
50308- IMS 13 DB & DBRC:

© 2014 IBM Corporation

®

IMS 13

IMS 13 Database and DBRC

Enhancements

50408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database and DBRC Enhancements

� Database Versioning

� HALDB Alter

� Fast Path Enhancements

– DEDB Alter

– Secondary Index Enhancements

� DBRC Migration and Coexistence

� DELETE.LOG INACTIVE and TOTIME (KFN0547)

504

50508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning

505

50608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning

� IMS 13 allows application programs to use different versions of the
same physical database

– Multiple views of the physical data are maintained in the IMS catalog

– Application programs can use different views of the same physical IMS

database

� Benefit

– Customers can support multiple versions of an IMS database

– Physical database structure can be changed without having to modify all

the existing application programs using the database

506

Database Versioning Support is for Full Function, HALDB and DEDB database

customers who need support for multiple views of the physical data to a variety of

application needs such as:

•Implementing application changes over time.

•Ability to use application programs, for which there is no source code, after database

structure changes.

Versioning support enables users to assign user-defined version IDs to different

versions of the structure of a database. The user-defined version IDs are stored in the

record for the database in the IMS Catalog. Upon accessing the database, application

programs specify the version of the database that they need. If they do not specify a

version, by default they will get the version of the database structure at the current

level.

50708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning Prerequisites

� Software requirements

– Same as IMS Version 13

– IMS Catalog

– DBRC RECON MINVERS (‘13.1’)

� Hardware requirements

– Same as IMS Version 13

507

50808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning Overview

� Provides the ability to assign user-defined version identifiers to

different versions of an IMS database structure

� Enables structural changes to a database while providing multiple

views of the physical IMS data to various applications

� Applications referencing a new physical database structure can be

brought online without affecting applications that use previous

database structures

� Applications not requiring sensitivity to the new physical database

structure can continue to access the database without any

modifications or recompilation

508

Can be used in conjunction with IMS 13 Database ALTER function.

Database versioning provides the ability to assign user-defined version identifiers to

different versions of the structure of a database. These identifiers enable you to make

structural changes to a database while providing multiple views of physical data to a

variety applications.

New applications that reference a newer structure of a database can be brought online

without affecting applications that use previous database structures. Unchanged

applications, which do not have to be sensitive to the new physical structure of the

database, can continue to access the database.

50908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning Overview

� Database Versioning supports the following database types

– DEDB

– HDAM

– HIDAM

– PHDAM

– PHIDAM

� Database Versioning supports the following database structure changes

– For all supported database types

• Increasing the length of a segment

• Adding new fields to undefined space at the end of a segment

– For Full-Function and HALDB database types only

• Adding new fields that define alternative mappings of bytes in a segment

509

Database versioning can be used for the following types of databases:
• DEDB

• HDAM

• HIDAM

• PHDAM

• PHIDAM

IMS database versioning supports databases that have logical relationships and

databases that have secondary indexes.

The database versioning function:

Can be used in conjunction with the database alter functions to keep track of different

versions of the structure of a database. Supports the following structural changes to all

supported database types:

• Increasing the length of a segment.

• Adding a new field at the end of a segment

Supports the following structural changes to FF and HALDB database types

• Adding a new field to a segment that defines an alternative mapping of bytes
in segment.

Database Versioning only supports changes which include increasing the length of the

segment and defining new fields. These changes are normally implemented by recoding

the DBD source and running the DBD, PSB, and ACBGEN utilities. The customer will

then unload/reload the database or utilize the IMS 13 HALDB Alter function followed by

performing an Online Change (OLC).

Changes made to any existing fields, which include changing the starting position or length

of the field are not allowed.

51008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� Before Database Versioning is established for a database

– IMS continues to only recognize the current physical database definition

� Version numbers must be maintained in incremental values

– Specified on the DBD

� Applications programs can specify a desired database version

– System default setting

– PSB setting

– PCB in the PSB

– DL/I INIT call

Database Versioning Overview

510

Requirements:

To enable the database versioning support, the following tasks are required:

•Specify the new parameter, DBVERSION=Y, in the databases section in the DFSDFxxx

member of the IMS PROCLIB data set to indicate that database versioning is to be used.

•If Database Versioning is enabled, the IMS Catalog is required to be available in order to

retrieve the correct DBD version for the application programs. If the IMS Catalog is not

available then the application is returned an ‘NA’ status code.

•Application programs that need to access a particular version of a database definition can

specify the DBVER= on the PCB statement of the PSB source, or issue the INIT VERSION

call to specify the database version for each database view that is used by the application.

When a version number is assigned to the DBD, if the database is logically related to one or

more databases, all logically-related databases must be included in the ACBGEN process.

The affected database descriptions (DBDs) must be in the IMS catalog. The IMS catalog

metadata describes the current and previous structures of a database. The metadata

includes the version numbers that identify each structure of a database. When an application

program makes a call to a versioned database, IMS internally references the catalog to

determine which structure corresponds to the provided version number and whether the

format of the requested data needs to be modified before it is returned to the application

program.

After a DBD has a version number, apps can use the new INIT VERSION call to access a

specific version of the database or specify the database version for an application program

on the DBVER parm in the PCB statement. The following requirements apply:

•INIT VERSION call must be issued before issuing a DL/I call to access that database

•Version specified on INIT VERSION call overrides version number specified on the PCB

51108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� Database Versioning requires IMS catalog enablement

– DBD version definitions must be stored in the IMS catalog

• Catalog must be populated with DBD version definitions

� All IMS data sharing systems must be running IMS 13

– DBRC MINVERS value of “13.1” required

Database Versioning Overview

511

Requirements:

•Once Database Versioning is enabled, the IMS Catalog is required to be available in order to retrieve
the correct DBD version for the application programs. If the IMS Catalog is not available then the
application is returned an ‘NA’ status code. The IMS catalog must be enabled!

•The affected database descriptions (DBDs) must be in the IMS catalog.

•After a change is implemented and a version number is assigned to the DBD, if the database is
logically related to one or more databases, all logically-related databases must be included in the
ACBGEN process.

The IMS catalog metadata describes the current and previous structures of a database. The metadata
includes the version numbers that identify each structure of a database. When an application program
makes a call to a versioned database, IMS internally references the catalog to determine which
structure corresponds to the provided version number and whether the format of the requested data
needs to be modified before it is returned to the application program.

After a DBD has a version number, apps can use the new INIT VERSION DL/I call to access a specific
version of the database or specify the database version for an application program on the DBVER parm
in the PCB statement. The following requirements apply:

•INIT VERSION call must be issued before using a DL/I call to access that database.

•Version specified on INIT VERSION call overrides version number that is specified on the PCB

statement.

To enable the database versioning support, the following tasks are required:

•Specify the new parameter, DBVERSION=Y, in the databases section in the DFSDFxxx member of the

IMS PROCLIB data set to indicate that database versioning is to be used.

•IMS Catalog is required and needs to be setup.

•Application program that needs to access a particular version of a database definition can specify the
DBVER= on the PCB statement of the PSB source, or issue the INIT VERSION call to specify the
database version for each database view that is used by the application.

51208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� DFSDFxxx PROCLIB: new keywords in DATABASE section

– DBVERSION= new keyword to enable database versioning

– DBLEVEL= new keyword to indicate default DB version to be used

� Database and Program Generation Statements

– DBD: DBVER= database version number

– PCB: DBVER= database version number

– PSBGEN: DBLEVEL= overrides the DBLEVEL= specified in the

DFSDFxxx PROCLIB member

� “INIT VERSION” DL/I Call

– Program can set a specific version of a specific database

– Overrides all other version number specifications for a database

– Must be issued before issuing a DL/I call to the database

Database Versioning Implementation

512

The following IMS™ components are updated to support database versioning:

DFSDFxxx PROCLIB member

Two new keywords are added to the DATABASE section of the DFSDFxxx PROCLIB member

that specify whether database versioning is enabled and, if so, what default versioning is to be

used:

DBVERSION=

DBLEVEL=

DBD and PSB generation statements

The DBD and PCB statements are enhanced with a new DBVER parameter, where you can

specify the database version number:

DBVER=

The PSBGEN statement is enhanced with a new parameter that can be used to override the

default versioning that is specified in the DFSDFxxx PROCLIB member:

DBLEVEL

After a DBD has a version number, apps can use the new INIT VERSION DL/I call to access a

specific version of the database or specify the database version for an application program on

the DBVER parm in the PCB statement. The following requirements apply:

•Version specified on INIT VERSION call overrides version number specified on the PCB

statement.

•INIT VERSION call must be issued before using a DL/I call to access that database.

51308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – DFSDFxxx PROCLIB Member

� New keywords added to DFSDFxxx DATABASE section

– DBVERSION = Y | N

• Enables database versioning

• Database versioning is disabled by default

– DBLEVEL = CURR | BASE

• Ignored when DBVERSION=N

• CURR (default)

– IMS returns data from all databases using the current DBD version,
which is the current physical level, unless a specific database

version is requested

• BASE

– IMS returns data from all databases using the lowest DBD version
number retrieved from the IMS Catalog, unless a specific database

version is requested

513

DBVERSION = Y|N

Specifies that database versioning is to be enabled. When parm omitted, database versioning is
disabled.

When database versioning is enabled, IMS becomes sensitive to the version number associated with a
DBD. Applications may then request a specific DBD version by specifying the version number on the
PCB DBVER= parameter. If the requested DBD version is not the currently active one, then IMS will
retrieve it from the IMS catalog. If the requested DBD version does not exist, IMS returns a bad status
code to the application.

When database versioning is not enabled, IMS is not sensitive to the version number associated with a
DBD and application programs continue to access the data from the database at the physical database
level. This is how IMS operates prior to V13. If an application program specifies a DBD version on the
PCB DBVER= parameter while database versioning is not enabled, IMS returns a bad status code to the
application.

DBLEVEL=CURR|BASE: Specifies the default database version level. It is only used if
DBVERSION=Y, otherwise it is ignored. The default setting is CURR.

If DBLEVEL=CURR, then for all application programs IMS will return data from the database at the
current physical level unless the application requested a specific DBD version on the PCB DBVER=
parameter. DBLEVEL=CURR is recommended. It allows for a seamless transition over to database
versioning and allows application development to move forward as long as all application programs are
maintained to access databases at the latest level. For any application program that requires the
continued use of older versions of a DBD, the PCB DBVER= parameter may be used.

If DBLEVEL=BASE, then for all application programs IMS will return data from the database at the
original base level (ie., version 0) using the database definition stored in the IMS catalog. This is unless
the application requests a specific DBD version on the PCB DBVER= parameter. DBLEVEL=BASE
should only be considered if you have a large number of application programs that can not be changed
(ie. pgm source or PSB no longer available). This allows application programs to continue using the

original database definition, while also allowing new application development & new database structural
changes. The original database definition is retrieved from the IMS catalog. New applications or
applications that expect data returned at the latest database level must specify the PCB DBVER=
parameter or DBLEVEL=CURR on the PSBGEN statement.

51408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – DFSDFxxx PROCLIB Member

<SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE>
>>>>>>>>----++++--++++-->>>>
''''----ACBIN64=ACBIN64=ACBIN64=ACBIN64=nnnnnnnnnnnn----''''
>>>>--------++++--++++-->>>>

| .| .| .| .----NNNN----. |. |. |. |
''''----DBVERSION=DBVERSION=DBVERSION=DBVERSION=((((----++++----YYYY----++++----++++--++++----))))----''''

| .| .| .| .----CURRCURRCURRCURR----. |. |. |. |
''''----DBLEVEL=DBLEVEL=DBLEVEL=DBLEVEL=----++++----BASEBASEBASEBASE----++++----''''

>>>>--------++++--++++--------++++--++++------------------------------------><><><><
| .| .| .| .----NNNN----. | | .. | | .. | | .. | | .----,,,,----------------. |. |. |. |
''''----RELOLROWNER=RELOLROWNER=RELOLROWNER=RELOLROWNER=----++++----YYYY----++++----' | V | |' | V | |' | V | |' | V | |

''''----UNREGCATLG=(UNREGCATLG=(UNREGCATLG=(UNREGCATLG=(------------namenamenamename----++++----))))----''''

<SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE>
>>>>>>>>----++++--++++-->>>>
''''----ACBIN64=ACBIN64=ACBIN64=ACBIN64=nnnnnnnnnnnn----''''
>>>>--------++++--++++-->>>>

| .| .| .| .----NNNN----. |. |. |. |
''''----DBVERSION=DBVERSION=DBVERSION=DBVERSION=((((----++++----YYYY----++++----++++--++++----))))----''''

| .| .| .| .----CURRCURRCURRCURR----. |. |. |. |
''''----DBLEVEL=DBLEVEL=DBLEVEL=DBLEVEL=----++++----BASEBASEBASEBASE----++++----''''

>>>>--------++++--++++--------++++--++++------------------------------------><><><><
| .| .| .| .----NNNN----. | | .. | | .. | | .. | | .----,,,,----------------. |. |. |. |
''''----RELOLROWNER=RELOLROWNER=RELOLROWNER=RELOLROWNER=----++++----YYYY----++++----' | V | |' | V | |' | V | |' | V | |

''''----UNREGCATLG=(UNREGCATLG=(UNREGCATLG=(UNREGCATLG=(------------namenamenamename----++++----))))----''''

/***/***/***/**/***/***/***/
/* Database Section /* Database Section /* Database Section /* Database Section */*/*/*/
/***/***/***/**/***/***/***/
<SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE>
ACBIN64=8 ACBIN64=8 ACBIN64=8 ACBIN64=8 /* Create 64/* Create 64/* Create 64/* Create 64----bit storage pool */bit storage pool */bit storage pool */bit storage pool */
DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE) /* Change Default to BASE *//* Change Default to BASE *//* Change Default to BASE *//* Change Default to BASE */
RELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminates */s */s */s */
/***/***/***/**/***/***/***/
/* /* /* /* */*/*/*/
/***/***/***/**/***/***/***/

/***/***/***/**/***/***/***/
/* Database Section /* Database Section /* Database Section /* Database Section */*/*/*/
/***/***/***/**/***/***/***/
<SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE><SECTION=DATABASE>
ACBIN64=8 ACBIN64=8 ACBIN64=8 ACBIN64=8 /* Create 64/* Create 64/* Create 64/* Create 64----bit storage pool */bit storage pool */bit storage pool */bit storage pool */
DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE)DBVERSION=(Y,DBLEVEL=BASE) /* Change Default to BASE *//* Change Default to BASE *//* Change Default to BASE *//* Change Default to BASE */
RELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminateRELOLROWNER=Y /* Release ownership of OLR when IMS terminates */s */s */s */
/***/***/***/**/***/***/***/
/* /* /* /* */*/*/*/
/***/***/***/**/***/***/***/

SAMPLE DFSDFxxx DATABASE section with versioning support enabled

DFSDFxxx DATABASE section with versioning keywords

514

DBVERSION = Y|N

Specifies that database versioning is to be enabled. When parm omitted, database versioning is
disabled.

When database versioning is enabled, IMS becomes sensitive to the version number associated with a
DBD. Applications may then request a specific DBD version by specifying the version number on the
PCB DBVER= parameter. If the requested DBD version is not the currently active one, then IMS will
retrieve it from the IMS catalog. If the requested DBD version does not exist, IMS returns a bad status
code to the application.

When database versioning is not enabled, IMS is not sensitive to the version number associated with a
DBD and application programs continue to access the data from the database at the physical database
level. This is how IMS operates prior to V13. If an application program specifies a DBD version on the
PCB DBVER= parameter while database versioning is not enabled, IMS returns a bad status code to the
application.

DBLEVEL=CURR|BASE: Specifies the default database version level. It is only used if
DBVERSION=Y, otherwise it is ignored. The default setting is CURR.

If DBLEVEL=CURR, then for all application programs IMS will return data from the database at the
current physical level unless the application requested a specific DBD version on the PCB DBVER=
parameter. DBLEVEL=CURR is recommended. It allows for a seamless transition over to database
versioning and allows application development to move forward as long as all application programs are
maintained to access databases at the latest level. For any application program that requires the
continued use of older versions of a DBD, the PCB DBVER= parameter may be used.

If DBLEVEL=BASE, then for all application programs IMS will return data from the database at the
original base level (ie., version 0) using the database definition stored in the IMS catalog. This is unless
the application requests a specific DBD version on the PCB DBVER= parameter. DBLEVEL=BASE
should only be considered if you have a large number of application programs that can not be changed
(ie. pgm source or PSB no longer available). This allows application programs to continue using the

original database definition, while also allowing new application development & new database structural
changes. The original database definition is retrieved from the IMS catalog. New applications or
applications that expect data returned at the latest database level must specify the PCB DBVER=
parameter or DBLEVEL=CURR on the PSBGEN statement.

51508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – Database Generation Statement

� New parameter added to DBD Statement

– DBVER=n

• Specifies a DBD version number to be associated with a database

structure change

• Supports ACCESS types DEDB, HDAM, HIDAM, PHDAM & PHIDAM

• Numeric values from 1 – 2147483647 (2 Gigs)

....----,VSAM,VSAM,VSAM,VSAM----. . . .
>>>>>>>>----DBDDBDDBDDBD--------NAME=NAME=NAME=NAME=(dbname1)(dbname1)(dbname1)(dbname1)--------,ACCESS=,ACCESS=,ACCESS=,ACCESS=----((((--------++++--------++++----HDAMHDAMHDAMHDAM------------++++--------++++----,OSAM,OSAM,OSAM,OSAM----++++--------++++--------))))--------++++--++++------------------------> > > >

' '' '' '' '----HIDAMHIDAMHIDAMHIDAM--------' ' '' ' '' ' '' ' '----,,,,DBVER=DBVER=DBVER=DBVER=nnnn----''''
' '' '' '' '----PHDAMPHDAMPHDAMPHDAM--------' '' '' '' '
' '' '' '' '----PHIDAMPHIDAMPHIDAMPHIDAM----' '' '' '' '
' '' '' '' '
''''--------------------DEDBDEDBDEDBDEDB--''''

............

DBVER= parameter on the DBD statement for specific ACCESS types

515

Database DBD statement

A new parameter, DBVER=, is added to the DBD statement. The new parameter

allows the user to specify a version number associated with a structure change being

made to the DBD. The DBVER parameter is only supported for DEDB, HDAM,

HIDAM, PHDAM, and PHIDAM. Version numbers specified on this parameter must be

maintained in incremental values.

Specifies the version number used to associate a change made to the DBD. It has to

be a numeric value, and the valid value range is 1 – 2147483647.

51608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – PCB Statement in PSB

� New parameter added to PCB Statement

– DBVER=n

• Specifies the version of the DBD to use when accessing the database

• Must match a defined DBD version number stored in the IMS catalog

• If multiple PCBs within a PSB refer to the same database, each PCB

must specify the same DBD version number

• Numeric values from 0 – 2147483647 (2 Gigs)

• If not specified, the DBD version used depends on DBLEVEL= parm in
the PSBGEN statement or the DFSDFxxx PROCLIB member

>>>>>>>>----++++--++++--------PCBPCBPCBPCB--------TYPE=DBTYPE=DBTYPE=DBTYPE=DB--------++++----,DBDNAME=,DBDNAME=,DBDNAME=,DBDNAME=----++++--------namenamenamename--++++--++++------------------------> > > >
''''----labellabellabellabel--------------------' '' '' '' '----,NAME=,NAME=,NAME=,NAME=----------------' '' '' '' '----,,,,DBVER=DBVER=DBVER=DBVER=nnnn----''''

............

DBVER= parameter on the PCB statement

516

Program PCB Statement

A new parameter, DBVER=, is added to specify the version of the DBD to be used when

accessing the associated database. The valid values are between 0 – 2147483647.

When database versioning is enabled, and the DBVER= parameter is omitted from the

program PCB statement, the DBD version used to return data depends on the DBLEVEL=

parameter in the PSBGEN statement or the DFSDFxxx PROCLIB member

DBVER=

Specify the version number of the database DBD to access for this application program. It

has to be a numeric value, and valid value range is 0 - 2147483647. If multiple PCBs

within a PSB refer to the same database, then each PCB must specify the same DBD

version number.

DBVER is only supported for TYPE=DB. If specified for TYPE=TP or TYPE=GSAM, it is

ignored.

When coding the PSB with multiple references to the same database, if the same version

number is not used then PSBGEN will fail with an MNOTE.

Not allowed:

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK21,DBVER=1

PCB TYPE=DB,DBNAME=DBJK22,DBVER=3

PSBGEN PSBNAME=PSBJK

Allowed:

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK22,DBVER=3

PSBGEN PSBNAME=PSBJK

51708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – Program Generation Statement

� New parameter added to PSBGEN Statement

– DBLEVEL=CURR | BASE

• Specifies the default database version level returned to programs

using this PSB and not requesting specific database versions

– DBLEVEL=CURR

• PCBs within the PSB will access the database using the current physical
structure

– DBLEVEL=BASE

• PCBs within the PSB will use the lowest base version in the IMS catalog

• Overrides the default setting for DBLEVEL specified in DFSDFxxx

PROCLIB member

>>>>>>>>----PSBGENPSBGENPSBGENPSBGEN--------PSBNAME=PSBNAME=PSBNAME=PSBNAME=----namenamenamename--------++++--++++-->>>>
' '' '' '' '
''''----,,,,DBLEVEL=DBLEVEL=DBLEVEL=DBLEVEL=----++++----CURRCURRCURRCURR----++++----‘‘‘‘

''''----BASEBASEBASEBASE----''''
............

DBLEVEL= parameter on the PSBGEN statement

517

PSBGEN statement

DBLEVEL=CURR | BASE

When database versioning is enabled, specifies the default database version level that

is returned to application programs that do not request a specific database version. For

all application programs that use this PSB, the value specified here overrides the overall

default system setting for DBLEVEL if specified in the DFSDFxxx PROCLIB member.

Any DB PCB which does not request a specific database version will follow this default

rule.

DBLEVEL=BASE

When any PCB within this PSB does not specify a database version on the DBVER

parameter, IMS returns data that conforms to the database structure that is defined by

the lowest version number in the DBD record of the

database in the IMS catalog.

DBLEVEL=CURR (default)

When any PCB within this PSB does not specify a database version on the DBVER

parameter, IMS returns data that conforms to the database structure that is defined by

the highest version number. The highest version number defines the actual current

structure of the physical database.

If database versioning is disabled, then this parameter is ignored.

51808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – DL/I INIT Call

� New VERSION function added to the “INIT” call interface

– Application program can specify the database name(s) and the DBD

version(s) to be used when making DL/I calls to the database(s)

– Specified version number must match a version number defined on a

DBD for the named database and stored in the IMS catalog

– Takes precedence over all other version number specifications and

defaults (ie. PCB statement, PSBGEN statement, DFSDFxxx)

– An INIT call used to version a database has to be executed prior to the

first DL/I call for the database, but not before first “GU” call to IOPCB

– Can only issue one INIT VERSION call for a specific database within an

application

518

When database versioning is enabled, an application program can use the "VERSION"

function to request a version of a database that is different from the version number that is

specified for the application program on the PCB or from the default version that is

returned by IMS. A version number specified on the INIT VERSION call takes precedence

over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the

version of the database that is returned to the application program is determined by the

DBVER keyword of the PCB statement. If the DBVER keyword is not specified, IMS

returns either returns the highest or lowest version number, as determined by the

DBLEVEL keyword in either the PSBGEN statement or the database section of the

DFSDFxxx PROCLIB member.

Each database name is specified by using alphabetic characters and can be specified only

once. Specify only names of physical databases. The names of logical databases are not

supported.

Each version is specified as a numeric value from 0 to 2147483647. The number specified

must match a version number defined on a DBD for the named database and stored in the

IMS catalog.

Calculate the size required for the I/O area by multiplying the number of databases that are

specified in the input I/O area by 20.

For performance reasons, the INIT call should not be issued before the first GU call to the

I/O PCB. If the INIT call is issued first, the GU call is not processed as efficiently.

51908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Implementation – DL/I INIT Call

DLI Call: DLI Call: DLI Call: DLI Call:

>>>>>>>>----INITINITINITINIT--------++++----i/o_pcbi/o_pcbi/o_pcbi/o_pcb----++++--------i/o_areai/o_areai/o_areai/o_area--><><><><
''''----aibaibaibaib--------------------' ' ' '

i/o area:i/o area:i/o area:i/o area:
....----,,,,--....
V |V |V |V |

>>>>>>>>----VERSIONVERSIONVERSIONVERSION((((------------dbnamedbnamedbnamedbname====versionversionversionversion----++++----))))--><><><><

INIT VERSION call and i/o area

� I/O Area contains the ‘VERSION’ function and database parms

– “VERSION(dbnameA=version#,…,dbnameZ=version#,…)”

• dbname: specifies a physical database name

• version#: specifies a DBD version number to be used when

accessing the database

• sub-parameters separated with a comma

• no duplicates allowed

519

i/o area - Specifies the I/O area in your program that contains the character string or strings

indicating which INIT functions are requested. This parameter is an input parameter. INIT

function character strings include DBQUERY, STATUS GROUPA, STATUS GROUPB, &

VERSION (dbnameA=version#,...,dbnameZ=version#).

dbname: This specifies the database name.

version#: This specifies the version number of the database (identified in the DBname

parameter) definition to be used when accessing the database.

The valid version range is 0 – 2147483647. When dbname is provided, version# is required.

1. Minimum requirement for a complete INIT VERSION call:

- Open parenthesis '('

- Database name. It must be alpha characters.

- Equal sign '='

- Database version number. It must be numeric.

- Close parenthesis ')'

2. One set includes a database name, an equal sign, and a database version number.

3. Allows more than one set within () for INIT VERSION call.

4. Requires open and close parenthesis.

5. Requires equal sign as a separator between the database name and the database version

number.

6. Requires a comma as a delimiter between the sets.

7. Allows no space between the database name, equal sign, database version number, and

comma within the ().

For example: INIT VERSION (DBname1=10,DBname2=20,DBname3=30)

8. Duplicate database name is not allowed within the call.

52008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� “BE” Status Code

– Explanation

• A database name specified on the VERSION function of the INIT call can’t be
found

– Programmer response

• Correct the database names in the I/O area of the VERSION function

� “BG” Status Code

– Explanation

• The database type of the database named on the VERSION function of the INIT
call does not support database versioning

• The database types that do not support database versioning include:

– GSAM

– Logical databases

– MSDB

– Programmer response

• Check that the database name is specified correctly

New INIT Call Status Codes

520

52108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� “BF” Status Code

– Explanation

• The INIT VERSION call is invalid

– Invalid database version number specified in I/O area of INIT VERSION call

• not a version number of the specified database

• not within the supported range of values

• different from the version number specified on a previous INIT VERSION call
issued by the application program for the same database

– Database versioning is not enabled in the IMS system

– Programmer response

• Check that the database name and version number are specified correctly in the
INIT VERSION call

• Confirm that database versioning is enabled in the IMS system

– If not, remove the INIT VERSION call from the application program or
coordinate with the SYSPROG or DBA to enable database versioning

New INIT Call Status Codes (cont’d)

521

52208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Status Code Description

AG During INIT VERSION call processing, the I/O area was not large enough to contain
all of the output data; the output data was truncated to fit in the I/O area

AJ For INIT VERSION (dbname=number) call, the syntax of the parameters in the I/O
area is invalid

BA Application programs that issue the INIT STATUS GROUPA call can receive a BA
status code when database versioning is enabled and an invalid database version
has been specified

NA For an INIT VERSION(dbname=version) call, one or more of the databases that can

be accessed by using this PCB is not available

SA For an INIT VERSION(dbname=version) call, IMS could not get CSA storage to build

the required internal blocks

Changed INIT Call Status Codes

522

52308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Version Determination

� If database versioning is enabled, the database version used to
return IMS data to a program is determined as follows:

� DFSDFxxx DATABASE Section DBLEVEL= parameter

� PSBGEN Statement DBLEVEL= parameter

� PCB Statement DBVER= parameter

� DL/I “INIT VERSION" call

523

DL/I INIT VERSION call takes precedence over all other
database version number specifications and defaults

Hierarchy for setting of database versioning.

DLI INIT VERSION call is always the overriding version specification .

52408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 524

“CIF” Customer Account Segment

Account Number

� Database Versioning enabled with DBLEVEL=BASE

� BASE version of the customer account segment

� Segment is fixed length

� No space remaining for additional fields

Member Name Balance Credit Limit

Versioning Example

52508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 525

“CIF” Customer Account Segment

Account Number

� New version of the customer account segment defined in DBD

– Expands the length of the segment

– New field called Reward Points defined in expanded space

– CIF DBD defined as DBVER=201401

� Existing applications are not updated

– Existing applications do not have to know the new field exists

– Existing applications do not see or update the new field

Member Name Balance Credit Limit Reward Points

Field Added to Existing DB Segment

52608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 526

� Application scheduled using the BASE version of the database

– Read a “CIF” Customer Account segment

– Update the Balance to 200,000 with a REPL call

• Only the credit balance field is changed

• Reward Points field and others are left unchanged

Account Number Member Name Balance Credit Limit

555555 Vern Watts 100,000 500,000

Reward Points

50,000

Customer Account segment before replace

Account Number Member Name Balance Credit Limit

555555 Vern Watts 200,000 500,000

Reward Points

50,000

Customer Account segment after replace

Segment READ/REPLACE Behavior

52708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 527

� Application scheduled using the 201401 version of the database

– Read a “CIF” Customer Account segment

– Update the Balance to 250,000 and Reward Points to 100,000 with a REPL call

• Both the Balance and the Reward Points fields are changed

• Others fields are left unchanged

Account Number Member Name Balance Credit Limit

555555 Vern Watts 200,000 500,000

Reward Points

50,000

Customer Account segment before replace

Account Number Member Name Balance Credit Limit

555555 Vern Watts 250,000 500,000

Reward Points

100,000

Customer Account segment after replace

Segment READ/REPLACE Behavior

52808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning Operational Considerations

� When an application program requires a database version not
currently the active version:

– IMS will go to the Catalog to get the information for the requested DBD

version

– IMS will compare the Catalog info for the DBD to the currently active DBD
information and determine the differences

– If the IMS Catalog is not enabled, an “NA” status code is returned
because the catalog database is not available

� When database versioning is enabled and the application program
does not request a version:

– By default IMS will retrieve the database data at the current physical level

– Unless the DFSDFxxx default behavior is overridden with the
DBLEVEL=BASE parameter

528

During scheduling, if a specific DB version is requested on the PCB and it is not the

current version:

IMS will go to the catalog to get the correct DB version

If the IMS catalog is not enabled

DLI call using catalog PCB DFSCAT00 fails because the catalog PSB

DFSCP000 could not be scheduled

the DBPCB status code will be set to “NA”

If an application does not request a specific DB version:

IMS will retrieve the DB data at the current physical level

UNLESS the DBLEVEL= parameter has been set on the PSBGEN statement or

in the DATABASE section of the DFSDFxxx PROCLIB member.

52908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Non-Versioning Process Flow

DBJK21
DBJK22

DBJK23

Application

DBJK21

DBJK22

DBJK23

IMS

DBJK21
DBJK22
DBJK23

ACBLI B

DBJK21 V0
DBJK22 V0
DBJK23 V0

IMS Catalog

DBJK21
DBJK22
DBJK23

DBDLIB

PSBJK

PSBLIB

PSBGEN

PCB

DBJK21
DBJK22
DBJK23

PSB=PSBJK Source

DBJK21

DBD Source

DBJK22

DBJK23

DBDGEN

PSBGEN

DBJK21

DBJK22
DBJK23

DLI
Active

ACBGEN

No Version numbers

on DBDs

->

Catalog entries

default to version

“V0”

� �

��

�

Database Versioning

not enabled ->

data returned to app

at physical level

529

Current flow of how IMS Database works today without Database Versioning:

1. & 2. DBDGEN/PSBGEN/ACBGEN with no version numbers specified on the DBDs.

If no version number specified, Catalog saves entries for the DBDs with no version

number (version 0).

3. The active versions of DBJK21,DBJK22, & DBJK23 DBDs do not contain version

numbers, therefore, Database Versioning is not enabled

4. Application does DB calls to access DBJK21, DBJK22 & DBJK23 databases.

5. IMS data is returned to application at the current physical structure level.

53008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Versioning Process Flow #1 - DBLEVEL=CURR (default)

DBJK21
DBJK22

DBJK23

Application

IMS

DBJK21 V1
DBJK22 V1
DBJK23 V1

ACBLI B

DBJK21 V0,V1
DBJK22 V0,V1
DBJK23 V0,V1

IMS Catalog

DBJK21 V1
DBJK22 V1
DBJK23 V1

DBDLIB

PSBJK

PSBLIB

PSBGEN

PCB

DBJK21 V0
DBJK22
DBJK23 V1

PSB=PSBJK Source

DBJK21 V1

DBD Source

DBJK22 V1

DBJK23 V1

DBDGEN

PSBGEN

DBJK21 V0
DBJK22 V1
DBJK23 V1

DLI

Retrieve DBJK21 from Catalog

DBJK21 V1

DBJK22 V1
DBJK23 V1

Active

ACBGEN

����
����

����

Version “V1” of

DBDs put into

ACBLIB & Catalog

Database Versioning

enabled -> data

returned to app at V0

& V1 levels

����
����

����
DBJK21

DBJK22

DBJK23

����

530

Once you enable Database Versioning and start specifying DBVER on the DBD source.

1. DBD NAME=DBJK21 DBVER=1…

DBD NAME=DBJK22 DBVER=1…

DBD NAME=DBJK23 DBVER=1…

DBDGEN/PSBGEN/ACBGEN

2. Version 1 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 1 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to the

already existing Version 0.

3. IMS runs with Version 1 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The PSB indicates the application needs DBJK21 at Version 0 (Base version). IMS

retrieves version 0 from the IMS Catalog.

By default, the application uses DBJK22 at active Version 1.

The PSB indicates the application will use DBJK23 at active Version 1.

6. DBJK21 IMS data is returned to application at V0 level.

DBJK22 IMS data is returned to application at V1 level.

DBJK23 IMS data is returned to application at V1 level.

53108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Versioning Process Flow #2 - DBLEVEL=CURR (default)

DBJK21
DBJK22

DBJK23

Application

IMS

DBJK21 V2
DBJK22 V2
DBJK23 V2

ACBLI B

DBJK21 V0,V1,V2
DBJK22 V0,V1,V2
DBJK23 V0,V1,V2

IMS Catalog

DBJK21 V2
DBJK22 V2
DBJK23 V2

DBDLIB

PSBJK

PSBLIB

PSBGEN
DBLEVEL=BASE

PCB

DBJK21 V1
DBJK22
DBJK23 V2

PSB=PSBJK Source

DBJK21 V2

DBD Source

DBJK22 V2

DBJK23 V2

DBDGEN

PSBGEN

DBJK21 V2

DBJK22 V2
DBJK23 V2

DBJK21 V1
DBJK22 V0
DBJK23 V2

DLI

Retrieve DBJK21 & DBJK22 from Catalog

Active

ACBGEN

DBJK21

DBJK22

DBJK23

�
����

����
����

����

����

Version “V2” of

DBDs put into

ACBLIB & Catalog

Database Versioning

enabled -> data

returned to app at V0,

V1 & V2 levels

����

531

Once you enable Database Versioning and start specifying DBVER on the DBD source.

1. DBD NAME=DBJK21 DBVER=2…

DBD NAME=DBJK22 DBVER=2…

DBD NAME=DBJK23 DBVER=2…

DBDGEN/PSBGEN/ACBGEN

2. Version 2 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 2 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to already

existing Version 0 & 1.

3. IMS runs with Version 2 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The PSB indicates the application needs DBJK21 at Version 1 & DBJK23 at Version 2

which is active in IMS.

The PSB also indicates (DBLEVEL=BASE) meaning the default behavior is to use the

base DBD version if one is not specified on the PCB.

DBJK22 uses Version 0 from the IMS Catalog

6. DBJK21 IMS data is returned to application at V1 level.

DBJK22 IMS data is returned to application at V0 / BASE level

DBJK23 IMS data is returned to application at V2 level

53208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Versioning Process Flow #3 - DBLEVEL=CURR (default)

DBJK21
DBJK22

DBJK23

Application

IMS

DBJK21 V3
DBJK22 V3
DBJK23 V3

ACBLI B

DBJK21 V0,V1,V2,V3
DBJK22 V0,V1,V2,V3
DBJK23 V0,V1,V2,V3

IMS Catalog

DBJK21 V3
DBJK22 V3
DBJK23 V3

DBDLIB

PSBJK

PSBLIB

PSBGEN
DBLEVL=CURR

PCB

DBJK21 V1
DBJK22
DBJK23 V2

PSB=PSBJK Source

DBJK21 V3

DBD Source

DBJK22 V3

DBJK23 V3

DBDGEN

PSBGEN

DBJK21 V3

DBJK22 V3
DBJK23 V3

DBJK21 V3

DBJK22 V2
DBJK23 V1

DLI

Retrieve DBJK22 & DBJK23 from Catalog

Active

ACBGEN

�
����

����

���� ����

����

Version “V3” of

DBDs put into

ACBLIB & Catalog

Database Versioning

enabled -> data

returned to app at V1,

V2 & V3 levels

����

DBJK21

DBJK22

DBJK23

INIT

VERSION(DBJK21=3,DBJK22=2,DBJK23=1)

532

Once you enable Database Versioning and start specifying DBVER on the DBD source.

1. DBD NAME=DBJK21 DBVER=3…

DBD NAME=DBJK22 DBVER=3…

DBD NAME=DBJK23 DBVER=3…

DBDGEN/PSBGEN/ACBGEN

2. Version 3 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 3 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to already

existing Version 0,1&2

3. IMS runs with Version 3 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The application specified the INIT VERSION call which overrides all the DBD versions

indicated on the PSB.

DBJK21 uses Version 3 which is active in IMS.

DBJK22 uses Version 2 from the IMS Catalog.

DBJK23 uses Version 1 from the IMS Catalog.

6. DBJK21 IMS data is returned to application at V3 level.

DBJK22 IMS data is returned to application at V2 level

DBJK23 IMS data is returned to application at V1 level

.

53308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� QUERY DB

– New SHOW(VERSION) option

– Returns the version number of a database that is currently active in the
online IMS system

• For HALDB Master – response shows master and each partition

• For HALDB Partition – response shows only the requested partition

• For FP DEDB – response show only the DEDB

– Cannot specify the VERSION filter with other SHOW filters

┌┌┌┌ÀÀÀÀNAME(*)NAME(*)NAME(*)NAME(*)ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfi
►►►►►►►►ÀÀàÀÀÀàÀÀÀàÀÀÀàÀQUERYQUERYQUERYQUERYÀàÀÀàÀÀàÀÀàÀDBDBDBDBÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ◄◄À◄◄À◄◄À◄◄

└└└└ÀÀÀÀQRYQRYQRYQRYÀÀÀflÀÀÀflÀÀÀflÀÀÀfl | | | | ââââ ┌┌┌┌ÀÀÀÀ,,,,ÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfi | | | | ââââ └└└└ÀÀÀÀSHOW(SHOW(SHOW(SHOW(ÀÀÀÀVERSIONVERSIONVERSIONVERSIONÀÀÀÀ))))ÀflÀflÀflÀfl
| | | | ||||ââââ ||||ââââ
└└└└ÀÀÀÀNAME(NAME(NAME(NAME(ÀàÀàÀÀàÀàÀÀàÀàÀÀàÀàÀnamenamenamenameÀÀàÀàÀÀÀàÀàÀÀÀàÀàÀÀÀàÀàÀ))))ÀflÀflÀflÀfl

└└└└ÀÀÀÀname*name*name*name*ÀflÀflÀflÀfl

┌┌┌┌ÀÀÀÀNAME(*)NAME(*)NAME(*)NAME(*)ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀfi
►►►►►►►►ÀÀàÀÀÀàÀÀÀàÀÀÀàÀQUERYQUERYQUERYQUERYÀàÀÀàÀÀàÀÀàÀDBDBDBDBÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ◄◄À◄◄À◄◄À◄◄

└└└└ÀÀÀÀQRYQRYQRYQRYÀÀÀflÀÀÀflÀÀÀflÀÀÀfl | | | | ââââ ┌┌┌┌ÀÀÀÀ,,,,ÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfiÀÀÀÀÀÀÀÀÀfi | | | | ââââ └└└└ÀÀÀÀSHOW(SHOW(SHOW(SHOW(ÀÀÀÀVERSIONVERSIONVERSIONVERSIONÀÀÀÀ))))ÀflÀflÀflÀfl
| | | | ||||ââââ ||||ââââ
└└└└ÀÀÀÀNAME(NAME(NAME(NAME(ÀàÀàÀÀàÀàÀÀàÀàÀÀàÀàÀnamenamenamenameÀÀàÀàÀÀÀàÀàÀÀÀàÀàÀÀÀàÀàÀ))))ÀflÀflÀflÀfl

└└└└ÀÀÀÀname*name*name*name*ÀflÀflÀflÀfl

QUERY Command with SHOW(VERSION) option

Enhanced Type-2 QUERY Command

533

VERSION

Returns the version number of the version of a database that is currently active in the online IMS
system. The active version of a database is the version that is stored in the database control blocks
that are loaded by the online IMS system. The control blocks define the actual physical structure of
the database to the online IMS system.

The possible version numbers range from 0-2147483647.

You cannot specify this filter with other SHOW filters; you must specify SHOW(VERSION)
individually.

SHOW(VERSION) is valid only for the following database access types:

• HDAM

• HIDAM

• PHDAM

• PHIDAM

• DEDB

If SHOW(VERSION) is specified for an unsupported database access type, completion code BD is

returned in the CC column of the output to indicate that the query is invalid for the access type of
the database.

If SHOW(VERSION) is specified for a HALDB master, the output lists a response line for the
HALDB master name and for each of its partition. Each partition of the HALDB inherits the version

number from the HALDB master, so each response line displays the same version number.

If SHOW(VERSION) is specified for a HALDB partition, the output lists a response line for just that
partition. The version number that is displayed is that of the HALDB master. If the partition is
disconnected from the HALDB master, such as might happen when the /DBR command is in effect
on the database, completion code 10 is returned in the CC column of the output to indicate that no
resource was found.

If SHOW(VERSION) is specified for a DEDB, the output lists a response line for only the DEDB.
Area information is not listed in the output response.

53408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� QUERY DB Output

–Short Label: short label generated in the XML output

–Long Label: column heading for output field in the formatted output

–SHOW Parameter: parameter on the QUERY SHOW() keyword that
caused the output field to be generated

• Error appears for output fields that are returned for a non-zero completion code

–Meaning: a brief description of the output field

Enhanced Type-2 QUERY Command

Short Label Long Label SHOW
Parameter

Meaning

VER VERSION VERSION Version number of the database that is currently active on the
IMS system.

CC CC Error Completion code. The completion code indicates whether or
not IMS was able to process the command for the specified
resource. Refer to the table of QUERY DB return, reason, and
completion codes for more information. The completion code is
always returned.

CCTXT CCText Error Completion code text that briefly explains the meaning of the
non-zero completion code. This field is returned only for an
error completion code.

534

53508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� QUERY DB Output

– Output headers for successful commands

QUERY DB NAME(dbname) SHOW(VERSION)

DBName PartName MbrName CC TYPE VERSION

-------- -------- ------- -- ----- ----------

– Output headers for commands with errors

QUERY DB NAME(dbname) SHOW(VERSION)

DBName PartName MbrName CC CCText TYPE VERSION

-------- -------- ------- -- ------ ----- ----------

Enhanced Type-2 QUERY Command

Completion Code Completion Code Text Meaning

0 Command completed successfully for the resource.

10 Resources not found • The resource name is unknown to the client that is processing the
request. The resource name might have been typed in error or the
resource might not be active at this time. Confirm the correct
spelling of the resource name specified on the command.

• For full function databases that have not been opened or initialized.
• If the command is used to query the version number of a HALDB
partition, the output will list a response line for just that partition. If
the partition is disconnected from the HALDB master, possibly due
to a DBR of the database, then the output will show a completion
code of ‘10’ in the CC column to indicate no resource found.

195 Unsupported DB type Database versioning for this database access type is not supported.

535

53608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� RACF Security definitions

IMS Command Command Keyword RACF access authority Resource name

QUERY DB QUERY IMS.plxname.QRY.DB

Type-2 Query Command Security

536

Use standard RACF definitions to secure the IMS command QUERY DB

53708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� U3303 PseudoAbend

– A DL/I call to access a specific version of the database data failed

• Database Versioning enabled

– invalid database version number was specified

– requested database version cannot be found in the IMS catalog

– current database structure contains a change that is not supported by
versioning

– storage error occurred while building the internal blocks required to
satisfy a request for a version of a database other than the current
version

• Database Versioning not enabled

– DFS3303I message issued to console before the U3303 abend

– If INIT STATUS GROUPA was issued prior to DL/I call

• U3303 pseudoabend is suppressed and a “BA” status code is returned

Database Versioning Errors

537

DFS3303I

PSB psbname PCB pcbname DBD dbdnamexxxx JOBNAME jobnameRGN nnn

Explanation

This message precedes pseudoabend 3303 when an application program scheduled

with PSB psbname tries to make an incompatible DL/I call to database PCB

psbname. During DL/I scheduling of the PSB, database dbdname had condition xxxx.

Depending on the condition, DL/I calls to this database are partially or totally

restricted.

This message precedes only those 3303 abends caused by DL/I attempts to access

data in a database that was unavailable when the program was scheduled, and the

program had not issued the DL/I INIT call.

53808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� DFS3549E

– Application program attempted to access a prior version of a database but IMS
cannot build the internal control blocks required to access prior versions of the

database

• latest version of the database contains a change in the database definition
that is not supported by database versioning:

Database Versioning Error

CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=rsncrsncrsncrsnc PST=PST=PST=PST=pstnopstnopstnopstno
PSB=PSB=PSB=PSB=psbnamepsbnamepsbnamepsbname DATABASE=DATABASE=DATABASE=DATABASE=dbnamedbnamedbnamedbname VERSION=VERSION=VERSION=VERSION=vernumvernumvernumvernum SEGMENT=SEGMENT=SEGMENT=SEGMENT=segmnamesegmnamesegmnamesegmname

CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=CHANGE NOT SUPPORTED BY DATABASE VERSIONING: RS=rsncrsncrsncrsnc PST=PST=PST=PST=pstnopstnopstnopstno
PSB=PSB=PSB=PSB=psbnamepsbnamepsbnamepsbname DATABASE=DATABASE=DATABASE=DATABASE=dbnamedbnamedbnamedbname VERSION=VERSION=VERSION=VERSION=vernumvernumvernumvernum SEGMENT=SEGMENT=SEGMENT=SEGMENT=segmnamesegmnamesegmnamesegmname
FIELD=FIELD=FIELD=FIELD=fld_namefld_namefld_namefld_name

• exit routine changed
• number of segments changed

• insert rule changed
• delete rule changed

• segment code changed
• field length changed

• segment length is truncated

• segment changed from fixed-length to

variable-length or vice versa
• field was deleted, moved to another segment,

or its name was changed

• key length of the field changed
• value of the TYPE keyword on the FIELD

statement changed

538

Explanation

An application program attempted to access a prior version of a High Availability Large

Database (HALDB), but IMS cannot build the internal blocks that are required to access

prior versions of the database, because the latest version of the database contains a

change in the database definition (DBD) that is not supported by database versioning.

Application programs cannot access any prior version of the database, unless the

application programs are changed or the unsupported change is removed from the

database.

System action

IMS cannot build the internal blocks that are required to provide access to prior versions

of the database. Only the most recent version of the database can be accessed.

IMS returns a status code to the application program or the application code abends.

System programmer response

Determine whether you need to keep the changes in the database or remove them.

Keeping the changes requires all application programs to be modified to access the new

database structure. The prior versions of the database cannot be accessed anymore.

Removing the changes allows you to enable database versioning. However, if the

database has been updated since the changes were made, you need to recover the

physical database to the prior version. Any updates to the database that were made by

application programs that used the current version of the database are lost.

53908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� Enhanced IMS Messages

Message Description

DFS3303I New conditions:
INVDBVER An invalid number for a full-function database was specified on a PCB or an INIT VERSION
call that was issued by the application program. The specified database version number must be equal to

or less than version number of the current database that is active in the IMS system. Also, a database
version cannot be specified on a PCB if database versioning is not enabled. Database versioning is

enabled by specifying DBVERSION=Y in the database section of the DFSDFxxx PROCLIB member.
INVDBCHG The current database structure of a full-function database contains a change that is not

supported by database versioning. Prior versions of the database are incompatible with the current
version and can not be accessed. The changes that are supported by database versioning are:

• Increasing the size of a segment

• Adding new fields without changes made to existing fields
NOCATALG The IMS catalog is not enabled. Database versioning requires the IMS catalog.

NOSTORAG A storage error occurred while building the internal blocks that are required to satisfy a
request for a version of a full-function database other than the current version.

NOVERFND The requested version of a full-function database cannot be found in the IMS catalog

DFS3549E Database change not supported by versioning:
An application program attempted to access a prior version of a High Availability Large

Database (HALDB), but IMS cannot build the internal blocks that are required to access
prior versions of the database, because the latest version of the database contains a
change in the database definition (DBD) that is not supported by database versioning.
Application programs cannot access any prior version of the database, unless the

application programs are changed or the unsupported change is removed from the
database.

Database Versioning Error Messages

539

54008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� New IMS Messages

Message Description

DFS0006E An error was detected while attempting to load the data management block (DMB) of an
altered database.

DFS0123E An application program attempted to access a prior version of a Fast Path data entry
database (DEDB), but IMS cannot build the internal blocks that are required to access
prior versions of the database, because the latest version of the database contains a
change in the database definition (DBD) that is not supported by database versioning

DBD180 The DBVER operand is specified on a DBD statement for a database access type that
does not support database versioning.

DBD181 The value on the DBVER operand in the DBD statement is not valid.

PCB540 The value on the DBVER operand of the PCB statement was not valid.

PGEN259 The value on the DBLEVEL operand of the PSBGEN statement was not valid

Database Versioning Error Messages

540

54108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� Populate the IMS catalog with ACBLIB definitions

� Enable the IMS catalog

– Before Database Versioning is enabled for a database, IMS continues to
only recognize the current physical database definition

� All IMS systems in an IMSplex must be running IMS 13

� Enable IMS Database Versioning

– Specify the new parameter to enable a default database versioning

• Use the default DBLEVEL=CURR setting in DFSDFxxx so all
applications access databases at the latest, physical DB version

• Set the DBLEVEL=BASE parameter in DFSDFxxx so all
applications access databases at the oldest, lowest DB version

– Use the PSBGEN DBLEVEL parm or the PSB PCB DBVER= parm if an
application needs to use a version of a database different from the
system default level

– Use DLI INIT VERSION call is needed for dynamic version switching

Database Versioning Migration Considerations

541

54208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Database Versioning Summary

� IMS 13 allows application programs to use different versions of the
same physical database

– Multiple views of the physical data are maintained in the IMS catalog

– Application programs can use different views of the same physical IMS

database

� Benefit

– Customers can support multiple versions of an IMS database

– Physical database structure can be changed without having to modify all

the existing application programs using the database

542

Database Versioning Support is for Full Function, HALDB and DEDB database

customers who need support for multiple views of the physical data to a variety of

application needs such as:

•Implementing application changes over time.

•Ability to use application programs, for which there is no source code, after database

structure changes.

Versioning support enables users to assign user-defined version IDs to different

versions of the structure of a database. The user-defined version IDs are stored in the

record for the database in the IMS Catalog. Upon accessing the database, application

programs specify the version of the database that they need. If they do not specify a

version, by default they will get the version of the database structure at the current

level.

54308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter

543

54408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter

� IMS 13 provides ability to make structural changes to a HALDB

database without a database outage

– Structural changes can be made to DB segment definitions

– Online Reorganization is used to apply the structural changes to the online

HALDB database

– Online Change process is used to activate the new ACBLIB member(s) in

the online IMS system

� Benefit

– Eliminate a database outage when structural changes must be made to

segment definitions in a DBD

– Improved online availability of HALDB databases

544

HALDB Alter is for HALDB database customers who want to have the ability to make

segment changes without unloading and reloading the database.

This addresses the challenge of maintaining database availability while changing the

structure of a HALDB database. The actual hierarchy of the IMS HALDB cannot be

changed.

When a segment change is made to a DBD, an online command can be issued to apply

the change to the database. The change is implemented via an option of the HALDB

Online Reorganization (OLR) function. Application programs can access the database

at the same time the OLR function is changing the structure of the database.

This line item provides value to customers by reducing the complexity of making

structural changes to a HALDB database, eliminating system down time, and improving

system availability. This line item also reduces the cost and risk associated with making

and coordinating wholesale changes to all application programs when database

structure changes occur. This line item allows customers to improve their HALDB

database structures even if the database is used by critical application programs that

they no longer have the ability to change.

54508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Prerequisites

� Software requirements

– Same as IMS Version 13

– CSL

• SCI

• OM

� Hardware requirements

– Same as IMS Version 13

545

Minimal software and hardware pre-reqs:

IMS 13 and CSL (SCI and OM)

54608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Overview

� Structural changes can be made to online HALDB database segments

– PHDAM

– PHIDAM

� Types of structural segment changes

– Add a new field to space at the end of an existing segment

– Define new fields to remap fields and space in an existing segment

– Increase the length of an existing segment

546

A

CB

A

B C

The following structural changes can be applied to an online HALDB with the type-2

INIT OLREORG command:

Increasing the length of existing segment.

Adding new fields to space at the end of the segment.

Defining new fields that redefine existing fields and space in the segment.(not
structural)

When a segment change is made to a DBD, an online command can be issued to

initiate the change to the database. The change is implemented via an option of the

TYPE 2 HALDB Online Reorganization (OLR) function.

Application programs that use the old database definitions can access the database

while the OLR function is altering the structure of the database.

54708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

FIELD 1

FIELD 1

FIELD 2 Space

FIELD 2
New

FIELD 3

Add a new field to space at the end of a segment
Example 1A

Example 2A

FIELD 1

FIELD 1 FIELD 2

FIELD 2 Space

New
FIELD 3

Sp.

Sp.

547

BASE

V2

V2

BASE

EX 1A:

Add new field to beginning of free space at end of segment

EX 2A:

Add new field to end of free space at end of segment

In addition to the existing field definitions, the new fields are added to the DBD segment

definition.

54808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

FIELD 1

FIELD 1

FIELD 2

SpFIELD 2

Define new fields to remap fields & space in a segment

Example 1B

Example 2B

FIELD 1

FIELD 1 FIELD 2

FIELD 2

FIELD 2A FIELD 3AFIELD 2B

FIELD 3B

Space

Space

FIELD 2A
FLD

3A

FLD

4

548

FIELD 3 Sp.

FIELD 3Sp.

V2

V3

V2

V3

548

EX 1B:

Define 2 new fields, FIELD 2A and FIELD 2B, to overlay/re-map FIELD 2, define new

FIELD 3A to remap FIELD 3, and define FIELD 4 in free space.

EX 2B:

Define new field, FIELD 2A, to overlay/re-map FIELD 2, and define new FIELD 3A and

FIELD 3B to remap free space and FIELD 3.

In addition to the existing field definitions for the segment. The new overlay fields are

added to the DBD segment definition.

54908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

FIELD 1

FIELD 1

FIELD 2

SpaceFIELD 2

Example 1C

Example 2C

FIELD 1

FIELD 1 FIELD 2

FIELD 2

pace

FIELD 2A
New

FIELD 3
FIELD 2B

Sp

FIELD 2A

Sp. Space

Space

Increase the length of an existing segment

549

FIELD 3A

SpFIELD 3A
FLD

4

FIELD 3B
FLD
3A

V3

V4

V3

V4

FLD
4

paceFIELD 3B
FLD

3A

EX 1C:

Increase the length of an existing segment by adding space at end

EX 2C:

Increase the length of an existing segment by adding free space at end

The new free space is added to the segment size in the DBD definition.

55008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Overview

� After changes are made to a DBD segment definition(s)

– Online Reorganization (OLR) is used to ALTER the online database

from the current structure to the new structure

• DB unload / reload not required

• Requires Type-2 INITIATE OLREORG

– /INITIATE OLREORG does not support altering a HALDB

– Online Change (OLC) is used to activate the changed ACBLIB

members in the IMS online system

– Application programs can start using the new database structure

550

When a segment change is made to a DBD, an online command can be issued to initiate

the change to the database. The change is implemented via an option of the TYPE 2

HALDB Online Reorganization (OLR) function.

An Online Change must be completed to in-affect the DBD change in the online system.

Application programs that use the old database definitions can access the database while

the OLR function is altering the structure of the database. Once the OLC is completed,

application programs can use the new database definitions to access the database.

The TYPE-1 /INIT OLR command will not support the new HALDB ALTER function.

55108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Preparation

� Modify the DBD source code

– Define new fields in space at the end of segment(s)

• Specify new FIELD statements

– Define new fields to remap existing fields & space in a segment(s)

• Specify new FIELD statements

– Increase the length of a segment(s)

• Specify new length in the BYTES= parameter of SEGM statement

� Run DBDGEN

– Modified DBD source used as input

� Run PSBGEN(s) (if needed)

– Modified PSB source used as input

� Run ACBGEN

– Create a new member in a staging ACBLIB

� Modify or code new application programs to use new fields

551

Begin the ALTER process by making coding changes to the DBD source. Multiple

segment definitions in one DBD can be changed at the same time.

The appropriate DBD and ACB GENs must be run. The ACB member should be

genn’d to an output staging ACBLIB.

The staging ACB library needs a dynamic allocation member – DFSMDA.

A DFSMDA member can be created for the staging ACBLIB if one doesn’t already

exist. Use the documented DFSMDA macros.

During ALTER processing, IMS will process all the changes made in the DBD that are

found in the staging ACBLIB for that DB – all segment changes are made at one time.

55208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Preparation - DBRC

� CHANGE.PART Command

– Use to set attributes for a HALDB partition before it is altered

• New ALTERSZE keyword to set block/CI size of o/p partition data sets

• New NOALTRSZ keyword to clear block/CI size of o/p partition data sets

• Sizes cannot be changed if the HALDB is currently being altered

– Only after the alter operation is completed and an online change is
performed

►►►►►►►►ÀÀÀÀCHANGE.PARTCHANGE.PARTCHANGE.PARTCHANGE.PARTÀÀÀÀDBD(DBD(DBD(DBD(namenamenamename))))ÀÀÀÀÀÀÀÀPART(PART(PART(PART(namenamenamename))))ÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀÀÀÀÀàÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀàÀÀÀ►►►►
ðÀðÀðÀðÀALTERSZE(nnnnnALTERSZE(nnnnnALTERSZE(nnnnnALTERSZE(nnnnn))))À«À«À«À«
└└└└ÀÀÀÀNOALTRSZNOALTRSZNOALTRSZNOALTRSZÀÀÀÀÀÀÀÀflÀÀÀÀÀÀÀÀflÀÀÀÀÀÀÀÀflÀÀÀÀÀÀÀÀfl

552

If you are increasing the size of a segment when you are altering an online HALDB database,

you might also need to increase the OSAM block size or VSAM CI size of the output database

data set that holds the altered segment.

New block or CI sizes are applied to the output data sets at the start of alter processing, but

must be entered in the RECON data set before the INIT OLREORG OPTION(ALTER)

command is issued.

New block or CI sizes are entered into the RECON by specifying them on the ALTERSZE

keyword of the CHANGE.PART command or by specifying them in the Change Dataset

Groups panel of the HALDB Partition Definition utility (%DFSHALDB).

For VSAM data sets, if output data sets for alter processing exist, the output data sets that

require a new CI size must be deleted before initiating the alter process. Alter processing

automatically re-creates the required output data sets with the new CI size. If no ALTERSZE

value is specified for a given VSAM data set group and an output data set exists, the CI size of

the output data set is used. If no ALTERSZE value is specified and an output data set does

not exist, the CI size of the input data set is used.

For OSAM data sets, if no ALTERSZE value is entered, the BLKSZE of the input data set is

used, even if an output data set exists.

When you change a block or CI size, you might also need to change the size of the buffers. If

the new block or CI size does not fit into the current buffer subpool, IMS tries to find a larger

subpool among the available subpools. If none of the available subpools are large enough to

hold the new block or CI size, the output data set fails to open. To check buffer sizes, issue the

type-2 command QUERY POOL TYPE(DBAS).

55308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Preparation - DBRC

� CHANGE.PART Command

– ALTERSZE(nnnnn) | NOALTRSZ

• Mutually exclusive, optional keywords

• ALTERSZE(nnnnn)

– Specifies new OSAM block sizes or VSAM CI sizes for the output
partition data sets

– Specify up to 10 values, one for each data set group defined in the DBD

• Omitted values remain unchanged

• Numeric values must be even and no greater than 32K

– New sizes must be stored in the RECON partition record before the
INITIATE OLREORG OPTION(ALTER) command is issued

– New sizes are stored in the RECON partition record until the alter
operation is complete and an online change is performed

– After online change is performed, new OSAM block sizes are saved in
the OSAM BLOCK SIZE field of the RECON partition record

553

To increase the OSAM block size or VSAM CI size of the database data sets when

you are modifying the structure of a database with the HALDB alter function, you

must set ALTERSZE values for each data set group that is changing in each

partition record in the RECON.

To set the ALTERSZE values, you can use either DBRC command CHANGE.PART

or the HALDB Partition Definition utility (%DFSHALDB).

If you use the CHANGE.PART command to set the ALTERSZE values, the values

must be specified as positional, comma-separated values. The value in the first

position applies to the first data set group. The value in the second position applies

to the second data set group, and so on.

For example, the following ALTERSZE keyword sets a new block or CI size for the

third data set group, but leaves the sizes unchanged for the first and second data set

groups, as well as for the fourth through tenth data set groups, if they exist:

ALTERSZE(,,4096).

You can determine the position in which to enter a size for a data set group by

looking at the DSGROUP keyword in the SEGM statement that defines the segment

that you are altering. DSGROUP=A indicates the first position, DSGROUP=B, the

second position, and so on up to DSGROUP=J, which indicates the tenth position.

55408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Preparation - DBRC (cont’d)

554

To correct an ALTERSZE value that is already set, replace the incorrect value with the

correct value by using either the CHANGE.PART command or the HALDB Partition

Definition utility (%DFSHALDB).

For OSAM data sets, if you change an ALTERSZE value back to the original block size of

the input data set, the ALTERSZE value displays as 0 to indicate that the block size is not

changing. If all of the ALTERSZE values are restored to the original block sizes of the input

data sets, the ALTER SIZE field is omitted from the output of the LIST.DB command.

For VSAM data sets, if you change an ALTERSZE value back to the original CI size, the

original CI size is displayed. If all of the ALTERSZE values are restored to the original CI

sizes of the input data sets, the ALTER SIZE field is displayed with the last values that you

entered.

You can clear all of the ALTERSZE values for a partition by specifying CHANGE.PART

PART(name) NOALTRSZ command. For both OSAM and VSAM data sets, when the

NOALTRSZ keyword is used to clear all ALTERSZE values, the ALTER SIZE field is

omitted when the partition record is displayed.

After the command is successfully processed, the block or CI sizes to be used by the alter

process are listed under ALTER BLOCK SIZE in the RECON record for a partition, which

can be displayed by the issuing DBRC command LIST.DB DBD(partitionname).

After the alter size values are corrected, you can start the alter process by issuing the IMS

type-2 command INIT OLREORG NAME(masterdb) OPTION(ALTER).

55508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Online Process

� Use Online Reorg to ALTER the structure of a HALDB database

– Applies structural changes to the online HALDB database

– All database partitions are included in the reorg ALTER process

– Reads the current DBD version of the active ACBLIB

– Reads the new DBD from a staging ACBLIB

– If necessary, 10 TCBs will be scheduled concurrently for ALTER

� Application programs accessing the existing database, using the
current version of the DBD, continue running

� Internal tables are built to represent the changes between the
active/input DMB and the staged/output DMB

555

When the ALTER option is specified, the INIT OLREORG command initiates a

reorganization of an entire HALDB database to apply the database changes to all of the

database partitions. During ALTER processing, IMS will process all the changes made in

the DBD that are found in the staging ACBLIB for that DB – all segment changes are

made at one time.

Upon receiving the INIT OLREORG OPTION(ALTER) command, an IMS system can alter

up to 10 partitions concurrently. Any partitions that cannot be processed immediately are

queued internally until they can be altered.

While an IMS system reorganizes and alters a partition, the IMS system has ownership of

the partition. The subsystem ID of the IMS system that owns a partition for alter

processing is recorded in the OLRIMSID field of the partition record.

In a data-sharing environment, ownership of a partition is granted to the first IMS system

that is available to alter the partition. If one IMS system is available to process ten

partitions before any other IMS system becomes available, all ten partitions are processed

by the single IMS system. If partitions are queued for alter processing, ownership of the

queued partition is granted to the first IMS system to be altering less than ten partitions

concurrently.

As soon as the INIT OLREORG OPTION(ALTER) command is received by IMS, DBRC

marks every partition in the database with ALTER IN PROGRESS=YES, even those

partitions that are queued. While an IMS system is actively altering a partition, the partition

record shows OLREORG CURSOR ACTIVE=YES.

After alter processing is complete for a partition, the partition record shows ALTER

COMPLETE=YES.

Only after all partitions in the database have a status of ALTER COMPLETE=YES can

you perform online change to activate the new database structure. The online change

function resets both the ALTER IN PROGRESS field and the ALTER COMPLETE field to

NO.

55608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB OLR Alter Command

� INITIATE OLREORG

►►►►►►►►ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀINITIATEINITIATEINITIATEINITIATEÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀOLREORGOLREORGOLREORGOLREORGÀÀ

►►►►ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀNAME(haldbname)NAME(haldbname)NAME(haldbname)NAME(haldbname)ÀÀOPTION(ALTER)OPTION(ALTER)OPTION(ALTER)OPTION(ALTER)À◄◄À◄◄À◄◄À◄◄

Keyword Function

NAME() • specifies the name of a HALDB master
• only one HALDB master database name can be specified
• you cannot use the wildcard character (*)

OPTION() • Specifies the different options that will affect how HALDB online

reorganization performs (all options are valid)

ALTER • specifies that the command will initiate the database structural alter
processing

556

The INITIATE OLREORG command is used to initiate the dynamic structural change

processing for HALDB partitions. The structural changes of the HALDB partitions are made in

the DBD statement and can be accompanied by the DBVER parameter to identify the version

of the database structure change. When the INITIATE OLREORG command is issued, it

reads the new definitions from the staging library and is used to construct the OLR output data

set as if the entire database is being reorganized (ie., all the partitions of a HALDB).

The following keyword parameters are changed/added to the type-2 INITIATE OLREORG

command.

NAME()

This keyword specifies the name of a HALDB master. Unlike the existing INITIATE

OLREORG command (which PHDAM or PHIDAM HALDB partition names can be specified),

only one HALDB master name can be specified here. You cannot use the wildcard character

(*).

OPTION()

This keyword allows you to specify the different options that will affect how HALDB online

reorganization performs.

ALTER

This option specifies that the command will initiate the database structural change processing.

The new database definition is obtained from the staging library, so the new DBD for the

database specified on the NAME() parameter needs to be genned into the staging library prior

to issuing the command.

55708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Online Process

� Issue Type-2 Initiate Online Reorganization command

INITIATE OLREORG NAME(masterdb) OPTION(ALTER)

– Initiates the dynamic structural change processing for HALDB partitions

– Only one HALDB master database name can be specified per INIT command

– IMS reads the new DBD definition from a staging ACBLIB

•Staging ACBLIB is dynamically allocated

•Member info is used to construct the OLR output data set

•Output data sets for all the HALDB partitions are built

– Type-2 TERM OLREORG or Type-1 /TERM command is allowed while

database structure change is in progress

– Type-2 INIT OLR with OPTION(ALTER) command will restart the HALDB
ALTER structure process where it left off

557

You can stop alter processing of a HALDB database before it is complete by issuing the TERMINATE
OLREORG command or /TERM command. You can issue either the type-1 or type-2 version of the
TERMINATE OLREORG command; however, only the type-2 version of the command can be issued to
multiple IMS™ systems. The type-1 command can only be processed on the IMS that 'owns' the OLR
(ie., wherever the partition(s) are being re-organized).

The TERMINATE OLREORG command does not support the specification of the name of a HALDB
master database. To stop alter processing for the entire HALDB database, you specify a wildcard
character in place of the partition names or you can specify the names of all of the database partitions
explicitly. If multiple IMS systems are altering the database, you must use the type-2 TERMINATE
OLREORG command to stop all of the IMS systems at once or issue the type-1 command separately on

each IMS system.

To stop alter processing for one or more partitions of a HALDB database, issue the command:

TERMINATE OLREORG NAME(partnm | *)

When alter processing is stopped for a subset of the partitions in the database, alter processing
continues for the other partitions that are not contained within the specified subset.

When alter processing is stopped, the data in the partition might be physically stored in both the input
and output data sets. The output data sets conform to the altered database structure. The input data
sets conform to the old database structure. However, where the data is physically stored is not apparent

to application programs. Until alter processing completes and online change is performed, application
programs can access the data only in the old database structure.

To resume alter processing, issue the INITIATE OLREORG OPTION(ALTER) command.

To resume alter processing of a partition on a different IMS system, you can release the ownership of an
IMS system by specifying the REL option. For example, INITIATE OLREORG OPTION(ALTER,REL)

55808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Online Process (cont’d)

� Stop access to the altered HALDB database

– Use Type-2 UPDATE or Type-1 /DBR command

– Do not use UPDATE START(QUIESCE)

� Issue Online Change commands to complete the alter process for the
changed ACBLIB member(s)

– Member Online Change is recommended

• Reads directly from the staging ACBLIB

• Can process specific ACBLIB member(s) requiring activation

558

For application programs accessing the altered database:

Until OLC is completed, IMS reads the database using

the unaltered DBD and returns the unaltered segment structure

INITIATE OLC TYPE(ACBMBR) NAME(acbmember)

The IMS™ online change function is required to enable access to the new structure of a

HALDB database after alter processing completes.

Before you start the online change procedure to complete an alter operation, you must stop

access to the HALDB database by issuing either:

/DBR DB HALDB_master_name command

UPDATE DB NAME(HALDB_master_name) STOP(ACCESS) command.

Do not use UPDATE START(QUIESCE)

In addition to activating the ACB members that contain the new database structure, the online

change function clears various flags and counters in the RECON data set. Activating the ACB

members by a means other than the online change function does not clear the flags and

counters automatically.

Until the ACB members are activated and the flags and counters are cleared, the alter

procedure is not complete and the new database structure cannot be used.

Use the member online change function to complete the alter procedure. The member online

change function reads directly from the staging ACB library and can process only the specific

ACB members that require activation. The local and global online change functions require

you to copy the ACB members into the inactive ACB library. They also process the entire

ACB library, instead of just the ACB members that contain the new database changes.

Until all of the partitions in the HALDB database are altered and online change is performed,

only application programs that use the unaltered database structure can access the

database.

55908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Online Process (cont’d)

� Start access to the altered HALDB database

� Implement new or modified IMS application programs

New HALDB database structure can now be used by modified or
new application programs needing the new segment fields

559

The IMS online change function is required to enable access to the new structure of a

HALDB database after alter processing completes.

Before you start the online change procedure to complete an alter operation, you must stop

access to the HALDB database by issuing either:

/DBR DB HALDB_master_name command

UPDATE DB NAME(HALDB_master_name) STOP(ACCESS) command.

Do not use UPDATE START(QUIESCE)

In addition to activating the ACB members that contain the new database structure, the

online change function clears various flags and counters in the RECON data set. Activating

the ACB members by a means other than the online change function does not clear the flags

and counters automatically.

Until the ACB members are activated and the flags and counters are cleared, the alter

procedure is not complete and the new database structure cannot be used.

Use the member online change function to complete the alter procedure. The member online

change function reads directly from the staging ACB library and can process only the specific

ACB members that require activation. The local and global online change functions require

you to copy the ACB members into the inactive ACB library. They also process the entire

ACB library, instead of just the ACB members that contain the new database changes.

Until all of the partitions in the HALDB database are altered and online change is performed,

only application programs that use the unaltered database structure can access the

database.

56008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Example

� Update DBD source for MASTER database

– Increases the size of segment B from 30 bytes to 40 bytes

� Run DBDGEN

� Run ACBGEN(s) into a staging ACBLIB

� Make updates to affected application programs / create new programs

� DBRC CHANGE.PART ALTERSZE() to alter BLK or CI size, if necessary

� Issue INIT OLREORG NAME(MASTER) OPTION(ALTER)

– IMS allocates Staging ACBLIB

– IMS builds input DMB control blocks using the Active ACBLIB

– IMS builds output DMB control blocks using the Staging ACBLIB

– IMS allocates the output database data sets

� Backup Active ACBLIB members affected by changes

� Stop MASTER DB access

� Perform Online Change

� Start MASTER DB access

� Implement new/updated application programs

A

B

C

New DMB
IMS

Staging
ACBLIB

Old DMB
Active

ACBLIB

Input data sets

A – J, X

Output data sets

M – V, Y

MASTER DB

OLR

560

Walkthru example showing how to make a structural change to the MASTER DB – increase

the size of segment “B”.

56108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Return 30 bytes
for Segment B

from the Output

data set

IMS

HALDB Alter Example (cont’d)

� As part of building the input and output DMB control blocks, IMS
compares the segments and fields and creates a table of the deltas

� When ALTER is in progress, an application program reads “MASTER”

looking for segment “B” with KEY1

– If the segment key is before the OLR cursor

• IMS reads segment B from the output data set whose size is 40 bytes

• IMS checks the delta table before returning the segment to the application

• Based on the table, IMS returns 30 bytes of data to the application

Name Input Output

B 30 40

Delta Table

Input data sets

				

				

				

				

Output data sets

																

OLR

MPP: GU
KEY 1

OLR CURSOR

KEY 1 is
before the

cursor

Until ALTER and OLC are complete, IMS

reads the segment using the old DMB and
returns the unaltered segment structure.

561

Walkthru example showing how to make a structural change to the MASTER DB – increase

the size of segment “B”.

Until OLR ALTER and OLC are complete, IMS reads the segment using the old DMB and

returns the unaltered segment structure

56208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Segment Field Fill Values

� For fields added at the end of a segment

– If DBD field definition is TYPE ‘X’

• Fill with x’00’

– If DBD field definition is TYPE ‘P’

• Fill low order byte with x’0C’ and other bytes with x’00’

– If DBD field definition is TYPE ‘C’

• Fill with x’40’

� When space without field definition(s) added to a segment

– Fill with x’00’

562

Segment fill values are based on the field type:

X -> x’00’

P -> x’00…0C’

C -> x’40’

New added space with no fields(s) defined -> x’00’

56308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Operational Considerations

� All IMS data sharing systems must be running IMS 13

– DBRC MINVERS value of “13.1” required

� Type-2 command environment required to initiate ALTER

– Common Service Layer (CSL)

• Structured Call Interface (SCI)

• Operations Manager (OM)

– Type-1 /INITIATE OLREORG command is not supported

� OLR processing is done for all partitions in a HALDB database

� Member OLC is recommended to bring specific ACBLIB(s) online

� Combine HALDB ALTER with new DB versioning

563

56408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Operational Considerations

� Enhanced QUERY OLREORG command

� New OLR return / reason codes, and completion codes for ALTER

� New “SF” status code

� New DFS and DSP messages

• DFS1849E DFS3197I DFS3198I DFS3436E DFS3547E

• DSP0174E DSP0175E DSP1097E

� Changed DFS messages

• DFS047A DFS2991E

� Several new DBRC commands & modified LIST outputs

564

56508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Type-2 QUERY Command

� QUERY OLREORG

– Use QUERY to check on ALTER processing for a HALDB database

►►►►►►►►ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀQUERYQUERYQUERYQUERYÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀOLREORGOLREORGOLREORGOLREORGÀÀ

►►►►ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀNAME(haldbname)NAME(haldbname)NAME(haldbname)NAME(haldbname)ÀÀSTATUS(+STATUS(+STATUS(+STATUS(+----ALTERALTERALTERALTER----------------+)+)+)+)À◄◄À◄◄À◄◄À◄◄
(+(+(+(+----ALTDONEALTDONEALTDONEALTDONE--------+)+)+)+)
(+(+(+(+----ALTINPRGALTINPRGALTINPRGALTINPRG----+)+)+)+)

Keyword Function

NAME()
optional

• NAME(*) is the default, to query all defined HALDB partitions

• specifies either one or more partition names or the name of a HALDB
master

• wildcard character (*) is not allowed, except as NAME(*)

STATUS() • allows you to display the online reorganizations that possess a specified
status

ALTER
ALTDONE
ALTINPRG

• specifies type of output for the partitions of the HALDB master, identified on
the NAME() parameter:

- status of processing for all partitions of a HALDB being altered

- partitions for which alter processing is completed
- partitions currently undergoing a structural change

565

The QUERY OLREORG command is used to query if a HALDB is undergoing a structural

change process. To query information about alter processing, you can specify either one or

more partition names or the name of a HALDB master.

The following keyword parameters are changed/added to the type-2 QUERY OLREORG

command:

NAME() - This keyword specifies the name of a HALDB master or the name(s) of the

HALDB PHDAM or PHIDAM partition(s) to be queried. NAME() is optional. A parameter with

the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB

partitions. NAME(*) is the default.

STATUS() - This keyword allows you to display the online reorganizations that possess the

specified status.

ALTER - Displays status of alter processing for all partitions in a HALDB database that is

being altered online

ALTDONE - Displays all partitions for which alter processing is complete

ALTINPRG - Displays all partitions that are currently being altered.

56608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

� INITIATE OLREORG Return and Reason Codes

� INITIATE OLREORG Completion Codes

Return Code Reason Code Meaning

X’00000000’ X’00000000’ Command completed successfully.

X’00000010’ X’00004520’ Another OLR Alter in progress.

Completion

Code
Completion Code Text Meaning

0 Command completed successfully

1E1 OLR ITASK creation failed OLR internal ITASK can not be created

1E2 Incorrect HALDB version detected The ddir version for the database is different than the number

recorded in the RECON DB record for the HALDB

1E3 Partition queued for OLR The partition is being queued for HALDB alter processing

1E4 HALDB alter pending for Online Change An alter request against the same HALDB was done, but an
Online Change has not yet done for that HALDB

1E5 No DB structure change detected An alter request is made but there are no database structure
changes made

1E6 Insufficient CI/Block size detected During alter processing, the CI/Block size of the database
data set is smaller than the database largest segment size

1E7 Unsupported DBD changes detected An alter request is made but the type of DBD changes made
are not supported

(many more) … …

1EC Logical database error During alter processing, an error related to logical relationship

on the altered DBD is detected

HALDB Alter Return, Reason and Completion Codes

566

There are new return, reason and completion codes for the INIT OLREORG

OPTION(ALTER) command.

56708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter New “SF” Status Code

� Explanation

– An application program that has field-level sensitivity attempted to
read a database segment that was altered in length by the ALTER

option of the HALDB online reorganization function.

• Until the ACB members for the altered database are activated by
the online change function, the altered segment cannot be

accessed by application programs that have field-level sensitivity.

� System action

– IMS returns this status code and continues to run normally

� System programmer response

– Use the member online change function to activate the ACB
members for the altered database and rerun the application program

567

New SF Status Code: programs with field-level sensitivity cannot access segments

with altered length until the OLC process is completed to bring the new ACB

member (s) online.

56808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 568

HALDB Alter DBRC LIST Command Output

DB
DBD=DBOHIDK5 DMB#=3 CHANGE#=3 TYPE=HALDB
SHARE LEVEL=3 GSGNAME=**NULL**
DBRCVGRP=**NULL**
PSNAME=**NULL** DBORG=PHIDAM DSORG=OSAM CURRENT PARTITION ID=00001
FLAGS: COUNTERS:

RECOVERABLE =YES PARTITIONS =4
ONLINE REORG CAPABLE =YES DATA SET GROUP MEMBERS =2

ALTER COUNT =4ALTER COUNT =4ALTER COUNT =4ALTER COUNT =4
ALTER COMPLETE COUNT =2ALTER COMPLETE COUNT =2ALTER COMPLETE COUNT =2ALTER COMPLETE COUNT =2

� LIST output for a HALDB Master Database contains new info

– “ALTER COUNT” indicates number of partitions that are to be altered

– “ALTER COMPLETE COUNT” indicates number of partitions for which the
alter process has completed

-Number of partitions to be altered
-Number of partitions altered

There is additional information stored in the DB and Partition RECON records about

HALDB ALTER processing.

56908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 569

HALDB Alter DBRC LIST Command Output (cont’d)

� LIST output for a HALDB Database Partition contains new info

– “ALTER BLOCK SIZE” lists new block sizes to be used by the alter process

– “ALTER IN PROGRESS” indicates whether the alter process has started

– “PARTITION ALTERED” indicates whether the alter process has completed

OSAMOSAMOSAMOSAM BLOCK SIZE:BLOCK SIZE:BLOCK SIZE:BLOCK SIZE:
AAAA = 4096409640964096
BBBB = 4096409640964096

ALTER BLOCK SIZE: ALTER BLOCK SIZE: ALTER BLOCK SIZE: ALTER BLOCK SIZE:
A = A = A = A = 0000
B = B = B = B = 8192819281928192

FLAGS: COUNTERS:
BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY =OFF IMAGE COPY NEEDED COUNT =0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1

HELD AUTHORIZATION STATE=3
EEQE COUNT =0

TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0
OFR REQUIRED =NO OLR ACTIVE HARD COUNT =0
PARTITION INIT NEEDED =NO OLR INACTIVE HARD COUNT =0
OLREORG CURSOR ACTIVE =NO
PARTITION DISABLED =NO
ONLINE REORG CAPABLE =YES
REORG INTENT =NO
QUIESCE IN PROGRESS =NO
QUIESCE HELD =NO
ALTER IN PROGRESS =NOALTER IN PROGRESS =NOALTER IN PROGRESS =NOALTER IN PROGRESS =NO
PARTITION ALTERED =NOPARTITION ALTERED =NOPARTITION ALTERED =NOPARTITION ALTERED =NO

only for OSAM

‘0’ indicates no

BLKSIZE change

Partition values

There is additional information stored in the DB and Partition RECON records about

HALDB ALTER processing.

57008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 570

DB

DBD=POHIDKA MASTER DB=DBOHIDK5 IRLMID=*NULL CHANGE#=3 TYPE=PART

USID=0000000002 AUTHORIZED USID=0000000002 HARD USID=0000000002

RECEIVE USID=0000000002 RECEIVE NEEDED USID=0000000000

DSN PREFIX=IMSTESTS.DBOHIDK5 PARTITION ID=00001

PREVIOUS PARTITION=**NULL** NEXT PARTITION=**NULL**

OLRIMSID=**NULL** ACTIVE DBDS=M-V

REORG#=00000

ONLINE REORG STATISTICS:

OLR BYTES MOVED = 5576000

OLR SEGMENTS MOVED = 16000

OLR ROOT SEGMENTS MOVED = 4000

FREE SPACE:

FREE BLOCK FREQ FACTOR=0 FREE SPACE PERCENTAGE=50

PARTITION HIGH KEY/STRING (CHAR): (LENGTH=5)

.....

PARTITION HIGH KEY/STRING (HEX):

FFFFFFFFFF

OSAM BLOCK SIZE:

A = 4096

B = 4096

ALTER BLOCK SIZE:

A = 0

B = 8192

FLAGS: COUNTERS:

BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0

READ ONLY =OFF IMAGE COPY NEEDED COUNT =0

PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1

HELD AUTHORIZATION STATE=3

EEQE COUNT =0

TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0

OFR REQUIRED =NO OLR ACTIVE HARD COUNT =0

PARTITION INIT NEEDED =NO OLR INACTIVE HARD COUNT =0

OLREORG CURSOR ACTIVE =NO

PARTITION DISABLED =NO

ONLINE REORG CAPABLE =YES

REORG INTENT =NO

QUIESCE IN PROGRESS =NO

QUIESCE HELD =NO

ALTER IN PROGRESS =NO

PARTITION ALTERED =NO

HALDB Alter DBRC LIST Command Output (cont’d)

Sample listing of DBRC Partition record

57108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 571

REORG
RUN = 12.063 12:19:55.476258 * USID = 0000000002
REORG# = 00005 ALTERALTERALTERALTER
STOP = 12.063 12:20:13.210119 ONLINE RECOV = NO

HALDB Alter DBRC LIST Command Output (cont’d)

� LIST output for a REORG contains new info

– REORG record now indicates whether the HALDB partition DBDS

was altered during the online reorganization

Partition was altered

DBRC REORG record contains a new indicator showing whether ALTER was part

of the OLR for this partition.

57208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter DBRC API Query Output

� API query request output has changed

– DSPAPQHP – HALDB Partition output block

• Now returns the array of new Block / CI sizes to be used by the OLR alter

process

• Will only exist if the alter process is still in progress

– DSPAPQHB – HALDB output block

• Two new counters:

– the total number of partitions being altered

– the number of partitions for which the alter process has completed

– DSPAPQRR – DBDS reorganization output block

• New flag which indicates whether an online reorganization altered the

HALDB

572

Some of the DBRC API query output has changed. There are several new fields

that are returned when the OLR ALTER function is being used.

57308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter DBRC RECON Records

� Content of several DBRC records have changed

– DSPDBHRC – Database record (DB)

• no size increase

– DSPPTNRC – Partition record (PART)

• size increases only when ALTER is running

– DSPRRGRC – Reorganization record (REORG)

• no size increase

Remember to reassemble any programs using the changed DBRC control blocks !

573

Some of the DBRC records have changed in support of the OLR ALTER process.

57408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter DBRC Command Changes

� CHANGE.DB

– ALTER | NOALTER

• New, optional keywords

• Specifies whether the HALDB partition is in the process of being altered.

• Cannot be changed if the partition is authorized

� NOTIFY.REORG

– ALTER

• New, optional keyword

• Specifies that OLR altered the database structure

• Indicates that OLR is altering the database structure

• ALTER can only be specified with ONLINE

Only use these commands in cases of a failure where RECONs need to be cleaned up !

574

These DBRC commands are used internally by IMS to set flags for ALTER

processing.

IMS Users should not have to use these commands unless required to cleanup

RECON records after a major system failure.

57508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Security Considerations

� Security Considerations

– New ALTER form of Online Reorg can change a database structure

• INITIATE OLREORG command should be secured

– RACF attributes for Type-2 INIT command

IMS Command Command Keyword RACF access authority Resource name

INIT OLREORG UPDATE IMS.plxname.INIT.OLREORG

575

Be sure you have the INIT OLR command secured.

57608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Performance Considerations

� Performance Characteristics

– Reorganizing a HALDB with the ALTER option

• Performance should be same as reorganizing a HALDB

without the ALTER option

576

Overall elapsed time to complete an INIT OLREORG OPTION(ALTER) command

for a HALDB database is likely to be significantly greater than an INIT OLREORG

for a single HALDB database partition or even a subset of partitions. Remember –

the ALTER option applies to ALL partitions in a HALDB database in one single

pass.

If BLKSIZE for a PHDAM database changes, IMS will take an extra lock per RAP

during ALTER processing.

57708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

HALDB Alter Summary

� IMS 13 provides ability to make structural changes to a HALDB

database without a database outage

– Structural changes can be made to DB segment definitions

– Online Reorganization is used to apply the structural changes to the online

HALDB database

– Online Change process is used to activate the new ACBLIB member(s) in

the online IMS system

� Benefit

– Eliminate a database outage when structural changes must be made to

segment definitions in a DBD

– Improved online availability of HALDB databases

577

HALDB Alter is for HALDB database customers who want to have the ability to make

segment changes without unloading and reloading the database.

This addresses the challenge of maintaining database availability while changing the

structure of a HALDB database. The actual hierarchy of the IMS HALDB cannot be

changed.

When a segment change is made to a DBD, an online command can be issued to apply

the change to the database. The change is implemented via an option of the HALDB

Online Reorganization (OLR) function. Application programs can access the database

at the same time the OLR function is changing the structure of the database.

This line item provides value to customers by reducing the complexity of making

structural changes to a HALDB database, eliminating system down time, and improving

system availability. This line item also reduces the cost and risk associated with making

and coordinating wholesale changes to all application programs when database

structure changes occur. This line item allows customers to improve their HALDB

database structures even if the database is used by critical application programs that

they no longer have the ability to change.

57808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
578

Fast Path Enhancements

This section describes the changes in the Fast Path area for IMS 13.

57908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
579

Fast Path Enhancements

� DEDB Alter

� Secondary Index Enhancements

There are two new features of IMS 13. The first is DEDB Alter. The second is a set of PTFs for

Secondary Index Enhancements that are being forwarded fitted into IMS 13.

58008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
580

Fast Path DEDB Alter

This section addresses the DEDB Alter function in IMS 13.

58108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
581

DEDB Alter

� IMS 13 adds ability to dynamically change DEDB specifications

– Users can dynamically change UOW, SIZE, ROOT, Randomizer while DEDB is online

– New DEDB Alter utility is used for DEDB changes

– DRD is not required for DEDB Alter

– Supports VSO Areas if /VUNLOAD is done before DEDB Alter is executed

� Benefits

– Improved management of DEDB definitions

• Eliminate system down time for modifications to DEDB definitions

• Improve data availability since changes are done while DEDB is online

In IMS 13, Fast Path has added the ability to dynamically change specific DEDB specifications. For

example, the UOW, SIZE, ROOT, and Randomizer routine can be changed while the DEDB is online.

There is a new DEDB Alter utility that allows these DEDB changes to occur. This is support is available

for VSO areas provided the areas are unloaded first using the /VUNLOAD command. Allowing dynamic

changes to the DEDBs will improve data availability and reduce system down time.

58208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
582

DEDB Alter Utility

� DEDB Alter utility supports two functions

– ALTERAREA area_name

• Allow DBD parms (UOW, ROOT, SIZE, RMNAME) to change values

– REPLRAND

• Allow DBD parm (RMNAME) to change Randomizer name

The DEDB Alter utility supports two new functions. ALTERAREA is used to change the UOW, ROOT,

SIZE, and RMNAME (randomizer name) values. REPLRAND is used to specifically change the

Randomizer name.

58308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
583

Preparation for DEDB Alter

� DEDB Alter function changes:

– ALTERAREA area_name

• Modify the active DEDB AREA statement (SIZE, UOW, ROOT)

• Modify the active DBD statement (RMNAME)

– REPLRAND

• Modify the active DEDB DBD statement (RMNAME)

� IMS Gens needed for ALTERAREA, REPLRAND:

– Run the DBDGEN utility to create new DEDB DBD definitions

– Run the ACBGEN utility for all PSBs that reference changed DEDB DBD

• New ACBs are added to staging ACBLIB data sets

There is some preparation needed before the DEDB Alter utility can make the DEDB changes. For the

ALTERAREA function, the active DEDB AREA statement must be modified with the new SIZE, UOR, or

ROOT definitions. If the RMNAME parameter is used, the new randomizer name must be different than

the existing randomizer name. For the REPLRAND function, the new randomizer must be assembled

and link edited into the IMS SDFSRESL STEPLIB concatenation. The active DEDB AREA statement

must be modified. The active randomizer must be a 2-stage randomizer and the new active randomizer

must also be a 2-stage DEDB randomizer.

After the DEDB AREA statements are modified, the DBDGEN utility is run to create new DEDB DBD

definitions. The ACBGEN utility is run next for all PSBs that reference the changed DEDB DBD. The new

ACBs resulting from the ACBGEN are added to the staging ACBLIB data sets.

58408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
584

Preparation for DEDB Alter

� ACBLIB staging library needs dynamic allocation member

– Create a DFSMDA member for the ACBLIB staging library

•If one does not already exist

– Sample JCL:

DFSMDA TYPE=INITIAL

DFSMDA TYPE=IMSACB,DSNAME=STAGING.LIBRARY

DFSMDA TYPE=FINAL

� New DEDB Alter Datasharing Group Name

– Defined in <SECTION=FASTPATH> in DFSDFxxx Proclib Member

– ALTERGRP=nnnnn (Prefixed by DBFnnnnn)

– Used for datasharing communications between datasharing partners

The ACBLIB staging library needs to have a dynamic allocation member. A DFSMDA member can be

created for the ACBLIB staging library if one doesn’t already exist using the above DFSMDA macros.

There is a new parameter in the <SECTION=FASTPATH> area of the DFSDFxxx proclib member called

ALTERGRP=nnnnn. This paramter allows the user to define a new datasharing group name (DBRnnnnn)

which allows datasharing partners to communicate with each other during DEDB Alter utility execution.

There is no default for this parameter.

58508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
585

Preparation for DEDB Alter

� DEDB Alter commits new DBD from Staging ACBLIB Library into Active ACBLIB

– For IMS datasharing, need to know if:

• Each IMS is sharing same ACBLIB (ACBSHR=Y)

• Each IMS has its own ACBLIB (ACBSHR=N)

– If Common Service Layer is not used

• ACBSHR=Y|N is under <SECTION=FASTPATH> in DFSDFxxx

– If Common Service Layer is used

• ACBSHR=Y|N uses following precedence:

• 1st DFSCGxxx PROCLIB member

• 2nd <SECTION=COMMON_SERVICE_LAYER> in DFSDFxxx

• 3rd <SECTION=FASTPATH> in DFSDFxxx

– DEDB Alter uses ACBSHR setting from local IMS system

• All IMS datasharing systems must have same ACBSHR setting

Once the ACB is placed into the staging ACBLIB, DEDB Alter commits the new DBD and moves it into

the Active ACBLIB. In a datasharing environment, the IMS system can share the ACBLIB with the

other IMS subsystems in the datasharing environment or each IMS can have its own ACBLIB. The

ACBSHR=Y|N parameter indicates how the ACBLIB is used between the IMS subsystems. The

ACBSHR specification is found in the FASTPATH section in the DFSDFxxx proclib member if the

Common Service Layer (CSL) is used in the environment. If CSL is not used, then the ACBSHR

specification is found using the following precedence. The first check is in the DFSCGxx proclib

member. The second check is in the COMMON_SERVICE_LAYER section in the DFSDFxxx proclib

member. The third check is in the FASTPATH section in the DFSDFxxx proclib member. While DEDB

Alter uses the ACBSHR setting that is found in the local IMS subsystem, all IMS subsystems in the

datasharing environment must have the same ACBSHR parameter setting.

58608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
586

Preparation for DEDB Alter

� Allocate Shadow Area data sets

– Shadow Area data sets used for migrating existing data from Active Areas

– Single Area Data Sets (SADS)

•Single Shadow data set is required

– Multiple Area Data Sets (MADS)

•2 to 7 Shadow data sets are required

– SADS can become MADS and MADS can become SADS after DEDB Alter

•Depends on the number of allocated Shadow Area data sets

– Shadow data sets are only for DEDB Alter utility

� Allocate Shadow IC data sets:

– Created while DEDB Alter migrates data to Shadow Area data sets

� Shadow Area data sets + Shadow Image Copy data sets <= 7

The next step in the preparation for DEDB Alter is to allocate both the Shadow Area data sets and the

Shadow Image Copy data sets. The Shadow Area data sets are used for migrating the existing data from

the Active Areas to the Shadow Areas. The Shadow Area data set can be a Single Area Data Set (SADS)

or it can be a Multiple Area Data Set (MADS) if there are two to seven Shadow Area data sets allocated.

It is also possible to turn a SADS into a MADS after the DEDB Alter is run by allocating additional

Shadow Area data sets. The Shadow Area data sets are used exclusively by the DEDB Alter utility and

are not accessible by the IMS subsystem. The Shadow Area Image Copy data sets are created during the

migration of data to the Shadow Area data sets.

58708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
587

Preparation for DEDB Alter

� Register Shadow data sets to DBRC (INIT.ADS)

>>-INIT.ADS--ADDN(shadowname)--ADSN(shadowname)--AREA(name)--DBD(name)--->

.-UNAVAIL-----.
>--+---------+-------+---------------+--------------------------><

` '-AVAIL----------' '-SHADOW------+-------'
'-IC----'

Prior to executing the DEDB Alter utility, the Shadow Area and Shadow Image Copy data sets must be

allocated. Once allocated, they can be registered to DBRC using the INIT.ADS command. The DEDB

Area Initialization utility (DBFUMIN0) formats the Shadow Area and Shadow Area Image Copy data

sets and flags them as available in the RECON data set. There must be at least one Shadow Area and

Shadow Area Image Copy data sets flagged as Available in the Recon.

58808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
588

Preparation for DEDB Alter

� Format Shadow data sets with DEDB Area Init Util (DBFUMIN0)

– Shadow Area data sets and Shadow IC data sets formatted

– Two new control cards: ACTIVE | SHADOW

–ACTIVE = Format Area data sets for DEDB Area

–SHADOW = Format Shadow Area and Shadow IC data sets

– Formats Active or Shadow data sets in one execution, but not both

– When DBRC=Y, formats both Shadow Area and Shadow IC in one execution

� New ACB from Staging ACBLIB used for formatting

� After utility completes, flags are set in RECON:

– Shadow Area data sets are marked “SHADOW AVAIL”

– Shadow IC Area data sets are marked “SHADOW IC AVAIL”

� Shadow data sets must be formatted before DEDB Alter utility runs

The DEDB Area Initialization Utility (DBFUMIN0) has been enhanced to format the Shadow Area data

sets and the Shadow Area Image Copy data sets. The ACTIVE keyword indicates that the DEDB Area

data sets are to be formatted. The SHADOW keyword indicates that the Shadow Area and Shadow Area

Image Copy data sets are to be formatted. This utility will format either the Active DEDB Area data sets

or the Shadow Area and Shadow Area Image Copy data sets in one execution, but it can not do both

types of data sets in one execution. If DBRC=Y, then it can format both the Shadow Area data sets and

the Shadow Area Image Copy data sets in one execution. The Shadow Area and Shadow Area Image

Copy data sets can be formatted while the Active DEDB Area data sets are online. After the utility

completes, there are flags set in the DBRC Recon data set. The Shadow Area data sets are flagged as

“SHADOW AVAIL” and the Shadow Area Image Copy data sets are flagged as “SHADOW IC AVAIL”.

The Shadow Area and Shadow Area Image Copy data sets both must be formatted before the DEDB

Alter utility can run.

58908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
589

DEDB Alter Utility Control Statements

� TYPE ALTER

– Invoke DEDB Alter utility

� ALTERAREA area_name | REPLRAND

� UNKEYSEG NONE | ALL | ISRTFILA

– NONE: Do not allow un-keyed segments in DEDB

– ALL: Allow un-keyed segments in DEDB

– ISRTFILA: Allow un-keyed segments in DEDB if insert rule is FIRST or LAST

� TIMEOUT timeout_value (1-999) | 15 seconds

– Number of seconds for DEDB Alter DL/I activity to be quiesced:

The DEDB Alter utility uses the following control cards for execution. The TYPE ALTER invokes the

DEDB Alter utility. There are two functions and they are: 1) ALTERAREA and 2) REPLRAND. The

UNKEYSEG keyword determines whether unkeyed segments are allowed in the DEDB. The TIMEOUT

value indicates how long it can take for the DEDB Alter to quiesce the DL/I activity when suspending

IMS applications.

59008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
590

DEDB Alter Utility Control Statements (continued)

� RETRY NO | YES | retry_value (1-99)

– NO: Do not retry after TIMEOUT value expires.

– YES: Retry after TIMEOUT value until the utility completes successfully

– retry_value: Number of utility retries after TIMEOUT value occurs

� RETRYWAIT retrywait_value (1-999) | 60

– If RETRY YES or RETRY retry_value

• Number of seconds to wait before retrying the commit process

� GO

– Execute the DEDB Alter utility

The RETRY keyword indicates whether to retry the DEDB Alter function if a timeout occurs. A

specification of “NO” indicates there should be no retried after the timeout occurs. A specification of

“YES” indicates the retries should continue until the utility is successful. A specification of “retry_value”

indicates the number of retries that can be attempted after the timeout occurs. The RETRYWAIT

keyword indicates the number of seconds to wait before the next retry of the commit process. Finally,

the GO keyword initiates the DEDB Alter utility execution.

59108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
591

DEDB Alter Utility Execution (ALTERAREA)

� Sample JCL: DEDB Alter Utility (ALTERAREA)

//ALTAREA JOB ….

//FPUTIL PROC SOUT=A,RGN=1M,

// DBD=,REST=00,DIRCA=002,

// PRLD=,IMSID=,AGN=,SSM=,ALTID=

//FPU EXEC PGM=DFSRRC00,REGION=&RGN,

// PARM=(IFP,&DBD,DBF#FPU0,&REST,00,,1,

// &DIRCA,&PRLD,0,,,,&IMSID,&AGN,&SSM,,

// &ALTID)

//STEPLIB DD DSN=IMS.CRESLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT,…

//S0 EXEC FPUTIL,RGN=1M,DBD=DEDBJN21,REST=00,IMSID=IMS1

//SYSIN DD *

TYPE ALTER

ALTERAREA DB21AR0

RETRY NO

TIMEOUT 30

GO

/*

This is sample JCL showing the DEDB Alter execution control cards for the ALTERAREA function.

59208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
592

DEDB Alter (ALTERAREA Function)

� ALTERAREA area_name

– Changes UOW, SIZE, ROOT on DEDB DBD statement while DEDB online

• SIZE

– Change the CI size of an Area in a DEDB database

• UOW and ROOT

– Change the Root Addressable and Independent Overflow parts of DEDB area

– Changes Randomizer in RMNAME DEDB DBD statement while DEDB online

• During DEDB Alter, read active DEDB Area with old randomizer

– Migrate Active Area to Target area with new randomizer

• After DEDB Alter, new randomizer replaces old randomizer

– All Areas in DEDB database use new randomizer

– New name must be 2-stage randomizer

– New name must be different than original name active for DEDB area

– Only one active DEDB Area can change at a time

– ALTERAREA does not support DEDB databases with SDEPs

• Can replace randomizer using REPLRAND function for DEDBs with SDEPs

The DEDB Alter utility ALTERAREA function changes the UOW, SIZE, ROOT values while the DEDB

Area data set is online. The SIZE parameter affects the CI size of an Area. The UOW and ROOT

parameters affect the Root Addressable and Independent Overflow parts of the DEDB Area. The

RMNAME parameter changes the Randomizer name while the DEDB Area data set is online. When a

Randomizer name is being change, the Active DEDB Area data sets are read using the existing

randomizer routine. The data is migrated from the Active DEDB Area data sets to the Target DEDB

Area data sets using the new Randomizer name. After the DEDB Alter is completed, the new

randomizer name replaces the existing randomizer name. At that point, all DEDB Areas start to use the

new randomizer name. The new name must be a two-stage randomizer and it must be a different name

from the existing randomizer name. There can be only one Active DEDB Area Data set changed at a

time. It is not possible to run the DEDB Alter utility concurrently for another DEDB Area in the same

DEDB database. The ALTERAREA function does not support changes to DEDB databases with

SDEPs. However, it is possible to replace the randomizer name using the REPLRAND function for

DEDBs with SDEPs.

59308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Relationship of UOW, ROOT and SIZE Parameters

� UOW=(number1,overflow1)

– Number of Control Intervals (CI) in a UOW

• Number1 = number of Control Intervals (CI) in a UOW

• Overflow1 = number of Control Intervals in overflow section of UOW

� ROOT=(number2,overflow2)

– Space allocated to Root Addressable Part and Independent Overflow

• Number2 = Space (in UOWs) for Root Addressable Part and Independent Overflow

• Overflow2 = Space (in UOWs) for Independent Overflow

� SIZE=value

– Control Interval (CI) size (in Bytes)

• 512 bytes, 1 KB, 2KB, 4KB, 8KB, 16KB, 20KB, 24KB, 28KB

• SIZE value must match the CI size defined to VSAM

593

The UOW, ROOT, and SIZE parameters can be changed by the DEDB Alter utility. The UOW

parameter has two values and determines the number of Control Intervals (CI) in a UOW and the

number of CI in the overflow section of the UOW. The ROOT parameter has two values and determines

the space allocated to the Root Addressable Part and the Independent Overflow. The SIZE parameter

indicates the size of the CI in bytes.

IMS 13

08- IMS 13 DB & DBRC:

DEDB Area Structure

Root Addressable Part

(Roots and Direct Dependents)

Independent Overflow Part

(Overflow from Root Addressable Part)

Reorganization Unit of Work

Sequential Dependent Part

(Sequential Dependents Only)

V
S
A

M

D
E

F

I
N
E

D
B
D

No longer used

Unit of Work
Unit of Work

Unit of Work

Not Allowed with

ALTERAREA

Allowed with
REPLRAND

ROOT

SDEP DDEP

DDEP

DDEP

594

The "direct part" of a DEDB area consists of the root addressable part and the independent

overflow part. These parts may contain both root segments and their direct dependents, but

not sequential dependent segments. The root addressable part is further divided into groups

of CIs called "Units of Work" or UOWs. The independent overflow part holds roots and

DDEPs which have overflowed from the direct part, similar to (but not quite the same as) the

way overflow works for HDAM.

Following the direct part is a group of CIs called the "reorganization unit of work." These CIs

are no longer used by Fast Path, but are still there for compatibility reasons.

Whatever space is left over from the direct part and reorg UOW is used for SDEPs. There

are no parameters in the DBD to define how much space is to be used for SDEPs - it is just

the difference between the VSAM DEFINE and what is used by the other parts.

IMS 13

08- IMS 13 DB & DBRC:

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

DOVF

DOVF

R

E

O

R

G

U

O

W

CI0

CI1

SMAP IOVF

IOVF

IOVF

IOVF

SMAP

IOVF

IOVF

IOVF

IOVF

SDEP

SDEP

SDEP

CI0 Control Record

CI1 Contains Area Control Block (DMAC) and Error Queue Elements (EQEs)

UOW Unit of Work (BASE and DOVF CIs)

BASE Only CIs with RAPs (also called RAP CIs)

DOVF Dependent Overflow (for UOW only)

IOVF Independent Overflow (when DOVF is full)

SMAP Space Map (monitors free space in IOVF)

REORG Reorganization Unit of Work (no longer used, but still allocated in ADS)

SDEP Sequential Dependents

U
O

W

Area Terminology

595

This diagram shows some terminology that applies to a DEDB area.

The first two CIs in an ADS contain control information and a control block called the DMAC.

CI0 is not very interesting at all, but we will talk about CI1 and the DMAC quite a bit.

The UOW mentioned on the previous visual consists of two types of CIs - BASE (sometimes

called RAP) CIs and DOVF (dependent overflow) CIs. The DOVF CIs are used only for the

overflow of BASE CIs in the same UOW.

Independent overflow also contains two types of CIs - Space Map (SMAP) CIs which have a

similar function to the bit maps in HDAM or HIDAM databases, and the IOVF CIs

themselves, which contain roots and DDEPs which have overflowed from the UOWs and

their DOVF CIs,

As mentioned before, the REORG UOW is no longer used by Fast Path, but still exists in the

data set for compatibility reasons (wouldn't want to have to reorg every area just to get rid of

them).

And finally the SDEP CIs, which are all the CIs from the end of the REORG UOW to the end

of the VSAM ESDS.

59608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Examples of Increasing DEDB Area size

� Expand the DEDB Area using same Control Interval (CI) size

– Increase UOW= to put more CIs in a UOW

– Increase ROOT= to allocate more space for Root Addressable Part and
Independent Overflow

� Expand the DEDB Area using different Control Interval (CI) size

– Increase SIZE= to create a larger CI size

– Increase UOW= to put more CIs in a UOW

– Increase ROOT= to allocate more space for Root Addressable Part and
Independent Overflow

596

Here are two examples of how the size of the DEDB Area can be changed. In the first case, the DEDB

Area size is increased without changing the CI size. Instead, the UOW parameter is changed to

increase the number of CIs in a UOW. The ROOT parameter is also changed to allocate more space

for the Root Addressable Part and the Independent Overflow. In the second case, the DEDB Area size

is increased using a different CI size. In this example, the SIZE parameter uses a larger CI size, the

UOW is increased to put more CIs in the UOW, and the ROOT parameter is increased to allocate

more space for the Root Addressable Part and the Independent Overflow.

IMS 13

08- IMS 13 DB & DBRC:

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

DOVF

DOVF

SMAP

IOVF

IOVF

IOVF

900
UOWs

1000 CIs

(100 UOWs)

8

CIs

2

CIs

Root

Addressable

Part

Independent

Overflow

DEDB Alter Example (ALTERAREA)

DBD NAME=FPDEDB,ACCESS=DEDB,RMNAME=DEDBRAND

AREA DD1=AREA1,...

AREA DD1=AREA2,SIZE=4096,UOW=(10,2),ROOT=(1000,100)

AREA DD1=AREA3,...

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

DOVF

DOVF

SMAP

IOVF

IOVF

IOVF

1800

UOWs

2000 CIs

(200 UOWs)

16

CIs

4

CIs

Independent

Overflow

DBD NAME=FPDEDB,ACCESS=DEDB,RMNAME=DEDBRAND

AREA DD1=AREA1,...

AREA DD1=AREA2,SIZE=4096,UOW=(20,4),ROOT=(2000,200)

AREA DD1=AREA3,...

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

DOVF

DOVF

Root

Addressable

Part

ALTERAREA
UOW = (20,4)

ROOT = (2000,200)

597

Each area in a DEDB is defined by an AREA statement, replacing the DATASET statement

used for HDAM and HIDAM databases. The AREA statement defines the area name (or DD

name if the area is not registered), the CI size, the size and configuration of a UOW, and

how much independent overflow to allocate. The values of these parameters can be

different for each AREA.

After all the AREA statements, the SEGM and FIELD statements define the hierarchical

structure of the database. All areas have the same structure.

59808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

DEDB Alter Utility Execution (ALTERAREA)

� Complete preparation steps:

– Alter DEDB DBD, run DBDGEN, run ACBGEN

– Allocate Shadow Area and Shadow IC data sets, Register and Format

� Execute DEDB Alter Utility (ALTERAREA)

A. Data is migrated from active DEDB Area to Shadow Area and Shadow IC

• Uses new UOW, ROOT and SIZE parms in staging ACBLIB

• Use current randomizer to read Active DEDB Area

• Use new randomizer (if changing) to insert to Shadow Area data set

B. Commits new randomizer and/or UOW, ROOT and SIZE changes

1. Active DEDB Area is quiesced and DL/I calls are suspended

2. Shadow Area data set is synchronized with Active DEDB Area

3. Changed ACB in the Staging ACBLIB is moved to the Active ACBLIB

• New randomizer replaces existing randomizer (if changed)

4. Shadow Area data set becomes new DEDB Area data set

• Original DEDB Area data set is preserved

5. Un-Quiesce DEDB Area and resume suspended DL/I calls
598

After the DEDB DBD has been altered, the DBDGEN and the ACBGEN have been executed, the

Shadow Area and Shadow Area Image Copy data sets have been allocated, registered and formatted,

it is time to execute the DEDB Alter utility. The ALTERAREA function migrates the data from the Active

DEDB Area data sets to the Shadow Area data sets and creates the Shadow Area Image Copy data

sets. In the process, any changes to the UOW, ROOT, or SIZE parameters in the Staging ACBLIB are

implemented. The current randomizer is used to read the Active DEDB Areas, but the new randomizer

is used to insert to the Shadow Area data sets.

When the changes are committed, the Active DEDB Area data sets are quiesced and any DL/I calls are

suspended. The Shadow Area data sets are synchronized with the Active DEDB Area data sets. The

changed ACB in the Staging ACBLIB is moved to the Active ACBLIB and, if there is a new randomizer,

it replaces the existing randomizer. The Shadow Area data set becomes the new DEDB Area data set

preserving the original DEDB Area data set. Finally, the DEDB Area is un-quiesced resuming

suspended DL/I calls.

59908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Post-DEDB Alter Utility Execution

� If DEDB Alter is Successful

– Shadow Area data set is promoted to Active Area data set

•Old active area data set is demoted to SHADOW area data set

– Shadow IC data set is promoted to user Image Copy

•Registered in DBRC as “user image copy”

– Counted as user image copy in GENMAX value

•Not a standard image copy

– Instead, it is an image of Active Area data set

•To recover the Area with this image copy

– (1) Notify DBRC that Area was restored

• NOTIFY.RECOV DBD(name) AREA(name) RCVTIME(time_stamp)

• time_stamp = Time when SHADOW IC was created by DEDB Alter utility

– (2) Issue GENJCL.RECOV with no image copy

• GENJCL.RECOV DBD(name) AREA(name) USEAREA

599

If the DEDB Alter function is successful, the Shadow Area data set is promoted to the Active Area data

set replacing the previous Active Area data sets which become the Shadow Area data sets. The

Shadow IC data set is promoted to a User Image Copy. In DBRC, this User Image Copy is registered as

a User Image Copy so that it can be counted in the GENMAX count. It is note a Standard Image Copy,

it is just an image of the Active Area data set. To recover a DEDB Area with this User Image Copy, the

user must notify DBRC (NOTIFY.RECOV) with the name of this Area data set and the time when the

Shadow Image Copy was created (i.e. RCVTIME). Specifying the GENJCL.RECOV command without

an image copy name will pick up this Shadow Image Copy name.

60008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Post-DEDB Alter Utility Execution

� If DEDB Alter is Unsuccessful

– Active Area data sets remain active and accessible to IMS systems

– If Shadow Area data sets are marked as AVAIL:

–Shadow Area data sets have not been written to

– Can be used in subsequent DEDB Alter utility executions

– If Shadow Area data sets are marked as UNAVAIL:

–Shadow Area data sets have been written to

– Shadow Area data set must be:

• Re-allocated

• Re-formatted with DBFUMIN0

600

If the DEDB Alter was unsuccessful, the Active Area data sets remain active and are still accessible to

the IMS systems. The flags in DBRC are checked to see if any data was written to the Shadow Area

data sets. If the flag still shows AVAIL, then no data was written to the Shadow Area data sets and they

can be used in subsequent DEDB Alter utility executions. If the flag shows UNAVAIL, then data was

written to the Shadow Area data sets and they need to be re-allocated and re-formatted.

60108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

DEDB Alter Utility Execution (REPLRAND)

//ALTAREA JOB ….

//FPUTIL PROC SOUT=A,RGN=1M,

// DBD=,REST=00,DIRCA=002,

// PRLD=,IMSID=,AGN=,SSM=,ALTID=

//FPU EXEC PGM=DFSRRC00,REGION=&RGN,

// PARM=(IFP,&DBD,DBF#FPU0,&REST,00,,1,

// &DIRCA,&PRLD,0,,,,&IMSID,&AGN,&SSM,,

// &ALTID)

//STEPLIB DD DSN=IMS.CRESLIB,DISP=SHR

//PROCLIB DD DSN=IMSVS.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT,…

//S0 EXEC FPUTIL,RGN=1M,DBD=DEDBJN21,REST=00,IMSID=IMS1

//SYSIN DD *

TYPE ALTER

REPLRAND

RETRY NO

TIMEOUT 30

GO

/*

� Sample JCL: DEDB Alter Utility (REPLRAND)

601

This is sample JCL showing the DEDB Alter execution control cards for the REPLRAND function.

60208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
602

DEDB Alter (REPLRAND Function)

� REPLRAND

– Changes Randomizer in RMNAME DEDB DBD statement while DEDB online

• New name must be 2-stage randomizer

• Existing randomizer must be a 2-stage randomizer

• New name must be different than original name active for DEDB area

• After DEDB Alter, new randomizer replaces old randomizer
– All Areas in DEDB database use new randomizer

– Supports DEDB database with or without SDEPs

The DEDB Alter function, REPLRAND, allows the user to change the randomizer name using the

RMNAME DEDB DBD while the DEDB remains online. The new name and the existing name must be a

2-stage randomizer and the new name must be different from the existing randomizer name. After the

DEDB Alter completes, the new randomizer replaces the existing randomizer and all Active Areas in the

DEDB database begin to use the new randomizer. There can be only one Active DEDB changing at a

time. The REPLRAND function supports DEDB databases with and without SDEPs.

60308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
603

DEDB Alter Utility Execution (REPLRAND)

� Complete preparation steps:

– Assemble and linkedit new randomizer

– Modify DEDB DBD with new randomizer, run DBDGEN, run ACBGEN

� Execute DEDB Alter Utility (REPLRAND)

A. Load the new randomizer from IMS SDFSRESL STEPLIB concatenation

B. Load the new ACB from the Staging ACBLIB.

C. Commits new randomizer change

1. Active DEDB database is quiesced causing DL/I calls are suspended

2. Changed ACB in the Staging ACBLIB is moved to the Active ACBLIB

3. DEDB database is un-quiesced and suspended DL/I calls are resumed

The DEDB Alter utility with the REPLRAND function executes after the new randomizer is assembled

and linkedited, the DEDB DBD is modified with the new randomizer name, and the DBDGEN and

ACBGEN are executed. The DEDB Alter REPLRAND function will load the new randomizer from the

IMS SDFSRESL STEPLIB concatentation and the ACB from the Staging ACBLIB. When the randomizer

change is committed, the Active DEDB database is quiesced forcing DL/I calls to be suspended and

allowing the changed ACB in the Staging ACBLIB to be moved to the Active ACBLIB. Finally, the DEDB

database is unquiesced and DL/I calls are resumed.

60408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
604

Post-DEDB Alter Utility Execution

� If DEDB Alter is Successful

– New Randomizer replaces existing randomizer

� If DEDB Alter is Unsuccessful

– Existing Randomizer remains in effect

If the DEDB Alter REPLRAND function is successful, the new randomizer replaces the existing

randomizer. If the function is unsuccessful, the existing randomizer remains in effect.

60508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
605

Prerequisites

� Software requirements

– All IMS data sharing systems need to be at IMS 13

� Hardware requirements

– Same as IMS 13

� Tooling

– None

For the DEDB Alter functions, all IMS data sharing systems need to be at the IMS 13 level. There are no

special hardware requirements for DEDB Alter.

60608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
606

Restrictions

� Software restrictions

– None

� Environment restrictions

– The randomizer must be a 2-stage randomizer

• RMNAME=(randomizer_name,2)

• Logic must act like a 2-stage randomizer

– DEDB Areas must be registered to DBRC

– Supports ACBSHR=Y for sharing IMS system if it is an:

• Active system for XRF

• Active system for FDBR

– MINVERS = 13.1

The randomizer must be a 2-stage randomizer where the logic in the randomizer behaves like a 2-stage

randomizer. Also, the DEDB Area must be registered to DBRC. This supports ACBSHR=Y for the

sharing IMS system if the active system is XRF or FDBR. Finally, the DBRC MINVERS parameter must

be set to 13.1 to use the DEDB Alter capability.

60708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

DEDB Alter Summary

� IMS 13 adds ability to dynamically change DEDB specifications

– Users can dynamically change UOW, SIZE, ROOT and Randomizer while DEDB is online

– New DEDB Alter utility is used to make changes

� Benefits

– Improved management of DEDB definitions

• Eliminate system down time for modifications to DEDB definitions

• Improve data availability since changes are done while DEDB is online

607

In IMS 13, Fast Path has added the ability to dynamically change specific DEDB specifications. For

example, the UOW, SIZE, ROOT, and Randomizer routine can be changed while the DEDB is online.

There is a new DEDB Alter utility that allows these DEDB changes to occur. Allowing dynamic changes

to the DEDBs will improve data availability and reduce system down time.

60808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Secondary Index Enhancements

608

This section addresses the Secondary Index Enhancements new function.

60908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Fast Path Secondary Index Enhancement

� IMS 13 enhances the DEDB secondary index that was added in IMS 12

– Add ability to use Boolean Operators to Segment Search Arguments (SSA)

• AND = * or &

• OR = + or |

– Support specific Command Codes with Secondary Index search field

� Benefits

– New and simplified programming opportunities with DEDBs

• Allows ability to refine DL/I calls to Fast Path DEDBs

• Commands supported when secondary index is accessed as a DEDB

609

In IMS 12, IMS Fast Path added the ability to create secondary indexes. In IMS 13, this function has

been enhanced to allow Segment Search Arguments to use the Boolean Operators “AND” and “OR”.

Also, support was added to allow specific Command Codes to be used with the Secondary Index

search field.

This support allows better programming capabilities for DEDBs. It allows the ability to refine DL/I calls

and additional command code support.

61008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

IMS 12 PTFs Forward Fitted to IMS 13

APAR PTF Description Available in IMS 13

PM59166 Boolean Operator support
for Fast Path Secondary
Index DL/I calls

QPP Tape

PM49031 Command Code, Multiple
SSA, Qualified Get Call
support for FP Secondary
Index DL/I calls

(Target Segment = Root)

QPP Tape

PM59181 Command Code, Multiple
SSA, Qualified Get Call
support for FP Secondary
Index DL/I calls

(Target Segment ≠ Root)

Dec, 2012

610

There are three IMS 12 PTFs for Fast Path Secondary Index functions that are being forwarded into

IMS 13.

61108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Example: Target (Root) Segment = Source Segment

DBD1 DBD NAME=DEDBHOSP,ACCESS=DEDB

AREA DD1=GSAREA1…

SEGM NAME=HOSPITAL,PARENT=0…

FIELD NAME=(HOSPNAME,SEQ,U)…

FIELD NAME=HOSPADDR…

FIELD NAME=HOSPNUM…

LCHILD NAME=(IXSASEG,FPSI1ASA),PTR=SYMB

XDFLD NAME=IXSAIDX,SRCH=HOSPADDR

SEGM NAME=WARD,PARENT=HOSPITAL…

FIELD NAME=(WARDNAME,SEQ,U),…

FIELD NAME=WARDADDR,…

SEGM NAME=PATIENT,PARENT=WARD…

FIELD NAME=(PATINAME,SEQ,U),…

FIELD NAME=PATIADDR,…

FIELD NAME=PATIID,…

SEGM NAME=CLERK,PARENT=HOSPITAL…

FIELD NAME=(CLERKNUM,SEQ,U)

FIELD NAME=CLRKNAME,…

SEGM NAME=SKILL,PARENT=CLERK…

FIELD NAME=(SKILLNUM,SEQ,U)

FIELD NAME=SKILNAME,…

DBDGEN

PATIADDR

PATIID
SKILNAME

WARDADDR

HOSPITAL

WARD

PATIENT SKILL

DEDBHOSP

CLERK CLRKNAME

HOSPADDR

HOSPNUM

Source
& Target
Segment

611

This is the DBD for the DEDB (DEDBHOSP). Segment HOSPITAL is the source and the target

segment. The LCHILD and XDFLD statements follow the SEGM statement for HOSPITAL.

The LCHILD segment specifies the secondary index segment, IXSASEG, and database, FPSI1ASA.

PTR=SYMB is specified, as required.

The XDFLD statement specifies the name of the search field, HOSPADDR, for use with the secondary

index. It also specifies that field IXSAIDX is used to build the search field.

61208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Indexing When Target Is Root Segment

Physical data structure Secondary data structure

Key Feedback for PATIENT:
SI key + key of WARD + key of PATIENT

TargetHOSPITAL

WARD

PATIENT SKILL

CLERK

TargetHOSPITAL

WARD

PATIENT SKILL

CLERK

PCB TYPE=DB,…,PROCSEQD=…

SENSEG NAME=HOSPITAL,PARENT=0

SENSEG NAME=WARD,PARENT=HOSPITAL

SENSEG NAME=PATIENT,PARENT=WARD

SENSEG NAME=CLERK,PARENT=HOSPITAL

SENSEG NAME=SKILL,PARENT=SKILL

PSBGEN PSBNAME=…,

END
612

This page illustrates the physical structure of a database and the structure as viewed when accessing the

database through the secondary index. In this case, they are the same since the root segment is also the

target segment. As explained on the previous page, the key feedback area is composed of the

secondary index key and the keys of the dependent segments. The key feedback area for segment

PATIENT is composed of the secondary index key, the key of segment WARD and the key of segment

PATIENT.

61308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Secondary Index DB (Target (Root) = Source Segment)

DBDSX NAME=IXSAXDB,ACCESS=(INDEX,SHISAM)

DATASET DD1=FPSI1ASA,

SEGM NAME=IXSASEG,PARENT=0,…

FIELD NAME=(IXSAKEY,SEQ,U),…

LCHILD NAME=(HOSPITAL,DEDBHOSP),INDEX=IXSAIDX,PTR=SYMB

DBDGEN

IXSAKEY

IXSASEG

SKILNAME

HOSPADDR

HOSPNUM

WARDADDR

HOSPITAL

WARD

PATIENT SKILL

DEDBHOSP

CLERK CLRKNAME

IXSAXDB

PATIADDR

PATIID

613

This is the DBD for the secondary index database. The SEGM statement defines the segment in the

secondary index. The FIELD statement defines the sequence field in the secondary index. The LCHILD

statement specifies the target segment, HOSPITAL, and database, DEDBHOSP, in the NAME=

parameter. The INDEX= parameter specifies the NAME= value on the XDFLD statement of the target

database. This is IXSAIDX, the search field for use with the secondary index.

61408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Example: Target (Dependent) ≠ Source Segment

DBD1 DBD NAME=DEDBHOSP,ACCESS=DEDB

AREA DD1=GSAREA1…

SEGM NAME=HOSPITAL,PARENT=0…

FIELD NAME=(HOSPNAME,SEQ,U)…

FIELD NAME=HOSPADDR…

FIELD NAME=HOSPNUM…

SEGM NAME=WARD,PARENT=HOSPITAL…

FIELD NAME=(WARDNAME,SEQ,U),…

FIELD NAME=WARDADDR,…

LCHILD NAME=(IXSBSEG,FPSI1ASB),PTR=SYMB

XDFLD NAME=IXSBIDX,SRCH=PATIID,SEGMENT=PATIENT

SEGM NAME=PATIENT,PARENT=WARD…

FIELD NAME=(PATINAME,SEQ,U),…

FIELD NAME=PATIADDR,…

FIELD NAME=PATIID,…

SEGM NAME=CLERK,PARENT=HOSPITAL…

FIELD NAME=(CLERKNUM,SEQ,U)

FIELD NAME=CLRKNAME,…

SEGM NAME=SKILL,PARENT=CLERK…

FIELD NAME=(SKILLNUM,SEQ,U)

FIELD NAME=SKILNAME,…

DBDGEN

SKILNAME

WARDADDR

HOSPITAL

WARD

PATIENT SKILL

DEDBHOSP

CLERK CLRKNAME

HOSPADDR

HOSPNUM

Target Segment

Source Segment

PATIADDR

PATIID

614

This is the DBD for the DEDB (DEDBHOSP). Segment HOSPITAL is the target and PATIENT is the

source segment. The LCHILD and XDFLD statements follow the SEGM statement for HOSPITAL.

The LCHILD segment specifies the secondary index segment, IXSBSEG, and database, FPSI1ASB.

The XDFLD statement specifies the name of the search field, PATIID, for use with the secondary index.

It also specifies that field IXSBIDX is used to build the search field.

61508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
615

Indexing When Target Is Dependent Segment

Physical data structure Secondary data structure

Target

HOSPITAL

WARD

PATIENT SKILL

CLERK

Target WARD

HOSPITAL PATIENT

Key Feedback for HOSPITAL:
Secondary index key + key of HOSPITAL

Key Feedback for PATIENT:
Secondary index key + key of PATIENT

PCB TYPE=DB,…,PROCSEQD=…

SENSEG NAME=HOSPITAL,PARENT=0

SENSEG NAME=WARD,PARENT=HOSPITAL

SENSEG NAME=PATIENT,PARENT=WARD

PSBGEN PSBNAME=…,

END

615

This page illustrates the physical structure of a database and the structure as viewed when accessing the

database through the secondary index. In this case, they are not the same since the target segment is a

dependent segment. The Key Feedback for HOSPITAL is the secondary index key plus the key of

HOSPITAL. The Key Feedback area for PATIENT is the secondary index key plus the key of PATIENT.

61608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Secondary Index DB (Target (Dependent) ≠ Source Segment)

DBDSX NAME=IXSBXDB,ACCESS=(INDEX,SHISAM)

DATASET DD1=FPSI1ASB,

SEGM NAME=IXSBSEG,PARENT=0,…

FIELD NAME=(IXSBKEY,SEQ,U),…

LCHILD NAME=(PATIENT,DEDBHOSP),INDEX=IXSBIDX,PTR=SYMB

DBDGEN

IXSBKEY

IXSBSEG

IXSBXDB

SKILNAME

WARDADDR

HOSPITAL

WARD

PATIENT SKILL

DEDBHOSP

CLERK CLRKNAME

HOSPADDR

HOSPNUM

PATIADDR

PATIID

616

This is the DBD for the secondary index database. The SEGM statement defines the segment in the

secondary index. The FIELD statement defines the sequence field in the secondary index. The LCHILD

statement specifies the target segment, PATIENT, and database, DEDBHOSP, in the NAME=

parameter. The INDEX= parameter specifies the NAME= value on the XDFLD statement of the target

database. This is IXSBIDX, the search field for use with the secondary index.

61708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Boolean Support (AND=* or &, OR=+ or |)

Target &
Source

HOSPITAL

WARD

PATIENT SKILL

CLERK

Example Statement Result
GU HOSPITAL (IXSAIDX =Elm Street|

IXSAIDX =Doe Street)
Get the Hospital

information for the

hospital on “Elm Street”
or “Doe Street”.

Note:
�Boolean operators work with FPSI accessed as a database (ACCESS=INDEX).

617

The secondary index search field is now allowed to use Boolean Operators. These examples show how

the Boolean Operators (* or &) and (+ or |) are used when the target and source segment are the root

segment and when the source segment is a dependent segment.

61808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Multiple SSA Support for Secondary Index

Target &
Source

HOSPITAL

WARD

PATIENT SKILL

CLERK

Example Statement Result
GU HOSPITAL (IXSAIDX =Elm Street)

WARD (WARDNAME=Emergency)
Get the Hospital

information on

“Elm Street” and
“Emergency Ward”

information

Restrictions: Does not support “Qualify on Any Field Name” support.

618

With Multiple SSA support for a secondary index, it is possible to use the index search field along with

other SSA arguments.

61908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Supported Command Codes

Command
Code Explanation

C Use the concatenated key of a segment to identify the segment

D Retrieve or insert a sequence of segments in a hierarchic path using only one call, instead
of using a separate (path) call for each segment.

F Back up to the first occurrence of a segment under its parent when searching for a

particular segment occurrence. Disregarded for a root segment.

L Retrieve the last occurrence of a segment under its parent.

N Designate segments that you do not want replaced when replacing segments after a Get
Hold call.

P Set parentage at a higher level than what it usually is (the lowest-level SSA of the call).

Q Reserve a segment so that other programs cannot update it until you have finished

processing and updating it.

U Limit the search for a segment to the dependents of the segment occurrence on which

position is established.

V Use the hierarchic level at the current position and higher as qualification for the segment.

- Null. Use an SSA in command code format without specifying the command code.

619

In IMS 13, Command Code support was added to the Fast Path DEDB Secondary Index capability. The

codes that are supported are: C, D, F, L, N, P, Q, U, V, and – “null”.

62008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Unsupported Command Codes

Command

Code Explanation

Status

Code

A Clear positioning and start the call at the beginning
of the database

AJ

G Prevent randomization and search the database
sequentially

AJ

M Move a subset pointer to the next segment
occurrence after your current position

AJ

O Qualify by Position AD

R Retrieve the first segment occurrence in a subset AJ

S Unconditionally set a subset pointer to the current
position

AJ

W Set a subset pointer to your current position, if the
subset pointer is not already set

AJ

Z Set a subset pointer to 0, so it can be reused AJ

620

In IMS 13, the codes that are not supported are: A, G, M, O, R, S, W, and Z.

62108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

Fast Path Secondary Index Enhancement

� IMS 13 enhances the DEDB secondary index that was added in IMS 12

– Add ability to use Boolean Operators to Segment Search Arguments (SSA)

• AND = * or &

• OR = + or |

– Support specific Command Codes with Secondary Index search field

• Supported: C, D, F, L, N, P, Q, U, V, - (NULL)

• Unsupported: A, G,M, R, S, W, Z

– Supports User Data Partitioning environments

� Benefits

– New and simplified programming opportunities with DEDBs

• Allows ability to refine DL/I calls to Fast Path DEDBs

• Commands supported when secondary index is accessed as a DEDB

621

In IMS 12, IMS Fast Path added the ability to create secondary indexes. In IMS 13, this function has

been enhanced to allow Segment Search Arguments to use the Boolean Operators “AND” and “OR”.

Also, support was added to allow specific Command Codes to be used with the Secondary Index search

field.

This support allows better programming capabilities for DEDBs. It also allows the ability to refine DL/I

calls and use command code support.

62208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
622

DBRC Migration and Coexistence

This sections covers the DBRC Migration and Coexistence function in IMS 13.

62308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
623

Supported Migrations and Coexistence

� IMS 11 to IMS 13

– Apply DBRC coexistence SPE APAR PM53134 to IMS 11

• PTF UK80026

– Allow IMS 11 to understand IMS 13 RECON records

� IMS 12 to IMS 13

– Apply DBRC coexistence SPE APAR PM53139 to IMS 12

• PTF UK80027

– Allow IMS 12 to understand IMS 13 RECON records

IMS 11 RECONs may be upgraded directly to IMS 13. Similarly, IMS 12 RECONs may be upgraded to

IMS 13. There is no support to upgrade RECONs from previous releases directly to IMS 13.

PM53134 is an IMS 11 SPE (Small Programming Enhancement) APAR. It allows IMS 11 to use

RECONs which have been upgraded to IMS 13. The PTF associated with this SPE is UK80026.

PM53139 is an IMS 12 SPE APAR. It allows IMS 12 to use RECONs which have been upgraded to

IMS 13. The PTF associated with this SPE is UK80027.

These APARs should be applied to IMS 11 or IMS 12 before its RECONs are upgraded to IMS 13.

62408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

RECON Listings

� "COEXISTENCE LEVEL" in subsystem record listing

– Added by IMS 10

– May be used to determine if subsystems would cause an upgrade failure

• In this example the subsystem is at 11.1 but has the 13.1 coexistence
maintenance applied

SSYS

SSID=IMS1 LOG START=12.267 12:45:47.2

SSTYPE=ONLINE ABNORMAL TERM=OFF RECOVERY STARTED=NO BACKUP=N

TRACKED=NO TRACKER TERM=OFF SHARING COVERED DBS=NO

IRLMID=**NULL** IRLM STATUS=NORMAL GSGNAME=**NULL**

COEXISTENCE LEVEL=13.1

AUTHORIZED DATA BASES/AREAS=4 VERSION=11.1 XRF CAPABLE=NO

ENCODED

-DBD- -AREA- -LEVEL- -ACCESS INTENT- -STATE-

PDHDOKA **NULL** 0 UPDATE 6

PDHDOKB **NULL** 0 UPDATE 6

PDHDOKC **NULL** 0 UPDATE 6

PDHDOKD **NULL** 0 UPDATE 6

IMS 10 added the coexistence level to the RECON listing of subsystem records. The VERSION= field

indicates the IMS release level of the subsystem. The COEXISTENCE LEVEL= field indicates if the

coexistence maintenance for a later release has been applied. In this example, the IMS 13 DBRC

coexistence maintenance has been applied to the IMS 11 system used by this subsystem. This listing

could have been produced by an IMS 11 or IMS 12 DBRC utility with the IMS 13 coexistence SPE

applied or it could have been produced by the IMS 13 DBRC utility.

62508- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
625

CHANGE.RECON UPGRADE (IMS V11 to V13 Only)

� Upgrade reads all database records to ensure that the high-order bit is

on in all DMB numbers

– If high-order bit is not on (should not occur)

• High order bit is turned on if database is not authorized

– Message issued:

DSP1235W THE INTERNAL REPRESENTATION OF THE DMB NUMBER

FOR DATABASE xxxxxxxx IS INCORRECT

• High order bit is not turned on if database is authorized

– Message issued:

DSP1236E THE INTERNAL REPRESENTATION OF THE DMB NUMBER

FOR DATABASE xxxxxxxx COULD NOT BE CORRECTED BECAUSE

THE DATABASE IS AUTHORIZED

• This condition causes upgrade to fail

IMS 13 RECON upgrade uses the same check on the DMB table that was introduced for IMS V12. This

check is needed only when the IMS V11 RECON is upgraded directly to IMS V13. It verifies that the

high-order bit is on for all DMB numbers in database records. By convention, this bit should always be

on. If it is not on, the upgrade process turns the bit on if the database is not authorized. If it is

authorized, the upgrade cannot turn the bit on. When a DMB number is found without the high-order bit

on, the upgrade issues either the DSP1235W or DSP1236E message. DSP1235W is issued when the

upgrade is able to correct the bit setting. DSP1236E is issued when the upgrade cannot correct the bit

setting because the database is authorized. If DSP1236E is issued, the upgrade must be done when

the database is not authorized.

62608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
626

CHANGE.RECON UPGRADE CHECKUP

� CHECKUP keyword verifies RECON Upgrade will work

– New in IMS 12

– Upgrade is not done

– Maybe used to check if upgrade would be successful

• Only reads records which could stop upgrade

– Messages are issued indicating whether upgrade would be successful

• DSP1238I RECON UPGRADE CHECKUP IS BEGINNING

• DSP1239I RECON UPGRADE CHECKUP COMPLETED WITH NO ERRORS FOUND

– RC=0

– RC=4

• When DSP1235W issued (found high-order bit off in the DMB number and the database or
area is not authorized)

• DSP1240E RECON UPGRADE CHECKUP COMPLETED AND FOUND ERROR RC=12

• DSP1236E issued (found high-order bit off in the DMB number and the database or area is

authorized)

IMS 12 added the CHECKUP keyword for the CHANGE.RECON UPGRADE command. When

CHECKUP is included in the command, an upgrade is not done; however, all records which could

prevent an upgrade from being successful are read. This includes the database records mentioned on

the previous page. The DFS1235W and DFS1236E messages are issued when the high-order bit of

database records are not on.

62708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
627

RECON Upgrade

� RECONs are upgraded after IMS 13 is installed

– Upgrade must use the IMS 13 DBRC utility (DSPURX00)

� Two RECONs and a spare must be available for concurrent upgrade

� Only two RECONs are required if there is no subsystem record

– One RECON is okay in testing environment with no subsystem records

� CHANGE.RECON UPGRADE

– May be executed while subsystems are running

• Upgrade fails if there is a subsystem record for an IMS 11 or IMS 12
subsystem without the DBRC coexistence SPE

– Some utilities do not create subsystem records

• They are not protected by the check for subsystem records

• If they are running without the SPE, unpredictable results may occur

• Examples: Change Accumulation, Log Archive, DSPURX00, HALDB Partition

Definition Utility (PDU), some DBRC API applications

– May be invoked using the DBRC API

RECONs are upgraded to IMS 13 by using the DBRC CHANGE.RECON UPGRADE command with the

IMS 13 DBRC utility (DSPURX00).

The concurrent upgrade process requires that there are two active RECON data sets with an available

spare. On the other hand, if there are no subsystem records, the upgrade may be done without a spare

RECON. The upgrade process upgrades the records in COPY1 and then makes COPY2 equal to

COPY1. In a testing environment, you could do the upgrade with only one RECON (STARTNEW=YES),

but this is not recommended for production environments.

The upgrade may be run while the RECONs are allocated to and being used by IMS 11 or IMS 12. Of

course, these systems must be able to use IMS 13 RECONs. The upgrade checks the RECONs to

ensure that any subsystems using the RECONs are capable of using IMS 13 RECONs. It does this by

examining the SUBSYS records in the RECONs. Some IMS utilities do not create SUBSYS records.

Thus, the upgrade cannot determine if they are running. Users must ensure that any IMS utility which is

running at the time of the upgrade has the appropriate maintenance (PM53134 or PM53139) which allows

it to read IMS 13 RECONs.

IMS 10 added the capability to issue DBRC commands from programs using the DBRC API. This

includes the capability to issue the CHANGE.RECON UPGRADE command.

62808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
628

RECON Upgrade

� DMB Table record is added if it does not exist (IMS 11 to 13 Only)

� Some RECON records are larger in IMS 13 than IMS 11 or 12

– Upgrade from IMS 11 or IMS 12 does not increase the size of the RECONs

� Recommendation for upgrades from IMS 11

– Ensure that RECONs have room for the additional DMB Table record if it did
not exist prior to the upgrade

• May require availability of secondary extents

The upgrade will add a DMB Table record if it does not already exist. It may not exist if the upgrade is

from IMS V11 to IMS V13, however, it will already exist if the upgrade is from IMS V12 to IMS V13.

The upgrade of RECONs from IMS V11 or IMS V12 to IMS V13 will not increase the size of some

RECON records. The RECON Partition record is only extended if HALDB alter is active in V13 with

MINVERS set to 13.1.

62908- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
629

RECON Upgrade

� Upgrade processing from IMS 11 to IMS 13

– Reads SSYS records to check for DBRC SPE

– Reads all database records

• Turns on high-order bit if it is not on and database is not authorized

• Fails if high-order bit is not on and database is authorized

– Builds DMB table record if the DMB number in the RECON header is greater

than 0

– Updates RECON header record

• Sets version indicator and MINVERS value

– Updates RECON header extension record

• Sets version indicator

– After COPY1 is upgraded, it is copied to COPY2

The upgrade of the RECONs includes the reading of the subsystem (SSYS) records to ensure that these

subsystems are running with the DBRC coexistence SPE. If not, the subsystem could not use the

RECONs and the upgrade fails.

The update changes a few records in the RECONs.

All database records are read. A check is made to ensure that the high-order bit of the DMB numbers is

on. If it is not on and the database is not authorized, the bit is turned on. If the high-order bit is not on

and the database is authorized, the upgrade fails. The count of database records is kept. If the DMB

table does not exist, it is built. If it does exist, it is rebuilt. The count of database records is kept.

The version indicator is set to 13 and the MINVERS value is set to ‘11.1' if it previously was ‘10.1'. The

Cross DBRC Service Level ID (CDSLID) is set to the higher of the value in the RECONs before the

upgrade and "1".

The version indicator in the RECON header extension record is set to 13.

The upgrade is done by upgrading the records in COPY1 and then copying it to COPY2.

63008- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
630

RECON Upgrade

� Upgrade processing from IMS 12 to IMS 13

– Reads SSYS records to check for DBRC SPE

– Updates RECON header record

• Sets version indicator and MINVERS value

– Updates RECON header extension record

• Sets version indicator

– After COPY1 is upgraded, it is copied to COPY2

The upgrade of the RECONs includes the reading of the subsystem (SSYS) records to ensure that these

subsystems are running with the DBRC coexistence SPE. If not, the subsystem could not use the

RECONs and the upgrade fails.

The update changes the RECON header and RECON header extension records in the RECONs.

The header record is changed to set the MINVERS value to ‘11.1' if it previously was below ‘11.1'.

The version indicator in the RECON header extension record is set to 13.

The upgrade is done by upgrading the records in COPY1 and then copying it to COPY2.

63108- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
631

RECON Upgrade

� Parallel RECON Access processing

– RECON activity is quiesced

– RECONs are closed and reopened in LSR (Local Shared Resources) mode

– Records are upgraded

– COPY1 is copied to COPY2

– RECONs are reopened in PRA mode

– Quiesce is ended

If Parallel RECON Access is in effect, there cannot be any shunted I/O when the upgrade begins. The

process begins with a quiesce close and a check for shunted I/O. The RECONs are closed and

reopened in LSR mode. The records are upgraded as they are for non-PRA. This includes upgrading

the records in COPY1 and then copying COPY1 to the spare. After the upgrade completes, the

RECONs are reopened in PRA mode and the quiesce is ended.

63208- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
632

MINVERS

� IMS 13 MINVERS valid values

– ‘11.1', '12.1', and '13.1'

� Upgrade of RECONs

– MINVERS(‘10.1') changed to MINVERS(‘11.1')

– MINVERS(‘11.1') remains MINVERS(‘11.1')

– MINVERS('12.1') remains MINVERS('12.1')

� MINVERS 12.1 is required for XCF use by APPC synchronous
conversations and OTMA CM1 (send-then-commit)

� MINVERS 13.1 is required for:

– IMS 13 Synchronous Program-to-Program Switch in Shared Queues Env

– IMS 13 HALDB Alter

– IMS 13 DEDB Alter

• Note: HALDB Alter and DEDB Alter cannot be active if lowering the MINVERS value
from 13.1

MINVERS is the parameter on the INIT.RECON and CHANGE.RECON commands which controls the

minimum level of IMS which may use the RECONs. The minimum level of IMS which can use IMS 13

RECONs is IMS 11. If the previous MINVERS value was for ‘10.1', it is changed to ‘11.1' by the upgrade.

Otherwise, upgrades do not change the MINVERS value.

When the RECONs are upgraded to IMS 13 the minimum MINVERS value is 11.1.

MINVERS 12.1 is required for XCF use (instead of RRS) by APPC synchronous conversations and

OTMA CM1 (send-then-commit).

MINVERS 13.1 is required for the new HALDB Alter, DEDB Alter, and Synchronous Program-to-Program

Switch in a Shared Queues environment support added in IMS V13.

HALDB alter and DEDB alter cannot be active when lowering the MINVERS value from 13.1. New error

messages are issued and the command fails.

DSP1249E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS FOR

DATABASE name ALTER COUNT=xxxxx ALTER COMPLETE COUNT=xxxxx

DSP1250E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS FOR

PARTITION DATABASE name

DSP1251E MINVERS VALUE IS INCONSISTENT WITH THE DEDB ALTER STATUS FOR DEDB name

ALTER COUNT=xxxxx

63308- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
633

Log Archive (DFSUARC0) Region Size

� After RECONs are upgraded to IMS 13, then IMS 12 or IMS 11 Log

Archive jobs will use additional memory

– Both the IMS 13 and either IMS 11 or IMS 12 versions of RECON records are

kept in memory

• DBRC converts the records to IMS 11 or IMS 12 for processing by IMS 11

or IMS 12

� Recommendation

– Use REGION=0M for IMS 11 and IMS 12 archive jobs

When the RECONs are at a higher level than the Log Archive utility, the utility keeps two copies of each

RECON record. One is at the higher level. It is read from the RECONs or written to the RECONs. The

other copy is at the lower level. It is processed by the utility. Records are converted from one level to

the other when necessary. The second copy of each RECON record uses extra memory. This

increases the memory requirement for the utility when it uses RECONs at a higher level.

63408- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:
634

DBRC Migration Steps

1. Install IMS 11 or IMS 12 DBRC Migration/Coexistence SPEs

2. Install IMS 13 DBRC Type 4 SVC

– The IMS 13 Type 4 SVC may be used with IMS 11 or IMS 12

3. Upgrade RECONs using the IMS 13 SDFSRESL library

4. Begin using IMS 13

5. Discontinue all use of IMS 11 and IMS 12

6. CHANGE.RECON MINVERS('13.1')

This shows the DBRC steps for migration to IMS 13.

The first set of steps allows you to begin using IMS 13. The migration/coexistence SPE must be

installed on the old release before you upgrade the RECONs to IMS 13. The IMS 13 DBRC Type 4

SVC must be installed before you may use IMS 13. The upgrade of the RECONs to IMS 13 requires

that you use the SDFSRESL library created by the installation of IMS 13. The upgrade using this

library will be to the IMS 13 format. Once the RECONs have been upgraded, you may begin using IMS

13. You may also continue to use IMS 11 or IMS 12.

When you upgrade the RECONs to IMS 13, the MINVERS value will be ‘11.1’ or higher.

Once you have discontinued all use of IMS 11 and IMS 12, you can change the MINVERS value to

'13.1'.

63508- IMS 13 DB & DBRC:

Section Title in Header

IMS 13

08- IMS 13 DB & DBRC: 635

DELETE.LOG INACTIVE and TOTIME Commands

This section addresses the DELETE.LOG function in IMS 13.

63608- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 636

DELETE.LOG Enhancement

� IMS 13 adds better control for DELETE.LOG command

– DELETE.LOG command uses Stop Time for when INACTIVE and TOTIME used

– Previously, Start Time was used when deleting PRILOG and SECLOG

� Benefits

– Improved management PRILOG and SECLOG deletions

In IMS 13, the DELETE.LOG INACTIVE or DELETE.LOG TOTIME commands used the Start

Time to determine when to delete the PRILOG and SECLOG records.

Section Title in Header

63708- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC: 637

DELETE.LOG

� Problem description

– DELETE.LOG command did not honor LOGRET setting

– DELETE.LOG determines the timestamp for deleting logs

• When PRILOG or SECLOG are closed

– Start Time was used to determine when to delete PRILOG or SECLOG

– PROBLEM:

• Stop Time may still be in LOGRET period

� IMS 13 Solution:

– DELETE.LOG INACTIVE and DELETE.LOG TOTIME

• Will check Stop Time to determine if closed PRILOG or SECLOG is deleted

– Must be no updates on any databases on the PRILOG or SECLOG

The DELETE.LOG command determines when the PRILOG or SECLOG records are deleted.

There must be no updates on any databases for the logs in question. Prior to IMS 13, the

DELETE.LOG command always used the log Start Time. In IMS 13, DBRC will check to see if

the Stop Time is beyond the LOGRET time to determine if the PRILOG or SECLOG should be

deleted.

63808- IMS 13 DB & DBRC:

IMS 13

08- IMS 13 DB & DBRC:

(this page intentionally left blank)

