
1

v

© 2008 IBM Corporation

DB2 for z/OS
Performance

Road show edition
April / May 2008

April 2008 © 2008 IBM Corporation

This session covers application performance topics for DB2
for z/OS V8 & 9 including:

Query performance enhancements such as materialized
query table and non-index column distribution statistics
SQL performance enhancement such as more indexable
predicates and multi-row Fetch, Update, Delete, Insert
Index enhancement such as variable length index keys
Other application performance enhancement such as
trigger and lock avoidance

This presentation provides information on DB2 for z/OS V8
& 9 performance. Please note that some product changes
may result in changes.

Abstract: DB2 for z/OS Performance:

2

April 2008 © 2008 IBM Corporation

Acknowledgment and Disclaimer

Measurement data included in this presentation are obtained
by the members of the DB2 performance department at the IBM
Silicon Valley Laboratory. Akira Shibamiya is the primary
source.
The materials in this presentation are subject to
ƒenhancements at some future date,
ƒa new release of DB2, or
ƒa Programming Temporary Fix

The information contained in this presentation has not been
submitted to any formal IBM review and is distributed on an
"As Is" basis without any warranty either expressed or implied.
The use of this information is a customer responsibility.

April 2008 © 2008 IBM Corporation

V8 best practice performance plan
example scenario

-2
-1
0
1
2
3
4
5
6
7

V7 V8 CM V8 NFM V8 use

CPU

Data sharing Better statistics DB design adjustments
REBIND Cluster, index
PGFIX(YES) application changes
zIIP multirow fetch & insert
zparms SQL adjustments

Your situation will vary. Less CPU is better.

3

April 2008 © 2008 IBM Corporation

DB2 9 z10, z9, z890 & z990
performance plan example scenario

-6

-5

-4

-3

-2

-1

0

V8 V9 CM V9 NFM V9 Use

CPU

Utilities DB design adjustments
Histogram statistics Index improvements
REBIND application changes
DSNZPARMS native SQL procedures

SQL adjustments
Your situation will vary. Less CPU is better.
z800 and z900 expect +5% to +10% CPU

April 2008 © 2008 IBM Corporation

• Performance / Scalability Enhancements

• Improved partitioning scale and flexibility

• Many index improvements

• Query / Access Path Performance Enhancements

• Multirow fetch and insert

• Synergy with new hardware: zIIP, MIDAW, DS8000, …

DB2 V8 for z/OS Performance Overview

4

April 2008 © 2008 IBM Corporation

V8 Queries and data warehouses

Optimization Improvements
Improved techniques
Enhanced data
Visual Explain

Enhanced index options
Materialized Query Tables
New Partitioning options
QMF improvements
SQL enhancements

April 2008 © 2008 IBM Corporation

• Significant CPU time reduction in most utilities

• Synergy with new hardware: zIIP, MIDAW, DS8000, …

• Performance / Scalability Enhancements
• Especially Insert, Update & Delete

• Query / Access Path Performance Enhancements

• Other Performance Enhancements
• Native SQL procedure, index compression
• LOBs, Varchar

• Improved virtual storage usage below 2GB DBM1

DB2 9 for z/OS Performance Overview

5

April 2008 © 2008 IBM Corporation

DB2 9 Query Enhancements
• SQL enhancements: INTERSECT, EXCEPT, cultural sort,

caseless comparisons, FETCH FIRST in fullselect,
OLAP specifications: RANK, ROW_NUMBER, …

• pureXML integration and text improvements
• Index improvements

• Index on expression Larger index pages
• Index compression Improved page split

• Improved Optimization statistics: Histogram
• Optimization techniques & REOPT(AUTO)

• Cross query block optimization
• Generalize sparse index & in-memory data cache method
• Dynamic Index ANDing for Star Schema

• Analysis: instrumentation & Optimization Service Center

April 2008 © 2008 IBM Corporation

DB2 9 Scalability

•Insert performance APPEND INDEX LOG
INDEX on expression, 8K, 16K, 32K, split

Randomized index key, larger preformat
Log Latch contention & spin relief, archiving
Not logged table space

•Partitioned table with segmented space
•Memory improvements 64 bit address space

6

April 2008 © 2008 IBM Corporation

V8 Performance Highlights

10 to 1000 times improvement possible from

ƒMaterialized Query Table
ƒStage 1 and indexable predicate for unlike data

types
ƒDistribution statistics on non-indexed columns
ƒOther access path selection enhancements

Underlined features require rebind

April 2008 © 2008 IBM Corporation

Performance Highlight - continued

2 to 5 times improvement possible from
ƒStar Join with work file index and in-memory work file
ƒPartition Load/Reorg/Rebuild with DPSI
ƒDBM1 virtual storage constraint relief

Up to 2 times (more in distributed environment)
improvement possible from
ƒMulti-row Fetch, cursor Update, cursor Delete, Insert

Underlined features require rebind

7

April 2008 © 2008 IBM Corporation

Materialized Query Table

Pre-selected and/or pre-computed results from
large table(s) saved in much smaller MQT for fast
subsequent access
ƒExample: Avg Income, Height, NetAssetValue, ... of 300

million US residents grouped by 50 states
ƒ10 to 1000 times faster possible for some queries

Automatic query rewrite for dynamic SQL to take
advantage of relevant MQT
ƒSummary table can be used directly by both static and

dynamic SQL

April 2008 © 2008 IBM Corporation

Materialized Query Table - continued

Performance considerations for maximum use
ƒFor large MQT,

–Use segmented tablespace because of
almost instantaneous mass delete in
REFRESH TABLE
–Runstats after REFRESH for good access
path selection

especially useful in join involving MQT
ƒZparm SPRMMQT for threshold to prevent

unnecessary additional bind overhead for short-
running SQL

8

April 2008 © 2008 IBM Corporation

Distribution stats on single and
multiple columns

Top N highest, and/or lowest, frequency of values and
cardinality

Bind option

Acquire /
release
example

SELECT FROM A, SYSIBM.SYSPLAN B WHERE B.ACQUIRE='A'
AND B.RELEASE='D' ...

Better join sequence from more precise filter
factor estimation of combined predicates

April 2008 © 2008 IBM Corporation

DSTATS (Distribution stats for DB2 for z/OS)
ƒA down-loadable tool available prior to V8
ƒhttp://www.ibm.com/support/docview.wss?uid=swg24001598

Fixes the most typical access path selection problems
encountered today
ƒOptimizer unable to come up with the best access path
because of a lack of distribution stats on non-indexed
columns which are referenced in predicates

Can cause performance degradation due to access
path change in a new release or after access-path-related

maintenance

Distribution statistics ...

9

April 2008 © 2008 IBM Corporation

For column comp-op value with unlike type or length
ƒ4 byte char column = 8 byte host variable
ƒ Integer column = decimal host variable
ƒStage 2 and non indexable in V7
ƒStage 1 and indexable in V8

–So index on char or integer column here can be
used in V8 but not in V7

ƒAlso useful where a programming language does not
support SQL data types. For example,
–No decimal type by C/C++, no fixed-length char by Java

More Indexable Predicates

April 2008 © 2008 IBM Corporation

Stage 1 and indexable predicate in
ƒV6: Column comp-op non column expression such as

SELECT FROM A WHERE a1=x+y
–also char/varchar of different size in equi-join such as
SELECT FROM A,B WHERE 10byte char a1=20byte
varchar b1

ƒV7: Column comp-op column expression in join such as
SELECT FROM A,B WHERE a1=b1+x, if table B joined to
A

But generally only if left side column has equal or bigger
size and precision
V8 removed this restriction for both local and join
predicates

NOTES

10

April 2008 © 2008 IBM Corporation

Multi-row Fetch

Fetch

Fetch

row 1

Single Row Fetch Multi Row Fetch

Fetch

row 1

Fetch

row 3

row 2

row 1

row 2

row 3

Fetch

April 2008 © 2008 IBM Corporation

Multi-row Fetch - continued

FETCH NEXT ROWSET FROM cursor FOR N ROWS
INTO hva1, hva2, hva3
Up to 50% CPU time reduction by avoiding API
(Application Programming Interface) overhead for
each row fetch (100 rows)
ƒ% improvement lower if more columns and/or

fewer rows fetched per call
–Higher improvement if accounting class 2 on,
CICS without OTE, many rows, few columns

ƒSee later foils for distributed

11

April 2008 © 2008 IBM Corporation

Multi-row Insert

INSERT INTO TABLE FOR N ROWS
VALUES(:hva1,:hva2,...)
Up to 40% CPU time reduction by avoiding API
overhead for each row insert
ƒ% improvement lower if more indexes, more

columns, and/or fewer rows inserted per call
Similar improvement for multi-row cursor
Update and Delete

April 2008 © 2008 IBM Corporation

Multi-row in distributed environment

Fetch, insert, update & delete
Dramatic reduction in network traffic and response
time possible
ƒby avoiding message send/receive for each row in

–Fetch when not [read-only or (CURRENTDATA NO and
ambiguous cursor)]
–Update and/or Delete with cursor
–Insert

ƒUp to 8 times elapsed time reduction observed
(up to 4 times CPU time reduction)

12

April 2008 © 2008 IBM Corporation

If Fetch with read-only or [CURRENTDATA NO and ambiguous
cursor], multi-row Fetch is automatically enabled, resulting in
ƒCPU time saving of up to 50%
ƒBut no significant difference in message traffic compared to
V7 with Block Fetch

Note that multi-row Fetch is unblocked; i.e. if 10 Fetch
calls are issued for 10 rows each, 10 blocks are sent,
compared to 1 block if multi-row Fetch is not explicitly
used.
V7 PQ49458 8/2003

OPTIMIZE FOR for access path and network blocking
FETCH FIRST for access path but not network blocking
when no OPTIMIZE FOR clause

Distributed multi-row ...

April 2008 © 2008 IBM Corporation

DSNTIAUL fetching 10000 rows
with 5 and 20 columns

13

April 2008 © 2008 IBM Corporation

20 column 100000 row Fetch CPU Time

%change in V8 acctg class1 cpu time vs V7

6
-6

-41
-49 -51 -51

-60
-50
-40
-30
-20
-10

0
10

single
row

2 rows 10 rows 100
rows

1000
rows

10000
rows

Number of rows fetched per call

%

April 2008 © 2008 IBM Corporation

NOTES

• The graph clearly shows that the percentage improvement
goes up as more rows are fetched per Fetch call.
• With 1 row fetch, V8 cpu is 6% higher than V7.
• However, with 2 row fetch, V8 becomes faster by 6%.
• Beyond 100 rows, about 50% improvement continues.
• Similarly for elapsed time and class 2 cpu time.

• The measurement shown is for a very simple fetch via
tablespace scan fetching 20 columns
• Less %improvement for more complex Fetch involving join, sort, index

access, more than 20 column fetch
• More %improvement for less than 20 column fetch

14

April 2008 © 2008 IBM Corporation

Multi-row Insert Workstation-to-Host

• DB2 for z/OS V8 acting as a DRDA application server, accessed
from a DB2 Connect Client running on Linux/Unix/Windows as
a DRDA application requestor

• 10000 20-column rows inserted

• 10row/Insert call
• -76% elapsed time and -63% cpu time compared to V7
• -30% elapsed time and -38% cpu time compared to V7 array input

• 100row/Insert call
• -82% elapsed time and -63% cpu time compared to V7
• -33%elapsed time and -49% cpu time compared to V7 array input

April 2008 © 2008 IBM Corporation

 Workstation-to-Host Insert without array input

5.6 5.7

1.4
1 0.75 0.76

1.9 2

0.68 0.51 0.49 0.49
0
1
2
3
4
5
6

V7 V8 1row
default

10 row 100row 1000row 10000row

Ti
m

e
in

 s
ec

on
ds

Req elapsed time

Server cpu time

15

April 2008 © 2008 IBM Corporation

Automatic use of multi-row Fetch
DRDA as discussed previously
DSNTEP4 = DSNTEP2 with automatic multi-row
fetch
ƒUp to 35% CPU reduction in fetching 10000

rows with 5 and 20 columns
DSNTIAUL (sample Unload utility)
ƒUp to 50% CPU reduction in fetching 10000

rows with 5 and 20 columns
QMF with APAR

April 2008 © 2008 IBM Corporation

Elapsed Time Analysis

16

April 2008 © 2008 IBM Corporation

NOTES
Accounting report (not trace) by connection type
most useful for initial analysis

Omegamon DB2 Performance Expert ACCOUNTING
REPORT LAYOUT(LONG) ORDER(CONNTYPE)
EXCLUDE(PACKAGE(*)) to group by thread
connection type such as TSO, CICS, DB2CALL,
RRS, IMS, DRDA, etc. for the period of interest.

Also STATISTICS REPORT LAYOUT(LONG) for the
corresponding period extremely desirable

April 2008 © 2008 IBM Corporation

Accounting Class 1 and 2

AVERAGE CLASS1 CLASS2

ELAPSED TIME 233ms 19ms
CPU TIME 2.95ms 2.71ms
WAIT TIME 14.76ms
NOT ACCOUNTED TIME 1.31ms

For most cases
• Class 1 for application + DB2 time
• Class 2 for DB2 time only

CICS without TS 2.2 or later threadsafe option
• Class 1 CPU for task switch + DB2 time
• Class 2 for DB2 time only

17

April 2008 © 2008 IBM Corporation

High NOT ACCOUNTED time –
2 most likely causes

CPU wait under high cpu utilization, especially with lower
dispatching priority
E.g. goal mode with low priority for DB2 address

space compared to DDF enclave, CICS, WebSphere
address space, or DDF enclave with SYSOTHER
(discretionary)

Excessive detailed online tracing with vendor tools

Other causes are much less frequent and widely varied

Some events not being captured by DB2, but more
events are being captured in newer versions

Details on the web:
http://www.ibm.com/support/docview.wss?rs=64&context=SSEPEK&uid=swg21045823

April 2008 © 2008 IBM Corporation

NOTES

• Other causes are much less frequent and widely
varied

• Some events not being captured by DB2, but
more events are being captured in newer
versions

• Online support document:
http://www.ibm.com/support/docview.wss?rs=64
&context=SSEPEK&uid=swg21045823

18

April 2008 © 2008 IBM Corporation

Accounting Class 3

2. Acctg class 3 shows the wait time
breakdown

SUSPENSIONS TOTAL TIME #EVENTS
LOCK/LATCH 0.11ms 0.3
SYNC DATABASE I/O 8.73ms 8.86
SYNC LOG WRITE I/O 1.64ms 0.49

OTHER READ I/O 2.64ms 0.76
OTHER WRITE I/O 0.004ms 0.00
SERVICE TASK 1.60ms 0.47

......
TOTAL CLASS 3 WAIT 14.76ms 10.88

Class 3 acctg strongly recommended: Negligible overhead except
when high internal DB2 latch contention, eg over 10000/sec

April 2008 © 2008 IBM Corporation

NOTES
Lock/Latch wait = Lock wait + IRLM latch wait + internal DB2
latch wait

In the rare case of over 10000 per second, disabling class 3
may significantly bring down class 1 and 2 cpu time.

Sync I/O wait = wait for read or write i/o by this application
agent

Avg time = 8.73ms/8.86 = 0.985ms
Other read I/O wait = wait for read i/o by another application
agent or prefetch engine
Other write I/O wait = wait for write i/o by another application
agent or write engine, may include some time waiting for log
write-ahead

19

April 2008 © 2008 IBM Corporation

I/O wait time tuning

Buffer pool tuning - discussed in Buffer Pool section

I/O configuration tuning
• Make sure of sufficient I/O resources
• Faster device, such as ESS 800 or DS8000 as needed
• Parallel Access Volume (PAV) beneficial if I/O contention
with high IOSQ time in RMF

• I/O striping

April 2008 © 2008 IBM Corporation

NOTES: agenda

• Minimizing #SQL calls, columns, host variables, predicates
evaluated, SQL statements, rows searched

• OPT for N ROWS
• Existence check
• Dynamic SQL, JDBC/SQLJ
• Bind option acquire and release
• Thread reuse
• DB2 trace
• Distributed / stored procedure
• Catalog statistics check
• Compression, Encryption, Row-level Security

20

April 2008 © 2008 IBM Corporation

Minimize SQL Calls to Reduce API Overhead

Filter out unnecessary rows by adding predicates
rather than by application program checking
Use of DB2 column functions rather than application
program code
Example: find how many employees make more than
$10,000/month
1 Select, fetching all 100000 employee rows
2 Select Where Salary>10000, fetching 1000 rows
3 Select Count Where ..., fetching 1 row

100 times CPU time reduction possible from API
elimination
Watch out for VSAM programmers, IO modules (stage 3
predicates)

April 2008 © 2008 IBM Corporation

Minimize #SQL Calls - continued
Singleton SELECT is more efficient than OPEN, FETCH, CLOSE
Fetch First N Rows Only in V7, in subquery V9

Limits the number of rows fetched to avoid fetching unwanted
rows
Singleton Select (or SELECT INTO) can be used with Fetch
First 1 Row even if multiple rows qualify

Avoids -811 SQLCODE
V8 supports ORDER BY for more meaningful query

• Bigger improvement possible for CICS attach
UPDATE without cursor is more efficient than OPEN, FETCH,
cursor UPDATE, CLOSE
•Up to 30% (possibly more if CICS) CPU time saving possible
from singleton Select or Update compared to cursor operation

21

April 2008 © 2008 IBM Corporation

Minimize #SQL Calls - continued

• Reducing #SQL calls improves
• API pathlength
• Processor MIPS for row processing

• Up to 2 to 3 times processor MIPS improvement
possible from high-speed processor cache hit by
repeated execution of a small set of
modules/instructions and reduction in data
moves

• V8 multi-row operation can significantly reduce the
number of SQL calls issued
• Up to 50% cpu reduction for simple (short-running)

local Fetches, more for distributed

April 2008 © 2008 IBM Corporation

Increasing order of cost
Local EBCDIC least -> ASCII or UNICODE or DRDA
-> Single byte conversion -> Double byte conversion

Integer/char least and date/time/timestamp most
expensive

Try to avoid unnecessary columns
Doubled CPU time possible with 100 additional

columns/host variables

Put Varchar to end of row when many columns (>20)

Minimize #Columns and Host Variables
Referenced in SQL Calls

F1 F2 V3 F4 F5 V6

22

April 2008 © 2008 IBM Corporation

V9 Varchar Performance Improvement

• Remember the tuning recommendation for rows with many
columns with any varchar present?

• V9 DB2 internally executes this recommendation and more

• 2 times or more improvement observed when many rows with
many varchars are scanned and/or fetched using many
predicates

• <5% improvement for a typical online transaction
• No difference if no varchar
• Reorg with rebuild compression dictionary if varchar columns

when migrating to V9

F1 F2 V3 F4 F5 V6

April 2008 © 2008 IBM Corporation

Minimize #Predicates Evaluated

Place most filtering predicates first in AND. (for
predicates of the same type)
WHERE HOME_STATE=‘MONTANA' FF= 1%

AND HAIR='BROWN' FF=10%
AND SEX='MALE' FF=50%

Weighted average of 1.01 predicates evaluated
If sequence of predicates is reversed, then the weighted
average is 1.55, or 50% more predicate evaluation, which
can lead to up to 20% cpu increase.
Conversely, place most filtering predicates last in OR and
IN-list without ACCESSTYPE=N.

eg STATE IN (‘NEW YORK’,’FLORIDA’,‘MONTANA’)

23

April 2008 © 2008 IBM Corporation

Minimize #SQL Statements in a Program
Where Possible

DO
SELECT or INSERT or DELETE or UPDATE

END
instead of

SELECT, INSERT, DELETE, or UPDATE
SELECT, INSERT, DELETE, or UPDATE
SELECT, INSERT, DELETE, or UPDATE

Reduces EDM pool and thread storage
Reduces allocate/deallocate cost at SQL execution and commit
or deallocation
Better exploitation of sequential detection and index lookaside

•Potentially fewer Getpages, Lock requests, and faster I/O

April 2008 © 2008 IBM Corporation

Minimize # rows searched

Try to get the maximum matching index columns for
the best index filtering

Insure predicate comparison for the same data type
and length

Example: "where indexed-column=host-variable“
Especially prior to V8

•V8 made most typical unlike data type
comparisons stage 1 or sargable and indexable

24

April 2008 © 2008 IBM Corporation

Dynamic SQL

Reduce dynamic bind frequency via
Dynamic statement caching with CACHEDYNAMIC YES
REOPT(ONCE) in V8 REOPT(AUTO) in V9
Improved monitoring in V8 Visual Explain
Next step in V9 Optimization Support Center

Incremental bind in accounting
Static plan/package with VALIDATE(RUN) and bind time
failure
Static SQL with REOPT(ALWAYS), or referencing
Declared Temp Table, or private protocol in requestor

April 2008 © 2008 IBM Corporation

JDBC/SQLJ

Use CACHEDYN YES for JDBC, or better yet use SQLJ or
best choice is JLinQ (after DB2 9)
Select/Update/Insert required columns only
•More important in JDBC/SQLJ environment

Store numeric as smallint or int to minimize conversion and
column processing cost

Relative cost: Integer (lowest) -> Float -> Char -> Decimal -
> Date/Time -> Timestamp (highest)

Match Java and DB2 data type
•V8 enhancement for non-matching data type

25

April 2008 © 2008 IBM Corporation

Existence Check

• SELECT FROM table WHERE EXISTS (SELECT FROM
SYSIBM.SYSTABLES WHERE TYPE=‘A’) …..

• In V7, all qualifying rows in this EXISTS subquery
are retrieved and stored in a work file.
• Select from SYSIBM.SYSTABLES where Type=‘A’

Fetch First 1 Row Only followed by Select from
outer table can be much faster.

• In V8, this subquery execution is terminated as
soon as a first qualifying row is found.

April 2008 © 2008 IBM Corporation

Thread Reuse

Thread reuse for 5 to 20% cpu time
reduction for light transactions

NORMAL TERMINATION AVERAGE TOTAL
NEW USER 1.00 174752
DEALLOCATION 0 0
RESIGNON 0 0
INACTIVE 0 0

All except DEALLOCATION indicate successful
thread reuse.

26

April 2008 © 2008 IBM Corporation

Distributed/Stored Procedure

Stored procedure to avoid DRDA overhead for each SQL call

Example: 10 Select, Insert, Update, and/or Delete calls in
stored procedure

Results in 600us instead of 2100us overhead (10 SQL
calls * 210us per SQL call) on z900 (2064-1) processor

Also faster response time because of as low as 1 rather
than 10 message send/receive

April 2008 © 2008 IBM Corporation

Figure 6-2 Channel speed comparisons with and without MIDAW

0

100

200

300

400

6x4KB 12x4KB 24x4KB 32x4KB

Read MB / second

without
with MIDAW

27

April 2008 © 2008 IBM Corporation

Parallel DB2 Table Scan, EF 4K (single channel)

I/O Response Time (sec)

0

1

2

3

4

5

1 2 3 1 2 3

Number of DB2 partitions

pend connect 0
20
40
60
80

100

1 2 3
Number of DB2 partitions

C
ha

nn
el

B

us
y%

pre-MIDAWs MIDAWs

Pre-MIDAWs MIDAWs

0

50

100

150

200

1 2 3

Number of DB2 partitions

Th
ro

ug
hp

ut

(M
B

/s
ec

)

This document contains performance information
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user
will experience will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the numbers
stated here.

Configuration:
MIDAW : z/OS 1.7
Pre-MIDAW: z/OS 1.4

DB2 for z/OS Version 8
4000 byte row size
System z9 EC
FICON Express2
2 Gbit/sec link
DS8000 control unit

OVPV2280

ms

April 2008 © 2008 IBM Corporation

Disk performance for sequential read

3 6 12
38

52

109 109 109

3 6 12
31 40

69

109

138

183

0
20
40
60
80

100
120
140
160
180
200

39
90

-6
RVA E20

F20 80
0

DS800
0

DS800
0*

DS80
00

-2*

V9 DS80
00

-2*

M
B

/s
ec

non EF EF

28

April 2008 © 2008 IBM Corporation

Maximum observed rate of active log write

8.2 11.6 16 13.3 20 27 30 22.9 36 45
63

89 87
116

0

20
40

60
80

100
120

140

Esc
on

 E20 F20
F20

-2

Fico
n F20

F20
-2

F20
-4

F20
-8 80

0
80

0-2
80

0-8

DS80
00

-1

DS80
00

-2

DS80
00

-1*

DS80
00

-2*

M
B

/s
ec

• First 3 use Escon channel, the rest is Ficon.
• -N indicates N i/o stripes; * MIDAW

April 2008 © 2008 IBM Corporation

1.2 ms1 - 2 msCurrent
DS8300

64 ms20 msOld Rule of
thumb

32 x 4K
read

4 K read

IO performance rules of thumb

Faster: 10 – 20 X 50 X

29

April 2008 © 2008 IBM Corporation

CPU Time Multiplier for some processor models

1.38 1.3 1.21
1

0.82
0.65

0.53
0.37

0.25

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

G6
(9672
x17)

z800
(2066)

G6
turbo
(9672
z17)

z900
(2064-1)

z900
turbo

(2064-2)

z890
(2086)

z990
(2084)

z9
(2094)

z10
(2097)

April 2008 © 2008 IBM Corporation

Recent single-processor relative CPU speeds

0.72 0.77 0.83 1 1.22
1.54

1.89

2.7

4

0

1

2

3

4

G6
(9672
x17)

z800
(2066)

G6
turbo
(9672
z17)

z900
(2064-1)

z900
turbo

(2064-2)

z890
(2086)

z990
(2084)

z9 EC
(2094)

z10 EC
(2097)

30

April 2008 © 2008 IBM Corporation

Index page split reduction

• Bigger index page
• 4K, 8K, 16K, or 32K page

• Up to 8 times less index split
• Good for heavy inserts to reduce index splits

• Especially recommended if high latch class 6
contention in data sharing

• Two forced log writes per split in data
sharing

• Or high latch class 254 contention in non data
sharing shown in IFCID 57

April 2008 © 2008 IBM Corporation

Index page split reduction - continued

• Asymmetric index page split depending on an insert
pattern
• Instead of 50-50 split
• Up to 50% reduction in index split
• -20% class 2 cpu, -31% elapsed time, -50% log

write i/o and async CF requests in one data
sharing measurement

• 2 log write i/o’s per split in data sharing
• -10% cpu, -18% elapsed time, -20% index

Getpage and BufferUpdate in one non data
sharing measurement

31

April 2008 © 2008 IBM Corporation

Access Path Enhancement
• Cross query block optimization

• Optimization across, rather than within, query
blocks

• More predicate transitive closure across query
blocks

• Histogram statistics over a range of column values
• Useful in range as well as equal predicates with

high cardinality, eg Salary
• Equal-depth (each interval with roughly same

number of rows)

April 2008 © 2008 IBM Corporation

Index Compression
Difference between data and index compression

25 to 75% (3)10% to 90%Average Comp Ratio

No (2)YesComp Dictionary

NoYesComp in Log

NoYesComp in Buffer Pool

YesYesComp on disk

Page (1)RowLevel

Index Data

