
White paper
IBM Software Group Information Management

Business-critical
real-time analytics—
IBM DB2 11 for z/OS
By Meg Bernal

Overview
Analytics can provide greater insight into your business and increase
your business performance. When you store data on IBM® DB2®
for z/OS® and then collect, report, and analyze it directly from DB2 for
z/OS, you can achieve better outcomes at lower cost and with less risk.
Typically, analytics are performed on large amounts of data that need to
be stored for an extended time, yet real-time analytics are becoming
more important. DB2 11 for z/OS introduces several enhancements to
support business analytics. This white paper introduces the concepts
and capabilities to use the new business analytic enhancements. The
new enhancements to be discussed include: more efficient performance
for query workloads, temporal enhancements, transparent archiving,
SQL improvements, and IBM DB2 Analytics Accelerator enhancements.
Several examples will help you understand how easy it will be to take
advantage of the enhancements.

More efficient performance for query workloads
IBM has invested significantly in DB2 11 to improve performance for
query workloads, and the results have been promising. Up to 40
percent CPU improvements have been seen by the DB2 development
team at IBM’s Silicon Valley Laboratory. Customers who participated
in the DB2 11 early support program have reported similar results.
Some of the enhancements might be observed without any application
or system change, while other enhancements naturally occur after a
rebind. Yet other improvements will be realized after modifying
applications. Query performance workload improvements have been
addressed among the following items:

•	 ODBC and Java Database Connectivity (JDBC) drivers
•	 Query execution time optimization
•	 Large numbers of partitions
•	 Null indexes
•	 Missing statistics
•	 Query transformations

Contents

	 1	 Overview

	 1	 More efficient performance for
query workloads

	 2	 Access path improvements

	 4	 Executing access paths more
efficiently

	 5	 Temporal enhancements

	 8	 Transparent archiving

	10	 SQL improvements

	13	 IBM DB2 Analytics Accelerator

	15	 Summary

	15	 About the author

	15	 Acknowledgments

White paper
IBM Software Group Information Management

2

•	 Index duplicate skipping
•	 Expression evaluations
•	 Plan management
•	 Selectivity overrides
•	 In-memory techniques
•	 RID overflows
•	 Stage 2 (residual) predicate pushdowns
•	 Sorts
•	 Work files
•	 DPSIs (data-partitioned secondary indexes)

A few of the features are discussed in this white paper, and a
table in the “Query workload performance summary”
paragraph describes when the optimization becomes available.

Access path improvements
Predicate indexability improvements
Several enhancements have been introduced in DB2 11 to
improve predicate performance. This is done by improving
the indexability of commonly used stage 2 predicates with
expressions, as well as common ERP predicate patterns.
Other methods include removing “always true” or “always
false” literal expressions (for example, where 1=1); reducing
the overhead of SELECT list expressions; and converting
correlated sub-queries to non-correlated subqueries,
when possible.

The following types of stage 2 predicate expressions are
heavily used and have been the focus of these indexability
improvements: YEAR(DATE_COLUMN),
DATE(TIMESTAMP_COLUMN), value BETWEEN
COLUMN1 and COLUMN2, and SUBSTR(COLUMN1,
1,10). DB2 might choose to rewrite your queries so that the
predicate becomes a stage 1 predicate. Before we take a look
at a few examples, recall that rows retrieved for queries go
through a two-stage process. Certain predicates can be
processed during stage 1, where others can be processed only
in stage 2. Predicates that can be performed during stage 1
provide better performance.

In this first example, the YEAR(DATE_COLUMN)
expression in the predicate makes the predicate a stage 2
predicate. Therefore, DB2 will rewrite the query so that the
stage 2 predicate becomes a stage 1 predicate:

-- Original SQL, predicate is stage 2
SELECT * FROM TABLE1
WHERE YEAR(DATE_COLUMN) = 2013;

-- Corresponding rewrite courtesy of DB2;
predicate now indexable stage 1 predicate as a
BETWEEN predicate
SELECT * FROM TABLE1
WHERE DATE_COLUMN BETWEEN ‘2013-01-01’ AND ‘2013-
12-31’;

-- Original SQL, predicate is stage 2
SELECT * FROM TABLE1
WHERE YEAR(DATE_COLUMN) IN (2012, 2013);

-- Corresponding rewrite courtesy of DB2,
predicate now indexable stage 1 predicate as a
BETWEEN predicate
SELECT * FROM TABLE1
WHERE (DATE_COLUMN BETWEEN ‘2012-01-01’ AND

‘2012-12-31’) OR
 (DATE_COLUMN BETWEEN ‘2013-01-01’ AND

‘2013-12-31’);

Here’s another example, but this time the predicate uses the
YEAR(DATE_COLUMN) in an IN predicate. DB2 will
rewrite the query to use two BETWEEN predicates separated
by an OR condition, therefore transforming the original
predicate into two stage 1 predicates:

White paper
IBM Software Group Information Management

3

This next example uses a value BETWEEN column1 and
column 2 predicate. DB2 will rewrite the query to use basic
predicates, which qualify as stage 1 predicates:

If you have a similar query that uses the UNION ALL
operator, DB2 will also qualify the query as eligible for a
rewrite and transform the correlated subquery into a non-
correlated subquery and replace the correlated reference with
the corresponding literal value.

-- Original SQL, predicate is stage 2
SELECT * FROM TABLE1
WHERE :host_variable BETWEEN START_DATE_COLUMN
AND END_DATE_COLUMN;

-- Corresponding rewrite courtesy of DB2,
predicate now indexable stage 1 predicate as a
basic predicate
SELECT * FROM TABLE1
WHERE START_DATE_COLUMN <= :host_variable AND

END_DATE_COLUMN >= :host_variable;

DB2 11 removes many of the remaining limitations on
correlated subquery processing. DB2 now provides support
for non-Boolean term subqueries, supports all legs of
correlated subqueries with UNION and UNION ALL, and
provides support for different data types and lengths. When
DB2 rewrites the query to use non-correlated subqueries, the
predicates are eligible to be stage 1 predicates.

The example that follows uses a non-Boolean term in the
correlated subquery. DB2 will rewrite the subquery by
replacing the correlated reference of T1.COLUMN1 with
the literal value 5 in order to make the subquery non-
corrrelated and make the predicate a stage 1 predicate:

-- Original SQL, correlated name T1.COLUMN1
referenced in subquery
SELECT * FROM TABLE1 T1
WHERE T1.COLUMN1 = 5
AND 	(T1.COLUMN2 IS NULL OR
 	 (T1.COLUMN2 = (SELECT MAX(T2.COLUMN2) FROM
	 TABLE1 T2 WHERE T2.COLUMN1 = T1.COLUMN1);

-- Corresponding rewrite courtesy of DB2,
subquery becomes non-correlated by replacing
T1.COLUMN1 with 5
SELECT * FROM TABLE1 T1
WHERE T1.COLUMN1 = 5
AND (T1.COLUMN2 IS NULL OR
 (T1.COLUMN2 = (SELECT MAX(T2.COLUMN2) FROM
	 TABLE1 T2 WHERE T2.COLUMN1 = 5);

SELECT * FROM TABLE1 T1
WHERE T1.COLUMN1 = 5
AND T1.COLUMN2 = (SELECT MAX(T2.COLUMN2)
	 FROM (SELECT MAX(T2.COLUMN2)
 FROM TABLE1 T2
 WHERE T2.COLUMN1 = T1.COLUMN1
		 UNION ALL
		 SELECT MAX(T2.COLUMN2)
		 FROM TABLE3 T3
		 WHERE T3.COLUMN1 = T1.COLUMN1);

-- Corresponding rewrite courtesy of DB2,
subqueries become non-correlated by replacing
T1.COLUMN1 with 5
SELECT * FROM TABLE1 T1
WHERE T1.COLUMN1 = 5
AND T1.COLUMN2 = (SELECT MAX(T2.COLUMN2)
 	 FROM (SELECT MAX(T2.COLUMN2)
		 FROM TABLE1 T2
		 WHERE T2.COLUMN1 = 5
 		 UNION ALL
 		 SELECT MAX(T2.COLUMN2)
		 FROM TABLE3 T3
		 WHERE T3.COLUMN1 = 5);

White paper
IBM Software Group Information Management

4

Executing access paths more efficiently
Query execution time optimization
Optimizing query execution time has been provided for
several common operators: moving data within DB2, casting
of numeric data, returning data to calling applications,
evaluating the CASE and SUBSTR scalar functions, and
performing DECFLOAT data type operations. DB2 might
generate customized machine code that is specific to the SQL
statement that you write. By generating this machine code,
DB2 execution time and CPU utilization could improve.
These improvements, introduced by generated machine code,
can be realized for dynamic SQL as well as static SQL after a
BIND or REBIND. The DECFLOAT data type
improvements may be seen ready for immediate use with up
to 23 percent CPU reduction for DECFLOAT conversions
and roughly 50 percent CPU reduction in the INSERT and
FETCH of DECFLOAT columns. Further DECFLOAT
improvements might be observed when DB2 is run on the
zEC12 hardware.

Reusable work file enhancement
Depending on the complexity of your queries, DB2 might
choose to create work files to evaluate the result table. DB2 11
has provided a method to reuse work files for certain types of
queries. By reusing work files, scalability improvements and
CPU reduction might be observed. If your query contains a
correlated subquery with an aggregate function, DB2 might
choose to create a work file and possibly to reuse that work
file. Let’s take a look at two examples where DB2 could
choose to reuse a work file. The first example creates a view
with the UNION ALL operator. The query against the view
references the MAX aggregate function in a correlated
subquery. The MAX aggregate function needs to be evaluated
before the predicate can be evaluated; therefore, DB2 creates
a work file to store the result of the MAX aggregate function.
Because the query contains a correlated subquery in the
predicate that references a view with UNION ALL, the
aggregate function would be evaluated for each row of each
leg of the UNION ALL.

CREATE TABLE CUSTOMER_INFO (CUSTOMER_ID INTEGER,
BALANCE DECIMAL(8,2), ...);
CREATE TABLE CUSTOMER_INFO2 (CUSTOMER_ID INTEGER,
BALANCE DECIMAL(8,2), ...);

CREATE VIEW CUSTOMER_VIEW AS
 	 SELECT * FROM CUSTOMER_INFO
 	 UNION ALL
 	 SELECT * FROM CUSTOMER_INFO2;

SELECT *
FROM CUSTOMER_VIEW AS CV
WHERE BALANCE = (SELECT MAX(BALANCE)
	 FROM CUSTOMER_VIEW AS CV2
 	 WHERE CUSTOMER_ID = CV.CUSTOMER_ID);

The next example uses a join between a table and nested table
expression, where the table expression contains a correlated
subquery. Once again, DB2 can reuse the work file for the
inner table for each outer table row.

CREATE TABLE EMPLOYEE (LASTNAME VARCHAR(100),
ASSIGNMENT INTEGER,...);
CREATE TABLE DEPT (DEPTNAME VARCHAR(10), DEPTNO
INTEGER, ...);

SELECT DEPTNAME, EMPLOYEE_COUNT
FROM DEPT, TABLE (SELECT COUNT(*)
	 FROM EMPLOYEE EMP
 	 WHERE EMP.ASSIGNMENT = DEPT.DEPTNO) T1
	 (EMPLOYEE_COUNT);

White paper
IBM Software Group Information Management

5

Query workload performance summary
The table below summarizes when each of the query
workload optimization features may be leveraged.

Feature Improvement realized

Limited Block Fetch
for the ODBC and
JDBC drivers

Enabling limited block fetch

Customized machine
code

Dynamic SQL or Static SQL after BIND or
REBIND

DECFLOAT
improvements

Existing plans or packages or Dynamic SQL

Large number of
partitions

Existing plans or packages or Dynamic SQL

Null indexes Dynamic SQL or Static SQL after BIND or
REBIND

Missing statistics Dynamic SQL or Static SQL after BIND or
REBIND

Query transformations Dynamic SQL or Static SQL after BIND or
REBIND

Index duplicate
skipping

Dynamic SQL or Static SQL after BIND or
REBIND

Expression
evaluations

Dynamic SQL or Static SQL after BIND or
REBIND

Plan management Dynamic SQL or Static SQL after BIND or
REBIND

Selectivity overrides Dynamic SQL or Static SQL after BIND or
REBIND

In-memory techniques Existing plans or packages or
Dynamic SQL or Static SQL after BIND or
REBIND

RID overflows Existing plans or packages or Dynamic SQL

Stage-2 (residual)
predicate pushdowns

Dynamic SQL or Static SQL after BIND or
REBIND

Sort Existing plans or packages or
Dynamic SQL or Static SQL after BIND or
REBIND

Work files Dynamic SQL or Static SQL after BIND or
REBIND

DPSI Dynamic SQL or Static SQL after BIND or
REBIND

Temporal enhancements
With regulatory, auditing, and compliance pressures affecting
businesses more frequently, businesses often need to analyze
historical, current, and future data. Temporal data
management provides the technology that businesses need to
keep track of time-oriented data. DB2 10 for z/OS delivered
temporal data management with the introduction of
SYSTEM_TIME and BUSINESS_TIME period concepts.
SYSTEM_TIME period refers to the audit time recording of
data changes based on when the data in the database changed.
BUSINESS_TIME period pertains to the valid time of data
changes based on business conditions (for example, insurance
policy terms or terms of a loan). DB2 11 provides
enhancements to temporal data management with support for
views and the introduction of two new special registers that
enable users to obtain time-sensitive data without changing
existing applications.

Views are often used for security purposes in that they enable
only certain individuals to see certain data. One such example
of sensitive data would be a customer’s government-issued
identification. Instead of returning the entire ID, a view can
be created to return a portion of the ID. DB2 10 delivered
temporal support for base tables, whereas DB2 11 extends the
temporal support to views. Temporal queries, as well as
temporal UPDATE and DELETE operations, can be
executed against views that are based on temporal tables. The
following example shows an application-period temporal table
that uses a BUSINESS_TIME period and a view that is based
on that application-period temporal table.

CREATE TABLE MASTER_POLICY_INFO (
 POLICY_ID CHAR(4) NOT NULL,
 CUSTOMER_ID CHAR(11) NOT NULL,
 TYPE CHAR VARYING(10) NOT NULL,
 COVERAGE INTEGER NOT NULL,
 BUS_START DATE NOT NULL,
 BUS_END DATE NOT NULL,
 PERIOD BUSINESS_TIME(BUS_START, BUS_END)
);

CREATE VIEW POLICY_INFO AS
 SELECT POLICY_ID,
 CONCAT(‘XXX-XX-’,SUBSTR(CUSTOMER_ID,8:11)),…
 FROM MASTER_POLICY_INFO
 WHERE TYPE = ‘PRIMARY’;

White paper
IBM Software Group Information Management

6

Similar to writing temporal queries against base tables, you
can now write temporal queries against views that are based
on temporal tables.

DB2 will rewrite the above UPDATE statement to update the
underlying application-period temporal table for a portion of
time (for example, from business_value1 to business_value2.)

SELECT...FROM POLICY_INFO FOR BUSINESS_TIME AS
OF business_value;

DB2 will implicitly apply the period specification to the
appropriate type of temporal tables inside the view that is
referenced by the query. Notice how the POLICY_INFO
view has pulled in the application-period temporal table,
MASTER_POLICY_INFO, into the query.

SELECT...FROM (SELECT...FROM MASTER_POLICY_INFO
FOR BUSINESS_TIME AS OF business_value
	 WHERE TYPE = ‘PRIMARY’) POLICY_INFO ;

DB2 will then rewrite the query to include the period
specification as a predicate.

SELECT...FROM (SELECT...FROM MASTER_POLICY_INFO
	 WHERE TYPE = ‘PRIMARY’ AND
	 BUS_START <= business_value AND
	 BUS_END > business_value) POLICY_INFO ;

Similar to modifying temporal tables, now you can also
modify temporal views.

UPDATE POLICY_INFO FOR PORTION OF BUSINESS_TIME
FROM business_value1 to business_value2
 	 SET COVERAGE = 10000
WHERE POLICY_ID = ‘B001’;

UPDATE MASTER_POLICY_INFO
 SET COVERAGE = 10000,
	 BUS_START = MAX(BUS_START,business_
	 value1),
 	BUS_END = MIN(BUS_END,business_value2)
WHERE POLICY_ID = ‘B001’ AND
	 TYPE = ‘PRIMARY’ AND
	 BUS_START < business_value2 AND
	 BUS_END > business_value1;

The two new special registers that are introduced in
DB2 11, CURRENT TEMPORAL SYSTEM_TIME and
CURRENT TEMPORAL BUSINESS_TIME, make it
easier to query data with an implicit period specification and
to modify data with an implicit temporal predicate. In other
words, after users set the special registers, any query or data
modification against a temporal table or temporal view is
automatically transformed to include the special register in a
predicate of the query or data modification. By simply
modifying the special registers, users are able to see data from
different perspectives.

White paper
IBM Software Group Information Management

7

Let’s look at an example. The following example creates a
bitemporal table where both SYSTEM_TIME and
BUSINESS_TIME periods are defined. A history table is
also created to store historical data. Storing historical data in
the history table is enabled by associating the history table to
a base table.

DB2 will implicitly generate a period specification
to your query:

CREATE TABLE MASTER_POLICY_INFO (
 	 POLICY_ID CHAR(4) NOT NULL,
 	 COVERAGE INTEGER NOT NULL,
 	 BUS_START DATE NOT NULL,
 	 BUS_END DATE NOT NULL,
 	 SYS_START TIMESTAMP(6) NOT NULL GENERATED
	 ALWAYS AS ROW BEGIN,
 	 SYS_END TIMESTAMP(6) NOT NULL GENERATED ALWAYS
	 AS ROW END,
 	 CREATE_ID TIMESTAMP(6) GENERATED ALWAYS AS
	 TRANSACTION START ID,
 	 PERIOD BUSINESS_TIME(BUS_START, BUS_END),
 	 PERIOD SYSTEM_TIME(SYS_START, SYS_END)
);

CREATE TABLE HISTORY_POLICY_INFO (
 	 POLICY_ID CHAR(4) NOT NULL,
 	 COVERAGE INTEGER NOT NULL,
 	 BUS_START DATE NOT NULL,
 	 BUS_END DATE NOT NULL,
 	 SYS_START TIMESTAMP(6) NOT NULL,
 	 SYS_END TIMESTAMP(6) NOT NULL,
 	 CREATE_ID TIMESTAMP(6)
);
ALTER TABLE MASTER_POLICY_INFO ADD VERSIONING USE
HISTORY TABLE HISTORY_POLICY_INFO;

After populating the table, you might want to know what your
policy information will look like after the start of the new
year. Set the CURRENT TEMPORAL SYSTEM_TIME
special register to New Year’s Day and execute your query:

SET CURRENT TEMPORAL SYSTEM_TIME = ‘2014-01-01-
08.00.00.000000’;
SELECT...FROM MASTER_POLICY_INFO WHERE POLICY_ID =
‘A001’;

SELECT...FROM MASTER_POLICY_INFO
FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME
WHERE POLICY_ID = ‘A001’;

DB2 will then rewrite the query to use the CURRENT
TEMPORAL SYSTEM_TIME in evaluating the result table:

SELECT...FROM (SELECT...FROM MASTER_POLICY_INFO
	 WHERE SYS_START <= CURRENT TEMPORAL
	 SYSTEM_TIME AND
		 SYS_END > CURRENT TEMPORAL SYSTEM_TIME
 	 UNION ALL
	 SELECT...FROM HISTORY_POLICY_INFO
	 WHERE SYS_START <= CURRENT TEMPORAL SYSTEM_
	 TIME AND
		 SYS_END > CURRENT TEMPORAL SYSTEM_TIME
) MASTER_POLICY_INFO
WHERE POLICY_ID = ‘A001’;

You can also look at your policy information as of tomorrow
by simply modifying the special register and executing the
same query.

SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT
TIMESTAMP + 1 DAY;
SELECT … FROM MASTER_POLICY_INFO WHERE POLICY_ID =
‘A001’;

White paper
IBM Software Group Information Management

8

Let’s say you want to review your policy information as
of a certain time in addition to your system time. Set both
the CURRENT TEMPORAL BUSINESS_TIME and
CURRENT TEMPORAL SYSTEM_TIME special
registers, and execute the same query.

Once again, DB2 will rewrite your query to include both
SYSTEM_TIME and BUSINESS_TIME period specifications.

SET CURRENT TEMPORAL BUSINESS_TIME = ‘2013-07-01-
08.00.00.000000’;
SET CURRENT TEMPORAL SYSTEM_TIME = ‘2013-01-01-
08.00.00.000000’;
SELECT...FROM MASTER_POLICY_INFO WHERE POLICY_ID =
‘A001’;

SELECT...FROM (SELECT...FROM MASTER_POLICY_INFO
	 WHERE SYS_START <= CURRENT TEMPORAL SYSTEM_	
	 TIME AND
		 SYS_END > CURRENT TEMPORAL SYSTEM_TIME
		 AND
		 BUS_START <= CURRENT TEMPORAL BUSINESS_	
		 TIME AND
		 BUS_END > CURRENT TEMPORAL BUSINESS_
		 TIME
	 UNION ALL
 	 SELECT...FROM HISTORY_POLICY_INFO
	 WHERE SYS_START <= CURRENT TEMPORAL SYSTEM_
	 TIME AND
		 SYS_END > CURRENT TEMPORAL SYSTEM_TIME
		 AND
		 BUS_START <= CURRENT TEMPORAL BUSINESS_
		 TIME AND
		 BUS_END > CURRENT TEMPORAL BUSINESS_
		 TIME
) MASTER_POLICY_INFO
WHERE POLICY_ID = ‘A001’;

Transparent archiving
Archiving data, either old data or less frequently used data,
is simplified with the introduction of transparent archiving
in DB2 11. Data can be archived transparently by using a
DELETE SQL statement in combination with a new built-in
global variable SYSIBMADM.MOVE_TO_ARCHIVE. In
addition, the new archive transparency support in DB2 11
provides easy access to both warm (current) and cold
(archived) data within a single query. Archive transparency
support for viewing both current and archived data is
controlled by a new BIND/REBIND option and a new
built-in global variable SYSIBMADM.GET_ARCHIVE.
Transparent archiving can be achieved in five steps:

As you can see from the preceding examples, DB2 11 provides
greater flexibility in writing temporal-based applications,
while simplifying the applications.

CREATE TABLE POLICY_ACTIVE (POLICY_ID CHAR(10) NOT
NULL, COVERAGE INTEGER NOT NULL);

CREATE TABLE POLICY_ARCHIVE (POLICY_ID CHAR(10)
NOT NULL, COVERAGE INTEGER NOT NULL);

Step1: Create a base table.

Step 2: Create a corresponding archive table.

ALTER TABLE POLICY_ACTIVE ENABLE ARCHIVE USE
POLICY_ARCHIVE;

Step 3: Enable transparent archiving by specifying the new ENABLE
ARCHIVE clause on the ALTER TABLE statement.

White paper
IBM Software Group Information Management

9

Step 4: Write an application that deletes and retrieves data from
the base table.

If, at some point, you no longer want to archive your
base data, simply modify your driver to tell DB2 that
transparent archiving is no longer needed by modifying
the SYSIBMADM.MOVE_TO_ARCHIVE global variable.
When only current data is expected, you can use the
same query to obtain your results but either modify the
SYSIBMADM.GET_ARCHIVE global variable or turn off
the ARCHIVESENSITIVE BIND/REBIND OPTION.

Policy_Updater: PROC(...)
 	 ...
 	 DELETE FROM POLICY_ACTIVE...;
 	 ...
END Policy_Updater;

Policy_Count_Getter: PROC(...)
 	 ...
 	 SELECT COUNT(*) INTO ... FROM POLICY_ACTIVE 	
	 ...;
 	 ...
END Policy_Count_Getter;

Policy_Driver: PROC(..)
 	 ...
 	 SET SYSIBMADM.MOVE_TO_ARCHIVE = ‘Y’;
 	 CALL Policy_Updater; /* data will be
	 archived */
 	 ...
 	 SET SYSIBMADM.GET_ARCHIVE = ‘Y’;
 	 CALL Policy_Count_Getter (...); /* get the
	 total count of both current and archived
	 policies */
 	 ...
END Policy_Driver;

Step 5: Tell DB2 to transparently archive the base data by specifying the
new DB2 11 built-in global variable, SYSIBMADM.MOVE_TO_ARCHIVE. To
retrieve both current and archived data, you can use the ARCHIVESENSITIVE
BIND/REBIND OPTION and the new built-in global variable SYSIBMADM.
GET_ARCHIVE.

When the Policy_Driver application invokes the Policy_
Updater application and the DELETE statement inside the
Policy_Updater application is executed, the deleted data from
the POLICY_ACTIVE table will be inserted into the
POLICY_ARCHIVE archive table. The query on the
POLICY_ACTIVE table in Policy_Count_Getter application
will retrieve data from both current and archive table as a
result of implicit UNION ALL query transformations.

Policy_Driver: PROC(..)
 	 ...
 	 SET SYSIBMADM.MOVE_TO_ARCHIVE = ‘N’;
 	 CALL Policy_Updater; /* data will
	 no longer be archived */
 	 ...
 	 SET SYSIBMADM.GET_ARCHIVE = ‘N’;
 	 CALL Policy_Count_Getter (...); /* get the
	 count of current policies only */
 	 ...
END Policy_Driver;

BEGIN
 -- declare local variable
 DECLARE UserId CHAR(5);
 -- declare array variable
 DECLARE ResultArray IntArray;

 -- set local variable to 1st 5 characters of
proc caller id
 SET UserId = SUBSTR(CALLER_ID,1,5);
 -- populate array variable with result based on
user role
 IF (UserId = ‘Sales’) THEN
 SELECT ARRAY_AGG(CUSTOMER_ID) INTO ResultArray
 FROM POLICY_INFO
 WHERE COVERAGE > 100000;
 ELSE
 SELECT ARRAY_AGG(CUSTOMER_ID) INTO ResultArray
 FROM POLICY_INFO;
 END IF;
END;

-- create caller
CREATE PROCEDURE POLICY_PROC (IN ID CHAR(10), OUT
CODE INT)
BEGIN
 -- declare array variable
 DECLARE CustomerArray IntArray;
 CALL COVERAGE_PROC(ID, CustomerArray, CODE);
 …
END;

White paper
IBM Software Group Information Management

10

SQL improvements
Analytics are often used against large amounts of data, and
aggregations are performed against those large amounts of
data in an effort to summarize the data. DB2 for z/OS
aggregation support entails basic aggregations, such as MAX
and MIN, as well as basic grouping with the GROUP BY
clause. DB2 9 for z/OS introduced a set of moving aggregates,
namely moving SUM and moving AVG; these aggregates
calculate cumulative sums and moving averages. DB2 10 for
z/OS introduced aggregation groups, which enable you to
specify which rows of a partition, in relation to the current
row, should participate in the calculation. With DB2 11, new
aggregations that use grouping sets have been introduced,
with CUBE and ROLLUP. Grouping sets enables you to
specify multiple groups in your queries, so that querying and
reporting are made easier and faster. This is because you
produce a single result table by performing a UNION ALL of
two or more groups of rows.

Before DB2 11, when you specified GROUP BY on your
query, you received groups of rows in which all rows in a
group had the same value. Let’s look at an example of
GROUP BY and the DB2-supplied table DSN8B10.PROJ. In
the following example, we group by the DEPTNO and
RESPEMP columns.

Policy_Driver: PROC(..)
 	 ...
 	 SET SYSIBMADM.MOVE_TO_ARCHIVE = ‘N’;
 	 CALL Policy_Updater; /* data will
	 no longer be archived */
 	 ...
 	 SET SYSIBMADM.GET_ARCHIVE = ‘N’;
 	 CALL Policy_Count_Getter (...); /* get the
	 count of current policies only */
 	 ...
END Policy_Driver;

In the picture that follows, the table on the left contains the
source data, and the table on the right shows the result table.
Notice how departments C01, D01, and E01 each have two
individuals reporting to two separate prohjects, whereby the
GROUP BY collapses each of those departments to report an
overall sum of persons needed to complete the projects for
their respective departments.

Original data

DEPTNO RESPEMP PRSTAFF

B01 000020 1.00

C01 000030 2.00

C01 000030 1.00

D01 000010 12.00

D01 000010 6.50

D11 000060 9.00

D11 000220 2.00

D11 000150 3.00

D11 000160 3.00

D21 000070 6.00

D21 000230 2.00

D21 000250 1.00

D21 000270 2.00

E01 000050 6.00

E01 000050 5.00

E11 000090 5.00

E21 000100 4.00

E21 000320 1.00

E21 000330 1.00

E21 000340 1.00

Result data

DEPTNO RESPEMP PRSTAFF

B01 000020 1.00

C01 000030 3.00

D01 000010 18.50

D11 000060 9.00

D11 000150 3.00

D11 000160 3.00

D11 000220 2.00

D21 000070 6.00

D21 000230 2.00

D21 000250 1.00

D21 000270 2.00

E01 000050 11.00

E11 000090 5.00

E21 000100 4.00

E21 000320 1.00

E21 000330 1.00

E21 000340 1.00

White paper
IBM Software Group Information Management

11

With the introduction of grouping sets, multiple groups can
be specified in a single statement, which enables groups to be
computed with a single pass over the data. Grouping sets can
be used to determine subtotals and grand totals. The pre-
defined grouping set, ROLLUP, creates subtotals that “roll
up” from the most detailed level to a grand total. Let’s look at
a ROLLUP example with the same DB2-supplied table
DSN8B10.PROJ, but this time we use ROLLUP on the
DEPTNO and RESPEMP columns.

A ROLLUP on DEPTNO and RESPEMP is equivalent to
three grouping sets:

SELECT DEPTNO, RESPEMP, SUM(PRSTAFF)
FROM DSN8B10.PROJ
GROUP BY ROLLUP (DEPTNO, RESPEMP);

SELECT DEPTNO, RESPEMP, SUM(PRSTAFF)
FROM DSN8B10.PROJ
GROUP BY GROUPING SETS ((DEPTNO, RESPEMP),
(DEPTNO),());

1.	 DEPTNO, RESPEMP
2.	 DEPTNO
3.	 Grand total

You could write the above query to use the new GROUPING
SETS clause to do the same evaluation as ROLLUP:

Using the ROLLUP on the DEPTNO and RESPEMP
columns results in the sum of persons needed to complete the
projects for each respective employee for each respective
department, the subtotal of the sum of persons needed to
complete the projects for each department , and finally the
grand total of the sum of all persons needed to complete all
projects for all departments.

Results

DEPTNO RESPEMP PRSTAFF

B01 000020 1.00

C01 000030 3.00

D01 000010 18.50

D11 000060 9.00

D11 000150 3.00

D11 000160 3.00

D11 000220 2.00

D21 000070 6.00

D21 000230 2.00

D21 000250 1.00

D21 000270 2.00

E01 000050 11.00

E11 000090 5.00

E21 000100 4.00

E21 000320 1.00

E21 000330 1.00

E21 000340 1.00

B01 ? 1.00

C01 ? 3.00

D01 ? 18.50

D11 ? 17.00

D21 ? 11.00

E01 ? 11.00

E11 ? 5.00

E21 ? 7.00

? ? 73.50

Subtotals for
each respemp
in each deptno

Subtotals for
each deptno

Grand total for
all deptno

White paper
IBM Software Group Information Management

12

The pre-defined grouping set, CUBE , creates subtotals
for all permutations of the grouping set. Let’s look at a
CUBE example with the same DB2-supplied table DSN8B10.
PROJ, but this time we use CUBE on the DEPTNO and
RESPEMP columns.

SELECT DEPTNO, RESPEMP, SUM(PRSTAFF)
FROM DSN8B10.PROJ
GROUP BY CUBE (DEPTNO, RESPEMP);

A CUBE on the DEPTNO and RESPEMP columns is
equivalent to the following four grouping sets:

1.	 DEPTNO, RESPEMP
2.	 DEPTNO
3.	 RESPEMP
4.	 Grand total

Using the CUBE on the DEPTNO and RESPEMP columns
results in the four grouping sets listed above:

1.	 The sum of persons needed to complete the projects for
each respective employee for each respective department,

2.	 The subtotal of the sum of persons needed to complete the
projects for each department,

3.	 The subtotal of the sum of persons needed to complete the
projects for each respective employee; and, finally

4.	 The grand total of the sum of all persons needed to
complete all projects for all departments

DEPTNO RESPEMP PRSTAFF

B01 000020 1.00

C01 000030 3.00

D01 000010 18.50

D11 000060 9.00

D11 000150 3.00

D11 000160 3.00

D11 000220 2.00

D21 000070 6.00

D21 000230 2.00

D21 000250 1.00

D21 000270 2.00

E01 000050 11.00

E11 000090 5.00

E21 000100 4.00

E21 000320 1.00

E21 000330 1.00

E21 000340 1.00

B01 ? 1.00

C01 ? 3.00

D01 ? 18.50

D11 ? 17.00

D21 ? 11.00

E01 ? 11.00

E11 ? 5.00

E21 ? 7.00

Subtotals for
each respemp
in each deptno

Subtotals for
each deptno

White paper
IBM Software Group Information Management

13

DEPTNO RESPEMP PRSTAFF

? 000010 18.50

? 000020 1.00

? 000030 3.00

? 000050 11.00

? 000060 9.00

? 000070 6.00

? 000090 5.00

? 000100 4.00

? 000150 3.00

? 000160 3.00

? 000220 2.00

? 000230 2.00

? 000250 1.00

? 000270 2.00

? 000320 1.00

? 000330 1.00

? 000340 1.00

? ? 73.50
Grand total for
all deptno

Subtotals for
each respemp

IBM DB2 Analytics Accelerator
IBM DB2 Analytics Accelerator is an appliance built on IBM
Netezza® technology that has the capability to accelerate
query execution. This capability enables businesses to gain
insight into their data quickly and predictably. Even though
the accelerator is separately licensed from DB2, it is tightly
integrated with DB2 and is transparent to DB2 applications.
By integrating the accelerator on DB2 for z/OS, users get the
qualities of service that they expect from DB2 and IBM
System z®: availability, reliability, and security. The
accelerator has quickly evolved from a query accelerator to a
storage saver and is moving toward being an ELT accelerator
with advanced analytics and transparent access to both your
transactional and analytic data.

DB2 Analytics Accelerator Version 3 came equipped with the
High Performance Storage Saver (HPSS). This enables users
to offload historical data directly to the accelerator, thus
eliminating the need to store the data directly on System z.
This enhancement with HPSS can significantly reduce the
cost for storage and provides an option to store the data only
once, namely on the accelerator. Another key feature of
Version 3 of the Accelerator is support for incremental
update, which enables data changes to be propagated to the
accelerator as they happen. The z/OS Workload Manager
was integrated into the product to help you efficiently manage
your accelerator resources. Additional optimization has
facilitated much faster and less resource-intensive refreshes of
tables and partitions. Also added to Version 3:

•	 More query routing control
•	 Support for additional types of queries that can be

accelerated
•	 Support for DB2 OLAP functions
•	 Support for multiple-byte EBCDIC encoding
•	 Support for additional DB2 scalar functions

TIMESTAMPDIFF and for bit manipulation functions
such as BITAND, BITANDNOT, BITOR, BITXOR,
and BITNOT

•	 Support for DECFLOAT for implicit casting

White paper
IBM Software Group Information Management

14

Version 4 of the Accelerator provides even more accelerator
opportunities and enterprise features. The Accelerator’s
Version 4 supports the DB2 11 generally available code base.
More queries are eligible to be accelerated with the additional
support for the following items:

•	 Static SQL (the most requested feature of the Accelerator)
•	 Multiple-row fetch
•	 Implicit casting when comparing VARCHAR and

numeric data
•	 Additional scalar function support (bringing the total

number of scalar functions supported to over 80)
•	 Support for EBCIDC and Unicode encoding schemes in

the same DB2 subsystem and accelerator

A major focus in developing Version 4 was to provide greater
scalability and performance of incremental update operations.
HPSS now provides better access control to the archived
accelerators and enables archiving to multiple accelerators.

Version 4 has provided support for multiple accelerators
with group workload balancing and improved workload
management for high-priority work items. With Version 4,
workload balancing across multiple accelerators is
automated. Additionally, the accelerators can notify DB2
about their utilization status by regularly sending the
information to all attached DB2 subsystems. DB2 can then
check the accelerator’s utilization and route the query to the
optimal accelerator.

When Workload Manager was integrated in Version 3 of the
Accelerator, it allowed DB2 to detect the WLM service class
and importance levels and to send this information to the
Accelerator with each query submitted from a remote
application. The Accelerator would then map the importance
level to Netezza’s priority and would alter the accelerator
session before the query execution. Version 4 extends this
support of mapping Workload Manager importance levels to
Netezza priorities to local applications, such as SPUFI,
TEP3, IBM CICS®, and IBM IMS™.

If you are interested in the Accelerator and want to see how
it might benefit you,IBM provides accelerator modeling.
This modeling lets you see the potential CPU and elapsed
time savings if your DB2 subsystem was connected to an
accelerator — without an accelerator actually being connected
to your DB2 box. After turning on the ACCELMODEL
subsystem parameter, DB2 accounting records (IFCIDs 3 and
148) will include projected CPU and elapsed-time savings for
your plans. For additional information, please see DB2 for
z/OS APAR PM90886.

White paper
IBM Software Group Information Management

15

Summary
Businesses can gain greater insight into their data through
analytics. Whether you run your existing applications,
REBIND your applications, or create entirely new workloads,
IBM DB2 11 provides greater support for your analytics.
Analytics support in DB2 11 can simplify applications, reduce
I/O, and improve CPU and elapsed times by means of query
workload improvements, temporal enhancements, transparent
archiving, and SQL enhancements. Using the DB2 Analytics
Accelerator in conjunction with DB2 11 opens up even more
opportunities for CPU and elapsed time improvements for
your business analytics.

About the author
Meg Bernal is a DB2 for z/OS senior software engineer at
IBM’s Silicon Valley Laboratory. Meg has 16 years of
experience as a developer on DB2 for z/OS where she has
contributed to many SQL enhancements, including native
SQL PL routines, multiple row fetch, scrollable cursors,
and SELECT FROM INSERT/UPDATE/DELETE, to
name a few.

Acknowledgments
Several individuals assisted in the writing of this paper.
A warm thank you to the talent behind the DB2 for z/OS
product: Ann Hernandez, Devon Yu, Jeff Josten, Maryela
Weihrauch, Shengxi Suo, Terrie Jacopi, Terry Purcell,
and Xiaohong Fu.

© Copyright IBM Corporation 2014

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
August 2014

IBM, the IBM logo, ibm.com, CICS, DB2, IMS, System z, and z/OS are
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks
is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Netezza is a registered trademark of IBM International Group B.V., an
IBM Company.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF MERCHANT
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM
products are warranted according to the terms and conditions of the
agreements under which they are provided.

IMW14746-USEN-03

Please Recycle

Notices
The information provided in this document is distributed
“AS IS” without any warranty, either express or implied.

The information in this document might include technical
inaccuracies or typographical errors.

Information concerning non-IBM products was obtained
from a supplier of these products, published announcement
material, or other publicly available sources and does
not constitute an endorsement of such products by IBM.
Sources for non-IBM list prices and performance numbers
are taken from publicly available information, including
vendor announcements and vendor worldwide homepages.
IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of
non-IBM products should be addressed to the supplier of
those products.

Some information addresses anticipated future capabilities.
Such information is not intended as a definitive statement of a
commitment to specific levels of performance, function or
delivery schedules with respect to any future products. Such
commitments are only made in IBM product announcements.
The information is presented here to communicate IBM’s
current investment and development activities as a good faith
effort to help with our customers’ future planning.

Actual results that any user will experience will vary
depending upon the user’s overall environment and business
needs, including, but not limited to, I/O configuration, the
storage configuration, and the workloads processed.
Therefore, no assurance can be given that an individual user
will experience differences or improvements equivalent to the
ratios stated in this document. Users of this document should
verify the applicable data for their specific environment.

Any references in this information to non-IBM web sites are
provided for convenience only and do not in any manner
serve as an endorsement of those web sites. The materials at
those Web sites are not part of the materials for this IBM
product and use of those web sites is at your own risk.

http://www.ibm.com/legal/copytrade.shtml

