CICS Transaction Server for z/OS

[image: image1.png]

 [image: image2.emf]

CICS and Web 2.0

Atom Feeds from CICS - Introduction and usage scenario
CICS Development

SWAT team

Wednesday 2nd July 2008
CICS Evolution
The opportunity for IBM CICS® Transaction Server users to realize the full potential of their CICS systems has never been so great. CICS has been at the core of business processing for nearly 40 years and during that time it has matured to take advantage of emerging technologies as they arise.

CICS has provided new connectivity techniques such as TCPIP networking and new application development paradigms with Web Services allowing the re-use and re-combination of existing applications to provide new and flexible capabilities in an SOA.
CICS has provided service management enhancements using modern user interfaces delivered with Tivoli products for Service Level Agreement and Governance support. In addition, CICS has continued to provide architectural enhancements to relieve constraints and allow for the growth of customer applications.

Now, the convergence of CICS innovation, SOA and Web 2.0 technology helps to make flexible and dynamic information infrastructures possible, while at the same time preserving the qualities of performance and reliability that customer core business applications depend on.
Web 2.0, REST and Atom Feeds
With the coming of the Web 2.0 world, the Internet has matured from a collection of servers to a pervasive and flexible platform capable of meeting the needs of both business and personal computing in the 21st century.
Web 1.0 was designed for sharing and browsing hyper-linked documents and the Web 1.0 technology stack serves this purpose well. However, Web 1.0 was never meant for applications and is limited by the “click, wait and page refresh” interaction model. Further the Web 1.0 model lacks support for two-way stateful communication between the server and client and reliable messaging. Web 2.0 applications often use a combination of technologies devised within the last decade, including public web service APIs, Ajax and web syndication to address these limitations
Syndication originally evolved on the internet through the use of simple protocols such as Really Simple Syndication (RSS), to deliver news and information in a format that could easily be consumed and aggregated between websites and by end users. Around the same time, the concept of Representational State Transfer (REST) services evolved - a simple prescription to use basic HTTP protocol features and XML to exchange data between IT applications.

As Web 2.0 has evolved, use of these technologies has exploded. The simplicity of REST services has led to its widespread adoption in consumer and end-user applications, whereas the more sophisticated and complex Web service standards have been more successful in Enterprise Integration.

In recent years Atom has evolved as a major standard for syndicated information, providing a more comprehensive and better designed capability than RSS, consistent with REST principles.
Atom is both a protocol and an XML format for content providers to provide updated information through XML-based Web feeds. Atom places the content and metadata of an internet resource into a format that can be parsed by computer, so it is perfect for displaying, filtering, remixing, and archiving information. An Atom feed is a Web feed that uses the Atom protocol and format. Web users can subscribe to a feed, allowing them to see new content as soon as it is made available.
In this article we use the term mashup to describe a Web 2.0 application that uses a variety of information sources combined to create a compelling end user experience.

The CICS Atom Feed SupportPac
The CICS SupportPac CA8K - Delivering Atom feeds from CICS brings CICS applications into the Web 2.0 world. The SupportPac uses the pipeline support in CICS to enable clients, such as Web browsers or Atom feed aggregators, to access Atom feeds by accessing CICS temporary storage queues or by linking to customized service routines.
Getting Started with the SupportPac

This SupportPac provides sample programs and configuration files demonstrating how to publish and update CICS data using the Atom publishing protocol and the Atom syndication format. The CA8K SupportPac is intended for use with CICS TS V3.1 and CICS TS V3.2 only and demonstrates delivering Atom feed content from CICS temporary storage (TS) queues, or by driving a user-supplied program.
To use this SupportPac, CICS APAR PK58721 and z/OS version 1.7 (or later) with APAR OA16303 (for the XML System Services parser) must be installed.
Usage Scenario

Organisations are looking to exploit mashup technology in a variety of ways, broadly falling into four categories:

· The rapid provision of interfaces to new composite products and services, particularly for content- and information-based products. For example, the provision of new location-aware applications for mobile telephones

· The provision of underlying information feeds and graphical “widgets” to end users, customers and consumers to use in their own mashups - for example, the provision of digital video-clips in widgets for users to incorporate in their pages on social networking sites

· The provision of composite user interfaces for expert workers, drawing information and functions together from a variety of systems. For example, the provision of a single user interface to customer relationship managers responsible for complex accounts

· The provision of decision-support tools for knowledge workers who require access to a variety of commercial, public, structured and unstructured data and content in order to take business decisions or produce reports.

In this paper we document an insurance industry sample application built by IBM for demonstration purposes that performs a decision-support role. The scenario is based around underwriting policies for commercial property insurance. Such policies often require sophisticated decision making:
· Commercial properties such as sports facilities and retail environments are often unique insurance cases, and standard tariffs and risk assessments cannot be applied.

· Both public and private information is required to assess the policies. For example, claims history data, information from industry anti-fraud bodies, and environmental data such as flood-risk or crime levels.
· Both structured and unstructured information is used in the assessment process for insurance. For example, mapping, architectural drawings and current risk exposure levels.

Mashups provide an excellent tool for such a knowledge worker scenario, and enable the user to manipulate different sets of data according to the specific features of each case for which they are responsible.

In the example, we show an end user submitting the details of a property for which they require insurance. These details are submitted to the insurance policy system using a Web 2.0 REST service. We then show the underwriter using a mashup to investigate the details of this and other outstanding requests for insurance, again interacting with the insurance systems via Web 2.0 REST services. The mashup allows the underwriter to compare the request for insurance with existing and previous insured properties of similar types and in similar areas, and assess both the individual property risk and the resultant overall level of exposure to the insurer.

Implementation

The graphical front-end to the demonstration is Web browser based and was built using IBM Lotus mashups technology which provides a fast and simple way to assemble enterprise and Internet content into new Web applications. A business mashup is a collaborative web application that combines data from multiple sources to provide business benefit coupled with a compelling user experience. IBM Lotus Mashups provides a graphical interface for on-the-glass assembly of new applications by web-savvy business users, along with a mashup catalog which facilitates sharing and discovery of mashup assets. IBM Lotus Mashups can be hosted on a variety of platforms for added governance and IT control, and a rich set of out-of-the-box, business-ready widgets.
In this demonstration, IBM Lotus Mashups accepts Atom feeds from CICS and also takes input from an Internet map provider. Users access the application using Web browsers, IBM Lotus Mashups runs in a Unix System p midrange machine and CICS Transaction Server 3.2 running on an IBM z9 mainframe provides Atom feeds to the browser. Insurance policy data is managed by a set of business applications on the mainframe which have been developed around a fictitious insurance company.

The application suite is known as “Genapp” and has backend processing written in CICS COBOL; Genapp represents a cross section of typical applications that customers have implemented in the real world. The entire Genapp suite includes modules for customer, house, car and life insurance. In its simplest form, the backend Genapp programs receives data via a COMMAREA, and carries out read/write operations to a set of DB2 database tables to both lookup and store data.

[image: image3.emf]IBM Lotus

Mashups

Server

High level architecture: CICS Atom feeds

z/OS 1.9

CICS

Transaction

Server 3..2

DB2 9 for

z/OS

CA8K Support Pac

Insurance

Customers and

Policies

PC -Browser

Map API

Mainframe

Atom feeds

Unix

Servlet

Figure 1 High level architecture

The main insurance company underwriters screen consists of three feeds to three Lotus Mashup Web browser-based widgets, each widget has its own display pane in the browser. The open source Dojo Toolkit for javascript is used in the IBM Lotus Mashups product to create the widgets.

[image: image4.emf]Customer list Atom

feed from CICS

Insurance Policy list

Atom feed from CICS

Maps feed

Figure 2 Web browser application
The left widget is populated by an Atom feed from CICS which provides a list of customers who have insurance policies, or who have requested insurance policy additions, renewals or updates. Clicking on a customer entry here displays details of the policies held by the customer in the middle widget. In addition, a map reference is displayed showing the location of the property. The map is used by the underwriter to check for high risk areas and any previous claims from the area are flagged giving a historical perspective of insurance liability for the surrounding region. Although not implemented in the demonstration, geographical data such as flood risk areas could also be added into this widget using the IBM Lotus Mashups drag and drop technology.
Maps from OpenStreetMap are used, OpenStreetMap is a free and editable map service of the whole world. Our demonstration uses the OpenStreetMap REST service interface which provides read and write operations on the raw map data contained in the OpenStreetMap database. Latitude and longitude map co-ordinates of the various properties to be insured are held in DB2 on the mainframe and passed to the OpenStreetMaps service, a map of the area at those co-ordinates is then sent back to the requesting browser.
Requests into CICS

There is one request to add (or update) policies and three customer and policy query requests.
1. Update request

The update request into CICS is generated by an end user requesting a change or addition to their insurance policies. The request is an http request containing XML tags and data which is passed to the CICS Atom SupportPac. In our demonstration, update requests have not been implemented in CICS. When attempting an update we show an example of the XML data that would be returned to the IBM Lotus Mashups server and onto CICS. An example of the tags for requesting insurance for a new property is shown below:

[image: image5.emf]

Figure 3 XML content of an update request
In this document we concentrate on describing the flow of events for the query requests into CICS.

2. Query requests
When the application is used by an underwriter, a request for a list of customers is generated for the leftmost widget in Figure 2 above.
When the user clicks on a customer link in the leftmost widget, the Lotus Mashups framework generates an event containing the identification (ID) of the customer that was selected. This ID is picked up by other widgets running in the browser which format a URL and send it to the mashups server to make a call into CICS to request the details for that ID. A servlet running on the mashups server passes the request onto CICS like a proxy. We implemented things this way because javascript in the browser can't generally make http requests to other servers unless they are in the same domain. The Dojo Toolkit built into Lotus Mashups has a callback function to process the response. Using entries in the xml configuration file for the mashup, a widget is configured to subscribe to an event. The following example shows a portion of the xml file which instructs the “handlePayload” javascript function to be called when the “payloadReceived” event has occurred.
<iw:handledEvents>

<iw:event eventName="payloadReceived" payloadType="any" description="new event payload received" onEvent="handlePayload"/>

</iw:handledEvents>>
The handlePayload javascript code specified in the example above is shown below, the load function is the callback function which processes the response:

handlePayload: function(iEvent) {

console.log(">> insureDisplay handlePayload");

var _this = this;
// The data passed to this widget from other widgets is stored in iEvent.payload. In this case, the id of the selected customer is added to the URL being called by this widget to retrieve the atom feed containing the customer details:

var _url = ”http://server.ibm.com/mashuphub/client/plugin/generate/entryid/26/pluginid/15?CID=" + iEvent.payload;

// Add the proxy to the URL:

var normUrl="/mm.webapp/proxy/http/"+_url.replace(/^\s+|\s+$/, '').substring(7);
var entryObjects = new Array();

var entryNodes;

var anEntry = null;

dojo.xhrPost({

 url: normUrl,

 handleAs: "xml",

 timeout: 5000, // Time in milliseconds

// When the atom feed from CICS has been retrieved, process and display each entry:

load: function(response, ioArgs) {

entryNodes = response.getElementsByTagName("entry");
for (var i = 0 ; i < entryNodes.length ; i++){

 anEntry = entryNodes[i];

 parseEntry(anEntry,entryObjects);

}

this.displayData(entryObjects);

},

// The ERROR function will be called in an error case.

 error: function(response, ioArgs) {

 console.log("Error: " + response);

return "";

}

});

The format of the request that CICS receives from the above dojo.xhrPost function is of the form:
 http://<server:port>/atom/genapp/polinq?<payload>
In this URI we see “atom” (atom feeds), “genapp” (the name of our CICS application) and “polinq” (policy enquiry); the URI is mapped to a CICS pipeline which directs the request to the SupportPac handler as we will see later. Note that the URI “/atom/genapp/polinq” is not a physical location in the z/OS Unix System Services filesystem, rather it is a mechanism that:
· Ensures that the incoming http request is sent to the correct pipeline
· Enables the SupportPac to call the correct Atom feed processing resource (either a temporary storage queue or a custom written program)
For populating the left hand widget in the browser the request into CICS in this case is:

 http://<server:port>/atom/genapp/polinq?CID=0
A customer id of zero is used to indicate that a list of all customers is being requested. On receiving this request, a list of policies is obtained by CICS from DB2 tables and returned to the Web browser as an Atom feed which populates the left widget on the Web browser display.

To populate the middle widget at the Web browser in Figure 2, a policy id is arbitrarily chosen and only one policy is displayed. The policy details are requested by:

 http://<server:port>/atom/genapp/polinq?CID=x&PID=y
where y is the policy number requested by the underwriter. For the above three query requests CICS returns an Atom feed to the requesting browser. We will see in more detail how these requests are handled by CICS in the next section.
The third widget showing the map is populated from OpenStreetMap as described above.

CICS request processing

The SupportPac uses the pipeline support in CICS to access Atom feeds. You must define a number of CICS resources and create a pipeline configuration file to serve Atom responses to clients.
There are two programs that generate Atom documents in the SupportPac; an Atom feed generator (DFH$W2FD) and an Atom services generator (DFH$W2SD). The pipeline configuration file specifies the DFH$W2FD or DFH$W2SD program as a message handler. This message handler program links to one of two CICS programs, or service routines, to access the CICS resource:

1. The DFH$W2TS service routine to access a temporary storage queue and operate on the records in the queue

2. A custom written service routine to access arbitrary CICS resources.
As we had a requirement to access DB2 tables in our demonstration we used the second option and wrote our own service routine.
There are a number of components within CICS that are involved in processing http requests and returning Atom feeds.
[image: image6.emf]TCPIP

Service

Urimap

Pipeline

Service

Routine

LGW2ATOM

(COBOL)

http

request

CICS Transaction Server 3..2

DPL

DB2 9 for

z/OS

CICS Application suite

“Genapp”

AOR

COMMAREA

Customer

tables

Policy tables

Atom feeds

CA8K

Support Pac

DFH$W2FD

Response

CICS Atom feed Request Processing

1

2

3

4

5

6

7

8

9

CUST

CUST

CUST

ATOM

TITLE

SUMMARY

CONTENT

DFHREQUEST

ATOM

PARAMETERS

CONTAINER

COMMAREA

DOR

SQL

LGICUS01

LGIPOL01

LGICDB01

LGIPDB01

 Figure 4 CICS request processing
1. A TCPIPSERVICE is defined to CICS which listens for http requests arriving on a specific port
2. The servlet sends a standard http request (note that this is not a Web Services/SOAP request) to the port defined in the CICS TCPIPSERVICE. The incoming URI is examined and routed to the correct CICS pipeline which invokes the Atom feed SupportPac message handler. CICS uses a transaction alias of CPIH for pipeline management so the Atom feed processing by CICS is run under the CPIH transaction
3. The Atom feed SupportPac message handler program specified in the pipeline (DFH$W2FD), picks up the request, and places the request in a storage buffer and populates the DFHREQUEST and ATOMPARAMETERS containers ready to send to our COBOL custom written program LGW2ATOM. The DFHREQUEST container is present only for HTTP POST and HTTP PUT requests and contains the HTTP request body. Each parameter passed in the ATOMPARAMETERS container is a pointer to an 8 byte area. The first two parameters in the ATOMPARAMETERS container are for options and response data, the remaining parameters are pointers to a structure. This structure contains a further pointer to the parameter value and the absolute length of the parameter value.
4. DFH$W2FD then links to LGW2ATOM.
5. LGW2ATOM reads the request from the ATOMPARAMETERS container and builds a COMMAREA to pass to our Genapp CICS business application.
6. During processing, LGW2ATOM links to two programs in the Genapp AOR, called LGICUS01 (which provides customer information) and LGIPOL01 (which provides policy information).
7. Program LGICUS01 calls program LGICDB01 in the DOR which runs an SQL query against a DB2 database to extract customer details. Program LGIPOL01 calls program LGIPDB01 in the DOR which runs an SQL query against a DB2 database to extract policy details. The data that returns from DB2 is a variable length list of customers or policies (or both). A loop in our LGW2ATOM COBOL service handler places each of the returned records in containers to be passed back to DFH$W2FD. That section of the code follows:

Perform Build-ATOM-Feed Varying ICOM-Index

 From 1 By 1 Until ICOM-Index > ICOM-Record-Count

Multiply Length Of ATOM-Content-Element by

 ICOM-Record-Count Giving

 ATOMCONTENT-Length

Exec CICS Put Container('ATOMDATA')

 FROM(ATOM-Data-Areas)

 Flength(ATOMCONTENT-Length)

End-Exec

Exec CICS Put Container('ATOMRECS')

 FROM(ATOM-Data-Records)

 Flength(Length Of ATOM-Data-Records)

End-Exec.

Perform ATOM-Points

Perform Set-ATOM-Containers.

Exec CICS Return

End-Exec.
8. Our service routine passes the request back to DFH$W2FD with an EXEC CICS RETURN. Three containers are passed back; the ATOMTITLE, ATOMSUMMARY and ATOMCONTENT. These hold the data to be inserted into the atom:title, atom:summary and atom:content elements of the atom feed.
9. DFH$W2FD contructs the final result and returns the the final Atom feed in the DFHRESPONSE container, for delivery by the pipeline back to the Lotus mashups server. At this point the CPIH pipeline management transaction ends along with the unit of work for the Atom feed request, all CICS containers used in the processing of this Atom feed are destroyed at this time.

CICS definitions
There are various resources that need to be defined to CICS to allow the correct operation of the Atom feed SupportPac.

First a CICS TCPIPService is created to define the TCPIP port used to listen for incoming requests on. In our example we chose port 12001 for requests from Web browsers requesting Atom feeds.

[image: image7]
Next we created a URIMAP definition that directs any http requests for
/atom/genapp/* to be routed to a pipeline called DFH£W2LG.
Finally, our CICS PIPELINE definition for DFH£W2LG points to our Atom feed SupportPac configuration file.

Samples are provided with the SupportPac for the URIMAP and PIPELINE definitions.
SupportPac configuration file

In the previous section we saw a configuration file called w2atomgenapp.xml defined to the CICS pipeline. This xml file links the path in the inbound URI to a particular Atom feed through the rel=”self” parameter of the <atom> tag:
<atom:link rel="self" href="/atom/genapp/polinq"/>

This element is used by DFH$W2FD to map the inbound URL into this feed. Moving through the w2atomgenapp.xml file, the atom feed is then defined with title and header information, we then see the definition for the CICS resource that will supply the Atom feed:
<cics:resource name="LGW2ATOM" type="program">

LGW2ATOM handles all the layout information in the feed internally. As mentioned previously, either a custom written program (type=”program” as in the above example) or a CICS Temporary Storage queue (type=”tsqueue”) can be used as the source of an Atom feed. Depending on the type of CICS resource defined on this tag, an EXEC CICS LINK is made to the appropriate resource service routine.
Summary

We provided an example of using a typical CICS insurance application in a Web 2.0 mashup. In this demonstration, CICS provides Atom feeds that enable insurance underwriters to keep up to date with latest customer and policy information. The rich information provided in the mashup allows insurance underwriters to quickly assess insurance risks by using mainframe core business data overlaid onto graphical map and environmental data provided by an open maps service available on the Internet.
An important point demonstrated here is that we did not need to change the core business application at all. In this demonstration we re-used an existing set of CICS transactions to provide Atom feeds to browsers. CICS joined the Web 2.0 world in a seamless fashion, quickly providing business benefit to a modern state-of-the-art mashup solution.
We estimate that two person-weeks were needed to create the demonstration, one week for the client mashup and one week for the mainframe programming, the majority of the CICS time was spent in coding the COBOL service handler.

Lotus mashups provides a lightweight framework that improves developer productivity and efficiency. It utilizes a simplified and rapid assembly model, which allows customers to quickly and cost-effectively bring new applications to their markets.

[image: image8.jpg]

Useful Resources / Futher Information
Download the CICS SupportPac “CA8K - Delivering Atom feeds from CICS” http://www-1.ibm.com/support/docview.wss?rs=1083&uid=swg24018619
Lotus Mashups

http://www.ibm.com/lotus/mashups
IBM Web 2.0 homepage

http://www-306.ibm.com/software/info/web20/

Information 2.0

http://www.ibm.com/software/data/info20
The future of SOA -- A service-based delivery model with Web 2.0 capabilities

http://www-128.ibm.com/developerworks/rational/library/oct06/dutta/

Enterprise Web 2.0, Part 1: Web 2.0 -- Catching a wave of business innovation

http://www-128.ibm.com/developerworks/webservices/library/ws-enterprise1/

Enterprise Web 2.0, Part 2: Enterprise Web 2.0 solution patterns

http://www.ibm.com/developerworks/webservices/library/ws-enterprise2/index.html?S_TACT=105AGX04&S_CMP=EDU

Mashups: The Evolution of SOA Part 1: Web 2.0 and foundational concepts

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/index.html?S_TACT=105AGX04&S_CMP=ART

Mashups: The Evolution of SOA Part 2: Situational applications and the mashup ecosystem

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2/index.html?ca=drs-

Web 2.0 user interface technologies

http://www-128.ibm.com/developerworks/web/library/wa-web2ui.html

RFC 4287, The Atom Syndication Format http://tools.ietf.org/html/rfc4287
RFC 5023, The Atom Publishing Protocol http://tools.ietf.org/html/rfc5023
INQ PIPE

 Pipeline(DFH£W2LG)

 Enablestatus(Enabled)

 Mode(Provider)

 Mtomst(Nomtom)

 Sendmtomst(Nosendmtom)

 Mtomnoxopst(Nomtomnoxop)

 Xopsupportst(Noxopsupport)

 Xopdirectst(Noxopdirect)

 Soaplevel(NOTSOAP)

 Respwait()

 Configfile(/cics/insurance/atom-demo/w2atomgenapp.xml)

 Shelf(/cics/insurance/atom-demo)

 Wsdir()

 Ciddomain(cicsts)

INQ TCPIPS(MANACINQ)

Tcpips(MANACINQ) Ope Por(12001) Http Nos Tra(CWXN)

 Con(00004) Bac(00005) Max(000032) Urm(NONE)

OBJECT CHARACTERISTICS

 CEDA View Urimap(DFH£W2U3)

 Urimap : DFH£W2U3

 Group : DFH£WEB2

 Description :

 STatus : Enabled Enabled | Disabled

 USAge : Pipeline Server | Client | Pipeline

 UNIVERSAL RESOURCE IDENTIFIER

 SCheme : HTTP HTTP | HTTPS

 PAth : /atom/genapp/*

…

 TRansaction : CPIH

 PRogram :

 PIpeline : DFH£W2LG …

PAGE
1

