
IBM Directory Server Version 4.1:
C-Client SDK Programming Reference

���

IBM Directory Server Version 4.1:
C-Client SDK Programming Reference

���

Note
Before using this information and the product it supports, read the general information under Appendix E, “Notices” on
page 191.

First Edition (April 2002)

This edition applies to version 4, release 1, of the IBM Directory Server and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii

Chapter 1. IBM Directory C-Client SDK
overview 1
LDAP version support 1
LDAP API overview 1

Typical API usage 2
Displaying results 3
Uniform Resource Locators (URLs) 3
Secure Socket Layer (SSL) support 3

Updates for IBM Directory Server C-Client Version
4.1 3

Client DN processing functions 3
Kerberos 1.2 4
SSL 4
Sorted Search and Paged Results 4

Chapter 2. LDAP utilities 9
LDAPMODIFY, LDAPADD 9

Synopsis 9
Description 9
Options 9
Input format 12
Alternative input format 12
Examples 12
Notes 13
Diagnostics 14
SSL notes 14
See also. 14

LDAPDELETE 15
Synopsis 15
Description 15
Options. 15
Examples 17
Notes 17
Diagnostics 17
SSL notes 17
See also. 17

LDAPMODRDN. 17
Synopsis 18
Description 18
Options. 18
Input format 20
Examples 20
Notes 20
Diagnostics 20
SSL notes 21
See also. 21

LDAPSEARCH 21
Synopsis 21
Description 21
Options. 21
Output format 25
Examples 26
Diagnostics 28

SSL notes 29
See also. 29

Chapter 3. API categories. 31
LDAP_ABANDON 31

Purpose 31
Synopsis 31
Input parameters 32
Usage 32
Errors 32
See also. 32

LDAP_ADD 33
Purpose 33
Synopsis 33
Input parameters 33
Output parameters 34
Usage 34
Errors 34
See also. 34

LDAP_FIRST_ATTRIBUTE 34
Purpose 34
Synopsis 35
Input parameters 35
Output parameters 35
Usage 35
Errors 36
Notes 36
See also. 36

LDAP_BIND / UNBIND 36
Purpose 36
Synopsis 37
Input parameters 38
Output parameters 39
Usage 39
Errors 43
See also. 43

LDAP_COMPARE 43
Purpose 43
Synopsis 43
Input parameters 44
Output parameters 44
Usage 44
Errors 45
See also. 45

LDAP controls 45
LDAP_DELETE 45

Purpose 45
Synopsis 46
Input parameters 46
Output parameters 46
Usage 46
Errors 47
See also. 47

LDAP_FIRST_ENTRY/REFERENCE 47
Purpose 47

© Copyright IBM Corp. 2002 iii

Synopsis 47
Input parameters 48
Usage 48
Errors 49
See also. 50

LDAP_ERROR 50
Purpose 50
Synopsis 50
Input parameters 51
Usage 51
Errors 52
See also. 53

LDAP_EXTENDED_OPERATION 53
Purpose 54
Synopsis 54
Input parameters 54
Output parameters 54
Usage 55
Errors 55
Notes 55
See also. 55

LDAP_GET_DN 56
Purpose 56
Synopsis 56
Input parameters 56
Usage 56
Errors 57
Notes 57
See also. 57

LDAP_GET_VALUES 57
Purpose 57
Synopsis 58
Input parameters 58
Usage 58
Errors 59
See also. 59

LDAP_INIT 59
Purpose 59
Synopsis 59
Input parameters 60
Usage 62
Errors 68
LDAP_DEBUG 68
LDAP_SET_OPTION syntax for LDAP V2
applications 69
Locating default LDAP servers 69
Multithreaded applications 70
Notes 70
See also. 70

LDAP_MEMFREE 71
Purpose 71
Synopsis 71
Input parameters 71
Usage 71
See also. 72

LDAP_MESSAGE 72
Purpose 72
Synopsis 72
Input parameters 72
Usage 72
Errors 73

See also. 73
LDAP_MODIFY 73

Purpose 73
Synopsis 73
Input parameters 74
Output parameters 74
Usage 74
Errors 76
See also. 76

LDAP_PARSE_RESULT 76
Purpose 76
Synopsis 76
Input parameters 77
Usage 78
Errors 78
See also. 78

LDAP_PLUGIN_REGISTRATION 79
Purpose 79
Synopsis 79
Input parameters 79
Output parameters 80
Usage 80
Errors 82
See also. 82

LDAP_RENAME 82
Purpose 82
Synopsis 82
Input parameters 82
Output parameters 83
Usage 83
Errors 84
See also. 84

LDAP_RESULT 84
Purpose 84
Synopsis 84
Input parameters 85
Output parameters 85
Usage 85
Errors 86
Notes 86
See also. 86

LDAP_SEARCH 86
Purpose 86
Synopsis 86
Input parameters 87
Output parameters 88
Usage 88
Errors 89
Notes 90
See also. 90

LDAP_SERVER_INFORMATION IN DNS 90
Purpose 90
Synopsis 90
Input parameters 91
Output parameters 95
Usage 96
Errors 106
See also 106

LDAP_SSL 107
Purpose 107
Synopsis 107

iv IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Input parameters 107
Usage 111
Options 113
Notes 113
See also 113

LDAP_URL 114
Purpose 114
Synopsis 114
Input parameters 114
Output parameters 115
Usage 115
Notes 116
See also 116

LDAP_CODEPAGE 116
Purpose 116
Synopsis 116
Input parameters 117
Output parameters 118
Usage 119
Errors 122
See also 122

LDAP_SSL_ENVIRONMENT_INIT 122
Purpose 122
Synopsis 122

LDAP_SORT 123
Purpose 124
Synopsis 124
Input parameters 124
Output parameters 125
Usage 125
Errors 126
Notes 126
See also 126

LDAP_PAGED_RESULTS 126
Purpose 126
Synopsis 126
Input parameters 126
Output parameters 127
Usage 127
Errors 128
Notes 128
See also 128

Possible extended error codes returned by LDAP
SSL function codes 128

Chapter 4. Using GSK5IKM 131
Creating a key pair and requesting a certificate
from a Certificate Authority 131
Receiving a certificate into a key database 133
Changing a key database password 133
Showing information about a key 134
Deleting a key 134
Making a key the default key in the key database 135
Creating a key pair and certificate request for
self-signing 135
Exporting a key 136
Importing a key 137

Designating a key as a trusted root 137
Removing a key as a trusted root. 138
Requesting a certificate for an existing key . . . 138
Migrating a keyring file to the key database format 139

Chapter 5. Event notification 141
Registration request 141
Registration response 141
Usage 142
Unregistering a client. 142
Example 142

Chapter 6. Limited transaction
support 145
Usage 145
Example 146

Chapter 7. LDAP client plug-in
programming reference 169
Introduction to client SASL plug-ins 169

Basic processing 169
Restrictions 170

Initializing a plug-in 170
Writing your own SASL plug-in 172
Plug-in APIs. 172

ldap_plugin_pblock_get() 173
ldap_plugin_pblock_set() 173
ldap_plugin_sasl_bind_s() 173

Sample worker function 174

Appendix A. LDAP V3 schema 177
Dynamic schema 177
Schema queries 177
Dynamic schema changes 179

Appendix B. LDAP distinguished
names 181
Informal definition 181
Formal definition 182

Appendix C. LDAP data interchange
format (LDIF) 183
LDIF example 183
Version 1 LDIF support 184
Version 1 LDIF examples 184
IANA character sets supported by platform . . . 185

Appendix D. Deprecated LDAP APIs 189

Appendix E. Notices 191
Trademarks 192

Index 193

Contents v

vi IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Preface

The IBM® Directory Server C-Client SDK includes various sample LDAP client
programs, and an LDAP client library used to provide application access to the
LDAP servers.

© Copyright IBM Corp. 2002 vii

viii IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 1. IBM Directory C-Client SDK overview

The Lightweight Directory Access Protocol (LDAP) provides TCP/IP access to
LDAP-compliant servers. The IBM Directory Server C-Client SDK includes various
sample LDAP client programs, and an LDAP client library used to provide
application access to the LDAP servers.

See the following for more information:
v LDAP Version Support
v LDAP API Overview
v Updates for IBM Directory Server C-Client Version 4.1

LDAP version support
The IBM Directory Server C-Client SDK provides support for both LDAP Version 2
and LDAP Version 3 application programming interfaces (APIs) and protocols. The
LDAP SDK APIs are based upon the Internet Draft, ″C LDAP Application Program
Interface ″, which is classified as a work in progress.

The LDAP API provides typical directory functions such as read, write and search.
With the advent of support for LDAP Version 3 APIs and protocols, the following
features are also supported:
v LDAP V3 referrals and search references.
v Improved internationalization with UTF-8 support for Distinguished Names

(DNs) and strings that are passed into, and returned from, the LDAP APIs.
Support for converting string data between the local code page and UTF-8 is
also provided. When running as an LDAP V2 application, DNs and strings
remain limited to the IA5 character set.

v As provided by the IBM Directory server’s dynamic schema capability, an LDAP
application can add, modify and change elements of the schema (see
Appendix A, “LDAP V3 schema” on page 177) for more information).

v Controls for the LDAP server and client

With the C-Client SDK, an application that uses the ldap_open API defaults to the
LDAP V2 protocol. Existing LDAP applications continue to work, and can
interoperate with both LDAP V2 servers and LDAP V3 servers.

An application that uses the ldap_init API defaults to the LDAP V3 protocol with
optional bind. An LDAP V3 application does not necessarily interoperate with an
LDAP server that supports only LDAP V2 protocols.

Note: An application can use the ldap_set_option API to change its LDAP protocol
version. This is done after using ldap_open or ldap_init but before issuing a
bind or any other operation that results in contacting the server.

LDAP API overview
The set of LDAP APIs is designed to provide a suite of functions that can be used
to develop directory-enabled applications. Directory-enabled applications are
typically connect to one or more directories and perform various directory-related
operations, such as:

© Copyright IBM Corp. 2002 1

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt
http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt

v Adding entries
v Searching the directories and obtaining the resulting list of entries
v Deleting entries
v Modifying entries
v Renaming entries

The type of information that is managed in the directory depends on the nature of
the application. Directories often are used to provide public access to information
about people. For example:
v phone numbers
v e-mail addresses
v fax numbers
v mailing addresses

Increasingly, directories are being used to manage and publish other types of
information. For example:
v Configuration information
v Public key certificates (managed by certification authorities (CAs))
v Access control information
v Locating information (how to find a service)

The LDAP API provides for both synchronous and asynchronous access to a
directory. Asynchronous access enables your application to do other work while
waiting for the results of a directory operation to be returned by the server.

The source code, example makefile and executable programs are provided that
perform the following operations:
v ldapsearch (searches the directory)
v ldapmodify (modifies information in the directory)
v ldapdelete (deletes information from the directory)
v ldapmodrdn (modifies the Relative Distinguished Name (RDN) of an entry in

the directory)

Typical API usage
The basic interaction is as follows:
1. A connection is made to an LDAP server by calling ldap_init (or ldap_ssl_init

which is used to establish a secure connection over Secure Sockets Layer (SSL).
2. An LDAP bind operation is performed by calling ldap_simple_bind. The bind

operation is used to authenticate to the directory server. Note that the LDAP V3
API and protocol permits the bind to be skipped, in which case the access
rights associated with anonymous access are obtained.

3. Other operations are performed by calling one of the synchronous or
asynchronous routines (for example, ldap_search_s or ldap_search followed by
ldap_result).

4. Results returned from these routines are interpreted by calling the LDAP
parsing routines, which include operations such as:
v ldap_first_entry, ldap_next_entry
v ldap_get_dn
v ldap_first_attribute, ldap_next_attribute

2 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

v ldap_get_values
v ldap_parse_result (new for LDAP V3)

5. The LDAP connection is terminated by calling ldap_unbind.

When handling a client referral to another server, the ldap_set_rebind_proc routine
defines the entry-point of a routine called when an LDAP bind operation is
needed.

Displaying results
Results obtained from the ldap search routines can be accessed by calling:
v ldap_first_entry and ldap_next_entry to step through the entries returned
v ldap_first_attribute and ldap_next_attribute to step through an entry’s attributes
v ldap_get_values to retrieve a given attribute’s value
v printf or some other display or usage method

Uniform Resource Locators (URLs)
Use the ldap_url routines to test a URL to see if it is an LDAP URL, to parse
LDAP URLs into their component pieces, and to initiate searches directly using an
LDAP URL. Some examples of these routines are ldap_url_parse,
ldap_url_search_s, and ldap_is_ldap_url.

Secure Socket Layer (SSL) support

Note: This function is not supported on the Linux platform.

The LDAP API has been extended to support connections that are protected by the
SSL protocol. This can be used to provide strong authentication between the client
and server, as well as data encryption of LDAP messages that flow between the
client and the LDAP server. The ldap_ssl_client_init() and ldap_ssl_init() APIs are
provided to initialize the SSL function, and to create a secure SSL connection.

Updates for IBM Directory Server C-Client Version 4.1
The following are enhancements available with the IBM Directory Server C-Client
Version 4.1.

Client DN processing functions
The client DN processing functions normalize attribute values that contain
compound RDNs, escaped hex representations of UTF-8 characters and
ber-encoded values. The functions also check that the DN passed in is in a correct
format according to RFC 2253. ldap_explode_rdn removes back slashes (\) from
in front of special characters.

ldap_dn2ufn, ldap_explode_dn and ldap_explode_rdn normalize attribute values
by doing the following:
v A back slash followed by a two-digit hex representation of a UTF-8 character is

converted to the character representation. For example, cn=\4A\6F\68\6E Doe is
converted to cn=John Doe.

v A ber-encoded value is converted to a UTF-8 value. For example,
cn=#04044A6F686E20446F65 is converted to cn=John Doe.

Chapter 1. IBM Directory C-Client SDK overview 3

ldap_dn2ufn, ldap_explode_dn and ldap_explode_rdn check that the DN passed in
is valid. If the DN is invalid, NULL is returned. A DN is invalid if the attribute
type or value are in invalid formats. See RFC 2253 for more specific information.

ldap_dn2ufn, ldap_explode_dn and ldap_explode_rdn now handle compound
RDNs correctly. For example:
v The DN cn=John+sn=Doe passed into ldap_dn2ufn returns John+Doe

v ldap_explode_dn with notype returns John+Doe

v ldap_explode_rdn with notype returns [0]=John [1]=Doe

ldap_explode_rdn removes the back slash from in front of special characters. For
example, when calling
ldap_explode_rdn(cn=Doe\<Jane+ou=LDAP+o=IBM+c=US,1), ldap_explode_rdn
returned:
v [0] = Doe<Jane
v [1] = LDAP
v [2] = IBM
v [3] = US

Kerberos 1.2
For IBM Directory Server Version 4.1, Kerberos 1.2 is used on the AIX® operating
systems. For IBM Directory Server Version 4.1, Kerberos 1.1 is used on the
Windows NT® and Windows® 2000 operating systems. IBM Directory Server
version 4.1 does not support Kerberos authentication on the Solaris or HP
operating systems.

SSL
For IBM Directory Server C-Client Version 4.1, the 56-bit version of SSL is
removed. SSL is only available on a 128-bit cipher.

Sorted Search and Paged Results
There are several new APIs that can be used by client applications to request
sorted search results or simple paged results of search entries. Both of these
functions are requested by the client application through the use of LDAP controls
specified when the search request is submitted to the server.

Server side sorting of search results
Sorted Search Results provides sort capabilities for LDAP clients that have limited
or no sort functionality. Sorted Search Results enables an LDAP client to receive
sorted search results based on a list of criteria, where each criteria represents a sort
key. The sort criteria includes attribute types, matching rules, or descending order.
The server must use this criteria to sort search results before returning them. This
moves the responsibility of sorting from the client application to the server, where
it might be done much more efficiently. For example, a client application might
want to sort the list of employees at their Grand Cayman site by surname,
common name, and telephone number. Instead of building the search list twice so
it can be sorted (once at the server and then again at the client when all the results
are returned), the search list is built once, and then sorted, before returning the
results to the client application.

There are four new APIs that can be used by a client application to request sorted
search results:
v ldap_create_sort_key_list()

4 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

v ldap_create_sort_control()
v ldap_free_sort_keylist()
v ldap_parse_sort_control()

Details about these APIs can be found in “LDAP_SORT” on page 123. The
ldap_create_sort_key_list() API builds a list of LDAPsortkey structures based on
the list of attributes included in the incoming string. A sort key is made up of three
possible values:
v Name of attribute used to sort entries returned by the server
v Object identifier (OID) of a matching rule for that attribute
v Whether or not the sort must be done in reverse order

The syntax of the sortString used as input to the ldap_create_sort_key_list() API is:
[-]<attribute name>[:<matching rule OID>]

where <attribute name> is the attribute used to perform the sort, <matching rule
OID> is the OID to be used when sorting, and the optional prefixed minus sign (-)
indicates that the sort must be done in reverse order. Only the attribute name is
required. In the following example sortString, the search results are sorted first by
surname (sn), then by given name (givenname), with the given name being sorted
in reverse (descending) order as specified by the prefixed minus sign (-).
sn -givenname

The sortKeyList output from ldap_create_sort_key_list() can be used as input to
ldap_create_sort_control(). The sortKeyList is an ordered array of LDAPsortkey
structures such that the key with the highest precedence is at the front of the array.
ldap_create_sort_control() outputs a LDAPControl structure which can be added to
the list of client controls sent to the server on the LDAP search request. The
LDAPControl structure returned by the ldap_create_sort_control() API can be used
as input to ldap_search_ext() or ldap_search_ext_s(), which are used to make the
actual search request.

Note: Server side sorting is an optional extension of the LDAP v3 protocol, so the
server you have bound to prior to the ldap_search_ext() or
ldap_search_ext_s() call might not support this function.

Now that you have created the server side control, you can free the sortKeyList
output from ldap_create_sort_key_list() using ldap_free_sort_keylist().

Upon completion of the search request you submitted using the ldap_search_ext()
or ldap_search_ext_s(), the server returns an LDAP result message that includes a
sort results control. The client application can parse this control using
ldap_parse_sort_control() which takes the returned server response controls (a null
terminated array of pointers to LDAPControl structures) as input.
ldap_parse_sort_control() outputs a return code which indicates whether or not the
sort request was successful. If the sort was not successful, the name of the attribute
in error might be output from ldap_parse_sort_control(). Use ldap_controls_free()
to free the memory used by the client application to hold the server controls when
you are done processing all controls returned by the server for this search request.

The server returns a successful return code of LDAP_SUCCESS in the sort response
control (sortKeyResponseControl) in the search result (searchResultDone) message
if the server supports sorting and can sort the search results using the specified
keys. If the search fails for any reason or there are no search results, then the
server omits the sortKeyResponseControl from the searchResultsDone message.

Chapter 1. IBM Directory C-Client SDK overview 5

If the server does not support sorting and the criticality specified on the sort
control for the search request is TRUE, the server does not return any search
results, and the sort response control return code is set to
LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If the server does not support
sorting and the criticality specified on the sort control for the search request is
FALSE, the server returns all search results and the sort control is ignored.

If the server does support sorting and the criticality specified on the sort control
for the search request is TRUE, but for some reason cannot sort the search results,
then the sort response control return code is set to
LDAP_UNAVAILABLE_CRITICAL_EXTENSION and no search results are
returned. If the server does support sorting and the criticality specified on the sort
control for the search request is FALSE, and for some reason cannot sort the search
results, then the sort response control return code is set to the appropriate return
code and all search results are returned unsorted.

The following return codes might be returned by the server in the
sortKeyResponseControl of the searchResultDone message:
v LDAP_SUCCESS - the results are sorted
v LDAP_OPERATIONS_ERROR - server internal failure
v LDAP_TIMELIMIT_EXCEEDED - time limit reached before sorting was

completed
v LDAP_STRONG_AUTH_REQUIRED - refused to return sorted results using

insecure protocol
v LDAP_ADMIN_LIMIT_EXCEEDED - too many matching entries for the server

to sort
v LDAP_NO_SUCH_ATTRIBUTE - unrecognized attribute type in sort key
v LDAP_INAPPROPRIATE_MATCHING - unrecognized or inappropriate

matching rule in sort key
v LDAP_INSUFFICIENT_ACCESS - refused to return sorted results to this client
v LDAP_BUSY - too busy to process
v LDAP_UNWILLING_TO_PERFORM - unable to sort
v LDAP_OTHER - unable to sort due to reasons other than those specified above

There are other rules that must be taken into consideration when requesting sort
from the server, they include the following:
v The matching rule must be one that is valid for the sort attribute it applies to.

The server returns LDAP_INAPPROPRIATE_MATCHING if it is not.
v If the matching rule is omitted from a sort key, the ordering matching rule

defined for use with this sort attribute must be used.
v A server can restrict the number of keys supported for a sort control, such as

supporting only one key (a sort key list of at least one key must be supported).
v If a search result meets the search criteria but is missing a value for the sort key

(sort attribute value is NULL), then this search result is considered a larger value
than any other valid values for that key.

When sorted search is requested along with simple paged results, the
sortKeyResponseControl is returned on every searchResultsDone message, not just
the last one of the paged results request. Of course the sortKeyResponseControl
might not be returned if there is an error processing the paged results request or
there are no search results to return. Additionally, when sorted search is requested
along with simple paged results, the server sends the search results sorted based
on the entire search result set and not just simply sort each page.

6 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

When chasing referrals, the client application needs to send in a sorted search
request to each of the referral servers. It is up to the application using the client’s
services to decide whether or not to set the criticality as to the support of sorted
search results, and to handle a lack of support of this control on referral servers as
appropriate based on the application. Additionally, the LDAP server does not
ensure that the referral server supports the sorted search control. Multiple lists
might be returned to the client application, some of which are not sorted. It is the
client application’s decision as to how best to present this information to the end
user. Possible solutions include:
v Combine all referral results before presenting to the end user
v Show multiple lists and the corresponding referral server host name
v Take no extra steps and show all results to the end user as they are returned

from the server

The client application must turn off referrals to get one truly sorted list, otherwise
when chasing referrals with the sorted search control specified, unpredictable
results can occur.

More information about the server side sorted search control, with control OID of
1.2.840.113556.1.4.473, can be found in RFC 2891 - LDAP Control Extension for
Server Side Sorting of Search Results.

Simple paged results of search results
Simple Paged Results provides paging capabilities for LDAP clients that want to
receive just a subset of search results (page) instead of the entire list. The next page
of entries is returned to the client application for each subsequent paged results
search request submitted by the client until the operation is canceled or the last
result is returned. The server ignores a simple paged results request if the page
size is greater than or equal to the sizeLimit value for the server because the
request can be satisfied in a single operation.

There are two new APIs that can be used by a client application to request paging
of search results:
v ldap_create_page_control()
v ldap_parse_page_control()

Details about these APIs can be found in “LDAP_PAGED_RESULTS” on page 126.
The ldap_create_page_control() API takes as input a page size and a cookie, and
outputs an LDAPControl structure which can be added to the list of client controls
sent to the server on the LDAP search request. The page size specifies how many
search results must be returned for this request, and the cookie is an opaque
structure returned by the server (on the initial paged results search request, the
cookie must be a zero-length string). No assumptions must be made about the
internal organization or value of the cookie. The cookie is used on subsequent
paged results search requests when more entries are to be retrieved from the
results set. The cookie must be the value of the cookie returned on the last
response returned from the server on all subsequent paged results search requests.
The cookie is empty when there are no more entries to be returned by the server,
or when the client application abandons the paged results request by sending in a
zero page size. Once the paged results search request has been completed, the
cookie must not be used because it is no longer valid.

The LDAPControl structure returned by ldap_create_page_control() can be used as
input to ldap_search_ext() or ldap_search_ext_s(), which are used to make the
actual search request.

Chapter 1. IBM Directory C-Client SDK overview 7

Note: Server side simple paged results is an optional extension of the LDAP v3
protocol, so the server you have bound to prior to the ldap_search_ext() or
ldap_search_ext_s() call might not support this function.

Upon completion of the search request you submitted using ldap_search_ext() or
ldap_search_ext_s(), the server returns an LDAP result message that includes a
paged results control. The client application can parse this control using
ldap_parse_page_control() which takes the returned server response controls (a
null terminated array of pointers to LDAPControl structures) as input.
ldap_parse_page_control() outputs a cookie and the total number of entries in the
entire search result set. Servers that cannot provide an estimate for the total
number of entries might set this value to zero (0). Use ldap_controls_free() to free
the memory used by the client application to hold the server controls when you
are done processing all controls returned by the server for this search request.

The server might limit the number of outstanding paged results operations from a
given client or for all clients. A server with a limit on the number of outstanding
paged results requests might return either LDAP_UNWILLING_TO_PERFORM in
the sortResultsDone message or age out an older paged results request. There is no
guarantee to the client application that the results of a search query have remained
unchanged throughout the life of a set of paged results request/response
sequences. If the result set for that query has changed since the initial search
request specifying paged results, the client application might not receive all the
entries matching the given search criteria. When chasing referrals, the client
application needs to send in an initial paged results request, with the cookie set to
null, to each of the referral servers. It is up to the application using the client’s
services to decide whether or not to set the criticality as to the support of paged
results, and to handle a lack of support of this control on referral servers as
appropriate based on the application. Additionally, the LDAP server does not
ensure that the referral server supports the paged results control. Multiple lists can
be returned to the client application, some not paged. It is the client application’s
decision as to how best to present this information to the end user. Possible
solutions include:
v Combine all referral results before presenting to the end user
v Show multiple lists and the corresponding referral server host name
v Take no extra steps and show all results to the end user as they are returned

from the server

The client application must turn off referrals to get one truly paged list, otherwise
when chasing referrals with the paged results search control specified,
unpredictable results might occur.

More information about the simple paged results search control, with control OID
of 1.2.840.113556.1.4.319, can be found in RFC 2686 - LDAP Control Extension for
Simple Paged Results Manipulation.

8 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 2. LDAP utilities

The following section provides detailed documentation for the client utilities:
v “LDAPMODIFY, LDAPADD”
v “LDAPDELETE” on page 15
v “LDAPMODRDN” on page 17
v “LDAPSEARCH” on page 21

LDAPMODIFY, LDAPADD
LDAP modify-entry and LDAP add-entry tools

Synopsis
ldapmodify [-a] [-b] [-c] [-C charset] [-d debuglevel] [-D binddn]
[-f file] [-h ldaphost] [-K keyfile] [-m mechanism] [-M]
[-N certificatename] [-O hopcount] [-p ldapport] [-P keyfilepw]
[-r] [-R] [-v] [-V] [-w passwd] [-Z]

ldapadd [-b] [-c] [-d debuglevel] [-D binddn]
[-f file] [-h ldaphost] [-K keyfile] [-M]
[-N certificatename] [-p ldapport] [-P keyfilepw]
[-r] [-R] [-v] [-V] [-w passwd] [-Z]

Description
ldapmodify is a command-line interface to the ldap_modify and ldap_add library
calls. ldapadd is implemented as a renamed version of ldapmodify. When invoked
as ldapadd, the -a (add new entry) flag is turned on automatically.

ldapmodify opens a connection to an LDAP server, and binds to the server. You
can use ldapmodify to modify or add entries. The entry information is read from
standard input or from file through the use of the -f option.

To display syntax help for ldapmodify or ldapadd, type
ldapmodify -?

or
ldapadd -?

Options
-a Add new entries. The default action for ldapmodify is to modify existing

entries. If invoked as ldapadd, this flag is always set.

-b Assume that any values that start with a forward slash (/) are binary
values and that the actual value is in a file whose path is specified in place
of the valuer.

-c Continuous operation mode. Errors are reported, but ldapmodify
continues with modifications. Otherwise the default action is to exit after
reporting an error.

-C charset
Specifies that strings supplied as input to the ldapmodify and ldapadd

© Copyright IBM Corp. 2002 9

utilities are represented in a local character set as specified by charset, and
must be converted to UTF-8. When the ldapmodify and ldapadd records
are received from standard input, the specified charset value is used to
convert the attribute values that are designated as strings that is, the
attribute types are followed by a single colon. If the records are received
from an LDIF file that contains a charset tag, the charset tag in the LDIF
file overrides the charset value specified on the command-line. See “IANA
character sets supported by platform” on page 185 for the specific charset
values that are supported for each operating system platform. Note that
the supported values for charset are the same values supported for the
charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel.

-D binddn
Use binddn to bind to the LDAP directory. binddn is a string-represented
DN (see Appendix B, “LDAP distinguished names” on page 181).

Note: -D binddn -w passwd does not call bind functions on superuser DNs.

-f file Read the entry modification information from an LDIF file instead of from
standard input. If an ldif file is not specified, you must use standard input
to specify the update records in ldif format.

-h ldaphost
Specify an alternate host on which the ldap server is running.

-K keyfile
Specify the name of the SSL key database file with default extension of
kdb. If the key database file is not in the current directory, specify the
fully-qualified key database filename. If a key database filename is not
specified, this utility first looks for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file is used, if
present.

A default keyring file that is, ldapkey.kdb, and the associated password
stashfile that is, ldapkey.sth, are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:
v Windows - c:\Program Files\IBM\LDAP
v AIX - /usr/ldap
v Solaris - /opt/IBMldapc
v Linux - /usr/ldap
v HP - /usr/IBMldap

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See 109 for more information about default key database files, and default
CAs.

If a keyring database file cannot be located, a hard-coded set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of CAs that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database, see Chapter 4, “Using

10 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

GSK5IKM” on page 131. Also see the “SSL notes” on page 14 and
“LDAP_SSL” on page 107 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the Simple Authentication Security Layer (SASL)
mechanism to be used to bind to the server. The ldap_sasl_bind_s() API is
used. The -m parameter is ignored if -V 2 is set. If -m is not specified,
simple authentication is used.

-M Manage referral objects as regular entries.

-N certificatename
Specify the label associated with the client certificate in the key database
file. If the LDAP server is configured to perform server authentication only,
a client certificate is not required. If the LDAP server is configured to
perform client and server Authentication, a client certificate might be
required. certificatename is not required if a default certificate/private key
pair has been designated as the default. Similarly, certificatename is not
required if there is a single certificate/private key pair in the designated
key database file. This parameter is ignored if neither -Z nor -K is
specified.

-O hopcount
Specify hopcount to set the maximum number of hops that the client
library takes when chasing referrals. The default hopcount is 10.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If -p is not specified and -Z is specified, the
default LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the
encrypted information in the key database file, which might include one or
more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and
the -P parameter is not required. This parameter is ignored if neither -Z
nor -K is specified.

-r Replace existing values by default.

-R Specifies that referrals are not to be automatically followed.

-v Use verbose mode, with many diagnostics written to standard output.

-V Specifies the LDAP version to be used by ldapmodify when it binds to the
LDAP server. By default, an LDAP V3 connection is established. To
explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2
application. An application, like ldapmodify, selects LDAP V3 as the
preferred protocol by using ldap_init instead of ldap_open.

-w passwd
Use passwd as the password for authentication.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z
option is only supported when the SSL componentry, as provided by the
Tivoli® GSKit, is installed.

Chapter 2. LDAP utilities 11

Input format
The contents of file (or standard input if no -f flag is given on the command line)
must conform to the ldif format.

Alternative input format
An alternative input format is supported for compatibility with older versions of
ldapmodify. This format consists of one or more entries separated by blank lines,
where each entry looks like the following:
Distinguished Name (DN)

attr=value

[attr=value ...]

where attr is the name of the attribute and value is the value.

By default, values are added. If the -r command line flag is given, the default is to
replace existing values with the new one. It is permissible for a given attribute to
appear more than once, for example, to add more than one value for an attribute.
Also note that you can use a trailing double back slash (\\) to continue values
across lines and preserve new lines in the value itself. This is useful for modifying
QUIPU iattr attributes among others.

attr must be preceded by a - to remove a value. The = and value must be omitted
to remove an entire attribute.

attr must be preceded by a + to add a value in the presence of the -r flag.

Examples
Assuming that the file /tmp/entrymods exists and has the following contents:
dn: cn=Modify Me, o=University of Higher Learning, c=US

changetype: modify

replace: mail

mail: modme@student.of.life.edu

-

add: title

title: Grand Poobah

-

add: jpegPhoto

jpegPhoto: /tmp/modme.jpeg

-

delete: description

-

the command:

12 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

ldapmodify -b -r -f /tmp/entrymods

replaces the contents of the Modify Me entry’s mail attribute with the value
modme@student.of.life.edu, add a title of Grand Poobah, and the contents of the
file /tmp/modme.jpeg as a jpegPhoto, and completely remove the description
attribute. These same modifications can be performed using the older ldapmodify
inout format:
cn=Modify Me, o=University of Higher Learning, c=US

mail=modme@student.of.life.edu

+title=Grand Poobah

+jpegPhoto=/tmp/modme.jpeg

-description

and the command:
ldapmodify -b -r -f /tmp/entrymods

Assuming that the file /tmp/newentry exists and has the following contents:
dn: cn=John Doe, o=University of Higher Learning, c=US

objectClass: person

cn: John Doe

cn: Johnny

sn: Doe

title: the world’s most famous mythical person

mail: johndoe@student.of.life.edu

uid: jdoe

the command:
ldapadd -f /tmp/entrymods

adds a new entry for John Doe, using the values from the file /tmp/newentry.

Assuming that the file /tmp/newentry exists and has the contents:
dn: cn=John Doe, o=University of Higher Learning, c=US

changetype: delete

the command:
ldapmodify -f /tmp/entrymods

removes John Doe’s entry.

Notes
If entry information is not supplied from file through the use of the -f option, the
ldapmodify command waits to read entries from standard input. To break out of
the wait, press Ctrl+C or Ctrl+D.

Chapter 2. LDAP utilities 13

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

SSL notes
To use the SSL-related functions associated with this utility, the SSL libraries and
tools must be installed. The SSL libraries and tools are provided with the Tivoli
Global Security Kit (GSKit), which includes RSA Security Inc. software.

Note: For information regarding the use of encryption by LDAP applications,
including the LDAP sample programs, see “Usage” on page 111. This section
describes the steps required to build the sample programs and your
applications so they can use SSL encryption algorithms.

The content of a client’s key database file is managed with the gsk5ikm utility. For
more information on this Java™ utility, see Chapter 4, “Using GSK5IKM” on
page 131. The gsk5ikm utility is used to define the set of trusted certification
authorities (CAs) that are to be trusted by the client. By obtaining certificates from
trusted CAs, storing them in the key database file, and marking them as trusted,
you can establish a trust relationship with LDAP servers that use trusted
certificates issued by one of the trusted CAs. The gsk5ikm utility can also be used
to obtain a client certificate, so that client and server authentication can be
performed.

If the LDAP servers accessed by the client use server authentication only, it is
sufficient to define one or more trusted root certificates in the key database file.
With server authentication, the client can be assured that the target LDAP server
has been issued a certificate by one of the trusted CAs. In addition, all LDAP
transactions that flow over the SSL connection with the server are encrypted
including the LDAP credentials that are supplied on the ldap_bind or
ldap_simple_bind_s (see “LDAP_BIND / UNBIND” on page 36). For example, if
the LDAP server is using a high-assurance VeriSign certificate, you must obtain a
CA certificate from VeriSign, import it into your key database file, and mark it as
trusted. If the LDAP server is using a self-signed server certificate, the
administrator of the LDAP server can supply you with a copy of the server’s
certificate request file. Import the certificate request file into your key database file
and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is
necessary to:
v Define one or more trusted root certificates in the server’s key database file. This

allows the client to be assured that the target LDAP server has been issued a
certificate by one of the trusted CAs. In addition, all LDAP transactions that
flow over the SSL connection with the server are encrypted, including the LDAP
credentials that are supplied on the ldap_bind or ldap_simple_bind_s (see
“LDAP_BIND / UNBIND” on page 36).

v Create a key pair using gsk5ikm and request a client certificate from a CA. After
receiving the signed certificate from the CA, store the certificate in the client key
database file.

See also
ldapdelete, ldapmodrdn, ldapsearch, ldap, ldap_add, ldap_delete, ldap_modify,
ldap_modrdn, ldap_ssl_init, ldif, ldap_dn

14 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAPDELETE
LDAP delete-entry tool

Synopsis
ldapdelete [-b searchbase] [-c] [-C charset] [-d debuglevel]
[-D binddn] [-f file] [-h ldaphost] [-K keyfile]
[-m mechanism] [-M] [-N certificatename] [-O hopcount]
[-pldapport] [-P keyfilepw] [-R] [-v] [-V] [-w passwd] [-Z] [dn] ...

Description
ldapdelete is a command-line interface to the ldap_delete library call.

ldapdelete opens a connection to an LDAP server, binds, and deletes one or more
entries. If one or more Distinguished Name (DN) arguments are provided, entries
with those DNs are deleted. Each DN is a string-represented DN (see Appendix B,
“LDAP distinguished names” on page 181). If no DN arguments are provided, a
list of DNs is read from standard input, or from file if the -f flag is used.

To display syntax help for ldapdelete, type:
ldapdelete -?

Options
-b searchbase

Use searchbase as the starting point for the search instead of the default. If
-b is not specified, this utility examines the LDAP_BASEDN environment
variable for a searchbase definition.

-c Continuous operation mode. Errors are reported, but ldapdelete continues
with modifications. Otherwise he default action is to exit after reporting an
error.

-C charset
Specifies that the DNs supplied as input to the ldapdelete utility are
represented in a local character set, as specified by charset. Use -C charset
to override the default, where strings must be supplied in UTF-8. See
“IANA character sets supported by platform” on page 185 for the specific
charset values that are supported for each operating system platform. Note
that the supported values for charset are the same values supported for the
charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel.

-dn Specifies one or more DN arguments. Each DN must be a
string-represented DN. See Appendix B, “LDAP distinguished names” on
page 181.

-D binddn
Use binddn to bind to the LDAP directory. binddn is a string-represented
DN. See Appendix B, “LDAP distinguished names” on page 181.

-f file Read a series of lines from file, performing one LDAP delete for each line
in the file. Each line in the file must contain a single distinguished name.

-h ldaphost
Specify an alternate host on which the ldap server is running.

Chapter 2. LDAP utilities 15

-K keyfile
Specify the name of the SSL key database file with default extension of
kdb. If the key database file is not in the current directory, specify the
fully-qualified key database filename. If a key database filename is not
specified, this utility first looks for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file is used, if
present.

A default keyring file that is, ldapkey.kdb, and the associated password
stashfile that is, ldapkey.sth, are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:
v Windows - c:\Program Files\IBM\LDAP
v AIX - /usr/ldap
v Solaris - /opt/IBMldapc
v Linux - /usr/ldap
v HP - /usr/IBMldap

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See 109 for more information about default key database files, and default
CAs.

If a keyring database file cannot be located, a hard-coded set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of CAs that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database, see Chapter 4, “Using
GSK5IKM” on page 131. Also see the “SSL notes” on page 17 and
“LDAP_SSL” on page 107 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the Simple Authentication Security Layer (SASL)
mechanism to be used to bind to the server. The ldap_sasl_bind_s() API is
used. The -m parameter is ignored if -V 2 is set. If -m is not specified,
simple authentication is used.

-M Manage referral objects as regular entries.

-N certificatename
Specify the label associated with the client certificate in the key database
file. If the LDAP server is configured to perform server authentication only,
a client certificate is not required. If the LDAP server is configured to
perform client and server Authentication, a client certificate might be
required. certificatename is not required if a default certificate/private key
pair has been designated as the default. Similarly, certificatename is not
required if there is a single certificate/private key pair in the designated
key database file. This parameter is ignored if neither -Z nor -K is
specified.

-O hopcount
Specify hopcount to set the maximum number of hops that the client
library takes when chasing referrals. The default hopcount is 10.

16 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If -p is not specified and -Z is specified, the
default LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the
encrypted information in the key database file, which can include one or
more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and
the -P parameter is not required. This parameter is ignored if neither -Z
nor -K is specified.

-R Specifies that referrals are not to be automatically followed.

-v Use verbose mode, with many diagnostics written to standard output.

-V Specifies the LDAP version to be used by ldapdelete when it binds to the
LDAP server. By default, an LDAP V3 connection is established. To
explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2
application. An application, like ldapdelete, selects LDAP V3 as the
preferred protocol by using ldap_init instead of ldap_open.

-w passwd
Use passwd as the password for authentication.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z
option is only supported when the SSL componentry, as provided by the
GSKit, is installed.

Examples
The following command,
ldapdelete "cn=Delete Me, o=University of Life, c=US"

attempts to delete the entry named with commonName Delete Me directly below
the University of Life organizational entry. It might be necessary to supply a
binddn and passwd for deletion to be allowed (see the -D and -w options).

Notes
If no DN arguments are provided, the ldapdelete command waits to read a list of
DNs from standard input. To break out of the wait, press Ctrl+C or Ctrl+D.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

SSL notes
See “SSL notes” on page 14.

See also
ldapadd, ldapmodify, ldapmodrdn, ldapsearch, ldap, ldap_add, ldap_delete,
ldap_modify, ldap_modrdn, ldap_ssl_init, ldif, ldap_dn

LDAPMODRDN
LDAP modify-entry RDN tool

Chapter 2. LDAP utilities 17

Synopsis
ldapmodrdn [-c] [-C charset] [-d debuglevel]
[-D binddn] [-f file] [-h ldaphost] [-K keyfile]
[-m mechanism] [-M] [-N certificatename]
[-O hopcount] [-p ldapport] [-P keyfilepw] [-r]
[-R] [-v] [-V] [-w passwd] [-Z] [dnrdn] ...

Description
ldapmodrdn is a command-line interface to the ldap_modrdn library call.

ldapmodrdn opens a connection to an LDAP server, binds, and modifies the RDN
of entries. The entry information is read from standard input, from file through the
use of the - f option, or from the command-line pair dn and rdn.

See LDAP Distinguished Names for information about RDNs (Relative
Distinguished Names) and DNs (Distinguished Names).

To display syntax help for ldapmodrdn, type:
ldapmodrdn -?

Options
-c Continuous operation mode. Errors are reported, but ldapmodrdn

continues with modifications. Otherwise the default action is to exit after
reporting an error.

-C charset
Specifies that the strings supplied as input to the ldapmodrdn utility are
represented in a local character set, as specified by charset. Use -C charset
to override the default, where strings must be supplied in UTF-8. See
“IANA character sets supported by platform” on page 185 for the specific
charset values that are supported for each operating system platform. Note
that the supported values for charset are the same values supported for the
charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel.

-D binddn
Use binddn to bind to the LDAP directory. binddn must be a
string-represented DN (see Appendix B, “LDAP distinguished names” on
page 181).

-f file Read the entry modification information from file instead of from standard
input or the command-line (by specifying rdn and newrdn). Standard
input can be supplied from a file, as well (< file).

-h ldaphost
Specify an alternate host on which the ldap server is running.

-K keyfile
Specify the name of the SSL key database file (with default extension of
kdb). If the key database file is not in the current directory, specify the
fully-qualified key database filename. If a key database filename is not
specified, this utility first looks for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file is used, if
present.

18 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

A default keyring file (that is, ldapkey.kdb) and the associated password
stashfile (that is, ldapkey.sth) are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:
v Windows - c:\Program Files\IBM\LDAP
v AIX - /usr/ldap
v Solaris - /opt/IBMldapc
v Linux - /usr/ldap
v HP - /usr/IBMldap

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See 109 for more information about default key database files, and default
CAs.

If a keyring database file cannot be located, a hard-coded set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of CAs that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database, see Chapter 4, “Using
GSK5IKM” on page 131. Also see the “SSL notes” on page 21 and
“LDAP_SSL” on page 107 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the SASL mechanism to be used to bind to the
server. The ldap_sasl_bind_s() API is used. The -m parameter is ignored if
-V 2 is set. If -m is not specified, simple authentication is used.

-M Manage referral objects as regular entries.

-N certificatename
Specify the label associated with the client certificate in the key database
file. Note that if the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client certificate
might be required. certificatename is not required if a default
certificate/private key pair has been designated as the default. Similarly,
certificatename is not required if there is a single certificate/private key
pair in the designated key database file. This parameter is ignored if
neither -Z nor -K is specified.

-O hopcount
Specify hopcount to set the maximum number of hops that the client
library takes when chasing referrals. The default hopcount is 10.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If not specified and -Z is specified, the default
LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the
encrypted information in the key database file, which can include one or
more private keys. If a password stash file is associated with the key

Chapter 2. LDAP utilities 19

database file, the password is obtained from the password stash file, and
the -P parameter is not required. This parameter is ignored if neither -Z
nor -K is specified.

-r Remove old RDN values from the entry. Default action is to keep old
values.

-R Specifies that referrals are not to be automatically followed.

-v Use verbose mode, with many diagnostics written to standard output.

-V Specifies the LDAP version to be used by ldapmodrdn when it binds to
the LDAP server. By default, an LDAP V3 connection is established. To
explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2
application. An application, like ldapmodrdn, selects LDAP V3 as the
preferred protocol by using ldap_init instead of ldap_open.

-w passwd
Use passwd as the password for authentication.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z
option is only supported when the SSL componentry, as provided by the
Tivoli GSKit, is installed.

dn rdn

Input format
If the command-line arguments dn and rdn are given, rdn replaces the RDN of the
entry specified by the DN, dn. Otherwise, the contents of file (or standard input if
no - f flag is given) consist of one or more entries:
Distinguished Name (DN)

Relative Distinguished Name (RDN)

One or more blank lines can be used to separate each DN and RDN pair.

Examples
Assuming that the file /tmp/entrymods exists and has the contents:
cn=Modify Me, o=University of Life, c=US
cn=The New Me

the command:
ldapmodrdn -r -f /tmp/entrymods

changes the RDN of the Modify Me entry from Modify Me to The New Me and the old
cn, Modify Me is removed.

Notes
If entry information is not supplied from file through the use of the -f option or
from the command-line pair dn and rdn, the ldapmodrdn command waits to read
entries from standard input. To break out of the wait, press Ctrl+C or Ctrl+D.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

20 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

SSL notes
See “SSL notes” on page 14.

See also
ldapadd, ldapdelete, ldapsearch, ldap, ldap_add, ldap_delete, ldap_modify,
ldap_modrdn, ldap_ssl_init, ldif, ldap_dn

LDAPSEARCH
LDAP search tool and sample program

Synopsis
ldapsearch [-a deref] [-A] [-b searchbase] [-B] [-C charset]
[-d debuglevel] [-D binddn] [-f file] [filter] [-F sep]
[-h ldaphost] [-K keyfile] [-l timelimit] [-L] [-m mechanism]
[-M] [-N certificatename] [-o attributename] [-O hopcount]
[-p ldapport] [-P keyfilepw] [-q page size] [-R] [-s scope]
[-t] [-T seconds] [-v] [-V] [-w bindpasswd] [-z sizelimit] [-Z]
[attrs...]

Description
ldapsearch is a command-line interface to the ldap_search library call.

ldapsearch opens a connection to an LDAP server, binds, and performs a search
using the filter. The filter must conform to the string representation for LDAP
filters (see ldap_search for more information on filters).

If ldapsearch finds one or more entries, the attributes specified by attrs are
retrieved and the entries and values are printed to standard output. If no attrs are
listed, all attributes are returned.

To display syntax help for ldapsearch, type ldapsearch -?

Options
-a deref

Specify how aliases dereferencing is done. deref must be one of never,
always, search, or find to specify that aliases are never dereferenced,
always dereferenced, dereferenced when searching, or dereferenced only
when locating the base object for the search. The default is to never
dereference aliases.

-A Retrieve attributes only, no values. This is useful when you just want to
see if an attribute is present in an entry and are not interested in the
specific values.

-b searchbase
Use searchbase as the starting point for the search instead of the default. If
-b is not specified, this utility examines the LDAP_BASEDN environment
variable for a searchbase definition. If neither is set, the default base is set
to ″″.

-B Do not suppress display of non-ASCII values. This is useful when dealing
with values that appear in alternate characters sets such as ISO-8859.1. This
option is implied by the -L option.

Chapter 2. LDAP utilities 21

-C charset
Specifies that strings supplied as input to the ldapsearch utility are
represented in a local character set, as specified by charset. String input
includes the filter, the bind DN and the base DN. Similarly, when
displaying data, ldapsearch converts data received from the LDAP server
to the specified character set. Use -C charset to override the default, where
strings must be supplied in UTF-8. Also, if the -C option and the -L option
are both specified, input is assumed to be in the specified character set, but
output from ldapsearch is always preserved in its UTF-8 representation, or
a base-64 encoded representation of the data when non-printable characters
are detected. This is the case because standard LDIF files contain UTF-8 or
base-64-encoded UTF-8 representations of string data only. See “IANA
character sets supported by platform” on page 185 for the specific charset
values that are supported for each operating system platform. Note that
the supported values for charset are the same values supported for the
charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel.

-D binddn
Use binddn to bind to the LDAP directory. binddn must be a
string-represented DN. See Appendix B, “LDAP distinguished names” on
page 181 for more information.

-f file Read a series of lines from file, performing one LDAP search for each line.
In this case, the filter given on the command line is treated as a pattern
where the first occurrence of %s is replaced with a line from file. If file is a
single hyphen (-) character, then the lines are read from standard input.

filter Specifies a string representation of the filter to apply in the search. Simple
filters can be specified as attributetype=attributevalue. More complex filters
are specified using a prefix notation according to the following Backus
Naur Form (BNF):
<filter> ::=’(’<filtercomp>’)’
<filtercomp> ::= <and>|<or>|<not>|<simple>
<and> ::= ’&’ <filterlist>
<or> ::= ’|’ <filterlist>
<not> ::= ’!’ <filter>
<filterlist> ::= <filter>|<filter><filtertype>
<simple> ::= <attributetype><filtertype>
<attributevalue>
<filtertype> ::= ’=’|’~=’|’<=’|’>=’

The ’~=’ construct is used to specify approximate matching. The
representation for <attributetype> and <attributevalue> are as described in
″RFC 2252, LDAP V3 Attribute Syntax Definitions″. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or
can contain text and asterisks (*) interspersed to achieve substring
matching.

For example, the filter ″mail=*″ finds any entries that have a mail attribute.
The filter ″mail=*@student.of.life.edu″ finds any entries that have a mail
attribute ending in the specified string. To put parentheses in a filter,
escape them with a backslash (\) character.

Note: A filter like "cn=Bob *", where there is a space between Bob and the
asterisk (*), matches ″Bob Carter″ but not ″Bobby Carter″ in IBM

22 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

http://www.ietf.org/rfc/rfc2252.txt

Directory. The space between ″Bob″ and the wildcard character (*)
affects the outcome of a search using filters.

See ″RFC 2254, A String Representation of LDAP Search Filters″ for a more
complete description of allowable filters.

-F sep Use sep as the field separator between attribute names and values. The
default separator is equals (=), unless the -L flag has been specified, in
which case this option is ignored.

-h ldaphost
Specify an alternate host on which the ldap server is running.

-K keyfile
Specify the name of the SSL key database file with default extension of
.kdb. If the key database file is not in the current directory, specify the
fully-qualified key database filename. If a key database filename is not
specified, this utility first looks for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file is used, if
present.

A default keyring file (ldapkey.kdb) and the associated password stashfile
(ldapkey.sth) are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the path to the installed LDAP support. LDAPHOME
varies by operating system platform:
v Windows - c:\Program Files\IBM\LDAP
v AIX - /usr/ldap
v Solaris - /opt/IBMldapc
v Linux - /usr/ldap
v HP - /usr/IBMldap

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See 109 for more information about default key database files, and default
CAs.

If a keyring database file cannot be located, a hard-coded set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of CAs that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database, see Chapter 4, “Using
GSK5IKM” on page 131. Also see “SSL notes” on page 29 and “LDAP_SSL”
on page 107 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-l timelimit
Wait at most timelimit seconds for a search to complete.

-L Display search results in ldif format. This option also turns on the -B
option, and causes the -F option to be ignored.

-m mechanism
Use mechanism to specify the SASL mechanism to be used to bind to the
server. The ldap_sasl_bind_s() API is used. The -m parameter is ignored if
-V 2 is set. If -m is not specified, simple authentication is used.

Chapter 2. LDAP utilities 23

http://www.ietf.org/rfc/rfc2254.txt

-M Manage referral objects as regular entries.

-N certificatename
Specify the label associated with the client certificate in the key database
file.

Note: If the LDAP server is configured to perform server authentication
only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client
certificate might be required. certificatename is not required if a
default certificate/private key pair has been designated as the
default. Similarly, certificatename is not required if there is a single
certificate/private key pair in the designated key database file. This
parameter is ignored if neither -Z nor -K is specified.

-o attributename
To specify an attribute to use for sort criteria of search results, you can use
the -o (order) parameter. You can use multiple -o parameters to further
define the sort order. In the following example, the search results are
sorted first by surname (sn), then by given name (givenname), with the
given name being sorted in reverse (descending) order as specified by the
prefixed minus sign (-):
-o sn -o -givenname

Thus, the syntax of the sort parameter is as follows:
[-]<attribute name>[:<matching rule OID>]

where
v attribute name is the name of the attribute you want to sort by.
v matching rule OID is the optional OID of a matching rule that you want

to use for sorting.
v The minus sign (-) indicates that the results must be sorted in reverse

order.
v The criticality is always critical.

The default ldapsearch operation is not to sort the returned results.

-O hopcount
Specify hopcount to set the maximum number of hops that the client
library takes when chasing referrals. The default hopcount is 10.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If an alternate TCP port is not specified, and -Z
is specified, the default LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the
encrypted information in the key database file (which can include one or
more private keys). If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and
the -P parameter is not required. This parameter is ignored if neither -Z
nor -K is specified.

-q page size
To specify paging of search results, two new parameters can be used: -q
(query page size), and -T (time between searches, in seconds). In the
following example, the search results return a page (25 entries) at a time,

24 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

every 15 seconds, until all the results for that search are returned. The
ldapsearch client handles all connection continuation for each paged results
request for the life of the search operation.
-q 25 -T 15

If the -v (verbose) parameter is specified, ldapsearch lists how many
entries have been returned so far after each page of entries returned from
the server, for example, 30 total entries have been returned. Multiple -q
parameters are enabled such that you can specify different page sizes
throughout the life of a single search operation. In the following example,
the first page is 15 entries, the second page is 20 entries, and the third
parameter ends the paged result/search operation:
-q 15 -q 20 -q 0

In the following example, the first page is 15 entries, and all the rest of the
pages are 20 entries, continuing with the last specified -q value until the
search operation completes:
-q 15 -q 20

The default ldapsearch operation is to return all entries in a single request.
No paging is done for the default ldapsearch operation.

-R Specifies that referrals are not to be automatically followed.

-s scope
Specify the scope of the search. scope must be one of base, one, or sub to
specify a base object, one-level, or subtree search. The default is sub.

-t Write retrieved values to a set of temporary files. This is useful for dealing
with non-ASCII values such as jpegPhoto or audio.

-T seconds
Time between searches (in seconds). The -T option is only supported when
the -q option is specified.

-v Use verbose mode, with many diagnostics written to standard output.

-V Specifies the LDAP version to be used by ldapmodify when it binds to the
LDAP server. By default, an LDAP V3 connection is established. To
explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2
application. An application, like ldapmodify, selects LDAP V3 as the
preferred protocol by using ldap_init instead of ldap_open.

-w passwd
Use passwd as the password for authentication.

-z sizelimit
Limit the results of the search to at most sizelimit entries. This makes it
possible to place an upper bound on the number of entries that are
returned for a search operation.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z
option is only supported when the SSL componentry, as provided by the
Tivoli GSKit, is installed.

Output format
If one or more entries are found, each entry is written to standard output in the
following form:

Chapter 2. LDAP utilities 25

Distinguished Name (DN)

attributename=value

attributename=value

attributename=value

...

Multiple entries are separated with a single blank line. If the -F option is used to
specify a separator character, it is used instead of the equals (=) character. If the -t
option is used, the name of a temporary file is used in place of the actual value. If
the -A option is given, only the attributename part is written.

Examples
The following command:
ldapsearch "cn=john doe" cn telephoneNumber

performs a subtree search (using the default search base) for entries with a
commonName of john doe. The commonName and telephoneNumber values are
retrieved and printed to standard output. If two entries are found, the output
might look something like this:

cn=John E Doe, ou="College of Literature, Science, and the Arts",
ou=Students, ou=People, o=University of Higher Learning, c=US

cn=John Doe

cn=John Edward Doe

cn=John E Doe 1

cn=John E Doe

telephoneNumber=+1 313 555-5432

cn=John B Doe, ou=Information Technology Division,
ou=Faculty and Staff, ou=People, o=University of Higher Learning, c=US

cn=John Doe

cn=John B Doe 1

cn=John B Doe

telephoneNumber=+1 313 555-1111

The command
ldapsearch -t "uid=jed" jpegPhoto audio

performs a subtree search using the default search base for entries with user ID of
″jed″. The jpegPhoto and audio values are retrieved and written to temporary files.
The output might look like this if one entry with one value for each of the
requested attributes is found:
cn=John E Doe, ou=Information Technology Division,

ou=Faculty and Staff,

26 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

ou=People, o=University of Higher Learning, c=US

audio=/tmp/ldapsearch-audio-a19924

jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

The command
ldapsearch -L -s one -b "c=US" "o=university*" o description

performs a one-level search at the c=US level for all organizations whose
organizationName begins with university. Search results are displayed in the
LDIF format (see LDAP Data Interchange Format). The organizationName and
description attribute values are retrieved and printed to standard output, resulting
in output similar to the following:
dn: o=University of Neptune, c=US

o: University of Neptune

description: Preparing Neptune for a brave new tomorrow

description: leaf node only

dn: o=University of Saturn at Pluto, c=US

o: University of Saturn at Pluto

description: No personnel information

description: Institution of education and research

dn: o=University of Saturn at Venus, c=US

o: University of Saturn at Venus

o: USV

o: SU/Venus

o: SU-Venus

description: Institute for Higher Learning and Research

dn: o=University of Jupiter, c=US

o: University of Jupiter

o: UJu

description: Shaper of young minds

...

The following command is a complex search:

Chapter 2. LDAP utilities 27

ldapsearch -D cn=root -w password -b basetosearch
"(&(modifytimestamp >= 20001228080000)
(modifytimestamp <= 20001228120000)"

This example searches for all entries that were modified between 8 am and 12
noon on December 28, 2000.

Note: Be sure to include the quotation marks (″) in the command. If the
quotation marks are not present in the command, the command can fail.

The command
ldapsearch -b "o=Fictional Team, c=US" -o sn "givenname=B*" cn

performs a subtree search on all entries that exist in the Fictional Team
organization (which is under the c=US level), whose given name (givenname)
begins with B. Search results are sorted based on surname (sn). If two entries are
found the output might look like this:
cn=Bret Fiction, ou=MVP, o=Fictional Team, c=US
cn=Bret Fiction

cn=Bubba Ford, ou=Offense, o=Fictional Team, c=US
cn=Bubba Ford

The command
ldapsearch -v -b "o=Fictional Team, c=US" -o sn -q 5 -T 3 "givenname=*" cn

performs a subtree search on all entries that exist in the Fictional Team
organization (which is under the c=US level), whose given name (givenname)
begins with anything (even NULL). Search results are sorted based on surname
(sn) one page at a time (5 entries), with a 3 second wait between pages. If six
entries are found, the output might look like the following:
cn=Gilbert Blue, ou=Defense, o=Fictional Team, c=US
cn=Gilbert Blue

cn=Larry Butler, ou=Defense, o=Fictional Team, c=US
cn=Larry Butler

cn=Bret Fiction, ou=MVP, o=Fictional Team, c=US
cn=Bret Fiction

cn=Bubba Ford, ou=Offense, o=Fictional Team, c=US
cn=Bubba Ford

cn=Bill Schooner, ou=Offense, o=Fictional Team, c=US
cn=Bill Schooner
5 total entries have been returned
5 matches

cn=Frank White, ou=Offense, o=Fictional Team, c=US
cn=Frank White
6 total entries have been returned
1 matches

Note: The verbose (-v) option displays the running total of entries returned and
the number of matches for the current page.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

28 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

SSL notes
See “SSL notes” on page 14.

See also
ldapadd, ldapdelete, ldap, ldap_modify, ldap_modrdn, ldap_ssl_init, ldif, ldap_dn,
ldap_sort, ldap_parse_results

Chapter 2. LDAP utilities 29

30 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 3. API categories

The following sets of APIs are supported by the IBM Directory:
v “LDAP_ABANDON”
v “LDAP_ADD” on page 33
v “LDAP_FIRST_ATTRIBUTE” on page 34
v “LDAP_BIND / UNBIND” on page 36
v “LDAP_COMPARE” on page 43
v “LDAP controls” on page 45
v “LDAP_DELETE” on page 45
v “LDAP_FIRST_ENTRY/REFERENCE” on page 47
v “LDAP_ERROR” on page 50
v “LDAP_EXTENDED_OPERATION” on page 53
v “LDAP_GET_DN” on page 56
v “LDAP_GET_VALUES” on page 57
v “LDAP_INIT” on page 59
v “LDAP_MEMFREE” on page 71
v “LDAP_MESSAGE” on page 72
v “LDAP_MODIFY” on page 73
v “LDAP_INIT” on page 59
v “LDAP_PARSE_RESULT” on page 76
v “LDAP_PLUGIN_REGISTRATION” on page 79
v “LDAP_RENAME” on page 82
v “LDAP_RESULT” on page 84
v “LDAP_SEARCH” on page 86
v “LDAP_SERVER_INFORMATION IN DNS” on page 90
v “LDAP_SSL” on page 107
v “LDAP_URL” on page 114
v “LDAP_CODEPAGE” on page 116
v “LDAP_SSL_ENVIRONMENT_INIT” on page 122
v “LDAP_SORT” on page 123
v “LDAP_PAGED_RESULTS” on page 126

LDAP_ABANDON
ldap_abandon
ldap_abandon_ext

Purpose
Abandon an LDAP operation in progress.

Synopsis
#include <ldap.h>

© Copyright IBM Corp. 2002 31

int ldap_abandon(
LDAP *ld,
int msgid)

int ldap_abandon_ext(
LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

msgid The message ID of an outstanding LDAP operation, as returned by a call
to an asynchronous LDAP operation such as ldap_search and ldap_modify,
and so forth.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Usage
The ldap_abandon() and ldap_abandon_ext() APIs are used to abandon or cancel
an LDAP operation in progress. The msgid passed must be the message ID of an
outstanding LDAP operation, as returned by a call to an asynchronous LDAP
operation such as ldap_search(), ldap_modify(), and so forth.

Both APIs check to see if the result of the operation has already been returned by
the server. If the result of the operation has been returned, both APIs delete the
result of the operation from the queue of pending messages. If not, both APIs send
an LDAP abandon operation to the LDAP server.

The result of an abandoned operation is not returned from a future call to
ldap_result().

The ldap_abandon_ext returns the constant LDAP_SUCCESS if the abandon was
successful, or another LDAP error code if not. The ldap_abandon API returns zero
if the abandon was successful, -1 if unsuccessful, and does not support LDAP V3
server controls or client controls.

Errors
ldap_abandon() returns 0 if the operation is successful, -1 if unsuccessful, setting
ld_errno appropriately. See “LDAP_ERROR” on page 50 for details.
ldap_abandon_ext() returns LDAP_SUCCESS if successful and returns an LDAP
error code if unsuccessful.

See also
ldap, ldap_result, ldap_error

32 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_ADD
ldap_add
ldap_add_s
ldap_add_ext
ldap_add_ext_s

Purpose
Perform an LDAP operation to add an entry.

Synopsis
#include <ldap.h>

int ldap_add(
LDAP *ld,
const char *dn,
LDAPMod *attrs[])

int ldap_add_s(
LDAP *ld,
const char *dn,
LDAPMod *attrs[])

int ldap_add_ext(
LDAP *ld,
const char *dn,
LDAPMod *attrs[],
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_add_ext_s(
LDAP *ld,
const char *dn,
LDAPMod *attrs[],
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn The DN of the entry to add.

attrs The entry’s attributes, specified using the LDAPMod structure, as defined
for ldap_modify(). The mod_type and mod_vals fields must be filled in.
The mod_op field is ignored unless ORed with the constant
LDAP_MOD_BVALUES. In this case, the mod_op field is used to select the
mod_bvalues case of the mod_vals union.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Chapter 3. API categories 33

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_add_ext() call succeeds.

Usage
The ldap_add() and associated APIs are used to perform an LDAP add operation.
They take dn, the DN of the entry to add, and attrs, a NULL-terminated array of
the entry’s attributes. The LDAPMod structure (as defined for ldap_modify()) is
used to represent attributes, with the mod_type and mod_values fields being filled
in and used as described for ldap_modify(). The mod_op field is ignored unless
ORed with the constant LDAP_MOD_BVALUES. In this case, the mod_op field is
used to select the mod_bvalues case of the mod_vals union.

Note: All entries except those specified by the last component in the given DN
must already exist.

The ldap_add_ext() API initiates an asynchronous add operation and returns the
constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, ldap_add_ext() places the message ID of the request
in *msgidp. A subsequent call to ldap_result() can be used to obtain the result of
the operation. Once the operation has completed, ldap_result() returns a result that
contains the status of the operation (in the form of an error code). The error code
indicates if the operation completed successfully. The ldap_parse_result() API is
used to check the error code in the result.

Similarly, the ldap_add() API initiates an asynchronous add operation and returns
the message ID of the operation initiated. A subsequent call to ldap_result(), can be
used to obtain the result of the add. In case of error, ldap_add() returns -1, setting
the session error parameters in the LDAP structure appropriately, which can be
obtained by using ldap_get_errno().

See “LDAP_ERROR” on page 50 for more details.

The ldap_add_ext() and ldap_add_ext_s() APIs both support LDAP V3 server
controls and client controls.

Errors
ldap_add() returns -1 in case of error initiating the request. ldap_add_s() and
ldap_add_ext_s returns an LDAP error code directly; LDAP_SUCCESS if the call
was successful, an LDAP error if the call was unsuccessful.

See also
ldap, ldap_modify

LDAP_FIRST_ATTRIBUTE
ldap_count_attributes
ldap_first_attribute
ldap_next_attribute

Purpose
Step through LDAP entry attributes.

34 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Synopsis
#include <ldap.h>

int ldap_count_attributes(
LDAP *ld,
LDAPMessage *entry)

char *ldap_first_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement **berptr)

char *ldap_next_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement *berptr)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

Output parameters
berptr

This is an output parameter returned from ldap_first_attribute(), which
returns a pointer to a BerElement that has been allocated to keep track of
current position. It is an input and output parameter for subsequent calls
to ldap_next_attribute(), where it specifies a pointer to a BerElement which
was allocated by the previous call to ldap_first_attribute(). The BerElement
structure is opaque to the application.

Usage
The ldap_count_attributes() routine returns a count of the number of attributes in
an LDAP entry. If a NULL entry is returned from ldap_first_entry() or
ldap_next_entry(), and is passed as input to ldap_count_attributes(), a -1 is
returned.

The ldap_first_attribute() and ldap_next_attribute() routines are used to step
through the attributes in an LDAP entry.

ldap_first_attribute() takes an entry as returned by ldap_first_entry() or
ldap_next_entry() and returns a pointer to a buffer containing the first attribute
type in the entry.

The pointer returned by ldap_first_attribute in berptr must be passed to
subsequent calls to ldap_next_attribute and is used to step through the entry’s
attributes. When there are no attributes left to be retrieved, ldap_next_attribute()
returns NULL, sets the error code to LDAP_SUCCESS and releases the memory
allocated for the BerElement buffer. If an error occurs, NULL is returned and an
error code is set.

Therefore, when NULL is returned, the ldap_get_errno() API must be used to
determine whether or not an error has occurred.

Chapter 3. API categories 35

If the caller fails to call ldap_next_attribute() a sufficient number of times to
exhaust the list of attributes, the caller is responsible for freeing the BerElement
pointed to by berptr when it is no longer needed by calling ldap_ber_free().

The attribute names returned by ldap_first_attribute() are suitable for inclusion in a
call to ldap_get_values().

ldap_next_attribute() returns a string that contains the name of the next type in the
entry. This string must be freed using ldap_memfree() when its use is completed.

The attribute names returned by ldap_next_attribute() are suitable for inclusion in
a call to ldap_get_values() to retrieve the attribute’s values.

Errors
If the ldap_first_attribute() call results in an error, then NULL is returned, the error
code is set and the memory pointed to by berptr is automatically freed and set to
NULL.

If the ldap_next_attribute() call results in an error, NULL is returned, the error code
is then set and the memory pointed to by berptr must also be freed calling
ldap_ber_free()

The ldap_get_errno() API can be used to obtain the error code. See
“LDAP_ERROR” on page 50 for a description of possible error codes.

Notes
The ldap_first_attribute() and ldap_next_attribute routines allocate memory that
might need to be freed by the caller through ldap_memfree.

See also
ldap, ldap_first_entry, ldap_get_values, ldap_memfree, ldap_error

LDAP_BIND / UNBIND
ldap_sasl_bind
ldap_sasl_bind_s
ldap_simple_bind
ldap_simple_bind_s
ldap_unbind
ldap_unbind_ext
ldap_unbind_s
ldap_set_rebind_proc
ldap_bind (deprecated)
ldap_bind_s (deprecated)

Purpose
LDAP routines for binding and unbinding.

Note: For IBM Directory Server Version 4.1, Kerberos 1.2 is used on the AIX
operating systems. For IBM Directory Server Version 4.1, Kerberos 1.1 is

36 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

used on the Windows NT and Windows 2000 operating systems. IBM
Directory Server version 4.1 does not support Kerberos authentication on the
Solaris or HP operating systems.

Synopsis
#include <ldap.h>

int ldap_sasl_bind(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **servctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_sasl_bind_s(
LDAP *ld,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **servctrls,
LDAPControl **clientctrls,
struct berval **servercredp)

int ldap_simple_bind(
LDAP *ld,
const char *dn,
const char *passwd)

int ldap_simple_bind_s(
LDAP *ld,
const char *dn,
const char *passwd)

int ldap_unbind(
LDAP *ld)

int ldap_unbind_s(
LDAP *ld)

int ldap_unbind_ext(
LDAP *ld,
LDAPControl **servctrls,
LDAPControl **clientctrls)

void ldap_set_rebind_proc(
LDAP *ld,
LDAPRebindProc rebindproc)

int ldap_bind(
LDAP *ld,
const char *dn,
const char *cred,
int method)

int ldap_bind_s(
LDAP *ld,
const char *dn,
const char *cred,
int method)

Chapter 3. API categories 37

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the Distinguished Name (DN) of the entry to bind as.

cred Specifies the credentials with which to authenticate. Arbitrary credentials
can be passed using this parameter. In most cases, this is the user’s
password. When using a Simple Authentication Security Layer (SASL)
bind, the format and content of the credentials depends on the setting of
the mechanism parameter.

mechanism
Although a variety of mechanisms have been IANA (Internet Assigned
Numbers Authority) registered, the only native mechanisms supported by
the LDAP library at this time are:
v LDAP_MECHANISM_EXTERNAL mechanism, represented by the string

EXTERNAL.
v LDAP_MECHANISM_CRAMMD5 mechanism, represented by the string

cram-md5.
v LDAP_MECHANISM_GSSAPI mechanism, represented by the string

GSSAPI.

The LDAP_MECHANISM_EXTERNAL mechanism indicates to the server
that information external to SASL must be used to determine whether the
client is authorized to authenticate. For this implementation, the system
providing the external information must be SSL. For example, if the client
sets DN and credential to NULL (the value of the pointers must be NULL),
with mechanism set to LDAP_MECHANISM_EXTERNAL, the client is
requesting that the server use the strongly authenticated identity from the
client’s X.509 certificate that was used to authenticate the client to the
server during the SSL handshake. The server can then use the strongly
authenticated identity to access the directory.

The LDAP_MECHANISM_CRAMMD5 mechanism is used to authenticate
your ID and password with the server using a challenge/response protocol
that protects the clear-text password over the wire. This mechanism is
useful only when the LDAP server can retrieve the user’s password. If the
password is stored in a hashed form, for example, crypt or SHA, then
authentication using the cram-md5 mechanism fails.

The LDAP_MECHANISM_GSSAPI mechanism is used to enable Kerberos
authentication. In Kerberos authentication, a client presents valid
credentials obtained from a Kerberos key distribution center (KDC) to an
application server. The server decrypts and verifies the credentials using its
service key.

See “LDAP_PLUGIN_REGISTRATION” on page 79 for more information
about using LDAP client plug-ins. See Chapter 7, “LDAP client plug-in
programming reference” on page 169 for more information about
developing an LDAP client plug-in.

method
Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE
for simple authentication or LDAP_AUTH_SASL for SASL bind. Note that
use of the ldap_bind and ldap_bind_s APIs is deprecated.

38 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

passwd
Specifies the password used in association with the DN of the entry in
which to bind.

serverctrls
Specifies a list of LDAP server controls. See “LDAP controls” on page 45
for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. See “LDAP controls” on page 45 for
more information about client controls.

rebindproc
Specifies the entry-point of a routine that is called to obtain bind
credentials used when a new server is contacted following an LDAP
referral.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_sasl_bind() call succeeds.

servercredp
This result parameter is set to the credentials returned by the server. If no
credentials are returned, it is set to NULL.

Usage
These routines provide various interfaces to the LDAP bind operation. After using
ldap_init, ldap_ssl_init or ldap_open to create an LDAP handle, a bind can be
performed before other operations are attempted over the connection. Both
synchronous and asynchronous versions of each variant of the bind call are
provided.

A bind is optional when communicating with an LDAP server that supports the
LDAP V3 protocol. The absence of a bind is interpreted by the LDAP V3 server as
a request for unauthenticated access. A bind is required by LDAP servers that only
support the LDAP V2 protocol.

The ldap_simple_bind() and ldap_simple_bind_s() APIs provide simple
authentication, using a user ID or dn and a password passed in clear-text to the
LDAP API.

The ldap_bind() and ldap_bind_s() provide general authentication routines, where
an authentication method can be chosen. In this toolkit, method must be set to
LDAP_AUTH_SIMPLE. Because the use of these two APIs is deprecated,
ldap_simple_bind and ldap_simple_bind_s must be used instead.

The ldap_sasl_bind and ldap_sasl_bind_s APIs can be used to do general and
extensible authentication over LDAP through the use of the SASL.

All bind routines take ld as their first parameter as returned from ldap_init,
ldap_ssl_init or ldap_open.

Simple authentication
The simplest form of the bind call is ldap_simple_bind_s(). It takes the DN to bind
as, as well as the user’s password (supplied in passwd). It returns an LDAP error
indication (see “LDAP_ERROR” on page 50). The ldap_simple_bind() call is

Chapter 3. API categories 39

asynchronous, taking the same parameters but only initiating the bind operation
and returning the message ID of the request it sent. The result of the operation can
be obtained with a subsequent call to ldap_result().

General authentication
The ldap_bind() and ldap_bind_s() routines are deprecated.

They can be used when the authentication method is selected at runtime. They
both take an extra method parameter when selecting the authentication method to
use. However, when using this toolkit, method must be set to
LDAP_AUTH_SIMPLE, to select simple authentication. ldap_bind() and
ldap_simple_bind() return the message ID of the initiated request. ldap_bind_s()
and ldap_simple_bind_s() return an LDAP error indication on unsuccessful
completion, or LDAP_SUCCESS on successful completion.

SASL authentication
Five categories of SASL authentication are supported:
v SASL authentication using the EXTERNAL mechanism
v SASL authentication using the GSSAPI mechanism (Kerberos is supported and

implemented as a plug-in)
v SASL authentication using the cram-md5 mechanism (implemented as a plug-in)
v SASL authentication using a user-supplied SASL plug-in library
v SASL authentication using a SASL mechanism implemented by the application

itself

By setting the input parameter mechanism to a NULL pointer, the SASL bind
request is interpreted as a request for simple authentication, that is, equivalent to
using ldap_simple_bind or ldap_simple_bind_s.

Also note that the SASL authentication mechanism provides a facility for the LDAP
server to return server credentials to the client. An application can obtain the
server credentials returned from the server in the SASL bind result with the
ldap_parse_sasl_bind_result() API.

EXTERNAL SASL binds: The primary reason for using the EXTERNAL SASL
bind mechanism is to use the client authentication mechanism provided by SSL to
strongly authenticate to the directory server using the client’s X.509 certificate. For
example, the client application can use the following logic:
v ldap_ssl_client_init (initialize the SSL library)
v ldap_ssl_init (host, port, name), where name references a public/private key pair

in the client’s key database file
v ldap_sasl_bind_s (ld, dn=NULL, mechanism=LDAP_MECHANISM_EXTERNAL,

cred=NULL)

A server that supports this mechanism, such as the IBM Directory server, can then
access the directory using the strongly authenticated client identity as extracted
from the client’s X.509 certificate.

GSSAPI SASL binds: Kerberos authentication is supported in this release. If the
input parameters for ldap_sasl_bind or ldap_sasl_bind_s are mechanism==GSSAPI
and cred==NULL, then it is assumed that the user has already authenticated to a
Kerberos security server and has obtained a Ticket Granting Ticket (TGT), either
through a desktop log-on process, or by using a program such as kinit. The
GSSAPI credential handle used to initiate a security context on the LDAP client
side is obtained from the current login context. If the input parameters for these
two SASL bind functions are mechanism==GSSAPI and cred!=NULL, the caller of

40 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

the functions must provide the GSSAPI credential handle for the LDAP client to
initiate a security context with an LDAP server. For example, an LDAP server can
call a SASL bind function with a credential handle that the server received from a
client as a delegated credential handle.

CRAM-MD5 SASL binds: The cram-md5 SASL mechanism is used to hide the
credentials on the wire. The cram-md5 plug-in supplied with the IBM Directory
Server C-Client SDK implements a multi-bind challenge with the LDAP server. If
the multi-bind challenge is successful, the client is authenticated to the server
without actually flowing the credentials, for example, a password, in the clear on
the wire.

Note: The cram-md5 mechanism is implemented as a SASL bind plug-in. SASL
bind plug-ins are only accessible using the synchronous ldap_sasl_bind_s()
API. The asynchronous ldap_sasl_bind() API is not supported for use with
SASL plug-ins.

See “LDAP_PLUGIN_REGISTRATION” on page 79 for more information about
using an LDAP client plug-in. See Chapter 7, “LDAP client plug-in programming
reference” on page 169 for more information about developing an LDAP client
plug-in.

User-supplied SASL plug-ins: The application developer, or a third party, can
implement additional SASL mechanisms, using the IBM Directory Server C-Client’s
SASL plug-in facility. For example, a client and server SASL plug-in can be
developed that supports a new authentication mechanism based upon a retinal
scan. If the mechanism associated with this new authentication mechanism is
retscan, the application simply invokes ldap_sasl_bind() with mechanism set to
retscan. Depending on how the mechanism and plug-in are designed, the
application might be required to also supply the user’s DN and credentials.
Alternatively, the plug-in itself might be responsible for obtaining the user’s
identity and credentials, which are derived in some way from a retinal scan image.

If the retinal scan plug-in is not defined in ldap.conf, the application must
explicitly register the plug-in, using the ldap_register_plugin() API. See “Defining a
SASL plug-in” on page 42 for information about defining a SASL plug-in for use
with an application. See “LDAP_PLUGIN_REGISTRATION” on page 79 for more
information about using an LDAP client plug-in. See Chapter 7, “LDAP client
plug-in programming reference” on page 169 for more information about
developing an LDAP client plug-in.

SASL mechanisms implemented by the application: In some cases, the SASL
mechanism might not require the presence of a plug-in, or any special support in
the LDAP library. If the application can invoke the ldap_sasl_bind() or
ldap_sasl_bind_s() API with the parameters appropriate to the mechanism, the
LDAP library simply encodes the SASL bind request and sends it to the server. If a
plug-in is defined for the specified mechanism, the request is diverted to the
plug-in, which can perform additional processing before sending the SASL bind to
the server.

SASL mechanisms supported by the LDAP server: The application can query the
LDAP server’s root DSE, using ldap_search() with the following settings:
v base DN set to NULL
v scope set to base
v filter set to ″objectclass=*″

Chapter 3. API categories 41

If the LDAP server supports one or more SASL mechanisms, the search results
include one or more values for the supportedsaslmechanisms attribute type.

Defining a SASL plug-in: When the application issues an ldap_sasl_bind_s() API
with a mechanism that is supported by a particular SASL plug-in, the LDAP
library must be able to locate the plug-in shared library. Two mechanisms are
available for making an LDAP client plug-in known to the LDAP library:
v The plug-in for the specified SASL mechanism is defined in the ldap.conf file. By

default, the IBM Directory Server C-Client cram-md5 plug-in is defined in
ldap.conf.

v The plug-in has been explicitly registered by the application, using the
ldap_register_plugin() API.

See “Finding the Plug-in library” on page 80 for more information about locating a
plug-in library and defining plug-ins in the ldap.conf file.

Unbinding
ldap_unbind_ext(), ldap_unbind(), and ldap_unbind_s() are synchronous APIs, in
the sense that they send an unbind request to the server, close all open connections
associated with the LDAP session handle, and dispose of all resources associated
with the session handle before returning. Note that there is no server response to
an LDAP unbind operation. All three of the unbind functions return
LDAP_SUCCESS or another LDAP error code if the request cannot be sent to the
LDAP server. After a call to one of the unbind functions, the session handle ld is
invalid and it is illegal to make any further LDAP API calls using the ld.

The ldap_unbind() and ldap_unbind_s() APIs behave identically. The
ldap_unbind_ext() API allows server and client controls to be included explicitly,
but note that since there is no server response to an unbind request there is no
way to receive a response to a server control sent with an unbind request.

Re-binding while following referrals
The ldap_set_rebind_proc() call is used to set the entry-point of a routine that is
called back to obtain bind credentials for use when a new server is contacted
following an LDAP referral or search reference. Note that this function is only
available when LDAP_OPT_REFERRALS is set. This is the default setting. If
ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc
parameter, an unauthenticated simple LDAP bind is always done when chasing
referrals. The SSL characteristics of the connections to the referred to servers are
preserved when chasing referrals. In addition, if the original bind was an LDAP V3
bind, an LDAP V3 bind is used to connect to the referred-to servers. If the original
bind was an LDAP V2 bind, an LDAP V2 bind is used to connect to each
referred-to server.

rebindproc must be a function that is declared like the following:
int rebindproc(LDAP *ld, char **whop, char **credp,

int *methodp, int freeit);

The LDAP library first calls the rebindproc to obtain the referral bind credentials,
and the freeit parameter is zero. The whop, credp, and methodp parameters must
be set as appropriate. If the rebindproc returns LDAP_SUCCESS, referral
processing continues, and the rebindproc is called a second time with freeit
non-zero to give your application a chance to free any memory allocated in the
previous call.

42 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

If anything but LDAP_SUCCESS is returned by the first call to the rebindproc, then
referral processing is stopped and that error code is returned for the original LDAP
operation.

Errors
Asynchronous routines return -1 in case of error. To obtain the LDAP error, use the
ldap_get_errno() API. Synchronous routines return the LDAP error code resulting
from the operation.

See also
ldap, ldap_error, ldap_open

LDAP_COMPARE
ldap_compare
ldap_compare_s
ldap_compare_ext
ldap_compare_ext_s

Purpose
Perform an LDAP compare operation.

Synopsis
#include <ldap.h>

int ldap_compare(
LDAP *ld,
const char *dn,
const char *attr,
const char *value)

int ldap_compare_s(
LDAP *ld,
const char *dn,
const char *attr,
const char *value)

int ldap_compare_ext(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_compare_ext_s(
LDAP *ld,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Chapter 3. API categories 43

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the DN of the entry to perform the compare upon.

attr Specifies the attribute type to use in the comparison.

bvalue
Specifies the attribute value to compare against the entry value. This
parameter is used in the ldap_compare_ext and ldap_compare_ext_s
routines, and is a pointer to a struct berval, making it possible to compare
binary values. See “LDAP_GET_VALUES” on page 57

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_compare_ext() call succeeds.

Usage
The various LDAP compare routines are used to perform LDAP compare
operations. They take dn, the DN of the entry upon which to perform the compare,
and attr and value, the attribute type and value to compare to those found in the
entry.

The ldap_compare_ext() API initiates an asynchronous compare operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_compare_ext() places the
message ID of the request in *msgidp. A subsequent call to ldap_result() obtains the
result of the operation. After the operation has completed, ldap_result() returns the
status of the operation in the form of an error code. The error code indicates
whether the operation completed successfully (LDAP_COMPARE_TRUE or
LDAP_COMPARE_FALSE).

Similarly, the ldap_compare() API initiates an asynchronous compare operation and
returns the message ID of that operation. Use a subsequent call to ldap_result(),
can be used to obtain the result of the compare. In case of error, ldap_compare()
returns -1, setting the session error parameters in the LDAP structure
appropriately, which can be obtained by using ldap_get_errno().

See “LDAP_ERROR” on page 50 for more details.

Use the synchronous ldap_compare_s() and ldap_compare_ext_s APIs to perform
LDAP compare operations. These APIs return an LDAP error code, which are
LDAP_COMPARE_TRUE if the entry contains the attribute value and
LDAP_COMPARE_FALSE if it does not. Otherwise, some error code is returned.

44 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

The ldap_compare_ext() and ldap_compare_ext_s() APIs both support LDAP V3
server controls and client controls.

Errors
ldap_compare_s() returns an LDAP error code which can be interpreted by calling
one of the ldap_error routines. ldap_compare() returns -1 if the initiation request
was unsuccessful. It returns the message ID of the request if successful.

See also
ldap, ldap_error

LDAP controls
Certain LDAP Version 3 operations can be extended with the use of controls.
Controls can be sent to a server, or returned to the client with any LDAP message.
This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used
to define client controls. The client-side controls affect the behavior of the LDAP
client library, and are never sent to the server. Note that client-side controls are not
defined for this client library.

A common data structure is used to represent both server-side and client-side
controls:

typedef struct ldapcontrol {
char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;

} LDAPControl, *PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid
Specifies the control type, represented as a string.

ldctl_value
Specifies the data associated with the control. Note that the control might
not include data.

ldctl_iscritical
Specifies whether the control is critical or not. If the field is non-zero, the
operation is carried out only if it is recognized and supported by the
server or the client for client-side controls.

LDAP_DELETE
ldap_delete
ldap_delete_s
ldap_delete_ext
ldap_delete_ext_s

Purpose
Perform an LDAP operation to delete a leaf entry.

Chapter 3. API categories 45

Synopsis
#include <ldap.h>

int ldap_delete(
LDAP **ld,
const char *dn)

int ldap_delete_s(
LDAP *ld,
const char *dn)

int ldap_delete_ext(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_delete_ext_s(
LDAP *ld,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the DN of the entry to be deleted.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_delete_ext() call succeeds.

Usage

Note: The entry to delete must be a leaf entry, that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

The ldap_delete_ext() API initiates an asynchronous delete operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if the request was not successful. If successful, ldap_delete_ext()
places the message ID of the request in *msgidp. ldap_result() returns the status of
an operation as an error code. The error code indicates whether the operation
completed successfully. ldap_parse_result() checks the error code.

Similarly, the ldap_delete() API initiates an asynchronous delete operation and
returns the message ID of that operation. A subsequent call to ldap_result() can be

46 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

used to obtain the result of the ldap_delete() operation. In case of error,
ldap_delete() returns -1, setting the session error parameters in the LDAP structure
appropriately. These error parameters can be obtained by using ldap_get_errno().

See “LDAP_ERROR” on page 50 for more details.

Use the synchronous ldap_delete_s() and ldap_delete_ext_s() APIs to perform
LDAP delete operations. The results of both operations are output parameters.
These routines return either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if the operation was not successful.

Both the ldap_delete_ext() and ldap_delete_ext_s() APIs both support LDAP V3
server controls and client controls.

Errors
ldap_delete_s() returns an LDAP error code which can be interpreted by calling an
ldap_error routine. ldap_delete() returns -1 if the request initiation was
unsuccessful. It returns the message ID of the request if successful.

See also
ldap, ldap_error

LDAP_FIRST_ENTRY/REFERENCE
ldap_first_entry
ldap_next_entry
ldap_count_entries
ldap_get_entry_controls
ldap_first_reference
ldap_next_reference
ldap_count_references
ldap_parse_reference

Purpose
LDAP result entry and continuation reference parsing and counting routines. Note
that APIs with the _np suffix are preliminary implementations, and are not
documented in the Internet Draft, ″C LDAP Application Program Interface″.

Synopsis
#include <ldap.h>

LDAPMessage *ldap_first_entry(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_entry(
LDAP *ld,
LDAPMessage *entry)

int ldap_count_entries(
LDAP *ld,
LDAPMessage *result)

int ldap_get_entry_controls_np(

Chapter 3. API categories 47

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt

LDAP *ld,
LDAPMessage *entry
LDAPControl ***serverctrlsp)

LDAPMessage *ldap_first_reference(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_reference(
LDAP *ld,
LDAPMessage *ref)
LDAPMessage *result)

int ldap_count_references(
LDAP *ld,
LDAPMessage *result)

int ldap_parse_reference_np(
LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

result Specifies the result returned by a call to ldap_result() or one of the
synchronous search routines, such as ldap_search_s(), ldap_search_st() or
ldap_search_ext_s().

entry Specifies a pointer to an entry returned on a previous call to
ldap_first_entry() or ldap_next_entry().

serverctrlsp
Specifies a pointer to a result parameter that is filled in with an allocated
array of controls copied out of the LDAPMessage message. The control
array must be freed by calling ldap_controls_free().

ref Specifies a pointer to a search continuation reference returned on a
previous call to ldap_first_reference() or ldap_next_reference().

referralsp
Specifies a pointer to a result parameter that is filled in with the contents
of the referrals field from the LDAPMessage message. The LDAPMessage
message indicates zero or more alternate LDAP servers where the request
must be retried. The referrals array must be freed by calling
ldap_value_free(). NULL can be supplied for this parameter to ignore the
referrals field.

freeit Specifies a boolean value that determines if the LDAP result chain, as
specified by ref, is to be freed. Any non-zero value results in the LDAP
result chain being freed after the requested information is extracted.
Alternatively, the ldap_msgfree() API can be used to free the LDAP result
chain at a later time.

Usage
These routines are used to parse results received from ldap_result() or the
synchronous LDAP search operation routines ldap_search_s(), ldap_search_st() and
ldap_search_ext_s().

48 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Processing entries
The ldap_first_entry() and ldap_next_entry() APIs are used to step through and
retrieve the list of entries from a search result chain. When an LDAP operation
completes and the result is obtained as described, a list of LDAPMessage structures
is returned. This is referred to as the search result chain. A pointer to the first of
these structures is returned by ldap_result() and ldap_search_s().

The ldap_first_entry() routine is used to retrieve the first entry in a chain of search
results. It takes the result returned by a call to ldap_result(), ldap_search_s(),
ldap_search_st() or ldap_search_ext_s() and returns a pointer to the first entry in
the result.

This pointer must be supplied on a subsequent call to ldap_next_entry() to get the
next entry, and so on until ldap_next_entry() returns NULL. ldap_next_entry()
returns NULL when there are no more entries. The entries returned from these
calls are used in calls to the routines ldap_get_dn(), ldap_first_attribute(),
ldap_get_values(), and so forth.

The ldap_get_entry_controls_np() routine is used to retrieve an array of server
controls returned in an individual entry in a chain of search results.

Processing continuation references
The ldap_first_reference() and ldap_next_reference() APIs are used to step through
and retrieve the list of continuation references from a search result chain. They
return NULL when no more continuation references exist in the result set to be
returned.

The ldap_first_reference() routine is used to retrieve the first continuation reference
in a chain of search results. It takes the result as returned by a call to ldap_result(),
ldap_search_s(), ldap_search_st() or ldap_search_ext_s() and returns a pointer to
the first continuation reference in the result.

The pointer returned from ldap_first_reference() must be supplied on a subsequent
call to ldap_next_reference() to get the next continuation reference.

The ldap_parse_reference_np() routine is used to retrieve the list of alternate
servers returned in an individual continuation reference in a chain of search
results. This routine is also used to obtain an array of server controls returned in
the continuation reference.

Counting entries and references
The ldap_count_entries() API returns the number of entries contained in a search
result chain. It can also be used to count the number of entries that remain in a
chain if called with a message, entry or continuation reference returned by
ldap_first_message(), ldap_next_message(), ldap_first_entry(), ldap_next_entry(),
ldap_first_reference() or ldap_next_reference().

The ldap_count_references() API is used to count the number of continuation
references returned. It can also be used to count the number of continuation
references that remain in a chain.

Errors
If an error occurs in ldap_first_entry(), ldap_next_entry(), ldap_first_reference() or
ldap_next_reference(), NULL is returned, and ldap_get_errno() API can be used to
obtain the error code.

Chapter 3. API categories 49

If an error occurs in ldap_count_entries() or ldap_count_references(), -1 is returned,
and ldap_get_errno() can be used to obtain the error code.
ldap_get_entry_controls_np() and ldap_parse_reference_np() return an LDAP error
code directly, for example, (LDAP_SUCCESS if the call was successful, an LDAP
error if the call was unsuccessful.

See “LDAP_ERROR” for a description of possible error codes.

See also
ldap, ldap_result(), ldap_search(), ldap_first_attribute(), ldap_get_values(),
ldap_get_dn()

LDAP_ERROR
ldap_get_errno
ldap_get_lderrno
ldap_set_lderrno
ldap_perror (deprecated)
ldap_result2error (deprecated)
ldap_err2string
ldap_get_exterror

Purpose
LDAP protocol error handling routines.

Synopsis
#include <ldap.h>

int ldap_get_errno(
LDAP *ld)

int ldap_get_lderrno (
LDAP *ld,
char **dn,
char **errmsg)

int ldap_set_lderrno (
LDAP *ld,
int errnum,
char *dn,
char *errmsg)

void ldap_perror(
LDAP *ld,
const char *s)

int ldap_result2error(
LDAP *ld,
LDAPMessage *res,
int freeit)

char *ldap_err2string(
int error)

int ldap_get_exterror(
LDAP *ld)

50 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies a DN that identifies an existing entry, indicating how much of the
name in the request was recognized by the server. The DN is returned
when an LDAP_NO_SUCH_OBJECT error is returned from the server. The
matched DN string must be freed by calling ldap_memfree().

errmsg
The text of the error message, as returned from the server. The error
message string must be freed by calling ldap_memfree().

s Specifies the message prefix, which is prepended to the string form of the
error code held stored under the LDAP structure. The string form of the
error is the same string that is returned by a call to ldap_err2string().

res Specifies the result, as produced by ldap_result() or ldap_search_s(), to be
converted to the error code with which it is associated.

freeit Specifies whether or not the result, res, must be freed as a result of calling
ldap_result2error(). If non-zero, the result, res, is freed by the call. If zero,
res is not freed by the call.

errnum
The LDAP error code, as returned by ldap_parse_result() or another LDAP
API call.

Usage
These routines provide interpretation of the various error codes returned by the
LDAP protocol and LDAP library routines.

The ldap_get_errno() and ldap_get_lderrno() APIs obtain information for the most
recent error that occurred for an LDAP operation. When an error occurs at the
LDAP server, the server returns the following information back to the client:
v The LDAP result code for the error that occurred.
v A message containing any additional information about the error from the

server.

If the error occurred because an entry specified by a DN cannot be found, the
server might also return the portion of the DN that identifies an existing entry.

Both APIs return the server’s error result code. Use ldap_get_lderrno() to obtain
the message and matched DN.

The ldap_set_lderrno() API sets an error code and other information about an error
in the specified LDAP structure. This function can be called to set error
information that is retrieved by subsequent ldap_get_lderrno() calls.

The ldap_result2error() routine takes res, a result as produced by ldap_result or
ldap_search_s, and returns the corresponding error code. Possible error codes
follow (see “Errors” on page 52). If the freeit parameter is non-zero, it indicates
that the res parameter must be freed by a call to ldap_msgfree() after the error
code has been extracted. The ld_errno field in ld is set and returned.

Chapter 3. API categories 51

The returned value can be passed to ldap_err2string(), which returns a pointer to a
character string which is a textual description of the LDAP error code. The
character string must not be freed when use of the string is complete.

The ldap_perror() routine can be called to print an indication of the error on
standard error.

The ldap_get_exterror() routine returns the current extended error code returned
by an LDAP server or other library, such as Kerberos or SSL, for the LDAP session.
For some error codes, it might be possible to further interpret the error condition.
For example, for SSL errors the extended error code might indicate why an SSL
handshake failed.

Errors
The possible values for an LDAP error code are:
#define LDAP_SUCCESS 0x00
#define LDAP_OPERATIONS_ERROR 0x01
#define LDAP_PROTOCOL_ERROR 0x02
#define LDAP_TIMELIMIT_EXCEEDED 0x03
#define LDAP_SIZELIMIT_EXCEEDED 0x04
#define LAP_COMPARE_FALSE 0x05
#define LDAP_COMPARE_TRUE 0x06
#define LDAP_STRONG_AUTH_NOT_SUPPORTED 0x07
#define LDAP_STRONG_AUTH_REQUIRED 0x08
#define LDAP_PARTIAL_RESULTS 0x09

#define LDAP_REFERRAL 0X0a
#define LDAP_ADMIN_LIMIT_EXCEEDED 0X0b
#define LDAP_UNAVAILABLE_CRITICAL_EXTENSION 0X0c
#define LDAP_CONFIDENTIALITY_REQUIRED 0x0d
#define LDAP_SASLBIND_IN_PROGRESS 0x0e

#define LDAP_NO_SUCH_ATTRIBUTE 0x10
#define LDAP_UNDEFINED_TYPE 0x11
#define LDAP_INAPPROPRIATE_MATCHING 0x12
#define LDAP_CONSTRAINT_VIOLATION 0x13
#define LDAP_TYPE_OR_VALUE_EXISTS 0x14
#define LDAP_INVALID_SYNTAX 0x15

#define LDAP_NO_SUCH_OBJECT 0x20
#define LDAP_ALIAS_PROBLEM 0x21
#define LDAP_INVALID_DN_SYNTAX 0x22
#define LDAP_IS_LEAF 0x23
#define LDAP_ALIAS_DEREF_PROBLEM 0x24

#define LDAP_INAPPROPRIATE_AUTH 0x30
#define LDAP_INVALID_CREDENTIALS 0x31
#define LDAP_INSUFFICIENT_ACCESS 0x32
#define LDAP_BUSY 0x33
#define LDAP_UNAVAILABLE 0x34
#define LDAP_UNWILLING_TO_PERFORM 0x35
#define LDAP_LOOP_DETECT 0x36

#define LDAP_NAMING_VIOLATION 0x40
#define LDAP_OBJECT_CLASS_VIOLATION 0x41
#define LDAP_NOT_ALLOWED_ON_NONLEAF 0x42
#define LDAP_NOT_ALLOWED_ON_RDN 0x43
#define LDAP_ALREADY_EXISTS 0x44
#define LDAP_NO_OBJECT_CLASS_MODS 0x45
#define LDAP_RESULTS_TOO_LARGE 0x46

#define LDAP_AFFECTS_MULTIPLE_DSAS 0X47

52 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

#define LDAP_OTHER 0x50
#define LDAP_SERVER_DOWN 0x51
#define LDAP_LOCAL_ERROR 0x52
#define LDAP_ENCODING_ERROR 0x53
#define LDAP_DECODING_ERROR 0x54
#define LDAP_TIMEOUT 0x55
#define LDAP_AUTH_UNKNOWN 0x56
#define LDAP_FILTER_ERROR 0x57
#define LDAP_USER_CANCELLED 0x58
#define LDAP_PARAM_ERROR 0x59
#define LDAP_NO_MEMORY 0x5a
#define LDAP_CONNECT_ERROR 0x5b
#define LDAP_NOT_SUPPORTED 0x5c
#define LDAP_CONTROL_NOT_FOUND 0x5d
#define LDAP_NO_RESULTS_RETURNED 0x5e
#define LDAP_MORE_RESULTS_TO_RETURN 0x5f

#define LDAP_URL_ERR_NOTLDAP 0x60
#define LDAP_URL_ERR_NODN 0x61
#define LDAP_URL_ERR_BADSCOPE 0x62
#define LDAP_URL_ERR_MEM 0x63

#define LDAP_CLIENT_LOOP 0x64
#define LDAP_REFERRAL_LIMIT_EXCEEDED 0x65

#define LDAP_SSL_ALREADY_INITIALIZED 0x70
#define LDAP_SSL_INITIALIZE_FAILED 0x71
#define LDAP_SSL_CLIENT_INIT_NOT_CALLED 0x72
#define LDAP_SSL_PARAM_ERROR 0x73
#define LDAP_SSL_HANDSHAKE_FAILED 0x74
#define LDAP_SSL_GET_CIPHER_FAILED 0x75
#define LDAP_SSL_NOT_AVAILABLE 0x76

#define LDAP_NO_EXPLICIT_OWNER 0x80
#define LDAP_NO_LOCK 0x81

/* DNS related error codes */
#define LDAP_DNS_NO_SERVERS 0x85

/* No LDAP servers found */
#define LDAP_DNS_TRUNCATED 0x86

/* Warning: truncated DNS results */
#define LDAP_DNS_INVALID_DATA 0x87

/* Invalid DNS Data */
#define LDAP_DNS_RESOLVE_ERROR 0x88

/* Can’t resolve system domain or nameserver */
#define LDAP_DNS_CONF_FILE_ERROR 0x89

/* DNS Configuration file error */

/* UTF8 related error codes */
#define LDAP_XLATE_E2BIG 0xA0

/* Output buffer overflow */
#define LDAP_XLATE_EINVAL 0xA1

/* Input buffer truncated */
#define LDAP_XLATE_EILSEQ 0xA2

/* Unusable input character */
#define LDAP_XLATE_NO_ENTRY 0xA3

/* No codeset point to map to */

See also
ldap, ldap_memfree, ldap_parse routines

LDAP_EXTENDED_OPERATION
ldap_extended_operation
ldap_extended_operation_s

Chapter 3. API categories 53

Purpose
Perform extended operations and parse extended result.

Synopsis
#include <ldap.h>

int ldap_extended_operation(
LDAP *ld,
const char *reqoid,
const struct berval *reqdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_extended_operation_s(
LDAP *ld,
const char *reqoid,
const struct berval *reqdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

reqoid Specifies the dotted-object identifier (OID) text string that identifies the
extended operation to be performed by the server.

reqdata
Specifies the arbitrary data required by the extended operation (if NULL,
no data is sent to the server).

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_extended_operation() call is successfully sent to the server. To check
the result of this operation, call the ldap_result() and ldap_parse_result()
APIs. The server can also return an OID and result data. Because the
asynchronous ldap_extended_operation does not directly return the results,
use ldap_parse_extended_result() to get the results.

retoidp
This result parameter is set to point to a character string that is set to an
allocated, dotted-OID text string returned from the server. This string must
be disposed of using the ldap_memfree() API. If no OID is returned,
*retoidp is set to NULL.

54 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

retdatap
This result parameter is set to a pointer to a berval structure pointer that is
set to an allocated copy of the data returned by the server. This struct
berval must be disposed of using ber_bvfree(). If no data is returned,
*retdatap is set to NULL

Usage
The ldap_extended_operation() function is used to initiate an asynchronous
extended operation, which returns LDAP_SUCCESS if the extended operation was
successfully sent, or an LDAP error code if not. If successful, the
ldap_extended_operation() API places the message ID of the request in *msgidp. A
subsequent call to ldap_result() can be used to obtain the result of the extended
operation, which can then be passed to ldap_parse_extended_result() to obtain the
OID and data contained in the response.

The ldap_extended_operation_s() function is used to initiate a synchronous
extended operation, which returns the result of the operation, either
LDAP_SUCCESS if the operation was successful, or another LDAP error code if it
was not. The retoid and retdata parameters are filled in with the OID and data
from the response. If no OID or data was returned, these parameters are set to
NULL.

If the LDAP server does not support the extended operation, the server rejects the
request. IBM Directory Server version 4.1 provides a server plug-in interface that
can be used to add extended operation support. For more information, see the IBM
Directory Server Version 4.1: Server Plug-ins Reference.

To determine if the requisite extended operation is supported by the server, get the
rootDSE of the LDAP server, and check for the supportedExtension attribute. If the
values for this attribute include the OID of your extended operation, then the
server supports the extended operation. If the supportedExtension attribute is not
present in the rootDSE, then the server is not configured to support any extended
operations.

Errors
The ldap_extended_operation_s API returns the LDAP error code for the operation.

ldap_extended_operation() returns -1 instead of a valid msgid if an error occurs,
setting the session error in the LD structure, which can be obtain by using
ldap_get_errno().

See “LDAP_ERROR” on page 50 for more details.

Notes
These routines allocate storage. Use ldap_memfree to free the returned OID. Use
ber_bvfree to free the returned struct berval.

See also
ldap, ldap_result, ldap_error

Chapter 3. API categories 55

LDAP_GET_DN
ldap_dn2ufn
ldap_get_dn
ldap_explode_dn
ldap_explode_dns
ldap_explode_rdn

Purpose
LDAP DN and RDN handling routines.

Synopsis
#include <ldap.h>

char *ldap_dn2ufn(
const char *dn)

char *ldap_get_dn(
LDAP *ld,
LDAPMessage *entry)

char **ldap_explode_dn(
const char *dn,
int notypes)

char **ldap_explode_dns(
const char *dn)

char **ldap_explode_rdn(
const char *rdn,
int notypes)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the DN to be exploded (as returned from ldap_get_dn()), or
converted to a friendlier form (as returned from ldap_dn2ufn()).

rdn Specifies the RDN to be exploded (as returned from ldap_explode_dn()).

entry The entry whose dn is to be retrieved.

notypes
Specifies if type names are to be returned for each RDN. If non-zero, the
type information is stripped. If zero, the type information is retained. For
example, setting notypes to 1 can result in the RDN ″cn=Fido″ being
returned as Fido.

Usage
The ldap_dn2ufn() routine takes a DN and converts it into a friendlier
representation by removing the attribute type that is associated with each RDN.
For example, the DN ″cn=John Doe, ou=Widget Division, ou=Austin, o=IBM,
c=US″ is returned in its friendly form as ″John Doe, Widget Division, Austin, IBM,
US″. Space for the user-friendly name is obtained by the LDAP API, and must be
freed by a call to ldap_memfree().

56 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

The ldap_get_dn() routine takes an entry as returned by ldap_first_entry() or
ldap_next_entry() and returns a copy of the entry’s DN. Space for the DN is
obtained by the LDAP API, and must be freed by a call to ldap_memfree().

The ldap_explode_dn() routine takes a DN (perhaps as returned by ldap_get_dn())
and breaks it up into its component parts. Each part is known as a Relative
Distinguished Name, or RDN. ldap_explode_dn() returns a NULL-terminated array
of character strings, each component of which contains an RDN from the DN. The
notypes parameter is used to request that only the RDN values be returned, not
their types. For example, the DN ″cn=Bob,c=US″ returns an array as either
{″cn=Bob″,″c=US″,NULL} or {″Bob″,″US″,NULL} depending on whether notypes
was 0 or 1. The result can be freed by calling ldap_value_free().

The ldap_explode_dns() routine takes a DNS-style DN and breaks it up into its
component parts. It returns a NULL-terminated array of character strings. For
example, the DN ″austin.ibm.com″ returns { ″austin″, ″ibm″, ″com″, NULL }. The
result can be freed by calling ldap_value_free().

The ldap_explode_rdn() routine takes an RDN (perhaps as returned by
ldap_explode_dn()) and breaks it up into its component parts. ldap_explode_rdn()
returns a NULL-terminated array of character strings. The notypes parameter is
used to request that only the component values be returned, not their types. For
example, the RDN ″ou=Research + cn=Bob″ returns as either {″ou=Research″,
″cn=Bob″, NULL} or {″Research″,″Bob″, NULL}, depending on whether notypes
was 0 or 1. The result can be freed by calling ldap_value_free().

Errors
If an error occurs in ldap_dn2ufn(), ldap_get_dn(), ldap_explode_dn() or
ldap_explode_rdn(), NULL is returned. If ldap_get_dn() returns NULL, the
ldap_get_errno() API can be used to obtain the error code. See “LDAP_ERROR” on
page 50 for a description of possible error codes.

Notes
These routines allocate memory that the caller must deallocate.

See also
ldap, ldap_first_entry, ldap_error, ldap_value_free

LDAP_GET_VALUES
ldap_get_values
ldap_get_values_len
ldap_count_values
ldap_count_values_len
ldap_value_free
ldap_value_free_len

Purpose
LDAP attribute value handling routines.

Chapter 3. API categories 57

Synopsis
#include <ldap.h>

struct berval {
unsigned long bv_len;
char *bv_val;

};

char **ldap_get_values(
LDAP *ld,
LDAPMessage *entry,
const char *attr)

struct berval **ldap_get_values_len(
LDAP *ld,
LDAPMessage *entry,
const char *attr)

int ldap_count_values(
char **vals)

int ldap_count_values_len(
struct berval **bvals)

void ldap_value_free(
char **vals)

void ldap_value_free_len(
struct berval **bvals)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

attr Specifies the attribute whose values are desired.

entry Specifies an LDAP entry as returned from ldap_first_entry() or
ldap_next_entry().

vals Specifies a pointer to a NULL-terminated array of attribute values, as
returned by ldap_get_values().

bvals Specifies a pointer to a NULL-terminated array of pointers to berval
structures, as returned by ldap_get_values_len().

Usage
These routines are used to retrieve and manipulate attribute values from an LDAP
entry as returned by ldap_first_entry() or ldap_next_entry().

An attribute’s values can be represented in two forms:
v A NULL-terminated array of strings. This representation is appropriate when the

attribute contains string data, for example, a title, description or name.
v A NULL-terminated array of berval structures. This representation is appropriate

when the attribute contains binary data, for example, a JPEG file.

String values
Use ldap_get_values() to obtain attribute values as an array of strings. The
ldap_get_values() API takes the entry and the attribute attr whose values are
desired and returns a NULL-terminated array of character strings which represent

58 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

the attribute’s values. attr can be an attribute type as returned from
ldap_first_attribute() or ldap_next_attribute() or if the attribute type is known it
can simply be provided.

The number of values in the array of character strings can be counted by calling
ldap_count_values(). The array of values returned can be freed by calling
ldap_value_free().

If your application is designed to rely on the LDAP library to convert LDAP V3
string data from UTF-8 to the local code page (enabled on a per-connection basis
by using the ldap_set_option() API with the LDAP_OPT_UTF8_IO), strings
returned in the NULL-terminated array of string values can contain multi-byte
characters, as defined in the local code page. In this case, the application must use
string handling routines that are properly enabled to handle multi-byte strings.

Binary values
If the attribute values are binary in nature, and thus not suitable to be returned as
an array of character strings, the ldap_get_values_len() routine can be used instead.
It takes the same parameters as ldap_get_values(), but returns a NULL-terminated
array of pointers to berval structures, each containing the length of, and a pointer
to, a value.

The number of values in the array of bervals can be counted by calling
ldap_count_values_len(). The array of values returned can be freed by calling
ldap_value_free_len().

Errors
If an error occurs in ldap_get_values() or ldap_get_values_len(), NULL is returned
and the ldap_get_errno() API can be used to obtain the error code. See
“LDAP_ERROR” on page 50 for a description of possible error codes.

See also
ldap, ldap_first_entry, ldap_first_attribute, ldap_error

LDAP_INIT
ldap_init
ldap_open (deprecated)
ldap_set_option
ldap_get_option
ldap_version

Purpose
Initialize the LDAP library, open a connection to an LDAP server and get/set
options for an LDAP connection.

Synopsis
#include <ldap.h>

LDAP *ldap_init(
const char *host,
int port)

Chapter 3. API categories 59

LDAP *ldap_open(
const char *host,
int port)

int ldap_set_option(
LDAP *ld,
int optionToSet,
void *optionValue)

int ldap_get_option(
LDAP *ld,
int optionToGet,
void *optionValue)

int ldap_version(
LDAPVersion *version)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

host Several methods are supported for specifying one or more target LDAP
servers, including the following:

Explicit Host List
Specifies the name of the host on which the LDAP server is
running. The host parameter can contain a blank-separated list of
hosts to try to connect to, and each host can optionally be of the
form host:port. If present, the :port overrides the port parameter
supplied on ldap_init(), ldap_ssl_init() or ldap_open(). The
following are typical examples:
ld=ldap_init ("server1", ldap_port);
ld=ldap_init ("server2:1200", ldap_port);
ld=ldap_init ("server1:800 server2:2000 server3", ldap_port);

Localhost
If the host parameter is NULL, the LDAP server is assumed to be
running on the local host.

Default Hosts
If the host parameter is set to ″ldap://″ the LDAP library attempts
to locate one or more default LDAP servers, with non-SSL ports,
using the IBM Directory Server ldap_server_locate() function. The
port specified on the call is ignored, since ldap_server_locate()
returns the port. For example, the following two are equivalent:
ld=ldap_init ("ldap://", ldap_port);
d=ldap_init (LDAP_URL_PREFIX, LDAP_PORT);

If more than one default server is located, the list is processed in
sequence, until an active server is found.

The LDAP URL can include a Distinguished Name, used as a filter
for selecting candidate LDAP servers based on the server’s suffixes.
If the most significant portion of the DN is an exact match with a
server’s suffix after normalizing for case, the server is added to the
list of candidate servers. For example, the following returns default
LDAP servers that have a suffix that supports the specified DN
only:

60 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

ld=ldap_init ("ldap:///cn=fred, dc=austin,
dc=ibm, dc=com", LDAP_PORT);

In this case, a server that has a suffix of ″dc=austin, dc=ibm,
dc=com″ matches. If more than one default server is located, the
list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host
is used to create the connection. No attempt is made to locate the
default servers, and the DN, if present, is ignored. For example, the
following two are equivalent:
ld=ldap_init ("ldap://myserver", LDAP_PORT);
ld=ldap_init ("myserver", LDAP_PORT);

See “Locating default LDAP servers” on page 69 for more
information about the algorithm used to locate default LDAP
servers.

Local Socket
If the host parameter is prefixed with a forward slash (/), the
host parameter is assumed to be the name of a Unix socket, that is,
family is AF_UNIX, and port is ignored. Use of a Unix socket
requires the LDAP server to be running on the local host. In
addition, the local operating system must support Unix sockets
and the LDAP server must be listening on the specified Unix
socket. Unix variants of the IBM Directory Server listen on the
/tmp/s.slapd local socket, in addition to any configured TCP/IP
ports. For example:
ld=ldap_init ("/tmp/s.slapd", ldap_port);

Host with Privileged Port
On platforms that support the rresvport function, typically Unix
platforms, if a specified host is prefixed with ″privport://″, then
the LDAP library uses the rresvport() function to attempt to obtain
one of the reserved ports (512 through 1023), instead of an
ephemeral port. The search for a reserved port starts at 1023 and
stops at 512. If a reserved port cannot be obtained, the function call
fails. For example:
ld=ldap_init ("privport://server1", ldap_port);
ld=ldap_init ("privport://server2:1200", ldap_port);
ld=ldap_init ("privport://server1:800 server2:2000

privport://server3", ldap_port);

port Specifies the port number to connect to. If the default IANA-assigned port
of 389 is desired, LDAP_PORT must be specified. To use the default SSL
port 636 for SSL connections, use LDAPS_PORT.

optionToSet
Identifies the option value that is to be set on the ldap_set_option() call.
See “Usage” on page 62 for the list of supported options.

optionToGet
Identifies the option value that is to be queried on the ldap_get_option()
call. See “Usage” on page 62 for the list of supported options.

optionValue
Specifies the address of the value to set using ldap_set_option() or the
address of the storage in which the queried value is returned using
ldap_get_option().

Chapter 3. API categories 61

version
Specifies the address of an LDAPVersion structure that contains the
following returned values:

sdk_version
SDK version, multiplied by 100.

protocol_version
Highest LDAP protocol supported, multiplied by 100.

SSL_version
SSL version supported, multiplied by 100.

security_level
Level of encryption supported, in bits. Set to
LDAP_SECURITY_NONE if SSL not enabled.

ssl_max_cipher
A string containing the default ordered set of ciphers supported by
this installation. See “LDAP_SET_OPTION syntax for LDAP V2
applications” on page 69 for more information about changing the
set of ciphers used to negotiate the secure connection with the
server.

sdk_vendor
A pointer to a static string that identifies the supplier of the LDAP
library. This string must not be freed by the application.

sdk_build_level
A pointer to a static string that identifies the build level, including
the date when the library was built. This string must not be freed
by the application.

Usage
ldap_init initializes a session with an LDAP server. The server is not actually
contacted until an operation is performed that requires the server, allowing various
options to be set after initialization, but before actually contacting the host. It
allocates an LDAP structure which is used to identify the connection and maintain
per-connection information.

Although still supported, the use of ldap_open() is deprecated. The ldap_open()
API allocates an LDAP structure and opens a connection to the LDAP server. Use
of ldap_init() instead of ldap_open() is recommended.

The ldap_init() and ldap_open() APIs return a pointer to an LDAP structure, which
must be passed to subsequent calls to ldap_set_option(), ldap_simple_bind(),
ldap_search(), and so forth.

The LDAP structure is opaque to the application. Direct manipulation of the LDAP
structure is not recommended. The ldap_version() API returns the toolkit version
(multiplied by 100). It also sets information in the LDAPVersion structure (see 61).

Setting and getting session settings
The ldap_set_option() API sets options for the specified LDAP connection. The
ldap_get_option() API queries settings associated with the specified LDAP
connection.

The following session settings can be set and retrieved using the ldap_set_option
and ldap_get_option API:

62 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_OPT_SIZELIMIT
Get/Set maximum number of entries that can be returned on a search
operation.

LDAP_OPT_TIMELIMIT
Get/Set maximum number of seconds to wait for search results.

LDAP_OPT_REFHOPLIMIT
Get/Set maximum number of referrals in a sequence that the client can
follow.

LDAP_OPT_DEREF
Get/Set rules for following aliases at the server.

LDAP_OPT_REFERRALS
Get/Set whether or not referrals must be followed by the client.

LDAP_OPT_DEBUG
Get/Set debug options.

LDAP_OPT_SSL_CIPHER
Get/Set SSL ciphers to use.

LDAP_OPT_SSL_TIMEOUT
Get/Set SSL timeout for refreshing session keys.

LDAP_OPT_REBIND_FN
Get/Set address of application’s setrebindproc procedure.

LDAP_OPT_PROTOCOL_VERSION
Get/Set LDAP protocol version to use (V2 or V3).

LDAP_OPT_SERVER_CONTROLS
Get/Set default server controls.

LDAP_OPT_CLIENT_CONTROLS
Get/Set default client library controls.

LDAP_OPT_UTF8_IO
Get/Set mode for converting string data between the local code page and
UTF-8.

LDAP_OPT_HOST_NAME
Get current host name (cannot be set).

LDAP_OPT_ERROR_NUMBER
Get error number (cannot be set).

LDAP_OPT_ERROR_STRING
Get error string (cannot be set).

LDAP_OPT_API_INFO
Get API version information (cannot be set).

LDAP_OPT_EXT_ERROR
Get extended error code.

If your LDAP application is based on the LDAP V2 APIs and uses the
ldap_set_option() or ldap_get_option() functions, that is, you are using ldap_open,
or your application uses ldap_init and ldap_set_option to switch from the default
of LDAP V3 to use the LDAP V2 protocol and subsequently uses the
ldap_set_option() or ldap_get_option() calls, see “LDAP_SET_OPTION syntax for
LDAP V2 applications” on page 69 for important information.

Chapter 3. API categories 63

Additional details on specific options for ldap_set_option() and ldap_get_option
are provided in the following sections.

LDAP_OPT_SIZELIMIT: Specifies the maximum number of entries that can be
returned on a search operation.

Note: The actual size limit for operations is also bounded by the maximum
number of entries that the server is configured to return. Thus, the actual
size limit is the lesser of the value specified on this option and the value
configured in the LDAP server. The default sizelimit is unlimited, specified
with a value of zero, thus deferring to the sizelimit setting of the LDAP
server.

For example:
sizevalue=50;
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);
ldap_get_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);

LDAP_OPT_TIMELIMIT: Specifies the number of seconds to wait for search
results.

Note: The actual time limit for operations is also bounded by the maximum time
that the server is configured to allow. Thus, the actual time limit is the lesser
of the value specified on this option and the value configured in the LDAP
server.

The default is unlimited (specified with a value of zero). For example:
timevalue=50;
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);
ldap_get_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);

LDAP_OPT_REFHOPLIMIT: Specifies the maximum number of hops that the
client library takes when chasing referrals. The default is 10. For example:
hoplimit=7;
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);
ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);

LDAP_OPT_DEREF: Specifies alternative rules for following aliases at the server.
The default is LDAP_DEREF_NEVER.

Supported values:
LDAP_DEREF_NEVER 0
LDAP_DEREF_SEARCHING 1
LDAP_DEREF_FINDING 2
LDAP_DEREF_ALWAYS 3

For example:
int deref = LDAP_DEREF_NEVER;
ldap_set_option(ld, LDAP_OPT_DEREF, &deref);
ldap_get_option(ld, LDAP_OPT_DEREF, &deref);

LDAP_OPT_REFERRALS: Specifies whether the LDAP library automatically
follows referrals returned by LDAP servers or not. It can be set to one of the
constants LDAP_OPT_ON or LDAP_OPT_OFF. By default, the LDAP client follows
referrals. For example:

int value;
ldap_set_option(ld, LDAP_OPT_REFFERALS, (void *)LDAP_OPT_ON);
ldap_get_option(ld, LDAP_OPT_REFFERALS, &value);

64 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_OPT_DEBUG: Specifies a bit-map that indicates the level of debug trace
for the LDAP library.

Supported values:
/* Debug levels */

LDAP_DEBUG_OFF 0x000
LDAP_DEBUG_TRACE 0x001
LDAP_DEBUG_PACKETS 0x002
LDAP_DEBUG_ARGS 0x004
LDAP_DEBUG_CONNS 0x008
LDAP_DEBUG_BER 0x010
LDAP_DEBUG_FILTER 0x020
LDAP_DEBUG_CONFIG 0x040
LDAP_DEBUG_ACL 0x080
LDAP_DEBUG_STATS 0x100
LDAP_DEBUG_STATS2 0x200
LDAP_DEBUG_SHELL 0x400
LDAP_DEBUG_PARSE 0x800
LDAP_DEBUG_ANY 0xffff

For example:
int value;
int debugvalue= LDAP_DEBUG_TRACE | LDAP_DEBUG_PACKETS;
ldap_set_option(ld, LDAP_OPT_DEBUG, &debugvalue);
ldap_get_option(ld, LDAP_OPT_DEBUG, &value);

LDAP_OPT_SSL_CIPHER: Specifies a set of one or more ciphers to be used
when negotiating the cipher algorithm with the LDAP server. Choose the first
cipher in the list that is common with the list of ciphers supported by the server.
For the export version of the library, the value used is ″090306″. For the domestic
version of the library, the default value is ″05040A090306″.

Supported ciphers:
LDAP_SSL_RC4_MD5_EX ″03″

LDAP_SSL_RC2_MD5_EX ″06″

LDAP_SSL_RC4_SHA_US ″05″ (Non-export only)
LDAP_SSL_RC4_MD5_US ″04″ (Non-export only)
LDAP_SSL_DES_SHA_US ″09″

LDAP_SSL_3DES_SHA_US ″0A″ (Non-export only)

For example:
char *setcipher = "090A";
char *getcipher;
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, setcipher);
ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, &getcipher);

Use ldap_memfree() to free the memory returned by the call to ldap_get_option().

LDAP_OPT_SSL_TIMEOUT: Specifies in seconds the SSL inactivity timer. After
the specified seconds, in which no SSL activity has occurred, the SSL connection is
refreshed with new session keys. A smaller value can help increase security, but
has a small impact on performance. The default SSL timeout value is 43200
seconds. For example:

value = 100;
ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, &value);
ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, &value)

Chapter 3. API categories 65

LDAP_OPT_REBIND_FN: Specifies the address of a routine to be called by the
LDAP library to authenticate a connection with another LDAP server when
chasing a referral or search reference. If a routine is not defined, referrals are
chased using the identity and credentials specified on the bind sent to the original
server. A default routine is not defined. For example:

extern LDAPRebindProc proc_address;
LDAPRebindProc value;
ldap_set_option(ld, LDAP_OPT_REBIND_FN, &proc_address);
ldap_get_option(ld, LDAP_OPT_REBIND_FN, &value);

LDAP_OPT_PROTOCOL_VERSION: Specifies the LDAP protocol to be used by
the LDAP client library when connecting to an LDAP server. Also used to
determine which LDAP protocol is being used for the connection. For an
application that uses ldap_init() to create the LDAP connection, the default value
of this option is LDAP_VERSION3 for communicating with the LDAP server. The
default value of this option is LDAP_VERSION2 if the application uses the
deprecated ldap_open() API. In either case, the LDAP_OPT_PROTOCOL_VERSION
option can be used with ldap_set_option() to change the default. The LDAP
protocol version must be reset prior to issuing the bind (or any operation that
causes an implicit bind). For example:

version2 = LDAP_VERSION2;
version3 = LDAP_VERSION3;

/* Example for Version 3 application setting version to version 2 */
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version2);

/* Example of Version 2 application setting version to version 3 */
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version3);
ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &value);

LDAP_OPT_SERVER_CONTROLS: Specifies a default list of server controls to
be sent with each request. The default list can be overridden by specifying a server
control, or list of server controls, on specific APIs. By default, there are no settings
for Server Controls. For example:
ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, &ctrlp);

LDAP_OPT_CLIENT_CONTROLS: Specifies a default list of client controls to be
processed by the client library with each request. Since client controls are not
defined for this version of the library, the ldap_set_option() API can be used to
define a set of default, non-critical client controls. If one or more client controls in
the set is critical, the entire list is rejected with a return code of
LDAP_UNAVAILABLE_CRITICAL_EXTENSION

LDAP_OPT_UTF8_IO: Specifies whether the LDAP library automatically converts
string data to and from the local code page. It can be set to either
LDAP_UTF8_XLATE_ON or LDAP_UTF8_XLATE_OFF. By default, the LDAP
library does not convert string data.

When conversion is disabled by default, the LDAP library assumes that data
received from the application using LDAP APIs is already represented in UTF-8.
Similarly, the LDAP library assumes that the application is prepared to receive
string data from the LDAP library represented in UTF-8, or as binary.

When LDAP_UTF8_XLATE_ON is set, the LDAP library assumes that string data
received from the application using LDAP APIs is in the default (or explicitly
designated) code page. Similarly, all string data returned from the LDAP library
back to the application is converted to the designated local code page.

66 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

It is important to note that only string data supplied on connection-based APIs is
translated, that is, only those APIs that include an ld are subject to translation.

It is also important to note that translation of strings from a UTF-8 encoding to
local code page can result in loss of data when one or more characters in the
UTF-8 encoding cannot be represented in the local code page. When this occurs, a
substitution character replaces any UTF-8 characters that cannot be converted to
the local code page.

For more information on explicitly setting the locale for conversions, see
ldap_set_locale(). For example:

int value;
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void*)LDAP_UTF8_XLATE_ON);
ldap_get_option(ld, LDAP_OPT_UTF8_IO, &value);

LDAP_OPT_HOST_NAME: This is a read-only option that returns a pointer to
the hostname for the original connection (as specified on ldap_init(), ldap_open(),
or ldap_ssl_init()). For example:

char *hostname;
ldap_get_option(ld, LDAP_OPT_HOST_NAME, &hostname);

Use ldap_memfree to free the memory returned by the call to ldap_get_option().

LDAP_OPT_ERROR_NUMBER: This is a read-only option that returns the error
code associated with the most recent LDAP error that occurred for the specified
LDAP connection. For example:
int error;
ldap_get_option(ld, LDAP_OPT_ERROR_NUMBER, &error);

LDAP_OPT_ERROR_STRING: This is a read-only option that returns the text
message associated with the most recent LDAP error that occurred for the specified
LDAP connection. For example:
char *error_string;
ldap_get_option(ld, LDAP_OPT_ERROR_STRING, &error_string);

Use ldap_memfree() to free the memory returned by the call to ldap_get_option().

LDAP_OPT_API_INFO: This is a read-only option that returns basic information
about the API and about the specific implementation being used. The ld parameter
to ldap_get_option() can be either NULL or a valid LDAP session handle which
was obtained by calling ldap_init(), ldap_ssl_init() or ldap_open(). The optdata
parameter to ldap_get_option() must be the address of an LDAPAPIInfo structure
which is defined as follows:

typedef struct ldapapiinfo {
int ldapai_info_version; /* version of this struct (1) */
int ldapai_api_version; /* revision of API supported */
int ldapai_protocol_version; /* highest LDAP version supported */
char **ldapai_extensions; /* names of API extensions */
char *ldapai_vendor_name; /* name of supplier */
int ldapai_vendor_version; /* supplier-specific version times 100 */

} LDAPAPIInfo;

Note: The ldapai_info_version field of the LDAPAPIInfo structure must be set to
the value LDAP_API_INFO_VERSION before calling ldap_get_option() so
that it can be checked for consistency. All other fields are set by the
ldap_get_option() function.

Chapter 3. API categories 67

The members of the LDAPAPIInfo structure are:

ldapai_info_version
A number that identifies the version of the LDAPAPIInfo structure. This
must be set to the value LDAP_API_INFO_VERSION before calling
ldap_get_option(). If the value received is not recognized by the API
implementation, the ldap_get_option() function sets ldapai_info_version to
a valid value that can be recognized, sets ldapai_api_version to the correct
value, and returns an error without filling in any of the other fields in the
LDAPAPIInfo structure.

ldapai_api_version
A number that matches that assigned to the C LDAP API RFC supported
by the API implementation. This number must match the value of the
LDAP_API_VERSION define.

ldapai_protocol_version
The highest LDAP protocol version supported by the implementation. For
example, if LDAPv3 is the highest version supported then this field is set
to 3.

ldapai_extensions
A NULL-terminated array of character strings that lists the names of API
extensions. The caller is responsible for disposing of the memory occupied
by this array by passing it to ldap_value_free().

LDAP_OPT_EXT_ERROR: This is a read-only option that returns the extended
error code. For example, if an SSL error occurred when attempting to invoke an
ldap_search_s API, the actual SSL error can be obtained by using
LDAP_OPT_EXT_ERROR:
int error;
ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &exterror);

LDAP_OPT_EXT_ERROR returns errors reported by the SSL library.

Errors
If an error occurs, a non-zero return code is returned from ldap_set_option and
ldap_get_option.

LDAP_DEBUG
To obtain debug information from a client application built using the IBM
Directory Server LDAP C-API, you can set the environment variables
LDAP_DEBUG and LDAP_DEBUG_FILE.

For Unix, enter the following command before running your application:
export LDAP_DEBUG=65535

For the Windows NT and Windows 2000 operating systems, enter the following
command before running your application:
set LDAP_DEBUG=65535

Trace messages in the LDAP C-API library are output to standard error. Use
LDAP_DEBUG_FILE=xxxxx to send the trace output to the file xxxxx.

These environment variables affect only applications run in the same shell (or
command window) session. You can also call ldap_set_option() in your application
to enable and disable the library’s trace messages.

68 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_SET_OPTION syntax for LDAP V2 applications
To maintain compatibility with older versions of the LDAP client library
(pre-LDAP V3), the ldap_set_option() API expects the value of the following option
values to be supplied, instead of the address of the value, when the application is
running as an LDAP V2 application:
v LDAP_OPT_SIZELIMIT
v LDAP_OPT_TIMELIMIT
v LDAP_OPT_SSL_TIMEOUT
v LDAP_OPT_DEREF
v LDAP_OPT_DEBUG

The value returned by ldap_get_option() when LDAP_OPT_PROTOCOL_VERSION
is specified can be used to determine how parameters must be passed to the
ldap_set_option() call. The easiest way to work with this compatibility feature is to
guarantee that calls to ldap_set_option() are all performed while the
LDAP_OPT_PROTOCOL_VERSION is set to the same value. If this cannot be
guaranteed by the application, then follow the format of the example below when
coding the call to ldap_set_option():

int sizeLimit=100;

int protocolVersion;

ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &protocolVersion);

if (protocolVersion == LDAP_VERSION2) {
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *)sizeLimit);

} else { /* the protocol version is LDAP_VERSION3 */
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);

}

The LDAP application is typically running as LDAP V2 when it uses ldap_open()
to create the LDAP connection. The LDAP application is typically running as
LDAP V3 when it uses ldap_init() to create the LDAP connection. However, it was
possible with the LDAP V2 API to call ldap_init(), so there can be cases where this
is not true. Note that LDAP_OPT_PROTOCOL_VERSION can be used to toggle the
protocol, in which case the behavior of ldap_set_option() changes.

Locating default LDAP servers
When the ldap_init, ldap_open or ldap_ssl_init APIs are invoked with an LDAP
URL of the following forms, the ldap_server_locate() function is used to obtain a
set of one or more default LDAP servers:
ld=ldap_init ("ldap://", ldap_port); /* locate servers with

non-secure ports */
ld=ldap_ssl_init ("ldaps://", ldap_port); /* locate servers with

secure SSL ports */

The ldap_server_locate() API provides several options for searching for default
LDAP servers. An application using ldap_server_locate() in an explicit fashion can
control these options. When ldap_server_locate() is used implicitly, as described
here, the following options are used:

Security
If the non-secure LDAP URL is specified (ldap://), servers with a
non-secure security type are used as candidate servers only. If the secure
LDAP URL is specified, (ldaps://), servers with a Secure security type are
used as candidate servers only.

Chapter 3. API categories 69

Source for Server Information
The ldap_server_locate() API can be used to find default LDAP server
information in either a local configuration file, or published in the Domain
Name System (DNS). In this case, the default behavior is used. The
ldap_server_locate() API looks for a local configuration file first, and
attempts to find one or more LDAP servers that meet the search criteria
(security and suffix filter). If nothing is found, it then searches DNS. See
ldap_server_conf_save() for additional information about using a local
configuration file.

DNS Domain Name
When searching the local configuration and DNS, the ldap_server_locate()
API assumes that your default LDAP servers are published in your locally
configured TCP/DNS domain name space, for example, acme.com.

Service Name and Protocol
A complete search is performed using ldap for the service name and tcp
for the protocol. If no servers are located, the search is rerun, using _ldap
and _tcp.

Note: If the default behavior as described here is not appropriate for your
application, consider using the ldap_server_locate() API explicitly, prior to
invoking the ldap_init() or ldap_ssl_init() API.

Multithreaded applications
The LDAP client libraries are generally thread safe. While a multithreaded
application can safely use the LDAP library on multiple threads within the
application, there are a few considerations to keep in mind:
v Using the LDAP connection, that is, the ld, on the thread that is created is a

good model. This avoids the possibility of conflicts which can arise if multiple
threads are concurrently processing the results of an operation submitted on a
different thread.

v An application can be designed to submit requests on one or more threads, with
results being fetched on different threads. This is also a good model, since it
avoids the situation where two threads are attempting to process the results
associated with a single LDAP connection.

v The ldap_get_errno() API obtains information with respect to the most recent
error that occurred for the specified LDAP connection. It does not return the
most recent LDAP error that occurred on the thread on which it is issued.

v A key consideration is that only a single thread must be performing operations
on a particular LDAP connection at any one point in time.

v Note that the locale is applicable to all conversions by the LDAP library within
the applications address space. The LDAP locale must be set or changed only
when there is no other LDAP activity occurring within the application on other
threads.

Notes
Do not make any assumptions about the order or location of elements in the
opaque LDAP structure.

See also
ldap, ldap_bind

70 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_MEMFREE
ldap_memfree
ldap_ber_free
ldap_control_free
ldap_controls_free
ldap_msgfree

Purpose
Free storage allocated by the LDAP library.

Synopsis
#include <ldap.h>

void ldap_memfree(
char *mem)

void ldap_ber_free(
BerElement *berptr)

void ldap_control_free (
LDAPControl *ctrl)

void ldap_controls_free)
LDAPControl **ctrls)

int ldap_msgfree(
LDAPMessage *msg)

Input parameters
mem Specifies the address of storage that was allocated by the LDAP library.

berptr Specifies the address of the BerElement returned from ldap_first_attribute()
and ldap_next_attribute().

ctrl Specifies the address of an LDAPControl structure.

ctrls Specifies the address of an LDAPControl list, represented as a
NULL-terminated array of pointers to LDAPControl structures.

Usage
ldap_memfree() is used to free storage that has been allocated by the LDAP library
(libldap). Use this routine as directed when using ldap_error(), ldap_get_option(),
ldap_first_attribute(), ldap_default_dn_get() and ldap_enetwork_domain_get().

For those LDAP APIs that allocate an LDAPControl structure, the
ldap_control_free() API can be used.

For those LDAP APIs that allocate an array of LDAPControl structures, the
ldap_controls_free() API can be used.

The ldap_msgfree() routine is used to free the memory allocated for an LDAP
message by ldap_result, ldap_search_s, ldap_search_ext_s() or ldap_search_st(). It
takes a pointer to the result to be freed and returns the type of the message it
freed.

Chapter 3. API categories 71

The ldap_ber_free() routine is used to free the BerElement pointed to by berptr.
The LDAP library automatically frees the BerElement when ldap_next_attribute()
returns NULL. The application is responsible for freeing the BerElement if it does
not invoke ldap_next_attribute() until it returns NULL.

See also
ldap, ldap_controls

LDAP_MESSAGE
ldap_first_message
ldap_next_message
ldap_count_messages

Purpose
Step through the list of messages of a result chain, as returned by ldap_result().

Synopsis
#include <ldap.h>

LDAPMessage *ldap_first_message(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_message(
LDAP *ld,
LDAPMessage *msg)

int ldap_count_messages(
LDAP *ld,
LDAPMessage *result)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

result Specifies the result returned by a call to ldap_result() or one of the
synchronous search routines (ldap_search_s(), ldap_search_st() or
ldap_search_ext_s()).

msg Specifies the message returned by a previous call to ldap_first_message() or
ldap_next_message().

Usage
These routines are used to step through the list of messages in a result chain, as
returned by ldap_result().

For search operations, the result chain can include:
v Referral messages
v Entry messages
v Result messages

72 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

The ldap_count_messages() API is used to count the number of messages returned.
The ldap_msgtype() API can be used to distinguish between the different message
types. Unlike ldap_first_entry(), ldap_first_message() returns either of the three
types of messages.

The ldap_first_message() and ldap_next_message() APIs returns NULL when no
more messages exist in the result set to be returned. NULL is also returned if an
error occurs while stepping through the entries. When such an error occurs,
ldap_get_errno() can be used to obtain the error code.

The ldap_count_messages API can also be used to count the number of messages
that remain in a chain if called with a message, entry, or reference returned by
ldap_first_message(), ldap_next_message(), ldap_first_entry, ldap_next_entry,
ldap_first_reference and ldap_next_reference.

Errors
If an error occurs in ldap_first_message() or ldap_next_message(), the
ldap_get_errno() API can be used to obtain the error code.

If an error occurs in ldap_count_messages(), -1 is returned, and ldap_get_errno()
can be used to obtain the error code. See “LDAP_ERROR” on page 50 for a
description of possible error codes.

See also
ldap, ldap_result, ldap_first_entry, ldap_next_entry, ldap_first_reference,
ldap_next_reference, ldap_get_errno, ldap_msgtype.

LDAP_MODIFY
ldap_modify
ldap_modify_ext
ldap_modify_s
ldap_modify_ext_s
ldap_mods_free

Purpose
Perform various LDAP modify operations.

Synopsis
#include <ldap.h>

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {
char **modv_strvals;
struct berval **modv_bvals;
} mod_vals;

} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
LDAP *ld,

Chapter 3. API categories 73

const char *dn,
LDAPMod *mods[])

int ldap_modify_ext(
LDAP *ld,
const char *dn,
LDAPMod *mods[],
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_modify_s(
LDAP *ld,
const char *dn,;
LDAPMod *mods[])

int ldap_modify_ext_s(
LDAP *ld,
const char *dn,
LDAPMod *mods[],
LDAPControl **serverctrls,
LDAPControl **clientctrls)

void ldap_mods_free(
LDAPMod **mods,
int *reemods)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the Distinguished Name (DN) of the entry to be modified. See
Appendix B, “LDAP distinguished names” on page 181 for more
information about DNs.

mods Specifies a NULL-terminated array of entry modifications. Each element of
the mods array is a pointer to an LDAPMod structure.

freemods
Specifies whether or not the mods pointer is to be freed, in addition to the
NULL-terminated array of mod structures.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_modify_ext() call succeeds.

Usage
The various modify APIs are used to perform an LDAP modify operation. DN is
the distinguished name of the entry to modify, and mods is a NULL-terminated
array of modifications to make to the entry. Each element of the mods array is a
pointer to an LDAPMod structure.

74 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

The mod_op field is used to specify the type of modification to perform and must
be one of the following:
v LDAP_MOD_ADD (0x00)
v LDAP_MOD_DELETE (0x01)
v LDAP_MOD_REPLACE (0x02)

This field also indicates the type of values included in the mod_vals union. For
binary data, you must also logically OR the operation type with
LDAP_MOD_BVALUES (0x80). This indicates that the values are specified in a
NULL-terminated array of struct berval structures. Otherwise, the mod_values are
used, that is, the values are assumed to be a NULL-terminated array of
NULL-terminated character strings.

The mod_type field specifies the name of attribute to add, modify or delete.

The mod_vals field specifies a pointer to a NULL-terminated array of values to
add, modify or delete. Only one of the mod_values or mod_bvalues variants must
be used, with mod_bvalues being selected by ORing the mod_op field with the
constant LDAP_MOD_BVALUES.

mod_values is a NULL-terminated array of strings. Since the ldap_add() API
converts the string from the local code page to UTF-8, the strings must be in the
local code page if the LDAP_OPT_UTF8_IO option has been set to
LDAP_UTF8_XLATE_ON for the connection (). If the UTF-8 translation option is
not set, the array of strings must be composed of NULL-terminated UTF-8 strings
(note that US-ASCII is a proper subset of UTF-8).

mod_bvalues is a NULL-terminated array of berval structures that can be used to
pass binary values such as images.

For LDAP_MOD_ADD modifications, the given values are added to the entry,
creating the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the
entry, removing the attribute if no values remain. If the entire attribute is to be
deleted, the mod_values field must be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute has the listed values after
the modification, having been created if necessary, or removed if the mod_vals
field is NULL.

All modifications are performed in the order in which they are listed.

The ldap_modify_ext() API initiates an asynchronous modify operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, ldap_modify_ext() places the message ID of
the request in *msgidp. A subsequent call to ldap_result() can be used to obtain the
result of the operation. Once the operation has completed, ldap_result() returns the
status of the operation in the form of an error code. The error code indicates if the
operation completed successfully. The ldap_parse_result() API checks the error
code in the result.

The ldap_modify() API initiates an asynchronous modify operation and returns the
message ID of this operation. A subsequent call to ldap_result(), can be used to
obtain the result of the modify. In case of error, ldap_modify() returns -1, setting

Chapter 3. API categories 75

the session error parameters in the LDAP structure appropriately, which can be
obtained by using ldap_get_errno(). See “LDAP_ERROR” on page 50 for more
details.

The synchronous ldap_modify_ext_s() and ldap_modify_s() APIs both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The ldap_modify_ext() and ldap_modify_ext_s() APIs support LDAP V3 server
controls and client controls.

ldap_modify_s() returns the LDAP error code resulting from the modify operation.
This code can be interpreted by ldap_perror() or ldap_err2string().

The ldap_modify() operation works the same way as ldap_modify_s(), except that
it is asynchronous, returning the message ID of the request it initiates, or -1 on
error. The result of the operation can be obtained by calling ldap_result().

ldap_mods_free() can be used to free each element of a NULL-terminated array of
LDAPMod structures. If freemods is non-zero, the mods pointer is freed as well.

Errors
ldap_modify_s() and ldap_modify_ext_s() return the resulting LDAP error code
from the modify operation.

ldap_modify() and ldap_modify_ext() return -1 instead of a valid msgid if an error
occurs, setting the session error in the LD structure, which can be obtained by
using ldap_get_errno(). See “LDAP_ERROR” on page 50 for more details.

See also
ldap, ldap_error, ldap_add

LDAP_PARSE_RESULT
ldap_parse_result
ldap_parse_sasl_bind_result
ldap_parse_extended_result

Purpose
LDAP routines for extracting information from results returned by other LDAP API
routines.

Synopsis
#include <ldap.h>

int ldap_parse_result(
LDAP *ld;
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***servctrlsp,
int freeit)

76 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

int ldap_parse_sasl_bind_result(
LDAP *ld;
LDAPMessage *res,
struct berval **servercredp,
int freeit)

int ldap_parse_extended_result(
LDAP *ld,
LDAPMessage *res,
char **resultoidp,
struct berval **resultdatap,
int freeit)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

res Specifies the result of an LDAP operation as returned by ldap_result() or
one of the synchronous LDAP API operation calls.

errcodep
Specifies a pointer to the result parameter that is filled in with the LDAP
error code field from the LDAPMessage message. The LDAPResult
message is produced by the LDAP server, and indicates the outcome of the
operation. NULL can be specified for errcodep if the LDAPResult message
is to be ignored.

matcheddnp
Specifies a pointer to a result parameter. When LDAP_NO_SUCH_OBJECT
is returned as the LDAP error code, this result parameter is filled in with a
Distinguished Name indicating how much of the name in the request was
recognized by the server. NULL can be specified for matcheddnp if the
matched DN is to be ignored. The matched DN string must be freed by
calling ldap_memfree().

errmsgp
Specifies a pointer to a result parameter that is filled in with the contents
of the error message from the LDAPMessage message. The error message
string must be freed by calling ldap_memfree().

referralsp
Specifies a pointer to a result parameter that is filled in with the contents
of the referrals field from the LDAPMessage message, indicating zero or
more alternate LDAP servers where the request must be retried. The
referrals array must be freed by calling ldap_value_free(). NULL can be
supplied for this parameter to ignore the referrals field.

resultoidp
This result parameter specifies a pointer which is set to point to an
allocated, dotted-OID text string returned from the server. This string must
be disposed of using the ldap_memfree() API. If no OID is returned,
*resultoidp is set to NULL.

resultdatap
This result parameter specifies a pointer to a berval structure pointer that
is set to an allocated copy of the data returned by the server. This struct
berval must be disposed of using ber_bvfree(). If no data is returned,
*resultdatap is set to NULL.

serverctrlsp
Specifies a pointer to a result parameter that is filled in with an allocated

Chapter 3. API categories 77

array of controls copied out of the LDAPMessage message. The control
array must be freed by calling ldap_controls_free().

freeit Specifies a boolean value that determines if the LDAP result (as specified
by res) is to be freed. Any non-zero value results in res being freed after
the requested information is extracted. The ldap_msgfree() API can be used
to free the result at a later time.

servercredp
Specifies a pointer to a result parameter. For SASL bind results, this result
parameter is filled in with the credentials returned by the server for
mutual authentication, if the credentials are returned. The credentials are
returned in a struct berval structure. NULL might be supplied to ignore
this field.

err Specifies an LDAP error code, used as input to ldap_err2string(), so that a
text description of the error can be obtained.

Usage
The ldap_parse_result() API is used to:
v Obtain the LDAP error code field associated with an LDAPMessage message.
v Obtain the portion of the DN that the server recognizes for a failed operation.
v Obtain the text error message associated with the error code returned in an

LDAPMessage message.
v Obtain the list of alternate servers from the referrals field.
v Obtain the array of controls that can be returned by the server.

The ldap_parse_sasl_bind_result() API is used to obtain server credentials, as a
result of an attempt to perform mutual authentication.

Both of the ldap_parse_*_result() APIs ignore messages of type
LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when
looking for a result message to parse. They both return LDAP_SUCCESS if the
result was successfully located and parsed, and an LDAP error code if not
successfully parsed.

The ldap_err2string() API is used to convert the numeric LDAP error code, as
returned by any of the LDAP APIs, into a NULL-terminated character string that
describes the error. The character string is returned as static data and must not be
freed by the application.

Errors
The parse routines return an LDAP error code if they encounter an error parsing
the result.

See “LDAP_ERROR” on page 50 for a list of the LDAP error codes.

See also
ldap, ldap_error, ldap_result

78 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP_PLUGIN_REGISTRATION
ldap_register_plugin
ldap_query_plugin
ldap_free_query_plugin

Purpose
Described here are LDAP routines that:
v Register an LDAP client plug-in.
v Obtain information about plug-ins that have been registered by the application,

as well as plug-ins that are defined in ldap.conf.
v Free the array of plug-in information returned from the ldap_query_plugin() AP.

Synopsis
#include <ldap.h>

int ldap_register_plugin(
LDAP_File_Plugin_Info *plugin_info)

int ldap_query_plugin(
LDAP_File_Plugin_Info plugin_infop)

int ldap_free_query_plugin(
LDAP_File_Plugin_Info ***plugin_infop)

typedef struct ldap_file_plugin_info {
char *type; /* plugin type */
char *subtype; /* plugin subtype */
char *path; /* path to plugin library */
char *init; /* initialization routine */
char *paramlist; /* plugin parameter list */

} LDAP_File_Plugin_Info;

Input parameters
plugin_info

A structure that contains information about a specific type of SASL plug-in.
An instance of the structure contains the following fields:

type NULL-terminated string that defines plug-in type. The only type
currently supported is sasl.

subtype
NULL-terminated string that specifies the subtype of plug-in being
registered. When type=sasl, the subtype is used to specify the
SASL mechanism supported by the plug-in. For example,
fingerprint might be specified for any SASL plug-in that supports
the fingerprint mechanism. For the cram-md5 mechanism, use
LDAP_MECHANISM_CRAM_MD5.

path NULL-terminated string that specifies the path to the plug-in’s
shared library. The plug-in path can be a fully-qualified path
including file name, or just the file name with or without the file
extension. If just the file name is supplied, the LDAP library
attempts to find it using standard operating system search criteria.

Chapter 3. API categories 79

init NULL-terminated string that specifies the initialization routine for
the plug-in. If NULL, the name of the initialization routine is
assumed to be ldap_plugin_init.

parmlist
NULL-terminated string that specifies arbitrary parameter
information that is used by the plug-in. For example, if the plug-in
needs to access a remote security server, the host name of the
remote security server can be supplied as a value in the parameter
list.

plugin_infop
Specifies the address that points to a NULL-terminated array of
LDAP_Plugin_Info structures. Each LDAP_Plugin_Info structure defined in
the list contains information about a registered plug-in. For example:
LDAP_File_Plugin_Info **plugin_infop;

rc = ldap_query_plugin (&plugin_infop);

plugin_infop
Specifies the address of a NULL-terminated array of plug-in information
structures to be freed.

Output parameters
plugin_infop

Upon successful return from ldap_query_plugin(), plugin_infop points to a
NULL-terminated array of LDAP_Plugin_Info pointers. If there are no
plug-ins registered, the plugin_infop data structure is set to NULL and no
memory allocated.

Usage
Two mechanisms are available for making an LDAP client plug-in known to the
LDAP library:
v As defined in the ldap.conf file.
v The plug-in has been explicitly registered by the application, using the

ldap_register_plugin() API.

An application can override the definition of a plug-in in ldap.conf by using the
ldap_register_plugin() API. A plug-in is uniquely identified by the combination of
its type and subtype. For example, an application can choose to use its own
cram-md5 plug-in (as defined in ldap.conf) by invoking ldap_register_plugin() and
defining another shared library with type=″sasl″ and subtype=″cram-md5″. Note
that plug-ins registered with the ldap_register_plugin() API are defined for the
application. In this example, other applications still use the default cram-md5
plug-in.

Finding the Plug-in library
When a plug-in is not explicitly registered by the application with the
ldap_register_plugin() API, the LDAP library must find the appropriate plug-in
shared library. To find information about the plug-in, the LDAP library must find
the ldap.conf file. Note that the attempt to locate ldap.conf is made on behalf of
the application in whichever of the following events occurs first:
v The ldap_register_plugin() API is invoked.
v The ldap_sasl_bind_s() API is invoked.

80 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

After the ldap.conf file is accessed, all information in the file is stored internally for
subsequent use. The file is not re-accessed until the application is restarted.
However, additional use of the ldap_register_plugin() API can be used by the
application to add additional plug-in definitions, or to override definitions
obtained from ldap.conf.

The ldap.conf file: The ldap.conf file contains information required to load and
initialize default plug-ins. It can also include additional plug-in-specific
configuration information. The following might be defined for each plug-in in the
ldap.conf file:
v The plug-in type (for example, sasl)
v The plug-in subtype (for example, mechanism, if type=sasl)
v The path to the plug-in shared library
v The plug-in’s initialization routine
v The user-defined parameter string

The ldap.conf file might contain one or more records, each defining this
information for a plug-in. Each record takes the following form:
plugin type subtype path init-routine parameters

For example:
#
keyword type subtype path init parameters
#

plugin sasl CRAM-MD5 ldap_plugin_sasl_cram-md5 ldap_plugin_init
plugin sasl fpauth x:\security\fplib fpinit parm2 parm3
plugin sasl hitech hitechlib hitekinit parm5 parm6

This example defines three plug-ins (CRAM-MD5, fpauth and hitek) along with
associated information.

Note: If the extension is omitted, then an appropriate extension is assumed for the
platform, for example, .a on the AIX operating system or .dll on a Windows
operating system. If the fully-qualified path is omitted, then standard OS
search rules are applied.

Lines beginning with a number sign (#) are ignored.

The algorithm used to locate ldap.conf is platform specific:
v On a Unix system, the following search order is used:

1. Query the environment variable IBMLDAP_CONF for the path to ldap.conf.
2. Look for ldap.conf in the /etc directory.

v On a Windows system, the following search order is used:
1. Query the environment variable IBMLDAP_CONF for the path to ldap.conf.
2. Look in current directory for ldap.conf.
3. Look for lda32p.conf in the /etc directory under the LDAP install directory,

for example, c:\Program Files\IBM\LDAP\etc.

If the definition for a SASL plug-in isn’t available, the LDAP library encodes the
SASL bind and transmits it directly to the LDAP server, bypassing the plug-in
facility.

Chapter 3. API categories 81

Errors
These routines return an LDAP error code when an error is encountered. To obtain
a string description of the LDAP error, use the ldap_err2string() API.

See also
ldap, ldap_error

LDAP_RENAME
ldap_rename
ldap_rename_s
ldap_modrdn (deprecated)
ldap_modrdn_s (deprecated)

Purpose
Perform an LDAP rename operation.

Synopsis
#include <ldap.h>

int ldap_rename(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_rename_s(
LDAP *ld,
const char *dn,
const char *newrdn,
const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

int ldap_modrdn(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn)

int ldap_modrdn_s(
LDAP *ld,
const char *dn,
const char *newrdn,
int deleteoldrdn)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

dn Specifies the DN of the entry whose DN is to be changed. When specified

82 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

with the deprecated ldap_modrdn and ldap_modrdn_s APIs, dn specifies
the DN of the entry whose RDN is to be changed.

newrdn
Specifies the new RDN given to the entry.

newparent
Specifies the new parent, or superior entry. If this parameter is NULL, only
the RDN of the entry is changed. The root DN can be specified by passing
a zero length string, ″″. The newparent parameter is always NULL when
using version 2 of the LDAP protocol; otherwise the server’s behavior is
undefined.

Note: Only NULL is supported by IBM Directory Server version 4.1.

deleteoldrdn
Specifies an integer value. When set to 1, the old RDN value is to be
deleted from the entry. When set to 0, the old RDN value must be retained
as a non-distinguished value. With respect to the ldap_rename and
ldap_rename_s APIs, this parameter only has meaning if newrdn is
different from the old RDN.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the
ldap_rename() call succeeds.

Usage
In LDAP V2, the ldap_modrdn() and ldap_modrdn_s() APIs were used to change
the name of an LDAP entry. They can be used to change the least significant
component of a name (the RDN or relative distinguished name) only. LDAP V3
provides the Modify DN protocol operation that allows more general name change
access. The ldap_rename() and ldap_rename_s() routines are used to change the
name of an entry, and the use of the ldap_modrdn() and ldap_modrdn_s() routines
is deprecated.

The ldap_rename() API initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, ldap_rename() places the message ID
of the request in *msgidp. A subsequent call to ldap_result() can be used to obtain
the result of the operation. After the operation has completed, ldap_result() returns
the status of the operation in the form of an error code. The error code indicates if
the operation completed successfully. The ldap_parse_result() API is used to check
the error code in the result.

Similarly, the ldap_modrdn() API initiates an asynchronous modify RDN operation
and returns the message ID of the operation. A subsequent call to ldap_result(), can
be used to obtain the result of the modify. In case of error, ldap_modrdn() returns

Chapter 3. API categories 83

-1, setting the session error parameters in the LDAP structure appropriately, which
can be obtained by using ldap_get_errno().

The synchronous ldap_rename_s() API returns the result of the operation, either
the constant LDAP_SUCCESS if the operation was successful, or another LDAP
error code if it was not.

The ldap_rename() and ldap_rename_s() APIs both support LDAP V3 server
controls and client controls.

The ldap_modrdn() and ldap_modrdn_s() routines perform an LDAP modify RDN
operation. They both take dn, the DN of the entry whose RDN is to be changed,
and newrdn, the new RDN to give to the entry. ldap_modrdn_s() is synchronous,
returning the LDAP error code indicating the success or failure of the operation. In
addition, they both take the deleteoldrdn parameter which is used as an integer
value to indicate whether the old RDN values must be deleted from the entry or
not.

Errors
The synchronous version of this routine returns an LDAP error code, either
LDAP_SUCCESS or an error code if there was an error. The asynchronous version
returns -1 in case of an error. If the asynchronous API is successful, ldap_result is
used to obtain the results of the operation. See “LDAP_ERROR” on page 50 for
more details.

See also
ldap, ldap_error ldap_result

LDAP_RESULT
ldap_result
ldap_msgtype
ldap_msgid

Purpose
Wait for the result of an asynchronous LDAP operation, obtain LDAP message
types, or obtain the message ID of an LDAP message.

Synopsis
#include <sys/time.h> /* for struct timeval definition */
#include <ldap.h>

int ldap_result(
LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **result)

int ldap_msgtype(
LDAPMessage *msg)

int ldap_msgid(
LDAPMessage *msg)

84 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

msgid Specifies the message ID of the operation whose results are to be returned.
The parameter can be set to LDAP_RES_ANY if any result is desired.

all This parameter only has meaning for search results. For search results, use
all to specify how many search result messages are returned in a single call
to ldap_result(). Specify LDAP_MSG_ONE to retrieve one search result
message at a time. Specify LDAP_MSG_ALL to request that all results of a
search be received. ldap_result() waits until all results are received before
returning all results in a single chain. Specify LDAP_MSG_RECEIVED to
indicate that all results retrieved so far are to be returned in the result
chain.

timeout
Specifies how long in seconds to wait for results to be returned from
ldap_result, as identified by the supplied msgid. A NULL value causes
ldap_result() to wait until results are available. To poll, the timeout
parameter is non-NULL, pointing to a zero-valued timeval structure.

msg Specifies a pointer to a result, as returned from ldap_result(),
ldap_search_s(), ldap_search_st() or ldap_search_ext().

Output parameters
result Contains the result of the asynchronous operation identified by msgid. This

result is passed to the LDAP parsing routines, such as ldap_first_entry().

If ldap_result() is unsuccessful, it returns -1 and sets the appropriate LDAP error
ldap_get_errno(). If ldap_result() times out, it returns 0. If successful, it returns one
of the following result types:

#define LDAP_RES_BIND 0x61L
#define LDAP_RES_SEARCH_ENTRY 0x64L
#define LDAP_RES_SEARCH_RESULT 0x65L
#define LDAP_RES_MODIFY 0x67L
#define LDAP_RES_ADD 0x69L
#define LDAP_RES_DELETE 0x6bL
#define LDAP_RES_MODRDN 0x6dL
#define LDAP_RES_COMPARE 0x6fL
#define LDAP_RES_SEARCH_REFERENCE 0X73L
#define LDAP_RES_EXTENDED 0X78L
#define LDAP_RES_ANY (-1L)

Usage
The ldap_result() routine is used to wait for and return the result of an operation
previously initiated by one of the LDAP asynchronous operation routines, for
example, ldap_search(), ldap_modify(), and so forth. These routines return a msgid
that uniquely identifies the request. The msgid can then be used to request the
result of a specific operation from ldap_result().

The ldap_msgtype() API returns the type of LDAP message, based on the LDAP
message passed as input using the msg parameter.

The ldap_msgid() API returns the message ID associated with the LDAP message
passed as input using the msg parameter.

Chapter 3. API categories 85

Errors
ldap_result() returns 0 if the timeout expires, and -1 if an error occurs. The
ldap_get_errno() routine can be used to get an error code.

Notes
This routine allocates memory for results that it receives. The memory can be
deallocated by calling ldap_msgfree().

See also
ldap, ldap_search

LDAP_SEARCH
ldap_search
ldap_search_s
ldap_search_ext
ldap_search_ext_s
ldap_search_st

Purpose
Perform various LDAP search operations.

Synopsis
#include <sys/time.h> /* for struct timeval definition */
#include <ldap.h>

int ldap_search(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char *attrs[],
int attrsonly)

int ldap_search_ext(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char *attrs[],
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp)

int ldap_search_s(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char *attrs[],
int attrsonly,
LDAPMessage **res)

int ldap_search_ext_s(

86 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP *ld,
const char *base,
int scope,
const char *filter,
char *attrs[],
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res)

int ldap_search_st(
LDAP *ld,
const char *base,
int scope,
const char *filter,
char *attrs[],
int attrsonly,
struct timeval *timeout,
LDAPMessage **res)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

base Specifies the DN of the entry the search starts.

scope Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search
the object itself), or LDAP_SCOPE_ONELEVEL (to search the object’s
immediate children), or LDAP_SCOPE_SUBTREE (to search the object and
all its descendants).

filter Specifies a string representation of the filter to apply in the search. Simple
filters can be specified as attributetype=attributevalue. More complex filters
are specified using a prefix notation according to the following BNF:
<filter> ::=’(’<filtercomp>’)’
<filtercomp> ::= <and>|<or>|<not>|<simple>
<and> ::= ’&’ <filterlist>
<or> ::= ’|’ <filterlist>
<not> ::= ’!’ <filter>
<filterlist> ::= <filter>|<filter><filtertype>
<simple> ::= <attributetype><filtertype>
<attributevalue>
<filtertype> ::= ’=’|’~=’|’<=’|’>=’

The ’~=’ construct is used to specify approximate matching. The
representation for <attributetype> and <attributevalue> are as described in
″RFC 2252, LDAP V3 Attribute Syntax Definitions″. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or
can contain text and asterisks (*) interspersed to achieve substring
matching.

For example, the filter ″mail=*″ finds any entries that have a mail attribute.
The filter ″mail=*@student.of.life.edu″ finds any entries that have a mail
attribute ending in the specified string. To put parentheses in a filter,
escape them with a backslash (\) character. See ″RFC 2254, A String
Representation of LDAP Search Filters″ for a more complete description of
allowable filters.

Chapter 3. API categories 87

http://www.ietf.org/rfc/rfc2252.txt
http://www.ietf.org/rfc/rfc2254.txt
http://www.ietf.org/rfc/rfc2254.txt

attrs Specifies a NULL-terminated array of character string attribute types to
return from entries that match filter. If NULL is specified, all attributes are
returned.

attrsonly
Specifies attribute information. Attrsonly must be set to 1 to request
attribute types only. Set to 0 to request both attribute types and attribute
values.

sizelimit
Specifies the maximum number of entries to return. Note that the server
can set a lower limit which is enforced at the server.

timeout
The ldap_search_st() API specifies the local search timeout value. The
ldap_search_ext() and ldap_search_ext_s() APIs specify both the local
search timeout value and the operation time limit that is sent to the server
within the search request.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to
NULL. See “LDAP controls” on page 45 for more information about server
controls.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL.
See “LDAP controls” on page 45 for more information about client controls.

Output parameters
res Contains the result of the asynchronous operation identified by msgid, or

returned directly from ldap_search_s() or ldap_search_ext_s(). This result is
passed to the LDAP parsing routines (see “LDAP_RESULT” on page 84).

msgidp
This result parameter is set to the message ID of the request if the
ldap_search_ext() call succeeds.

Usage
These routines are used to perform LDAP search operations.

The ldap_search_ext() API initiates an asynchronous search operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not.

If successful, ldap_search_ext() places the message ID of the request in *msgidp.
Use a subsequent call to ldap_result() to obtain the results from the search.

Similar to ldap_search_ext(), the ldap_search() API initiates an asynchronous search
operation and returns the message ID of this operation. If an error occurs,
ldap_search() returns -1, setting the session error in the LD structure, which can be
obtained by using ldap_get_errno(). If successful, use a subsequent call to
ldap_result() to obtain the results from the search.

The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_st()
functions all return the result of the operation, either the constant LDAP_SUCCESS
if the operation was successful, or another LDAP error code if the operation was
not successful. See “LDAP_ERROR” on page 50 for more information about
possible errors and how to interpret them. If any entries are returned from the

88 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

search, they are contained in the res parameter. This parameter is opaque to the
caller. Entries, attributes, values, and so forth, must be extracted by calling the
result parsing routines. The results contained in res must be freed when no longer
in use by calling ldap_msgfree().

The ldap_search_ext() and ldap_search_ext_s() APIs support LDAP V3 server
controls, client controls, and allow varying size and time limits to be easily
specified for each search operation. The ldap_search_st() API is identical to
ldap_search_s(), except that it requires an additional parameter specifying a local
timeout for the search.

There are three options in the session handle ld which potentially can affect how
the search is performed. They are:

LDAP_OPT_SIZELIMIT
A limit on the number of entries returned from the search. 0 means no
limit. Note that the value from the session handle is ignored when using
the ldap_search_ext() or ldap_search_ext_s() functions.

LDAP_OPT_TIMELIMIT
A limit on the number of seconds to spend on the search. Zero means no
limit.

Note: The value from the session handle is ignored when using the
ldap_search_ext() or ldap_search_ext_s() functions.

LDAP_OPT_DEREF
One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_SEARCHING (0x01),
LDAP_DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS (0x03),
specifying how aliases must be handled during the search. The
LDAP_DEREF_SEARCHING value means aliases must be dereferenced
during the search but not when locating the base object of the search. The
LDAP_DEREF_FINDING value means aliases must be dereferenced when
locating the base object but not during the search.

These options are set and queried using the ldap_set_option() and
ldap_get_option() APIs.

Reading an entry
LDAP does not support a read operation directly. Instead, this operation is
emulated by a search with base set to the DN of the entry to read, scope set to
LDAP_SCOPE_BASE, and filter set to ″(objectclass=*)″. attrs optionally contains the
list of attributes to return.

Listing the children of an entry
LDAP does not support a list operation directly. Instead, this operation is emulated
by a search with base set to the DN of the list entry, scope set to
LDAP_SCOPE_ONELEVEL, and filter set to ″(objectclass=*)″. attrs optionally
contains the list of attributes to return for each child entry. If only the
distinguished names of child entries are desired, the attrs parameter must specify a
NULL-terminated array of one character string which has the value dn.

Errors
ldap_search_s(), ldap_search_ext_s and ldap_search_st() return the LDAP error
code from the search operation.

Chapter 3. API categories 89

ldap_search() and ldap_search_ext() return -1 instead of a valid msgid if an error
occurs, setting the session error in the LD structure, which can be obtained by
using ldap_get_errno().

See “LDAP_ERROR” on page 50 for more details.

Notes
These routines allocate storage returned by the res parameter. Use ldap_msgfree()
to free this storage.

See also
ldap, ldap_result, ldap_error

LDAP_SERVER_INFORMATION IN DNS
ldap_server_locate
ldap_server_free_list
ldap_server_conf_save

Purpose
These LDAP APIs are provided to perform the following operations:
v Use LDAP server information published in the Domain Name System (DNS) to

locate one or more LDAP servers, and associated information. Server
information is returned as a linked list of server information structures.

v Free all storage associated with a linked list of server information structures.
v Store information about one or more LDAP servers in a local configuration

repository. The local configuration can be used to mimic information that can
also be published in DNS.

Synopsis
#include <ldap.h>

int ldap_server_locate (
LDAPServerRequest *server_request,
LDAPServerInfo **server_info_listpp);

int ldap_server_free_list(
LDAPServerInfo *server_info_listp);

int ldap_server_conf_save(
char *filename,
unsigned long ttl,
LDAPServerInfo *server_info_listp));

typedef struct LDAP_Server_Request {
int search_source; /* Source for server info */

#define LDAP_LSI_CONF_DNS 0 /* Config first, then DNS (def)*/
#define LDAP_LSI_CONF_ONLY 1 /* Local Config file only */
#define LDAP_LSI_DNS_ONLY 2 /* DNS only */

char *conf_filename /* pathname of config file */
int reserved; /* Reserved, set to zero */
char *service_key; /* Service string */
char *enetwork_domain; /* eNetwork domain (eDomain) */
char **name_servers; /* Array of name server addrs */
char **dns_domains; /* Array of DNS domains */
int connection_type; /* Connection type */

90 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

#define LDAP_LSI_UDP_TCP 0 /* Use UDP, then TCP (default)*/
#define LDAP_LSI_UDP 1 /* Use UDP only */
#define LDAP_LSI_TCP 2 /* Use TCP only */

int connection_timeout; /* connect timeout (seconds) */
char *DN_filter; /* DN suffix filter */
char *proto_key /* Symbolic protocol name */
unsigned char reserved2[60]; /* reserved fields, set to 0 */

} LDAPServerRequest;

typedef struct LDAP_Server_Info {
char *lsi_host; /* LDAP server’s hostname */
unsigned short lsi_port; /* LDAP port */
char *lsi_suffix; /* Server’s LDAP suffix */
char *lsi_query_key; /* service_key[.edomain] */
char *lsi_dns_domain; /* Publishing DNS domain */
int lsi_replica_type;/* master or replica */

#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */

int lsi_sec_type; /* SSL or non-SSL */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */

unsigned short lsi_priority; /* Server priority */
unsigned short lsi_weight; /* load balancing weight */
char *lsi_vendor_info; /* vendor information */
char *lsi_info; /* LDAP Info string */
struct LDAP_Server_Info *prev; /* linked list previous ptr */
struct LDAP_Server_Info *next; /* linked list next ptr */

} LDAPServerInfo;

Input parameters
server_request

Specifies a pointer to an LDAPServerRequest structure which must be
initialized to zero before setting specific parameters. This ensures that
defaults are used when a parameter is not explicitly set. If the default
behavior is desired for all possible input parameters, simply set
server_request to NULL. This is equivalent to setting the
LDAPServerRequest structure to zero. Otherwise, supply the address of the
LDAPServerRequest structure, containing the following fields:

search_source
Specifies where to find the server information.
1. Access the local LDAP DNS configuration file. If the file is not

found, or the file does not contain information for a
combination of the service_key, enetwork_domain and any of
the DNS domains as specified by the application, then access
DNS.

2. Search the local LDAP DNS configuration file only.
3. Search DNS only.

conf_filename
Specifies an alternative configuration filename. Specify NULL to
get the default filename and location.

service_key
Specifies the search key, for example, the service name string to be
used when obtaining a list of Service records (SRV), pseudo-SRV
Text records (TXT) or CNAME alias records from DNS. If not
specified, the default is ″ldap.″

Chapter 3. API categories 91

Note: Standards are moving towards the use of an underscore (_)
as a prefix for service name strings. Over time, it is expected
that ″_ldap″ is the preferred service name string for
publishing LDAP services in DNS. If the application doesn’t
specify service_key and no entries are returned using the
default ldap service name, the search is automatically rerun
using ″_ldap″ as the service name. As an alternative, the
application can explicitly specify ″_ldap″ as the service
name, and the search is directed specifically at DNS SRV
records that use ″_ldap″ as the service name.

enetwork_domain
Indicates that LDAP servers grouped within the specified
eNetwork domain are to be located. An eNetwork domain is
simply a naming construct, implemented by the LDAP
administrator, to further subdivide a set of LDAP servers (as
published in DNS) into logical groupings. By specifying an
eNetwork domain, only the LDAP servers grouped within the
specified eNetwork domain are returned by the
ldap_server_locate() API. This can be very useful when
applications need access to a particular set of LDAP servers. For
example, the research division within a company might use a
dedicated set of LDAP directories, for example, masters and
replicas. By publishing this set of LDAP servers in DNS with an
eNetwork domain of research, applications that need access to
information published in research’s LDAP servers can selectively
obtain the hostnames and ports of research’s LDAP servers. Other
LDAP servers also published in DNS are not returned.

The criterion for searching DNS to locate the appropriate LDAP
servers is constructed by concatenating the following information:
v service_key (defaults to ldap)
v enetwork_domain
v tcp
v DNS domain

For example, if:
v The default service_key of ldap is used
v The eNetwork domain is sales5
v The client’s default DNS domain is midwest.acme.com

then the DNS value used to search DNS for the set of LDAP
servers belonging to the sales5 eNetwork domain is
ldap.sales5.tcp.midwest.acme.com.

If enetwork_domain is set to zero, the following steps are taken to
determine the enetwork_domain:
v The locally configured default, if set, is used.
v If a locally configured default is not set, then a platform-specific

value is used. On a Windows NT operating system, the user’s
logon domain is used.

v If a platform-specific eNetwork domain is not defined, then the
eNetwork domain component in the DNS value is omitted. In
the above example, this results in the following string being
used: ldap.midwest.tcp.acme.com.

92 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

If enetwork_domain is set to a NULL string, then the eNetwork
domain component in the DNS value is omitted. This might be
useful for finding a default eNetwork domain when a specific
eNetwork domain is not known.

Note: If the search is performed with a non-NULL value for
enetwork_domain, and the search fails, the search is issued
again with a NULL enetwork_domain, using the specified
service_key, which defaults to ldap. The second search with
NULL enetwork_domain is attempted after a complete
search is concluded without results. For example, if
search_source is set to the default LDAP_LSI_CONF_DNS,
then the first search is not considered to be complete until
both the local configuration and DNS have been queried. If
both of these searches fail, then both the local configuration
and DNS are re-queried with a NULL enetwork_domain.
The intent is to find a set of LDAP servers that are
published under the default service key, that is, ldap, when
nothing can be found published under
ldap.enetwork_domain. The application can determine if the
located servers are published in an enetwork_domain by
examining the lsi_query_key field, as returned in the
server_info_list structures returned on the
ldap_server_locate() API. If the returned lsi_query_key
consists solely of the specified service_key, then the located
servers were not published in DNS with the specified
enetwork_domain.

name_servers
Specifies a NULL-terminated array of DNS name server IP address in
dotted decimal format, for example, 122.122.33.49. If not specified, the
locally configured DNS name servers are used.

dns_domains
Specifies a NULL-terminated array of one or more DNS domain names. If
not specified, the local DNS domain configuration is used.

Note: The domain names supplied here can take the following forms:
v austin.ibm.com (standard DNS format)
v cn=fred, ou=accounting, dc=austin, dc=ibm, dc=com

With respect to providing a domain name, these are equivalent. Both result
in a domain name of austin.ibm.com. This approach makes it easier for an
application to locate LDAP servers for binding (based on a user name
space mapped into the DNS name space). See “DNS domains and
configuration file” on page 96 for more information.

connection_type
Specifies the type of connection to use when communicating with the DNS
name server. The following options are supported:
v Use UDP first. If no response is received, or data truncation occurs, then

use TCP.
v Only use UDP.
v Only use TCP.

If set to zero, the default is to use UDP first (then TCP).

Chapter 3. API categories 93

UDP is the preferred connection type, and typically performs well. You
might want to consider using TCP/IP if:
v The amount of data being returned does not fit in the 512-byte UDP

packet.
v The transmission and receipt of UDP packets turns out to be unreliable.

This might depend on network characteristics.

connection_timeout
Specifies a timeout value when querying DNS (for both TCP and UDP). If
LDAP_LSI_UDP_TCP is specified for connection_type and a response is
not received in the specified time period for UDP, TCP is attempted. A
value of zero results in an infinite timeout. When the LDAPServerRequest
parameter is set to NULL, the default is ten seconds. When passing the
LDAPServerRequest parameter, this parameter must be set to a non-zero
value if an indefinite timeout is not desired.

DN_filter
Specifies a Distinguished Name to be used as a filter, for selecting
candidate LDAP servers based on the server’s suffixes. If the most
significant portion of the DN is an exact match with a server’s suffix (after
normalizing for case), an LDAPServerInfo structure is returned for the
server/suffix combination. If it doesn’t match, an LDAPServerInfo
structure is not returned for the server/suffix combination.

proto_key
Specifies the protocol key, for example, tcp or _tcp, to be used when
obtaining a list of SRV, pseudo-SRV TXT or CNAME alias records from
DNS. If not specified, the default is tcp.

Note: Standards are moving towards the use of an underscore (_) as a
prefix for the protocol. Over time, it is expected that _tcp becomes
the preferred protocol string for publishing LDAP and other services
in DNS. If the application doesn’t specify protocol_key and no
entries are returned using the default tcp protocol key, the search is
automatically rerun using _tcp as the protocol. As an alternative, the
application can explicitly specify _tcp as the protocol, and the search
is directed specifically at DNS SRV records that use _tcp as the
protocol.

reserved2
Represents a reserved area for future function, which must be initialized to
zero.

server_info_listpp
Specifies the address that is set to point to a linked list of LDAPServerInfo
structures. Each LDAPServerInfo structure defined in the list contains
server information obtained from either of the following:
v DNS
v Local configuration

filename
Specifies an alternative configuration filename. Specify NULL to get the
default filename and location.

ttl Specifies the time-to-live, in minutes, for server information saved in the
configuration file. Set ttl to zero if it is intended to be a permanent
repository of information.

94 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

When the ldap_server_locate() API is used to access the configuration file
with search_source set to LDAP_LSI_CONF_ONLY, and the configuration
file has not been refreshed in ttl minutes, then LDAP_TIMEOUT error code
is returned.

When the ldap_server_locate() API is used to access the configuration file
with search_source set to LDAP_LSI_CONF_DNS, and the configuration
file has not been refreshed in ttl minutes, then network DNS is accessed to
obtain server information.

server_info_listp
Specifies the address of a linked list of LDAPServerInfo structures. This
linked list might have been returned from the ldap_server_locate() API, or
might be constructed by the application.

Output parameters
Returns 0 if successful. If an error is encountered, an appropriate return code as
defined in ldap.h is returned. If successful, the address of a linked-list of
LDAPServerInfo structures is returned.

server_info_listpp
Upon successful return from ldap_server_locate(), server_info_listpp points
to a linked list of LDAPServerInfo structures. The LDAPServerInfo
structure contains the following fields:

lsi_host
Fully-qualified hostname of the target server (NULL-terminated
string).

lsi_port
Integer representation of the LDAP server’s port.

lsi_suffix
String that specifies a supported suffix for the LDAP server
(NULL-terminated string).

lsi_query_key
Specifies the eNetwork domain to which the LDAP server belongs,
prefixed by the service key. For example, if service key is ldap and
eNetwork domain is sales, then lsi_query_key is set to ldap.sales. If
the server is not associated with an eNetwork domain (as
published in DNS), then lsi_query_key consists solely of the service
key value. Also, for example, if the service key is _ldap and the
eNetwork domain is marketing, then lsi_query_key is set to
_ldap.marketing.

lsi_dns_domain
DNS domain in which the LDAP server was published. For
example, the DNS search might have been for
ldap.sales.tcp.austin.ibm.com, but the resulting servers have a
fully-qualified DNS host name of ldap2.raleigh.ibm.com. In this
example, lsi_host is set to ldap2.raleigh.ibm.com while
lsi_dns_domain is set to austin.ibm.com. The actual domain in
which the server was published might be of interest, particularly
when multiple DNS domains are configured or supplied as input.

lsi_replica_type
Specifies the type of server, LDAP_LSI_MASTER or
LDAP_LSI_REPLICA. If set to zero, the type is unknown.

Chapter 3. API categories 95

lsi_sec_type
Specifies the port’s security type, LDAP_LSI_NOSSL or
LDAP_LSI_SSL. This value is derived from the ldap or ldaps prefix
in the LDAP URL. If the LDAP URL is not defined, the security
type is unknown and lsi_sectype is set to zero.

lsi_priority
The priority value obtained from the SRV RR (or the pseudo-SRV
TXT RR). Set to zero if unknown or not available.

lsi_weight
The weight value obtained from the SRV RR or the pseudo-SRV
TXT RR. Set to zero if unknown or not available.

lsi_vendor_info
NULL-terminated string obtained from the ldapvendor TXT RR, if
defined. It might be used to identify the LDAP server
vendor/version information.

lsi_info
NULL-terminated information string obtained from the ldapinfo
TXT RR, if defined. If not defined, lsi_info is set to NULL. This
information string can be used by the LDAP or network
administrator to publish additional information about the target
LDAP server.

prev Points to the previous LDAP_Server_Info element in the linked list. This
value is NULL if at the top of the list.

next Points to the next LDAP_Server_Info element in the linked list. This value
is NULL if at the end of the list.

Usage

DNS domains and configuration file
The local configuration file can contain server information for combinations of the
following:
v Service key (typically set to ldap or _ldap)
v eNetwork domain
v DNS domains

When the application sets search_source to the default LDAP_LSI_CONFIG_DNS,
the ldap_server_locate() API attempts to find server information in the
configuration file for the designated service key, eNetwork domain and DNS
domains.

If the configuration file does not contain information that matches this criteria, the
locator API searches DNS, using the specified service key, eNetwork domain and
DNS domains. For example:
v The application supplies the following three DNS domains:

– austin.ibm.com
– raleigh.ibm.com
– miami.ibm.com

Also, the application uses the default service key, that is, ldap and specifies sales
for the eNetwork domain.

v The configuration file contains server information for austin.ibm.com and
miami.ibm.com, with the default service key and eNetwork domain of sales).

96 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

v Information is also published in DNS for raleigh.ibm.com, with the default
service key and eNetwork domain of sales.

v The search_source parameter is set to LDAP_LSI_CONFIG_DNS, which indicates
that both the configuration file and DNS are to be used if necessary.

v The locator API builds a single ordered list of server entries, with the following:
– Server entries for the austin.ibm.com DNS domain, as extracted from the

configuration file.
– Server entries for the raleigh.ibm.com DNS domain, as obtained from DNS

over the network.
– Server entries for the miami.ibm.com DNS domain, as extracted from the

configuration file.

The resulting list of servers contains all the austin.ibm.com servers first, followed
by the raleigh.ibm.com servers, followed by the miami.ibm.com servers. Within
each group of servers, the entries are sorted by priority and weight.

API usage
These routines are used to perform operations related to finding and saving LDAP
server information.

ldap_server_locate()
The ldap_server_locate() API is used to locate one or more suitable LDAP
servers. In general, an application uses the ldap_server_locate() API as
follows:
v Before connecting to an LDAP server in the enterprise, use

ldap_server_locate() to obtain a list of one or more LDAP servers that
have been published in DNS or in the local configuration file. Typically,
an application can simply use the default request settings by passing a
NULL for the LDAPServerRequest parameter. By default, the API looks
for server information in the local configuration file first, then moves on
to DNS if the local configuration file doesn’t exist or has expired.

Note: If no server entries are found, and the application does not specify
the service key (which defaults to ldap), then the
ldap_server_locate function runs the complete search again, using
the alternative ″_ldap″ for the service key. The results of this
second search, if any, are returned to the application.

v Once the application has obtained the list of servers, it must walk the
list, using the first server that meets its needs. This maximizes the
advantage that can be derived from using the priority and weighting
scheme implemented by the administrator. The application might not
want to use the first server in the list for several reasons:
– The client needs to specifically connect using SSL or non-SSL. For

each server in the list, the application can query the rootDSE to
determine if the server supports a secure SSL port. This is the
preferred approach. Alternatively, the application can walk the list
until it finds a server entry with the appropriate security type. Note
that an LDAP server might be listening on both an SSL and non-SSL
port. In this case, the server has two entries in the server list:

– The client specifically needs to connect to a Master or Replica.
– The client needs to connect to a server that supports a particular

suffix.

Chapter 3. API categories 97

Note: Specify DN_filter to filter out servers that do not have a suffix.
The DN resides under this suffix. To confirm that a server
actually supports the suffix, query the server’s rootDSE.

– Some other characteristic associated with the desired server exists,
perhaps defined in the ldapinfo string.

v After the client has selected a server, it then issues the ldap_init or
ldap_ssl_init API. If the selected server is unavailable, the application is
free to move down the list of servers until either it finds a suitable
server it can connect to, or the list is exhausted.

ldap_server_free_list()
To free the list of servers and associated LDAPServerInfo structures, the
application must use the ldap_server_free_list() API.

The ldap_server_free_list() API is used to free the linked list of
LDAPServerInfo structures and all associated storage as returned from the
ldap_server_locate() API.

ldap_server_conf_save()
The ldap_server_conf_save() API is used to store server information into
local configuration. The format for specifying the server information on the
ldap_server_conf_save() API is identical to the format returned from the
ldap_server_locate() API.

The application that writes information into the configuration file can
specify an optional time-to-live for the information stored in the file. When
an application uses the locator API to access DNS server information, the
configuration file is considered to be stale if:
date/time_file_last_updated + ttl > current_date/time

If the application uses the default behavior for using the configuration file,
it bypasses a stale configuration file and attempts to find all needed
information from DNS. Otherwise, the ttl must be set to zero (indefinite
ttl), in which case the information is considered to be good indefinitely.

Setting a non-zero ttl is most useful when an application or other
mechanism exists for refreshing the local configuration file on a periodic
basis.

Note: Sub-second response time can be expected in many cases, when
using UDP to query DNS. Since most applications get the server
information during initialization, repetitive invocation of the locator
API is usually unnecessary.

By default, the configuration file is stored at the following platform-specific
location:
v UNIX— /etc/ldap_server_info.conf
v Windows NT and Windows 2000—

%systemroot%\system32\drivers\etc\ldap_server_info.conf

Format of local configuration file: The following is a sample definition for a local
configuration file that is created with the ldap_server_conf_save() API. It is
recommended that the file be created with the ldap_server_conf_save() API.
However, with careful editing, it can also be created and maintained manually.

Some basic rules for managing this file manually:

98 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

v Comment fields must begin with a number sign (#). Comment fields are
ignored.

v All parameters are positional.
v The first non-comment line must contain the time-to-live value for the file.
###
Local LDAP DNS configuration file.
#
The following line holds the file’s expiration time, which is
a UNIX time_t value (time in seconds since January 1, 1970 UTC).
A value of 0 indicates that the file will not expire.
#907979782
0
Each of the following lines in this file represents a known
LDAP server. The lines have the following format:
#
service domain host priority weight port replica sec "suffix"

"vendor info" "general info"
#
where:
#
service= service_key[.eNetwork_domain]
#
domain= DNS domain
#
host= fully qualified DNS name of the LDAP Server host
#
priority= target host with the lowest priority is tried first
#
weight= load balancing method. When multiple hosts have the
same priority, the host to be contacted first is determined
by the weight value. Set to 0 if load balancing is not needed.
#
port= The port to use to contact the LDAP Server.
#
replica= Use "1" to indicate Master.
"2" to indicate Replica.
#
sec= Use "1" to indicate Non-SSL
"2" to indicate SSL.
#
suffix= A suffix on the server.
#
vendor info= a string that identifies the LDAP server vendor
#
general info= Any informational text you wish to include.
#
ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1

"ou=users,o=ibm,c=us" "IBM SecureWay" "phoneinfo"
ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1

"ou=users,o=ibm,c=us" "IBM SecureWay" "phoneinfo replica"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2

"cn=GSO,o=IBM,c=US"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2

"ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1

"cn=GSO,o=IBM,c=US"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1

"ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1

"dc=raleigh,dc=ibm, dc=com" "IBM" "Sales Marketing"
ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1

Chapter 3. API categories 99

"dc=raleigh,dc=ibm, dc=com" "IBM" "Sales Marketing Replica"
#
###

The newer form of service keys can also be used in the configuration file. For
example, the following is an excerpt that uses _ldap as the service key:
_ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1

"ou=users,o=ibm,c=us" "IBM SecureWay" "phoneinfo"
_ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1

"ou=users,o=ibm,c=us" "IBM SecureWay" "phoneinfo replica"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2

"cn=GSO,o=IBM,c=US"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2

"ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1

"cn=GSO,o=IBM,c=US"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1

"ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
_ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1

"dc=raleigh,dc=ibm,dc=com" "IBM" "Sales Marketing"
_ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1

"dc=raleigh,dc=ibm,dc=com" "IBM" "Sales Marketing Replica"

Publishing LDAP server information in DNS
If DNS is used to publish LDAP server information, the LDAP administrator must
configure the relevant DNS name servers with the appropriate SRV and TXT
records that reflect the LDAP servers available in the enterprise.
v If SRV records are supported by the DNS servers in the enterprise, SRV records

can be created that identify the LDAP servers, along with appropriate weighting
and priority settings. For more information on SRV records and how they are
used, see A. Gulbrandsen, P. Vixie, ″A DNS RR for Specifying the Location of
Services (DNS SRV)″, Internet RFC 2782, Troll Technologies, Vixie Enterprises,.
February, 2000, which obsoletes RFC 2052.

v TXT records must be associated with the A record of each LDAP server. The TXT
records include the LDAP URL records which specify host name, port, base DN
and port type, for example, ldap for non-SSL, and ldaps for SSL.

v If SRV records are not being used, the list of available servers must be specified
with a set of TXT records which emulate the SRV RR format.

The LDAP server locator API:
v Provides access to a list of LDAP servers. By default, the locator API queries a

local configuration file for the required information. If the file was updated with
a non-zero time-to-live, and the file has become stale, or the file does not contain
the required information, the locator API then accesses DNS. By default, the
local configuration file has no time-to-live, and is considered to be good
indefinitely.

Note: The configuration file is designed to hold the same level of information
per server that can be obtained from DNS.

v Gathers data relevant to each of the LDAP servers from DNS, using three
sequenced algorithms:
1. SRV records
2. Pseudo-SRV records (using TXT records)
3. A CNAME alias referencing a single host’s A record

100 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt

The algorithms are attempted in sequence until results are returned for one of
the algorithms. For example, if no SRV records are found, but pseudo-SRV
records are found, the list of servers is built from the pseudo-SRV records.

v Builds a list of LDAP servers, with the first server in the list classified as the
preferred or default server. Depending on how DNS is used to publish LDAP
servers, the preferred LDAP server can actually be a reflection of how the
administrator has organized the LDAP information in DNS. The application has
access to the additional data that was retrieved from DNS. The additional
information for each LDAP server information structure can consist of the
following:
– Host name and port
– eNetwork domain of the server
– Fully-qualified DNS domain where the hostname is published
– Suffix
– Replication type (master or replica)
– Security type (SSL or non-SSL)
– Vendor ID
– Administrator-defined data

The application can use ldap_server_locate() to obtain a list of one or more LDAP
servers that exist in the enterprise, and have been published in either DNS or the
local configuration file. The additional data might be used by the application to
select the appropriate server. For example, the application might need a server that
supports a specific suffix, or might need to specifically access the master for
update operations.

As input to the API, the application can supply:
v A list of one or more DNS name server IP addresses. The default is to use the

locally configured list of name server addresses. Once an active name server is
located, it is used for all subsequent processing.

v The service key. The default is ldap. The service key is used to query DNS for
information specific to the LDAP protocol. For example, when searching for SRV
records in the austin.ibm.com DNS domain, the search is for
ldap.tcp.austin.ibm.com with type=SRV. This example assumes the search does
not include an eNetwork domain component. The application can also specify
_ldap as the service key and _tcp for the protocol, in which case the search is for
_ldap._tcp.austin.ibm.com with type=SRV.

v The name of the eNetwork domain. The eNetwork domain is typically the name
used to identify the LDAP user’s authentication domain, and to further qualify
the search for relevant LDAP servers, as published in the user’s DNS domain.
For example, when searching for SRV records in the austin.ibm.com DNS
domain, with an eNetwork domain of marketing the search is for
ldap.marketing.tcp.austin.ibm.com with type=SRV.

v A list of one or more fully-qualified DNS domain names. The default is to use
the locally configured domains.
If multiple domains are supplied, either in the default configuration or explicitly
supplied by the application, information is gathered from each DNS domain.
The server information returned from the locator API is grouped by DNS
domain. If two domains are supplied, for example, austin.ibm.com and
raleigh.ibm.com, the entries for LDAP servers published in the austin.ibm.com
domain appear first in the list, with the austin.ibm.com servers sorted by

Chapter 3. API categories 101

priority and weight. Entries for LDAP servers published in the raleigh.ibm.com
domain follow the entire set of austin.ibm.com servers (with the raleigh.ibm.com
servers sorted by priority and weight).

Note: All entries returned by the locator API are associated with a single
<service_key>.<edomain> combination.

DNS domain names supplied here can take two forms:
– austin.ibm.com (standard DNS format)
– cn=fred, ou=accounting, dc=austin, dc=ibm, dc=com

With respect to providing a fully-qualified DNS domain name, these are
equivalent. Both result in a DNS domain name of austin.ibm.com. This approach
makes it easier for an application to locate LDAP servers it needs to bind with,
based on a user name space mapped into the DNS name space.

v The connection type (UDP or TCP).
v A DN for comparison against the suffix defined for each LDAP server entry.

This string, if supplied, is used as a filter. Only server entries that define a suffix
that compares with the DN are returned by the locator API. For example, a DN
of ″cn=fred, ou=accounting, o=ibm, c=us″ matches the first of the following, but
not the second:
– o=ibm, c=us
– o=tivoli, c=us

The ability to filter based upon each LDAP server’s suffix is supplied as a
convenience, so the application does not need to step through the list of servers,
comparing a DN with each entry’s suffix.

v The application can specify how information in the local configuration file is
used. The default is to look in the local, configuration file for the desired
information. If the information is not found, then DNS servers on the network
are accessed. The application can specify the following:
– Look in the configuration file first, then access the network (default).
– Look in the configuration file only.
– Access DNS only.

When using the default configuration file, the application does not need to
specify the location. Alternatively, the application can provide a pathname to a
configuration file.

Note: Information stored in the configuration file takes the same form as
information obtained from DNS. The difference is that it is saved in the
file by an application. The file can also be constructed and distributed to
end-users by the administrator.

Maximum benefit is obtained when applications can use the defaults for all the
parameters, thus minimizing application knowledge of the specifics related to
locating LDAP servers.

Using SRV and TXT records: The DNS-lookup routine looks for SRV records
first. If one or more servers are found, then the server information is returned and
the second algorithm, based on TXT records that emulate SRV records, is not
invoked.

The use of SRV records for finding the address of servers, for a specific protocol
and domain, is described in RFC 2052, ″A DNS RR for Specifying the Location of
Services (DNS SRV).″ Correct use of the SRV RR permits the administrator to

102 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

distribute a service across multiple hosts within a domain, to move the service
from host to host without disruption, as well as to designate certain hosts as
primary and others as alternates, or backups, by using a priority and weighting
scheme.

TXT stands for TeXT. TXT records are simply strings. BIND versions prior to 4.8.3
do not support TXT records. To fully implement the technique described in RFC
2052, the DNS name servers must use a version of BIND that supports SRV records
as well as TXT records. A SRV resource record (RR) has the following components,
as described in RFC 2052:
service.proto.name ttl class SRV priority weight port target

where:

service
Symbolic name of the desired service. By default, the service name or
service key is ldap. When used to publish servers that are associated with
an eNetwork domain, the service value is derived by concatenating the
service key, for example, ldap, with the eNetwork domain name, for
example, marketing. In this example, the resulting service is
ldap.marketing.

proto Protocol, typically tcp or udp, or _tcp or _udp.

name Domain name associated with the RR.

ttl Time-to-live, standard DNS meaning.

class Standard DNS meaning (for example, IN).

Priority
Target host with lowest number priority must be attempted first.

weight
Load balancing mechanism. When multiple target hosts have the same
priority, the chance of contacting one of the hosts first must be
proportional to its weight. Set to 0 if load balancing is not necessary.

port Port on the target host for the service.

target Target host name must have one or more A records associated with it.

The approach is to use SRV records to define a list of candidate LDAP servers, and
to then use TXT records associated with each host’s A record to get additional
information about each LDAP server. Three forms of TXT records are understood
by the LDAP client DNS lookup routines:
v The service TXT record provides a standard LDAP URL, that is, provides host,

port and base DN.
v The ldaptype TXT record identifies whether the LDAP server is a master or

replica.
v The ldapvendor TXT record identifies the vendor.
ldap A 199.23.45.296

TXT "service:ldap://ldap.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"
TXT "ldapvendor: IBMeNetwork"
TXT "ldapinfo: ldapver=3, keyx=fastserver"

The ldapinfo free-form TXT record provides additional information, as defined by
the LDAP or network administrator. As in the example above, the information can
be keyword based. The ldapinfo record is available to the application.

Chapter 3. API categories 103

In combination, the name server might contain the following, which effectively
publishes the set of LDAP servers that reside in the marketing eNetwork domain:
ldap.marketing.tcp SRV 0 0 0 ldapm

SRV 0 0 0 ldapmsec
SRV 0 0 0 ldapmsuffix
SRV 1 1 0 ldapr1
SRV 1 2 0 ldapr2
SRV 1 2 0 ldapr2sec
SRV 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

ldapmsec A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
TXT "ldaptype: master"

ldapr1 A 199.23.45.297
TXT "service:ldap://ldapr1:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
TXT "service:ldap://ldapr2:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
TXT "service:ldaps://ldapr2/o=foo,c=us"
TXT "ldaptype: replica"
TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

In this example, a DNS search for ibmldap.marketing.tcp.austin.ibm.com with
type=SRV returns seven SRV records, which represent entries for four hosts. Note
that an SRV record is needed for each port/suffix combination supported by a
server. For example, a server that supports an SSL and non-SSL port might have at
least two SRV records and two corresponding A records that point to the same IP
address. In this example, the A RR combinations for ldapm/ldapmsec/ldapmsuffix
and ldapr2/ldapr2sec map to the same host address.

Note: ldapmsuffix provides an alternate suffix for the 199.23.45.296 host.

The port specified on the SRV record is ignored if the target host has a TXT record
containing an LDAP URL. If the URL is specified without a port, the default port
is used (389 for non-SSL, 686 for SSL).

Some rules for constructing strings associated with the TXT records:
v If the string contains white space, the entire string following TXT must be

enclosed in double quotes.
v If the string contains characters not supported by DNS, for example, the suffix

might contain characters not supported by DNS, an escape is supported, based
on the technique described in ″Uniform Resource Locators (URL)″, Internet RFC
1738, December 1994. For example:
TXT "service:ldaps://ldapr2/o=foo%f0,c=us"

104 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

permits the x’f0’ character to be included in the LDAP URL.

The algorithm for the use of LDAP servers is outlined below. The LDAP servers
are ordered in the list based on this algorithm. The application has the freedom of
using the first server in the list based on priority and weight. It also has the
freedom to select a different server, based upon its needs.

Using pseudo-SRV TXT records: If the SRV algorithm does not return any
servers, the secondary algorithm is invoked. Instead of looking for SRV records,
the lookup routine performs a TXT query using the service name string supplied
on ldap_server_locate(), which defaults to ldap.tcp.

The intent is to emulate the scheme provided with SRV records, but using a search
for TXT records instead. To duplicate the previous example using TXT records
instead of SRV records, the following definition is used:
ldap.marketing.tcp TXT 0 0 0 ldapm

TXT 0 0 0 ldapmsec
TXT 0 0 0 ldapmsuffix
TXT 1 1 0 ldapr1
TXT 1 2 0 ldapr2
TXT 1 2 0 ldapr2sec
TXT 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

ldapmsec A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
TXT "ldaptype: master"

ldapr1 A 199.23.45.297
TXT "service:ldap://ldapr1:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
TXT "service:ldap://ldapr2:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
TXT "service:ldaps://ldapr2/o=foo,c=us"
TXT "ldaptype: replica"
TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

The LDAP resolver routine assumes that the default domain is in effect when the
SRV-type TXT records do not contain fully qualified domain names.

Note: The pseudo-SRV TXT records, in many cases, can exactly replicate the syntax
of SRV records, with the exception that SRV is replaced by TXT. This makes
for consistent parsing of the records by the resolver routines, plus it makes it
very simple to switch between the two mechanisms when inserting this
information into the DNS database. However, some versions of DNS require
data associated with the TXT records to be enclosed in double quotes, as
follows:

Chapter 3. API categories 105

ldap.marketing.tcp TXT "0 0 0 ldapm"
TXT "0 0 0 ldapmsec"

The ldap_server_locate() API handles either format.

Using a CNAME alias record: If the pseudo-SRV algorithm does not return any
servers, the third algorithm is invoked. Instead of looking for TXT records, the
lookup routine performs a standard query using the service name string supplied
on ldap_server_locate(), which defaults to ldap.
ldap.marketing.tcp CNAME ldapm

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

If TXT records are not associated with the A record, defaults are assumed for port
and ldaptype.

Alternative scheme for publishing LDAP server information in
DNS
A more recent Internet Engineering Task Force (IETF) draft describes a scheme
where service keys and the protocol are prefixed with an underscore (_). See the
following internet draft for more information on this new scheme: A. Gulbrandsen,
P. Vixie, ″A DNS RR for Specifying the Location of Services (DNS SRV)″, Internet
RFC 2052, Troll Technologies, Vixie Enterprises. January 1999.

When services are published in DNS using the approach proposed in this IETF
draft, service names and protocol are prefixed with an underscore (_).

For instance, a previous example might be defined as follows:
_ldap.marketing._tcp SRV 0 0 0 ldapm

SRV 0 0 0 ldapmsec
SRV 0 0 0 ldapmsuffix
SRV 1 1 0 ldapr1
SRV 1 2 0 ldapr2
SRV 1 2 0 ldapr2sec
SRV 2 1 2222 ldapr3.raleigh.ibm.com.

If all LDAP service information is published within your enterprise this way, the
application can choose to not specify service key or protocol, and the
ldap_server_locate() API first performs its search using ldap and tcp. The search
does not find any entries, and the API automatically runs the search again using
_ldap and _tcp for service key and protocol, which returns the information
published with the alternative scheme.

If information is published with both schemes, the application must explicitly
define the service key and protocol, to ensure that the desired information is
returned.

Errors
ldap_server_locate(), ldap_server_free_list and ldap_server_conf_save() return the
LDAP error code resulting from the operation.

See “LDAP_ERROR” on page 50 for more details.

See also
ldap, ldap_error

106 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt

LDAP_SSL
ldap_ssl_client_init
ldap_ssl_init
ldap_ssl_start (deprecated)
ldap_set_cipher

Purpose
Routines for initializing the Secure Socket Layer (SSL) function for an LDAP
application, and creating a secure connection to an LDAP server.

Synopsis
#include <ldap.h>
#include <ldapssl.h>

int ldap_ssl_client_init(
char *keyring,
char *keyring_pw,
int ssl_timeout,
int *pSSLReasonCode)

LDAP *ldap_ssl_init(
char *host,
int port,
char *name)

int ldap_ssl_start(
LDAP *ld,
char *keyring,
char *keyring_pw,
char *name)

int ldap_set_cipher(
LDAP *ld,
char *option)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

host Several methods are supported for specifying one or more target LDAP
servers, including the following:

Explicit host list
Specifies the name of the host the LDAP server runs on. The host
parameter can contain a blank-separated list of hosts to connect to,
and each host might optionally be of the form host:port. If present,
the :port overrides the port parameter supplied on ldap_init(),
ldap_ssl_init() or ldap_open(). The following are typical examples:
ld=ldap_ssl_init ("server1", ldap_port, name);
ld=ldap_ssl_init ("server2:636, ldap_port, name);
ld=ldap_ssl_init ("server1:636 server2:2000 server3",

ldap_port, name);

Local host
If the host parameter is NULL, the LDAP server is assumed to be
running on the local host.

Default hosts
If the host parameter is set to ldaps://, the LDAP library attempts

Chapter 3. API categories 107

to locate one or more default LDAP servers, with secure SSL ports,
using the IBM Directory Server ldap_server_locate() function. The
port specified on the call is ignored, because ldap_server_locate()
returns the port. For example, the following two are equivalent:
ld=ldap_ssl_init ("ldaps://", ldap_port, name);
ld=ldap_ssl_init (LDAPS_URL_PREFIX, LDAPS_PORT, name);

Note: ldaps or LDAPS_URL_PREFIX must be used to obtain
servers with secure ports. If more than one default server is
located, the list is processed in sequence, until an active
server is found.

The LDAP URL can include a Distinguished Name, used as a filter
for selecting candidate LDAP servers based on the server’s suffixes.
If the most significant portion of the DN is an exact match with a
server’s suffix after normalizing for case, the server is added to the
list of candidate servers. For example, the following returns default
LDAP servers that have a suffix that supports the specified DN
only:
ld=ldap_ssl_init ("ldaps:///cn=fred, dc=austin, dc=ibm,

dc=com", LDAPS_PORT, name);

In this case, a server that has a suffix of ″dc=austin, dc=ibm,
dc=com″ matches. If more than one default server is located, the
list is processed in sequence, until an active server is found.

If the LDAP URL contains a host name and optional port, the host
is used to create the connection. No attempt is made to locate the
default servers, and the DN, if present, is ignored. For example, the
following two are equivalent:
ld=ldap_ssl_init ("ldaps://myserver", LDAPS_PORT, name);
ld=ldap_ssl_init ("myserver", LDAPS_PORT, name);

See “Locating default LDAP servers” on page 69 for more
information about the algorithm used to locate default LDAP
servers.

Host with privileged port
On platforms that support the rresvport function (typically Unix
platforms), if a specified host is prefixed with ″privport://″, then
the LDAP library uses the rresvport() function to attempt to obtain
one of the reserved ports (512 through 1023), instead of an
ephemeral port. The search for a reserved port starts at 1023 and
stops at 512. If a reserved port cannot be obtained, the function call
fails. For example:
ld=ldap_ssl_init ("privport://server1, ldap_port, name);
ld=ldap_ssl_init ("privport://server2:1200, ldap_port,

name);
ld=ldap_ssl_init ("privport://server1:800 server2:2000

privport://server3", ldap_port, name); port

port Specifies the port number to connect to. If you want the default
IANA-assigned SSL port of 636, specify LDAPS_PORT.

keyring
Specifies the name of a key database file (with kdb extension). The key
database file typically contains one or more certificates of CAs that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. A key database can also be used to store the client’s private

108 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

keys and associated client certificates. A private key and associated client
certificate are required only if the LDAP server is configured to require
client and server authentication. If the LDAP server is configured to
provide only server authentication, a private key and client certificate are
not required.

Default keyring and password
Applications can use the default keyring file, as installed with the
LDAP support, by specifying NULL pointers for keyring and
keyring_pw. The default keyring file, that is, ldapkey.kdb, and the
associated password stash file, that is, ldapkey.sth, are installed in
the /lib directory under LDAPHOME, where LDAPHOME is the
path to the installed LDAP support. LDAPHOME varies by
operating system platform:
v AIX - /usr/ldap
v Solaris - /usr/IBMldapc
v Windows - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual
LDAPHOME is determined during installation.

v HP-UX - /usr/IBMldap

Applications typically use the default keyring file when the LDAP
servers used by the applications are configured with X.509
certificates issued by one of the well-known default CA. A trusted
root key is the public key and associated Distinguished Name of a
CA. The following trusted roots are automatically defined in the
default LDAP key database file (ldapkey.kdb):
v Integrion Certification Authority Root
v IBM World Registry™ Certification Authority
v Thawte Personal Premium CA
v Thawte Personal Freeemail CA
v Thawte Personal Basic CA
v Thawte Premium Server CA
v VeriSign Test CA Root Certificate
v RSA Secure Server Certification Authority
v VeriSign Class 1 Public Primary Certification Authority
v VeriSign Class 2 Public Primary Certification Authority
v VeriSign Class 3 Public Primary Certification Authority
v VeriSign Class 4 Public Primary Certification Authority

Note: Each of these certificates are initially set to be trusted.
If the default keyring file cannot be located, this set of trusted roots
is also built-in to the LDAP/SSL code, and is used by default.

By modifying the contents of ldapkey.kdb, as located in
LDAPHOME\lib, all LDAP applications that use SSL and specify
NULL pointers to keyring and keyring_pw use the revised key
database without change to each application. There are a variety of
reasons for changing or customizing a keyring file, including:
v Adding one or more new trusted roots (that is, adding trust for

additional CAs).

Chapter 3. API categories 109

v Removing trust. For example, your enterprise might obtain all of
its server certificates from VeriSign. In this case, it is appropriate
to mark the VeriSign certificates as trusted only.

Note: For the default LDAP keyring file to be generally useful to a
set of applications, it needs to be readable by each of the
applications. It is not suitable to store client certificates with
private keys in a keyring file that is readable by users other
than the owner of the private keys. Therefore, it is
recommended that client certificates with private keys not be
stored in the default LDAP keyring file. They must be stored
in keyring files that can be accessed by the appropriate user
only. Care must be taken to ensure that local file system
permissions are set so that the keyring file and associated
stash file, if used, are accessible by the appropriate user
only.

The password defined for the default ldapkey.kdb file is
ssl_password. Use this password when initially accessing the
default keyring database with the gsk5ikm utility. This default
password is also encrypted into the default keyring password stash
file, ldapkey.sth, located in the same directory as ldapkey.kdb. Use
the gsk5ikm utility to change the password.

If keyring is specified, a fully-qualified path and filename is
recommended. If a filename without a fully-qualified path is
specified, the LDAP library looks in the current directory for the
file. The key database file specified here must have been created
using the gsk5ikm utility.

For more information on using gsk5ikm to manage the contents of
a key database, see Chapter 4, “Using GSK5IKM” on page 131.

Note: Although still supported, use of the ldap_ssl_start() is
discouraged, as its use has been deprecated. Any application
using the ldap_ssl_start() API must use a single key
database per application process only.

keyring_pw
Specifies the password that is used to protect the contents of the
key database. This password is important, particularly when it
protects one or more private keys stored in the key database. The
password is specified when the key database is initially created,
and can be changed using the gsk5ikm utility. In lieu of specifying
the password each time the application opens the keyring
database, the password can be obtained from a password stash file
that contains an encrypted version of the password. The password
stash file can be created using the gsk5ikm utility. To obtain the
password from the password stash file, specify a NULL pointer for
keyring_pw. It is assumed that the password stash file has the
same name as the keyring database file, but with an extension of
.sth instead of .kdb. It is also assumed that the password stash file
resides in the same directory as the keyring database file.

110 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Note: The default keyring file (ldapkey.kdb) is initially configured
to have ssl_password as its password. This password is also
initially configured in the default password stash file
(ldapkey.sth).

name Specifies the name, or label, associated with the client private
key/certificate pair in the key database. It is used to uniquely
identify a private key/certificate pair, as stored in the key database,
and might be something like: Digital ID for Fred Smith.

If the LDAP server is configured to perform Server Authentication,
a client certificate is not required and name can be set to NULL. If
the LDAP server is configured to perform Client and Server
Authentication, a client certificate is required. name can be set to
NULL if a default certificate/private key pair has been designated
as the default. See Chapter 4, “Using GSK5IKM” on page 131.
Similarly, name can be set to NULL if there is a single
certificate/private key pair in the designated key database.

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value
controls the frequency with which the SSL protocol stack
regenerates session keys. If ssl_timeout is set to 0, the default value
SSLV3_CLIENT_TIMEOUT is used. Otherwise, the value supplied
is used, provided it is less than or equal to 86,400 (number of
seconds in a day). If ssl_timeout is greater than 86,400, then
LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL Reason Code, which provides
additional information in the event that an error occurs during
initialization of the SSL stack, when ldap_ssl_client_init() is
invoked. See ldapssl.h for reason codes that can be returned.

Usage
The U.S. government’s regulations regarding the export of SDKs which provide
support for encryption continue to evolve.

The point of control, with respect to available levels of encryption, is now the
application.

Any LDAP application which uses the IBM Directory Server C-Client SDK Version
4.1 with the required level of GSKit 5.0.4 or higher has default access to SSL
encryption algorithms.

ldap_ssl_client_init() is used to initialize the SSL protocol stack for an application
process. Initialization includes establishing access to the specified key database file.
The ldap_ssl_client_init() API must be invoked once per application process, prior
to making any other SSL-related LDAP calls, such as ldap_ssl_init(). Once
ldap_ssl_client_init() has been successfully invoked, any subsequent invocations
return a return code of LDAP_SSL_ALREADY_INITIALIZED. This also means that
a particular key database file is effectively bound to an application process. To
change the key database, the application or one of its processes must be restarted.

ldap_ssl_environment_init() can be used instead of ldap_ssl_client_init() with the
advantage of being able to be called more than once in the same process. Each call
creates a new SSL environment which is utilized for subsequent SSL sessions

Chapter 3. API categories 111

initiated by calling ldap_ssl_init(). These SSL environments persist as long as the
LDAP sessions that were created using them persist.

ldap_ssl_init() is the SSL equivalent of ldap_init(). It is used to initialize a secure
SSL session with a server.

Note: The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization.

After the secure connection is established for the LDAP session, all subsequent
LDAP messages that flow over the secure connection are encrypted, including the
ldap_simple_bind() parameters, until ldap_unbind() is invoked.

ldap_ssl_init() returns a session handle, a pointer to an opaque data structure that
must be passed to subsequent calls that pertain to the session. These subsequent
calls return NULL if the session cannot actually be established with the server. Use
ldap_get_option() to determine why the call failed.

The LDAP session handle returned by ldap_ssl_init and ldap_init is a pointer to an
opaque data type representing an LDAP session. The ldap_get_option() and
ldap_set_option() APIs are used to access and set a variety of session-wide
parameters. See “LDAP_INIT” on page 59 for more information about
ldap_get_option() and ldap_set_option().

Note: When connecting to an LDAP V2 server, one of the ldap_simple_bind() or
ldap_bind() calls must be completed before other operations can be
performed on the session, with the exception of ldap_set/get_option(). The
LDAP V3 protocol does not require a bind operation before performing
other operations.

Although still supported, the use of the ldap_ssl_start() API is now deprecated.
The ldap_ssl_client_init() and ldap_ssl_init() APIs must be used instead. The
ldap_ssl_start() API starts a secure connection to an LDAP server using SSL.
ldap_ssl_start() accepts the ld from an ldap_open() and performs an SSL
handshake to a server. ldap_ssl_start() must be invoked after ldap_open() and prior
to ldap_bind(). Once the secure connection is established for the ld, all subsequent
LDAP messages that flow over the secure connection are encrypted, including the
ldap_bind() parameters, until ldap_unbind() is invoked.

The following scenario depicts the recommended calling sequence where the entire
set of LDAP transactions are protected by using a secure SSL connection, including
the dn and password that flow on the ldap_simple_bind():
rc = ldap_ssl_client_init (keyfile, keyfile_pw, timeout,

&reasoncode);
ld = ldap_ssl_init(ldaphost, ldapport, label);
rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
rc = ldap_simple_bind_s(ld, binddn, passwd);

...additional LDAP API calls

rc = ldap_unbind(ld);

Note: The sequence of calls for the deprecated APIs is ldap_open/init(),
ldap_ssl_start(), followed by ldap_bind().

The following ciphers are attempted for the SSL handshake by default, in the order
shown:

112 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

RC4_SHA_US
RC4_MD5_US
DES_SHA_US
3DES_SHA_US
RC4_MD5_EXPORT
RC2_MD5_EXPORT

See ldap_get/set_option() for more information on setting the ciphers to be used.

To specify the number of seconds for the SSL session-level timer, use:
ldap_set_option(ld,LDAP_OPT_SSL_TIMEOUT, &timeout)

where timeout specifies timeout in seconds. When timeout occurs, SSL again
establishes the session keys for the session, for increased security. To specify a
specific cipher, or set of ciphers, to be used when negotiating with the server, use
ldap_set_option() to define a sequence of ciphers. For example, the following
defines a sequence of three ciphers to be used when negotiating with the server.
The first cipher that is found to be in common with the server’s list of ciphers is
used.

ldap_set_cipher is the same as calling ldap_set_option (ld,
LDAP_OPT_SSL_CIPHER, option). Either function checks the validity of the input
string. The cipher is used when the SSL connection is established by ldap_ssl_init().
See “LDAP_INIT” on page 59 for more information about ldap_set_option.

Options
Options are supported for controlling the nature of the secure connection. These
options are set using the ldap_set_option() API.
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER,

(void *) LDAP_SSL_3DES_SHA_US
LDAP_SSL_RC4_MD5_US);

The following ciphers are defined in ldap.h:
#define LDAP_SSL_RC4_SHA_US "05"
#define LDAP_SSL_RC4_MD5_US "04"
#define LDAP_SSL_DES_SHA_US "09"
#define LDAP_SSL_3DES_SHA_US "0A"
#define LDAP_SSL_RC4_MD5_EX "03"
#define LDAP_SSL_RC2_MD5_EX "06"

For more information on ldap_set_option, see “LDAP_INIT” on page 59.

Notes
ldapssl.h contains return codes that are specific for ldap_ssl_client_init(),
ldap_ssl_init() and ldap_ssl_start().

The SSL versions of these utilities include RSA Security Inc. software.

The ldap_ssl_client_init(), ldap_ssl_init() and ldap_ssl_start() APIs are only
supported for the versions of the LDAP library that include the SSL component.

See also
ldap, ldap_open

Chapter 3. API categories 113

LDAP_URL
ldap_is_ldap_url
ldap_url_parse
ldap_free_urldesc
ldap_url_search
ldap_url_search_s
ldap_url_search_st

Purpose
LDAP Uniform Resource Locator routines.

Synopsis
#include <sys/time.h> /* for struct timeval definition */

#include <ldap.h>

int ldap_is_ldap_url(
char *url)

int ldap_url_parse(
char *url,
LDAPURLDesc **ludpp)

typedef struct ldap_url_desc {
char *lud_host; /* LDAP host to contact */
int lud_port; /* port on host */
char *lud_dn; /* base for search */
char **lud_attrs; /* NULL-terminate list of attributes */
int lud_scope; /* a valid LDAP_SCOPE_... value */
char *lud_filter; /* LDAP search filter */
char *lud_string; /* for internal use only */

} LDAPURLDesc;

ldap_free_urldesc(
LDAPURLDesc *ludp)

int ldap_url_search(
LDAP *ld,
char *url,
int attrsonly)

int ldap_url_search_s(
LDAP *ld,
char *url,
int attrsonly,
LDAPMessage **res)

int ldap_url_search_st(
LDAP *ld,
char *url,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res)

Input parameters
ld Specifies the LDAP pointer returned by a previous call to ldap_init(),

ldap_ssl_init() or ldap_open().

114 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

url Specifies a pointer to the URL string.

attrsonly
Specifies attribute information. Set to 1 to request attribute types only. Set
to 0 to request both attribute types and attribute values.

timeout
Specifies a timeout value for a synchronous search issued by the
ldap_url_search_st() routine.

ludp Points to the LDAP URL description, as returned by ldap_url_parse().

Output parameters
ludpp Points to the LDAP URL description, as returned by ldap_url_parse().

res Contains the result of the asynchronous operation identified by msgid, as
returned from ldap_url_search_s() or ldap_url_search_st(). This result must
be passed to the LDAP parsing routines.

Usage
These routines support the use of LDAP URLs. LDAP URLs look like the
following:
ldap://[hostport]/dn[?attributes[?scope[?filter]]]

where:
v hostport is a host name with an optional :portnumber.
v dn is the base DN to be used for an LDAP search operation.
v attributes is a comma-separated list of attributes to be retrieved.
v scope is one of the following three strings: base, one, or sub. The default is base.
v filter is the LDAP search filter as used in a call to ldap_search.

For example:
ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

URLs that are wrapped in angle-brackets or preceded by URL: or both are also
tolerated, including the following forms:
v URL:ldapurl

For example:
URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

v <URL:ldapurl>
For example:
<URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich>

ldap_is_ldap_url() returns a non-zero value if url begins with ldap://. It can be
used as a quick check for an LDAP URL; the ldap_url_parse() routine is used to
extract the various components of the URL.

ldap_url_parse() breaks down an LDAP URL passed in url into its component
pieces. If successful, zero is returned, an LDAP URL description is allocated and
filled in, and ludpp is set to point to it. If an error occurs, one of these values is
returned:

LDAP_URL_ERR_NOTLDAP - URL doesn’t begin with "ldap://"
LDAP_URL_ERR_NODN - URL has no DN (required)
LDAP_URL_ERR_BADSCOPE - URL scope string is invalid
LDAP_URL_ERR_MEM - can’t allocate memory space

Chapter 3. API categories 115

ldap_free_urldesc() is called to free an LDAP URL description that was obtained
from a call to ldap_url_parse().

ldap_url_search() initiates an asynchronous LDAP search based on the contents of
the URL string. This routine acts just like ldap_search except that the search
parameters are pulled out of the URL.

ldap_url_search_s() performs a synchronous LDAP search based on the contents of
the URL string. This routine acts just like ldap_search_s() except that the search
parameters are pulled out of the URL.

ldap_url_search_st() performs a synchronous LDAP URL search with a specified
timeout. This routine acts just like ldap_search_st() except that the search
parameters are pulled out of the URL.

Notes
For search operations, if hostport is omitted, host and port for the current
connection are used. If hostport is specified, and is different from the host and port
combination used for the current connection, the search is directed to hostport,
instead of using the current connection. In this case, the underlying referral
mechanism is used to bind to hostport.

If the LDAP URL does not contain a search filter, the filter defaults to
objectClass=*.

See also
ldap, ldap_search

LDAP_CODEPAGE
ldap_xlate_local_to_utf8
ldap_xlate_utf8_to_local
ldap_xlate_local_to_unicode
ldap_xlate_unicode_to_local
ldap_set_locale
ldap_get_locale
ldap_set_iconv_local_codepage
ldap_get_iconv_locale_codepage
ldap_set_iconv_local_charset
ldap_char_size

Purpose
Functions for managing the conversion of strings between UTF-8 and a local code
page.

Synopsis
#include <ldap.h>

int ldap_xlate_local_to_utf8(
char *inbufp,
unsigned long *inlenp,
char *outbufp,

116 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

unsigned long *outlenp)

int ldap_xlate_utf8_to_local(
char *inbufp,
unsigned long *inlenp,
char *outbufp,
unsigned long *outlenp)

int ldap_xlate_local_to_unicode(
char *inbufp,
unsigned long *inlenp,
char *outbufp,
unsigned long *outlenp)

int ldap_xlate_unicode_to_local(
char *inbufp,
unsigned long *inlenp,
char *outbufp,
unsigned long *outlenp)

int ldap_set_locale(
char *locale)

char *ldap_get_locale()

int ldap_set_iconv_local_codepage
char *codepage)

char *ldap_get_iconv_local_codepage()

int ldap_set_iconv_local_charset(
char *charset)

int ldap_char_size(
char *p)

Input parameters
inbufp

A pointer to the address of the input buffer containing the data to be
translated

inlenp Length in bytes of the inbufp input buffer

outbufp
A pointer to the address of the output buffer for translated data

outlenp
Length in bytes of the outbufp input buffer

Note: The output buffer must be three times as large as the input buffer if
the intent is to translate the entire input buffer in a single call.

charset
Specifies the character set to be used when converting strings between
UTF-8 and the local code page. See “IANA character sets supported by
platform” on page 185 for the specific charset values that are supported for
each operating system platform.

Note: The supported values for charset are the same values supported for
the charset tag that is optionally defined in Version 1 LDIF files.

codepage
Specifies a code page or code set for overriding the active code page for

Chapter 3. API categories 117

the currently defined locale. See the system documentation for the code
pages supported for a particular operating system.

locale Specifies the locale to be used by LDAP when converting to and from
UTF-8 or Unicode. If the locale is not explicitly set, the LDAP library uses
the application’s default locale. To force the LDAP library to use another
locale, specify the appropriate locale string.

For applications running on the Windows platform, supported locales are
defined in ldaplocale.h. For example, the following is an excerpt from
ldaplocale.h and shows the available French locales:
/* French - France */

#define LDAP_LOCALE_FRFR850 "Fr_FR"
#define LDAP_LOCALE_FRFRISO8859_1 "fr_FR"

For applications running on the AIX operating system, see the locale
definitions defined in the ″Understanding Locale″ chapter of AIX System
Management Guide: Operating System and Devices. System-defined locales are
located in /usr/lib/nls/loc on the AIX operating system. For example,
Fr_FR and fr_FR are two system-supported French locales.

For Solaris applications, see the system documentation for the set of
system-supported locale definitions.

Note: The specified locale is applicable to all conversions by the LDAP
library within the applications address space. The LDAP locale is set
or changed only when there is no other LDAP activity occurring
within the application on other threads.

p Returns the number of bytes constituting the character pointed to by p. For
ASCII characters, this is 1. For other character sets, it can be greater than 1.

Output parameters
inbufp

A pointer to the address of the input buffer containing the data to be
translated

inlenp Length in bytes of the inbufp input buffer

outbufp
A pointer to the address of the output buffer for translated data

outlenp
Length in bytes of the outbufp input buffer

Note: The output buffer must be three times as large as the input buffer if
the intent is to translate the entire input buffer in a single call.

locale When returned from the ldap_get_locale() API, locale specifies the
currently active locale for LDAP. See the system documentation for the
locales supported for a particular operating system. For applications
running in the Windows environment, see ldaplocale.h.

codepage
When returned from ldap_get_iconv_local_codepage() API, codepage
specifies the currently active code page, as associated with the currently
active locale. See the system documentation for the code pages supported
for a particular operating system.

118 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Usage
These routines described in the sections below are used to manage
application-level conversion of data between the local code page and UTF-8, which
is used by LDAP when communicating with an LDAP V3 compliant server. For
more information on the UTF-8 standard, see ″UTF-8, a Transformation Format of
ISO 10646″.

When connected to an LDAP V3 server, the LDAP APIs are designed to accept and
return string data UTF-8 encoded. This is the default mode of operation.
Alternatively, your application can rely on the LDAP library to convert LDAP V3
string data to and from UTF-8 by using the ldap_set_option() API to set the
LDAP_OPT_UTF8_IO option to LDAP_UTF8_XLATE_ON. Once set, the following
connection-based APIs, that is, those that accept an ld as input, expect string data
to be supplied as input in the local code page, and return string data to the
application in the local code page. In other words, the following LDAP routines
and related APIs automatically convert string data to and from the UTF-8 wire
protocol:
v ldap_add (and family)
v ldap_bind (and family)
v ldap_compare (and family)
v ldap_delete (and family)
v ldap_parse_reference
v ldap_get_dn
v ldap_get_values
v ldap_modify (and family)
v ldap_parse_result
v ldap_rename (and family)
v ldap_search (and family)
v ldap_url_search (and family)

The following APIs are not associated with a connection, and always expect string
data, for example, DNs, to be supplied and returned UTF-8 encoded:
v ldap_explode_dn
v ldap_explode_dns
v ldap_explode_rdn
v ldap_server_locate
v ldap_server_conf_save
v ldap_is_ldap_url
v ldap_url_parse
v ldap_default_dn_set

The APIs described in this section provide assistance in converting your
application data to and from the locale code page. There are several reasons for
using these APIs:
v The application is using one or more of the non-connection oriented APIs, and

needs to convert strings to UTF-8 from the local code page before using the
APIs.

v The application is designed to send and receive strings as UTF-8 when using the
LDAP APIs, but needs to convert selected strings to the local code page before

Chapter 3. API categories 119

http://www.cis.ohio-state.edu/htbin/rfc/rfc2279.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2279.html

presenting to the user. When the directory contains heterogeneous data, that is,
data is obtained from multiple countries, or locales, this might be the desired
approach.

If your application might be extracting string data from the directory that has
originated from other countries or locales, design the application with the
following considerations in mind:
v Consider splitting your application into a presentation component, and an LDAP

worker component.
– The presentation component is responsible for obtaining data from external

sources, for example, graphical user interfaces (GUIs), command-lines, files,
and so forth, as well as displaying the data to a GUI, standard out, files, and
so forth. This component typically deals with string data that is represented
in the local code page.

– The LDAP worker component is responsible for interfacing directly with the
LDAP programming interfaces. The LDAP worker component can be
implemented to deal strictly in UTF-8 when handling string data. The default
mode of operation for the LDAP library is to handle strings encoded as
UTF-8.

– String conversion between UTF-8 and the local code page occurs when data is
passed to and from the presentation component and the LDAP worker
component.

Consider the following scenario:

The LDAP worker component issues an LDAP search, and returns a list of
entries from the directory. To ensure that no data is lost, the default mode is
used and the LDAP library does not convert string data. In this case, this means
the DNs of the entries returned from the search are represented in UTF-8.

The application needs to display this list of DNs on a panel, so the user can
select the desired entry, and the application then retrieves additional attributes
for the selected DN. Since the DN is represented in UTF-8, it must be converted
to the local code page prior to display.

The converted DN might not be a faithful representation of the UTF-8 DN. For
example, if the DN was created in China, it can contain Chinese characters. If
the application is running in a French locale, certain Chinese characters might
not be converted correctly, and are replaced with a replacement character.

The application can display the converted DN, but certain characters might be
displayed as bobs. Assuming there is enough information for the end-user to
select the desired DN, the application accesses the LDAP directory with the
selected DN to get additional information, for example, a jpeg image so it can
display the user’s photograph. Since jpeg images might be large, the application
is designed to obtain the jpeg attribute after the user selects the specific DN
only.

In order to ensure that the search to get the jpeg attribute using the selected DN
works, the search must be done with the original UTF-8 version of the selected
DN, not the version of the DN that was converted to the local code page. This
implies that the application maintains a correlation between the original UTF-8
version of the DN, and the version that was converted to the local code page.

v If the application is designed to accept user input, generate one or more LDAP
searches, then display the information without passing the results back into the

120 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

LDAP library. The application can be designed to let the LDAP library perform
the conversions, even though some data loss might theoretically occur.
Automatic conversion of string data for a specific ld can be enabled by using
ldap_set_option() with the LDAP_OPT_UTF8_IO option set to
LDAP_UTF8_XLATE_ON.

ldap_char_size returns the number of bytes constituting the character pointed to by
p. For ASCII characters, this is 1. For other character sets, it can be greater than 1.

Translate local code page to UTF-8
The ldap_xlate_local_to_utf8() API is used to convert a string from the local code
page to a UTF-8 encoding. Since the output string from the conversion process can
be larger than the input string, it is strongly recommended that the output buffer
be at least twice as large as the input buffer. LDAP_SUCCESS is returned if the
conversion is successful.

Translate UTF-8 to local code page
The ldap_xlate_utf8_to_local() API is used to convert a UTF-8 encoded string to the
local code page encoding. Since the output string from the conversion process can
be larger than the input string, it is strongly recommended that the output buffer
be at least twice as large as the input buffer. LDAP_SUCCESS is returned if the
conversion is successful.

Note: Translation of strings from a UTF-8 encoding to local code page can result in
loss of data when one or more characters in the UTF-8 encoding cannot be
represented in the local code page. When this occurs, a substitution
character replaces any UTF-8 characters that cannot be converted to the local
code page.

Translate local code page to unicode
The ldap_xlate_local_to_unicode() API is used to convert a string from the local
code page to the UCS-2 encoding as defined by ISO/IEC 10646-1. This same set of
characters is also defined in the UNICODE standard. Since the output string from
the conversion process can be larger than the input string, it is strongly
recommended that the output buffer be at least twice as large as the input buffer.
LDAP_SUCCESS is returned if the conversion is successful.

Translate unicode to local code page
The ldap_xlate_unicode_to_local() API is used to convert a UCS-2-encoded string
to the local code page encoding. Since the output string from the conversion
process can be larger than the input string, it is strongly recommended that the
output buffer be at least twice as large as the input buffer. LDAP_SUCCESS is
returned if the conversion is successful.

Note: Translation of strings from a UCS-2 (UNICODE) encoding to local code page
can result in loss of data when one or more characters in the UCS-2
encoding cannot be represented in the local code page. When this occurs, a
substitution character replaces any UCS-2 characters that cannot be
converted to the local code page.

Set locale
The ldap_set_locale() API is used to change the locale used by LDAP for
conversions between the local code page and UTF-8 (or Unicode). Unless explicitly
set with the ldap_set_locale() API, LDAP uses the application’s default locale. To
force the LDAP library to use another locale, specify the appropriate locale string.
For Unix systems, see the system documentation for the locale definitions. For
Windows operating systems, see ldaplocale.h.

Chapter 3. API categories 121

Get locale
The ldap_get_locale() API is used to obtain the active LDAP locale. Values that can
be returned are system-specific.

Set codepage
The ldap_set_iconv_local_codepage() API is used to override the code page
associated with the active locale. See the system documentation for the code pages
supported for a particular operating system.

Get codepage
The ldap_get_iconv_local_codepage() API is used to obtain the code page
associated with the active locale. See the system documentation for the code pages
supported for a particular operating system. See “IANA character sets supported
by platform” on page 185 for the specific charset values that are supported for each
operating system platform. Note that the supported values for charset are the same
values supported for the charset tag that is optionally defined in Version 1 LDIF
files.

Japanese and Korean currency considerations
The generally accepted convention for converting the backslash character (\)
(single byte X’5C’) from the Japanese or Korean locale into Unicode is to convert
X’5C’ to the Unicode yen for Japanese, or the Unicode won for Korean.

To change the default behavior, set the LDAP_BACKSLASH environment variable
to YES prior to using any of the LDAP APIs. When LDAP_BACKSLASH is set to
YES, the X’5C’ character is converted to the Unicode (\) , instead of the Japanese
yen or Korean won.

Errors
Each of the LDAP user configuration APIs returns a non-zero LDAP return code if
an error occurs. See “LDAP_ERROR” on page 50 for more details.

See also
ldap, ldap_error

LDAP_SSL_ENVIRONMENT_INIT

Purpose
ldap_ssl_environment_init() has the same parameters as ldap_ssl_client_int() but
can be called more than once. It returns LDAP_SUCCESS or the appropriate LDAP
error code. It does not return LDAP_SSL_ALREADY_INITIALIZED. An application
that requires SSL connections to different servers can initialize environments in
separate calls to this function, with different key database files. The environment
created is used by all SSL connections established by calling ldap_ssl_init() until
the next call is made to ldap_ssl_environment_init(). Subsequent calls to
ldap_ssl_environment_init() do not affect existing SSL connections.

Synopsis
#include <ldap.h>
#include <ldapssl.h>

int ldap_ssl_environment_init(

122 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

char *keydatabase,
char *keydatabase_pw,
int ssl_timeout,
int *pSSLReasonCode)

where

keydatabase
Specifies the name of a key database file with .kdb extension. The key
database file typically contains one or more certificates of CAs that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. A key database can be used to store the client’s private keys
and associated client certificates. A private key and associated client
certificate are required if the LDAP server is configured to require client
and server authentication only. If the LDAP server is configured to provide
only server authentication, a private key and client certificate are not
required.

keydatabase_pw
Specifies the password that is used to protect the contents of the key
database. This password is important, particularly when it protects one or
more private keys stored in the key database. The password is specified
when the key database is initially created, and can be changed using the
gsk5ikm utility. Instead of specifying the password each time the
application opens the key database, the password can be obtained from a
password stash file that contains an encrypted version of the password.
The password stash file can be created using the gsk5ikm utility. To obtain
the password from the password stash file, specify a NULL pointer for
keydatabase_pw. It is assumed that the password stash file has the same
name as the key database file, but with a .sth extension instead of .kdb. It
is assumed that the password stash file resides in the same directory as the
key database file.

Note: The default key database file, ldapkey.kdb, is initially configured to
have ssl_password as its password. This password is also initially
configured in the default password stash file (ldapkey.sth).

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value controls the
frequency with which the SSL protocol stack regenerates session keys. If
ssl_timeout is set to 0, a default value is used. Otherwise, the value
supplied is used, provided it is less than or equal to 86,400, the number of
seconds in a day. If ssl_timeout is greater than 86,400,
LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL Reason Code, which provides additional
information in the event that an error occurs during initialization of the
SSL stack, when ldap_ssl_environment_init() is invoked. See ldapssl.h for
reason codes that can be returned.

LDAP_SORT
ldap_create_sort_keylist
ldap_free_sort_keylist
ldap_create_sort_control
ldap_parse_sort_control

Chapter 3. API categories 123

Purpose
Used to request sort of entries returned by the servers that match the filter
specified on a search operation.

Synopsis
#include <ldap.h>

typedef struct _LDAPsortkey {
char *attr_type; /* name of attribute */
char *match_rule_oid; /* OID of matching rule */
int reverse_order; /* specifies if attribute

is sorted in reverse order */
} LDAPsortkey;

int ldap_create_sort_keylist (LDAPsortkey ***sortKeyList,
const char *sortString);

int ldap_create_sort_control (LDAP *ld, LDAPsortkey
**sortKeyList, const char isCritical, LDAPControl
**control);

void ldap_free_sort_keylist (LDAPsortkey **sortKeyList);

int ldap_parse_sort_control (LDAP *ld, LDAPControl
**serverControls, unsigned long *sortRC, char
**attribute);

Input parameters
ld Specifies the LDAP pointer returned by previous call to ldap_init(),

ldap_ssl_init() or ldap_open(). Must not be NULL.

sortString
String with one or more attributes to be used to sort entries returned by
the server.

sortKeyList
Pointer to an array of LDAPsortkey structures, which represent attributes
that the server uses to sort returned entries. Input when used for
ldap_create_sort_control() and ldap_free_sort_keylist().

isCritical
Specifies the criticality of sort on the search. If the criticality of sort is
FALSE, and the server finds a problem with the sort criteria, the search
continues but entries returned are not sorted. If the criticality of sort is
TRUE, and the server finds a problem with the sort criteria, the search
does not continue, no sorting is done, and no entries are returned. If the
server does not find any problem with the sort criteria, the search and sort
continues and entries are returned sorted.

serverControls
A list of LDAP server controls. See “LDAP controls” on page 45 for more
information about server controls. These controls are returned to the client
when calling the ldap_parse_result() function on the set of results returned
by the server.

124 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Output parameters
sortKeyList

Pointer to an array of LDAPsortkey structures, which represent attributes
the server uses to sort returned entries. Output when used for
ldap_create_sort_keylist().

control
A result parameter that is filled in with an allocated array of one control
for the sort function. The control must be freed by calling
ldap_control_free().

sortRC
LDAP return code retrieved from the sort results control returned by the
server.

attribute
Returned by the server, this is the name of the attribute in error.

Usage
These routines are used to perform sorting of entries returned from the server
following an LDAP search operation.

The ldap_create_sort_keylist() function builds a list of LDAPsortkey structures
based on the list of attributes included in the incoming string. A sort key is made
up of three possible values:
v Name of attribute used to sort entries returned by the server
v OID of a matching rule for that attribute
v Whether or not the sort must be done in reverse order

The syntax of the attributes in the sortString, [-]<attribute name>[:<matching rule
OID>], specifies whether or not there is a matching rule OID that must be used for
the attribute, and whether or not the attribute must be sorted in reverse order. In
the following example sortString, the search results are sorted first by surname and
then by given name, with the given name being sorted in reverse (descending
order) as specified by the prefixed minus sign (-):
sn -givenname

Thus, the syntax of the sort parameter is as follows:
[-]<attribute name>[:<matching rule OID>]

where
v attribute name is the name of the attribute you want to sort by.
v matching rule OID is the optional OID of a matching rule that you want to use

for sorting.
v the minus sign (-) indicates that the results must be sorted in reverse order.

The sortKeyList, output from the ldap_create_sort_keylist() function, can be used
as input into the ldap_create_sort_control() function. The sortKeyList is an ordered
array of LDAPsortkey structures such that the key with the highest precedence is
at the front of the array. The control output form ldap_create_sort_control()
function includes the criticality set based on the value of the isCritical flag. This
control is added to the list of client controls sent to the server on the LDAP search
request.

Chapter 3. API categories 125

The ldap_free_sort_keylist() function cleans up all the memory used by the sort
key list. This function must be called after the ldap_create_sort_control() function
has completed.

When a sort results control is returned by the server, the ldap_parse_sort_control()
function can be used to retrieve the values from the control. The function takes as
input the server controls returned by the server, and returns the value of the sort
control return code and possibly an attribute name if the return code is not
LDAP_SUCCESS. If there was an error parsing the sort criteria for the search or
there were no entries returned for the search, no sort control is returned to the
client.

Errors
The sort routines return an LDAP error code if they encounter an error parsing the
result. See “LDAP_ERROR” on page 50 for a list of the LDAP error codes.

Notes
SortString, sortKeyList, controls, serverControls, and attribute must be freed by the
caller.

See also
ldap, ldap_search, ldap_parse_result

LDAP_PAGED_RESULTS
ldap_create_page_control
ldap_parse_page_control

Purpose
Used to request simple paged results of entries returned by the servers that match
the filter specified on a search operation.

Synopsis
#include <ldap.h>

int ldap_create_page_control LDAP_P ((LDAP *ld, unsigned long pageSize,
struct berval *cookie, const char isCritical, LDAPControl **control));

int ldap_parse_page_control LDAP_P ((LDAP *ld, LDAPControl
**serverControls, unsigned long *totalCount, struct berval **cookie));

Input parameters
ld Specifies the LDAP pointer returned by previous call to ldap_init(),

ldap_ssl_init() or ldap_open(). Must not be NULL.

pageSize
Number of entries that are returned for this paged results search request.

cookie Opaque structure returned by the server. No assumptions must be made
about the internal organization or value. The cookie is used on subsequent
paged results search requests when more entries are to be retrieved from
the results set. The cookie must be the value of the cookie returned on the
last response returned from the server on all subsequent paged results
search requests. The cookie is empty when there are no more entries to be

126 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

returned by the server, or when the client abandons the paged results
request by sending in a zero page size. Once the paged results search
request is completed, the cookie must not be used because it is no longer
valid.

isCritical
Specifies the criticality of paged results on the search. Whether the
criticality of paged results is TRUE or FALSE, and the server finds a
problem with the sort criteria, the search does not continue. If the server
does not find any problem with the paged results criteria, the search
continues and entries are returned one page at a time.

serverControls
A list of LDAP server controls. See “LDAP controls” on page 45 for more
information about server controls. These controls are returned to the client
when calling the ldap_parse_result() function on the set of results returned
by the server.

Output parameters
control

A result parameter that is filled in with an allocated array of one control
for the sort function. The control must be freed by calling
ldap_control_free().

totalCount
Estimate of the total number of entries for this search, can be zero if the
estimate cannot be provided.

cookie Opaque structure returned by the server. No assumptions must be made
about the internal organization or value. The cookie is used on subsequent
paged results search requests when more entries are to be retrieved from
the results set. The cookie must be the value of the cookie returned on the
last response returned from the server on all subsequent paged results
search requests. The cookie is empty when there are no more entries to be
returned by the server, or when the client abandons the paged results
request by sending in a zero page size. Once the paged results search
request is completed, the cookie must not be used because it is no longer
valid.

Usage
The ldap_create_page_control() function uses the page size and the cookie to build
the paged results control. The control output from ldap_create_page_control()
function includes the criticality set based on the value of the isCritical flag. This
control is added to the list of client controls sent to the server on the ldap search
request.

When a paged results control is returned by the server, the
ldap_parse_page_control() function can be used to retrieve the values from the
control. The function takes as input the server controls returned by the server, and
returns a cookie to be used on the next paged results request for this search
operation.

Note: If the page size is greater than or equal to the search sizeLimit value , the
server ignores the paged results control because the request can be satisfied
in a single page. No paged results control value is returned by the server in
this case. In all other cases, error or not, the server returns a paged results
control to the client.

Chapter 3. API categories 127

Errors
The sort routines return an LDAP error code if they encounter an error parsing the
result. See “LDAP_ERROR” on page 50 for a list of the LDAP error codes.

Notes
Controls, serverControls, and cookie must be freed by the caller.

See also
ldap, ldap_search, ldap_parse_result

Possible extended error codes returned by LDAP SSL function codes
The following are values returned by all function calls:
v 0 –The task completed successfully. Issued by every function call that completes

successfully.
v 1 – The environment or SSL handle is not valid. The specified handle was not

the result of a successful open function call.
v 2 – The dynamic link library unloaded (Windows only).
v 3 – An internal error occurred. Report this error to service.
v 4 – Main memory is insufficient to perform the operation.
v 5 – The handle is in an invalid state for operation, such as performing an init

operation on a handle twice.
v 6 – Specified key label not found in keyfile.
v 7 – Certificate not received from partner.
v 8 – Certificate validation error.
v 9 – Error processing cryptography.
v 10 – Error validating Abstract Syntax Notation (ASN) fields in certificate.
v 11 – Error connecting to LDAP server.
v 12 – Internal unknown error. Report problem to service.
v 101 – Internal unknown error. Report problem to service.
v 102 – I/O error reading keyfile.
v 103 – Keyfile has an invalid internal format. Re-create keyfile.
v 104 – Keyfile has two entries with the same key. Use iKeyman to remove the

duplicate key.
v 105 – Keyfile has two entries with the same label. Use iKeyman to remove the

duplicate label.
v 106 – The keyfile password is used as an integrity check. Either the keyfile has

become corrupted or the password ID is incorrect.
v 107 – The default key in the keyfile has an expired certificate. Use iKeyman to

remove certificates that are expired.
v 108 – There was an error loading one of the GSKdynamic link libraries. Be sure

GSK was installed correctly.
v 109 – Indicates that a connection is trying to be made in a gsk environment after

the GSK_ENVIRONMENT_CLOSE_OPTIONS has been set to
GSK_DELAYED_ENVIRONMENT_CLOSE and gsk_environment_close()
function has been called.

v 201 – Neither the password nor the stash-file name was specified, so the key file
could not be initialized.

128 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

v 202 – Unable to open the key file. Either the path was specified incorrectly or
the file permissions did not allow the file to be opened.

v 203 – Unable to generate a temporary key pair. Report this error to service.
v 204 – A User Name object was specified that is not found
v 205 – A Password used for an LDAP query is not correct
v 206 – An index into the Fail Over list of LDAP servers was not correct.
v 301 – Indicates that the GSK environment close request was not properly

handled. Cause is most likely due to a gsk_secure_socket*() command being
attempted after a gsk_close_environment() call.

v 401 – The system date was set to an invalid value.
v 402 – Neither SSLv2 nor SSLv3 is enabled.
v 403 – The required certificate was not received from partner.
v 404 – The received certificate was formatted incorrectly.
v 405 – The received certificate type was not supported.
v 406 – An IO error occurred on a data read or write.
v 407 – The specified label in the key file could not be found.
v 408 – The specified key file password is incorrect. The key file could not be

used. The key file may also be corrupt.
v 409 – In a restricted cryptography environment, the key size is too long to be

supported.
v 410 – An incorrectly formatted SSL message was received from the partner.
v 411 – The message authentication code (MAC) was not successfully verified.
v 412 – Unsupported SSL protocol or unsupported certificate type.
v 413 – The received certificate contained an incorrect signature.
v 414 – Incorrectly formatted certificate received from partner.
v 415 – Invalid SSL protocol received from partner.
v 416 – Internal error. Report problem to service.
v 417 – The self-signed certificate is not valid.
v 418 – The read failed. Report this error to service.
v 419 – The write failed. Report this error to service.
v 420 – The partner closed the socket before the protocol completed.
v 421 – The specified V2 cipher is not valid.
v 422 – The specified V3 cipher is not valid.
v 423 – Internal error. Report problem to service.
v 424 – Internal error. Report problem to service.
v 425 – The handle could not be created. Report this internal error to service.
v 426 – Initialization failed. Report this internal error to service.
v 427 – When validating a certificate, unable to access the specified LDAP

directory.
v 428 – The specified key did not contain a private key.
v 429 – A failed attempt was made to load the specified Public-Key Cryptography

Standards (PKCS) #11 shared library.
v 430 – The PKCS #11 driver failed to find the token specified by the caller.
v 431 – A PKCS #11 token is not present in the slot.
v 432 – The password/pin to access the PKCS #11 token is invalid.
v 433 – The SSL header received was not a properly SSLV2 formatted header.

Chapter 3. API categories 129

v 501 – The buffer size is negative or zero.
v 502 – Used with non-blocking I/O. Refer to the non-blocking section for usage.
v 601 – SSLV3 is required for reset_cipher, and the connection uses SSLV2.
v 602 – An invalid ID was specified for the gsk_secure_soc_misc function call.
v 701 – The function call has an invalid ID. This may also be caused by specifying

an environment handle when a handle for a SSL connection should be used.
v 702 – The attribute has a negative length, which is invalid.
v 703 – The enumeration value is invalid for the specified enumeration type.
v 704 – Invalid parameter list for replacing the SID cache routines.
v 705 – When setting a numeric attribute, the specified value is invalid for the

specific attribute being set.
v 706 – Conflicting parameters have been set for additional certificate validation.

130 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 4. Using GSK5IKM

The following key-management program is provided with the Tivoli Global
Security Kit (GSKit):
v GSK5IKM - A user-friendly GUI for managing key database files, implemented

as a Java applet.

Note: On the AIX operating systems, if you are prompted to set JAVA_HOME, you
can set it to either the system-installed Java or the Java version included
with the IBM Directory Server. If you use the IBM Directory Server version,
you also need to set the LIBPATH environment variable as follows:
export LIBPATH=/usr/ldap/java/bin:/usr/ldap/java/bin/classic:$LIBPATH

Use this utility to create public-private key pairs and certificate requests, receive
certificate requests into a key database file, and manage keys in a key database file.

The tasks you can perform with GSK5IKM include:
v Creating a key pair and requesting a certificate from a certificate authority
v Receiving a certificate into a key database file
v Managing keys and certificates

– Changing a key database password
– Showing information about a key
– Deleting a key
– Making a key the default key in the key database
– Creating a key pair and certificate request for self-signing
– Exporting a key
– Importing a key into a key database
– Designating a key as a trusted root
– Removing trusted root key designation
– Requesting a certificate for an existing key

v Migrating a keyring file to the key database format

Creating a key pair and requesting a certificate from a Certificate
Authority

If your client application is connecting to an LDAP server that requires client and
server authentication, then you need to create a public-private key pair and a
certificate.

If your client application is connecting to an LDAP server that only requires server
authentication, it is not necessary to create a public-private key pair and a
certificate. It is sufficient to have a certificate in your client key database file that is
marked as a trusted root. If the Certification Authority (CA) that issued the
server’s certificate is not already defined in your client key database, you need to
request the CA’s certificate from the CA, receive it into your key database, and
mark it as trusted. See “Designating a key as a trusted root” on page 137.

© Copyright IBM Corp. 2002 131

Your client uses its private key to sign messages sent to servers. The server sends
its public key to clients so that they can encrypt messages to the server, which the
server decrypts with its private key.

To send its public key to a server, the client needs a certificate. The certificate
contains the client’s public key, the Distinguished Name associated with the client’s
certificate, the serial number of the certificate, and the expiration date of the
certificate. A certificate is issued by a CA, which verifies the identity of the client.

The basic steps to create a certificate that is signed by a CA are:
1. Create a certificate request using GSK5IKM.
2. Submit the certificate request to the CA. This can be done using e-mail or an

on-line submission from the CA’s Web page.
3. Receive the response from the CA to an accessible location on the file system of

your server.
4. Receive the certificate into your key database file.

Note: If you are obtaining a signed client certificate from a CA that is not in the
default list of trusted CAs, you need to obtain the CA’s certificate, receive it
into your key database and mark it as trusted. This must be done before
receiving your signed client certificate into the key database file.

To create a public-private key pair and request a certificate:
1. Start GSK5IKM Java utility by typing:

GSK5IKM

2. Select Key Database File.
3. Select New (or Open if the key database already exists).
4. Specify key database file name and location. Type OK.

Note: A key database is a file that the client or server uses to store one or
more key pairs and certificates.

5. When prompted, supply password for the key database file. Click OK.
6. Select Create.
7. Select New Certificate Request.
8. Supply user-assigned label for key pair. The label identifies the key pair and

certificate in the key database file.
9. If you are requesting a low-assurance client certificate, enter the common

name. This must be unique and the full name of the user.
10. If you are requesting a high-assurance secure server certificate, then:

v Enter the X.500 common name of the server. Usually this is the TCP/IP
fully qualified host name, for example, www.ibm.com. For a VeriSign server
certificate, it must be the fully qualified host name.

v Enter the organization name. This is the name of your organization. For a
VeriSign secure server certificate, if you already have an account with
VeriSign, the name in this field must match the name on that account.

v Enter the organizational unit name. This is an optional field.
v Enter the locality/city where the server is located. This is an optional field.
v Enter a three-character abbreviation of the state/province where the server

is located.
v Enter the postal code appropriate for the server’s location.
v Enter the two-character country code where the server is located.

132 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

11. Click OK.
12. A message identifying the name and location of the certificate request file is

displayed. Click OK.
13. Send the certificate request to the CA.

If this is a request for a VeriSign low assurance certificate or secure server
certificate, you must e-mail the certificate request to VeriSign.
You can mail the low assurance certificate request to VeriSign immediately. A
secure server certificate request requires more documentation. To find out
what VeriSign requires for a secure server certificate request, go to the
following URL: http://www.verisign.com/ibm.

14. When you receive the certificate from the CA, use GSK5IKM to receive it into
the key database where you stored the key pair. See “Receiving a certificate
into a key database”.

Note: Change the key database password frequently. If you specify an expiration
date, you need to keep track of when you need to change the password. If
the password expires before you change it, the key database is not usable
until the password is changed.

Receiving a certificate into a key database
After receiving a response from your CA, you need to receive the certificate into a
key database.

To receive a certificate into a key database:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file, click OK.
6. Select Create.
7. Select Personal Certificates in the middle display window.
8. Click Receive.
9. Enter name and location of the certificate file that contains the signed

certificate, as received from the CA. Click OK.

Changing a key database password
To change a key database password:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Key Database File.
7. Select Change Password.
8. Enter <New Password>.
9. Confirm <New Password>.

10. Select and set optional password expiration time.

Chapter 4. Using GSK5IKM 133

http://www.verisign.com/ibm

11. Select Stash the password to a file? if you want the password to be encrypted
and stored on disk.

12. Click OK.
13. A message is displayed with the file name and location of the stash password

file. Click OK.

Note: The password is important because it protects the private key. The private
key is the only key that can sign documents or decrypt messages encrypted
with the public key.

Showing information about a key
To show information about a key, such as its name, size or whether it is a trusted
root:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. To see information about keys designated as Personal Certificates:

v Select Personal Certificates at the top of the Key database content window.
v Select a certificate.
v Click View/Edit to display information about the selected key.
v Click OK to return to the list of Personal Certificates.

7. To see information about keys that are designated as Signer Certificates:
v Select Signer Certificates at the top of the Key database content window.
v Select a certificate .
v Click View/Edit to display information about the selected key.
v Click OK to return to the list of Signer Certificates.

Deleting a key
To delete a key:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select the type of key you want to delete at the top of the Key database

content window (Personal Certificates, Signer Certificates, or Personal
Certificate Requests).

7. Select a certificate.
8. Click Delete.
9. Click Yes to confirm.

134 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Making a key the default key in the key database
The default key must be the private key the server uses for its secure
communications.

To make a key the default key in the key database:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Personal Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click View/Edit.
9. Select the Set the certificates as the default box. Click OK.

Creating a key pair and certificate request for self-signing
By definition, a secure server must have a public-private key pair and a certificate.

The server uses its private key to sign messages to clients. The server sends its
public key to clients so they can encrypt messages to the server, which the server
decrypts with its private key.

The server needs a certificate to send its public key to clients. The certificate
contains the server’s public key, the Distinguished Name associated with the
server’s certificate, the serial number of the certificate, and the expiration date of
the certificate. A certificate is issued by a CA, who verifies the identity of the
server.

You can request one of the following certificates:
v A low assurance certificate from VeriSign, best for non-commercial purposes,

such as a beta test of your secure environment
v A server certificate to do commercial business on the Internet from VeriSign or

some other CA
v A self-signed server certificate if you plan to act as your own CA for a private

Web network

For information about using a CA such as VeriSign to sign the server certificate,
see “Creating a key pair and requesting a certificate from a Certificate Authority”
on page 131.

The basic steps to creating a self-signed certificate are:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select New, or Open if the key database already exists.
4. Specify key database file name and location. Type OK.

Note: A key database is a file that the client or server uses to store one or more
key pairs and certificates.

5. When prompted, supply password for the key database file. Click OK.
6. Click New Self-signed.

Chapter 4. Using GSK5IKM 135

7. Supply the following:
v User-assigned label for key pair. The label identifies the key pair and

certificate in the key database file.
v Select the desired certificate Version.
v Select the desired Key Size.
v Enter the X.500 common name of the server. Usually this is the TCP/IP fully

qualified host name, for example, www.ibm.com.
v Enter the organization name. This is the name of your organization.
v Enter the organizational unit name. This is an optional field.
v Enter the locality/city where the server is located. This is an optional field.
v Enter a three-character abbreviation of the state/province where the server is

located.
v Enter the zipcode appropriate for the server’s location.
v Enter the two-character country code where the server is located.
v Enter the Validity Period for the certificate.

8. Click OK.

.

Exporting a key
If you need to transfer a key pair or certificate to another computer, you can export
the key pair from its key database to a file. On the other computer, you can import
the key pair into a key ring.

To export a key from a key database:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Personal Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click Export/Import.
9. For Action Type, select Export Key.

10. Select the Key file type:
v PKCS12 file
v CMS Key database file
v Keyring file (as used by mkkf)
v SSLight key database class

11. Specify a file name.
12. Specify location.
13. Click OK.
14. Enter the required password for the file. Click OK.

136 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Importing a key
To import a key into a key ring:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Personal Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click Export/Import.
9. For Action Type, select Import Key.

10. Select the desired Key file type.
11. Enter the file name and location.
12. Click OK.
13. Enter the required password for the source file. Click OK.

Designating a key as a trusted root
A trusted root key is the public key and associated Distinguished Name of a CA.
The following trusted roots are automatically defined in each new key database:
v Integrion Certification Authority Root
v IBM World Registry Certification Authority
v Thawte Personal Premium CA
v Thawte Personal Freeemail CA
v Thawte Personal Basic CA
v Thawte Premium Server CA
v VeriSign Test CA Root Certificate
v RSA Secure Server Certification Authority
v VeriSign Class 1 Public Primary Certification Authority
v VeriSign Class 2 Public Primary Certification Authority
v VeriSign Class 3 Public Primary Certification Authority
v VeriSign Class 4 Public Primary Certification Authority

Note: Each of these trusted roots are initially set to be trusted roots by default.

To designate a key as a trusted root:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Signer Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click View/Edit.
9. Check the Set the certificate as a trusted root box, and click OK.

10. Select Key Database File and then select Close.

Chapter 4. Using GSK5IKM 137

Removing a key as a trusted root
A trusted root key is the public key and associated Distinguished Name of a CA.
The following trusted roots are automatically defined in each new key database:
v Integrion Certification Authority Root
v IBM World Registry Certification Authority
v Thawte Personal Premium CA
v Thawte Personal Freeemail CA
v Thawte Personal Basic CA
v Thawte Premium Server CA
v VeriSign Test CA Root Certificate
v RSA Secure Server Certification Authority
v VeriSign Class 1 Public Primary Certification Authority
v VeriSign Class 2 Public Primary Certification Authority
v VeriSign Class 3 Public Primary Certification Authority
v VeriSign Class 4 Public Primary Certification Authority

Note: Each of these trusted roots are initially set to be trusted roots by default.

To remove the trusted root status of a key:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Signer Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click View/Edit.
9. Uncheck the Set the certificate as a trusted root box. Click OK.

10. Select Key Database File and then select Close.

Requesting a certificate for an existing key
To create a certificate request for an existing key:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the key database file. Click OK.
6. Select Personal Certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click Export/Import.
9. For Action Type, select Export Key.

10. Select the desired Data Type:
v Base-64-encoded ASCII data
v Binary DER data
v SSLight Key Database Class

138 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

11. Enter the certificate file name and location.
12. Click OK.
13. Select Key Database File and then select Close.

Send the certificate request to the CA.

If this is a request for a VeriSign low assurance certificate or secure server
certificate, you must e-mail the certificate request to VeriSign.

You can mail the low assurance certificate request to VeriSign immediately. A
secure server certificate request requires more documentation. To find out what
VeriSign requires for a secure server certificate request, go to the following URL:
http://www.verisign.com/ibm.

Migrating a keyring file to the key database format
The GSK5IKM program can be used to migrate an existing keyring file, as created
with mkkf, to the format used by GSK5IKM.

To migrate a keyring file:
1. Type GSK5IKM to start the Java utility.
2. Select Key Database File.
3. Select Open.
4. Specify key database file name and location. Type OK.
5. When prompted, supply password for the keyring file. Click OK.
6. Select Key Database File.
7. Select Save As....
8. Select CMS key database file as the Key database type.
9. Specify a file name.

10. Specify location.
11. Click OK.

Chapter 4. Using GSK5IKM 139

http://www.verisign.com/ibm

140 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 5. Event notification

The event notification function allows a server to notify a registered client that an
entry in the directory tree has been changed, added or deleted. This notification is
in the form of an unsolicited message.

Registration request
In order to register, the client must use a bound connection. To register a client use
the supported client APIs for extended operations. An LDAP v3 extended
operation request has the form:

ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
requestName [0] LDAPOID,
requestValue [1] OCTET STRING OPTIONAL }

where the requestValue has the form:
requestValue = SEQUENCE {

eventID ENUMERATED {
LDAP_CHANGE (0)},

baseObject LDAPDN,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2) },

type INTEGER OPTIONAL }

and where type has the form:
changeType ::= ENUMERATED {

changeAdd (1),
changeDelete (2),
changeModify (4),
changeModDN (8) }

Note: If the type field is not specified, it defaults to all changes.

An LDAP v3 extended operation response has the form:
ExtendedResponse ::= [APPLICATION 24] SEQUENCE {

COMPONENTS OF LDAPResult,
responseName [10] LDAPOID OPTIONAL,
response [11] OCTET STRING OPTIONAL }

Registration response
If the registration is successful, the server returns the following message and a
unique registration ID:
LDAP_SUCCESS <registration ID>

If the registration fails, the server returns one of the following:
LDAP_UNWILLING_TO_PERFORM

This error code is returned if:
v The event notification function is turned off in the server.
v The event ID requested by the client cannot be handled by the server.

© Copyright IBM Corp. 2002 141

v The client is unbound.
LDAP_NO_SUCH_OBJECT

This error code is returned if:
v The base DN supplied by the client does not exist or is not visible to the client.
LDAP_NOT_SUPPORTED

This error code is returned if:
v The change type supplied by the client cannot be handled by the server.

Usage
When an event occurs, the server sends a message to the client as an LDAP v3
unsolicited notification. The message ID is 0 and the message is in the form of an
extended operation response. The responseName field is set to the registration
OID. The response field contains the unique registration ID and a timestamp for
when the event occurred. The time field is in Coordinated Universal Time (UTC)
format.

Note: When a transaction occurs, the event notifications for the transaction steps
cannot be sent until the entire transaction is completed.

Unregistering a client
Set the requestName field to the unregister request OID. In the requestValue field
type the unique registration ID returned by the server from the registration
request:

requestValue ::= OCTET STRING

If the registration is successfully removed, the LDAPResult field contains
LDAP_SUCCESS and the response field contains the registration ID that was
removed.

If the unregistration request was unsuccessful, NO_SUCH_OBJECT is returned.

Example
#include <stdio.h>
#include <string.h>
#include <ldap.h>

struct berval *create_reg(int id,char *base,int scope,int type){
struct berval *ret;
BerElement *ber;

if((ber = ber_alloc_t(1)) == NULL){
printf("ber_alloc_t failed\n");
return NULL;

}
if(ber_printf(ber,"{esi",id,base,scope) == (-1)){

printf("first ber_printf failed\n");
return NULL;

}
if(type != (-1)){

if(ber_printf(ber,"i",type) == (-1)){
printf("type ber_printf failed\n");
return NULL;

142 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

}
}
if(ber_printf(ber,"}") == (-1)){

printf("closing ber_printf failed\n");
return NULL;

}

if(ber_flatten(ber,&ret) == (-1)){
printf("ber_flatten failed\n");
return NULL;

}
ber_free(ber,1);
return ret;

}

int main(int argc,char **argv){
LDAP *ld;
char *oidreq = "1.3.18.0.2.12.1";
char *oidres;
struct berval *valres = NULL;
struct berval *registration;
int rc,version, port;
LDAPMessage *res;
BerElement *ber;
char *regID;

argc--; argv++;

port = 389;
if(argc > 0){

if(argc > 1) sscanf(argv[1],"%d",&:port);
ld = ldap_init(argv[0],port);

}
else

ld = ldap_init("localhost",389);
if(ld == NULL){

printf("ldap_init failed\n");
ldap_unbind(ld);
return -1;

}
version = 3;
ldap_set_option(ld,LDAP_OPT_PROTOCOL_VERSION,&version);

if(ldap_simple_bind_s(ld,"cn=admin","secret") != LDAP_SUCCESS){
printf("Couldn’t bind\n");
ldap_unbind(ld);
return -1;

}

registration = create_reg(0,"o=ibm,c=us",2,15);
rc = ldap_extended_operation_s(ld,oidreq,registration,NULL,NULL,

&oidres,&valres);
if(rc == LDAP_SUCCESS){

if(valres != NULL){
if((ber = ber_init2(valres)) == NULL)

printf("ber_init2 failed\n");
else{

if(ber_scanf(ber,"a",®ID) == LBER_ERROR)
printf("ber_scanf failed\n");

printf("registration ID: %s\n",regID);
ber_free(ber,1);

}
}
else{

printf("valres NULL\n");
}

}

Chapter 5. Event notification 143

else{
printf("extended operation failed 0x%x\n",rc);

}

// Wait for notifications
printf("result: %d\n",ldap_result(ld,0,LDAP_MSG_ONE,NULL,&res));

ldap_memfree(regID);
ldap_unbind(ld);
return 0;

}

144 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 6. Limited transaction support

Transactions have four critical properties:

atomicity
The transaction must be performed completely. If any part of the
transaction fails, the entire transaction is rolled back preserving the original
state of the directory.

consistency
The transaction preserves the internal consistency of the database.

isolation
The transaction is serialized by a global lock so that it is performed
independently of any other transactions.

durability
The results of a committed transaction are backed up in stable storage,
usually a disk.

Usage
Transactions are limited to a single connection to a single IBM Directory server and
are supported by the LDAP extended operations APIs. Only one transaction at a
time can be running over the same connection. During the transaction, no
nontransactional operations can be issued over the same connection.

A transaction consists of three parts:
v An extended request to start the transaction
v Update operations:

– add
– modify
– modify rdn
– delete

Note: The current release does not support some operations, for example, bind,
unbind, search, extended op, and so forth operations. Referral objects can
be updated only with manageDsaIT control specified.

v An extended request to end the transaction

In order to start a transaction, the client must send an extended request in the form
of:
ExtendedRequest ::= [APPLICATION 23] SEQUENCE {

requestName [0] LDAPOID,

requestValue [1] OCTET STRING OPTIONAL }

When the server receives the request, it generates a unique transaction ID. It then
sends back an extended response in the form of:
ExtendedResponse ::= [APPLICATION 24]SEQUENCE{

COMPONENTS OF LDAPResult,

© Copyright IBM Corp. 2002 145

responseName [10] LDAPOID OPTIONAL,

response [11] OCTET STRING OPTIONAL }

The client submits subsequent update operations asynchronously with a control
attached to all operations. The control contains the transaction ID returned in the
StartTransaction response. The control has the form of:
Control ::= SEQUENCE {

controlType LDAPOID,

criticality BOOLEAN DEFAULT FALSE,

controlValue OCTET STRING OPTIONAL }

The server does not process update operations immediately. Instead, it saves the
necessary information of operations in a queue.

The client sends an extended request to end the transaction that either commits or
rolls back the transaction. The request has the same format as the start request. If
the server receives the commit operation result, it uses a global writer lock to
serialize the transaction. It then retrieves the set of update operations identified by
the transaction ID from the queue and begins to perform these operations. If all
operations succeed, the results are committed to the database and the server sends
back the success return code.

As each operation is performed it generates a success return code unless an error
occurs during the transaction, in which case an unsuccessful return code is
returned for all the operations. If any operation fails, the server rolls back the
transaction and sends back the error return code of the failed operation to the
operation in the client that caused the failure. The EndTransaction operation also
receives an unsuccessful return code if the transaction is not successful. For any
subsequent update operations that still remain in the queue, an unsuccessful return
code is generated. When the transaction times out, the connection is dropped and
any subsequent operations receive an unsuccessful return code.

The server releases the global lock after the commit or the roll back is performed.
The event notification and change log operations are performed only if the
transaction has succeeded.

Example
The following example is an ldapmod.c example file, modified for limited
transaction capability:
static char sccsid[] = "%Z%%M% %I% %G% %W% %U%";
/*
* COMPONENT_NAME: ldap.clients
*
* ABSTRACT: generic program to modify or add entries using LDAP with a transaction
*
* ORIGINS: 202,27
*
* (C) COPYRIGHT International Business Machines Corp. 2002
* All Rights Reserved
* Licensed Materials - Property of IBM
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

146 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

*/

/*
* Copyright (c) 1995 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is’’ without express or implied warranty.
*/

/* ldaptxmod.c - generic program to modify or add entries using LDAP
using a single transaction */

#include <ldap.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>

#if !defined(WIN32)
#include <sys/file.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#define LDAPMODIFY_REPLACE 1
#define LDAPMODIFY_ADD 2

#if defined(WIN32)
#define strcasecmp stricmp
#endif

#define safe_realloc(ptr, size) (ptr == NULL ? malloc(size) : \
realloc(ptr, size))

#define MAX_SUPPLIED_PW_LENGTH 256
#define LDAPMOD_MAXLINE 4096

/* Strings found in replog/LDIF entries (mostly lifted from slurpd/slurp.h) */
#define T_REPLICA_STR "replica"
#define T_DN_STR "dn"
#define T_CHANGENUMBER "changenumber"
#define T_CHANGETYPESTR "changetype"
#define T_ADDCTSTR "add"
#define T_MODIFYCTSTR "modify"
#define T_DELETECTSTR "delete"
#define T_MODRDNCTSTR "modrdn"
#define T_MODOPADDSTR "add"
#define T_MODOPREPLACESTR "replace"
#define T_MODOPDELETESTR "delete"
#define T_MODSEPSTR "-"
#define T_NEWRDNSTR "newrdn"
#define T_DELETEOLDRDNSTR "deleteoldrdn"

extern char * str_getline(char**);
char * getPassword(void);
char * read_one_record(FILE *fp);

#if defined _WIN32
int getopt (int, char**, char*);
#endif

Chapter 6. Limited transaction support 147

/* Global variables */
static LDAP *ld = NULL; /* LDAP sesssion handle */
static FILE *fp = NULL; /* input file handle */
static char *prog = NULL; /* program name */
static char *binddn = NULL; /* bind DN */
static char *passwd = NULL; /* bind password */
static char *ldaphost = "localhost"; /* server host name */
static char *mech = NULL; /* bind mechanism */
static char *charset = NULL; /* character set for input */
static char *keyfile = NULL; /* SSL key database file name*/
static char *keyfile_pw = NULL; /* SSL key database password */
static char *cert_label = NULL; /* client certificate label */
static int hoplimit = 10; /* limit for referral chasing */
static int ldapport = LDAP_PORT; /* server port number */
static int doit = 1; /* 0 to make believe */
static int verbose = 0; /* 1 for more trace messages */
static int contoper = 0; /* 1 to continue after errors */
static int force = 0;
static int valsfromfiles = 0;
static int operation = LDAPMODIFY_REPLACE;
static int referrals = LDAP_OPT_ON;
static int ldapversion = LDAP_VERSION3;
static int DebugLevel = 0; /* 1 to activate library traces */
static int ssl = 0; /* 1 to use SSL */
static int manageDsa = LDAP_FALSE; /* LDAP_TRUE to modify referral objects */

static LDAPControl manageDsaIT = {
"2.16.840.1.113730.3.4.2", /* OID */
{ 0, NULL }, /* no value */
LDAP_OPT_ON /* critical */

};

/* NULL terminated array of server controls*/
static LDAPControl *Server_Controls[3] = {NULL, NULL, NULL};

static int Num_Operations = 0; /* count of times one must go to
ldap_result to check result codes */

static int Message_ID = 0; /* message ID returned by async
ldap operation, currently not tracked*/

static int abort_flag = 0; /* abort transaction flag set by
-A parameter */

/* Implement getopt() for Windows to parse command line arguments. */
#if defined(_WIN32)
char *optarg = NULL;
int optind = 1;
int optopt = 0;
#define EMSG ""

int getopt(int argc, char **argv, char *ostr) {
static char *place = EMSG;
register char *oli;

if (!*place) {
if (optind >= argc || *(place = argv[optind]) != ’-’ || !*++place) {

return EOF;
}
if (*place == ’-’) {

++optind;
return EOF;

}
}
if ((optopt = (int)*place++) == (int)’:’ || !(oli = strchr(ostr, optopt))) {

if (!*place) {
++optind;

}

148 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

fprintf(stderr, "%s: %s: %c\n", "getopt", "illegal option", optopt);
return (’?’);

}
if (*++oli != ’:’) {

optarg = NULL;
if (!*place)

++optind;
} else {

if (*place) {
optarg = place;

} else if (argc <= ++optind) {
place = EMSG;
fprintf(stderr, "%s: %s: %c\n", "getopt", "option requires an argument", optopt);
return 0;

} else {
optarg = argv[optind];

}
place = EMSG;
++optind;

}
return optopt;

}
#endif

/* Display usage statement and exit. */
void usage()
{

fprintf(stderr, "\nSends modify or add requests to an LDAP server.\n");
fprintf(stderr, "usage:\n");
fprintf(stderr, " %s [options] [-f file]\n", prog);
fprintf(stderr, "where:\n");
fprintf(stderr, " file: name of input file\n");
fprintf(stderr, "note:\n");
fprintf(stderr, " standard input is used if file is not specified\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h host LDAP server host name\n");
fprintf(stderr, " -p port LDAP server port number\n");
fprintf(stderr, " -D dn bind DN\n");
fprintf(stderr, " -w password bind password or ’?’ for non-echoed prompt\n");
fprintf(stderr, " -Z use a secure ldap connection (SSL)\n");
fprintf(stderr, " -K keyfile file to use for keys\n");
fprintf(stderr, " -P key_pw keyfile password\n");
fprintf(stderr, " -N key_name private key name to use in keyfile\n");
fprintf(stderr, " -R do not chase referrals\n");
fprintf(stderr, " -M Manage referral objects as normal entries.\n");
fprintf(stderr, " -m mechanism perform SASL bind with the given mechanism\n");
fprintf(stderr, " -O maxhops maximum number of referrals to follow in a sequence\n");
fprintf(stderr, " -V version LDAP protocol version (2 or 3; only 3 is supported)\n");
fprintf(stderr, " -C charset character set name to use, as registered with IANA\n");
fprintf(stderr, " -a force add operation as default\n");
fprintf(stderr, " -r force replace operation as default\n");
fprintf(stderr, " -b support binary values from files (old style paths)\n");
fprintf(stderr, " -c continuous operation; do not stop processing on error\n");
fprintf(stderr, " -n show what would be done but don’t actually do it\n");
fprintf(stderr, " -v verbose mode\n");
fprintf(stderr, " -A set transaction abort flag\n");
fprintf(stderr, " -d level set debug level in LDAP library\n");
exit(1);

}

/* Parse command line arguments. */
void parse_arguments(int argc, char **argv) {

int i = 0;
int port = 0;
char *optpattern = "FaAbcRMZnrv?h:V:p:D:w:d:f:K:P:N:C:O:m:";

#ifndef _WIN32
extern char *optarg;

Chapter 6. Limited transaction support 149

extern int optind;
#endif

fp = stdin;
while ((i = getopt(argc, argv, optpattern)) != EOF) {

switch (i) {
case ’V’:

ldapversion = atoi(optarg);
if (ldapversion != LDAP_VERSION3) {

fprintf(stderr, "Unsupported version level supplied.\n");
usage();

}
break;

case ’A’: /* force all changes records to be used */
abort_flag = 1;
break;

case ’a’:
operation = LDAPMODIFY_ADD;
break;

case ’b’: /* read values from files (for binary attributes)*/
valsfromfiles = 1;
break;

case ’c’: /* continuous operation*/
contoper = 1;
break;

case ’F’: /* force all changes records to be used*/
force = 1;
break;

case ’h’: /* ldap host*/
ldaphost = strdup(optarg);
break;

case ’D’: /* bind DN */
binddn = strdup(optarg);
break;

case ’w’: /* password*/
if (optarg && optarg[0] == ’?’) {

passwd = getPassword();
} else

if (!(passwd = strdup(optarg)))
perror("password");

break;
case ’d’:

DebugLevel = atoi(optarg);
break;

case ’f’: /* read from file */
if ((optarg[0] == ’-’) && (optarg[1] == ’\0’))

fp = stdin;
else if ((fp = fopen(optarg, "r")) == NULL) {

perror(optarg);
exit(1);

}
break;

case ’p’:
ldapport = atoi(optarg);
port = 1;
break;

case ’n’: /* print adds, don’t actually do them*/
doit = 0;
break;

case ’r’: /* default is to replace rather than add values*/
operation = LDAPMODIFY_REPLACE;
break;

case ’R’: /* don’t automatically chase referrals*/
referrals = LDAP_OPT_OFF;
break;

case ’M’: /* manage referral objects as normal entries */
manageDsa = LDAP_TRUE;

150 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

break;
case ’O’: /* set maximum referral hop count */

hoplimit = atoi(optarg);
break;

case ’m’: /* use SASL bind mechanism */
if (!(mech = strdup (optarg)))

perror("mech");
break;

case ’v’: /* verbose mode */
verbose++;
break;

case ’K’:
keyfile = strdup(optarg);
break;

case ’P’:
keyfile_pw = strdup(optarg);
break;

case ’N’:
cert_label = strdup(optarg);
break;

case ’Z’:
ssl = 1;
break;

case ’C’:
charset = strdup(optarg);
break;

case ’?’:
default:

usage();
}

}

if (argc - optind != 0)
usage();

/* Use default SSL port if none specified*/
if ((port == 0) && (ssl))

ldapport = LDAPS_PORT;

if (! DebugLevel) {
char *debug_ptr = NULL;

if ((debug_ptr = getenv ("LDAP_DEBUG")))
DebugLevel = atoi (debug_ptr);

}
}

/* Get a password from the user but don’t display it. */
char* getPassword(void) {

char supplied_password[MAX_SUPPLIED_PW_LENGTH + 1]; /* Buffer for password */

#ifdef _WIN32
char in = ’\0’; /* Input character */
int len = 0; /* Length of password */

#else
struct termios echo_control;
struct termios save_control;

int fd = 0; /* File descriptor */
int attrSet = 0; /* Checked later for reset */

/* Get the file descriptor associated with stdin. */
fd = fileno(stdin);

if (tcgetattr(fd, &echo_control) != -1) {
save_control = echo_control;
echo_control.c_lflag &= ~(ECHO | ECHONL);

Chapter 6. Limited transaction support 151

if (tcsetattr(fd, TCSANOW, &echo_control) == -1) {
fprintf(stderr, "Internal error setting terminal attribute.\n");
exit(errno);

}

attrSet = 1;
}

#endif

/* Prompt for a password. */
fputs("Enter password ==> ", stdout);
fflush(stdout);

#ifdef _WIN32
/* Windows 9x/NT will always read from the console, i.e.,

piped or redirected input will be ignored. */
while (in != ’\r’ && len <= MAX_SUPPLIED_PW_LENGTH) {

in = _getch();

if (in != ’\r’) {
supplied_password[len] = in;
len++;

} else {
supplied_password[len] = ’\0’;

}
}

#else
/* Get the password from stdin. */
fgets(supplied_password, MAX_SUPPLIED_PW_LENGTH, stdin);

/* Remove the newline at the end. */
supplied_password[strlen(supplied_password) - 1] = ’\0’;

#endif

#ifndef _WIN32
/* Reset the terminal. */
if (attrSet && tcsetattr(fd, TCSANOW, &save_control) == -1) {

fprintf(stderr, "Unable to reset the display.\n");
}

#endif
fprintf(stdout, "\n");

return (supplied_password == NULL)? supplied_password : strdup(supplied_password);
}

/* Rebind callback function. */
int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int freeit) {

if (!freeit) {
*methodp = LDAP_AUTH_SIMPLE;
if (binddn != NULL) {

*dnp = strdup(binddn);
*pwp = strdup (passwd);

} else {
*dnp = NULL;
*pwp = NULL;

}
} else {

free (*dnp);
free (*pwp);

}
return LDAP_SUCCESS;

}

/* Connect and bind to server. */
void connect_to_server() {

152 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

int failureReasonCode, rc, authmethod;
struct berval ber;
struct berval *server_creds;

/* call ldap_ssl_client_init if V3 and SSL */
if (ssl && (ldapversion == LDAP_VERSION3)) {

if (keyfile == NULL) {
keyfile = getenv("SSL_KEYRING");
if (keyfile != NULL) {

keyfile = strdup(keyfile);
}

}

if (verbose)
printf("ldap_ssl_client_init(%s, %s, 0, &failureReasonCode)\n",
((keyfile) ? keyfile : "NULL"),
((keyfile_pw) ? keyfile_pw : "NULL"));

#ifdef LDAP_SSL_MAX
rc = ibm_set_unrestricted_cipher_support();
if (rc != 0) {

fprintf(stderr, "Warning: ibm_gsk_set_unrestricted_cipher_support failed!
rc == %d\n", rc);

}
#endif

rc = ldap_ssl_client_init(keyfile, keyfile_pw, 0, &failureReasonCode);
if (rc != LDAP_SUCCESS) {

fprintf(stderr,
"ldap_ssl_client_init failed! rc == %d, failureReasonCode == %d\n",
rc, failureReasonCode);
exit(1);

}
}
/* Open connection to server */
if (ldapversion == LDAP_VERSION3) {

if (ssl) {
if (verbose)

printf("ldap_ssl_init(%s, %d, %s)\n", ldaphost, ldapport,
((cert_label) ? cert_label : "NULL"));
ld = ldap_ssl_init(ldaphost, ldapport, cert_label);
if (ld == NULL) {

fprintf(stderr, "ldap_ssl_init failed\n");
perror(ldaphost);
exit(1);

}
} else {

if (verbose)
printf("ldap_init(%s, %d) \n", ldaphost, ldapport);

if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {
perror(ldaphost);
exit(1);

}
}

}

/* Set options */
ldap_set_option (ld, LDAP_OPT_PROTOCOL_VERSION, (void *)&ldapversion);

if (ldapversion == LDAP_VERSION3) {
ldap_set_option (ld, LDAP_OPT_DEBUG, (void *)&DebugLevel);
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void *)&hoplimit);

}
ldap_set_option (ld, LDAP_OPT_REFERRALS, (void *)referrals);
if (binddn != NULL)

ldap_set_rebind_proc(ld, (LDAPRebindProc)rebindproc);
if (charset != NULL) {

if (ldap_set_iconv_local_charset(charset) != LDAP_SUCCESS) {

Chapter 6. Limited transaction support 153

fprintf(stderr, "unsupported charset %s\n", charset);
exit(0);

}
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);

}

/* Bind to server */
if (ldapversion == LDAP_VERSION3) {

if (! mech) /* Use simple bind */ {
rc = ldap_simple_bind_s(ld, binddn, passwd);
if (rc != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_simple_bind");
/* LDAP_OPT_EXT_ERROR only valuable for ssl communication.

In this example, for LDAP v3, the bind is the first
instance in which communication actually flows to the
server. So, if there is an ssl configuration error or
other ssl problem, this will be the first instance where
it will be detected. */

if (ssl) {
ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &failureReasonCode);
fprintf(stderr, "Attempted communication over SSL.\n");
fprintf(stderr, " The extended error is %d.\n", failureReasonCode);

}
exit(rc);

}
} else /* Presence of mechanism means SASL bind */ {

/* Special case for mech="EXTERNAL". Unconditionally set bind DN
and credentials to NULL. This option should be used in tandem
with SSL and client authentication. For other SASL mechanisms,
use the specified bind DN and credentials. */

if (strcmp(mech, LDAP_MECHANISM_EXTERNAL) == 0) {
rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
if (rc != LDAP_SUCCESS) {

ldap_perror (ld, "ldap_sasl_bind_s");
exit(rc);

}
} else {

if (strcmp(mech, LDAP_MECHANISM_GSSAPI) == 0) {
rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
if (rc != LDAP_SUCCESS) {

ldap_perror (ld, "ldap_sasl_bind_s");
exit(rc);

}
} else /* other SASL mechanisms */ {

ber.bv_len = strlen (passwd);
ber.bv_val = passwd;
rc = ldap_sasl_bind_s (ld, binddn, mech, &ber, NULL, NULL, &server_creds);
if (rc != LDAP_SUCCESS) {

ldap_perror (ld, "ldap_sasl_bind_s");
exit(rc);

}
}

}
}

}
}

/* Read a record from the file. */
char * read_one_record(FILE *fp)
{

int len = 0;
int lcur = 0;
int lmax = 0;
char line[LDAPMOD_MAXLINE];
char temp[LDAPMOD_MAXLINE];
char *buf = NULL;
/* Reads in and changes to ldif form */

154 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

while ((fgets(line, sizeof(line), fp) != NULL)) {
if (!(strncmp(line,"changenumber",10)))

{do
fgets(line,sizeof(line),fp);

while(strncmp(line,"targetdn",8)); /*changes the = to : for parse*/
line[8]=’:’;}

if (!(strncmp(line,"changetype",9)))
line[10]=’:’;

if (!(strncmp(line,"changetype:delete",16)))
(fgets(temp,sizeof(line),fp)); /*gets rid of the changetime line after a delete.*/

if (!(strncmp(line,"changetime",9)))
{fgets(line,sizeof(line),fp);
if (!(strncmp(line,"newrdn",6)))

line[6]=’:’;
else

line[7]=’:’;
}

if (!(strncmp(line,"deleteoldrdn",12)))
line[12]=’:’;

if (*line != ’\n’) {
len = strlen(line);
if (lcur + len + 1 > lmax) {

lmax = LDAPMOD_MAXLINE
*((lcur + len + 1) / LDAPMOD_MAXLINE + 1);

if ((buf = (char *)safe_realloc(buf, lmax)) == NULL) {
perror("safe_realloc");
exit(1);

}
}
strcpy(buf + lcur, line);
lcur += len;

}
else {

if (buf == NULL)
continue; /* 1st line keep going */

else
break;

}
}

return buf;
}

/* Read binary data from a file. */
int fromfile(char *path, struct berval *bv) {

FILE *fp = NULL;
long rlen = 0;
int eof = 0;

/* "r" changed to "rb", defect 39803. */
if ((fp = fopen(path, "rb")) == NULL) {

perror(path);
return -1;

}

if (fseek(fp, 0L, SEEK_END) != 0) {
perror(path);
fclose(fp);
return -1;

}

bv->bv_len = ftell(fp);

if ((bv->bv_val = (char *)malloc(bv->bv_len)) == NULL) {
perror("malloc");
fclose(fp);
return -1;

Chapter 6. Limited transaction support 155

}

if (fseek(fp, 0L, SEEK_SET) != 0) {
perror(path);
fclose(fp);
return -1;

}

rlen = fread(bv->bv_val, 1, bv->bv_len, fp);
eof = feof(fp);
fclose(fp);

if (rlen != (bv->bv_len)) {
perror(path);
return -1;

}

return bv->bv_len;
}

/* Read binary data from a file specified with a URL. */
int fromfile_url(char *value, struct berval *bv) {

char *file = NULL;
char *src = NULL;
char *dst = NULL;

if (strncmp(value, "file:///", 8))
return -1;

/* unescape characters */
for (dst = src = &value[8]; (*src != ’\0’); ++dst) {

*dst = *src;
if (*src++ != ’%’)

continue;
if ((*src >= ’0’) && (*src <= ’9’))

*dst = (*src++ - ’0’) << 4;
else if ((*src >= ’a’) && (*src <= ’f’))

*dst = (*src++ - ’a’ + 10) << 4;
else if ((*src >= ’A’) && (*src <= ’F’))

*dst = (*src++ - ’A’ + 10) << 4;
else

return -1;
if ((*src >= ’0’) && (*src <= ’9’))

*dst += (*src++ - ’0’);
else if ((*src >= ’a’) && (*src <= ’f’))

*dst += (*src++ - ’a’ + 10);
else if ((*src >= ’A’) && (*src <= ’F’))

*dst += (*src++ - ’A’+ 10);
else

return -1;
}
*dst = ’\0’;

/* On WIN32 platforms the URL must begin with a drive letter.
On UNIX platforms the initial ’/’ is kept to indicate absolute
file path.

*/
#ifdef _WIN32

file = value + 8;
#else

file = value + 7;
#endif

return fromfile(file, bv);
}

/* Add operation to the modify structure. */
void addmodifyop(LDAPMod ***pmodsp, int modop, char *attr,

156 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

char *value, int vlen, int isURL, int isBase64)
{

LDAPMod **pmods = NULL;
int i = 0;
int j = 0;
struct berval *bvp = NULL;

/* Data can be treated as binary (wire ready) if one of the
following applies:
1) it was base64 encoded
2) charset is not defined
3) read from an external file

*/
if (isBase64 ||

(charset == NULL) ||
isURL ||
((value != NULL) && valsfromfiles && (*value == ’/’))) {

modop |= LDAP_MOD_BVALUES;
}

i = 0;
pmods = *pmodsp;
if (pmods != NULL) {

for (; pmods[i] != NULL; ++i) {
if (strcasecmp(pmods[i]->mod_type, attr) == 0 &&

pmods[i]->mod_op == modop) {
break;

}
}

}

if (pmods == NULL || pmods[i] == NULL) {
if ((pmods = (LDAPMod * *)safe_realloc(pmods, (i + 2) *
sizeof(LDAPMod *))) == NULL) {
perror("safe_realloc");
exit(1);

}
*pmodsp = pmods;
pmods[i + 1] = NULL;
if ((pmods[i] = (LDAPMod *)calloc(1, sizeof(LDAPMod))) == NULL) {

perror("calloc");
exit(1);

}
pmods[i]->mod_op = modop;
if ((pmods[i]->mod_type = strdup(attr)) == NULL) {

perror("strdup");
exit(1);

}
}

if (value != NULL) {
if (modop & LDAP_MOD_BVALUES) {

j = 0;
if (pmods[i]->mod_bvalues != NULL) {

for (; pmods[i]->mod_bvalues[j] != NULL; ++j) {
;

}
}
if ((pmods[i]->mod_bvalues =

(struct berval **)safe_realloc(pmods[i]->mod_bvalues,
(j + 2) * sizeof(struct berval *))) == NULL) {

perror("safe_realloc");
exit(1);

}

pmods[i]->mod_bvalues[j + 1] = NULL;
if ((bvp = (struct berval *)malloc(sizeof(struct berval)))

Chapter 6. Limited transaction support 157

== NULL) {
perror("malloc");
exit(1);

}
pmods[i]->mod_bvalues[j] = bvp;

/* get value from file */
if (valsfromfiles && *value == ’/’) {

if (fromfile(value, bvp) < 0)
exit(1);

} else if (isURL) {
if (fromfile_url(value, bvp) < 0)

exit(1);
} else {

bvp->bv_len = vlen;
if ((bvp->bv_val = (char *)malloc(vlen + 1)) == NULL) {

perror("malloc");
exit(1);

}
memmove(bvp->bv_val, value, vlen);
bvp->bv_val[vlen] = ’\0’;

}
} else {

j = 0;
if (pmods[i]->mod_values != NULL) {

for (; pmods[i]->mod_values[j] != NULL; ++j) {
;

}
}
if ((pmods[i]->mod_values =

(char **)safe_realloc(pmods[i]->mod_values,
(j + 2) * sizeof(char *))) == NULL) {

perror("safe_realloc");
exit(1);

}
pmods[i]->mod_values[j + 1] = NULL;
if ((pmods[i]->mod_values[j] = strdup(value)) == NULL) {

perror("strdup");
exit(1);

}
}

}
}

/* Delete record */
int dodelete(char *dn) {

int rc = 0;

printf("%sdeleting entry %s\n", (!doit) ? "!" : "", dn);
if (!doit)

return LDAP_SUCCESS;

rc = ldap_delete_ext(ld, dn,
Server_Controls,
NULL, &Message_ID);

if (rc != LDAP_SUCCESS)
ldap_perror(ld, "ldap_delete");

else
printf("delete complete\n");

putchar(’\n’);
/* Increment results to check after end transaction. */
Num_Operations++;
return rc;

}

/* Copy or move an entry. */

158 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

int domodrdn(char *dn, char *newrdn, int deleteoldrdn) {
int rc = 0;

printf("%s%s %s to %s\n", ((!doit) ? "!" : ""),
((deleteoldrdn) ? "moving" : "copying"), dn, newrdn);
if (!doit)

return LDAP_SUCCESS;

rc = ldap_rename(ld, dn, newrdn, NULL, deleteoldrdn,
Server_Controls , NULL,
&Message_ID);

if (rc != LDAP_SUCCESS)
ldap_perror(ld, "ldap_rename");

else
printf("rename operation complete\n");

putchar(’\n’);

/* Increment the count of results to check after end transaction is sent */
Num_Operations++;
return rc;

}

/* Print a binary value. If charset is not specified then check to
see if string is printable anyway. */

void print_binary(struct berval *bval) {
int i = 0;
int binary = 0;
printf("\tBINARY (%ld bytes) ", bval->bv_len);
if (charset == NULL) {

binary = 0;
for (i = 0; (i < (bval->bv_len)) && (!binary); ++i)

if (!isprint(bval->bv_val[i]))
binary = 1;

if (!binary)
for (i = 0; (i < (bval->bv_len)); ++i)

putchar(bval->bv_val[i]);
}
putchar(’\n’);

}

/* Modify or add an entry. */
int domodify(char *dn, LDAPMod **pmods, int newentry) {

int i, j, op, rc;
struct berval *bvp;

if (pmods == NULL) {
fprintf(stderr, "%s: no attributes to change or add (entry %s)\n",
prog, dn);
return LDAP_PARAM_ERROR;

}

if (verbose) {
for (i = 0; pmods[i] != NULL; ++i) {

op = pmods[i]->mod_op & ~LDAP_MOD_BVALUES;
printf("%s %s:\n", op == LDAP_MOD_REPLACE ?
"replace" : op == LDAP_MOD_ADD ?
"add" : "delete", pmods[i]->mod_type);
if (pmods[i]->mod_op & LDAP_MOD_BVALUES) {

if (pmods[i]->mod_bvalues != NULL) {
for (j = 0; pmods[i]->mod_bvalues[j] != NULL; ++j)

print_binary(pmods[i]->mod_bvalues[j]);
}

} else {
if (pmods[i]->mod_values != NULL) {

for (j = 0; pmods[i]->mod_values[j] != NULL; ++j)
printf("\t%s\n", pmods[i]->mod_values[j]);

}

Chapter 6. Limited transaction support 159

}
}

}

if (newentry)
printf("%sadding new entry %s as a transaction\n", (!doit) ? "!" : "", dn);

else
printf("%smodifying entry %s as a transaction\n", (!doit) ? "!" : "", dn);

if (!doit)
return LDAP_SUCCESS;

if (newentry) {
rc = ldap_add_ext(ld, dn, pmods,

Server_Controls, NULL,
&Message_ID);

} else {
rc = ldap_modify_ext(ld, dn, pmods,

Server_Controls, NULL,
&Message_ID);
}
if (rc != LDAP_SUCCESS) {

ldap_perror(ld, newentry ? "ldap_add" : "ldap_modify");
} else if (verbose) {

printf("%s operation complete\n", newentry ? "add" : "modify");
}
putchar(’\n’);

/* Increment the count of results to check after end transaction is sent */
Num_Operations++;
return rc;

}

/* Process an ldif record. */
int process_ldif_rec(char *rbuf) {

char *line = NULL;
char *dn = NULL;
char *type = NULL;
char *value = NULL;
char *newrdn = NULL;
char *p = NULL;
int is_url = 0;
int is_b64 = 0;
int rc = 0;
int linenum = 0;
int vlen = 0;
int modop = 0;
int replicaport = 0;
int expect_modop = 0;
int expect_sep = 0;
int expect_ct = 0;
int expect_newrdn = 0;
int expect_deleteoldrdn = 0;
int deleteoldrdn = 1;
int saw_replica = 0;
int use_record = force;
int new_entry = (operation == LDAPMODIFY_ADD);
int delete_entry = 0;
int got_all = 0;
LDAPMod **pmods = NULL;
int version = 0;
int str_rc = 0;

while (rc == 0 && (line = str_getline(&rbuf)) != NULL) {
++linenum;

/* Is this a separator line ("-")? */
if (expect_sep && strcasecmp(line, T_MODSEPSTR) == 0) {

160 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

/* If modifier has not been added yet then go ahead and add
it. The can happen on sequences where there are no
attribute values, such as:
DELETE: title
-

*/
if (value != NULL)

addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);
value = NULL;
expect_sep = 0;
expect_modop = 1;
continue;

}

str_rc = str_parse_line_v_or_bv(line, &type, &value, &vlen, 1, &is_url, &is_b64);
if ((strncmp(type,"changes",7))==0)

{str_parse_line_v_or_bv(value, &type, &value, &vlen, 1, &is_url, &is_b64);}
if ((linenum == 1) && (strcmp(type, "version") == 0)) {

version = atoi(value);
continue;

}
if ((linenum == 2) && (version == 1) &&

(strcmp(type, "charset") == 0)) {
if (charset != NULL)

free(charset);
charset = strdup(value);
if ((rc = ldap_set_iconv_local_charset(charset)) != LDAP_SUCCESS) {

fprintf(stderr, "unsupported charset %s\n", charset);
break;

}
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
continue;

}

if (dn == NULL) {
if (!use_record && strcasecmp(type, T_REPLICA_STR) == 0) {

++saw_replica;
if ((p = strchr(value, ’:’)) == NULL) {

replicaport = LDAP_PORT;
} else {

*p++ = ’\0’;
replicaport = atoi(p);

}
if (strcasecmp(value, ldaphost) == 0 &&

replicaport == ldapport) {
use_record = 1;

}
} else if (strcasecmp(type, T_DN_STR) == 0) {

if ((dn = strdup(value)) == NULL) {
perror("strdup");
exit(1);

}
expect_ct = 1;

}
continue; /* skip all lines until we see "dn:" */

}

if (expect_ct) {
expect_ct = 0;
if (!use_record && saw_replica) {

printf("%s: skipping change record for entry: %s\n\t(LDAP host/port does
not match replica: lines)\n", prog, dn);

free(dn);
return 0;

}

/* this is an ldif-change-record */

Chapter 6. Limited transaction support 161

if (strcasecmp(type, T_CHANGETYPESTR) == 0) {
if (strcasecmp(value, T_MODIFYCTSTR) == 0) {

new_entry = 0;
expect_modop = 1;

} else if (strcasecmp(value, T_ADDCTSTR) == 0) {
modop = LDAP_MOD_ADD;
new_entry = 1;

} else if (strcasecmp(value, T_MODRDNCTSTR) == 0) {
expect_newrdn = 1;

} else if (strcasecmp(value, T_DELETECTSTR) == 0) {
got_all = delete_entry = 1;

} else {
fprintf(stderr,
"%s: unknown %s \"%s\" (line %d of entry: %s)\n",
prog, T_CHANGETYPESTR, value, linenum, dn);
rc = LDAP_PARAM_ERROR;

}
continue;

/* this is an ldif-attrval-record */
} else {

if (operation == LDAPMODIFY_ADD) {
new_entry = 1;
modop = LDAP_MOD_ADD;

} else
modop = LDAP_MOD_REPLACE;

}
}

if (expect_modop) {
expect_modop = 0;
expect_sep = 1;
if (strcasecmp(type, T_MODOPADDSTR) == 0) {

modop = LDAP_MOD_ADD;
continue;

} else if (strcasecmp(type, T_MODOPREPLACESTR) == 0) {
modop = LDAP_MOD_REPLACE;
continue;

} else if (strcasecmp(type, T_MODOPDELETESTR) == 0) {
modop = LDAP_MOD_DELETE;
continue;

} else {
fprintf(stderr,
"%s: unknown mod_spec \"%s\" (line %d of entry: %s)\n",
prog, type, linenum, dn);
rc = LDAP_PARAM_ERROR;
continue;

}
}

if (expect_newrdn) {
if (strcasecmp(type, T_NEWRDNSTR) == 0) {

if ((newrdn = strdup(value)) == NULL) {
perror("strdup");
exit(1);

}
expect_deleteoldrdn = 1;
expect_newrdn = 0;

} else {
fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
prog, T_NEWRDNSTR, type, linenum, dn);
rc = LDAP_PARAM_ERROR;

}
} else if (expect_deleteoldrdn) {

if (strcasecmp(type, T_DELETEOLDRDNSTR) == 0) {
deleteoldrdn = (*value == ’0’) ? 0 : 1;
got_all = 1;

162 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

} else {
fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
prog, T_DELETEOLDRDNSTR, type, linenum, dn);
rc = LDAP_PARAM_ERROR;

}
} else if (got_all) {

fprintf(stderr, "%s: extra lines at end (line %d of entry %s)\n",
prog, linenum, dn);
rc = LDAP_PARAM_ERROR;

} else {
addmodifyop(&pmods, modop, type, value, vlen, is_url, is_b64);
type = NULL;
value = NULL;

}
}

/* If last separator is missing go ahead and handle it anyway, even
though it is technically invalid ldif format. */

if (expect_sep && (value != NULL))
addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);

if (rc == 0) {
if (delete_entry)

rc = dodelete(dn);
else if (newrdn != NULL)

rc = domodrdn(dn, newrdn, deleteoldrdn);
else if (dn != NULL)

rc = domodify(dn, pmods, new_entry);
}

if (dn != NULL)
free(dn);

if (newrdn != NULL)
free(newrdn);

if (pmods != NULL)
ldap_mods_free(pmods, 1);

return rc;
}

/* Process a mod record. */
int process_ldapmod_rec(char *rbuf) {

char *line = NULL;
char *dn = NULL;
char *p = NULL;
char *q = NULL;
char *attr = NULL;
char *value = NULL;
int rc = 0;
int linenum = 0;
int modop = 0;
LDAPMod **pmods = NULL;

while (rc == 0 && rbuf != NULL && *rbuf != ’\0’) {
++linenum;
if ((p = strchr(rbuf, ’\n’)) == NULL) {

rbuf = NULL;
} else {

if (*(p - 1) == ’\\’) { /* lines ending in ’\’ are continued */
strcpy(p - 1, p);
rbuf = p;
continue;

}
*p++ = ’\0’;
rbuf = p;

}

Chapter 6. Limited transaction support 163

if (dn == NULL) { /* first line contains DN */
if ((dn = strdup(line)) == NULL) {

perror("strdup");
exit(1);

}
} else {

if ((p = strchr(line, ’=’)) == NULL) {
value = NULL;
p = line + strlen(line);

} else {
*p++ = ’\0’;
value = p;

}

for (attr = line; *attr != ’\0’ && isspace(*attr); ++attr) {
; /* skip attribute leading white space */

}

for (q = p - 1; q > attr && isspace(*q); --q) {
q = ’\0’; / remove attribute trailing white space */

}

if (value != NULL) {
while (isspace(*value)) {

++value; /* skip value leading white space */
}
for (q = value + strlen(value) - 1; q > value &&
isspace(*q); --q) {

q = ’\0’; / remove value trailing white space */
}
if (*value == ’\0’) {

value = NULL;
}

}

if ((value == NULL) && (operation == LDAPMODIFY_ADD)) {
fprintf(stderr, "%s: missing value on line %d (attr is %s)\n",
prog, linenum, attr);
rc = LDAP_PARAM_ERROR;

} else {
switch (*attr) {
case ’-’:

modop = LDAP_MOD_DELETE;
++attr;
break;

case ’+’:
modop = LDAP_MOD_ADD;
++attr;
break;

default:
modop = (operation == LDAPMODIFY_REPLACE)

? LDAP_MOD_REPLACE : LDAP_MOD_ADD;
break;

}

addmodifyop(&pmods, modop, attr, value,
(value == NULL) ? 0 : strlen(value), 0, 0);
}

}
line = rbuf;

}

if (rc == 0) {
if (dn == NULL)

rc = LDAP_PARAM_ERROR;
else

rc = domodify(dn, pmods, (operation == LDAPMODIFY_ADD));

164 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

}

if (pmods != NULL)
ldap_mods_free(pmods, 1);

if (dn != NULL)
free(dn);

return rc;
}

main(int argc, char **argv) {
char *rbuf = NULL;
char *start = NULL;
char *p = NULL;
char *q = NULL;
char *tmpstr = NULL;
int rc = 0;
int i = 0;
int use_ldif = 0;
int num_checked = 0;
char *Start_Transaction_OID = LDAP_START_TRANSACTION_OID;
char *End_Transaction_OID = LDAP_END_TRANSACTION_OID;
char *Control_Transaction_OID = LDAP_TRANSACTION_CONTROL_OID;
char *Returned_OID = NULL;
struct berval *Returned_BerVal = NULL;
struct berval Request_BerVal = {0,0};
char *Berval = NULL;
LDAPMessage *LDAP_result = NULL;

/* Strip off any path info on program name */
#if defined(_WIN32)

if ((prog = strrchr(argv[0], ’\\’)) != NULL)
++prog;

else
prog = argv[0];

#else
if (prog = strrchr(argv[0], ’/’))

++prog;
else

prog = argv[0];
#endif

#if defined(_WIN32)
/* Convert string to lowercase */
for (i = 0; prog[i] != ’\0’; ++i)

prog[i] = tolower(prog[i]);

/* Strip ending .exe from program name */
if ((tmpstr = strstr(prog, ".exe")) != NULL)

*tmpstr = ’\0’;
#endif

if (strcmp(prog, "ldaptxadd") == 0)
operation = LDAPMODIFY_ADD;

/* Parse command line arguments. */
parse_arguments(argc, argv);

/* Connect to server. */
if (doit)

connect_to_server();

/* Disable translation if reading from file (they must specify the
translation in the file). */

if (fp != stdin)
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_OFF);

/* Do the StartTransaction extended operation.

Chapter 6. Limited transaction support 165

The transaction ID returned must be put into the server control
sent with all update operations. */

rc = ldap_extended_operation_s (ld, Start_Transaction_OID,
&Request_BerVal, NULL, NULL,
&Returned_OID,
&Returned_BerVal);
if (verbose) {

printf("ldap_extended_operation(start transaction) RC=%d\n", rc);
}

if (rc != LDAP_SUCCESS) {
fprintf(stderr, "Start transaction rc=%d -> %s\n",
rc, ldap_err2string(rc));
exit(rc);

}

/* Allocate the server control for transactions. */
if ((Server_Controls[0] =

(LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
perror("malloc");
exit(1);

}

/* Allocate the server control’s berval. */
if ((Server_Controls[0]->ldctl_value.bv_val =

(char *) calloc (1, Returned_BerVal->bv_len + 1)) == NULL) {
perror("calloc");
exit(1);

}

/* Copy the returned berval length and value into the server control */
Server_Controls[0]->ldctl_value.bv_len = Returned_BerVal-> bv_len;
memcpy(Server_Controls[0]->ldctl_value.bv_val,
Returned_BerVal->bv_val , Returned_BerVal->bv_len);

/* Set the control type to Transaction_Control_OID */
Server_Controls[0]->ldctl_oid = Control_Transaction_OID;

/* Set the criticality in the control to TRUE */
Server_Controls[0]->ldctl_iscritical = LDAP_OPT_ON;

/* If referral objects are to be modified directly, */
if (manageDsa == LDAP_TRUE) {

/* then set that server control as well. */
Server_Controls[1] = &manageDsaIT

}

/* Initialize the count of operations that will be in the transaction.
This count will be incremented by each operation that is performed.
The count will be the number of calls that must be made to ldap_result
to get the results for the operations.

*/
Num_Operations = 0;
/* Do operations */
rc = 0;
while ((rc == 0 || contoper) && (rbuf = read_one_record(fp)) != NULL) {

/* We assume record is ldif/slapd.replog if the first line
has a colon that appears to the left of any equal signs, OR
if the first line consists entirely of digits (an entry id). */

use_ldif=1;
start = rbuf;
if (use_ldif)

rc = process_ldif_rec(start);
else

rc = process_ldapmod_rec(start);
free(rbuf);

166 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

}

/* Finish the transaction, committing or rolling back based on input parameter. */
rc = 0;
Request_BerVal.bv_len = Returned_BerVal->bv_len + 1;
if ((Berval =

(char *) malloc (Returned_BerVal->bv_len + 1)) == NULL) {
perror("malloc");
exit(1);

}
memcpy (&Berval[1], Returned_BerVal->bv_val, Returned_BerVal->bv_len);
Berval[0] = abort_flag ? ’\1’ : ’\0’;
Request_BerVal.bv_val = Berval;

rc = ldap_extended_operation_s (ld,
End_Transaction_OID,

&Request_BerVal, NULL, NULL,
&Returned_OID,
&Returned_BerVal);
if (verbose) {

printf("ldap_extended_operation(end transaction) RC=%d\n", rc);
}

if (rc != LDAP_SUCCESS) {
fprintf(stderr, "End transaction rc=%d -> %s\n",
rc, ldap_err2string(rc));
exit(rc);

}
/* Process the results of the operations in the transaction.

At this time we will not be concerned about the correctness
of the message numbers, just whether the operations succceeded or not.
We could keep track of the operation types and make sure they are all
accounted for. */

for (num_checked = 0; num_checked < Num_Operations; num_checked++) {
if (verbose) {

printf("processing %d of %d operation results\n",
1 + num_checked, Num_Operations);
}

rc = ldap_result (ld , LDAP_RES_ANY, LDAP_MSG_ONE, NULL, &LDAP_result);
if (rc <= 0) {

if (rc == 0)
fprintf(stderr, "Operation %d timed out\n", num_checked);

if (rc < 0)
fprintf(stderr, "Operation %d failed\n", num_checked);

exit(1);
}

}

/* Unbind and exit */
if (doit)

ldap_unbind(ld);

exit(0);
}

The following is an example makefile:
#---
COMPONENT_NAME: examples
#
ABSTRACT: makefile to generate LDAP client programs for transactions
#
ORIGINS: 202,27
#
(C) COPYRIGHT International Business Machines Corp. 2002

Chapter 6. Limited transaction support 167

All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
###
Default definitions
###
CC = cl.exe
LD = link.exe
RM = erase /f
HARDLN = copy
Note: Your install path may be different
LDAPHome = D:/Program Files/IBM/LDAP

###
General compiler options
###

DEFINES = /DNDEBUG /DWIN32 /D_CONSOLE /D_MBCS /DNT /DNEEDPROTOS
INCLUDES= /I"$(LDAPHome)/include"
CFLAGS = /nologo /MD /GX /Z7 $(INCLUDES) $(DEFINES)

###
General linker options
###

LIBS = kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib\
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib\
odbccp32.lib wsock32.lib

Use the following definition to link the sample programs statically.
#CLIENT_LIBS = ldapstatic.lib libldif.lib setloci.lib iconvi.lib

Use the following definition to link the sample programs with
the LDAP shared library.
CLIENT_LIBS = ldap.lib libldif.lib setloci.lib
LDIR = /LIBPATH:"$(LDAPHome)"/lib
LFLAGS = /nologo /subsystem:console /incremental:no \
$(LDIR) $(LIBS) $(CLIENT_LIBS)

###
Targets
###

all: ldaptxmod.exe ldaptxadd.exe

ldaptxmod.exe: ldaptxmod.obj
$(LD) $(LFLAGS) /out:$@ $**

ldaptxadd.exe: ldaptxmod.exe
$(RM) $@
$(HARDLN) ldaptxmod.exe ldaptxadd.exe

.c.obj::
$(CC) $(CFLAGS) /c $<

ldaptxmod.obj: ldaptxmod.c

clean:
$(RM) ldaptxmod.exe ldaptxadd.exe ldaptxmod.obj

168 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Chapter 7. LDAP client plug-in programming reference

Introduction to client SASL plug-ins
Client-side SASL plug-ins are used to extend the authentication capabilities of the
LDAP client library. They work by intercepting the application’s invocation of the
ldap_sasl_bind_s() API. Note that SASL plug-ins are not designed to intercept
asynchronous SASL binds.

Basic processing
The following describes the typical flow when a SASL plug-in is used to provide
an extended authentication function. This flow assumes the SASL plug-in shared
library has already been loaded by the LDAP library:
1. Application invokes ldap_sasl_bind_s(), with a mechanism supported by a

configured SASL plug-in.
2. The LDAP library invokes the SASL bind worker function, as provided by the

appropriate plug-in. The parameters supplied on the original ldap_sasl_bind_s()
API are passed to the plug-in as elements of a pblock structure.

3. The plug-in’s worker function receives control, and extracts the parameters
from the pblock using the ldap_plugin_pblock_get() API. The following
SASL-related information can be obtained from the pblock by the plug-in:
v Distinguished Name (dn)
v Credentials
v Server controls
v Client controls
v Mechanism (plug-in subtype)

In addition to these parameters, the plug-in can also obtain other information
using the ldap_plugin_pblock_get(), including:
v Plug-in configuration information (that is, configuration information supplied

in ARGC and ARGV form)
v Target LDAP server host name

4. The plug-in performs its mechanism-specific logic. Here are some sample
mechanisms that can be implemented as SASL plug-ins, and thus be made
available to all LDAP applications running on the system:

Authentication based on a user’s fingerprint (for example,
mechanism=userfp)

When the fingerprint plug-in gets control, it uses the DN supplied on
the ldap_sasl_bind_s() API to obtain an image of the user’s fingerprint.
This can entail prompting the user to use a fingerprint scanning device.
In this example, the fingerprint image, however obtained, represents
the user’s credentials.

Once the credentials are obtained, the plug-in is ready to perform the
actual SASL bind. This is done by invoking the
ldap_plugin_sasl_bind_s() API, supplying the appropriate parameters
(DN, credentials, mechanism, server controls). This is a synchronous
API that sends the SASL bind request to the LDAP server. Two items
are returned to the plug-in when the bind result is returned from the
server, and control is returned to the plug-in:

© Copyright IBM Corp. 2002 169

v Bind result error code
v Server credentials

If the server credentials are to be returned to the application, they must
be set in the pblock prior to returning control to the LDAP library, and
subsequently to the application. This is done by using
ldap_plugin_pblock_set(). In this example, the plug-in’s work is
complete, and it returns, supplying the bind result error code as the
return code.

Authentication using credentials previously established by the operating
system

When the plug-in gets control, it queries the local security context to
obtain the user’s identity and security token. For this example, we
assume the user’s identity, as associated with the local security context,
is used to construct the DN, and information from the security token is
used for credentials.

After the credentials are obtained, the plug-in invokes
ldap_plugin_sasl_bind_s(), supplying the appropriate parameters (DN,
credentials, mechanism, server controls). As in the previous example,
the plug-in waits for the results of the bind request, then returns to the
LDAP library, again setting server credentials in the pblock, if
appropriate. Control is then returned to the application, along with the
optional server credentials.

Authentication using multiple binds (mechanism=cram-md5)
Some SASL mechanisms require multiple transactions between the
client and the server (for example, the SASL cram-md5 mechanism).
For this type of mechanism, once the plug-in gains control, it actually
invokes the ldap_plugin_sasl_bind_s() API multiple times. On each
bind operation, the plug-in can supply DN, credentials, mechanism and
server controls, which are passed to the server. The LDAP server can
return a result and server credentials back to the client. The plug-in can
use this information to formulate another bind, again sent to the server
using ldap_plugin_sasl_bind_s(). Once the multi-bind flow is complete,
the plug-in returns control to the LDAP library with the result and
optional server credentials.

Restrictions
The plug-in must not use any LDAP APIs which accept ld as the input. This
results in deadlock, since the ld is locked until the bind processing is complete.

Initializing a plug-in
A typical LDAP SASL plug-in contains two entry points:
v An initialization routine
v A worker routine, which implements the authentication function

When an instance of an application uses a SASL plug-in for the first time, the
LDAP library obtains the configuration information for the plug-in. The
configuration information can come from ldap.conf or might have been supplied
explicitly by the application with the ldap_register_plugin() API.

Once the configuration information is located, the LDAP library loads the plug-in’s
shared library and invoke its initialization routine. By default, the name of the

170 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

initialization routine for a plug-in is ldap_plugin_init(). A different entry point can
be defined in ldap.conf, or supplied on the ldap_plugin_register() API if the
plug-in is explicitly registered by the application.

The plug-in’s initialization routine is responsible for supplying the address of its
worker routine’s entry point, which actually implements the authentication
function. This is done by using ldap_plugin_pblock_set() to define the address of
the worker routine’s entry point in the pblock. For example, the following code
segment depicts a typical initialization routine, where
authenticate_with_fingerprint is the name of the routine provided by the plug-in to
perform a fingerprint-based authentication:
int ldap_plugin_init (LDAP_Pblock *pb)
{

int rc;

rc = ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_BIND_S_FN, (void *)
authenticate_with_fingerprint);

if (rc != LDAP_SUCCESS) printf("ldap_plugin_init couldn’t initialize
worker function\n");

return (rc);
}

A pblock is an opaque structure in which parameters are stored. A pblock is used
to communicate between the LDAP client library and a plug-in. The
ldap_plugin_pblock_set and ldap_plugin_pblock_get APIs are provided for your
plug-in to set, or get, parameters in the pblock structure.

Using ldap_plugin_pblock_get(), the plug-in can also access configuration
parameters. For example, the following code segment depicts how the plug-in can
access its configuration information:

int argc;
char ** argv;

rc = ldap_plugin_pblock_get (pb, LDAP_PLUGIN_ARGC, &argc);
if (rc != LDAP_SUCCESS)

return (rc);
rc = ldap_plugin_pblock_get(pb, LDAP_PLUGIN_ARGV, &argv);
if (rc != LDAP_SUCCESS)

return (rc);

If the plug-in’s initialization processing is significant, and the results need to be
preserved and made available to the plug-in’s worker function, the initialization
routine can store the results of initialization as private instance data in its shared
library. When the plug-in’s worker function is subsequently invoked, it can access
this private instance data. For example, during initialization, the plug-in might
need to establish a session with a remote security server. Session information can
be retained in the private instance data, which can be accessed later by the
plug-in’s worker function.

After your plug-in is correctly initialized, its worker function can be used by the
LDAP library. Continuing the example shown above, if the mechanism supported
by the plug-in is userfp, the authenticate_with_fingerprint function of your plug-in
is invoked when the application issues an ldap_sasl_bind_s() function with
mechanism=″userfp″. See “Sample worker function” on page 174 for an example of
a plug-in’s worker function.

Chapter 7. LDAP client plug-in programming reference 171

Writing your own SASL plug-in
Do the following to write your own SASL plug-in:
1. Implement your own initialization and worker functions. Include ldap.h, where

you can find all the parameters that can be obtained from the pblock, as well as
the function prototypes for the available plug-in functions:
v ldap_plugin_pblock_get()
v ldap_plugin_pblock_set()
v ldap_plugin_sasl_bind_s()

2. Identify the input parameters to your initialization and worker functions.

Note: The LDAP library can pass parameters to your plug-in initialization
function by way of the argument list that is specified in ldap.conf, or by
way of the plugin_parmlist parameter on the ldap_register_plugin() API.
Information might also be supplied as client-side controls.

3. The initialization function must call the ldap_plugin_pblock_set API in order to
register your plug-in’s worker function.

4. Implement your worker function. The worker function is responsible for
obtaining the user’s credentials and implementing the authentication function.
Typically this involves invoking the ldap_plugin_sasl_bind_s() API one or more
times. If the authentication is successful, LDAP_SUCCESS must be returned.
Otherwise, the unsuccessful LDAP result must be returned as the return code.
If appropriate, the worker function can also return a value for server
credentials.

5. Export your initialization function from your plug-in library. Use an .exp file
for the AIX operating system or Solaris operating system, or a .def (or
dllexport) file for the Windows NT operating system to export your
initialization function.

6. Compile your client plug-in functions. Set the include path to include ldap.h,
and to link to ldap.lib. Compile and link all your LDAP plug-in object files
with whatever libraries you need, including ldap.lib. Make sure that the
initialization function is exported from the .dll you created.

7. Add a plug-in directive in the LDAP plug-in configuration file, ldap.conf.
Alternatively, the application can define the plug-in by calling the
ldap_register_plugin() API.

Plug-in APIs
For pblock access:

int ldap_plugin_pblock_get(LDAP_PBlock *pb, int arg, void **value);
int ldap_plugin_pblock_set(LDAP_PBlock *pb, int arg, void *value);

For sending an LDAP bind to the server:
int ldap_plugin_sasl_bind_s (

LDAP *ld,
char *dn,
char *mechanism,
struct berval *credentials,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp)

172 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

ldap_plugin_pblock_get()
The ldap_plugin_pblock_get() API returns the value associated with the specified
pblock tag.

Syntax
#include "ldap.h"
int ldap_plugin_pblock_get(LDAP_PBlock *pb, int arg, void **value)

Parameters
pb Specifies the address of a pblock.

arg Specifies the tag or ID of the tag-value pair that you want to obtain from
the pblock.

value Specifies a pointer to the address of the returned value.

Returns
Returns 0 if successful, or -1 if an error occurs.

ldap_plugin_pblock_set()
The ldap_plugin_pblock_set API sets the value associated with the specified pblock
tag.

Syntax
#include "ldap.h"
int ldap_plugin_pblock_set(LDAP_PBlock *pb, int arg, void *value);

Parameters
pb Specifies the address of a pblock.

arg Specifies the tag or ID of the tag-value pair that you want to set in the
pblock.

value Specifies a pointer to the value that you want to set in the parameter block.

Returns
Returns 0 if successful, or -1 if an error occurs.

ldap_plugin_sasl_bind_s()
The ldap_plugin_sasl_bind_s API is used by the plug-in to transmit an LDAP
SASL bind operation to the LDAP server.

Syntax
#include "ldap.h"
int ldap_plugin_sasl_bind_s(

LDAP *ld,
char *dn,
char *mechanism,
struct berval *credentials,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp)

Parameters
ld Specifies the LDAP pointer associated with the application’s invocation of

ldap_sasl_bind_s(). The plug-in obtains the LD with the
ldap_plugin_pblock_get() API.

dn Specifies the Distinguished Name to bind the entry. The DN might have

Chapter 7. LDAP client plug-in programming reference 173

been supplied by the application and obtained using
ldap_plugin_pblock_get(), or it might have been obtained by other means.

credentials
Specifies the credentials to authenticate with. Arbitrary credentials can be
passed using this parameter. The credentials might have been supplied by
the application and obtained using ldap_plugin_pblock_get(), or they
might have been obtained by other means.

mechanism
Specifies the SASL mechanism to be used when binding to the server. If a
plug-in can be invoked for more than one mechanism, the plug-in can
obtain the mechanism that was specified by the application with the
ldap_plugin_pblock_get() API.

serverctrls
Specifies a list of LDAP server controls. See “LDAP controls” on page 45
for more information about server controls. The server controls might have
been supplied by the application and obtained using
ldap_plugin_pblock_get(), or they might have been obtained by other
means.

clientctrls
Specifies a list of LDAP client controls. See “LDAP controls” on page 45 for
more information about client controls.

Note: The client controls are not supported at this time for the
ldap_plugin_sasl_bind_s() API.

Returns
error code

The error code is set to LDAP_SUCCESS if the bind succeeded. Otherwise it is
set to a non-zero error code.

servercredp
This result parameter is set to the credentials returned by the server. If no
credentials are returned, it is set to NULL.

Sample worker function
/* Sample SASL Plugin */

#include <ldap.h>

int ldap_plugin_sasl_bind_s_prepare (LDAP_Pblock *pb)
{

LDAP *ld;
char *dn;
char *mechanism;
struct berval *cred;
LDAPControl **serverctrls;
LDAPControl **clientctrls;
struct berval *servercredp = NULL;

void * data;
int rc;

/**/
/* Query pblock to obtain ld, dn, mechanism, credentials, server controls */
/* and client controls, as supplied by application when it invoked the */
/* ldap_sasl_bind_s() API. */

174 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

/**/

if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_LD, &data))){
printf("Could not get parameter for bind operation\n");
return (rc);

}
ld = (LDAP *) data;
if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_DN,

&data)))
return (rc);

dn = (char *) data;
if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_MECHANISM,

&data)))
return (rc);

mechanism = (char *) data;
if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_CREDENTIALS,

&data)))
return (rc);

cred = (struct berval *) data;
if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_SERVERCTRLS,

&data)))
return (rc);

serverctrls = (LDAPControl **) data;
if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_CLIENTCTRLS,

&data)))
return (rc);

clientctrls = (LDAPControl **) data;

/**/
/* Perform plugin specific logic here to alter or obtain the user’s */
/* distinguished name, credentials, etc. This could include obtaining */
/* additional data from the pblock, including: */
/* */
/* LDAP_PLUGIN_TYPE (e.g. "sasl") */
/* LDAP_PLUGIN_ARGV plugin config variables */
/* LDAP_PLUGIN_ARGC plugin config variable count */
/* */
/**/

if (rc = (ldap_plugin_sasl_bind_s (
ld,
dn,
mechanism,
cred,
serverctrls,
clientctrls,
&servercredp)))

return rc;

data = (void *) servercredp;

if (rc = (ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_SERVER_CREDS,
&data)))

return rc;

return (LDAP_SUCCESS);
}

ldap_plugin_init (LDAP_Pblock *pb)
{

int argc;
char **argv;

if (rc = (ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_BIND_S_FN,
(void *)

Chapter 7. LDAP client plug-in programming reference 175

ldap_plugin_sasl_bind_s_prepare)))
return (rc);

return (LDAP_SUCCESS);
}

176 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Appendix A. LDAP V3 schema

Dynamic schema
The IBM Directory Server version 4.1 C-Client SDK requires that the schema
defined for a server be stored in the directory’s subschemasubentry.

To access the schema, you must first determine the subschemasubentry’s DN,
which is obtained by searching the root DSE. To obtain this information from the
command-line, issue the following command:

ldapsearch -h hostname -p 389 -b "" -s base "objectclass=*"

The root DSE information returned from an LDAP V3 server, such as the IBM
Directory server, includes the following:

subschemasubentry=cn=schema

where subschemasubentry’s DN is ″cn=schema″.

Using the subschemasubentry’s DN returned by searching the root DSE, schema
information can be accessed with the following command-line search:
ldapsearch -h hostname -p 389 -b "cn=schema" -s base "objectclass=subschema"

The schema contains the following information:

Object class
A collection of attributes. A class can inherit attributes from one or more
parent classes.

Attribute types
Contain information about the attribute, such as the name, oid, syntax and
matching rules.

IBM attribute types
The IBM LDAP directory implementation-specific attributes, such as
database table name, column name, SQL type, and the maximum length of
each attribute.

Syntaxes
Specific LDAP syntaxes available for attribute definitions.

Matching rules
Specific matching rules available for attribute definitions.

Schema queries
The ldapsearch utility can be used to query the subschema entry. This search can
be performed by any application using the ldap_search APIs.

To retrieve all the values of one or more selected attribute types, specify the
specific attributes desired for the LDAP search. Schema-related attribute types
include the following:
v objectclass
v objectclasses
v attributetypes

© Copyright IBM Corp. 2002 177

v ldapsyntaxes
v ibmattributetypes
v matchingrules

For example, to retrieve all the values for ldapsyntaxes, specify:
ldapsearch -h host -b "cn=schema" -s base objectclass=* ldapsyntaxes

which returns something like:
cn=schema
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.12 DESC ’DN’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.15 DESC ’Directory String’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.16 DESC ’DIT Content Rule

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.17 DESC ’DIT Structure Rule

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.24 DESC ’Generalized Time’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.26 DESC ’IA5 String’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.27 DESC ’INTEGER’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.3 DESC ’Attribute Type

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.30 DESC ’Matching Rule

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.31 DESC ’Matching Rule Use

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.35 DESC ’Name Form

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.37 DESC ’Object Class

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.38 DESC ’OID’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.5 DESC ’Binary’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.50 DESC ’Telephone

Number’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.53 DESC ’UTC Time’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.54 DESC ’LDAP Syntax

Description’)
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.7 DESC ’Boolean’)
ldapsyntaxes=(IBMAttributeType-desc-syntax-oid DESC ’IBM Attribute

Type Description’)

Similarly, to obtain the values for matchingrules, specify:
ldapsearch -h host -b "cn=schema" -s base objectclass=* matchingrules

which returns something like:
cn=schema
MatchingRules= (2.5.13.5 NAME ’caseExactMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
MatchingRules= (2.5.13.2 NAME ’caseIgnoreMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
MatchingRules= (2.5.13.7 NAME ’caseExactSubstringsMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
MatchingRules= (2.5.13.6 NAME ’caseExactOrderingMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
MatchingRules= (2.5.13.4 NAME ’caseIgnoreSubstringsMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
MatchingRules= (2.5.13.3 NAME ’caseIgnoreOrderingMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
MatchingRules= (1.3.18.0.2.4.405 NAME ’distinguishedNameOrderingMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
MatchingRules= (2.5.13.1 NAME ’distinguishedNameMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
MatchingRules= (2.5.13.28 NAME ’generalizedTimeOrderingMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
MatchingRules= (2.5.13.27 NAME ’generalizedTimeMatch’ \

178 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
MatchingRules= (1.3.6.1.4.1.1466.109.114.2 NAME ’caseIgnoreIA5Match’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
MatchingRules= (1.3.6.1.4.1.1466.109.114.1 NAME ’caseExactIA5Match’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
MatchingRules= (2.5.13.29 NAME ’integerFirstComponentMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
MatchingRules= (2.5.13.14 NAME ’integerMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
MatchingRules= (2.5.13.17 NAME ’octetStringMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.5)
MatchingRules= (2.5.13.0 NAME ’objectIdentifierMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
MatchingRules= (2.5.13.30 NAME ’objectIdentifierFirstComponentMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
MatchingRules= (2.5.13.21 NAME ’telephoneNumberSubstringsMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
MatchingRules= (2.5.13.20 NAME ’telephoneNumberMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
MatchingRules= (2.5.13.25 NAME ’uTCTimeMatch’ \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.53)

Dynamic schema changes
To perform a dynamic schema change, use LDAP modify with a DN of
″cn=schema″. It is permissible to add, delete or replace only one schema entity, for
example, an attribute type or an object class, at a time.

To delete a schema entity, you can simply provide the oid in parentheses:
(oid)

A full description might also be provided. In either case, the matching rule used to
find the schema entity to delete is objectIdentifierFirstComponentMatch as
mandated by the LDAP V3 protocol.

To add or replace a schema entity, you must provide the LDAP V3 definition and
you can provide the IBM definition.

In all cases, you must only provide the definitions of the schema entity you wish
to affect. For example, to delete the attribute type cn (its OID is 2.5.4.3), invoke
ldap_modify() with:

LDAPMod attr;
LDAPMod *attrs[] = { &attr, NULL };
char *vals [] = { "(2.5.4.3)", NULL };
attr.mod_op = LDAP_MOD_DELETE;
attr.mod_type = "attributeTypes";
attr.mod_values = vals;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To add a new attribute type foo with OID 20.20.20 which is a NAME of length 20
chars:

char *vals1[] = { "(20.20.20 NAME ’foo’ SUP NAME)", NULL };
char *vals2[] = { "(20.20.20 LENGTH 20)", NULL };
LDAPMod attr1;
LDAPMod attr2;
LDAPMod *attrs[] = { &attr1, &attr2, NULL };
attr1.mod_op = LDAP_MOD_ADD;
attr1.mod_type = "attributeTypes";
attr1.mod_values = vals1;
attr2.mod_op = LDAP_MOD_ADD;

Appendix A. LDAP V3 schema 179

attr2.mod_type = "IBMattributeTypes";
attr2.mod_values = vals2;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To change the object class top so it allows a MAY attribute type called foo (this
assumes the attribute type foo has been defined in the schema):

LDAPMod attr;
LDAPMod *attrs[] = { &attr, NULL };
attr.mod_op = LDAP_MOD_REPLACE;
attr.mod_type = "objectClasses";
attr.mod_values = "(2.5.6.0 NAME ’top’ ABSTRACT "

"MUST objectClass MAY foo)";
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

180 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Appendix B. LDAP distinguished names

Distinguished names (DNs) are used to uniquely identify entries in an LDAP or
X.500 directory. DNs are user-oriented strings, typically used whenever you must
add, modify or delete an entry in a directory using the LDAP programming
interface, as well as when using the LDAP utilities ldapmodify, ldapsearch,
ldapmodrdn and ldapdelete.

A DN is typically composed of an ordered set of attribute type/attribute value
pairs. Most DNs are composed of pairs in the following order:
v common name (cn)
v organization (o) or organizational unit (ou)
v country (c)

The following string-type attributes represent the set of standardized attribute
types for accessing an LDAP directory. A DN can be composed of attributes with
an LDAP syntax of Directory String, including the following:
v CN - CommonName
v L - LocalityName
v ST - StateOrProvinceName
v O - OrganizationName
v OU - OrganizationalUnitName
v C - CountryName
v STREET - StreetAddress

Informal definition
This notation is designed to be convenient for common forms of name. Most DNs
begin with CommonName (CN), and progress up the naming tree of the directory.
Typically, as you read from left to right, each component of the name represents
increasingly larger groupings of entries, ending with CountryName (C). Remember
that sequence is important. For example, the following two DNs do not identify
the same entry in the directory:

CN=wiley coyote, O=acme, O=anvils, C=US

CN=wiley coyote, O=anvils, O=acme, C=US

Some examples follow. The author of RFC 2253, ″UTF-8 String Representation of
Distinguished Names″ is specified as:

CN=Steve Kille, O=ISODE Consortium, C=GB

Another name might be:
CN=Christian Huitema, O=INRIA, C=FR

A semicolon (;) can be used as an alternate separator. The separators might be
mixed, but this usage is discouraged.

CN=Christian Huitema; O=INRIA; C=FR

© Copyright IBM Corp. 2002 181

Here is an example of a multi-valued Relative Distinguished Name, where the
namespace is flat within an organization, and department is used to disambiguate
certain names:

OU=Sales + CN=J. Smith, O=Widget Inc., C=US

The final examples show both methods of entering a comma in an Organization
name:

CN=L. Eagle, O="Sue, Grabbit and Runn", C=GB

CN=L. Eagle, O=Sue, Grabbit and Runn, C=GB

Formal definition
For a formal, and more complete, definition of Distinguished Names that can be
used with the LDAP interfaces, see ″RFC 2253, UTF-8 String Representation of
Distinguished Names″.

182 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Appendix C. LDAP data interchange format (LDIF)

This documentation describes the LDAP Data Interchange Format (LDIF), as used
by the ldapmodify, ldapsearch and ldapadd utilities. The LDIF specified here is
also supported by the server utilities provided with the IBM Directory.

LDIF is used to represent LDAP entries in text form. The basic form of an LDIF
entry is:
dn: <distinguished name>
<attrtype> : <attrvalue>
<attrtype> : <attrvalue>
...

A line can be continued by starting the next line with a single space or tab
character, for example:

dn: cn=John E Doe, o=University of High
er Learning, c=US

Multiple attribute values are specified on separate lines, for example:
cn: John E Doe
cn: John Doe

If an <attrvalue> contains a non-US-ASCII character, or begins with a space or a
colon (:), the <attrtype> is followed by a double colon and the value is encoded in
base-64 notation. For example, the value begins with a space is encoded as:

cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by a blank line. Multiple
blank lines are considered a logical end-of-file.

LDIF example
Here is an example of an LDIF file containing three entries.

dn: cn=John E Doe, o=University of High
er Learning, c=US
cn: John E Doe
cn: John Doe
objectclass: person
sn: Doe

dn: cn=Bjorn L Doe, o=University of High
er Learning, c=US
cn: Bjorn L Doe
cn: Bjorn Doe
objectclass: person
sn: Doe

dn: cn=Jennifer K. Doe, o=University of High
er Learning, c=US
cn: Jennifer K. Doe
cn: Jennifer Doe
objectclass: person
sn: Doe
jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG
...

© Copyright IBM Corp. 2002 183

The jpegPhoto in Jennifer Doe’s entry is encoded using base-64. The textual
attribute values can also be specified in base-64 format. However, if this is the case,
the base-64 encoding must be in the code page of the wire format for the protocol,
that is, for LDAP V2, the IA5 character set and for LDAP V3, the UTF-8 encoding.

Version 1 LDIF support
The client utilities (ldapmodify and ldapadd) have been enhanced to recognize the
latest version of LDIF, which is identified by the presence of the version: 1 tag at
the head of the file. Unlike the original version of LDIF, the newer version of LDIF
supports attribute values represented in UTF-8, instead of the very limited
US-ASCII.

However, manual creation of an LDIF file containing UTF-8 values can be difficult.
In order to simplify this process, a charset extension to the LDIF format is
supported. This extension allows an IANA character set name to be specified in the
header of the LDIF file, along with the version number. A limited set of the IANA
character sets are supported. See “IANA character sets supported by platform” on
page 185 for the specific charset values that are supported for each operating
system platform.

The version 1 LDIF format also supports file URLs. This provides a more flexible
way to define a file specification. File URLs take the following form:

attribute:< file:///path
(where path syntax depends on platform)

For example, the following are valid file Web addresses:
jpegphoto:< file:///d:\temp\photos\myphoto.jpg

(DOS/Windows style paths)
jpegphoto:< file:///etc/temp/photos/myphoto.jpg

(Unix style paths)

Note: The IBM Directory Server utilities support both the new file URL
specification as well as the older style, for example, jpegphoto:
/etc/temp/myphoto, regardless of the version specification. In other words,
the new file URL format can be used without adding the version tag to your
LDIF files.

Version 1 LDIF examples
You can use the optional charset tag so that the utilities automatically convert from
the specified character set to UTF-8 as in the following example:
version: 1
charset: ISO-8859-1

dn: cn=Juan Griego, o=University of New Mexico, c=US
cn: Juan Griego
sn: Griego
description:: V2hhdCBhIGNhcmVmdWwgcmVhZGVyIHlvd
title: Associate Dean
title: [title in Spanish]
jpegPhoto:> file:///usr/local/photos/jgriego.jpg

In this instance, all values following an attribute name and a single colon are
translated from the ISO-8859-1 character set to UTF-8. Values following an attribute
name and a double colon (such as description:: V2hhdCBhIGNhcm...) must be
base-64 encoded, and are expected to be either binary or UTF-8 character strings.

184 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Values read from a file, such as the jpegPhoto attribute specified by the Web
address in the previous example, are also expected to be either binary or UTF-8.
No translation from the specified charset to UTF-8 is done on those values.

In this example of an LDIF file without the charset tag, content is expected to be in
UTF-8, or base-64 encoded UTF-8, or base-64 encoded binary data:
IBM Directory sample LDIF file
#
The suffix "o=IBM, c=US" should be defined before attempting to load
this data.

version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: ou=Austin, o=IBM, c=US
ou: Austin
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM, c=US

This same file can be used without the version: 1 header information, as in
previous releases of the IBM Directory Server version 4.1 C-Client SDK:
IBM Directory sample LDIF file
#
The suffix "o=IBM, c=US" should be defined before attempting to load
this data.

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: ou=Austin, o=IBM, c=US
ou: Austin
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM, c=US

Note: The textual attribute values can be specified in base-64 format.

IANA character sets supported by platform
The following table defines the set of Internet Assigned Numbers Authority
(IANA)-defined character sets that can be defined for the charset tag in a Version 1
LDIF file, on a per-platform basis. The value in the left-most column defines the
text string that can be assigned to the charset tag. An X indicates that conversion
from the specified charset to UTF-8 is supported for the associated platform, and
that all string content in the LDIF file is assumed to be represented in the specified
charset. n/a indicates that the conversion is not supported for the associated
platform.

String content is defined to be all attribute values that follow an attribute name
and a single colon.

See IANA Character Sets for more information about IANA-registered character
sets.

Appendix C. LDAP data interchange format (LDIF) 185

http://www.iana.org/assignments/character-sets

Table 1.

Character Conversion Supported

Set Name NT AIX Solaris Linux

ISO-8859–1 X X X X

ISO-8859–2 X X X X

ISO-8859–5 X X X X

ISO-8859–6 X X X X

ISO-8859–7 X X X X

ISO-8859–8 X X X X

ISO-8859–9 X X X X

ISO-8859–15 NA X X

IBM437 X NA NA

IBM850 X X NA

IBM852 X NA NA

IBM857 X NA NA

IBM862 X NA NA

IBM864 X NA NA

IBM866 X NA NA

IBM869 X X NA

IBM1250 X NA NA

IBM1251 X NA NA

IBM1253 X NA NA

IBM1254 X NA NA

IBM1255 X NA NA

IBM1256 X NA NA

TIS-620 X X NA

EUC-JP NA X X X

EUC-KR NA X X*

EUC-CN NA X X

EUC-TW NA X X

Shift-JIS X X X X

KSC X X NA

GBK X X X*

Big5 X X X

* Supported on Solaris 7 and higher only.

The new Chinese character set standard (GB18030) is supported on the following
platforms with appropriate patches available from www.sun.com and
www.microsoft.com:
v Windows 2000
v AIX
v Solaris

186 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Note: On Windows 2000, you must set the environment variable
zhCNGB18030=TRUE.

Appendix C. LDAP data interchange format (LDIF) 187

188 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Appendix D. Deprecated LDAP APIs

Although the following APIs are still supported, their use is deprecated. Use of the
newer replacement APIs is strongly encouraged:
v ldap_ssl_start()—use ldap_ssl_client_init() and ldap_ssl_init(). See “LDAP_SSL”

on page 107.
v ldap_open()—use ldap_init(). See“LDAP_INIT” on page 59.
v ldap_bind()—use ldap_simple_bind(). See “LDAP_BIND / UNBIND” on page 36.
v ldap_bind_s()—use ldap_simple_bind_s(). See “LDAP_BIND / UNBIND” on

page 36.
v ldap_modrdn()—use ldap_rename(). See “LDAP_RENAME” on page 82.
v ldap_modrdn_s()—use ldap_rename_s(). See “LDAP_RENAME” on page 82.
v ldap_result2error()—use ldap_parse_result(). See “LDAP_PARSE_RESULT” on

page 76.
v ldap_perror()—use ldap_parse_result(). See “LDAP_PARSE_RESULT” on page 76.
v ldap_get_entry_controls_np—use ldap_get_entry_controls. See

“LDAP_FIRST_ENTRY/REFERENCE” on page 47.
v ldap_parse_reference_np—use ldap_parse_reference. See

“LDAP_FIRST_ENTRY/REFERENCE” on page 47.

© Copyright IBM Corp. 2002 189

190 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 191

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both: AIX, IBM, SecureWay,
Tivoli, World Registry.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

192 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

Index

A
API

categories 31
deprecated 189
plug-in 172
usage 2

attributes
ldap 34

B
binding

sasl 36
secure 36
simple 36

C
certificate authority 131

distinguished names 137
certificate requests 135
certificates 131
client controls 45
code page

getting 116
setting 116
translating 116

compare operations 43
controls

ldap
client 45
server 45

counting
entries 47
references 47

counting values 57

D
data interchange format 182
deleting

keys 134
deleting entries 15, 45
Directory C-Client SDK overview 1
directory operations 1
distinguished name

formal definition 182
informal definition 181

distinguished names 181
DNs 181
DNS 90
DNS configuration file 99
dynamic schema 177

changes 179

E
entry

adding 32

entry (continued)
counting 47
deleting 15, 45
modifying 17
referencubg 47
searching 21

error codes 128
error numbers 50
errors

ldap 50
event notification 141

example 142
registration request 141
registration response 141
unregistering 142

example
event notification 142
LDIF 183

Version 1 184
limited transaction support 146

examples
DNS configuration file 99

exporting
keys 136

extended operations 53

F
freeing storage

BER 70
controls 70
memory 70
messages 70

G
getting values 57
global security 131
GSKit 131

H
handling routines 55

I
IANA character sets 185
IBM Directory Server 4.1

updates 3
Client DN processing functions 3
Kerberos 1.2 4
Sorted Search and Paged

Results 4
SSL 4

iconv 116
importing

keys 137
initializing libraries 59

K
key

certificate request for existing
key 138

changing the database password 133
defaults 135
deleting 134
exporting 136
importing 137
self-signing 135
showing information about 134
trusted root 137
trusted root removal 138

key pairs 131
keyring file

migration 139
keys

private 131
public 131

L
language support 185
LDAP

API overview 1
utilities 9
version support 1

ldap attributes 34
LDAP SSL function codes 128
ldap_abandon 31
ldap_add 32
ldapadd 9

alternative input format 12
description 9
diagnostics 14
examples 12
input format 12
notes 13
options 9
see also 14
SSL notes 14
synopsis 9

ldapdelete 15
description 15
diagnostics 17
examples 17
notes 17
options 15
see also 17
SSL notes 17
synopsis 15

ldapmodify 9
alternative input format 12
description 9
diagnostics 14
examples 12
input format 12
notes 13
options 9
see also 14

© Copyright IBM Corp. 2002 193

ldapmodify (continued)
SSL notes 14
synopsis 9

ldapmodrdn 17
description 18
diagnostics 20
examples 20
input format 20
notes 20
options 18
see also 21
SSL notes 21
synopsis 18

ldapsearch 21
description 21
diagnostics 28
examples 26
options 21
output format 25
see also 29
SSL notes 29
synopsis 21

LDIF 182
leaving an operation 31
library

initialization 59
limited transactions 145

M
memory

freeing 70
messages

ldap 72
migration

keyring file 139
modify operations 73
modifying entries 17

N
notification

event 141

O
operations

comparing 43
directory-related 1
extended 53
renaming 82
results 84
searching 86

P
parsing 76
pblock 169
plug-in

APIs 172
initializing 170
registration 78
restrictions 170

plug-ins
SASL 169

R
rdn 17
rebinding 36
records

SRV 102
TXT 102

reference
entry 47

registration
plug-ins 78

rename operations 82
results 84

displaying 3
routines

handling 55

S
schema

changes 179
dynamic 177

Schema
queries 177

searching 86
searching entries 21
secure connections 106
secure socket layer 3
security 131
self-signing keys 135
server controls 45
server information

DNS 90
sorted search 24

ldapsearch 24
Sorted Search and Paged Results

Server side sorting of search
results 4

Simple paged results of search
results 7

SRV records 102
SSL 3

cipher support 106
starting 106

ssl_environment_init 122
storage

freeing 70

T
transactions

limited support 145
translating locales 116
trusted root 137
trusted roots 109
TXT records 102

U
unbinding 36
URL 113
URLs 3
utf-8 116
UTF-8 185
utilities

LDAP 9

utilities (continued)
ldapadd 9
ldapdelete 15
ldapmodify 9
ldapmodrdn 17
ldapsearch 21

V
values

counting 57
getting 57

version 3 1
version support 1

194 IBM Directory Server Version 4.1: C-Client SDK Programming Reference

����

Printed in U.S.A.

	Contents
	Preface
	Chapter 1. IBM Directory C-Client SDK overview
	LDAP version support
	LDAP API overview
	Typical API usage
	Displaying results
	Uniform Resource Locators (URLs)
	Secure Socket Layer (SSL) support

	Updates for IBM Directory Server C-Client Version 4.1
	Client DN processing functions
	Kerberos 1.2
	SSL
	Sorted Search and Paged Results
	Server side sorting of search results
	Simple paged results of search results

	Chapter 2. LDAP utilities
	LDAPMODIFY, LDAPADD
	Synopsis
	Description
	Options
	Input format
	Alternative input format
	Examples
	Notes
	Diagnostics
	SSL notes
	See also

	LDAPDELETE
	Synopsis
	Description
	Options
	Examples
	Notes
	Diagnostics
	SSL notes
	See also

	LDAPMODRDN
	Synopsis
	Description
	Options
	Input format
	Examples
	Notes
	Diagnostics
	SSL notes
	See also

	LDAPSEARCH
	Synopsis
	Description
	Options
	Output format
	Examples
	Diagnostics
	SSL notes
	See also

	Chapter 3. API categories
	LDAP_ABANDON
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_ADD
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_FIRST_ATTRIBUTE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_BIND / UNBIND
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Simple authentication
	General authentication
	SASL authentication
	Unbinding
	Re-binding while following referrals

	Errors
	See also

	LDAP_COMPARE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP controls
	LDAP_DELETE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_FIRST_ENTRY/REFERENCE
	Purpose
	Synopsis
	Input parameters
	Usage
	Processing entries
	Processing continuation references
	Counting entries and references

	Errors
	See also

	LDAP_ERROR
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_EXTENDED_OPERATION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_GET_DN
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	Notes
	See also

	LDAP_GET_VALUES
	Purpose
	Synopsis
	Input parameters
	Usage
	String values
	Binary values

	Errors
	See also

	LDAP_INIT
	Purpose
	Synopsis
	Input parameters
	Usage
	Setting and getting session settings

	Errors
	LDAP_DEBUG
	LDAP_SET_OPTION syntax for LDAP V2 applications
	Locating default LDAP servers
	Multithreaded applications
	Notes
	See also

	LDAP_MEMFREE
	Purpose
	Synopsis
	Input parameters
	Usage
	See also

	LDAP_MESSAGE
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_MODIFY
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_PARSE_RESULT
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_PLUGIN_REGISTRATION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Finding the Plug-in library

	Errors
	See also

	LDAP_RENAME
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_RESULT
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_SEARCH
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Reading an entry
	Listing the children of an entry

	Errors
	Notes
	See also

	LDAP_SERVER_INFORMATION IN DNS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	DNS domains and configuration file
	API usage
	Publishing LDAP server information in DNS
	Alternative scheme for publishing LDAP server information in DNS

	Errors
	See also

	LDAP_SSL
	Purpose
	Synopsis
	Input parameters
	Usage
	Options
	Notes
	See also

	LDAP_URL
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Notes
	See also

	LDAP_CODEPAGE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Translate local code page to UTF-8
	Translate UTF-8 to local code page
	Translate local code page to unicode
	Translate unicode to local code page
	Set locale
	Get locale
	Set codepage
	Get codepage
	Japanese and Korean currency considerations

	Errors
	See also

	LDAP_SSL_ENVIRONMENT_INIT
	Purpose
	Synopsis

	LDAP_SORT
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_PAGED_RESULTS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	Possible extended error codes returned by LDAP SSL function codes

	Chapter 4. Using GSK5IKM
	Creating a key pair and requesting a certificate from a Certificate Authority
	Receiving a certificate into a key database
	Changing a key database password
	Showing information about a key
	Deleting a key
	Making a key the default key in the key database
	Creating a key pair and certificate request for self-signing
	Exporting a key
	Importing a key
	Designating a key as a trusted root
	Removing a key as a trusted root
	Requesting a certificate for an existing key
	Migrating a keyring file to the key database format

	Chapter 5. Event notification
	Registration request
	Registration response
	Usage
	Unregistering a client
	Example

	Chapter 6. Limited transaction support
	Usage
	Example

	Chapter 7. LDAP client plug-in programming reference
	Introduction to client SASL plug-ins
	Basic processing
	Restrictions

	Initializing a plug-in
	Writing your own SASL plug-in
	Plug-in APIs
	ldap_plugin_pblock_get()
	Syntax
	Parameters
	Returns

	ldap_plugin_pblock_set()
	Syntax
	Parameters
	Returns

	ldap_plugin_sasl_bind_s()
	Syntax
	Parameters
	Returns

	Sample worker function

	Appendix A. LDAP V3 schema
	Dynamic schema
	Schema queries
	Dynamic schema changes

	Appendix B. LDAP distinguished names
	Informal definition
	Formal definition

	Appendix C. LDAP data interchange format (LDIF)
	LDIF example
	Version 1 LDIF support
	Version 1 LDIF examples
	IANA character sets supported by platform

	Appendix D. Deprecated LDAP APIs
	Appendix E. Notices
	Trademarks

	Index

