DB2 for z/OS Utilities Update:
Best Practices

Haakon Roberts, IBM Silicon Valley Lab
haakon@us.ibm.com

Mar 2009

Agenda

 Availability

» Performance

* Features & function
 Best practices

° Summary

—

Availability — what has changed B

recently? SHARE

Technology - Conmections - Results

Online create or rebuild of non-unique indexes
 REBUILD INDEX SHRLEVEL CHANGE

« Eliminate outage for partition-level REORGs
* Eliminate BUILD2 phase

* Avoid need for REORG to get compressed data
« LOAD COPYDICTIONARY
* PK63324 & PK63325 (V9)

* Online data consistency checking and repair
« CHECK DATA SHRLEVEL CHANGE
« CHECK LOB SHRLEVEL CHANGE
« REPAIR LOCATE... SHRLEVEL CHANGE

* Run data consistency checks without impacting BACKUP SYSTEM or disk
mirroring

.« PK41711 (V9)

3

Availability —what has changed
recently?

* Replace data with virtually no outage

 CLONEsS effectively provide LOAD REPLACE SHRLEVEL
CHANGE

« UTS only

* Read LOB data during REORG
« REORG SHRLEVEL REFERENCE for LOBs

RECOVER to point in time with consistency

* Avoid need for QUIESCEs Recovery point

UR 1

v

Update
A

Update

v

Update T

v

UR 2
-]

Performance — what has changed
recently?

Faster REORGs
« Parallel unload of partitions
« Parallel reload of partitions

« Parallel log apply
Greater likelihnood of REORG keeping up with logging rates

* Faster CHECK INDEX SHRLEVEL REFERENCE
« Parallel index processing

* Up to 40% faster COPY & RECOVER RESTORE phase to/from tape
« Support Large Block Interface for image copies to tape

* Reduced impact on applications when running COPY
 COPY uses MRU for buffers to improve BP hit ratio for online applications

* Reduced impact on applications when running LOAD & REORG

« Auto-invalidate of cached dynamic statements on completion of LOAD &
REORG

. PK47083 (V8 & V9)

5

Performance — what has changed
recently?

Greater utility parallelism with SORTNUM elimination
 PK45916 (V8), PK41899 (V9)
* Major improvement in utility sort processing
« Simpler, more efficient, more reliant on RTS

SORTBLD performance improvement
* PK60956 (V8 & V9)

* Up to 20X performance improvement in SORTBLD for indexes with small
SECQTY

LOAD & REORG performance improvement
 PK61759 (V8 & V9)
 10% CPU & elapsed time improvement in RELOAD phase
* 10% CPU reduction in SORT phase

COPY performance improvement
o PK74993 (V9)
* 20% elapsed time improvement for copy of multiple small datasets to tape

COPY performance with large LISTDEF lists
« PK78865 (V8 & V9)
* Reduce writes to SYSUTILX 6

—

Performance — what has changed g A
recently? SHARE

Technology - Conmections - Results

Crossloader performance improvement for CCSID data conversion
 PK76860 (V8 & V9)

LOAD/UNLOAD LOB file reference variable performance
 PK75216 (V9)
 PDS only, not HFS

UNLOAD performance for multi-table table spaces
« UTILINIT phase — use DBD rather than catalog lookup
« PK77313 (V8 & V9)

REORG PART of empty partition performance
* Avoid NPI scan for non-clustering indexes
« PK67154 (V8 & V9)

Performance — what has changed

recently?

* LOAD and UNLOAD to/from virtual file
* USS named pipe support with templates
 PK70269 (V8 & V9)

« DSN1COPY performance
* Improved VSAM buffer allocation for page sets with cylinder allocation
« PK78516 (V8 & V9)

* RUNSTATS histogram statistics

* Improved query optimization for non-uniform distribution
« Example-1,3,3,4,4,6,7,8,9, 10, 12, 15 (sequenced), cut into 3 quantiles

Seq No Low Value High Value Cardinality Frequency
1 1 4 3 5/12
2 6 9 4 4/12
3 10 15 3 3/12

8

—

Performance — what has changed g A
recently? SHARE

Technology - Conmections - Results

* CPU cost reduction in V9
* 10-20% for COPY & RECOVER
* 5-30% for LOAD, REORG, REBUILD INDEX
o 20-60% for CHECK INDEX
* 35% for LOAD partition
* 30-40% for RUNSTATS INDEX
* 40-50% for REORG INDEX
e 70% for LOAD REPLACE partition with dummy input

« zIIP enablement for utility index processing in V8

Features & function —what has changed
recently?

« BACKUP SYSTEM & RESTORE SYSTEM enhancements
e Support for tape
« Support for incremental FlashCopy

* Object-level recovery from system-level backup
« RECOVER to any point in time with consistency

« SORTNUM elimination
o Simplified utility invocation

* Remove restriction on REORG of >254 compressed parts
o ZPARM restricts LOAD in V9 — restriction removed in X

» Better information for DPROPR/QRep or other IFI 306 readers

« Write diag log record at utility termination so IFCID 306 readers can
trigger refresh

. PK78558 (V9)
10
.

Features & function — what has changed 4 ;’#

recently?

« MODIFY RECOVERY simplification & safety

SHARE

Technology - Conmections - Results

*)
DATE — integer

*)

»——1 DELETE -|: AGE —— integer

- RETAIN—— LAST—/(integer)
— LOGLIMIT

— GDGLIMIT

— GDGLIMIT — LAST— (integer)
— GDGLIMIT —LOGLIMIT

« Template switching for COPY utility
* E.g. copy to disk if small, to tape if large

v

<+ Queries SYSCOPY
<« Queries BSDS
<« Queries GDG

} For mixed lists

TEMPLATE LRG DSN &DB. . &TS. . D&DA. . T&Tl . UNI T=TAPE
TEMPLATE SML DSN &DB. . &TS. . D&DA. . T&TlI . UNI T=SYSALLDA LIM T(20 CYL, LRG

COPY TABLESPACE SVALL. TS COPYDDN(SM.)
COPY TABLESPACE LARGE. TS COPYDDN(SM.)

11

Features & function —what has changed
recently?

 Permit use of ALIASes for LOAD, RUNSTATS and UNLOAD
 PK77061 (V9)

 New DSNACCOX stored procedure to gather statistics from catalog and
make utility recommendations

e See PK44133
« DSNACCOR still supported

* More information
 All utility messages in job output have julian date & timestamp
* -DISPLAY UTILITY enhanced to show progress of logapply

DSNU1161 csect-nane RECOVER LOGAPPLY PHASE DETAI LS:
STARTI NG TI ME = ti nestanp
START RBA = ss START LRSN = rr
END RBA = ee END LRSN = nn
LAST COW TTED RBA = cc LAST COW TTED LRSN = ||

ELAPSED TI ME = hh: mm ss
12

What’s coming?

Remove usability restrictions for REORG
 LOBs, PBG, catalog/directory, rebalancing,...

REORG avoidance

Remove UTSERIAL lock for greater utility concurrency
RTS enhancements & greater reliance upon RTS
Intelligent & autonomic statistics gathering

BACKUP SYSTEM / RESTORE SYSTEM enhancements
FlashCopy exploitation

LOAD & UNLOAD enhancements
* Improved LOB/XML processing
e Improved UTF-16 support

CHECK utility enhancements
o XML, availability, data correction,...

Faster point in time recovery

Faster & better COPY processing
* Incremental, CHANGELIMIT, FlashCopy

T

tioms - Resut

=)

echnology - Can

g

13

s)

COPY Best Practices

it +

Technology - Conmections - Results

- COPY
« PARALLEL keyword provides parallelism for lists of objects (including
partitions)
e CHECKPAGE YES incorporated into V9 - look for RC=8!

» Maximize other utilities’ access to objects while copying a list with
SHRLEVEL CHANGE and OPTIONS EVENT(ITEMERROR,SKIP)

Keeps objects in the list in UTRW state *only* as each object is being copied instead of for

the duration of the COPY utility
UTRW — utility allows read/write access by applications, but no access for exclusive utilities

* Incremental copy rule-of-thumb: Consider using incremental image copy if
<5% of pages are randomly updated (typically means less than 1% of rows updated)

<80% of pages are sequentially updated
Incremental image copies use list prefetch, so monitor for rid list pool full conditions

* Copy indexes on your most critical tables to speed up recovery

* MERGECOPY - consider using it

14

—

r1

: g
RECOVER/QUIESCE Best Practices HAR
« RECOVER
« PARALLEL keyword provides parallelism for lists of objects (including
partitions)

Compressed pagesets result in faster restore phase

Enable Fast Log Apply (which can use dual-copy logs) and PAV
= <=10 jobs/member with LOGAPSTG=100MB, up to 99 objects per RECOVER

For recovery to a prior point in time
Always recover related sets of objects together (same RECOVER utility statement)

DB2 9 for z/OS: recover to PIT with consistency
Backs out uncommitted changes for the objects specified on the RECOVER utility statement
Significantly reduces the need to run QUIESCE, which can be disruptive to applications

- QUIESCE
« WRITE NO is less disruptive (no quiescing of COPY=NO indexes)
 Use TABLESPACESET
* Do you still need it in V9?

15

MODIFY RECOVERY Best Practices

« Base your MODIFY strategy on your backup strategy and not
vice versa

« REORG SYSLGRNX regularly

* Run MODIFY RECOVERY regularly to clean up old records in
SYSCOPY and SYSLGRNX

 DB2 9 has RETAIN LAST n, GDGLIMIT and BSDS options

« Also resets “ALTER_ADD COLUMN?” flag in OBD when
deleting image copies with previous row versions

« MODIFY RECOVERY DELETE AGE/DATE to delete everything before the
REORG that follows the ALTER

 Will make next REORG more efficient if no more old row versions exist
 Remember that MODIFY RECOVERY works on day boundaries

16

L OAD Best Practices

« LOAD
 LOG NO reduces log volume; if REPLACE, then take inline copy

« KEEPDICTIONARY (track dictionary effectiveness with history
statistics PAGESAVE) - small performance impact if loading lots of
data

« 254 partition limit for compressed table spaces can be lifted by DBA
PK51853 shipped new ZPARM MAX_UTIL_PARTS (watch virtual
storage)

* Load Partition Parallelism (V7)
Not individual LOAD part level jobs
Enable Parallel Access Volume (PAV)

* Index parallelism (SORTKEYYS)
Provide value for SORTKEYS when input is tape/PDS mbr or
variable length
SORTKEYS is the sum of ALL indexes (and foreign keys) on the
table
Remove SORTWKxx / UTPRINxx, and turn on UTSORTAL=YES

17

L OAD Best Practices contd.

- LOAD

Inline COPY & Inline STATISTICS

Use REUSE to logically reset and reuse DB2-managed data sets
without deleting and redefining them (affects elapsed time)

When using DISCARD, try to avoid having the input on tape

Input is re-read to discard the errant records
Avoid data conversion, use internal representation if possible
Sort data in clustering order (unless data is randomly accessed via
SQL)
LOAD RESUME SHRLEVEL CHANGE instead of batch inserts

“LOAD REPLACE SHRLEVEL CHANGE” can be achieved by
loading into clone table and then exchanging the tables on DB2 9

LOAD via Batchpipes or USS pipes to load data that is transferred
via FTP from clients — see PK70269

18

REORG Best Practices

REORG
 Use SHRLEVEL REFERENCE or SHRLEVEL CHANGE

Inline COPY & Inline STATISTICS

KEEPDICTIONARY (track dictionary effectiveness with history
statistics PAGESAVE) — large performance impact

254 partition limit for compressed table spaces in V8
PK51853 shipped new ZPARM MAX_UTIL_PARTS (watch virtual storage)
DB2 9 for z/OS no longer has this limit and uses virtual storage more effectively

Index parallelism (SORTKEYS is default and ignored in V8)
Remove SORTWKxx / UTPRINxx, and turn on UTSORTAL=YES
Run REORG against as many partitions as possible in the same job or against the
whole table space

19

REORG Best Practices contd.

« REORG
 Partition parallelism in DB2 9 and NPI processing
Parallel REORG jobs for same table space but different partitions

no longer supported if NPIs defined
After REORG PART with no BUILD2 phase, no need for REORG

NPI
Watch out for LISTDEFs at partition level with NPIs - full REORG

might be more efficient
« SHRLEVEL NONE if constrained for disk space
LOG NO reduces log volume; requires an image copy (inline is a

good choice)
NOSYSREC to avoid I/O (forced for SHRLEVEL CHANGE)

» Take full image copy before REORG SHRLEVEL NONE
Use REUSE to logically reset and reuse DB2-managed data sets
without deleting and redefining them (improves elapsed time)

20

—

s

REORG Best Practices contd. SHARE

Technology - Conmections - Results

* REORG

« SORTDATA NO only if data is already in or near perfect clustering
order and disk space is an issue

» Set appropriate PRIQTY/SECQTY to minimize extend processing
PK60956 helps to improve SORTBLD elapsed time up to 20x for
Indexes with small SECQTY!!!
SORTBLD elapsed up to 20x improvement!!!
Affects all utilities that are (re-)building indexes

* Run MODIFY RECOVERY some time after ALTER TABLE ... ADD
COLUMN

21

r1..-

REORG Best Practices contd. SHARE

Technology - Conmections - Results

« REORG SHRLEVEL CHANGE (sometimes called online REORG)
dTII_/IEOUT TERM frees up the objects if timeouts occur in getting
rains
DRAIN ALL (better chance of entering SWITCH phase)
(DRAIN_WAIT+MAXRO)<(IRLMRWT -5 or 10 seconds)
» Avoid application timeouts
» But don’t set MAXRO too low
RETRY = utility lock timeout multiplier (6 by default)
RETRY_DELAY = DRAIN_WAIT*RETRY
Enable detection of long running readers (zparm) and activate
IFCID 0313 (it's included in STATS CLASS(3))
» This will report readers that may block command and utilities
from draining
» It includes “well-behaved” WITH HOLD cursors which a drain
cannot break-in on
More Joys of Commitment by Bonnie Baker
> htt%://vxllww.demag.com/db_area/archives/2003/q1/programme
rs.shtm

—

22

REORG Best Practices contd.

« REORG SHRLEVEL CHANGE

e Consider scheduling SWITCH phase in a maintenance window to
avoid concurrent workloads that may prevent the utility from
breaking in:

MAXRO DEFER and LONGLOG CONTINUE will let REORG do
its job except for the last log iteration and the switching

REORG will continue applying log until MAXRO is changed with
the ALTER UTILITY command

Many log iterations might reduce the “perfect” organization of
the table space, so keep the time until MAXRO is changed to
allow final processing down to a minimum

23

—

s

REORG LOB Best Practices SHARE

Technology - Conmections - Results

 DB2 V8 only REORG LOBs if performance degraded because
of bad LOB chunking

- DB2 9 - use SHRLEVEL REFERENCE

* Reclamation of unused space
Full read access to LOBs except during SWITCH phase
Inline imagecopy required to maintain recoverability

No restart capability
Shadow pageset discarded in event of failure

SHRLEVEL NONE still supported

Remains default, but will be deprecated in future

24

A word about PBGSs

* No utility parallelism

* No pruning of partitions in V9 Part 1
- No load at partition level UTRW/UTRO
 REORG of single part Part 2
* NO new part creation UTRW
* Rows must fit back into part, but may not!
 REORG of part range el
UTRW

« Data can flow from one part to another within
range

e |[f LOB column exists then rows will not move
between parts

 Recommendation:
* View as single table and REORG as a whole -

REBUILD INDEX Best Practices

* REBUILD INDEX
* Indexes are built in parallel

* Remove SORTWKxx / UTPRINxx and use SORTDEVT/SORTNUM or
UTSORTAL=YES

e Inline STATISTICS

» Use REORG INDEX SHRLEVEL CHANGE to move index data sets to
different volumes

« CREATE INDEX DEFER followed by REBUILD INDEX

As of V8, dynamic SQL will not select the index until it is built

 DB2 9 allows SHRLEVEL CHANGE

Unique indexes are put in RBDP because uniqueness can not be checked during
rebuild process, so no INSERT/ UPDATE/DELETE allowed that affects unique index

No parallel jobs on different indexes of the same table space -> use single job with
multiple indexes specified

26

—

Dynamically Allocated Sort Work Data Sets ,,F!.._ '_ Y

Technology - Conmections - Results

* DB2/DFSORT determined DS sizes without DDs
» Single JCL (template) can be used for most utility jobs

- DB2 determines degree of parallelism according to available
resources

* BUT:
* Need to specify SORTNUM, but one size does NOT fit all

Different objects being processed by same job template
Different sorts within same utility, e.g. REORG with data and index sorts

« DASD situation varies, SORTNUM 4 might work today, but tomorrow even
SORTNUM 8 might fail

« DB2’s estimates sometimes not good enough

27

DB2 Allocated Sort Work Data Sets

—

-

i
SHARE

Technology - Conmections - Results

* PTFs shipped 02/2008 to enable DB2 to dynamically allocate sort work

data sets in utilities:

DB2 for z/OS V8: PK45916 / UK33692

DB2 9 for z/OS: PK41899 / UK33636

Enable with UTSORTAL=YES

Used for all sorts in utilities: LOAD, REORG, CHECK INDEX,

REBUILD INDEX, CHECK DATA, RUNSTATS

Message “DSNU3340I - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT
DISK SPACE" indicates use

New behavior ignored if hard coded DD cards are found

* No more need to specify SORTNUM. Existing SORTNUM specification
can be honored or ignored (IGNSORTN=YES)

» Data sets for largest sorts are allocated first

« Attempts to allocate data sets as large as possible (starting with 2 data
sets per sort task, more data sets allocated if necessary)

28

DB2 Allocated Sort Work Data Sets

» Uses Real-Time statistics for size estimates

« Start using RTS on V8 if not already done (always active in DB2 9)

RTS can benefit you in many ways

—

H

¥

it +

Technology - Conmections - Results

—

* Required values in RTS are initialized by REORG TABLESPACE and

REBUILD INDEX

« If replacing DB2 objects outside DB2’s control then notify DB2 that RTS

information isn’'t accurate:

Set TOTALROWS to NULL in SYSIBM.(SYS)TABLESPACESTATS or TOTALENTRIES to NULL
in SYSIBM.(SYS)INDEXSPACESTATS to invalidate existing statistics if replacing with significantly

different data

29

DB2 Allocated Sort Work Data Sets

« Recommended maintenance:
« APAR PK64624: LOAD with multiple INTO TABLE

—

H

¥

Technology - Conmections - Results

—

 APAR PK64915: Improve estimates for REBUILD and CHECK INDEX with segmented

table spaces with missing RTS

* APAR PK66597: LOAD ABENDOC4 RC00000011 when SYSTEMPL DD specified but

not used

 APAR PK70001: ICEO46A SORT CAPACITY EXCEEDED when REORG is restarted in

UNLOAD phase, improved fall back estimates for multi table table spaces

« DFSORT APAR PK63409: ICE046A SORT CAPACITY EXCEEDED when estimate is

slightly below actual value

30

CHECK INDEX Best Practices r~

Technology - Conmections - Results

« CHECK INDEX

* Indexes are checked in parallel
* Use SHRLEVEL CHANGE

Uses dataset-level FlashCopy? if available
Else, traditional media copy — still smaller r/o outage than SHR REF

 PK41711 allows specification of storage class for shadow data sets
Useful in PPRC environments that shadow data sets can be placed on non-PPRC volumes
Defined in ZPARM UTIL_TEMP_STORCLAS

31

CHECK DATA/LOB Best Practices

r..-

Technology - Conmections - Results

« CHECK DATA
 If large volumes of delete data (e.g. after REORG DISCARD)

LOG NO to avoid log archive and log latch contention
Image COPY will be required

* CHECK DATA & CHECK LOB
 DB2 9 adds SHRLEVEL CHANGE support:

Short term drain of writers to allow flashcopy to shadow

* Usual drain parameters supported

CHKP/ACHKP/AUXW no longer set if errors detected

* Not reset either — use REPAIR

* Look for messages and generated REPAIR statements

CHECK DATA SHRLEVEL CHANGE cannot delete rows or mark LOBs invalid, it will write REPAIR statements to
PUNCHDDN

* REPAIR LOCATE DELETE statements instead of RI discard

* REPAIR LOCATE VERIFY/REPLACE statements to invalidate LOBs

PK41711 for non-PPRC volumes to be used for shadow data sets

32

LOB integrity checking :..“;E

Technology - Conmections - Results

CHECK INDEX

3

Aux index

CHECK DATA.~

-
-
-
-
-
-
-
-
-
-
_- -
- Pid
- -
-
-
-
-
-
-
-
- -7
- -
. -
. -
. -
. -
. -
P -
» -
-

CHECK L#B

LOB table space

33

—

b

Technology - Conmections - Results

DSN1COPY — what you need to know E
H

« DSN1COPY is an essential part of the utilities portfolio

- DSN1COPY runs standalone and cannot ensure that data matches
definition at target

« All target datasets must be preallocated for multi-piece tablespaces

» Areas to watch out for

 BRF-RRF mismatch
Tolerated by SQL, but not REORG
Convert pagesets to ensure copy is RRF-RRF
No method exists today to convert RRF to BRF

» Data definition changes, e.g. columns added
Use REPAIR VERSIONS at target site
For alterations prior to V8, REORG at source before DSN1COPY

 Different tablespace types or different segsizes
Not policed, abends will occur

« XML
Data-dependent information kept in catalog table XMLSTRINGS
Cannot DSN1COPY XML tablespace from one subsystem/group to another
DSN1COPY within a subsystem/group is fine
Solution is UNLOAD/LOAD/CROSSLOADER

34

—

RUNSTATS Best Practices .

=

Technology - Conmections - Resu

* RUNSTATS

« SHRLEVEL CHANGE for availability

» Collect only column stats on columns used in SQL predicates
Use the Statistics Advisor to detect which stats to collect
SAMPLE reduces CPU time when gathering column stats

« KEYCARD provides valuable info for little processing cost (see next slide)

35

Utilities On Demand

* Run utilities only when necessary and not on fixed schedules

 Information on the current status of all objects is contained in
Real-Time Statistics (RTS) tables

« Stored Procedure DSNACCOR applies our suggested
thresholds and formulas against a list of objects and
recommends utility actions

« DB2 9 NFM adds Stored Procedure DSNACCOX (PK44133)
with additional real-time statistics being used and improved
recommendations

36

IBM’s UNLOAD Products

Two UNLOAD utilities from IBM
« DB2 UNLOAD Uitility (in the IBM DB2 Utilities Suite)
 DB2 High Performance Unload (HPU) Utility
o (DSNTIAUL is only a sample!)

 HPU was delivered before the UNLOAD utility — had this not been the
case, we would never have used the words “High Performance”

* In elapsed time, they are comparable (sometimes UNLOAD is faster,
sometimes HPU is faster)

* In CPU time, HPU consumes approximately half the CPU in many
situations (but not always)

« UNLOAD is geared towards user of DB2 Ultilities (Utilities interface)

« HPU is geared towards application developers (SQL interface)

37

LOB Handling in LOAD/UNLOAD w/FRVs

* Requirement is to move LOBs from one z/OS system to another z/OS system
* Need to support millions of rows

» Typical LOB sizes are 25K, 200K, 1MB

* Need to allow user to limit LOAD at target with WHEN clause

* LOB column values will be stored as separate PDS member, PDS/E member,
or HFS directory member.

* LOB column values from each row will have identical member names in each
PDS, PDS/E, or HFS

« Data set name stored in output record

» Design fits well with application support for File Reference Variables in V9

Apply PK75216 for significant performance enhancement for PDS FRVs

38

LOB Handling in LOAD/UNLOAD w/FRVs e

Technology - Conmections - Results

* LOAD is changed to allow an input field value to contain the name of file
containing a LOB column value. The LOB is loaded from that file.

[/ SYSREC DD *

" 000001", "UN. DB1. TS1. RESUME(Al 3WK3JT) ", "UN. DB1. TS1. PHOTQ(Al 3WK3JT) "
*000002", " UN. DB1. TS1. RESUME(Al 3WK5BS) ", " UN. DB1. TS1. PHOTQ(Al 3WK5BS) "
" 000003", "UN. DB1. TS1. RESUME(Al 3WK5CC) ", " UN. DB1. TS1. PHOTQ(Al 3WK5CC) "
" 000004", "UN. DB1. TS1. RESUME(Al 3VWK5CK) ", " UN. DB1. TS1. PHOTQ(Al 3WK5CK) "

LOAD DATA FORMAT DELI M TED
| NTO TABLE MY_EMP_PHOTO RESUNE
(ENPNO CHAR new syntax
RESUVME VARCHAR CLOBF,
PHOTO VARCHAR BLOBF)

39

—

L OB Handling in LOAD/UNLOAD w/FRvs _E 8

SHARE

Technology - Conmections - Results

 UNLOAD is changed to store the value of a LOB column in a file and
record the name of the file in the unloaded record of the base table.

UNLOAD DATA
FROM TABLE DSN8910. EMP_PHOTO RESUMVE

(EMPNO CHAR(6),

RESUVE VARCHAR(255) CLOBF LOBFRVL, new syntax
PHOTO VARCHAR(255) BLOBF LOBFRV2) DELI M TED

Output:

"000001", "UN. DB1. TS1. RESUME(Al 3WK3JT) ", "UN. DB1. TS1. PHOTQ(Al 3WK3JT) "

" 000002", " UN. DB1. TS1. RESUVE(Al 3WK5BS) ", " UN. DB1. TS1. PHOTQ(Al 3WK5BS) *
"000003", "UN. DB1. TS1. RESUME(Al BWK5CC) ", " UN. DB1. TS1. PHOTQ(Al 3WK5CC) "
"000004", "UN. DB1. TS1. RESUME(Al BWK5CK) ", " UN. DB1. TS1. PHOTQ(Al 3WK5CK) " 40

. . = = #F’
Provide logic for routine maintenance A

Technology - Conmections - Results

 Leverage the ability to invoke utilities programmatically via stored
procedures

« DSNUTILS for EBCDIC parameters
« DSNUTILU for UNICODE parameters

41

Provide logic for routine maintenance H'n"

Example (using REXX):
[* REXX */

ADDRESS DSNREXX "CONNECT DB2P*
IF SQLCODE -=0 THEN CALL SQLCA
Uid=";Restart="; Utstmt=,

‘REORG TABLESPACE’ ,
‘ADHTSTDB.ADHTSTTS’ ,

‘LOG NO KEEPDICTIONARY”

‘SORTDATA SORTKEYS SORTDEVT,
‘STATISTICS’ ,

‘TABLE (T1) SAMPLE 25 COLUMN (C1, C2),
‘TABLE (T2) SAMPLE 25 COLUMN (C5, C12)
Utility="REORG TABLESPACE'
CopyDSN1="DSN.FIC.ADHTSTTS.VERSION(+1)’
CopyDEVT1='SYSDA'

CopySpacel=1

Technology - Conmections - Results

ADDRESS DSNREXX "EXECSQL" ,

"CALL DSNUTILS(:UID, :RESTART,

" :UTSTMT, "
:RETCODE,
(UTILITY, "
‘RECDSN ,:RECDEVT ,:RECSPACE /",
:DISCDSN ,:DISCDEVT ,:DISCSPACE " ,
:PNCHDSN ,:PNCHDEVT ,:PNCHSPACE " ,
:COPYDSN1,:COPYDEVTL1,:COPYSPACEL," ,
:COPYDSN2,:COPYDEVT2,:COPYSPACE2," ,
‘RCPYDSN1,:RCPYDEVTL1,:RCPYSPACEL," ,
:RCPYDSN2,:RCPYDEVT2,:RCPYSPACE2," ,
‘WORKDSN1,:WORKDEVT1,:WORKSPACE1," ,
‘WORKDSN2,:WORKDEVT2,:WORKSPACE2," ,
:MAPDSN ,:MAPDEVT ,:MAPSPACE ,",
:ERRDSN ,.ERRDEVT ,.ERRSPACE /",

" :FILTRDSN,:FILTDEVT ,:FILTRSPACE)"

IF SQLCODE < 0 THEN CALL SQLCA

42

Provide logic for routine maintenance

* Rich logic can be provided to:

* Take an image copy before running REORG with NOSYSREC

* Examine statistics (from RUNSTATS or the Real-time statistics) to
determine when to run a utility (see DSNACCOR/DSNACCOX)

 Examine a control table to determine windows when maintenance
can or cannot be run

* You have full control without needing individual threshold
keywords on each utility

* But, maybe you don’t want to write or maintain this type of logic

yourself... that where products like the DB2 Automation Tool for
z/OS come into play

43

Summary

T

tioms - Resut

=)

echnology - Can

g

« Continuing commitment to, & investment in, utilities
» Support core DB2 function from day 1

« Ensure utilities are non-disruptive
Eliminate outages
Improve performance
Reduce CPU cost

* Provide function that adds real value
* Reduce complexity & improve automation
* Revisit your existing utility jobs to benefit from new options

« SORTNUM Elimination can help you to run all your sorting utilities more
effectively

« Use DB2 provided stored procedures to schedule utilities “On-Demand” instead of
invoking them on fixed schedules

44

