
40907- IMS Application:

© 2014 IBM Corporation

®

IMS 13

IMS 13 Application Programming

41007- IMS Application:

IMS 13

41007- IMS Application:

Application Programming Enhancements

� Synchronous Program Switch

� SSA Qualify by Position and Length

� IMS Universal Driver Enhancements

� IMS Native SQL support for COBOL

41107- IMS Application:

IMS 13

41107- IMS Application:

Synchronous Program Switch

41207- IMS Application:

IMS 13

41207- IMS Application:

Synchronous Program Switch Topics

� Background

� Highlights

� Restrictions

� Detail

� Exit Routine Enhancements

� Application Considerations

– Transaction Expiration

– Late Responses

– LTERM Override

– ALTPCB destinations

– Examples

� Migration/Setup

The topics on this visual show the comprehensive support IMS 13 has added for this new

application model.

41307- IMS Application:

IMS 13

41307- IMS Application:

Background

� DL/I ICAL support from previous IMS releases

– Provided synchronous callout capability to resources outside IMS

IMS SOAP GATEWAY

z/OS

IMS

Database

DB

Services

O
T

M
A

TM/CTL

Services

IMS

Connect

TCP/IP

user-written Client

WebSphere

IMS TM resource adapter
Application
Program

ICAL

MPP/JMP/IFP/BMP/JBP

OTMA
Descriptor

OTMA
Descriptor

The existing DL/I ICAL in IMS allows IMS applications to synchronously call out to external

resources. Specifically, IMS applications can request access to and wait for replies from:

•WebSphere EJBs/MDBs using the IMS TM Resource Adapter

•To any Web Service Provider using the IMS SOAP Gateway

•User-written IMS Connect clients

41407- IMS Application:

IMS 13

41407- IMS Application:

Synchronous Program Switch

� New capability that enhances the DL/I ICAL support

– Allows an IMS application program to synchronously call and wait for a reply
from another IMS application program

• Within the calling program’s UOW

Database

IMS DB
services

IMS dependent
region

IMS TM
services

MPP, JMP
IFP, MD BMP

OTMA

Application

Program

ICALIMS SOAP GATEWAY

IMS

Connect

TCP/IP

user-written Client

WebSphere

IMS TM resource adapter

With IMS V13, a new capability is added to the DL/I ICAL support so that not only is access to

resources outside IMS supported, but also the ability to synchronously call another IMS

transaction running in any of the dependent region types. The called or target program can be

an MPP, JMP, IFP, or Message-Driven BMP in the same or different IMS.

41507- IMS Application:

IMS 13

41507- IMS Application:

Synchronous Program Switch…

� Benefits

– Modernization of the IMS application infrastructure

• Provides an internal service flow of IMS transactions to complete a
business process

– In the same IMS or a different IMS

– Implementation of a Process Server or Broker inside IMS

• Reduces unnecessary network traffic when accessing multiple applications

in the same IMS or IMSplex

WAS
Application

WAS
IMS

Connect

IMS

MPPx

MPP4

MPP2

MPP3

ICAL

ICAL
ICAL

ICAL

WAS

Application

WAS
IMS

Connect
IMS

MPP4

MPP2

MPP3

MPP1

MPP1

There are many benefits for IMS DB/TM and IMS TM environments that are looking to

modernize their application infrastructure. Synchronous program switching provides many

opportunities including:

•Modernization of the application infrastructure while continuing to use DL/I functionality to

access various destinations

•Support for an internal service flow template that allows multiple IMS transactions to

synchronously participate in a business process

•Encouragement of new IMS application development to support business logic on the host.

•Reduction of unnecessary network traffic with a broker implementation that uses synchronous

program switching techniques

41607- IMS Application:

IMS 13

41607- IMS Application:

Highlights

� Automatic invocation of OTMA

– Without requiring OTMA to be defined or commands to be issued

– New OTMA destination descriptor TYPE

• IMSTRAN

� Enhancements to the DL/I ICAL

– Allows an IMS transaction to be the target destination

• Accepts multi-segment requests/responses

– Provides additional AIB return and reason codes

� Support for Late Reply messages

– Can be purged or rerouted

� Security authorization

– Ensures userid of program issuing ICAL can access the target transaction

The highlights include:

•Automatic invocation of OTMA which is an inherent part of IMS.

•A new OTMA destination descriptor type of IMSTRAN which designates an IMS transaction as

the target destination for both single and multi-segment ICAL messages.

•Extensions to the DL/I ICAL to provide additional AIB return and reason codes to provide

information about errors that could be experience in this new environment.

•Control of late replies. If the ICAL times out before its target transaction returns a reply, the late

response message is automatically purged unless a reroute designation was previously defined

in the destination descriptor.

•Support for security. The userid associated with the transaction issuing the ICAL is the same

userid that is used to determine whether the target of the ICAL can be accessed.

41707- IMS Application:

IMS 13

41707- IMS Application:

Restrictions

� No ICAL support for BMP or JBP applications running in DBCTL
environments

– ICAL is part of the IMS TM capability

� IMS application program issuing ICAL for a synchronous program switch

– Can be a protected transaction

• But the target transaction of the ICAL is not part of the RRS commit scope

� The switched-to program (target of the ICAL)

– Has read-only access to the main storage data base (MSDB)

– Cannot be an IMS Conversational transaction

– Does not invoke IMS Message Format Service (MFS)

Note the upfront restrictions:

•ICAL is only supported in IMS TM or IMS TM/DB environments. BMPs or JBPs running in

DBCTL are not able to issue the ICAL.

•The IMS application program issuing the ICAL can be a participant in a protected transaction but

the target of the ICAL cannot be part of the RRS (resource recovery services) commit scope.

•Additionally, the IMS program that is invoked by the ICAL can read but not update MSDBs and

cannot be an IMS conversational transaction. MFS services are never invoked.

41807- IMS Application:

IMS 13

41807- IMS Application:

Restrictions …

� Exit routines

– DFSYIOE0 (OTMA Input/Output Edit Exit routine)

• Not called when processing synchronous program switch messages and
responses

– Increases the transparency of using OTMA

• Can be called for a late response being routed to an OTMA destination

– To build or override the 1K OTMA user message data prefix in the response header

– DFSBSEX0 (Build Security Environment Exit routine)

• Not invoked for target transactions of the synchronous program switch

– DFSMSCE0 (TM and MSC Message Routing and Control User exit routine)

• Not invoked for the DL/I ICAL synchronous program switch

� Use of new ICAL capability in a Shared Queues environment

– Requires all IMS systems to be at IMS 13 and DBRC MINVERS of 13.1

Restrictions involving exit routines include:

•The DFSYIOE0 (OTMA Input/Output Edit Exit routine) is not called for synchronous program

switch messages and responses. It can be called, however, for a late response that is not

purged but instead routed to an OTMA destination.

•The DFSBSEX0 (Build Security Environment Exit Routine) is not invoked for the target

transaction of the synchronous program switch.

•Unlike the regular ISRT/CHNG call, DFSMSCE0 user exit will not be called for the synchronous

program switch using the DL/I ICAL call.

IMS shared queues support requires all systems must be at IMS 13 and a DBRC MINVERS of

13.1.

41907- IMS Application:

IMS 13

41907- IMS Application:

Synchronous Program Switch – The Details

� An enhancement to the DL/I ICAL to invoke another IMS application

– In the same IMS

– In a different IMS

• In a Shared Queues back-end

• Across an MSC link

– And synchronously receive the response back during the same unit of work

� Where IMS internally schedules the transaction initiated by the ICAL
call as an OTMA transaction

– Uses a new type of OTMA destination descriptor (TYPE=IMSTRAN) which has been
introduced specifically for synchronous program switch support

� And the target transaction can be

– An IFP, MPP, MD BMP, or JMP in the IMS TM or TM/DB environments

MPP1

MPP4

MPP3

ICAL

ICAL

ICAL

IMS1

MPP2

IMS X

IMS2

MSC

Shared

Msg Queues

In IMS V13, the function of this DL/I ICAL has been extended to allow customers to call another

IMS application, which can be in the same IMS, in the shared-queues back-end IMS, or in the

remote IMS via MSC. The ICAL synchronously receives the response back during the same unit

of work. This new function is called “Synchronous Program Switch.”

This new synchronous program switch function expands the usage of the OTMA destination

descriptor to serve the ICAL requests so that the transaction data can be sent to another IMS

application for processing. Multi-segment messages and responses are supported and the target

of the call can be an IFP, MPP, BMP, JMP, or JBP running in the same or another IMS TM or

IMS TM/DB system

42007- IMS Application:

IMS 13

42007- IMS Application:

The DL/I ICAL call

Same Format

>>-ICAL--aib--request_area--response_area----------------------><

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ICAL X X

LLZZ+Trancode+Data

LLZZ+Data

LLZZ+Data

Request Data (example of multi-segment):

LLZZ+Data

LLZZ+Data

LLZZ+Data

Response Data in multi-segment:

The overall structure of the DLI ICAL continues to be the same as in previous releases. The
functionality, however, has been expanded to allow the IMS application program to call another
IMS application.

request_area

Specifies the request area to use for this call. This parameter is an input parameter. This request
area contains the request message data that is sent from the IMS application program to the
application that is specified in the OTMA descriptor. The AIBOALEN field specifies the length of
the request message data. If the data is destined for a non-IMS application program or service
that runs in a z/OS or distributed environment, the ICAL call will bypass IMS TM message
queuing and the format of the request area does not require the LLZZ fields. If the data is
destined for an IMS application program, the request data will require the LLZZ fields and the
transaction code needs to be specified in the first 8 bytes of the data area following the LLZZ. For
transactions specified with MULTSEG, the request data will need to include the entire segments.
The standard IMS LLZZ format is required for each segment. The transaction code is only
required in the first segment.

response_area

Specifies the response area to use for this call. This parameter is an output parameter. This
response area should be large enough to hold the response that is returned from the application
that is specified in the OTMA descriptor. If the response area is not large enough to contain all of
the returned data, IMS returns partial data. When partial data is returned, the AIBOAUSE field
contains the length of the returned data in the response area, and AIBOALEN contains the actual
length of the response message. If the request data is destined for a non-IMS application
program or service that runs in a z/OS or distributed environment, the format of the response
area does not require the LLZZ fields. If the request data is destined for an IMS application
program, the format of the response data will follow the standard LLZZ format for each segment
in the response data area, and the response data area will include the entire output segment if
the space has been defined as large enough.

42107- IMS Application:

IMS 13

42107- IMS Application:

The DL/I ICAL Call …

� Examples of common Return codes for synchronous program switch

– Full list in the IMS documentation

� If the ICAL “SENDRECV” receives a partial data status

– The new ICAL “RECEIVE” subfunction can retrieve the entire message

• Discussed in the OTMA Enhancements section

Target trans does not insert back to IOPCB006101100100

Trans is stopped003101100100

Input length invalid002001100100

DFSYICAL stopped000501100100

Security violation000401100100

Invalid trancode000001100100

/PSTOP cmd issued0000010C0100

ICAL timed out002001040100

Error message returned000001000100

Partial data returned0000000C0100

Brief DescriptionExtended Reason code

(Hex)

Reason Code

(Hex)

Return Code

(Hex)

Additionally, new return codes, reason codes and extended reason codes for the ICAL are

introduced to explain errors that could be encountered in this new type of interaction. The visual

shows some examples but the full list is available in the IMS documentation.

Note that if the response_area is too small and only partial data is returned, then the new ICAL

with a sub-function of “RECEIVE” can be used to retrieve the entire message. Detailed

information on the RECEIVE subfunction can be found in the OTMA Enhancements section.

42207- IMS Application:

IMS 13

42207- IMS Application:

The DL/I ICAL Call …

� Continues to use OTMA Destination Routing Descriptors

– Which externalize the routing definitions and specifications for callout messages
and synchronous program switch messages

– Allowing up to 510 destination routing descriptor entries defined in DFSYDTx
member of IMS.PROCLIB

– With new TYPE= IMSTRAN for synchronous program switches

D entry_name keywords Where entry_name is descriptor entry name and can be masked

by ending in an *

keywords are: TYPE=IMSTRAN
LTERMOVR=name

TMEMBER=name

TPIPE-name

SMEM=NO|YES

EXIT= NO|YES
REPLYCHK=YES|NO

SYNCTP=NO|YES

SYNTIMER=timeout value

For example: D OTMDEST1 TYPE=IMSTRAN SYNTIMER=500

D OTMDEST2 TYPE=IMSTRAN TMEMBER=SCOTTHWS1 TPIPE=BRYCE EXIT=YES

The DFSYDTx member of IMS.PROCLIB has been enhanced to support a new type of

destination descriptor, IMSTRAN, to perform the synchronous program switch via the DL/I ICAL

call in the IMS application. They are read and loaded at IMS initialization.

The optional parameters include: TMEMBER, TPIPE, SMEM, SYNCTP, EXIT, LTERMOVR and

REPLYCHK. The TMEMBER, TPIPE, SYNCTP, and SMEM parameters for this new type of

descriptor can be used to specify the destination of the late response for the synchronous

program switch request. The EXIT parameter allows the message control/error exit routine

(DFSCMUX0) user exit to override the destination for the late response for the synchronous

program switch. The LTERMOVR parameter can be specified to set the LTERM name of the

IOPCB for the target transaction of the synchronous program switch. The REPLYCHK parameter

can be optionally used when multiple response messages are competing to be sent back to the

ICAL call.

These new descriptor type and the corresponding parameters for the synchronous program

switch can be specified by using the DFSYDTx member of IMS PROCLIB or the type-2

commands

42307- IMS Application:

IMS 13

42307- IMS Application:

OTMA destination routing descriptor for DL/I ICAL

� TYPE= IMSTRAN

– Required for synchronous program switch requests

Supported parameters for TYPE=IMSTRAN are as follows:

LTERMOVR = Specifies a value to override the LTERM name in the target IMS application program’s I/O PCB

TMEMBER= A 1- to 16-character OTMA TMEMBER name. Optional when TYPE=IMSTRAN. When specified, IMS queues the late response of
a synchronous program switch to this OTMA TMEMBER (otherwise the late reply is purged) TPIPE= is required when TMEMBER= is
specified.

TPIPE= A 1- to 8-character TPIPE name. Optional unless TMEMBER is specified for late replies.

SMEM= Specifies whether (YES) or not (NO) the TMEMBER is a supermember. Optional parameter.

EXIT= Specifies whether (YES) or not (NO) the IMS user exit (DFSCMUX0) can override the descriptor routing information for late messages
when TYPE=IMSTRAN. Optional parameter.

REPLYCHK= Specifies whether (YES) or not (NO) IMS application replies to the IOPCB. If YES and the target application does not reply to the
IOPCB nor message switches to another transaction, IMS returns a bad return code X’0100’, reason code X’0110’, and extended reason
code X’0061’ instead of a timeout to the ICAL call.

SYNCTP = Specifies whether (YES) or (NO) a synchronous TPIPE is to be created with recoverable sequence numbers for input and output
messages. Optional parameter. Primarily used with WebSphere MQ and can apply to late response messages

SYNTIMER= Specifies the ICAL timeout value for synchronous program switch. Optional parameter. If timeout value is also specified in the AIB
interface, IMS compares the timeout values and selects the lower value.

– The other existing parameters OTMA destination descriptors are not applicable for
TYPE=IMSTRAN

The supported parameters for TYPE=IMSTRAN are as follows:

•LTERMOVR= Specifies the LTERM name used to override the LTERM name in the IMS

application program’s I/O PCB.

•TMEMBER= A 1- to 16-character OTMA TMEMBER name. This parameter is optional when

TYPE=IMSTRAN. When specified, IMS will queue the late response of a synchronous program

switch to this OTMA TMEMBER. And TPIPE= is required when TMEMBER= is specified.

•TPIPE= A 1- to 8-character TPIPE name. This parameter is optional. IMS uses this TPIPE to

queue the late response for synchronous programs switch when TYPE=IMSTRAN. And

TMEMBER= is required when TPIPE= is specified.

•SMEM= Specifies whether (YES) or not (NO) this destination is a supermember.

•EXIT= Specifies whether (YES) or not (NO) the IMS user exit (DFSCMUX0) can override the

descriptor routing information for late messages when TYPE=IMSTRAN. It is an optional

parameter and defaults to NO.

•REPLYCHK= Specifies whether (YES) or not (NO) IMS application replies to the IOPCB. When

REPLYCHK=YES and the ICAL switch-to application does not reply to the IOPCB nor message

switch to another transaction, IMS will return a bad return code X’0100’, reason code X’0110’,

and extended reason code X’0061’ instead of a timeout to the ICAL call. It defaults to YES.

•SYNCTP = Specifies whether (YES) or (NO) a synchronous TPIPE is to be created with

recoverable sequence numbers for input and output messages. Optional parameter. Primarily

used with WebSphere MQ and can apply to late response messages

•SYNTIMER= Specifies the ICAL timeout value for synchronous program switch. If timeout value

is also specified in the AIB interface, IMS will compare the timeout values and select the lower

one for this ICAL call. This is an optional parameter.

42407- IMS Application:

IMS 13

42407- IMS Application:

OTMA destination routing descriptor for DL/I ICAL …

� Consideration

– The same TYPE=IMSTRAN descriptor

• Can be used on behalf of multiple target transactions

– Actual trancode is in the request_area of the ICAL and not in the descriptor

– Need for different descriptors is based on different processing requirements

• E.g., different REPLYCHK processing requirements for one set of transactions
versus another

• Minimizes the number of descriptors needed for synchronous program

switch support

The destination descriptor with TYPE=IMSTRAN for synchronous program switch requests can
be used on behalf of multiple target transactions. The actual trancode is specified in the
message sent by the ICAL and not in the destination descriptor. Creating multiple of the
TYPE=IMSTRAN descriptors is useful if different processing characteristics are needed.

42507- IMS Application:

IMS 13

42507- IMS Application:

OTMA destination routing descriptor for DL/I ICAL …

� Type-2 commands can also be used to update, create, delete, or query
the descriptor entries for synchronous program switch

– CREATE OTMADESC and UPDATE OTMADESC

• New optional sub-parameters for SET

– SYNCTP, REPLYCHK, EXIT, and LTRMOVR

– QUERY OTMADESC

• Includes information for the optional new parameters

– SYNCTP, REPLYCHK, EXIT, and LTERMOVR

For example: UPDATE OTMADESC NAME(OTMDEST1) SET(SYNTIMER(800))

QRY OTMADESC NAME(OTMDEST1) SHOW(ALL)

In lieu of creating descriptors, the Type-2 commands can be used to update, create, or delete
OTMA descriptor entries. Additionally, a QUERY command can be used to display information
associated with a descriptor. For synchronous program switch support, the new optional sub-
parameters (SYNCTP, REPLYCHK, EXIT, and LTERMOVR) can be SET as well as queried.

42607- IMS Application:

IMS 13

42607- IMS Application:

OTMA Support for Synchronous Program Switches

� Non-XCF related OTMA services are used

– Internal invocation of OTMA services to process the target transaction request

• Without specifying OTMA=Y in the DFSPBxxx member of IMS PROCLIB and

without issuing /START OTMA command

– No need to start the XCF connection with any OTMA client for the synchronous

program switch

– The target transaction is processed as an OTMA transaction

• If authorization is required, IMS checks to see if user can access target

• Using OTMA send-then-commit (CM1) protocol with SyncLevel=CONFIRM

– Target transaction of the ICAL is processed as an OTMA transaction

• IMS creates an internal OTMA member DFSYICAL and internal tpipe

DFSTPIPE to process the transaction

– And generates internal ACK/NAK for the CONFIRM request

IMS internally schedules transactions initiated by the ICAL as OTMA transactions. Using OTMA,

however, for the synchronous program switch support will be transparent and automatic. This

means that there will be no need to specify OTMA=Y in the IMS PROCLIB member DFSPBxxx

nor will there be a need to issue a /START OTMA command.

Once a DL/I ICAL for synchronous program switch is accepted, IMS first checks to see if

authorization is required and, if so, check to ensure the user is allowed to access the target

transaction. Once the authorization process is complete, IMS internally use the OTMA send-

then-commit (CM1) protocol with SyncLevel=CONFIRM to process this request. An internal ACK

for the CM1 response will always be generated. The response is not sent until the IMS syncpoint

is complete.

The OTMA TMEMBER DFSYICAL with the TPIPE name DFSTPIPE will be created.

42707- IMS Application:

IMS 13

42707- IMS Application:

OTMA Support for Synchronous Program Switches …

A /DIS OTMA command can be used to see the existence of the DFSYICAL TMEMBER and

associated properties.

42807- IMS Application:

IMS 13

42807- IMS Application:

IMS Commands

� /DIS ACTIVE REGION

– Displays the target transaction for the synchronous program switch

– Displays the calculated end time of the ICAL

• Based on the timeout value

Note: Display output will be different for sychronous callout ICAL versus sychronous program-to-program ICAL

In this example, message processing program IAPMD127 is processing transaction IAPMD127

which is waiting for a response to a synchronous callout request (WAIT-CALLOUT). This request

is making a synchronous program switch using DL/I ICAL to a target transaction SKS1. The

timeout value of this ICAL was used to compute the end time of this ICAL request which is

displayed in the END TIME field.

42907- IMS Application:

IMS 13

42907- IMS Application:

IMS Commands …

� /PSTOP REGION rgn# SYNC tran name …

– Allows a program in a wait state to terminate

� /STOP TMEMBER DFSYICAL [TPIPE DFSTPIPE]

– Stops all of the synchronous program switches in this IMS

� /START TMEMBER DFSYICAL [INPUT flood_limit]

– Starts synchronous program switches after a /STOP command

• Optional use of the INPUT keyword provides a flood control value

� /DISPLAY OTMA

– Displays the big picture of OTMA members, even when OTMA is stopped

– New user status:

• SYNC P2P

• SYNC P2P+FLOOD

� /DISPLAY TMEMBER DFSYICAL TPIPE DFSTPIPE SYNC

– Displays information about the tpipes created for the synchronous program switches

– Displays the total number of executed synchronous program switches,

•The /PSTOP command wakes up an application program that is waiting for the response from a
DL/I ICAL wait so the program can terminate. If a tran name is specified following the SYNC
parameter, it will also apply to an ICAL that is performing synchronous program switch.
Additionally, the ICAL call that is in the wait state will be posted and received AIB return code
X’0100’ with reason code X’010C’.

•The /STOP TMEMBER DFSYICAL can be used to disable the synchronous program switch
support. Application programs issuing ICAL requests after this command will receive: AIB return
code X'00000100', reason code X'00000110' and extended reason code X’00000005’. If the
command also includes TPIPE DFSTPIPE the subsequent synchronous program switches from
IMS application issuing ICAL will be rejected with AIB return code X'00000100', reason code
X'00000110' and extended reason code X’00000006’.

•The /START TMEMBER DFSYICAL command allows the support to once again be activated. If
an INPUT flood_limit is specified then the flood_limit value initiates flood control support and
limits the number of synchronous program switch requests that can be active.

•The /DISPLAY OTMA command can be used to determine if this IMS has been used to process
any synchronous program switch requests. The information displayed includes whether or not
there are any active requests waiting for a response and how many of them there are. The
OTMA member DFSYICAL is created only for processing the ICAL calls for synchronous
program switches. The TIB column can be used to identify how many active synchronous
program switches exist in this IMS. Since the DRU exit has meaning to the DFSYICAL member,
the DRUEXIT column for its member will have N/A. A new user status “SYNC P2P” has been
introduced for the OTMA internal member DFSYICAL which initiated the synchronous program
switch using the DL/I ICAL calls. When the flood limit has been set via the /START TMEMBER
DFSYICAL INPUT flood_limit command and the flood value has been reached, the user status
will show “SYNC P2P+FLOOD”. The TIB column also displays a value. For the OTMA internal
member DFSYICAL, this indicates the current number of IMS regions waiting for the response of
synchronous program switch. When this number reaches the optional flood limit (if set) then no
more ICAL for synchronous program switch will be accepted.

43007- IMS Application:

IMS 13

43007- IMS Application:

Messages and Status Codes

� Messages

– DFS4687E ERROR PROCESSING SYNC PROGRAM SWITCH

• Provides information about a processing failure

– DFS1190I REGION nnnn NOT WAITING ON yyyyyyyy xxxxxxxx

• Indicates that a /PSTOP command might have been issued in error

� Application program status Codes

– A1

• CHNG call was issued using a descriptor with TYPE=IMSTRAN

• OTMA ALTPCB output destination specified reserved name DFSYICAL

– AX

• An OTMA user exit (DFSYPRX0, DFSYDRU0, or client DRU exit) returned
invalid routing information

Additional messages that can be issued in a synchronous program switch scenario include:

•DFS4687E is a new message that indicates that an error has occurred in the synchronous

program switch processing. It provides a short summary that describes the processing failure

•DFS1190I is issued to indicate that a /PSTOP AOITOKEN or /PSTOP REGION

SYNC command was entered but the region was not waiting for the specified AOI token or ICAL

response.

IMS application programs might additionally receive the following status codes:

A1:

•The OTMA destination descriptor entry used for a CHNG call specified a TYPE of IMSTRAN. A

TYPE=IMSTRAN is only applicable to the ICAL.

•An OTMA ALTPCB output destination was specified with an OTMA member name of

DFSYICAL which is a reserved name.

AX:

•An OTMA user exit (DFSYPRX0, DFSYDRU0, or client DRU exit) returned invalid routing

information. The OTMA return codes in the 67D0 log record can provide more information.

43107- IMS Application:

IMS 13

43107- IMS Application:

Security Considerations

� Security for ICAL is similar to CHNG/ISRT DLI calls

– Based on transaction security specifications (TRN)

• RACF and/or DFSCTRN0 are used for user authorization checking to
determine if the ICAL can invoke the target transaction

– Unless OTMA security is set to NONE

� If the ICAL is authorized to do the synchronous program switch

– Target transaction is scheduled as an OTMA transaction with the default
OTMA security level of FULL

• Security level can be changed by issuing the command:

– /SECURE OTMA NONE, or

– /SECURE OTMA TMEMBER DFSYICAL CHECK|NONE

Security for ICAL is similar to CHNG/ISRT DLI calls. Depending on the transaction security

specifications (TRN) the IMS region will call RACF and/or DFSCTRN0 user exit to check if the

user is authorized to issue the ICAL for the target transaction. For APPC/OTMA transaction it

also depends on the security option specified for APPC/OTMA. If the security of NONE has

been specified for APPC/OTMA transactions, RACF and/or DFSCTRN0 will not be called even if

TRN=Y has been specified.

As mentioned earlier, IMS schedules the transaction initiated by the ICAL as an OTMA

transaction which means that OTMA security settings (NONE/ CHECK/ FULL/ PROFILE) are all

supported. With or without the activation of OTMA, the OTMA security is set to FULL as the

default. This security for ICAL processing can be changed by issuing /SECURE OTMA

TMEMBER DFSYICAL CHECK|NONE command. Note that the DFSBSEX0 user exit routine will

not be called.

When the /SECURE OTMA command is issued, it sets the security setting for the OTMA

internal member DFSYICAL. This member has been created internally by OTMA to process the

DL/I ICAL calls for synchronous program switches.

43207- IMS Application:

IMS 13

43207- IMS Application:

Security Considerations …

� If the ICAL is authorized to do the synchronous program switch …

• Even when DFSYICAL does not yet exist in the system or when the target
is in another IMS system

– You can issue /SECURE OTMA… to preset the security level

ICAL
TRAN_A

TRAN_B
The transaction security specification of

TRAN_A will be used to perform the

security authorization for the ICAL.

The default OTMA security level of

FULL is used to process TRAN_B in

the region.

Optionally, issue /SECURE OTMA TMEMBER DFSYICAL CHECK|NONE

ahead of time

Even when the DFSYICAL member does not exist in the IMS system, this command can still be

issued to create this member and to set the security level for the subsequent DL/I ICAL calls.

43307- IMS Application:

IMS 13

43307- IMS Application:

Shared Queues Support

� IMS leverages the APPC/OTMA XCF shared queues (SQ) function

– For both request and response messages

– Specifying AOS= and/or RRS= in the IMS PROCLIB members is not required

• ICAL automatically and always uses AOS=X (SL1 uses XCF)

– Compatible with any existing AOS= and RRS= currently set for other transactions

Requires DBRC MINVERS of 13.1 for all members of the SQ group

Otherwise ICAL will get a rejection

FE IMS

Shr Q

BE IMS

LTERM

LU62

OTMA

BMP

GU IOPCB

ICAL

ISRT IOPCB

GU IOPCB

….

ISRT IOPCB

AOS=X

CM1, SL1

RC RS Extended Reason Explanation

X’0100 X’0100’ X’0115’
Request message is rejected. The synchronous program switch was executed in
the Shared Queues environment, but the IMS systems in the Shared Queues do

not have the same MINVERS value of 13.1.

For IMS shared queues (SQ) customers, all of the IMS systems in the same SQ group must

have the same MINVERS value of 13.1 in order to use this function.

Note that IMS leverages the APPC/OTMA XCF shared queues function (introduced in IMS 12) to

process the switched-to transaction at a shared queues front-end and back-end IMS. This

processing for synchronous callout message does not require the specification of AOS= or RRS=

in the IMS PROCLIB members, and is compatible with any existing AOS= and RRS= settings

used by the customers. What this means is that if an IMS system already uses AOS= and RRS=

specifications to process its shared queues transactions, the non-ICAL transactions will continue

to use these settings but synchronous program switch message using ICAL calls will be

executed in the shared queues environment independently using AOS=X.

As a reminder, AOS=X allows synchronous transactions with synclevel of NONE|CONFIRM to

be processed in a Shared Queues back-end system using XCF communications. The

processing of synclevel SYNCPT requests is equivalent to AOS=N.

43407- IMS Application:

IMS 13

43407- IMS Application:

MSC Support

� IMS supports sending an ICAL request to an MSC back-end system

– MSC/VTAM

– MSC/TCPIP with IMS Connect (introduced in IMS 12)

LTERM

LU62

OTMA

BMP

GU IOPCB

ICAL

ISRT IOPCB

GU IOPCB

….

ISRT IOPCB
MSC

All of the IMS subsystems in an MSC network can process synchronous programs switch

messages, as long as the MSC link exists in the front-end IMS.

43507- IMS Application:

IMS 13

43507- IMS Application:

New OTMA Message Header

� For synchronous program switch support

– OTMA Message Header

• Control data header – new message type field
TMAMCMGT DS X Message type

TMAMCDTA EQU X'80' Msg type=Data

TMAMCTXN EQU X'40' Msg type=Transaction

TMAMCRSP EQU X'20' Msg type=Response

TMAMCCMD EQU X'10' Msg type=Protocol Command

TMAMCCMT EQU X'08' Msg type=Commit Confirmation

TMAMSP2P EQU X'04' Msg type=Synchronous program switch

• State data header

– Specification of CM1, Synclevel=Confirm

– Recovery toke from LCRETOKN

• Security data header

– Includes the userid from PSTUSID

• User data header

A new type of OTMA message header is introduced for the synchronous program switch. This

type of message consists of OTMA control data header, OTMA state data header, OTMA

security header, OTMA user data header, and the request data of the ICAL.

In the control data header, a new flag x’04’ is added to the message type field to identify the

message for the synchronous program switch:

TMAMSP2P EQU X'04' Msg type=Synchronous program switch

In the state data header, the commit-mode=1, Synclevel=CONFIRM, and recovery token from

LCRETOKN are specified.

In the security data header, the userid from PSTUSID is included.

In the user data header, OTMA prepares a special format of user data for the processing of the

synchronous program switch.

43607- IMS Application:

IMS 13

43607- IMS Application:

Exit Routine Enhancements

• DFSCMUX0

• DFSYPRX0
• DFSYDRU0

• DFSYIOE0

43707- IMS Application:

IMS 13

43707- IMS Application:

DFSCMUX0 (Message Control/Error Exit Routine)

� Invoked when EXIT=YES is specified in the IMSTRAN OTMA descriptor

– Can take action for late response messages as follows:

• Dequeue

• Or, Reroute

– To an LTERM or OTMA destination

– With the descriptor information (TMEMBER/TPIPE) associated with the

synchronous program switch

• Passed to the exit in the MSNB COPY

• A new exit flag, MSNBDESC, can be set to reroute the late response message
to the defined TMEMBER and TPIPE.

– If a non-supported action is specified for the late response message

• IMS ignore the request and discards the late response message

When EXIT=YES is specified in the OTMA descriptor for the synchronous program switch and a

late response message is created, DFSCMUX0 user exit will be called to take actions. The

supported actions are either to dequeue the late response message or to reroute it. If reroute

action is requested and the destination information is provided, the late response message can

be rerouted to an LTERM or OTMA destination. If the reroute TMEMBER and TPIPE names are

also specified in the OTMA descriptor (associated with the original synchronous program switch),

they will be passed in the MSNB COPY for the DFSCMUX0 user exit. The new exit flag,

MSNBDESC, can be set to reroute the late response message using the reroute TMEMBER and

TPIPE information specified in the descriptor. If a non-supported action is specified for the late

response message, IMS will ignore it and discard the late response messages.

43807- IMS Application:

IMS 13

43807- IMS Application:

DFSYPRX0 (OTMA Pre-Routing Exit Routine)

� Provides a new flag in the flag byte offset +24 of the input parameter list

– Indicates that the OTMA ALTPCB output message was originally triggered by
a synchronous program switch DL/I ICAL call

• New description:

+24 = 1-BYTE FLAG

X'10' - IF SET, INDICATES THAT IT IS TRIGGERED BY A SYNCHRONOUS PROGRAM SWITCH ICAL

CALL.

IF X'80' IS ALSO SET, IT MEANS AN OTMA TRANSACTION INITIATED THE ICAL CALL, AND

THE LTERM/TPIPE NAME AND INPUT CLIENT MEMBER NAME IN THE PARAMETER LIST

ARE FROM THE ORIGINAL OTMA TRANSACTION.

and ...

A new flag was added to the flag byte at offset +24 of the input parameter list of DFSYPRX0

(OTMAS Pre-Routing Exit Routine). This new flag indicates that this OTMA ALTPCB output

message was originally triggered by a synchronous program switch DL/I ICAL call.

43907- IMS Application:

IMS 13

43907- IMS Application:

DFSYPRX0 (OTMA Pre-Routing Exit Routine) …

� Enhancements to the MCI and STATE DATA in the input parameter list

– Indicate that the OTMA prefix may be generated by the system

• Not from the original OTMA transaction which later invokes ICAL

+64 = ADDR(MESSAGE CONTROL

INFORMATION),
AVAILABLE FROM INPUT OTMA MESSAGE PREFIX. THIS IS

ENTRY PARAMETER ONLY.

IF IT IS FROM A SYNCHRONOUS PROGRAM SWITCH ICAL

CALL AND THE ORIGINAL TRANSACTION IS FROM OTMA,
THIS MESSAGE CONTROL INFORMATION PREFIX IS A

SYSTEM CREATED MESSAGE PREFIX. IT IS NOT
THEORIGINAL MESSAGE PREFIX FROM OTMA CLIENT.

HOWEVER, THE LTERM/TPIPE NAME AND INPUT CLIENT

MEMBER NAME IN THIS PARAMETER LIST ARE FROM THE
ORIGINAL OTMA MESSAGE.

+68 = ADDR(STATE DATA),

AVAILABLE FROM INPUT OTMA MESSAGE PREFIX. IF

SUPER MEMBER FEATURE IS USED, @PK09946
SUPER MEMBER NAME IS STORED AT OFFSET @PK09946

+14 FROM THE BEGINNING OF STATE DATA. @PK09946
SEE TMAMSPNM FIELD IN DFSYMSG MACRO. @PK09946

THIS IS AN ENTRY PARAMETER ONLY.
IF IT IS FROM A SYNCHRONOUS PROGRAM SWITCH ICAL CALL

AND THE ORIGINAL TRANSACTION IS FROM OTMA, THIS
STATE DATA IS A SYSTEM GENERATED STATE DATA PREFIX.

IT IS NOT THE ORIGINAL STATE DATA PREFIX FROM THE
OTMA CLIENT. HOWEVER, THE CORRELATOR, TMAMHCOR, IN
THE STATE DATA PREFIX IS OBTAINED FROM THE ORIGINAL

OTMA STATE DATA. AND THE LTERM/TPIPE NAME AND THE
INPUT CLIENT MEMBER NAME IN THIS PARAMETER LIST ARE

FROM THE ORIGINAL OTMA MESSAGE.

Additionally, enhancements to the MCI and STATE DATA parameter of the input parameter list

of the exit indicate that the OTMA prefix may have been generated by the system rather than

reflect the original OTMA transaction which invoked the ICAL.

44007- IMS Application:

IMS 13

44007- IMS Application:

DFSYDRU0 (OTMA Destination Resolution Exit Routine)

� Provides a new flag in the flag byte offset +24 of the input parameter list

– Indicates that the OTMA ALTPCB output message was originally triggered by
a synchronous program switch DL/I ICAL call

• New description:

+24 = 1-BYTE FLAG

X'10' - IF SET, INDICATES THAT IT IS TRIGGERED BY A SYNCHRONOUS PROGRAM SWITCH ICAL

CALL.

IF X'80' IS ALSO SET, IT MEANS AN OTMA TRANSACTION INITIATED THE ICAL CALL, AND

THE LTERM/TPIPE NAME AND INPUT CLIENT MEMBER NAME IN THE PARAMETER LIST

ARE FROM THE ORIGINAL OTMA TRANSACTION.

and ...

DFSYDRU0 (OTMA Destination Resolution Exit Routine) has also been enhanced to provide a

new flag at offset +24 of the input parameter list. This new flag indicates that the OTMA ALTPCB

output message was originally triggered by a synchronous program switch DL/I ICAL call

44107- IMS Application:

IMS 13

44107- IMS Application:

DFSYDRU0 (OTMA Destination Resolution Exit Routine)..

� Enhancements to the MCI and STATE DATA in the input parameter list

– Indicate that the OTMA prefix may be generated by the system

• Not from the original OTMA transaction which later invokes ICAL

+80 = ADDR(MESSAGE CONTROL

INFORMATION),
AVAILABLE FROM INPUT OTMA MESSAGE PREFIX. THIS IS

AN ENTRY PARAMETER ONLY.

IF IT IS FROM A SYNCHRONOUS PROGRAM SWITCH ICAL

CALL AND THE ORIGINAL TRANSACTION IS FROM OTMA,
THIS MESSAGE CONTROL INFORMATION PREFIX IS A

SYSTEM CREATED MESSAGE PREFIX. IT IS NOT THE
ORIGINAL MESSAGE PREFIX FROM OTMA CLIENT.

HOWEVER, THE LTERM/TPIPE NAME AND INPUT CLIENT
MEMBER NAME IN THIS PARAMETER LIST ARE FROM THE

ORIGINAL OTMA MESSAGE.

+84 = ADDR(STATE DATA),

AVAILABLE FROM INPUT OTMA MESSAGE PREFIX. IF
SUPER MEMBER FEATURE IS USED, @PK09946

SUPER MEMBER NAME IS STORED AT OFFSET @PK09946
+14 FROM THE BEGINNING OF STATE DATA. @PK09946

SEE TMAMSPNM FIELD IN DFSYMSG MACRO. @PK09946
THIS IS AN ENTRY PARAMETER ONLY.

IF IT IS FROM A SYNCHRONOUS PROGRAM SWITCH ICAL CALL
AND THE ORIGINAL TRANSACTION IS FROM OTMA, THIS

STATE DATA IS A SYSTEM GENERATED STATE DATA PREFIX.
IT IS NOT THE ORIGINAL STATE DATA PREFIX FROM THE

OTMA CLIENT. HOWEVER, THE CORRELATOR, TMAMHCOR, IN
THE STATE DATA PREFIX IS OBTAINED FROM THE ORIGINAL

OTMA STATE DATA. AND THE LTERM/TPIPE NAME AND THE
INPUT CLIENT MEMBER NAME IN THIS PARAMETER LIST ARE

FROM THE ORIGINAL OTMA MESSAGE.

The MCI and STATE DATA parameters of the input parameter list of the exit indicate that OTMA

prefix may have been generated by the system are not from the original OTMA transaction which

invoked the ICAL.

44207- IMS Application:

IMS 13

44207- IMS Application:

DFSYIOE0 (OTMA Input/Output Edit Exit Routine)

� Not invoked for synchronous program switch request and reply
messages

� Can be invoked for late responses that are routed to OTMA
destinations

– OTMA needs client specific information in the user data prefix (1024 bytes)

• If the initial message that results in a synchronous program switch
originated in OTMA

– Client specific user data is propagated to the late response

• Can be overriden by DFSYIOE0

• If the initial message did not come from an OTMA client

– User data prefix in the late response will be initialized to zeroes

• DFSYIOE0 must provide the client specific information

– A sample DFSYIOE exit routine is provided in IMS 13

DFSYIOE0 (OTMA Input/Output Edit Exit Routine) is never invoked for synchronous program

switch request and reply messages but it can be called for late responses that are destined for

an OTMA client.

For OTMA destinations, IMS relies on the information in the 1024-byte user data prefix of the late

response.

•If the synchronous program switch call was initiated by an OTMA transaction from an OTMA

client, then IMS will propagate the initial client user data to the user data prefix of the late

response message. This user data prefix can remain as it is or can optionally be updated by the

DFSYIOE0 user exit.

•On the other hand, if the program that initially issued the synchronous program switch call was

not initiated by an OTMA client, such as IMS Connect, then this prefix will be initialized to zeroes

and DFSYIOE0 must be used to build the client specific user data so that it can be correctly sent

to the OTMA client.

44307- IMS Application:

IMS 13

44307- IMS Application:

Application Design Considerations

• Transaction Expiration
• Late Responses

• LTERM Override
• ALTPCB destinations

• Examples
– Multiple ICALs

– Recursive requests

– DFSDDLT0

44407- IMS Application:

IMS 13

44407- IMS Application:

Transaction expiration for the target transaction

� Transaction expiration for targets of synchronous program switches
(new)

– Uses the timeout value of the synchronous program switch

• ICAL timeout value is carried in the OTMA header

– Invoked during application GU time

1

2

ICAL times out!!

3

Transaction Expiration is detected during
Application GU:
- Input message is discarded
- A 67D0 log record is written
- No symptom dump
- No DFS554 message issued.

ICAL TRAN_A
TRAN_B

Application issuing ICAL receives a
timeout with:
- AIB return code X’00000100’
- reason code X’00000104’
- extended reason code X’00000020’

(1) When a transaction issues an ICAL, e.g., TRAN_A, the OTMA message header that is built

for the synchronous program switch message is carries the ICAL timeout value which is used

for the target transaction expiration process.

(2) If the ICAL times out before a response is receives, then TRAN_A receives an AIB return

code/ reason code indicating the condition.

(3) When TRAN_B is finally scheduled and the application issues a GU IOPCB, transaction

expiration is detected. Since the OTMA message header contains the transaction expiration

information with TRAN_A’s ICAL timeout value, the transaction expiration process discards

the input message and a 67D0 log record is written. No DFS message is sent back to the

ICAL call since it is no longer waiting, and no symptom dump is produced.

44507- IMS Application:

IMS 13

44507- IMS Application:

Transaction expiration for the target transaction …

� Transactions expiration will NOT occur

– For regular program-to-program switch destinations performed by the target

• Only the initial target transaction can be expired

– In a remote IMS through MSC

• After ICAL times out, the response message from the remote MSC system
will be processed as a late message

– For fastpath transactions

– If TMEMBER, TPIPE and/or EXIT=YES are specified

• These specifications designate what to do with Late Reply messages

� NOTE: If the ICAL request times out and transaction expiration is not
performed, late response messages are either:

– Dequeued

– Rerouted

Note that the transaction expiration process does not occur:

•When the target of the ICAL also issues program-to-program switches. Only the initial called

program can be expired.

•For ICAL messages sent across an MSC link. If the calling program issuing the ICAL times out,

any response message from the remote MSC system is processed as a late response message.

•For Fastpath transactions.

•If the descriptor defines parameters that can deal with a late response.

44607- IMS Application:

IMS 13

44607- IMS Application:

Late Response Messages?

� A reply is late when:

– It is returned to the synchronous program switch ICAL call which has already

timed out

– It is a subsequent message(s) returned to the ICAL which has already
received and processed a previous response

• If multiple target transactions are involved that reply to the IOPCB

– The first one to process an application GU,IOPCB has the responsibility for the

send-then-commit CM1 response

• The other replies are considered commit-then-send CM0 replies

TRAN_D

1
ICAL TRAN_A TRAN_B

3ISRT, IOPCB

1ICAL
TRAN_A

TRAN_B

TRAN_C

ISRT, IOPCB

4

5
ISRT, IOPCB

3

2

ICAL times out!!

Send-then-commit CM1

Commit-then-send CM0

ISRT, ALTPCB
ISRT, ALTPCB

An IOPCB reply is a late response message when IMS attempts to return to a calling
synchronous program switch program (issuer of the ICAL) after that program has either: timed
out, or already received a previous response message.

The bottom picture on the visual gives an example of the latter. Note that in this scenario, the
target of the synchronous program switch TRAN_B does not reply to the IOPCB but rather
issues two program-to-program switches. TRAN_C and TRAN_D which both respond to the
IOPCB can be ultimately responsible for responding to TRAN_A’s ICAL request. The first one to
process an application GU,IOPCB gets the responsibility of sending the CM1 response. The
other transaction’s reply becomes a CM0 reply and is considered a late response.

44707- IMS Application:

IMS 13

44707- IMS Application:

Late Response Messages…

� The default action for processing the late response message is to
dequeue

� Optionally, it can be rerouted to an LTERM or OTMA destination

– OTMA TMEMBER and TPIPE destinations can be specified in the descriptor

• Destination can be IMS Connect and WebSphere MQ

– Optional: supermember (SMEM) and synchronized TPIPE (SYNCTP)

– If EXIT=YES is specified in the descriptor

• The DFSCMUX0 user exit can identify an LTERM or OTMA destination

– When TMEMBER, TPIPE, and EXIT=YES are all specified

• TMEMBER and TPIPE are passed to DFSCMUX0 for final routing decision

– A new output flag can be set by the user exit to inform IMS to use the TMEMBER
and TPIPE in the descriptor for routing the late messages

– NOTE: DFSYICAL and DFSTPIPE are invalid destinations for reroute

By default, IMS logs and dequeues late response messages if detected. However, customers
can save the late response messages by informing IMS to route the late response messages to
a LTERM, LU62, or OTMA queue.

The TMEMBER= and TPIPE= parameters in the descriptor of the synchronous program switch
can specify an OTMA TPIPE queue so that the late response can be retrieved by an OTMA
client, such as IMS Connect or WebSphere MQSeries. Optionally, the SMEM= parameter for
super member and SYNCTP= parameter for WebSphere MQ synchronous TPIPEs can be used
to further specify special TPIPE queues for the message retrieval request. When the
TMEMBER= and TPIPE= parameters are specified without EXIT=YES, all of the late messages
are queued to the specified TPIPE and TMEMBER

Specifying the EXIT parameter with YES allows DFSCMUX0 user exit (described earlier) to
determine the final fate of the late response message even without TMEMBER and TPIPE
specification.

If the TMEMBER, TPIPE, and EXIT=YES are all specified, then the DFSCMUX0 user exit is
invoked with the member-name and tpipe-name as defined in the descriptor.

44807- IMS Application:

IMS 13

44807- IMS Application:

Late Response Messages …

� REPLYCHK parameter (YES |NO) in the IMSTRAN descriptor

– Specifies whether or not IMS should check that the “target” IMS transaction
responds to the IOPCB

• “Target” transaction has responsibility for the send-then-commit CM1 reply

– Controls the actions IMS performs

• Including what to do with the DFS2082 message

– Existing OTMA mechanism that releases a waiting request when the target
transaction for a send-then-commit CM1 response does not reply to the IOPCB

– Note:

• ICAL will never get a DFS2082 for this function

• DFS2082 messages are not considered late messages and are not rerouted

TRAN_A

ICAL
TRAN_B

ISRT,IOP

TRAN_A

ICAL
TRAN_B

ISRT, ALTPCB
ISRT, ALTPCB

TRAN_C

ISRT, IOPCB

TRAN_D
ISRT, IOPCB

“Target” “Target” : first one to issue GU
- has responsibility for CM1 response

IOPCB reply becomes “late”
And is CM0

OR

The REPLYCHK parameter can optionally be used when multiple response messages are

competing to be sent back to the ICAL call and specifies whether or not IMS should check that a

“target” transaction responds to the IOPCB. To better understand this setting (detail in the

following visuals) some concepts need to be clarified.

A “target” transaction is the transaction that has the responsibility of replying to the outstanding

ICAL request. It could be the only transaction in the ICAL path (e.g., TRAN_B in picture on the

left) or it could be the first one that is switched to that issues a GU IOPCB (e.g., TRAN_D in the

picture on the right). The assumption is that the “target” will issue an ISRT IOPCB to send a

reply.

Additionally, the REPLYCHK specification influences the process that IMS uses for the DFS2082

message. Historically, the DFS2082 message has been used by OTMA to inform the OTMA

client that the target transaction does not insert back to IOPCB and does not issue the program

to program switches. This is needed so that the client does not need to: wait for an IMS response

that will not come, or wait until a timeout occurs.

For synchronous program switches, the caller of the ICAL call will never receive a DFS2082

message but it may receive AIB return/reason codes instead.

There is no reroute or late message processing for the DFS2082 message for ICAL calls.

44907- IMS Application:

IMS 13

44907- IMS Application:

REPLYCHK = YES

� Before an ICAL timeout

– The “target” transaction is expected to create the IOPCB CM1 response

• If there is no reply

– ICAL receives AIB return code X’00000100’, reason code X’00000110’, and
extended reason code X’00000061’ instead of a DFS2082 message

– For multiple responses

• CM1 response takes precedence over any other reply messages

– All other IOPCB replies are CM0 late responses (dequeued or rerouted)

� After an ICAL timeout

– All replies (CM1 and CM0) are considered late (dequeued or rerouted)

– Transaction expiration considerations:

• If the “target” transaction expires at the application GU time, it is discarded

– Any other transaction IOPCB replies are CM0 late responses

• If the “target” transaction does not expire at the application GU time

– Subsequent program switches are performed without transaction expiration

REPLYCHK=YES

Before an ICAL timeout:

•The target transaction (previous visual) is responsible for sending a reply. If there is no IOPCB

reply then DFS2082 processing occurs but instead of sending the message the ICAL receives

AIB error codes to clear the outstanding wait.

•On the other hand, if there are multiple responses that could be returned to the ICAL, the CM1

message takes precedence over any CM0 replies.

After an ICAL timeout:

•All replies are considered late and are either dequeued or rerouted.

•Additionally, there could be some transaction expiration considerations. If the initial target

transaction of the synchronous program switch expires at application GU time, this target

transaction is simply discarded. If the initial target transaction issues the application GU before

ICAL timeout and then issues subsequent program-to-program switches, these will be performed

without transaction expiration even if the ICAL timer then expires. Multiple late response

messages can be generated for the ICAL. These late response messages by default will be

discarded if there is no reroute option specified.

45007- IMS Application:

IMS 13

45007- IMS Application:

REPLYCHK=NO

� Before an ICAL timeout

– First reply message, either send-then-commit CM1 or commit-then-send
CM0, is accepted as the response message for the synchronous ICAL

• Other response messages are late replies (dequeued or rerouted)

� After an ICAL timeout

– Same considerations as REPLYCHK=YES on previous visual

� CM1 DFS2082 messages are ignored

TRAN_A

ICAL

TRAN_B
TRAN_C

TRAN_D

ISRT, IOPCB
TRAN_E

ISRT, IOPCB

ISRT, IOPCB

First to issue GU, IOPCB and has responsibility
for the send-then-commit CM1 reply

BUT does not ISRT a reply to the IOPCB

TRAN_D and TRAN_E also process their

messages and reply to the IOPCB
-- Both are commit-then-send CM0 replies

ISRT, ALTPCB
ISRT, ALTPCB
ISRT, ALTPCB

-One message is accepted as the

response for the ICAL
- The other is considered a late reply

REPLYCHK=NO

In the case of REAPLYCHK=NO in the descriptor, IMS expects that there could be multiple

responses for the ICAL call. Since the DFS2082 message is not a real response, it will be

ignored and not be sent back to ICAL.

Before an ICAL timeout:

If there are multiple response messages for the ICAL, the first response message received,

either a send-then-commit output or commit-then-send output, will be accepted as the response

message. The rest of the response messages are all late response messages. In the example on

the visual, TRAN_A issues an ICAL to TRAN_B. TRAN_B does not reply to the IOPCB but

instead issues 3 program-to-program switches. TRAN_C is the first to issue a GU IOPCB and

would ordinarily have the responsibility to send the CM1 IOPCB reply to release the ICAL wait.

In this example TRAN_C terminates without a reply. Meanwhile the other two transactions,

TRAN_D and TRAN_E have processed and replied to the IOPCB. Both the messages are CM0

replies. With the specification of REPLYCHK=NO, IMS chooses one of the messages to be the

ICAL response. The other is considered a late response.

After an ICAL timeout:

Processing is the same as for REPLYCHK=YES (described on the previous visual) with the

transaction expiration considerations.

DFS2082 messages are ignored.

45107- IMS Application:

IMS 13

45107- IMS Application:

REPLYCHK Considerations

� Use the simplest design where possible

– Avoid spawning transactions

� Use of Express PCBs and non-Express PCBs

– REPLYCHK=NO would allow Express PCB response to be sent back as the
reply

– REPLYCHK=yes would wait for non-Express PCB response to be sent back
as the reply

TRAN_A

ICAL
TRAN_B

ISRT, ALTPCB
ISRT, ALTPCB

TRAN_C

ISRT, IOPCB

TRAN_D
ISRT, IOPCB

TRAN_A

ICAL
TRAN_B

ISRT,IOP

TRAN_A

ICAL

TRAN_B
ISRT,ALTPCBOR TRAN C

ISRT,IOP

INSTEAD OF:

TRAN_A
ICAL

TRAN_B

ISRT, ALTPCB
ISRT, ALTPCB

TRAN_C

ISRT, IOPCB

TRAN_D

ISRT, IOPCB

Express PCB

(response is CM0)

Non-Express PCB

(response is CM1)

45207- IMS Application:

IMS 13

45207- IMS Application:

REPLYCHK Considerations ...

� OTMAASY

– Pre-IMS 13 parameter that addresses synchronous (CM1) requests where
multiple spawned transactions can respond to the request

– Allows transaction definition, e.g., Response Mode versus Non-Response
mode, to determine which of the spawned requests should be the CM1
response

– For Synchronous Program Switches (ICAL)

• REPLYCHK=YES

– OTMAASY can be useful in determining which of the spawned transactions is the

target for the CM1 reply

• REPLYCHK=NO

– Even with OTMAASY, the first response (CM1 or CM0) is selected as the
response to the ICAL

TRAN_A

ICAL
TRAN_B

ISRT, ALTPCB
ISRT, ALTPCB

TRAN_C

ISRT, IOPCB

TRAN_D
ISRT, IOPCB

45307- IMS Application:

IMS 13

45307- IMS Application:

LTERM Override

� The default LTERM name in the IMS application program’s I/O PCB is
the IMS application terminal symbolic (PSTSYMBO)

– It can be overridden by the following 2 methods:

• AIBRSNM2 in AIB block of the ICAL

• LTERMOVR value in the OTMA descriptor for the ICAL call

– If both AIB and descriptor has the LTERM override name, the name in the
AIB will be used.

GU IOPCB

ICAL

ISRT IOPCB

TRAN_A TRAN_B
1

2LTERMxyz

ISRT IOPCB

Application’s I/O PCB

LTERM name PSTSYMBO

3
(LTERMname in the IOPCB

of the invoking transaction)

LTERMxyz

The default LTERM name in the target transaction’s IOPCB is the symbolic PSTSYMBO. This

value can be overriden in one of two ways: either by specifying a value in AIBRSNM2 of the AIB

block used in the ICAL, or by specifying a value in the LTERMOVR parameter of the associated

OTMA descriptor. If a value is specified using both methods then the name in the AIB is used.

45407- IMS Application:

IMS 13

45407- IMS Application:

ALTPCB Output Messages

� Default routing destination for ALTPCB output is based on the originator
of the message that invoked the ICAL transaction

– Carried in the OTMA header

• LTERM or OTMA information

� DFSYPRX0 and DFSYDRU0 exit routines can specify alternate routing

– A new input flag indicates that “this ALTPCB output message is triggered by
a synchronous program switch ICAL call.”

• OTMA incoming TMEMBER/TPIPE names are passed to the exits

– DFSYICAL and DFSTPIPE cannot be used as the valid destination name.

GU IOPCB

ICAL
ISRT IOPCB

TRAN_A

TRAN_B

1
2

ISRT IOPCB

IMS Connect

TMEMBER=HWS1
TPIPE = 9999

3
CHNG

ISRT, ALTPCB

output to

TMEMBER=HWS1

TPIPE =99994

When an IMS application program processing the target transaction of the synchronous program

switch issues an ISRT call to an alternate PCB, or issues CHNG call, to generate an ALTPCB

output message, IMS checks the originator of the ICAL message to determine the default routing

destination. For example, If a terminal initiates a synchronous program switch then the legacy

destination by default will be used to process the ALTPCB output. If an OTMA client, such as

IMS Connect, initiates a synchronous program switch, the ALTPCB output by default will be

delivered back to the incoming TPIPE.

The OTMA Pre-Routing and OTMA Destination Resolution exit routines can specify alternate

routing destinations. As a reminder, these exit routines have flags that indicate that the ALTPCB

message invoking the routine was originally triggered by a synchronous program switch DL/I

ICAL call.

45507- IMS Application:

IMS 13

45507- IMS Application:

Application Examples

� Applications can issue multiple ICALs to different destination TYPEs

– Synchronous callout

– Synchronous program switch

ICAL DEST1

ICAL TRANB

TRANA
IMS CTL Region

IMS
Connect

WebSphere

IMS TMRA

IMS SOAP
Gateway

TCP/IP
RYO pgm

OTMA

MSG-Q

Destination
Descriptor

TYPE(IMSCON)

TRANB

GU IOPCB

ISRT IOPCB

Destination
Descriptor

TYPE(IMSTRAN)

1

2
3

4

5

6

7

GU, IOPCB

An IMS application can issue ICALs to remote destinations such as web services and also to

other IMS applications.

45607- IMS Application:

IMS 13

45607- IMS Application:

Application Examples…

� The IMS application environment supports recursive requests

– ICAL to ICAL

• Across a single or multiple IMS systems

FE IMS BE IMS or Local IMS

LTERM

LU62

OTMA

BMP

TRANA

SQ

ICAL request

SQ,
MSC,

Local

(FE=BE)

ICAL to SKS2

ISRT IOPCB

APOL12

SKS2

GU, IOPCB
ICAL to SKS1

ISRT IOPCB
SKS1

ISRT IOPCB

GU, IOPCB

ISRT, IOPCB

GU, IOPCB

GU, IOPCB
1

3

4

5

6

7
8

2

The ICAL for synchronous program switching can be invoked in a recursive manner. There is no

limit for the number of recursions allowed. The timeout values of the ICAL(s) should be

considered when a recursion is used.

45707- IMS Application:

IMS 13

45707- IMS Application:

DFSDDLT0

� Supports ICAL

– Can be used for testing your setup

ICAL to SKS2

ISRT IOPCB

APOL12

SKS2

GU, IOPCB
ICAL to SKS1

ISRT IOPCB

SKS1

ISRT IOPCB

GU, IOPCB

GU, IOPCB
APOL12

SKS2

SKS1

Descriptor in IMS.Procilib(DFSYDTxx):

D DEST001 TYPE=IMSTRAN ….

DFSDDLTO can be used to test the synchronous program switch.

45807- IMS Application:

IMS 13

45807- IMS Application:

Implementation Considerations

� Consider taking advantage of more dependent regions

– 4095 MAXPST in IMS 13 (Systems Enhancements section)

– If needed, leverage the capability of assigning classes to transactions and
regions

� Determine if late replies are to be purged or rerouted

� Understand the REPLYCHK capabilities

� Determine an appropriate timeout value for SYNTIMER

� Remember database locks can be held while waiting for ICAL
completion

– If applicable use the DL/I RLSE call to release locks for unmodified data
owned by the calling program before issuing ICAL

When implement the Synchronous Program Switch capability, care should be taken to

understand the environment and design accordingly. For example:

•Understand the implication of using synchronous program switches to the existing IMS

environment. More dependent regions might need to be defined to address possible elongation

of the dependent regions that contain programs issuing ICALs. As described in the Systems

Enhancements section, IMS 13 increases the MAXPT value to 4095.

•If needed, IMS provides the ability to control where work is process through its ability to define

classes to transactions and dependent regions.

•The default action for late replies is to purge them. If rerouting is to occur instead then this

decision has to be built into the design.

•Review the REPLYCHK capabilities and decide which set of actions is more appropriate to your

environment.

•Determine an appropriate value for the SYNTIMER parameter of the TYPE=IMSTRAN

descriptor so that the calling IMS program does not wait for too long a time.

•Remember that database locks can be held by the application issuing the ICAL. This is not a

new consideration. If applicable, leverage the use of the DL/I RLSE call which releases locks

currently held for unmodified data.

RLSE call reminder:

For fast path databases, the RLSE call releases all locks held for unmodified data that are owned

by an application. For full function databases, the RLSE call releases the locks held by the DB

PCB that is referenced in the call. There are considerations, however, to the use of the RLSE.

After the RLSE call, all database position information is lost even though there may be no locks

to release. Also, a RLSE call between ISRTs will lose the insert position so if no new position is

established before inserting a dependent segment then it could possibly go under the wrong root.

Note that locks protecting a resource that has been updated will not be released.

45907- IMS Application:

IMS 13

45907- IMS Application:

Migration/Setup Considerations

� For Non-shared queues

– Synchronous program switch is a base function of IMS 13

� For Shared Queues

– DBRC minimum version (MINVERS) value of 13.1 is required to enable the
synchronous program switch function

• Even if it is a single-system Shared Queues environment

� The MSC remote IMS does not need to be an IMS 13 system

� New OTMA trace table entries

– Documented in the IMS Diagnosis Guide under “OTMA Diagnostic Aids”

46007- IMS Application:

IMS 13

46007- IMS Application:

IMS 12 SPE Enhancement

SSA Qualify By Position and Length

SSA qualification with the position and length of the target data instead of a DBD-defined field name.

46107- IMS Application:

IMS 13

46107- IMS Application: 461

SSA Enhancement - Qualify by Position

� IMS 12 APAR PM65139 / PTF UK81837 & UK81838

– New SSA command code “O”

– Enhanced database SSA processing with ability to
search for data in a segment by specifying a field
position and length instead of a field name

– Contains core IMS database code

� IMS 12 APAR PM69378 / PTF UK81917

– Enhanced IMS Universal Drivers to allow SQL
predicates containing ‘columns’ not defined in the DBD
by internally converting ‘columns’ to position and length
for SSA qualification

– Contains IMS universal driver code

461

IMS SSA processing has been enhanced. Instead of requiring a field name in a

qualification statement, it will be possible to provide the position and length of the field

instead. This will allow non-DBD defined fields to be included in segment search

arguments.

IMS V12 PTF UK81837 & UK81838 provide maintenance which enables a new SSA

Command Code ‘O’, allowing IMS database calls to use a position and length instead of

a field name for the SSA qualification.

IMS V12 PTF UK81917 provides maintenance which enables the IMS Universal Drivers

to allow SQL calls to use ‘columns’ not defined in the DBD. The ‘column’ will be

converted internally to position and length.

Users can now search for any field in a segment by specifying a position in the segment

and a length. This feature allows non-DBD defined fields to be included in Segment

Search Arguments and continues IBM’s IMS database modernization efforts. This

enhances the IMS Simplification story by removing any required special affinity between

IMS and JDBC tooling products that generate queries. Qualify by position will greatly

enhance IMS support of JDBC tools. JDBC tools such as Data Source Explorer and

Cognos generate SQL queries and do not have a concept of searchable and non-

searchable fields. Currently when a non-searchable field is placed in the WHERE(SSA)

clause the search will fail. This enhancement provides a method of generating

searchable SSAs for non-searchable fields.

When the IMS catalog is enabled, the non-DBD fields can be defined using the

EXTERNALNAME within the DBD providing support for SQL predicates using the non-

searchable fields.

46207- IMS Application:

IMS 13

46207- IMS Application:

� New SSA command code “O”

– Non-key field definitions not required in the DBD

• Allows fields defined in database metadata to be used

– Search by position and length vs. field name

• 4 byte position, hex value, relative to 1

• 4 byte length, hex value

– Valid for HDAM, HIDAM, PHDAM, PHIDAM and DEBD databases

– Valid for GU, GHU, GN, GNP, GHNP, ISRT calls

– Plays well with other command codes

– “GE” status code returned if field not found

– Support for DFSDDLT0 and IMS REXX

– Performance will be the same as a non-key field search

IMS 12

APAR PM65139

PTF UK81837 &

PTF UK81838

SSA Command Code “O”: Qualify by Position

462

SSA processing is enhanced. Instead of requiring a field name in a qualification statement, it will

instead be possible to provide the position and length of the field. This will allow non-DBD

defined fields to be included in segment search arguments when accessing HDAM, HIDAM,

PHDAM, PHIDAM, DEDB. Command Code “O” is not supported for FP Secondary Index DBs

and will return an “SD” status code if used.

To qualify an SSA, you must specify the field position. The field position is either a field, the

sequence field of a virtual child or a position and a length. A qualified SSA describes the

segment occurrence that you want to access. This description is called a qualification statement

and has three parts. The following table shows the structure of a qualified SSA.

The field position and the field value are connected by a relational operator which tells IMS how

you want the two compared. The field value contains the data that you want IMS to use as the

comparative value. When the field position specifies a field name then the field value must be

the same length as the field specified by field name. When command code “O” is specified the

field name can be replaced with a position and length. When the field position specifies a

position and then the field value must be the same length as the length specified in the

qualification. The position and length apply to the physical segment layout.

462

SSA component Field length

Segment name 8

* 1

Command code Variable

(1

Field position 8

Relational operator 2

Field value variable

) 1

46307- IMS Application:

IMS 13

46307- IMS Application:

� Support for IMS Universal Drivers

– Allows users to issue queries qualified on non-searchable fields and
have a field’s position and length generated automatically in the
qualified SSA

– SQL

• Universal Drivers will detect a non-searchable field in the where
clause based on database metadata and will internally convert the

SSAList qualification

– DLI

• Universal Drivers will detect a non-searchable field in the SSAList
based on database metadata and will internally convert the
SSAList qualification

IMS12

APAR PM69378

PTF UK81917

SSA Command Code “O”: Qualify by Position

463

463

IMS can only search on fields that are defined in the DBD – sequence/key or search

fields. As a result, the Universal Drivers cannot support an SQL predicate containing

columns that are not defined in a DBD.

The following is an example exception message users may receive upon issuing a SQL

query containing columns not defined by a DBD: java.sql.SQLException:

com.ibm.ims.drda.base.DrdaException: com.ibm.ims.dli.SSAConversionException: An

error occurred converting the SSA for segment <segmentName>:

com.ibm.ims.dli.SSAQualificationConversionException: The field <fieldName> in

database segment <segmentName> is not a searchable field.

IMS has been enhanced to allow a search based on offset and length. This removes the

requirement that fields need to be defined in the DBD. The Universal drivers have been

enhanced to allow SQL predicates containing columns that are not defined in the DBD

by internally converting to an offset and length.

This removes any required special affinity between IMS and JDBC tooling products that

generate queries. Qualify by position will greatly enhance IMS support of JDBC tools.

JDBC tools such as Data Source Explorer and Cognos generate SQL queries and do

not have a concept of searchable and non-searchable fields. Currently when a non-

searchable field is placed in the WHERE(SSA) clause the search will fail. This

enhancement provides a method of generating searchable SSAs for non-searchable

fields.

If segment is in a logical relationship -> position & length apply to only the 1st physical

segment, not the combined segment

If PCB uses SENFLD statements -> position applies to physical segment, and fields not

available to the PCB cannot be searched

46407- IMS Application: 464

IMS 13

46407- IMS Application: 464

� Existing SSA with field names

Segment Name SSA qualification(s)

Field name Operator Compare data …

Data length must be
equal to the field length

defined in the DBD

Must be equal to
name of a field

defined in DBD

SSA Enhancement - Qualify on Field Name

CommandCodes

46507- IMS Application: 465

IMS 13

46507- IMS Application: 465

� Existing SSA with field names

0 1 2 3

12345678901234567901235678901

SVL DEV 555 BAILEY AVE CA

ARC RSC 650 HARRY RD CA

Database

Field Offset Len

Labname 1 5

Street 10 20

State 30 2

DBD

Field Offset Len

Labname 1 5

Type 6 3

Street 10 20

State 30 2

COBOL Copybook

GU IBMLABS *-(LABNAME EQSVL)

GU IBMLABS *-(LABNAME EQARC)

GU IBMLABS *-(STATE EQCA)

GU IBMLABS *-(TYPE EQDEV) INVALID

SSA Enhancement - Qualify on Field Name

‘AK’ Status Code: SSA contains a field name not defined in the DBD

46607- IMS Application: 466

IMS 13

46607- IMS Application: 466

Segment name SSA qualification(s)

Position Operator Compare data …Length

SSA Enhancement - Qualify by Position

� New SSA using “O” command code with position/length

4 byte hex values Data length must

be equal to the
length in the SSA

qualification

CommandCodes

*O---

46707- IMS Application: 467

IMS 13

46707- IMS Application: 467

0 1 2 3

12345678901234567901235678901

SVL DEV 555 BAILEY AVE CA

ARC RSC 650 HARRY RD CA

Database

Field Offset Len

Labname 1 5

Street 10 20

State 30 2

DBD

Field Offset Len

Labname 1 5

Type 6 3

Street 10 20

State 30 2

COBOL Copybook

GU IBMLABS *O(0000000100000005EQSVL)

GU IBMLABS *O(0000000100000005EQARC)

GU IBMLABS *O(0000001E00000002EQCA)

GU IBMLABS *O(0000000600000003EQDEV)

Position Length

SSA Enhancement - Qualify by Position

� New SSA with “O” command code, position and length

‘bb‘ Status Code: all segments returned successfully

DEV

46807- IMS Application: 468

IMS 13

46807- IMS Application: 468

SSA Enhancement - New “SD” Status Code

� Explanation

– For call-level programs:

• When command code “O” is specified with a segment search argument,
the SSA is not allowed to contain position and length values for a segment
of a Fast Path secondary index database

– For command-level programs:

• When command code “O” is specified, the SSA format with position and
length values is not allowed against a segment of a Fast Path secondary

index database

� Programmer response

– Correct the SSA

Response from IMS

FINEST: [ibm][ims][drda] [t4][thread:1][tracepoint:2][Reply.fill]

[ibm][ims][drda][t4] RECEIVE BUFFER: OPNQRYRM (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

[ibm][ims][drda][t4] 0000 0010D0520001000A 2205000611490000 ...R...."....I.. ..}.............

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: QRYDSC (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001CD05300010016 241A0676D0260000 ...S....$..v.&.. ..}.........}...

[ibm][ims][drda][t4] 0010 0671E0D000010671 F0E00000 .q.....q.... ..\}....0\..

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: QRYDTA (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 011AD05300010114 241B000000038400 ...S....$....... ..}...........d.

[ibm][ims][drda][t4] 0010 0000000000000000 0000000000C4C5C4 DED

[ibm][ims][drda][t4] 0020 C2D1D5F2F1F0F140 40C8D6E2D7C9E3C1 @@....... BJN2101 HOSPITA

[ibm][ims][drda][t4] 0030 D3000000000CD9F1 F2F1F0F0F1F0F0F0 L.....R121001000

[ibm][ims][drda][t4] 0040 F0C1D9F1F2F1F0F0 F1F0F0F0F0C10000 0AR1210010000A..

(lines removed to save space)(lines removed to save space)(lines removed to save space)(lines removed to save space)

[ibm][ims][drda][t4] 00C0 F2F1F0F0F3F0F0F0 F0C1D9F1F2F1F0F0 210030000AR12100

[ibm][ims][drda][t4] 00D0 F3F0F0F0F0C10000 0003840000000000 30000A....d.....

[ibm][ims][drda][t4] 00E0 0000000000000000 00C4C5C4C2D1D5F2 DEDBJN2

[ibm][ims][drda][t4] 00F0 F1F0F14040C8D6E2 D7C9E3C1D3000000 ...@@........... 101 HOSPITAL...

[ibm][ims][drda][t4] 0100 000CD9F1F2F1F0F0 F4F0F0F0F0C1D9F1 R1210040000AR1

[ibm][ims][drda][t4] 0110 F2F1F0F0F4F0F0F0 F0C1 210040000A

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: ENDQRYRM (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 003CD00200010036 220B000611490004 .<.....6"....I.. ..}.............

[ibm][ims][drda][t4] 0010 002CCC0200000000 0000000900000000 .,..............

[ibm][ims][drda][t4] 0020 00000000000000C4 C5C4C2D1D5F2F1F0 DEDBJN210

[ibm][ims][drda][t4] 0030 F0C7C24040404040 404040FF ...@@@@@@@@. 0GB

46907- IMS Application: 469

IMS 13

46907- IMS Application: 469

� Performance will be similar to a search on a non-key field

� IMS will scan the database looking for field match(es)

� Qualification of the root key will help reduce the impact

� If business need requires searching on a non-key field

– Consider defining the non-key field as a searchable field in the DBD

SSA Enhancement - Performance Consideration

Performance should be no different than doing a call using a non-key search field.

It is possible that the call will scan the entire database and not find a match based on

the position, length and qualifier, only to return a “GE” status code – just as it would

today if you searched on a non-key field and did not find a match.

47007- IMS Application: 470

IMS 13

47007- IMS Application: 470

SSA Enhancement - Qualify by Position

� Benefit

– Allows non-DBD defined fields to be included in SSAs

– Allows a search on any field in a segment by specifying a position
within the segment and the field length

– Provides a method of generating searchable SSAs for non-searchable

fields

– Continuation of the IMS database modernization roadmap

• Enhances and simplifies IMS support of JDBC tools

– Discovery tools - Data Source Explorer

– Reporting tools – Optim Data Studio

– Analytics tools – COGNOS BI V10.2

– Any JDBC tool that generates SQL calls !

Users can now search for any field in a segment by specifying a position in the

segment and a length. This feature allows non-DBD defined fields to be included in

Segment Search Arguments and continues IBM’s IMS database modernization efforts.

This enhances the IMS Simplification story by removing any required special affinity

between IMS and JDBC tooling products that generates queries. Qualify by position will

greatly enhance IMS support of JDBC tools. JDBC tools such as Data Source Explorer

and Cognos generate SQL queries and do not have a concept of searchable and non-

searchable fields. Currently when a non-searchable field is placed in the WHERE(SSA)

clause the search will fail. This enhancement provides a method of generating

searchable SSAs for non-searchable fields.

47107- IMS Application:

IMS 13

47107- IMS Application: 471

Reference Slides

IMS 12 SPE Enhancement

Qualify By Position

471

47207- IMS Application: 472

IMS 13

47207- IMS Application: 472

SSA Enhancement - SQL to DLI translation

� Connection.nativeSQL(String) method will display the DLI

equivalent of an SQL query

� SELECT * FROM LARGE2.GBO02 WHERE

GBO01.FIRSTNAME='KIN'

GHU HOSPITAL
GBO01 *O((x'1F',x‘A')EQKIN)
GBO02

[LOOP]

GHN HOSPITAL
GBO01 *O((x'1F',x'A')EQKIN)
GBO02

For troubleshooting and diagnostic purposes, the Connection.nativeSQL(String)

method will come in handy.

By using it, one can see the DLI call generated by IMS in place of the JDBC SQL call.

47307- IMS Application: 473

IMS 13

47307- IMS Application: 473

SSA Enhancement - SSAs in the DRDA log

� The Universal driver logs will show the exact SSA that is used in the
IMS DLI Call

� SELECT * FROM LARGE2.GBO02 WHERE

GBO01.FIRSTNAME='KIN‘

SEND BUFFER: SSALIST (ASCII) (EBCDIC)

004ED00300010048 CC060006C9050003 .N.....H........ .+}.........I...

000DC906C8D6E2D7 C9E3C1D3400024C9 @.$. ..I.HOSPITAL ..I

06C7C2D6F0F14040 405CD64D0000001F@@@\.M.... .GBO01 *O(....

0000000AC5D8D2C9 D540404040404040@@@@@@@ EQKIN

5D000DC906C7C2D6 F0F240404040].........@@@@)..I.GBO02

Tracing must be enabled for the universal drivers.

The DRDA log can be sent to a file, the console or the joblog.

Tracing can be enabled for the universal drivers. The DRDA log can be sent to a file, console or joblog.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apg/ims_odbdli4jtracing.htm

Sample SQL and Trace output:

SQL Query: SELECT * FROM PCB01.HOSPITAL

FINEST: [ibm][ims][drda] [t4][thread:1][tracepoint:1][Request.flush]

[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

[ibm][ims][drda][t4] 0000 0029D05100010023 200C00062141001F .).Q...# ...!A.. ..}.............

[ibm][ims][drda][t4] 0010 0009C907D7C3C2F0 F100082114000080 !.... ..I.PCB01.......

[ibm][ims][drda][t4] 0020 0000082156000003 69 ...!V...i

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: DLIFUNC (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 0012D0530001000C CC05D9C5E3D9C9C5 ...S............ ..}.......RETRIE

[ibm][ims][drda][t4] 0010 E5C5 .. VE

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: AIB (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001BD05300010015 CC010009C901D7C3 ...S............ ..}.........I.PC

[ibm][ims][drda][t4] 0010 C2F0F10008C90400 000384 B01..I....d

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: RTRVFLD (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 0012D0530001000C CC04000000020000 ...S............ ..}.............

[ibm][ims][drda][t4] 0010 000C

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001DD00300010017 CC060006C9050001 }.........I...

[ibm][ims][drda][t4] 0010 000DC906C8D6E2D7 C9E3C1D340 @ ..I.HOSPITAL

(Trace output for IMS Response will follow)

47407- IMS Application: 474

IMS 13

47407- IMS Application: 474

SSA Enhancement - DFSDDLT0 Examples

GU calls with CmdCode “O” searching at position x’01’ for x’10’ bytes
** ** ** **

IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 16.22.2IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 16.22.2IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 16.22.2IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 16.22.28.84 DATE= 12.128 8.84 DATE= 12.128 8.84 DATE= 12.128 8.84 DATE= 12.128

WTOR CALL: WTOR Start of GBO BATCH1 WTOR CALL: WTOR Start of GBO BATCH1 WTOR CALL: WTOR Start of GBO BATCH1 WTOR CALL: WTOR Start of GBO BATCH1
STATUS INPUT: S11 1 1 1 1 01 STATUS INPUT: S11 1 1 1 1 01 STATUS INPUT: S11 1 1 1 1 01 STATUS INPUT: S11 1 1 1 1 01
0002 OF 0005 PCB SELECTED = DBD SELECTED = DBOHIDK5 0002 OF 0005 PCB SELECTED = DBD SELECTED = DBOHIDK5 0002 OF 0005 PCB SELECTED = DBD SELECTED = DBOHIDK5 0002 OF 0005 PCB SELECTED = DBD SELECTED = DBOHIDK5
COMMENTS GU K1 COMMENTS GU K1 COMMENTS GU K1 COMMENTS GU K1

WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010EQEQEQEQ0000000000000000) 0000000000000000) 0000000000000000) 0000000000000000)
...
CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O

00000001 00000001 00000001 00000001
FIELD=00010000 OPER=FIELD=00010000 OPER=FIELD=00010000 OPER=FIELD=00010000 OPER========= VALUE=0000000000000000) VALUE=0000000000000000) VALUE=0000000000000000) VALUE=0000000000000000)

SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@))))

DBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDB=(00000000000000000000) B=(00000000000000000000) B=(00000000000000000000) B=(00000000000000000000)

WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010WTO CALL: WTO K1 *O(00010010GTGTGTGTAAAAAAAAAAAAAAAA) AAAAAAAAAAAAAAAA) AAAAAAAAAAAAAAAA) AAAAAAAAAAAAAAAA)
...
CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O

00000001 00000001 00000001 00000001
FIELD=00010000 OPER=FIELD=00010000 OPER=FIELD=00010000 OPER=FIELD=00010000 OPER=> > > > VALUE=AAAAAAAAAAAAAAAA) VALUE=AAAAAAAAAAAAAAAA) VALUE=AAAAAAAAAAAAAAAA) VALUE=AAAAAAAAAAAAAAAA)

SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@ SEGMENT =(00000000000000000000@@STARTING@@POINT@@))))

DBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDB=(00000000000000000000)B=(00000000000000000000)B=(00000000000000000000)B=(00000000000000000000)

Sample DFSDDLT0 control cards and output

47507- IMS Application: 475

IMS 13

47507- IMS Application: 475

SSA Enhancement - DFSDDLT0 Examples

GU call using key field vs. GU call using CmdCode “O” & position
*** *** *** ***

IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 15.08.1IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 15.08.1IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 15.08.1IMS 1210 TEST PROGRAM OUTPUT ** BEGIN TEST ****TIME= 15.08.19.61 DATE= 12.292 9.61 DATE= 12.292 9.61 DATE= 12.292 9.61 DATE= 12.292

WTOR CALL: WTOR Start of batch app WTOR CALL: WTOR Start of batch app WTOR CALL: WTOR Start of batch app WTOR CALL: WTOR Start of batch app
WTOR REPLY: WTOR REPLY: WTOR REPLY: WTOR REPLY:
STATUS INPUT: S 1 1 1 1 1 DBOHIDK5 STATUS INPUT: S 1 1 1 1 1 DBOHIDK5 STATUS INPUT: S 1 1 1 1 1 DBOHIDK5 STATUS INPUT: S 1 1 1 1 1 DBOHIDK5
0002 OF 0010 PCB SELECTED = DBD SELECTED = DBOHIDK50002 OF 0010 PCB SELECTED = DBD SELECTED = DBOHIDK50002 OF 0010 PCB SELECTED = DBD SELECTED = DBOHIDK50002 OF 0010 PCB SELECTED = DBD SELECTED = DBOHIDK5

WTO CALL: WTO K1 (K1 WTO CALL: WTO K1 (K1 WTO CALL: WTO K1 (K1 WTO CALL: WTO K1 (K1 EQEQEQEQ0KEY K1 1000) 0KEY K1 1000) 0KEY K1 1000) 0KEY K1 1000)
...
CALL=GU SEG=K1 FIELD=K1 OPER=CALL=GU SEG=K1 FIELD=K1 OPER=CALL=GU SEG=K1 FIELD=K1 OPER=CALL=GU SEG=K1 FIELD=K1 OPER=EQEQEQEQ VALUE=0KEY K1 1000) VALUE=0KEY K1 1000) VALUE=0KEY K1 1000) VALUE=0KEY K1 1000)

SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@))))

DBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDB=(0KEY K1 1000) B=(0KEY K1 1000) B=(0KEY K1 1000) B=(0KEY K1 1000)

WTO CALL: WTO K1 *O(00020013xWTO CALL: WTO K1 *O(00020013xWTO CALL: WTO K1 *O(00020013xWTO CALL: WTO K1 *O(00020013xEQEQEQEQKEY K1 1000) KEY K1 1000) KEY K1 1000) KEY K1 1000)
..
...........
CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O CALL=GU SEG=K1 COMND=O

00000000000000000000000000001111
FIELD=000FIELD=000FIELD=000FIELD=00022220000000000003333 OPER=OPER=OPER=OPER=EQEQEQEQ VALUE=KEY K1 1000) VALUE=KEY K1 1000) VALUE=KEY K1 1000) VALUE=KEY K1 1000)

SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@ SEGMENT =(0KEY K1 1000@@STARTING@@POINT@@))))

DBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDDBPCB LEV=01 SEG=K1 RET CODE= KFDB LEN=0020 KEY FDB=(0KEY K1 1000) B=(0KEY K1 1000) B=(0KEY K1 1000) B=(0KEY K1 1000)

Sample DFSDDLT0 control cards and output

47607- IMS Application:

IMS 13

47607- IMS Application:

IMS Native SQL Support for COBOL

47707- IMS Application: 477

IMS 13

47707- IMS Application:

• Native SQL COBOL and distributed applications (.NET/JDBC)

• Provides standard SQL keywords to easily access IMS data

� SELECT, INSERT, UPDATE, DELETE

� Uses Dynamic SQL programming model

� Converts SQL statements to DL/I calls

� Supports a subset of SQL keywords that are currently supported by IMS
Universal JDBC driver

• Uses database metadata in IMS Catalog

� No need to generate metadata for use in applications

z/OS

IMS DB

DLI

Native
SQL

Catalog

Metadata
SQL

DRDA
JMP JBP
JAVA

MPP BMP IFP
COBOL

L
a
n
g
u

a
g
e

In
te

rf
a
c
e

IMS

JDBC

RYO

.NET

Language
interface

SQL
ODBA / DRADistributed

planned

IMS 13 SQL Support

IMS 13 delivers an SQL engine that is capable of evaluating SQL statements (a subset of the

SQL keywords supported by the IMS 13 Universal JDBC Driver) and converts them to DL/I calls.

The IMS Native SQL Engine is used to support COBOL and DRDA access.

Note The IBM IMS Enterprise Suite Data Provider for Microsoft .NET and IMS 13 TYPE-4

Universal Drivers will provide the DRDA support via the service process.

47807- IMS Application:

IMS 13

47807- IMS Application:

Hierarchical to Relational Terminology Mapping

UU45 | Dodge | Viper

PR27 | Dodge | Durango

53SJ9 | Mary | 111 Penny Lane

53SJ8 | Bob | 240 Elm St.

Dealer
Segment

Model
Segment

FF13 | Toyota | Camry

53SJ7 | George | 555 Bailey Ave.

Hierarchical Design Relational Design

DealerID DealerName DealerAddress

Dealer Table

ID Make Model Dealer

Model Table

UU45 Dodge Viper 53SJ7 0

PR27 Dodge Durango 53SJ7 0

FF13 Toyota Camry 53SJ7 0

JR27 Dodge Durango 53SJ8 1

WJ45 Mercury Cougar 53SJ8 1

...

0 53SJ7 George 555 Bailey Ave.

1 53SJ8 Bob 240 Elm St.

2 53SJ9 Mary 111 Penny Ln.

...

JPR27 | Dodge | Durango

WJ45 | Mercury | Cougar

D
B

D
JO

IN

Relational JOIN

Row 1 -

Row N -

Row 1 -

Row N -
Segment 1

(Row 1) -

Note: Segment Names ~ Table Names

Segment Instances ~ Table Rows

Segment Field Names ~ Column Names

Segment unique key ~ Table primary key

IMS foreign key field ~ Table foreign key

PCB ~ Schema

This slide provides a mapping of IMS hierarchical database concepts and relational database

concepts.

IMS Native SQL Processor views a Segment as a Table, A field as column and segment

instance as a row.

47907- IMS Application:

IMS 13

47907- IMS Application:

Solution highlights - IMS foreign keys Referential
constraint

� IMS cannot insert a dependent segment unless the parent segment exists

– IMS has built-in foreign keys in each segment which are comprised of keys of
each parent segment

• Exist in the key feedback area not physically stored in the IMS database

– For INSERT operations the Foreign Keys s are used to establish the
correct position in the hierarchy

• Values aren’t actually inserted as they already exist in the database

A

Root Segment

(Table)

Fields

(Columns)

A11|A2|A3
B

A11A11

B1

IMS Foreign Key - maintain referential integrity.

(Segment Parent Key

Table Foreign Key)

Segment Key

(Table Primary Key)

This slide provides a mapping of IMS hierarchical database concepts and relational database

concepts. IMS SQL views Segment as a Table, A field as column and segment instance as a

row.

The purpose of the IMS foreign key fields is to maintain referential integrity, similar to foreign

keys in relational databases. This allows SQL SELECT, INSERT, UPDATE, and DELETE

queries to be written against specific tables and columns located in a hierarchic path.

48007- IMS Application:

IMS 13

48007- IMS Application:

DBD NAME=AUTODBD, ACCESS=DEDB,

SEGM NAME=DEALER,PARENT=0,EXTERLNAME=DealerTable

SEGM NAME=MODEL,PARENT=DEALER

SEGM NAME=ORDER,PARENT=MODEL

SEGM NAME=SALES,PARENT=MODEL

SEGM NAME=STOCK,PARENT=MODEL

SEGM NAME=BACKLOT,PARENT=STOCK

. . .

SalesInfo

Dealer

Model

Order Sales Stock

Backlot

Salesperson

IMS Catalog Metadata and SQL

PCB TYPE=DB,DBDNAME=AUTODBD,PROCOPT=G,KEYLEN=4,PCBNAME=AUTOGPCB

EXTERNALNAME=DealerDBRead

PCB TYPE=DB,DBDNAME=AUTODBD,PROCOPT=A,KEYLEN=4,PCBNAME=AUTOAPCB

EXTERNALNAME=DealerDBUpdate

PSBGEN PSBNAME=AUTOPSB

PSB

DBD

01 Dealer_Segment

02 Dealer_ID PIC 9(6) COMP.

02 Dealer_Name PIC X(20).

02 Dealer_Address PIC X(30).

COBOL

COPYBOOK

IMS

Catalog

Metadata

PSB AUTOPSB

PCB AUTOGPCB EXTERNALNAME DealerDBRead

PCB AUTOAPCB EXTERNALNAME DealerDBUpdate

DBD AUTODBD

SEGM DEALER EXTERNALNAME DealerTable

SELECT * FROM AUTOGPCB.DEALER

SELECT * FROM DealerDBUdate.DealerTable

UPDATE DealerDBUdate.DealerTable SET
DELETE FROM DealerDBUdate.DealerTable

INSERT INTO DealerDBUdate.DealerTable

This slide shows how information from PSB,DBD and COBOL copybooks is used to populate

IMS Catalog and how SQL statements can be coded with External Names to access IMS

databases

48107- IMS Application:

IMS 13

48107- IMS Application:

IMS 13 SQL support for COBOL Solution Highlights

� SQL support for COBOL

– Use Dynamic SQL as a query language for COBOL programs to access IMS
database

– EXEC SQLIMS is the interface to execute IMS SQL calls

� Native SQL in IMS

– Process SQL calls natively by the IMS subsystem

– Still perform DL/I database call processing to IMS DB

– Provide a consolidated way for SQL processing

– Uses database metadata in IMS Catalog

� Support IMS TM/DB (MPP, IFP, BMP) and DBCTL BMP

IMS COBOL application programs running in MPP,IFP,BMP for IMS DB/DC and DBCTL BMP .

•DL/I Batch, CICS, and DB2 Stored Procedures are not supported

•SQL to GSAM is not supported.

Static SQL refers to the type of SQL statement that is embedded inside an application and its

source form is known before runtime. This is not supported by IMS SQL for COBOL.

Dynamic SQL refers to the type of SQL statement that the actual content of the statement is

constructed and prepared at run time. Segment and field names associated with the SQL calls

are defined in the program source and are pre-processed when the program is being compiled.

48207- IMS Application:

IMS 13

48207- IMS Application:

Solution Details – Dynamic SQL

� Enable SQL statement to be constructed at runtime

– No need to hard code SQL statement in the application

– Segment and field names associated with the SQL calls are not known at
compile time

– SQL accepts input in the form of a character string

� Use Prepare call to process SQL statement

– Parse SQL statement for syntax and semantics validation at runtime. No bind
process.

– Convert SQL artifacts to DLI

– Statement can be prepared once and then execute many times

Programs that contain embedded dynamic SQL statements must be precompiled like those that

contain static SQL, but unlike static SQL, the dynamic statements are constructed and prepared

at run time.

The source form of a dynamic statement is a character string that is passed to IMS by the

program using the SQL PREPARE statement. A statement that is prepared using the PREPARE

statement can be referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement.

In IMS 13, only dynamic SQL is supported for COBOL.

48307- IMS Application:

IMS 13

48307- IMS Application:

SQL Statements

� Data Access

– SELECT… FROM… to retrieve data

– INSERT INTO… VALUES… to insert data

– UPDATE… SET… to update data

– DELETE FROM… to delete data

– WHERE… AND… OR… to perform conditional selection of data

� Pre-compiler directives

– DECLARE CURSOR, STATEMENT… to declare cursor, statement

– INCLUDE SQLIMSCA, SQLIMSDA… to generate SQLIMSCA and
SQLIMSDA structures

– WHENEVER… to handle errors and warnings

SQL statements let you retrieve, insert, update, or delete data in IMS databases. When you write

an SQL statement, you specify what you want done, not how to do it. To access data, for

example, you need only to name the segment and fields that contain the data. You do not need

to describe how to get to the data.

In accordance with the relational model of data:

•The database is perceived as a set of tables.

•Relationships are represented by values in tables.

•Data is retrieved by using SQL to specify a result table that can be derived from one or more

tables.

IMS transforms each SQL statement, that is, the specification of a result table, into a sequence of

operations for data retrieval or modifications. All executable SQL statements must be prepared

before they can run.

48407- IMS Application:

IMS 13

48407- IMS Application:

Solution Details – Key application elements

� Delimit SQL statement using EXEC SQLIMS ... END-EXEC

� Dynamic SQL programming model

– Must call PREPARE to process SQL statement

� Host variables

– Use for both send and receive data processed by IMS

� SQL communication area (SQLIMSCA)

– Structure used by IMS to provide status feedback

– SQLIMSCODE (error code), SQLIMSSTATE (state), SQLIMSERRM (error message)

� SQL description area (SQLIMSDA)

– DESCRIBE statement IMS provides information to an application program about a
prepared statement

– FETCH statement application program describes a host variable or buffer that is to be
used to contain an output value from a row of the result.

If your program includes any of the following statements, you must include an SQLIMSDA in your

program:

•DESCRIBE statement-name INTO descriptor-name

•FETCH … INTO DESCRIPTOR descriptor-name

An SQLIMSDA is a collection of variables that is required for execution of the SQLIMS

DESCRIBE statement, and can be optionally used by the FETCH statements. An SQLIMSDA

can be used in a DESCRIBE statement, modified with the addresses of host variables, and then

reused in a FETCH statement. The meaning of the information in an SQLIMSDA depends on the

context in which it is used. For DESCRIBE, IMS™ sets the fields in the SQLIMSDA to provide

information to the application program. For FETCH, the application program sets the fields in the

SQLIMSDA to provide IMS with information:

DESCRIBE statement-name

With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to provide information

to an application program about a prepared statement. Each SQLIMSVAR occurrence

describes a column of the result table.

FETCH

The application program sets fields of the SQLIMSDA to provide information about host

variables or output buffers in the application program to IMS. Each SQLIMSVAR

occurrence describes a host variable or output buffer. For FETCH, each SQLIMSVAR

occurrence describes a host variable or buffer in the application program that is to be

used to contain an output value from a row of the result.

48507- IMS Application:

IMS 13

48507- IMS Application:

Handling errors

� SQL communication area (SQLIMSCA)

– Structure used by IMS to provide status feedback

– The SQL INCLUDE statement is used in the COBOL application to provide
the declaration of the SQLIMSCA

EXEC SQLIMS INCLUDE SQLIMSCA

� The main elements in the SQLIMSCA are:

– SQLIMSCODE – A return code represents a successful or failed SQL
operation

– SQLIMSSTATE – Common codes for error conditions which conform to the
SQL standard

– SQLIMSERRM – Error message text

An SQLIMSCA is a structure or collection of variables that is updated after each SQL statement

executes. An application program that contains executable SQL statements must provide exactly

one SQLIMSCA.

In COBOL, the INCLUDE statement can be used to provide the declaration of the SQLIMSCA.

•When IMS processes an SQL statement, it places return codes that indicate the success or

failure of the statement execution in SQLIMSCODE and SQLIMSSTATE.

•When IMS processes a FETCH statement, and the FETCH is successful, the contents of

SQLIMSERRD(3) in the SQLIMSCA is set to the number of returned rows.

•When IMS processes a FETCH statement, the contents of SQLIMSCODE is set to +100 if the

last row in the segment has been returned with the set of rows.

•When IMS processes an UPDATE, INSERT, or DELETE statement, and the statement

execution is successful, the contents of SQLIMSERRD(3) in the SQLIMSCA is set to the number

of rows that are updated, inserted, or deleted.

48607- IMS Application:

IMS 13

48607- IMS Application:

SQL descriptor area (SQLIMSDA)

� SQLIMSDA stores information about prepared SQL statements or host
variables.

– SQLIMSDA header

– SQLIMSVAR entry

• each column or host variable is described

� Can be read by IMS or the application program

– Read by application program after a DESCRIBE statement

– Read by IMS for the host variables set by the application program

EXEC SQLIMS INCLUDE SQLIMSDA

An SQLIMSDA consists of four variables, a header, and an arbitrary number of occurrences of a

sequence of variables collectively named SQLIMSVAR. It is a collection of variables that is

required for execution of the SQLIMS DESCRIBE statement, and can be optionally used by the

FETCH statements. An SQLIMSDA can be used in a DESCRIBE statement, modified with the

addresses of host variables, and then reused in a FETCH statement.

The meaning of the information in an SQLIMSDA depends on the context in which it is used. For

DESCRIBE, IMS™ sets the fields in the SQLIMSDA to provide information to the application

program. For FETCH, the application program sets the fields in the SQLIMSDA to provide IMS

with information:

DESCRIBE statement-name

With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to provide information

to an application program about a prepared statement. Each SQLIMSVAR occurrence

describes a column of the result table.

FETCH

The application program sets fields of the SQLIMSDA to provide information about host

variables or output buffers in the application program to IMS. Each SQLIMSVAR

occurrence describes a host variable or output buffer.

For FETCH, each SQLIMSVAR occurrence describes a host variable or

buffer in the application program that is to be used to contain an output

value from a row of the result.

48707- IMS Application:

IMS 13

48707- IMS Application:

IMS Native SQL Support for COBOL solution

� Compile IMS program using COBOL compiler with the SQL(IMS) option

– Create an executable program to be run in IMS.

– IMS co-processor knows when a particular SQL statement begins and ends
by the following delimits for SQL statements:

– EXEC SQLIMS

SQL-STATEMENT

– END-EXEC.

– Translate SQL statement to a COBOL CALL statement

*EXEC SQLIMS FETCH . . .

CALL SQLTDLI USING SQL-PARMLIST

� SQLTDLI

– non-language-specific interface added to DFSLI000

Any segment and field names associated with the SQL calls are defined in the program source

and are pre-processed when the program is being pre-compiled. There is no need to use a

separate precompile step.

Each executable SQL statement calls IMS through the SQLTDLI language interface with a list of

parameters that is generated by the IMS co-processor function. The parameter list contains a

collection of addresses for the input and output host variables, the SQL statement string, the

SQL call type, the execution parameters and other information. IMS uses this information to

determine how the call should be processed

48807- IMS Application:

IMS 13

48807- IMS Application:

Sample COBOL SQL

WORKING-STORAGE SECTION.

* Declare SQLIMSCA

* SQL communications area (SQLIMSCA) that for your COBOL program can use to

check whether an SQL statement executed successfully.

EXEC SQLIMS INCLUDE SQLIMSCA END-EXEC.

* Declare HOST variables for SQL statement and result data

01 SQL-STATEMENT

49 SQL-STATEMENT-LEN PIC S9(4) COMP.

49 SQL-STATEMENT-TEXT PIC X(100).

01 HOSPITAL-RESULT-ROW

05 HOSPLL PIC S9(3) BINARY.

05 HOSPCODE PIC X(12).

05 HOSPNAME PIC X(17).

Define an SQL communications area (SQLIMSCA) for your COBOL program which is used to

check whether an SQL statement executed successfully.

48907- IMS Application:

IMS 13

48907- IMS Application:

Sample COBOL SQL

PROCEDURE DIVISION.

* Declare Cursor for the Prepared Statement

* use cursors to select a set of rows and to process one row at a time

EXEC SQLIMS

DECLARE CURSOR cursor-name for prepared-statement-name

END-EXEC.

* Load SQL statement in the COBOL variable

MOVE "SELECT * FROM PCB01.HOSPITAL” TO SELECT-STATEMENT-TXT.

* Prepared SQL statement string for processing

* Only one prepared statement at a time is allowed for

database access

EXEC SQLIMS

PREPARE prepared-statement-name FROM :SQL-STATEMENT

END-EXEC.

Use cursors to select a set of rows and then process one row at a time. Only one prepared

statement at a time is allowed for database access and a statement cannot be prepared if

a cursor is open for another statement.

49007- IMS Application:

IMS 13

49007- IMS Application:

* Open Cursor

* only support 1 PCB, 1 cursor

EXEC SQLIMS

OPEN cursor-name

END-EXEC.

* Execute SQL statement

* Fetch data from IMS into host variable until no more data is found

PERFORM FETCH-PROC

UNTIL SQLCODE EQUAL 100.

:

FETCH-PROC.

EXEC SQLIMS

FETCH cursor-name INTO :HOSPITAL-RESULT-ROW

END-EXEC.

:

* Close Cursor

EXEC SQLIMS

CLOSE cursor-name

END-EXEC.

Sample COBOL SQL (Cont’d)

Only one prepared statement at a time is allowed for database access and a statement cannot

be prepared if a cursor is open for another statement. Only support 1 PCB, 1 cursor.

49107- IMS Application:

IMS 13

49107- IMS Application:

IMS coprocessor

� Compile IMS SQL COBOL application with IMS coprocessor

� Pre-process EXEC SQLIMS statements in COBOL source

� Integrated with Enterprise COBOL V5.1

� Specify ‘SQLIMS’ compiler option to compile COBOL program with IMS
SQL calls

49207- IMS Application:

IMS 13

49207- IMS Application:

Sample JCL for compile

//**********************************

//* COMPILING IMS COBOL SQL PROGRAM

//**********************************

//COBOL1 EXEC PGM=IGYCRCTL,

// PARM='LIST,XREF,CP(37),SQLIMS("APOSTSQL"),DUMP,LIB,DYNAM'

//STEPLIB DD DSN=IGYV5R10.TRIAL.SIGYCOMP,DISP=SHR

// DD DSN=IGYV5R10.TRIAL.SIGYMAC,DISP=SHR

// DD DSN=IMSBLD.IMSTS%%.CRESLIB,DISP=SHR

//SYSLIB DD DSN=IGYV5R10.TRIAL.CEEZ1D0.SCEERUN,DISP=SHR

// DD DSN=USER.PRIVATE.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),

// UNIT=SYSDA,SPACE=(80,(500,200))

49307- IMS Application:

IMS 13

49307- IMS Application:

IMS COBOL SQL application compiled and linked

IMS COBOL application

source files with SQL

statements

Libraries Object files

COBOL Link

Executable Program

COBOL Compiler with

IMS coprocessor Translate
EXEC SQLIMS

INCLUDE
DFSLI000

During compilation, the IMS co-processor takes an SQL statement enclosed between the EXEC

SQLDLI and END-EXEC keywords and processes it as follows:

•Translate an executable SQL statement to a COBOL CALL statement to invoke the IMS

language interface

•Initialize and map host variables for input and output data

•Include and add data structures for SQL processing

49407- IMS Application:

IMS 13

49407- IMS Application:

IMS SQL Call Request Handler

IMS Native SQL

DFSLI000

IMS DB

SQLTDLI

DLI

SQL
IMSSQLCA

EXEC SQLIMS
(CALL SQLTDLI
USING SQL-
PARMLIST)
:
:

Retrieve IMS database PCB
Schema metadata on first SQL
call

Parse and validate SQL

Build and make DLI call to
access IMS data

Perform aggregation on results
data (if needed)

Map results data back to the
application

IMS Catalog

Metadata

COBOL Application

IMSSQLCA + Data

IMS MPP,IFP,BMP

64-Bit Storage

IMS SQL is an SQL-to-DLI processor or translator that intercepts a SQL calls and translates

them into DLI calls for execution. This diagram shows an example on how a SQL call from a

COBOL application is processed by IMS:

1. The COBOL program is first pre-compiled by the IMS co-processor which converts the EXEC

SQLDLI statements to COBOL call statements to the new IMS language interface (SQLTDLI).

This interface is used to pass the SQL statement with the host variable information to IMS for

processing.

2. Once the COBOL program runs, the SQLTDLI interface uses the native SQL processor.

3. The native SQL processor retrieves the corresponding PSB/DBD metadata from catalog

based on the SQL call.

4. The SQL statement is parsed and validated by the native SQL processor based on the IMS

SQL syntax rules and metadata information.

5. The native SQL processor builds and executes the appropriate DLI call(s) based on the SQL

statement to access IMS DB.

6. The native SQL processor processes the result data from IMS DB using 64 bit storage and

performs column / aggregation functions if needed.

7. The native SQL processor returns and puts the data back to the host variables for the COBOL

application

49507- IMS Application:

IMS 13

49507- IMS Application:

SQL considerations and restrictions for COBOL

� A subset of SQL keywords is supported.

– Aggregate functions and XML are not supported by COBOL SQL in SELECT statements.

– SQL COMMIT and ROLLBACK keywords are not supported.

• use IMS DB system services call to commit or roll back your database changes

� Batch and DB Batch are not supported.

� IBM® CICS® Transaction Server for z/OS® and DB2® for z/OS stored procedures to IMS
are not supported..

� The IMS catalog must be enabled to use SQL support for COBOL..

� Specify at least 12M for your IMS dependent region size for running a COBOL SQL
application.

� Only one cursor and SQL statement can be active at a time in the application.

� For IMS database services, GSAM, IMS TM, and message processing services, continue
to use DL/I API.

� Dynamic SQL statement is supported. Static SQL is not supported

� Only EBCDIC CCSID 37 and 1140 codepages for the COBOL CODEPAGE option are
supported.

� Note The IMS Universal Database resource adapter and IMS Universal JDBC driver
internally manage the LL field on behalf of the application

– For SQL support for COBOL, COBOL applications are responsible for managing the LL field

Dynamic SQL refers to the type of SQL statement where the actual content of the statement is

constructed and prepared at run time. For an example, a dynamic SQL statement can be

passed to the application as an input message, or the statement is dynamically constructed

based on other values at runtime. For Dynamic SQL, the statement type, table or column names

are not known when the program is pre-compiled. Since the source of the SQL statement is not

known during pre-compile time, the SQL statement is parsed and validated by the database

during runtime each time the SQL statement is executed

Using the LL field with COBOL

The LL field is treated as a normal column in the standard SQL result set for all operations. You

can read, insert, or update the LL field data directly. Deleting the LL field data also deletes the

rest of the associated database record. To set a field to the null state, set the length of the

segment (the value of the LL field column) to be smaller than the offset of the field within the

segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT data.

49607- IMS Application:

IMS 13

49607- IMS Application:

Performance

� Recommendations

– Fully qualify all tables (segments) and columns (fields) in SQL statements

• Specify the schema (PCB) name

– Always use PREPARE call for SQL statement that is going to be executed
multiple times

– Consider using FETCH or cursors to select a set of rows and then process
the set either one row at a time or one rowset at a time

49707- IMS Application:

IMS 13

49707- IMS Application:

Documentation

� Application Programming Guide

– Programming for IMS -> Application programming -> Application
Programming for SQL

� Application Programming Reference

– Programming for IMS -> Application programming APIs -> SQL programming
reference

� Messages and Codes

– Troubleshooting for IMS -> IMS component codes -> SQL codes

49807- IMS Application:

IMS 13

49807- IMS Application:

Prerequisites

� Software requirements

– IMS 13 + PTF UK98028

– IMS Catalog function is required

– COBOL compiler with IMS co-processor function

• Enterprise COBOL Developer Trial z/OS V5.1 or

• Enterprise COBOL for z/OS V5.1 + APAR PM92523

– Note: COBOL V5.1 requires z/OS 1.13 and above

� Hardware requirements

– Same as IMS 13 and COBOL V5.1

49907- IMS Application:

IMS 13

49907- IMS Application:

IMS Universal Driver Enhancements

50007- IMS Application:

IMS 13

50007- IMS Application:

IMS Catalog Access

� For retrieving database and application metadata

� Provides greater application scalability

� Supports complex datatypes (arrays and structures)

� Alternate mapping of fields within a segment

� SSA qualifier based on an offset and length instead of a field name

– search fields do not need to be defined within the DBD source.

The IMS Universal Drivers are enhanced to support the IMS catalog for retrieving database and

application metadata. This support allows for greater application scalability and support for

complex datatypes (arrays and structures), and segment maps, which are different cases (sets of

fields) within a segment where each case is only valid for a unique value of the map's control

field. The drivers have also been enhanced with the ability to search on a qualifier based on an

offset and length within a segment instance instead of a field name. This enhancement allows for

greater search capabilities as search fields do not need to be defined within the DBD source.

50107- IMS Application:

IMS 13

50107- IMS Application:

IMS 13 APAR PM90041: All users of the IMS V13
Universal Drivers

� This APAR contains various performance enhancements

� Connection Properties:

– Property Name: signedCompare

• Behavior:

– Set to true ranged queries over signed data types.

– Set to false, standard binary comparisons are performed based on the binary
representation of the data type value.

– Setting the value to false can increase performance

but might result in incorrect results.

• The signedCompare property applies to all environments.

– PropertyName: t2OutputBufferSize

• Behavior:

– Sets the size of the output buffer in bytes for the results from a SELECT
operation

• The t2OutputBufferSize property applies only to Type-2 connections

The two new Connection Properties listed below are added to the list of topics in "IMS Version 13

Application Programming" (SC19-3646-00):

Under the following high level path:

Java application development for IMS > Programming with the IMS Universal drivers >

Programming using the IMS Universal DB resource adapter > Connecting to IMS with the IMS

Universal DB resource adapter

> Connecting using the IMS Universal JCA/JDBC driver in a managed environment.

> Connecting using the IMS Universal DB resource adapter in a managed environment

Under the following high level path:

Java application development for IMS > Programming with the IMS Universal drivers >

Programming with the IMS Universal JDBC driver > Connecting to IMS using the IMS Universal

JDBC driver:

> Connecting to an IMS database using the JDBC DataSource interface

> Connecting to an IMS database by using the JDBC DriverManage interface

The following two Connection Properties that have been added are:

- signedCompare: When this property is set to true, special SSAs are generated to support

ranged queries over signed data types. If the property is set to false, standard binary

comparisons are performed based on the binary representation of the data type value. Setting

the value to false can increase performance but might result in incorrect results.

- t2OutputBufferSize: The size of the output buffer in bytes for the results from a SELECT

operation for a Type-2 connection.

50207- IMS Application:

IMS 13

50207- IMS Application:

(this page intentionally left blank)

