
108- IMS 13 DB & DBRC:

208- IMS 13 DB & DBRC:

308- IMS 13 DB & DBRC:

Database Versioning Support is for Full Function, HALDB and DEDB database

customers who need support for multiple views of the physical data to a variety of

408- IMS 13 DB & DBRC:

customers who need support for multiple views of the physical data to a variety of

application needs such as:

•Implementing application changes over time.

•Ability to use application programs, for which there is no source code, after database

structure changes.

Versioning support enables users to assign user-defined version IDs to different

versions of the structure of a database. The user-defined version IDs are stored in the

record for the database in the IMS Catalog. Upon accessing the database, application

programs specify the version of the database that they need. If they do not specify a

version, by default they will get the version of the database structure at the current

level.

508- IMS 13 DB & DBRC:

Database versioning provides the ability to assign user-defined version identifiers to

different versions of the structure of a database. These identifiers enable you to make

608- IMS 13 DB & DBRC:

different versions of the structure of a database. These identifiers enable you to make

structural changes to a database while providing multiple views of physical data to a

variety applications.

New applications that reference a newer structure of a database can be brought online

without affecting applications that use previous database structures. Unchanged

applications, which do not have to be sensitive to the new physical structure of the

database, can continue to access the database.

Database versioning can be used for the following types of databases:

708- IMS 13 DB & DBRC:

• DEDB

• HDAM

• HIDAM

• PHDAM

• PHIDAM

IMS database versioning supports databases that have logical relationships and

databases that have secondary indexes.

The database versioning function:

Can be used in conjunction with the database alter functions to keep track of different

versions of the structure of a database. Supports the following structural changes to all

supported database types:

• Increasing the length of a segment.

• Adding a new field at the end of a segment

Supports the following structural changes to FF and HALDB database types

• Adding a new field to a segment that defines an alternative mapping of

bytes in segment.

Database Versioning only supports changes which include increasing the length of the

segment and defining new fields. These changes are normally implemented by recoding

the DBD source and running the DBD, PSB, and ACBGEN utilities. The customer will

then unload/reload the database or utilize the IMS 13 HALDB Alter function followed by

performing an Online Change (OLC).

Changes made to any existing fields, which include changing the starting position or length

of the field are not allowed.

Requirements:

808- IMS 13 DB & DBRC:

Requirements:

To enable the database versioning support, the following tasks are required:

•Specify the new parameter, DBVERSION=Y, in the databases section in the DFSDFxxx

member of the IMS PROCLIB data set to indicate that database versioning is to be used.

•If Database Versioning is enabled, the IMS Catalog is required to be available in order to

retrieve the correct DBD version for the application programs. If the IMS Catalog is not

available then the application is returned an ‘NA’ status code.

•Application programs that need to access a particular version of a database definition can

specify the DBVER= on the PCB statement of the PSB source, or issue the INIT VERSION

call to specify the database version for each database view that is used by the application.

When a version number is assigned to the DBD, if the database is logically related to one or

more databases, all logically-related databases must be included in the ACBGEN process.

The affected database descriptions (DBDs) must be in the IMS catalog. The IMS catalog

metadata describes the current and previous structures of a database. The metadata

includes the version numbers that identify each structure of a database. When an application

program makes a call to a versioned database, IMS internally references the catalog to

determine which structure corresponds to the provided version number and whether the

format of the requested data needs to be modified before it is returned to the application

program.

After a DBD has a version number, apps can use the new INIT VERSION call to access a

specific version of the database or specify the database version for an application program

on the DBVER parm in the PCB statement. The following requirements apply:

•INIT VERSION call must be issued before issuing a DL/I call to access that database

•Version specified on INIT VERSION call overrides version number specified on the PCB

Requirements:

908- IMS 13 DB & DBRC:

•Once Database Versioning is enabled, the IMS Catalog is required to be available in order to retrieve

the correct DBD version for the application programs. If the IMS Catalog is not available then the

application is returned an ‘NA’ status code. The IMS catalog must be enabled!

•The affected database descriptions (DBDs) must be in the IMS catalog.

•After a change is implemented and a version number is assigned to the DBD, if the database is

logically related to one or more databases, all logically-related databases must be included in the

ACBGEN process.

The IMS catalog metadata describes the current and previous structures of a database. The metadata

includes the version numbers that identify each structure of a database. When an application program

makes a call to a versioned database, IMS internally references the catalog to determine which

structure corresponds to the provided version number and whether the format of the requested data

needs to be modified before it is returned to the application program.

After a DBD has a version number, apps can use the new INIT VERSION DL/I call to access a specific

version of the database or specify the database version for an application program on the DBVER parm

in the PCB statement. The following requirements apply:

•INIT VERSION call must be issued before using a DL/I call to access that database.

•Version specified on INIT VERSION call overrides version number that is specified on the PCB

statement.

To enable the database versioning support, the following tasks are required:

•Specify the new parameter, DBVERSION=Y, in the databases section in the DFSDFxxx member of the

IMS PROCLIB data set to indicate that database versioning is to be used.

•IMS Catalog is required and needs to be setup.

•Application program that needs to access a particular version of a database definition can specify the

DBVER= on the PCB statement of the PSB source, or issue the INIT VERSION call to specify the

database version for each database view that is used by the application.

The following IMS™ components are updated to support database versioning:

1008- IMS 13 DB & DBRC:

DFSDFxxx PROCLIB member

Two new keywords are added to the DATABASE section of the DFSDFxxx PROCLIB member

that specify whether database versioning is enabled and, if so, what default versioning is to be

used:

DBVERSION=

DBLEVEL=

DBD and PSB generation statements

The DBD and PCB statements are enhanced with a new DBVER parameter, where you can

specify the database version number:

DBVER=

The PSBGEN statement is enhanced with a new parameter that can be used to override the

default versioning that is specified in the DFSDFxxx PROCLIB member:

DBLEVEL

After a DBD has a version number, apps can use the new INIT VERSION DL/I call to access a

specific version of the database or specify the database version for an application program on

the DBVER parm in the PCB statement. The following requirements apply:

•Version specified on INIT VERSION call overrides version number specified on the PCB

statement.

•INIT VERSION call must be issued before using a DL/I call to access that database.

DBVERSION = Y|N

Specifies that database versioning is to be enabled. When parm omitted, database versioning is

1108- IMS 13 DB & DBRC:

Specifies that database versioning is to be enabled. When parm omitted, database versioning is

disabled.

When database versioning is enabled, IMS becomes sensitive to the version number associated with a

DBD. Applications may then request a specific DBD version by specifying the version number on the

PCB DBVER= parameter. If the requested DBD version is not the currently active one, then IMS will

retrieve it from the IMS catalog. If the requested DBD version does not exist, IMS returns a bad status

code to the application.

When database versioning is not enabled, IMS is not sensitive to the version number associated with a

DBD and application programs continue to access the data from the database at the physical database

level. This is how IMS operates prior to V13. If an application program specifies a DBD version on the

PCB DBVER= parameter while database versioning is not enabled, IMS returns a bad status code to the

application.

DBLEVEL=CURR|BASE: Specifies the default database version level. It is only used if

DBVERSION=Y, otherwise it is ignored. The default setting is CURR.

If DBLEVEL=CURR, then for all application programs IMS will return data from the database at the

current physical level unless the application requested a specific DBD version on the PCB DBVER=

parameter. DBLEVEL=CURR is recommended. It allows for a seamless transition over to database

versioning and allows application development to move forward as long as all application programs are

maintained to access databases at the latest level. For any application program that requires the

continued use of older versions of a DBD, the PCB DBVER= parameter may be used.

If DBLEVEL=BASE, then for all application programs IMS will return data from the database at the

original base level (ie., version 0) using the database definition stored in the IMS catalog. This is unless

the application requests a specific DBD version on the PCB DBVER= parameter. DBLEVEL=BASE

should only be considered if you have a large number of application programs that can not be changed

(ie. pgm source or PSB no longer available). This allows application programs to continue using the

original database definition, while also allowing new application development & new database structural

changes. The original database definition is retrieved from the IMS catalog. New applications or

applications that expect data returned at the latest database level must specify the PCB DBVER=

parameter or DBLEVEL=CURR on the PSBGEN statement.

DBVERSION = Y|N

Specifies that database versioning is to be enabled. When parm omitted, database versioning is

1208- IMS 13 DB & DBRC:

Specifies that database versioning is to be enabled. When parm omitted, database versioning is

disabled.

When database versioning is enabled, IMS becomes sensitive to the version number associated with a

DBD. Applications may then request a specific DBD version by specifying the version number on the

PCB DBVER= parameter. If the requested DBD version is not the currently active one, then IMS will

retrieve it from the IMS catalog. If the requested DBD version does not exist, IMS returns a bad status

code to the application.

When database versioning is not enabled, IMS is not sensitive to the version number associated with a

DBD and application programs continue to access the data from the database at the physical database

level. This is how IMS operates prior to V13. If an application program specifies a DBD version on the

PCB DBVER= parameter while database versioning is not enabled, IMS returns a bad status code to the

application.

DBLEVEL=CURR|BASE: Specifies the default database version level. It is only used if

DBVERSION=Y, otherwise it is ignored. The default setting is CURR.

If DBLEVEL=CURR, then for all application programs IMS will return data from the database at the

current physical level unless the application requested a specific DBD version on the PCB DBVER=

parameter. DBLEVEL=CURR is recommended. It allows for a seamless transition over to database

versioning and allows application development to move forward as long as all application programs are

maintained to access databases at the latest level. For any application program that requires the

continued use of older versions of a DBD, the PCB DBVER= parameter may be used.

If DBLEVEL=BASE, then for all application programs IMS will return data from the database at the

original base level (ie., version 0) using the database definition stored in the IMS catalog. This is unless

the application requests a specific DBD version on the PCB DBVER= parameter. DBLEVEL=BASE

should only be considered if you have a large number of application programs that can not be changed

(ie. pgm source or PSB no longer available). This allows application programs to continue using the

original database definition, while also allowing new application development & new database structural

changes. The original database definition is retrieved from the IMS catalog. New applications or

applications that expect data returned at the latest database level must specify the PCB DBVER=

parameter or DBLEVEL=CURR on the PSBGEN statement.

Database DBD statement

A new parameter, DBVER=, is added to the DBD statement. The new parameter

1308- IMS 13 DB & DBRC:

A new parameter, DBVER=, is added to the DBD statement. The new parameter

allows the user to specify a version number associated with a structure change being

made to the DBD. The DBVER parameter is only supported for DEDB, HDAM,

HIDAM, PHDAM, and PHIDAM. Version numbers specified on this parameter must be

maintained in incremental values.

Specifies the version number used to associate a change made to the DBD. It has to

be a numeric value, and the valid value range is 1 – 2147483647.

Program PCB Statement

A new parameter, DBVER=, is added to specify the version of the DBD to be used when

1408- IMS 13 DB & DBRC:

A new parameter, DBVER=, is added to specify the version of the DBD to be used when

accessing the associated database. The valid values are between 0 – 2147483647.

When database versioning is enabled, and the DBVER= parameter is omitted from the

program PCB statement, the DBD version used to return data depends on the DBLEVEL=

parameter in the PSBGEN statement or the DFSDFxxx PROCLIB member

DBVER=

Specify the version number of the database DBD to access for this application program. It

has to be a numeric value, and valid value range is 0 - 2147483647. If multiple PCBs

within a PSB refer to the same database, then each PCB must specify the same DBD

version number.

DBVER is only supported for TYPE=DB. If specified for TYPE=TP or TYPE=GSAM, it is

ignored.

When coding the PSB with multiple references to the same database, if the same version

number is not used then PSBGEN will fail with an MNOTE.

Not allowed:

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK21,DBVER=1

PCB TYPE=DB,DBNAME=DBJK22,DBVER=3

PSBGEN PSBNAME=PSBJK

Allowed:

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK21,DBVER=2

PCB TYPE=DB,DBNAME=DBJK22,DBVER=3

PSBGEN PSBNAME=PSBJK

PSBGEN statement

DBLEVEL=CURR | BASE

1508- IMS 13 DB & DBRC:

DBLEVEL=CURR | BASE

When database versioning is enabled, specifies the default database version level that

is returned to application programs that do not request a specific database version. For

all application programs that use this PSB, the value specified here overrides the overall

default system setting for DBLEVEL if specified in the DFSDFxxx PROCLIB member.

Any DB PCB which does not request a specific database version will follow this default

rule.

DBLEVEL=BASE

When any PCB within this PSB does not specify a database version on the DBVER

parameter, IMS returns data that conforms to the database structure that is defined by

the lowest version number in the DBD record of the

database in the IMS catalog.

DBLEVEL=CURR (default)

When any PCB within this PSB does not specify a database version on the DBVER

parameter, IMS returns data that conforms to the database structure that is defined by

the highest version number. The highest version number defines the actual current

structure of the physical database.

If database versioning is disabled, then this parameter is ignored.

When database versioning is enabled, an application program can use the "VERSION"

function to request a version of a database that is different from the version number that is

1608- IMS 13 DB & DBRC:

function to request a version of a database that is different from the version number that is

specified for the application program on the PCB or from the default version that is

returned by IMS. A version number specified on the INIT VERSION call takes precedence

over all other version specifications and defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database, the

version of the database that is returned to the application program is determined by the

DBVER keyword of the PCB statement. If the DBVER keyword is not specified, IMS

returns either returns the highest or lowest version number, as determined by the

DBLEVEL keyword in either the PSBGEN statement or the database section of the

DFSDFxxx PROCLIB member.

Each database name is specified by using alphabetic characters and can be specified only

once. Specify only names of physical databases. The names of logical databases are not

supported.

Each version is specified as a numeric value from 0 to 2147483647. The number specified

must match a version number defined on a DBD for the named database and stored in the

IMS catalog.

Calculate the size required for the I/O area by multiplying the number of databases that are

specified in the input I/O area by 20.

For performance reasons, the INIT call should not be issued before the first GU call to the

I/O PCB. If the INIT call is issued first, the GU call is not processed as efficiently.

i/o area - Specifies the I/O area in your program that contains the character string or strings

indicating which INIT functions are requested. This parameter is an input parameter. INIT

1708- IMS 13 DB & DBRC:

indicating which INIT functions are requested. This parameter is an input parameter. INIT

function character strings include DBQUERY, STATUS GROUPA, STATUS GROUPB, &

VERSION (dbnameA=version#,...,dbnameZ=version#).

dbname: This specifies the database name.

version#: This specifies the version number of the database (identified in the DBname

parameter) definition to be used when accessing the database.

The valid version range is 0 – 2147483647. When dbname is provided, version# is required.

1. Minimum requirement for a complete INIT VERSION call:

- Open parenthesis '('

- Database name. It must be alpha characters.

- Equal sign '='

- Database version number. It must be numeric.

- Close parenthesis ')'

2. One set includes a database name, an equal sign, and a database version number.

3. Allows more than one set within () for INIT VERSION call.

4. Requires open and close parenthesis.

5. Requires equal sign as a separator between the database name and the database version

number.

6. Requires a comma as a delimiter between the sets.

7. Allows no space between the database name, equal sign, database version number, and

comma within the ().

For example: INIT VERSION (DBname1=10,DBname2=20,DBname3=30)

8. Duplicate database name is not allowed within the call.

1808- IMS 13 DB & DBRC:

1908- IMS 13 DB & DBRC:

2008- IMS 13 DB & DBRC:

Hierarchy for setting of database versioning.

2108- IMS 13 DB & DBRC:

Hierarchy for setting of database versioning.

DLI INIT VERSION call is always the overriding version specification .

2208- IMS 13 DB & DBRC:

2308- IMS 13 DB & DBRC:

2408- IMS 13 DB & DBRC:

2508- IMS 13 DB & DBRC:

During scheduling, if a specific DB version is requested on the PCB and it is not the

current version:

2608- IMS 13 DB & DBRC:

current version:

IMS will go to the catalog to get the correct DB version

If the IMS catalog is not enabled

DLI call using catalog PCB DFSCAT00 fails because the catalog PSB

DFSCP000 could not be scheduled

the DBPCB status code will be set to “NA”

If an application does not request a specific DB version:

IMS will retrieve the DB data at the current physical level

UNLESS the DBLEVEL= parameter has been set on the PSBGEN statement or

in the DATABASE section of the DFSDFxxx PROCLIB member.

Current flow of how IMS Database works today without Database Versioning:

2708- IMS 13 DB & DBRC:

1. & 2. DBDGEN/PSBGEN/ACBGEN with no version numbers specified on the DBDs.

If no version number specified, Catalog saves entries for the DBDs with no version

number (version 0).

3. The active versions of DBJK21,DBJK22, & DBJK23 DBDs do not contain version

numbers, therefore, Database Versioning is not enabled

4. Application does DB calls to access DBJK21, DBJK22 & DBJK23 databases.

5. IMS data is returned to application at the current physical structure level.

Once you enable Database Versioning and start specifying DBVER on the DBD source.

2808- IMS 13 DB & DBRC:

1. DBD NAME=DBJK21 DBVER=1…

DBD NAME=DBJK22 DBVER=1…

DBD NAME=DBJK23 DBVER=1…

DBDGEN/PSBGEN/ACBGEN

2. Version 1 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 1 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to the

already existing Version 0.

3. IMS runs with Version 1 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The PSB indicates the application needs DBJK21 at Version 0 (Base version). IMS

retrieves version 0 from the IMS Catalog.

By default, the application uses DBJK22 at active Version 1.

The PSB indicates the application will use DBJK23 at active Version 1.

6. DBJK21 IMS data is returned to application at V0 level.

DBJK22 IMS data is returned to application at V1 level.

DBJK23 IMS data is returned to application at V1 level.

Once you enable Database Versioning and start specifying DBVER on the DBD source.

2908- IMS 13 DB & DBRC:

1. DBD NAME=DBJK21 DBVER=2…

DBD NAME=DBJK22 DBVER=2…

DBD NAME=DBJK23 DBVER=2…

DBDGEN/PSBGEN/ACBGEN

2. Version 2 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 2 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to already

existing Version 0 & 1.

3. IMS runs with Version 2 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The PSB indicates the application needs DBJK21 at Version 1 & DBJK23 at Version 2

which is active in IMS.

The PSB also indicates (DBLEVEL=BASE) meaning the default behavior is to use the

base DBD version if one is not specified on the PCB.

DBJK22 uses Version 0 from the IMS Catalog

6. DBJK21 IMS data is returned to application at V1 level.

DBJK22 IMS data is returned to application at V0 / BASE level

DBJK23 IMS data is returned to application at V2 level

Once you enable Database Versioning and start specifying DBVER on the DBD source.

3008- IMS 13 DB & DBRC:

1. DBD NAME=DBJK21 DBVER=3…

DBD NAME=DBJK22 DBVER=3…

DBD NAME=DBJK23 DBVER=3…

DBDGEN/PSBGEN/ACBGEN

2. Version 3 of DBJK21, DBJK22, & DBJK23 gets into ACBLIB.

Version 3 of DBJK21, DBJK22, & DBJK23 gets into IMS Catalog in addition to already

existing Version 0,1&2

3. IMS runs with Version 3 as the active version.

4. Application accesses DBJK21,DBJK22, & DBJK23.

5. The application specified the INIT VERSION call which overrides all the DBD versions

indicated on the PSB.

DBJK21 uses Version 3 which is active in IMS.

DBJK22 uses Version 2 from the IMS Catalog.

DBJK23 uses Version 1 from the IMS Catalog.

6. DBJK21 IMS data is returned to application at V3 level.

DBJK22 IMS data is returned to application at V2 level

DBJK23 IMS data is returned to application at V1 level

.

VERSION

Returns the version number of the version of a database that is currently active in the online IMS

3108- IMS 13 DB & DBRC:

Returns the version number of the version of a database that is currently active in the online IMS

system. The active version of a database is the version that is stored in the database control blocks

that are loaded by the online IMS system. The control blocks define the actual physical structure of

the database to the online IMS system.

The possible version numbers range from 0-2147483647.

You cannot specify this filter with other SHOW filters; you must specify SHOW(VERSION)

individually.

SHOW(VERSION) is valid only for the following database access types:

• HDAM

• HIDAM

• PHDAM

• PHIDAM

• DEDB

If SHOW(VERSION) is specified for an unsupported database access type, completion code BD is

returned in the CC column of the output to indicate that the query is invalid for the access type of

the database.

If SHOW(VERSION) is specified for a HALDB master, the output lists a response line for the

HALDB master name and for each of its partition. Each partition of the HALDB inherits the version

number from the HALDB master, so each response line displays the same version number.

If SHOW(VERSION) is specified for a HALDB partition, the output lists a response line for just that

partition. The version number that is displayed is that of the HALDB master. If the partition is

disconnected from the HALDB master, such as might happen when the /DBR command is in effect

on the database, completion code 10 is returned in the CC column of the output to indicate that no

resource was found.

If SHOW(VERSION) is specified for a DEDB, the output lists a response line for only the DEDB.

Area information is not listed in the output response.

3208- IMS 13 DB & DBRC:

3308- IMS 13 DB & DBRC:

Use standard RACF definitions to secure the IMS command QUERY DB

3408- IMS 13 DB & DBRC:

Use standard RACF definitions to secure the IMS command QUERY DB

DFS3303I

3508- IMS 13 DB & DBRC:

DFS3303I

PSB psbname PCB pcbname DBD dbdnamexxxx JOBNAME jobnameRGN nnn

Explanation

This message precedes pseudoabend 3303 when an application program scheduled

with PSB psbname tries to make an incompatible DL/I call to database PCB

psbname. During DL/I scheduling of the PSB, database dbdname had condition xxxx.

Depending on the condition, DL/I calls to this database are partially or totally

restricted.

This message precedes only those 3303 abends caused by DL/I attempts to access

data in a database that was unavailable when the program was scheduled, and the

program had not issued the DL/I INIT call.

Explanation

An application program attempted to access a prior version of a High Availability Large

3608- IMS 13 DB & DBRC:

An application program attempted to access a prior version of a High Availability Large

Database (HALDB), but IMS cannot build the internal blocks that are required to access

prior versions of the database, because the latest version of the database contains a

change in the database definition (DBD) that is not supported by database versioning.

Application programs cannot access any prior version of the database, unless the

application programs are changed or the unsupported change is removed from the

database.

System action

IMS cannot build the internal blocks that are required to provide access to prior versions

of the database. Only the most recent version of the database can be accessed.

IMS returns a status code to the application program or the application code abends.

System programmer response

Determine whether you need to keep the changes in the database or remove them.

Keeping the changes requires all application programs to be modified to access the new

database structure. The prior versions of the database cannot be accessed anymore.

Removing the changes allows you to enable database versioning. However, if the

database has been updated since the changes were made, you need to recover the

physical database to the prior version. Any updates to the database that were made by

application programs that used the current version of the database are lost.

3708- IMS 13 DB & DBRC:

3808- IMS 13 DB & DBRC:

3908- IMS 13 DB & DBRC:

Database Versioning Support is for Full Function, HALDB and DEDB database

customers who need support for multiple views of the physical data to a variety of

4008- IMS 13 DB & DBRC:

customers who need support for multiple views of the physical data to a variety of

application needs such as:

•Implementing application changes over time.

•Ability to use application programs, for which there is no source code, after database

structure changes.

Versioning support enables users to assign user-defined version IDs to different

versions of the structure of a database. The user-defined version IDs are stored in the

record for the database in the IMS Catalog. Upon accessing the database, application

programs specify the version of the database that they need. If they do not specify a

version, by default they will get the version of the database structure at the current

level.

4108- IMS 13 DB & DBRC:

HALDB Alter is for HALDB database customers who want to have the ability to make

segment changes without unloading and reloading the database.

4208- IMS 13 DB & DBRC:

segment changes without unloading and reloading the database.

This addresses the challenge of maintaining database availability while changing the

structure of a HALDB database. The actual hierarchy of the IMS HALDB cannot be

changed.

When a segment change is made to a DBD, an online command can be issued to apply

the change to the database. The change is implemented via an option of the HALDB

Online Reorganization (OLR) function. Application programs can access the database

at the same time the OLR function is changing the structure of the database.

This line item provides value to customers by reducing the complexity of making

structural changes to a HALDB database, eliminating system down time, and improving

system availability. This line item also reduces the cost and risk associated with making

and coordinating wholesale changes to all application programs when database

structure changes occur. This line item allows customers to improve their HALDB

database structures even if the database is used by critical application programs that

they no longer have the ability to change.

Minimal software and hardware pre-reqs:

4308- IMS 13 DB & DBRC:

Minimal software and hardware pre-reqs:

IMS 13 and CSL (SCI and OM)

The following structural changes can be applied to an online HALDB with the type-2

INIT OLREORG command:

4408- IMS 13 DB & DBRC:

INIT OLREORG command:

Increasing the length of existing segment.

Adding new fields to space at the end of the segment.

Defining new fields that redefine existing fields and space in the

segment.(not structural)

When a segment change is made to a DBD, an online command can be issued to

initiate the change to the database. The change is implemented via an option of the

TYPE 2 HALDB Online Reorganization (OLR) function.

Application programs that use the old database definitions can access the database

while the OLR function is altering the structure of the database.

EX 1A:

4508- IMS 13 DB & DBRC:

EX 1A:

Add new field to beginning of free space at end of segment

EX 2A:

Add new field to end of free space at end of segment

In addition to the existing field definitions, the new fields are added to the DBD segment

definition.

EX 1B:

4608- IMS 13 DB & DBRC:

EX 1B:

Define 2 new fields, FIELD 2A and FIELD 2B, to overlay/re-map FIELD 2, define new

FIELD 3A to remap FIELD 3, and define FIELD 4 in free space.

EX 2B:

Define new field, FIELD 2A, to overlay/re-map FIELD 2, and define new FIELD 3A and

FIELD 3B to remap free space and FIELD 3.

In addition to the existing field definitions for the segment. The new overlay fields are

added to the DBD segment definition.

EX 1C:

4708- IMS 13 DB & DBRC:

EX 1C:

Increase the length of an existing segment by adding space at end

EX 2C:

Increase the length of an existing segment by adding free space at end

The new free space is added to the segment size in the DBD definition.

4808- IMS 13 DB & DBRC:

When a segment change is made to a DBD, an online command can be issued to initiate

the change to the database. The change is implemented via an option of the TYPE 2

4908- IMS 13 DB & DBRC:

the change to the database. The change is implemented via an option of the TYPE 2

HALDB Online Reorganization (OLR) function.

An Online Change must be completed to in-affect the DBD change in the online system.

Application programs that use the old database definitions can access the database while

the OLR function is altering the structure of the database. Once the OLC is completed,

application programs can use the new database definitions to access the database.

The TYPE-1 /INIT OLR command will not support the new HALDB ALTER function.

Begin the ALTER process by making coding changes to the DBD source. Multiple

segment definitions in one DBD can be changed at the same time.

5008- IMS 13 DB & DBRC:

segment definitions in one DBD can be changed at the same time.

The appropriate DBD and ACB GENs must be run. The ACB member should be

genn’d to an output staging ACBLIB.

The staging ACB library needs a dynamic allocation member – DFSMDA.

A DFSMDA member can be created for the staging ACBLIB if one doesn’t already

exist. Use the documented DFSMDA macros.

During ALTER processing, IMS will process all the changes made in the DBD that are

found in the staging ACBLIB for that DB – all segment changes are made at one time.

The ACBLIB staging library needs to have a dynamic allocation member. A DFSMDA member can be

created for the ACBLIB staging library if one doesn’t already exist using the above DFSMDA macros.

5108- IMS 13 DB & DBRC:

created for the ACBLIB staging library if one doesn’t already exist using the above DFSMDA macros.

There is a new parameter in the <SECTION=FASTPATH> area of the DFSDFxxx proclib member called

ALTERGRP=nnnnn. This paramter allows the user to define a new datasharing group name (DBRnnnnn)

which allows datasharing partners to communicate with each other during DEDB Alter utility execution.

There is no default for this parameter.

If you are increasing the size of a segment when you are altering an online HALDB database,

5208- IMS 13 DB & DBRC:

If you are increasing the size of a segment when you are altering an online HALDB database,

you might also need to increase the OSAM block size or VSAM CI size of the output database

data set that holds the altered segment.

New block or CI sizes are applied to the output data sets at the start of alter processing, but

must be entered in the RECON data set before the INIT OLREORG OPTION(ALTER)

command is issued.

New block or CI sizes are entered into the RECON by specifying them on the ALTERSZE

keyword of the CHANGE.PART command or by specifying them in the Change Dataset

Groups panel of the HALDB Partition Definition utility (%DFSHALDB).

For VSAM data sets, if output data sets for alter processing exist, the output data sets that

require a new CI size must be deleted before initiating the alter process. Alter processing

automatically re-creates the required output data sets with the new CI size. If no ALTERSZE

value is specified for a given VSAM data set group and an output data set exists, the CI size of

the output data set is used. If no ALTERSZE value is specified and an output data set does

not exist, the CI size of the input data set is used.

For OSAM data sets, if no ALTERSZE value is entered, the BLKSZE of the input data set is

used, even if an output data set exists.

When you change a block or CI size, you might also need to change the size of the buffers. If

the new block or CI size does not fit into the current buffer subpool, IMS tries to find a larger

subpool among the available subpools. If none of the available subpools are large enough to

hold the new block or CI size, the output data set fails to open. To check buffer sizes, issue the

type-2 command QUERY POOL TYPE(DBAS).

To increase the OSAM block size or VSAM CI size of the database data sets when

5308- IMS 13 DB & DBRC:

To increase the OSAM block size or VSAM CI size of the database data sets when

you are modifying the structure of a database with the HALDB alter function, you

must set ALTERSZE values for each data set group that is changing in each

partition record in the RECON.

To set the ALTERSZE values, you can use either DBRC command CHANGE.PART

or the HALDB Partition Definition utility (%DFSHALDB).

If you use the CHANGE.PART command to set the ALTERSZE values, the values

must be specified as positional, comma-separated values. The value in the first

position applies to the first data set group. The value in the second position applies

to the second data set group, and so on.

For example, the following ALTERSZE keyword sets a new block or CI size for the

third data set group, but leaves the sizes unchanged for the first and second data set

groups, as well as for the fourth through tenth data set groups, if they exist:

ALTERSZE(,,4096).

You can determine the position in which to enter a size for a data set group by

looking at the DSGROUP keyword in the SEGM statement that defines the segment

that you are altering. DSGROUP=A indicates the first position, DSGROUP=B, the

second position, and so on up to DSGROUP=J, which indicates the tenth position.

To correct an ALTERSZE value that is already set, replace the incorrect value with the

5408- IMS 13 DB & DBRC:

To correct an ALTERSZE value that is already set, replace the incorrect value with the

correct value by using either the CHANGE.PART command or the HALDB Partition

Definition utility (%DFSHALDB).

For OSAM data sets, if you change an ALTERSZE value back to the original block size of

the input data set, the ALTERSZE value displays as 0 to indicate that the block size is not

changing. If all of the ALTERSZE values are restored to the original block sizes of the input

data sets, the ALTER SIZE field is omitted from the output of the LIST.DB command.

For VSAM data sets, if you change an ALTERSZE value back to the original CI size, the

original CI size is displayed. If all of the ALTERSZE values are restored to the original CI

sizes of the input data sets, the ALTER SIZE field is displayed with the last values that you

entered.

You can clear all of the ALTERSZE values for a partition by specifying CHANGE.PART

PART(name) NOALTRSZ command. For both OSAM and VSAM data sets, when the

NOALTRSZ keyword is used to clear all ALTERSZE values, the ALTER SIZE field is

omitted when the partition record is displayed.

After the command is successfully processed, the block or CI sizes to be used by the alter

process are listed under ALTER BLOCK SIZE in the RECON record for a partition, which

can be displayed by the issuing DBRC command LIST.DB DBD(partitionname).

After the alter size values are corrected, you can start the alter process by issuing the IMS

type-2 command INIT OLREORG NAME(masterdb) OPTION(ALTER).

When the ALTER option is specified, the INIT OLREORG command initiates a

reorganization of an entire HALDB database to apply the database changes to all of the

5508- IMS 13 DB & DBRC:

reorganization of an entire HALDB database to apply the database changes to all of the

database partitions. During ALTER processing, IMS will process all the changes made in

the DBD that are found in the staging ACBLIB for that DB – all segment changes are

made at one time.

Upon receiving the INIT OLREORG OPTION(ALTER) command, an IMS system can alter

up to 10 partitions concurrently. Any partitions that cannot be processed immediately are

queued internally until they can be altered.

While an IMS system reorganizes and alters a partition, the IMS system has ownership of

the partition. The subsystem ID of the IMS system that owns a partition for alter

processing is recorded in the OLRIMSID field of the partition record.

In a data-sharing environment, ownership of a partition is granted to the first IMS system

that is available to alter the partition. If one IMS system is available to process ten

partitions before any other IMS system becomes available, all ten partitions are processed

by the single IMS system. If partitions are queued for alter processing, ownership of the

queued partition is granted to the first IMS system to be altering less than ten partitions

concurrently.

As soon as the INIT OLREORG OPTION(ALTER) command is received by IMS, DBRC

marks every partition in the database with ALTER IN PROGRESS=YES, even those

partitions that are queued. While an IMS system is actively altering a partition, the partition

record shows OLREORG CURSOR ACTIVE=YES.

After alter processing is complete for a partition, the partition record shows ALTER

COMPLETE=YES.

Only after all partitions in the database have a status of ALTER COMPLETE=YES can

you perform online change to activate the new database structure. The online change

function resets both the ALTER IN PROGRESS field and the ALTER COMPLETE field to

NO.

The INITIATE OLREORG command is used to initiate the dynamic structural change

5608- IMS 13 DB & DBRC:

The INITIATE OLREORG command is used to initiate the dynamic structural change

processing for HALDB partitions. The structural changes of the HALDB partitions are made in

the DBD statement and can be accompanied by the DBVER parameter to identify the version

of the database structure change. When the INITIATE OLREORG command is issued, it

reads the new definitions from the staging library and is used to construct the OLR output data

set as if the entire database is being reorganized (ie., all the partitions of a HALDB).

The following keyword parameters are changed/added to the type-2 INITIATE OLREORG

command.

NAME()

This keyword specifies the name of a HALDB master. Unlike the existing INITIATE

OLREORG command (which PHDAM or PHIDAM HALDB partition names can be specified),

only one HALDB master name can be specified here. You cannot use the wildcard character

(*).

OPTION()

This keyword allows you to specify the different options that will affect how HALDB online

reorganization performs.

ALTER

This option specifies that the command will initiate the database structural change processing.

The new database definition is obtained from the staging library, so the new DBD for the

database specified on the NAME() parameter needs to be genned into the staging library prior

to issuing the command.

You can stop alter processing of a HALDB database before it is complete by issuing the TERMINATE

5708- IMS 13 DB & DBRC:

You can stop alter processing of a HALDB database before it is complete by issuing the TERMINATE

OLREORG command or /TERM command. You can issue either the type-1 or type-2 version of the

TERMINATE OLREORG command; however, only the type-2 version of the command can be issued to

multiple IMS™ systems. The type-1 command can only be processed on the IMS that 'owns' the OLR

(ie., wherever the partition(s) are being re-organized).

The TERMINATE OLREORG command does not support the specification of the name of a HALDB

master database. To stop alter processing for the entire HALDB database, you specify a wildcard

character in place of the partition names or you can specify the names of all of the database partitions

explicitly. If multiple IMS systems are altering the database, you must use the type-2 TERMINATE

OLREORG command to stop all of the IMS systems at once or issue the type-1 command separately on

each IMS system.

To stop alter processing for one or more partitions of a HALDB database, issue the command:

TERMINATE OLREORG NAME(partnm | *)

When alter processing is stopped for a subset of the partitions in the database, alter processing

continues for the other partitions that are not contained within the specified subset.

When alter processing is stopped, the data in the partition might be physically stored in both the input

and output data sets. The output data sets conform to the altered database structure. The input data

sets conform to the old database structure. However, where the data is physically stored is not apparent

to application programs. Until alter processing completes and online change is performed, application

programs can access the data only in the old database structure.

To resume alter processing, issue the INITIATE OLREORG OPTION(ALTER) command.

To resume alter processing of a partition on a different IMS system, you can release the ownership of an

IMS system by specifying the REL option. For example, INITIATE OLREORG OPTION(ALTER,REL)

The IMS™ online change function is required to enable access to the new structure of a

HALDB database after alter processing completes.

5808- IMS 13 DB & DBRC:

HALDB database after alter processing completes.

Before you start the online change procedure to complete an alter operation, you must stop

access to the HALDB database by issuing either:

/DBR DB HALDB_master_name command

UPDATE DB NAME(HALDB_master_name) STOP(ACCESS) command.

Do not use UPDATE START(QUIESCE)

In addition to activating the ACB members that contain the new database structure, the online

change function clears various flags and counters in the RECON data set. Activating the ACB

members by a means other than the online change function does not clear the flags and

counters automatically.

Until the ACB members are activated and the flags and counters are cleared, the alter

procedure is not complete and the new database structure cannot be used.

Use the member online change function to complete the alter procedure. The member online

change function reads directly from the staging ACB library and can process only the specific

ACB members that require activation. The local and global online change functions require

you to copy the ACB members into the inactive ACB library. They also process the entire

ACB library, instead of just the ACB members that contain the new database changes.

Until all of the partitions in the HALDB database are altered and online change is performed,

only application programs that use the unaltered database structure can access the

database.

The IMS online change function is required to enable access to the new structure of a

5908- IMS 13 DB & DBRC:

The IMS online change function is required to enable access to the new structure of a

HALDB database after alter processing completes.

Before you start the online change procedure to complete an alter operation, you must stop

access to the HALDB database by issuing either:

/DBR DB HALDB_master_name command

UPDATE DB NAME(HALDB_master_name) STOP(ACCESS) command.

Do not use UPDATE START(QUIESCE)

In addition to activating the ACB members that contain the new database structure, the

online change function clears various flags and counters in the RECON data set. Activating

the ACB members by a means other than the online change function does not clear the flags

and counters automatically.

Until the ACB members are activated and the flags and counters are cleared, the alter

procedure is not complete and the new database structure cannot be used.

Use the member online change function to complete the alter procedure. The member online

change function reads directly from the staging ACB library and can process only the specific

ACB members that require activation. The local and global online change functions require

you to copy the ACB members into the inactive ACB library. They also process the entire

ACB library, instead of just the ACB members that contain the new database changes.

Until all of the partitions in the HALDB database are altered and online change is performed,

only application programs that use the unaltered database structure can access the

database.

Walkthru example showing how to make a structural change to the MASTER DB – increase

6008- IMS 13 DB & DBRC:

Walkthru example showing how to make a structural change to the MASTER DB – increase

the size of segment “B”.

Walkthru example showing how to make a structural change to the MASTER DB – increase

6108- IMS 13 DB & DBRC:

Walkthru example showing how to make a structural change to the MASTER DB – increase

the size of segment “B”.

Until OLR ALTER and OLC are complete, IMS reads the segment using the old DMB and

returns the unaltered segment structure

Segment fill values are based on the field type:

6208- IMS 13 DB & DBRC:

Segment fill values are based on the field type:

X -> x’00’

P -> x’00…0C’

C -> x’40’

New added space with no fields(s) defined -> x’00’

6308- IMS 13 DB & DBRC:

6408- IMS 13 DB & DBRC:

The QUERY OLREORG command is used to query if a HALDB is undergoing a structural

6508- IMS 13 DB & DBRC:

The QUERY OLREORG command is used to query if a HALDB is undergoing a structural

change process. To query information about alter processing, you can specify either one or

more partition names or the name of a HALDB master.

The following keyword parameters are changed/added to the type-2 QUERY OLREORG

command:

NAME() - This keyword specifies the name of a HALDB master or the name(s) of the

HALDB PHDAM or PHIDAM partition(s) to be queried. NAME() is optional. A parameter with

the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB

partitions. NAME(*) is the default.

STATUS() - This keyword allows you to display the online reorganizations that possess the

specified status.

ALTER - Displays status of alter processing for all partitions in a HALDB database that is

being altered online

ALTDONE - Displays all partitions for which alter processing is complete

ALTINPRG - Displays all partitions that are currently being altered.

There are new return, reason and completion codes for the INIT OLREORG

6608- IMS 13 DB & DBRC:

There are new return, reason and completion codes for the INIT OLREORG

OPTION(ALTER) command.

New SF Status Code: programs with field-level sensitivity cannot access segments

6708- IMS 13 DB & DBRC:

New SF Status Code: programs with field-level sensitivity cannot access segments

with altered length until the OLC process is completed to bring the new ACB

member (s) online.

There is additional information stored in the DB and Partition RECON records about

6808- IMS 13 DB & DBRC:

There is additional information stored in the DB and Partition RECON records about

HALDB ALTER processing.

There is additional information stored in the DB and Partition RECON records about

6908- IMS 13 DB & DBRC:

There is additional information stored in the DB and Partition RECON records about

HALDB ALTER processing.

Sample listing of DBRC Partition record

7008- IMS 13 DB & DBRC:

Sample listing of DBRC Partition record

DBRC REORG record contains a new indicator showing whether ALTER was part

7108- IMS 13 DB & DBRC:

DBRC REORG record contains a new indicator showing whether ALTER was part

of the OLR for this partition.

Some of the DBRC API query output has changed. There are several new fields

7208- IMS 13 DB & DBRC:

Some of the DBRC API query output has changed. There are several new fields

that are returned when the OLR ALTER function is being used.

Some of the DBRC records have changed in support of the OLR ALTER process.

7308- IMS 13 DB & DBRC:

Some of the DBRC records have changed in support of the OLR ALTER process.

These DBRC commands are used internally by IMS to set flags for ALTER

7408- IMS 13 DB & DBRC:

These DBRC commands are used internally by IMS to set flags for ALTER

processing.

IMS Users should not have to use these commands unless required to cleanup

RECON records after a major system failure.

Be sure you have the INIT OLR command secured.

7508- IMS 13 DB & DBRC:

Be sure you have the INIT OLR command secured.

Overall elapsed time to complete an INIT OLREORG OPTION(ALTER) command

7608- IMS 13 DB & DBRC:

Overall elapsed time to complete an INIT OLREORG OPTION(ALTER) command

for a HALDB database is likely to be significantly greater than an INIT OLREORG

for a single HALDB database partition or even a subset of partitions. Remember –

the ALTER option applies to ALL partitions in a HALDB database in one single

pass.

If BLKSIZE for a PHDAM database changes, IMS will take an extra lock per RAP

during ALTER processing.

HALDB Alter is for HALDB database customers who want to have the ability to make

segment changes without unloading and reloading the database.

7708- IMS 13 DB & DBRC:

segment changes without unloading and reloading the database.

This addresses the challenge of maintaining database availability while changing the

structure of a HALDB database. The actual hierarchy of the IMS HALDB cannot be

changed.

When a segment change is made to a DBD, an online command can be issued to apply

the change to the database. The change is implemented via an option of the HALDB

Online Reorganization (OLR) function. Application programs can access the database

at the same time the OLR function is changing the structure of the database.

This line item provides value to customers by reducing the complexity of making

structural changes to a HALDB database, eliminating system down time, and improving

system availability. This line item also reduces the cost and risk associated with making

and coordinating wholesale changes to all application programs when database

structure changes occur. This line item allows customers to improve their HALDB

database structures even if the database is used by critical application programs that

they no longer have the ability to change.

This section describes the changes in the Fast Path area for IMS 13.

7808- IMS 13 DB & DBRC:

This section describes the changes in the Fast Path area for IMS 13.

There are two new features of IMS 13. The first is DEDB Alter. The second is a set of

PTFs for Secondary Index Enhancements that are being forwarded fitted into IMS 13.

7908- IMS 13 DB & DBRC:

PTFs for Secondary Index Enhancements that are being forwarded fitted into IMS 13.

This section addresses the DEDB Alter function in IMS 13.

8008- IMS 13 DB & DBRC:

In IMS 13, Fast Path has added the ability to dynamically change specific DEDB

specifications. For example, the UOW, SIZE, ROOT, and Randomizer routine can be

8108- IMS 13 DB & DBRC:

specifications. For example, the UOW, SIZE, ROOT, and Randomizer routine can be

changed while the DEDB is online. There is a new DEDB Alter utility that allows these

DEDB changes to occur. This is support is available for VSO areas provided the areas

are unloaded first using the /VUNLOAD command. Allowing dynamic changes to the

DEDBs will improve data availability and reduce system down time.

The DEDB Alter utility supports two new functions. ALTERAREA is used to change the

UOW, ROOT, SIZE, and RMNAME (randomizer name) values. REPLRAND is used to

8208- IMS 13 DB & DBRC:

UOW, ROOT, SIZE, and RMNAME (randomizer name) values. REPLRAND is used to

specifically change the Randomizer name.

There is some preparation needed before the DEDB Alter utility can make the DEDB

changes. For the ALTERAREA function, the active DEDB AREA statement must be

8308- IMS 13 DB & DBRC:

changes. For the ALTERAREA function, the active DEDB AREA statement must be

modified with the new SIZE, UOR, or ROOT definitions. If the RMNAME parameter is

used, the new randomizer name must be different than the existing randomizer name.

For the REPLRAND function, the new randomizer must be assembled and link edited

into the IMS SDFSRESL STEPLIB concatenation. The active DEDB AREA statement

must be modified. The active randomizer must be a 2-stage randomizer and the new

active randomizer must also be a 2-stage DEDB randomizer.

After the DEDB AREA statements are modified, the DBDGEN utility is run to create

new DEDB DBD definitions. The ACBGEN utility is run next for all PSBs that reference

the changed DEDB DBD. The new ACBs resulting from the ACBGEN are added to the

staging ACBLIB data sets.

The ACBLIB staging library needs to have a dynamic allocation member. A DFSMDA

member can be created for the ACBLIB staging library if one doesn’t already exist using

8408- IMS 13 DB & DBRC:

member can be created for the ACBLIB staging library if one doesn’t already exist using

the above DFSMDA macros.

There is a new parameter in the <SECTION=FASTPATH> area of the DFSDFxxx

proclib member called ALTERGRP=nnnnn. This paramter allows the user to define a

new datasharing group name (DBRnnnnn) which allows datasharing partners to

communicate with each other during DEDB Alter utility execution. There is no default for

this parameter.

Once the ACB is placed into the staging ACBLIB, DEDB Alter commits the new DBD

and moves it into the Active ACBLIB. In a datasharing environment, the IMS system

8508- IMS 13 DB & DBRC:

and moves it into the Active ACBLIB. In a datasharing environment, the IMS system

can share the ACBLIB with the other IMS subsystems in the datasharing environment

or each IMS can have its own ACBLIB. The ACBSHR=Y|N parameter indicates how

the ACBLIB is used between the IMS subsystems. The ACBSHR specification is

found in the FASTPATH section in the DFSDFxxx proclib member if the Common

Service Layer (CSL) is used in the environment. If CSL is not used, then the

ACBSHR specification is found using the following precedence. The first check is in

the DFSCGxx proclib member. The second check is in the

COMMON_SERVICE_LAYER section in the DFSDFxxx proclib member. The third

check is in the FASTPATH section in the DFSDFxxx proclib member. While DEDB

Alter uses the ACBSHR setting that is found in the local IMS subsystem, all IMS

subsystems in the datasharing environment must have the same ACBSHR parameter

setting.

The next step in the preparation for DEDB Alter is to allocate both the Shadow Area

data sets and the Shadow Image Copy data sets. The Shadow Area data sets are used

8608- IMS 13 DB & DBRC:

data sets and the Shadow Image Copy data sets. The Shadow Area data sets are used

for migrating the existing data from the Active Areas to the Shadow Areas. The Shadow

Area data set can be a Single Area Data Set (SADS) or it can be a Multiple Area Data

Set (MADS) if there are two to seven Shadow Area data sets allocated. It is also

possible to turn a SADS into a MADS after the DEDB Alter is run by allocating

additional Shadow Area data sets. The Shadow Area data sets are used exclusively by

the DEDB Alter utility and are not accessible by the IMS subsystem. The Shadow Area

Image Copy data sets are created during the migration of data to the Shadow Area data

sets.

Prior to executing the DEDB Alter utility, the Shadow Area and Shadow Image Copy

data sets must be allocated. Once allocated, they can be registered to DBRC using

8708- IMS 13 DB & DBRC:

data sets must be allocated. Once allocated, they can be registered to DBRC using

the INIT.ADS command. The DEDB Area Initialization utility (DBFUMIN0) formats the

Shadow Area and Shadow Area Image Copy data sets and flags them as available in

the RECON data set. There must be at least one Shadow Area and Shadow Area

Image Copy data sets flagged as Available in the Recon.

The DEDB Area Initialization Utility (DBFUMIN0) has been enhanced to format the

Shadow Area data sets and the Shadow Area Image Copy data sets. The ACTIVE

8808- IMS 13 DB & DBRC:

Shadow Area data sets and the Shadow Area Image Copy data sets. The ACTIVE

keyword indicates that the DEDB Area data sets are to be formatted. The SHADOW

keyword indicates that the Shadow Area and Shadow Area Image Copy data sets are

to be formatted. This utility will format either the Active DEDB Area data sets or the

Shadow Area and Shadow Area Image Copy data sets in one execution, but it can not

do both types of data sets in one execution. If DBRC=Y, then it can format both the

Shadow Area data sets and the Shadow Area Image Copy data sets in one execution.

The Shadow Area and Shadow Area Image Copy data sets can be formatted while the

Active DEDB Area data sets are online. After the utility completes, there are flags set in

the DBRC Recon data set. The Shadow Area data sets are flagged as “SHADOW

AVAIL” and the Shadow Area Image Copy data sets are flagged as “SHADOW IC

AVAIL”. The Shadow Area and Shadow Area Image Copy data sets both must be

formatted before the DEDB Alter utility can run.

The DEDB Alter utility uses the following control cards for execution. The TYPE

ALTER invokes the DEDB Alter utility. There are two functions and they are: 1)

8908- IMS 13 DB & DBRC:

ALTER invokes the DEDB Alter utility. There are two functions and they are: 1)

ALTERAREA and 2) REPLRAND. The UNKEYSEG keyword determines whether

unkeyed segments are allowed in the DEDB. The TIMEOUT value indicates how long

it can take for the DEDB Alter to quiesce the DL/I activity when suspending IMS

applications.

The RETRY keyword indicates whether to retry the DEDB Alter function if a timeout

occurs. A specification of “NO” indicates there should be no retried after the timeout

9008- IMS 13 DB & DBRC:

occurs. A specification of “NO” indicates there should be no retried after the timeout

occurs. A specification of “YES” indicates the retries should continue until the utility is

successful. A specification of “retry_value” indicates the number of retries that can be

attempted after the timeout occurs. The RETRYWAIT keyword indicates the number

of seconds to wait before the next retry of the commit process. Finally, the GO

keyword initiates the DEDB Alter utility execution.

This is sample JCL showing the DEDB Alter execution control cards for the

ALTERAREA function.

9108- IMS 13 DB & DBRC:

ALTERAREA function.

The DEDB Alter utility ALTERAREA function changes the UOW, SIZE, ROOT values

while the DEDB Area data set is online. The SIZE parameter affects the CI size of an

9208- IMS 13 DB & DBRC:

while the DEDB Area data set is online. The SIZE parameter affects the CI size of an

Area. The UOW and ROOT parameters affect the Root Addressable and

Independent Overflow parts of the DEDB Area. The RMNAME parameter changes the

Randomizer name while the DEDB Area data set is online. When a Randomizer name

is being change, the Active DEDB Area data sets are read using the existing

randomizer routine. The data is migrated from the Active DEDB Area data sets to the

Target DEDB Area data sets using the new Randomizer name. After the DEDB Alter is

completed, the new randomizer name replaces the existing randomizer name. At that

point, all DEDB Areas start to use the new randomizer name. The new name must be

a two-stage randomizer and it must be a different name from the existing randomizer

name. There can be only one Active DEDB Area Data set changed at a time. It is not

possible to run the DEDB Alter utility concurrently for another DEDB Area in the same

DEDB database. The ALTERAREA function does not support changes to DEDB

databases with SDEPs. However, it is possible to replace the randomizer name using

the REPLRAND function for DEDBs with SDEPs.

The UOW, ROOT, and SIZE parameters can be changed by the DEDB Alter utility.

The UOW parameter has two values and determines the number of Control Intervals

9308- IMS 13 DB & DBRC:

The UOW parameter has two values and determines the number of Control Intervals

(CI) in a UOW and the number of CI in the overflow section of the UOW. The ROOT

parameter has two values and determines the space allocated to the Root

Addressable Part and the Independent Overflow. The SIZE parameter indicates the

size of the CI in bytes.

The "direct part" of a DEDB area consists of the root addressable part and

the independent overflow part. These parts may contain both root segments

and their direct dependents, but not sequential dependent segments. The and their direct dependents, but not sequential dependent segments. The

root addressable part is further divided into groups of CIs called "Units of

Work" or UOWs. The independent overflow part holds roots and DDEPs

which have overflowed from the direct part, similar to (but not quite the same

as) the way overflow works for HDAM.

Following the direct part is a group of CIs called the "reorganization unit of

work." These CIs are no longer used by Fast Path, but are still there for

compatibility reasons.

Whatever space is left over from the direct part and reorg UOW is used for

SDEPs. There are no parameters in the DBD to define how much space is

to be used for SDEPs - it is just the difference between the VSAM DEFINE

and what is used by the other parts.

This diagram shows some terminology that applies to a DEDB area.

The first two CIs in an ADS contain control information and a control block

called the DMAC. CI0 is not very interesting at all, but we will talk about CI1

and the DMAC quite a bit.

The UOW mentioned on the previous visual consists of two types of CIs -

BASE (sometimes called RAP) CIs and DOVF (dependent overflow) CIs.

The DOVF CIs are used only for the overflow of BASE CIs in the same

UOW.

Independent overflow also contains two types of CIs - Space Map (SMAP)

CIs which have a similar function to the bit maps in HDAM or HIDAM

databases, and the IOVF CIs themselves, which contain roots and DDEPs

which have overflowed from the UOWs and their DOVF CIs,

As mentioned before, the REORG UOW is no longer used by Fast Path, but

still exists in the data set for compatibility reasons (wouldn't want to have to

reorg every area just to get rid of them).

And finally the SDEP CIs, which are all the CIs from the end of the REORG

UOW to the end of the VSAM ESDS.

Here are two examples of how the size of the DEDB Area can be changed. In the

first case, the DEDB Area size is increased without changing the CI size. Instead, the

9608- IMS 13 DB & DBRC:

first case, the DEDB Area size is increased without changing the CI size. Instead, the

UOW parameter is changed to increase the number of CIs in a UOW. The ROOT

parameter is also changed to allocate more space for the Root Addressable Part and

the Independent Overflow. In the second case, the DEDB Area size is increased

using a different CI size. In this example, the SIZE parameter uses a larger CI size,

the UOW is increased to put more CIs in the UOW, and the ROOT parameter is

increased to allocate more space for the Root Addressable Part and the Independent

Overflow.

Each area in a DEDB is defined by an AREA statement, replacing the

DATASET statement used for HDAM and HIDAM databases. The AREA

statement defines the area name (or DD name if the area is not registered), statement defines the area name (or DD name if the area is not registered),

the CI size, the size and configuration of a UOW, and how much

independent overflow to allocate. The values of these parameters can be

different for each AREA.

After all the AREA statements, the SEGM and FIELD statements define the

hierarchical structure of the database. All areas have the same structure.

After the DEDB DBD has been altered, the DBDGEN and the ACBGEN have been

executed, the Shadow Area and Shadow Area Image Copy data sets have been

9808- IMS 13 DB & DBRC:

executed, the Shadow Area and Shadow Area Image Copy data sets have been

allocated, registered and formatted, it is time to execute the DEDB Alter utility. The

ALTERAREA function migrates the data from the Active DEDB Area data sets to the

Shadow Area data sets and creates the Shadow Area Image Copy data sets. In the

process, any changes to the UOW, ROOT, or SIZE parameters in the Staging ACBLIB

are implemented. The current randomizer is used to read the Active DEDB Areas, but

the new randomizer is used to insert to the Shadow Area data sets.

When the changes are committed, the Active DEDB Area data sets are quiesced and

any DL/I calls are suspended. The Shadow Area data sets are synchronized with the

Active DEDB Area data sets. The changed ACB in the Staging ACBLIB is moved to

the Active ACBLIB and, if there is a new randomizer, it replaces the existing

randomizer. The Shadow Area data set becomes the new DEDB Area data set

preserving the original DEDB Area data set. Finally, the DEDB Area is un-quiesced

resuming suspended DL/I calls.

If the DEDB Alter function is successful, the Shadow Area data set is promoted to the

Active Area data set replacing the previous Active Area data sets which become the

9908- IMS 13 DB & DBRC:

Active Area data set replacing the previous Active Area data sets which become the

Shadow Area data sets. The Shadow IC data set is promoted to a User Image Copy.

In DBRC, this User Image Copy is registered as a User Image Copy so that it can be

counted in the GENMAX count. It is note a Standard Image Copy, it is just an image of

the Active Area data set. To recover a DEDB Area with this User Image Copy, the user

must notify DBRC (NOTIFY.RECOV) with the name of this Area data set and the time

when the Shadow Image Copy was created (i.e. RCVTIME). Specifying the

GENJCL.RECOV command without an image copy name will pick up this Shadow

Image Copy name.

If the DEDB Alter was unsuccessful, the Active Area data sets remain active and are

still accessible to the IMS systems. The flags in DBRC are checked to see if any data

10008- IMS 13 DB & DBRC:

still accessible to the IMS systems. The flags in DBRC are checked to see if any data

was written to the Shadow Area data sets. If the flag still shows AVAIL, then no data

was written to the Shadow Area data sets and they can be used in subsequent DEDB

Alter utility executions. If the flag shows UNAVAIL, then data was written to the

Shadow Area data sets and they need to be re-allocated and re-formatted.

This is sample JCL showing the DEDB Alter execution control cards for the

REPLRAND function.

10108- IMS 13 DB & DBRC:

REPLRAND function.

The DEDB Alter function, REPLRAND, allows the user to change the randomizer

name using the RMNAME DEDB DBD while the DEDB remains online. The new name

10208- IMS 13 DB & DBRC:

name using the RMNAME DEDB DBD while the DEDB remains online. The new name

and the existing name must be a 2-stage randomizer and the new name must be

different from the existing randomizer name. After the DEDB Alter completes, the new

randomizer replaces the existing randomizer and all Active Areas in the DEDB

database begin to use the new randomizer. There can be only one Active DEDB

changing at a time. The REPLRAND function supports DEDB databases with and

without SDEPs.

The DEDB Alter utility with the REPLRAND function executes after the new

randomizer is assembled and linkedited, the DEDB DBD is modified with the new

10308- IMS 13 DB & DBRC:

randomizer is assembled and linkedited, the DEDB DBD is modified with the new

randomizer name, and the DBDGEN and ACBGEN are executed. The DEDB Alter

REPLRAND function will load the new randomizer from the IMS SDFSRESL STEPLIB

concatentation and the ACB from the Staging ACBLIB. When the randomizer change

is committed, the Active DEDB database is quiesced forcing DL/I calls to be

suspended and allowing the changed ACB in the Staging ACBLIB to be moved to the

Active ACBLIB. Finally, the DEDB database is unquiesced and DL/I calls are resumed.

If the DEDB Alter REPLRAND function is successful, the new randomizer replaces the

existing randomizer. If the function is unsuccessful, the existing randomizer remains in

10408- IMS 13 DB & DBRC:

existing randomizer. If the function is unsuccessful, the existing randomizer remains in

effect.

For the DEDB Alter functions, all IMS data sharing systems need to be at the IMS 13

level. There are no special hardware requirements for DEDB Alter.

10508- IMS 13 DB & DBRC:

level. There are no special hardware requirements for DEDB Alter.

The randomizer must be a 2-stage randomizer where the logic in the randomizer

behaves like a 2-stage randomizer. Also, the DEDB Area must be registered to DBRC.

10608- IMS 13 DB & DBRC:

behaves like a 2-stage randomizer. Also, the DEDB Area must be registered to DBRC.

This supports ACBSHR=Y for the sharing IMS system if the active system is XRF or

FDBR. Finally, the DBRC MINVERS parameter must be set to 13.1 to use the DEDB

Alter capability.

In IMS 13, Fast Path has added the ability to dynamically change specific DEDB

specifications. For example, the UOW, SIZE, ROOT, and Randomizer routine can be

10708- IMS 13 DB & DBRC:

specifications. For example, the UOW, SIZE, ROOT, and Randomizer routine can be

changed while the DEDB is online. There is a new DEDB Alter utility that allows these

DEDB changes to occur. Allowing dynamic changes to the DEDBs will improve data

availability and reduce system down time.

This section addresses the Secondary Index Enhancements new function.

10808- IMS 13 DB & DBRC:

In IMS 12, IMS Fast Path added the ability to create secondary indexes. In IMS 13,

this function has been enhanced to allow Segment Search Arguments to use the

10908- IMS 13 DB & DBRC:

this function has been enhanced to allow Segment Search Arguments to use the

Boolean Operators “AND” and “OR”. Also, support was added to allow specific

Command Codes to be used with the Secondary Index search field.

This support allows better programming capabilities for DEDBs. It allows the ability to

refine DL/I calls and additional command code support.

There are three IMS 12 PTFs for Fast Path Secondary Index functions that are being

forwarded into IMS 13.

11008- IMS 13 DB & DBRC:

forwarded into IMS 13.

This is the DBD for the DEDB (DEDBHOSP). Segment HOSPITAL is the source and

the target segment. The LCHILD and XDFLD statements follow the SEGM statement

11108- IMS 13 DB & DBRC:

the target segment. The LCHILD and XDFLD statements follow the SEGM statement

for HOSPITAL.

The LCHILD segment specifies the secondary index segment, IXSASEG, and

database, FPSI1ASA. PTR=SYMB is specified, as required.

The XDFLD statement specifies the name of the search field, HOSPADDR, for use with

the secondary index. It also specifies that field IXSAIDX is used to build the search

field.

This page illustrates the physical structure of a database and the structure as viewed

when accessing the database through the secondary index. In this case, they are the

11208- IMS 13 DB & DBRC:

when accessing the database through the secondary index. In this case, they are the

same since the root segment is also the target segment. As explained on the previous

page, the key feedback area is composed of the secondary index key and the keys of

the dependent segments. The key feedback area for segment PATIENT is composed

of the secondary index key, the key of segment WARD and the key of segment

PATIENT.

This is the DBD for the secondary index database. The SEGM statement defines the

segment in the secondary index. The FIELD statement defines the sequence field in the

11308- IMS 13 DB & DBRC:

segment in the secondary index. The FIELD statement defines the sequence field in the

secondary index. The LCHILD statement specifies the target segment, HOSPITAL, and

database, DEDBHOSP, in the NAME= parameter. The INDEX= parameter specifies the

NAME= value on the XDFLD statement of the target database. This is IXSAIDX, the

search field for use with the secondary index.

This is the DBD for the DEDB (DEDBHOSP). Segment HOSPITAL is the target and

PATIENT is the source segment. The LCHILD and XDFLD statements follow the

11408- IMS 13 DB & DBRC:

PATIENT is the source segment. The LCHILD and XDFLD statements follow the

SEGM statement for HOSPITAL.

The LCHILD segment specifies the secondary index segment, IXSBSEG, and

database, FPSI1ASB.

The XDFLD statement specifies the name of the search field, PATIID, for use with the

secondary index. It also specifies that field IXSBIDX is used to build the search field.

This page illustrates the physical structure of a database and the structure as viewed

when accessing the database through the secondary index. In this case, they are not

11508- IMS 13 DB & DBRC:

when accessing the database through the secondary index. In this case, they are not

the same since the target segment is a dependent segment. The Key Feedback for

HOSPITAL is the secondary index key plus the key of HOSPITAL. The Key Feedback

area for PATIENT is the secondary index key plus the key of PATIENT.

This is the DBD for the secondary index database. The SEGM statement defines the

segment in the secondary index. The FIELD statement defines the sequence field in

11608- IMS 13 DB & DBRC:

segment in the secondary index. The FIELD statement defines the sequence field in

the secondary index. The LCHILD statement specifies the target segment, PATIENT,

and database, DEDBHOSP, in the NAME= parameter. The INDEX= parameter

specifies the NAME= value on the XDFLD statement of the target database. This is

IXSBIDX, the search field for use with the secondary index.

The secondary index search field is now allowed to use Boolean Operators. These

examples show how the Boolean Operators (* or &) and (+ or |) are used when the

11708- IMS 13 DB & DBRC:

examples show how the Boolean Operators (* or &) and (+ or |) are used when the

target and source segment are the root segment and when the source segment is a

dependent segment.

With Multiple SSA support for a secondary index, it is possible to use the index

search field along with other SSA arguments.

11808- IMS 13 DB & DBRC:

search field along with other SSA arguments.

In IMS 13, Command Code support was added to the Fast Path DEDB Secondary

Index capability. The codes that are supported are: C, D, F, L, N, P, Q, U, V, and –

11908- IMS 13 DB & DBRC:

Index capability. The codes that are supported are: C, D, F, L, N, P, Q, U, V, and –

“null”.

In IMS 13, the codes that are not supported are: A, G, M, O, R, S, W, and Z.

12008- IMS 13 DB & DBRC:

In IMS 12, IMS Fast Path added the ability to create secondary indexes. In IMS 13, this

function has been enhanced to allow Segment Search Arguments to use the Boolean

12108- IMS 13 DB & DBRC:

function has been enhanced to allow Segment Search Arguments to use the Boolean

Operators “AND” and “OR”. Also, support was added to allow specific Command

Codes to be used with the Secondary Index search field.

This support allows better programming capabilities for DEDBs. It also allows the ability

to refine DL/I calls and use command code support.

This sections covers the DBRC Migration and Coexistence function in IMS 13.

12208- IMS 13 DB & DBRC:

IMS 11 RECONs may be upgraded directly to IMS 13. Similarly, IMS 12 RECONs

may be upgraded to IMS 13. There is no support to upgrade RECONs from previous

12308- IMS 13 DB & DBRC:

may be upgraded to IMS 13. There is no support to upgrade RECONs from previous

releases directly to IMS 13.

PM53134 is an IMS 11 SPE (Small Programming Enhancement) APAR. It allows IMS

11 to use RECONs which have been upgraded to IMS 13. The PTF associated with

this SPE is UK80026.

PM53139 is an IMS 12 SPE APAR. It allows IMS 12 to use RECONs which have

been upgraded to IMS 13. The PTF associated with this SPE is UK80027.

These APARs should be applied to IMS 11 or IMS 12 before its RECONs are

upgraded to IMS 13.

IMS 10 added the coexistence level to the RECON listing of subsystem records. The

VERSION= field indicates the IMS release level of the subsystem. The

12408- IMS 13 DB & DBRC:

VERSION= field indicates the IMS release level of the subsystem. The

COEXISTENCE LEVEL= field indicates if the coexistence maintenance for a later

release has been applied. In this example, the IMS 13 DBRC coexistence

maintenance has been applied to the IMS 11 system used by this subsystem. This

listing could have been produced by an IMS 11 or IMS 12 DBRC utility with the IMS 13

coexistence SPE applied or it could have been produced by the IMS 13 DBRC utility.

IMS 13 RECON upgrade uses the same check on the DMB table that was introduced

for IMS V12. This check is needed only when the IMS V11 RECON is upgraded

12508- IMS 13 DB & DBRC:

for IMS V12. This check is needed only when the IMS V11 RECON is upgraded

directly to IMS V13. It verifies that the high-order bit is on for all DMB numbers in

database records. By convention, this bit should always be on. If it is not on, the

upgrade process turns the bit on if the database is not authorized. If it is authorized,

the upgrade cannot turn the bit on. When a DMB number is found without the high-

order bit on, the upgrade issues either the DSP1235W or DSP1236E message.

DSP1235W is issued when the upgrade is able to correct the bit setting. DSP1236E

is issued when the upgrade cannot correct the bit setting because the database is

authorized. If DSP1236E is issued, the upgrade must be done when the database is

not authorized.

IMS 12 added the CHECKUP keyword for the CHANGE.RECON UPGRADE

command. When CHECKUP is included in the command, an upgrade is not done;

12608- IMS 13 DB & DBRC:

command. When CHECKUP is included in the command, an upgrade is not done;

however, all records which could prevent an upgrade from being successful are read.

This includes the database records mentioned on the previous page. The

DFS1235W and DFS1236E messages are issued when the high-order bit of

database records are not on.

RECONs are upgraded to IMS 13 by using the DBRC CHANGE.RECON UPGRADE

command with the IMS 13 DBRC utility (DSPURX00).

12708- IMS 13 DB & DBRC:

command with the IMS 13 DBRC utility (DSPURX00).

The concurrent upgrade process requires that there are two active RECON data sets

with an available spare. On the other hand, if there are no subsystem records, the

upgrade may be done without a spare RECON. The upgrade process upgrades the

records in COPY1 and then makes COPY2 equal to COPY1. In a testing environment,

you could do the upgrade with only one RECON (STARTNEW=YES), but this is not

recommended for production environments.

The upgrade may be run while the RECONs are allocated to and being used by IMS 11

or IMS 12. Of course, these systems must be able to use IMS 13 RECONs. The

upgrade checks the RECONs to ensure that any subsystems using the RECONs are

capable of using IMS 13 RECONs. It does this by examining the SUBSYS records in

the RECONs. Some IMS utilities do not create SUBSYS records. Thus, the upgrade

cannot determine if they are running. Users must ensure that any IMS utility which is

running at the time of the upgrade has the appropriate maintenance (PM53134 or

PM53139) which allows it to read IMS 13 RECONs.

IMS 10 added the capability to issue DBRC commands from programs using the DBRC

API. This includes the capability to issue the CHANGE.RECON UPGRADE command.

The upgrade will add a DMB Table record if it does not already exist. It may not exist if

the upgrade is from IMS V11 to IMS V13, however, it will already exist if the upgrade is

12808- IMS 13 DB & DBRC:

the upgrade is from IMS V11 to IMS V13, however, it will already exist if the upgrade is

from IMS V12 to IMS V13.

The upgrade of RECONs from IMS V11 or IMS V12 to IMS V13 will not increase the

size of some RECON records. The RECON Partition record is only extended if HALDB

alter is active in V13 with MINVERS set to 13.1.

The upgrade of the RECONs includes the reading of the subsystem (SSYS) records to

ensure that these subsystems are running with the DBRC coexistence SPE. If not, the

12908- IMS 13 DB & DBRC:

ensure that these subsystems are running with the DBRC coexistence SPE. If not, the

subsystem could not use the RECONs and the upgrade fails.

The update changes a few records in the RECONs.

All database records are read. A check is made to ensure that the high-order bit of the

DMB numbers is on. If it is not on and the database is not authorized, the bit is turned

on. If the high-order bit is not on and the database is authorized, the upgrade fails. The

count of database records is kept. If the DMB table does not exist, it is built. If it does

exist, it is rebuilt. The count of database records is kept.

The version indicator is set to 13 and the MINVERS value is set to ‘11.1' if it previously

was ‘10.1'. The Cross DBRC Service Level ID (CDSLID) is set to the higher of the

value in the RECONs before the upgrade and "1".

The version indicator in the RECON header extension record is set to 13.

The upgrade is done by upgrading the records in COPY1 and then copying it to

COPY2.

The upgrade of the RECONs includes the reading of the subsystem (SSYS) records to

ensure that these subsystems are running with the DBRC coexistence SPE. If not, the

13008- IMS 13 DB & DBRC:

ensure that these subsystems are running with the DBRC coexistence SPE. If not, the

subsystem could not use the RECONs and the upgrade fails.

The update changes the RECON header and RECON header extension records in the

RECONs.

The header record is changed to set the MINVERS value to ‘11.1' if it previously was

below ‘11.1'.

The version indicator in the RECON header extension record is set to 13.

The upgrade is done by upgrading the records in COPY1 and then copying it to

COPY2.

If Parallel RECON Access is in effect, there cannot be any shunted I/O when the

upgrade begins. The process begins with a quiesce close and a check for shunted

13108- IMS 13 DB & DBRC:

upgrade begins. The process begins with a quiesce close and a check for shunted

I/O. The RECONs are closed and reopened in LSR mode. The records are upgraded

as they are for non-PRA. This includes upgrading the records in COPY1 and then

copying COPY1 to the spare. After the upgrade completes, the RECONs are

reopened in PRA mode and the quiesce is ended.

MINVERS is the parameter on the INIT.RECON and CHANGE.RECON commands

which controls the minimum level of IMS which may use the RECONs. The minimum

13208- IMS 13 DB & DBRC:

which controls the minimum level of IMS which may use the RECONs. The minimum

level of IMS which can use IMS 13 RECONs is IMS 11. If the previous MINVERS value

was for ‘10.1', it is changed to ‘11.1' by the upgrade. Otherwise, upgrades do not

change the MINVERS value.

When the RECONs are upgraded to IMS 13 the minimum MINVERS value is 11.1.

MINVERS 12.1 is required for XCF use (instead of RRS) by APPC synchronous

conversations and OTMA CM1 (send-then-commit).

MINVERS 13.1 is required for the new HALDB Alter, DEDB Alter, and Synchronous

Program-to-Program Switch in a Shared Queues environment support added in IMS

V13.

HALDB alter and DEDB alter cannot be active when lowering the MINVERS value from

13.1. New error messages are issued and the command fails.

DSP1249E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS

FOR DATABASE name ALTER COUNT=xxxxx ALTER COMPLETE COUNT=xxxxx

DSP1250E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS

FOR PARTITION DATABASE name

MINVERS is the parameter on the INIT.RECON and CHANGE.RECON commands

which controls the minimum level of IMS which may use the RECONs. The minimum

13308- IMS 13 DB & DBRC:

which controls the minimum level of IMS which may use the RECONs. The minimum

level of IMS which can use IMS 13 RECONs is IMS 11. If the previous MINVERS value

was for ‘10.1', it is changed to ‘11.1' by the upgrade. Otherwise, upgrades do not

change the MINVERS value.

When the RECONs are upgraded to IMS 13 the minimum MINVERS value is 11.1.

MINVERS 12.1 is required for XCF use (instead of RRS) by APPC synchronous

conversations and OTMA CM1 (send-then-commit).

MINVERS 13.1 is required for the new HALDB Alter, DEDB Alter, and Synchronous

Program-to-Program Switch in a Shared Queues environment support added in IMS

V13.

HALDB alter and DEDB alter cannot be active when lowering the MINVERS value from

13.1. New error messages are issued and the command fails.

DSP1249E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS

FOR DATABASE name ALTER COUNT=xxxxx ALTER COMPLETE COUNT=xxxxx

DSP1250E MINVERS VALUE IS INCONSISTENT WITH THE HALDB ALTER STATUS

FOR PARTITION DATABASE name

When the RECONs are at a higher level than the Log Archive utility, the utility keeps

two copies of each RECON record. One is at the higher level. It is read from the

13408- IMS 13 DB & DBRC:

two copies of each RECON record. One is at the higher level. It is read from the

RECONs or written to the RECONs. The other copy is at the lower level. It is

processed by the utility. Records are converted from one level to the other when

necessary. The second copy of each RECON record uses extra memory. This

increases the memory requirement for the utility when it uses RECONs at a higher

level.

This shows the DBRC steps for migration to IMS 13.

13508- IMS 13 DB & DBRC:

The first set of steps allows you to begin using IMS 13. The migration/coexistence

SPE must be installed on the old release before you upgrade the RECONs to IMS 13.

The IMS 13 DBRC Type 4 SVC must be installed before you may use IMS 13. The

upgrade of the RECONs to IMS 13 requires that you use the SDFSRESL library

created by the installation of IMS 13. The upgrade using this library will be to the IMS

13 format. Once the RECONs have been upgraded, you may begin using IMS 13.

You may also continue to use IMS 11 or IMS 12.

When you upgrade the RECONs to IMS 13, the MINVERS value will be ‘11.1’ or

higher.

Once you have discontinued all use of IMS 11 and IMS 12, you can change the

MINVERS value to '13.1'.

Section Title in Header

This section addresses the DELETE.LOG function in IMS 13.

13608- IMS 13 DB & DBRC:

This section addresses the DELETE.LOG function in IMS 13.

In IMS 13, the DELETE.LOG INACTIVE or DELETE.LOG TOTIME

Section Title in Header

13708- IMS 13 DB & DBRC:

In IMS 13, the DELETE.LOG INACTIVE or DELETE.LOG TOTIME

commands used the Start Time to determine when to delete the PRILOG and

SECLOG records.

The DELETE.LOG command determines when the PRILOG or SECLOG

13808- IMS 13 DB & DBRC:

The DELETE.LOG command determines when the PRILOG or SECLOG

records are deleted. There must be no updates on any databases for the logs

in question. Prior to IMS 13, the DELETE.LOG command always used the log

Start Time. In IMS 13, DBRC will check to see if the Stop Time is beyond the

LOGRET time to determine if the PRILOG or SECLOG should be deleted.

