
LAB 2 - Working with Remote Systems – COBOL Page 1

LAB – COBOL Application Development in z/OS using RDz (90 -
120 minutes)

This lab will take you through the steps of using the z/OS Application Development component of Rational
Developer for System z to work with remote systems. It will familiarize you with the z/OS Application Development
environment. If the connection to the mainframe is available, you will define a remote z/OS system, set up a MVS
project, edit and compile a COBOL application. The process would be the same for a PL/1 program.

Each time you see this symbol it means that you have to “do” something on your
computer – not merely read the document.

Tips!
1) If you want to have the lab in HTML format displayed in your browser, you can find it at
the location: C:\RDZ_POT_V7\HTML
Then you can open the html files using a internet browser.

2) Most of the labs will be performed under VMware. So we will run 2 ‘Windows’ on the
same machine. This will cause some overhead and sometimes the performance will not be
as good as if the program would be running in the native windows… So, please be patient

3) If you lost the “VMware full screen” either type Ctrl + Alt + Enter or use the VMware

icon (on top).

Overview of development tasks

To complete this tutorial you will perform the following tasks:

1. Connect to a z/OS System:
 � Prepare your Workspace to connect to the zOS system, defining a Remote System and connecting to it

 2. Allocate z/OS Data sets:
 � Allocate and load assets required for this lab.

3. Associate z/OS resources to properties
 � Configure the system data sets names, Job names to be generated, etc…

4. Send the COBOL program to the z/OS
 � You will copy a COBOL program from your workstation to the z/OS

5. Create a z/OS Project
 � Specify which data sets you will use in this tutorial, specify properties, etc..

6. Work with z/OS remote assets – edit, syntax check, submit, execute and see the output.

7. (Optional) Working offline using z/OS Projects

Section 1 – Connect to a z/OS System

You will now define a remote system and connect to it.
This section is similar to LOGON to a TSO using a provided userid and password.

Before starting this Lab be sure that you have a unique z/OS userid and password. You also could use this
userid/password to logon to a z/OS TSO session. If you do not have a username and password you can obtain one
from the lab moderator.

___ 1.1 Defining a z/OS Remote system

1.1.1 After you logged on into the sandbox image wait a few minutes for RDz to come all the way up. Once RDz
is up you will see an image similar to the one in the figure bellow. Notice that the RDz perspective is selected for
you.

What is the z/OS Projects perspective?
Use the z/OS Projects perspective to define, connect, and work with remote systems, as
well as create, edit, and build projects, subprojects, and files on your remote systems.

The z/OS Projects perspective contains the following views:
Remote Systems view, z/OS Projects view, Properties view, Outline view, Remote Error
List view, z/OS File System Mapping view and Remote System Details view

LAB 2 - Working with Remote Systems – COBOL Page 3

1.1.2 Delete any previous z/OS connection. You will be creating your own in the next step

Click on the tab Remote Systems view on your right.

Right-click on dallas and then click disconnect.

 Right-click on dallas again and click delete

LAB 2 - Working with Remote Systems – COBOL Page 5

 Click delete

1.1.3 To create your own z/OS connection

Click on the tab Remote Systems view on your right.

 In the Remote Systems view. Expand the New Connection if needed.

 From the New Connection tree, right-click on z/OS… and select New Connection to open the pop-up
menu.

1.1.4 In the Host name field, type zserveros.demos.ibm.com as hostname. This is the z/OS machine name.
It could be also it’s IP address instead. (192.84.47.60)

 In the Connection name field, type dallas
This label that you assign to this connection will help you to differentiate between multiple connections to the same
type of remote system.

To verify that the hostname or IP address is valid, select the Verify host name check box.

Click Next to proceed to the JES subsystem properties page

1.1.5 In the z/OS Unix Files be sure that Remote daemon is selected, accept the port default and click Next

LAB 2 - Working with Remote Systems – COBOL Page 7

1.1.6 Note that we could use other ways to connect, besides remote daemon. We will accept all the defaults here..

 In the MVS Files window, be sure that Remote daemon is selected, accept the port default and click Next

About the screen shots in this paper…
Note that some pictures in this tutorial (like the above) do not show all the buttons. This is
because we want to conserve space. The pictures (screenshots) are designed to help you
better understand what you are doing..

1.1.7 In the JES Job Monitor Port field, accept 6715 (default) as the port on which the Remote Job Monitor is
listening. In the Max Number of Lines to Download field, you could type the number of lines to download before
prompting you to specify if you want to download all of the lines in the dataset. We will accept the default of 5000.

 Be sure that the port is 6715 and click Finish to create the new z/OS connection and add it to the Remote
Systems perspective:

In case of errors…
If you have errors during the connection creation it is because the z/OS system name is
not correct or not available (if you specified Verify host name in the step 1.1.5 above).
Be sure that you did not type a wrong z/OS name (zserveros.demos.ibm.com).
If you still have errors could be because Dallas system is down or you have network
issues. Contact the instructor.

1.1.8 If the network is available, you will have the connection dallas created as show below:

1.1.9 To better view what’s inside the connections expand the folder dallas, left-clicking on the

and

LAB 2 - Working with Remote Systems – COBOL Page 9

What have you done so far?

You used the Remote Systems view to define and connect to a z/OS remote system via
TCP/IP.
For each system to which you have established a connection, the Remote Systems view
shows six main nodes under the connection name: z/OS UNIX files, z/OS UNIX Shells,
MVS files, TSO commands and JES.

From the Remote Systems view, you can complete the following tasks:

• Emulate a z/OS session
Add or remove remote system definitions

• Connect or disconnect remote systems

• Allocate partitioned data sets or sequential data sets on remote systems

• Launch an edit session for a specific file or PDS member

• Migrate, delete, or rename data sets

• Create PDS members within data sets

• Move, copy, delete, or rename PDS members

• Submit jobs to the remote system

• Edit data set name levels

• Add, modify, or remove mappings that associate workstation files with remote
files,
etc…

Note that a filter named My Data Sets is automatically created for you.
This means for example that if you are logged on as EMPOTXX, you will see all data sets that will start with
EMPOTXX.* in other words, EMPOTXX would be the High Level Qualifier (HLQ), similar to when you use TSO.
Note also that you could create other filters…
Examples of MVS Files filter are: HLQ.*, HLQ.*.COBOL, HLQ.UTIL.*, HLQ.*.COB*, etc… However, a filter
beginning with an * is not a legal filter.

___ 1.2 Connecting to the z/OS Remote system

1.2.1 To Connect to the z/OS system located in Texas:

 Right-click on dallas and select Connect:

1.2.2 You will be are prompted for your z/OS userid and password.

 Type the assigned userid and password. In the figure shown below we used EMPOT24, but your userid will
be another one. The password can be any case, don’t worry about having it in UPPER case.
Please BE SURE that you are using the right ID and password that were assigned for you.

 Select Save user ID. You will be prompted for the password if you disconnect and connect again later.

 Click OK to connect to MVS Files subsystem.

1.2.3 Since our connection is not secured, a message will prompt.

 Click Yes to continue.

1.2.4 Depending when you are doing this lab it may be possible that our z/OS system is using a previous
version of RSE. If that is the case the message below may be displayed and you must click OK.

1.2.4 Be Patient! The connection could take a while depending on the network conditions. Also remember the
overhead that is caused by VMware. In a normal network this connection is very fast.
You will be able to see in the bottom of the window a message that shows that the connection is in progress:

LAB 2 - Working with Remote Systems – COBOL Page 11

1.2.5 If you successfully connect to the remote system, the dallas icon changes to

 Expand and to see all your MVS data sets

Note that you do not have the same PDS’s shown below (EMPOT24.*) this is just an example.. Depending on
which ID you are using you may have no data sets, the ID;s are reused and we have no control what is there.

Remote Systems view
The Remote Systems view shows all existing connections to remote systems.
Connections are persisted, containing the information needed to access a particular
remote host.
The view contains a prompt to create new connections, and pop-up menu actions to
rename, copy, delete, and reorder existing connections.
Connections contain attributes, or data, that is saved between sessions of the workbench.
These attributes are the connection name, the remote system's host name and system
type, an optional description, and a user ID that is used by default by each subordinate
subsystem, at connection time.
Underneath, all connections are stored as files in an Eclipse project named
RemoteSystemsConnections, which the user can enable for team support, allowing
connections to be shared by a team.

Section 2 – Allocate z/OS Data sets

You are connected to a z/OS remote system. Now you will modify a provided JCL and submit it to z/OS to allocate
some datasets that are required for this Lab.
Note that the JCL provided is on your local workstation, NOT in the remote z/OS system. You will modify this JCL
and submit it for execution in the z/OS remote system.

___ 2.1 Modifying the provided JCL

We provided a simple JCL that will allocate data sets with your assigned z/OS ID, you will edit the provided JCL
and change EMPOTXX to your assigned ID where you find it.

2..1.1 Using the Remote Systems view left click in the + sign of Local (NOT the ‘Local’ under New

Connection), Local Files, and Drives and and look for the file LAB2ALOC.jcl under RDz_POT_V7 and
LAB2

 and

Important!

Be sure that you are selecting the correct file. This JCL file will be used to allocate all the
PDS’s necessary and copy some members to be used in this Lab.
This file is under the three below… You might have other assets under this folder…

LAB 2 - Working with Remote Systems – COBOL Page 13

2.1.2 Double click on LAB2BALOC.jcl to invoke the LPEX editor

Now you will change EMPOTXX to your unique assigned z/OS userid. Your userid should be located after My Data
Sets in the Remote Systems tab.

2.1.3 Use CTRL + F to find EMPOTXX .
Type EMPOTXX in the Find field and YOUR Userid in the Replace field and click on Replace all.

In this example below we are changing EMPOTXX to EMPOT24.
Be sure that you are using your assigned user ID instead of EMPOT24

2.1.4 Double click in the blue title to have a better view of this JCL and be sure that you have changed
everything correctly.

2.1.5 Browse the file to verify the changes.
The idea is to modify the existing EMPOTXX High Level qualifier to your ID .In our example it would be something
similar to what you see below. But your change will be different; instead of EMPOT24 you would have your Userid.

2.1.6 Save the changes using Ctrl + S. Note that the * that is next to the title goes away:

2.1.7 Press Esc key to move the cursor back to the command line at the bottom of the editor.

___ 2.2 Submitting a JCL to z/OS execution

2..2.1 Double click again in the blue title to resize the file window back to its original size.

LAB 2 - Working with Remote Systems – COBOL Page 15

2.2.2 If you are still connected to the JES subsystem, you can submit this job for execution to dallas.(sometimes a
JES timeout occurs. If that is the case you will have an error when submitting and we will explain how to fix it)

 Type submit to dallas at the command line and presses enter

If you have an error message (could be due to a time out), execute the steps below,
otherwise proceed to step 2.2.3

If the Job is not submitted and you get the message Job Monitor not connected to system as
shown below, Could be because you are not connected to the JES subsystem.

Using the Remote Systems view, locate the node JES under dallas and Right-click on
JES and select Connect.

 Once you have connected, execute the step 2.2.2 above. If you cannot connect contact
the instructor. The Job Monitor was not started in the z/OS system

2.2.3 You will see the JOB ID that was created for this execution

2.2.4 Using the Remote Systems View, collapse the local folder by left clicking on the “–“ sign, since we don’t
need that anymore.

 �

2.2.5 Using the Remote Systems view expand the JES node, then My Jobs filter and EMPOTXX1
 (left click on + or your userid).

2.2.6 Double click in the JES Job Log (JES2:JESMSGLG) and be sure that the job has successfully
executed and has the return code is 4, 0 and 0 as shown below: (note that it could be all zeros if you had datasets
allocated already). The DELIST step might have 4 or 0. If the dataset was already allocated it will delete it and in
this case will be 0 instead of 4.

LAB 2 - Working with Remote Systems – COBOL Page 17

What have you done so far?

You just submitted a JOB that was executed in the z/OS and allocated some data sets that
you will need for this lab. You saw the execution output above.
Do not continue until this task has been successful.

2.2.7 Close all opened editors: LAB2BALOC.jcl and the JES listing by using CTRL + Shift + F4 or Clicking on

the
2.2.8 Another way (better) to see the JES output is creating another view..

 Right click on My Jobs and select Show in Table:

2.2.9 The Remote System Details view is opened and some info is also shown. Note the Column that shows the
Return Code.. If you double click here the output listing will open as well

:

2.2.10 You will now purge the output of jobs listed. If RACF

®
 allows you to do that..

 To purge Go to the Remote System or Remote System Details view, Right-click on your Job and select
Purge:

If you are not authorized: ignore it. RACF
®
 does not allow you to purge.

LAB 2 - Working with Remote Systems – COBOL Page 19

2.2.11 Using the Remote Systems view, expand My Data Sets left clicking on the + and you should now have
all the required datasets for the next exercise allocated. If My Data Sets was already expanded from step 1.2.5.
Right click on My Data Sets and select refresh.

Section 3 – Associate z/OS resources to properties

You have the data sets required on the z/OS and you will define the settings required to work with the z/OS assets,
such as specifying the correct COBOL libraries, CICS and DB2 settings, etc…
Usually this is done only once using the Properties groups and shared among users.

NEW on Rational Developer for System z version 7.5 – PROPERTY GROUP

You can create a property group with property values that can be shared by z/OS projects,
subprojects, and resources.

A property group is a set of property values that you define for local or remote systems.
Once defined, the values in a property group can be applied to the z/OS projects,
subprojects, and remote resources that you create on that system. Property groups
provide a way to manage resource properties, share them easily across systems, projects,
resources, and users, and maintain consistency in your development and build
environment.

You can, for example, define a property group with values required for debugging in your
environment and apply that property group to your resources when you need to debug the
programs in your project or subproject. If you need to change a specific property value, for
example, the JCL job card and data set, you can change this property once in the property
group and the change is propagated to all resources associated with that property group.

System programmers can create property groups and default property values and make
them available to users. When a connection is made to a system, Rational Developer for
System z searches the system for system property group and default value files. If these
files are found, then those property groups or default values are loaded and can be used.

Rational Developer for System z assigns a set of default properties for the set of system properties. If you plan to
develop COBOL applications in the workbench, you may wish to set properties on the Compiler Options tab of this
page and override the JCL Procedures that would otherwise be used for compile, link, and execution requests.

Note that the string <HLQ> is automatically replaced with the high level qualifier you select when you create a
project from this system definition. Depending on your use of CICS, DB2, and IMS, you may need to set additional
properties on the remaining tabs of this page.

___ 3.1 Associate the property group to the MVS Files

3.1.1 Since this task is done once per installation, we have already created a few property groups on your
workspace that reflect our z/OS system used in this exercise.
You still need to import those properties to your workspace.

Using z/OS Projects perspective and Property Group Manager view, right click on dallas � import… ,

3.1.2 Click on Browse…, navigate to C:\RDZ_POT_V7\LAB2\LAB2_Property_Group.xml select open on the
Browse Window and then select LAB2_Remote_COBOL and click OK

3.1.3 Expand dallas and you will see the properties imported

LAB 2 - Working with Remote Systems – COBOL Page 21

3.1.4 Using the Remote Systems view, expand dallas, select MVS Files, right-click and select Property Group
���� Associate Property Group …

3.1.5 Select LAB2_Remote_COBOL and click OK

You will see the properties associated to this resource in the next steps. Usually those properties are defined once
and shared among developers.

3.1.6 Select MVS Files again, Right-click and select Properties.

3.1.7 In the Properties dialog, click on Property Group and click Edit

3.1.8 Click Next twice from the dialog below

LAB 2 - Working with Remote Systems – COBOL Page 23

3.1.9 Using the Edit Property Group dialog click on COBOL Settings (left).

 Click on + sign that is on left of ELAXFCOP, ELAXFCOT and ELAXFCOC

 Select COBOL and click Edit step..
 This is the default COBOL Procedure used when the Remote COBOL syntax checking is used.

Note that we could enable and disable the procedures that must be executed before the
COBOL compilation if necessary. The default supplied procedures (but disabled) are:
ELAXFCOP – invoke DB2 pre-compiler
ELAXFCOT – invoke CICS translator
ELAXFCOC – invoke COBOL compiler
But by default only ELAXFCOC is enabled. This can be modified if necessary.

3.1.10 The COBOL Compile Step Options properties dialog will open. Note that you could change these
properties, such as Compile Options, data set names, etc. For instance, when JCL is generated for Compile, it will
use the options specified here.
The <HLQ> will be replaced with your logon userid when JCL is generated or when you create a z/OS project that
we will discuss later.

No changes must be made; your screen must be exactly as shown below. Click OK to close it.

3.1.11 Click on Run-time Options, expand ELAXFGO, click on Run and Edit Step..

3.1.12 No changes must be made, your screen must be exactly as shown below.
Also note that Run in batch was specified. We do not want to use the debugger.
Note the DDNAME POTVSAM in the additional JCL. This will be the DDNAME that will point to the VSAM data set
in the z/OS and required for the batch execution. When the JCL is generated this DDNAME will be added..

 Click OK to close this dialog.

3.1.13 Click Finish to close the dialog and OK to close the property Group dialog.

What have you done so far?

You have connected to z/OS and have submitted a Job to allocate and copy some
members required in order to do this lab.
You assigned the MVS resources to pre-defined properties .
Now if you ask for JCL generation, for instance, the data set names will be correct..
Now let’s copy a COBOL program to z/OS and play with it.

LAB 2 - Working with Remote Systems – COBOL Page 25

Section 4 – Send the COBOL program to the z/OS

You have the data sets and copy book members required for this lab, but you still need a COBOL program to play
with. On this section you will copy a COBOL program from the workstation and move it to your PDS member. Later
we will work with this program.
We could do that with the JCL that you had submitted before, but we want to show you that one way to move data
sets is to copy/paste files from your workstation to the z/OS. This capability will also work between different z/OS
connected systems.

4.1 The data sets that you created submitting the JCL consist solely of the COBOL Copybooks and two COBOL
subroutines. You will now copy the main COBOL program that is in your windows directory to the z/OS system.

 Using the Remote Systems view left click in the + sign of the nodes Local, Local Files, Drives and C:\ and look for
the folder C:\RDz_POT_V7\LAB2 in the next step you will copy CUSVSAM.cbl to the PDS allocated on z/OS

 and .

4.2 From Remote Systems view right click on CUSVSAM.cbl and select Copy

4.3 Still using the Remote Systems view, scroll down to the dallas connection and if not already expanded, expand
MVS Files and My Data Sets until you find the dataset EMPOTxx.POT.COBOL. (where EMPOTxx is your userid) rigth-
click on EMPOTxx.POT.COBOL and select Paste.
Note: If you do not see the EMPOTxx.POT.COBOL, right click on My Data Sets and click Refresh

4.4 The programs will be copied from your workstation to the z/OS. A progress indicator will be shown:

4.5 Expand the dataset EMPOTXX.POT.COBOL left clicking on and you will see the
COBOL program (CUSVAM.cbl) loaded at the z/OS and also mapped to cbl (COBOL).
Note that the other programs were already there and were copied when you submitted the JCL on section 2.

LAB 2 - Working with Remote Systems – COBOL Page 27

4.6 Using the Remote Systems View, scroll back and collapse the local folder left clicking on the , since
we don’t need it anymore.

 �

What have you done so far?

You have connected to z/OS and have submitted a Job to allocate and copy some
members required to do this lab. You also associated some properties to the MVS files
that you will work with.
In this last section you copied a COBOL program from your local workstation to a z/OS
dataset. You are ready to start working on this COBOL program now..

Section 5 – Create a z/OS Project and MVS Subproject

To make your job easier, you will group together all the assets that you will work with. This is a new development
concept for TSO users, since TSO does not provide such capability. To accomplish this task you will create a z/OS
project and select which assets we will be part of this project.

What is a z/OS project?

After you define a z/OS-based system, you can define a z/OS project under that system.
You can define the z/OS project, however, only when you are connected to the system.
Rational Developer for System z assigns a set of default properties from the set of system
properties. However, changes that you make to system properties do not affect the
definition of an existing project. If you change your system properties to reference a new
compiler release, for example, the reference affects only those projects that are defined
subsequent to the change. This isolation of system data from existing projects is beneficial
because it lets you develop your code without disruption. You can introduce changes to
the project definition at a time of your choosing.
States of a z/OS project

A z/OS project is in either of two states:
• In online state, the project is connected to the system to which the project refers. You
can directly change the data sets that are stored in that system.
• In offline state, the project can access only workstation-based files, which may be new or
may be copies of mainframe resources.
When you disconnect from z/OS, you can specify the data sets and members to be
transferred to the workstation. When you switch back to the online state, the specified files
are automatically uploaded to the mainframe, with a confirmation message that keeps you
from unintentionally overwriting resources.

Creating a new MVS subproject
MVS subprojects contain the development resources that reside on an MVS system. You
can create multiple subprojects in a z/OS project.
Before you create an MVS subproject, you need to have completed the following tasks:
� Connecting to a remote system
� Creating a z/OS project

What is new on Rational Developer for System z Version 7 related to z/OS Projects?

Host-based projects: A host-based project is one that has been defined on a z/OS
system and can be downloaded to the workstation when you connect to the remote
system. Host-based projects enable an installation to define and automatically propagate
projects on client workspaces from a central location.

When you disconnect from a remote system, the host-based projects are removed from
your z/OS Projects view.

Host-based projects are downloaded automatically when you connect to a remote system.
When they are defined on the z/OS system, host-based projects are associated with
specific user IDs and downloaded when those user IDs connect to the z/OS system.

___ 5.1 Creating a new z/OS Project.

The advantage of creating a z/OS Project is that we just focus on those datasets and members that are being
constructed or updated, instead of having all of the dozens of mainframe datasets or members. At anytime if you
need to see a dataset not added to the project, just go to the z/OS Systems view and add it. Also, at any time, you
can remove from your project the datasets no longer being used.

5.1.1 Using the z/OS Projects view (on the left), right click the blank area and select New ���� z/OS Project…

5.1.2 Type POTCOB as the Project name select Create an MVS subproject and click Finish.

LAB 2 - Working with Remote Systems – COBOL Page 29

5.1.3 Type LAB2_COBOL as the Subproject Name click on LAB2_Remote_COBOL property group and
click Finish

You should see a z/OS Project named POTCOB in your z/OS Projects view.

5.1.4 Using the z/OS projects view, left click on the + sign to expand the project POTCOB, you'll see that is
empty, but it was created.

___ 5.2 Add resources to the subproject

To make the data sets available to your remote project named POTCOB, you will need to add them. For this lab we
just want to add three datasets, but you could select to add specific members or the whole dataset.

5.2.1 Using the Remote Systems view (on your right). Expand the MVS Files and My Data Sets under
dallas until you see the data sets that you allocated before.

5.2.2 Select EMPOTXX.POT.COBOL, EMPOTXX.POT.COPYLIB, and EMPOTXX.POT.JCL (hold the Ctrl
key for multiple select), Right-click mouse and select Add To Subproject…

5.2.3 On the Add Resources panel, select the z/OS project POTCOB from the drop down list (there is only
one) and subproject LAB2_COBOL from its drop down list (there is also only one) and click Finish.

5.2.4 Switch to the z/OS Projects view and expand LAB2_COBOL. You will now see that
EMPOTXX.POT.COBOL, EMPOTXX.POT.COPYLIB and EMPOTXX.POT.JCL are defined to the POTCOB
project.
Also expand EMPOTXX.POT.COBOL and EMPOTXX.POT.COPYLIB. The z/OS Projects view should look like
this:

LAB 2 - Working with Remote Systems – COBOL Page 31

Show Dependencies
In this example we have added the COPYBOOKS in the project. This is not necessary.
Rational Developer for System z has a nice feature named Show dependencies..
You can automatically add the dependencies of a COBOL or PL/I program to your MVS subproject.
The COBOL or PL/I program must be part of an MVS subproject, and this program must not contain
any syntax errors.
Note: If your program depends on a file that cannot be found, an error message is returned and the
file is skipped. To ensure that files are not skipped, you may first run a local syntax check on your
program; if the syntax check does not produce any errors, then all the dependencies can be located
and no files will be skipped. The sequence would be like the shown below. DO NOT perform this on
this lab to save time. This will send a job to z/OS to be executed..
1. Right-click the COBOL or PL/I program in the z/OS® Projects view.
2. Select Show Dependencies in the context menu. A job will be submitted to z/OS and if the
system is able to execute your job a window opens, listing the dependencies for the selected
program. This operation could take minutes depending on the z/OS availability.
3. Select the dependencies you wish to add to your subproject in the list box.
4. Check the Add selected to subproject check box.
5. Click Finish.
The selected dependencies would be added to your MVS subproject.

What have you done so far?
At this point you have connected to z/OS and have submitted a job that allocated and copied some
members required to do this lab. You have associated to MVS files configuration properties.
In section 4 you copied the CUSVSAM COBOL program from your local workstation to a z/OS
dataset.
In section 5 you created a z/OS project and added three datasets to this project and you are ready to
proceed.
If you disconnect now and connect later, you can go the z/OS projects and the code that you are
working on is all grouped there making your work easier since you don’t need to start looking for all

your components.

Section 6 – Working with z/OS remote assets

We will work with a z/OS member using the editor.

What z/OS remote assets you will work with?

You have copied a COBOL program named CUSVSAM from your workstation to a PDS member.
This is a batch program that reads a VSAM data set and display it contents. Also this program
does a Dynamic call and a Static call to two other COBOL programs named REGI0B and
REGI0C.The figure below shows this program architecture:

 ___ 6.1 Editing a remote COBOL program

6.1.1 Using the z/OS Projects perspective and the z/OS Projects view, expand EMPOTXX.POT.COBOL in
the POTCOB project. Double click on CUSVSAM.cbl to open the file using the editor. You should see something
similar to the following:

6.1.2. You can use the mouse to expand the editor area to see more lines of the COBOL program. Also
remember that when double clicking in the title (CUSVSAM.CBL) you can either expand up to a full screen or return
to original size. Also Window ���� Reset Perspective restores the default (in that case you may need to rearrange
the Remote Systems and Team views on top of z/OS projects view again).

6.1.3 Click in the Outline tab to see the Outline view.
Using the editor, browse the program and note that the contents of the outline view is synchronized with the
COBOL source code and vice versa.

 Click on the PROCEDURE DIVISION

LAB 2 - Working with Remote Systems – COBOL Page 33

6.1.4. We will now do a small change in the DISPLAY statement.

Locate the line 44 and add XX to the DISPLAY statement where XX could be your initials (RB in the picture
below.

6.1.5 Save the change using the key combination Ctrl + S. The * next to the title will go away.
Do not close the editor.

When you are editing a PDS member, this resource is locked to prevent multiple updates, if you are interested go
to the TSO and verify this locking, execute the steps 6.2.1 thru 6.2.11 otherwise jump to the step 6.3.1

___ 6.2 (Optional) Emulating TSO under Rational Developer for System z

If you are running late skip this step and go to step 6.3.
Now you will use TSO to logon to the same z/OS system that you are connected and verify that your changes were
saved to the z/OS.

6.2.1 Using the Remote Systems view right-click on dallas and select Host Connection Emulator Support.

You will be emulating a 3270 screen on the Dallas z/OS system,

Resize the window so you will be able to better see the 3270 black screen. Just Double-click on the blue title
dallas.hce

You will have more space to see the 3270 emulation

Type TSO in the DEMONET black screen and press Enter (use the Right CTRL key as the enter key)

To log on to the TSO :

 Use your z/OS assigned user id (like EMPOTXX below) and press the Right Ctrl key.

Type your password and press the Right CTRL key

Press the Right CTRL key until you get the z/OS option menu:

LAB 2 - Working with Remote Systems – COBOL Page 35

6.2.2 We want the ISPF Utilities… Type 3.4 in the command line and press the Right CTRL key:

6.2.3 Using the Utility panel type your userid.* (like EMPOTXX.*) to see the datasets that start with that high
qualified name and press the Right CTRL key:

6.2.4 Type E in the dataset EMPOTXX.POT.COBOL and press the Right CTRL key

6.2.5 Type S to select the member CUSVSAM and press the Right CTRL key to edit it.

Since you are editing this file with Rational Developer for System z (assuming you did not close the editor) you will
have a message that tells you that the member is in use.. Cool ah? Otherwise people could edit the file being used
by Rational Developer for System z.

6.2.6 Press F1 twice and you will see that this file is being edited by FEKFLK00

6.2.7 Press F3 to exit and type B in place of E to browse the file..

6.2.8 Use F8 and F7 to locate the modified statement as seen below:

6.2.9 Logoff the TSO.

 Press F3 five times

Type 2 to delete data sets if requested

What have you done so far?

At this point you have connected to z/OS.
In this section 6.2 that was optional you emulated a z/OS 3270 session, logged on to TSO,
and tried to edit the same member that you are using in Rational Developer for System z -
but without success. However, you could browse this member since browse is a read-only
operation and then check the change that you had made in the member..
You are ready to continue..

6.2.10 Type LOGOFF and press the Right Ctrl key.
The LOGOFF is important since if you stay logged a timeout will disconnect you and you will NOT be able to
logon again.

6.2.11 Close the TSO emulator window clicking on x.

LAB 2 - Working with Remote Systems – COBOL Page 37

___ 6.3 Exploring the use of copybook expansion

When we are editing a COBOL program sometimes we need to see the contents of a copybook. This function is
available on the editor and might help you. See one example below.

6.3.1 Still editing the program CUSVSAM.cbl press CTRL + F to bring up the Find/Replace dialog (shown
below). Enter copy in the Find field and click the All button.
You should see something similar to the following. All lines with ‘copy’ will be shown. (we have only one)

6.3.2 Double-click on the copybook name POTVSAM (line 16) to highlight it. This can be done by double-
clicking on the word POTVSAM. Right-click and select Open Copy Member

This will open the POTVSAM.cpy copybook in another editing window as shown below. Remember that this asset
is also on the z/OS. If you move the mouse to the blue title you will see where this copybook is located:

How the copy book is found?

Copybooks are resolved based on the value of Copy Libraries in the properties defined in
the COBOL Settings as seen below.
The copybooks are found even though they are NOT part of your MVS Subproject. Usually
there is no sense to add copybook libraries to MVS Subprojects, since they are used for
many projects (unless they also need updates).
Note that in this lab we added the copybook but this is not necessary,
One option Show Dependencies will help to identify possible resources necessary for a
COBOL program,.

6.3.3 Close the POTVSAM.cpy editor panel clicking on the X..

6.3.4 To expand the program again, first click anywhere on the CUSVSAM.cbl editor area to make it the active
editor. Then right-click and select the Show all (or CTRL + W)

This action removes the filtered view (currently showing all statements with the word copy) and displays all
statements.

LAB 2 - Working with Remote Systems – COBOL Page 39

___ 6.4 Modify the COBOL Program

Program CUSVSAM.
This is a batch program that reads all records from a VSAM KSDS file and prints them
using DISPLAY.
Also this program calls two other COBOL programs (REGI0B and REGI0C) using dynamic
and static calls.
The subroutine that is called dynamically does a division by zero that will cause an abend
with System Completion Code=0CB.
Using the z/OS Debug we can intercept the abend, modify the value to be other than zero,
go back to the division statement and re-execute the division avoiding the abend.

6.4.1 Using the Outline view, navigate to the first Procedure Division statement by clicking on it.

Strange behavior using Outline?
If clicking in the outline do not cause the positioning as it should, close the editor and open
it again. This is a known issue that will be fixed soon.

6.4.2 We want to execute this code, but before submitting a job to the z/OS system to compile the COBOL source
file, you can perform a syntax check to ensure a clean compile.
You will deliberately introduce an error to illustrate the error feedback facility.

 Using the outline view, find the PROCEDURE DIVISION and Go to line 44 of CUSVSAM.cbl (or, you could
use the command CTRL + L and type 44).
6.4.3 Lets introduce a small error.

 Change DISPLAY with DSPLAY to force an error. An yellow mark shows that something is wrong. Move
the mouse to the yellow mark to see what the error is. This is a new feature in version 7.5.

6.4.4 Go to the line 75 to change the IF statement (under paragraph 0200-LOGIC)

Change from ‘LAB2’ to ‘NODYNAM’. Do NOT save the changes.

___ 6.5 Using Local Syntax Checking

6.5.1 We want to compile the COBOL program using the local compiler. This will save some CPU in the z/OS
system.
Note that even though the assets are remote we can use the local compiler and save some CPU on the z/OS. But
first we need to save the changes. There is one option that performs both actions.

Right-click and select Save and Syntax Check ���� Local

LAB 2 - Working with Remote Systems – COBOL Page 41

6.5.2 Select Syntax check only since there were no changes in any of the dependencies (like the copybooks.)
and click OK

IMPORTANT � Do not use the default selection (Refresh dependencies…) this might take a while. If you did by
accident be patient. This will submit a JOB to z/OS…

6.5.3 Click on Remote Error List view (in the bottom) to check syntax errors.

6.5.4 Double click on the error message. This should bring you to the editor positioned at line 44.

 ___ 6.6 Using Replace with Local History

6.6.1 You will fix that by returning to the old version that had the correct DISPLAY statement.

 Click CTRL + Shift + F4 to close any opened editor.

6.6.2 A nice feature of Rational Developer for System z is the capability to recover previous versions (even remote
code) using the local workstation. This is very useful when you delete and save components on the z/OS where
undo is not possible after you have saved the changes.

 Right click on CUSVSAM.cbl and select Replace With ���� Local History

6.6.3 This operation can take a while since it goes to z/OS. It will show all the previous versions (you have just
one).

 Click on the white spot on the right (see the little hand in the figure below) to see the next change.

LAB 2 - Working with Remote Systems – COBOL Page 43

If you have a different result than shown above you might have change the preferences on
your workspace. Also be aware that you are not using the suggested workspace for the labs
and might have future issues. You can continue for now, but in the next lab switch to the
correct workspace.
To change the preferences:
1. Select Windows � Preferences
2. Expand General and click on Compare/Patch
3. Select Ignore white space
4. Click OK.

6.6.4 You can see the differences between the files:

6.6.5 To return to the previous version (the original without changes) click on Replace button. The version
without changes will return to the z/OS system.

Note all operations are being done at the z/OS. Depending on the network this could be slower than if you were
using the local copy.

6.6.6 Perform another Local Syntax Check

 Right click on CUSVSAM.cbl and select Syntax Check ���� Local

6.6.7 Again select Syntax check only and click OK

6.6.8 Click in the Remote Error List view and note that we have a warning now in the Remote Error List. The error
message from the last time is gone.

LAB 2 - Working with Remote Systems – COBOL Page 45

6.6.9 Double click in the warning and you will be positioned at the location of the warning. We can ignore
warnings for the purpose of this demo.

6.6.10 Close all opened editors if still opened. (CTRL + Shift + F4)

 ___ 6.7 Generate JCL to compile, link and GO without z/OS debugger

6.7.1 Now that you have a successful syntax check of your COBOL program, you can generate the JCL (Job
Control Language) that will be used to create the executable on your z/OS system.

 Using the z/OS projects View, right-click on CUSVSAM.cbl and select Generate JCL ���� For Compile Link
Go.

6.7.2 On the JCL Data Set and Member Name window, notice that the JCL Data Set Name is set to the value you
specified for your project settings.
Be sure that the data set name is EMPOTXX.POT.JCL (where EMPOTXX is your userid) If not change to this data
set name.

 Click OK.

6.7.3 You should see the message below. Click OK.

LAB 2 - Working with Remote Systems – COBOL Page 47

6.7.4 Go to your z/OS Projects view, and you will see that CUSVSAM.jcl was generated.

6.7.5 Open the JCL member (double click on it) and check the JCL generated. Also note that instead of
EMPOT24.* you would have your user ID. The first 14 lines should look something like this.

6.7.6 Notice that LPEX editor recognizes JCL and you can navigate your job through the Outline view.

Click on step //GO and note that the cursor will be at this location.

6.7.7 Add a JCL error, for example if you delete the comma in the end of the line as shown below (after
CUSVSAM) and press enter you will have the error below. Note also that some keywords are recognized and
displayed in blue.

6.7.8 Fix the line 32 by adding a comma after CUSVSAM and pressing enter.

6.7.9 Take a look in the generated JCL.

Using the Outline view, if not there already, click on the step //GO. Note the JCL card POTVSAM that is
generated. This card was defined in the project properties as shown in the step 3.1.8.

The program CUSVSAM calls 2 other COBOL programs (REGI0B and REGI0C). To facilitate the labs, those
programs were already compiled and are in the dataset EMPOTXX.POT.OBJ and EMPOTXX.POT.LOAD since
they need to be included by the linkage editor.

6.7.10 Save the changes (Ctrl + S). Do NOT close the editor.

LAB 2 - Working with Remote Systems – COBOL Page 49

 ___ 6.8 Submit JCL for execution

6.8.1 Now you can submit the job to be run on the z/OS system. You can use the editor command or the context
menu actions. Note that the JES subsystem must be connected, otherwise a message will indicate that submit was
not accepted.

 Using the command editor type submit (or sub) and press ENTER as shown below; just as you could do it
using TSO/ISPF

6.8.2 A message with your JOBID number will indicate that the job was accepted as seen below

6.8.3 Close the JCL editor by clicking on the .

 ___ 6.9 Access the output listings

You can check the job generated output listings,

6.9.1 Using the Remote Systems view locate the node dallas, expand JES node

 Right-click on My Jobs and select Refresh.

6.9.2 Expand My Jobs and the first job on the queue and you will see the execution results

6.9.3 Right-click on My Jobs and select Show in Table. This is a good way to see the listing since you get
more details, the return code, the dates, etc..

6.9.4 As we expected we had an ABEND and the return code is 0CB (division by zero)

LAB 2 - Working with Remote Systems – COBOL Page 51

6.9.5 Using the Remote System Details, double-click on the job that you have submitted

6.9.6 Since the abend was after the display of the VSAM records we can see the records displayed.

Double click on the step GO SYSOUT to the results of this step. Each record was read from the VSAM and
displayed to the listing. You also can see the decimal-divide exception that caused the 0CB.

6.9.7 Close all the editors (CTRL +Shift + F4).

6.9.8 Using Remote System Details view select the jobs to be purged (use CTRL key if more than one), right-
click and select Purge. The job(s) listing(s) will be purged if you have authorization allowing you to do so.

If you are not authorized to purge this job a message is displayed on the bottom:

___ 6.10 Generating JCL for z/OS Debug Execution

6.10.1 We need to change the Run-time properties of your project to be able to have the JCL generated with the
debug options. We will override the default properties.

Right click on CUSVSAM.cbl and select Property Group ���� Override Properties

LAB 2 - Working with Remote Systems – COBOL Page 53

6.10.2 Click on Run-time Options, expand ELAXGO, select RUN and click on Edit step…

6.10.3 Change the option to Run in batch with debugger and be sure that Program Parameters/Run-time
Options is selected and click OK and Finish to close the properties dialog:

Note: the reason that we specified Program Parameters/Runtime Options is that we want that the JCL generated

be in the form PARM.RUN=('/TEST(,,,TCPIP&&xx.xx.xx.xx%8003:*)') to be used by the z/OS Debug. If
you specify Run-time Options/Program Parameters the JCL generated will be in the form

PARM.RUN=('TEST(,,,TCPIP&&xx.xx.xx.xx%8003:*)/') and our COBOL z/OS debug will not work this

way. But when doing PL/I this is the preferred way.

6.10.4 Right-click on CUSVSAM.cbl and select Generate JCL ���� For Compile Link Go.

6.10.5 On the JCL Data Set and Member Name window, click OK.

 6.10.6 Since this is the second time that you generate the JCL, click Yes to replace the existing member

6.10.7 You should see the message below. Click OK.

LAB 2 - Working with Remote Systems – COBOL Page 55

6.10.8 Open the JCL file double clicking on it.

 Using the Outline view, click on //GO and note that a PARM.RUN parameter was generated.
Note that the TCPIP address of your machine is also generated (and will be other than the one in the figure below).
Your EM4Z workstation will be listening at the port 8003 (default is 8001 but we changed it on your workspace to
8003).
The z/OS Debug tool running on the z/OS will communicate with you using this IP address (that is the why this
section will work ONLY in some networks that are known by the z/OS in Dallas).

6.10.9 Close the editor pressing Ctrl + F4.

Do not submit this JOB unless you are instructed to do it.

What have you done so far?

At this point you are still connected to z/OS.
In this Section 6 you edited a COBOL program located in Dallas, made small changes on it
and after the changes were committed on z/OS, you returned to the previous version using
the local history. This is a nice Rational Developer for System z feature that might be very
helpful.

You added an error in the program, checked the syntax and corrected the error.

You generated the JCL necessary to execute the batch program and submitted it for
execution.

Also, you have seen how the z/OS Debug tool would communicate back to your
workstation using the TCP/IP address automatically generated in the JCL card.

If you are on the same network as the z/OS Dallas system you will be able to debug the
code, the instructor will inform if this would be possible or not, otherwise (if you still have
time), you might continue with section 7 that shows how to work offline.

___ 6.11 Using the z/OS Debug Tool (Remote Debug)

ATTENTION **

Ask the instructor if you are able to do the z/OS debug exercise, otherwise
you might see the debug on action using a provided flash Movie.

The z/OS Remote debug will work only if the z/OS Dallas system is able to
understand your workstation’s IP address.

When the COBOL program is running under z/OS Remote z/OS debug, it must be able to
communicate back using the TCP/IP address that is known in the z/OS network.
If you are behind a router or without an external physical TCP/IP address, the debug will not
work. Usually this means that you must be inside the same network as the z/OS server.

But at least you have been able to generate the JCL and understand how the debug will
work.

Also a flash movie will be provided for you to show you the debug.

Section 7 – Optional - Working offline in a z/OS Project

We will see how to do some offline work.

To create an MVS project, you have to be connected to a remote system. However, you do not have to remain
connected to the remote system to work on resources associated with the project. You can work offline. Here we
will explain how this can be done. This example assumes that you are connected to a z/OS
7.1 Using the z/OS Projects perspective and z/OS Projects view.

 Right-click in the MVS project named POTCOB that we created for the lab and select Work Offline….

LAB 2 - Working with Remote Systems – COBOL Page 57

7.2 Expand POTCOB and select the data set members REGI0B.cbl, REGI0C.cbl, CUSVSAM.cbl, , and the
copybook POTVSAM.cpy that we want to save to the workstation, to work without connection, and click Next .

7.3 Click Show Dependencies button. This will submit a JOB to z/OS to find if some of the assets selected
has some dependencies. (may take a while) and the result should be show as below.

Click Select All and Finish.

7.4 The selected components are copied to your local windows machine..

7.5 Using the Remote Systems view, Right-click on dallas click disconnect to be disconnected from the
z/OS:

7.6 Switch back to the z/OS Projects view and edit CUSVSAM.cbl (double click on it). Now this program is
copied in your workstation and you could work without z/OS connections.

LAB 2 - Working with Remote Systems – COBOL Page 59

7.7 Move the mouse before the number 000004 and left click, then press CTRL + ENTER, use the Tab key
and enter a comment below the line 4 (Note that an * must be in the column 7).

7.8 Change the statement 000076 as shown below (was ‘LAB2’ before, now it is ‘OFF’):

7.9 Save the code and Close the editor (Ctrl + Shift + F4). Click Yes to save the changes

7.10 To connect your MVS project back to the remote system, switch to the Remote Systems view and
connect to z/OS.

Right-click on dallas and select Connect. The dallas icon will change to :

7.11 Click YES for SSL warning and after connected, expand the MVS Files and My Data Sets folder and
make sure that you have your MVS data sets listed:

7.12 Switch back to the z/OS Projects View, right-click the POTCOB project and select Work Online.

7.13 After synchronizing the differences you will have a screen as shown below.

 Expand wdz_proj_POTCOB_LAB2_COBOL and remote_files/EMPOTXX.POT.COBOL

Note that CUSVSAM.cbl has an icon that indicates that the CUSVSAM.cbl code must be uploaded to the
host. Since we did not modify the other off-line assets they are not shown here.

LAB 2 - Working with Remote Systems – COBOL Page 61

7.14 Click on CUSVSAM.cbl and you will see the changes that were made offline.

Note: You can also use these icons to manage individual file changes.

And use these icons to manage conflicts.

7.15 Click on the white mark on the right to see the next change as seen below:

7.16 Right-click on CUSVSAM.cbl and select Upload:

7.17 Note that there is no conflicts to solve, since no one has changed the z/OS host files during the offline work
you have done. If the host files were modified you would have conflicts here.

Click Work Online.

7.18 Now the host reflects the local changes and we are able to work online again with your z/OS project and the
local changes that were uploaded.

 Double click on CUSVSAM.cbl and check the changes that you did while off-line

LAB 2 - Working with Remote Systems – COBOL Page 63

'Local Syntax Check' has encountered a problem. An internal error occurred during:
'Local Syntax Check' ?
This is a know issue that may happen if you are using an undercore (“_”) in the project
name as we are. This will be fixed soon.. To bypass, close RDz and reopen it again.

7.19 Close the editor. (CTRL + Shift + F4)

7.20 If you have seen enough, disconnect from z/OS and close Rational Developer for System z.

Section 8 – Optional - Exploring TSO Commands

If you are interested, you can explore the TSO Commands feature of Rational Developer for System z
 Users can launch TSO session from Remote Systems view, they could have multiple TSO Sessions up at the
same time. The New TSO Commands UI is based on USS Shells executed by RSE. Let’s see one example below.

8.1 Using the z/OS projects view and Remote System perspective, be sure that you are connected to the
z/OS. An easy way to verify is left clicking on the node My Data Sets to see your datasets on MVS.
If not connected, right-click on dallas and select connect.

8.2 Scroll down to see the TSO Commands note. Right Click on it and select � Launch TSO as seen below:

 8.3 The Remote shell view will open

8.4 You will now be able to execute commands, like the command time seen below:

Type time in the Command line and press enter.

8.5 Also in the command line you will be able to use the Ctrl + Space to have the content assist, as seen
below. Type li and press Ctrl + Space:

8.6 Select LISTALC and press Enter . The result will the one below

LAB 2 - Working with Remote Systems – COBOL Page 65

8.7 You also could use the icons below and perform some activities.., Like Export the output, etc…

8.8 Disconnect from the z/OS system and close Rational Developer for System z.

8.9 Close all open editor windows if any opened… (pressing Ctrl+Shift+F4 should accomplish this).

8.10 Reset the perspective to the defaults. Select Windows ���� Reset Perspective

8.11 Close Rational Developer for System z: File ���� Exit |

Congratulations! You have completed the Lab. .

Solution

If you could not complete the lab don’t get frustrated. In case you missed one step or typed a wrong name you
would have problems. In that case you can use the solution workspace.
This workspace is located at C:\Workspaces7.5\RDZSOLUTION

To start the workspace with the solution:

Open the folder and double-click in the icon
Or specify this workspace when Rational Developer for System z starts:

