference and
User's Guide, LY28-1007

� MVS/ESA Analyzing Resource Measurement
Facility Monitor III Reference and User's Guide,
LY28-1008

� MVS/ESA Application Development Reference:
Assembler Callable Services for OpenEdition MVS,
SC23-3020

� MVS/ESA Data Administration: Utilities, SC26-4516
� MVS/ESA Diagnosis: Procedures, LY28-1844
� MVS/ESA Diagnosis: Tools and Service Aids,

LY28-1845
� MVS/ESA Initialization and Tuning Guide,

SC28-1451
� MVS/ESA Initialization and Tuning Reference,

SC28-1452
� MVS/ESA Installation Exits, SC28-1459
� MVS/ESA JCL Reference, GC28-1479
� MVS/ESA JCL User's Guide, GC28-1473
� MVS/ESA JES2 Initialization and Tuning Guide,

SC28-1453
� MVS/ESA MVS Configuration Program, GC28-1615
� MVS/ESA Planning: Global Resource Serialization,

GC28-1450
� MVS/ESA Planning: Operations, GC28-1441
� MVS/ESA Planning: Workload Management,

GC28-1493
� MVS/ESA Programming: Assembler Services

Guide, GC28-1466
� MVS/ESA Programming: Assembler Services

Reference, GC28-1474
� MVS/ESA Programming: Authorized Assembler

Services Guide, GC28-1467
� MVS/ESA Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

� MVS/ESA Programming: Extended Addressability
Guide, GC28-1468

� MVS/ESA Programming: Sysplex Services Guide,
GC28-1495

� MVS/ESA Programming: Sysplex Services
Reference, GC28-1496

� MVS/ESA Programming: Workload Management
Services, GC28-1494

� MVS/ESA Routing and Descriptor Codes,
GC28-1487

� MVS/ESA Setting Up a Sysplex, GC28-1449
� MVS/ESA SPL: Application Development Guide,

GC28-1852
� MVS/ESA System Codes, GC28-1486
� MVS/ESA System Commands, GC28-1442
� MVS/ESA System Management Facilities (SMF),

GC28-1457
� MVS/ESA System Messages Volume 1, GC28-1480
� MVS/ESA System Messages Volume 2, GC28-1481
� MVS/ESA System Messages Volume 3, GC28-1482
� MVS/ESA Using the Subsystem Interface,

SC28-1502

Net.Data for OS/390

� Net.Data Language Environment Guide,
http://www.ibm.com/software/net.data/docs
� Net.Data Programming Guide,
http://www.ibm.com/software/net.data/docs
� Net.Data Reference Guide,
http://www.ibm.com/software/net.data/docs

NetView

� NetView Installation and Administration Guide,
SC31-8043

� NetView User's Guide, SC31-8056

ODBC

� ODBC 2.0 Programmer's Reference and SDK
Guide, ISBN 1-55615-658-8

� Inside ODBC, ISBN 1-55615-815-7

OS/390

� OS/390 C/C++ Programming Guide, SC09-2362
� OS/390 C/C++ Run-Time Library Reference,

SC28-1663
� OS/390 Information Roadmap, GC28-1727
� OS/390 Introduction and Release Guide,

GC28-1725
� OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
� OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
� OS/390 Language Environment for OS/390 & VM

Concepts Guide, GC28-1945
� OS/390 Language Environment for OS/390 & VM

Customization, SC28-1941
� OS/390 Language Environment for OS/390 & VM

Debugging Guide, SC28-1942
� OS/390 Language Environment for OS/390 & VM

Programming Guide, SC28-1939
� OS/390 Language Environment for OS/390 & VM

Programming Reference, SC28-1940
� OS/390 MVS Diagnosis: Procedures, LY28-1082
� OS/390 MVS Diagnosis: Tools and Service Aids,

LY28-1085

G-24 Administration Guide

� OS/390 MVS Initialization and Tuning Guide,
SC28-1751

� OS/390 MVS Initialization and Tuning Reference,
SC28-1752

� OS/390 MVS Installation Exits, SC28-1753
� OS/390 MVS JCL Reference, GC28-1757
� OS/390 MVS JCL User's Guide, GC28-1758
� OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
� OS/390 MVS Planning: Operations, GC28-1760
� OS/390 MVS Planning: Workload Management,

GC28-1761
� OS/390 MVS Programming: Assembler Services

Guide, GC28-1762
� OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
� OS/390 MVS Programming: Authorized Assembler

Services Guide, GC28-1763
� OS/390 MVS Programming: Authorized Assembler

Services Reference, Volumes 1-4, GC28-1764,
GC28-1765, GC28-1766, GC28-1767

� OS/390 MVS Programming: Callable Services for
High-Level Languages, GC28-1768

� OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

� OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

� OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

� OS/390 MVS Programming: Workload Management
Services, GC28-1773

� OS/390 MVS Routing and Descriptor Codes,
GC28-1778

� OS/390 MVS Setting Up a Sysplex, GC28-1779
� OS/390 MVS System Codes, GC28-1780
� OS/390 MVS System Commands, GC28-1781
� OS/390 MVS System Messages Volume 1,

GC28-1784
� OS/390 MVS System Messages Volume 2,

GC28-1785
� OS/390 MVS System Messages Volume 3,

GC28-1786
� OS/390 MVS System Messages Volume 4,

GC28-1787
� OS/390 MVS System Messages Volume 5,

GC28-1788
� OS/390 Security Server (RACF) Auditor's Guide,

SC28-1916
� OS/390 Security Server (RACF) Command

Language Reference, SC28-1919
� OS/390 Security Server (RACF) General User's

Guide, SC28-1917
� OS/390 Security Server (RACF) Security

Administrator's Guide, SC28-1915
� OS/390 Security Server (RACF) System

Programmer's Guide, SC28-1913
� OS/390 SMP/E Reference, SC28-1806
� OS/390 SMP/E User's Guide, SC28-1740
� OS/390 RMF User's Guide, SC28-1949

� OS/390 TSO/E CLISTS, SC28-1973
� OS/390 TSO/E Command Reference, SC28-1969
� OS/390 TSO/E Customization, SC28-1965
� OS/390 TSO/E Messages, GC28-1978
� OS/390 TSO/E Programming Guide, SC28-1970
� OS/390 TSO/E Programming Services, SC28-1971
� OS/390 TSO/E REXX Reference, SC28-1975
� OS/390 TSO/E User's Guide, SC28-1968

OS/390 OpenEdition

� OS/390 OpenEdition DCE Administration Guide,
SC28-1584

� OS/390 OpenEdition DCE Introduction, GC28-1581
� OS/390 R1 OE DCE Messages and Codes,

ST01-0920
� OS/390 OpenEdition Command Reference,

SC28-1892
� OS/390 OpenEdition Messages and Codes,

SC28-1908
� OS/390 OpenEdition Planning, SC28-1890
� OS/390 OpenEdition User's Guide, SC28-1891

PL/I for MVS & VM

� IBM PL/I MVS & VM Language Reference,
SC26-3114

� IBM PL/I MVS & VM Programming Guide,
SC26-3113

OS PL/I

� OS PL/I Programming Language Reference,
SC26-4308

� OS PL/I Programming Guide, SC26-4307

PROLOG

� IBM SAA AD/Cycle Prolog/MVS & VM
Programmer's Guide, SH19-6892

Query Management Facility

� Query Management Facility: Managing QMF for
MVS, SC26-8218

� Query Management Facility: Reference, SC26-4716
� Query Management Facility: Using QMF,

SC26-8078

Remote Recovery Data Facility

� Remote Recovery Data Facility Program Description
and Operations, LY37-3710

Resource Access Control Facility (RACF)

� External Security Interface (RACROUTE) Macro
Reference for MVS and VM, GC28-1366

� Resource Access Control Facility (RACF) Auditor's
Guide, SC28-1342

� Resource Access Control Facility (RACF) Command
Language Reference, SC28-0733

� Resource Access Control Facility (RACF) General
Information Manual, GC28-0722

 Bibliography G-25

� Resource Access Control Facility (RACF) General
User's Guide, SC28-1341

� Resource Access Control Facility (RACF) Security
Administrator's Guide, SC28-1340

� Recource Access Control Facility (RACF) System
Programmer's Guide, SC28-1343

Storage Management

� MVS/ESA Storage Management Library:
Implementing System-Managed Storage,
SC26-3123

� MVS/ESA Storage Management Library: Leading an
Effective Storage Administration Group, SC26-3126

� MVS/ESA Storage Management Library: Managing
Data, SC26-3124

� MVS/ESA Storage Management Library: Managing
Storage Groups, SC26-3125

� MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
SC26-4659

System/370 and System/390

� IBM System/370 ESA Principles of Operation,
SA22-7200

� IBM System/390 ESA Principles of Operation,
SA22-7205

� System/390 MVS Sysplex Hardware and Software
Migration, GC28-1210

System Modification Program Extended (SMP/E)

� System Modification Program Extended (SMP/E)
Reference, SC28-1107

� System Modification Program Extended (SMP/E)
User's Guide, SC28-1302

System Network Architecture (SNA)

� SNA Formats, GA27-3136
� SNA LU 6.2 Peer Protocols Reference, SC31-6808
� SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084

� SNA/Management Services Alert Implementation
Guide, GC31-6809

TCP/IP

� IBM TCP/IP for MVS: Customization &
Administration Guide, SC31-7134

� IBM TCP/IP for MVS: Diagnosis Guide, LY43-0105
� IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
� IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TSO Extensions

� TSO/E CLISTS, SC28-1876
� TSO/E Command Reference, SC28-1881
� TSO/E Customization, SC28-1872
� TSO/E Messages, GC28-1885
� TSO/E Programming Guide, SC28-1874
� TSO/E Programming Services, SC28-1875
� TSO/E User's Guide, SC28-1880

VS COBOL II

� VS COBOL II Application Programming Guide for
MVS and CMS, SC26-4045

� VS COBOL II Application Programming: Language
Reference, SC26-4047

� VS COBOL II Installation and Customization for
MVS, SC26-4048

VTAM

� Planning for NetView, NCP, and VTAM, SC31-8063
� VTAM for MVS/ESA Diagnosis, LY43-0069
� VTAM for MVS/ESA Messages and Codes,

SC31-6546
� VTAM for MVS/ESA Network Implementation Guide,

SC31-6548
� VTAM for MVS/ESA Operation, SC31-6549
� VTAM for MVS/ESA Programming, SC31-6550
� VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
� VTAM for MVS/ESA Resource Definition Reference,

SC31-6552

G-26 Administration Guide

 Index

 Copyright IBM Corp. 1982, 1997 I-1

I-2 Administration Guide

 Index

Special Characters
_ (underscore)

in DDL registration tables 3-51
% (percent sign)

in DDL registration tables 3-51

Numerics
32KB buffering 5-59
32KB page size 2-40
3990 cache 5-105

A
abend

AEY9 4-164
after SQL code -923 4-170
ASP7 4-164
backward log recovery 4-238
 CICS

abnormal termination of application 4-164
loops 4-165
scenario 4-169
transaction abends when disconnecting from

DB2 4-47, 4-48
waits 4-165

current status rebuild 4-225
disconnects DB2 4-58
DXR122E 4-155
effects of 4-100
forward log recovery 4-233
IMS

U3047 4-163
U3051 4-163

IMS, scenario 4-160, 4-163
IRLM

scenario 4-155
stop command 4-36
stop DB2 4-35

log
damage 4-221
initialization 4-224
lost information 4-244

page problem 4-244
restart 4-223
starting DB2 after 4-15
VVDS (VSAM volume data set)

destroyed 4-187
out of space 4-187

acceptance option 3-76
access control

closed application 3-49, 3-61

access control (continued)
DB2 subsystem

local 3-9, 3-64
process overview 3-63
RACF 3-9
remote 3-10, 3-71, 3-92

external DB2 data sets 3-10
field level 3-22
internal DB2 data 3-8

access control authorization exit routine X-34
access method services

bootstrap data set definition 4-93
commands

ALTER 4-190, X-172
DEFINE 4-244
DEFINE CLUSTER 2-70, 2-71, 5-41
EXPORT 4-133
IMPORT 2-148, 4-243
LISTCAT X-172
PRINT 4-147
REPRO 4-147, 4-179

data set management 2-69, 2-82
delete damaged BSDS 4-177
redefine user work file 4-142
rename damaged BSDS 4-177
table space recreation 4-244

access path
index access 5-253
index keys 2-54
index-only access 5-272
low cluster ratio

effects of 5-253
suggests table space scan 5-275
with list prefetch 5-292

multiple index access
description 5-280
disabling 5-69
PLAN_TABLE 5-271

selection
influencing with SQL 5-233
problems 5-203
queries containing host variables 5-224
Visual Explain 5-234, 5-261

table space scan 5-275
unique index with matching value 5-282

access profile, in RACF 3-94
accounting

elapsed times 5-46
trace

description X-179
rolling up for parallelism 5-310

 Copyright IBM Corp. 1982, 1997 I-3

ACQUIRE
option of BIND PLAN subcommand

locking tables and table spaces 5-171
thread creation 5-116

ACS user-exit filter on archive log data sets 4-92
active log 4-141

data set 3-117
changing high-level qualifier for 2-140
copying with IDCAMS REPRO statement 4-94
effect of stopped 4-174
off-loaded to archive log 4-85
password 3-116
placement 5-92
VSAM linear X-86

description 1-30
dual logging 4-86
off-loading 4-86
problems 4-171
recovery scenario 4-171
size

determining 5-96
tuning considerations 5-96

truncation 4-86
writing 4-86

activity sample table X-7
ADD VOLUMES clause of ALTER STOGROUP

statement 2-124
address space

DB2 1-36
priority 5-109
started-task 3-97
stored procedures 3-97

alias
considerations for using 2-82
creating 2-81
instead of three-part name 2-81
ownership 3-24
qualified name 3-24
restrictions on using 2-81
retrieving catalog information about 2-118

ALL
clause of GRANT statement 3-14

ALL PRIVILEGES clause
GRANT statement 3-15

allocating space
effect on INSERTs 5-40
preformatting 5-40
storage group 2-87
table 2-68
table space partitions 2-91

already-verified acceptance option 3-76
ALTER

command of access method services 4-190, X-172
ALTER DATABASE statement

example X-169
ROSHARE clause X-158

ALTER DATABASE statement (continued)
usage 2-125

ALTER privilege
description 3-14

ALTER STOGROUP statement 2-124
ALTER TABLE statement

AUDIT clause 3-123
description 2-128, 2-134

ALTER TABLESPACE statement
description 2-125, 2-128

altering shared status X-169
ambiguous cursor 5-320
APPL statement

options
SECACPT 3-75

application package X-185
See also package

application plan
controlling application connections 4-43
controlling use of DDL 3-49, 3-61
dynamic plan selection for CICS applications 5-129
invalidated

dropping a table 2-135
dropping a view 2-138
dropping an index 2-138
when privilege is revoked 3-44

list of dependent objects 2-135, 2-138
monitoring X-185
privileges

explicit 3-15
of ownership 3-24

retrieving catalog information 3-48
application program

coding SQL statements
data communication coding 1-41
error checking in IMS 4-18

internal integrity reports 3-131
recovery scenarios

CICS 4-164
IMS 4-163

running
batch 4-19
CAF (call attachment facility) 4-20
CICS transactions 4-18
error recovery scenario 4-158, 4-159
IMS 4-18
RRSAF (Recoverable Resource Manager

Services attachment facility) 4-20
TSO online 4-17

running from DB2 4-16
security measures in 3-29
suspension

description 5-139
timeout periods 5-163

application programmer
description 3-35

I-4 Administration Guide

application programmer (continued)
privileges 3-39

application registration table (ART) 3-49
See also registration tables for DDL

archive log 4-141
ACS user-exit filter 4-92
BSDS 4-92
data set

changing high-level qualifier for 2-140
description 4-91
off-loading 4-85
password 3-117
types 4-91

deleting 4-95
description 1-30
device type 4-91
dynamic allocation of data sets 4-91
multi-volume data sets 4-92
recovery scenario 4-175
retention period 4-95
writing 4-86

ARCHIVE LOG command
cancels off-loads 4-90
use 4-88

ARCHIVE LOG FREQ field of panel DSNTIPL 5-96
ARCHIVE privilege

description 3-17
archiving to DASD volumes 4-91
ARCHWTOR option of DSNZPxxx module 4-87
ART (application registration table) 3-49

See also registration tables for DDL
ASCII, migrating from EBCDIC 2-137
ASUTIME column

resource limit specification table (RLST) 5-81
asynchronous data from IFI X-141
attach request

come-from check 3-81
controlling 3-76
definition 3-75
translating IDs 3-79, 3-89
using secondary IDs 3-81

AUDIT
clause of ALTER TABLE statement 3-123
clause of CREATE TABLE statement 2-97, 3-123
option of START TRACE command 3-122

audit class descriptions 3-120
audit trace

class descriptions 3-120
controlling 3-120, 3-122
description 3-119, X-180
records 3-124

auditing
access attempts 3-119, 3-125
authorization IDs 3-121
classes of events 3-120, 3-121
data X-180

auditing (continued)
description 3-5
in sample security plan

attempted access 3-143
payroll data 3-139
payroll updates 3-141

reporting trace records 3-124
security measures in force 3-126
table access 2-97, 3-123
trace data through IFI X-150

AUTH option
DSNCRCT macro

TYPE=ENTRY 5-129
TYPE=POOL 5-129

authority 3-14
See also privilege
controlling access to

CICS 4-19
DB2 catalog and directory 3-23
DB2 commands 4-12
DB2 functions 4-12
IMS application program 4-18
TSO application program 4-17

description 3-8, 3-14
explicitly granted 3-18, 3-23
hierarchy 3-18
level SYS for MVS command group 4-9
levels 4-12
retrieving catalog information 2-119
types

DBADM 3-20
DBCTRL 3-20
DBMAINT 3-20
Installation SYSADM 3-21
Installation SYSOPR 3-19
PACKADM 3-20
SYSADM 3-21
SYSCTRL 3-20
SYSOPR 3-19

authorization
control outside of DB2 3-9
exit routines X-25

See also connection exit routine
See also sign-on exit routine

to use data definition statements 3-49
authorization ID

auditing 3-121, 3-126
checking during thread creation 5-116
DB2 object names 2-80
description 3-14
exit routine input parameter X-28
inbound from remote location 3-71

See also remote request
initial

connection processing 3-66
sign-on processing 3-68

 Index I-5

authorization ID (continued)
package execution 3-26
primary

connection processing 3-65, 3-66
description 3-14
exit routine input X-28
privileges exercised by 3-31
sign-on processing 3-68, 3-70

retrieving catalog information 3-47
secondary

attach requests 3-81
connection processing 3-66
description 3-14
exit routine output X-30, X-43
identifying RACF groups 3-102
number per primary ID 3-31
ownership held by 3-25
privileges exercised by 3-31
sign-on processing 3-70

SQL
changing 3-14
description 3-14
exit routine output X-30, X-43
privileges exercised by 3-31
qualifying table name 2-93

system-directed access 3-27
translating

inbound IDs 3-79
outbound IDs 3-89

verifying 3-76
automatic

data management 4-127
deletion of archive log data sets 4-95
rebind

EXPLAIN processing 5-267
restart function of MVS 4-105

auxiliary storage 2-82
availability

improved 1-34
recovering

data sets 4-141
table spaces 4-141

recovery planning 4-123

B
backup

data set using DFSMShsm 4-127
database

concepts 4-123
DSN1COPY 4-146
image copies 4-139
planning 4-123

system procedures 4-123
backward log recovery phase

recovery scenario 4-238, 4-241

backward log recovery phase (continued)
restart 4-104

base tables
distinctions from CREATE GLOBAL TEMPORARY

TABLE 2-98
basic direct access method (BDAM) 4-91

See also BDAM (basic direct access method)
basic sequential access method (BSAM) 4-91

See also BSAM (basic sequential access method)
batch message processing (BMP) program 4-54

See also BMP (batch message processing) program
batch processing

TSO 4-18
BDAM (basic direct access method) 4-91
BIND PACKAGE subcommand of DSN

options
DISABLE 3-30
ENABLE 3-30
ISOLATION 5-175
OWNER 3-26
RELEASE 5-171
REOPT(VARS) 5-224

privileges for remote bind 3-30
BIND PLAN subcommand of DSN

options
ACQUIRE 5-171
DISABLE 3-30
ENABLE 3-30
ISOLATION 5-175
OWNER 3-26
RELEASE 5-171
REOPT(VARS) 5-224

BIND privilege
description 3-15

BINDADD privilege
description 3-17

BINDAGENT privilege
description 3-17
naming plan or package owner 3-26

binding
dynamic plan selection for CICS 5-129
privileges needed 3-31

bit data
altering subtype 2-134
assigning subtype 2-45

blank
column with a field procedure X-59
default value for strings 2-42
not a null value 2-42

block fetch
description 5-318
enabling 5-320

BMP (batch message processing) program
connecting from dependent regions 4-55

bootstrap data set (BSDS) 3-17, 5-95
See also BSDS (bootstrap data set)

I-6 Administration Guide

BSAM (basic sequential access method)
data sets 2-113
reading archive log data sets 4-91

BSDS (bootstrap data set)
archive log information 4-93
changing high-level qualifier of 2-140
changing log inventory 4-94
defining 4-92
description 1-31
dual copies 4-92
dual recovery 4-179
failure symptoms 4-223
logging considerations 5-95
managing 4-92
passwords 3-116
recovery scenario 4-177, 4-242
registers log data 4-92
restart use 4-101
restoring from the archive log 4-179
single recovery 4-179
stand-alone log services role X-97

BSDS privilege
description 3-17

buffer information area used in IFI X-127, X-128
buffer pool

32KB 5-59
advantages of large pools 5-58
advantages of multiple pools 5-59
altering attributes 5-59
available pages 5-51
considerations 5-104
description 1-31
determines page size for table space 2-88
displaying current status 5-59
hit ratio 5-57
immediate writes 5-64
in-use pages 5-51
monitoring 5-63
named in CREATE statements 2-86
read operations 5-51
size 5-58, 5-118
statistics 5-63
thresholds 5-53, 5-64
update efficiency 5-63
updated pages 5-51
use in logging 4-84
write efficiency 5-63
write operations 5-51

BUFFERPOOL clause
ALTER INDEX statement 2-137, 5-52
ALTER TABLESPACE statement 2-125, 5-52
CREATE DATABASE statement 2-86, 5-52
CREATE INDEX statement 2-101, 5-52
CREATE TABLESPACE statement 2-88, 5-52

BUFFERPOOL privilege
description 3-17

C
cache

dynamic SQL
implications for REVOKE 3-44

cache controller 5-95
cache for authorization IDs 3-28
cache storage 5-105
CAF (call attachment facility)

application program
running 4-20
submitting 4-20

description 1-40
DSNALI language interface module X-125

call attachment facility (CAF) 1-40
See also CAF (call attachment facility)

CANCEL THREAD command
CICS threads 4-47
disconnecting from TSO 4-40
use 4-70

capturing changed data
altering a table for 2-133
creating a table for 2-97

CARD column
SYSTABLEPART catalog table

data collected by RUNSTATS utility 5-246
SYSTABSTATS catalog table

data collected by RUNSTATS utility 5-247
CARDF column

SYSCOLDIST catalog table
access path selection 5-244

SYSINDEXPART catalog table
data collected by RUNSTATS utility 5-245

SYSTABLES catalog table
data collected by RUNSTATS utility 5-247

Cartesian join 5-285
cartridge storage 5-108
CASCADE delete rule

description 2-28
catalog

statistics
influencing access paths 5-240

catalog tables
frequency of image copies 4-126, 4-127
retrieving information about

multiple grants 3-46
plans and packages 3-48
primary keys 2-120
privileges 3-45, 3-46, 3-48
status 2-121

SYSCOLAUTH 3-45
SYSCOLDIST

data collected by RUNSTATS utility 5-244
SYSCOLDISTSTATS

data collected by RUNSTATS utility 5-244
SYSCOLSTATS

data collected by RUNSTATS utility 5-244

 Index I-7

catalog tables (continued)
SYSCOLUMNS

column description of a value X-58
data collected by RUNSTATS utility 5-245
field description of a value X-58
updated by ALTER TABLE 2-128
updated by COMMENT ON 2-122
updated by CREATE VIEW 2-119
updated by DROP TABLE 2-135

SYSCOPY
discarding records 4-154
holds image copy information 4-130
image copy in log X-86
used by RECOVER 4-125

SYSDATABASE
describes default database 2-85
information about databases X-159

SYSDBAUTH 3-45
SYSFOREIGNKEYS 2-120
SYSIBM.SYSPROCEDURES table

using EXTERNAL_SECURITY column of 3-105
SYSINDEXES

access path selection 5-253
data collected by RUNSTATS utility 5-245
dropping a table 2-136

SYSINDEXPART
data collected by RUNSTATS utility 5-245
space allocation information 2-57, 2-103

SYSINDEXSTATS
data collected by RUNSTATS utility 5-246

SYSPACKAUTH 3-45
SYSPLANAUTH

checked during thread creation 5-116
plan authorization 3-45

SYSPLANDEP 2-135, 2-138
SYSRELS

describes referential constraints 2-120
information about databases X-162

SYSRESAUTH 3-45
SYSSTOGROUP

sample query 2-117
storage groups 2-83

SYSSTRINGS
establishing conversion procedure X-54

SYSSYNONYMS 2-135
SYSTABAUTH

authorization information 3-45
dropping a table 2-136
table authorizations 2-119
updated by CREATE VIEW 2-119
view authorizations 2-119, 2-138

SYSTABLEPART
data collected by RUNSTATS utility 5-246
PAGESAVE column 2-65
table spaces associated with storage

group 2-124
updated by LOAD and REORG for data

compression 2-65

catalog tables (continued)
SYSTABLES

data collected by RUNSTATS utility 5-246
rows maintained 2-117
updated by ALTER TABLE 2-128
updated by COMMENT ON 2-122
updated by CREATE VIEW 2-119
updated by DROP TABLE 2-135
updated by LOAD and REORG for data

compression 2-65
SYSTABLESPACE

data collected by RUNSTATS utility 5-247
implicitly created table spaces 2-87

SYSTABSTATS
data collected by RUNSTATS utility 5-247
PCTROWCOMP column 2-65

SYSUSERAUTH 3-45
SYSVIEWDEP

updated by CREATE VIEW 2-119
view dependencies 2-135, 2-138

SYSVOLUMES 2-83
views of 3-48

catalog, DB2
authority for access 3-23
changing high-level qualifier 2-143
constraint information 2-121
data set protection 3-117
database design 2-117, 2-122
description 1-28
DSNDB06 database 4-130
locks 5-152
point-in-time recovery 4-143
recovery 4-143
recovery scenario 4-185
retrieving information from 2-117
statistics

production system 5-258
querying the catalog 5-252

tuning 5-92
CCSID clause

CREATE DATABASE statement 2-86
CREATE GLOBAL TEMPORARY TABLE

statement 2-98
CREATE TABLE statement 2-97
CREATE TABLESPACE statement 2-90

CD-ROM, books on 1-7
CDB (communications database)

backing up 4-124
changing high-level qualifier 2-143
description 1-32
updating tables 3-80

CDSSRDEF subsystem parameter 5-306
central storage 5-105
CHANGE command of IMS

purging residual recovery entries 4-49

I-8 Administration Guide

change log inventory utility
changing

BSDS 4-34, 4-94
control of data set access 3-114

change number of sessions (CNOS) 4-196
See also CNOS (change number of sessions)

CHANGE SUBSYS command of IMS 4-54
CHARACTER data type

altering 2-134
assigning 2-45
choosing between VARCHAR and 2-46
column definition 2-45
default value on insert 2-42

CHECK
clause of CREATE TABLE statement 2-96

CHECK DATA utility
checks referential constraints 3-130
with referential constraints 2-31

CHECK INDEX utility
checks consistency of indexes 3-130

check pending status
description 2-31, 2-34
resetting 2-31
retrieving catalog information 2-121
table check constraints 2-37

checkpoint
log records X-81, X-85, X-86
queue 4-108

CHECKPOINT FREQ field of panel DSNTIPN 5-96
CI (control interval)

description 4-84, 4-91
reading X-96

CICS
commands

accessing databases 4-41
DSNC DISCONNECT 4-47
DSNC DISPLAY PLAN 4-44
DSNC DISPLAY STATISTICS 4-44
DSNC DISPLAY TRANSACTION 4-44
DSNC MODIFY DESTINATION 4-47
DSNC MODIFY TRANSACTION 4-47
DSNC STOP 4-48
DSNC STRT 4-41, 4-43
response destination 4-12
used in DB2 environment 4-8

connecting to DB2
authorization IDs 4-19
connection processing 3-65
controlling 4-41, 4-49
disconnecting applications 4-47, 4-81
sample authorization routines 3-67
security 3-111
sign-on processing 3-68
supplying secondary IDs 3-66
thread 4-43

description, attachment facility 1-40

CICS (continued)
disconnecting from DB2 4-48
dynamic plan selection

compared to packages 5-129
exit routine X-71

dynamic plan switching X-71
facilities X-71

diagnostic trace 4-79
monitoring facility (CMF) 5-27, X-173
tools X-175

language interface module (DSNCLI)
IFI entry point X-125
running CICS applications 4-18

operating
entering DB2 commands 4-10
identify outstanding indoubt units 4-114
performance options 5-128
recovery from system failure 1-41
terminates AEY9 4-170

planning
DB2 considerations 1-40
environment 4-18

programming
applications 4-18

recovery scenarios
application failure 4-164
attachment facility failure 4-169
CICS not operational 4-165
DB2 connection failure 4-165
indoubt resolution failure 4-166

starting a connection 4-41
statistics X-173
system administration 1-42
thread

reuse 5-131
transaction

authority 4-41
two-phase commit 4-109
use of XRF (extended recovery facility) 1-41
using packages 5-129

claim
class 5-186
definition 5-186

class 1 elapsed time 5-27
CLOSE

clause of ALTER INDEX statement 2-137
clause of ALTER TABLESPACE statement 2-125
clause of CREATE INDEX statement

considerations 2-101
effect on virtual storage use 5-104

clause of CREATE TABLESPACE statement
deferred close 5-91
description 2-89
effect on virtual storage use 5-104

closed application
controlling access by 3-49, 3-61

 Index I-9

closed application (continued)
definition 3-49

CLUSTER clause of CREATE INDEX statement
considerations 2-56
description 2-101

cluster ratio
description 5-253
effect on table space scan 5-275
effects 5-253
with list prefetch 5-292

CLUSTERED column of SYSINDEXES catalog table
data collected by RUNSTATS utility 5-245

CLUSTERING column of SYSINDEXES catalog table
access path selection 5-245

clustering index
description 1-27
needed for partitioned table space 2-91
specifying 2-56

CLUSTERRATIO column
SYSINDEXES catalog table

data collected by RUNSTATS utility 5-245
SYSINDEXSTATS catalog table

access path selection 5-246
CNOS (change number of sessions)

failure 4-196
COBOL application program

column data types with 2-48
coding

exit routines
general rules X-74
parameters X-76

COLCARD column
SYSCOLSTATS catalog table

data collected by RUNSTATS utility 5-244
recommendation for updating 5-251

COLCARDDATA column of SYSCOLSTATS catalog
table 5-244

COLCARDF column
SYSCOLUMNS catalog table 5-245

recommendation for updating 5-251
statistics not exact 5-248

cold start
See also conditional restart
bypassing the damaged log 4-222
recovery operations during 4-107
special situations 4-244

COLGROUPCOLNO column
SYSCOLDIST catalog table

access path selection 5-244
collection, package

administrator 3-35
privileges on 3-15

column
adding to a table 2-129
adding to shared table X-169
creating

choosing for a table 2-39

column (continued)
creating (continued)

defining 2-40
data types 2-44
description 1-21, 1-26
designing, for a table 2-41, 2-50
dropping from a table 2-134, 2-137
labels

expanded headings 2-41
name

convention 2-41
retrieving

catalog information 2-118
comments 2-121

column description of a value X-58
column value descriptor (CVD) X-60
COLVALUE column

SYSCOLDIST catalog table
access path selection 5-244

SYSCOLDISTSTATS catalog table
data collected by RUNSTATS utility 5-244

come-from check 3-81
command prefix

messages 4-21
multi-character 4-10
use 4-10

command recognition character (CRC) 4-10
See also CRC (command recognition character)

commands 4-8
See also CICS, commands
See also DB2 commands
See also IMS, commands
See also MVS, commands
concurrency 5-137, 5-185, 5-190
entering 4-8, 4-22
issuing DB2 commands from IFI X-126
operator 4-8, 4-13
prefixes 4-22

COMMENT ON statement
examples 2-122
storing 2-121

commit
two-phase process 4-109

communications database (CDB) 3-72, 3-84
See also CDB (communications database)

compatibility
locks 5-149

composite key 2-20, 2-54
COMPRESS

clause of ALTER TABLESPACE statement 2-126
clause of CREATE TABLESPACE statement 2-90

compressing data 2-63
See also data compression

compression dictionary 2-64
See also data compression, dictionary

I-10 Administration Guide

concurrency
commands 5-137, 5-185, 5-190
contention independent of databases 5-152
control by drains and claims 5-185
control by locks 5-138
description 5-137
effect of

ISOLATION options 5-176, 5-177, 5-182
lock escalation 5-160
lock size 5-147
LOCKSIZE options 5-168
row locks 5-168
uncommitted read 5-180

recommendations 5-141
utilities 5-137, 5-185, 5-190
utility compatibility 5-188

Concurrent Copy 4-140
See also DFSMS (Data Facility Storage

Management Subsystem), Concurrent Copy
conditional restart 4-244

See also restart
control record

backward log recovery failure 4-241
current status rebuild failure 4-232
forward log recovery failure 4-238
log initialization failure 4-232
wrap-around queue 4-107

description 4-107
excessive loss of active log data, restart

procedure 4-246
total loss of log, restart procedure 4-245

connection
controlling CICS 4-41
controlling IMS 4-49
DB2

controlling commands 4-41
thread 5-135

displaying
IMS activity 4-55, 4-56

effect of lost, on restart 4-113
exit routine 3-66, X-25

See also connection exit routine
IDs

cited in message DSNR007I 4-102
for outstanding unit of recovery 4-102
used by IMS 4-18
used to identify a unit of recovery 4-159

processing 3-64
See also connection processing

requests
exit point X-26
initial primary authorization ID 3-65, X-29
invoking RACF 3-65
local 3-64

VTAM 3-96

connection exit routine
debugging X-33
default 3-66
description X-25
performance considerations X-32
sample

CICS change in X-26
location X-26
provides secondary IDs 3-66, X-31

secondary authorization ID 3-66
using 3-66
writing X-25, X-34

connection processing
choosing for remote requests 3-76
initial primary authorization ID 3-66, X-30
invoking RACF 3-65
supplying secondary IDs 3-66
using exit routine 3-66
when used 3-64

continuous block fetch 5-318
See also block fetch

continuous operation
recovering table spaces and data sets 4-141
recovery planning 1-34, 4-123

control interval (CI) 4-84
See also CI (control interval)

control region, IMS 4-54
CONTSTOR subsystem parameter 5-66, 5-104
conversation acceptance option 3-75, 3-76
conversation-level security 3-75
conversion procedure

description X-54
writing X-54, X-57

CONVERT TO clause of ALTER INDEX
statement 2-137

converting shared status of database X-169
coordinator

in multi-site update 4-119
in two-phase commit 4-109

copy pending status
resetting 2-114

COPY privilege
description 3-15

COPY utility
backing up 4-146
copying data from table space 4-139
DFSMS concurrent copy 4-140
referential constraints 2-34, 2-35
restoring data 4-146
using to move data 2-147

copying
a DB2 subsystem 2-150
a package, privileges for 3-30, 3-31
a relational database 2-150

correlated subqueries 5-229
See also subquery

 Index I-11

correlation ID
CICS 4-167
duplicate 4-53, 4-168
identifier for connections from TSO 4-39
IMS 4-53
outstanding unit of recovery 4-102
RECOVER INDOUBT command 4-43, 4-53, 4-60

CP processing
parallel

disabling 5-55
CRC (command recognition character)

description 4-10
CREATE ALIAS statement 2-81
CREATE DATABASE statement

description 2-85
privileges required 3-31
ROSHARE clause X-159
shared read-only data X-159

CREATE GLOBAL TEMPORARY TABLE statement
description 2-98
distinctions from base tables 2-98
implementing 2-98

CREATE IN privilege
description 3-15

CREATE INDEX statement
DEFER clause 2-101
description 2-100
PIECESIZE clause 2-102
privileges required 3-31
shared read-only data X-162
when to execute 2-99

CREATE SCHEMA statement 2-109
CREATE STOGROUP statement

description 2-83
privileges required 3-31

CREATE TABLE statement
a test table 2-115
AUDIT clause 3-123
creating a table 2-93
creating a table space implicitly 2-86
description 2-21
example

DSN8510.EMP 2-93
FOREIGN KEY 2-94
PRIMARY KEY 2-94

privileges required 3-31
relationship names 2-23
shared read-only data X-161
UNIQUE clause 2-21
use 2-93

CREATE TABLESPACE statement
creating a table space explicitly 2-87
description 2-87, 2-90
example

partitions 2-92
segments 2-90

CREATE TABLESPACE statement (continued)
partitioned table spaces 2-91
privileges required 3-31
segmented table spaces 2-90
shared read-only data X-159

CREATE VIEW statement
privileges required 3-31
use 2-105

CREATEALIAS privilege
description 3-17

CREATEDBA privilege
description 3-17

CREATEDBC privilege
description 3-17

CREATESG privilege
description 3-17

CREATETAB privilege
description 3-15

CREATETMTAB privilege
description 3-17

CREATETS privilege
description 3-15

crossover log record (X'37') 4-113
CS (cursor stability)

claim class 5-186
distributed environment 5-175
drain lock 5-187
effect on locking 5-175
page and row locking 5-177

CURRENDATA option of BIND
plan and package options differ 5-182

CURRENT DATE special register 2-42
CURRENT DEGREE field of panel DSNTIP4 5-306
CURRENT DEGREE special register

changing subsystem default 5-306
CURRENT RULES special register

effect on table check constraints 2-37
current status rebuild

phase of restart 4-102
recovery scenario 4-223

CURRENT TIMESTAMP special register
default 2-42

CURRENTDATA option
BIND PACKAGE subcommand

enabling block fetch 5-320
BIND PLAN subcommand 5-320

cursor
ambiguous 5-320
defined WITH HOLD

subsystem parameter to release locks 5-170
WITH HOLD

locks 5-183
cursor stability (CS) 5-175

See also CS (cursor stability)
Customer Information Control System (CICS) 1-42,

3-67, 4-8

I-12 Administration Guide

Customer Information Control System (CICS)
(continued)

See also CICS
CVD (column value descriptor) X-60, X-62
cycle restrictions 2-24

D
damage, heuristic 4-116
DASD

altering storage group assignment 2-124
data set, allocation and extension 5-100
description 5-107
improving utilization 5-99
shared X-153

See also shared read-only data
storage group 1-24

data
See also mixed data
access control

description 3-7
field-level 3-22
using option of START DB2 4-15
views 2-17

availability after I/O error 1-34
backing up 4-146
capturing changed 2-97

See also capturing changed data
checking consistency of updates 2-26, 3-130
coding

conversion procedures X-54
date/time exit routines X-51
edit exit routines X-44
field procedures X-57

compression 2-63
See also data compression

consistency
ensuring 3-126, 3-129
verifying 3-129, 3-131

definition control support 3-49
See also data definition control support

effect of locks on integrity 5-138
encrypting X-44
erasing deleted 2-88
improving access 5-261
loading into tables 2-113
moving 2-147, 2-150
restoring 4-146
sharing X-153

See also shared read-only data
understanding access 5-261

DATA CAPTURE clause
ALTER TABLE statement 2-133
CREATE TABLE statement 2-97

data compression
See also edit routine

data compression (continued)
COMPRESS clause of CREATE TABLESPACE

statement 2-90
description 2-63
determining effectiveness 2-65
dictionary

description 2-64
distributed data 2-64
DSN1COMP utility 2-65
edit routine for X-44
effect on log records X-82
Huffman 2-96, X-45
logging 2-64, 4-85
multi-table table spaces 2-64
performance considerations 5-102
processing cost 2-63
REORG utility

description 2-126
row size 2-63
table space size 2-63
use with exit routines 2-64

data definition control support 3-61
bypassing 3-60
controlling by

application name 3-51
application name with exceptions 3-52
object name 3-54
object name with exceptions 3-56

description 3-49
installing 3-50
registration tables 3-49

See also registration tables for DDL
restarting 3-60
stopping 3-60

Data Facilities (DFSMSdfp) 2-148
data management threshold (DMTH) 5-54
Data Propagator NonRelational (DPropNR) 1-43

See also DPropNR (Data Propagator
data set

active log 3-117
See also active log, data set

adding 4-191
adding groups to control 3-113
allocation and extension 5-117
altering 2-139
archive log 3-117

See also archive log, data set
backing up using DFSMS 4-140
changing high-level qualifier 2-139
closing 2-89, 2-101, 5-90
control over creating 3-115
controlling access 3-113, 3-118
copying 4-139
DSMAX value 5-87
extending 4-190, 5-100
extension 5-100

 Index I-13

data set (continued)
generic profiles 3-113, 3-115
limit 5-87
managing

by access method services 2-69
using DFSMShsm 2-67, 5-101
your own 2-68, 2-82

naming convention 2-69
open 5-87, 5-117
password 2-139, 3-113, 3-118
recovering

using non-DB2 dump 4-147
using non-DB2 restore 4-147

renaming 4-136
Data Set Services (DFSMSdss) 2-148
data structure

hierarchy 1-23
types 1-23

data type
altering 2-134, 2-137
character string 2-45
codes for numeric data X-80
column definition 2-40, 2-44
datetime

DATE 2-48
TIME 2-48

default value on insert 2-42
graphic string 2-45
numeric 2-48
subtypes 2-45, 2-134

database
access thread

creating 5-123
differences from allied threads 5-121
failure 4-194
security failures in 4-197

altering
definition 2-125
design 2-123

assigning
DB2 storage group 2-87
table space 2-87
tables 2-97

backup
copying data 4-139
planning 4-123

balancing 3-129
controlling access 4-61
creating 2-85, 2-86
data set password 3-117
default database 1-24

See also default database (DSNDB04)
description 1-24
designing

deciding what data to record 2-11
defining tables 2-12
maintaining referential integrity 2-8, 2-26

database (continued)
designing (continued)

normalizing tables 2-13
planning for distributed data 2-9
table spaces 2-59
topics in 2-5
uniquely identifying entities 2-7
using catalog 2-117

designing columns 2-39
dropping 2-125
DSNDB07 (work file database) 4-142

See also work file database
implementing a design 2-79, 2-122
monitoring 4-25, 4-31
naming convention 2-79
page set control log records X-86
privileges

administrator 3-35, 3-38
controller 3-39
description 3-15
ownership 3-24

recovery
description 4-141
failure scenarios 4-182
planning 4-123
RECOVER TOCOPY 4-147
RECOVER TORBA 4-147

relational 1-21
sample application X-22
sharing read-only data X-153
starting 4-24
status information 4-25
stopping 4-31
users who need their own 2-85

database controller privileges 3-39
database descriptor (DBD) 1-30, 5-66

See also DBD (database descriptor)
DataPropagator Relational

moving data 2-148
reformatting DL/I data 2-113

DataRefresher 2-116
DATE

data type
column definition 2-48
default value on insert 2-42
query to remote system 2-49

DATE FORMAT field of panel DSNTIPF X-51
date routine

DATE FORMAT field at installation X-51
description X-51
LOCAL DATE LENGTH field at installation X-51
writing X-51, X-54

datetime
exit routine for X-51

See also date routine
See also time routine

I-14 Administration Guide

datetime (continued)
format

table X-51
DB2 books on line 1-7
DB2 coded format for numeric data X-80
DB2 commands

authority 4-13
authorized for SYSOPR 4-13
commands

RECOVER INDOUBT 4-117
RESET INDOUBT 4-117
START DB2 4-14
START DDF 4-62
STOP DDF 4-77

description 4-8
destination of responses 4-12
entering from

CICS 4-10
DSN session 4-17
IMS 4-10
MVS 4-9
TSO 4-10

issuing from IFI X-126, X-129
users authorized to enter 4-13

DB2 decoded procedure for numeric data X-80
DB2 Interactive (DB2I) 1-34

See also DB2I (DB2 Interactive)
DB2 Performance Monitor (DB2 PM) 5-26

See also DB2 PM (DB2 Performance Monitor)
DB2 PM (DB2 Performance Monitor)

accounting report
concurrency scenario 5-193
DB2 private protocol 5-325
DRDA access 5-325
merged 5-326
monitoring distributed activity 5-325
overview 5-26

description X-173, X-184
EXPLAIN 5-260
scenario using reports 5-192
statistics report

DB2 log 5-98
EDM pool 5-67
locking 5-192
thread queuing 5-135

DB2 private protocol access
comparing with DRDA access 2-74
comparison of ways to access distributed data 2-74
description 5-315
limitations 2-75
naming convention 2-80
resource limit facility 5-82

DB2 tools, efficient resource usage 3-132
DB2-managed objects

changing data set high-level qualifier 2-145

DB2I (DB2 Interactive)
description 1-34, 4-16
panels

description 1-39
used to connect from TSO 4-38

DB2PM (DB2 Performance Monitor)
statistics report

buffer pools 5-63
DBA (database administrator)

description 3-35
sample privileges 3-38

DBADM authority
description 3-20

DBCTRL authority
description 3-20

DBD (database descriptor)
contents 1-30
EDM pool 5-66, 5-68
freeing 5-119
load

in EDM pool 5-117
using ACQUIRE(ALLOCATE) 5-116

locks on 5-153
use count 5-119

DBD01 directory table space
contents 1-30
placement of data sets 5-92
quiescing 4-133
recovery after conditional restart 4-145
recovery information 4-131

DBFULTA0 (Fast Path Log Analysis Utility) X-173
DBMAINT authority

description 3-20
DCE (Distributed Computing Environment)

security 3-106
tickets, sending 3-92

DCE security 3-106
DD limit 5-87

See also DSMAX
DDCS (data definition control support)

database 1-32
DDF (distributed data facility)

block fetch 5-318
controlling connections 4-61
description 1-44
dispatching priority 5-109
planning for 2-76
reasons to use 2-9

DDL, controlling usage of 3-49
See also data definition control support

deadlock
description 5-140
example 5-140
recommendation for avoiding 5-143
row vs. page locks 5-169
wait time calculation 5-164

 Index I-15

deadlock (continued)
with RELEASE(DEALLOCATE) 5-143
X'00C90088' reason code in SQLCA 5-140

DEADLOCK TIME field of panel DSNTIPJ 5-163
DEADLOK option of START irlmproc command 5-162
DECIMAL

data type
column definition 2-48
default value on insert 2-42

decision, heuristic 4-116
default database (DSNDB04)

changing high-level qualifier 2-143
CREATE TABLESPACE statement 2-87
defining 1-24
described in SYSIBM.SYSDATABASE table 2-85
storage estimation 1-24
table spaces 2-80

default value
alternative to null value 2-41
reasons for using 2-44
user-defined 2-43

DEFER
clause of CREATE INDEX statement 2-101

DEFER ALL field of panel DSNTIPS 4-106
deferred close 5-87
deferred write threshold (DWQT) 5-55
DEFINE CLUSTER command of access method

services 2-70, 2-71, 5-41
DEFINE command of access method services

recreating table space 4-244
redefine user work file 4-142

DELETE
command of access method services 4-244
statement

referential constraints 2-26, 2-28
rules 2-28
validation routine X-48

DELETE privilege
description 3-14

delete rule 2-95
deleting

See also dropping
archive logs 4-95
data 2-88

denormalization, performance considerations 2-16
department sample table

description X-8
dependent

regions, disconnecting from 4-56
DFHCOMMAREA parameter list for dynamic plan

selection routine X-74
DFSLI000 (IMS language interface module) 4-18,

X-125
 DFSMS (Data Facility Storage Management

Subsystem)
ACS filter for archive log data sets 4-92

 DFSMS (Data Facility Storage Management
Subsystem) (continued)

backup 4-140
Concurrent Copy

backup 4-140
data set passwords 3-116
description 1-38
recovery 4-140
security 2-84

DFSMSdfp (Data Facilities) 2-148
DFSMSdfp partitioned data set extended (PDSE) 1-38
DFSMSdss (Data Set Services) 2-148
DFSMShsm (Data Facility Hierarchical Storage

Manager)
advantages 5-101
backup 4-127
moving data sets 2-148
recovery 4-127

DFSxxxx messages 4-21
directory

authority for access 3-23
changing high-level qualifier 2-143
data set password 3-117
description 1-29
frequency of image copies 4-126, 4-127
order of recovering

I/O errors 4-185
point-in-time recovery 4-143
recovery 4-143
SYSLGRNX table

discarding records 4-154
records log RBA ranges 4-131

table space names 1-29
dirty read 5-180

See also UR (uncommitted read)
DISABLE option

limits plan and package use 3-30
disaster recovery

preparation 4-133
scenario 4-197
using a tracker site 4-205

disconnecting
CICS applications 4-47, 4-49
CICS from DB2, command 4-41
DB2 from TSO 4-40

DISPLAY
command of IMS

SUBSYS option 4-49, 4-56
DISPLAY DATABASE command

displays LPL entries 4-28
shared databases started read-only X-166
SPACENAM option 4-27, 4-30
status checking 3-130

DISPLAY LOCATION command
controls connections to DDF 4-63

I-16 Administration Guide

DISPLAY NET command of VTAM 4-71
DISPLAY OASN command

IMS 4-54
produces OASN 4-162

DISPLAY privilege
description 3-17

DISPLAY PROCEDURE command
example 4-73

DISPLAY THREAD command
extensions to control DDF connections

DETAIL option 4-66
LOCATION option 4-64
LUWID option 4-69

messages issued 4-38
options

DETAIL 4-66
LOCATION 4-64
LUWID 4-69
TYPE (INDOUBT) 4-167

shows CICS threads 4-46
shows IMS threads 4-50, 4-55
shows parallel tasks 5-310

DISPLAY TRACE command
AUDIT option 3-122

DISPLAY UTILITY command
data set control log record X-81

DISPLAYDB privilege
description 3-15

displaying
buffer pool information 5-59
indoubt units of recovery 4-52, 4-167
information about

originating threads 4-40
parallel threads 4-40

distributed data
application-directed access 5-315

See also DRDA access
controlling connections 4-61
DB2 private protocol access 5-315

See also DB2 private protocol
operating

displaying status X-138
in an overloaded network 5-11
system implications 2-76

performance considerations 5-316
planning

naming convention 2-80
programming

block fetch 5-318
date/time format processing 2-49
FOR FETCH ONLY 5-319
implications for 2-75

resource limit facility 5-82
tuning 5-316

distributed data facility (DDF) 1-44, 5-318
See also DDF (distributed data facility)

distribution statistics 5-251
DL/I

batch
features 1-44

loading data 2-116
DLDFREQ subsystem parameter 4-184
DMTH (data management threshold) 5-54
down-level detection

controlling 4-184
DLDFREQ subsystem parameter 4-184

down-level page sets 4-183
DPMODE option of DSNCRCT macro 5-133
DPROP (Data Propagator)

altering a table for 2-133
creating a table for 2-97

DPropNR (Data Propagator NonRelational) 1-43
drain

definition 5-186
DRAIN ALL 5-189
wait calculation 5-166

drain lock
description 5-137, 5-187
types 5-187
wait calculation 5-166

DRDA access
compared to DB2 private protocol access 2-74
comparing with DB2 private protocol access 2-74
description 5-315
limitations 2-75

DRDA protocol access
resource limit facility 5-82

DROP
statement

TABLE 2-29, 2-135
TABLESPACE 2-127

DROP privilege
description 3-15

dropping
See also deleting
columns from a table 2-134, 2-137
database 2-125
DB2 objects 2-123
foreign key 2-132
primary key 2-132
privileges needed for package 3-31
table spaces 2-127
tables 2-135
views 2-138
volumes from a storage group 2-124

DSETPASS
clause of ALTER INDEX statement 2-137
clause of ALTER TABLESPACE statement 2-125
clause of CREATE INDEX statement 2-101
clause of CREATE TABLESPACE statement 2-89

DSMAX
calculating 5-88

 Index I-17

DSMAX limit on open data sets
description 5-87

DSN command of TSO
command processor

connecting from TSO 4-38
description 1-39
invoked by TSO batch work 4-19
invoking 1-39
issues commands 4-17
running TSO programs 4-17

subcommands
END 4-40

DSN command processor 1-39
See also DSN command of TSO

DSN message prefix 4-21
DSN1CHKR utility

control of data set access 3-114
DSN1COMP utility

description 2-65
DSN1COPY utility

control of data set access 3-114
recovering a database X-171
resetting log RBA 4-252
restoring data 4-146
service aid 2-148, 2-150

DSN1LOGP utility
control of data set access 3-114
example 4-232
extract log records X-81
JCL

sample 4-229
limitations 4-250
print log records X-81
shows lost work 4-221

DSN1PRNT utility
description 3-114

DSN3@ATH connection exit routine X-25
See also connection exit routine

DSN3@SGN sign-on exit routine X-25
See also sign-on exit routine

DSN6SPRM macro
RELCURHL parameter 5-170

DSN6SYSP macro
PCLOSEN parameter 5-91
PCLOSET parameter 5-91

DSN8EAE1 exit routine X-45
DSN8HUFF edit routine X-45
DSNALI (CAF language interface module)

inserting X-125
DSNC command of CICS

destination 4-12
prefix 4-22

DSNC DISCONNECT command of CICS
description 4-47
terminate DB2 threads 4-41

DSNC DISPLAY command of CICS
description 4-41
DSNC DISPLAY PLAN 4-44
DSNC DISPLAY STATISTICS 4-44
DSNC DISPLAY TRANSACTION 4-44

DSNC MODIFY command of CICS
options

DESTINATION 4-47
TRANSACTION 4-47

DSNC STOP command of CICS
stop DB2 connection to CICS 4-41

DSNC STRT command of CICS
attaches subtasks 4-43
example 4-41
processing 4-43
start DB2 connection to CICS 4-41

DSNC transaction code
authorization 4-41
entering DB2 commands 4-10

DSNCLI (CICS language interface module)
entry point X-125
running CICS applications 4-18

DSNCRCT (resource control table) 4-21
See also RCT (resource control table)

DSNCRCT macro
TYPE=ENTRY

AUTH option 4-41, 5-129
DPMODE option 5-128, 5-133
THRDA option 5-128
THRDS option 5-128
TWAIT option 5-128

TYPE=INIT
PURGEC option 5-128
THRDMAX option 5-128
TOKENI option 5-128
TXIDSO option 5-128, 5-130

TYPE=POOL
AUTH option 5-129
DPMODE option 5-128, 5-133
THRDA option 5-128
THRDS option 5-128
TWAIT option 5-128

DSNCUEXT plan selection exit routine X-72
DSNDAIDL mapping macro X-28
DSNDB01 database

authority for access 3-23
DSNDB04 default database 1-24

See also default database (DSNDB04)
DSNDB06 database

authority for access 3-23
changing high-level qualifier 2-143

DSNDB07 database 4-142
See also work file database

DSNDDTXP mapping macro X-53
DSNDEDIT mapping macro X-46

I-18 Administration Guide

DSNDEXPL mapping macro X-76
DSNDFPPB mapping macro X-60
DSNDIFCA mapping macro X-144
DSNDQWIW mapping macro X-147
DSNDROW mapping macro X-79
DSNDRVAL mapping macro X-49
DSNDSLRB mapping macro X-96
DSNDSLRF mapping macro X-102
DSNDWBUF mapping macro X-128
DSNDWQAL mapping macro X-131
DSNDXAPL parameter list X-37
DSNELI (TSO language interface module) 4-17, X-125
DSNJSLR macro

capturing log records X-81
stand-alone CLOSE X-92, X-103
stand-alone sample program X-103

DSNMxxx messages 4-21
DSNTAUL sample program 2-150
DSNTEJ1S job 2-110
DSNTESP data set 5-256
DSNTIAUL sample program 2-137, 2-148
DSNTIJEX job

exit routines X-25
DSNTIJIC job

improving recovery of inconsistent data 4-136
DSNTIJSG job

installation 5-77
DSNX@XAC access control authorization exit

routine X-34
DSNZPxxx

subsystem parameters module
specifying an alternate 4-14

dual logging
active log 4-86
archive logs 4-93
description 1-31
restoring 4-92
synchronization 4-87

dump
caution about using DASD dump and restore 4-141

duration of locks
controlling 5-171
description 5-147

DWQT option of ALTER BUFFERPOOL
command 5-55

DXT (Data Extract)
moving data 2-150

dynamic plan selection in CICS
compared to packages 5-129
dynamic plan switching X-71
exit routine X-71

See also plan selection exit routine
dynamic SQL

privileges required 3-31
skeletons

EDM pool 5-66

E
EBCDIC, migrating to ASCII 2-137
edit routine X-44

See also EDITPROC clause
altering 2-133
data compression 2-96
description 3-127, X-44
ensuring data accuracy 3-127
row formats X-77, X-80
writing X-44, X-48

EDITPROC clause
CREATE TABLE statement 2-96
exit points X-45
specifies edit exit routine X-45

EDM pool
DBD freeing 5-119
description 5-66
option to contract storage 5-66, 5-104

EDPROC column of SYSTABLES catalog table 5-247
employee sample table X-10
employee to project activity sample table X-16
ENABLE

option of BIND PLAN subcommand 3-30
enclave 5-124
encrypting

data X-44
passwords from workstation 3-92
passwords on attach requests 3-76
passwords on attachment requests 3-91

END
subcommand of DSN

disconnecting from TSO 4-40
entity, definition 2-6
environment, operating

CICS 4-18
DB2 1-37
IMS 4-18
MVS 1-37
TSO 4-17

EPDM (Enterprise Performance Data
Manager/MVS) X-184

ERASE clause
ALTER INDEX statement 2-138
ALTER TABLESPACE statement 2-126
CREATE TABLESPACE statement 2-88

erasing deleted data 2-88
ERRDEST option

DSNC MODIFY 4-41
unsolicited CICS messages 4-21

error
application program 4-158
IFI (instrumentation facility interface) X-150
physical R/W 4-28
SQL query 3-130

 Index I-19

escalation, lock 5-159
escape character

example 3-55
in DDL registration tables 3-51

exception tables 2-32
EXCLUSIVE

lock mode
effect on resources 5-149
page 5-148
row 5-148
table, partition, and table space 5-149

EXECUTE privilege
after BIND REPLACE 3-30
description 3-14, 3-15
effect 3-25

exit parameter list (EXPL) X-76
exit point

authorization routines X-26
connection routine X-26
conversion procedure X-55
date and time routines X-52
edit routine X-45
field procedure X-59
plan selection exit routine X-73
sign-on routine X-26
validation routine X-48

exit routine X-34, X-80
See also access control authorization exit routine
See also connection exit routine
See also conversion procedure
See also date routine
See also edit routine
See also field procedure
See also log capture exit routine
See also plan selection exit routine
See also sign-on exit routine
See also time routine
See also validation routine
general considerations X-74
writing X-25, X-80

expanded storage 5-105
EXPL (exit parameter list) X-76
EXPLAIN

report of outer join 5-283
statement

alternative using IFI X-124
description 5-261
executing under QMF 5-268
index scans 5-272
interpreting output 5-270
investigating SQL processing 5-261

EXPLAIN PROCESSING field of panel DSNTIPO
overhead 5-267

EXPORT command of access method services 2-148,
4-133

extended recovery facility (XRF) 1-41
See also XRF (extended recovery facility)

EXTENDED SECURITY field of installation panel
DSNTIPR

description 3-72
extending a data set, procedure 4-190
extending DB2 data sets 5-100
external storage 2-82

See also auxiliary storage
EXTERNAL_SECURITY column of

SYSIBM.SYSPROCEDURES catalog table
RACF access to non-DB2 resources 3-105

EXTSEC option of CICS transaction entry 4-41

F
failure symptoms

abend shows
log problem during restart 4-238
restart failed 4-223, 4-233

BSDS 4-223
CICS

abends 4-165
attachment abends 4-165
loops 4-165
task abends 4-169
waits 4-165

IMS
abends 4-160
loops 4-160
waits 4-160

log 4-223
lost log information 4-244
message

DFH2206 4-164
DFS555 4-163
DSNB207I 4-182
DSNJ001I 4-178
DSNJ004I 4-173
DSNJ100 4-242
DSNJ103I 4-175
DSNJ105I 4-172
DSNJ106I 4-173
DSNJ107 4-242
DSNJ110E 4-171
DSNJ111E 4-171
DSNJ114I 4-175
DSNJ119 4-242
DSNM002I 4-160
DSNM004I 4-161
DSNM005I 4-162
DSNM3201I 4-165
DSNP007I 4-188
DSNP012I 4-187
DSNU086I 4-184, 4-185

MVS error recovery program message 4-176

I-20 Administration Guide

failure symptoms (continued)
no processing is occurring 4-156
subsystem termination 4-169

FARINDREF column of SYSTABLEPART catalog table
data collected by RUNSTATS utility 5-246

FAROFFPOSF column of SYSINDEXPART catalog
table

data collected by RUNSTATS utility 5-245
Fast Path Log Analysis Utility X-173
field decoding operation

definition X-57
input X-67
output X-67

field definition operation
definition X-57
input X-63
output X-63

field description of a value X-58
field encoding operation

definition X-57
input X-65
output X-65

field procedure 2-41, X-58
See also FIELDPROC clause
altering 2-133
comparisons 2-50
defining a column 2-41
description 3-127, X-57
ensuring data accuracy 3-127
options 2-96
string data types 2-45
using null values 2-44
writing X-57, X-68

field procedure information block (FPIB) X-61
field procedure parameter list (FPPL) X-60
field procedure parameter value list (FPPVL) X-60
field value descriptor (FVD) X-60
field-level access control 3-22
FIELDPROC clause

ALTER TABLE statement X-58
CREATE TABLE statement 2-96, X-58

filter factor
catalog statistics used for determining 5-248
predicate 5-215

FIRSTKEYCARD column
SYSINDEXSTATS catalog table

data collected by RUNSTATS utility 5-246
recommendation for updating 5-251

FIRSTKEYCARDF column
SYSINDEXES catalog table

data collected by RUNSTATS utility 5-245
recommendation for updating 5-251

fixed-length records
compared with varying-length 2-39
effect on processor resources 5-45

FLOAT
data type

column definition 2-48
default value on insert 2-42

FOR
option of ALTER command 2-68
option of DEFINE command 2-68

FORCE option
log request during two-phase commit 5-94
START DATABASE command 4-24
STOP DB2 command 4-58, 4-100

foreign key 2-9
See also key, foreign

FOREIGN KEY clause
ALTER TABLE statement

usage 2-24
CREATE TABLE statement

description 2-94
usage 2-22

format
column X-79
data passed to FPPVL X-61
data set names 2-69
message 4-21
recovery log record X-89
row X-79
value descriptors X-55, X-62

forward log recovery
phase of restart 4-103
scenario 4-233

FPIB (field procedure information block) X-61
FPPL (field procedure parameter list) X-60
FPPVL (field procedure parameter value list) X-60,

X-61
FREE PACKAGE subcommand of DSN

privileges needed 3-31
FREE PLAN subcommand of DSN

privileges needed 3-33
free space

description 5-38
indexes 2-100
recommendations 5-39
table space 2-89

FREEPAGE
clause of ALTER INDEX statement

description 2-137
effect on DB2 speed 5-38

clause of ALTER TABLESPACE statement 2-126
effect on DB2 speed 5-38

clause of CREATE INDEX statement
description 2-100
effect on DB2 speed 5-38

clause of CREATE TABLE statement 2-91
clause of CREATE TABLESPACE statement

description 2-89
effect on DB2 speed 5-38

 Index I-21

FREQUENCYF column
SYSCOLDIST catalog table

access path selection 5-244
SYSCOLDISTSTATS catalog table 5-244

full image copy
use after LOAD 5-98
use after REORG 5-98

FULLKEYCARD column
SYSINDEXSTATS catalog table 5-246

FULLKEYCARDF column
SYSINDEXES catalog table

data collected by RUNSTATS utility 5-245
FVD (field value descriptor) X-60, X-62

G
GBPCACHE

clause of ALTER TABLESPACE statement 2-126
GBPCACHE clause

ALTER INDEX statement 2-138
generalized trace facility (GTF) X-183

See also GTF (generalized trace facility)
global resource serialization (GRS) 1-41

See also GRS (global resource serialization)
governor (resource limit facility) 5-76

See also resource limit facility (governor)
GRANT statement

examples 3-37, 3-42
format 3-37
privileges required 3-31

granting privileges and authorities 3-37
GRAPHIC

data type
choosing between mixed data and 2-47
choosing between VARGRAPHIC and 2-47
column definition 2-45
default value on insert 2-42

GROUP BY clause
effect on OPTIMIZE clause 5-235

GROUP DD statement for stand-alone log services
OPEN request X-97

GRS (global resource serialization)
for shared DASD and XRF 1-41
tuning for read-only data sharing X-157

GTF (generalized trace facility)
event identifiers X-184
format of trace records X-107
interpreting trace records X-113
recording trace records X-183

H
help

DB2 UTILITIES panel 1-34
heuristic damage 4-116

heuristic decision 4-116
Hierarchical Storage Manager (DFSMShsm) 2-148

See also DFSMShsm (Hierarchical Storage
Manager)

HIGH2KEY column
SYSCOLSTATS catalog table 5-245
SYSCOLUMNS catalog table

access path selection 5-245
recommendation for updating 5-251

HIGHKEY column of SYSCOLSTATS catalog
table 5-245

hiperpool
description 1-31, 5-50
requirements 1-31
sequential steal threshold 5-55

hiperspace
CASTOUT attribute 5-52
description 1-31, 5-49
requirements 1-31

HMIGRATE command of DFSMShsm (Hierarchical
Storage Manager) 2-148

host variable
example query 5-224
impact on access path selection 5-224
in equal predicate 5-225
tuning queries 5-224

HPSEQT option of ALTER BUFFERPOOL
command 5-55

HRECALL command of DFSMShsm (Hierarchical
Storage Manager) 2-148

Huffman compression X-45
See also data compression, Huffman

hybrid join
description 5-289
disabling 5-69

I
I/O error

availability of table space after 1-34
catalog 4-185
directory 4-185
occurrence 4-92
table spaces 4-184

I/O parallelism 5-85
See also parallel processing

I/O processing
minimizing contention 5-41
parallel

disabling 5-55
queries 5-302

I/O scheduling priority 5-110
identifier in SQL

object names 2-80
IEFSSNxx member of SYS1.PARMLIB

IRLM 4-34

I-22 Administration Guide

IFCA (instrumentation facility communication area)
command request X-127
description X-144
field descriptions X-144
IFI READS request X-130
READA request of IFI X-140
WRITE request of IFI X-143

IFCID (instrumentation facility component identifier)
area

description X-146
READS request of IFI X-130
WRITE request of IFI X-143

description X-108, X-178
identifiers by number

0001 5-321, X-137, X-178
0002 X-137, X-178
0003 5-321
0015 5-116
0021 5-118
0032 5-118
0033 5-118
0038 5-118
0039 5-118
0058 5-118
0070 5-118
0073 5-116
0084 5-118
0088 5-119
0089 5-119
0106 X-137
0124 X-137
0147 X-138, X-180
0148 X-138, X-180
0149 X-138
0150 X-138
0185 X-138
0202 X-138, X-178
0221 5-312
0222 5-312
0230 X-138
0254 X-138
0258 5-101
0306 X-94, X-138
0314 X-44
0316 X-138
0317 X-138

mapping macro list X-108
SMF type X-178, X-180

IFI (instrumentation facility interface)
auditing data X-150
authorization X-129
buffer information area X-127, X-128
collecting trace data, example X-124
command request, output example X-149
commands

READA X-140
READS X-129, X-130

IFI (instrumentation facility interface) (continued)
data integrity X-149
decompressing log data X-94
dynamic statement cache information X-139
errors X-150
issuing DB2 commands

example X-129
syntax X-127

locking X-150
output area

command request X-127
description X-147
example X-129

passing data to DB2, example X-125
qualification area X-131
READS output X-148
READS request X-130
recovery considerations X-150
return area

command request X-127
description X-146
READA request X-140
READS request X-130

storage requirements X-130, X-140
summary of functions X-125
synchronous data X-137, X-141
using stored procedures X-126
WRITE X-142
writer header X-147

IMAGCOPY privilege
description 3-15

image copy
catalog 4-126, 4-127
directory 4-126, 4-127
frequency vs. recovery speed 4-126
full

use after LOAD 5-98
use after REORG 5-98

incremental
frequency 4-126

making after loading a table 2-114
recovery speed 4-126

immediate write threshold (IWTH) 5-54
IMPORT command of access method services 2-148,

4-243
IMS

commands
CHANGE SUBSYS 4-49, 4-54
DISPLAY OASN 4-54
DISPLAY SUBSYS 4-49, 4-56
response destination 4-12
START REGION 4-56
START SUBSYS 4-49
STOP REGION 4-56
STOP SUBSYS 4-49, 4-56
TRACE SUBSYS 4-49
used in DB2 environment 4-8

 Index I-23

IMS (continued)
connecting to DB2

attachment facility 4-54
authorization IDs 4-18
connection ID 4-18
connection processing 3-65
controlling 1-42, 4-49, 4-56
dependent region connections 4-54, 4-56
disconnecting applications 4-56
security 3-111
sign-on processing 3-68
supplying secondary IDs 3-66

facilities
DC monitor X-173
Fast Path 5-135
message format 4-21
processing limit 5-75
regions 5-134
tools X-175
XRF (extended recovery facility) 1-42

language interface
module DFSLI000 4-18

language interface module (DFSLI000)
IFI applications X-125

LTERM authorization ID
for message-driven regions 4-18
shown by /DISPLAY SUBSYS 4-56
used with GRANT 4-13

operating
batch work 4-18
crossover log record (X'37') 4-113
entering DB2 commands 4-10
recovery from system failure 1-42
running programs 4-18
tracing 4-79

planning
design recommendations 5-134
environment 4-18

programming
application 1-43
error checking 4-18

recovery scenarios 4-160, 4-163
system administration 1-44
thread 4-50, 4-51
two-phase commit 4-109
using with DB2 1-42

IMS Performance Analysis Reporting System
(IMSPARS) X-173

See also IMSPARS (IMS Performance Analysis
Reporting System)

IMS.PROCLIB library
connecting from dependent regions 4-54

IMSPARS (IMS Performance Analysis Reporting
System)

description X-173
IMS transit times 5-27

IN
clause of CREATE TABLE statement 2-97
clause of CREATE TABLESPACE statement 2-87

in-abort unit of recovery 4-112
See also unit of recovery, in-abort

in-commit unit of recovery 4-111
See also unit of recovery, in-commit

index
access methods

access path selection 5-278
by nonmatching index 5-279
description 5-276
IN-list index scan 5-279
matching index columns 5-272
matching index description 5-278
multiple 5-280
one-fetch index scan 5-281

altering
ALTER INDEX statement 2-137
effects of dropping 2-137

catalog information about 2-119, 2-120
costs 5-276
creating

for large table 2-104
description 1-26
designing 2-51
disadvantages of each type 5-151
key 2-51

See also key
locking

type 1 2-51, 5-151
type 2 2-51, 5-152

naming convention 2-79
ownership 3-24
privileges of ownership 3-24
reasons for using 2-51, 5-276
recommendations for type 2 5-142
space

description 1-26
recovery scenario 4-184
storage allocated 2-57

structure
index tree 2-53
leaf pages 2-53
overall 2-53
root page 2-53
subpage splitting for type 1 indexes 5-142
subpages 2-53

types
clustering 1-27, 2-56
default 2-51
foreign 2-94
foreign key 2-23
nonpartitioned 2-57
partitioned 2-56
primary 2-21, 2-94, 2-120
type 1 2-51

I-24 Administration Guide

index (continued)
types (continued)

type 2 2-51, 2-52
unique 2-21, 2-55, 2-102
unique on primary key 2-20

index key 2-54
See also key

INDEX privilege
description 3-14

indoubt thread
displaying information on 4-116
recovering 4-117
resetting status 4-117
resolving 4-211, 4-220

indoubt unit of recovery 4-111
See also unit of recovery, indoubt

inflight unit of recovery 4-111
See also unit of recovery, inflight

information center consultant 3-35
INSERT privilege

description 3-14
INSERT statement

example 2-115
load data 2-113, 2-115
referential constraints 2-25

inserting
through views 2-107

installation
macros

automatic IRLM start 4-35
panels

fields 3-50
for data definition control support 3-50

Installation SYSADM authority
privileges 3-21
use of RACF profiles 3-115

Installation SYSOPR authority
privilege 3-19
use of RACF profiles 3-115

instrumentation facility communication area
(IFCA) X-127

See also IFCA (instrumentation facility
communication area)

instrumentation facility interface (IFI) X-123
See also IFI (instrumentation facility interface)

INTEGER
column definition 2-48
data type 2-48

default value on insert 2-42
integrated catalog facility

changing alias name for DB2 data sets 2-139
controlling storage 2-83
password 3-117

integrity 2-8, 2-37
See also referential constraint
See also referential integrity

integrity (continued)
See also table check constraint
IFI data X-149
reports 3-131

INTENT EXCLUSIVE lock mode 5-149
INTENT SHARE lock mode 5-149
Interactive System Productivity Facility (ISPF) 1-34,

4-16
See also ISPF (Interactive System Productivity

Facility)
internal resource lock manager (IRLM) 4-34

See also IRLM (internal resource lock manager)
invoking

DSN command processor 1-39
IRLM (internal resource lock manager)

controlling 4-34, 4-36
diagnostic trace 4-80
monitoring 4-36
recovery scenario 4-155
starting

automatically 4-35
startup procedure options 5-162
stopping 4-36

ISOLATION
option of BIND PLAN subcommand

effects on locks 5-175
isolation level 5-175

See also CS (cursor stability)
See also RR (repeatable read)
See also UR (uncommitted read)
comparison of values 5-175
control by SQL statement

example 5-183
effect on duration of locks 5-175
recommendations 5-143

ISPF (Interactive System Productivity Facility)
DB2 considerations 1-39
requirement 1-44
system administration 1-39
tutorial panels 1-34

IWTH (immediate write threshold) 5-54

J
join operation

Cartesian 5-285
description 5-282
example 2-106, 2-107
hybrid

description 5-289
disabling 5-69

join sequence 5-290
merge scan 5-287
nested loop 5-285
nulls 2-44
view 2-106

 Index I-25

K
KEEP UPDATE LOCKS option of WITH Clause 5-184
key

column 2-19
composite

allowable number of columns 2-54
description 2-20

description 2-9
dropping 2-132
foreign 2-8, 2-9, 2-132

catalog information 2-120
defining 2-22, 2-24, 2-94
description 2-9

parent
description 2-8

primary 2-8, 2-19, 2-132
catalog information 2-120
choosing 2-20
defining 2-21, 2-22, 2-94
description 2-9
recommendations for defining 2-22
timestamp 2-20

unique 2-55
KEYCOUNT column of SYSINDEXSTATS catalog

table 5-246

L
language interface modules

DFSLI000 X-125
DSNALI X-125
DSNCLI X-125

description X-125
usage 4-18

DSNELI X-125
large tables 5-104

See also table, large
latch 5-137
LCID (log control interval definition) X-88
leaf page

description 2-53
illustration 2-54
index 2-53

LEAFDIST column of SYSINDEXPART catalog table
data collected by RUNSTATS utility 5-245
example 5-256

level of a lock 5-144
library

online 1-7
limited block fetch 5-318

See also block fetch
limited partition scan 5-273
LIMITKEY column

SYSINDEXPART catalog table 5-246

list prefetch
description 5-291
disabling 5-69
thresholds 5-292

list sequential prefetch 5-291
See also list prefetch

LISTCAT command of access method services X-172
LOAD privilege

description 3-16
LOAD utility 2-113

See also loading
availability of tables when using 2-113
example

table replacement 2-114
loading DB2 tables 2-113
making corrections 2-114
moving data 2-147, 2-150
referential constraints 2-30

loading
data

DL/I 2-116
sequential data sets 2-113
SQL INSERT statement 2-115

tables 2-113
tables in referential structure 2-105

local attach request 3-75
LOCAL DATE LENGTH field of panel DSNTIPF X-51
LOCAL TIME LENGTH field of panel DSNTIPF X-51
lock

benefits 5-138
class

drain 5-137
transaction 5-137

compatibility 5-149
DB2 installation options 5-162
description 5-137, 5-190
drain

description 5-187
types 5-187
wait calculation 5-166

duration
controlling 5-171
description 5-147
page locks 5-118

effects
deadlock 5-140
deadlock wait calculation 5-164
suspension 5-139
timeout 5-139
timeout periods 5-163

escalation
description 5-159
in DB2 PM reports 5-191

hierarchy
description 5-144

maximum number 5-167

I-26 Administration Guide

lock (continued)
mode 5-148
modes for various processes 5-160
object

DB2 catalog 5-152
DBD 5-153
description 5-151
index subpages 2-53
index type 2 2-51
indexes 5-151
LOCKMAX clause 5-169
LOCKSIZE clause 5-168
SKCT (skeleton cursor table) 5-153
SKPT (skeleton package table) 5-153

options affecting
bind 5-171
cursor stability 5-177
IFI (instrumentation facility interface) X-150
program 5-171
read stability 5-177
repeatable read 5-176
uncommitted read 5-180

page locks
commit duration 5-118
CS, RS, and RR compared 5-176
description 5-144
performance 5-191

promotion 5-158
recommendations for concurrency 5-141
row locks

compared to page 5-168
size

controlling 5-168, 5-169
page 5-144
partition 5-144
table 5-144
table space 5-144

storage needed 5-162
suspension time 5-194
table of modes acquired 5-154
trace records 5-117

LOCK TABLE statement
effect on locks 5-184

lock/latch suspension time 5-30
LOCKMAX clause

ALTER TABLESPACE statement 2-125
CREATE TABLESPACE statement

description 2-89
effect of options 5-169

LOCKPART clause
ALTER TABLESPACE statement 2-126

LOCKPART clause of CREATE and ALTER
TABLESPACE

effect on locking 5-145
LOCKS PER TABLE(SPACE) field of panel

DSNTIPJ 5-170

LOCKS PER USER field of panel DSNTIPJ 5-167
LOCKSIZE clause

ALTER TABLESPACE statement
description 2-125

CREATE TABLE statement 2-91
CREATE TABLESPACE statement

ANY option 2-89
effect on virtual storage utilization 5-104

effect of options 5-168
recommendations 5-142

log 4-141
See also active log
See also archive log
buffer

creating log records 4-84
retrieving log records 4-85
size 5-94

capture exit routine X-81, X-104
changing BSDS inventory 4-94
checkpoint records X-85, X-86
contents X-81, X-86
deciding how long to keep 4-94
determining size of active logs 5-96
dual

active copy 4-86
archive logs 4-93
synchronization 4-87
to minimize restart effort 4-242

effects of data compression X-82
excessive loss 4-244
failure

recovery scenario 4-171, 4-175
symptoms 4-223
total loss 4-244

hierarchy 4-84
implementing logging 4-92
initialization phase

failure scenario 4-223
process 4-101, 4-102

NOWAIT request 5-94
operation 3-131
performance

considerations 5-94
recommendations 5-95, 5-98

record structure
control interval definition (LCID) X-88
database page set control records X-86
format X-89
header (LRH) X-81, X-87
logical X-86
physical X-86
type codes X-90
types X-81

truncation 4-232
use

backward recovery 4-104
establishing 4-84

 Index I-27

log (continued)
use (continued)

exit routine X-68
forward recovery 4-103
managing 4-83, 4-127
monitoring 5-98
record retrieval 4-85
recovery scenario 4-242
restarting 4-101, 4-105

write threshold 5-94
log capture exit routine

See also DATA CAPTURE clause
contents of log X-81
description X-68
reading log records X-104
writing X-68, X-71

log range directory 1-29
log record header (LRH) X-87
log record sequence number (LRSN) X-81
logical page list (LPL) 4-28, 4-30, 4-105

See also LPL (logical page list)
LONG VARCHAR data type

column definition 2-45
default value on insert 2-42
subtypes 2-45, 2-134

LONG VARGRAPHIC data type
column definition 2-45
default value on insert 2-42

LOW2KEY column
SYSCOLSTATS catalog table 5-245
SYSCOLUMNS catalog table

access path selection 5-245
recommendation for updating 5-251

LOWKEY column of SYSCOLSTATS catalog
table 5-245

LPL (logical page list)
deferred restart 4-105
description 4-28
DISPLAY DATABASE command 4-28
recovering pages

methods 4-29
running utilities on objects 4-30
status in DISPLAY DATABASE output 4-28

LRH (log record header) X-87
LRSN statement of stand-alone log services OPEN

request X-100

M
many-to-many relationships 2-12, 2-13
mapping macro

DSNDAIDL X-28
DSNDDTXP X-53
DSNDEDIT X-46
DSNDEXPL X-76
DSNDFPPB X-60

mapping macro (continued)
DSNDIFCA X-144
DSNDQWIW X-147
DSNDROW X-79
DSNDRVAL X-49
DSNDSLRB X-96
DSNDSLRF X-102
DSNDWBUF X-128
DSNDWQAL X-131

mass delete
contends with UR process 5-182
validation routine X-48

MAX BATCH CONNECT field of panel
DSNTIPE 5-135

MAX REMOTE ACTIVE field of panel
DSNTIPE 5-122, 5-123

MAX REMOTE CONNECTED field of panel
DSNTIPE 5-122, 5-123

MAX TSO CONNECT field of panel DSNTIPE 5-135
MAXCSA option of START irlmproc command 5-162
MAXROWS clause

ALTER TABLESPACE statement 2-126
CREATE TABLESPACE statement 2-90

message
format

DB2 4-21
IMS 4-21

MVS abend
IEC030I 4-176
IEC031I 4-176
IEC032I 4-176

prefix for DB2 4-21
receiving subsystem 4-21

message by identifier
$HASP373 4-14
DFS058 4-50
DFS058I 4-57
DFS3602I 4-162
DFS3613I 4-50
DFS554I 4-163
DFS555A 4-163
DFS555I 4-163
DSN1150I 4-239
DSN1157I 4-232, 4-239
DSN1160I 4-232, 4-241
DSN1162I 4-232, 4-239
DSN1213I 4-247
DSN2017I 4-44
DSN3100I 4-13, 4-16, 4-169
DSN3104I 4-16, 4-169
DSN3201I 4-165
DSN9032I 4-62
DSNB204I 4-182
DSNB207I 4-182
DSNB232I 4-183
DSNBB440I 5-310

I-28 Administration Guide

message by identifier (continued)
DSNC001I 4-166
DSNC012I 4-48
DSNC016I 4-115
DSNC017I 4-44
DSNC022I 4-49
DSNC025I 4-48, 4-170
DSNC034I 4-166
DSNC035I 4-166
DSNC036I 4-167
DSNI006I 4-29
DSNI021I 4-29
DSNJ001I 4-14, 4-87, 4-102, 4-222, 4-223
DSNJ002I 4-87
DSNJ003I 4-87, 4-179
DSNJ004I 4-87, 4-173
DSNJ005I 4-87
DSNJ007I 4-226, 4-228, 4-235, 4-237
DSNJ008E 4-87
DSNJ012I 4-226, 4-235, 4-236
DSNJ072E 4-92
DSNJ099I 4-14
DSNJ100I 4-178, 4-223, 4-242
DSNJ103I 4-175, 4-226, 4-228, 4-235, 4-237
DSNJ104E 4-235
DSNJ104I 4-175, 4-226
DSNJ105I 4-172
DSNJ106I 4-173, 4-226, 4-227, 4-235, 4-236
DSNJ107I 4-177, 4-223, 4-242
DSNJ108I 4-177
DSNJ110E 4-86, 4-171
DSNJ111E 4-86, 4-171
DSNJ113E 4-226, 4-227, 4-235, 4-236, 4-241
DSNJ114I 4-175
DSNJ115I 4-175
DSNJ1191 4-223
DSNJ119I 4-242
DSNJ120I 4-101, 4-178
DSNJ123E 4-177
DSNJ124I 4-173
DSNJ125I 4-93, 4-177
DSNJ126I 4-177
DSNJ127I 4-14
DSNJ128I 4-176
DSNJ130I 4-101
DSNJ139I 4-87
DSNJ301I 4-177
DSNJ302I 4-177
DSNJ303I 4-177
DSNJ304I 4-177
DSNJ305I 4-177
DSNJ306I 4-177
DSNJ307I 4-177
DSNJ311E 4-90
DSNJ312I 4-90
DSNJ317I 4-90

message by identifier (continued)
DSNJ318I 4-90
DSNJ319I 4-90
DSNL001I 4-62
DSNL002I 4-78
DSNL003I 4-62
DSNL004I 4-62
DSNL005I 4-78
DSNL006I 4-78
DSNL009I 4-70
DSNL010I 4-70
DSNL030I 4-197
DSNL200I 4-63
DSNL432I 4-77, 4-78
DSNL433I 4-77, 4-78
DSNL500I 4-196
DSNL501I 4-193, 4-196
DSNL502I 4-193, 4-196
DSNL700I 4-194
DSNL701I 4-194
DSNL702I 4-194
DSNL703I 4-194
DSNL704I 4-194
DSNL705I 4-194
DSNM001I 4-50, 4-56
DSNM002I 4-56, 4-57, 4-160, 4-170
DSNM003I 4-50, 4-56
DSNM004I 4-114, 4-161
DSNM005I 4-54, 4-114, 4-162
DSNP001I 4-188, 4-189
DSNP007I 4-188
DSNP012I 4-187
DSNR001I 4-14
DSNR002I 4-14, 4-223
DSNR003I 4-14, 4-96, 4-237, 4-238, 4-239
DSNR004I 4-14, 4-102, 4-104, 4-223, 4-233
DSNR005I 4-14, 4-104, 4-223, 4-238
DSNR006I 4-14, 4-105, 4-223
DSNR007I 4-14, 4-102, 4-104
DSNR031I 4-104
DSNT360I 4-25, 4-27, 4-30
DSNT361I 4-25, 4-27, 4-30
DSNT362I 4-25, 4-27, 4-30
DSNT392I 4-31, X-86
DSNT397I 4-27, 4-30
DSNU086I 4-184, 4-185
DSNU234I 2-65
DSNU244I 2-65
DSNU340I 2-102
DSNU561I 4-192
DSNU563I 4-192
DSNV086E 4-169
DSNV400I 4-90
DSNV401I 4-42, 4-52, 4-90, 4-167
DSNV402I 4-10, 4-11, 4-38, 4-55, 4-65, 4-70, 4-90
DSNV404I 4-40, 4-56

 Index I-29

message by identifier (continued)
DSNV406I 4-42, 4-52, 4-167
DSNV408I 4-42, 4-43, 4-52, 4-53, 4-60, 4-167
DSNV414I 4-43, 4-53, 4-60, 4-169
DSNV415I 4-43, 4-53, 4-60, 4-169
DSNX940I 4-73
DSNY001I 4-14
DSNY002I 4-16
DSNZ002I 4-14
DXR105E 4-36
DXR117I 4-36
DXR122E 4-155
DXR124E 4-36
EDC3009I 4-187
IEC161I 4-182

message processing program (MPP) 4-55
See also MPP (message processing program)

MIGRATE command of DFSMShsm (Hierarchical
Storage Manager) 2-148

migrating from EBCDIC to ASCII 2-137
mixed data

altering subtype 2-134
assigning subtype 2-45
choosing between GRAPHIC data type and

mixed 2-47
DB2 names 2-80

mode of a lock 5-148
MODIFY irlmproc,ABEND command of MVS

stopping IRLM 4-36
MODIFY utility

retaining image copies 4-137
monitor program

using DB2 PM X-184
using IFI X-123

MONITOR1 privilege
description 3-17

MONITOR2 privilege
description 3-17

monitoring
application packages X-185
application plans X-185
CAF connections 4-39
CICS X-175
connections activity 4-55, 4-56
databases 4-25, 4-31
DB2 X-175
DSNC commands for 4-44
IMS X-175
threads 4-44
tools

DB2 trace X-177
monitor trace X-180
performance X-173

TSO connections 4-39
using IFI X-123

moving DB2 data 2-147, 2-150
MPP (message processing program)

connection control for 4-55
multi-character command prefix 4-10

See also command prefix, multi-character
multi-site update

illustration of 4-120
process 4-119

multi-volume archive log data sets 4-92
MVS

command group authorization level (SYS) 4-9, 4-13
commands

MODIFY irlmproc 4-36
STOP irlmproc 4-36

data set passwords 3-117
DB2 considerations 1-36
entering DB2 commands 4-9, 4-13
environment 1-36
IRLM commands control 4-8
performance options 5-108
power failure recovery scenario 4-156
workload manager 5-124

MxxACT DD statement for stand-alone log services
OPEN request X-98

MxxARCHV DD statement for stand-alone log services
OPEN request X-98

MxxBSDS DD statement for stand-alone log services
OPEN request X-98

N
NACTIVE column

SYSTABLESPACE catalog table
data collected by RUNSTATS utility 5-247

SYSTABSTATS catalog table 5-247
naming convention

aliases 2-75, 2-81
columns 2-41
data distribution 2-80
DB2 objects 2-79
implicitly created table spaces 2-87
tables 2-93
three-part names 2-75, 2-81
VSAM data sets 2-69

NEARINDREF column of SYSTABLEPART catalog
table 5-246

NEAROFFPOSF column of SYSINDEXPART catalog
table

data collected by RUNSTATS utility 5-246
NetView

monitoring errors in the network 4-75
network ID (NID) 4-167

See also NID (network ID)
NID (network ID)

indoubt threads 4-161
thread identification 4-53

I-30 Administration Guide

NID (network ID) (continued)
unique value assigned by IMS 4-53
use with CICS 4-167

NLEAF column
SYSINDEXES catalog table

data collected by RUNSTATS utility 5-245
SYSINDEXSTATS catalog table 5-246

NLEVELS column
SYSINDEXES catalog table

data collected by RUNSTATS utility 5-245
SYSINDEXSTATS catalog table 5-246

NO ACTION
delete rule 2-28

noncorrelated subqueries 5-230
See also subquery

nonpartitioned index 2-57
nonsegmented table space

creating 2-90, 2-91
description 2-90
dropping 5-98
locking 5-146
LOCKSIZE TABLE statement 2-91
scan 5-275
SEGSIZE clause 2-90

normal form
first 2-14
fourth 2-15
second 2-14
third 2-15

normal read 5-51
normalizing

guidelines 2-16
tables 2-13

NOT NULL clause
CREATE TABLE statement

requires presence of data 3-126
NOWAIT log request 5-94
NPAGES column

SYSTABLES catalog table
data collected by RUNSTATS utility 5-247

SYSTABSTATS catalog table 5-247
null value

alternative to default value 2-41
columns 2-42
effect on storage space X-77
reasons for using 2-43
UNIQUE WHERE NOT NULL index 2-55

NUMBER OF LOGS field of panel DSNTIPL 5-96
NUMCOLUMNS column

SYSCOLDIST catalog table
access path selection 5-244

numeric
data

format in storage X-80
types 2-45

NUMPARTS
clause of CREATE TABLESPACE statement 2-91

O
OASN (originating sequence number)

indoubt threads 4-161
part of the NID 4-53

OBID
clause of CREATE TABLE statement 2-97
selecting from SYSIBM.SYSTABLES X-161

object
controlling access to 3-13, 3-48
creating 2-79
naming convention 2-79
ownership 3-23, 3-25

object of a lock 5-151
object registration table (ORT) 3-49

See also registration tables for DDL
off-loading

active log 4-86
description 4-85
messages 4-87
trigger events 4-86

OJPERFEH
system parameter for outer join 5-242

one-to-many relationship 2-12
one-to-one relationships 2-13
online books 1-7
online monitor program using IFI X-123
online REORG

defining data sets for 2-70
OPEN

statement
performance 5-295

operation
continuous 1-34
description 4-23, 4-81
log 3-131

operator
CICS 1-42
commands 4-7, 4-8
not required for IMS start 1-42
START command 1-39

optical storage 5-107
OPTIMIZE FOR n ROWS clause 5-234
ORDER BY clause

effect on OPTIMIZE clause 5-235
originating sequence number (OASN) 4-53

See also OASN (originating sequence number)
originating task 5-303
ORT (object registration table) 3-49

See also registration tables for DDL
OS/390 Transaction Management and Recoverable

Resource Manager Services (OS/390 RRS)
controlling connections 4-58

 Index I-31

outer join
EXPLAIN report 5-283
influencing access paths 5-240
system parameter for performance 5-242

output area used in IFI
command request X-127
description X-147
example X-129
WRITE request X-143

output, unsolicited
CICS 4-21
operational control 4-22
subsystem messages 4-21

overflow X-84
OWNER

qualifies names in plan or package 3-24
ownership

changing 3-25
establishing 3-23, 3-24
privileges 3-24

P
PACKADM authority

description 3-20
package X-185

accounting trace X-179
administrator 3-35, 3-38
authorization to execute SQL in 3-26
binding

EXPLAIN option for remote 5-268
PLAN_TABLE 5-262

controlling use of DDL 3-49, 3-61
DRDA access 5-315
EDM pool management 5-66
invalidated

dropping a view 2-138
dropping an index 2-138
when privilege is revoked 3-44
when table is dropped 2-135

list
privilege needed to include package 3-31
privileges needed to bind 3-31

monitoring X-185
privileges

description 3-8
explicit 3-15
for copying 3-30
of ownership 3-24
remote bind 3-30

resource limit facility 5-76, 5-82
retrieving catalog information 3-48
RLFPKG column of RLF 5-81
SKPT (skeleton package table) 5-66

page
32KB 2-40

page (continued)
buffer pool 5-51
description 1-24
determining size for table space 2-88
locks

description 5-144
in DB2 PM reports 5-191

number of records
description 2-40

root 2-53
size of index 2-53
table space 2-86

page set
control records X-86

PAGE_RANGE column of PLAN_TABLE 5-267
PAGESAVE column of SYSTABLEPART catalog table

data collected by RUNSTATS utility 5-246
updated by LOAD and REORG for data

compression 2-65
parallel processing

description 5-299
disabling using resource limit facility 5-85
enabling 5-306
monitoring 5-309
related PLAN_TABLE columns 5-274
tuning 5-312

PARM option of START DB2 command 4-14
PART

clause of ALTER INDEX statement 2-137
clause of ALTER TABLESPACE statement 2-126
clause of CREATE INDEX statement 2-56

partial recovery 4-147
See also point-in-time recovery

participant
in multi-site update 4-119
in two-phase commit 4-109

partition
compressing data 2-63
redefining, procedure 4-191
reorganizing 1-34

partition scan
limited 5-273

partitioned data set, managing 1-38
partitioned index

creating 2-56
description 1-27

partitioned table space
creating 2-91, 2-92
definition 2-91
description 1-25
locking 5-145

partner LU
trusting 3-76
verifying by VTAM 3-75

PassTicket
configuring to send 3-92

I-32 Administration Guide

password
altering 2-139
changing expired ones when using DRDA 3-72
encrypting, for inbound IDs 3-76
encrypting, from workstation 3-92
protection

data sets 3-116, 3-118
log data sets X-97
stand-alone GET X-101

RACF, encrypted 3-91
requiring, for inbound IDs 3-76
sending, with attachment request 3-91
VSAM 3-116

See also VSAM (virtual storage access method)
PASSWORD

clause of CREATE INDEX statement 2-101
clause of CREATE TABLESPACE statement 2-89

pattern character
examples 3-55
in DDL registration tables 3-51

PC option of START irlmproc command 5-162
PCLOSEN subsystem parameter 5-91
PCLOSET subsystem parameter 5-91
PCTFREE

clause of ALTER INDEX statement 2-137
clause of ALTER TABLESPACE statement 2-126
clause of CREATE INDEX statement 2-100
clause of CREATE TABLESPACE statement 2-89
effect on DB2 performance 5-38

PCTPAGES column
SYSTABLES catalog table 5-247
SYSTABSTATS catalog table 5-247

PCTROWCOMP column
SYSTABLES catalog table 2-65

data collected by RUNSTATS utility 5-247
SYSTABSTATS catalog table 2-65, 5-247
updated by LOAD and REORG for data

compression 2-65
PERCACTIVE column of SYSTABLEPART catalog

table
data collected by RUNSTATS utility 5-246

PERCDROP column of SYSTABLEPART catalog table
data collected by RUNSTATS utility 5-246

performance
affected by

cache for authorization IDs 3-28
CLOSE NO 5-37
data set distribution 5-42
EDM and buffer pools 5-37
groups in MVS 5-111
I/O activity 5-37
index subpages 2-53
lock size 5-147
locks on type 1 index 5-142
PCTFREE 5-38
PRIQTY clause 2-87, 5-42
secondary authorization IDs 3-31

performance (continued)
affected by (continued)

storage group 2-83
denormalizing tables 2-16
monitoring

planning 5-14
RUNSTATS 5-37
tools X-173
trace X-180
using DB2 PM X-184
with EXPLAIN 5-261

referential constraints 2-29
table expressions 5-299

Performance Reporter for MVS X-184
phases of execution

restart 4-101
PIECESIZE clause

ALTER INDEX statement
description 2-138
recommendations 5-42
relation to PRIQTY 5-43

CREATE INDEX statement
description 2-102
recommendations 5-42
relation to PRIQTY 5-43

plan
resource limit facility 5-82

PLAN
option of DSNC DISPLAY command 4-44

plan selection exit routine
description X-71
execution environment X-71
sample routine X-72
writing X-71, X-74

PLAN_TABLE table
column descriptions 5-262
report of outer join 5-283

plan, application 3-15
See also application plan

planning
auditing 3-5, 3-143
distributing data 2-9, 2-73
security 3-5, 3-143

point of consistency
CICS 4-109
description 4-83
IMS 4-109
recovering data 4-144
single system 4-109

point-in-time recovery
catalog and directory 4-143
description 4-147

pointer, overflow X-84
populating

tables 2-113

 Index I-33

power failure recovery scenario, MVS 4-156
predicate

description 5-206
filter factor 5-215
general rules 5-209
generation 5-219
impact on access paths 5-206, 5-233
indexable 5-207
join 5-206
local 5-206
modification 5-219
properties 5-206
stage 1 (sargable) 5-208
stage 2

evaluated 5-208
influencing creation 5-238

subquery 5-207
preformatting space for data sets 5-40
primary allocation quantity (PRIQTY) 2-87

See also PRIQTY (primary allocation quantity)
primary authorization ID 3-14

See also authorization ID, primary
PRIMARY KEY clause

ALTER TABLE statement 2-21
CREATE TABLE statement

using 2-21, 2-94
PRINT

command of access method services 4-147
print log map utility

before fall back 4-243
control of data set access 3-114
prints contents of BSDS 4-34, 4-97

prioritizing resources 5-74
PRIQTY clause

ALTER INDEX statement 2-138
ALTER TABLESPACE statement 2-126
CREATE TABLESPACE 2-87

privilege 3-14
See also authority
description 3-8, 3-14
executing an application plan 3-8
exercised by type of ID 3-31
exercised through a plan or package 3-26, 3-30
explicitly granted 3-14, 3-22
granting 3-9, 3-36, 3-43, 3-45
implicitly held 3-23, 3-25
needed for various roles 3-35
ownership 3-24
remote bind 3-30
remote users 3-36
retrieving catalog information 3-45, 3-48
revoking 3-43
types 3-14, 3-18
used in different jobs 3-35

privilege selection, sample security plan 3-136

problem determination
using DB2 PM X-184

process
description 3-7

processing
attach requests 3-77, 3-88
connection requests 3-65, 3-68
sign-on requests 3-68, 3-71

processing speed 5-37
See also performance
dispatching priority 5-109
processor resources consumed

accounting trace 5-30, X-181
buffer pool 5-58
fixed-length records 5-45
thread creation 5-120
thread reuse 5-43
traces 5-44
transaction manager X-177
varying-length records 5-45

RMF reports X-176
time to perform I/O operations 5-40

PROCLIM option of IMS TRANSACTION macro 5-135
production binder

description 3-35
privileges 3-40

project activity sample table X-15
project sample table X-14
protected threads 5-129
PSB name, IMS 4-18
PSRCP (page set recovery pending) status

description 2-114
PSTOP transaction type 4-55
PTASKROL subsystem parameter 5-310
PUBLIC AT ALL LOCATIONS clause

GRANT statement 3-36
PUBLIC clause

GRANT statement 3-36
PUBLIC identifier 3-36
PUBLIC* identifier 3-36
PURGEC option of DSNCRCT macro

terminating protected threads 5-132

Q
QMF (Query Management Facility)

database for each user 2-85
options 5-136
performance 5-136

QSAM (queued sequential access method) 4-91
qualification area used in IFI

description X-95
description of fields X-131
READS request X-130
restricted IFCIDs X-131
restrictions X-135

I-34 Administration Guide

qualified object names 2-80
QUALIFIER

qualifies names in plan or package 3-24
Query Management Facility (QMF) 2-85, 5-119

See also QMF (Query Management Facility)
query parallelism 5-299
queued sequential access method (QSAM) 4-91

See also QSAM (queued sequential access method)
QUIESCE option

STOP DB2 command 4-58, 4-100
QUIESCE utility

referential constraints 2-34, 2-35

R
RACF (Resource Access Control Facility)

authorizing
access to data sets 3-10, 3-113, 3-116
access to protected resources 3-97
access to server resource class 3-104
CICS attach profile 3-102
group access 3-102
IMS access profile 3-102
SYSADM and SYSOPR authorities 3-102

checking
connection processing 3-65, 3-68
inbound remote IDs 3-76
sign-on processing 3-68, 3-71

DB2 considerations 1-38
defining

access profiles 3-94
DB2 resources 3-94, 3-106
protection for DB2 3-93, 3-106
remote user IDs 3-101
router table 3-95
started procedure table 3-97
user ID for DB2 started tasks 3-97

description 3-9
PassTickets 3-92
passwords, encrypted 3-91
typical external security system 3-63
when supplying secondary authorization ID 3-67,

3-70
RBA (relative byte address)

description X-81
range shown in messages 4-87

RCT (resource control table)
changed by DSNC MODIFY command 4-47
DCT entry 4-41
ERRDEST option 4-21, 4-41
performance options 5-128

re-creating
DB2 objects 2-123
tables 2-136

read asynchronously (READA) X-140

read synchronously (READS) X-129
read-only data sharing X-153

See also shared read-only data
read-through locks 5-180

See also UR (uncommitted read)
READA (read asynchronously) X-140
reading

normal read 5-51
sequential prefetch 5-51

READS (read synchronously) X-129, X-130
reason code

X'00C90088' 5-140
X'00C9008E' 5-139

REBIND PACKAGE subcommand of DSN
options

ISOLATION 5-175
OWNER 3-26
RELEASE 5-171

REBIND PLAN subcommand of DSN
options

ACQUIRE 5-171
ISOLATION 5-175
OWNER 3-26
RELEASE 5-171

rebinding
after creating an index 2-138
after dropping a view 2-139
automatically

EXPLAIN processing 5-267
record

description 1-26
performance considerations 2-39
size 2-40

RECORDING MAX field of panel DSNTIPA
preventing frequent BSDS wrapping 4-241

RECOVER BSDS command
copying good BSDS 4-92

RECOVER INDOUBT command
free locked resources 4-167
recover indoubt thread 4-117

RECOVER privilege
description 3-17

RECOVER TABLESPACE utility 4-171
cannot use with work file table space 4-142
catalog and directory tables 4-143
data inconsistency problems 4-136
deferred objects during restart 4-106
DFSMS concurrent copy 4-140
functions 4-141
kinds of objects 4-141
messages issued 4-141
moving data 2-147, 2-150
options

TOCOPY 4-147
TOLOGPOINT 4-147
TORBA in application program error 4-158
TORBA in backing up and restoring data 4-147

 Index I-35

RECOVER TABLESPACE utility (continued)
problem on DSNDB07 4-142
recovers data modified after shutdown 4-243
recovers pages in error 4-30
referential constraints 2-34, 2-35

Recoverable Resource Manager Services attachment
facility

RRSAF RACF profile 3-104
stored procedures and RACF authorization 3-104

RECOVERDB privilege
description 3-16

recovery 4-171
See also RECOVER TABLESPACE utility
See also recovery scenarios
BSDS 4-179
catalog and directory 4-143
data set

using DFSMS 4-140
using DFSMShsm 4-127
using non-DB2 dump and restore 4-147

database
active log X-81
using a backup copy 4-124
using RECOVER TOCOPY 4-147
using RECOVER TOLOGPOINT 4-147
using RECOVER TORBA 4-147

dropped table 4-150
dropped table space 4-151
from down-level page sets 4-183
IFI calls X-150
indoubt threads 4-211
indoubt units of recovery

CICS 4-43, 4-166
IMS 4-53

media 4-141
methods 3-131
minimizing outages 4-128
multiple systems environment 4-112
operation 4-125
point-in-time 4-147
prior point of consistency 4-144
reducing time 4-126
reporting information 4-131
restart 4-133, 4-242
scenarios 4-155

See also recovery scenarios
subsystem X-81
system procedures 4-123
table space

COPY 4-146
dropped 4-151
DSN1COPY 4-146
point in time 4-132
QUIESCE 4-132
RECOVER TOCOPY 4-147
RECOVER TORBA 4-147
scenario 4-184

recovery (continued)
work file table space 4-143

recovery log
description 1-30
record formats X-89

RECOVERY option
REPORT utility 4-159

recovery scenarios 4-171
application program error 4-158
CICS-related failures

application failure 4-164
attachment facility failure 4-169
inability to connect to DB2 4-165
manually recovering indoubt units of

recovery 4-166
not operational 4-165

DASD failure 4-156
DB2-related failures

active log failure 4-171
archive log failure 4-175
BSDS 4-177
catalog or directory I/O errors 4-185
database failures 4-182
subsystem termination 4-169
system resource failures 4-171
table space I/O errors 4-184

failure during log initialization or current status
rebuild 4-223, 4-233

IMS-related failures 4-159, 4-160
application failure 4-163
control region failure 4-160
fails during indoubt resolution 4-161

indoubt threads 4-211
integrated catalog facility catalog VVDS

failure 4-187
IRLM failure 4-155
MVS failure 4-156
out of space 4-188
restart 4-221, 4-233
starting 4-13, 4-15

RECP (recovery pending) status
description 2-114

redefining a partition 4-191
redo log records X-82
REFERENCES privilege

description 3-14
referential constraint

adding to existing table 2-130, 2-131, 2-132
data consistency 3-128
defining 2-19
DELETE rules 2-27, 2-28
implementing 2-104
implementing through programs 2-26
implications for SQL operations 2-25, 2-30
implications for utilities 2-30, 2-35
INSERT rules 2-25

I-36 Administration Guide

referential constraint (continued)
name 2-23
planning to maintain 2-8, 2-26
recovering from violating 4-192
shared read-only database X-162
UPDATE rules 2-26

referential integrity
description 2-8

referential structure
maintaining consistency for recovery 4-137
order of operations to build 2-104

registration tables for DDL 3-49
See also data definition control support
adding columns 3-57, 3-60
CREATE statements 3-59
creating 3-57
database name 3-50
escape character 3-51
examples 3-51, 3-57
function 3-49, 3-61
indexes 3-57
managing 3-57
names for 3-50
pattern characters 3-51
preparing for recovery 4-124
required installation options 3-50
updating 3-60

relational database 1-21
relationship

maintaining integrity 2-8, 2-19, 2-26
many-to-many 2-13
one-to-one 2-13

relationship of entities
many-to-one 2-12
one-to-many 2-12

relative byte address (RBA) 4-87, X-81
See also RBA (relative byte address)

RELCURHL subsystem parameter 5-170
RELEASE

option of BIND PLAN subcommand
combining with other options 5-171

RELOBID1 column of SYSRELS catalog table X-162
RELOBID2 column of SYSRELS catalog table X-162
REMARKS column

SYSTABLES catalog table 2-117
remote logical unit, failure 4-196
remote request 3-75, 3-84
reoptimizing access path 5-224
REORG privilege

description 3-16
REORG utility

compressing data 2-126
examples 2-133
moving data 2-147, 2-150

REPAIR privilege
description 3-16

REPAIR utility
to resolve inconsistencies in database X-171
to resolve inconsistent data 4-251

repeatable read (RR) 5-175
See also RR (repeatable read)

replacing
table 2-114

REPORT utility
options

RECOVERY 4-159
TABLESPACESET 4-159

referential constraints 2-34, 2-35
table space recovery 4-131

REPRO command of access method services 4-147,
4-179

reserving free space
indexes 2-100
table spaces 2-89

RESET INDOUBT command
reset indoubt thread 4-117

residual recovery entry (RRE) 4-54
See also RRE (residual recovery entry)

Resource Access Control Facility (RACF) 3-65
See also RACF (Resource Access Control Facility)

resource allocation 5-117
resource control table (RCT) 4-21, 5-128

See also RCT (resource control table)
resource limit facility (governor)

ASUTIME example 5-81
comparison to QMF governor 5-76
database 1-33
description 5-76
distributed environment 5-76
governing by plan or package 5-82
preparing for recovery 4-124
specification table (RLST) 5-77

See also RLST (resource limit specification table)
stopping and starting 5-79

resource limit specification table (RLST) 5-77
See also RLST (resource limit specification table)

Resource Measurement Facility (RMF) X-173, X-175
resource objectives 5-73
RESOURCE TIMEOUT field of panel DSNTIPI 5-163
resource translation table (R TT) 4-55

See also RTT (resource translation table)
resources

defining to RACF 3-94
efficient usage, tools for 3-132
limiting 5-74

response time 5-46
restart 4-107

See also conditional restart
See also restarting
automatic 4-105
backward log recovery

failure during 4-238
phase 4-104, 4-105

 Index I-37

restart (continued)
cold start situations 4-244
conditional

control record governs 4-107
excessive loss of active log data 4-246
total loss of log 4-245

current status rebuild
failure during 4-223
phase 4-102, 4-103

data object availability 4-105
DB2 4-99
deferring processing 4-105
effect of lost connections 4-113
forward log recovery

failure during 4-233
phase 4-103, 4-104

log initialization
failure during 4-223
phase 4-101, 4-102

multiple systems environment 4-112
normal 4-101, 4-105
overriding automatic 4-106
preparing for recovery 4-133
recovery operations for 4-107
resolving inconsistencies after 4-248
unresolvable

BSDS problems during 4-242
log data set problems during 4-242

RESTART ALL field of panel DSNTIPS 4-106
RESTORE phase of RECOVER TABLESPACE

utility 4-142
restoring data to a prior level 4-144
RESTRICT

delete rule 2-28
RETLWAIT subsystem parameter 5-164
REVOKE statement

cascading effect 3-42
delete a view 3-43
examples 3-42, 3-45
format 3-42
invalidates a plan or package 3-44
privileges required 3-31
revoking SYSADM authority 3-44

RID (record identifier) pool
size 5-69
storage

allocation 5-69
estimation 5-69

use in list prefetch 5-291
RLST (resource limit specification table)

columns 5-80
creating 5-78
description 5-77
distributed processing 5-86
install 5-77
precedence of entries 5-81

RMF (Resource Measurement Facility) X-173, X-175
rollback

effect on performance 5-96
maintaining consistency 4-111
unit of recovery 4-84

root page
description 2-53
illustration 2-54
index 2-53

ROSHARE
clause of ALTER DATABASE statement X-157
clause of CREATE DATABASE statement X-159
column of SYSDATABASE catalog table X-159

route codes for messages 4-12
router table in RACF 3-95, 3-96
routine X-25

See also exit routine
row

dependent 2-9
descendent 2-9
description 1-21
formats for exit routines X-77
parent 2-9
validating X-48

RR (repeatable read)
claim class 5-186
distributed environment 5-175
drain lock 5-187
effect on locking 5-175
how locks are held (figure) 5-176
page and row locking 5-176

RRDF (Remote Recovery Data Facility)
altering a table for 2-133
creating a table for 2-97

RRE (residual recovery entry)
detect 4-54
logged at IMS checkpoint 4-113
not resolved 4-114
purge 4-54

RRSAF (Recoverable Resource Manager Services
attachment facility)

application program
authorization 3-28
running 4-20

RS (read stability)
claim class 5-186
page and row locking (figure) 5-177

RTT (resource translation table)
transaction type 4-55

RUN
subcommand of DSN

example 4-17
RUNSTATS utility

aggregate statistics 5-249
timestamp 5-252
use

tuning DB2 5-37

I-38 Administration Guide

RUNSTATS utility (continued)
use (continued)

tuning queries 5-249

S
sample application

structure of X-22
sample exit routine

CICS dynamic plan selection X-72
connection

location X-26
processing X-31
supplies secondary IDs 3-66

edit X-45
sign-on

location X-26
processing X-31
supplies secondary IDs 3-70

sample library 2-110
See also SDSNSAMP library

sample security plan
for employee data 3-135, 3-143
for new application 3-37, 3-42

sample table X-7
DSN8510.ACT (activity) X-7
DSN8510.DEPT (department) X-8
DSN8510.EMP (employee) X-10
DSN8510.EMPPROJACT (employee to project

activity) X-16
DSN8510.PROJ (project) X-14
PROJACT (project activity) X-15

SBCS data
altering subtype 2-134
assigning subtype 2-45

schema definition
authorization to process 2-110
description 2-109
example 2-110
processing 2-110

scope of a lock 5-144
SCOPE option

START irlmproc command 5-162
SCT02 table space

description 1-29
placement of data sets 5-92

SDSNLOAD library
loading 4-54

SDSNSAMP library
processing schema definitions 2-110

SECACPT option of APPL statement 3-75
secondary allocation quantity (SECQTY) 2-87

See also SECQTY
secondary authorization ID 3-14

See also authorization ID, secondary

SECQTY
clause of ALTER INDEX statement 2-138
clause of ALTER TABLESPACE statement 2-126
clause of CREATE TABLESPACE statement 2-87

security
acceptance options 3-76
access to

data 3-5, 3-143
DB2 data sets 3-113, 3-118

administrator privileges 3-35
authorizations for stored procedures 3-29
CICS 3-111
closed application 3-49, 3-61
DCE 3-106
DDL control registration tables 3-49
description 3-5
erasing dropped data 2-88
IMS 3-111
measures in application program 3-29
measures in force 3-126
objectives, sample security plan 3-135
planning 3-5
sample security plan 3-135, 3-143
system, external 3-63

security administrator 3-35
segment of log record X-86
segmented table space

locking 5-145
scan 5-276
use 2-60

SEGSIZE
clause of CREATE TABLESPACE statement 2-90

SEGSIZE clause of CREATE TABLESPACE
recommendations 5-276

SELECT privilege
description 3-14

SELECT statement
example

SYSIBM.SYSCOLUMNS 2-118
SYSIBM.SYSINDEXES 2-119
SYSIBM.SYSPLANDEP 2-135
SYSIBM.SYSTABAUTH 2-119
SYSIBM.SYSTABLEPART 2-124
SYSIBM.SYSTABLES 2-117, 2-122
SYSIBM.SYSVIEWDEP 2-135
WHERE clause 1-22

sequential detection 5-292, 5-294
sequential prefetch

bind time 5-291
description 5-291

sequential prefetch threshold (SPTH) 5-54
SET ARCHIVE command

description 4-9
SET CURRENT DEGREE statement 5-306
SET CURRENT SQLID statement 3-14

 Index I-39

SET NULL delete rule
description 2-29

SHARE
INTENT EXCLUSIVE lock mode 5-149
lock mode

page 5-148
row 5-148
table, partition, and table space 5-149

shared data X-153
See also shared read-only data

shared read-only data
benefits X-154
binding plans and packages X-167
costs X-154
defining X-159
description X-153
recovering X-171
running utilities X-170
updating X-167

SHDDEST option of DSNCRCT macro 4-21
sign-on

exit point X-26
exit routine X-25

See also sign-on exit routine
initial primary authorization ID X-29
processing 3-70

See also sign-on processing
requests X-27

sign-on exit routine
debugging X-33
default 3-70
description X-25
initial primary authorization ID X-29
performance considerations X-32
sample 3-70

location X-26
provides secondary IDs X-31

secondary authorization ID 3-70
using 3-70
writing X-25, X-34

sign-on processing
choosing for remote requests 3-76
initial primary authorization ID 3-68
invoking RACF 3-68
requests 3-64
supplying secondary IDs 3-70
using exit routine 3-70
when used 3-64

SIGNON-ID option of IMS 4-18
simple table space

advantage 2-59
creating 2-92
locking 5-145

single logging 1-31
SKCT (skeleton cursor table)

description 1-29

SKCT (skeleton cursor table) (continued)
EDM pool 5-66
EDM pool efficiency 5-68
locks on 5-153

skeleton cursor table (SKCT) 1-29, 5-66
See also SKCT (skeleton cursor table)

skeleton package table (SKPT) 1-29
See also SKPT (skeleton package table)

SKPT (skeleton package table)
description 1-29
EDM pool 5-66
locks on 5-153

SMALLINT
data type

column definition 2-48
default value on insert 2-42

SMF (System Management Facility)
buffers X-182
measured usage pricing 5-44
record types X-178, X-180
trace record

accounting X-180
auditing 3-120
format X-107
lost records X-182
recording X-182
statistics X-178

type 89 records 5-44
SMS (storage management subsystem) 2-84, 4-92

See also DFSMS (Data Facility Storage
Management Subsystem)

softcopy publications 1-7
software protection 3-132
sort

description 5-70
performance 5-72
pool 5-70
program

reducing unnecessary use 5-104
RIDs (record identifiers) 5-295
when performed 5-295

removing duplicates 5-295
shown in PLAN_TABLE 5-294

SORT POOL SIZE field of panel DSNTIPC 5-70
sorting sequence, altering by a field procedure X-57
space attributes 2-125
space reservation options 5-38
SPACENAM option

DISPLAY DATABASE command 4-27, 4-30
START DATABASE command 4-24

special register
CURRENT DEGREE 5-306

speed, tuning DB2 5-37
SPT01 table space 1-29
SPTH (sequential prefetch threshold) 5-54

I-40 Administration Guide

SPUFI
disconnecting 4-40
resource limit facility 5-82

SQL (Structured Query Language)
description 1-22
performance trace 5-117
statement cost 5-118
statements 5-118

See also SQL statements
transaction unit of recovery 4-83

SQL authorization ID 3-14
See also authorization ID, SQL

SQL Data System (SQL/DS) unload data sets 2-113
SQL statements

DECLARE CURSOR
to ensure block fetching 5-319

DELETE
locks type 1 index pages 5-142

EXPLAIN
monitor access paths 5-261

INSERT
locks type 1 index pages 5-142

RELEASE 5-316
SET CURRENT DEGREE 5-306
UPDATE

locks type 1 index pages 5-142
SQLCA (SQL communication area)

reason code for deadlock 5-140
reason code for timeout 5-139

SQLCODE
-30082 3-72
-905 5-77

SQLSTATE
'08001' 3-72
'57014' 5-77

SSM (subsystem member)
error options 4-55
specified on EXEC parameter 4-54
thread reuse 5-135

SSR command of IMS
entering 4-10
prefix 4-22

stand-alone utilities
recommendation 4-34

standard, SQL (ANSI/ISO)
schemas 2-109
UNIQUE clause of CREATE TABLE 2-21

START DATABASE command
example 4-24
problem on DSNDB07 4-142
SPACENAM option 4-24
starting a database for read-only access X-166
starting a database for update X-166
starting a shared database X-166

START DB2 command
description 4-14

START DB2 command (continued)
entered from MVS console 4-13
mode identified by reason code 4-58
PARM option 4-14
restart 4-106

START REGION command of IMS 4-56
START SUBSYS command of IMS 4-49
START TRACE command

AUDIT option 3-122
controlling data 4-79

STARTDB privilege
description 3-16

started procedures table in RACF 3-101
started-task address space 3-97
starting

audit trace 3-122
databases 4-24
DB2 4-15

after an abend 4-15
process 4-13

IRLM
process 4-35

table or index space against restrictions 4-24
state

of a lock 5-148
static SQL

privileges required 3-31
statistics

aggregate 5-249
distribution 5-251
filter factor 5-248
partitioned table spaces 5-248
trace

class 4 5-321
description X-178

STATISTICS option of DSNC DISPLAY
command 4-44

STATS privilege
description 3-16

STATSTIME column
use by RUNSTATS 5-244

status
check pending

description 2-31
resetting 2-31, 2-114

column of DISPLAY DATABASE report 4-25
copy pending, resetting 2-114
incomplete definition 2-21

STOGROUP
clause of CREATE DATABASE statement 2-86
clause of CREATE TABLESPACE statement 2-87

STOGROUP privilege
description 3-17

STOP DATABASE command
example 4-32
problem on DSNDB07 4-142

 Index I-41

STOP DATABASE command (continued)
recommendations X-167
SPACENAM option 4-24
timeout 5-139

STOP DDF command
description 4-77

STOP REGION command of IMS 4-56
STOP SUBSYS command of IMS 4-49, 4-56
STOP TRACE command

AUDIT option 3-122
description 4-79

STOP transaction type 4-55
STOPALL privilege

description 3-17
STOPDB privilege

description 3-16
stopping

audit trace 3-122
data definition control 3-60
databases 4-31
DB2 4-16
IRLM 4-36

storage
3990 cache 5-105
auxiliary 2-72, 2-82
calculating

locks 5-162
cartridge 5-108
central 5-105
DASD 5-107
EDM pool

contraction 5-66, 5-104
expanded 5-105
external 2-82

See also auxiliary storage
hierarchy 5-105
IFI requirements

READA X-140
READS X-130

isolation 5-111
optical 5-107
space of dropped table, reclaiming 2-135
space-wasting table designs 2-40
tape 5-108
using DFSMShsm to manage 2-67, 5-101

storage group
DB2

description 1-24
storage group, DB2

adding volumes 2-124
altering 2-124
assigning a database 2-87
changing to use a new high-level qualifier 2-145
creating 2-83
default group 2-85
description 2-83

storage group, DB2 (continued)
moving data 2-150
named in CREATE statements 2-86
naming convention 2-79
order of use 2-83
privileges of ownership 3-24
retrieving catalog information 2-117
sample application X-22

storage management subsystem 1-38
See also DFSMS (Data Facility Storage

Management Subsystem)
stored procedure

address space 3-97
authority to access non-DB2 resources 3-105
authorizations 3-29
commands 4-72
limiting resources 5-75
monitoring using accounting trace 5-331
RACF protection for 3-104
running concurrently 5-329
starting address spaces 5-128

STOSPACE privilege
description 3-17

STOSPACE utility
use on owners and readers X-171

string
data types 2-45

string conversion exit routine X-54
See also conversion procedure

structure, description 1-21
Structured Query Language (SQL) 1-22

See also SQL (Structured Query Language)
subpage 2-53
SUBPAGES clause of CREATE INDEX

statement 2-101
subquery

correlated
tuning 5-229

join transformation 5-231
noncorrelated 5-230
tuning 5-228
tuning examples 5-232

subsystem
controlling access 3-10, 3-63, 3-111
recovery X-81
termination scenario 4-169, 4-170

subsystem command prefix 1-38
subsystem member (SSM) 5-135

See also SSM (subsystem member)
subtypes 2-45, 2-134
synchronous data from IFI X-137
synchronous write

analyzing accounting report 5-30
immediate 5-54, 5-64

synonym
privileges of ownership 3-24

I-42 Administration Guide

syntax diagrams, how to read 1-4
SYS1.LOGREC data set 4-170
SYS1.PARMLIB library

specifying IRLM in IEFSSNxx member 4-34
SYSADM authority

description 3-21
revoking 3-44

SYSCOPY
catalog table, retaining records in 4-154

SYSCTRL authority
description 3-20

SYSIBM.IPNAMES table of CDB
remote request processing 3-86
translating outbound IDs 3-86

SYSIBM.LUNAMES table of CDB
accepting inbound remote IDs 3-72, 3-84
dummy row 3-76
remote request processing 3-72, 3-84
sample entries 3-79
translating inbound IDs 3-79
translating outbound IDs 3-72, 3-84
verifying attach requests 3-76

SYSIBM.USERNAMES table of CDB
managing inbound remote IDs 3-76
remote request processing 3-72, 3-84
sample entries for inbound translation 3-80
sample entries for outbound translation 3-90
translating inbound and outbound IDs 3-72, 3-84

SYSLGRNX directory table
information via REPORT utility 4-131
table space

description 1-29
retaining records 4-154

SYSOPR authority
description 3-19
to control authorization for DSNC transaction

code 4-41
use of 4-13

Sysplex query parallelism
disabling using buffer pool threshold 5-55

system
management functions, controlling 4-78
privileges 3-17
recovery 3-131
structures 1-28, 1-32
utilities directory 1-30

system administrator
description 3-35
privileges 3-38

System Management Facility (SMF) 3-120, X-182
See also SMF (System Management Facility)

system monitoring
monitoring tools

DB2 trace X-177
system operator 3-35

See also SYSOPR authority

system programmer 3-35
system-directed access

authorization at second server 3-27
SYSUTILX table space 1-30

T
table

altering
adding a column 2-129
adding column to shared table X-169

altering from EBCDIC and ASCII 2-137
assigning to databases 2-97
assigning to table spaces 2-97
auditing 3-123
creating

description 2-92
in referential structure 2-105

defining, for a relationship 2-12, 2-13
dependent

cycle restrictions 2-24
deleting 2-29
description 2-9
inserting 2-25
updating 2-26

descendent 2-9
description 1-26
dropping

implications 2-135
exception 2-32
incomplete definition of 2-21
large

creating an index 2-104
partitioning 2-61
sort 5-104

loading, in referential structure 2-38
locks 5-144
name qualified by current SQL ID 2-93
naming convention 2-79, 2-93
normalizing 2-13, 2-16
ownership 3-24
parent

deleting 2-28
description 2-9
inserting 2-25
updating 2-26

populating
loading data into 2-113
loading into a referential structure 2-105

privileges 3-14, 3-24
qualified name 3-24
re-creating 2-136
recovery of dropped 4-150
registration, for DDL 3-49, 3-61
relationship to views 1-27
retrieving

catalog information 2-117

 Index I-43

table (continued)
retrieving (continued)

comments 2-121, 2-122
IDs allowed to access 3-47
plans and packages that can access 3-48

self-referencing 2-28
table check constraint

catalog information 2-121
check integrity 2-37
CURRENT RULES special register effect 2-37
defining

column names 2-41
column values 2-41
considerations 2-36

description 2-36
enforcement 2-37

table expressions 5-299
table space

assigning
database 2-87
tables 2-97

compressing data 2-63
copying 4-139
creating

description 2-86
explicitly 2-87
implicitly 2-86

description 1-24
designing 2-59
determining page size 2-88
dropping 2-127
for sample application X-23
loading data into 2-113
locks

control structures 5-117
description 5-144
performance 2-62

maximum addressable range 2-86
naming convention 2-79
partitioned

description 2-61
reasons for using 2-61

placing tables 2-59
privileges of ownership 3-24
quiescing 4-132
re-creating 2-127
recovery 4-184

See also recovery, table space
recovery of dropped 4-151
reorganizing

separately from partitions 1-34
scans

access path 5-275
determined by EXPLAIN 5-261

segmented
use 2-60

table space (continued)
simple 2-59
types 2-59

tables
designing 2-11

tables used in examples X-7
See also sample table

TABLESPACE privilege
description 3-17

TABLESPACESET option of REPORT utility 4-159
tape storage 5-108
task control block (TCB) 5-130

See also TCB (task control block)
TCB (task control block)

attaching 5-130
detaching 5-132

TCP/IP
authorizing DDF to connect 3-106

temporary table
monitoring 5-93
thread reuse 5-120

temporary tables
table space scan 5-275

temporary work file 5-71
See also work file

TERM UTILITY command
when not to use 4-137

terminal monitor program (TMP) 4-19
See also TMP (terminal monitor program)

terminating 4-99
See also stopping
DB2

abend 4-100
concepts 4-99
normal 4-99
normal restart 4-101
scenario 4-169

terminology for database design 2-6
THRDA option

DSNCRCT TYPE=ENTRY macro 5-128
DSNCRCT TYPE=POOL macro 5-128

THRDMAX option of DSNCRCT macro 5-128
THRDS option of DSNCRCT macro 4-44, 5-128
thread

allied 4-61
attachment in IMS 4-50
CICS

access to DB2 4-43
creation

CICS 5-130
connections 5-135
description 5-116, 5-117
IMS 5-134

database access
creating 5-123
description 4-61

I-44 Administration Guide

thread (continued)
displaying

CICS 4-44
IMS 4-55

distributed
active 5-123
inactive vs. active 5-122
maximum number 5-122, 5-123

maximum number 4-47
monitoring in CICS 4-44
options 5-128
priority 5-133
queuing 5-135
reuse

CICS 5-130, 5-131
description 5-116
effect on processor resources 5-43
IMS 5-134
TSO 5-119
when to use 5-120, 5-124

steps in creation and termination 5-116
subtasks

defining storage space 4-44
specifying maximum allowable number 4-44

termination
CICS 4-41, 5-130
description 5-119
IMS 4-56, 5-134

termination in IMS 4-51
time out for idle distributed threads 5-123

threads
protected 5-129
unprotected 5-129

three-part name
considerations for using 2-82
description 2-81
restrictions 2-81

TIME
data type

column definition 2-48
default value on insert 2-42
query to remote system 2-49

TIME FORMAT field of panel DSNTIPF X-51
time routine

description X-51
writing X-51, X-54

timeout
changing multiplier

IMS BMP and DL/I batch 5-164
utilities 5-165

description 5-139
idle thread 5-123
multiplier values 5-163
row vs. page locks 5-169
X'00C9008E' reason code in SQLCA 5-139

TIMESTAMP
data type

column definition 2-48
default value on insert 2-42

TMP (terminal monitor program)
DSN command processor 4-38
sample job 4-19
TSO batch work 4-19

TO
option of ALTER command 2-68
option of DEFINE command 2-68

TOCOPY option of RECOVER TABLESPACE
utility 4-147

TOKENI option of DSNCRCT macro 5-128
TOLOGPOINT option of RECOVER TABLESPACE

utility 4-147
TORBA option of RECOVER TABLESPACE

utility 4-147
trace

accounting X-179
audit X-180
controlling

DB2 4-78
IMS 4-79

description X-173, X-177
diagnostic

CICS 4-79
IRLM 4-80

distributed data 5-321
effect on processor resources 5-44
interpreting output X-107
monitor X-180
performance X-180
recommendation 5-321
record descriptions X-107
record processing X-107
statistics

description X-178
TRACE privilege

description 3-17
TRACE SUBSYS command of IMS 4-49
tracker site 4-205
transaction

CICS
accessing DB2 4-43
DSNC code authorization 4-41
DSNC codes 4-10
entering 4-18

IMS
connecting to DB2 4-49
entering 4-18
thread attachment 4-50
thread termination 4-51

SQL unit of recovery 4-83
transaction lock

description 5-137

 Index I-45

TRANSACTION option
DSNC DISPLAY command 4-44
DSNC MODIFY command 4-47

transaction types 4-55
TRANSEC option of CICS transaction entry 4-41
translating

inbound authorization IDs 3-79, 3-80
outbound authorization IDs 3-89, 3-92

truncation
active log 4-86, 4-232

TSO
application programs

batch 1-38
conditions 4-17
foreground 1-38
running 4-17

background execution 4-19
commands issued from DSN session 4-17
connections

controlling 4-38, 4-41
disconnecting from DB2 4-40
monitoring 4-39
to DB2 4-38
tuning 5-135

DB2 considerations 1-38
DSNELI language interface module

IFI X-125
link editing 4-17

entering DB2 commands 4-10
environment 4-17
foreground 5-119
requirement 1-44
resource limit facility (governor) 5-75
running SQL 5-119

tuning
DB2

active log size 5-96
catalog location 5-92
catalog size 5-92
DASD utilization 5-99
directory location 5-92
directory size 5-92
queries containing host variables 5-224
speed 5-37
virtual storage utilization 5-103

TWAIT option of DSNCRCT macro
TYPE=ENTRY macro 5-128
TYPE=POOL macro 5-128

two-phase commit
illustration 4-109
process 4-109

TXIDSO option of DSNCRCT macro
controlling sign-on processing 5-130

TYPE
clause of CREATE INDEX statement 2-100

type 2 index 2-51, 2-52
TYPE column

SYSCOLDIST catalog table
access path selection 5-244

U
uncommitted read (UR isolation) 5-180

See also UR (uncommitted read)
undo log records X-82
UNION clause

effect on OPTIMIZE clause 5-235
removing duplicates with sort 5-295

UNIQUE clause
CREATE INDEX statement

description 2-100
example 2-55

CREATE TABLE statement 2-21, 2-97
unique index

creating 2-55
duplicate keys with DEFER YES 2-102

UNIQUE WHERE NOT NULL clause of CREATE
INDEX statement 2-55

description 2-100
unit of recovery

description 4-83
ID X-89
illustration 4-84
in-abort

backward log recovery 4-104
description 4-112
excluded in forward log recovery 4-103

in-commit
description 4-111
included in forward log recovery 4-103

indoubt
causes inconsistent state 4-100
definition 4-15
description 4-111
displaying 4-52, 4-167
included in forward log recovery 4-103
recovering CICS 4-43
recovering IMS 4-53
recovery in CICS 4-166
recovery scenario 4-161
resolving 4-113, 4-118

inflight
backward log recovery 4-104
description 4-111
excluded in forward log recovery 4-103

log records X-82
rollback 4-84, 4-111
SQL transaction 4-83

unit of recovery ID (URID) X-89
unsolicited output

CICS 4-12, 4-21

I-46 Administration Guide

unsolicited output (continued)
IMS 4-12
operational control 4-22
subsystem messages 4-21

UPDATE
lock mode

page 5-148
row 5-148
table, partition, and table space 5-149

statement
referential constraints 2-26

update efficiency 5-63
UPDATE privilege

description 3-14
UPDATE RATE field of panel DSNTIPL 5-96
updating

registration tables for DDL 3-60
UR (uncommitted read)

claim class 5-186
concurrent access restrictions 5-182
effect on locking 5-175
page and row locking 5-180
recommendation 5-144

URID (unit of recovery ID) X-89
See also unit of recovery

USE OF privileges 3-17
user analyst 3-35
user-managed data sets

changing high-level qualifier 2-145
name format 2-69
requirements 2-69

USING clause
ALTER INDEX statement 2-138
ALTER TABLESPACE statement 2-126
CREATE INDEX statement 2-57, 2-102
CREATE TABLESPACE statement 2-87

utilities
access status needed 4-33
compatibility 5-188
concurrency 5-137, 5-185, 5-190
controlling 4-33
description 1-34
executing

running on objects with pages in LPL 4-30
internal integrity reports 3-131
timeout multiplier 5-165
types

RUNSTATS 5-249
UTILITY TIMEOUT field of panel DSNTIPI 5-165
UTSERIAL lock 5-188

V
validating

connections from remote application 3-71
existing rows with a new VALIDPROC 2-133

validating (continued)
rows of a table X-48

validation routine 2-96
See also VALIDPROC clause
altering assignment 2-132
checking existing table rows 2-133
description 3-127, X-48
ensuring data accuracy 3-127
row formats X-77, X-80
writing X-48, X-50

VALIDPROC clause
ALTER TABLE statement 2-132
CREATE TABLE statement 2-96
exit points X-48

value
description 1-26
descriptors in field procedures X-62

VARCHAR
data type

choosing between CHAR and 2-46
column definition 2-45
default value on insert 2-42
subtypes 2-45, 2-134

VARGRAPHIC
data type

choosing between GRAPHIC and 2-47
column definition 2-45
default value on insert 2-42

VARY NET command of VTAM
TERM 4-71

varying-length records
compared with fixed-length 2-39
effect on processor resources 5-45

VCAT
USING clause

CREATE TABLESPACE statement 2-87
VDWQT option of ALTER BUFFERPOOL

command 5-55
verifying VTAM partner LU 3-75
vertical deferred write threshold (VDWQT) 5-55
view

altering 2-138
creating

CREATE VIEW statement 2-105
on catalog tables 3-48
on multiple tables 2-106
on one table 2-106
process 2-105
restrictions 2-18

dependencies 2-138
description 1-27
dropping

deleted by REVOKE 3-43
invalidates plan or package 2-138

EXPLAIN 5-298
list of dependent objects 2-135

 Index I-47

view (continued)
name

convention 2-79
qualified name 3-24

performance 5-299
privileges

authorization 2-138
controlling data access 3-22
effect of revoking table privileges 3-43
ownership 3-24
table privileges for 3-22

processing
view materialization description 5-297
view materialization in PLAN_TABLE 5-272
view merge 5-296

reasons for using 1-27, 2-17
relationship to tables 1-27
using

adding comments 2-121
inserting rows 2-107
restrictions 2-18
retrieving catalog information 2-119
retrieving comments 2-121
updating rows 2-107, 2-109
view on view 2-108

virtual buffer pool assisting parallel sequential threshold
(VPXPSEQT) 5-55

virtual buffer pool parallel sequential threshold
(VPPSEQT) 5-55

virtual buffer pool sequential steal threshold
(VPSEQT) 5-55

virtual storage
buffer pools 5-103
improving utilization 5-103
IRLM 5-103
open data sets 5-104

virtual storage access method (VSAM) 4-84
See also VSAM (virtual storage access method)

Virtual Telecommunications Access Method
(VTAM) 4-71

See also VTAM (Virtual Telecommunications Access
Method)

Visual Explain 5-234, 5-261
modeling production system statistics 5-260

volume serial number 4-93
VPPSEQT option of ALTER BUFFERPOOL

command 5-55
VPSEQT option of ALTER BUFFERPOOL

command 5-55
VPXPSEQT option of ALTER BUFFERPOOL

command 5-55
VSAM (virtual storage access method)

control interval
block size 4-91
log records 4-84
processing 4-147

VSAM (virtual storage access method) (continued)
password

description 3-116, 3-117
SHAREOPTIONS used in shared read-only

data X-159, X-162
volume data set (VVDS) recovery scenario 4-187

VTAM (Virtual Telecommunications Access Method)
APPL statement 3-75

See also APPL statement
commands

DISPLAY NET 4-71
VARY NET,TERM 4-71

controlling connections 3-75, 3-96
conversation-level security 3-75
partner LU verification 3-75
password

choosing 3-75
VVDS recovery scenario 4-187

W
wait state at start 4-15
WBUFxxx field of buffer information area X-128
WHERE NOT NULL clause of CREATE INDEX

statement
using 2-55

WITH clause
specifies isolation level 5-183

WITH RESTRICT ON DROP clause
clause of CREATE TABLE statement 2-97

work file
table space

minimize I/O contention 5-41
used by sort 5-71

work file database
changing high-level qualifier 2-144
description 1-33
enlarging 4-191
error range recovery 4-143
minimizing I/O contention 5-41
problems 4-142
starting 4-24
used by sort 5-104

Workload Manager 5-124
WQAxxx fields of qualification area X-95, X-131,

X-135
WRITE

function of IFI X-142
write claim class 5-186
write drain lock 5-187
write efficiency 5-63
write error range 4-28
WRITE TO OPER field of panel DSNTIPA 4-87

I-48 Administration Guide

X
XLKUPDLT subsystem parameter 5-171
XRF (extended recovery facility)

CICS toleration 1-41, 4-164
IMS toleration 1-42, 4-160

 Index I-49

We'd Like to Hear from You

DB2 for OS/390
Version 5
Administration Guide

Publication No. SC26-8957-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773 or (408) 463-4393.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIBMXFC @ IBMMAIL
 – IBMLink: DB2PUBS @ STLVM27
 – Internet: DB2PUBS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number or your name and electronic address if

you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

DB2 for OS/390
Version 5
Administration Guide

Publication No. SC26-8957-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and consistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-8957-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-8957-02

IBM

Program Number: 5655-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

DB2 for OS/390
Version 5

SC26-8957 Administration Guide
SC26-8958 Application Programming and SQL Guide
SC26-8959 Call Level Interface Guide and Reference
SC26-8960 Command Reference
SC26-8961 Data Sharing: Planning and Administration
SX26-3841 Data Sharing Quick Reference
LY27-9659 Diagnosis Guide and Reference
LY27-9660 Diagnosis Quick Reference
GC26-8970 Installation Guide
GC26-8979 Master Index
SC26-8962 Messages and Codes
SC26-8964 Reference for Remote DRDA Requesters and Servers
SX26-3842 Reference Summary
SC26-8965 Release Guide
SC26-8966 SQL Reference
SC26-8967 Utility Guide and Reference
GC26-8971 What's New?

SC26-8957-ð2

	Contents
	Notices
	Programming Interface Information
	Trademarks

	 Section 1. Introduction
	Chapter 1-1. Introduction to This Book and the DB2 Library
	Who Should Read This Book
	How This Book Is Organized
	How to Read the Syntax Diagrams
	How to Use the DB2 Library
	How to Obtain DB2 Information
	DB2 on the Web
	DB2 Publications
	How to Order the DB2 Library

	DB2 Classes
	Summary of Changes to DB2 for OS/390 Version 5
	Server Solution
	Net.Data for OS/390
	DB2 Installer
	DB2 Estimator for Windows
	DB2 Visual Explain
	Workstation-based Performance Analysis and Tuning
	DATABASE 2 Performance Monitor (DB2 PM)

	Performance
	Sysplex Query Parallelism
	Prepared Statement Caching
	Reoptimization
	Faster Transactions and Batch
	Faster Utilities
	Other Performance Enhancements

	Increased Capacity
	Improved Availability
	Online REORG
	Data Sharing Enhancements
	Tracker site for disaster recovery

	Client/Server and Open Systems
	Native TCP/IP Network Support
	Stored Procedures
	Dynamic Query and Network Performance
	Improved Application Portability
	Improved Security

	User Productivity
	Improved SQL Compatibility
	New Access Choice
	Image Copy Enhancements
	Improved Integration of C++ and IBM COBOL for MVS & VM Support
	Other Usability Enhancements

	Summary of Changes to This Book

	Chapter 1-2. System Planning Concepts
	The Relational Database
	Structured Query Language (SQL)
	The Structure of DB2
	Data Structures
	Databases
	DB2 Storage Groups
	Table Spaces
	Tables
	Indexes
	Views

	System Structures
	DB2 Catalog
	DB2 Directory
	Active and Archive Logs
	Bootstrap Data Set (BSDS)
	Buffer Pools
	Communications Database
	Data Definition Control Support Database
	Resource Limit Facility Database
	Work File Database

	Control and Maintenance of DB2
	Commands
	Utility Jobs
	High Availability

	DB2 and the MVS Environment
	Address Spaces
	DB2 and MVS
	DB2 and RACF
	DB2 and SMS
	DB2 and TSO Attachment Facility
	DB2 and ISPF
	Call Attachment Facility
	DB2 and CICS
	Application Programming with CICS
	System Administration and Operation with CICS

	DB2 and IMS
	Application Programming with IMS
	System Administration and Operation with IMS

	DB2 and DL/I Batch
	DB2 and DDF

	Data Sharing

	 Section 2. Designing a Database
	Chapter 2-1. Designing a Database
	Using the Design Chapters
	Terminology
	Logical Design
	A Sample List of Entities

	DB2 Structures
	Physical Design
	Plan for Maintaining Data Integrity
	Parent Key
	Primary Key
	Foreign Key
	Parent and Dependent Tables and Rows
	Table Check Constraints

	Plan for Distributed Data
	Plan for Data Security

	Chapter 2-2. Designing Tables and Views
	Decide What Data to Record in the Relational Database
	Define Tables for Each Type of Relationship
	One-to-Many and Many-to-One Relationships
	Many-to-Many Relationships
	One-to-One Relationships

	Normalize Your Tables to Avoid Redundancy
	First Normal Form
	Second Normal Form
	Third Normal Form
	Fourth Normal Form

	Consider Denormalizing Your Tables for Performance
	Consider Creating Views of Your Tables
	Reasons for Using Views
	Using Joins

	Chapter 2-3. Maintaining Data Integrity
	Maintaining Referential Integrity
	Identify One or More Columns as a Parent Key
	Defining a Parent Key and a Unique Index
	Incomplete Definition
	Recommendations for Defining Primary Keys

	Defining a Foreign Key
	The Relationship Name
	Indexes on Foreign Keys
	The FOREIGN KEY Clause in ALTER TABLE
	Restrictions on Cycles of Dependent Tables

	Implications for SQL Statements
	Implications for INSERT
	INSERT Rules
	Implications for UPDATE
	UPDATE Rules
	Implementing the Consistency Rules
	Implications for DELETE
	DELETE Rules
	Implications for DROP
	Performance Implications

	Implications for Utility Operations
	Implications for LOAD
	The Check Pending Status and Implications for CHECK DATA
	The Scope of Check Pending Status
	Resetting the Check Pending Status
	Creating Exception Tables
	Other Ways to Reset Check Pending Status
	Implications for COPY, QUIESCE, RECOVER, and REPORT
	The COPY Utility
	The QUIESCE Utility
	The RECOVER Utility
	The REPORT Utility

	Defining Table Check Constraints
	Constraint Considerations
	When Table Check Constraints Are Enforced
	How Table Check Constraints Set Check Pending Status

	Chapter 2-4. Designing Columns
	Choosing Columns
	Considerations for Record Size
	Record Length—Fixed or Varying
	Record Lengths and Pages
	Designs That Waste Space

	Provide Column Definitions for All Tables
	Column Specifications
	Column Names
	Column Labels
	Null Values
	Default Values
	Reasons for Using Nulls
	Reasons for Using Nonnull Default Values
	Specifying Data Types
	Choosing String or Numeric Data Types
	String Data Types
	Numeric Data Types

	Date, Time and Timestamp Data Types
	Advantages of Date/Time Data Types

	Comparing Data Types

	Chapter 2-5. Designing Indexes
	Index Types and Recommendations
	Type 2 Indexes

	Leaf Pages, Root Page, and Subpages
	Type 1 Indexes and Locking
	Type 2 Indexes and Locking

	Index Keys
	Using Unique Indexes
	Using the UNIQUE WHERE NOT NULL Clause

	Using Composite Keys
	Clustering Indexes
	Partitioned Indexes
	Nonpartitioned Indexes

	Designing Index Spaces

	Chapter 2-6. Designing Table Spaces
	Deciding What Type of Table Space and How Many
	Simple Table Spaces
	Advantage of Simple Table Spaces

	Segmented Table Spaces
	Advantages of Segmented Table Spaces
	Disadvantages of Segmented Table Spaces

	Partitioned Table Spaces
	Advantages of Partitioned Table Spaces
	Advantages of Large Table Spaces
	Disadvantages of Partitioned Table Spaces

	Use LOCKSIZE with Performance in Mind

	Compressing Data in a Table Space or Partition
	Deciding Whether to Compress
	Building the Compression Dictionary
	Determining the Effectiveness of Compression
	Compression Reports
	Catalog Statistics
	DSN1COMP

	Chapter 2-7. Designing Storage Groups and Managing DB2 Data Sets
	Managing Your DB2 Data Sets with DFSMShsm
	Managing Your Own DB2 Data Sets
	Managing Your Data Sets Using Access Method Services
	Requirements for Your Own Data Sets
	Defining Data Sets for Online REORG

	DEFINE CLUSTER Command

	Chapter 2-8. Designing a Database in a Distributed Environment
	Ways to Access Distributed Data
	DRDA Access
	DB2 Private Protocol Access
	Coordinated Updates

	Implications for Application Programming
	Implications for System Operations
	Stored Procedures

	Chapter 2-9. Implementing Your Design
	Choosing Names for DB2 Objects
	DB2 Storage Groups and Databases
	Table Spaces
	Tables, Views, and Indexes
	Naming Remote Objects for DB2 Private Protocol Access
	Three-Part Names for DB2 Private Protocol Access
	Aliases for DB2 Private Protocol Access
	Comparing Three-Part Names and Aliases

	Implementing Your Storage Groups
	CREATE STOGROUP Statement
	Names
	VOLUMES Clause
	VCAT clause
	PASSWORD Clause
	Default Storage Group

	Implementing Your Databases
	CREATE DATABASE Statement
	STOGROUP clause
	BUFFERPOOL clause
	CCSID Clause

	Using the Default Database

	Implementing Your Table Spaces
	Creating a Table Space Implicitly
	Creating a Table Space Explicitly
	CREATE TABLESPACE Statement
	IN Clause
	USING Clause
	BUFFERPOOL Clause
	LOCKSIZE Clause
	LOCKMAX Clause
	CLOSE Clause
	DSETPASS Clause
	PCTFREE and FREEPAGE Clauses
	COMPRESS Clause
	CCSID Clause
	MAXROWS Clause

	Creating a Segmented Table Space
	SEGSIZE Clause
	LOCKSIZE Clause
	FREEPAGE Clause

	Creating a Partitioned Table Space
	Creating a Large Partitioned Table Space

	Implementing Your Tables
	Table Names
	CREATE TABLE Statement
	Clauses of the CREATE TABLE Statement
	PRIMARY KEY Clause
	FOREIGN KEY Clause
	Rules for the FOREIGN KEY Clause
	CHECK Clause
	EDITPROC and VALIDPROC Clauses
	FIELDPROC Clause
	IN Clause
	UNIQUE Clause
	AUDIT Clause
	DATA CAPTURE Clause
	OBID Clause
	WITH RESTRICT ON DROP Clause
	CCSID Clause

	CREATE GLOBAL TEMPORARY TABLE Statement
	CCSID Clause
	Distinctions Between Base and Temporary Tables in DB2

	Implementing Your Indexes
	CREATE INDEX Statement
	Clauses of the CREATE INDEX Statement
	TYPE Clause
	UNIQUE and UNIQUE WHERE NOT NULL Clauses
	PCTFREE and FREEPAGE Clauses
	CLUSTER Clause
	SUBPAGES Clause
	BUFFERPOOL, CLOSE, and DSETPASS Clauses
	DEFER Clause
	PIECESIZE Clause
	USING Clause

	Creating a Partitioned Index on a Large Partitioned Table Space
	Creating an Index on a Large Table

	Implementing Referential Constraints
	Order of Operations in Building a Referential Structure
	Creating the Tables
	Loading the Tables

	Implementing Your Views
	Creating a View on a Single Table
	Creating a View Combining Information from Several Tables
	Inserting and Updating through Views
	WITH CHECK OPTION for Views
	Views of Views, With and Without Checking
	Using LOCAL or CASCADED CHECK OPTION to Control Updates on Views of Views

	Creating Schemas
	Authorization to Process Schema Definitions
	Processing Schema Definitions

	Chapter 2-10. Loading Data into DB2 Tables
	Loading Methods
	Loading Tables with the LOAD Utility
	Replacing Data
	Loading Data Using the SQL INSERT Statement
	Loading Data from DL/I

	Chapter 2-11. Using the Catalog in Database Design
	Retrieving Catalog Information about DB2 Storage Groups
	Retrieving Catalog Information about a Table
	Retrieving Catalog Information about Aliases
	Retrieving Catalog Information about Columns
	Retrieving Catalog Information about Indexes
	Retrieving Catalog Information about Views
	Retrieving Catalog Information about Authorizations
	Retrieving Catalog Information about Primary Keys
	Retrieving Catalog Information about Foreign Keys
	Retrieving Catalog Information about Check Pending
	Retrieving Catalog Information about Table Check Constraints
	Adding and Retrieving Comments
	Verifying the Accuracy of the Database Definition

	Chapter 2-12. Altering Your Database Design
	Using the ALTER Statement
	Dropping and Re-creating DB2 Objects
	Altering DB2 Storage Groups
	Altering DB2 Databases
	Altering Table Spaces
	Using the ALTER TABLESPACE Statement
	Changing the Space Allocation for User-Managed Data Sets

	Dropping, Re-creating, or Converting a Table Space
	Altering Tables
	Using the ALTER TABLE Statement
	Adding a New Column
	Altering a Table for Referential Integrity
	Adding Referential Constraints to Existing Tables
	Implications of Adding Primary and Foreign Keys
	Implications of Dropping Primary and Foreign Keys

	Adding or Dropping Table Check Constraints
	Altering the Assignment of a Validation Routine
	Checking Rows of a Table with a New Validation Routine

	Altering a Table for Capture of Changed Data
	Altering an Edit Procedure or Field Procedure
	Altering the Subtype of a String Column
	Altering Data Types and Attributes and Deleting Columns
	Implications of Dropping a Table
	Check Objects that Depend on the Table
	Recreating a Table

	Altering a Table from EBCDIC to ASCII

	Altering Indexes
	Altering Views
	Changing Data Set Passwords
	Changing the High-Level Qualifier for DB2 Data Sets
	Define a New Integrated Catalog Alias
	Change the Qualifier for System Data Sets
	Step 1: Change the Load Module to Reflect the New Qualifier
	Step 2: Stop DB2 with No Outstanding Activity
	Step 3: Rename System Data Sets with the New Qualifier
	Step 4: Update the BSDS with the New Qualifier
	Step 5: Establish a New xxxxMSTR Cataloged Procedure
	Step 6: Start DB2 with the New xxxxMSTR and Load Module

	Change Qualifiers for Other Databases and User Data Sets
	Changing Your Work Database to Use the New High-Level Qualifier
	Changing User-Managed Objects to Use the New Qualifier
	Changing DB2-Managed Objects to Use the New Qualifier

	Moving DB2 Data
	Introduction: Tools Available
	Moving a DB2 Data Set
	Procedures for Moving Data

	Copying a Relational Database
	Copying an Entire DB2 Subsystem

	 Section 3. Security and Auditing
	Chapter 3-1. Introduction to Security and Auditing in DB2
	Security Planning
	If You are New to DB2
	If You Have Used DB2 Before
	Changes for Distributed Processing
	Changes for Performance
	Changes for Usability

	Auditing
	Controlling Data Access
	Access Control within DB2
	Controlling Access to a DB2 Subsystem
	Access at a Local DB2
	Access from a Remote Application

	Data Set Protection

	Chapter 3-2. Controlling Access to DB2 Objects
	Explicit Privileges and Authorities
	Authorization Identifiers
	Explicit Privileges
	Administrative Authorities
	Field-level Access Control by Views
	Authority over the Catalog and Directory

	Implicit Privileges of Ownership
	Establishing Ownership of Objects with Unqualified Names
	Establishing Ownership of Objects with Qualified Names
	Privileges by Type of Object
	Granting Implicit Privileges
	Changing Ownership

	Privileges Exercised through a Plan or a Package
	Establishing Ownership of a Plan or a Package
	Qualifying Unqualified Names
	Checking Authorization to Execute
	Checking authorization to execute an RRSAF application without a plan
	Caching Authorization IDs for Best Performance

	Authorization for Stored Procedures
	Controls in the Program
	A Caution about Controls in the Program
	Restricting a Plan or a Package to Particular Systems

	Privileges Required for Remote Packages

	Which IDs Can Exercise Which Privileges
	Authorization for Dynamic SQL Statements
	Composite Privileges
	Multiple Actions in One Statement

	Some Role Models
	Examples of Granting and Revoking Privileges
	Examples Using GRANT
	System Administrator's Privileges
	Package Administrator's Privileges
	Database Administrator's Privileges
	Database Controller's Privileges

	Examples with Secondary IDs
	Application Programmers' Privileges
	Privileges for Binding the Plan
	Moving PROGRAM1 into Production
	Spiffy's Approach to Distributed Data

	The REVOKE Statement
	Privileges Granted from Two or More IDs
	Revoking Privileges Granted by Other IDs
	Other Implications of the REVOKE Statement

	Finding Catalog Information about Privileges
	Retrieving Information in the Catalog
	Retrieving All DB2 Authorization IDs with Granted Privileges
	Retrieving Multiple Grants of the Same Authorization
	Retrieving All IDs with DBADM Authority
	Retrieving IDs Authorized to Access a Table
	Retrieving the Tables an ID is Authorized to Access
	Retrieving the Plans and Packages That Access a Table

	Using Views of the DB2 Catalog Tables

	Chapter 3-3. Controlling Access Through a Closed Application
	Controlling Data Definition
	Required Installation Options
	Controlling by Application Name
	Controlling by Application Name with Exceptions
	Registering Sets of Objects
	Controlling by Object Name
	Controlling by Object Name with Exceptions

	Managing the Registration Tables and Their Indexes
	An Overview of the Registration Tables
	Columns of the Application Registration Table (ART)
	Columns of the Object Registration Table (ORT)

	Creating the Tables and Indexes
	Adding Columns
	Updating the Tables
	Columns for Optional Use
	Stopping Data Definition Control
	Data Sharing

	Chapter 3-4. Controlling Access to a DB2 Subsystem
	Controlling Local Requests
	Processing Connections
	The Steps in Detail
	Supplying Secondary IDs for Connection Requests
	Required CICS Specifications

	Processing Sign-ons
	The Steps in Detail
	Supplying Secondary IDs for Sign-on Requests

	Controlling Requests from Remote Applications
	Overview of Security Mechanisms for DRDA and SNA
	Mechanisms Used by DB2 for OS/390 as a Requester
	Mechanisms Accepted by DB2 for OS/390 as a Server

	The Communications Database for the Server
	Columns Used in SYSIBM.LUNAMES
	Columns Used in SYSIBM.USERNAMES

	Controlling Inbound Connections that Use SNA Security Mechanisms
	Controlling What LUs Can Attach to the Network
	Verifying a Partner LU
	Accepting a Remote Attach Request

	Controlling Inbound Connections that Use TCP/IP Protocols
	Steps, Tools, and Decisions

	Planning to Send Remote Requests
	The Communications Database for the Requester
	Columns Used in SYSIBM.LUNAMES
	Columns Used in SYSIBM.IPNAMES
	Columns Used in SYSIBM.USERNAMES

	What IDs You Send
	Translating Outbound IDs
	Sending Passwords
	Sending RACF Encrypted Passwords
	Sending RACF PassTickets
	Sending DCE Tickets
	Sending encrypted passwords from a workstation

	Establishing RACF Protection for DB2
	Defining DB2 Resources to RACF
	Define the Names of Protected Access Profiles
	Add Entries to the RACF Router Table
	Enable RACF Checking for the DSNR and SERVER Classes
	Enable Partner-LU Verification

	Permitting RACF Access
	Define RACF User IDs for DB2 Started Tasks
	Add RACF Groups
	Permit Access for Users and Groups

	Establishing RACF Protection for Stored Procedures
	Step 1: Control Access via the Attachment Facilities (Required)
	Step 2: Control Access to WLM (Optional)
	Step 3: Control Access to Non-DB2 Resources (Optional)

	Establishing RACF Protection for TCP/IP

	Establishing DCE Security for DB2
	Step 1: Create a DCE Account for DB2
	Step 2: Define DB2 to OpenEdition Security
	Step 3: Cross-link RACF and DCE Security Information
	Step 4: Manage DB2's Server Key

	Other Methods of Controlling Access

	Chapter 3-5. Protecting Data Sets
	Controlling Data Sets through RACF
	Adding Groups to Control DB2 Data Sets
	Creating Generic Profiles for Data Sets
	Permitting DB2 Authorization IDs to Use the Profiles
	Allowing DB2 Authorization IDs to Create Data Sets

	Protecting Data Sets by Passwords
	VSAM Passwords
	Bootstrap Data Sets
	Active Log Data Sets
	Directory and Catalog Data Sets
	Database Data Sets
	Integrated Catalog Facility Catalog

	MVS Passwords
	Archive Log Data Sets
	DB2 Libraries

	Chapter 3-6. Auditing Concerns
	How Can I Tell Who Has Accessed the Data?
	Options of the Audit Trace
	The Role of Authorization IDs
	Auditing Classes of Events
	Audit Class Descriptions
	Auditing Specific IDs
	Starting and Stopping the Audit Trace
	Considerations for Distributed Data

	Auditing a Specific Table
	Using Audit Records
	Reporting the Records
	Suggestions for Reports

	Other Sources of Audit Information
	What Security Measures Are in Force?
	What Helps Ensure Data Accuracy and Consistency?
	Is Required Data Present? Is It of the Required Type?
	Are Data Values Unique Where Required?
	Has Data a Required Pattern? Is It in a Specific Range?
	Is New Data in a Specific Set? Is It Consistent with Other Tables?
	What Ensures That Concurrent Users Access Consistent Data?
	Have Any Transactions Been Lost or Left Incomplete?
	Summary

	How Can I Tell That Data is Consistent?
	SQL Queries
	Data Modifications
	CHECK Utility
	DISPLAY DATABASE Command
	REPORT Utility
	Operation Log
	Internal Integrity Reports

	How Can DB2 Recover Data After Failures?
	How Can I Protect the Software?
	How Can I Ensure Efficient Usage of Resources?

	Chapter 3-7. A Sample Security Plan for Employee Data
	Managers' Access
	To What ID Is the SELECT Privilege Granted?
	Allowing Distributed Access
	Actions at the Central Server Location
	Actions at Remote Locations

	Auditing Managers' Use

	Payroll Operations
	Salary Updates
	Additional Controls
	To What ID Are Privileges Granted?
	Auditing Use by Payroll Operations and Payroll Management

	Others Who Have Access
	IDs with Database Administrative Authority
	IDs with System Administrative Authority
	The Employee Table Owner
	Auditing for Other Users

	 Section 4. Operation and Recovery
	Chapter 4-1. Basic Operation
	Entering Commands
	DB2 Operator Commands
	Where DB2 Commands Are Entered
	Where Command Responses Go

	Authorities for DB2 Commands

	Starting and Stopping DB2
	Starting DB2
	Messages at Start
	Options at Start
	Restricting Access to Data
	Wait State at Start
	Starting after an Abend

	Stopping DB2

	Submitting Work to Be Processed
	Using DB2I (DB2 Interactive)
	Running TSO Application Programs
	Running IMS Application Programs
	Running CICS Application Programs
	Running Batch Application Programs
	Running Application Programs Using CAF
	Running Application Programs Using RRSAF

	Receiving Messages
	Receiving Unsolicited DB2 Messages
	Determining Operational Control

	Chapter 4-2. Monitoring and Controlling DB2 and Its Connections
	Controlling DB2 Databases and Buffer Pools
	Starting Databases
	Starting an Object with a Specific Status
	Starting a Table Space or Index Space against Restrictions

	Monitoring Databases
	Obtaining Information about Application Programs
	Obtaining Information about Pages in Error

	Stopping Databases
	Altering Buffer Pools
	Monitoring Buffer Pools

	Controlling DB2 Utilities
	Controlling the IRLM
	Starting the IRLM
	Monitoring the IRLM Connection
	Stopping the IRLM

	Monitoring Threads
	DISPLAY THREAD Output

	Controlling TSO Connections
	Connecting to DB2 from TSO
	Monitoring TSO and CAF Connections
	Disconnecting from DB2 While under TSO

	Controlling CICS Connections
	Connecting from CICS
	Messages
	Restarting CICS
	Displaying Indoubt Units of Recovery
	Recovering Indoubt URs Manually

	Controlling CICS Application Connections
	Defining CICS Threads
	Monitoring the Threads
	Changing Connection Parameters
	Disconnecting Applications

	Disconnecting from CICS
	Orderly Termination
	Forced Termination

	Controlling IMS Connections
	Connecting to the IMS Control Region
	Thread Attachment
	Thread Termination
	Displaying Indoubt Units of Recovery
	Recovering Indoubt Units
	Duplicate Correlation IDs
	Resolving Residual Recovery Entries

	Controlling IMS Dependent Region Connections
	Connecting from Dependent Regions
	Monitoring the Activity on Connections
	Disconnecting from Dependent Regions

	Disconnecting from IMS

	Controlling OS/390 RRS Connections
	Connecting to OS/390 RRS Using RRSAF
	Restarting DB2 and OS/390 RRS
	Displaying Indoubt Units of Recovery
	Recovering Indoubt Units of Recovery Manually

	Monitoring RRSAF Connections
	Disconnecting Applications from DB2

	Controlling Connections to Remote Systems
	Starting DDF
	Monitoring Connections to Other Systems
	The Command DISPLAY LOCATION
	The Command DISPLAY THREAD
	The Command CANCEL THREAD
	Using VTAM Commands to Cancel Threads

	Monitoring and Controlling Stored Procedures
	Displaying Information About Stored Procedures and Their Environment
	Refreshing the Stored Procedures Environment
	Obtaining Diagnostic Information About Stored Procedures

	Using NetView to Monitor Errors in the Network
	Stopping DDF

	Controlling Traces
	Controlling the DB2 Trace
	Diagnostic Traces for the Attachment Facilities
	Diagnostic Trace for the IRLM

	Controlling the Resource Limit Facility (Governor)

	Chapter 4-3. Managing the Log and the Bootstrap Data Set
	How Database Changes Are Made
	Units of Recovery
	Rolling Back Work

	Establishing the Logging Environment
	Creation of Log Records
	Retrieval of Log Records
	Writing the Active Log
	Writing the Archive Log (Off-Loading)
	Triggering Off-Load
	The Off-Load Process
	The Command ARCHIVE LOG
	Archive Log Data Sets

	Managing the Bootstrap Data Set (BSDS)
	BSDS Copies with Archive Log Data Sets
	Changing the BSDS Log Inventory

	Discarding Archive Log Records
	Deleting Archive Log Data Sets or Tapes Automatically
	Locating Archive Log Data Sets to Delete

	Chapter 4-4. Restarting DB2 After Termination
	Termination
	Normal Termination
	Abends

	Normal Restart and Recovery
	Phase 1: Log Initialization
	Phase 2: Current Status Rebuild
	Phase 3: Forward Log Recovery
	Phase 4: Backward Log Recovery
	Restarting Automatically

	Deferring Restart Processing
	How to Defer Restart Processing

	Restarting with Conditions
	Recovery Operations You Can Choose for Conditional Restart
	Records Associated with Conditional Restart

	Chapter 4-5. Maintaining Consistency Across Multiple Systems
	Consistency with Other Systems
	The Two-phase Commit Process: Coordinator and Participant
	Illustration of Two-Phase Commit
	Maintaining Consistency After Termination or Failure
	Termination
	Normal Restart and Recovery
	Phase 1: Log Initialization
	Phase 2: Current Status Rebuild
	Phase 3: Forward Log Recovery
	Phase 4: Backward Log Recovery

	Restarting with Conditions

	Resolving Indoubt Units of Recovery
	Resolution of Indoubt Units of Recovery from IMS
	Resolution of Indoubt Units of Recovery from CICS
	Resolution of Indoubt Units of Recovery between DB2 and a Remote System
	Making Heuristic Decisions
	Methods for Determining the Coordinator's Commit or Abort Decision
	Displaying Information on Indoubt Threads
	Recovering Indoubt Threads
	Resetting an Indoubt Thread's Status

	Resolution of Indoubt Units of Recovery from OS/390 RRS

	Consistency Across More than Two Systems
	Commit Coordinator and Multiple Participants
	Illustration of Multi-site Update

	Chapter 4-6. Backing Up and Recovering Databases
	Planning for Backup and Recovery
	Considerations for Recovering Distributed Data
	Preparing for Recovery
	What Happens during Recovery
	Complete Recovery Cycles
	A Recovery Cycle Example
	How DFSMShsm Affects Your Recovery Environment

	Making Backup and Recovery Plans that Maximize Availability
	How to Find Recovery Information
	Where Recovery Information Resides
	Reporting Recovery Information

	Preparing to Recover to a Prior Point of Consistency
	Step 1: Resetting Exception Status
	Step 2: Copying the Data
	Step 3: Establishing a Point of Consistency

	Preparing to Recover the Entire DB2 Subsystem to a Prior Point
	Preparing for Disaster Recovery
	System-wide Points of Consistency
	Essential Disaster Recovery Elements

	Ensuring More Effective Recovery from Inconsistency Problems
	Actions to Take
	Actions to Avoid

	Running RECOVER Jobs in Parallel
	Reading the Log without RECOVER

	Copying Table Spaces and Data Sets
	Recovering Table Spaces and Data Sets
	Recovering the Work File Database
	Problem with User-Defined Work File Data Sets
	Problem with DB2-Managed Work File Data Sets
	Recovering Error Ranges for a Work File Table Space

	Recovering the Catalog and Directory
	Recovering Data to a Prior Point of Consistency
	Restoring Data by Using DSN1COPY
	Backing Up and Restoring Data with Non-DB2 Dump and Restore
	Using RECOVER to Restore Data to a Previous Point in Time

	Recovery of Dropped Objects
	Avoiding the Problem
	Limitations of the Procedures
	Recovery of an Accidentally Dropped Table
	Recovery of an Accidentally Dropped Table Space
	User-Managed Data Sets
	DB2-Managed Data Sets

	Discarding SYSCOPY and SYSLGRNX Records

	Chapter 4-7. Recovery Scenarios
	IRLM Failure
	MVS or Power Failure
	DASD Failure
	Application Program Error
	IMS-Related Failures
	Extended Recovery Facility (XRF) Toleration
	IMS Control Region (CTL) Failure
	Resolution of Indoubt Units of Recovery
	IMS Application Failure

	CICS-Related Failures
	Extended Recovery Facility (XRF) Toleration
	CICS Application Failure
	CICS Is Not Operational
	CICS Inability to Connect to DB2
	Manually Recovering CICS Indoubt Units of Recovery
	CICS Attachment Facility Failure

	Subsystem Termination
	DB2 System Resource Failures
	Active Log Failure
	Problem 1 - Out of Space in Active Logs
	Problem 2 - Write I/O Error on Active Log Data Set
	Problem 3 - Dual Logging is Lost
	Problem 4 - I/O Errors While Reading the Active Log

	Archive Log Failure
	Problem 1 - Allocation Problems
	Problem 2 - Write I/O Errors During Archive Log Off-load
	Problem 3 - Read I/O Errors on Archive Data Set During RECOVER
	Problem 4 - Insufficient DASD Space for Off-load Processing

	BSDS Failure
	Problem 1 - An I/O Error Occurs
	Problem 2 - An Error Occurs While Opening
	Problem 3 - Unequal Timestamps Exist

	Recovering the BSDS from a Backup Copy

	DB2 Database Failures
	Recovery from Down-Level Page Sets
	Table Space Input/Output Errors
	DB2 Catalog or Directory Input/Output Errors
	Integrated Catalog Facility Catalog VSAM Volume Data Set Failures
	VSAM Volume Data Set (VVDS) Destroyed
	Out of DASD Space or Extent Limit Reached
	Procedure 1. Extend a Data Set
	Procedure 2. Enlarge a Fully Extended Data Set (User-Managed)
	Procedure 3. Enlarge a Fully Extended Data Set (in a DB2 Storage Group)
	Procedure 4. Add a Data Set
	Procedure 5. Redefine a Partition
	Procedure 6. Enlarge a Fully Extended Data Set for the Work File Database

	Violations of Referential Constraints
	Failures Related to the Distributed Data Facility
	Conversation Failure
	Communications Database Failure
	Failure of a Database Access Thread
	VTAM Failure
	TCP/IP Failure
	Failure of a Remote Logical Unit
	Indefinite Wait Conditions for Distributed Threads
	Security Failures for Database Access Threads

	Remote Site Recovery from Disaster at a Local Site
	Using a Tracker Site for Disaster Recovery
	Characteristics of a Tracker Site
	Setting up a Tracker Site
	Establishing a Recovery Cycle at the Tracker Site
	What to do about DSNDB01.SYSUTILX
	Media Failures during LOGONLY Recovery

	Maintaining the Tracker Site
	The Distaster Happens: Making the Tracker Site the Takeover Site

	Resolving Indoubt Threads
	Description of the Environment
	Configuration
	Applications
	Threads

	Communication Failure Between Two Systems
	Making a Heuristic Decision
	IMS Outage Resulting in IMS Cold Start
	DB2 Outage at Application Requestor Resulting in DB2 Cold Start
	DB2 Outage at Application Server Resulting in DB2 Cold Start
	Correcting a Heuristic Decision

	Chapter 4-8. Recovery from BSDS or Log Failure During Restart
	Failure during Log Initialization or Current Status Rebuild
	Description of Failure during Log Initialization
	Description of Failure during Current Status Rebuild
	Restart by Truncating the Log
	Step 1: Find the Log RBA after the Inaccessible Part of the Log
	Step 2: Identify Lost Work and Inconsistent Data
	Step 3: Determine What Status Information Has Been Lost
	Step 4: Truncate the Log at the Point of Error
	Step 5: Start DB2
	Step 6: Resolve Data Inconsistency Problems

	Failure during Forward Log Recovery
	Starting DB2 by Limiting Restart Processing
	Step 1: Find the Log RBA after the Inaccessible Part of the Log
	Step 2: Identify Incomplete Units of Recovery and Inconsistent Page Sets
	Step 3: Restrict Restart Processing to the Part of the Log after the Damage
	Step 4: Start DB2
	Step 5: Resolve Inconsistent Data Problems

	Failure during Backward Log Recovery
	Bypassing Backout before Restarting

	Failure during a Log RBA Read Request
	Unresolvable BSDS or Log Data Set Problem during Restart
	Preparing for Recovery of Restart
	Performing the Fall Back to a Prior Shutdown Point

	Failure Resulting from Total or Excessive Loss of Log Data
	Total Loss of Log
	Excessive Loss of Data in the Active Log

	Resolving Inconsistencies Resulting from Conditional Restart
	Inconsistencies in a Distributed Environment
	Procedures for Resolving Inconsistencies
	Method 1. Recover to a Prior Point of Consistency
	Method 2. Re-create the Table Space
	Method 3. Use the REPAIR Utility on the Data

	 Section 5. Performance Monitoring and Tuning
	Chapter 5-1. Planning Your Performance Strategy
	Further Topics in Monitoring and Tuning
	Managing Performance in General
	Establishing Performance Objectives
	Defining the Work Load
	Initial Planning
	Translating Resource Requirements into Objectives
	External Design
	Internal Design
	Coding and Testing

	Post-Development Review

	Planning for Monitoring
	Continuous Monitoring
	Periodic Monitoring
	Detailed Monitoring
	Exception Monitoring
	A Monitoring Strategy

	Reviewing Performance Data
	Typical Review Questions
	Are Your Performance Objectives Reasonable?

	Tuning DB2
	Enhancements in DB2 Version 5

	Chapter 5-2. Analyzing Performance Data
	Investigating the Problem Overall
	Looking at the Entire System
	Beginning to Look at DB2

	Reading Accounting Reports from DB2 PM
	The Accounting Report - Short
	The Accounting Report - Long
	Major Items on the Report
	Comparing Elapsed Times from the Report

	A General Approach to Problem Analysis in DB2

	Chapter 5-3. Improving Response Time and Throughput
	Reducing I/O Operations
	Use RUNSTATS to Keep Data Access Statistics Current
	Reserve Free Space in Table Spaces and Indexes
	Specifying Free Space on Pages
	Determining Pages of Free Space
	Recommendations for Allocating Free Space

	Make Buffer Pools Large Enough for the Work Load
	Ensure Allocation in Cylinders

	Reducing the Time Needed to Perform I/O Operations
	Create Additional Work File Table Spaces
	Recommendations for Data Set Distribution
	Use Partitioned Table Spaces
	Distribute the I/O

	Ensure Sufficient Primary Allocation Quantity

	Reducing the Amount of Processor Resources Consumed
	Reuse Threads for your High-volume Transactions
	Reduce the Number of CICS Threads per Region
	Minimize the Use of DB2 Traces
	Global trace
	Accounting and statistics traces
	Audit trace
	Performance trace

	Use Fixed-length Records
	Considerations for Rebinding Certain Plans and Packages

	How Response Time Is Reported

	Chapter 5-4. Tuning DB2 Buffer, EDM, RID, and Sort Pools
	Tuning Database Buffer Pools
	Buffer Pools and Hiperpools
	Buffer Pool Pages
	Read Operations
	Write Operations
	Installation Options
	Virtual Buffer Pool and Hiperpool Sizes
	The CASTOUT Attribute

	Assigning a Table Space or Index to a Virtual Buffer Pool
	Buffer Pool Thresholds
	Fixed Thresholds
	Variable Thresholds
	Guidelines for Setting Buffer Pool Thresholds

	Determining Size and Number of Buffer Pools
	Calculating the Buffer Pool Hit Ratio
	Buffer Pool Size Guidelines
	Advantages of Large Buffer Pools
	Choosing One or Many Buffer Pools
	Using the 32KB Buffer Pool

	Monitoring and Tuning Buffer Pools Using Online Commands
	Using DB2 PM to Monitor Buffer Pool Statistics

	Tuning the EDM Pool
	Using Packages to Aid EDM Pool Storage Management
	Releasing thread storage
	EDM Pool Space Handling

	Increasing RID Pool Size
	Controlling Sort Pool Size and Sort Processing
	Understanding How Sort Work Files Are Allocated
	Factors That Influence Sort Processing

	Chapter 5-5. Improving Resource Utilization
	Controlling Resource Usage
	Prioritize Resources
	Limit Resources for Each Job
	Limit Resources for TSO Sessions
	Limit Resources for IMS and CICS
	Limit Resources for a Stored Procedure
	Limit Execution Time for Dynamic Statements
	Reduce Locking Contention
	Evaluate Long-Term Resource Usage
	Predict Resource Consumption

	Resource Limit Facility (Governor)
	Where RLSTs Reside
	Creating an RLST
	What the RLST Contains
	Understanding RLST Search Order and Column Combinations
	Using RLSTs at Your Local Subsystem

	Managing the Opening and Closing of Data Sets
	Determining the Maximum Number of Open Data Sets
	How DB2 Determines DSMAX
	Modifying DSMAX
	Recommendations

	Understanding the CLOSE YES and CLOSE NO Options
	The Process of Closing
	When the Data Sets are Closed

	Switching to Read-Only for Infrequently Updated Page Sets

	Planning the Placement of DB2 Data Sets
	Crucial DB2 Data Sets
	Changing Catalog and Directory Size and Location
	Monitoring I/O Activity of Data Sets
	Work File Data Sets

	DB2 Logging
	Determining the Size of Active Logs
	Monitoring the Log
	Guidelines for Controlling Logging

	Improving DASD Utilization: Space and Device Utilization
	Allocating and Extending Data Sets
	Extending DB2-Managed Data Sets
	Extending User-Managed Data Sets
	Using DFSMShsm to Manage Data Sets

	Compressing Your Data
	Performance Considerations
	Tuning Recommendations

	Improving Main Storage Utilization
	Performance and the Storage Hierarchy
	Central Storage
	Expanded Storage
	3990 Cache
	How Much 3990 Cache?
	Sequential Cache Installation Option
	Utility Cache Option
	DASD Fast Write
	Dual Copy
	Concurrent Copy

	Direct-access Storage Devices (DASD)
	Optical Storage
	Tape or Cartridge

	MVS Performance Options for DB2
	Using SRM (Compatibility Mode)
	Setting Address Space Priority
	I/O Scheduling Priority
	Storage Isolation
	Work Load Control

	Using MVS Workload Management Velocity Goals
	Recommendations for an Interim Situation
	Recommendations for Full Implementation of MVS WLM
	Other Considerations

	Chapter 5-6. Managing DB2 Threads
	Setting Thread Limits
	Allied Thread Allocation
	Step 1: Thread Creation
	Step 2: Resource Allocation
	Step 3: SQL Statement Execution
	Step 4: Commit and Thread Termination
	Variations on Thread Management
	TSO and Call Attachment Facility Differences
	Thread Management for Recoverable Resource Manager Services Attachment Facility (RRSAF)
	Differences for SQL under QMF

	Providing for Thread Reuse
	Bind Options for Thread Reuse
	Using Reports to Tell when Threads were Reused

	Database Access Threads
	Differences Between Allied Threads and Database Access Threads
	Thread Limits for Database Access Threads
	Comparing Active and Inactive Threads
	Accounting for Inactive Threads
	Timing Out Idle Active Threads

	How a Database Access Thread Is Created
	Thread Reuse for Database Access Threads
	Using Workload Manager to Set Performance Objectives
	Classifying DDF Threads
	Establishing Performance Periods for DDF Threads
	Basic Procedure for Establishing Performance Objectives
	Considerations for Compatibility Mode
	Considerations for Goal Mode

	CICS Design Options
	Overview of RCT Options
	Managing Plans for CICS Applications
	Thread Creation, Reuse, and Termination
	When CICS Threads are Created
	When CICS Threads are Released and Available for Reuse
	When CICS Threads Terminate

	Recommendations for RCT Definitions
	Recommendations for CICS System Definitions
	Correlating Accounting Information for CICS Threads

	IMS Design Options
	TSO Design Options
	QMF Design Options

	Chapter 5-7. Improving Concurrency
	What Is Concurrency? What Are Locks?
	Effects of DB2 Locks
	Suspension
	Timeout
	Deadlock

	Basic Recommendations to Promote Concurrency
	Recommendations for System Options
	Recommendations for Database Design
	Recommendations for Application Design

	Aspects of Transaction Locks
	The Size of a Lock
	The Duration of a Lock
	The Mode of a Lock
	The Object of a Lock
	Examples
	Locks on Indexes
	Locks on the DB2 Catalog
	Locks on the Skeleton Tables (SKCT and SKPT)
	Locks on the Database Descriptors (DBDs)

	What Lock Types DB2 Chooses
	Modes of Locks Acquired for SQL Statements
	Lock Promotion
	Lock Escalation
	Modes of Transaction Locks for Various Processes

	Tuning Your Use of Locks
	Startup Procedure Options
	Option List
	Estimating the Storage Needed for Locks

	Installation Options for Wait Times
	DEADLOCK TIME on Installation Panel DSNTIPJ
	RESOURCE TIMEOUT on Installation Panel DSNTIPI
	Wait Time for Transaction Locks
	IDLE THREAD TIMEOUT on Installation Panel DSNTIPR
	UTILITY TIMEOUT on Installation Panel DSNTIPI
	Wait Time for Drains

	Other Options that Affect Locking
	LOCKS PER USER Field of Installation Panel DSNTIPJ
	LOCKSIZE Clause of CREATE and ALTER TABLESPACE
	LOCKMAX Clause of CREATE and ALTER TABLESPACE
	LOCKS PER TABLE(SPACE) Field of Installation Panel DSNTIPJ
	The Option U LOCK FOR RR/RS
	Option to Release Locks for Cursors Defined WITH HOLD
	Option XLOCK for Searched UPDATEs or DELETEs

	Bind Options
	The ACQUIRE and RELEASE Options
	Advantages and Disadvantages of the Combinations
	The ISOLATION Option
	Advantages and Disadvantages of the Isolation Values
	When Plan and Package Options Differ
	The Effect of WITH HOLD for a Cursor

	Specifying Isolation by SQL Statement
	The Statement LOCK TABLE

	Controlling Concurrency for Utilities and Commands
	Objects Subject to Takeover
	Definition of Claims and Drains
	Definition
	Example
	Effects of a Claim
	Three Classes of Claims
	Definition
	Example
	Effects of a Drain
	Claim Classes Drained

	Usage of Drain Locks
	Definition
	Types of Drain Locks

	Utility Locks on the Catalog and Directory
	Compatibility of Utilities
	Definition
	Compatibility Rules

	Controlling concurrency during REORG
	Utility Operations with Nonpartitioned Indexes

	Monitoring DB2 Locking
	Using EXPLAIN to Tell Which Locks DB2 Chooses
	Using the Statistics and Accounting Traces to Monitor Locking
	Concurrency Scenario
	Scenario Description
	Accounting Report
	Lock Suspension
	Lockout Report
	Lockout Trace
	Making Corrective Decisions

	Deadlock Detection Scenarios
	Scenario 1: Two-way Deadlock, Two Resources
	Scenario 2: Three-way Deadlock, Three Resources

	Chapter 5-8. Tuning Your Queries
	General Tips and Questions
	Is the Query Coded as Simply as Possible?
	Are All Predicates Coded Correctly?
	Are There Subqueries in Your Query?
	Does Your Query Involve Column Functions?
	Do You Have an Input Variable in the Predicate of a Static SQL Query?
	Do You Have a Problem with Column Correlation?

	Writing Efficient Predicates
	Properties of Predicates
	Predicate Types
	Indexable and Nonindexable Predicates
	Stage 1 and Stage 2 Predicates
	Boolean Term (BT) Predicates
	Predicates in the ON Clause

	General Rules about Predicate Evaluation
	Order of Evaluating Predicates
	Summary of Predicate Processing
	Examples of Predicate Properties

	Predicate Filter Factors
	Default Filter Factors for Simple Predicates
	Filter Factors for Uniform Distributions
	Interpolation Formulas
	Filter Factors for All Distributions

	DB2 Predicate Manipulation
	Predicate Modifications
	Predicates Generated Through Transitive Closure

	Column Correlation
	How to Detect Column Correlation
	Impacts of Column Correlation
	What to Do About Column Correlation

	Using Host Variables Efficiently
	Using REOPT(VARS) to Change the Access Path at Run Time
	Rewriting Queries to Influence Access Path Selection

	Writing Efficient Subqueries
	Correlated Subqueries
	Noncorrelated Subqueries
	Single-value Subqueries
	Multiple-Value Subqueries

	Subquery Transformation into Join
	Subquery Tuning

	Special Techniques to Influence Access Path Selection
	Obtaining Information About Access Paths
	Using OPTIMIZE FOR n ROWS
	Reducing the Number of Matching Columns
	Adding Extra Local Predicates
	Changing an Inner Join into an Outer Join
	Updating Catalog Statistics
	Using a System Parameter to Enhance Outer Join Performance

	Chapter 5-9. Maintaining Statistics in the Catalog
	Statistics Used for Access Path Selection
	Filter Factors and Catalog Statistics
	Statistics for Partitioned Table Spaces

	Using RUNSTATS to Monitor and Update Statistics
	Updating the Catalog
	Correlations in the Catalog
	Recommendation for COLCARDF and FIRSTKEYCARDF
	Recommendation for HIGH2KEY and LOW2KEY
	Statistics for Uniform Distributions
	Recommendation for Using the TIMESTAMP Column

	Querying the Catalog for Statistics
	Improving Index and Table Space Access
	How Clustering affects Access Path Selection
	Other Index-Related Statistics
	When to Reorganize Indexes and Table Spaces
	Indexes
	Table Spaces

	Is it Necessary to Rebind after Running RUNSTATS?

	Modeling Your Production System

	Chapter 5-10. Using EXPLAIN to Improve SQL Performance
	Obtaining Information from EXPLAIN
	Creating PLAN_TABLE
	Populating and Maintaining a Plan Table
	Execute the SQL Statement EXPLAIN
	Bind with the Option EXPLAIN(YES)
	Executing EXPLAIN Under QMF
	Maintaining a Plan Table

	Reordering Rows from a Plan Table
	Retrieving Rows for a Plan
	Retrieving Rows for a Package

	First Questions about Data Access
	Is Access Through an Index? (ACCESSTYPE is I, I1, N or MX)
	Is Access Through More than One Index? (ACCESSTYPE is M, MX, MI, or MU)
	How Many Columns of the Index Are Used in Matching? (ACCESSTYPE is I, I1, N, or MX)
	Is the Query Satisfied Using Only the Index? (INDEXONLY=Y)
	Is a View Materialized into a Work File? (TNAME names a view)
	Was a Scan Limited to Certain Partitions? (PAGE_RANGE=Y)
	What Kind of Prefetching Is Done? (PREFETCH is L, S, or blank)
	Is Data Accessed or Processed in Parallel? (PARALLELISM_MODE is I, C, or X)
	Are Sorts Performed?
	Is a Subquery Transformed into a Join? (QBLOCKNO Value)
	When Are Column Functions Evaluated?

	Interpreting Access to a Single Table
	Table Space Scans (ACCESSTYPE=R PREFETCH=S)
	Table Space Scans of Nonsegmented Table Spaces
	Table Space Scans of Segmented Table Spaces
	Table Space Scans of Partitioned Table Spaces
	Table Space Scans and Sequential Prefetch

	Overview of Index Access
	Using Indexes to Avoid Sorts
	Costs of Indexes

	Index Access Paths
	Matching Index Scan (MATCHCOLS^0)
	Index Screening
	Nonmatching Index Scan (ACCESSTYPE=I and MATCHCOLS=0)
	IN-list Index Scan (ACCESSTYPE=N)
	Multiple Index Access (ACCESSTYPE is M, MX, MI, or MU)
	One-Fetch Access (ACCESSTYPE=I1)
	Index-only Access (INDEXONLY=Y)
	Equal Unique Index (MATCHCOLS=number of index columns)

	UPDATE Using an Index

	Interpreting Access to Two or More Tables
	Definitions and Examples
	Nested Loop Join (METHOD=1)
	Method of Joining
	Performance Considerations
	When It Is Used

	Merge Scan Join (METHOD=2)
	Method of Joining
	Performance Considerations
	When It Is Used

	Hybrid Join (METHOD=4)
	Method of Joining
	Possible Results from EXPLAIN for Hybrid Join
	Performance Considerations
	When It Is Used

	Interpreting Data Prefetch
	Sequential Prefetch (PREFETCH=S)
	List Sequential Prefetch (PREFETCH=L)
	The Access Method
	When It Is Used
	Bind Time and Execution Time Thresholds

	Sequential Detection at Execution Time
	When It Is Used
	How to Tell Whether It Was Used
	How To Tell If It Might Be Used

	Determining Sort Activity
	Sorts of Data
	Sorts for Group by and Order by
	Sorts to Remove Duplicates
	Sorts Used in Join Processing
	Sorts Needed for Subquery Processing

	Sorts of RIDs
	The Effect of Sorts on OPEN CURSOR

	View Processing
	View Merge
	View Materialization
	Two Steps of View Materialization
	When Views or Nested Table Expressions are Materialized

	Using EXPLAIN to Determine the View Method
	Performance of View Methods
	Performance of Table Expressions

	Parallel Operations and Query Performance
	Comparing the Methods of Parallelism
	Partitioning for Optimal Parallel Performance
	Determining if a Query is I/O- or Processor-Intensive
	Determining the Number of Partitions
	Example Configurations for an I/O-Intensive Query
	What if the Table Space is Already Partitioned?
	Make the Partitions the Same Size

	Enabling Parallel Processing
	When Parallelism is Not Used
	Interpreting EXPLAIN Output
	Monitoring Parallel Operations
	Using DISPLAY BUFFERPOOL
	Using DISPLAY THREAD
	Using DB2 Trace

	Tuning Parallel Processing
	Disabling Query Parallelism

	Chapter 5-11. Monitoring and Tuning in a Distributed Environment
	Remote Access Types
	Considerations for Tuning Distributed Applications
	How Block Fetch Improves Performance
	Using FOR FETCH ONLY to Ensure Block Fetch
	Using CURRENTDATA(NO) to Ensure Block Fetch

	Monitoring DB2 in a Distributed Environment
	Using the DISPLAY Command
	Tracing Distributed Events

	Using DB2 PM Accounting Reports to Monitor Distributed Processing
	Merged Accounting Trace

	Using RMF to Monitor Distributed Processing
	Duration of an Enclave
	RMF Records for Enclaves

	Monitoring and Tuning Stored Procedures
	Controlling Address Space Storage
	Assigning Stored Procedures to WLM Application Environments
	Accounting Trace

	Appendixes
	Appendix A. DB2 Sample Tables
	Activity Table (DSN8510.ACT)
	Content
	Relationship to Other Tables

	Department Table (DSN8510.DEPT)
	Content
	Relationship to Other Tables

	Employee Table (DSN8510.EMP)
	Content
	Relationship to Other Tables

	Project Table (DSN8510.PROJ)
	Content
	Relationship to Other Tables

	Project Activity Table (DSN8510.PROJACT)
	Content
	Relationship to Other Tables

	Employee to Project Activity Table (DSN8510.EMPPROJACT)
	Content
	Relationship to Other Tables

	Relationships Among the Tables
	Views on the Sample Tables
	Storage of Sample Application Tables
	Storage Group
	Databases
	Table Spaces

	Appendix B. Writing Exit Routines
	Connection and Sign-On Routines
	General Considerations
	Specifying the Routines
	Sample Exit Routines
	When Exits Are Taken
	EXPL for Connection and Sign-on Routines
	Exit Parameter List
	Authorization ID Parameter List
	Input Values
	For a Connection Routine
	For a Sign-On Routine

	Expected Output
	Processing in the Sample Routines
	Performance Considerations
	Debugging Your Exit Routine

	Access Control Authorization Exit
	General Considerations
	Specifying the Routine
	The Default Routine
	When the Exit Is Taken
	Other Considerations for Using the Access Control Authorization Exit
	Parameter List for the Access Control Authorization Routine
	Exit Parameter List (XAPL)

	Expected Output
	Handling Return Codes
	Handling Reason Codes

	Exit Abend
	Debugging Your Exit Routine

	Edit Routines
	General Considerations
	Specifying the Routine
	When Exits Are Taken
	Parameter Lists on Entry
	Processing Requirements
	Incomplete Rows
	Expected Output

	Validation Routines
	General Considerations
	Specifying the Routine
	When Exits Are Taken
	Parameter Lists on Entry
	Processing Requirements
	Incomplete Rows
	Expected Output

	Date and Time Routines
	General Considerations
	Specifying the Routine
	When Exits Are Taken
	Parameter Lists on Entry
	Expected Output

	Conversion Procedures
	General Considerations
	Specifying the Routine
	When Exits Are Taken
	Parameter Lists on Entry
	Expected Output

	Field Procedures
	Field Definition
	General Considerations
	Specifying the Procedure
	When Exits Are Taken
	Control Blocks for Execution
	The Field Procedure Parameter List (FPPL)
	The Work Area
	The Field Procedure Information Block (FPIB)
	The Field Procedure Parameter Value List (FPPVL)
	Value Descriptors

	Field-Definition (Function Code 8)
	On ENTRY
	On EXIT

	Field-Encoding (Function Code 0)
	On ENTRY
	On EXIT

	Field-Decoding (Function Code 4)
	On ENTRY
	On EXIT

	Log Capture Routines
	General Considerations
	Specifying the Routine
	When Exits Are Taken
	Parameter Lists on Entry

	Routines for Dynamic Plan Selection in CICS
	What the Exit Routine Does
	General Considerations
	Execution Environment
	Specifying the Routine
	Sample Exit Routine
	When Exits Are Taken
	Dynamic Plan Switching
	Coding the Exit Routine
	Parameter List on Entry

	General Considerations for Writing Exit Routines
	Coding Rules
	Modifying Exit Routines
	Execution Environment
	Registers at Invocation
	Parameter Lists

	Row Formats for Edit and Validation Routines
	Column Boundaries
	Null Values
	Fixed-length Rows
	Varying-length Rows
	Varying-length Rows with Nulls
	Internal Formats for Dates, Times, and Timestamps
	Parameter List for Row Format Descriptions
	DB2 Codes for Numeric Data

	Appendix C. Reading Log Records
	What the Log Contains
	Unit of Recovery Log Records
	Undo and Redo Records
	Typical Unit of Recovery Log Records
	Classes of Changes to Data

	Checkpoint Log Records
	Database Page Set Control Records

	The Physical Structure of the Log
	Physical and Logical Log Records
	The Log Record Header
	The Log Control Interval Definition (LCID)
	Log Record Type Codes
	Log Record Subtype Codes
	Interpreting Data Change Log Records

	Reading Log Records
	Reading Log Records with IFI
	Reading Log Records into a Buffer
	Reading Specific Log Records (IFCID 0129)
	Reading Complete Log Data (IFCID 0306)

	Reading Log Records with OPEN, GET, and CLOSE
	Data Sharing Users: Which Members Participate in the READ?
	Registers and Return Codes
	Stand-Alone Log OPEN Request
	Stand-Alone Log GET Request
	Stand-Alone Log CLOSE Request
	Sample Application Program Using Stand-Alone Log Services

	Reading Log Records with the Log Capture Exit

	Appendix D. Interpreting DB2 Trace Output
	Processing Trace Records
	SMF Writer Header Section
	GTF Writer Header Section
	Self-Defining Section
	Product Section

	Trace Field Descriptions

	Appendix E. Programming for the Instrumentation Facility Interface (IFI)
	What IFI Can Do
	Submitting DB2 Commands through IFI
	Obtaining Trace Data
	Passing Data to DB2 through IFI
	IFI Functions
	Invoking IFI from Your Program
	Using IFI from Stored Procedures
	COMMAND: Syntax and Usage
	Authorization
	Syntax
	Example

	READS: Syntax and Usage
	Authorization
	Syntax
	Which Qualifications are Used?
	Usage Notes
	Synchronous Data
	Using READS Calls to Monitor the Dynamic Statement Cache

	READA: Syntax and Usage
	Authorization
	Syntax
	Usage Notes
	Asynchronous Data
	Example
	WRITE: Syntax and Usage
	Authorization
	Syntax
	Usage Notes
	Common Communication Areas
	IFCA
	Return Area
	IFCID area
	Output Area
	Interpreting Records Returned by IFI
	Trace Data Record Format
	Command Record Format
	Data Integrity
	Auditing Data
	Locking Considerations
	Recovery Considerations
	Errors

	Appendix F. Sharing Read-Only Data
	Overview of Shared Read-Only Data
	Prerequisites for Shared Read-Only Data
	Benefits of Shared Read-Only Data
	Costs of Shared Read-Only Data
	Comparing Shared Read-Only Data and Distributed Data

	Implementing Shared Read-Only Data
	Steps for Sharing an Existing Database
	Steps for Sharing a New Database

	Plan to Set Up and Maintain Data Definitions
	Tune GRS for DB2
	Excluding Data Sets

	Alter an Existing Database to be Shared
	Create DB2 Objects to be Shared
	Create DB2 Storage Groups
	Create a Database
	Create the Owner:
	Create the Readers:

	Create Table Spaces
	Create Table Spaces for the Owner
	Create Table Spaces for the Readers

	Create Tables
	Create Tables for the Owner
	Create Tables for the Readers

	Using Referential Constraints
	Create Indexes
	Create Indexes for the Owner
	Create Indexes for the Readers

	Load Data in the Owner
	Starting and Stopping a Shared Database
	Starting a Shared Database
	Stopping a Shared Database

	Maintaining Shared Read-Only Data
	Updating
	Adding
	Dropping
	Altering
	Altering the Sharing Status of a Database
	Adding a Column to a Table

	Running Utilities
	Recovering
	DSN1COPY Utility
	Non-DB2 Facilities

	Appendix G. Using Tools to Monitor Performance
	Using MVS, CICS, and IMS Tools
	Monitoring System Resources
	Monitoring Transaction Manager Throughput

	DB2 Trace
	Types of Traces
	Statistics Trace
	Accounting Trace
	Audit Trace
	Performance Trace
	Monitor Trace

	Effect on DB2 Performance

	Recording SMF Trace Data
	Activating SMF
	Allocating Additional SMF Buffers
	Reporting Data in SMF

	Recording GTF Trace Data
	DB2 Performance Monitor (DB2 PM)
	Performance Reporter for MVS
	Monitoring Application Plans and Packages

	Glossary and Bibliography
	Glossary
	Bibliography

	Index
	Index

