
Mainframe software development and maintenance
White paper
December 2009

Fine-tuning IBM z/OS software
maintenance.
Strategies and tips for improving your maintenance
experience

Jon Sayles, Rational developer for System z/enterprise
modernization technical specialist, IBM Software Group

Contents

Fine-tuning IBM z/OS software maintenance.
Page 2

2	 Executive summary

3	 Investment in people

4	 Investment in process

5	 Investment in tools

5	 Outsourced maintenance

6	 Fine-tuning z/OS maintenance

6	 People

9	 Process

10	 Tools and steps in the process

11	 Tool selection

12	 Modern IDE

15	 How to benefit from software

maintenance

15	 Keys to success

Executive summary

Decades have passed since the first business software was developed for the
mainframe in your shop. While the hardware and software, platforms and
paradigms, computing languages and methodologies have all changed and
evolved in that time, many of those same applications may still be running your
business. They represent assets of significant value, your company’s intellectual
property—automating, extending and encapsulating other assets of your busi-
ness. Their book value, if viewed from the standpoint of income generated over
time, is substantial. And software, like all corporate assets, requires reinvest-
ment if its value is to be sustained. Investment enables continual improvement
and growth in the applications that support your changing business model.
Moreover, investment compounds the business value of your software, saving—
and earning—you time and money. This reinvestment is called “maintenance.”

“… [T]he majority of software costs are incurred during the period after the

developed software is accepted. These costs are primarily due to software

maintenance, which here refers both to activities to preserve the software’s

existing functionality and performance, and activities to increase its function-

ality and improve its performance throughout the life-cycle.”

—Barry Boehm, TRW Emeritus Professor of Software Engineering,
Computer Science Department, University of Southern California1

We have found that focusing on three areas of investment will help you fine-tune
the maintenance of the applications that run your business:

Investment in people•	
Investment in process•	
Investment in tools•	

Fine-tuning IBM z/OS software maintenance.
Page 3

People
Tools

Processes

Maintenance ef�ciency

Figure 1: Three key organizational areas to renovate

Investment in people

Your business benefits by the quality of the work produced by your people.
And the quality of the software maintenance they perform on your business
applications correlates with the caliber of knowledge used every day by your
software maintenance staff.

Application domain knowledge provides an understanding of how software
intersects with your business. To some degree this is vertical industry knowledge,
but it also includes the unique business rules and processes that differentiate
your corporation from competitors in the marketplace. The trustees of applica-
tion domain knowledge are the business users. Ensuring that the software
maintenance staff’s analysis needs for authoritative application domain knowl-
edge are satisfied is a fine-tuning key to success.

Technical knowledge provides deep mastery of the complete technology
environment underlying your application software stack as well as the specific
maintenance tools and processes employed in your shop. Providing main-
tenance teams with premier, first-class—and often no-charge—technical
learning opportunities is a fine-tuning key to success.

Key to success

Ensure that software maintenance

staff has easy access to application

domain knowledge.

Key to success

Provide software maintenance

personnel with access to premier

technical learning.

Fine-tuning IBM z/OS software maintenance.
Page 4

Application semantics refers to the custom code that realizes the unique busi-
ness rules and idiosyncratic in-house processes that keep your company running.
In most shops, the original developers of applications have long since moved on.
Providing current maintenance teams with static and dynamic analysis tools
that simplify the problem of intellectually grasping application semantics is a

fine-tuning key to success.

Is increasing the caliber of knowledge of the software maintenance staff
really necessary? No, it’s not. But just as doctors take the trouble to learn
about new medical advances and auto mechanics learn how to use new com-
puterized diagnostic tools, keeping your people current on their knowledge
of software maintenance best practices helps them keep applications produc-
ing for the company.

Investment in process

A methodology or even multiple methodologies for distinct categories of mainte-
nance that address how to tackle the diverse and complex issues presented by
IBM z/OS® software maintenance in a systematic way are critical investments.
Yet at many companies, formalized processes for maintaining applications don’t
exist. We might find documentation, informal “cookbooks” and other collateral
based on lessons learned from doing certain aspects of maintenance work. But
systematic, formal software maintenance methodologies for handling adaptive
maintenance are rare.

Investment in correcting, adapting and perfecting your maintenance processes by
adopting a formal lifecycle—and revising it with best practices lessons learned—
is a fine-tuning key to success.

Appointing a single person to be the software maintenance architect at your
shop and tasking that person with responsibility for establishing organizational
controls—developing and refining the maintenance plan, etc.—is another fine-
tuning key to success.

Key to success

Automate software maintenance

tasks for:

Application understanding/impact •	

analysis.

Dynamic code analysis and testing.•	

Key to success

Establish a position overseeing soft-

ware maintenance.

Fine-tuning IBM z/OS software maintenance.
Page 5

Investment in tools

As fate would have it, the software stacks running on and attached to your
IBM z/OS platform have evolved and grown in size and complexity just as
corporate cost cutting has inversely reduced available staff resources and
maintenance time. From a technology perspective, tools are no longer nice
to have—they have become a necessity. Using the same manual processes
and approaches throughout the maintenance lifecycle that would have been
acceptable 10, 20 or even 30 years ago no longer provides the efficiencies
demanded by constrained resources.

Fortunately, the software industry has moved beyond time sharing option–based
and manual approaches to maintaining and supporting cross-platform or even
complex single-platform applications. Mature and cost-effective solutions are
available in the following areas:

Integrated development environment (IDE)—•	 IBM Rational Developer
for System z® software
Application understanding/impact analysis —•	 IBM Rational Asset
Analyzer software
Testing and dynamic code analysis—•	 IBM Problem Determination
Tools for z/OS technology
Team collaboration—•	 IBM Rational Team Concert™ software
Source control management—•	 IBM Rational ClearCase® software

Using a modern IDE, collaboration, source code management (SCM) and auto-
mated analysis tools are fine-tuning keys to success.

Outsourced maintenance

When taking a deeper look at the maintenance being done to the software assets
that run your business, we should note the trend over the last five years toward
outsourcing maintenance. Outsourcing presents a number of new challenges:
distance, or latency; communication, or compounded problems as a result of
misunderstanding and misinterpretation of complex business language; and
loss of control over the maintenance practices of your outsourcer. These can be
exacerbated by the loss of in-house applications or business expertise.

Key to success

Employ key software maintenance

tools for:

Team collaboration and source •	

code management.

IDE-based development.•	

Fine-tuning IBM z/OS software maintenance.
Page 6

Overcoming these additional obstacles requires tightening down on software
maintenance projects through increased project governance and adoption of
technology that automates project scoping and offers real-time, collaborative
team maintenance lifecycle progression.

Fine-tuning z/OS maintenance

To understand the nuances of z/OS software maintenance, let’s begin by more
precisely defining terms and vocabulary. Table 1 presents the software categories
defined by the Institute of Electrical and Electronics Engineers (IEEE)2 and places
them in a matrix of unscheduled/scheduled and reactive/proactive maintenance.

Unscheduled Scheduled

Reactive Emergency maintenance:
unscheduled corrective
maintenance performed to
keep a system operational

Corrective maintenance: reactive modifi-
cation of a software product performed
after delivery to correct discovered faults

Adaptive maintenance: modification of a
software product performed after delivery
to keep a computer program usable in a
changed or changing environment

Proactive Perfective maintenance: modification of a
software product performed after delivery
to improve software quality, performance
or maintainability

Table 1: The software maintenance matrix (software category definitions © 1993 IEEE)

People

Who are the people at your shop who do maintenance? In our work with large
z/OS shops over the past 10 years, we have looked to identify staff categories avail-
able for maintenance. While an informal effort, our results are listed in table 2.

Maintenance team organization Used by percentage of shops

Developers who wrote the code maintain it (primarily) 7

Separate maintenance in-house team 16

Local consultants 8

Offshore/outsourced maintenance 40

Other (various combinations of the above) 29

Table 2: Software maintenance team breakdown

Key to success

Employ a software maintenance meth-

odology that takes into consideration

the different categories of software

maintenance.

Fine-tuning IBM z/OS software maintenance.
Page 7

The first thing we noticed is that roughly 60 percent of the world’s software
maintenance is done by external development teams, not by a shop’s own technical
staff. How does that affect the maintenance challenge?

Application domain knowledge

Let’s look at the importance of the business and programmer analyst. In the

beginning, there were business users, systems analysts and coders—and problems.
As the systems analysts were overwhelmed in translating business requirements
to procedural specifications, they—and the business-process knowledge they
acquired—became a software bottleneck.

The solution that evolved was that the coders inhabiting various shops became
“programmer/analysts.” Programmer/analysts interfaced with users and shared
design responsibilities with systems analysts. The bottleneck eased. And as they
accumulated business knowledge, over the years their work became even more
valuable and increased in quality.

In many respects, the current situation with external development teams is a
throwback to the genesis of business systems development, with a split between
coders and business/systems analysts. A key to success for your company is
to, at all costs, nurture and retain those on staff who have deep technical business
analysis knowledge of how your current application stack operates—because that
intellectual capital may be the most valuable software asset you have.

Key to success

Nurture and retain those with deep

technical business analysis knowl-

edge of your current application

stacks.

Fine-tuning IBM z/OS software maintenance.
Page 8

Highlights
Technical knowledge

Ensure that your own in-house staff has open access to technical learning
content and expertise—especially any of the groups dedicated to emergency
maintenance. Start by establishing a set of links to the kinds of quality mate-
rials that are freely available on the Internet, including the IBM Redbooks®

library, language manuals and other collections of technical articles. Finally,
it’s important to note that an opportunity for saving time and money exists in
educating maintenance developers well in traditional z/OS platform–specific
areas of highest impact.

Application semantics

The breakdown in table 2 brings this key factor into focus:

For in-house maintenance done by developers who developed the original code, •	
application semantics should not be an issue. And for maintenance teams from
within your organization, including local consultants, application semantics will
be a straightforward learn.
For externally-supported maintenance, using static and dynamic analysis tools •	
is critical, and not just by lead project analysts during the analysis and scop-
ing phases of a project. It is critical to have these tools available during the
technical construction and testing phases of projects. It’s useful to note that
in-house teams also benefit from static and dynamic analysis tools.

Static and dynamic analysis tools are

useful for in-house teams but critical

when outsourcing maintenance.

Fine-tuning IBM z/OS software maintenance.
Page 9

Highlights

A typical process flow organizes the

software maintenance process in

seven steps.

Process

A typical process flow has been captured by IEEE in IEEE Std 1219-19933 and
is adapted below in figure 2. It organizes the software maintenance process
or lifecycle in seven steps. You may recognize some or all of these steps as occur-
ring in your shop’s approach to software. Or you may have similar, fewer or more
steps depending on the formality of your methodology and how it is applied by
different teams.

{Problem identification
classification

Project scoping
analysis

Design

Delivery
deployment

User acceptance
testing

Implementation
construction

Regression testing
systems test

Modification request/requirement

Ra
tio

na
l

Te
am

 C
on

ce
rt

Ra
tio

na
l D

ev
el

op
er

fo
r S

ys
te

m
 z

Figure 2: The IEEE software maintenance process has been adapted to show critical subprocesses
(process flow © 1993 IEEE).

Fine-tuning IBM z/OS software maintenance.
Page 10

Highlights
However, keep in mind:

As described earlier, it is the experience of most of the shops that the needs •	
of each category of maintenance (emergency, corrective, adaptive and per-
fective) expand out to additional subprocesses for most of the steps in the
IEEE process (see table 2).

Your shop’s own experience, priorities and prerogatives, even your approach •	
to implementing methodologies, always supersede a generic, one-size-fits-
all approach.
Working toward an explicitly formalized methodology might be an exercise •	
that will not provide the return on your investment you anticipate. It must
be considered in the context of your shop’s inclination toward results-based,
versus process-driven, activities and project management.

Tools and steps in the process

When considering the required, optional and effective use of tools throughout
the software maintenance lifecycle, consider that there are two categories:

Tools that bring value to each and every step•	 —including cross-platform
collaboration products and source control management tools
Tools that have step-specific advantages•	 —including the static and dynamic
analysis tools described below

Your shop might create its own maintenance-tools-process-driven matrix—which
will change over time—as new technologies and new problem domains appear
on the landscape. However, a typical correlation of software maintenance lifecycle
phases and tools that can help fine-tune your maintenance projects is shown in
table 3.

Keep in mind that standard main-

tenance processes are signifi-

cantly affected by unique needs

and preferences.

Maintenance tools need to adapt

to new technologies and new

problems.

Fine-tuning IBM z/OS software maintenance.
Page 11

Highlights

IBM offers tools to be used at specific

stages of the lifecycle, as well as tools

to be used throughout the lifecycle.

Tools used at specific lifecycle steps

Tools used
throughout
the lifecycle

Problem/modification
identification, classifica-
tion and prioritization

Dynamic testing tools for initial breakdown
of emergency and corrective maintenance
problem definition: Problem Determination
Tools for z/OS software

Rational

ClearCase z/OS

Extensions

software

Rational Team

Concert software

Rational

Developer

for System z

software

Rational Asset

Analyzer software

Project scoping analysis Dynamic testing and static source code

analysis tools for trustworthy/accurate
results and efficient/cost-effective analy-
sis activities: Problem Determination Tools
for z/OS and Rational Asset Analyzer
software

Design n/a

Implementation

Construction

Static source code analysis tools for solv-
ing inconsistencies in developer under-
standing: Rational Asset Analyzer software

Regression testing

System testing

Dynamic testing tools for revealing prob-
lems during test and debugging: Problem
Determination Tools for z/OS software

Static source code analysis tools for solv-
ing problems stemming from an inconsis-
tent developer understanding: Rational
Asset Analyzer software

Acceptance testing Dynamic testing tools: Problem Determina-
tion Tools for z/OS software

Delivery n/a

Table 3: Typical lifecycle phases and tool usage correlation

Tool selection

The first consideration that must be addressed is, “Why tools?” And the second
is, “Which tools?”

For decades, software developers cogitated over listings, inserting paper clips and
sticky pads as bookmarks, or they used manual Interactive System Productivity
Facility (ISPF) search operations from IBM, which slow analysis down to manual
typing speed. Perhaps your developers still practice these ancient rituals. Let’s
discuss the value proposition for using the four categories of tools shown in
table 3 and discuss the must-have features that offer enough value for you to
invest in and use them.

Fine-tuning IBM z/OS software maintenance.
Page 12

Highlights
Modern IDE

IBM initially introduced green-screen tools for edit, compile and debug to build
the first generation of z/OS applications. And they did an admirable job, as evi-
denced by the billions of lines of COBOL, PL/I and even HLASM application
source code still running your production workloads. But the needs of today’s
optimized maintenance demand facilities not intrinsic to develop-from-scratch
projects, including deep language-editor semantics, fluent navigation, extended
source content real estate and especially the benefits of deeply integrated analysis/
edit/compile/debug. These features, all of which are available within Rational
Developer for System z software, create an unlevel playing field compared to
tools that were state of the art nearly four decades ago.

Source code management tools

This is the easy subcategory. Given the size, complexity and dynamic nature of
modern z/OS development scenarios, especially with the introduction of off-
shore development, it is simply axiomatic that without a robust SCM product
that automates the version control process—and offers revision management,
file locking and the ability to quickly return to previous versions and merge
development and maintenance source code—deltas would quickly grind to
a halt.

Team collaboration tools

Unlike traditional source code management, you may not yet have been intro-
duced to team collaboration software such as IBM Rational Team Concert
software, which is essentially technology that:

Allows project leaders to define, organize and track your software main-•	
tenance, support and development teams and their projects (not program
source, people and processes).
Provides simplified interaction and communications between subject matter •	
experts (SMEs) and the technical programmer/analysts and architects who
interact with them. This interaction can be captured electronically for reuse,
refinement and documentation.
Accommodates management reporting and governance of project milestones •	
and deliverables.
Enables project technical developers to share development artifacts (source •	
and model-based) in the context of doing project work.

Look for the must-have features that

can justify tool investment.

Fine-tuning IBM z/OS software maintenance.
Page 13

Highlights
Revisiting our previous points on challenges introduced by externally-supported
maintenance projects, team collaboration was born to solve the latency, com-
munications and logistics issues that are part and parcel of split project efforts.
Distributed development versus central development presents organizational
challenges that must be addressed to gain the understood benefits.

Static and dynamic code analysis tools

Analysis tools (both static and dynamic) assist developers in “gaining intel-
lectual control” over an application, as Larry England from the IBM Santa
Theresa Lab puts it.

Research has shown that there is a diseconomy of scale in productivity when
maintaining large systems. This is a result of the large number (often in the hun-
dreds to thousands) of variables and “functions of interest” scattered throughout
large amounts (often in the hundreds of thousands to millions of lines) of software.

Historically only expert z/OS developers have been capable of building exact
internal/procedural models of the code execution paths, key variables and
variable state transitions. Over the past 20 years, many of these individuals have
retired or moved on to management positions, and now many maintenance teams
are in the untenable position of using relatively inexperienced developers to make
technical judgment calls on changes to core systems—systems that have only
gotten older, more complex, brittle and more difficult to fathom than ever before.

Static code analysis

One of the unintended consequences of Y2K was the birth of static code analysis
tools. Passing up the opportunity to employ what worked for Y2K means missing
the benefits of automated, comprehensive and electronically precise static analysis
tools, increasing risk, and spending considerable and additional time and money.

Features of static code analysis tools

The information needs of maintenance and support staff vary by the type of
application learning/comprehension model employed. It is commonly understood
that you learn a business application by combining top-down and bottom-up
study. Top-down study consists of reading documentation, talking with SMEs,
etc. Bottom-up study starts with reading code in specific functions, often working
from program listing cross-references and tracing backward and upward toward
higher levels of abstraction.

Analysis tools can help you gain intel-

lectual control over an application.

Fine-tuning IBM z/OS software maintenance.
Page 14

Highlights
Tools that automate or simplify analysis top-down and bottom-up will fast-track
your teams to improved productivity and lowered risk. Such tools should at a
minimum contain the functionality described here—and come with a graphical
(mouse-based) IDE—largely because the task of understanding code is keyboard-
less, and driving through diagrams and hyperlinks with a mouse instead of typing

FIND commands into green-screen panels is actually a critical element of the
usage model.

Dynamic code analysis

For certain problems, static code analysis can be an indispensable aid in helping
to solve many classes of software maintenance. This is especially true for some
in the emergency-corrective maintenance category where you need another
view of the production application—a view that is provided by actually running
the live code—at the source level and following the execution sequence. This is
called dynamic code analysis.

Dynamic code analysis tools such as the IBM Debug Tool allow you to inspect
the following at the detail level without assumption:

The instruction sequence•	 —every statement is stepped through and ani-
mated running against the software stack that is the deployment platform
Variable values•	 —in program storage, file buffers, database records tempo-
rary storage: anything to which the code has addressability

This type of real-life monitoring at the source code level (which is the logical
currency developers trade in) is one of the best methods for solving some of
the most obstinate and bewildering software analysis problems. A table that
lists some of the more prominent and useful dynamic code analysis features is
available here.

You probably own a product, like the IBM Debug Tool, that can be used for
dynamic code analysis. But are you taking advantage of these tools for dynamic
code analysis—and not just debugging? The table’s feature/function column
lists some of the ways that dynamic code analysis can provide teams with auto-
mated assistance in areas that are traditionally labor intensive and error prone
because of the size and scale of complexity that concerns z/OS legacy systems.

Dynamic code analysis provides

many more advantages beyond

just debugging.

Automating and simplifying analysis

can boost team productivity and

lower risk.

http://www.jsayles.com/ibm/zosmaint/table4.gif
http://www.jsayles.com/ibm/zosmaint/table5.gif

Fine-tuning IBM z/OS software maintenance.
Page 15

How to benefit from software maintenance

Software is like other knowledge-based research and development products:
an intangible corporate asset. The value of intangibles is based on the income
they are expected to generate in the future.

It is naïve to think that organizations have buckets of money to throw at the
dilemma of software maintenance; however, in this white paper we have
attempted to provide solutions that incorporate:

Internal process reengineering.•	
Web-based knowledge acquisition.•	
Modest investment—or repurposing of development software with definitive •	
maintenance value.

Implementing one or all of these solutions will help you see:

Fewer defects•	 , which lowers costs and raises the overall quality of your
data center operations.
Improved productivity•	 , which can help balance the demand for changes
and queued enhancements with new systems functionality.
Savings in hardware and software costs•	 , through more effective and
productive developer usage models.
An increase in the shelf life (and respective business value) of your •	
z/OS applications, a business value that, unlike other intangibles, grows
over time.

Keys to success

With the software maintenance practices available today, there’s no need to let
your z/OS legacy applications flatline. It doesn’t require a diagnostic genius to
make things better, just IT leadership that appreciates the value of “systems
that work.”

Endorse the business value of your production software and its maintenance •	
as a capital asset across your organization.
Employ a software maintenance methodology that takes into consideration •	
the different categories of software maintenance.
Establish a position overseeing software maintenance.•	

Key to success

Endorse the business value of your

production software and its mainte-

nance as a capital asset across your

organization.

Ensure that software maintenance staff has easy access to application •	
domain knowledge.
Provide software maintenance personnel with access to premier techni- •	
cal learning.
Employ key software maintenance tools for:•	

Application understanding/impact analysis.––
Dynamic code analysis and testing.––
Team collaboration.––
Source control management.––

For more information

To learn more about software maintenance for the IBM System z® operating
system, contact your IBM representative or access these additional resources:

Collections of technical articles are available at the COBOL Café at •	
ibm.com/software/rational/cafe/docs/DOC-3024

Rational Developer for System z software: •	 ibm.com/software/awdtools/rdz/

Rational Asset Analyzer software: •	 ibm.com/software/awdtools/raa/

Problem Determination Tools for z/OS technology: •	 ibm.com/software/

awdtools/deployment/

Rational Team Concert software: •	 ibm.com/software/awdtools/rtc/

Rational ClearCase software: •	 ibm.com/software/awdtools/clearcase/

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
December 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, System z,
and z/OS are trademarks or registered trademarks
of International Business Machines Corporation in
the United States, other countries, or both. If these
and other IBM trademarked terms are marked
on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned
by IBM at the time this information was published.
Such trademarks may also be registered or com-
mon law trademarks in other countries. A current
list of IBM trademarks is available on the Web
at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates. The
information contained in this documentation is pro-
vided for informational purposes only. While efforts
were made to verify the completeness and accuracy
of the information contained in this documentation,
it is provided “as is” without warranty of any kind,
express or implied. In addition, this information is
based on IBM’s current product plans and strategy,
which are subject to change by IBM without notice.
IBM shall not be responsible for any damages aris-
ing out of the use of, or otherwise related to, this
documentation or any other documentation. Nothing
contained in this documentation is intended to, nor
shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licen-
sors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

 1	 Barry W. Boehm, Software Engineering Econom-
ics, (Prentice-Hall PTR, 1981), 533.

2,3	 The Institute of Electrical and Electronics Engi-
neers, IEEE Standard for Software Maintenance,
IEEE Std 1219-1993, 1993.

RAW14180-USEN-00

http://www.ibm.com/software/rational/cafe/docs/DOC-3024
http://www.ibm.com/software/awdtools/rdz/
http://www.ibm.com/software/awdtools/raa/
http://www.ibm.com/software/awdtools/deployment/
http://www.ibm.com/software/awdtools/deployment/
http://www.ibm.com/software/awdtools/rtc/
http://www.ibm.com/software/awdtools/clearcase/
http://www.ibm.com/legal/copytrade.shtml

