
© 2006 IBM Corporation

© 2007 IBM Corporation

Modern Application Development
Featuring Web 2.0 for System z

Rational Business Developer and EGL

IBM Software Group

© 2006 IBM Corporation

EGL for Enterprise Modernization

– Enables COBOL, RPG, 4GL developers to create Web applications
and SOA solutions with minimum learning curve

– Provides a modern programming paradigm for “legacy” platforms,
attract new staff to your trusted box

– Enables to easily connect to, wrapper and extend trusted valuable
assets

– Affords maximum flexibility of
deployment options and architectures

– Delivers a modern language that
adapts more easily to changing
technologies

– Can be used as a target for
legacy programs conversion

– Enables migration from Natural or RPG

System z IBM i Distributed

Investments

Processes

and Infrastructures

Assets Architectures

Skills

IBM Software Group

© 2006 IBM Corporation

Why EGL? Because building applications
today is not easy

� Learn and master myriads of

� programming languages and semantics

� middleware interfaces

� programming paradigms and styles

� frameworks and libraries

� Constantly emerging new technologies

SWT

JSP

HTML

CSS
JavaScript

Servlet

Struts
JSF

JDBC

TopLink

AJAX
EJB

XML

SQLJ

JCA

JMS

SOAP

JSE

WSDL
DOM

EGL

Spring

Hibernate

!
!

� Code at a more abstract and simpler
level

� Easy to learn, modern and
comprehensive language

� Keeps up with emerging technologies

� Inter-operates seamlessly with legacy

ASP

IBM Software Group

© 2006 IBM Corporation

EGL

Developer
Workbench

(RDz with EGL)

Windows, Linux, Unix

System z

IBM i

� Developers use the

Rational Developer for System
z with EGL workbench to
develop Web, Web 2.0, SOA,
batch, and text UI applications.

� Developers use the

Rational Developer for System
z with EGL workbench to
develop Web, Web 2.0, SOA,
batch, and text UI applications.

� EGL code is generated as

COBOL, Java, JavaScript,
services, etc. based on target
environment and deployed as
native services, Web applications,
hosted Web 2.0 applications, Text
UI applications, etc.

� EGL code is generated as

COBOL, Java, JavaScript,
services, etc. based on target
environment and deployed as
native services, Web applications,
hosted Web 2.0 applications, Text
UI applications, etc.

Java and JavaScript generation
• WebSphere Application Server
• Apache Tomcat

• Java Runtime Environment

Java generation
• WebSphere Application Server

• Native IBM I
JavaScript generation

• WebSphere Application Server
COBOL generation
• IBM i

Java generation

• WebSphere Application Server
• USS

• z/Linux
JavaScript generation
• WebSphere Application Server

COBOL generation
• Batch

• CICS
• IMS

IBM Software Group

© 2006 IBM Corporation

EGL

Developer
Workbench

(RDz with EGL)

Windows, Linux, Unix

System z

Third parties, external

customers, other

organizations access

services via standard Web

services protocols

IBM i

� End users and external

systems use standard
approaches for accessing the
applications and services.

� End users and external

systems use standard
approaches for accessing the
applications and services.

External System

Mobile User

External User

Internal User

Mobile users access Web and

Web 2.0 applications.

External users and

customers access

services, Web, Web

2.0, Text UI via a

standard browser,

mashup, or emulator.

Internal users and customers

access services, Web, Web 2.0,

Text UI via a standard browser,

mashup, or emulator.

IBM Software Group

© 2006 IBM Corporation

Hello World
Basic EGL Program

Comments

Declare program type and name

Declare a variable and assign a value

EGL Function

EGL Built-in Function

Literal
Variable

End of Program

EGL - The power of the Language
Simple and familiar

LanguageLanguage

IBM Software Group

© 2006 IBM Corporation

EGL the Language
Powerful and complete

� Rich data types

– Simple (int, string, boolean, etc.) or Complex (any, static arrays, dynamic arrays, dictionaries, array
dictionaries, etc.)

� Keywords

– Case, if-then-else, while, for loop, for loop cycling through a database result set, etc.

� High power language capabilities

– Automated Casting (e.g. using AS operator)

– Mixing data types in assignments and expressions

– Exception handling

� Rich libraries of built-in functions

– Math, string, date/time, system, etc.

� Robust integrate with existing functions or low level APIs

– Call RPG, COBOL, C, etc.

– Full Java interoperability

• Invoke Java from EGL (map Java classes with EGL External Types)

• Invoke EGL from Java

IBM Software Group

© 2006 IBM Corporation

EGL - The Power of Declarative Programming
Annotations apply semantics in multiple contexts

� Validation and Editing Rules

– Set properties in “Data Items”

– Define formatting & validation rules in a common place

– Reuse data items for Records, screens, web pages, reports

DeclarativeDeclarative

Validation is consistently applied whether the data is bound to
a field in a JSF-based web page, field on a 3270 screen, or
Rich UI page.

IBM Software Group

© 2006 IBM Corporation

EGL - The Power of Abstractions

� Data access

– Access SQL, Indexed, Relative,
Serial, DL/I, and Service data
through “Records”

– Use common Verbs for data
access (Get, Add, Replace,
Delete)

– Use common Error Handling

� Remote Invocation

– Call COBOL, RPG, C, Java

– Keep linkage info separated
from code

– Resolve data mapping and
protocol invocation at runtime…
NO code necessary!

AbstractionsAbstractions

IBM Software Group

© 2006 IBM Corporation

The power of Services - Built into the language

� Service part:

– a generatable part containing code that will be accessed:

• from EGL code by way of a local or TCP/IP connection (EGL

Service).

• from any code by way of an HTTP connection (EGL Web service).

� Interface part:

– Used to access external services as EGL services or simply to
provide separation of concern.

AbstractionsAbstractions

IBM Software Group

© 2006 IBM Corporation

EGL - The Power of Services
Cross platform language for business oriented services development.

At development time…

� Focus on the business logic

� Implement SOA design elements: services and interfaces

� Leverage existing business developers for new SOA
development

� Ignore deployment targets/technology while coding/testing

Deploy EGL services…

To any platform

� Java to WAS/Tomcat/etc.

� COBOL to CICS, iSeries

As…

� A Web service (uses SOAP)

� A private service (uses CICS ECI or TCP)

� Other SOA runtimes when they reach critical mass

Leverage external web services…

� EGL Interfaces

�represent external web services

�Are created via import from WSDL

�Allow the EGL developer to stay within the
context of the EGL programming model

IBM Software Group

© 2006 IBM Corporation

EGL - The Power of Tools
First class Eclipse workbench

� Folders and views

� Smart EGL editor

� Code templates and snippets

� Code completion

� Import data items from tables

� SQL visualization and editing

� SQL validation

� References and declarations

� Open on selection

� Refactoring

� Cheat sheets and Dynamic help

ToolsTools

IBM Software Group

© 2006 IBM Corporation

EGL - The Power of Tools
Integrated debug environment

� Debug entire application regardless of ultimate deployment targets

– Debug EGL, JSP, Java, etc.

� Use features of the EGL source debugger

– Set breakpoints

– Watch variables

– Change variable values

– Dynamic re-positioning

� Additional EGL features

– Remote VSAM access

ToolsTools

IBM Software Group

© 2006 IBM Corporation

Accelerating Application Delivery

Hand-Coded RBD

507 Hours 60 Hours

� RBD is dramatically faster than traditional development*

� RBD is more productive than MS VS 2005**

Java/J2EE IDE

330 Hours

** Branham Study April 2008

* Internal benchmark using Sun PetStore application

IBM Software Group

© 2006 IBM Corporation

EGL Rich UI

� Why is it difficult to build Web 2.0 style applications today?

– Currently domain of “tech heads”

– Need to know many low level intricate technologies

– Compound the skill/tool silos and fragmentation

� Why EGL Rich UI?

– Hide complexity of JavaScript, Ajax, JSON, etc.

– Fully open and extensible

– Easily integrate/consume any service (REST or SOAP)

– Single language end-to-end (front-end to back-end)

– Includes visual composition, libraries of RUI widgets

– Instant deploy/visualize while you code

– Extends existing System z data and processes to Web 2.0

IBM Software Group

© 2006 IBM Corporation

• Declarative UI

• Ajax support

• Rich set of widgets

• Easily extensible

• Mashup using SOA

Rich User Interfaces

• EGL in 3 tiers:
1. Data and Logic

2. Soap/Rest Services

3. Declarative UI

• Just 1 language

• Skill transfer

Single Language

• Disconnect/Sync

• Easy installation

• No version pain

• Flexibility

Mobility

RUI Programming - EGL

IBM Software Group

© 2006 IBM Corporation

EGL Rich UI Development and Deployment

Developer
Workbench

(RDz with EGL)

System z
CICS / DB2

Service calls to existing CICS Web,

EGL, PHP, SOAP, or REST services

are made using Ajax

Preview
Preview

Other /

Third-Party

Services

Internet / Intranet

� Developer uses Eclipse-

based EGL tooling (such as
RDz with EGL) to code, test,
and debug application on their
workstation.

� Developer uses Eclipse-

based EGL tooling (such as
RDz with EGL) to code, test,
and debug application on their
workstation.

IBM Software Group

© 2006 IBM Corporation

EGL Rich UI Development and Deployment

Developer
Workbench

(RDz with EGL)

Application or Web Server
(WAS, Tomcat, or

Apache)

� Developer runs Deployment

wizard to create a Web
application containing HTML
and JavaScript (generated from
EGL code). Application is
deployed to an application
server.

� Developer runs Deployment

wizard to create a Web
application containing HTML
and JavaScript (generated from
EGL code). Application is
deployed to an application
server.

JavaScript, HTML, CSS,

images, etc. packaged

as a Web application and

deployed on the server

IBM Software Group

© 2006 IBM Corporation

EGL Rich UI Development and Deployment

Application or Web Server
(WAS, Tomcat, or

Apache)

System z
CICS / DB2

Service calls to existing CICS Web,

EGL, PHP, SOAP, or REST services

are made using Ajax

Other /

Third-Party

Services

Internet / Intranet

� End user uses standard

Web browser from desktop,
notebook, or mobile device
to access the application.

� End user uses standard

Web browser from desktop,
notebook, or mobile device
to access the application.

Application is delivered

as pure HTML and

JavaScript to the client

Client browsers

connect to

services via

proxy

IBM Software Group

© 2006 IBM Corporation

EGL in Action (Side-by-Side Comparison)

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-

com:vml">

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8"/>

<title>Google Maps API Example: Simple Geocoding</title>

<script src="http://maps.google.com/maps?file=api&v=2.x

<script type="text/javascript">

var map = null;

var geocoder = null;

function initialize() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map_canvas"));

map.setCenter(new GLatLng(37.4419, -122.1419), 13);

geocoder = new GClientGeocoder();

}

}

function showAddress(address) {

if (geocoder) {

geocoder.getLatLng(

address,

function(point) {

map.setCenter(point, 13);

var marker = new GMarker(point);

map.addOverlay(marker);

marker.openInfoWindowHtml(address);

}

);

}

}

</script>

</head>

<body onload="initialize()" onunload="GUnload()">

<form action="#" onsubmit="showAddress(this.address.value); return

false">

<p>

<input type="text" size="60" name="address" value="1600 Pennsylvania

Ave, Washington DC" />

<input type="submit" value="Go!" />

</p>

<div id="map_canvas" style="width: 500px; height: 300px"></div>

</form>

</body>

</html>

handler MyRuiHandler type RUIhandler { initialUI = [addressForm,

map] }

addressField TextField { text = "1600 Pennsylvania Ave, Washington

DC", width = 250 };

goButton Button { text = "Go!", onClick ::= goButton_clicked };

addressForm Box { children = [addressField, goButton] };

map GoogleMap { width = "500px", height = "300px" };

function goButton_clicked (e Event in)

addresses String[] = [addressField.text];

map.showAddresses(addresses, addresses);

end

end

HTML and JavaScriptEGL Rich UI

All code, including UI
and controller logic,
is written completely

in EGL.

The complexity of the
Google Map APIs are

hidden from the
developer, so the

developer can focus on
the actual business
requirement and not

technical complexities.

IBM Software Group

© 2006 IBM Corporation

EGL Simple Example (Drawing Graphics)

Graph widget was user-written

in 120 lines of Javascript

IBM Software Group

© 2006 IBM Corporation

RUI Programming – Overview

� A typical RUI application
might look like this: RUI Application

RUI Handler RUI Handler

JavaScript and EGL

Server Side Processes

Services

Libraries Programs

Mainframe ApplicationsMainframe Applications

DatabasesDatabases

External FilesExternal Files

And And

MQMQ

Java, COBOL, PL/I and EGL

Widget
(RUIHandler)

Widget
(RUIHandler)

Library
UI Logic, Service Calls

Library
UI Logic, Service Calls

IBM Software Group

© 2006 IBM Corporation

EGL: Shielding Complexity

Consume Data + Logic

UI Produce

JavaScript
AJAX

Dojo

Google

REST XML
SOAP JSON

SOAP
XML

REST
PHP

COBOL
Java RPG

SQL

EGL
Widget
Library

IBMIBMIBMIBM

Widget Writer

ISVs

Business
Developers

Business
Developers

EGL

IBM Software Group

© 2006 IBM Corporation

DB2

CICS

zserveros.demos.ibm.com

Demo Tasks

Mortgage Calculator
SOAP Web Service

Invocation

Real Estate Demo Application

WAS
w/EGL

Services

Your Workstation

Data Access
SOAP Web Service

Invocation

Task 1 - Adding Mortgage Calculator
1. Consume CICS Web service in EGL

Rich UI project
2. Create EGL interface code so

service can be invoked
3. Create mortgage calculator UI
4. Add event listener to call service on

a button click
5. Add Pie chart widget that displays

interest and principal over the life of
the loan

Task 1 - Adding Mortgage Calculator
1. Consume CICS Web service in EGL

Rich UI project
2. Create EGL interface code so

service can be invoked
3. Create mortgage calculator UI
4. Add event listener to call service on

a button click
5. Add Pie chart widget that displays

interest and principal over the life of
the loan

Task 2 – Populating Data Table
1. Explorer database using tooling
2. Create EGL code representing data

we want to use
3. Create EGL services to return data

to RUI application
4. Examine data table code

Task 2 – Populating Data Table
1. Explorer database using tooling
2. Create EGL code representing data

we want to use
3. Create EGL services to return data

to RUI application
4. Examine data table code

IBM Software Group

© 2006 IBM Corporation

EGL Rich UI

Mortgage Calculator, Data Table, and Google Map

