
IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

Application Development Guide
— Directory Services

IBM

IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

Application Development Guide
— Directory Services

IBM

Note
Before using this document, read the general information under “Appendix. Notices” on page 259.

First Edition (August 1999)

This edition applies to Version 3.1 of IBM Distributed Computing Environment for AIX and Solaris and to all
subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation
Department VLXA
11400 Burnet Road
Austin, Texas
78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: ″Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate III, as applicable or in the equivalent clause of any other applicable Federal government
regulations.″

© Copyright International Business Machines Corporation 1990, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xiii
Audience. xiii
Purpose . xiii
Document Usage. xiii
Related Documents . xiv
Typographic and Keying Conventions xiv
Terminology Used in This Book xv
Pathnames of Directories and Files in DCE Documentation xv

Part 1. DCE Directory Service . 1

Chapter 1. DCE Directory Service Overview 3
Introduction to This Guide . 3

Use of This Guide . 3
Directory Service Tools . 3

Using the DCE Directory Service 4
DCE Directory Service Concepts 4
Structure of DCE Names . 7

DCE Name Prefixes . 8
Names of Cells . 8
CDS Names . 9
GDS Names . 9
Junctions in DCE Names . 10
Application Names . 10

The Federated DCE Namespace 10
The GDS Namespace . 11
The CDS Namespace . 12
Other Namespaces . 13

Programming Interfaces to the DCE Directory Service 13
The XDS Interface . 13
The RPC Name Service Interface 13
Namespace Junction Interfaces 13

Part 2. CDS Application Programming . 15

Chapter 2. Programming in the CDS Namespace 17
Initial Cell Namespace Organization 17

The Cell Profile . 18
The LAN Profile . 19
The CDS Clearinghouse . 19
The Hosts Directory. 19
The Subsystems Directory 19
The /: DFS Alias . 20
The DFS and DCE Security Service Junctions 20

Recommended Use of the CDS Namespace 20
Storing Data in CDS Entries. 20
Access Control for CDS Entries 23

Valid Characters and Naming Rules for CDS 26

© Copyright IBM Corp. 1990, 1999 iii

Metacharacters . 27
Additional Rules . 28
Maximum Name Sizes. 30

Use of OIDs . 32

Chapter 3. XDS and the DCE Cell Namespace 35
Introduction to Accessing CDS with XDS 35

Using the Reference Material in This Chapter 35
What You Cannot Do with XDS 36
Registering A Nonlocal Cell 36

XDS Objects . 36
Object Attributes . 38
Interface Objects and Directory Objects 38
Directory Objects and Namespace Entries 40
Values That an Object Can Contain 41
Building a Name Object . 42
A Complete Object . 44
Class Hierarchy . 44
Class Hierarchy and Object Structure 44
Public and Private Objects and XOM 45
XOM Objects and XDS Library Functions 45

Accessing CDS Using the XDS Step-by-Step Procedure 46
Reading and Writing Existing CDS Entry Attributes With XDS 46
Creating New CDS Entry Attributes 57

Object-Handling Techniques. 60
Using XOM to Access CDS 60
Dynamic Creation of Objects 62

XDS/CDS Object Recipes . 63
Input XDS/CDS Object Recipes 63
Input Object Classes for XDS/CDS Operations 64

Attribute and Data Type Translation 74

Part 3. XDS/XOM Application Programming 77

Chapter 4. XDS API Logging 79
Logging Format . 80
Examples . 80

Chapter 5. XOM Programming 83
OM Objects. 83

OM Object Attributes . 84
Object Identifiers . 86
C Naming Conventions . 87
Public Objects . 89
Private Objects . 98
Object Classes . 99

Packages . 104
The Directory Service Package 104
The Basic Directory Contents Package. 105
Package Closure . 105

Workspaces . 106
Storage Management . 106
OM Syntaxes for Attribute Values 108

Enumerated Types . 108
Object Types . 109
Strings . 109

iv IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Other Syntaxes . 110
Service Interface Data Types 110

The OM_descriptor Data Type 110
Data Types for XDS API Function Calls 112
Data Types for XOM API Calls 113

OM Function Calls . 114
Summary of OM Function Calls 114
Using the OM Function Calls 115

XOM API Header Files. 119
XOM Type Definitions and Symbolic Constant Definitions 119
XOM API Macros. 119

Chapter 6. XDS Programming 123
XDS Interface Management Functions 123

The ds_initialize() Function Call 124
The ds_version() Function Call 124
The ds_shutdown() Function Call 125

Directory Connection Management Functions 125
A Directory Session . 125
The ds_bind() Function Call 125
The ds_unbind() Function Call 126
Automatic Connection Management 126

XDS Interface Class Definitions 126
Example: The DS_C_ATTRIBUTE_LIST Class 126
Example: The DS_C_FILTER Class 127
The DS_C_CONTEXT Parameter 127

Directory Class Definitions . 128
Directory Operation Functions 129
Directory Read Operations . 129

Reading an Entry from the Directory. 130
Step 1: Export Object Identifiers for Required Directory Classes and

Attributes . 130
Step 2: Declare Local Variables 131
Step 3: Build Public Objects. 131
Step 4: Create an Entry-Information-Selection Parameter 132
Step 5: Perform the Read Operation 133

Directory Search Operations 136
Directory Modify Operations . 136

Modifying Directory Entries 137
Step 1: Export Object Identifiers for Required Directory Classes and

Attributes . 137
Step 2: Declare Local Variables 138
Step 3: Build Public Objects. 138
Step 4: Create Descriptor Lists for Attributes 140
Step 5: Perform the Operations 141

Return Codes . 143

Chapter 7. Using Threads With The XDS/XOM API 145
Overview of Sample Threads Program 147

User Interface . 147
Input File Format . 148
Program Output . 148
Prerequisites . 148

Description of Sample Program 148
Detailed Description of Thread Specifics 150

Contents v

Chapter 8. XDS/XOM Convenience Routines 153
String Handling . 153

Strings Representing GDS Attribute Information 154
Strings Representing Structured GDS Attribute Information 154
Strings Representing a Structured GDS Attribute Value. 156
Strings Representing a Distinguished Name 157
Strings Representing Expressions 158

The acl2.c Program . 159
The acl2.c Code . 160
The acl2.h Header File . 174
Example Strings . 176

Part 4. XDS/XOM Supplementary Information179

Chapter 9. XDS Interface Description 181
XDS Conformance to Standards 181
The XDS Functions . 182
The XDS Negotiation Sequence 183
The session Parameter . 184
The context Parameter . 184
The XDS Function Arguments 185

Attribute and Attribute Value Assertion 185
The selection Parameter . 186
The name Parameter . 186

XDS Function Call Results . 187
The invoke_id Parameter . 187
The result Parameter . 187
The DS_status Return Value 188

Synchronous Operations . 188

Chapter 10. XDS Class Definitions 189
Introduction to OM Classes . 189
XDS Errors . 190
OM Class Hierarchy . 191
DS_C_ABANDON_FAILED . 192
DS_C_ACCESS_POINT . 192
DS_C_ADDRESS . 193
DS_C_ATTRIBUTE . 193
DS_C_ATTRIBUTE_ERROR 194
DS_C_ATTRIBUTE_LIST. 194
DS_C_ATTRIBUTE_PROBLEM 194
DS_C_AVA . 195
DS_C_COMMON_RESULTS 195
DS_C_COMMUNICATIONS_ERROR 196
DS_C_COMPARE_RESULT 196
DS_C_CONTEXT . 197
DS_C_CONTINUATION_REF 200
DS_C_DS_DN. 200
DS_C_DS_RDN . 201
DS_C_ENTRY_INFO . 201
DS_C_ENTRY_INFO_SELECTION 202
DS_C_ENTRY_MOD . 202
DS_C_ENTRY_MOD_LIST . 203
DS_C_ERROR . 203
DS_C_EXT . 205
DS_C_FILTER. 206

vi IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_FILTER_ITEM . 206
DS_C_LIBRARY_ERROR . 208
DS_C_LIST_INFO . 208
DS_C_LIST_INFO_ITEM . 209
DS_C_LIST_RESULT . 210
DS_C_NAME . 210
DS_C_NAME_ERROR . 211
DS_C_OPERATION_PROGRESS 211
DS_C_PARTIAL_OUTCOME_QUAL 212
DS_C_PRESENTATION_ADDRESS 213
DS_C_READ_RESULT . 213
DS_C_REFERRAL . 213
DS_C_RELATIVE_NAME . 214
DS_C_SEARCH_INFO . 214
DS_C_SEARCH_RESULT . 215
DS_C_SECURITY_ERROR . 215
DS_C_SERVICE_ERROR . 215
DS_C_SESSION . 216
DS_C_SYSTEM_ERROR . 217
DS_C_UPDATE_ERROR. 217

Chapter 11. Basic Directory Contents Package 219
Selected Attribute Types . 220
Selected Object Classes . 226
OM Class Hierarchy . 227
DS_C_FACSIMILE_PHONE_NBR 228
DS_C_POSTAL_ADDRESS . 228
DS_C_SEARCH_CRITERION 229
DS_C_SEARCH_GUIDE . 230
DS_C_TELETEX_TERM_IDENT 230
DS_C_TELEX_NBR . 230

Chapter 12. Information Syntaxes 233
Syntax Templates . 233
Syntaxes. 233
Strings . 234
Representation of String Values 235
Relationship to ASN.1 Simple Types. 235
Relationship to ASN.1 Useful Types 235
Relationship to ASN.1 Character String Types 236
Relationship to ASN.1 Type Constructors 236

Chapter 13. XOM Service Interface 239
Standards Conformance . 239
XOM Data Types. 239

OM_boolean . 241
OM_descriptor. 241
OM_enumeration. 242
OM_exclusions . 243
OM_integer . 243
OM_modification . 243
OM_object . 244
OM_object_identifier . 244
OM_private_object . 245
OM_public_object . 246
OM_return_code . 246

Contents vii

OM_string . 246
OM_syntax . 248
OM_type . 248
OM_type_list . 249
OM_value . 249
OM_value_length . 250
OM_value_position . 250
OM_workspace . 250

XOM Functions . 250
XOM Return Codes . 252

Chapter 14. Object Management Package 255
Class Hierarchy . 255
Class Definitions . 255

OM_C_ENCODING . 255
OM_C_EXTERNAL . 256
OM_C_OBJECT . 257

Appendix. Notices . 259
Trademarks . 261

Index . 263

viii IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Figures

1. A Federated DCE Namespace 11
2. The Cell Namespace After Configuration 18
3. A Possible Namespace Structure 22
4. Valid Characters in CDS, GDS, and DNS Names 27
5. T61 Syntax . 31
6. Combinations of Diacritical Characters and Basic Letters 32
7. One Object Descriptor . 37
8. A Complete Object Represented 38
9. A Three-Layer Compound Object 38

10. Directory Objects and XDS Interface Objects 40
11. Directory Objects and Namespace Entries 41
12. The DS_C_READ_RESULT Object Structure 52
13. The DS_C_ENTRY_INFO Object Structure 54
14. The DS_C_ATTRIBUTE Object Structure 56
15. The DS_C_ATTRIBUTE_LIST Object 66
16. DS_C_DS_DN Object Attributes 68
17. The DS_C_ENTRY_MOD_LIST Object 71
18. The DS_C_ENTRY_INFO_SELECTION Object 73
19. The Internal Structure of an OM Object. 84
20. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION . . . 86
21. A Representation of a Public Object By Using a Descriptor List 90
22. A Descriptor List for the Public Object: country 91
23. The Distinguished Name of ″Peter Piper″ in the DIT 92
24. Building a Distinguished Name 94
25. A Simplified View of the Structure of a Distinguished Name 95
26. Client-Generated and Service-Generated Objects 97
27. The OM Class DS_C_ENTRY_INFO_SELECTION 99
28. Comparison of Two Classes With/Without an Abstract OM Class 101
29. Complete Description of Concrete OM Class DS_C_ATTRIBUTE 103
30. Data Type OM_descriptor_struct 111
31. Initializing Descriptors . 112
32. An Object and a Subordinate Object 112
33. The Read Result . 117
34. Extracting Information Using om_get(). 118
35. Output from ds_read(): DS_C_READ_RESULT 135
36. A Sample Directory Tree 137
37. OM Class DS_C_LIST_RESULT 142
38. Issuing XDS/XOM Calls from Within Different Threads 146
39. Program Flow for the thradd Sample Program 150
40. OM_String Elements . 247

© Copyright IBM Corp. 1990, 1999 ix

x IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Tables

1. Metacharacters and Their Meaning 27
2. Summary of CDS, GDS, and DNS Characteristics. 28
3. Maximum Sizes of Directory Service Names 30
4. Directory Service Functions With Their Required Input Objects 63
5. CDS Attributes to OM Syntax Translation 74
6. OM Syntax to CDS Data Types Translation 74
7. CDS Data Types to OM Syntax Translation 75
8. XDS_LOG Values . 79
9. C Naming Conventions for XDS 88

10. C Naming Conventions for XOM 88
11. Comparison of Private and Public Objects. 98
12. Description of an OM Attribute By Using Syntax Enum(*) 108
13. Description of an OM Attribute By Using Syntax Object(*) 109
14. Representation of Values for Selected Attribute Types 128
15. Mapping of XDS API Functions to the Abstract Services 129
16. The XDS Interface Functions 183
17. OM Attributes of DS_C_ACCESS_POINT 192
18. OM Attributes of DS_C_ATTRIBUTE. 193
19. OM Attributes of DS_C_ATTRIBUTE_ERROR 194
20. OM Attribute of DS_C_ATTRIBUTE_LIST 194
21. OM Attributes of DS_C_ATTRIBUTE_PROBLEM 194
22. OM Attributes of DS_C_COMMON_RESULTS 195
23. OM Attributes of DS_C_COMPARE_RESULT 196
24. OM Attributes of DS_C_CONTEXT 197
25. OM Attributes of DS_C_CONTINUATION_REF 200
26. OM Attribute of DS_C_DS_DN 200
27. OM Attribute of DS_C_DS_RDN 201
28. OM Attributes of DS_C_ENTRY_INFO 201
29. OM Attributes of DS_C_ENTRY_INFO_SELECTION 202
30. OM Attribute of DS_C_ENTRY_MOD 202
31. OM Attribute of DS_C_ENTRY_MOD_LIST 203
32. OM Attribute of DS_C_ERROR. 203
33. OM Attributes of DS_C_EXT. 205
34. OM Attributes of DS_C_FILTER 206
35. OM Attributes of DS_C_FILTER_ITEM 207
36. OM Attributes of DS_C_LIST_INFO 209
37. OM Attributes of DS_C_LIST_INFO_ITEM 209
38. OM Attributes of DS_C_LIST_RESULT 210
39. OM Attribute of DS_C_NAME_ERROR 211
40. OM Attributes of DS_C_OPERATION_PROGRESS 211
41. OM Attributes of a DS_C_PARTIAL_OUTCOME_QUAL. 212
42. OM Attributes of DS_C_PRESENTATION_ADDRESS 213
43. OM Attribute of DS_C_READ_RESULT. 213
44. OM Attributes of DS_C_SEARCH_INFO 214
45. OM Attributes of DS_C_SEARCH_RESULT 215
46. OM Attributes of DS_C_SESSION 216
47. Object Identifiers for Selected Attribute Types 220
48. Representation of Values for Selected Attribute Types 221
49. Object Identifiers for Selected Object Classes 227
50. OM Attributes of DS_C_FACSIMILE_PHONE_NBR 228
51. OM Attribute of DS_C_POSTAL_ADDRESS 228
52. OM Attributes of DS_C_SEARCH_CRITERION 229
53. OM Attributes of DS_C_SEARCH_GUIDE. 230

© Copyright IBM Corp. 1990, 1999 xi

54. OM Attributes of DS_C_TELETEX_TERM_IDENT 230
55. OM Attributes of DS_C_TELEX_NBR 231
56. String Syntax Identifiers 234
57. Syntax for ASN.1 Simple Types 235
58. Syntaxes for ASN.1 Useful Types 235
59. Syntaxes for ASN.1 Character String Types 236
60. Syntaxes for ASN.1 Type Constructors 236
61. XOM Service Interface Data Types 239
62. Assigning Meanings to Values 248
63. XOM Service Interface Functions 250
64. Attributes Specific to OM_C_ENCODING 255
65. Attributes Specific to OM_C_EXTERNAL 256
66. Attribute Specific to OM_C_OBJECT 257

xii IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Preface

The IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide
provides information on how to access the DCE Directory Service on an IBM

®

and
Solaris operating system to share information and resources between cells. The
Directory Service primarily includes three components:

v DCE Cell Directory Service (CDS)

v DCE Global Directory Service (GDS) (not supported for this release)

v X/Open Directory Service (XDS) and X/Open OSI-Abstract-Data Manipulation
(XOM) Interfaces.

The IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide
provides information about how to program the application programming interfaces
(APIs) provided for each OSF

®

Distributed Computing Environment (DCE)
component.

Audience

This guide is written for application programmers with AIX, Solaris, or UNIX
®

operating system and C language experience who want to develop and write
applications to run on DCE. It does not assume that you have prior knowledge of,
or experience with, designing and writing distributed applications using the Open
Software Foundation’s (OSF) Distributed Computing Environment (DCE) services.
Ideally, you should be able to perform the following:

v Edit, browse, and copy AIX and Solaris files

v Print files

v Write, compile, link, debug, and run C programs on AIX and Solaris.

A good working knowledge and understanding of the following would also be
helpful:

v Structured programming techniques

v Computer communications over a network using Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP)

v Concepts behind a distributed application.

Some exposure to the AIX, Solaris, or UNIX operating systems is helpful but not
essential to use this guide.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide
consists of three books, as follows:

v IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide

© Copyright IBM Corp. 1990, 1999 xiii

v IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide—Core
Components

v IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Directory Services

– DCE Directory Service

– CDS Application Programming

– XDS/XOM Application Programming

– XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

v IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide

v IBM DCE Version 3.1 for AIX and Solaris: Introduction to DCE

v IBM DCE Version 3.1 for AIX and Solaris: Administration Commands Reference

v IBM DCE Version 3.1 for AIX and Solaris: Application Development Reference

v IBM DCE Version 3.1 for AIX and Solaris: Administration Guide

v OSF DCE GDS Administration Guide and Reference

v OSF DCE/File-Access Administration Guide and Reference

v OSF DCE/File-Access User’s Guide

v IBM DCE Version 3.1 for AIX and Solaris: Problem Determination Guide

v OSF DCE Testing Guide

v OSF DCE/File-Access FVT User’s Guide

v Application Environment Specification/Distributed Computing

v OSF DCE Technical Supplement

v IBM DCE Version 3.1 for AIX: Release Notes

v IBM DCE Version 3.1 for Solaris: Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

xiv IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

dcelocal
The OSF variable dcelocal in this document equates to the AIX and Solaris
value /opt/dcelocal .

dceshare
The OSF variable dceshare in this document equates to the AIX and Solaris
value /opt/dcelocal .

This guide uses the following keying conventions:

<Ctrl-x> or | x
The notation <Ctrl-x> or | x followed by the name of a key indicates a
control character sequence. For example, Ctrl-C means that you hold down
the control key while pressing <C>.

<Enter>
The <Enter> notation refers to the key on your terminal or workstation that
is labeled with the word Enter or Return, or with a left arrow.

Entering commands
When instructed to enter a command, type the command name and then
press the <Enter> key. For example, the instruction ″Enter the IDL
command″ means that you type the IDL command and then press the
<Enter> key.

Terminology Used in This Book

Although every attempt has been made to conform to Systems Application
Architecture (SAA) terminology guidelines, you must keep in mind that the DCE
technology has been developed from the UNIX environment.

Notes:

1. Throughout this document, the terms API, call, and routine all refer to the same
AIX and Solaris application programming interface that is referenced. For
example, rpc_binding_free() API, rpc_binding_free call() , and
rpc_binding_free() routine, all refer to the same rpc_binding_free() API.

2. Throughout this document, all references to individual DCE components (such
as RPC) refer to that component with the AIX and Solaris product. For example,
references to RPC, DCE RPC, and IBM DCE for AIX and Solaris RPC all refer
to the RPC component of IBM DCE for AIX and Solaris.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE Version 3.1 for AIX and Solaris: Administration Guide—Introduction and
the OSF DCE Testing Guide.

Preface xv

xvi IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Part 1. DCE Directory Service

© Copyright IBM Corp. 1990, 1999 1

2 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 1. DCE Directory Service Overview

This chapter provides an overview of the IBM DCE Version 3.1 for AIX and Solaris:
Application Development Guide—Directory Services for application programmers.
The chapter begins with a description of this guide. It then introduces DCE
Directory Service concepts, following which the structure of DCE names and the
DCE namespace are described. The chapter then provides an overview of the
programming interfaces used to access the DCE Directory Service.

Introduction to This Guide

This guide describes how application developers can access the DCE Directory
Service. From the application programmer’s perspective, the directory service has
three main parts: the DCE Cell Directory Service (CDS), the DCE Global Directory
Service (GDS), and the X/Open Directory Service (XDS) and X/Open
OSI-Abstract-Data Manipulation (XOM) programming interfaces. GDS is not
supported for this release of DCE. See the DCE for AIX Version 1.3 publications if
you need information on GDS.

This product contains support for the XDS/XOM API over CDS. Although the
documentation contains numerous references to the functions provided by the
Global Directory Services (GDS), only the XDS/XOM API over CDS functionality is
shipped with this product. The Global Directory Service functionality is available as
a separate product on AIX Version 3.2.5. It is not supported on AIX Version 4.1 and
greater.

Use of This Guide

Before reading this guide, you should read the IBM DCE Version 3.1 for AIX and
Solaris: Introduction to DCE . It contains overviews, along with illustrations, of all
the DCE components and of DCE as a whole, as well as introductions necessary to
fully understand what is described here. Next, read this section in its entirety.

If you do not find the information you need in either this guide or the IBM DCE
Version 3.1 for AIX and Solaris: Application Development Reference, see the IBM
DCE Version 3.1 for AIX and Solaris: Administration Guide and the IBM DCE
Version 3.1 for AIX and Solaris: Administration Commands Reference. For example,
information about the CDS as a separate component is found in the IBM DCE
Version 3.1 for AIX and Solaris: Administration Guide. Although the DCE Security
Service is documented in the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Guide, some information of interest to programmers (such as adding
new principals to the registry database) is also found in the IBM DCE Version 3.1
for AIX and Solaris: Administration Guide.

Directory Service Tools

CDS has commands that allow system administrators to inspect and alter the
contents of the directory (service). This can be useful when developing applications
that access the DCE namespace.

For information on the CDS control program (cdscp), see the IBM DCE Version 3.1
for AIX and Solaris: Administration Guide—Core Components.

© Copyright IBM Corp. 1990, 1999 3

Using the DCE Directory Service

The DCE Directory Service can be used in many ways. It is used by the DCE
services themselves to support the DCE environment. For example, cells are
registered in the global part of the directory service, enabling users from different
cells to share information and resources (you will need an AIX Version 1.3 system
as part of your cell to perform this function if you are using X.500 cell names and
IBM’s version of GDS).

The directory service is also useful to DCE applications. The client and server sides
of an application can use it to find each other’s locations. The directory service can
also be used to store information that must be made available in a globally
accessible, well-known place.

For example, one DCE application could be a print service consisting of a client
side application that makes requests for jobs to be printed, and a server-side
application that prints jobs on an available printer. The directory service could be
used as a central place where the print clients could look up the location of a print
server. It could also be used to store information about printers; for example, what
type of jobs a printer can accept and whether it is currently up or down and lightly
or heavily loaded.

In some ways, a directory service can be used in the same way that a file system
has traditionally been used; that is, for containing globally accessible information in
a well-known place. An example is the use of configuration information stored in
files in a UNIX /etc directory.

However, the directory service differs in important ways. It can be replicated so that
information is available even if one server goes down. Replicas can be kept
automatically up-to-date so that, unlike multiple copies of a file on different
machines, the information in the replicas of the directory service can be kept current
without manual intervention.

The directory service can also provide security for data that is kept in a globally
accessible place. It supports access control lists (ACLs) that provide fine-grained
control over who is able to read, modify, create, and perform other operations on its
data.

As you learn about the directory service and how to access it, think about the ways
in which your application can best take advantage of the services it provides.

DCE Directory Service Concepts

This section provides a description of DCE Directory Service concepts that are
important to application developers. The following concepts are intended to convey
general definitions that are applicable to the directory service as a whole rather than
specific to a particular directory service component. For more detailed definitions,
see the glossary in the IBM DCE Version 3.1 for AIX and Solaris: Introduction to
DCE.

v DCE namespace

The DCE namespace is the collection of names in a DCE environment. It can be
made up of several domains, in which different types of servers own the names
in different parts of the namespace. Typically, there are two high-level, or global,
domains to a DCE namespace: the GDS namespace and the Domain Name

4 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

System (DNS) namespace. At the next level is the CDS namespace, with names
contained in the cell’s CDS server. A DCE environment always contains a cell
namespace, which is implemented by CDS. Parts of the DCE namespace may
not be contained in any of the directory services; for example, the DFS (Directory
File Service) namespace, also called the filespace, contains the names of files
and directories in DFS, and the security namespace contains principals and
groups contained in the security server.

The term DCE namespace is used when referring to names, but not the
information associated with them. For example, it would include the name of a
printer in the directory service, but not its associated location attribute, and it
would include the name of a DFS file, but not its contents.

v Cell namespace

All of the names found in a single DCE cell constitute the cell’s namespace. This
includes names managed by the cell’s CDS server and security server, names in
the cell’s DFS if it has one, and any other names that reside within a particular
cell.

v Hierarchy

The DCE namespace is organized into a hierarchy; that is, each name except
the global root has a parent node and may itself have child nodes or leaves. The
leaves are called objects or entries, and, in the CDS and DFS namespace, the
nodes are called directories.

v Directory

The word directory has two meanings, which can be differentiated by their
context. The first is the node of a hierarchy as mentioned in the previous
definition. The second is a collection of objects managed by a directory service.

v Directory service

A directory service is software that manages names and their associated
attributes. A directory service can store information, be queried about information,
and be requested to change information. IBM DCE contains Cell Directory
Service (CDS) and interacts with DNS (not part of DCE).

v Junction

A junction is a point in the DCE namespace that contains binding information that
enables a client to connect to a service outside of CDS. It is a well-defined point
in the DCE namespace after which a server other than CDS controls. For
example, the point where the DFS entries are mounted into a CDS namespace is
a junction. DCE also has junctions between the global directory services and
CDS, and between CDS and the DCE Security Service.

v Object

The word object can have two meanings, depending on the context. Sometimes
it means an entry in a directory service. Sometimes it means a real object that an
entry in a directory service describes, such as a printer. In the context of
XDS/XOM, the requested data is returned to the application in one or more
interface objects, which are data structures that the application can manipulate.

v Entry

An entry is a unit of information in a directory service. It consists of a name and
associated attributes. For example, an entry could consist of the name of a
printer, its capabilities, and its network address.

– Class

In GDS, each entry has a class associated with it. The class determines what
type of entry it is and what attributes may be associated with it. Class is
optional in CDS.

Chapter 1. DCE Directory Service Overview 5

– Link

A link is one type of object class. This type of object is a pointer to another
object; it is similar to a soft link in a UNIX file system. A CDS link is similar to
a GDS alias.

v Attribute

If an object is like a complex data structure, then its attributes are analogous to
the separate member fields within that structure. Some of an object’s attributes
may be of significance only to the directory service that manages it. With
attributes such as these, a directory service implements objects that contain
various kinds of data about the directory itself, thus enabling the service to
organize the entries into a meaningful structure. For example, directory objects
can contain attributes whose values are other directory objects (called child
directories or subdirectories) in the directory. Or link objects can contain
attributes whose values are the names and internal identifiers of other directory
entries, making a link object’s entry name an alias of the other object to which its
attributes indirectly refer.

– Type

Every attribute is characterized as being of a certain type. The attribute is
used to hold a certain kind of data, such as a zip code or the name of a cat.
Entries can also be classified by type; for entries, the term used is class.

– Value

An attribute can have one or more values.

v Object identifier

Directory attributes are uniquely identified by object identifiers (OIDs), which are
administered by the International Organization for Standardization (ISO). In GDS,
OIDs are also used to identify object classes. When it creates new attribute
types, an application is responsible for tagging them with new, properly allocated
OIDs (see your directory service administrator for OID assignments). In CDS,
attribute types are identified by strings, that can be representations of OIDs. The
cds_attributes() file contains the string to OID mappings.

v Name

A DCE name corresponds to an entry in some service participating in the DCE
namespace, usually a directory service (see DCE Cell Namespace in the IBM
DCE Version 3.1 for AIX and Solaris: Administration Guide).

– Global name

A global name is a name that contains a path through one of the global
namespaces (GDS or DNS).

– Local name

A local name is a name that uses the cell prefix /.: to indicate the cell name
and therefore does not have a specific path through a global namespace. The
entry for a local name is always contained in the local cell.

v Access control list

Access to DCE namespace entries is determined by lists of entities that are
attached through the DCE Security Service to both the entries and the objects
when they are created. The lists, called access control lists (ACLs), specify the
privileges that an entity or group of entities has for the entry the ACL is
associated with. The security service provides servers with authenticated
identification of every entity that contacts them; it is then the server’s
responsibility to check the ACL attached to the object that the potential client
wants to access, and perform or refuse to perform the requested operation on
the basis of what it finds there. The ACLs are checked using security service
library routines.

6 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Objects in the GDS namespace have ACLs associated with them, but they are
not security service ACLs.

v Replication

The DCE Directory Service can keep replicas (copies) of its data on different
servers. This means that, if one server is unavailable, clients can still obtain
information from another server.

v Caching

Both the CDS and GDS components of the directory service support caching of
data on the client machine. When a client requests a piece of data from the
directory service for the first time, the information must be obtained over the
network from a server. However, the data can then be cached (stored) on the
local machine, and subsequent requests for the same data can be satisfied more
quickly by looking in the local cache instead of sending a request over the
network. You need to be aware of caching because in some cases you will want
to bypass the cache to ensure that the data you obtain is as up-to-date as
possible.

Structure of DCE Names

The following subsections describe the structure of the names found in a DCE
environment. DCE names can consist of several different parts, which reflect the
federated nature of the DCE namespace. A DCE name has some combination of
the following elements. They must occur in this order, but most elements are
optional.

v Prefix

v GDS cell name or DNS cell name

v GDS name or CDS name

v Junction

v Application name

A DCE name can be represented by a string that is a readable description of a
specific entry in the DCE namespace. The name is a string consisting of a series of
elements separated by / (slash). The elements are read from left to right. Each
consecutive element adds further specificity to the entry being described, until finally
one arrives at the rightmost element, which is the simple name of the entry itself.
Thus, in appearance, DCE names are similar to UNIX filenames.

In the discussion that follows, a DCE name element is the single piece of a name
string enclosed between a consecutive pair of slashes. For example, consider the
following string:

/.../C=US/O=OSF/OU=DCE/hosts/abc/self

In it, the following two substrings are both elements:

O=OSF

abc

The entire name contains (counting the ... element) a total of seven elements.

Chapter 1. DCE Directory Service Overview 7

In GDS, an element is called a relative distinguished name (RDN) and the entire
name is called a distinguished name (DN). In the preceding example, the attribute
type O stands for the Organization type OID, which is 2.5.4.10.

DCE Name Prefixes

The leftmost element of any valid DCE name is a root prefix. The appearance and
meaning of each is as follows:

/... This is the global root. It signifies that the immediately following elements
form the name of a global namespace entry. Usually, the entry’s contents
consist of binding information for a DCE cell (more specifically, for some
CDS server in the cell), and the name of the global entry is the name of the
cell.

/.: This is the cell root. It is an alias for the global prefix plus the name of the
local cell; that is, the cell in which the prefix is being used. It signifies that
the immediately following elements taken together form the name of a cell
namespace entry in the local cell.

/: This is the filespace root. It is an alias for the global prefix, the name of the
local cell, and the DFS junction.

DCE also supports a junction into the security service namespace, but there is no
alias for this junction.

A prefix by itself is a valid DCE name. For example, you can list the contents of the
/.: directory to see the top-level entries in the CDS namespace, and you can use a
file system command to list the contents of the /: directory to see the top-level
entries in the filespace.

Names of Cells

After the global root prefix, the next section of a DCE name contains the name of
the cell in which the object’s name resides. The name of a cell can be expressed
as either a GDS name or a DNS name, depending on which global directory service
(GDS or DNS) the cell is registered in. The following subsections provide examples.

GDS Cell Names

GDS elements always consist of a substring. Where an abbreviation or acronym in
capital letters is followed by a = (equal sign), that is followed by a string value.
These substrings represent pairs of attribute types and attribute values.

For example, consider the following global DCE name:

/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs

In it, the attribute= value form of the leftmost elements after the /... indicates that the
global part of the name is a GDS namespace entry, and that it ends after the
OU=DCE element; therefore, the rest of the name is in the /.../C=DE/O=SNI/OU=DCE
cell.

DNS Cell Names

If DNS is used as the global directory, a global name has a form like the following:

8 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

/.../cs.univ.edu/subsys/printers/docs

where the single element

cs.univ.edu

is the cell name; that is, the cell’s name in the DNS namespace.

Discovering Your Local Cell’s Name

A DCE cell consists of the machines that are configured into it; each DCE machine
belongs to one DCE cell. Your local cell is therefore the cell to which the machine
you are using belongs. Depending on the DCE name you are using, you can
access your own cell or other (foreign) cells. If the name you are accessing is
global, then its cell is explicitly named. If the name begins with the local cell prefix,
then you are accessing a name within your local cell. You can find out what cell you
are in by calling the dce_cf_get_cell_name() function.

Using the global directory services, applications can access resources and services
in foreign cells; however, applications most frequently use resources from their local
cell. If this is not the case, the cell boundaries may not have been well chosen.

CDS Names

After the cell name or cell root prefix, the next part of a DCE name is often a CDS
name. For example, consider the following name:

/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs

The CDS part of this name is

/subsys/druecker/docs

Another example is the name

/.../cs.univ.edu/subsys/printers/docs

In this name, the CDS part is

/subsys/printers/docs

The following strings show equivalent names that use the cell root prefix, assuming
that the name is used from within the /.../C=DE/O=SNI/OU=DCE and
/.../cs.univ.edu cells, respectively:

/.:/subsys/druecker/docs
/.:/subsys/printers/docs

GDS Names

Some names fall entirely in the GDS namespace. These names are pure X.500
(and therefore GDS) names, since each element consists of a type and an attribute.
The entries for these names are contained in a GDS server. The following is an
example of a pure GDS name:

Chapter 1. DCE Directory Service Overview 9

/.../C=US/L=Cambridge/CN=Kilroy

Junctions in DCE Names

Some junctions are implied in a DCE name; others can be seen. There is an
implied junction between the global prefix and either GDS or DNS. It occurs after
the global prefix. The junction between either of the global namespaces and the
local cell namespace is also implied. It occurs after the cell name. The junction
between the local cell namespace and either the DFS namespace or the security
namespace is shown by the symbol /fs or /sec , respectively. The following are
examples of visible junctions in DCE names:

/.:/fs/usr/snowpaws
/.../dce.osf.org/sec/principal/ziggy

Application Names

The part of a DCE name that occurs after a junction into a DCE application is the
application name. DFS and security names are the currently supported examples; in
the future, application programmers may also be able to create junctions in the
namespace.

DFS names occur after the DFS junction. They are typeless and resemble UNIX file
system names. After the global and CDS parts of a DFS name have been resolved
by the appropriate directory services, the rest of the DFS name is handled within
DFS. In the equivalent examples that follow, /usr/snowpaws is the DFS part of the
DCE name:

/.../dce.osf.org/fs/usr/snowpaws
/.:/fs/usr/snowpaws
/:/usr/snowpaws

Security names are similar to DFS names; first the parts of the name within the
DCE Directory Service are resolved, then the rest of the name is handled by the
security service. The entry is contained in the security registry database. Consider
the following:

/.:/sec/principal/ziggy

In this example, the security part of the DCE name is /principal/ziggy .

The Federated DCE Namespace

The DCE namespace is a single hierarchy of names, but the names can be
contained in many different services. Because several services cooperate to make
the DCE namespace, it is a federated namespace.

Figure 1 on page 11 shows a typical DCE namespace and the different services in
which names reside.

10 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The following sections describe the different domains of the DCE namespace.

The GDS Namespace

This section provides a brief overview of the main characteristics of the GDS
namespace regarded apart from the XDS interface used to access it.

In a GDS name such as

/.../C=US/O=OSF/OU=DCE

the C=US and O=OSF elements do not refer to directory entries that are fundamentally
different from the one represented by OU=DCE, unlike in CDS or the UNIX file
system.

Thus, in the name string

/C=US/O=OSF/OU=DCE

the element C=US refers to a one-level-down country entry whose value is US, then
to a two-levels-down organization entry whose value is OSF, and then to a
three-levels-down organization unit entry whose value is DCE. Concatenating these
elements results in a valid path of entries from the directory root to the DCE entry.
The entry itself is the namespace sign to a GDS directory object that contains
binding information for the /.../C=US/O=OSF/OU=DCE cell.

The GDS Schema

The schema defines the shape and format of entries in the GDS directory. It
contains four types of rules, which describe the following:

v The legal hierarchy of entries. What entries may be subordinate to other entries.
These rules are what prevents, for example, countries from being subordinate to
states.

v The allowable object classes, the mandatory and optional attributes of entries,
and which attributes are the naming attributes.

root

GDS DNS

CDSCDS

DFS Sec Sec

Figure 1. A Federated DCE Namespace

Chapter 1. DCE Directory Service Overview 11

v The allowable attribute types, associating a unique OID and an attribute syntax
with each attribute type.

v The syntaxes of attributes that describe what attribute values look like, such as
strings, numbers, or OIDs.

By installing the proper schema, an entry of any particular object class can have the
two attributes needed to identify a cell.

The CDS Namespace

The CDS namespace is the part of the DCE namespace that resides in the local
cell’s CDS. DCE itself is made up of components that, like the applications that use
them, are distributed client/server applications. These components rely on CDS to
make themselves available as services to DCE applications. This requires that the
structure of the cell namespace be stable, known, and have parts that are not
alterable by casual users or applications.

The CDS Schema

The cell namespace’s hierarchy model is different from the GDS model, and the
CDS rules do not enforce any particular model; CDS allows entries containing any
kind of data to be created anywhere in the namespace. Thus, CDS offers a
free-form namespace in which entries and directories can be organized as desired,
and in which any entry or directory can contain any attributes. The CDS
administrator can create additional directories, and applications can add object
entries as needed; applications cannot create CDS directory entries. Because of
this, and because the cell namespace is so important to the operation of the cell,
application developers and system administrators have more responsibility in
planning and regulating their use of it.

The cell namespace has a structure similar to that of a UNIX file system. The CDS
namespace is a tree of entries that grows from the root downward. The name
entries are organized under directory entries, which can themselves be subentries
of other directories. The cell root (represented by the prefix /.:) can be thought of as
the location you get when you dereference the cell’s global name. New directories
and new entries within the directories can be added anywhere in the tree, subject to
the restrictions mentioned previously.

CDS Entries and CDS Attributes

There are three different kinds of CDS entries that are of significance to application
programmers, as follows:

v Object

v Soft link

v Directory

The object entries are the most primitive form. These are where data is stored.
Directory entries contain other entries (that is, can have children) just like UNIX file
system directories. Soft link entries are essentially alias names for other directory or
object entries. Only object entries can be created by applications; soft links and
directories have to be created and manipulated with the cdscp command.

Thus, any CDS entry is defined as a directory, a soft link, or an object entry by the
presence of a certain combination of attributes belonging to that kind of entry. You
can use the cdscp command to get a display of all the attributes of any CDS entry.

12 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The term attribute as applied to namespace entry objects has roughly the same
meaning in CDS and GDS. The main difference is that CDS does not restrict or
control the combinations of attributes attached to entries written in its namespace.

Other Namespaces

For information about names contained in the DFS namespace (the filespace) and
the security namespace, refer to the chapters on those components in this guide.

Programming Interfaces to the DCE Directory Service

The following two subsections describe two programming interfaces for accessing
the DCE Directory Service.

The XDS Interface

The main programming interface to all services within the directory service is
XDS/XOM, as defined by X/Open. The calls correspond to the X.500 service
requests, including Read, List (enumerate children), Search, Add Entry, Modify
Entry, Modify RDN, and Remove Entry. XDS uses XOM to define and manipulate
data structures (called objects) used as the parameters to these calls, and used to
describe the directory entries manipulated by the calls. XOM is extremely flexible,
but also somewhat complex. The interfaces are used in different ways, depending
on which underlying directory service is being addressed. For example, CDS entries
are typeless, but GDS entries are typed. This difference is reflected in the use of
the interface.

The RPC Name Service Interface

The DCE Remote Procedure Call (RPC) facility supports an interface to the
directory service that is specific to RPC and is layered on top of directory service
interfaces; it is called the Name Service Independent (NSI) interface. NSI can
manipulate three object classes — entries, groups, and profiles — which were
created to store RPC binding information. NSI data is stored in CDS. Programming
using this interface is discussed in the IBM DCE Version 3.1 for AIX and Solaris:
Application Development Guide—Core Components and IBM DCE Version 3.1 for
AIX and Solaris: Application Development Guide—Introduction and Style Guide
volumes.

Namespace Junction Interfaces

For information about programming interfaces to names that occur in namespace
junctions, see the documentation for that component.

Chapter 1. DCE Directory Service Overview 13

14 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Part 2. CDS Application Programming

This section describes DCE Directory Service application programming in the CDS
namespace. It describes the contents of the CDS namespace, where applications
should put their data, and what the valid CDS characters and names are. It also
describes how to use the XDS programming interface to access data in the CDS
namespace.

© Copyright IBM Corp. 1990, 1999 15

16 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 2. Programming in the CDS Namespace

This chapter provides information about writing applications that use the XDS/XOM
interface to access the portion of the DCE namespace contained in CDS.

The XDS/XOM interface provides generalized access to CDS. However, if you only
need to use CDS to store information related to RPC (for example, storing the
location of a server so that clients can find it), you should use the NSI interface of
DCE RPC. NSI implements RPC-specific use of the namespace. For information on
using RPC NSI, see the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Guide—Core Components.

For information on the details of accessing the CDS namespace through the
XDS/XOM interface, see “Chapter 3. XDS and the DCE Cell Namespace” on
page 35.

Initial Cell Namespace Organization

The following subsections describe the organization of a cell’s namespace after it
has initially been configured. (For more information on configuring a cell, see the
IBM DCE Version 3.1 for AIX and Solaris: Administration Guide.)

Every DCE cell is set up at configuration with the basic namespace structure
necessary for the other DCE components to be able to find each other and to be
accessible to applications. The vital parts of the namespace are protected from
being accessed by unauthorized entities by ACLs that are attached to the entries
and directories.

Figure 2 on page 18 shows what the cell namespace looks like after a cell has been
configured and before any additional directories or entries have been added to it by
system administrators or applications. In the figure, ovals represent directories,
rectangles represent simple entries, circles represent soft links, and triangles
represent namespace junctions.

All of the simple entries shown in the figure are created for use with RPC NSI
routines; that is, they all contain server-binding information and exist to enable
clients to find servers. These are referred to as RPC entries.

Note that only the name entries (those in boxes) and junction entries (those in
triangles) are RPC entries. The directories (entries indicated by ovals) are normal
CDS directories.

Some of the namespace entries in the figure are intended to be used (if desired)
directly by applications; namely, /.:/cell-profile , /.:/lan-profile , and, through the /:
soft link alias, /.:/fs . The self and profile name entries under hosts also fall into
this category. Others, such as those under /.:/subsys/dce , are for the internal use
of the DCE components themselves.

Each of the entries is explained in detail in the following subsections. See the IBM
DCE Version 3.1 for AIX and Solaris: Administration Guide for detailed information
on the contents of the initial DCE cell namespace.

© Copyright IBM Corp. 1990, 1999 17

The Cell Profile

The /.:/cell-profile entry is an RPC profile entry that contains the default list of
namespace entries to be searched by clients trying to bind to certain basic services.
An RPC profile is a class of namespace entry used by the RPC NSI routines. When
a client imports bindings from such an entry, it imports, through the profile, from an
ordered list of RPC entries containing appropriate bindings. The list of entries is
keyed by their interface universal unique identifiers (UUIDs) so that only bindings to
servers offering the interface sought by the client are returned. The entries listed in
the profile exist independently in the namespace, and can be separately accessed
in the normal way. The profile is simply a way of organizing clients’ searches.

The main purpose of cell-profile is as a path of last resort for prospective clients.
All other profile entries in the cell namespace are required to have the cell-profile
entry in their entry lists so that, if a client exhausts a particular profile’s list of
entries, it tries those in cell-profile.

/.:/: Cell RootSoft Link to DFS

cell-profile

lan-profile

cdshostname_ch

hosts

subsys

fs

sec
hostname

self

profile

cds-clerk

cds-server

dce

dfs sec

bak master

Figure 2. The Cell Namespace After Configuration

18 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The LAN Profile

The /.:/lan-profile entry is a local area network (LAN)-oriented default list of
services’ namespace entries that is used when servers’ relative positions in the
network topography are of importance to their prospective clients.

The CDS Clearinghouse

The /.:/cdshostname_ch entry is the namespace entry for cdshostname’s
clearinghouse, where cdshostname is the name of the host machine on which a
CDS server is installed.

A clearinghouse is the database managed by a CDS server; it is where CDS
directory replicas are physically stored. For more information about clearinghouses,
see the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide. All
clearinghouse namespace entries reside at the cell root, and there must be at least
one in a DCE cell. The first clearinghouse’s name must be in the form shown in
Figure 2 on page 18, but additional clearinghouses can be named as desired.

The Hosts Directory

The /.:/hosts entry is a directory containing entries for all of the host machines in
the cell. Each host has a separate directory under hosts; its directory has the same
name as the host machine. Four entries are created in each host’s directory:

v self

This entry contains bindings to the host’s DCE daemon (dced), which is
responsible for, among other things, dynamically resolving the partial bindings
that it receives in incoming RPCs from clients attempting to reach servers
resident on this host.

v profile

This entry is the default profile entry for the host. This profile contains in its list of
entries at least the /.:/cell-profile entry described in “The Cell Profile” on
page 18.

v cds-clerk

This entry contains bindings to the host’s resident CDS clerk.

v cds-server

This entry contains bindings to a CDS server.

The Subsystems Directory

The /.:/subsys entry is the directory for subsystems. Subdirectories below subsys
are used to hold entries that contain location-independent information about
services, particularly RPC binding information for servers.

The dce directory is created below /.:/subsys at configuration. This directory
contains directories for the DCE Security Service and Directory File Service (DFS)
components. The functional difference between these two directories and the fs
and sec junctions described on page “The DFS and DCE Security Service
Junctions” on page 20 is that the latter two entries are the access points for the
components’ special databases, whereas the directories under subsys/dce contain
the services’ binding information.

Chapter 2. Programming in the CDS Namespace 19

Subsystems that are added to DCE should place their system names in directories
created beneath the /.:/subsys directory. Companies adding subsystems should
conform to the convention of creating a unique directory below subsys by using
their trademark as a directory name. Use these directories for storage of
location-independent information about services. You should store server entries,
groups and profiles for the entire cell in the directories below subsys . For example,
International Air Freight-supplied subsystems should be placed in /.:subsys/IAF .

The /: DFS Alias

The entry /: is created and set up as a soft link to the /.:/fs entry, which is the DFS
database junction. The name /: is equivalent to /.:/fs . Note, however, that the name
/: is well-known, whereas the name /.:/fs is not, so using /: makes an application
more portable. A CDS soft link entry is an alias to some other CDS entry. A soft link
is created through the cdscp command. The procedure is described in the IBM
DCE Version 3.1 for AIX and Solaris: Administration Guide.

The DFS and DCE Security Service Junctions

The /.:/fs entry is the DFS junction entry. This is the entry for a server that manages
the DFS file location database.

The /.:/sec entry is the DCE Security Service junction entry. This is the entry for a
server that manages the security service database (also called the registry
database).

The /.:/fs and /.:/sec root entries in Figure 2 on page 18 are junctions maintained by
DCE components. The /.:/sec junction is the security service’s namespace of
principal identities and related information. The DFS’s fileset location servers are
reached through the /.:/fs entry, making /.:/fs effectively the entry point into the
cell’s distributed file system.

Note that /.:/sec and /.:/fs are both actually RPC group entries; the junctions are
implemented by the servers whose entries are members of the group entries. (See
the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide for further
details on the security service and DFS junctions.)

Recommended Use of the CDS Namespace

CDS data is maintained in a consistently loose manner. This means that, when the
writeable copy of a replicated name is updated, the read-only copies might not be
updated for some period of time, and applications reading from those
nonsynchronized copies can receive stale data. This is in contrast to distributed
databases, which use multiphase commit protocols that prevent readers from
accessing potentially stale or inconsistent data while the writes are being
propagated to all copies of the data. It is possible to specifically request data from
the master copy, which is guaranteed to be up-to-date, but replication advantages
are then lost. This should only be done when it is important to obtain current data.

Storing Data in CDS Entries

Some CDS entries may contain information that is immediately useful or meaningful
to applications. Other entries may contain RPC information that enables application

20 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

clients to reach application servers; that is, binding handles for servers, which are
stored and retrieved using the RPC NSI routines. In either case, the entry’s name
should be a meaningful identification label for the information that the entry
contains. This is because the namespace entry names are the main clue that users
and applications have to the available set of resources in the DCE cell. Using the
CDS namespace to store and retrieve binding information for distributed
applications is the function of DCE RPC NSI.

In general, applications can store data into CDS object entry attributes in any
XDS-expressible form they wish. Refer to Table 6 on page 74 and Table 7 on
page 75 for XDS-to-CDS data type translations. If you add new attributes to the
/opt/dcelocal/etc/cds_attributes file, together with a meaningful CDS syntax (that
is, a data type identifier) and name, then the attribute is displayed with the string
representation of the OID by cdscp show commands when executed on objects
containing instances of that attribute. If the attribute has not been added to
cds_attributes() , then the OID is displayed.

There are three main questions to consider when using CDS to store data through
application calls to XDS:

1. Where in the CDS namespace should the new entries be placed?

You are free to create new directories as long as you do not disturb the
namespace’s configured structure. Keep in mind that CDS directories must be
created with the cdscp or dcecp command; they cannot be created by
applications.

Only two root-level directories are created at configuration: hosts and subsys .
Applications should not add entries under the hosts tree; the host’s default
profile should instead be set up by a system administrator. The subsys
directory is intended to be populated by directories (for example,
/.:/subsys/dce) in which the servers and other components of independent
vendors’ distributed products are accessed. Thus, the typical cell should usually
have a series of root-level CDS directories that represent a reasonable division
of categories.

One obvious division could be between entries intended for RPC use (that is,
namespace entries that contain bindings for distributed applications), and entries
that contain data of other kinds. On the other hand, it may be very useful to add
supplementary data attributes to RPC entries in which various housekeeping or
administrative data can be held. In this way, for example, performance data for
printers can be associated with the print servers’ name entries. You can either
add new attributes to the server entries themselves, where, for example, the
following is the name of a server entry that receives the new attributes:

/.:/applications/printers/pr1

Or you can change the subtree structure so that new entries are added to hold
the data, the server bindings are still held in separate wholly RPC entries, and
each group of entries is located under a directory named for the printer:

/.:/applications/printers/pr1
— directory
/.:/applications/printers/pr1/server
— server bindings
/.:/applications/printers/pr1/stats
— extra data

In general, the same principals of logic and order that apply to the organization
of a file system apply to the organization of a namespace. For example, server

Chapter 2. Programming in the CDS Namespace 21

entries should not be created directly at the namespace root because this is the
place for default profiles, clearinghouse entries, and directories.

Figure 3 illustrates some of the preceding suggestions, added to the initial
configuration namespace structure shown in Figure 2 on page 18. In Figure 3,
the vendor of the xyz subsystem has set up an xyz directory under /.:/subsys in
which the system’s servers are exported. This cell also has an /.:/applications
directory in which the printers directory contains separate directories for each
installed printer available on the system; the directory for pr1 is illustrated in the
figure. In the pr1 directory, server is an RPC entry containing exported binding
handles, and stats is an entry created and maintained through the XDS
interface.

2. How should the entries be constructed?

Because CDS allows you to add as many attributes as you wish to an object
entry, it is up to you to impose some restraint in doing this. In view of the XDS
overhead involved in reading and writing single CDS attributes, it makes sense
to combine multiple related attributes under single entries (that is, in the same
directory object) where they can be read and written in single calls to

Soft Link to DFS /: /.: Cell Root

cell-profile

lan-profile

cdshostname_ch

hosts

subsys fs sec

dce

applications
xyz

xyz-serverxyz-view

xyz-report
printers

pr1

server

stats

Figure 3. A Possible Namespace Structure

22 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

ds_read() or ds_modify_entry() . This way, for example, you only have to
create one interface input object (to pass to ds_read()) to read all the
attributes, which you can do with one call to ds_read() . You can then separate
out the returned subobjects that you are interested in and ignore the rest.
“Chapter 3. XDS and the DCE Cell Namespace” on page 35 contains detailed
discussions of XDS programming techniques.

In any case, you should define object types for use in applications so that
namespace access operations can be standardized and kept efficient. A CDS
object type consists of a specific set of attributes that belong to an object of that
type, with no other attributes allowed. Note again that CDS, unlike GDS, does
not force you to do things this way. You could theoretically have hundreds of
CDS object entries, each of which would contain a different combination of
attributes.

3. Should a directory or an entry be created?

When you consider adding information to the namespace, you can choose
between creating a new directory, possibly with entries in it, or creating simply
one or more entries. When making your decision, take into consideration the
following:

a. Directories cannot be created using XDS; they must be created using
administrative commands. Directories are more expensive; they take up
more space and take more time to access. However, they can contain
entries and can therefore be used to organize information in the namespace.

b. Entries can be created using XDS and they are cheaper to create and use
than directories. However, they must be created in existing directories, and
cannot themselves contain other entries.

Access Control for CDS Entries

Each object in the CDS namespace is automatically equipped with a mechanism by
which access to it can be regulated by the object’s owner or by another authority.
For each object, the mechanism is implemented by a separate list of the entities
that can access the object in some way; for example, to read it, write to it, delete it,
and so on. Associated with each entity in this list is a string that specifies which
operations are allowed for that entity on the object. The object’s list is automatically
checked by CDS whenever any kind of access is attempted on that object by any
entity. If the entity can be found in the object’s list, and if the kind of access the
entity intends is found among its permissions, then the operation is allowed to
proceed by CDS; otherwise, it is not allowed.

DCE permission lists are called access control lists (ACLs). ACLs are one of the
features of the DCE Security Service used by CDS. ACLs are used to test the
entities’ (that is, the principals’) authorization to do things to the objects they
propose to do them to. The authorization mechanism for all CDS objects is handled
by CDS itself. All that users of the CDS namespace have to do is make sure that
ACLs on the CDS objects that they create are set up with the appropriate
permissions.

Creation of ACLs

Whenever you create a new entry in the CDS namespace, an ACL is created for it
implicitly, and its initial list of entries and their permission sets are determined by
the ACL templates associated with the CDS directory in which you create the entry.

Each CDS directory has the following two ACL templates associated with it:

Chapter 2. Programming in the CDS Namespace 23

v Initial Container

This template is used to generate the initial ACL for any directories created within
the directory.

v Initial Object

This template is used to generate ACLs for entries created within the directory.

Like other CDS objects, each CDS directory also has its own ACL, generated from
the parent directory’s Initial Container template when the child directory is created.
The Initial Container template also serves as a template for the child directories’
own Initial Container templates.

Manipulating ACLs

There are three ways to manipulate ACLs:

v acl_edit command (see the acl_edit(8sec) reference pages)

v dcecp command (see the dcecp(8dce) reference pages)

v DCE ACL application interface (see the sec_acl_*(3sec) reference pages)

Initializing ACLs

After creating a CDS directory by using the cdscp or dcecp command, your first
step is usually to run the acl_edit command to set up the new directory’s ACLs the
way you want them. (The new directory will have inherited its ACLs and its
templates from the directory in which it was created, as explained in “Creation of
ACLs” on page 23.) You may want to modify not only the directory’s own ACLs, but
also its two templates. To edit the latter, you can specify the -ic option (for the Initial
Container template) or the -io option (for the Initial Object template); otherwise, you
will edit the object ACL.

You can modify a directory’s ACL templates from an application, assuming that you
have control permission for the object, with the same combination of
sec_acl_lookup() and sec_acl_replace() calls as for the object ACL. An option
to these routines lets you specify which of the three possible ACLs on a directory
object you want the call applied to. The ACLs themselves are in identical format.

The -e (entry) option to acl_edit can be used to make sure that you get the ACL for
the specified namespace entry object, and not the ACL (if any) for the object that is
referenced by the entry. This distinction has to be made clear to acl_edit because it
finds the object (and hence the ACL) in question by looking it up in the namespace
and binding to its ACL manager. Essentially, the -e option tells acl_edit whether it
should bind to the CDS ACL manager (if the entry ACL is wanted), or to the
manager responsible for the referenced object’s ACL. This latter manager would be
a part of the server application whose binding information the entry contained.

An example of such an ambiguous name would be a CDS clearinghouse entry,
such as the cdshostname_ch entry discussed previously. With the -e option, you
would edit the ACL on the namespace entry, as follows:

acl_edit -e /.:/cdshostname_ch

Without the -e option, you would edit the ACL on the clearinghouse itself, which you
presumably do not want to do.

Similarly, there is a bind_to_entry parameter by which the caller of sec_acl_bind()
can indicate whether the entry object’s ACL or the ACL to which the entry refers is

24 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

desired. For further details on binding ambiguity, see IBM DCE Version 3.1 for AIX
and Solaris: Application Development Reference.

Namespace ACLs at Cell Configuration

The ACLs attached to the CDS namespace at configuration are described in IBM
DCE Version 3.1 for AIX and Solaris: Administration Guide. The following ACL
permissions are defined for CDS objects. The single letter in parentheses for each
item represents the DCE notation for that permission. These single letters are
identical to the untokenized forms returned by sec_acl_get_printstring() .

v read (r)

This permission allows a principal to look up an object entry and view its attribute
values.

v write (w)

This permission allows a principal to change an object’s modifiable attributes,
except for its ACLs.

v insert (i)

This permission allows a principal to create new entries in a CDS directory. It is
used with directory entries only.

v delete (d)

This permission allows a principal to delete a name entry from the namespace.

v test (t)

This permission allows a principal to test whether an attribute of an object has a
particular value, but does not permit it actually to see any of the attribute values
(in other words, read permission for the object is not granted). The test
permission allows an application to verify a particular CDS attribute’s value
without reading it.

v control (c)

This permission allows a principal to modify the entries in the object’s ACL. The
control permission is automatically granted to the creator of a CDS object.

v administer (a)

This permission allows a principal to issue cdscp commands that control the
replication of directories. It is used with directory entries only.

Detailed instructions on the mechanics of setting up ACLs on CDS objects can be
found in the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide.

For CDS directories, read and test permissions are sufficient to allow ordinary
principals to access the directory and to read and test entries therein. Principals
who you want to be able to add entries in a CDS directory should have insert
permission for that directory. Entries created by the RPC NSI routines (for example,
when a server exports bindings for the first time) are automatically set up with the
correct permissions. However, if you are creating new CDS directories for RPC use,
be sure to grant prospective user principals insert permission to the directory so
that servers can create entries when they export their bindings. A general list of the
permissions required for the various RPC NSI operations as well as the RPC NSI
routines (all of whose names are in the form rpc_ns_...) are located in the IBM
DCE Version 3.1 for AIX and Solaris: Application Development Reference.

Note that CDS names do not behave the same way as file system names. A
principal does not need to have access to an entire entry name path in order to
have access to an entry at the end of that path. For example, a principal can be
granted read access to the following entry:

Chapter 2. Programming in the CDS Namespace 25

/.:/applications/utilities/pr2

and yet not have read access to the utilities directory itself.

Valid Characters and Naming Rules for CDS

The following subsections discuss the valid character sets for DCE Directory
Service names as used by CDS interfaces. They also explain some characters that
have special meaning and describe some restrictions and rules regarding case
matching, syntax, and size limits.

The use of names in DCE often involves more than one directory service. For
example, CDS interacts with either GDS or DNS to find names outside the local
cell.

Figure 4 on page 27 details the valid characters in CDS names, and the valid
characters in GDS and DNS names as used by CDS interfaces.

Note: Because CDS, GDS, and DNS all have their own valid character sets and
syntax rules, the best way to avoid problems is to keep names short and
simple, consisting of a minimal set of characters common to all three
services. The recommended set is the letters A to Z, a to z, and the digits 0
to 9. In addition to making directory service interoperations easier, use of this
subset decreases the probability that users in a heterogeneous hardware
and software environment will encounter problems creating and using
names.

Although spaces are valid in both CDS and GDS names, a CDS simple name
containing a space must be enclosed in ″″ (double quotes) when you enter it
through the CDS control program. Additional interface-specific rules are
documented in the modules where they apply.

26 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Metacharacters

Certain characters have special meaning to the directory services; these are known
as metacharacters. Table 1 on page 28 lists and explains the CDS, GDS, and DNS
metacharacters.

Key: Valid in CDS, GDS, and DNS names
Valid only in CDS and GDS names
Valid only in CDS names

SP

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Figure 4. Valid Characters in CDS, GDS, and DNS Names

Chapter 2. Programming in the CDS Namespace 27

Table 1. Metacharacters and Their Meaning
Directory
Service

Character Meaning

CDS / Separates elements of a name (simple names).
* When used in the rightmost simple name of a name

entered in a cdscp show or list command, acts as a
wildcard, matching zero or more characters.

? When used in the rightmost simple name of a name
entered in a cdscp show or list command, acts as a
wildcard, matching exactly one character.

\ Used where necessary in front of * (asterisk) or ?
(question mark) to escape the character (indicates that
the following character is not a metacharacter).

GDS / Separates RDNs.
, Separates multiple attribute type/value pairs (attribute

value assertions) within an RDN.
= Separates an attribute type and value in an attribute

value assertion.
\ Used in front of / (slash), , (comma), or = (equal sign)

to escape the character (indicates that the following
character is not a metacharacter).

DNS . Separates elements of a name.

Some metacharacters are not permitted as normal characters within a name. For
example, a \ (backslash) cannot be used as anything but an escape character in
GDS. You can use other metacharacters as normal characters in a name, provided
that you escape them with the backslash metacharacter.

Additional Rules

Table 2 summarizes major points to remember about CDS, GDS, and DNS
character sets, metacharacters, restrictions, case-matching rules, internal storage of
data, and ordering of elements in a name. For additional details, see the
documentation for each technology.

Table 2. Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Character Set a to z, A to Z, 0 to 9
plus space and special
characters shown in
Figure 4 on page 27

a to z, A to Z, 0 to 9
plus . : , ’ + − = () ?
/ and space

a to z, A to Z, 0 to 9
plus . −

Metacharacters / * ? \ / , = \ .

28 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 2. Summary of CDS, GDS, and DNS Characteristics (continued)

Characteristic CDS GDS DNS

Restrictions Simple names cannot
contain slashes. The
first simple name
following the global cell
name (or /.: prefix)
cannot contain an
equal sign. When
entering a name as
part of a cdscp show
or list command, you
must use a backslash
to escape any asterisk
or question mark
character in the
rightmost simple name.
Otherwise, the
character is interpreted
as a wildcard.

Relative distinguished
names cannot begin or
end with a slash.
Attribute types must
begin with an
alphabetic character,
can contain only
alphanumerics, and
cannot contain spaces.
An alternate method of
specifying attribute
types is by object
identifier, a sequence of
digits separated by .
(dots). You must use
backslash to escape a
slash, a comma, and
an equal sign when
using them as anything
other than
metacharacters.
Multiple consecutive
unescaped occurrences
of slashes, commas,
equal signs and
backslashes are not
allowed. Each attribute
value assertion
contains exactly one
unescaped equal sign.

The first character must
be alphabetic. The first
and last characters
cannot be . (dot) or –
(dash). Cell names in
DNS must contain at
least one dot; they
must be more than one
level deep.

Case-Matching
Rules

Case exact Attribute types are
matched case
insensitive. The
case-matching rule for
an attribute value can
be case exact or case
insensitive, depending
on the rule defined for
its type at the DSA.

Case insensitive

Internal
Representation

Case exact Depends on the
case-matching rule
defined at DSA. If the
rule says case
insensitive, alphabetic
characters are
converted to all
lowercase characters.
Spaces are removed
regardless of the
case-matching rule.

Alphabetic characters
are converted to all
lowercase characters.

Ordering of
Name Elements

Big endian (left to right
from root to lower-level
names).

Big endian (left to right
from root to lower-level
names).

Little endian (right to
left from root to
lower-level names).

Chapter 2. Programming in the CDS Namespace 29

Maximum Name Sizes

Table 3 lists the maximum sizes for directory service names. Note that the limits are
implementation specific, not architectural.

Table 3. Maximum Sizes of Directory Service Names

Name Type Maximum Bytes

CDS simple name (character string between two slashes) 254

CDS full name (including global or local prefix, cell name,
and slashes separating simple names)

1023

GDS relative distinguished name 64

GDS distinguished name 1024

DNS relative name (character string between two dots) 64

DNS fully qualified name (sum of all relative names) 255

Valid Characters for GDS Attributes

This section describes the valid character sets for the GDS attributes.

The values of the country attributes are restricted to the ISO 3166 Alpha-2 code
representation of country names. (For more information, see the IBM DCE Version
3.1 for AIX and Solaris: Administration Guide.)

The character set for all other naming attributes is the T61 graphical character set.
It is described in the next section.

T61 Syntax

The following table shows the T61 graphical character set.

Note: The 1) entry in the table indicates that it is not recommended that you use
the codes in Column 2 Row 3, and Column 2 Row 4. Instead, use the
appropriate code in Column A.

30 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The administration interface supports only characters smaller than 0x7e for names.
The XDS application programming interface (API) supports the full T61 range as
indicated in the preceding table.

Some T61 alphabetical characters have a 2-byte representation. For example, a
lowercase letter a with an acute accent is represented by 0xc2 (the code for an
acute accent) followed by 0x61 (the code for a lowercase a).

Only certain combinations of diacritical characters and basic letters are valid. They
are shown in Figure 6 on page 32.

0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1 2

SP

"

1)

1)

%

&

'

(

)

!

*

+

,

-

.

/

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

]

_

6

a

b

c

d

e

f

g

h

i

j

K

l

m

n

o

7

p

q

r

s

t

u

v

w

x

y

z

|

8 9 A

¡

¢

$

#

§

«

B

±

²

³

×

µ

÷

»

½

¼

¾

¿

C

`

´

â

~

¯ ^

^

¨

–

”

—

¸

D E

W

Æ

ª

H

Î

L

Ø

Œ

T

º

h

'n

F

K

æ

d

h

Ï

l

ø

œ

ß

t

þ

h

Figure 5. T61 Syntax

Chapter 2. Programming in the CDS Namespace 31

The nonspacing underline (code 0xcc) must be followed by a Latin alphabetical
character; that is, a basic letter (a to z or A to Z), or a valid diacritical combination.

Use of OIDs

OIDs are not seen by applications that restrict themselves to using only the RPC
NSI routines (rpc_ns_...()), but these identifiers are important for applications that
use the XDS interface to read entries directly or to create new attributes for use
with namespace entries.

RPC makes use of only four different entry attributes in various application-specified
or administrator-specified combinations. CDS, however, contains definitions for
many more than these, which can be added by applications to RPC entries through
the XDS interface. Attributes that already exist are already properly identified so
applications that use these attributes do not have to concern themselves with the
OIDs, except to the extent of making sure that they handle them properly.

Unlike UUIDs, OIDs are not generated by command or function call. They originate
from ISO, which allocates them in hierarchically organized blocks to recipients.
Each recipient, typically some organization, is then responsible for ensuring that the
OIDs it receives are used uniquely.

For example, the following OID block was allocated to OSF by ISO:

1.3.22

Name

grave accent a, A, e, E, i, I, o, O, u, U

acute accent a, A, c, C, e, E, g, i, I, l, L, n, N,

o, O, r, R, s, S, u, U, y, Y, z, Z

circumflex

accent

a, A, c, C, e, E, g, G, h, H, i, I, j, J,

o, O, s, S, u, U, w, W, y, Y

tilde a, A, i, I, n, N, o, O, u, U

macron a, A, e, E, i, I, o, O, u, U

breve a, A, g, G, u, U

dot above c, C, e, E, g, G, I, z, Z

umlaut a, A, e, E, i, I, o, O, u, U, y, Y

ring a, A, u, U

cedilla c, C, G, k, K, l, L, n, N, r, R, s, S, t, T

double accent o, O, u, U

ogonek a, A, e, E, i, I, u, U

caron c, C, d, D, e, E, l, L, n, N, r, R, s, S,

t, T, z, Z

Repr.

`

´

´

^

~

`
∪

×

¨

°

²

Code

0xc2

0xc1

0xc3

0xc4

0xc5

0xc6

0xc7

0xc8

0xca

0xcb

0xcd

0xce

0xcf

Valid Basic Letters Following

^

¸

Figure 6. Combinations of Diacritical Characters and Basic Letters

32 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OSF can therefore generate, for example, the following OID and allocate it to
identify some DCE directory object:

1.3.22.1.1.4

(The OID 1.3.22.1.1.4 identifies the RPC profile entry object attribute.) OSF is
responsible for making sure that 1.3.22.1.1.4 is not used to identify any other
attribute. Thus, as long as all OIDs are generated only from within each owner’s
properly obtained block, and as long as each block owner makes sure that the
OIDs generated within its block are properly used, each OID will always be a
universally valid identifier for its associated value.

OIDs are encoded and internally represented as strings of hexadecimal digits, and
comparisons of OIDs have to be performed as hexadecimal string comparisons (not
as comparisons on NULL-terminated strings since OIDs can have NULL bytes as
part of their value).

When applications have occasion to handle OIDs, they do so directly because the
numbers do not change and should not be reused. However, for users’
convenience, CDS also maintains a file (called cds_attributes, found in
/opt/dcelocal/etc) that lists string equivalents for all the OIDs in use in a cell in
entries like the following one:

1.3.22.1.1.4 RPC_Profile byte

This allows users to see RPC_Profile in output, rather than the meaningless string
1.3.22.1.1.4. Further details about the cds_attributes file and OIDs can be found
in the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide.

In summary, the procedure you should follow to create new attributes on CDS
entries consists of three steps:

1. Request and receive from your locally designated authority the OIDs for the
attributes you intend to create.

2. Update the cds_attributes file with the new attributes’ OIDs and labels if you
want your application to be able to use string name representations for OIDs in
output.

3. Using XDS, write the routines to create, add, and access the attributes.

Note: The XDS interface does not look at the cds_attributes() file; therefore,
entries cannot be referenced by the string name. You must use the actual
OID or define the OID in a header file used by the application.

Your cell administrator should be able to provide you with a name and an OID. The
name is a guaranteed-unique series of values for a global directory entry name. If
the directory is GDS, the name is a series of type/value pairs, such as

C=US O=OSF

The cell administrator can also obtain an OID block. From this OID space, the
administrator can assign you the OIDs you need for your application.

Note that there is no need for new OIDs in connection with cell names. The OIDs
for Country Name and Organization Name are part of the X.500 standard
implemented in GDS; only the values associated with the OIDs (the values of the
objects) change from entry name to entry name. Instead, being able to generate

Chapter 2. Programming in the CDS Namespace 33

new OIDs gives you the ability to invent and add new details to the directory itself.
For example, you can create new kinds of CDS entry attributes by generating new
OIDs to identify them. The same thing can be done to GDS, although the procedure
is more complicated because it involves altering the directory schema.

34 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 3. XDS and the DCE Cell Namespace

This chapter describes the use of the XDS programming interface when accessing
the CDS namespace. The first section provides an introduction to using XDS in the
CDS namespace. XDS objects describe XDS objects and how they are used to
access CDS data. Accessing CDS using XDS provides a step-by-step procedure for
writing an XDS program to access CDS. Object—handling techniques provides
examples of using the XOM interface to manipulate objects. XDS/CDS object
recipes provides details of the structure of XDS/CDS objects. Finally, attribute and
data type translation, provides translation tables between XDS and CDS for
attributes and data types.

Introduction to Accessing CDS with XDS

Outside of the DCE cells and their separate namespaces is the global namespace
in which the cell names themselves are entered, and where all intercell references
are resolved. Two directory services participate in the global namespace. The first is
the X.500-compliant GDS. The second is DNS, with which DCE interacts, but it is
not a part of DCE.

The global and cell directory services are accessed implicitly by RPC applications
using the NSI interface. GDS and CDS can also be accessed explicitly by using the
XDS interface. With XDS, application programmers can gain access to GDS, a
powerful general-purpose distributed database service, which can be used for many
other things besides intercell binding. XDS can also be used to access the cell
namespace directly, as this chapter describes.

An XDS application looks very different from the RPC-based DCE applications. This
is partly because there is no dependency in XDS on the DCE RPC interface,
although you can use both interfaces in the same application. Also, XDS is a
generalized directory interface, oriented more toward performing large database
operations than toward fine-tuning the contents of RPC entries. Nevertheless, XDS
can be used as a general access mechanism on the CDS namespace.

Using the Reference Material in This Chapter

Complete descriptions of all the XDS and XOM functions used in CDS operations
can be found in the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Reference, which you should have beside you as you read through
the examples in this chapter. In particular, refer to that manual for information about
XDS error objects, which are not discussed in this chapter.

Complete descriptions for all objects required as input parameters by XDS functions
when accessing a CDS namespace can be found in “XDS/CDS Object Recipes” on
page 63. Abbreviated definitions for these same objects can be found with all the
others in “Part 4. XDS/XOM Supplementary Information” on page 179. XOM
functions are general-purpose utility routines that operate on objects of any class,
and take the rest of their input in conventional form.

Slightly less detailed descriptions of the output objects you can expect to receive
when accessing CDS through XDS are also given in “XDS/CDS Object Recipes” on
page 63. You do not have to construct objects of these classes yourself; you just
have to know their general structure so that you can disassemble them using XOM
routines.

© Copyright IBM Corp. 1990, 1999 35

No information is given in this chapter about the DS_status error objects that are
returned by unsuccessful XDS functions; a description of all the subclasses of
DS_status requires a chapter in itself. Code for a rudimentary general-purpose
DS_status handling routine is located in the cds_xmpl.c XDS sample program in
the /opt/dcelocal/examples/xdsxon directory.

What You Cannot Do with XDS

XDS allows you to perform general operations on CDS entry attributes, something
which you cannot do through the DCE RPC NSI interface. However, there are
certain things you cannot do to cell directory entries even through XDS:

v You cannot create or modify directory entries; the ds_modify_rdn() function
does not work in a CDS namespace. These operations must be performed
through the CDS control program (cdscp) or DCE control program (dcecp). For
more information, see the IBM DCE Version 3.1 for AIX and Solaris:
Administration Commands Reference.

v You cannot perform XDS searches on the cell namespace; the XDS function
ds_search() does not work. This is mainly because the CDS has no concept of
a hierarchy of entry attributes, such as the X.500 schema. The ds_compare()
function, however, does work.

v You cannot modify ACL entries in the cell namespace.

Registering A Nonlocal Cell

If you are planning to use XDS to access the cell namespace in a one-cell
environment (that is, your cell does not need to communicate with other DCE cells),
you do not need to set up a cell entry in GDS for your cell because the XDS
functions simply call the appropriate statically linked CDS routines to access the cell
namespace. XDS, in conjunction with CDS, is able to recognize the local cell
portion of a name in the cell namespace without help from GDS or DNS. You need
to specify the complete name for the interface object DS_C_DS_DN; omitting the
cell name portion of the name is not allowed. See a description of the
DS_C_DS_DN object in “Building a Name Object” on page 42.

For XDS to be able to access any nonlocal cell namespace, that cell must be
registered (that is, have an entry) in the global namespace. GDS is not provided in
DCE AIX version 4.1 and greater.

For information on setting up your cell name, see the IBM DCE Version 3.1 for AIX
and Solaris: Administration Guide.

XDS Objects

The XDS interface differs from the other DCE component interfaces in that it is
object oriented. The following subsections explain two things: first, what
object-oriented programming means in terms of using XDS; and second, how to use
XDS to access CDS.

Imagine a generalized data structure that always has the same data type, and yet
can contain any kind of data, and any amount of it. Functions could pass these
structures back and forth in the same way all the time, and yet they could use the
same structures for any kind of data they wanted to store or transfer. Such a data

36 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

structure, if it existed, would be a true object. Programming language constructs
allow interfaces to pretend that they use objects, although the realities of
implementation are not usually so simple.

XDS is such an interface. For the most part, XDS functions neither accept nor
return values in any form but as objects. The objects themselves are indeed always
the same data type; namely, pointers to arrays of object descriptor (C struct)
elements. Contained within these OM_descriptor element structures are unions that
can actually accommodate all the different kinds of values an object can be called
on to hold. In order to allow the interface to make sense of the unions, each
OM_descriptor also contains a syntax field, which indicates the data type of that
descriptor’s union. There is also a record of what the descriptor’s value actually is;
for example, whether it is a name, a number, an address, a list, and so on. This
information is held in the descriptor’s type field.

These OM_descriptor elements, which are referred to as object descriptors or
descriptors, are the basic building blocks of all XDS objects; every actual XDS
object reduces to arrays of them. Each descriptor contains three items:

v A type field, which identifies the descriptor’s value

v A syntax field, which indicates the data type of the value field

v The value field, which is a union

Figure 7 illustrates one such object descriptor.

Note that, from an abstract point of view, syntax is just an implementation detail.
The scheme really consists only of a type/value pair. The type gives an identity to
the object (something like CDS entry attribute, CDS entry name, or DUA access
point), and the value is some data associated with that identity, just as a variable
has a name that gives meaning to the value it holds, and the value itself.

In order to make the representation of objects as logical and as flexible as possible,
these two logical components of every object, type and value, are themselves each
represented by separate object descriptors. Thus, the first element of every
complete object descriptor array is a descriptor whose type field identifies its value
field as containing the name of the kind (or class) of this object, and the syntax field
indicates how that name value should be read. Next is usually one (or more, if the
object is multivalued) object descriptor whose type field identifies its value field as
containing some value appropriate for this class of object. Finally, every complete
object descriptor array ends with a descriptor element that is identified by its fields
as being a NULL-terminating element.

Thus, a minimum-size descriptor array consists of just two elements: the first
contains its class identity, and the second is a NULL (it is legitimate for objects not
to have values). When an object does have a value, it is held in the value field of a
descriptor whose type field communicates the value’s meaning.

type:OM_CLASS
syntax:OID string
value:DS_C_DS_DN

Figure 7. One Object Descriptor

Chapter 3. XDS and the DCE Cell Namespace 37

Figure 8 illustrates the arrangement of a complete object descriptor array.

Object Attributes

The generic term for any object value is attribute. In this sense, an object is nothing
but a collection of attributes, and every object descriptor describes one attribute.
The first attribute’s value identifies the object’s class, and this determines all the
other attributes the object is supposed to have. One or more other attributes follow,
which contain the object’s working values. The NULL object descriptor at the end is
an implementation detail, and is not a part of the object.

Note that, depending on the attribute it represents, a descriptor’s value field can
contain a pointer to another array of object descriptors. In other words, an object’s
value can be another object.

Figure 9 shows a three-layer compound object: the top-level superobject,
dn_object, contains the subobject rdn1, which in turn contains the subobject ava1.

Interface Objects and Directory Objects

GDS is composed of directory objects that reflect the X.500 design. The XDS
interface also works with objects. However, there is a big difference between
directory and XDS objects. Programmers do not work directly with the directory
objects; they are composed of attributes that make up the directory service’s
implementation of entries.

type:OM_CLASS
syntax:OID string
value:DS_C_DS_DN

type:DS_RDNS
syntax:OM_S_OBJECT
value:rdn1

NULL

Figure 8. A Complete Object Represented

type:OM_CLASS
syntax:OID string
value:DS_C_DS_DN

type:OM_CLASS
syntax:OID string
value:DS_C_DS_RDN

type:OM_CLASS
syntax:OID string
value:DS_C_AVA

type:DS_RDNS
syntax:OM_S_OBJECT
value:rdn1

type:DS_AVAS
syntax:OM_S_OBJECT
value:ava1

NULL

NULL

NULL

type:DS_ATTRIBUTE_
TYPE

syntax:OID string
value:DSX_TYPELESS_

RDN

type:DS_ATTRIBUTE_
VALUES

syntax:OM_S_TELETEX_
STRING

value:"huh"

dn_object

rdn1

ava1

Figure 9. A Three-Layer Compound Object

38 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Programmers work with XDS objects. XDS objects have explicit data
representations that can be directly manipulated with programming language
operators. Some of these techniques are described in this chapter; are located in
the sample files located in the /opt/dcelocal/examples/xdsxom directory.

XDS and GDS terminology sometimes suggests that XDS objects are somehow
direct representations of the directory objects to which they communicate
information. This is not the case, however. You never directly see or manipulate the
directory objects; the XDS interface objects are used only to pass parameters to the
XDS calls, which in turn request GDS (or CDS) to perform operations on the
directory objects. The XDS objects are therefore somewhat arbitrary structures
defined by the interface.

Figure 10 on page 40 illustrates the relationship between XDS (also called interface)
objects and directory objects. The figure shows an application passing several
properly initialized XDS objects to some XDS function; it then takes some action,
which affects the attribute contents of certain directory objects. The application
never works with the directory objects; it works with the XDS interface objects.

A side effect of the existence of a separate XDS interface and GDS or CDS
directory objects is the existence of attributes for both kinds of objects as well.
Because the purpose of XDS objects is to feed data into and extract data from
directory objects, programmers work with XDS objects whose attributes have
directory object attributes as their values. You should keep in mind the distinction
between directory objects and interface objects.

Chapter 3. XDS and the DCE Cell Namespace 39

Directory Objects and Namespace Entries

The GDS namespace is a hierarchical collection of entries. The name of each of
these entries is an attribute of a directory object. The object is accessed through
XDS by stating its name attribute.

Figure 11 on page 41 shows the relationship of entry names in the GDS namespace
to the GDS directory objects to which they refer.

DN attribute

attribute

attribute

attribute

Postal Code
attribute

attribute

attribute

GDS Directory Objects

Object Class attribute
=

Entry Modification

Attribute Type
=

DS_A_POSTAL_CODE

Attribute Value
=

"77 Sunset Strip"

XDS Object

attribute

attribute

attribute

ds_modify entry()

XDS function

Figure 10. Directory Objects and XDS Interface Objects

40 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Values That an Object Can Contain

There are many different classes of objects defined for the XDS interface; still more
are defined by the X.500 standard for general directory use. But only a small
number of classes are needed for XDS/CDS operations, and only those classes are
discussed in this chapter. Information about other classes can be found in Part 4 of
this guide.

The class that an object belongs to determines what sort of information the object
can contain. Each object class consists of a list of attributes that objects must have.
For example, you would expect an object in the directory entry name class to be
required to have an attribute to hold the entry name string. However, it is not
sufficient to simply place a string like the following into an object descriptor:

/.../C=US/O=OSF/OU=DCE/hosts/tamburlaine/self

A full directory entry name such as the preceding one is called in XDS a
distinguished name (DN), meaning that the entry name is fully qualified (distinct)
from root to entry name. To properly represent the entry name in an object, you

DN attribute

attribute

attribute

attribute

attribute

attribute

attribute

GDS Directory Objects

GDS Namespace

/.../C=US/O=OSF/OU=DCE

/.../C=US/L=Cambridge/CN=Killroy

Object Entries

Figure 11. Directory Objects and Namespace Entries

Chapter 3. XDS and the DCE Cell Namespace 41

must look up the definition of the XDS distinguished name object class and build an
object that has the set of attributes that the definition prescribes.

Building a Name Object

Complete definitions for all the object classes required as input for XDS functions
can be found in “XDS/CDS Object Recipes” on page 63. Among them is the class
for distinguished name objects, called DS_C_DS_DN. There you will learn that this
class of object has two attributes: its class attribute, which identifies it as a
DS_C_DS_DN object, and a second attribute, which occurs multiple times in the object.
Each instance of this attribute contains as its value one piece of the full name; for
example, the directory name hosts.

The DS_C_DS_DN attribute that holds the entry name piece, or relative distinguished
name (RDN), is defined by the class rules to hold, not a string, but another object of
the RDN class (DS_C_DS_RDN).

Thus, a static declaration of the descriptor array representing the DS_C_DS_DN object
would look like the following:

static OM_descriptor Full_Entry_Name_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
/* |||||||||||*/
/* Macro to put an "OID string" in a descrip- */
/* tor's type field and fill its other */
/* fields with appropriate values. */

{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},
/* ||||||| ||||||||||| ||||||||||| */
/* type syntax value */
/* */
/* (the "value" union is in fact here a */
/* structure; the 0 fills a pad field in */
/* that structure.) */

{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self_Entry_RDN}},

OM_NULL_DESCRIPTOR
/*
|||||||||||||||||| */
/* Macro to fill a descriptor with proper */
/* NULL values. */

};

The use of the OM_OID_DESC and OM_NULL_DESCRIPTOR macros slightly obscures the
layout of this declaration. However, each line contains code to initialize exactly one
OM_descriptor object; the array consists of eight objects.

The names (such as Country_RDN) in the descriptors’ value fields refer to the other
descriptor arrays, which separately represent the relative name objects. (The order
of the C declaration in the source file is opposite to the order described here.)
Because DS_C_DS_RDN objects are now called for, the next step is to look at what
attributes that class requires.

42 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The definition for DS_C_DS_RDN can be found in “The DS_C_DS_RDN Object” on
page 69 . This class object is defined, like DS_C_DS_DN, to have only one attribute
(with the exception of the OM_Object attribute, which is mandatory for all objects).
The one attribute, DS_AVAS, holds the value of one relative name. The syntax of this
value is OM_S_OBJECT, meaning that DS_AVAS’s value is a pointer to yet another
object descriptor array:

static OM_descriptor Country_RDN[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Country_Value}},

OM_NULL_DESCRIPTOR
};

Note that there should also be five other similar declarations, one for each of the
other DS_C_DS_RDN objects held in DS_C_DS_DN.

The declarations have the same meanings as they did in the previous example.
Country_Value is the name of the descriptor array that represents the object of
class DS_C_AVA, which we are now about to look up.

The rules for the DS_C_AVA class can be found in this chapter just after DS_C_DS_RDN.
They tell us that DS_C_AVA objects have two attributes aside from the omnipresent
OM_Object; namely:

v DS_ATTRIBUTE_VALUES

This attribute holds the object’s value.

v DS_ATTRIBUTE_TYPE

This attribute gives the meaning of the object’s value.

In this instance, the meaning of the string US is that it is a country name. There is a
particular directory service attribute value for this; it is identified by an OID that is
associated with the label DS_A_COUNTRY_NAME (the OIDs held in objects are
represented in string form). Accordingly, we make that OID the value of
DS_ATTRIBUTE_TYPE, and we make the name string itself the value of
DS_ATTRIBUTE_VALUES, as shown.

static OM_descriptor Country_Value[]= {

OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US")},
/*
||||||||||||||| */
/* Macro to properly */
/* fill the "value" union with the NULL-terminated string. */

OM_NULL_DESCRIPTOR
};

There are also five other DS_C_AVA declarations, one for each of the five other
separate name piece objects referred to in the DS_C_DS_RDN superobjects.

Chapter 3. XDS and the DCE Cell Namespace 43

A Complete Object

The previous sections described how an object is created: you look up the rules for
the object class you require, and then add the attributes called for in the definition.
Whenever some attribute is defined to have an object as its value, you have to look
up the class rules for the new object and declare a further descriptor array for it. In
this way, you continue working down through layers of subobjects until you reach
an object class that contains no subobjects as values; at that point, you are
finished.

Normally, you do not statically declare objects in real applications. The steps
outlined in the preceding text are given as a method for determining what an object
looks like. Once you have done that, you can then write routines to create the
objects dynamically. An example of how to do this is located in the teldir.c example
application in the sample files located in the /opt/dcelocal/examples/xdsxom
directory.

The process of object building is somewhat easier than it sounds. There are only
five different object classes needed for input to XDS functions when accessing
CDS, and only one of those, the DS_C_DS_DN class, has more than one level of
subobjects. The rules for all five of these classes can be found in “Chapter 5. XOM
Programming” on page 83 of this guide. In order to use the GDS references, you
should know a few things about class hierarchy.

Class Hierarchy

Object classes are hierarchically organized so that some classes may be located
above some classes in the hierarchy and below others in the hierarchy. In any such
system of subordinate classes, each next lower class inherits all the attributes
prescribed for the class immediately above it, plus whatever attributes are defined
peculiarly for it alone. If the hierarchy continues further down, cumulative collection
of attributes continues to accumulate. If there were a class for every letter of the
alphabet, starting at the highest level with A and continuing down to the lowest level
with Z, and if each succeeding letter was a subclass of its predecessor, the Z class
would possess all the attributes of all the other letters, as well as its own, while the
A class would possess only the A class attributes.

XDS/XOM classes are seldom nested more than two or at most three layers. All
inherited attributes are explicitly listed in the object descriptions that follow, so you
do not have to worry about class hierarchies here. However, the complete
descriptions of XDS/XOM objects in “Part 4. XDS/XOM Supplementary Information”
on page 179 of this guide rely on statements of class inheritance to fill out their
attribute lists for the different classes. Refer to “Part 4. XDS/XOM Supplementary
Information” on page 179 for information about the classes of objects that can be
returned by XDS calls in order to be able to handle those returned objects.

Class Hierarchy and Object Structure

Note that class hierarchy is different from object structure. Object structure is the
layering of object arrays that was previously described in the DS_C_DS_DN declaration
in “Building a Name Object” on page 42. It occurs when one object contains another
object as the value of one or more of its attributes.

44 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

This is what is meant by recursive objects: one object can point to another object
as one of its attribute values. The layering of subobjects below superobjects in this
way is described repeatedly in “XDS/CDS Object Recipes” on page 63.

The only practical significance of class hierarchy is in determining all the attributes
a certain object class must have. Once you have done this, you may find that a
certain attribute requires as its value some other object. The result is a compound
object, but this is completely determined by the attributes for the particular class
you are looking at.

Public and Private Objects and XOM

In “Building a Name Object” on page 42, you saw how a multilevel XDS object can
be statically declared in C code. Now imagine that you have written an application
that contains such a static DS_C_DS_DN object declaration. From the point of view of
your application, that object is nothing but a series of arrays, and you can
manipulate them with all the normal programming operators, just as you can any
other data type. Nevertheless, the object is syntactically perfectly acceptable to any
XDS (or XOM) function that is prepared to receive a DS_C_DS_DN object.

Objects are also created by the XDS functions themselves; this is the way they
usually return information to callers. However, there is a difference between objects
generated by the XDS interface and objects that are explicitly declared by the
application: you cannot access the former, private, objects in the direct way that you
can the latter, public, objects.

These two kinds of objects are the same as far as their classes and attributes are
concerned. The only difference between them is in the way they are accessed. The
public objects that an application explicitly creates or declares in its own memory
area are just as accessible as any of the other data storage it uses. However,
private objects are created and held in the XDS interface’s own system memory.
Applications get handles to private objects, and, in order to access the private
objects’ contents, they have to pass the handles to object management functions.
The object management (XOM) functions make up a sort of all-purpose companion
interface to XDS. Whereas XDS functions typically require some specific class
object as input, the XOM functions accept objects of any class and perform useful
operations on them.

If a private object needs to be manipulated, one of the XOM functions, om_get() ,
can be called to make a public copy of the private object. Then, calling the XOM
om_create() function allows applications to generate private objects manipulable
by om_get() . The main significance of private as opposed to public objects is that
they do not have to be explicitly operated on; instead, you can access them cleanly
through the XOM interface and let it do most of the work. You still have to know
something about the objects’ logical representation, however, to use XOM.

Except for a few more details, which will be mentioned as needed, this is practically
all there is to XDS object representation.

XOM Objects and XDS Library Functions

To call an XDS library function, do the following:

1. Decide what input parameters you must supply to the function.

Chapter 3. XDS and the DCE Cell Namespace 45

2. Bundle up these parameters in objects (that is, arrays of object descriptors) in
an XDS format.

Almost all data returned to you by an XDS function is enclosed in objects, which
you must parse to recover the information that you want. This task is made almost
automatic by a library function supplied with the companion X/Open
OSI-Abstract-Data Manipulation (XOM) interface.

With XDS, the programmer has to perform a lot of call parameter management, but
in other respects the interface is easy to use. The XDS functions’ dependence on
objects makes them easy to call, once you have the objects themselves correctly
set up.

Accessing CDS Using the XDS Step-by-Step Procedure

You now know all that you need to know to work with a cell namespace through
XDS. The following subsections provide a walk-through of the steps of some typical
XDS/CDS operations. They describe what is involved in using XDS to access
existing CDS attributes. They then describe how you can create and access new
CDS entry attributes.

Reading and Writing Existing CDS Entry Attributes With XDS

Suppose that you want to use XDS to read some information from the following
CDS entry:

/.../C=US/O=OSF/OU=DCE/hosts/tamburlaine/self

As explained in the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide,
the /.:/hosts/ hostname/self entry, which is created at the time of cell configuration,
contains binding information for the machine hostname. Since this is a simple RPC
NSI entry, there is not very much in the entry that is interesting to read, but this
entry is used as an example anyway as a simple demonstration.

Following are the header inclusions and general data declarations:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdscds.h>

Note that the xom.h and xds.h header files must be included in the order shown in
the preceding example. Also note that the xdscds.h header file is brought in for the
sake of DSX_TYPELESS_RDN. This file is where the CDS-significant OIDs are defined.
The xdsbdcp.h file contains information necessary to the Basic Directory Contents
Package, which is the basic version of the XDS interface you can use in this
program.

The XDS/XOM interface defines numerous object identifier string constants, which
are used to identify the many object classes, parts, and pieces (among other things)
that it needs to know about. In order to make sure that these OID constants do not
collide with any other constants, the interface refers to them with the string OMP_O_
prefixed to the user-visible form; for example, DS_C_DS_DN becomes

46 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OMP_O_DS_C_DS_DN internally. In order to make application instances consistent with
the internal form, use OM_EXPORT to import all XDS-defined or XOM-defined OID
constants used in your application.

OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)

OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DSX_TYPELESS_RDN)

/* ... Special OID for an untyped (that is, nonX.500) */
/* relative distinguished name. Defined in xdscds.h header.
*/

A further important effect of OM_EXPORT is that it builds an OM_string structure to
hold the exported OID hexadecimal string. As explained in the previous chapter,
OIDs are not numeric values, but strings. Comparisons and similar operations on
OIDs must access them as strings. Once an OID has been exported, you can
access it by using its declared name. For example, the hexadecimal string
representation of DS_C_ATTRIBUTE is contained in DS_C_ATTRIBUTE.elements, and the
length of this string is contained in DS_C_ATTRIBUTE.length.

Significance of Typed and Untyped Entry Names

Next are the static declarations for the lowest layer of objects that make up the
global name (distinguished name) of the CDS directory entry you want to read.
These lowest-level objects contain the string values for each part of the name.
Remember that the first three parts of the name (excluding the global prefix /.../,
which is not represented) constitute the cell name, as follows:

/C=US/O=OSF/OU=DCE/

In this example, assume that GDS is being used as the cell’s global directory
service, so the cell name is represented in X.500 format, and each part of it is
typed in the object representation; for example, DS_A_COUNTRY_NAME is the
DS_ATTRIBUTE_TYPE in the Country_String_Object. If you were using DNS, the cell
name might be something like the following:

osf.org.dce

In this case, the entire string osf.org.dce would be held in a single object whose
DS_ATTRIBUTE_TYPE would be DSX_TYPELESS_RDN.

DSX_TYPELESS_RDN is a special type that marks a name piece as not residing in an
X.500 namespace. If the object resides under a typed X.500 name, as is the case
in the declared object structures, then it serves as a delimiter for the end of the cell
name GDS looks up, and the beginning of the name that is passed to a CDS server
in that cell, assuming that the cell has access to GDS; if not, such a name cannot
be resolved. In the following name, the untyped portion is at the beginning:

/.../osf.org.dce/hosts/zenocrate/self

Chapter 3. XDS and the DCE Cell Namespace 47

In this case, the name is passed immediately by XDS via the local CDS (and the
GDA) to DNS for resolution of the cell name. Thus, the typing of entry names
determines which directory service a global directory entry name is sent to for
resolution.

Static Declarations

The following are the static declarations you need:

/***/
/* Here are the objects that contain the string values for each */
/* part of the CDS entry's global name... */

static OM_descriptor Country_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Organization_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("OSF")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Org_Unit_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("DCE")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Hosts_Dir_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("hosts")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Tamburlaine_Dir_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("tamburlaine")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor Self_Entry_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("self")},
OM_NULL_DESCRIPTOR

};

The string objects are contained by a next-higher level of objects that identify the
strings as being pieces (RDNs) of a fully qualified directory entry name (DN). Thus,
the Country_RDN object contains Country_String_Object as the value of its DS_AVAS
attribute; Organization_RDN contains Organization_String_Object, and so on.

/***/
/* Here are the "relative distinguished name" objects.

static OM_descriptor Country_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

48 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

{DS_AVAS, OM_S_OBJECT, {0, Country_String_Object}},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Organization_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Organization_String_Object}},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Org_Unit_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Org_Unit_String_Object}},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Hosts_Dir_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Hosts_Dir_String_Object}},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Tamburlaine_Dir_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Tamburlaine_Dir_String_Object}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor Self_Entry_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Self_Entry_String_Object}},
OM_NULL_DESCRIPTOR

};

At the highest level, all the subobjects are gathered together in the DN object
named Full_Entry_Name_Object.

/***/

static OM_descriptor Full_Entry_Name_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self_Entry_RDN}},
OM_NULL_DESCRIPTOR

};

Other Necessary Objects for ds_read()

The ds_read() procedure takes requests in the form of a
DS_C_ENTRY_INFO_SELECTION class object. However, if you refer to the recipe for this
object class in “XDS/CDS Object Recipes” on page 63, you will find that it is much
simpler than the name object; it contains no subobjects, and its declaration is
straightforward.

The value of the DS_ALL_ATTRIBUTES attribute specifies that all attributes be read
from the CDS entry, which is specified in the Full_Entry_Name_Object variable.

Note that the term attribute is used slightly differently in CDS and XDS contexts. In
XDS, attributes describe the values that can be held by various object classes; they
can be thought of as object fields. In CDS, attributes describe the values that can

Chapter 3. XDS and the DCE Cell Namespace 49

be associated with a directory entry. The following code fragment shows the
definition of a DS_C_ENTRY_INFO_SELECTION object:
static OM_descriptor Entry_Info_Select_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

};

Miscellaneous Declarations

The following are declarations for miscellaneous variables:

OM_workspace xdsWorkspace;
/* ...will contain handle to our "workspace" */

DS_feature featureList[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ 0 }

};
/* ...list of service "packages" we will want from XDS */

OM_private_object session;
/* ...will contain handle to a bound-to directory session */

DS_status dsStatus;
/* ...status return from XDS calls */

OM_return_code omStatus;
/* ...status return from XOM calls */

OM_sint dummy;
/* ...for unsupported ds_read() argument */

OM_private_object readResultObject;
/* ...to receive entry information read from CDS by "ds_read()" */

OM_type I_want_entry_object[] = {DS_ENTRY, OM_NO_MORE_TYPES};
OM_type I_want_attribute_list[] = {DS_ATTRIBUTES, OM_NO_MORE_TYPES};
OM_type I_want_attribute_value[] = {DS_ATTRIBUTE_VALUES, \

OM_NO_MORE_TYPES};
/* ...arrays to pass to "om_get()" to extract subobjects */
/* from the result object returned by "ds_read()" */

OM_value_position number_of_descriptors;
/* ...to hold number of attribute descriptors returned */
/* by "om_get() */

OM_public_object entry;
/* ...to hold public object returned by "om_get()" */

The Main Program

This section describes the main program. Three calls usually precede any use of
XDS.

First, ds_initialize() is called to set up a workspace. A workspace is a memory
area in which XDS can generate objects that will be used to pass information to the
application. If the call is successful, it returns a handle that must be saved for the
ds_shutdown() call. If the call is unsuccessful, it returns NULL, but this example
does not check for errors.

50 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

xdsWorkspace = ds_initialize();

If GDS is being used as the global directory service, the service packages are
specified next. Packages consist of groups of objects, together with the associated
supporting interface functionality, designed to be used for some specific end. This
example uses the basic XDS service so DS_BASIC_DIR_CONTENTS_PKG is specified.
The featureList parameter to ds_version() is an array, not an object, since
packages are not being handled yet:

dsStatus = ds_version(featureList, xdsWorkspace);

Note that, if you are not using GDS as your global directory service (in other words,
if you are using XDS by itself), then do not call ds_version() . If you use XDS to
access the CDS namespace in any cell with an X.500 cell name, the
DS_BASIC_DIR_CONTENTS_PKG is required.

From this point on, status is returned by XDS functions via a DS_status variable.
DS_status is a handle to a private object, whose value is DS_SUCCESS (that is, NULL)
if the call was successful. If something went wrong, the information in the (possibly
complex) private error object has to be analyzed through calls to om_get() , which
is one of the general-purpose object management functions that belongs to XDS’s
companion interface XOM. Usage of om_get() is demonstrated later on in this
program, but return status is not checked in this example.

The third necessary call is to ds_bind() . This call brings up the directory service,
that binds to the CDS namespace. The DS_DEFAULT_SESSION parameter calls for a
default session. The alternative is to build and fill out your own DS_C_SESSION object,
specifying addresses, and pass that. The default is used in this example:

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace,&session);

Reading a CDS Attribute

At this point, you can read a set of object attributes from the cell namespace entry.
Call ds_read() with the two objects that specify the entry to be read and the
specific entry attribute you want:

dsStatus = ds_read(session,DS_DEFAULT_CONTEXT, Full_Entry_Name_Object,
Entry_Info_Select_Object, &readResultObject,&dummy);

The DS_DEFAULT_CONTEXT parameter could be substituted with a DS_C_CONTEXT
object, which would typically be reused during a series of related XDS calls. This
object specifies and records how GDS should perform the operation, how much
progress has been made in resolving a name, and so on.

If the call succeeds, the private object readResultObject contains a series of
DS_C_ATTRIBUTE subobjects, one for each attribute read from the cell name entry. A
complete recipe for the DS_C_READ_RESULT object can be found in “Chapter 10. XDS
Class Definitions” on page 189, but the following is a skeletal outline of the object’s
structure:

DS_C_READ_RESULT
DS_ENTRY: object(DS_C_ENTRY_INFO)
DS_ALIAS_DEREFERENCED: OM_S_BOOLEAN
DS_PERFORMER: object(DS_C_NAME)

DS_C_ENTRY_INFO

Chapter 3. XDS and the DCE Cell Namespace 51

DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)
DS_ATTRIBUTES: one or more object(DS_C_ATTRIBUTE)

DS_C_NAME == DS_C_DS_DN
DS_RDNS: object(DS_C_DS_RDN)

DS_C_DS_RDN
DS_AVAS: object(DS_C_AVA)

DS_C_AVA
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS_C_ATTRIBUTE —one for each attribute read
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 12 illustrates the general object structure of a ADS_C_READ_RESULT, showing
only the object-valued attributes, and only one DS_C_ATTRIBUTE subobject.

Handling the Result Object

The next goal is to extract the instances of the DS_C_ATTRIBUTE subsubclass, one
for each attribute read, from the returned object. The first step is to make a public
copy of readResultObject, which is a private object, and therefore does not allow
access to the object descriptors themselves. Using the XOM om_get() function,
you can make a public copy of readResultObject, and at the same time specify that
only the relevant parts of it be preserved in the copy. Then, with a couple of calls to
om_get() , you can reduce the object to manageable size, leaving a superobject
whose immediate subobjects are fairly easily accessed.

DS_C_ENTRY_INFO

DS_C_DS_DN

DS_C_DS_RDN

DS_C_AVA

DS_C_ATTRIBUTE

DS_C_READ_RESULT

Figure 12. The DS_C_READ_RESULT Object Structure

52 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The om_get() function takes as its third input parameter an OM_type_list, which is
an array of OM_type. Possible parameters are DS_ENTRY, DS_ATTRIBUTES,
DS_ATTRIBUTE_VALUES, and anything that can legitimately appear in an object
descriptor’s type field. The types specified in this parameter are interpreted
according to the options specified in the preceding parameter. For example, the
relevent attribute from the read result is DS_ENTRY. It contains the DS_C_ENTRY_INFO
object, which in turn contains the DS_C_ATTRIBUTE objects. The DS_C_ATTRIBUTE
objects contain the data read from the cell directory name entry. Therefore, you
should specify the OM_EXCLUDE_ALL_BUT_THESE_TYPES option, which has the effect of
excluding everything but the contents of the object’s DS_ENTRY type attribute.

The OM_EXCLUDE_SUBOBJECTS option is also ORed into the parameter. Why would you
not preserve the subobjects of DS_C_ENTRY_INFO? Because om_get() works only
on private, not on public, objects. If you were to use om_get() on the entire object
substructure, you would not be able to continue getting the subobjects, and instead
you would have to follow the object pointers down to the DS_C_ATTRIBUTE. However,
when om_get() excludes subobjects from a copy, it does not really leave them
out; it merely leaves the subobjects private, with a handle to the private objects
where pointers would have been. This allows you to continue to call om_get() as
long as there are more subobjects.

The following is the first call:

/* The DS_C_READ_RESULT object that ds_read() returns has */
/* one subobject, DS_C_ENTRY_INFO; it in turn has two sub- */
/* objects, that is a DS_C_NAME which holds the object's */
/* distinguished name (which we don't care about here), */
/* and a DS_C_ATTRIBUTE which contains the attribute info */
/* we read; that one we want. So we climb down to it ... */
/* This om_get() will "return" the entry-info object ... */

omStatus = om_get(readResultObject,
OM_EXCLUDE_ALL_BUT_THESE_TYPES +
OM_EXCLUDE_SUBOBJECTS,
I_want_entry_object,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,
&entry,
&number_of_descriptors);

The number_of_descriptors parameter contains the number of attribute descriptors
returned in the public copy, not in any excluded subobjects.

If an XOM function is successful, it returns an OM_SUCCESS code. Unsuccessful calls
to XOM functions do not return error objects, but rather return simple error codes.
The interface assumes that, if the XOM function does not accept your object, then
you will not be able to get much information from any further objects. The return
status is not checked in this example.

The return parameter entry should now contain a pointer to the DS_C_ENTRY_INFO
object with the following immediate structure. (The number of instances of
DS_ATTRIBUTES depends on the number of attributes read from the entry.)

DS_C_ENTRY_INFO
DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)

Chapter 3. XDS and the DCE Cell Namespace 53

DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
object(DS_C_ATTRIBUTE)

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

The italics indicate private subobjects. Figure 13 shows the DS_C_ENTRY_INFO object.
Only one instance of a DS_C_ATTRIBUTE subobject is shown in the figure; usually
there are several such subobjects, all at the same level, each containing information
about one of the attributes read from the entry. These subobjects are represented in
DS_C_ENTRY_INFO as a series of descriptors of type DS_ATTRIBUTES, each of which
has as its value a separate DS_C_ATTRIBUTE subobject.

Now extract the separate attribute values of the entry that was read. These were
returned as separate object values of DS_ATTRIBUTES; each one has an object class
of DS_C_ATTRIBUTE. To return any one of these subobjects, a second call to
om_get() is necessary, as follows:
/* The second om_get() returns one selected subobject */
/* from the DS_C_ENTRY_INFO subobject we just got. The */
/* contents of "entry" as we enter this call is the */
/* private subobject which is the value of DS_ATTRIBUTES. */
/* If we were to make the following call with the */
/* OM_EXCLUDE_SUBOBJECTS and without the */
/* OM_EXCLUDE_ALL_BUT_THESE_VALUES flags, we would get */
/* back an object consisting of six private subobjects, */
/* one for each of the attributes returned. Note the */
/* values for initial and limiting position: "2" */
/* specifies that we want only the third DS_C_ATTRIBUTE */
/* subobject to be gotten (the subobjects are numbered */
/* from 0, not from 1), and the "3" specifies that we want */

DS_C_DS_DN

DS_C_DS_RDN

DS_C_AVA

DS_C_ATTRIBUTE

DS_C_ENTRY_INFO

Figure 13. The DS_C_ENTRY_INFO Object Structure

54 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

/* no more than that--in other words, the limiting value */
/* must always be one more than the initial value if the */
/* latter is to have any effect. */
/* OM_EXCLUDE_ALL_BUT_THESE_VALUES is likewise required */
/* for the initial and limiting values to have any */
/* effect ... */

omStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS
+ OM_EXCLUDE_ALL_BUT_THESE_VALUES,
I_want_attribute_list,
OM_FALSE,
((OM_value_position) 2),
((OM_value_position) 3),
&entry,
&number_of_descriptors);

Note the value that is passed as the first parameter. Since om_get() does not
work on public objects, pass it the handle of the private subobject explicitly. To do
this you have to know the arrangement of the descriptor’s value union, which is
defined in xom.h .

Representation of Object Values

The following is the layout of the object field in a descriptor’s value union:

typedef struct {
OM_uint32 padding;
OM_object object;
} OM_padded_object;

The following is the layout of the value union itself:

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;
} OM_value;

The following is the layout of the descriptor itself:

typedef struct OM_descriptor_struct {
OM_type type;
OM_syntax syntax;
union OM_value_union value;
} OM_descriptor;

Thus, if entry is a pointer to the DS_C_ENTRY_INFO object, then the private handle to
the DS_C_ATTRIBUTE object you want next is the following:

entry−>value.object.object

Extracting an Attribute Value

The last call yielded one separate DS_C_ATTRIBUTE subsubobject from the original
returned result object:

Chapter 3. XDS and the DCE Cell Namespace 55

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 14 illustrates what is left.

A final call to om_get() returns the single object descriptor that contains the actual
value of the single attribute you selected from the returned object:

omStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES,
I_want_attribute_value,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,
&entry,
&number_of_descriptors);

At this point, the value of entry is the base address of an object descriptor whose
entry−>type is DS_ATTRIBUTE_VALUES. Depending on the value found in
entry−>syntax, the value of the attribute can be read from entry−>value.string,
entry−>value.integer, entry−>value.boolean, or entry−>value.enumeration.

For example, suppose the value of entry−>syntax is OM_S_OCTET_STRING. The
attribute value, represented as an octet string (not terminated by a NULL), is found
in entry−>value.string.elements; its length is found in
entry−>value.string.length.

You can check any attribute value against the value you get from the cdscp
command by entering the following:

cdscp show object /.:/hosts/tamburlaine/self

For further information on cdscp , see the IBM DCE Version 3.1 for AIX and Solaris:
Administration Commands Reference.

Note that you can always call om_get() to get the entire returned object from an
XDS call. This yields a full structure of object descriptors that you can manipulate
like any other data structure. To do this with the ds_read() return object would
have required the following call:

/* make a public copy of ENTIRE object... */

omStatus = om_get(readResultObject,
OM_NO_EXCLUSIONS,
((OM_type_list) 0),
OM_FALSE,
((OM_value_position) 0),
((OM_value_position) 0),
&entry,
&number_of_descriptors);

DS_C_ATTRIBUTE

Figure 14. The DS_C_ATTRIBUTE Object Structure

56 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

At the end of every XDS session, you need to unbind from CDS and then
deallocate the XDS and XOM structures and other storage. You must also explicitly
deallocate any service-generated objects, whether public or private, with calls to
om_delete() , as follows:

/* delete service-generated public or private objects... */

omStatus = om_delete(readResultObject);
omStatus = om_delete(entry);

/* unbind from the CDS... */
dsStatus = ds_unbind(session);

/* close down the workspace... */
dsStatus = ds_shutdown(xdsWorkspace);

exit();

Creating New CDS Entry Attributes

The following subsections provide the procedure and some code examples for
creating new CDS entry attributes.

Procedure for Creating New Attributes

To create new attributes of your own on cell namespace entries, you must do the
following:

1. Allocate a new ISO OID for the new attribute. For information on how to do this,
see “Chapter 2. Programming in the CDS Namespace” on page 17 of this guide
and the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide.

2. Enter the new attribute’s name and OID in the file
/.:/opt/dcelocal/etc/cds_attributes . This text file contains OID-to-readable
string mappings that are used, for example, by cdscp when it displays CDS
entry attributes. Each entry also gives a syntax for reading the information in the
entry itself. This should be congruent with the format of the data you intend to
write in the attribute. For more information about the cds_attributes file, see
the IBM DCE Version 3.1 for AIX and Solaris: Administration Guide.

3. In the xdscds.h header file, define an appropriate OID string constant to
represent the new attribute.

For example, the following shows the xdscds.h definition for the CDS
CDS_Class attribute:

#define OMP_O_DSX_A_CDS_Class "\x2B\x16\x01\x03\x0F"

Note the XDS internal form of the name. This is what DSX_A_CDS_Class looks
like when it has been exported using OM_EXPORT in an application, as all OIDs
must be. Thus, if you wanted to create a CDS attribute called
CDS_Brave_New_Attrib, you would obtain an OID from your administrator and
add the following line to xdscds.h :

#define OMP_O_DSX_A_CDS_Brave_New_Attrib "your_OID"

4. In an application, call the XDS ds_modify_entry() routine to add the attribute
to the cell namespace entry of your choice.

Chapter 3. XDS and the DCE Cell Namespace 57

Rules for Transforming an OID into XDS Internal Form

In Item 3 in the previous procedure, the CDS_Class attribute is shown in the XDS
internal form as \x2B\x16\x01\x03\x0F. In the cds_attributes file, the OID is defined
as 1.3.22.1.3.15. The following provides the rules for transforming an OID into the
XDS internal form. They must be applied in the sequence listed below.

1. The first two OID values are collapsed into a single byte using the following
formula:

OID Value 1 x 40 + OID Value 2

For example, OID 1.3 transforms to \x2B (1 x 40 + 3 = 43 or \x2B.

2. If an OID value is 127 or less, it is represented by its hex value. For example,
the OID value 22 above is represented by \x16.

3. If an OID value is larger than 127, the value is represented by multiple bytes in
the XDS internal form. In the XDS internal form, the high order bit (\x80) means
that the following byte is part of the same OID value. The low order 7 bits are
concatenated with the lower 7 bits of the next byte. This concatenation
continues until a byte is reached that is \x7F or less. Once this transformation is
complete, the values of the bits concatenated together are the value of the OID.

For example, the OID for the Service Package is 1.3.12.2.1011.28.0 and has
an XDS internal representation of \x2B\x0C\x02\x87\x73\x1C\00. The following
illustrates the mapping used:

1.3 -> \x2B (Rule 1)
12 -> \x0C (Rule 2)
2 -> \x02 (Rule 2)

1011 -> \87\x73 (Rule 3 -- see below)
28 -> \x1C (Rule 2)
0 -> \x00 (rule 2)

If you concatenate the last 7 bits of \x87 and \x73, the value \x03\xF3 is
obtained (which is 1011 in decimal).

Coding Examples

In the following code fragments, a set of declarations similar to those in the
previous examples is assumed.

The ds_modify_entry() function, which is called to add new attributes to an entry
or to write new values into existing attributes, requires a DS_C_ENTRY_MOD_LIST input
object whose contents specify the attributes and values to be written to the entry.
The name, as always, is specified in a DS_C_DS_DN object. The following is a static
declaration of such a list, which consists of two attributes:

static OM_descriptor Entry_Modification_Object_1[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Brave_New_Attrib),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,

OM_STRING("O brave new attribute")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Entry_Modification_Object_2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \

OM_STRING("Miscellaneous")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},

58 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Modification_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_1}},
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_2}},
OM_NULL_DESCRIPTOR

};

A full description of this object can be found in “XDS/CDS Object Recipes” on
page 63. There could be any number of additional attribute changes in the list; this
would mean additional DS_C_ENTRY_MOD objects declared, and an additional
DS_CHANGES descriptor declared and initialized in the DS_C_ENTRY_MOD_LIST object.

With the DS_C_ENTRY_MOD_LIST class object having been declared as shown
previously, the following code fragment illustrates how to call XDS to write a new
attribute value (actually two new values since two attributes are contained in the list
object). Note that any of the attributes may be new, although the entry itself must
already exist.

dsStatus = ds_modify_entry(session, /* Directory session */
/* from "ds_bind()" */

DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Object, /* Entry name object */
Entry_Modification_List_Object, /* Entry Modification */

/* object */
&dummy); /* Unsupported argument

*/

If the entire entry is new, you must call ds_add_entry() . This function requires an
input object of class DS_C_ATTRIBUTE_LIST, whose contents specify the attributes
(and values) to be attached to the new entry. Following is the static declaration for
an attribute list that contains three attributes:

static OM_descriptor
Class_Attribute_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Printer")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor ClassVersion_Attribute_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_ClassVersion),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("1.0")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor My_Own_Attribute_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_My_OwnAttribute),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("zorro")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Attribute_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, Class_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, ClassVersion_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, My_Own_Attribute_Object}},
OM_NULL_DESCRIPTOR

};

Chapter 3. XDS and the DCE Cell Namespace 59

The ds_add_entry() function also requires a DS_C_DS_DN class object containing
the new entry’s full name, for example:

/.../osf.org.dce/subsys/doc/my_book

where every member of the name exists except for the last one, my_book. Assuming
that Full_Entry_Name_Object is a DS_C_DS_DN object, the following code shows what
the call would look like:

dsStatus = ds_add_entry(session, /* Directory session */
/* from "ds_bind()" */

DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Object, /* Name of new entry */
Attribute_List_Object, /* Attributes to be */

/* attached to new entry, with values */
&dummy); /* Unsupported argument

*/

Object-Handling Techniques

The following subsections describe the use of XOM and discuss dynamic object
creation.

Using XOM to Access CDS

The following code fragments demonstrate an alternative way to set up the entry
modification object for a ds_modify_entry() call, mainly for the sake of showing
how the om_put() and om_write() functions are used.

The following technique is used to initialize the modification object:

1. The om_create() function is called to generate a private object of a specified
class.

2. The om_put() function is called to copy statically declared attributes into a
declared private object.

3. The om_write() function is called to write the value string, which is to be
assigned to the attribute, into the private object.

4. The om_get() function is called to make the private object public.

5. The object is now public, and its address is inserted into the
DS_C_ENTRY_MOD_LIST object’s DS_CHANGES attribute.

The following new declarations are necessary:

OM_private_object newAttributeMod_priv;
/* ...handle to a private object to "om_put()" to */

OM_public_object newAttributeMod_pub;
/* ...to hold public object from "om_get()" */

OM_type types_to_include[] = {DS_ATTRIBUTE_TYPE, DS_ATTRIBUTE_VALUES,
DS_MOD_TYPE, OM_NO_MORE_TYPES};

/* ...that is, all attribute values of the Entry Modification */
/* object. For "om_put()" and "om_get()" */

char *my_string = "O brave new attribute";
/* ...value I want to write into attribute */

60 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM_value_position number_of_descriptors;
/* ...to hold value returned by "om_get()" */

First, use XOM to generate a private object of the desired class:

omStatus = om_create(DS_C_ENTRY_MOD, /*Class of object */
OM_TRUE, /* Initialize attributes per defaults */
xdsWorkspace, /* Our workspace handle */
&newAttributeMod_priv); /* Created object handle */

Next, copy the public object’s attributes into the private object:

omStatus = om_put(newAttributeMod_priv,/* Private object to copy */
/* attributes into */

OM_REPLACE_ALL, /* Which attributes to replace in */
/* destination object */

Entry_Modification_Object, /* Source object to copy */
/* attributes from */

types_to_include, /* List of attribute types we */
/* want copied */

0, 0); /* Start-stop index for multivalued */
/* attributes; ignored with OM_REPLACE_ALL */

Since om_put() ignores the class of the source object (the object from which
attributes are being copied), it is not necessary to declare class descriptors for the
source objects. In other words, the static declarations could have omitted the
OM_CLASS initializations if this technique were being used, for example:
static OM_descriptor Entry_Modification_Object_2[]= {

/* OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD), */
/* Not needed for "om_put()" ... */

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Miscellaneous")},

{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

};

The OM_CLASS was already properly initialized by om_create() .

Next, write the attribute value string into the private object:

omStatus =om_write(newAttributeMod_priv,/* Private object to write to */
DS_ATTRIBUTE_VALUES, /* Attribute type whose value*/

/* we're writing */
0, /* Descriptor index if attribute is multivalued*/
OM_S_PRINTABLE_STRING, /* Syntax of value */
0, /* Offset in source string to write from */
my_string); /* Source string to write from */

Now make the whole thing public again:

omStatus = om_get(newAttributeMod_priv,/* Private object to get */
0, /* Get everything */
types_to_include, /* All attribute types */
0, /* Unsupported argument */
0, 0, /* Start-stop descriptor index for multival- */

/* ued attributes; ignored in this case */

Chapter 3. XDS and the DCE Cell Namespace 61

&newAttributeMod_pub, /* Pointer to returned copy */
&number_of_descriptors); /* Number of attribute */

/* descriptors returned */

Finally, insert the address of the subobject into its superobject:

Entry_Modification_List_Object[1].value.object.object = \
newAttributeMod_pub;

Dynamic Creation of Objects

Objects can be completely dynamically allocated and initialized; however, you have
to implement the routines to do this yourself. The examples in this section are code
fragments. For complete examples, see the samples located in the
/opt/declocal/examples/xdsxom directory.

Initialization of object structures can be automated by declaring macros or functions
to do this. For example, the following macro initializes one object descriptor with a
full set of appropriate values:

/* Put a C-style (NULL-terminated) string into an object and */
/* set all the other descriptor fields to requested values */
#define FILL_OMD_STRING(desc, index, typ, syntx, val) \

desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.string.length = \
(OM_element_position)strlen(val); \

desc[index].value.string.elements = val;

When generating objects, use malloc() to allocate space for the number of objects
desired, and then use macros (or functions) such as the preceding one to initialize
the descriptors. The following code fragment shows how this can be done for the
top-level object of a DS_C_DS_DN object, such as the one described near the
beginning of this chapter. Recall that DS_C_DS_DN has a separate DS_RDNS descriptor
for each name piece in the full name.

/* Calculate number of "DS_RDNS"attributes there should be ... */
numberOfPieces = number_of_name_pieces;

/* Allocate space for that many descriptors, plus one for the */
/* object class at the front, and a NULL descriptor at the back */

Name_Object = (OM_object)malloc((numberOfPieces + 2) \
* sizeof(OM_descriptor));

if(Name_Object == NULL) /* "malloc()" failed */
return OM_MEMORY_INSUFFICIENT;

/* Initialize it as a DS_C_DS_DN object by placing that class */
/* identifier in the first position... */

FILL_OMD_XOM_STRING(Name_Object, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING,

DS_C_DS_DN)

Note that all these steps would have to be repeated for each of the DS_C_DS_RDN
objects required as attribute values of the DS_C_DS_DN. Then a tier of DS_C_AVA
objects would have to be created in the same way, since each of the DS_C_DS_RDNs
requires one of them as its attribute value.

62 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

You could now use om_create() and om_put() to generate a private copy of this
object, if so desired.

The application is responsible for managing the memory it allocates for such
dynamic object creation.

XDS/CDS Object Recipes

The following subsections contain shorthand for object classes. For example, if you
look at the reference pages for the ds_ *() functions, you will see that an object of
class DS_C_NAME is required to hold entry names you want to pass to the call, not
DS_C_DS_DN as is stated in this chapter. However, DS_C_NAME is in fact an abstract
class with only one subclass DS_C_DS_DN so, in this chapter, DS_C_DS_DN is used.

Input XDS/CDS Object Recipes

In general, the objects you work with in an XDS/CDS application fall into two
categories:

v Objects you have to supply as input parameters to XDS functions

v Objects returned to you as output by XDS functions

This section describes only the first category, since you have to construct these
input objects yourself.

Table 4 shows XDS functions and the objects given to them as input parameters.

Only items significant to CDS are listed in the table. DS_C_SESSION and
DS_C_CONTEXT are ignored. DS_C_SESSION is returned by ds_bind() , which usually
receives the DS_DEFAULT_SESSION constant as input. DS_C_CONTEXT is usually
substituted by the DS_DEFAULT_CONTEXT constant.

Note: DS_C_NAME is an abstract class that has the single subclass DS_C_DS_DN.
Therefore, DS_C_NAME is practically the same thing as DS_C_DS_DN.

Table 4. Directory Service Functions With Their Required Input Objects

Function Input Object

ds_add_entry() DS_C_NAME

DS_C_ATTRIBUTE_LIST

ds_bind() None

ds_compare() DS_C_NAME

DS_C_AVA

ds_initialize() None

ds_list() DS_C_NAME

ds_modify_entry() DS_C_NAME

DS_C_ENTRY_MOD_LIST

ds_read() DS_C_NAME

DS_C_ENTRY_INFO_SELECTION

ds_remove_entry() DS_C_NAME

ds_shutdown() None

Chapter 3. XDS and the DCE Cell Namespace 63

Table 4. Directory Service Functions With Their Required Input Objects (continued)

Function Input Object

ds_unbind() None

ds_version() None

Input Object Classes for XDS/CDS Operations

The following subsections contain information about all the object types required as
input to any of the XDS functions that can be used to access CDS. In order to use
these functions successfully, you must be able to construct and modify the objects
that the functions expect as their input parameters. XDS functions require most of
their input parameters to be wrapped in a nested series of data structures that
represent objects, and these functions deliver their output returns to callers in the
same object form.

Objects that are returned to you by the interface are not difficult to manipulate
because the om_get() function allows you to go through them and retrieve only
the value parts you are interested in, and discard the parts of data structures you
are not interested in. However, any objects you are required to supply as input to
an XDS or XOM function are another matter: you must build and initialize these
object structures yourself.

The basics of object building have already been explained earlier in this chapter.
Each object described in the following subsections is accompanied by a static
declaration in C of a very simple instance of that object class. The objects in an
application are usually built dynamically (this technique was demonstrated earlier in
this chapter). The static declarations that follow give a simple example of what the
objects look like.

An object’s properties, such as what sort of values it can hold, how many of them it
can hold, and so on, are determined by the class the object belongs to. Each class
consists of one or more attributes that an object can have. The attributes hold
whatever values the object contains. Thus, the objects are data structures that all
look the same (and can be handled in the

same way) from the outside, but whose specific data fields are determined by the
class each object belongs to. At the abstract level, objects consist of attributes, just
as structures consist of fields.

XDS/CDS Object Types

Following is a list of all the object types that are described in the following
subsections. Most of these objects are object structures; that is, compounds
consisting of superobjects that contain subobjects as some of their values. These
subobjects may in turn contain other objects, and so on. Subobjects are indicated
by indentation. A DS_C_DS_DN object contains at least one DS_C_DS_RDN object, and
each DS_C_DS_RDN contains one DS_C_AVA object. Note that subobjects can, and
often do, exist by themselves, depending on what object class is called for by a
given function. This list contains all the possible kinds of objects that can be
required as input for any XDS/CDS operation.

v DS_C_ATTRIBUTE_LIST

– DS_C_ATTRIBUTE

v DS_C_DS_DN

– DS_C_DS_RDN

64 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

- DS_C_AVA

v DS_C_ENTRY_MOD_LIST

– DS_C_ENTRY_MOD

v DS_C_ENTRY_INFO_SELECTION

In each section, information is provided for the described object’s attributes. All its
attributes are listed.

The illustrations in the following sections can be compared to the same object
classes’ tabular definitions later in this guide.

The DS_C_ATTRIBUTE_LIST Object

A DS_C_ATTRIBUTE_LIST class object is required as input to ds_add_entry() . The
object contains a list of the directory attributes you want associated with the entry
that is to be added.

Its general structure is as follows:

v Attribute List class type attribute

v Zero or more Attribute objects:

– Attribute class type attribute

– Attribute Type attribute

– Zero or more Attribute Value(s)

Thus, a DS_C_ATTRIBUTE_LIST object containing one attribute consists of two object
descriptor arrays because each additional attribute in the list requires an additional
descriptor array to represent it. The subobject arrays’ names (that is, addresses)
are the contents of the value fields in the DS_ATTRIBUTES object descriptors.

Figure 15 on page 66 shows the attributes of the DS_C_ATTRIBUTE_LIST object.

Chapter 3. XDS and the DCE Cell Namespace 65

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_ATTRIBUTE_LIST.

v DS_ATTRIBUTES

This is an attribute whose value is another object of class DS_C_ATTRIBUTE (see
“The DS_C_ATTRIBUTE Object”). The attribute is defined by a separate array of
object descriptors whose base address is the value of the DS_ATTRIBUTES
attribute. Note that there can be any number of instances of this attribute and,
therefore, any number of subobjects.

The DS_C_ATTRIBUTE Object

An object of this class can be an attribute of a DS_C_ATTRIBUTE_LIST object (see
“The DS_C_ATTRIBUTE_LIST Object” on page 65).

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_ATTRIBUTE.

v DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

v DS_ATTRIBUTE_VALUES

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_

ATTRIBUTE_LIST

DS_C_ATTRIBUTE_LIST Object

1 only

1 only

0 or more

1 only

1 or more

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_ATTRIBUTE

type=DS_ATTRIBUTE_
VALUES

syntax=any
value=any

type=DS_ATTRIBUTES

type=DS-ATTRIBUTES
syntax=OM_S_OBJECT

[DS_C_ATTRIBUTE]
value=[]

type=DS_ATTRIBUTE_
TYPE

syntax=OM_S_OBJECT
IDENTIFIER_STRING

value=...

type=DS-ATTRIBUTE-
VALUES

DS_C_ATTRIBUTE Object

Figure 15. The DS_C_ATTRIBUTE_LIST Object

66 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

These are the actual values for the directory attribute represented by this
DS_C_ATTRIBUTE object. Both the value syntax and the number of values depend
on what directory attribute this is; that is, they depend on the value of
DS_ATTRIBUTE_VALUE.

Example Definition of a DS_C_ATTRIBUTE_LIST Object

The following code fragment is a definition of a DS_C_ATTRIBUTE_LIST object.

static OM_descriptor Single_Attribute_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Printer")},

OM_NULL_DESCRIPTOR
};
static OM_descriptor Attribute_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, Single_Attribute_Object}},
OM_NULL_DESCRIPTOR

};

The DS_C_DS_DN Object

DS_C_DS_DN class objects are used to hold the full names of directory entries
(distinguished names). You need an object of this class to pass directory entry
names to the following XDS functions:

v ds_add_entry()

v ds_compare()

v ds_list()

v ds_modify_entry()

v ds_read()

v ds_remove_entry()

Figure 16 on page 68 shows the attributes of a DS_C_DS_DN object.

Chapter 3. XDS and the DCE Cell Namespace 67

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is DS_C_DS_DN.

v DS_RDNS

This is an attribute whose value is another object of class DS_C_DS_RDN (see “The
DS_C_DS_RDN Object” on page 69). The DS_C_DS_RDN object is defined by a
separate array of object descriptors whose base address is the value of the
DS_RDNS attribute.

There are as many DS_RDNS attributes in a DS_C_DS_DN object as there are
separate name components in the full directory entry name. For example,
suppose you wanted to represent the following CDS entry name:

/.../C=US/O=OSF/OU=DCE/hosts/brazil/self

This would require a total of six instances of the DS_RDNS attribute in the
DS_C_DS_DN object. The /.../ (global root prefix) is not represented. This means
that another six object descriptor arrays are required to hold the RDN objects, as
well as six object descriptors in the present object, one to hold (as the value of a
DS_RDNS attribute) a pointer to each array.

Note that the order of these DS_RDNS attributes is significant; that is, the first
DS_RDNS should contain as its value a pointer to the array representing the C=US
part of the name; the next DS_RDNS should contain as its value a pointer to the
array representing the O=OSF part, and so on. The root part of the name is not
represented at all.

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_DS_DN

DS_C_DS_DN Object

1 only

1 only

1 only

1 or more

1 or more

1 only 1 only

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_D_DS_RDN

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_AVA

type=DS_RDNS
syntax=OM_S_OBJECT

[DS_C_DS_RDN]
value=[]

type=DS_RDNS

type=DS_AVAS

type=DS_ATTRIBUTE_
VALUES

syntax=any

value=...

type=DS_AVAS
syntax=OM_S_OBJECT

[DS_C_AVA]
value=[]

type=DS_ATTRIBUTE_
TYPE

syntax=OM_S_OBJECT_
IDENTIFIER_STRING

value=...

DS_C_DS_RDN Object

DS_C_AVA Object

Figure 16. DS_C_DS_DN Object Attributes

68 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The DS_C_DS_RDN Object

DS_C_DS_RDN class objects are required as values for the DS_RDNS attributes of
DS_C_DS_DN objects. (For an illustration of its structure, see Figure 16 on page 68.)
RDN refers to the X.500 term RDN that is used to signify a part of a full entry name.
Separate objects of this class are not usually required as input to XDS functions.

The standard permits multiple AVAs in an RDN, but the DCE Directory and XDS API
restrict an RDN to one AVA.

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_DS_RDN.

v DS_AVAS

This is an attribute whose value is yet another object of class DS_C_AVA (see “The
DS_C_AVA Object”). The DS_C_AVA object is defined by a separate array of object
descriptors whose base address is the value of the DS_AVAS attribute.

Note that there can only be one instance of this attribute in the DS_C_RDN object.
The object descriptor array describing this object always consists of three object
descriptor structures: the first describes the object’s class, the second describes
the DS_AVAS attribute, and the third descriptor is the terminating NULL.

The DS_C_AVA Object

The DS_C_AVA class object is used to hold an actual value. The value is usually in
the form of one of the many different XOM string types. (For an illustration of its
structure, see Figure 16 on page 68.)

In calls to ds_compare() , an object of this type is required to hold the type and
value of the attribute that you want compared with those in the entry you specify. It
holds the type and value in a separate DS_C_DS_DN object.

DS_C_AVA is also included here because it is a required subsubobject of DS_C_DS_DN
itself. DS_C_AVA is the subobject in which the name part’s actual literal value is held.

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_AVA.

v DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

v DS_ATTRIBUTE_VALUES

This is the literal value of what is represented by this DS_C_AVA object.

If the DS_C_AVA object is a subobject of DS_C_DS_RDN (and therefore also of
DS_C_DS_DN), then the value is a string representing the part of the directory entry
name represented by this object. For example, if the DS_C_DS_RDN object contains
the O=OSF part of an entry name, then the string OSF is the value of the
DS_ATTRIBUTE_VALUES attribute, and DS_A_COUNTRY_NAME is the value of the
DS_ATTRIBUTE_TYPE attribute.

On the other hand, if DS_C_AVA contains an entry attribute type and value to be
passed to ds_compare() , then DS_ATTRIBUTE_TYPE identifies the type of the
attribute, and DS_ATTRIBUTE_VALUES contains a value, which is appropriate for the
attribute type, to be compared with the entry value.

Chapter 3. XDS and the DCE Cell Namespace 69

For example, suppose you wanted to compare a certain value with a CDS entry’s
CDS_Class attribute’s value. The identifiers for all the valid CDS entry attributes
are located in the file /.:/opt/dcelocal/etc/cds_attributes . The value of
DS_ATTRIBUTE_TYPE would be CDS_Class, which is the label of an object identifier
string, DS_ATTRIBUTE_VALUES would contain some desired value in the correct
syntax for ACDS_Class. The syntax is also found in the cds_attributes file; for
CDS_Class it is byte; that is, a character string. The user could code
OM_S_OCTET_STRING for DS_ATTRIBUTE_VALUES . See “Attribute and Data
Type Translation” on page 74.

Example Definition of a DS_C_DS_DN Object

The following code fragment shows an example definition for a DS_C_DS_DN object.

static OM_descriptor Entry_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("brazil")},

OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Part_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Entry_String_Object}},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Entry_Name_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, Entry_Part_Object}},
OM_NULL_DESCRIPTOR

};

The DS_C_ENTRY_MOD_LIST Object

DS_C_ENTRY_MOD_LIST class objects, which contain a list of changes to be made to
some directory entry, must be passed to ds_modify_entry() . DS_C_ENTRY_MOD_LIST
objects have the attributes shown in Figure 17 on page 71.

70 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_ENTRY_MOD_LIST.

v DS_CHANGES

This is an attribute whose value is another object of class DS_C_ENTRY_MOD (see
Section 3.5.2.10). The DS_C_ENTRY_MOD object is defined by a separate array of
object descriptors whose base address is the value of the DS_CHANGES attribute.

Note that there can be one or more instances of this attribute in the object, which
is why it is called _LIST. Each attribute contains one separate entry modification.
To learn how the modification itself is specified, see “The DS_C_ENTRY_MOD
Object”. The order of multiple instances of this attribute is significant because, if
more than one modification is specified, the modifications are performed by
ds_modify_entry() in the order in which the DS_CHANGES attributes appear in the
DS_C_ENTRY_MOD_LIST object.

The DS_C_ENTRY_MOD Object

The DS_C_ENTRY_MOD class object holds the information associated with a directory
entry modification. (For an illustration of its structure, see Figure 17.) Each
DS_C_ENTRY_MOD object describes one modification. To create a list of modifications
suitable to be passed to a ds_modify_entry() call, describe each modification in a
separate DS_C_ENTRY_MOD object, and then insert these objects as multiple instances
of the DS_CHANGES attribute in a DS_C_ENTRY_MOD_LIST object (see “The
DS_C_ENTRY_MOD_LIST Object” on page 70).

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_ENTRY_MOD.

v DS_ATTRIBUTE_TYPE

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_ENTRY

MOD_LIST

DS_C_ENTRY_MOD_LIST Object

1 only

1 only

1 only

1 or more

1 only 0 or more

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_ENTRY_MOD

type=DS_MODIFICATION_
TYPE

syntax=OM_S_
ENUMERATION

value=DS_ADD_
ATTRIBUTE

type=DS_CHANGES
syntax=OM_S_OBJECT

[DS_C_ENTRY_MOD]
value=[]

type=DS_CHANGES

type=DS_ATTRIBUTE_
VALUES

syntax=any

value=...

type=DS_ATTRIBUTE_
TYPE

syntax=OM_S_OBJECT
IDENTIFIER_STRING

value=<attribute OID>

type=DS_ATTRIBUTE_
VALUES

DS_C_ENTRY_MOD Object

Figure 17. The DS_C_ENTRY_MOD_LIST Object

Chapter 3. XDS and the DCE Cell Namespace 71

The value of this attribute, which is an OID string, identifies the directory attribute
whose modification is described in this object.

v DS_ATTRIBUTE_VALUES

These are the values required for the entry modification; their type and number
depend on both the entry type and the modification requested.

v DS_MOD_TYPE

The value of this attribute identifies the kind of modification requested. It can be
one of the following:

– DSA_ADD_ATTRIBUTE

The attribute specified by DS_ATTRIBUTE_TYPE is not currently in the entry. It
should be added, along with the value(s) specified by DS_ATTRIBUTE_VALUES, to
the entry. The entry itself is specified in a separate DS_C_DS_DN object, which is
also passed to ds_modify_entry() .

– DS_ADD_VALUES

The specified attribute is currently in the entry. The value(s) specified by
DS_ATTRIBUTE_VALUES should be added to it.

– DS_REMOVE_ATTRIBUTE

The specified attribute is currently in the entry and should be deleted from the
entry. Any values specified by DS_ATTRIBUTE_VALUES are ignored.

– DS_REMOVE_VALUES

The specified attribute is currently in the entry. One or more values, specified
by DS_ATTRIBUTE_VALUES, should be removed from it.

Example Definition of a DS_C_ENTRY_MOD_LIST Object

The following code fragment is an example definition of a DS_C_ENTRY_MOD_LIST
object.
OM_string my_uuid;

static OM_descriptor Entry_Mod_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_UUID),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, my_uuid},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

};

static OM_descriptor Entry_Mod_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Mod_Object}},
OM_NULL_DESCRIPTOR

};

The DS_C_ENTRY_INFO_SELECTION Object

When you call ds_read() to read one or more attributes from a CDS entry, you
specify in the DS_C_ENTRY_INFO_SELECTION object the entry attributes you want to
read.

The DS_C_ENTRY_INFO_SELECTION object contains the attributes shown in Figure 18
on page 73.

72 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Note that this object class has no subobjects.

v OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is always DS_C_ENTRY_INFO_SELECTION.

v DS_ALL_ATTRIBUTES

This attribute is a simple Boolean option whose value indicates whether all the
entry’s attributes are to be read, or only some of them. Its possible values are as
follows:

– OM_TRUE, meaning that all attributes in the directory entry should be read. Any
values specified by the DS_ATTRIBUTES_SELECTED attribute are ignored.

– OM_FALSE, meaning that only some of the entry attributes should be read;
namely, those specified by the DS_ATTRIBUTES_SELECTED attribute.

v DS_ATTRIBUTES_SELECTED

The value of this attribute, which is an OID string, identifies the entry attribute to
be read. Note that this attribute’s value has meaning only if the value of
DS_ALL_ATTRIBUTES is OM_FALSE; if it is OM_TRUE, the value of
DS_ATTRIBUTES_SELECTED is ignored.

Note also that there are multiple instances of this attribute if more than one
attribute, but not all of them, is to be selected for reading. Each separate
instance of DS_ATTRIBUTES_SELECTED has as its value an OID string that identifies
one directory entry attribute to be read. If DS_ATTRIBUTES_SELECTED is present but
does not have a value, ds_read() reads the entry but does not return any
attribute data; this technique can be used to verify the existence of a directory
entry.

v DS_INFO_TYPE

The value of this attribute specifies what information is to be read from each
attribute specified by DS_ATTRIBUTES_SELECTED. The two possible values are as
follows:

– DS_TYPES_ONLY, meaning that only the attribute types of the selected attributes
should be read.

– DS_TYPES_AND_VALUES, meaning that both the attribute types and the attribute
values of the selected attributes should be read.

1 only

1 only

1 only 0 or more

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_ENTRY_

INFO_SELECTION

type=DS_INFO_TYPE

syntax=OM_S_
ENUMERATION

value=DS_TYPES_
AND_VALUES

type=DS_ATTRIBUTES_
SELECTED

syntax=OM_S_OBJECT
IDENTIFIER_STRING

value=<attribute OID>

type=DS_ALL_
ATTRIBUTES

syntax=OM_S_BOOLEAN
value=OM_TRUE or

OM_FALSE

type=DS_ATTRIBUTES_
SELECTED

DS_C_ENTRY_INFO_SELECTION Object

Figure 18. The DS_C_ENTRY_INFO_SELECTION Object

Chapter 3. XDS and the DCE Cell Namespace 73

Example Definition of a DS_C_ENTRY_INFO_SELECTION Object

The following code fragment provides an example definition of a
DS_C_ENTRY_INFO_SELECTION object.

static OM_descriptor Entry_Info_Select_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_CDS_Class),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

};

Attribute and Data Type Translation

This section provides translations between CDS and XDS for attributes and data
types. Table 5 provides the OM syntax for CDS attributes. Table 6 provides the OM
syntax for CDS data types. Table 7 on page 75 defines the mapping of CDS data
types to OM syntaxes.

Table 5. CDS Attributes to OM Syntax Translation

CDS Attribute OM Syntax

CDS_CTS OM_S_OCTET_STRING

CDS_UTS OM_S_OCTET_STRING

CDS_Class OM_S_OCTET_STRING

CDS_ClassVersion OM_S_INTEGER

CDS_ObjectUID OM_S_OCTET_STRING

CDS_AllUpTo OM_S_OCTET_STRING

CDS_Convergence OM_S_INTEGER

CDS_InCHName OM_S_INTEGER

CDS_DirectoryVersion OM_S_INTEGER

CDS_UpgradeTo OM_S_INTEGER

CDS_LinkTimeout OM_S_INTEGER

CDS_Towers OM_S_OCTET_STRING

Table 6. OM Syntax to CDS Data Types Translation

OM Syntax CDS Data Type

OM_S_TELETEX_STRING cds_char

OM_S_OBJECT_IDENTIFIER_STRING cds_byte

OM_S_OCTET_STRING cds_byte

OM_S_PRINTABLE_STRING cds_char

OM_S_NUMERIC_STRING cds_char

OM_S_BOOLEAN cds_long

OM_S_INTEGER cds_long

OM_S_UTC_TIME_STRING cds_char

OM_S_ENCODING_STRING cds_byte

74 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 7. CDS Data Types to OM Syntax Translation

CDS Data Type OM Syntax

cds_none OM_S_NULL

cds_long OM_S_INTEGER

cds_short OM_S_INTEGER

cds_small OM_S_INTEGER

cds_uuid OM_S_OCTET_STRING

cds_Timestamp OM_S_OCTET_STRING

cds_Version OM_S_PRINTABLE_STRING

cds_char OM_S_TELETEX_STRING

cds_byte OM_S_OCTET_STRING

Chapter 3. XDS and the DCE Cell Namespace 75

76 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Part 3. XDS/XOM Application Programming

This section is an overview of programming using XDS/XOM.

“Chapter 5. XOM Programming” on page 83 describes XOM programming, and
“Chapter 6. XDS Programming” on page 123 describes XDS programming.
“Chapter 7. Using Threads With The XDS/XOM API” on page 145 describes how to
use threads with XDS and XOM, and “Chapter 8. XDS/XOM Convenience Routines”
on page 153 describes the XDS and XOM convenience routines.

© Copyright IBM Corp. 1990, 1999 77

78 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 4. XDS API Logging

The XDS API logging facility displays informational and error messages for XDS
functions. In addition, the input and output arguments to XDS function calls can also
be displayed. For each XDS object, its OM types, syntaxes, and values are
displayed recursively. A number of different display formats can be selected for the
XDS objects. These are selected by setting the value of the environment variable
XDS_LOG as shown in Table 8.

Logging can be activated dynamically at run-time by setting the environment
variable XDS_LOG.

Table 8. XDS_LOG Values

XDS_LOG Values Result Example

Bit 1 = on Display arguments, messages, results, and errors N/A

Bit 1 = off Display messages only (all other bits ignored) N/A

Bit 2 = on Display result and error objects as private objects N/A

Bit 2 = off Display result and error objects as public objects N/A

Bit 3 = on Object identifiers displayed as specified in fourth bit N/A

Bit 3 = off Object identifiers displayed as symbolic constants DS_C_SESSION

Bit 4 = on Object identifiers displayed as dotted-decimal 2.5.4.35

Bit 4 = off Object identifiers displayed as hexadecimal bytes \x55\x04\x23

Bit 5 = on Syntaxes displayed as integers 127

Bit 5 = off Syntaxes displayed as symbolic constants OM_S_OBJECT

The bits shown in the previous table can be combined. For example, the following
command sequence sets XDS_LOG to 5 (0101 in binary):

XDS_LOG=5; export XDS_LOG

In the previous example, the logging facility is directed to display arguments,
messages, results, and errors, to convert results and errors into public objects (for
display purposes only) and to display object identifiers as hexadecimal bytes. It also
displays OM syntaxes as symbolic constants. OM types are always displayed as
integers. Normally, XDS_LOG should be set to 0. If full tracing is required, set
XDS_LOG to 1.

The location of the log file can be set by means of the D2_LOG_DIR environment
variable. For example, the following places the log files in /tmp/log .

D2_LOG_DIR=/tmp/log; export D2_LOG_DIR

A separate log file is created for each process that uses the XDS API. The log file
names have the following format:

log_xds.pid

where pid is the process ID of the application. If the environment variable
D2_LOG_DIR is not set, the files are placed in the directory set by the HOME
environment variable.

© Copyright IBM Corp. 1990, 1999 79

Logging Format

The following general display format is used by the logging facility:

identifier-name = {
{ type, syntax, value },
{ type, syntax, value },
:
:
etc. }; /* identifier-name */

where:

v type -- The integer defined for the specified type

v syntax -- A symbolic constant for the specified syntax. A +L is appended to the
syntax label if the OM_S_LOCAL_STRING bit is set in the OM_syntax field.

v value

– An integer (if syntax is OM_S_INTEGER or OM_S_ENUMERATION)

– OM_FALSE or OM_TRUE (if syntax is OM_S_BOOLEAN)

– Symbolic constant, dotted-decimal notation, or hexadecimal bytes (if syntax is
OM_S_OBJECT_ID_STRING)

– Quoted-string (if syntax is any other type of string)

– Another object (if synta x is OM_S_OBJECT)

Note: The terminating NULL descriptor is expected but not displayed.

Examples

These examples show how a selection of XDS objects are displayed by the logging
facility.

The following filter selects entries that do not have the value secret for the
DS_A_USER_PASSWORD attribute. The DS_FILTER_TYPE has the value
DS_NOT. It contains a single DS_C_FILTER_ITEM attribute. DS_C_FILTER_ITEM
tests for equality against the DS_A_USER_PASSWORD attribute.

my_filter = {
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER },
{ DS_FILTER_ITEMS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER_ITEM },
{ DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, 0 },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_USER_PASSWORD },
{ DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, "secret" },

}
}
{ DS_FILTER_TYPE, OM_S_ENUMERATION, 3 },

}; /* my_filter */

The following example shows logging output if the interface logger encounters a
NULL pointer. The NULL pointer is flagged as follows:

my_session = {
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_SESSION },
{ DS_DSA_NAME, OM_S_OBJECT, ---WARNING: NULL pointer encountered--- },

}; /* my_session */

80 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The following example shows logging output if the interface logger encounters a
private object. The private object is displayed as follows:

bound_session = {
{ OM_PRIVATE_OBJECT, OM_S_OBJECT_ID_STRING, DS_C_SESSION } ...

}; /* bound_session */

The following example shows how a five-part DSA distinguished name is displayed
(/C=de/O=sni/OU=ap/CN=dsa/CN=dsa-ml):

dsa_name = {
{ DS_DSA_NAME, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_DN },
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COUNTRY_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, "de" },

}
}

}
}
{ DS_RDNS, OM_S_OBJECT,
{
{OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_ORG_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "sni" },

}
}

}
}
{ DS_RDNS, OM_S_OBJECT,
{
{OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_ORG_UNIT_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "ap" },

}
}

}
}
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa" },

}
}

}
}
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },

Chapter 4. XDS API Logging 81

{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa-m1" },

}
}

}
}

}
}

}; /* dsa_name */

82 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 5. XOM Programming

XOM API defines a general-purpose interface for use in conjunction with other
application-specific APIs for OSI services, such as XDS API to CDS directory
services. It presents the application programmer with a uniform information
architecture based on the concept of groups, classes, and similar information
objects.

This chapter describes some of the basic concepts required to understand and use
the XOM API effectively.

The following names refer to the complete XDS example programs, that are located
in /opt/dcelocal/examples/xdsxom

v add_list.c (add_list.h)

v cds_xmpl.c (cds_xmpl.h)

v example.c (example.h)

v thradd.c (thradd.h)

For multithreaded XDS/XOM applications, please refer to “Chapter 7. Using Threads
With The XDS/XOM API” on page 145. For use of the XDS/XOM convenience
functions, please refer to “Chapter 8. XDS/XOM Convenience Routines” on
page 153.

OM Objects

The purpose of XOM API is to provide an interface to manage complex information
objects. These information objects belong to classes and have attributes associated
with them. There are two distinct kinds of classes and attributes that are used
throughout the directory service documentation: directory classes and attributes and
OM classes and attributes.

The directory classes and attributes defined for XDS API correspond to entries that
make up the objects in the directory. These classes and attributes are defined in the
X.500 directory standard and by additional GDS extensions created for DCE. Other
APIs, such as the X.400 API, which is the application interface for the industry
standard X.400 electronic mail service, define their own set of objects in terms of
classes and attributes. OM classes and OM attributes are used to model the objects
in the directory.

XOM API provides a common information architecture so that the information
objects defined for any API that conforms to this architectural model can be shared.
Different application service interfaces can communicate by using this common way
of defining objects by means of workspaces. A workspace is simply a common work
area where objects defined by a service can be accessed and manipulated. In turn,
XOM API provides a set of standard functions that perform common operations on
these objects in a workspace. Two different APIs can share information by copying
data from one workspace to another.

© Copyright IBM Corp. 1990, 1999 83

OM Object Attributes

OM objects are composed of OM attributes. OM objects may contain zero or more
OM attributes. Every OM attribute has zero or more values. An attribute comprises
an integer that indicates the attribute’s value. Each value is accompanied by an
integer that indicates that value’s syntax.

An OM attribute type is a category into which all the values of an OM attribute are
placed on the basis of its purpose. Some OM attributes may either have zero, one,
or multiple values. The OM attribute type is used as the name of the OM attribute.

A syntax is a category into which a value is placed on the basis of its form.
OM_S_PRINTABLE_STRING is an example of a syntax.

An OM attribute value is an information item that can be viewed as a characteristic
or property of the OM object of which it is a part.

OM attribute types and syntaxes have integer values and symbolic equivalents
assigned to them for ease of use by naming authorities in the various API
specifications. The integers that are assigned to the OM attribute type and syntax
are fixed, but the attribute values may change. These OM attribute types and
syntaxes are defined in the DCE implementation of XDS and XOM APIs in header
files that are included with the software along with additional OM attributes specific
to the DCE implementation.

Figure 19 shows the internal structure of an OM object.

For example, the tables in Figure 20 on page 86 show the OM attributes, syntax,
and values for the OM class DS_C_ENTRY_INFO_SELECTION, and how the integer
values are mapped to corresponding names in the xom.h and xds.h header files.
Refer to “Chapter 10. XDS Class Definitions” on page 189 for a complete
description of DS_C_ENTRY_INFO_SELECTION and the accompanying table.

o b j e c t

a t t r i b u t e

t y p e
i n t e g e r

s y n t a x
i n t e g e r

s y n t a x
i n t e g e r

s y n t a x
i n t e g e r

v a l u e v a l u e

a t t r i b u t e

t y p e
i n t e g e r

s y n t a x
i n t e g e r

s y n t a x
i n t e g e r

v a l u e v a l u e

Figure 19. The Internal Structure of an OM Object

84 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT. This information is
supplied in the description of this OM class in “Chapter 14. Object Management
Package” on page 255. As such, DS_C_ENTRY_INFO_SELECTION inherits the OM
attributes of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT is OM_CLASS.
OM_CLASS identifies the object’s OM class, which in this case is
DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION identifies information to be
extracted from a directory entry and has the following OM attributes, in addition to
those inherited from OM_C_OBJECT:

v DS_ALL_ATTRIBUTES

v DS_ATTRIBUTES_SELECTED

v DS_INFO_TYPE

As part of an XDS function call, DS_ALL_ATTRIBUTES specifies to the directory service
whether all the attributes of a directory entry are relevant to the application
program. It can take the values OM_TRUE or OM_FALSE. These values are defined to
be of syntax OM_S_BOOLEAN. The value OM_TRUE indicates that information is
requested on all attributes in the directory entry. The value OM_FALSE indicates that
information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from which
information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING.

OM_S_OBJECT _IDENTIFIER_STRING contains an octet string of integers that are BER
encoded object identifiers of the types of OM attributes in the OM attribute list. The
value of DS_ATTRIBUTES _SELECTED is significant only if the value of
DS_ALL_ATTRIBUTES is OM_FALSE, as described previously.

DS_INFO_TYPE identifies the information that is to be extracted from each OM
attribute identified. The syntax of the value is specified as
Enum(DS_Information_Type). DS_INFO_TYPE is an enumerated type that has two
possible values: DS_TYPES_ONLY and DS_TYPES_ AND_VALUES. DS_TYPES_ONLY indicates
that only the attribute types in the entry are returned by the directory service
operation. DS_TYPES_AND_VALUES indicates that both the types and the values of the
attributes in the directory entry are returned.

A typical directory service operation, such as a read operation (ds_read()),
requires the entry_information_selection parameter to specify to the directory
service the information to be extracted from the directory entry. This
entry_information_selection parameter is built by the application program as a
public object (“Public Objects” on page 89 describes how to create a public object),
and is included as a parameter to the ds_read() function call, as shown in the
following code fragment from example.c:

/*
* Public Object ("Descriptor List") for
* Entry-Information-Selection
* parameter to ds_read().
*/
OM_descriptor selection[] = {
OM_OID_DESC(OM_CLASS,DS_C_ENTRY_INFO_SELECTION),
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,
{ DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR

Chapter 5. XOM Programming 85

};

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result,

&invoke_id));

Object Identifiers

OM classes are uniquely identifiable by means of ASN.1 object identifiers. OM
classes have mandatory and optional OM attributes. Each OM attribute has a type,
value, and syntax. OM objects are instances of OM classes that are uniquely
identifiable by means of ASN.1 object identifiers. The syntax of values defined for
these OM object classes and OM attributes are representations at a higher level of
abstraction so that implementors can provide the necessary high-level language
binding for their own implementations of the various application interfaces, such as
XDS API.

The DCE implementation uses C language to define the internal representation of
OM classes and OM attributes. These definitions are supplied in the header files
that are included as part of XDS and the XOM API.

d e f i n e D S _ A L L _ A T T R I B U T E S ((O M _ T Y P E) 7 0 7)

d e f i n e D S _ A T T R I B U T E S _ S E L E C T E D ((O M _ T Y P E) 7 1 0)

d e f i n e D S _ I N F O _ T Y P E ((O M _ t y p e) 7 3 4)

d e f i n e O M _ C L A S S ((O M _ t y p e) 3)

d e f i n e O M _ S _ B O O L E A N ((O M _ s y n t a x) 1)

d e f i n e O M _ O B J E C T _ I N D E N T I F I E R _ S T R I N G ((O M _ s y n t a x) 6)

d e f i n e O M _ S _ E N U M E R A T I O N ((O M _ s y n t a x) 1 0)

Attribute

OM_CLASS

Attribute

DS_ALL_

ATTRIBUTES

DS_ATTRIBUTES_

SELECTED

DS_INFO_TYPE

Value Syntax

String

(OM_S_OBJECT_IDENTIFIER_STRING)

Value Syntax

OM_S_BOOLEAN

String

(OM_S_OBJECT_IDENTIFIER_STRING)

Enum(DS_Information_Type)

OM Attributes of a OM_C_OBJECT

OM Attributes of a DS_C_ENTRY_INFO_SELECTION

Value Length

_

Value Length

_

_

_

Value No.

1

Value No.

1

0 or more

1

Value Initially

_

Value Initially

OM_TRUE

_

DS_TYPES

AND_VALUES

e n u m D S _ I n f o r m a t i o n _ Ty p e {
D S _ T Y P E S _ O N LY = 0
D S _ T Y P E S _ A N D _ V A L U E S = 1

} ;

s a m p l e c o d e
f r o m t h e x o m . h
h e a d e r f i l e

s a m p l e c o d e
f r o m t h e x d s . h
h e a d e r f i l e

Figure 20. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION

86 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM classes are defined as symbolic constants that correspond to ASN.1 object
identifiers. An ASN.1 object identifier is a sequence of integers that uniquely
identifies a specific class. OM attribute type and syntax are defined as integer
constants. These standardized definitions provide application programs with a
uniform and stable naming environment in which to perform directory operations.
Registration authorities are responsible for allocating the unique object identifiers.

The following code fragment from the xdsbdcp.h (the basic directory contents
package) header file contains the symbolic constant OMP_O_DS_A_COUNTRY_NAME:

#ifndef dsP_attributeType /*
joint-iso-ccitt(2) ds(5) attributeType(4)*/
#define dsP_attributeType(X) ("\x55\x04" #X)
#endif

#define OMP_O_DS_A_COUNTRY_NAME
dsp_attributeType(\x06)

It resolves to 2.5.4.6, which is the object identifier value for the Country-Name
attribute type as defined in the directory standard. The symbolic constant for the
directory object class Country resolves to 2.5.6.2, the corresponding object
identifier in the directory standard. OM classes are defined in the header files in the
same manner.

Note: 2.5.4.6 and 2.5.6.2 are object identifiers defined by the standards, not the
BER encoding found in the header file which are \x55\x04\x06 and
\x55\x06\x02.

C Naming Conventions

In the DCE implementation of XDS and XOM APIs, all object identifiers start with
the letters ds, DS, MH, or OMP. Note that the interface reserves all identifiers starting
with the letters dsP and omP for internal use by implementations of the interface. It
also reserves all identifiers starting with the letters dsX, DSX, omX, and OMX for
vendor-specific extensions of the interface. Applications programmers should not
use any identifier starting with these letters.

The C identifiers for interface elements are formed by using the following
conventions:

v XDS API function names are specified entirely in lowercase letters and are
prefixed by ds_ (for example, ds_read()).

v XOM API function names are specified entirely in lowercase letters and are
prefixed by om_ (for example, om_get()).

v C function parameters are derived from the parameter and result names and are
specified entirely in lowercase letters. In addition, the names of results have
_return added as a suffix (for example, operation_status_return).

v OM class names are specified entirely in uppercase letters and are prefixed by
DS_C_ and MH_C_ (for example, DS_C_AVA).

v OM attribute names are specified entirely in uppercase letters and are prefixed
by DS_ and MH_ (for example, DS_RDNS).

v OM syntax names are specified entirely in uppercase letters and are prefixed by
OM_S_ (for example, OM_S_PRINTABLE_STRING).

v Directory class names are specified entirely in uppercase letters and are prefixed
by DS_O (for example, DS_O_ORG_PERSON).

Chapter 5. XOM Programming 87

v Directory attribute names are specified entirely in uppercase letters and are
prefixed by DS_A (for example, DS_A_COUNTRY_NAME).

v Errors are treated as a special case. Constants that are the possible values of
the OM attribute DS_PROBLEM of a subclass of the OM class DS_C_ERROR are
specified entirely in uppercase letters and are prefixed by DS_E_ (for example,
DS_E_BAD_CLASS).

v The constants in the Value Length and Value Number columns of the OM class
definition tables are also assigned identifiers. Where the upper limit in one of
these columns is not 1, it is given a name that consists of the OM attribute name,
prefixed by DS_VL_ for value length, or DS_VN_ for value number.

v The sequence of octets for each object identifier is also assigned an identifier for
internal use by certain OM macros. These identifiers are all uppercase letters
and are prefixed by OMP_O_.

Table 9 and Table 10 summarize the XDS and XOM naming conventions.

Table 9. C Naming Conventions for XDS

Item Prefix

Reserved for implementors dsP

Reserved for interface extensions dsX

Reserved for interface extensions DSX

XDS functions ds_

Error problem values DS_E_

OM class names DS_C_, MH_C_

OM attribute names DS_, MH_

OM value length limits DS_VL_

OM value number limits DS_VN_

Other constants DS_, MH_

Attribute type DS_A_

Object class DS_O_

Table 10. C Naming Conventions for XOM

Element Type Prefix

Data type OM_

Data value OM_

Data value (class) OM_C_

Data value (syntax) OM_S_

Data value component (structure member) None

Function om_

Function parameter None

Function result None

Macro OM_

Reserved for use by implementors OMP

Reserved for use by implementors omP

Reserved for proprietary extension omX

Reserved for proprietary extension OMX

88 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Public Objects

The ultimate aim of an application program is access to the directory to perform
some operation on the contents of the directory. A user may request the telephone
number or electronic mail address of a fellow employee. In order to access this
information, the application performs a read operation on the directory so that
information is extracted about a target object in the directory and manipulated
locally within the application.

XDS functions that perform directory operations, such as ds_read() , require public
and private objects as input parameters. Typically, a public object is generated by
an application program and contains the information required to access a target
directory object. This information includes the AVAs and RDNs that make up a
distinguished name of an entry in the directory. However, an application program
may also generate a private object. Private objects are described in “Private
Objects” on page 98.

A public object is created by using OM classes and OM attributes. These OM
classes and OM attributes model the target object entry in the directory and provide
other information required by the directory service to access the directory.

Descriptor Lists

A public object is represented by a sequence of OM_descriptor data structures that
is built by the application program. A descriptor contains the type, syntax, and value
for an OM attribute in a public object.

The data structure OM_descriptor is defined in the xom.h header file as follows:

typedef struct OM_descriptor_struct {
OM_type type;
OM_syntax syntax;
union OM_value_union value;

}OM_descriptor;

Figure 21 on page 90 shows the representation of a public object in a descriptor list.
The first descriptor in the list indicates the object’s OM class; the last descriptor is a
NULL descriptor that signals the end of the list of OM attributes. In between the first
and the last descriptor are the descriptors for the OM attributes of the object.

For example, the following represents the public object country in example.c:

static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR
};

Chapter 5. XOM Programming 89

The descriptor list is an array of data type OM_descriptor that defines the OM class,
OM attribute types, syntax, and values that make up a public object.

The first descriptor gives the OM class of the object. The OM class of the object is
defined by the OM attribute type, OM_CLASS. The OM_OID_DESC macro initializes the
syntax and value of an object identifier, in this case to OM class DS_C_AVA, with the
syntax of OM_S_OBJECT_IDENTIFIER_STRING. OM_S_OBJECT_IDENTIFIER_STRING is an
OM syntax type that is assigned by definition in the macro to any OM attribute type
and value parameters input to it.

The second descriptor defines the first OM attribute type, DS_ATTRIBUTE_TYPE, which
has as its value DS_A_COUNTRY_NAME and syntax OM_S_OBJECT_IDENTIFIER_STRING.

The third descriptor specifies the AVA of an object entry in the directory. The
OM_OID_DESC macro is not used here because OM_OID_DESC is only used to initialize
values having OM_S_OBJECT_IDENTIFIER_STRING syntax. The OM attribute type is
DS_ATTRIBUTE_VALUES, the syntax is OM_S_PRINTABLE_STRING, and the value is US.
The OM_STRING macro creates a data value for a string data type (data type
OM_string), in this case OM_S_PRINTABLE_STRING. A string is specified in terms of its
length or whether or not it terminates with a NULL. (The OM_STRING macro is
described in “The OM_STRING Macro” on page 121.)

The last descriptor is a NULL descriptor that marks the end of the public object
definition. It is defined in the xom.h header file as follows:

#define OM_NULL_DESCRIPTOR
{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES,
{ { 0, OM_ELEMENTS_UNSPECIFIED } } }

OM_NULL_DESCRIPTOR is OM attribute type OM_NO_MORE_TYPES, syntax
OM_S_NO_MORE_SYNTAXES, and value OM_ELEMENTS_UNSPECIFIED.

Figure 22 on page 91 shows the composition of a descriptor list representing a
public object.

last descriptor null descriptor
(end marker of descriptor list)

last OM attribute of object

second descriptor first OM attribute of object

first descriptor class of object

Figure 21. A Representation of a Public Object By Using a Descriptor List

90 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Building the Distinguished Name as a Public Object

Recall that RDNs are built from AVAs, and a distinguished name is built from a
series of RDNs. In a typical application program, several AVAs are defined in
descriptor lists as public objects. These public objects are incorporated into
descriptor lists that represent corresponding RDNs. Finally, the RDNs are
incorporated into one descriptor list that represents the distinguished name of an
object in the directory, as shown in Figure 23 on page 92. This descriptor list is
included as one of the input parameters to a directory service function.

OM_OID_DESC(OM_CLASS,DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE,DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

};

static OM_descriptor country[]={

OM class

Directory attribute
type

Directory
attribute value

OM attribute
types

OM syntax

Figure 22. A Descriptor List for the Public Object: country

Chapter 5. XOM Programming 91

The following code fragment from example.c shows how a distinguished name is
built as a public object. The public object is the name parameter for a subsequent
read operation call to the directory. The representation of a distinguished name in
the DIT is shown in Figure 23.

The first section of code defines the four AVAs. These AVAs make the assertion to
the directory service that the attribute values in the distinguished name of Peter
Piper are valid and can therefore be read from the directory. The country name is
US, the organization name is Acme Pepper Co, the organizational unit name is
Research, and the common name is Peter Piper.
/*
* Public Object ("Descriptor List") for Name parameter to
* ds_read().
* Build the Distinguished-Name of Peter Piper
*/

static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR
};

static OM_descriptor organization[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,

OM_STRING("Acme Pepper Co") },
OM_NULL_DESCRIPTOR
};

static OM_descriptor organizational_unit[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),

Country Name = "US"

Organization Name = "Acme Pepper Co."

Organizational Unit = "Research"

Typeless RDN = "Peter Piper"

Distinguished Name = {C=US/O=Acme Pepper Co./OU=Research/CN=Peter Piper}

RDNs

Figure 23. The Distinguished Name of ″Peter Piper″ in the DIT

92 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Research") },
OM_NULL_DESCRIPTOR
};

static OM_descriptor common_name[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Peter Piper") },
OM_NULL_DESCRIPTOR
};

The next section of code is nested one level above the previously defined AVAs.
Each RDN has a descriptor with OM attribute type DS_AVAS (indicating that it is OM
attribute type AVA), a syntax of OM_S_OBJECT, and a value of the name of the
descriptor array defined in the previous section of code for an AVA. The rdn1
descriptor contains the descriptor list for the AVA country, the rdn2 descriptor
contains the descriptor list for the AVA organization, and so on.

OM_S_OBJECT is a syntax that indicates that its value is a subobject. For example, the
value for DS_AVAS is the previously defined object country. In this manner, a
hierarchy of linked objects and subobjects can be constructed.
static OM_descriptor rdn1[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, country } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn2[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, organization } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn3[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn4[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, common_name } },
OM_NULL_DESCRIPTOR
};

The next section of code contains the RDNs that make up the distinguished name,
which is stored in the array of descriptors called name. It is made up of the OM
class DS_C_DS_DN (representing a distinguished name) and four RDNs of OM
attribute type DS_RDNS and syntax OM_S_OBJECT.

OM_descriptor name[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdn1 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR
};

In summary, the distinguished name for Peter Piper is stored in the array of
descriptors called name, which is composed of three nested levels of arrays of
descriptors (see Figure 24 on page 94). The definitions for the AVAs are at the
innermost level, the definitions for RDNs are at the next level up, and the
distinguished name is at the top level.

Chapter 5. XOM Programming 93

Figure 25 on page 95 shows a more general view of the structure distinguished
name.

OM_descriptor

distinguished name

name [] = {

};
descriptor list

AVAs

static OM_descriptor country
[] = {

};
descriptor list

RDNs

static OM_descriptor rdn1 [] = {

};
descriptor list

static OM_descriptor
organization

[] = {
};

descriptor list

static OM_descriptor rdn2 [] = {

};
descriptor list

static OM_descriptor
organizational_

};
descriptor list

static OM_descriptor rdn3 [] = {

};
descriptor list

static OM_descriptor
common_name

[]={
};

descriptor list

static OM_descriptor rdn 4 [] = {

};
descriptor list

unit [] = {

CHECK_DS_CALL (ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

Figure 24. Building a Distinguished Name

94 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The name descriptor defines a public object that is provided as the name parameter
required by the XDS API read function call, ds_read() , as follows. (XDS API
function calls are described in detail in “Chapter 6. XDS Programming” on
page 123.)

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result,

&invoke_id));

The result of the ds_read() function call is in a private implementation-specific
format; it is stored in a workspace and pointed to by result. The application
program must use XOM function calls (described in “OM Function Calls” on
page 114) to interpret the data and extract the information. This extraction process
involves uncovering the nested data structures in a series of XOM function calls.

Client-Generated and Service-Generated Public Objects

There are two types of public objects: service-generated objects and
client-generated objects. The distinguished name object described in the previous
section is a client-generated public object because an application program (the
client) created the data structure. As the creator of the public object, it is the
responsibility of the application program to manage the memory resources allocated
for it.

concrete subclassDS_C_DS_DN

concrete classDS_C_AVA

concrete classDS_C_DS_RDN

abstract classDS_C_NAME

Figure 25. A Simplified View of the Structure of a Distinguished Name

Chapter 5. XOM Programming 95

Service-generated public objects are created by the XOM service.
Service-generated public objects may be generated as a result of an XOM request.
An XOM API function, such as om_get() , converts a private object into a
service-generated public object. This is necessary because XDS may return a
pointer to data in private format that can only be interpreted by XOM functions such
as om_get() .

For example, Figure 26 on page 97 shows how the read request described in the
previous example returns a pointer to an encoded data structure stored in result.
This encoded data structure, referred to as a private object (described in the next
section) is one of the input parameters to om_get() . The om_get() function
provides a pointer to a public object (in this case, entry) as an output parameter.
The public object is a data structure that has been interpreted by om_get() and is
accessible by the application program (the client). The information requested by the
application in the read request is contained in the output parameter entry.

96 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The application program is responsible for managing the storage (memory) for the
service-generated public object. This is an important point because it requires that
the application issue a series of om_delete() calls to delete the service-generated
public object from memory. Because the data structures involved with directory
service requests can be very large (often involving large subtrees of the DIT), it is
imperative that the application programmer build into any application program the
efficient management of memory resources.

The following code fragment from example.h demonstrates how storage for public
and private objects is released by using a series of om_delete() function calls

CHECK_DS_CALL (ds_reed (session, DS_DEFAULT_CONTEXT,

name, selection, &result, &invoke));

client-oriented

public objects

service-generated

private object

application program space
service-generated

public object

name

selection

workspace

session

context

entry

result

CHECK_OM_CALL (om_get (result,

OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry

&total_num));

Figure 26. Client-Generated and Service-Generated Objects

Chapter 5. XOM Programming 97

after they are no longer needed by the application program. The data (a list of
phone numbers associated with the name Peter Piper required by the application
program) has already been extracted by using a series of om_get() function calls,
as follows:

/* We can now safely release all the private objects
* and the public objects we no longer need
*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

Private Objects

Private objects are created dynamically by the service interface. In Figure 26 on
page 97, the ds_read() function returns a pointer to the data structure result in
the workspace. This service-generated data structure is a private object in a private
implementation-specific format, which requires a call to om_get() to interpret the
data. A private object is one of the required input parameters to XOM API functions
(such as om_get()), as shown in Figure 26 on page 97. Private objects are always
service generated.

Table 11 compares private and public objects.

Table 11. Comparison of Private and Public Objects

Private Public

Representation is implementation specific Representation is defined in the API
specification

Not directly accessible by the client Directly accessible by the client

Manipulated by the client by using OM
functions

Manipulated by the client by using
programming constructs

Created in storage provided by the service Is a service-generated object if created by
the service Is a client-generated object if
created by the client in storage provided by
the client

Cannot be modified by the client directly,
except through the service interface

If a client-generated object, can be modified
directly by the client If a service-generated
object, cannot be modified directly by the
client, except through the service interface

Storage is allocated and released by the
service

If a service-generated object, storage is
allocated and released by the service If a
client-generated object, storage is allocated
and released by the client

Private objects can also be used as input to XOM and XDS API functions to
improve program efficiency. For example, the output of a ds_search() request can
be used as input to ds_read() . The search request returns the name of each entry
in the search. If the application program requires the address and telephone
number of each name, a ds_read() operation can be performed on each name as
a private object.

98 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Object Classes

Objects are categorized into OM classes based on their purpose and internal
structure. An object is an instance of its OM class. An OM class is characterized by
OM attribute types that may appear in its instances. An OM class is uniquely
identified by an ASN.1 object identifier.

Later in this section, it will be shown how OM classes are organized into groups of
OM classes, called packages, that support some aspect of the directory service.

OM Class Hierarchy and Inheritance Properties

OM classes are related to each other in a tree hierarchy whose root is a special
OM class called OM_C_OBJECT. Each of the other OM classes is the immediate
subclass of precisely one other OM class. This tree structure is known as the OM
class hierarchy. It is important because of the property of inheritance. The OM class
hierarchy is defined by the XDS/XOM standards. DCE implements this hierarchy for
XDS/XOM.

The OM attribute types that may exist in an instance of an OM class, but not in an
instance of the OM class above it in the tree hierarchy, are said to be specific to
that OM class. OM attributes that may appear in an object are those specific to its
OM class as well as those inherited from OM classes above it in the tree. OM
classes above an instance of an OM class in the tree are superclasses of that OM
class. OM classes below an instance of an OM class are subclasses of that OM
class.

For example, as shown in Figure 27, DS_C_ENTRY_INFO_SELECTION inherits its OM
attributes from its superclass OM_C_OBJECT. The OM attributes DS_ALL_ATTRIBUTES,
DS_ATTRIBUTES_SELECTED, and DS_INFO_TYPE are attributes specific to the OM class
DS_C_ENTRY_INFO_SELECTION. The DS_C_ENTRY_INFO_SELECTION class has no
subclasses.

Another important point about OM class inheritance is that an instance of an OM
class is also considered to be an instance of each of its superclasses and may
appear wherever the interface requires an instance of any of those superclasses.
For example, DS_C_DS_DN is a subclass of DS_C_NAME. Everywhere in an application
program where DS_C_NAME is expected at the interface (as a parameter to
ds_read() , for example), it is permitted to supply DS_C_DS_DN.

OM_C_OBJECT

OM_CLASS

DS_C_ENTRY_INFO_SELECTION

DS_ALL_ATTRIBUTES
DS_ATTRIBUTES_SELECTED
DS_INFO_TYPE

Figure 27. The OM Class DS_C_ENTRY_INFO_SELECTION

Chapter 5. XOM Programming 99

Abstract and Concrete Classes

OM classes are defined as being either abstract or concrete. An abstract OM class
is an OM class in which instances are not permitted. An abstract OM class may be
defined so that subclasses can share a common set of OM attributes between
them.

In contrast to abstract OM classes, instances of OM concrete classes are permitted.
However, the definition of each OM concrete class may include the restriction that a
client not be allowed to create instances of that OM class. For example, consider
two alternative means of defining the OM classes used in XDS: DS_C_LIST_INFO and
DS_C_READ_RESULT. DS_C_LIST_INFO and DS_C_READ_RESULT are subclasses of the
abstract OM class DS_C_COMMON_RESULT.

Figure 28 on page 101 shows the relationship of DS_C_LIST_INFO and
DS_C_READ_RESULTS when the abstract OM class DS_C_COMMON_RESULT is defined and
when it is not defined. It demonstrates that the presence of an abstract OM class
enables the programmer to develop applications that process information more
efficiently.

100 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The following list contains the hierarchy of concrete and abstract OM classes in the
directory service package. Abstract OM classes are shown in italics. The indentation
shows the class hierarchy; for example, the abstract class OM_C_OBJECT is a
superclass of the abstract class DS_C_COMMON_RESULTS, which in turn is a
superclass of the concrete class DS_C_COMPARE_RESULT.

OM_C_OBJECT

v DS_C_ACCESS_POINT

v DS_C_ADDRESS

– DS_C_PRESENTATION_ADDRESS

v DS_C_ATTRIBUTE

– DS_C_AVA

– DS_C_ENTRY_MOD

– DS_C_FILTER_ITEM

OM_C_OBJECT

OM_C_OBJECT

OM_CLASS

OM_CLASS

DS_C_COMMON_RESULT

DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO

DS_C_LIST_INFO

DS_OBJECT_NAME
DS_PARTIAL_OUTCOME_QUAL
DS_SUBORDINATES

DS_OBJECT_NAME
DS_PARTIAL_OUTCOME_QUAL
DS_SUBORDINATES
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_READ_RESULT

DS_C_READ_RESULT

DS_ENTRY

DS_ENTRY
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO and DS_C_READ_RESULT with the DS_C_COMMON_RESULT
abstract class defined

DS_C_LIST_INFO and DS_C_READ_RESULT without the DS_C_COMMON_RESULT
abstract class defined

Figure 28. Comparison of Two Classes With/Without an Abstract OM Class

Chapter 5. XOM Programming 101

v DS_C_ATTRIBUTE_ERROR

v DS_C_ATTRIBUTE_LIST

– DS_C_ENTRY_INFO

v DS_C_COMMON_RESULTS

– DS_C_COMPARE_RESULT

– DS_C_LIST_INFO

– DS_C_READ_RESULT

– DS_C_SEARCH_INFO

v DS_C_CONTEXT

v DS_C_CONTINUATION_REF

– DS_C_REFERRAL

v DS_C_ENTRY_INFO_SELECTION

v DS_C_ENTRY_MOD_LIST

v DS_C_ERROR

– DS_C_ABANDON_FAILED

– DS_C_ATTRIBUTE_PROBLEM

– DS_C_COMMUNICATIONS_ERROR

– DS_C_LIBRARY_ERROR

– DS_C_NAME_ERROR

– DS_C_SECURITY_ERROR

– DS_C_SERVICE_ERROR

– DS_C_SYSTEM_ERROR

– DS_C_UPDATE_ERROR

v DS_C_EXT

v DS_C_FILTER

v DS_C_LIST_INFO_ITEM

v DS_C_LIST_RESULT

v DS_C_NAME

– DS_C_DS_DN

v DS_C_OPERATION_PROGRESS

v DS_C_PARTIAL_OUTCOME_QUAL

v DS_C_RELATIVE_NAME

– DS_C_DS_RDN

v DS_C_SEARCH_RESULT

v DS_C_SESSION

In summary, an OM class is defined with the following elements:

v OM class name (indicated by an object identifier)

v Identity of its immediate superclass

v Definitions of the OM attribute types specific to the OM class

v Indication whether the OM class is abstract or concrete

v Constraints on the OM attributes

A complete description of OM classes, OM attributes, syntaxes, and values that are
defined for XDS and XOM APIs are described in “Part 4. XDS/XOM Supplementary
Information” on page 179. Tables and textual descriptions, such as the one shown

102 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

in Figure 29 for the concrete OM class DS_C_ATTRIBUTE, are provided for each OM
class.

The table shown in Figure 29 provides information under the following headings:

v OM Attribute

This is the name of each of the OM attributes.

v Value Syntax

This provides the syntaxes of each of the OM attribute’s values.

v Value Length

This describes any constraints on the number of bits, octets, or characters in
each value that is a string.

v Value Number

This describes any constraints on the number of values.

v Value Initially

This is any value with which the OM attribute can be initialized.

The attribute type that indicates the class of information given by this attribute.

OM_Atrributes of a DS_C_ATTRIBUTE

-

-

DS_ATTRIBUTE_VALUES

DS_ATTRIBUTE _TYPE

Class name Description of the class including an
indication if it is an abstract class

Table showing values
of syntax, length,
number of values,
and initial value

DS_C_ATTRIBUTE

Description of attributes and
listing of attribute values

Indicates
super-classes

The attribute values. The OM value syntax and the number of the values allowed for
this
OM attribute are determined by the value of the OM attribute
in
accordance with the rules given in "Attribute and AVA." If the values of this OM
attribute
have the syntax string(*), the strings can be long and segmented. For this reason,

and need to be used to access all Strings(*) values.

DS_ATTRIBUTE_TYPE

om_read() om_write()

A directory attribute must always have at least one value, although it is acceptable for
instances of this OM class not to have any values.

An instance of OM class is an attribute of an object and, thus a component
of its directory entry.

An instance of this OM class has the OM attributes of its superclass, , in
addition to the OM attributes listed in the following table.

DS_C_ATTRIBUTE

OM_C_OBJECT

OM Attribute Value Syntax Value Length Value Number Value Initially

1

0 or more

-

-any

String (OM_S_OBJECT_
IDENTIFIER_STRING)

DS_ATTRIBUTE_TYPE

DS_ATTRIBUTE_VALUES

Note:

°

°

Figure 29. Complete Description of Concrete OM Class DS_C_ATTRIBUTE

Chapter 5. XOM Programming 103

An OM class can be constrained to contain only one member of a set of OM
attributes. In turn, OM attributes can be restricted to having no more than a fixed
number of values, either 0 (zero) or 1 as an optional value, or exactly one
mandatory value.

An OM attribute’s value may be also constrained to a single syntax. That syntax
can be further restricted to a subset of defined values.

An object passed as a parameter to an XOM and XDS function call needs to meet
a minimum set of conditions, as follows:

v The type of each OM attribute must be specific to the object’s OM class or one
of its superclasses.

v The number of values of each OM attribute must be within OM class limits.

v The syntax of each value must be among those the OM class permits.

v The number of bits, octets, or characters in each string value must be within OM
class limits.

Packages

A package is a collection of OM classes that are grouped together, usually by
function. The packages themselves are features that are negotiated with the
directory service by using the XDS function ds_version() . Consider which OM
classes will be required for your application programs and determine the packages
that contain these OM classes.

A package is uniquely identified by an ASN.1 object identifier. DCE XDS API
supports the following four packages, where one is mandatory and three are
optional:

v The directory service package (mandatory)

v The basic directory contents package (optional)

v The GDS package (optional)

v The message handling system (MHS) directory user package (optional)

The Directory Service Package

The directory service package is the default package and as such does not require
negotiation. The optional packages have to be negotiated with the directory service
by using the ds_version() function.

The object identifiers for specific packages are defined in header files that are part
of the XDS API and XOM API. An object identifier consists of a string of integers.
The header files include #define preprocessor statements that assign names to the
constants in order to make them more readable. For the application programmer,
these assignments alleviate the burden of maintaining strings of integers. For
example, the object identifiers for the directory service package are defined in
xds.h . The xds.h header file contains OM class and OM attribute names, OM
object constants, and defines prototypes for XDS API functions, as shown in the
following code fragment from xds.h :
/* DS package object identifier */
/* {iso(1) identifier-organization(3) icd-ecma(12)
* member-company(2)
* dec(1011) xopen(28) dsp(0) } */

#define OMP_O_DS_SERVICE_PKG "\x2B\x0C\x02\x87\xlC\x00"

104 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

A ds_version() function call must be included within an application program to
negotiate the optional features (packages) with the directory service. The first step
is to build an array of object identifiers for the optional packages to be negotiated
(the basic directory contents package and the GDS package), as shown in the
following code fragment from the acl.h header file:

DS_feature features[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
{ 0 }

};

The OM_STRING macro is provided for creating a data value of data type OM_string
for octet strings and characters. XOM API macros are described in “XOM API
Macros” on page 119.

The array of object identifiers is stored in features and passed as an input
parameter to ds_version(), as shown in the following code fragment from acl.c :

/* Negotiate the use of the BDC packages. */

if (ds_version(features) != DS_SUCCESS)
printf("ds_version()error\n");

The Basic Directory Contents Package

The basic directory contents package contains the object identifier definition of
directory classes and attribute types as defined by the X.500 standard. These
definitions allow the creation of and maintenance of directory entries for a number
of common objects so that the representation of all such objects is the same
throughout the directory. Also included are the definitions of the OM classes and
OM attributes required to support the directory attribute types. “Chapter 11. Basic
Directory Contents Package” on page 219 describes the basic directory contents
package in detail.

The object identifier associated with the basic directory contents package is shown
in the following code fragment from the xdsbdcp.h header file:

/* BDC package object identifier */
/* { iso(1) identifier-organization(3) icd-ecma(12)
* member-company (2)
* dec(1011) xopen(28) bdcp(1) } */

#define OMP_DS_BASIC_DIR_CONTENTS_PKG"\x2B\x0C\x02\x87\x73\x1C\x01"

Note: The xdsbdcp.h header file must be included.

Package Closure

An OM class can be defined to have an attribute whose OM class is defined in
some other package in order to avoid duplication of OM classes. This gives rise to
the concept of a package closure. A package closure is the set of all OM classes
that need to be supported so that all possible instances of all OM classes can be
defined in the package.

Chapter 5. XOM Programming 105

Workspaces

Two application-specific APIs or two different implementations of the same service
require work areas, called workspaces, to maintain private and public
(service-generated) objects. The workspace is required because two
implementations of the same service (or different services) can represent private
objects differently. Each one has its own workspace. Using the functions provided
by XOM API, such as om_get() and om_copy() , objects can be copied and
moved from one workspace to another.

Recall that private objects are returned by a service to a workspace in private
implementation-specific format. Using the OM function calls described in “OM
Function Calls” on page 114, the data can be extracted from the private object for
further program processing.

Before a request to the directory can be made by an application program, a
workspace must be created by using the appropriate XDS function. An application
creates a workspace by performing the XDS API call ds_initialize() . Once the
workspace is obtained, subsequent XDS API calls, such as ds_read() , return a
pointer to a private object in the workspace. When program processing is
completed, the workspace is destroyed by using the ds_shutdown() XDS API
function. Implicit in ds_shutdown() is a call to the XOM API function
om_delete() to delete each private object the workspace contains.

The programs located in /opt/dcelocal/examples/xdsxom demonstrate how to
initialize and shut down a workspace. The XDS functions ds_initialize() and
ds_shutdown() are described in detail in “Chapter 6. XDS Programming” on
page 123.

The closures of one or more packages are associated with a workspace. A package
can be associated with any number of workspaces. An application program must
obtain a workspace that supports an OM class before it is able to create any
instances of that OM class.

Storage Management

An object occupies storage. The storage occupied by a public object is allocated by
the client and can therefore be directly accessed and released by the client. The
storage occupied by a private object is not accessible by the client and must be
managed indirectly by using XOM function calls. Release of service-generated
public objects must also be managed indirectly by the client using the om_delete()
function.

Objects are accessed by an application program via object handles. Object handles
are used as input parameters to interface functions by the client and returned as
output parameters by the service. The object handle for a public object is simply a
pointer to the data structure (an array of descriptors) containing the object OM
attributes. The object handle for a private object is a pointer to a data structure that
is in private implementation-specific format and, therefore, inaccessible directly by
the client.

The client creates a client-generated public object by using normal programming
language constructs; for example, static initialization. The client is responsible for
managing any storage involved. The service creates service-generated public

106 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

objects and allocates the necessary storage. As previously mentioned, the client
must destroy service-generated public objects and release the storage by applying
the XOM function om_delete() to it, as shown in the following code fragment:

/* We can now safely release all the private objects
* and the public objects we no longer need
*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

The service also creates private objects for which it allocates storage that must be
managed by the application.

One of the input parameters to the ds_read() function call is name. The name
parameter is a public object created by the application from a series of nested data
structures (RDNs and AVAs) to represent the distinguished name containing Peter
Piper. When the application no longer needs the public object, it issues the XDS
function call ds_shutdown() to release the memory resources associated with the
public object. The ds_read() call returns the pointer to a private object, result,
deposited in the workspace by the service.

The program goes on to use the XOM function om_get() with the input parameter
result as a pointer to extract attribute values from the returned private object. The
om_get() call returns the pointer entry as a service-generated public object to the
program so that the attribute values specified in the call can be accessed by it.
Once the value is extracted, the application can continue processing; for example,
printing a message to a user with some extracted value like a phone number or
postal address. The service-generated public object becomes the responsibility of
the application program. The program goes on to release the resources allocated
by the service by issuing a series of calls to om_delete() , as shown in the
following code fragment from example.h:

/*
* extract the telephone number(s) of "name" from the result
*
* There are 4 stages:
* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.
* (3) get the list of phone numbers.
* (4) scan the list and print each number.
*/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

Chapter 5. XOM Programming 107

/* We can now safely release all the private objects
* and the public objects we no longer need
*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

If the client possesses a valid handle (or pointer) for an object, it has access to a
private object. If the client does not possess an object handle or the handle is not a
valid one, a private object is inaccessible to the client and an error is returned to
the calling function. In the preceding code fragment, the handles for the objects
stored in entry, attributes, and telephones are the pointers &entry, &attributes, and
&telephones, respectively.

OM Syntaxes for Attribute Values

An OM attribute is made up of an integer uniquely defined within a package that
indicates the OM attribute’s type, an integer giving that value’s syntax, and an
information item called a value. The syntaxes defined by the XOM API standard are
closely aligned with ASN.1 types and type constructors.

Some syntaxes are described in the standard in terms of syntax templates.

A syntax template defines a group of related syntaxes. The syntax templates that
are defined are as follows:

v Enum(*)

v Object(*)

v String(*)

Enumerated Types

An OM attribute with syntax template Enum(*) is an enumerated type
(OM_S_ENUMERATION) and has a set of values associated with that OM attribute. For
example, one of the OM attributes of the OM class DS_C_ENTRY_INFO_SELECTION is
DS_INFO_TYPE. DS_INFO_TYPE is listed in the OM attribute table for
DS_C_ENTRY_INFO_SELECTION in “Chapter 10. XDS Class Definitions” on page 189 as
having a value syntax of Enum(DS_Information_Type), as shown in Table 12.
DS_INFO_TYPE takes one of the following values:

v DS_TYPES_ONLY

v DS_TYPES_AND_VALUES

Table 12. Description of an OM Attribute By Using Syntax Enum(*)

OM Attributes of DS_C_ENTRY_INFO_SELECTION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALL_ATTRIBUTES OM_S_BOOLEAN — 1 OM_TRUE

DS_ATTRIBUTES_
SELECTED

String(OM_S_OBJECT_
IDENTIFIER_STRING)

— 0 or more —

DS_INFO_TYPE Enum(DS_Information_
Type)

— 1 DS_ TYPES_
AND_ VALUES

108 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The C language representation of the syntax of the OM attribute type DS_INFO_TYPE
is OM_S_ENUMERATION as defined in the xom.h header file. The value of the OM
attribute is either DS_TYPES_ONLY or DS_TYPES_AND_VALUES, as shown in the following
code fragment from example.h:
/*
* Public Object ("Descriptor List") for
* Entry-Information-Selection
* parameter to ds_read().
*/
OM_descriptor selection[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,
{ DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR
};

Object Types

An OM attribute with syntax template Object(*) has OM_S_OBJECT as syntax and a
subobject as a value. For example, one of the OM attributes of the OM class
DS_C_DS_DN is DS_RDNS. DS_RDNS is listed in the OM attribute table for DS_C_DS_DN as
having a value syntax of Object(DS_C_DS_RDN), as shown in Table 13.

Table 13. Description of an OM Attribute By Using Syntax Object(*)

OM Attributes of DS_C_DS_DN

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_RDNS Object(DS_C_DS_RDN) — 0 or more —

The C language representation of the syntax of the OM attribute type DS_RDNS is
OM_S_OBJECT, as shown in following code fragment from example.h:

OM_descriptor name[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdn1 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR
};

Strings

An OM attribute with syntax template String(*) specifies the string syntax of its
value. A string is categorized as either a bit string, an octet string, or a character
string. The bits of a bit string, the octets of an octet string, or the octets of a
character string constitute the elements of the string. (Refer to “Chapter 12.
Information Syntaxes” on page 233 for a list of the syntaxes that form the string
group.)

The value length of a string is the number of elements in the string. Any constraints
on the value length of a string are specified in the appropriate OM class definitions.

The elements of the string are numbered. The position of the first element is 0
(zero). The positions of successive elements are successive positive integers.

Chapter 5. XOM Programming 109

For example, one of the attributes of the OM class DS_C_ENTRY_INFO_SELECTION is
DS_ATTRIBUTES_SELECTED. DS_ATTRIBUTES_SELECTED is listed in the OM attribute table
for DS_C_ENTRY_INFO_SELECTION as having a value syntax of
String(OM_S_OBJECT_IDENTIFIER_STRING), as shown in Table 12 on page 108.

Other Syntaxes

The other syntaxes are defined as follows:

v OM_S_BOOLEAN

A value of this syntax is a Boolean; that is, the value can be OM_TRUE or
OM_FALSE.

v OM_S_INTEGER

A value of this syntax is a positive or negative integer.

v OM_S_NULL

The one value of this syntax is a valueless placeholder.

Service Interface Data Types

The local variables within an application program that contain the parameters and
results of XDS and XOM API function calls are declared by using a standard set of
data types. These data types are defined by typedef statements in the xom.h
header files. Some of the more commonly used data types are described in the
following subsections. A complete description of service interface data types is
provided in “Chapter 13. XOM Service Interface” on page 239 and in the IBM DCE
Version 3.1 for AIX and Solaris: Application Development Reference .

The OM_descriptor Data Type

The OM_descriptor data type is used to describe an OM attribute type, syntax, and
value. A data value of this type is a descriptor, that embodies an OM attribute value.
An array of descriptors can represent all the values of an object.

OM_descriptor is defined in the xom.h header file as follows:
/* Descriptor */

typedef struct OM_descriptor_struct {
OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

OM_descriptor is made up of a series of nested data structures, as shown in
Figure 30 on page 111.

110 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Figure 30 shows that type and syntax are integer constants for an OM attribute
type and syntax, as shown in the following code fragment from example.c:

static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR
};

The code fragment initializes four descriptors, as shown in Figure 31 on page 112.
The type and syntax evaluate to integers for all four descriptors.

typedef struct OM_descriptor_struct {
OM_type
OM_syntax
union OM_value-union

type;
syntax;
value;

typedef OM_uint16 OM_type
typedef OM_uint16 OM_syntax

} OM_descriptor;

typedef union OM_value_union {
OM_string
OM_boolean
OM_enumeration
OM_integer
OM_padded_object

string;
boolean;
enumeration;
integer;
object;

typedef OM_uint32 OM_boolean
typedef OM_sint32 OM_enumeration;
typedef OM_sint32 OM_integer

} OM_value;

typedef struct {

typedef struct {

OM_string length
void

OM_uint32
OM_object

} OM_string;

} OM_padded_object;

length;
*elements;

padding;
object;

typedef struct OM_descriptor_struct *OM_object;

typedef unsigned
typedef long unsigned
typedef long init

OM_uint16;
OM_uint32;
OM_uint32;

Figure 30. Data Type OM_descriptor_struct

Chapter 5. XOM Programming 111

The value component is a little more complex. Figure 30 on page 111 shows that
value is a union of OM_value_union. OM_value_union has five members: string,
boolean, enumeration, integer, and object. The members boolean, enumeration,
and integer have integer values. The string member contains a string of type
OM_string, which is a structure composed of a length and a pointer to a string of
characters. The object member is a structure of type OM_padded_object that points
to another object nested below it. Many OM attributes have other objects as values.
These subobjects, in turn, may have other subobjects and so on.

For example, as shown in Figure 32, the OM class DS_C_READ_RESULT has one OM
attribute: DS_ENTRY. The syntax of DS_ENTRY is OM_S_OBJECT with a value of
DS_C_ENTRY_INFO, indicating that it points to the subobject DS_C_ENTRY_INFO.
DS_C_ENTRY_INFO has the OM attribute DS_OBJECT_NAME with the syntax OM_S_OBJECT,
indicating that it points to the subobject DS_C_NAME.

Data Types for XDS API Function Calls

The following code fragment from example.h shows how the data types are used to
declare the variables that contain the output parameters from the XDS API function
calls.

int main(void)
{

static OM_descriptor country[]={
OM_OID_DESC(OM_CLASS,DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE,DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US")},
OM_NULL_DESCRIPTOR
};

OM_CLASS=3

DS_ATTRIBUTE_
TYPE=711

DS_ATTRIBUTE_
VALUES=713

OM_NO_MORE_
TYPES=0

OM_S_OBJECT_
IDENTIFIER_STRING=6

OM_S_OBJECT_
IDENTIFIER_STRING=6

OM_S_NO_MORE_SYNTAXES=0

OM_S_PRINTABLE_
STRING=19

9, DS_C_AVA=
\x2B\x0C\x02\x87\x73
\x1C\x00\x85\x44

3, DS_A_COUNTRY_NAME
=\x55\x04\x06

2, "US"

0, OM_ELEMENTS_
UNSPECIFIED=0

Type Syntax Value

Figure 31. Initializing Descriptors

OM Class

DS_C_READ_RESULT

DS_C_ENTRY_INFO

Attribute

DS_ENTRY

DS_FROM_ENTRY
DS_OBJECT_NAME

Syntax and Value

Objects(DS_C_ENTRY_INFO)

OM_S_BOOLEAN
Object(DS_C_NAME)

Figure 32. An Object and a Subordinate Object

112 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation

*/

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));
CHECK_DS_CALL(ds_version(bdcp_package, workspace));
CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

The code fragment shows the following:

v The ds_initialize() call returns a variable of type OM_workspace that contains a
handle or pointer to a workspace.

v The ds_bind() call returns a pointer to a variable of type OM_private_object.
The private object contains the session information required by all subsequent
XDS API calls, except ds_shutdown() .

v The ds_read() call returns a pointer to the result of a directory read request in a
variable of type OM_private_object.

v The error handing macros CHECK_DS_CALL and CHECK_OM_CALL, defined in the
example.h header file, use the data types DS_status and OM_return_code,
respectively, as return values from XDS and XOM API function calls.

Data Types for XOM API Calls

The following code fragment from example.h shows how the data types are used to
declare the variables that contain the input and output parameters for the XOM API
function calls.

/*
* variables to extract the telephone number(s)
*/
OM_type entry_list[] = { DS_ENTRY, 0 };
OM_type attributes_list[] = { DS_ATTRIBUTES, 0 };
OM_type telephone_list[] = { DS_ATTRIBUTE_VALUES, 0 };
OM_public_object entry;
OM_public_object attributes;
OM_public_object telephones;
OM_descriptor *telephone; /* current phone number */
OM_value_position total_num; /* number of Attribute Descriptors

*/

The code fragment shows the following:

v The series of om_get() calls requires a list of OM attribute types that identifies
the types of OM attributes to be included in the operation. The variables
entry_list, attribute_list, and telephone_list are declared as type OM_type.

v The series of om_get() calls return pointers to variables of type
OM_public_object. The om_get() call generates public objects that are
accessible to the application program.

v Where the variable total_num is type OM_value_position and is used to hold the
number of OM descriptors returned by om_get() .

“Chapter 12. Information Syntaxes” on page 233 contains detailed descriptions of all
the data types defined by XOM API.

Chapter 5. XOM Programming 113

OM Function Calls

XOM API supports general-purpose OM functions defined by the X/Open standards
body that allow an application program to manipulate objects in a workspace.
“Summary of OM Function Calls” lists the OM function calls and gives a brief
description of each. “Using the OM Function Calls” on page 115 illustrates the use
of OM function calls by using the om_get() call as an example.

Summary of OM Function Calls

The following list of XOM API function calls contains a brief description of each
function. Refer to the appropriate reference page in the IBM DCE Version 3.1 for
AIX and Solaris: Application Development Referencefor a detailed description of the
input and output parameters, return codes, and usage of each function.

v om_copy()

Creates an independent copy of an existing private object and all of its
subobjects in a specified workspace.

v om_copy_value()

Replaces an existing OM attribute value or inserts a new value into a target
private object with a copy of an existing OM attribute value found in a source
private object.

v om_create()

Creates a private object that is an instance of the specified OM class.

v om_delete()

Deletes a private or service-generated public object.

v om_get()

Creates a new public object that is an exact, but independent, copy of an existing
private object; certain exclusions and/or syntax conversion may be requested for
the copy.

v om_instance()

Tests to determine if an object is an instance of a specified OM class (includes
the case when the object is a subclass of that OM class).

v om_put()

Places or replaces copies of the attribute values of the source private or public
object into the target private object.

v om_read()

Reads a segment of a string attribute from a private object.

v om_remove()

Removes and discards values of an attribute of a private object.

v om_write()

Writes a segment of a string attribute to a private object.

v om_encode()

Not supported by DCE XOM API.

v om_decode()

Not supported by DCE XOM API.

114 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Using the OM Function Calls

Most application programs require the use of a series of om_get() function calls to
create service-generated public objects from which the program can extract
requested information. For this reason, this section uses the operation of om_get()
as an example to describe how XOM API functions operate in general.

The following code fragment from example.h shows how a series of om_get()
function calls extract a list of telephone numbers from a workspace. The ds_read()
function call deposits the private object stored in result in the workspace and
provides access to it by the pointer &result.

/*
* extract the telephone number(s) of "name" from the result
*
* There are 4 stages:
* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.
* (3) get the list of phone numbers.
* (4) scan the list and print each number.
*/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

/* We can now safely release all the private objects
* and the public objects we no longer need
*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

for (telephone = telephones;
telephone->type != DS_ATTRIBUTE_VALUES;
telephone++)

{
if (telephone->type != DS_ATTRIBUTE_VALUES

|| (telephone->syntax & OM_S_SYNTAX) !=
OM_S_PRINTABLE_STRING)
{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}

Chapter 5. XOM Programming 115

CHECK_OM_CALL(om_delete(telephones));
CHECK_DS_CALL(ds_shutdown(workspace));

The om_get() call makes a copy of all or a selected set of parts of a private
object. The copy is a service-generated public object that is accessible to the
application program. The application program extracts the list of telephone numbers
from this copy.

Required Input Parameters

The om_get() function requires the following input parameters:

v A private object

v A set of exclusions

v A set of OM attributes to be included in the copy

v A flag to indicate whether local string processing is required

v The position of the first value to be copied (the base value)

v The position within each OM attribute that is one beyond the last attribute to be
included in the copy (indicating the scope of the copy)

The om_get() call returns the following output parameters:

v The public object that is a copy of the private object

v The number of OM attribute descriptors returned in the public object

In the code fragment from example.h, the private object result is input to
om_get() .

The next parameter, the exclusions parameter, reduces the copy to a prescribed
portion of the original. The exclusions apply to the OM attributes of the object, but
not to those of subobjects. The possibilities for determining the combinations of
types, values, subobjects, and descriptors to be excluded depend on the creativity
of the programmer. For a detailed description of all the exclusion possibilities, refer
to the IBM DCE Version 3.1 for AIX and Solaris: Application Development
Reference. The values chosen for the om_get() calls in example.h are simplified
for clarity. These exclusion values are as follows:

v OM_EXCLUDE_ALL_BUT_THESE_TYPES

v OM_EXCLUDE_SUBOBJECTS

Each value indicates an exclusion, as defined by om_get() , and is chosen from
the set of exclusions; alternatively, the single value OM_NO_EXCLUSIONS may be
chosen, which selects the entire object. Each value, except OM_NO_EXCLUSIONS, is
represented by a distinct bit, the presence of the value being represented as 1, and
its absence as 0 (zero). Multiple exclusions are requested by adding or ORing the
values that indicate the individual exclusions.

OM_EXCLUDE_ALL_THESE_TYPES indicates that the OM attributes included are only the
ones defined in the list of included types supplied in the next parameter, entry_list.
OM_EXCLUDE_SUBOBJECTS indicates that, for each value whose syntax is OM_S_OBJECT,
a descriptor containing an object handle for the original private subobject is
returned, rather than a public copy of it. This handle makes that subobject
accessible for use in subsequent function calls. Exclusion provides a means to
examine an object one level at a time. The object the handle points to is used in
the next om_get() call to get the next level.

116 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The entry_list parameter is declared in example.h as data type OM_type and
initialized as a two-cell array with values DS_ENTRY and a NULL terminator. DS_ENTRY
specifies the single OM attribute type included for that om_get() call. This call only
limits processing to the one directory entry; only one entry was defined previously in
the program — the distinguished name of Peter Piper. The 0 (zero) marks the end
of the OM attribute list.

The next parameter, OM_FALSE, indicates that mapping to a local string format is not
required. The next two parameters set the initial and limiting value to 0 (zero),
meaning that no specific values are to be excluded.

The final two parameters are output parameters: entry, a pointer to a
service-generated public object deposited by om_get() in the workspace, and
total_num, an integer. Both entry and total_num are available for examination by the
application program.

Extracting the Data from the Read Result

The entry parameter contains the result of processing by om_get() of the read
parameter generated by the ds_read() operation. A successful call to ds_read()
returns an instance of OM class DS_C_READ_RESULT in the private object result.
DS_C_READ_RESULT contains the information extracted from the directory entry of the
target object. Figure 33 shows the relationship of some of the superclasses,
subclasses, and the OM attribute of DS_C_READ_RESULT. Consider Figure 33 as a
partial map of the contents of result.

The om_get() function call creates a public object to make the information
contained in result available to the application program. The entry parameter is
defined as data type OM_public_object. As such, it is composed of several nested
layers of subobjects that contain entry information, OM attributes, and OM attribute
values, as shown in Figure 34 on page 118. The series of om_get() calls removes
these layers of objects to extract a list of telephone numbers.

Figure 34 on page 118 also shows that the process of exposing the subobjects
continues while the syntax of the subobjects is OM_S_OBJECT. In effect, example.h is
reversing the process of building up a series of public objects as input to

DS_READ_RESULT
DS_ENTRY

DS_C_ATTRIBUTE_LIST
DS_ATTRIBUTES

DS_C_ENTRY_INFO
DS_FROM_ENTRY
DS_OBJECT_NAME

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE
DS_ATTRIBUTE_VALUES

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE
DS_ATTRIBUTE_VALUES

other objectsom_get
(result...)

ds_read
(...&result...)

Figure 33. The Read Result

Chapter 5. XOM Programming 117

ds_read() ; namely, the distinguished name of Peter Piper and the descriptor list
for entry_information_selection.

The following code fragment from example.c shows how the syntax of the variable
telephones is tested for valid syntax; in this case, OM_S_PRINTABLE_STRING:

for (telephone = telephones;
telephone->type != DS_ATTRIBUTE_VALUES;
telephone++)

{
if (telephone->type != DS_ATTRIBUTE_VALUES ||

(telephone->syntax & OM_S_SYNTAX) !=
OM_S_PRINTABLE_STRING)
{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}
(void) printf("Telephone number: %s\n",

telephone->value.string.elements);
}

The preceding example determines whether telephones is in a format that can be
used by the application program as string data that can be printed out, and that the
syntax is correct for a list of telephone numbers. Note that the program uses the

result

read result handle

private object

private object

private object

DS_ATTRIBUTE_
VALUES

telephones

attributes

entry

OM_S_PRINTABLE_
STRING

DS_ENTRY

OM_S_OBJECT

OM_S_OBJECT

DS_ATTRIBUTES

entry_information
handle

attribute handle

"+49 89 636 12345"

om_get

om_get

om_get

Figure 34. Extracting Information Using om_get()

118 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

constant OM_S_SYNTAX to mask off the top 6 bits. These bits are special bits that are
used by XOM API. (Refer to “Chapter 13. XOM Service Interface” on page 239 for
more information on these special bits.)

Return Codes

XOM API function calls return a value of type OM_return_code, which indicates
whether the function succeeded. If the function is successful, the value of
OM_return_code is set to OM_SUCCESS. If the function fails, it returns one of the values
listed in “Chapter 13. XOM Service Interface” on page 239. The constants for
OM_return_code are defined in the xom.h header file.

XOM API Header Files

The XOM API includes the header file xom.h . This header file is composed of
declarations defining the C workspace interface. It supplies type definitions,
symbolic constant definitions, and macro definitions.

XOM Type Definitions and Symbolic Constant Definitions

The xom.h header file includes typedef statements that define the data types of all
OM objects used in the interface. It also provides definitions of symbolic constants
used by the interface.

Refer to the xom.h(4xom) reference page for more information.

XOM API Macros

XOM API provides several macros that are useful in defining public objects in your
application programs. These macros are defined in the xom.h header file.

v OM_IMPORT

Makes object identifier symbolic constants available within a C source module.

v OM_EXPORT

Allocates memory and initializes object identifier symbolic constants within a C
source module.

v OM_OID_DESC

Initializes the type, syntax, and value of an OM attribute that holds an object
identifier.

v OM_NULL_DESCRIPTOR

Marks the end of a client-generated public object.

v OMP_LENGTH

Calculates the length of an object identifier.

v OM_STRING

Creates a data value of a string data type.

The OM_EXPORT and OM_IMPORT Macros

Most application programs find it convenient to export all the names they use from
the same C source module. OM_EXPORT allocates memory for the constants that
represent an object OM class or an object identifier, as shown in the following code
fragment from example.c:

Chapter 5. XOM Programming 119

In this code fragment, object identifier constants that represent OM classes defined
in the xds.h and xdscds.h header files are exported to the main program module.
The object identifier constants are defined in xds.h , with the OMP_O prefix followed
by the variable name for the object identifier. The constant itself provides the
hexadecimal value of the object identifier string.

The OM_EXPORT macro takes the OM class name as input and creates two new data
structures: a character string and a structure of type OM_string. The structure of
type OM_string contains a length and a pointer to a string that may be used later in
an application program by the OM_OID_DESC macro to initialize the value of an object
identifier.

OM_IMPORT marks the identifiers as external for the compiler. It is used if OM_EXPORT
is called in a different file from where its values are referenced. OM_IMPORT is not
used in example.c because OM_EXPORT is called in the file where the object
identifiers are referenced.

The OM_OID_DESC and OMP_LENGTH Macros

The OM_OID_DESC macro initializes the type, syntax, and value of an OM attribute
that holds an object identifier; in other words, it initializes OM_descriptor. It takes as
input an OM attribute type and the name of an object identifier. The object identifier
should have already been exported to the program module, as shown in the
previous section.

The output of the macro is an OM_descriptor composed of a type, syntax, and
value. The type is the name of the OM class. The syntax is
OM_S_OBJECT_IDENTIFIER. The value is a two-member structure with the length of
the object identifier and a pointer to the actual object identifier string. It is defined as
a pointer to void so that it can be used as a generic pointer; it can point to any data
type.

OM_OID_DESC calls OMP_LENGTH to calculate the length of the object identifier string.

The following code fragment from xom.h shows the OM_OID_DESC and OMP_LENGTH
macros:

/* Private macro to calculate length
* of an object identifier
*/

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-1)

/* Macro to initialize the syntax and value
* of an object identifier
*/

#define OM_OID_DESC(type, oid_name)
{ (type), OM_S_OBJECT_IDENTIFIER_STRING,
{ OMP_LENGTH(oid_name) , OMP_D_##oid_name }

}

The OM_NULL_DESCRIPTOR Macro

The OM_NULL_DESCRIPTOR macro marks the end of a client-generated public object
by setting the type, syntax, and value to OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES,
and a value of zero length and a NULL string, respectively.

120 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The OM_STRING Macro

The OM_STRING macro creates a string data value. Data strings are of type
OM_string, as shown in this code fragment from the xom.h header file:
/* String */

typedef struct {
OM_string_length length;
void *elements;

} OM_string;

#define OM_STRING(string) \
{ (OM_string_length)(sizeof(string)-1), string

}

A string is specified in terms of its length or whether or not it terminates with a
NULL. OM_string_length is the number of octets by which the string is represented,
or it is the OM_LENGTH_UNSPECIFIED value if the string terminates with a NULL.

The bits of a bit string are represented as a sequence of octets. The first octet
stores the number of unused bits in the last octet. The bits in the bit string,
beginning with the first bit and proceeding to the trailing bit, are placed in bits 7 to 0
of the second octet. These are followed by bits 7 to 0 of the third octet, then by bits
7 to 0 of each octet in turn, followed by as many bits as are required of the final
octet commencing with bit 7.

Chapter 5. XOM Programming 121

122 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 6. XDS Programming

The XDS API defines an application programming interface to directory services in
the X/Open Common Applications Environment as defined in X/Open Portability
Guide. This interface is based on the 1988 CCITT X.500 Series of
Recommendations and the ISO 9594 Standard. This joint standard is referred to
from this point on simply as X.500.

This chapter describes the purpose and function of XDS API functions in a general
way. Refer to the reference pages in the IBM DCE Version 3.1 for AIX and Solaris:
Application Development Reference for complete and detailed information on
specific function calls.

The sections that follow describe the following types of XDS functions:

v XDS interface management functions

These functions interact with the XDS interface

v Directory connection management functions

These functions initiate, manage, and terminate connections with the directory

v Directory operation functions

These functions perform operations on a directory

Note: The DCE XDS API does not support asynchronous operations from within
the same thread. If an application requires asynchronous XDS operations,
then it should use multiple threads to achieve this functionality.

The ds_abandon() function is not supported in this release. A
ds_abandon() call returns a DS_C_ABANDON_FAILED (DS_E_TOO_LATE) error.
Refer to “Chapter 9. XDS Interface Description” on page 181 for information
on abandoning directory operations.

The following names refer to the complete XDS example programs, located in the
sample files located in the /opt/dcelocal/examples/xdsxom directory.

v acl.c (acl.h)

v example.c (example.h)

v teldir.c

XDS Interface Management Functions

XDS API defines a set of functions that only interact with the XDS interface and
have no counterpart in the directory standard definition:

v ds_initialize()

v ds_version()

v ds_shutdown()

These interface functions perform operations that involve the initialization,
management, and termination of sessions with the XDS interface service.

© Copyright IBM Corp. 1990, 1999 123

The ds_initialize() Function Call

Every application program must first call ds_initialize() to establish a workspace
where objects returned by the directory service are deposited. The ds_initialize()
function must be called before any other directory interface functions are called.

The ds_initialize() call returns a handle (or pointer) to a workspace. The
application program performs operations on OM objects in this workspace. OM
objects created in this workspace can be used as input parameters to the other
directory interface functions. In addition, objects returned by the directory service
are deposited in the workspace.

Within the following code fragment from example.c, a workspace is initialized. (The
declaration of the variable workspace and the call to ds_initialize() are found in
different sections of the program.)

int main(void)
{
DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */
OM_value_position total_num; /* Number of Attribute Descriptors */

/*
* Perform the Directory operations:
* (1) Initialize the directory service and get an OM workspace.
* (2) bind a default directory session.
* (3) read the telephone number of "name".
* (4) terminate the directory session.
*/

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

OM_workspace is a type definition in the xom.h header file defined as a pointer to
void. A void pointer is a generic pointer that may point to any data type. The
variable workspace is declared as data type OM_workspace. The return value is
assigned to the variable workspace, and the CHECK_DS_CALL macro determines if the
call is successful. CHECK_DS_CALL is an error-handling macro that is defined in
example.h.

The ds_initialize() call returns a handle to a workspace in which OM objects can
be created and manipulated. Only objects created in this workspace can be used as
parameters to other directory interface functions. The ds_initialize() call returns
NULL if it fails.

The ds_version() Function Call

The ds_version() call negotiates features of the directory interface. These
features are collected into packages that define the scope of the service. Packages
define such things as object identifiers for directory and OM classes and OM
attributes, enumerated types, structures, and OM object constants.

XDS API defines the following packages in separate header files as part of the XDS
API software product:

v Directory service package

124 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The directory service package contains the OM classes and OM attributes used
to interact with the directory service. This package is contained in the xds.h
header file.

v Basic directory contents package

The basic directory contents package contains OM classes and OM attributes
that represent values of selected attributes and selected objects defined in the
X.500 standard. This package is contained in the xdsbdcp.h header file.

Note: 2.5.4.6 and 2.5.6.2 are object identifiers defined by the standards, not the
BER encoding found in the header file which are \x55\x04\x06 and
\x55\x06\x02.

The ds_shutdown() Function Call

The ds_shutdown() call deletes the workspace established by ds_initialize()
and enables the directory service to release resources. No other directory functions
that reference that workspace may be called after this function.

The following code fragment from example.h demonstrates how the application
closes the directory workspace by performing a ds_shutdown() call.

CHECK_DS_CALL(ds_shutdown(workspace));

Directory Connection Management Functions

The following subsections describe the XDS functions that initiate, manage, and
terminate connections with the directory service.

v “A Directory Session”

v “The ds_bind() Function Call”

v “The ds_unbind() Function Call” on page 126

v “Automatic Connection Management” on page 126

A Directory Session

A directory session identifies the DSA to which a directory operation is sent. It also
defines the characteristics of a session, such as the distinguished name of the
requestor.When using XDS/XOM over CDS, it is used to bind to the CDS
namespace.

An application program can request a session with specific OM attributes tailored
for the program’s requirements. The application passes an instance of OM class
DC_C_SESSION with the appropriate OM attributes, or it uses the default parameters
by passing the constant DS_DEFAULT_SESSION as a parameter to the ds_bind()
function call. DS_DEFAULT_SESSION is sufficient when using XDS/XOM over
CDS.

The ds_bind() Function Call

The ds_bind call establishes a session with the CDS namespace. The ds_bind()
call corresponds to the DirectoryBind function in the Abstract Service defined in the
X.500 standard.

Chapter 6. XDS Programming 125

When a ds_bind() call completes successfully, the directory returns a pointer to an
OM private object of OM class DC_C_SESSION. This parameter is then passed as the
first parameter to most interface function calls until a ds_unbind() is called to
terminate the directory session.

XDS API supports multiple concurrent sessions so an application can interact with
the directory service by using several identities, and interact directly and
concurrently with different parts of the CDS namespace.

The following code fragment from example.c shows how an application binds to the
CDS namespace by using the default session:

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace,&session));

The ds_unbind() Function Call

The ds_unbind() call terminates a directory session and makes the session
parameter unavailable for use with other interface functions. However, the unbound
session can be modified by OM functions and used again as a parameter to
ds_bind() . When the session parameter is no longer needed, it should be deleted
by using OM functions such as om_delete() .

The following code fragment from example.c shows how the application closes the
connection to the CDS namespace by using ds_unbind() :

/* Close the connection to the GDS server. */

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

The ds_unbind() call corresponds to the DirectoryUnbind function in the Abstract
Service defined in the X.500 standard.

Automatic Connection Management

The XDS implementation does not support automatic connection management. A
CDS connection is established when ds_bind() is called and released when
ds_unbind() is called.

XDS Interface Class Definitions

The XDS interface class definitions are described in detail in “Chapter 10. XDS
Class Definitions” on page 189. The OM attribute types, syntax, and values and
inheritance properties are described for each OM class.

A good way to begin to understand how the OM class hierarchy is structured and
the relationship between OM classes and OM attributes to the service provided by
the directory service package is to look up one of the OM classes listed in
“Chapter 10. XDS Class Definitions” on page 189.

Example: The DS_C_ATTRIBUTE_LIST Class

For example, DS_C_ATTRIBUTE_LIST inherits the OM attributes from its
superclass OM_C_OBJECT , as do all OM classes. OM_C_OBJECT , as defined in
“Chapter 5. XOM Programming” on page 83, has one OM attribute, OM_CLASS ,

126 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

with the value of an object identifier string that identifies the numeric representation
of the object’s OM class. DS_C_ATTRIBUTE_LIST also has one OM attribute.

The purpose of DS_C_ATTRIBUTE_LIST is to define a list of attributes for an
object. It has the DS_ATTRIBUTES OM attribute. The DS_ATTRIBUTE OM
attribute has a value of a pointer to the DS_C_ATTRIBUTE OM object.

Example: The DS_C_FILTER Class

For example, DS_C_FILTER inherits the OM attributes from its superclass
OM_C_OBJECT, as do all OM classes. OM_C_OBJECT, as defined in “Chapter 14. Object
Management Package” on page 255, has one OM attribute, OM_CLASS, which has
the value of an object identifier string that identifies the numeric representation of
the object’s OM class. DS_C_FILTER, on the other hand, has several OM attributes.

The purpose of DS_C_FILTER is to select or reject an object on the basis of
information in its directory entry. It has the following OM attributes:

v DS_FILTER_ITEMS

v DS_FILTERS

v DS_FILTER_TYPE

Two of these OM attributes, DS_FILTER_ITEMS and DS_FILTERS, have values that are
OM object classes themselves. The value of the OM attribute DS_FILTER_ITEMS is
DS_C_FILTER_ITEM, which is an OM class. DS_C_FILTER_ITEM is a component of a
filter and defines the nature of the filter. The value of the OM attribute DS_FILTERS is
DS_C_FILTER, an OM class. Thus, DS_FILTERS defines a collection of filters. The OM
attribute DS_FILTER_TYPE has a value that is an enumerated type, which takes one
of the values DS_AND, DS_OR, or DS_NOT.

The DS_C_CONTEXT Parameter

The OM class DS_C_CONTEXT is the second parameter to every directory service
request. DS_C_CONTEXT defines the characteristics of the directory service interaction
that are specific to a particular directory service operation. These characteristics are
divided into three categories of OM attributes: common parameters, service
controls, and local controls.

Common parameters affect the processing of each directory service operation.

Service controls indicate how the directory service should handle requests. Included
in this category are decisions about whether or not chaining is permitted, the priority
of requests, the scope of referral (to DSAs within a country or within a DMD), and
the maximum number of objects about which a function should return information.

Local controls include asynchronous support and automatic continuation; XDS does
not currently support asynchronous operations from within the same thread.
Applications requiring asynchronous use of the XDS/XOM API should use threads
as defined in “Chapter 7. Using Threads With The XDS/XOM API” on page 145.

Note: Service Controls and Local Controls are not supported for XDS/XOM over
CDS.

Chapter 6. XDS Programming 127

Directory Class Definitions

The X.500 standards define a number of attribute types and classes. These
definitions allow the creation and maintenance of directory entries for a number of
common objects so that the representation of all such objects is the same
throughout the directory. The basic directory contents package contains OM classes
and OM attributes that model the X.500 attribute types and classes.

The X.500 object classes and attributes are defined in the following documents
published by CCITT. These are the objects and the associated attributes that will be
the targets of directory service operations in your application programs:

v The Directory: Selected Attributes Types (Recommendation X.520)

v The Directory: Selected Object Classes (Recommendation X.521)

Table 14 describes the OM classes, OM attributes, and their object identifiers that
model the X.500 objects and attributes. (See “Chapter 11. Basic Directory Contents
Package” on page 219 for more tables with the same type of information.)

Table 14. Representation of Values for Selected Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
valued

Matching
Rules

DS_A_ALIASED_
OBJECT_NAME

Object(DS_C_NAME) — no E

DS_A_BUSINESS_
CATEGORY

String(OM_S_
TELETEX_STRING)

1–128 yes E, S

DS_A_COMMON_ NAME String(OM_S_
TELETEX_STRING)

1–64 yes E, S

DS_A_COUNTRY_ NAME String(OM_S_
PRINTABLE_ STRING)1

2 no E

DS_A_DESCRIPTION String(OM_S_
TELETEX_STRING)

1–1024 yes E, S

1 As permitted by ISO 3166.

The tables in “Chapter 11. Basic Directory Contents Package” on page 219 contain
similar categories of information as do similar tables for the attributes defined in the
directory service package. These information categories include the following:

v OM Value Syntax

v Value Length

v Multivalued

v Matching Rules

The OM Value Syntax column describes the structure of the values of an OM
attribute. The Value Length column gives the range of lengths permitted for the
string types. The Multivalued column indicates whether the attribute can have
multiple values.

The CCITT standards define matching rules that are used for determining whether
two values are equal, for ordering two values, or for identifying one value as a
substring of another in directory service operations. These are indicated in the
Matching Rules column.

128 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Note: The above elements are used when the cell name is an X.500 style name.
When using XDS/XOM over CDS, none of the checking for value length and
related information is performed. Only attribute types like DS_A_COUNTRY_NAME
used in the cell name should be required from the Basic Directory Contents
Package.

Directory Operation Functions

The X.500 standard defines the operations provided by the directory in a document
called the Abstract Service Definition. DCE implements this standard with XDS API
functions calls. The XDS API functions allow an application program to interact with
the directory service. The standard divides these interactions into three general
categories: read, search, and modify.

The XDS API functions correspond to the Abstract Service functions defined in the
X.500 standard, as shown in Table 14 on page 128.

Table 15. Mapping of XDS API Functions to the Abstract Services

XDS Function Call Equivalent Abstract Service

ds_read() Read

ds_compare() Compare

ds_list() List

ds_search() Search

ds_add_entry() AddEntry

ds_remove_entry() RemoveEntry

ds_modify_entry() ModifyEntry

ds_modify_rdn() ModifyRDN

Note: ds_search() and ds_modify_rdn() are not supported for XDS/XOM over
CDS.

Directory Read Operations

Read functions retrieve information from specific named entries in the directory
where names are mapped to attributes. This is analogous to looking up some
information about a name in the ′′White Pages’’ phone directory.

XDS API implements the following read functions:

v ds_read()

The requestor supplies a distinguished name and one or more attribute types.
The value(s) of requested attributes or just the attribute type(s) is returned by the
DSA.

v ds_compare()

The requestor gives a distinguished name and an attribute value assertion (AVA).
If the AVA is TRUE for the named entry, a value of TRUE is returned by the DSA.

Chapter 6. XDS Programming 129

For example, a typical read operation could request the telephone number of a
particular employee. A read request would submit the distinguished name of the
employee with an indication to return its telephone number:
/C=us/O=sni/OU=sales/CN=John Smith.

Reading an Entry from the Directory

The following sections describe a typical read operation by using the ds_read()
function call. They include a description of tasks directly related to the read
operation. They do not include service-related tasks such as initializing the
interface, allocating an OM workspace, and binding to the directory. These tasks are
described in “XDS Interface Management Functions” on page 123. The following
sections also do not describe the process of extracting information from the
workspace by using XOM functions. Refer to “Chapter 5. XOM Programming” on
page 83 for a description of how to use XOM functions to access the workspace.

A typical read operation involves the following steps:

1. Define the necessary object identifier constants for the OM classes and OM
attributes that will define public objects for input to ds_read() , by using the
OM_EXPORT macro.

2. Declare the variables that will contain the output from the XDS functions to be
used in the application.

3. Build public objects (descriptor lists) for the name parameter to ds_read() .

4. Create a descriptor list for the selection parameter to ds_read() that selects
the type and scope of information in your request.

5. Perform the read operation.

These steps are demonstrated in the following code fragments from example.c (see
the /opt/dcelocal/examples/xdsxom for a complete program listing). The program
reads the telephone numbers of a given target entry.

Step 1: Export Object Identifiers for Required Directory Classes and
Attributes

Most application programs find it convenient to export all the names they use from
the same C source module. In the following code fragment from example.c, the
OM_EXPORT macro allocates memory for the constants that represent the OM object
classes and directory attributes required for the read operation:

/* Define necessary Object Identifier constants */
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DSX_TYPELESS_RDN)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_C_TELEPHONE_NUMBER)

The OM_EXPORT macro performs the following steps:

1. It defines a character array called OMP_D_ concatenated with the class_name
input parameter.

130 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

2. It initializes this array to the value of a character string called OMP_O_
concatenated with the class_name input parameter. This value has already
been defined in a header file.

3. It defines an OM_string data structure as the class_name input parameter.

4. It initializes the OM_string data structure’s first component to the length of the
array initialized in Step 2, and initializes the second component to a pointer to
the value of the array initialized in Step 2.

Step 2: Declare Local Variables

The local variables session, result, and invoke_id are defined in the following code
fragment from example.c:

int main(void)
{
DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations*/
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */
OM_value_position total_num; /* Number of Attribute Descriptors */

These data types are defined in a typedef statement in the xom.h header file. The
session and result variables are defined as data type OM_private_object because
they are returned by ds_bind() and ds_read() , respectively, to the workspace as
private objects. Since asynchronous operations (within the same thread) are not
supported, the invoke_id functionality is redundant. The invoke_id parameter must
be supplied to the XDS functions as described in the IBM DCE Version 3.1 for AIX
and Solaris: Application Development Reference, but its return value should be
ignored.

Values in error and return_code are returned by XOM and XDS functions to indicate
whether a call was successful. The workspace variable is defined as OM_workspace
and is used when establishing an OM workspace. The total_num variable is defined
as OM_value_position to indicate the number of attribute descriptors returned in the
public object by om_get() , based on the inclusion and exclusion parameters
specified.

Step 3: Build Public Objects

A ds_read() function call can take a public object as an input parameter. A public
object is generated by an application program and contains the information required
to access a target directory object. This information includes the AVAs and RDNs
that make up a distinguished name of an entry in the directory.

A public object is created by using OM classes and OM attributes. These OM
classes and OM attributes model the target object entry in the directory and provide
other information required by the directory service to access the directory. In this
case, the target object entry in the directory is the entry for Peter Piper.

“Chapter 5. XOM Programming” on page 83 describes how to create the required
public objects for the ds_read() function call by using macros and data structures
defined in the XDS and XOM API header files.

Chapter 6. XDS Programming 131

The purpose of building the public objects for AVAs and RDNs is to provide the
public objects that represent a distinguished name. The distinguished name public
object is stored in the array of descriptors called name and provided as an input
parameter to the ds_read() function call.

Step 4: Create an Entry-Information-Selection Parameter

The distinguished name for Peter Piper is an entry in the directory that the
application is designed to access. The selection parameter of the ds_read()
function call tailors its results to obtain just part of the required entry. Information on
all attributes, no attributes, or a specific group of attributes can be chosen. Attribute
types are always returned, but the attribute values need not be.

The value of the parameter is a public object (descriptor list) that is an instance of
OM class DS_C_ENTRY_INFO_SELECTION, as shown in the following code fragment
from example.c:

/*
* Public Object ("Descriptor List") for
* Entry-Information-Selection
* parameter to ds_read().
*/
OM_descriptor selection[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,
{ DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR
};

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT. (This information is
supplied in the description of this class in “Chapter 10. XDS Class Definitions” on
page 189.) As such, DS_C_ENTRY_INFO_SELECTION inherits the OM attributes of
OM_C_OBJECT. The only OM attribute of OM_C_OBJECT is OM_CLASS. OM_CLASS identifies
an object’s class, which in this case is DS_C_ENTRY_INFO_SELECTION.
DS_C_ENTRY_INFO_SELECTION identifies information to be extracted from a directory
entry and has the following OM attributes:

v OM_C_CLASS (inherited from OM_C_OBJECT)

v DS_ALL_ATTRIBUTES

v DS_ATTRIBUTES_SELECTED

v DS_INFO_TYPE

As part of a ds_read() or ds_search() function call, DS_ALL_ATTRIBUTES specifies
to the directory service those attributes of a directory entry that are relevant to the
application program. It can take the values OM_TRUE or OM_FALSE. These values are
defined to be of syntax OM_S_BOOLEAN. The value OM_TRUE indicates that information
is requested on all attributes in the directory entry. The value OM_FALSE, used in the
preceding sample code fragment, indicates that information is only requested on
those attributes that are listed in the OM attribute DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from which
information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING.

OM_S_OBJECT_IDENTIFIER_STRING contains an octet string of BER-encoded integers,
which are decimal representations of object identifiers of the types of attributes in

132 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

the attribute list. In the preceding code fragment, the string value is the attribute
name DS_A_PHONE_NBR because the purpose of the read call is to read a list of
telephone numbers from the directory.

DS_INFO_TYPE identifies what information is to be extracted from each attribute
identified. The syntax of the value is specified as Enum(DS_Information_Type).
DS_INFO_TYPE is an enumerated type that has two possible values: DS_TYPES_ONLY
and DS_TYPES_AND_VALUES. DS_TYPES_ONLY indicates that only the attribute types of
the selected attributes in the entry are returned by the directory service operation.
DS_TYPES_AND_VALUES indicates that both the attribute types and the attribute values
of the selected attributes in the entry are returned. The code fragment from
example.c shown previously defines the value of DS_INFO_TYPE as
DS_TYPES_AND_VALUES because the program wants to get the actual telephone
numbers.

Step 5: Perform the Read Operation

The following code fragment from example.c shows the ds_read() function call
and the XDS calls that precede it:

/*
* Perform the Directory operations:
* (1) Initialize the directory service
* and get an OM workspace.
* (2) bind a default directory session.
* (3) read the telephone number of "name".
* (4) terminate the directory session.
*/

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace,
&session));

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result,&invoke_id));

CHECK_DS_CALL is an error-checking macro defined in the example.h header file that
is included by example.c. The ds_read() call returns a return code of type
DS_status to indicate whether or not the read operation completed successfully. If
the call was successful, ds_read() returns the value DS_SUCCESS. If the call fails, it
returns an error code. (Refer to “Chapter 10. XDS Class Definitions” on page 189
for a comprehensive list of error codes.) CHECK_DS_CALL interprets this return value
and returns successfully to the program or branches to an error-handling routine.

The session input parameter is a private object generated by ds_bind() prior to
the ds_read() call, as shown in the preceding code fragment. DS_DEFAULT_CONTEXT
describes the characteristics of a directory service interaction. Most XDS API
function calls require these two input parameters because they define the operating
parameters of a session with a CDS server. (Sessions are described in “A Directory
Session” on page 125; contexts are described in “The DS_C_CONTEXT Parameter”
on page 127.)

The result of a directory service request is returned in a private object (in this case,
result) that is appropriate to the type of operation. The result of the operation is

Chapter 6. XDS Programming 133

returned in a single OM object. The components of the result are represented by
OM attributes in the operations result object:

v DS_C_COMPARE_RESULT

Returned by ds_compare()

v DS_C_LIST_RESULT

Returned by ds_list()

v DS_C_READ_RESULT

Returned by ds_read()

v DS_C_SEARCH_RESULT

Returned by ds_search()

The OM class returned by ds_read() is DS_C_READ_RESULT. The OM class returned
by the ds_compare() call is DS_C_COMPARE_RESULT, and so on. (Refer to the
reference pages in the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Reference for a description of the OM classes associated with a
particular function call; refer to “Chapter 10. XDS Class Definitions” on page 189 for
full descriptions of the OM attributes, syntaxes, and values associated with these
OM classes.)

The superclasses, subclasses, and OM attributes for DS_C_READ_RESULT are shown
in Figure 35 on page 135.

134 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The result value is returned to the workspace in private implementation-specific
format. As such, it cannot be read directly by an application program, but it requires
a series of om_get() function calls to extract the requested information from it. The
following code fragment from example.c shows how a series of om_get() calls
extracts the list of telephone numbers associated with the distinguished name for
Peter Piper. “Chapter 5. XOM Programming” on page 83 describes this extraction
process in detail.
/*
* extract the telephone number(s) of "name" from the result
*
* There are 4 stages:
* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.
* (3) get the list of phone numbers.
* (4) scan the list and print each number.

DS_C_READ_RESULT

DS_C_ENTRY_INFO

DS_C_ATTRIBUTE

DS_C_DS_DN

DS_C_DS_RDN

DS_C_AVA

OM_CLASS
DS_ALIAS_DEREFERENCED
[DS_PERFORMER]

OM_CLASS
[DS_ATTRIBUTES, ...]

OM_CLASS

OM_CLASSOM_CLASS

DS_ENTRY

DS_FROM_ENTRY
DS_OBJECT_NAME

DS_ATTRIBUTE_TYPE
[DS_ATTRIBUTE_VALUES, ...]

[DS_RDNS, ...]

DS_C_NAME

[DS_AVAS, ...]

OM_CLASS
DS_ATTRIBUTE_TYPE
DS_ATTRIBUTE_VALUES

ds_read(...&result...)

KEY:

points to subobjects
BOLD OM class

inherited OM attribute
abstract of OM attribute

multi-valued OM attribute
optional OM attribute

ITALICS
BOLD and ITALICS

[]
, ...

Figure 35. Output from ds_read(): DS_C_READ_RESULT

Chapter 6. XDS Programming 135

*/

CHECK_OM_CALL(om_get()(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get()(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get()(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

Directory Search Operations

Search functions can be used to browse through the CDS namespace. For
example, a search request could supply the distinguished name of an entry and
request a list of the distinguished names of the children of that entry.

XDS over CDS API implements the ds_list search operation. With ds_list , the
requestor supplies a distinguished name. The Directory Service returns a list of the
immediate subordinates of the named entry.

Directory Modify Operations

Modify functions alter information in the directory. For example, if an employee of
an organizational unit transfers to a new organizational unit, a typical modify
request would modify the OU name attribute in the person’s directory entry to reflect
the change.

XDS API implements the following modify functions:

v ds_modify_entry()

The requestor gives a distinguished name and a list of modifications to the
named entry. The XDS/XOM API carries out the specified changes if the user
requesting the change has proper access rights.

v ds_add_entry()

The requestor gives a distinguished name and values for a new entry. The entry
is added as a leaf node in the DIT if the user requesting the change has proper
access rights. If the leaf entry already exists, it fails and the ds_modify_entry
must be used.

v ds_remove_entry()

The requestor gives a distinguished name. The entry with that name is removed
if the user requesting the change has proper access rights.

Note: The ds_add_entry() and ds_remove_entry() only apply to leaf entries.
They are not intended to provide a general facility for building and
manipulating the DIT. Access rights are defined for the session by CDS. The
user needs the same access rights as if accessing CDS through dcecp .

136 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Modifying Directory Entries

This section describes a modification and subsequent listing of the DIT by using the
ds_add_entry() , ds_list() , and ds_remove_entry() function calls. It includes a
description of tasks directly related to these operations and does not include
service-related tasks. It does not include a ds_modify_entry() function call.

A typical operation to add, remove, or list an entry involves following the same basic
steps that were defined previously for the read and search operations:

1. Using the OM_EXPORT macro, define the necessary object identifier constants for
the OM classes and OM attributes that will define public objects for input to the
function calls.

2. Declare the variables that will contain the output from the XDS functions you will
use in your application.

3. Build public objects (descriptor lists) for the name parameters to the function
calls.

4. Create descriptor lists for the attributes to be added, removed, or listed.

5. Perform the operations.

These steps are demonstrated in the following code fragments. The program adds
two entries to the directory, then a list operation is performed on their superior entry,
and finally the two entries are removed from the directory. The directory tree shown
in Figure 36 is used in the program.

Step 1: Export Object Identifiers for Required Directory Classes and
Attributes

In the following code fragment, the OM_EXPORT macro allocates memory for the
constants that represent the object classes and attributes required for the add, list,
and remove operations:

/* The application has to export the object identifiers */
/* it requires. */

OM_EXPORT (DS_C_AVA)
OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)

CountryName="is"

OrganizationName="sni"

CN="sinead"
(ObjectClass=OrganizationalPerson,
Top, Person
surname="Murphy"
userPassword="secret"

CN="brendan"
(ObjectClass=OrganizationalPerson,
Top, Person
surname="Moloney"
telephone="+49 89 636 0"

Figure 36. A Sample Directory Tree

Chapter 6. XDS Programming 137

OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DS_O_TOP)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

Step 2: Declare Local Variables

The local variables bound_session, result, and invoke_id are defined in the
following sample code fragment:
OM_private_object bound_session; /* Holds the Session
object */

/* which is returned by */
/* ds_bind(). */

OM_private_object result; /* Holds the list result */
/* object. */

OM_sint invoke_id; /* Integer for the invoke id */
/* returned by ds_search(). */
/* This parameter must be */
/* present even though it is */
/* ignored.

*/

These data types are defined in typedef statements in the xom.h header file. The
bound_session and result variables are defined as data type OM_private_object
because they are returned by ds_bind() and ds_list() operations to the
workspace as private objects. Since asynchronous operations (within the same
thread) are not supported, the invoke_id parameter functionality is redundant. The
invoke_id parameter must be supplied to the XDS functions as described in the IBM
DCE Version 3.1 for AIX and Solaris: Application Development Reference, but its
return value should be ignored.

Step 3: Build Public Objects

The public objects required by the ds_add_entry() , ds_list() , and p operations
are defined in the following code fragment:

/* Build up descriptor lists for the
following distinguished names: */
/* C=ie/O=sni */
/* C=ie/O=sni/OU=ap/CN=brendan */
/* C=ie/O=sni/OU=ap/CN=sinead */

static OM_descriptor ava_ie[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("ie")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor ava_sni[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

};

138 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor ava_brendan[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("brendan")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor ava_sinead[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sinead")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn_ie[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_ie}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn_sni[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn_ap[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn_brendan[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_brendan}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor rdn_sinead[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_sinead}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor dn_ap[] = {

OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor dn_brendan[] = {

OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_brendan}},
OM_NULL_DESCRIPTOR

};
static OM_descriptor dn_sinead[] = {

OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT,{0,rdn_sinead}},
OM_NULL_DESCRIPTOR

};

Chapter 6. XDS Programming 139

Step 4: Create Descriptor Lists for Attributes

The following code fragments show how the attribute lists are created for the
attributes to be added to the directory.

First, initialize the public object object_class to contain the representation of the
classes in the CDS object that are common to both Organizational-Person entries,
Top, Person, and Organizational-Person:
/* Build up an array of object identifiers for the
*/

/* attributes to be added to the directory. */

static OM_descriptor object_class[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

};

Next, initialize the public objects that represent the attributes to be added. These
are surname and telephone for the distinguished name of Brendan, and surname2
and password for the distinguished name of Sinead:

static OM_descriptor telephone[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("+49 89 636 0")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,

OM_STRING("Moloney")},
OM_NULL_DESCRIPTOR

};

static OM_descriptor surname2[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,
OM_STRING("Murphy")},
OM_NULL_DESCRIPTOR

};
static OM_descriptor password[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING,

OM_STRING("secret")},
OM_NULL_DESCRIPTOR

};

Finally, initialize the public objects that represent the list of attributes to be added to
the directory. These are attr_list1 for the distinguished name Brendan, and attr_list2
for the distinguished name Sinead:

static OM_descriptor attr_list1[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

140 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, telephone} },
OM_NULL_DESCRIPTOR

};

static OM_descriptor attr_list2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname2} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, password} },
OM_NULL_DESCRIPTOR

};

The attr_list1 variable contains the public objects surname and telephone, which are
the C representations of the attributes of the distinguished name
/C=ie/O=sni/OU=ap/CN=Brendan that are added to the directory. The attr_list2
variable contains the public objects first surname2 and password, which are the C
representations of the attributes of the distinguished name
/C=ie/O=sni/OU=ap/CN=Sinead.

Step 5: Perform the Operations

The following code fragments show the ds_add_entry() , ds_list() , and the
ds_remove_entry() calls.

First, the two ds_add_entry() function calls add the attribute lists contained in
attr_list1 and attr_list2 to the distinguished names represented by dn_brendan and
dn_sinead, respectively:

/* Add two entries to the GDS server. */

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, attr_list1,
&invoke_id) != DS_SUCCESS)
printf("ds_add_entry() error\n");

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, attr_list2,
&invoke_id) != DS_SUCCESS)
printf("ds_add_entry() error\n");

Next, list all the subordinates of the object referenced by the distinguished name
/C=ie/O=sni/OU=ap:

if (ds_list(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
&result, &invoke_id)
!= DS_SUCCESS)
printf("ds_list() error\n");

The ds_list() call returns the result in the private object result to the workspace.
The components of result are represented by OM attributes in the OM class
DS_C_LIST_RESULT (as shown in Figure 37 on page 142) and can only be read by a
series of om_get() calls.

Chapter 6. XDS Programming 141

Finally, remove the two entries from the directory:

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, &invoke_id)
!= DS_SUCCESS)
printf("ds_remove_entry() error\n");

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, &invoke_id)
!= DS_SUCCESS)
printf("ds_remove_entry() error\n");

DS_C_LIST_INFO

DS_C_SEARCH_RESULT

DS_C_LIST_INFO_ITEM DS_C_PARTIAL_OUTCOME_QUAL

DS_C_CONTINUATION_REF

DS_C_PRESENTATION_ADDRESS

DS_C_RELATIVE_NAME

DS_C_OPERATION_PROGRESS

DS_C_ACCESS_POINT

OM_CLASS
DS_ALIASED_DEREFERENCED
[DS_PERFORMER]

OM_CLASS

OM_CLASS OM_CLASS

OM_CLASS

OM_CLASS

OM_CLASS

OM_CLASS

OM_CLASS

OM_CLASS

[DS_ENTRIES, ...]
[DS_OBJECT_NAME]
{DS_PARTAIL_OUTCOME_QUAL

[DS_LIST_INFO]
[DS_UNCORRELATED_
LIST_INFO]

DS_ALIAS_ENTRY
DS_FROM_ENTRY
DS_RDN

DS_LIMIT_PROBLEM
DS_UNAVAILABLE_CRITICAL_EXT
[DS_UNEXPLORED, ...]

DS_TARGET_OBJECT
DS_ACCESS_POINTS, ...
DS_OPERATIONAL_PROGRESS
[DS_RDNS_RESOLVED]
DS_ALIASED_RDNS

DS_N_ADDRESSES, ...
[DS_P_SELECTOR]
[DS_S_SELECTOR]
[DS_T_SELECTOR]

DS_AVAS, ...

DS_NAME_RESOLUTION_PHASE
[DS_NEXT_RDN_TO_BE_RESOLVED]

DS_AE_TITLE
DS_ADDRESS

DS_ATTRIBUTE_TYPE
DS_ATTRIBUTE_VALUE

ds_list(...&result...)
KEY:

points to subobjects
BOLD OM class

abstract of OM class
inherited OM attribute

multi-valued OM
attribute

optional OM attribute

BOLD and ITALICS

ITALICS
[]

, ...

DS_C_NAME
(refer to the
figure "Output
from ds_read():
DS_C_READ_
RESULT)"

DS_C_ADDRESS

DS_C_DS_RDN

DS_C_AVA

Figure 37. OM Class DS_C_LIST_RESULT

142 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Return Codes

XDS API function calls return a value of type DS_status, with the exception of
ds_initialize() which returns a value of type OM_workspace. If the function is
successful, then DS_status returns with a value of DS_SUCCESS. If the function does
not complete successfully, then DS_status takes either the error constant
DS_NO_WORKSPACE or one of the private error objects described in “Chapter 10. XDS
Class Definitions” on page 189.

Chapter 6. XDS Programming 143

144 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 7. Using Threads With The XDS/XOM API

Some programs work well when they are structured as multiple flows of control.
Other programs may show better performance when they are multithreaded,
allowing the multiple threads to be mapped to multiple processors when they are
available.

XDS/XOM application programs can contain multiple threads of control. For
example, a XDS/XOM application may need to query several CDS servers. This
can be achieved more efficiently by using separate threads simultaneously to query
the different servers.

XDS/XOM supports multithreaded applications. Writing multithreaded applications
over XDS/XOM imposes new requirements on programmers. They must manage
the threads, synchronize threads’ access to global resources, and make choices
about thread scheduling and priorities.

This chapter describes a simple XDS/XOM application that uses threads. (Refer to
the *(3thr) reference pages for more information on DCE threads.)

The XDS/XOM API calls do not change when they are making use of DCE threads
in an application program. The service underneath XDS/XOM API is designed to be
both thread-safe, to allow multiple threads to safely access shared data, and
cancel-safe, to handle unexpected cancellation of a thread in an application
program.

Figure 38 on page 146 shows an example of how an application can issue
XDS/XOM calls from within different threads.

© Copyright IBM Corp. 1990, 1999 145

The order of thread completion is not defined; however, XDS/XOM has an inherent
ordering. Multithreaded XDS applications must adhere to the following order of
execution:

1. ds_initialize()

2. ds_version() (optional)

3. ds_bind()

4. Other XDS calls in sequence or parallel from multiple threads

5. ds_unbind()

6. ds_shutdown()

Multithreaded XOM applications must adhere to the following order of execution:

1. ds_initialize()

2. XOM calls in sequence or parallel from multiple threads

3. ds_shutdown()

The XDS/XOM API returns an appropriate error code if these sequences are not
adhered to. For example the following errors are returned:

DS_E_BUSY
If ds_unbind() is called while there are still outstanding operations, or if
ds_shutdown() is called before all directory connections have been
released by ds_unbind() .

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

ds_initialize

ds_bind

ds_version

ds_read ds_list

ds_unbind

ds_compare

ds_shutdown

Figure 38. Issuing XDS/XOM Calls from Within Different Threads

146 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM_NO_SUCH_WORKSPACE
If any XOM API calls are made before calling ds_initialize() , or if a call to
ds_shutdown() completes while there are outstanding XOM operations on
the same workspace. In the latter case, these XOM operations will not be
performed.

Overview of Sample Threads Program

The sample program is called thradd. The thradd program is a multithreaded XDS
application that adds entries to a CDS directory. Each thread performs a
ds_add_entry() call. The information for each entry to be added is read from an
input file.

The thradd program can also be used to reset the directory to its original state.
This is achieved by invoking thradd with a -d command-line argument. In this case,
thradd uses the same input file and calls ds_remove_entry() for each entry. The
ds_remove_entry() calls are also done in separate threads.

To keep the program short and clear, it works with a fixed tree for the upper nodes
(/C=it/O=sni/OU=ap), to which the entries described in the input file are added. This
fixed upper tree is added to the directory by thradd. The input file contains the
common name, the surname, and the phone number of each Organizational-
Person entry to be added.

For simplicity, only pthread_join() is used for synchronization purposes; mutexes
are not used.

The thradd program can be enhanced to satisfy the following scenarios:

v As a server program for interactive directory actions from different users. The
thradd program simulates a server program that gets requests from different
users to add entries to a directory. In the case of thradd, the users’ interactive
input is simulated through the entries in the input file. Each line of input
represents a different directory entry, and thradd uses a separate thread for each
line.

v Initialization of the directory with data from file. The thradd program could be
enhanced to read generic attribute information for a variety of directory object
classes from a file, and to add the corresponding entries to the directory.

User Interface

The thradd program is called from the command line as follows:

thradd [-d] [-f file_name]

where:

-d Causes the entries in the file and the tree /C=it/O=sni/OU=ap to be deleted;
otherwise, they are added.

-f file_name
Specifies the name of the input file. If no input file is specified, then a
default filename of thradd.dat is used.

Chapter 7. Using Threads With The XDS/XOM API 147

Input File Format

The input file can contain any number of lines. Each line represents a directory
entry of an organizational person. Each line must contain the following three
attributes for each entry:

<common name> <surname> <phone number>

The attributes must be strings without space characters. Lines containing less than
three strings are rejected by the program; any input on a line after the first three
strings is ignored and can be used for comments. The attributes are separated by
one or more space characters.

The input strings are not verified for their relevant attribute syntax. A wrong attribute
syntax will result in either a ds_add_entry() error or a ds_remove_entry() error.

The following would be a valid input file for thradd:

Anna Meister 010101
Erwin Reiter 020202
Gerhard Schulz 030303
Gottfried Schmid 040404
Heidrun Blum 050505
Hermann Meier 060606
Josefa Fischer 070707
Jutta Arndt 080808
Leopold Huber 090909
Magdalena Schuster 101010
Margot Junge 111111

Program Output

The thradd program writes messages to stdout for every action done by a thread.
The order of the output can differ from the order in the input file; it depends on the
execution of the different threads.

Errors are reported to stderr.

Prerequisites

The directory must be active before running thradd. If you are running thradd in
adding mode then the directory should not contain a node /C=it. The thradd
program should always be invoked twice with the same input file: first without and
then with option -d. This guarantees that the directory is reset to its original state.
The DCE administration program dcecp can be used to verify the directory contents
after adding entries.

Description of Sample Program

The thradd program has a similar structure to the sample XDS programs in the
previous chapter. Therefore, only a short general outline of the program is given
here. The thread specifics are described in detail in the next section.

148 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The static descriptors for the fixed tree (that is, /C=it/O=sni/OU=ap) are declared in
the thradd.h header file. The thradd.c application and the thradd.h header file are
shipped with the product and are located in the /opt/dcelocal/examples/xdsxom
directory.

The main routine scans the command-line options, initializes the XDS workspace
and binds to the CDS namespace.

The program then binds to the default CDS server. Each line of the input file is
processed in turn by a while loop (until the end of the file is reached). The while
loop contains two for loops. The first for loop creates a separate thread for each
line of the input file, up to a maximum of MAX_THREAD_NO of threads.

The add_or_remove() procedure, which adds or removes an entry to/from the
directory, is the starting point of each thread’s processing.

The second for loop waits for termination of the threads and then releases the
resources used by the threads.

When the entire input file has been processed, thradd closes the connection to the
CDS server and, if working in removing mode, removes the fixed tree of upper
nodes (that is, /C=it/O=sni/OU=ap).

Finally, the XDS workspace is closed.

Figure 39 on page 150 shows the program flow.

Chapter 7. Using Threads With The XDS/XOM API 149

Detailed Description of Thread Specifics

The program consists of the following general steps:

1. Include the header file pthread.h .

2. Define a parameter block structure type for the thread start routine.

3. Declare arrays for thread handles and parameter blocks.

4. Read the input file line by line.

5. Update the parameter block.

6. Create the thread.

7. Wait for the termination of the thread.

8. Release the resources used by the thread.

9. Define the thread start routine.

10. Declare local variables needed for descriptors for the objects read from the
input file.

The following paragraphs describe the corresponding step numbers from the
program listing in the next section:

Step 1 includes the header file pthread.h , which is required for thread
programming.

Thread 1

Bind to GDS server

Create threads

Init routines

Thread n

Wait for threads

Unbind from GDS Server

End routines

Figure 39. Program Flow for the thradd Sample Program

150 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Step 2 defines a parameter block structure type for the thread start routine. A thread
start routine must have exactly one parameter. However, add_or_remove()
requires three parameters (session object, input line, and operating mode). The
structure pb_add_or_remove is defined as the parameter block for these
components. Therefore, the single parameter block contains the three parameters
required by add_or_remove().

Step 3 declares arrays for thread handles and parameter blocks. The routine that
creates the thread (main, in this case) must maintain the following information for
each thread:

v A thread handle of type pthread_t to identify the thread for join and detach calls.

v A thread-specific parameter block that cannot be accessed by any other thread.
This makes sure that a parameter for one thread is not overwritten by another
thread.

Step 4 reads the input file line by line. A thread is created for each line. A maximum
MAX_THREAD_NO of threads is created in parallel. The program then waits for the
termination of the created threads so that it can release the resources used by
these threads, allowing it to create new threads for remaining input lines (if any).

The absolute maximum number of threads working in parallel depends on system
limits; for thradd, a value of 10 was chosen (see thradd.h), which is well below the
maximum on most systems.

Step 5 updates the parameter block. For each thread, a different element of the
array of parameter blocks is used.

Step 6 creates the thread. The thread is created by using the function
pthread_create() . The function has the following parameters:

v The thread handle (output) is stored in an element of the array of type pthread_t.

v For the thread characteristics, the default pthread_attr_default is used.

v The start routine for this thread is add_or_remove().

v The parameter passed to add_or_remove() is a pointer to an element of the
array of parameter blocks.

Step 7 waits for the termination of the thread. The pthread_join() routine is called
with the thread handle as the input parameter. The program waits for the
termination of the thread. If the thread has already terminated, then pthread_join()
returns immediately. The second parameter of pthread_join() contains the return
value of the start function; here it is a dummy value because add_or_remove()
returns a void. The add_or_remove() routine is designed as a void function
because the calling routine does not have to deal with error cases. The
add_or_remove() routine prints status messages itself to show the processing
order of the threads. Usually, a status should be returned to the application.

Step 8 releases the resources used by the thread. The thread handle is used as
input for the function pthread_detach() , which releases the resources (for
example, memory) used by the thread.

Step 9 defines the thread start routine. As previously mentioned, the thread start
routine must have exactly one parameter. In this case, it is a pointer to the
parameter block structure defined in Step 2.

Chapter 7. Using Threads With The XDS/XOM API 151

Step 10 declares local variables needed for descriptors for the objects read from
the input file. These descriptors are variables and are declared as automatic
because of the reentrancy requirement. In the previous sample programs,
descriptors were generally declared static. For this example, this is only possible for
the constant descriptors declared in thradd.h .

Of course, this example shows only a small part of the possibilities of multithreaded
XDS programming.

152 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 8. XDS/XOM Convenience Routines

This chapter describes functions that are available to XDS/XOM programmers to
help simplify and speed up the development of XDS applications. The convenience
functions target two main areas, as follows:

v Filling, comparing, and extracting objects

v Converting objects to and from strings

The following six convenience functions are provided:

v dsX_extract_attr_values()

v omX_fill()

v omX_fill_oid()

v omX_extract()

v omX_string_to_object()

v omX_object_to_string()

Refer to the *(3xds) and *(3xom) reference pages for detailed descriptions of these
functions.

To demonstrate the power of the convenience functions, the acl.c sample program
located in /opt/dcelocal/examples/xdsxom is presented again here, after being
modified to make use of these functions. The modified sample program is called
acl2.c .

String Handling

The convenience functions provide the ability to specify OM objects in string format
by means of abbreviations. These abbreviations are defined in the XOM object
information file xoischema.

X.500 attribute types can be specified as abbreviations or object identifier strings.
The mapping of the attribute abbreviations and object identifier strings to BER
encoded object identifiers and the associated attribute syntaxes is determined by
the XOM object information module with the help of the xoischema file. For valid
attribute abbreviations, please refer to the xoischema file in the following directory:

dce_local_path>/var/adm/directory/gds/adm

It is important that any schema changes to the DSA are reflected in the xoischema
file.

The convenience functions are able to handle strings with special syntax. The
strings can be broadly classified into the following:

v Strings representing GDS attribute information

v Strings representing structured GDS attribute information

v Strings representing a structured GDS attribute value

v Strings representing a distinguished name (DN)

v Strings representing expressions

© Copyright IBM Corp. 1990, 1999 153

Strings Representing GDS Attribute Information

Strings that represent GDS attribute information are used to associate the attributes
with their values. They are of the form:

attribute_type =
attribute_value

The attribute types can either be specified as abbreviations or object identifier
strings. An object identifier string is defined as a series of digits separated by the .
(dot) character. If attribute abbreviations are used, they are case insensitive. For
example, cn=schmid or 85.4.3=schmid.

In the case of attributes with OM_S_OBJECT_IDENTIFIER syntax, the attribute value
can also be specified as an abbreviation string. For example, an object class for
Residential Person can be specified as OCL=REP or OCL='\x55\x06\x0A'

All leading and trailing whitespace (surrounding the attribute type, the = (equal
sign), and the attribute value) is ignored.

The following are the reserved characters for such strings:

' Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the \ (backslash) are
not interpreted. For example, cn=henry mueller

; Separates multiple values of a recurring attribute. All leading and trailing
whitespace (surrounding the semicolon) is ignored. For example,
TN=899898;979779

= Associates the attribute with its value.

\x nn Specifies hexadecimal data. The two characters nn are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

Strings Representing Structured GDS Attribute Information

Strings that represent structured GDS attribute information are used to associate
the structured attribute and its components with their values. They are of the form:

structured_attribute_type = {
Comp1 =
Value,
Comp2 =
Value, ..}

The structured attribute type can be specified as abbreviations or object identifier
strings. An object identifier string is defined as a series of digits separated by dots.
If attribute abbreviations are used, they are case insensitive. Comp1, Comp2, and
so on, are the components of the structured attribute. They should be specified as
abbreviations, as in the following example:

TXN={TN=977999, CC=345, AB=8444}

Recurring values for structured attributes can be specified with the help of the
semicolon. An example follows:

154 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

TXN={TN=977999, CC=345, AB=8444};{TN=123444,CC=345,
AB=8444}

Recurring values for the components should be specified as follows:

TXN={TN=977999; 274424, CC=345, AB=8444}

If any of the components are further structured, they should be enclosed within
braces as follows:

FTN={PA={FR=1,TD=1}, PN=67899}

All leading and trailing whitespace, which surrounds the structured attribute type,
the component abbreviation, the equal sign, the { (left brace), the , (comma), and
the } (right brace), is ignored.

Attributes and components with DN syntax should be specified as follows:

AON={/c=de/o=sni/ou=ap11/cn=mueller}
ACL={MPUB={INT=0, USR={/c=de/o=sni/cn=mueller,
sn=schmid}}}

In the case of attributes with OM_S_OBJECT_IDENTIFIER syntax, the attribute value
can also be specified as an abbreviation string, as shown in the following:

SG={OCL=REP}
SG={OCL='\x55\x06\x0A'}

Attributes of type presentation address (OM class DS_C_PRESENTATION_ADDRESS) are
handled specially, using the PSAP macro utility. The value for such an attribute can
be specified as follows:

PSA={TS=Server,
NA='TCP/IP!internet=127.0.0.1+port=12345'}

The local_string parameter should be set to OM_TRUE in the convenience function
being used. Here, the network address (NA) is specified with a special syntax.
Refer to the OSF DCE GDS Administration Guide and Reference for further
information.

The following are the reserved characters for strings with structured attribute
information:

' Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the backslash are not
interpreted. For example, cn='henry mueller'

/ Specifies an attribute value with DN syntax. For example, AON =
{/c=de/o=sni/ou=ap22/cn=mayer}

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444

It can also be used to specify multiple AVAs in the case of attributes with
DN syntax.

Chapter 8. XDS/XOM Convenience Routines 155

; Separates multiple values of a recurring attribute or the recurring
components of the structured attribute. All leading and trailing whitespace
(surrounding the attribute type, the equal sign, the left and right braces, the
component abbreviation, the component value and the semicolon) is
ignored. The following is an example:
TXN={TN=977999,CC=345,AB=8444};{TN=53533,CC=242,AB=44242}

= Associates the components with their values, and associates the
components to the structured attribute.

\x nn Used to specify hexadecimal data. The two characters nn are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

Strings Representing a Structured GDS Attribute Value

Strings are used to represent the structured GDS attribute value. Only one
structured attribute value can be specified.

They are of the form:

Comp1 = Value,
Comp2 = Value,

Comp1, Comp2, and so on, are the components of the structured attribute. They
should be specified as abbreviations. For example, to specify a value for
DS_C_TELEX_NBR class, the string format is the following:

TN=977999, CC=345, AB=8444

Recurring values for the components can be specified as shown in the following:

TN=977999; 274424, CC=345, AB=8444

If any of the components are further structured, they should be enclosed within
braces as follows:

FTP={FR=1,TD=1}, PN=67899

Components with DN syntax can be specified as follows:

MPUB={INT=0, USR={/c=de/o=sni/cn=mueller,
sn=schmid}}

Components of type presentation address (OM class DS_C_PRESENTATION_ADDRESS)
are handled specially, using the PSAP macro utility. The value for the components
can be specified as follows:

TS=Server,
NA='TCP/IP!internet=127.0.0.1+port=12345'

The local_string parameter should be set to OM_TRUE in the convenience function
being used. Here, the NA is specified with a special syntax. Refer to the OSF DCE
GDS Administration Guide and Reference for further information.

156 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The reserved characters for such strings are the same as those for strings
representing structured attribute information (“Strings Representing Structured GDS
Attribute Information” on page 154).

Strings Representing a Distinguished Name

Strings are used to represent the DN of the object. They are of the form:

/
attribute_type =
naming_attribute_value

or

/
attribute_value/
attribute_value

The attribute types can be specified as abbreviations or object identifier strings. An
object identifier string is defined as a series of digits separated by dots. If attribute
abbreviations are used, they are case insensitive. Multiple AVAs are represented by
separating the naming attribute values with commas.

The first RDN can also be specified as the DCE global root string /..., which is a
sequence of the slash followed by three dots. In this case, the /... string is simply
ignored and the rest of the string is processed. Three examples follow:

/c=de/o=sni/ou=ap11, l=munich/85.4.3=schmid
/c=us/o=osf/ou=abc/subsystems/server/xyz
/.../c=us/o=osf/ou=abc/subsystems/server/xyz

The first nonspace character should always be the slash. All leading and trailing
whitespace (surrounding the slash, the attribute type, the equal sign and the
attribute value) is ignored.

The following are the reserved characters:

' Used to enclose the naming attribute values. If this character is used, all
other reserved characters within the quoted string except the backslash are
not interpreted. For example, cn='henry mueller'.

/ Used as a delimiter between RDNs.

, Specifies multiple AVAs. All leading and trailing whitespace surrounding the
comma is ignored. An example follows:

/c=de/o=dbp/ou=dap11/cn=schmid,
ou=ap11

= Associates the object with its naming attribute value.

\x nn Used to specify hexadecimal data. The two characters nn are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

Chapter 8. XDS/XOM Convenience Routines 157

Strings Representing Expressions

Strings are used to specify an SQL-like expression in a search operation. For
example, consider the following:

(CN x =schmid) && (OCL=ORP || OCL=REP) && !(SN=ronnie)

This is used to search for anybody who is an organizational person or a residential
person, whose name approximately matches schmid but whose surname is not
ronnie.

Object identifiers can also be used instead of attribute abbreviations. The object
identifier string is a series of numbers separated by dots.

All leading and trailing whitespace (surrounding the attribute types, the operators,
and the attribute values) is ignored.

If spaces are part of the attribute value, then the complete attribute value must be
enclosed in quotes.

Additionally, the presence of an attribute can also be tested in either of the following
ways:

c = de && cn
c = de && cn = *

The following are the reserved characters:

' Used to indicate the start/end of an attribute value string. Can be used
when spaces are part of the data. If this character is used, all other
reserved characters within the quoted string except the backslash are not
interpreted. An example follows:

OU=sni && cn='Henri Mueller' &&tn=89989

/ Used to specify an attribute value with DN syntax. An example follows:

AON ={/c=de/o=sni/ou=ap22/cn=mayer}

= Used to associate the attribute with its value.

&& Used to logically AND two conditions.

|| Used to logically OR two conditions.

! Used to logically NEGATE a condition.

x= Used to specify phonetic matching during a search operation.

> Used to match values greater than a specified value.

>= Used to match values greater than or equal to a specified value.

< Used to match values less than a specified value.

<= Used to match values less than or equal to a specified value.

* Used to specify substrings during search.

(Used for nesting of filters.

) Used for nesting of filters.

158 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444 It can also be used to specify multiple AVAs in
the case of attributes with DN syntax.

\x nn Used to specify hexadecimal data. The two characters nn are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

During evaluation of complex expressions during search operations, the following
precedence of operators prevail:

1. ()

2. !

3. &&

4. ||

The () operators have the highest precedence, and || the lowest.

The acl2.c Program

The acl2.c file is a program that performs the same functionality as acl.c in the
sample files located in the /opt/dcelocal/examples/xdsxom directory. The purpose
of acl2.c and acl2.h is to show how the XDS/XOM convenience functions can be
used to reduce the complexity of a real application.

The program consists of the following steps:

1. Export the required object identifiers. (See the acl2.h description in “The acl2.h
Header File” on page 174.)

2. Define the string expressions for the directory entry names and their attributes.
(See the acl2.h description in “The acl2.h Header File” on page 174.)

3. Initialize a workspace.

4. Negotiate use of the basic directory contents and GDS packages.

5. Build the name objects for the entries to be added to the directory.

6. Build the attribute objects for the entries to be added to the directory.

7. Add the fixed tree of entries to the directory in order to permit an authenticated
bind.

8. Create a default session object.

9. Alter the default session object to include the credentials of the requestor
(/C=de/O=sni/OU=ap/CN=norbert).

10. Bind with credentials to the default GDS server.

11. Create a default context object and alter it to include shadow entries.

12. Build filter, name, and entry information selection objects to be used for the
search process.

13. Search the whole subtree below root and extract the ACL attribute from each
selected entry.

14. Close the connection to the GDS server.

15. Remove the user’s credentials from the directory.

16. Release the memory used for application-created objects.

Chapter 8. XDS/XOM Convenience Routines 159

17. Extract the components from the search result.

18. Examine each entry and print the entry details.

19. Close the XDS workspace.

In comparison to the acl.c program located in /opt/dcelocal/examples/xdsxom ,
the following points should be noted:

1. Step 1 has not changed significantly. The number of object identifiers, which
the acl2.c needs to be exported, has been reduced.

2. Step 2 has been completely revised. In fact, the header file has been reduced
substantially. This is as a result of removing all the static descriptor lists for the
directory names and attributes and replacing them with string expressions.

3. Steps 3 and 4 are the same as before.

4. Steps 5 and 6 are new steps that make use of the convenience functions
omX_string_to_object(), omX_fill_oid(), and omX_fill() .

5. Steps 7 through 10 are the same as Steps 5 through 8.

6. Step 11 is the same as Step 9, but with an additional call to build an object to
specify the use of shadow entries. A convenience function is used for this
purpose. This replaces a static descriptor list definition from the old header file.

7. Step 12 is new. It calls several convenience functions to create objects that are
used by ds_search() . These objects were statically declared in the header
file.

8. Steps 13 through 15 are the same as Steps 10 through 12 from the old code.

9. Step 16 is a new step to release memory that has been allocated by the
convenience functions when creating objects.

10. Step 17 replaces Step 13 from the old program with a call to the convenience
function omX_extract() to extract the required components from the search
result.

11. Step 18 is the same as Step 14 in the old program, but with an additional call
to free the memory allocated by omX_extract() in the previous step.

12. Step 19 is the same as Step 15 in the old code.

The acl2.c Code

The following code is a listing of the acl2.c program:
/***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *
***/

/*
* This sample program displays the access permissions (ACL) on each
* entry in the directory for a specific user. The permissions are
* presented in a form similar to the UNIX file permissions. In
* addition, each entry is flagged as either a master or a shadow copy.
*
* The distinguished name of the user performing the check is:
*
* /C=de/O=sni/OU=ap/CN=norbert
*
* The results are presented in the following format:
*
* [ABCD] <entry's distinguished name>
*

160 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

* A: 'm' master copy
* 's' shadow copy
*
* B: 'r' read access to public attributes
* 'w' write access to public attributes
* '-' no access to public attributes
*
* C: 'r' read access to standard attributes
* 'w' write access to standard attributes
* '-' no access to standard attributes
*
* D: 'r' read access to sensitive attributes
* 'w' write access to sensitive attributes
* '-' no access to sensitive attributes
*
* For example, the following result means that the entry
* '/C=de/O=sni' is a master copy and that the requesting user
* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public
* attributes, read access to its standard attributes and no access
* to its sensitive attributes.
*
* [mwr-] /C=de/O=sni
*
* The program requires that the specific user perform an authenticated
* bind to the directory. In order to achieve this the user's
* credentials must already exist in the directory. Therefore the
* following tree of 6 entries is added to the directory each time the
* program runs, and removed again afterwards.
*
* O C=de
* | (objectClass=Country,
* | ACL=(mod-pub: *
* | read-std:*
* | mod-std: *
* | read-sen:*
* | mod-sen: *))
* |
* |
* O O=sni
* | (objectClass=Organization,
* | ACL=(mod-pub: /C=de/O=sni/OU=ap/*
* | read-std:/C=de/O=sni/OU=ap/CN=stefanie
* | mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* | read-sen:/C=de/O=sni/OU=ap/CN=stefanie
* | mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
* |
* O OU=ap
* | (objectClass=OrganizationalUnit,
* | ACL=(mod-pub: /C=de/O=sni/OU=ap/*
* | read-std:/C=de/O=sni/OU=ap/CN=stefanie
* | mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* | read-sen:/C=de/O=sni/OU=ap/CN=stefanie
* | mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
* |
* +-------+-------+
* | | |
* | | O CN=ingrid
* | | (objectClass=OrganizationalPerson,
* | | ACL=(mod-pub: /C=de/O=sni/OU=ap/*
* | | read-std:/C=de/O=sni/OU=ap/*
* | | mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* | | read-sen:/C=de/O=sni/OU=ap/*
* | | mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* | | surname="Schmid",
* | | telephone="+49 89 636 0",
* | | userPassword="secret")
* | |

Chapter 8. XDS/XOM Convenience Routines 161

* | O CN=norbert
* | (objectClass=OrganizationalPerson,
* | ACL=(mod-pub: /C=de/O=sni/OU=ap/*
* | read-std:/C=de/O=sni/OU=ap/*
* | mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* | read-sen:/C=de/O=sni/OU=ap/*
* | mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* | surname="Schmid",
* | telephone="+49 89 636 0",
* | userPassword="secret")
* |
* O CN=stefanie
* (objectClass=OrganizationalPerson,
* ACL=(mod-pub: /C=de/O=sni/OU=ap/*
* read-std:/C=de/O=sni/OU=ap/*
* mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* read-sen:/C=de/O=sni/OU=ap/*
* mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* surname="Schmid",
* telephone="+49 89 636 0",
* userPassword="secret")
*
*
* In this version of the program, instead of providing client-generated

* public objects, the XOM Convenience Functions are used for creating
* objects. They are also used for extracting information from service
* generated objects.
*/

#ifdef THREADSAFE
#include <pthread.h>
#endif

#include <stdio.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>
#include <xdsext.h> /* convenience functions header file */
#include <xomext.h> /* convenience functions header file */
#include "acl2.h"
void
main(

int argc,
char *argv[]

)
{
OM_workspace workspace; /* Workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */

/* is returned by ds_bind() */
OM_private_object context; /* Context object. */
OM_private_object result; /* Holds the search result object.*/
OM_sint invoke_id; /* Integer for the invoke id */

/* returned by ds_search(). */
/* (this parameter must be present*/
/* even though it is ignored). */

OM_type navigation_path[] = { DS_SEARCH_INFO, 0 };
/* List of OM types to the target */

/* object - of the search result */
OM_type entry_list[] = { DS_ENTRIES, 0 };

/* List of types to be extracted */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned.*/
OM_return_code rc; /* XOM function return code. */

162 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

register int i;
char user_name[MAX_DN_LEN] = DN_NORBERT;

/* Holds the requestor's name - */
/* "/C=de/O=sni/OU=ap/CN=norbert" */

char entry_string[MAX_DN_LEN + 7] = "[?r??] ";
/* Holds entry details. */

struct entry entry_array[6];/* List of entry names and attrs */
OM_object credentials; /* Credentials part of session obj*/
OM_object use_copy; /* Specifies whether to use shadow*/

/* entries, in context object */
OM_object filter; /* Filter - for search operation */
OM_object dn_root; /* Name object for "/" */
OM_object selection_acl; /* Entry Information */

/* Selection obj */

static char *name_list[] =
{ DN_DE, DN_SNI, DN_AP, DN_STEFANIE,

DN_NORBERT, DN_INGRID };
/* Array of names to be added */

static char *C_attr_list[] = { OBJ_CLASS_C };
static char *O_attr_list[] = { OBJ_CLASS_O, ATT_ACL1 };
static char *OU_attr_list[] = { OBJ_CLASS_OU };
static char *OP_attr_list[] = { OBJ_CLASS_OP, ATT_ACL2,

ATT_SURNAME, ATT_PHONE_NUM, ATT_PASSWORD };
/* Attribute lists, in string fmt */

static char *dn_root_str = DN_ROOT;
static char *filter_str = FILTER;

/* Step 3 *
* Initialize a directory workspace for use by XOM. */

if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");

/* Step 4 *
* Negotiate the use of the BDC and GDS packages. */

if (ds_version(features, workspace) != DS_SUCCESS)
printf("ds_version() error\n");

/* Step 5 *
* Build name objects for entries to be added to the directory. */

for (i = 0; i < NO_OF_ENTRIES; i++)
if (! build_name_object(workspace,name_list[i],

&(entry_array[i].name)))
printf("build_name_object() error\n");

/* Step 6 *
* Build attribute objects for entries to be added to the directory */

if ((! build_attr_list_object(workspace, NO_C_ATTRS, C_attr_list,
&entry_array[0].attr_list)) ||

(! build_attr_list_object(workspace, NO_O_ATTRS, O_attr_list,
&entry_array[1].attr_list)) ||

(! build_attr_list_object(workspace, NO_OU_ATTRS, OU_attr_list,
&entry_array[2].attr_list)) ||

(! build_attr_list_object(workspace, NO_OP_ATTRS, OP_attr_list,
&entry_array[3].attr_list)))

printf("build_attr_list_object() error\n");
/*
* These entries also have the OP attribute list.
*/

entry_array[4].attr_list = entry_array[3].attr_list;
entry_array[5].attr_list = entry_array[3].attr_list;

/* Step 7
*
* Add a fixed tree of entries to the directory in order to permit
* an authenticated bind by: /C=de/O=sni/OU=ap/CN=norbert

Chapter 8. XDS/XOM Convenience Routines 163

*/
if (! add_tree(workspace, entry_array, NO_OF_ENTRIES))

printf("add_tree() error\n");

/* Step 8
*
* Create a default session object.
*/

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
!= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/* Step 9
*
* Build an object with the following credentials:
* requestor: /C=de/O=sni/OU=ap/CN=norbert
* password: "secret"
* authentication mechanism: simple
*/

if (! build_credentials_object(entry_array[4].name,&credentials))
printf("build_credentials_object() error\n");

/*
* Alter the default session object to include the credentials
*/

if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
!= OM_SUCCESS)

printf("om_put() error %d\n", rc);

/* Step 10
*
* Bind with credentials to the default GDS server. The
* returned session object is stored in the private object variable
* bound_session and is used for all further XDS function calls.
*/

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

/* Step 11
*
* Create a default context object.
*/

if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context))
!= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/*
* Build an object specifying that shadow entries should be used.
*/

if (! build_use_copy_object(&use_copy))
printf("build_use_copy_object() error\n");

/*
* Alter the default context object to include 'shadow' entries.
*/

if ((rc = om_put(context, OM_REPLACE_ALL, use_copy, 0 ,0, 0))
!= OM_SUCCESS) printf("om_put() error %d\n",

rc);

/* Step 12
*
* Build a filter object, specifying presence of object class attr.
*/

if (! build_filter_object(workspace, filter_str, &filter))
printf("build_filter_object() error\n");

/*

164 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

* Build a root name object, name = "/"
*/

if (! build_name_object(workspace, dn_root_str, &dn_root))
printf("build_name_object() error\n");

/*
* Build an entry information selection object,
* selecting acl attributes.
*/

if (! build_selection_object(&selection_acl))
printf("build_selection_object() error\n");

/* Step 13
*
* Search the whole subtree below root. The filter selects entries
* with an object-class attribute. The selection extracts the ACL
* attribute from each selected entry. The results are returned in
* the private object 'result'.
*
* NOTE: Since every entry contains an object-class attribute the
* filter performs no function other than to demonstrate how
* filters may be used.
*/

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE,filter,
OM_FALSE, selection_acl, &result, &invoke_id) !=DS_SUCCESS)

printf("ds_search() error\n");

/* Step 14
*
* Close the connection to the GDS server.
*/

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

/* Step 15
*
* Remove the user's credentials from the directory.
*/

if (! remove_tree(workspace, session, entry_array, NO_OF_ENTRIES))
printf("remove_tree() error\n");

/* Step 16
*
* Free the name and attribute objects
* which make up the directory entries.
*/

if (! free_entry_list(entry_array))
printf("free_entry_list() error\n");

/*
* Free public objects which were created.
*/

free(selection_acl);
free(use_copy);
free(credentials);

if ((om_delete(filter) != OM_SUCCESS) ||
(om_delete(dn_root) != OM_SUCCESS))
printf("om_delete() error\n");

/* Step 17
*
* Extract components from the search result by means of the XOM
* Convenience Function, omX_extract()
*/

if ((rc = omX_extract(result, navigation_path,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry, &total_num))

Chapter 8. XDS/XOM Convenience Routines 165

!= OM_SUCCESS)
printf("omX_extract(Search-Result) error %d\n", rc);

/*
* Requestor's name = "/C=de/O=sni/OU=ap/CN=norbert"
*/

printf("User: %s\nTotal: %d\n", user_name, total_num);

/* Step 18
*
* Examine each entry and print the entry details.
*/

for (i = 0; i < total_num; i++) {
if (process_entry_info((entry+i)->value.object.object,

entry_string, user_name))
printf("%s\n", entry_string);

}

/*
* Now free the entry object (returned from omX_extract()).
*/

if (om_delete(entry) != OM_SUCCESS)
printf("om_delete() error\n");

/* Step 19
*
* Close the directory workspace.
*/

if (ds_shutdown(workspace) != DS_SUCCESS)
printf("ds_shutdown() error\n");

}

/*
* Add the tree of entries described above.
*/

int
add_tree(

OM_workspace workspace,
struct entry elist[],
int no_entries

)
{
OM_private_object session; /* Holds the Session object which */

/* is returned by ds_bind() */
OM_sint invoke_id; /* Integer for the invoke id */
int error = 0;
int i;

/*
* Bind (without credentials) to the default GDS server.
*/

if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) !=
DS_SUCCESS)

error++;

/*
* Add entries to the GDS server.
*/

for (i = 0; i < no_entries; i++)
if (ds_add_entry(session, DS_DEFAULT_CONTEXT, elist[i].name,

elist[i].attr_list, &invoke_id) != DS_SUCCESS) {
/* Ignore error if adding country - possibly already there */

if (i != 0) error++;
}

/*
* Close the connection to the GDS server.
*/

if (ds_unbind(session) != DS_SUCCESS)

166 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

error++;

return (error?0:1);
}

/*
* Remove the tree of entries described above.
*/

int
remove_tree(

OM_workspace workspace,
OM_private_object session,
struct entry elist[],
int no_entries

)
{
OM_private_object bound_session; /* Holds the Session object which */

/* is returned by ds_bind() */
OM_sint invoke_id; /* Integer for the invoke id */
int i;
int error = 0;

/*
* Bind (without credentials) to the default GDS server.
*/

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
error++;

/*
* Remove entries from the GDS server.
*/

for (i = no_entries-1; i >= 0; i--)
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,

elist[i].name, &invoke_id) != DS_SUCCESS) {
/* Ignore error if removing country - possibly has entries */
/* below it */
if (i != 0) error++;

}
/*
* Close the connection to the GDS server.
*/

if (ds_unbind(bound_session) != DS_SUCCESS)
error++;

return (error?0:1);
}

/*
* Extract information about an entry from the Entry-Info object:

whether
* the entry is a master-copy, its ACL permissions and its distinguished

* name. Build up a string based on this information.
*/

int
process_entry_info(
OM_private_object entry,
char *entry_string,
char *user_name

)
{
OM_return_code rc; /* Return code from XOM function. */
OM_public_object ei_attrs; /* Components from Entry-Info. */
OM_public_object attr; /* Directory attribute. */
OM_public_object acl; /* ACL attribute parts. */
OM_public_object acl_vals; /* ACL attribute value. */
OM_public_object acl_item; /* ACL item component. */

Chapter 8. XDS/XOM Convenience Routines 167

OM_value_position total_attrs; /* Number of attributes returned. */
OM_value_position total_acls; /* Number of acl values returned. */
register int i;
register int interp;
register int error = 0;
register int found_acl = 0;
static OM_type ei_attr_list[] = { DS_FROM_ENTRY,

DS_OBJECT_NAME,
0 };

/* Attributes to be extracted. */
OM_string entry_str;
/*
* Extract occurrences of DS_FROM_ENTRY, and DS_OBJECT_NAME
* from each Entry-Info object.
*/

if ((rc = om_get(entry, OM_EXCLUDE_ALL_BUT_THESE_TYPES,
ei_attr_list, OM_FALSE, 0, 0, &ei_attrs,

&total_attrs))
!= OM_SUCCESS) {

error++;
printf("om_get(Entry-Info) error %d\n", rc);

}

for (i = 0; ((i < total_attrs) && (! error)); i++,
ei_attrs++) {

/*
* Determine if current entry is a master-copy or a shadow-copy.
*/

if ((ei_attrs->type == DS_FROM_ENTRY) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN))
if (ei_attrs->value.boolean == OM_TRUE)

entry_string[1] = 'm';
else if (ei_attrs->value.boolean == OM_FALSE)

entry_string[1] = 's';
else

entry_string[1] = '?';

/*
* Convert the entry's distinguished name to a string format.
*/

entry_str.elements = &entry_string[7];
entry_str.length = MAX_DN_LEN;
if ((ei_attrs->type == DS_OBJECT_NAME) &&

((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT))
if ((rc = omX_object_to_string(ei_attrs->value.object.object,

OM_FALSE, &entry_str)) != OM_SUCCESS) {
error++;
printf("omX_object_to_string() error\n");

}
}
/*
* Now extract occurences of attributes, where the attribute
* type is ACL from the Entry-Info object.
*/

dsX_extract_attr_values(entry, DSX_A_ACL, OM_TRUE,
&acl_vals, &total_acls);

for (i = 0; ((i < total_acls) && (! error)); i++) {
acl = acl_vals[i].value.object.object;

/*
* Examine the ACL. Check each permission for the current user.
*/

entry_string[2] = 'r';
entry_string[3] = '-';

168 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

entry_string[4] = '-';

while (acl->type != OM_NO_MORE_TYPES) {

if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT)
acl_item = acl->value.object.object;

switch (acl->type) {

case OM_CLASS:
break;

case DSX_MODIFY_PUBLIC:
if (permitted_access(user_name, acl_item))

entry_string[2] = 'w';
break;

case DSX_READ_STANDARD:
if (permitted_access(user_name, acl_item))

entry_string[3] = 'r';
break;

case DSX_MODIFY_STANDARD:
if (permitted_access(user_name, acl_item))

entry_string[3] = 'w';
break;

case DSX_READ_SENSITIVE:
if (permitted_access(user_name, acl_item))

entry_string[4] = 'r';
break;

case DSX_MODIFY_SENSITIVE:
if (permitted_access(user_name, acl_item))

entry_string[4] = 'w';
break;

}
acl++;

}
}
/*
* Now free acl_vals.
*/

if (total_acls > 0)
if ((rc = om_delete(acl_vals)) != OM_SUCCESS) {

error++;
printf("om_delete() error, rc = %d\n", rc);

}

return (error?0:1);
}

/*
* Check if a user is permitted access based on the ACL supplied.
*/

int
permitted_access(

char *user_name,
OM_public_object acl_item

)
{
char acl_name[MAX_DN_LEN];
OM_string acl_name_str;
int interpretation;
int acl_present = 0;
int access = 0;
int acl_name_length;
OM_return_code rc;

Chapter 8. XDS/XOM Convenience Routines 169

while (acl_item->type != OM_NO_MORE_TYPES) {

switch (acl_item->type) {
case OM_CLASS:

break;

case DSX_INTERPRETATION:
interpretation = acl_item->value.boolean;
break;

case DSX_USER:
acl_name_str.elements = acl_name;
if ((rc = omX_object_to_string(acl_item->value.object.object,

OM_FALSE, &acl_name_str)) == OM_SUCCESS) {
if (interpretation == DSX_SINGLE_OBJECT) {
if (strcmp(acl_name, user_name) == 0)

access = 1;
}
else if (interpretation == DSX_ROOT_OF_SUBTREE) {

if ((acl_name_length = strlen(acl_name)) == 0)
access = 1;

else if
(strncmp(acl_name,user_name,acl_name_length)
== 0)

access = 1;
}

}
break;

}
acl_item++;

}

return (access);
}

/*
* Build a name object from a name string using the XOM
* Convenience Function omX_string_to_object().
*/

int
build_name_object(
OM_workspace workspace,
char *name,
OM_private_object *name_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_return_code rc;
OM_string name_str;
int error = 0;
name_str.length = strlen(name);
name_str.elements = name;
if ((rc = omX_string_to_object(workspace, &name_str, DS_C_DS_DN,

OM_TRUE, name_obj, &err_pos, &err_type)) !=
OM_SUCCESS)

error++;

return (error?0:1);
}

/*
* Build an attribute list object given a list of attribute strings.
* Use the XOM Convenience Function omX_string_to_object() to build
* an attribute object from an attribute string, and omX_fill() to

170 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

* create the other OM descriptor required.
*/

int
build_attr_list_object(
OM_workspace workspace,
OM_integer no_attrs,
char *attr_str_array[],
OM_object *attr_list_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_object attr;
OM_object alist;
OM_string attr_str;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;
int i;

/*
* Allocate space for class descriptor, null descriptor and
* one descriptor for each attribute.
*/

if ((alist =
(OM_descriptor *)malloc((2+no_attrs) * sizeof(OM_descriptor)))

== 0)
error++;

if ((rc = omX_fill_oid(OM_CLASS, DS_C_ATTRIBUTE_LIST, &alist[0]))
!= OM_SUCCESS)

error++;
for (i = 1; i <= no_attrs; i++) {

attr_str.length = strlen(attr_str_array[i-1]);
attr_str.elements = attr_str_array[i-1];
if ((rc = omX_string_to_object(workspace, &attr_str,

DS_C_ATTRIBUTE,
OM_TRUE, &attr, &err_pos, &err_type)) !=

OM_SUCCESS)
error++;

if ((rc = omX_fill(DS_ATTRIBUTES, OM_S_OBJECT, 0, attr,
&alist[i]))

!= OM_SUCCESS)
error++;

}

alist[i] = null_desc;

*attr_list_obj = alist;
return (error?0:1);

}

/*
* Build an entry info selection object using the XOM Convenience
* Functions omX_fill() and omX_fill_oid() to fill the OM descriptors.
*/

int
build_selection_object(
OM_object *selection_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_object desc;

Chapter 8. XDS/XOM Convenience Routines 171

OM_object sel;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;

/*
* Allocate space for class descriptor, null descriptor and one
* descriptor for each attribute.
*/

if ((sel = (OM_descriptor *)malloc((5) * sizeof(OM_descriptor))) == 0)
error++;

if ((rc = omX_fill_oid(OM_CLASS, DS_C_ENTRY_INFO_SELECTION,
&sel[0]))

!= OM_SUCCESS)
error++;

if ((rc = omX_fill(DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE, 0,
&sel[1])) != OM_SUCCESS)

error++;

if ((rc = omX_fill_oid(DS_ATTRIBUTES_SELECTED, DSX_A_ACL,
&sel[2])) != OM_SUCCESS)

error++;

if ((rc = omX_fill(DS_INFO_TYPE, OM_S_ENUMERATION,
DS_TYPES_AND_VALUES,

0, &sel[3])) != OM_SUCCESS)
error++;

sel[4] = null_desc;

*selection_obj = sel;
return (error?0:1);

}

/*
* Build a credentials object using the XOM Convenience Function
* omX_fill().
*/

int
build_credentials_object(
OM_object name,
OM_object *credentials_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_object cred;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;

/*
* Just allocate space for a null descriptor and two other

descriptors,
* no class descriptor required.
*/

if ((cred = (OM_descriptor *)malloc((4) * sizeof(OM_descriptor))) ==
0)

error++;
if ((rc = omX_fill(DS_REQUESTOR, OM_S_OBJECT, 0, name, &cred[0]))

!= OM_SUCCESS)
error++;

if ((rc = omX_fill(DSX_PASSWORD, OM_S_OCTET_STRING,
(sizeof(PASSWD)-1),

PASSWD, &cred[1])) != OM_SUCCESS)

172 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

if ((rc = omX_fill(DSX_AUTH_MECHANISM, OM_S_ENUMERATION, DSX_SIMPLE,
0, &cred[2])) != OM_SUCCESS)

error++;

cred[3] = null_desc;

*credentials_obj = cred;
return (error?0:1);

}

/*
* Build an object setting DS_DONT_USE_COPY to FALSE, using the
* XOM Convenience Function omX_fill().
*/

int
build_use_copy_object(
OM_object *use_copy_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_object desc;
OM_object copy;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;

/*
* Just allocate space for a null descriptor and one other
* descriptor, no class descriptor required.
*/

if ((copy = (OM_descriptor *)malloc((2) * sizeof(OM_descriptor))) ==
0)
error++;

if ((rc = omX_fill(DS_DONT_USE_COPY, OM_S_BOOLEAN, OM_FALSE, 0,
©[0])) != OM_SUCCESS)

error++;

copy[1] = null_desc;
*use_copy_obj = copy;
return (error?0:1);

}

/*
* Build a filter object from a filter string using the XOM Convenience
* Function omX_string_to_object().
*/

int
build_filter_object(
OM_workspace workspace,
char *filter,
OM_object *filter_obj

)
{
OM_integer err_pos;
OM_integer err_type;
OM_string filter_str;
OM_return_code rc;
int error = 0;

filter_str.length = strlen(filter);
filter_str.elements = filter;
if ((rc = omX_string_to_object(workspace, &filter_str,

DS_C_FILTER,

Chapter 8. XDS/XOM Convenience Routines 173

OM_TRUE, filter_obj, &err_pos, &err_type)) !=
OM_SUCCESS)

error++;

return (error?0:1);
}

/*
* Free the name and attribute list objects in the entry list. Objects
* which have been created using the XOM Convenience Function
* omX_string_to_object() must be deleted using om_delete().
*/

int
free_entry_list(
struct entry entry_array[]

)
{
OM_object attr_list_obj;
int i, j;
int error = 0;
for (i = 0; i < NO_OF_ENTRIES; i++) {

/*
* Delete the service generated public name object .
*/

if (om_delete(entry_array[i].name) != OM_SUCCESS)
error++;

/*
* The last two attribute lists were the same as the 4th one.
*/

if (i < NO_OF_ENTRIES-2) {
attr_list_obj = entry_array[i].attr_list;
for (j = 0; attr_list_obj[j].type != OM_NO_MORE_TYPES; j++) {

if (attr_list_obj[j].type == DS_ATTRIBUTES)
/*
* Delete the service generated public attribute object.
*/

if (om_delete(attr_list_obj[j].value.object.object)
!= OM_SUCCESS)

error++;
}

/*
* Free the whole attribute list object.
*/
free(attr_list_obj);

}
}

return (error?0:1);
}

The acl2.h Header File

The acl2.h header file performs the following:

1. It exports the object identifiers that acl2.c requires.

2. It declares a structure to contain the name and attributes of directory entries.

3. It defines abbreviated names for the directory entries.

4. It defines abbreviated names for the directory attributes.

5. It builds the descriptor list for optional packages that are to be negotiated.

174 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The following code is a listing of the acl2.h file:
/***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *
***/

#ifndef _ACL2_H
#define _ACL2_H

#define MAX_DN_LEN 100 /* max length of a distinguished name in */
/* string format. */

/* Step 1 */

/* The application must export the object identifiers it requires. */

OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_C_FILTER)
OM_EXPORT (DSX_C_GDS_SESSION)
OM_EXPORT (DSX_C_GDS_CONTEXT)
OM_EXPORT (DSX_A_ACL)

/* Structure to contain the name and attribute list */
/* of a directory entry. */

struct entry {
OM_private_object name;
OM_object attr_list;

} Entry;
/* Step 2 */
/*
* Names of directory entries, in string format.
*/

#define DN_ROOT "/"
#define DN_DE "/C=de"
#define DN_SNI "/C=de/O=sni"
#define DN_AP "/C=de/O=sni/OU=ap"
#define DN_STEFANIE "/C=de/O=sni/OU=ap/CN=stefanie"
#define DN_NORBERT "/C=de/O=sni/OU=ap/CN=norbert"
#define DN_INGRID "/C=de/O=sni/OU=ap/CN=ingrid"

/*
* Attributes, in string format.
*/

#define OBJ_CLASS_C "OCL = TOP; C"
#define OBJ_CLASS_O "OCL = TOP; ORG"
#define OBJ_CLASS_OU "OCL = TOP; OU"
#define OBJ_CLASS_OP "OCL = TOP; PER; ORP"
#define ATT_PHONE_NUM "TN = '+49 89 636 0' "
#define ATT_PASSWORD "UP = secret"
#define ATT_SURNAME "SN = Schmid"
#define ATT_ACL1 "ACL={MPUB = {INT = 1,USR = {/}}, \

RSTD = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
MSTD = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
RSEN = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
MSEN = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}}}"

#define ATT_ACL2 "ACL={MPUB = {INT = 1,USR =
{/C=de/O=sni/OU=ap}},\

RSTD = {INT = 1,USR = {/C=de/O=sni/OU=ap}},\
MSTD = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
RSEN = {INT = 1,USR = {/C=de/O=sni/OU=ap}},\
MSEN = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}}}"

Chapter 8. XDS/XOM Convenience Routines 175

/* Other strings. */
#define PASSWD "secret"
#define FILTER "OCL"

#define NO_OF_ENTRIES 6 /* 6 entries to be added */
#define NO_C_ATTRS 1 /* 1 attr in Country attribute list */
#define NO_O_ATTRS 2 /* 2 attr in Org attribute list */
#define NO_OU_ATTRS 1 /* 1 attr in Org-Unit attribute list */
#define NO_OP_ATTRS 5 /* 5 attr in Org-Person attribute list*/
/* Build up an array of object identifiers for the optional */
/* packages to be negotiated. */
DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
{ 0 }

};

#endif /* _ACL2_H
*/

Example Strings

This section contains examples of input strings to omX_string_to_object() and
some examples of strings that can be returned by omX_object_to_string() .

Input Strings to omX_string_to_object()

The following are examples of strings that can be handled by the
omX_string_to_object() function.

Example 1: To create a DS_C_DS_DN object (root), use strings like the following:

/
/...

Example 2: To create other DS_C_DS_DN objects, use strings like the following:

/c=de/o=sni/ou=ap11/cn=naik,sn=naik
/c=de/o=sni/ou=ap11/85.4.3=naik,sn=naik
/c=de/o=sni/ou=ap11/cn=naik,sn=na\x69k
/c=de/o=sni/ou=ap11/cn=naik,loc=Muenchen\,8000
/c=de/o=sni/ou=ap11/cn=naik,loc='Muenchen,8000'
/ C = de / O = sni / Ou = ap11/CN=naik,
SN=naik

Example 3: To create a DS_C_DS_DN object (DCE name), use a string like the
following:

/.../c=us/o=osf/ou=abc/subsystems/server/xyz

Example 4: To create a DS_C_DS_RDN object, use strings like the following:

cn=naik,sn=naik
cn=naik,sn=na\x69k
CN = naik, SN = naik

Example 5: To create a DS_C_DS_RDN object (DCE name), use a string like the
following:

server

176 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Example 6: To create a DS_C_ATTRIBUTE object (containing, for example,
Common-Name), use strings like the following:

cn=bhavesh naik
CN = bhavesh naik
85.4.3=bhavesh nai\x69k

Example 7: To create a DS_C_ATTRIBUTE object (containing an object class with
multiple values of Residential-Person and Organizational-Person), use strings like
the following:

OCL=REP;ORP
OCL = '\x55\x06\x0a' ;
'\x55\x06\x07'

Example 8: To create a DS_C_ATTRIBUTE object (containing a GDS structured
attribute like Telex-Number or Owner), use strings like the following:

TXN={TN=12345,CC=678,AB=90}
TXN = { TN = 12345, CC = 678, AB = 90}
own={/c=de/o=sni/ou=ap11};{/c=de/o=sni/ou=ap22}
pa={pa='Wilhelm Riehl Str.85';'Munich'}

Example 9: To create a DSX_C_GDS_ACL object, use a string like the following:

MPUB={INT=0, USR={/c=de/o=sni/cn=naik,
sn=bhavesh}}

Example 10: To create a DS_C_PRESENTATION_ADDRESS object, use a string like the
following:

TS=Server,NA='TCP/IP!internet=127.0.0.1+port=25015'

Example 11: To create a DS_C_FILTER object, use strings like the following:

c
!c
C = de && CN = 'bha\x76esh naik'
c=de&&cn x =mueller
c = de && (cn = 'a*' || cn = b* || cn = c*)
ACL={MPUB={INT=0,USR={/c=de/o=sni/cn=naik, sn=bhavesh}}}
c = de || cn = *aa*bb*cc*
(cn x =naik)&&((OCL=ORP)||(OCL=REP))&&
!(SN='bhavesh naik')&&(L=*)

Example 12: The following is an example of the error return when an erroneous
string is supplied:

/c=de/o=sni,=de

The OM_return_code would be OM_WRONG_VALUE_MAKEUP.

The error_type would be OMX_MISSING_ABBRV.

The error_position would be 13.

Chapter 8. XDS/XOM Convenience Routines 177

Strings Returned by omX_object_to_string()

The following are examples of strings returned by the omX_object_to_string()
function.

Example 1: If a DS_C_DS_DN object is supplied, the following might be returned:

/
/C=de/O=sni/OU=ap11/CN=naik,SN=naik
/C=de/O=sni/OU=ap11/CN=naik,LOC=Muenchen\,8000

Example 2: If a DS_C_DS_RDN object is supplied, the following might be returned:

CN=naik,SN=naik
server

Example 3: If a DS_C_ATTRIBUTE object is supplied, the following might be
returned:

CN=bhavesh naik
OCL=REP;ORP
TXN={AB=90,CC=678,TN=12345}
OWN={/C=de/O=sni/OU=ap11};{/C=de/O=sni/OU=ap22}

Example 4: If a DSX_C_GDS_ACL object is supplied, the following might be returned:

MPUB={INT=0,USR={/C=de/O=sni/CN=naik,SN=bhavesh}}

Example 5: If a DS_C_NAME_ERROR object is supplied with DS_PROBLEM of
DS_E_NO_SUCH_OBJECT, the following might be returned:

The specified name does not match the name of any object
in the directory

Example 6: If a DS_C_ATTRIBUTE_ERROR object is supplied with
DS_C_ATTRIBUTE_PROBLEM containing DS_E_ATTRIBUTE_OR_VALUE_EXISTS, the following
might be returned:

An attempt is made to add an attribute or value that already
exists. Violating Attribute -
Telephone-Number

178 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Part 4. XDS/XOM Supplementary Information

This section contains reference material for the X/Open Object Management (XOM)
programming interface.

© Copyright IBM Corp. 1990, 1999 179

180 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 9. XDS Interface Description

The XDS interface comprises a number of functions, together with many OM
classes of OM objects, which are used as the parameters and results of the
functions. Both the functions and the OM objects are based closely on the abstract
service that is specified in the standards (see The Directory: Abstract Service
Definition, ISO 9594-3, CCITT X.511).

The interface models the directory interactions as service requests made through a
number of interface functions, which take a number of input parameters. Each valid
request causes an operation within the directory service, which eventually returns a
status and any result of the operation.

All interactions between the user and the directory service belong to a session,
which is represented by an OM object passed as the first parameter to most
interface functions.

The other parameters to the functions include a context and various service-specific
parameters. The context includes a number of parameters that are common to
many functions, and that seldom change from operation to operation.

Each of the components of this model are described in the following sections in this
chapter along with other features of the interface, such as security.

XDS Conformance to Standards

The XDS interface defines an API that application programs can use to access the
functionality of the underlying directory service. The DCE XDS API conforms to the
X/Open CAE Specification, API to directory services (XDS) (November 1991).

The DCE XDS implementation supports the following features:

v A synchronous interface. Asynchronous functionality can be achieved by using
threads as described in “Chapter 7. Using Threads With The XDS/XOM API” on
page 145.

v All synchronous interface functions except ds_search and ds_modify_rdn are
supported. The two asynchronous-specific functions are handled as follows: (for
all practical purposes, these functions are not supported)

– ds_abandon()

This call does not issue a directory service abandon operation. It returns with
a DS_C_ABANDON_FAILED (DS_E_TOO_LATE) error.

– ds_receive_result()

If there are any outstanding operations (when multiple threads issue XDS
calls in parallel), this function returns DS_SUCCESS with the
completion_flag_return parameter set to DS_OUTSTANDING_OPERATIONS. If no
XDS calls are outstanding, this function returns DS_SUCCESS with the
completion_flag_return parameter set to DS_NO_OUTSTANDING_OPERATION.

v Automatic connection management is not provided. The ds_bind() and
ds_unbind() functions always try, respectively, to set up and release directory
service connections immediately.

v The DS_FILE_DESCRIPTOR attribute of the DS_C_SESSION object is not used.

v The default values for OM attributes in the DS_C_CONTEXT and DS_C_SESSION
objects are described in “Chapter 10. XDS Class Definitions” on page 189.

© Copyright IBM Corp. 1990, 1999 181

DCE XDS supports four packages, where one is mandatory and three are optional.
Use of the optional packages is negotiated by using ds_version() . The packages
are as follows:

v The Directory Service Package (as defined in “Chapter 10. XDS Class
Definitions” on page 189), which also includes the errors. This package is
required.

v The Basic Directory Contents Package (as defined in “Chapter 11. Basic
Directory Contents Package” on page 219). This package is optional and is not
required for XDS/XOM over CDS. However, the xdsbdcp.h header file is
required if any X.500 cell names are used.

v The Global Directory Service Package is optional and is not required for
XDS/XOM over CDS.

v The MHS Directory User Package is optional and is not required for XDS/XOM
over CDS.

None of the OM classes defined in these four packages are encodable. Thus, DCE
XDS application programmers do not require the use of the XOM functions
om_encode() and om_decode() , which are not supported by the DCE XOM API.

The XDS Functions

As mentioned already, the standards define abstract services that requestors use to
interact with the directory. Each of these abstract services maps to a single function
call, and the detailed specifications are given in the XDS reference pages. The
services and the function calls to which they map are as follows:

DirectoryBind
Maps to ds_bind()

DirectoryUnbind
Maps to ds_unbind()

Read Maps to ds_read()

Compare
Maps to ds_compare()

Abandon
Maps to ds_abandon() (not supported)

List Maps to ds_list()

Search Maps to ds_search() (not supported for XDS over CDS)

AddEntry
Maps to ds_add_entry()

RemoveEntry
Maps to ds_remove_entry()

ModifyEntry
Maps to ds_modify_entry()

ModifyRDN
Maps to ds_modify_rdn() (not supported for XDS over CDS)

There is a function called ds_receive_result() , which has no counterpart in the
abstract service. It is used with asynchronous operations. (See the xds_intro(3xds)
reference page for information on how the asynchronous functions ds_abandon()
and ds_receive_result() are handled by the DCE XDS API.)

182 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The ds_initialize() , ds_shutdown() , and ds_version() functions are used to
control the XDS API and do not initiate any directory operations.

The interface functions are summarized in Table 16.

Table 16. The XDS Interface Functions

Name Description

ds_abandon() Abandons the result of a pending asynchronous
operation. This function is not supported. See
xds_intro(3xds) .

ds_add_entry() Adds a leaf entry to the CDS namespace.

ds_bind() Opens a session with CDS namespace.

ds_compare() Compares a purported attribute value with the
attribute value stored in CDS object.

ds_initialize() Initializes the XDS interface.

ds_list() Enumerates the names of the immediate subordinates
of a particular directory entry.

ds_modify_entry() Atomically performs modification to a directory entry.

ds_modify_rdn() Changes the RDN of a leaf entry. This function not
supported.

ds_read() Queries information on a particular directory entry by
name.

ds_receive_result() Retrieves the result of an asynchronously executed
function. This function not supported.

ds_remove_entry() Removes a leaf entry from the CDS namespace.

ds_search() Finds entries of interest in a portion of the DIT. This
function not supported.

ds_shutdown() Discards a workspace.

ds_unbind() Unbinds from a directory session.

ds_version() Negotiates features of the interface and service.

The XDS Negotiation Sequence

The interface has an initialization and shutdown sequence that permits the
negotiation of optional features. This involves the ds_initialize() , ds_version() ,
and ds_shutdown() functions.

Every application program must first call ds_initialize() , which returns a
workspace. This workspace supports the standard directory service package (see
“Chapter 10. XDS Class Definitions” on page 189).

The workspace can be extended to support the optional basic directory contents
package (see “Chapter 11. Basic Directory Contents Package” on page 219).

Note: ds_version is not required for XDS/XOM over CDS.
These packages are identified by means of OSI object identifiers, and these object
identifiers are supplied to ds_version() to incorporate the extensions into the
workspace.

Chapter 9. XDS Interface Description 183

After a workspace with the required features is negotiated in this way, the
application can use the workspace as required. It can create and manipulate OM
objects by using the OM functions, and it can start one or more directory sessions
by using ds_bind() .

After completing its tasks, terminating all its directory sessions by using
ds_unbind() , and releasing all its OM objects by using om_delete() , the
application needs to ensure that resources associated with the interface are freed
by calling ds_shutdown() .

It is possible to retain access to service-generated public objects after
ds_shutdown() is called, or to start another cycle by calling ds_initialize() if so
required by the application design.

The session Parameter

A session binds the XDS/XOM to the CDS namespace. The session parameter is
passed as the first parameter to most interface functions.

A session is described by an OM object of OM class DS_C_SESSION. It is created,
and appropriate parameter values can be set with the OM functions. A directory
session then starts with ds_bind() and later terminates with ds_unbind() . A
session with default parameters can be started by passing the constant
DS_DEFAULT_SESSION as the DS_C_SESSION parameter to ds_bind().

The ds_bind() function must be called before DS_C_SESSION can be used as a
parameter to any other function in this interface. After ds_unbind() is called,
ds_bind() must be called again if another session is to be started.

The interface supports multiple concurrent sessions so that an application
implemented as a single process, such as a server in a client/server model, can
interact with the directory by using several identities, and a process can interact
directly and concurrently with different parts of the directory.

Details of the OM class DS_C_SESSION are given in “Chapter 10. XDS Class
Definitions” on page 189.

The context Parameter

The context defines the characteristics of the directory interaction that are specific
to a particular directory operation; nevertheless, the same characteristics are often
used for many operations. Since these parameters are presumed to be relatively
static for a given directory user during a particular directory interaction, these
parameters are collected into an OM object of OM class DS_C_CONTEXT, which is
supplied as the second parameter of each directory service request. This reduces
the number of parameters passed to each function.

The context includes many administrative details, such as the CommonArguments
defined in the abstract service, which affect the processing of each directory
operation. These details include a number of ServiceControls, which allow control
over some aspects of the service. The ServiceControls include options such as
dontDereferenceAliases. Each of these is mapped onto an OM attribute in the
context (see “Chapter 10. XDS Class Definitions” on page 189).

184 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The effect of passing the context parameter is as if its contents were passed as a
group of additional parameters for every function call. The value of each component
of the context is determined when the interface function is called, and it remains
fixed throughout the operation.

All OM attributes in the class DS_C_CONTEXT have default values, some of which are
administered locally. The constant DS_DEFAULT_CONTEXT can be passed as the value
of the DS_C_CONTEXT parameter to the interface functions, and it has the same effect
as a context OM object created with default values. The context must be a private
object, unless it is DS_DEFAULT_CONTEXT.

(See “Chapter 10. XDS Class Definitions” on page 189 for detailed specifications of
the OM class DS_C_CONTEXT.)

The XDS Function Arguments

The abstract service defines specific parameters for each operation. These are
mapped onto corresponding parameters to each interface function, which are also
called input parameters. Although each service has different parameters, some
specific parameters recur in several operations and these are briefly introduced
here. (For complete details of these parameters, see “Chapter 10. XDS Class
Definitions” on page 189.)

All parameters that are OM objects can generally be supplied to the interface
functions as public objects (that is, descriptor lists) or as private objects. Private
objects must be created in the workspace that is returned by ds_initialize() . In
some cases, constants can be supplied instead of OM objects.

Note: Wherever a function can accept an instance of a particular OM class as the
value of a parameter, it also accepts an instance of any subclass of the OM
class. For example, most functions have a name parameter, which accepts
values of OM class DS_C_NAME. It is always acceptable to supply an
instance of the subclass DS_C_DS_DN as the value of the parameter.

Attribute and Attribute Value Assertion

Each directory attribute is represented in the interface by an OM object of OM class
DS_C_ATTRIBUTE. The type of the directory attribute is represented by an OM
attribute, DS_ATTRIBUTE_TYPE, within the OM object. The values of the directory
attribute are expressed as the values of the OM attribute DS_ATTRIBUTE_VALUES.

The representation of the attribute value depends on the attribute type and is
determined as indicated in the following list. The list describes the way in which an
application program must supply values to the interface; for example, in the
changes parameter to ds_modify_entry() . The interface follows the same rules
when returning attribute values to the application; for example, in the ds_read()
result.

v The first possibility is that the attribute type and the representation of the
corresponding values can be defined in a package; for example, the selected
attribute types from the standards that are defined in the basic directory contents
package in “Chapter 11. Basic Directory Contents Package” on page 219. In this
case, attribute values are represented as specified.

Chapter 9. XDS Interface Description 185

v If the attribute type is not known and the value is an ASN.1 simple type such as
IntegerType, the representation is the corresponding type specified in
“Chapter 12. Information Syntaxes” on page 233.

v If the attribute type is not known and the value is an ASN.1 structured type, the
value is represented in the Basic Encoding Rules (BER) with OM syntax
String(OM_S_ENCODING_STRING).

Where attribute values have OM syntax String(*), they can be long segmented
strings, and the functions om_read() and om_write() need to be used to access
them.

An attribute value assertion (AVA) is an assertion about the value of an attribute of
an entry, and it can be TRUE, FALSE, or undefined. It consists of an attribute type and
a single value. In general, the AVA is TRUE if one of the values of the given attribute
in the entry matches the given value. An AVA is represented in the interface by an
instance of OM class DS_C_AVA, which is a subclass of DS_C_ATTRIBUTE and can only
have one value.

Information used by ds_add_entry() to construct a new directory entry is
represented by an OM object of OM class DS_C_ATTRIBUTE_LIST, which contains a
single multivalued OM attribute whose values are OM objects of OM class
DS_C_ATTRIBUTE.

The selection Parameter

The selection parameter of the ds_read() operations tailors its results to obtain
just part of the required entry. Information on all attributes, no attributes, or a
specific group of attributes can be chosen. Attribute types are always returned, but
the attribute values are not necessarily returned.

The value of the parameter is an instance of OM class DS_C_ENTRY_INFO_SELECTION,
but one of the constants in the following list can be used in simple cases:

v To verify the existence of an entry for the purported name, use the constant
DS_SELECT_NO_ATTRIBUTES.

v To return just the types of all attributes, use the constant DS_SELECT_ALL_TYPES.

v To return the types and values of all attributes, use the constant
DS_SELECT_ALL_TYPES_AND_VALUES.

To choose a particular set of attributes, create a new instance of the OM class
DS_C_ENTRY_INFO_SELECTION and set the appropriate OM attribute values by using
the OM functions.

The name Parameter

Most operations take a

name parameter to specify the target of the operation. The name is represented by
an instance of one of the subclasses of the OM class DS_C_NAME. The DCE XDS
API defines the subclass DS_C_DS_DN to represent distinguished names and other
names.

For directory interrogations, any aliases in the name are dereferenced, unless
prohibited by the DS_DONT_DEREFERENCE_ALIASES service control. However, for modify
operations, this service control is ignored if set, and aliases are never dereferenced.

186 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

RDNs are represented by an instance of one of the subclasses of the OM class
DS_C_RELATIVE_NAME. The DCE XDS API defines the subclass DS_C_DS_RDN to
represent RDNs.

XDS Function Call Results

All XDS functions return a DS_status, which is the C function result; most return
data in an invoke_id parameter, which identifies the particular invocation, and the
interrogation operations each return data in the result parameter. The invoke_id and
result values are returned using pointers that are supplied as parameters of the C
function. These three types of function results are introduced in the following
subsections.

All OM objects returned by interface functions (results and errors) are private
objects in the workspace returned by ds_initialize() .

The invoke_id Parameter

All interface functions that invoke a directory service operation return an invoke_id
parameter, which is an integer that identifies the particular invocation of an
operation. Since asynchronous operations (within the same thread) are not
supported, the invoke_id return value is no longer relevant for operations. DCE
application programmers must still supply this parameter as described in the XDS
reference pages, but they should ignore the value returned.

The result Parameter

Directory service interrogation operations return a result value only if they succeed.
All errors from these operations, including directory access protocol (DAP) errors,
are reported in DS_status (see “The DS_status Return Value” on page 188), as are
errors from all other operations.

The result of an interrogation is returned in a private object whose OM class is
appropriate to the particular operation. The format of directory operation results is
driven by the abstract service. To simplify processing, the result of a single
operation is returned in a single OM object, which corresponds to the abstract result
defined in the standards. The components of the result of an operation are
represented by OM attributes in the operation’s result object. All information
contained in the abstract service result is made available to the application
program. The result is inspected using the functions provided in the object
management API, om_get() .

Only the interrogation operations produce results, and each type of interrogation
has a specific OM class of OM object for its result. These OM classes are as
follows (see “Chapter 10. XDS Class Definitions” on page 189 for their definitions):

v DS_C_COMPARE_RESULT

v DS_C_LIST_RESULT

v DS_C_READ_RESULT

The results of the different operations share several common components, including
the CommonResults defined in the standards (see The Directory: Abstract Service
Definition, ISO 9594-3, CCITT X.511) by inheriting OM attributes from the
superclass DS_C_COMMON_RESULTS. An additional common component is the
full DN of the target object, after all aliases are dereferenced.

Chapter 9. XDS Interface Description 187

The actual OM class of the result can always be a subclass of that named in order
to allow flexibility for extensions. Thus, om_instance() always needs to be used
when testing the OM class.

Any attribute values in the result are represented as discussed in “Attribute and
Attribute Value Assertion” on page 185.

The DS_status Return Value

Every interface function returns a DS_status value, which is either the constant
DS_SUCCESS or an error. Errors are represented by private objects whose OM class
is a subclass of DS_C_ERROR. Details of all errors are given in “Chapter 10. XDS
Class Definitions” on page 189.

Other results of functions are not valid unless the status result has the value
DS_SUCCESS.

Synchronous Operations

Since asynchronous use of the interface (within the same thread) is not supported,
the value of the DS_ASYNCHRONOUS OM attribute in DS_C_CONTEXT is always OM_FALSE,
causing all operations within the same thread to be synchronous.

In synchronous mode, all functions wait until the operation is complete before
returning. The thread of control is blocked within the interface after calling a
function, and it can use the result immediately after the function returns.

Implementations define a limit on the number of asynchronous operations that can
be outstanding at any one time on any one session. The limit is given by the
implementation-defined constant DS_MAX_OUTSTANDING_OPERATIONS. It always has the
value 0 (zero) because asynchronous operations within the same thread are not
supported.

All errors occurring during a synchronous request are reported when the function
returns. (“Chapter 10. XDS Class Definitions” on page 189 for complete details of
error handling.)

The DS_FILE_DESCRIPTOR OM attribute of DS_C_SESSION is not used by the DCE XDS
API and is always set to DS_NO_VALID_FILE_DESCRIPTOR.

188 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 10. XDS Class Definitions

When referring to classes and attributes in the directory service, this guide makes a
clear distinction between OM classes and directory classes, and between OM
attributes and directory attributes. In both cases, the former is a construct of the
closely associated Object Management interface, while the latter is a construct of
the directory service where XDS provides access. The terms object class and
attribute indicate the directory constructs, while the phrases OM class and OM
attribute indicate the Object Management constructs.

Note: Not all of the OM objects defined in this section are applicable to XDS/XOM
over CDS. One example is DS_C_SEARCH_RESULT . It is valid for
ds_search , but not supported for XDS/XOM over CDS. These OM objects
are provided in this documentation for completeness. They should not;
however, be needed by any application using XDS/XOM over CDS.

Introduction to OM Classes

This chapter defines, in alphabetical order, the OM classes that constitute the
directory service package. This package incorporates the OM classes for the errors
that may be returned at the XDS interface. The object identifier associated with this
package is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) dsp(0)}

It takes the following encoding:

\x2B\xC\x2\x87\x73\x1C\x0

This object identifier is represented by the constant DS_SERVICE_PKG.

The object management notation is briefly described in the following text. See
“Chapter 12. Information Syntaxes” on page 233 through “Chapter 14. Object
Management Package” on page 255 for more information on object management.

Each OM class is described in a separate section, which identifies the OM
attributes specific to that OM class. The OM classes and OM attributes for each OM
class are listed in alphabetical order. The OM attributes that can be found in an
instance of an OM class are those OM attributes specific to that OM class, as well
as those inherited from each of its superclasses (see “Chapter 5. XOM
Programming” on page 83). The OM class-specific OM attributes are defined in a
table. The table indicates the name of each OM attribute, the syntax of each of its
values, any restrictions on the length (in bits, octets (bytes), or characters) of each
value, any restrictions upon the number of values, and the value, if any,
om_create() supplies.

The constants that represent the OM classes and OM attributes in the C binding
are defined in the xds.h(4xds) header file.

© Copyright IBM Corp. 1990, 1999 189

XDS Errors

Errors are reported to the application program by means of DS_status, which is a
result of every function. (The DS_status is the function result in the C language
binding for most functions.) A function that completes successfully returns the value
DS_SUCCESS, whereas one that is not successful returns an error. The error is a
private object containing details of the problem that occurred. The error constant
DS_NO_WORKSPACE can be returned by all directory service functions, except
ds_initialize() . DS_NO_WORKSPACE is returned if ds_initialize() is not invoked
before calling any other directory service function.

Errors are classified into ten OM classes. The standards (see The Directory:
Abstract Service Definition, ISO 9594-3, CCITT X.511) classify errors into eight
different groups, as follows:

v Abandoned

v Abandon Failed

v Attribute Error

v Name Error

v Referral

v Security Error

v Service Error

v Update Error

The directory service interface never returns an Abandoned error. The interface also
defines three more kinds of errors, as follows:

v DS_C_LIBRARY_ERROR

v DS_C_COMMUNICATIONS_ERROR

v DS_C_SYSTEM_ERROR

Each of these kinds of errors is represented by an OM class. These OM classes
are detailed in subsequent sections of this chapter. All of them inherit the OM
attribute DS_PROBLEM from their superclass DS_C_ERROR, which is described in this
chapter. The values that DS_PROBLEM can take are listed in the relevent subsections
of this chapter. For a description of these errors, refer to the IBM DCE Version 3.1
for AIX and Solaris: Problem Determination Guide. The error OM classes defined in
this chapter are part of the directory service package.

The ds_bind() operation returns a Security Error or a Service Error. All other
operations can also return the same errors as ds_bind() . Such errors can arise in
the course of following an automatic referral list.

DS_C_REFERRAL is not a real error, and it is not a subclass of DS_C_ERROR,
although it is reported in the same way as a DS_status result. A
DS_C_ATTRIBUTE_ERROR, also not a subclass of DS_C_ERROR, is special because it
can report several problems at once. Each one is reported in
DS_C_ATTRIBUTE_PROBLEM, which is a subclass of DS_C_ERROR.

190 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM Class Hierarchy

This section shows the hierarchical organization of the OM classes defined in this
chapter and, as a result, shows which OM classes inherit additional OM attributes
from their superclasses. In the following list, subclassification is indicated by
indentation, and the names of abstract classes are in italics. Thus, for example, the
concrete class DS_C_PRESENTATION_ADDRESS is an immediate subclass of the abstract
class DS_C_ADDRESS, which in turn is an immediate subclass of the abstract
class OM_C_OBJECT. (OM_C_OBJECT is defined in “Chapter 14. Object
Management Package” on page 255 of this guide.)

OM_C_OBJECT

v DS_C_ACCESS_POINT

v DS_C_ADDRESS

– DS_C_PRESENTATION_ADDRESS

v DS_C_ATTRIBUTE

– DS_C_AVA

– DS_C_ENTRY_MOD

– DS_C_FILTER_ITEM

v DS_C_ATTRIBUTE_LIST

– DS_C_ENTRY_INFO

v DS_C_COMMON_RESULTS

– DS_C_COMPARE_RESULT

– DS_C_LIST_INFO

– DS_C_READ_RESULT

– DS_C_SEARCH_INFO

v DS_C_CONTEXT

v DS_C_CONTINUATION_REF

v DS_C_ENTRY_INFO_SELECTION

v DS_C_ENTRY_MOD_LIST

v DS_C_ERROR

v DS_C_EXT

v DS_C_FILTER

v DS_C_LIST_INFO_ITEM

v DS_C_LIST_RESULT

v DS_C_NAME

– DS_C_DS_DN

v DS_C_OPERATION_PROGRESS

v DS_C_PARTIAL_OUTCOME_QUAL

v DS_C_RELATIVE_NAME

– DS_C_DS_RDN

v DS_C_SEARCH_RESULT

v DS_C_SESSION

None of the classes in the preceding list are encodable using om_encode() and
om_decode() . The application is not permitted to create or modify instances of
some OM classes because these OM classes are only returned by the interface
and never supplied to it. These OM classes are as follows:

Chapter 10. XDS Class Definitions 191

v DS_C_ACCESS POINT

v DS_C_COMPARE_RESULT

v DS_C_CONTINUATION_REF

v All subclasses of DS_C_ERROR

v DS_C_LIST_INFO

v DS_C_LIST_INFO_ITEM

v DS_C_LIST_RESULT

v DS_C_OPERATION_PROGRESS

v DS_C_PARTIAL_OUTCOME_QUAL

v DS_C_READ_RESULT

v DS_C_SEARCH_INFO

v DS_C_SEARCH_RESULT

DS_C_ABANDON_FAILED

An instance of OM class DS_C_ABANDON_FAILED reports a problem encountered
during an attempt to abandon an operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the problem. Its value is one of the following:

v DS_E_CANNOT_ABANDON

v DS_E_NO_SUCH_OPERATION

v DS_E_TOO_LATE

A ds_abandon() XDS call always returns a DS_E_TOO_LATE error for the
DS_C_ABANDON_FAILED OM class. Refer to “Chapter 9. XDS Interface Description” on
page 181 for information on abandoning directory operations.

DS_C_ACCESS_POINT

An instance of OM class DS_C_ACCESS_POINT identifies a particular point at which a
DSA can be accessed.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 17.

Table 17. OM Attributes of DS_C_ACCESS_POINT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ADDRESS Object (DS_C_
ADDRESS)

— 1 —

DS_AE_TITLE Object (DS_C_NAME) — 1 —

v DS_ADDRESS

192 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

This attribute indicates the address of the DSA to be used when communicating
with it.

v DS_AE_TITLE

This attribute indicates the name of the DSA.

DS_C_ADDRESS

The OM class DS_C_ADDRESS represents the address of a particular entity or
service, such as a DSA.

It is an abstract class that has the OM attributes of its superclass, OM_C_OBJECT,
and no other OM attributes.

An address is an unambiguous name, label, or number that identifies the location of
the entity or service. All addresses are represented as instances of some subclass
of this OM class.

The only subclass defined by the DCE XDS API is DS_C_PRESENTATION_ADDRESS,
which is the presentation address of an OSI application entity used for OSI
communications with this subclass.

DS_C_ATTRIBUTE

An instance of OM class DS_C_ATTRIBUTE is an attribute of an object, and is thus a
component of its directory entry.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 18.

Table 18. OM Attributes of DS_C_ATTRIBUTE

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_ TYPE String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 1 —

DS_ATTRIBUTE_ VALUES Any — 0 or more —

v DS_ATTRIBUTE_TYPE

The attribute type that indicates the class of information given by this attribute.

v DS_ATTRIBUTE_VALUES

The attribute values. The OM value syntax and the number of values allowed for
this OM attribute are determined by the value of the DS_ATTRIBUTE_TYPE OM
attribute in accordance with the rules given in “Chapter 9. XDS Interface
Description” on page 181.

If the values of this OM attribute have the syntax String(*), the strings can be
long and segmented. For this reason, om_read() and om_write() need to be
used to access all String(*) values.

Note: A directory attribute must always have at least one value, although it is
acceptable for instances of this OM class not to have any values.

Chapter 10. XDS Class Definitions 193

DS_C_ATTRIBUTE_ERROR

An instance of OM class DS_C_ATTRIBUTE_ERROR reports an attribute-related directory
service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 19.

Table 19. OM Attributes of DS_C_ATTRIBUTE_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_ NAME Object (DS_C_NAME) — 1 —

DS_PROBLEMS Object(DS_C_
ATTRIBUTE_ PROBLEM)

— 1 or more —

v DS_OBJECT_NAME

This attribute contains the name of the directory entry to which the operation is
applied when the failure occurs.

v DS_PROBLEMS

This attribute documents the attribute-related problems encountered. Uniquely, a
DS_C_ATTRIBUTE_ERROR can report several problems at once. All problems are
related to the preceding object.

DS_C_ATTRIBUTE_LIST

An instance of OM class DS_C_ATTRIBUTE_LIST is a list of directory attributes.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attribute listed in Table 20.

Table 20. OM Attribute of DS_C_ATTRIBUTE_LIST

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTES Object(DS_C_
ATTRIBUTE)

— 0 or more —

v DS_ATTRIBUTES

This attribute indicates the attributes that constitute a new object’s directory entry,
or those selected from an existing entry.

DS_C_ATTRIBUTE_PROBLEM

An instance of OM class DS_C_ATTRIBUTE_PROBLEM documents one attribute-related
problem encountered while performing an operation as requested on a particular
occasion.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, in addition to the OM attributes listed in
Table 21 on page 195.

194 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 21. OM Attributes of DS_C_ATTRIBUTE_PROBLEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_ TYPE String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 1 —

DS_ATTRIBUTE_ VALUE Any — 0 or 1 —

v DS_ATTRIBUTE_TYPE

This attribute identifies the type of attribute with which the problem is associated.

v DS_ATTRIBUTE_VALUE

This attribute specifies the attribute value with which the problem is associated.
Its syntax is determined by the value of DS_ATTRIBUTE_TYPE. This OM attribute is
present if it is necessary to avoid ambiguity.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the problem. Its value is one of the following:

v DS_E_ATTRIBUTE_OR_VALUE_EXISTS

v DS_E_CONSTRAINT_VIOLATION

v DS_E_INAPPROP_MATCHING

v DS_E_INVALID_ATTRIBUTE_SYNTAX

v DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

v DS_E_UNDEFINED_ATTRIBUTE_TYPE

DS_C_AVA

An instance of OM class DS_C_AVA (attribute value assertion) is a proposition
concerning the values of a directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C ATTRIBUTE, and no other OM attributes. An additional
restriction on this OM class is that there must be exactly one value of the OM
attribute DS_ATTRIBUTE_VALUES. The DS_ATTRIBUTE_TYPE remains single valued. The
OM value syntax of DS_ATTRIBUTE_VALUES must conform to the rules outlined in
“Chapter 9. XDS Interface Description” on page 181.

DS_C_COMMON_RESULTS

The OM class DS_C_COMMON_RESULTS comprises results that are returned by,
and are common to, the directory interrogation operations.

It is an abstract OM class, which has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 22.

Table 22. OM Attributes of DS_C_COMMON_RESULTS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALIAS_ DEREFERENCED OM_S_ BOOLEAN — 1 —

DS_PERFORMER Object (DS_C_NAME) — 0 or 1 —

v DS_ALIAS_DEREFERENCED

Chapter 10. XDS Class Definitions 195

This attribute indicates whether the name of the target object that is passed as a
function argument includes an alias that is dereferenced to determine the DN.

v DS_PERFORMER

When present, this attribute gives the DN of the performer of a particular
operation. It can be present when the result is signed, and it holds the name of
the DSA that signed the result. The DCE directory service does not support the
optional feature of signed results; therefore, this OM attribute is never present.

DS_C_COMMUNICATIONS_ERROR

An instance of OM class DS_C_COMMUNICATIONS_ERROR reports an error occurring in
the other OSI services supporting the directory service.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

Communications errors include those arising in remote operation, association
control, presentation, session, and transport.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the problem. Its value is DS_E_COMMUNICATIONS_PROBLEM.

DS_C_COMPARE_RESULT

An instance of OM class DS_C_COMPARE_RESULT comprises the results of a successful
call to ds_compare().

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_COMMON_RESULTS, in addition to the OM attributes
listed in Table 23.

Table 23. OM Attributes of DS_C_COMPARE_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FROM_ENTRY OM_S_ BOOLEAN — 1 —

DS_MATCHED OM_S_ BOOLEAN — 1 —

DS_OBJECT_NAME Object (DS_C_NAME) — 0 or 1 —

v DS_FROM_ENTRY

This attribute indicates whether the assertion is tested against the specified
object’s entry, rather than a copy of the entry.

v DS_MATCHED

This attribute indicates whether the assertion specified as an argument returns
the value OM_TRUE. It takes the value OM_TRUE if the values are compared and
matched; otherwise, it takes the value OM_FALSE.

v DS_OBJECT_NAME

This attribute contains the DN of the target object of the operation. It is present if
the OM attribute DS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULTS, is OM_TRUE.

196 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_CONTEXT

An instance of OM class DS_C_CONTEXT comprises per-operation arguments that are
accepted by most of the interface functions.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 24.

Table 24. OM Attributes of DS_C_CONTEXT

OM Attribute Value Syntax
Value
Length

Value
Number Value Initially

Common Arguments

DS_EXT Object(DS_C_ EXT) — 0 or
more

NULL

DS_OPERATION_
PROGRESS

Object(DS_C_
OPERATION_ PROGRESS)

— 1 DS_C_OPERATION_NOT_
STARTED

DS_ALIASED_ RDNS OM_S_ INTEGER — 0 or 1 0

Service Controls

DS_CHAINING_ PROHIB OM_S_ BOOLEAN — 1 OM_TRUE

DS_DONT_
DEREFERENCE_ ALIASES

OM_S_ BOOLEAN — 1 OM_FALSE

DS_DONT_ USE_COPY OM_S_ BOOLEAN — 1 OM_TRUE

DS_LOCAL_ SCOPE OM_S_ BOOLEAN — 1 OM_FALSE

DS_PREFER_ CHAINING OM_S_ BOOLEAN — 1 OM_FALSE

DS_PRIORITY Enum(DS_Priority) — 1 DS_MEDIUM

DS_SCOPE_
OF_REFERRAL

Enum(DS_ Scope_
of_Referral)

— 0 or 1 DS_COUNTRY

DS_SIZE_ LIMIT OM_S_ INTEGER — 0 or 1 —

DS_TIME_ LIMIT OM_S_ INTEGER — 0 or 1 —

Local Controls

DS_ ASYNCHRONOUS OM_S_ BOOLEAN — 1 OM_FALSE

DS_AUTOMATIC_
CONTINUATION

OM_S_ BOOLEAN — 1 OM_TRUE

The context gathers several arguments passed to interface functions, which are
presumed to be relatively static for a given directory user during a particular
directory interaction. The context is passed as an argument to each function that
interrogates or updates the directory. Although it is generally assumed that the
context is changed infrequently, the value of each argument can be changed
between every operation if required. The DS_ASYNCHRONOUS argument must not be
changed. Each argument is represented by one of the OM attributes of the
DS_C_CONTEXT OM class.

The context contains the common arguments defined in the standards (see The
Directory: Abstract Service Definition, ISO 9594-3, CCITT X.511), except that all
security information is omitted for reasons discussed in “Chapter 9. XDS Interface
Description” on page 181. These are made up of a number of service controls
explained in the following text, possible extensions in the DS_EXT OM attribute, and

Chapter 10. XDS Class Definitions 197

operation progress and alias dereferencing information in the
DS_OPERATION_PROGRESS OM attribute. It also contains a number of arguments that
provide local control over the interface.

The OM attributes of the DS_C_CONTEXT OM class are as follows:

v Common Arguments

– DS_EXT

This attribute represents any future standardized extensions that need to be
applied to the directory service operation. The DCE XDS implementation does
not evaluate this optional OM attribute.

– DS_OPERATION_PROGRESS

This attribute represents the state that the directory service assumes at the
start of the operation. This OM attribute normally takes its default value, which
is the value DS_OPERATION_NOT_STARTED described in the
DS_C_OPERATION_PROGRESS OM class definition.

– DS_ALIASED_RDNS

This attribute indicates to the directory service that the object component of
the operation parameter is created by dereferencing of an alias on an earlier
operation attempt. This value is set in the referral response of the previous
operation.

v Service Controls

– DS_CHAINING_PROHIB

This attribute indicates that chaining and other methods of distributing the
request around the directory service are prohibited.

– DS_DONT_DEREFERENCE_ALIASES

This attribute indicates that any alias used to identify the target entry of an
operation is not dereferenced. This allows interrogation of alias entries.
(Aliases are never dereferenced during updates.)

– DS_DONT_USE_COPY

This attribute indicates that the request can only be satisfied by accessing
directory entries, and not by using copies of entries. This includes both copies
maintained in other DSAs by bilateral agreement, and, copies cached locally.

– DS_LOCAL_SCOPE

This attribute indicates that the directory request will be satisfied locally. The
meaning of this option is configured by an administrator. This option typically
restricts the request to a single DSA or DMD.

– DS_PREFER_CHAINING

This attribute indicates that chaining is preferred to referrals when necessary.
The directory service is not obliged to follow this preference and can return a
referral even if it is set.

– DS_PRIORITY

This attribute indicates the priority, relative to other directory requests,
according to which the directory service attempts to satisfy the request. This is
not a guaranteed service since there is no queuing throughout the directory.
Its value must be one of the following:

- DS_LOW

- DS_MEDIUM

- DS_HIGH

– DS_SCOPE_OF_REFERRAL

198 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

This attribute indicates the part of the directory to which referrals are limited.
This includes referral errors and partial outcome qualifiers. Its value must be
one of the following:

- DS_COUNTRY, meaning DSAs within the country in which the request
originates.

- DS_DMD, meaning DSAs within the DMD in which the request originates.

DS_SCOPE_OF_REFERRAL is an optional attribute. The lack of this attribute in a
DS_C_CONTEXT object indicates that the scope is not limited.

– DS_SIZE_LIMIT

If present, this attribute indicates the maximum number of objects about which
ds_list() or ds_search() needs to return information. If this limit is
exceeded, information is returned about exactly this number of objects. The
objects that are chosen are not specified because this can depend on the
timing of interactions between DSAs, among other reasons.

– DS_TIME_LIMIT

If present, this attribute indicates the maximum elapsed time, in seconds,
within which the service needs to be provided (not the processing time
devoted to the request). If this limit is reached, a service error
(DS_E_TIME_LIMIT_EXCEEDED) is returned, except for the ds_list() or
ds_search() operations, which return an arbitrary selection of the
accumulated results.

v Local Controls

– DS_ASYNCHRONOUS (Optional Functionality)

The interface currently operates synchronously (within the same thread) only,
as detailed in “Chapter 9. XDS Interface Description” on page 181. There is
only one possible value, as follows:

- OM_FALSE, meaning that the operation is performed sequentially
(synchronously) with the application being blocked until a result or error is
returned.

– DS_AUTOMATIC_CONTINUATION

This attribute indicates the requestor’s requirement for continuation reference
handling, including referrals and those in partial outcome qualifiers. The value
is one of the following:

- OM_FALSE, meaning that the interface returns all continuation references to
the application program.

- OM_TRUE, meaning that continuation references are automatically processed,
and the subsequent results are returned to the application instead of the
continuation references, whenever practical. This is a much simpler option
than OM_FALSE unless the application has special requirements.

Note: Continuation references can still be returned to the application if, for
example, the relevant DSA cannot be contacted.

Applications can assume that an object of OM class DS_C_CONTEXT, created with
default values of all its OM attributes, works with all the interface functions. The
DS_DEFAULT_CONTEXT constant can be used as an argument to interface functions
instead of creating an OM object with default values.

Chapter 10. XDS Class Definitions 199

DS_C_CONTINUATION_REF

An instance of OM class DS_C_CONTINUATION_REF comprises the information that
enables a partially completed directory request to be continued; for example,
following a referral.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 25.

Table 25. OM Attributes of DS_C_CONTINUATION_REF

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ACCESS_ POINTS Object(DS_C_
ACCESS_POINT)

— 1 or more —

DS_ALIASED_ RDNS OM_S_INTEGER — 1 —

DS_OPERATION_ PROGRESS Object(DS_C_
OPERATION_ PROGRESS)

— 1 —

DS_RDNS_ RESOLVED OM_S_INTEGER — 0 or 1 —

DS_TARGET_ OBJECT Object (DS_C_NAME) — 1 —

v DS_ACCESS_POINTS

This attribute indicates the names and presentation addresses of the DSAs from
where the directory request is continued.

v DS_ALIASED_RDNS

This attribute indicates how many (if any) of the RDNs in the target name are
produced by dereferencing an alias. Its value is 0 (zero) if no aliases are
dereferenced. This value needs to be used in the DS_C_CONTEXT of any continued
operation.

v DS_OPERATION_PROGRESS

This attribute indicates the state at which the directory request must be
continued. This value needs to be used in the DS_C_CONTEXT of any continued
operation.

v DS_RDNS_RESOLVED

This attribute indicates the number of RDNs in the supplied object name that are
resolved (using internal references), and not just assumed to be correct (using
cross-references).

v DS_TARGET_OBJECT

This attribute indicates the name of the object upon which the continuation must
focus.

DS_C_DS_DN

An instance of OM class DS_C_DS_DN represents a name of a directory object.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_NAME, in addition to the OM attribute listed in Table 26
on page 201.

200 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 26. OM Attribute of DS_C_DS_DN

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_RDNS Object(DS_C_DS_ RDN) — 0 or more —

v DS_RDNS

This attribute indicates the sequence of RDNs that define the path through the
DIT from its root to the object that the DS_C_DS_DN indicates. The DS_C_DS_DN of
the root of the directory is the null name (no DS_RDNS values). The order of the
values is significant; the first value is closest to the root, and the last value is the
RDN of the object.

DS_C_DS_RDN

An instance of OM class DS_C_DS_RDN is a relative distinguished name. An RDN
uniquely identifies an immediate subordinate of an object whose entry is displayed
in the DIT.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_RELATIVE_NAME, in addition to the OM attribute
listed in Table 27.

Table 27. OM Attribute of DS_C_DS_RDN

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_AVAS Object(DS_C_AVA) — 1 or more —

v DS_AVAS

This attribute indicates the DS_AVAS that are marked by the DIB as components of
the object’s RDN. The assertion is TRUE of the object but not of any of its
siblings, and the attribute type and value are displayed in the object’s directory
entry. The order of the DS_AVAS is not significant.

DS_C_ENTRY_INFO

An instance of OM class DS_C_ENTRY_INFO contains selected information from a
single directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ATTRIBUTE_LIST, in addition to the OM attributes listed in
Table 28.

Table 28. OM Attributes of DS_C_ENTRY_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FROM_ENTRY OM_S_ BOOLEAN — 1 —

DS_OBJECT_NAME Object (DS_C_ NAME) — 1 —

The OM attribute DS_ATTRIBUTES is inherited from the superclass
DS_C_ATTRIBUTE_LIST. It contains the information extracted from the directory entry
of the target object. The type of each attribute requested and located is indicated in
the list as are its values, if types and values are requested.

The OM class-specific OM attributes are as follows:

Chapter 10. XDS Class Definitions 201

v DS_FROM_ENTRY

This attribute indicates whether the information is extracted from the specified
object’s entry, rather than from a copy of the entry.

v DS_OBJECT_NAME

This attribute contains the object’s DN.

DS_C_ENTRY_INFO_SELECTION

An instance of OM class DS_C_ENTRY_INFO_SELECTION identifies the information to be
extracted from a directory entry.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 29.

Table 29. OM Attributes of DS_C_ENTRY_INFO_SELECTION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALL_ATTRIBUTES OM_S_ BOOLEAN — 1 OM_TRUE

DS_ ATTRIBUTES_
SELECTED

String(OM_S_OBJECT_
IDENTIFIER_STRING)

— 0 or more —

DS_INFO_TYPE Enum(DS_Information_
Type)

— 1 DS_TYPES_
AND_VALUES

v DS_ALL_ATTRIBUTES

This attribute indicates which attributes are relevant. It can take one of the
following values:

– OM_FALSE, meaning that information is only requested on those attributes that
are listed in the OM attribute DS_ATTRIBUTES_SELECTED.

– OM_TRUE, meaning that information is requested on all attributes in the
directory entry. Any values of the OM attribute DS_ATTRIBUTES_SELECTED are
ignored in this case.

v DS_ATTRIBUTES_SELECTED

This attribute lists the types of attributes in the entry from which information will
be extracted. The value of this OM attribute is used only if the value of
DS_ALL_ATTRIBUTES is OM_FALSE. If an empty list is supplied, no attribute data is
returned that could be used to verify the existence of an entry for a DN.

v DS_INFO_TYPE

This attribute identifies the information that will be extracted from each attribute
identified. It must take one of the following values:

– DS_TYPES_ONLY, meaning that only the attribute types of the selected attributes
in the entry are returned.

– DS_TYPES_AND_VALUES, meaning that both the attribute types and the attribute
values of the selected attributes in the entry are returned.

DS_C_ENTRY_MOD

An instance of OM class DS_C_ENTRY_MOD describes a single modification to a
specified attribute of a directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ATTRIBUTE, in addition to the OM attribute listed in
Table 30 on page 203.

202 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 30. OM Attribute of DS_C_ENTRY_MOD

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_MOD_TYPE Enum(DS_
Modification_ Type)

— 1 DS_ADD_
ATTRIBUTE

The attribute type to be modified, and the associated values, are specified in the
OM attributes DS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES that are inherited from
the DS_C_ATTRIBUTE superclass.

v DS_MOD_TYPE

This attribute identifies the type of modification. It must have one of the following
values:

– DS_ADD_ATTRIBUTE, meaning that the specified attribute is absent and will be
added with the specified values.

– DS_ADD_VALUES, meaning that the specified attribute is present and that one or
more specified values will be added to it.

– DS_REMOVE_ATTRIBUTE, meaning that the specified attribute is present and will
be removed. Any values present in the OM attribute DS_ATTRIBUTE_VALUES are
ignored.

– DS_REMOVE_VALUES, meaning that the specified attribute is present and that one
or more specified values will be removed from it.

DS_C_ENTRY_MOD_LIST

An instance of OM class DS_C_ENTRY_MOD_LIST comprises a sequence of changes to
be made to a directory entry.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attribute listed in Table 31.

Table 31. OM Attribute of DS_C_ENTRY_MOD_LIST

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_CHANGES Object(DS_C_
ENTRY_MOD)

— 1 or more —

v DS_CHANGES

This attribute identifies the modifications to be made (in the order specified) to
the directory entry of the specified object.

DS_C_ERROR

The OM class DS_C_ERROR comprises the parameters common to all errors.

It is an abstract OM class with the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attribute listed in Table 32.

Table 32. OM Attribute of DS_C_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PROBLEM Enum(DS_Problem) — 1 —

Chapter 10. XDS Class Definitions 203

Details of errors are returned in an instance of a subclass of this OM class. Each
such subclass represents a particular kind of error, and is one of the following:

v DS_C_ABANDON_FAILED

v DS_C_ATTRIBUTE_PROBLEM

v DS_C_COMMUNICATIONS_ERROR

v DS_C_LIBRARY_ERROR

v DS_C_NAME_ERROR

v DS_C_SECURITY_ERROR

v DS_C_SERVICE_ERROR

v DS_C_SYSTEM_ERROR

v DS_C_UPDATE_ERROR

A number of possible values are defined for these subclasses. DCE XDS does not
return other values for error conditions described in this chapter. Information on
system errors can be found in “DS_C_SYSTEM_ERROR” on page 217. The
following is a list of the error values. Each error OM class section defines the
possible error values associated with that class. For a description of the errors,
refer to the IBM DCE Version 3.1 for AIX and Solaris: Problem Determination
Guide.

v DS_E_ADMIN_LIMIT_EXCEEDED

v DS_E_AFFECTS_MULTIPLE_DSAS

v DS_E_ALIAS_DEREFERENCING_PROBLEM

v DS_E_ALIAS_PROBLEM

v DS_E_ATTRIBUTE_OR_VALUE_EXISTS

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CLASS

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_BAD_WORKSPACE

v DS_E_BUSY

v DS_E_CANNOT_ABANDON

v DS_E_CHAINING_REQUIRED

v DS_E_COMMUNICATIONS_PROBLEM

v DS_E_CONSTRAINT_VIOLATION

v DS_E_DIT_ERROR

v DS_E_ENTRY_EXISTS

v DS_E_INAPPROP_AUTHENTICATION

v DS_E_INAPPROP_MATCHING

v DS_E_INSUFFICIENT_ACCESS_RIGHTS

v DS_E_INVALID_ATTRIBUTE_SYNTAX

v DS_E_INVALID_ATTRIBUTE_VALUE

v DS_E_INVALID_CREDENTIALS

v DS_E_INVALID_REF

v DS_E_INVALID_SIGNATURE

v DS_E_LOOP_DETECTED

v DS_E_MISCELLANEOUS

204 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

v DS_E_MISSING_TYPE

v DS_E_MIXED_SYNCHRONOUS

v DS_E_NAMING_VIOLATION

v DS_E_NO_INFO

v DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

v DS_E_NO_SUCH_OBJECT

v DS_E_NO_SUCH_OPERATION

v DS_E_NOT_ALLOWED_ON_NON_LEAF

v DS_E_NOT_ALLOWED_ON_RDN

v DS_E_NOT_SUPPORTED

v DS_E_OBJECT_CLASS_MOD_PROHIB

v DS_E_OBJECT_CLASS_VIOLATION

v DS_E_OUT_OF_SCOPE

v DS_E_PROTECTION_REQUIRED

v DS_E_TIME_LIMIT_EXCEEDED

v DS_E_TOO_LATE

v DS_E_TOO_MANY_OPERATIONS

v DS_E_TOO_MANY_SESSIONS

v DS_E_UNABLE_TO_PROCEED

v DS_E_UNAVAILABLE

v DS_E_UNAVAILABLE_CRIT_EXT

v DS_E_UNDEFINED_ATTRIBUTE_TYPE

v DS_E_UNWILLING_TO_PERFORM

DS_C_EXT

An instance of OM class DS_C_EXT indicates that a standardized extension to the
directory service is outlined in the standards. Such extensions will only be
standardized in post-1988 versions of the standards. Therefore, this OM class is not
used by the XDS API and is only included for X/Open conformance purposes.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 33.

Table 33. OM Attributes of DS_C_EXT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_CRIT OM_S_BOOLEAN — 1 OM_FALSE

DS_IDENT OM_S_INTEGER — 1 —

DS_ITEM_ PARAMETERS Any — 1 —

v DS_CRIT

This attribute must have one of the following values:

– OM_FALSE, meaning that the originator permits the operation to be performed
even if the extension is not available.

– OM_TRUE, meaning that the originator mandates that the extended operation be
performed. If the extended operation is not performed, an error is reported.

v DS_IDENT

Chapter 10. XDS Class Definitions 205

This attribute identifies the service extension.

v DS_ITEM_PARAMETERS

This OM attribute supplies the parameters of the extension. Its syntax is
determined by the value of DS_IDENT.

DS_C_FILTER

An instance of OM class DS_C_FILTER is used to select or reject an object on the
basis of information in its directory entry. At any point in time, an attribute filter has
a value relative to every object. The value is FALSE, TRUE, or undefined. The
object is selected if, and only if, the filter’s value is TRUE.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 34.

Table 34. OM Attributes of DS_C_FILTER

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FILTER_ITEMS Object(DS_C_
FILTER_ITEM)

— 0 or more —

DS_FILTERS Object(DS_C_ FILTER) — 0 or more —

DS_FILTER_TYPE Enum(DS_Filter_
Type)

— 1 DS_AND

A filter is a collection of less elaborate filters and elementary DS_FILTER_ITEMS,
together with a Boolean operation. The filter value is undefined if, and only if, all the
component DS_FILTERS and DS_FILTER_ITEMS are undefined. Otherwise, the filter
has a Boolean value with respect to any directory entry, which can be determined
by evaluating each of the nested components and combining their values using the
Boolean operation. The components whose values are undefined are ignored.

v DS_FILTER_ITEMS

This attribute is a collection of assertions, each relating to just one attribute of a
directory entry.

v DS_FILTERS

This attribute is a collection of simpler filters.

v DS_FILTER_TYPE

This attribute is the filter’s type. It can have any of the following values:

– DS_AND, meaning that the filter is the logical conjunction of its components.
The filter is TRUE unless any of the nested filters or filter items is FALSE. If
there are no nested components, the filter is TRUE.

– DS_OR, meaning that the filter is the logical disjunction of its components. The
filter is FALSE unless any of the nested filters or filter items is TRUE. If there
are no nested components, the filter is FALSE.

– DS_NOT, meaning that the result of this filter is reversed. There must be exactly
one nested filter or filter item. The filter is TRUE if the enclosed filter or filter
item is FALSE, and it is FALSE if the enclosed filter or filter item is TRUE.

DS_C_FILTER_ITEM

An instance of OM class DS_C_FILTER_ITEM is a component of DS_C_FILTER. It is an
assertion about the existence or values of a single attribute type in a directory entry.

206 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ATTRIBUTE, in addition to the OM attributes listed in
Table 35.

Table 35. OM Attributes of DS_C_FILTER_ITEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FILTER_ ITEM_TYPE Enum(DS_Filter_
Item_Type)

— 1 —

DS_FINAL_ SUBSTRING String(*) 1 or more 0 or 1 —

DS_INITIAL_ SUBSTRING String(*) 1 or more 0 or 1 —

Note: OM attributes DS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES are inherited
from the superclass DS_C_ATTRIBUTE.

The value of the filter item is undefined in the following cases:

v The DS_ATTRIBUTE_TYPE is not known.

v None of the DS_ATTRIBUTE_VALUES conform to the attribute syntax defined for that
attribute type.

v The DS_FILTER_ITEM_TYPE uses a matching rule that is not defined for the
attribute syntax.

Access control restrictions can also cause the value to be undefined.

v DS_FILTER_ITEM_TYPE

This attribute identifies the type of filter item and, thus, the nature of the filter.
The filter item can adopt any of the following values:

– DS_APPROXIMATE_MATCH, meaning that the filter is TRUE if the directory entry
contains at least one value of the specified type that is approximately equal to
that specified (the meaning of ′′approximately equal’’ is implementation
dependent); otherwise, the filter is FALSE.

Rules for approximate matching are defined locally. For example, an
approximate match may take into account spelling variations or employ
phonetic comparison rules. In the absence of any such capabilities, a DSA
needs to treat an approximate match as a test for equality. DCE GDS
supports phonetic comparisons. There must be exactly one value of the OM
attribute DS_ATTRIBUTE_VALUES.

– DS_EQUALITY, meaning that the filter is TRUE if the entry contains at least one
value of the specified type that is equal to the value specified, according to
the equality matching rule in force; otherwise, the filter is FALSE. There must
be exactly one value of the OM attribute DS_ATTRIBUTE_VALUES.

– DS_GREATER_OR_EQUAL, meaning that the filter item is TRUE if, and only if, at
least one value of the attribute is greater than or equal to the supplied value.
There must be exactly one value of the OM attribute DS_ATTRIBUTE_VALUES.

– DS_LESS_OR_EQUAL, meaning that the filter item is TRUE if, and only if, at least
one value of the attribute is less than or equal to the supplied value. There
must be exactly one value of the OM attribute DS_ATTRIBUTE_VALUES.

– DS_PRESENT, meaning that the filter is TRUE if the entry contains an attribute of
the specified type; otherwise, it is FALSE.

Any values of the OM attribute DS_ATTRIBUTE_VALUES are ignored.

– DS_SUBSTRINGS, meaning that the filter is TRUE if the entry contains at least
one value of the specified attribute type that contains all of the specified
substrings in the given order; otherwise, the filter is FALSE.

Chapter 10. XDS Class Definitions 207

Any number of substrings can be given as values of the OM attribute
DS_ATTRIBUTE_VALUES. Similarly, no substrings can be specified. There can
also be a substring in DS_INITIAL_SUBSTRING or DS_FINAL_SUBSTRING, or both.
The substrings do not overlap, but they can be separated from each other or
from the ends of the attribute value by zero or more string elements. However,
at least one attribute of type DS_ATTRIBUTE_VALUES, DS_INITIAL_SUBSTRING, or
DS_FINAL_SUBSTRING must exist.

v DS_FINAL_SUBSTRING

If present, this attribute is the substring that will match the final part of an
attribute value in the entry. This attribute can only exist if the
DS_FILTER_ITEM_TYPE is equal to DS_SUBSTRINGS.

v DS_INITIAL_SUBSTRING

If present, this attribute is the substring that will match the initial part of an
attribute value in the entry.

DS_C_LIBRARY_ERROR

An instance of OM class DS_C_LIBRARY_ERROR reports an error detected by the
interface function library.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

Each function has several possible errors that can be detected by the library itself
and that are returned directly by the subroutine. These errors occur when the library
itself is incapable of performing an action, submitting a service request, or
deciphering a response from the directory service.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the particular library error that occurred. (In reference
pages, the ERRORS section of each function description lists the errors that the
respective function can return.) Its value is one of the following:

v DS_E_BAD_ARGUMENT

v DS_E_BAD_CLASS

v DS_E_BAD_CONTEXT

v DS_E_BAD_NAME

v DS_E_BAD_SESSION

v DS_E_MISCELLANEOUS

v DS_E_MISSING_TYPE

v DS_E_MIXED_SYNCHRONOUS

v DS_E_NOT_SUPPORTED

v DS_E_TOO_MANY_OPERATIONS

v DS_E_TOO_MANY_SESSIONS

DS_C_LIST_INFO

An instance of OM class DS_C_LIST_INFO is part of the results of ds_list() .

208 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_COMMON_RESULTS, in addition to the OM attributes
listed in Table 36.

Table 36. OM Attributes of DS_C_LIST_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_ NAME Object (DS_C_NAME) — 0 or 1 —

DS_PARTIAL_
OUTCOME_QUAL

Object(DS_C_ PARTIAL_
OUTCOME_QUAL)

— 0 or 1 —

DS_ SUBORDINATES Object(DS_C_
LIST_INFO_ITEM)

— 0 or more —

v DS_OBJECT_NAME

This attribute is the DN of the target object of the operation. It is present if the
OM attribute DS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULTS, is OM_TRUE.

v DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is present if the list of subordinates is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.
The partial outcome qualifier contains details of why the search is not completed,
and which areas of the directory have not been searched.

v DS_SUBORDINATES

This attribute contains information about zero or more subordinate objects
identified by ds_list() .

DS_C_LIST_INFO_ITEM

An instance of OM class DS_C_LIST_INFO_ITEM comprises details returned by
ds_list() of a single subordinate object.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 37.

Table 37. OM Attributes of DS_C_LIST_INFO_ITEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALIAS_ENTRY OM_S_ BOOLEAN — 1 —

DS_FROM_ENTRY OM_S_ BOOLEAN — 1 —

DS_RDN Object (DS_C_
RELATIVE_ NAME)

— 1 —

v DS_ALIAS_ENTRY

This attribute indicates whether the object is an alias.

v DS_FROM_ENTRY

This attribute indicates whether information about the object was obtained directly
from its directory entry, rather than from a copy of the entry.

v DS_RDN

This attribute contains the RDN of the object. If this is the name of an alias entry,
as indicated by DS_ALIAS_ENTRY, it is not dereferenced.

Chapter 10. XDS Class Definitions 209

DS_C_LIST_RESULT

An instance of OM class DS_C_LIST_RESULT comprises the results of a successful
call to ds_list() .

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 38.

Table 38. OM Attributes of DS_C_LIST_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_LIST_INFO Object(DS_C_
LIST_INFO)

— 0 or 1 —

DS_ UNCORRELATED_
LIST_INFO

Object(DS_C_ LIST_
RESULT)

— 0 or more —

Note: No instance contains values of both OM attributes.

v DS_LIST_INFO

This attribute contains the full results of ds_list(), or just part of them.

v DS_UNCORRELATED_LIST_INFO

When the DUA requests a protection request of signed, the information returned
can comprise a number of sets of results originating from, and signed by,
different components of the directory. Implementations can reflect this structure
by nesting DS_LIST_RESULT OM objects as values of this OM attribute.
Alternatively, they can collapse all results into a single value of the OM attribute
DS_LIST_INFO. The DCE directory service does not support the optional feature of
signed results; therefore, this OM attribute is never present.

DS_C_NAME

The OM class DS_C_NAME represents a name of an object in the directory, or a
part of such a name.

It is an abstract class that has the attributes of its superclass, OM_C_OBJECT, and
no other OM attributes.

A name uniquely distinguishes the object from all other objects whose entries are
displayed in the DIT. However, an object can have more than one name; that is, a
name need not be unique. A DN is unique; there are no other DNs that identify the
same object. An RDN is part of a name and only distinguishes the object from
others that are its siblings.

Most of the interface functions take a name parameter, the value of which must be
an instance of one of the subclasses of this OM class. Thus, this OM class is useful
for amalgamating all possible representations of names.

The DCE XDS implementation defines one subclass of this OM class and, thus, a
single representation for names; that is, DS_C_DS_DN, which provides a
representation for names, including DNs.

210 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_NAME_ERROR

An instance of OM class DS_C_NAME_ERROR reports a name-related directory service
error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, in addition to the OM attribute listed in
Table 39.

Table 39. OM Attribute of DS_C_NAME_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_MATCHED Object (DS_C_NAME) — 1 —

v DS_MATCHED

This attribute identifies the initial part (up to, but excluding, the first RDN that is
unrecognized) of the name that is supplied, or of the name resulting from
dereferencing an alias. It names the lowest entry (object or alias) in the DIT that
is matched.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the cause of the failure. Its value is one of the following:

v DS_E_ALIAS_DEREFERENCING_PROBLEM

v DS_E_ALIAS_PROBLEM

v DS_E_INVALID_ATTRIBUTE_VALUE

v DS_E_NO_SUCH_OBJECT

DS_C_OPERATION_PROGRESS

An instance of OM class DS_C_OPERATION_PROGRESS specifies the progress or
processing state of a directory request.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 40.

Table 40. OM Attributes of DS_C_OPERATION_PROGRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_NAME_ RESOLUTION_
PHASE

Enum(DS_Name_
Resolution_Phase)

— 1 —

DS_NEXT_ RDN_TO_BE
RESOLVED

OM_S_INTEGER — 0 or 1 —

The target name mentioned as follows is the name upon which processing of the
directory request is currently focused.

v DS_NAME_RESOLUTION_PHASE

This attribute indicates what phase is reached in handling the target name. It
must have one of the following values:

– DS_COMPLETED, meaning that the DSA holding the target object is reached.

– DS_NOT_STARTED, meaning that so far a DSA is not reached with a naming
context containing the initial RDNs of the name.

Chapter 10. XDS Class Definitions 211

– DS_PROCEEDING, meaning that the initial part of the name has been recognized,
although the DSA holding the target object has not yet been reached.

v DS_NEXT_RDN_TO_BE_RESOLVED

This attribute indicates to the DSA which of the RDNs in the target name is next
to be resolved. It takes the form of an integer in the range from 1 to the number
of RDNs in the name. This OM attribute only has a value if the value of
DS_NAME_RESOLUTION_PHASE is DS_PROCEEDING.

The constant DS_OPERATION_NOT_STARTED can be used in the DS_C_CONTEXT of an
operation instead of an instance of this OM class.

DS_C_PARTIAL_OUTCOME_QUAL

An instance of OM class DS_C_PARTIAL_OUTCOME_QUAL explains to what extent the
results of a call to ds_list() or ds_search() are incomplete and why.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 41.

Table 41. OM Attributes of a DS_C_PARTIAL_OUTCOME_QUAL

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_LIMIT_ PROBLEM Enum(DS_Limit_
Problem)

— 1 —

DS_ UNAVAILABLE_
CRIT_EXT

OM_S_ BOOLEAN — 1 —

DS_ UNEXPLORED Object(DS_C_
CONTINUATION_ REF)

— 0 or more —

v DS_LIMIT_PROBLEM

This attribute explains fully or partly why the results are incomplete. It can have
one of the following values:

– DS_ADMIN_LIMIT_EXCEEDED, meaning that an administrative limit is reached.

– DS_NO_LIMIT_EXCEEDED, meaning that there is no limit problem.

– DS_SIZE_LIMIT_EXCEEDED, meaning that the maximum number of objects
specified as a service control is reached.

– DS_TIME_LIMIT_EXCEEDED, meaning that the maximum number of seconds
specified as a service control is reached.

v DS_UNAVAILABLE_CRIT_EXT

If OM_TRUE, this attribute indicates that some part of the directory service cannot
provide a requested critical service extension. The user requested one or more
standard service extensions by including values of the OM attribute DS_EXT in the
DS_C_CONTEXT supplied for the operation. Furthermore, the user indicated that
some of these extensions are essential by setting the OM attribute DS_CRIT in the
extension to OM_TRUE. Some of the critical extensions cannot be performed by
one particular DSA or by a number of DSAs. In general, it is not possible to
determine which DSA could not perform which particular extension.

v DS_UNEXPLORED

This attribute identifies any regions of the directory that are left unexplored in
such a way that the directory request can be continued. Only continuation
references within the scope specified by the DS_SCOPE_OF_REFERRAL service
control are included.

212 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_PRESENTATION_ADDRESS

An instance of OM class DS_C_PRESENTATION_ADDRESS is a presentation address of
an OSI application entity, which is used for OSI communications with this instance.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ADDRESS, in addition to the OM attributes listed in
Table 42.

Table 42. OM Attributes of DS_C_PRESENTATION_ADDRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_N_ ADDRESSES String(OM_S_
OCTET_STRING)

— 1 or more —

DS_P_SELECTOR String(OM_S_
OCTET_STRING)

— 0 or 1 —

DS_S_SELECTOR String(OM_S_
OCTET_STRING)

— 0 or 1 —

DS_T_SELECTOR String(OM_S_
OCTET_STRING)

— 0 or 1 —

v DS_N_ADDRESSES

This attribute is the network addresses of the application entity.

v DS_P_SELECTOR

This attribute is the presentation selector.

v DS_S_SELECTOR

This attribute is the session selector.

v DS_T_SELECTOR

This attribute is the transport selector.

DS_C_READ_RESULT

An instance of OM class DS_C_READ_RESULT comprises the result of a successful call
to ds_read() . An application is not permitted to create or modify instances of this
OM class. An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_COMMON_RESULTS, in addition to the OM attribute
listed in Table 43.

Table 43. OM Attribute of DS_C_READ_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ENTRY Object(DS_C_
ENTRY_INFO)

— 1 —

v DS_ENTRY

This attribute contains the information extracted from the directory entry of the
target object.

DS_C_REFERRAL

An instance of OM class DS_C_REFERRAL reports failure to perform an operation and
redirects the requestor to one or more access points better equipped to perform the
operation.

Chapter 10. XDS Class Definitions 213

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_CONTINUATION_REF, and no additional OM attributes.

The referral is a continuation reference by means of which the operation can
progress.

DS_C_RELATIVE_NAME

The OM class DS_C_RELATIVE_NAME represents the RDNs of objects in the
directory. It is an abstract class, which has the attributes of its superclass,
OM_C_OBJECT, and no other OM attributes.

An RDN is part of a name, and only distinguishes the object from others that are its
siblings. This OM class is used to accumulate all possible representations of RDNs.
An argument of interface functions that is an RDN, or an OM attribute value that is
an RDN is an instance of one of the subclasses of this OM class.

The DCE XDS API defines one subclass of this OM class, and, thus, a single
representation for RDNs; that is, DS_C_DS_RDN, which provides a representation for
RDNs.

DS_C_SEARCH_INFO

An instance of OM class DS_C_SEARCH_INFO is part of the result of ds_search() .

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_COMMON_RESULTS, in addition to the OM attributes
listed in Table 44.

Table 44. OM Attributes of DS_C_SEARCH_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ENTRIES Object(DS_C_
ETNRY_INFO)

— 0 or more —

DS_OBJECT_ NAME Object (DS_C_NAME) — 0 or 1 —

DS_PARTIAL_
OUTCOME_QUAL

Object(DS_C_ PARTIAL_
OUTCOME_QUAL)

— 0 or 1 —

v DS_ENTRIES

This attribute contains information about zero or more objects found by
ds_search() that matched the given selection criteria.

v DS_OBJECT_NAME

This attribute contains the DN of the target object of the operation. It is present if
the OM attribute DS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULTS, is OM_TRUE.

v DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is only present if the list of entries is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.
The partial outcome qualifier contains details of why the search was not
completed and which areas of the directory were not searched.

214 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_SEARCH_RESULT

An instance of OM class DS_C_SEARCH_RESULT comprises the result of a successful
call to ds_search() .

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT,
in addition to the OM attributes listed in Table 45.

Table 45. OM Attributes of DS_C_SEARCH_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_SEARCH_INFO Object(DS_C_
SEARCH_INFO)

— 0 or 1 —

DS_ UNCORRELATED_
SEARCH_INFO

Object(DS_C_
SEARCH_RESULT)

— 0 or more —

Note: No instance contains values of both OM attributes.

v DS_SEARCH_INFO

This attribute contains the full result of ds_search(), or part of the result.

v DS_UNCORRELATED_SEARCH_INFO

When the DUA requests a protection request of signed, the information returned
can comprise a number of sets of results originating from and signed by different
components of the directory service. Implementations can reflect this structure by
nesting DS_C_SEARCH_RESULT OM objects as values of this OM attribute.
Alternatively, they can collapse all results into a single value of the OM attribute
DS_SEARCH_INFO. The DCE directory service does not support the optional feature
of signed results; therefore, this OM attribute is never present.

DS_C_SECURITY_ERROR

An instance of OM class DS_C_SECURITY_ERROR reports a security-related directory
service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the cause of this failure. Its value is one of the following:

v DS_E_INAPPROP_AUTHENTICATION

v DS_E_INSUFFICIENT_ACCESS_RIGHTS

v DS_E_INVALID_CREDENTIALS

v DS_E_INVALID_SIGNATURE

v DS_E_NO_INFO

v DS_E_PROTECTION_REQUIRED

DS_C_SERVICE_ERROR

An instance of OM class DS_C_SERVICE_ERROR reports a directory service error
related to the provision of the service.

Chapter 10. XDS Class Definitions 215

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the cause of the failure. Its value is one of the following:

v DS_E_ADMIN_LIMIT_EXCEEDED

v DS_E_BUSY

v DS_E_CHAINING_REQUIRED

v DS_E_DIT_ERROR

v DS_E_INVALID_REF

v DS_E_LOOP_DETECTED

v DS_E_OUT_OF_SCOPE

v DS_E_TIME_LIMIT_EXCEEDED

v DS_E_UNABLE_TO_PROCEED

v DS_E_UNAVAILABLE

v DS_E_UNAVAILABLE_CRIT_EXT

v DS_E_UNWILLING_TO_PERFORM

DS_C_SESSION

An instance of OM class DS_C_SESSION identifies a particular link from the
application program to a DUA.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 46.

Table 46. OM Attributes of DS_C_SESSION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_DSA_ADDRESS Object (DS_C_
ADDRESS)

— 0 or 1 local2

DS_DSA_NAME Object (DS_C_ NAME) — 0 or 1 local1

DS_FILE_ DESCRIPTOR OM_S_INTEGER — 1 See text

DS_ REQUESTOR Object (DS_C_ NAME) — 0 or 1 NULL

1 The default values of these OM attributes are set to the address and name
of the default DSA entry in the local cache.

2 If this cache entry is not present, then these OM attributes are absent.

The DS_C_SESSION gathers all the information that describes a particular directory
interaction. The parameters that will control such a session are set up in an
instance of this OM class, which is then passed as an argument to ds_bind() .
This sets the OM attributes that describe the actual characteristics of this session,
and then starts the session. A session started in this way must pass as the first
argument to each interface function. The result of modifying an initiated session is
unspecified. Finally, ds_unbind() is used to terminate the session, after which the
parameters can be modified and a new session started using the same instance, if
required. Multiple concurrent sessions can run using multiple instances of this OM
class.

216 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The OM attributes of a session are as follows:

v DS_DSA_ADDRESS

This attribute indicates the address of the default DSA named by DS_DSA_NAME.

v DS_DSA_NAME

This attribute indicates the DN of the DSA that is used by default to service
directory requests.

v DS_FILE_DESCRIPTOR (Optional Functionality)

This OM attribute is not used by DCE XDS and is always set to
DS_NO_VALID_FILE_DESCRIPTOR.

v DS_REQUESTOR

This attribute is the DN of the user of this directory service session.

Applications can assume that an object of OM class DS_C_SESSION, created with
default values of all its OM attributes, works with all the interface functions. Local
administrators need to ensure that this is the case. Such a session can be created
by passing the constant DS_DEFAULT_SESSION as an argument to ds_bind() .

DS_C_SYSTEM_ERROR

An instance of OM class DS_C_SYSTEM_ERROR reports an error that occurred in the
underlying operating system.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes, although
there can be additional implementation-defined OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the cause of the failure. Its value is the same as that of
errno defined in the C language.

If such an error persists, a DS_C_LIBRARY_ERROR (DS_E_MISCELLANEOUS) is reported.

DS_C_UPDATE_ERROR

An instance of OM class DS_C_UPDATE_ERROR reports a directory service error
peculiar to a modification operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECT and DS_C_ERROR, and no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERROR, identifies the cause of the failure. Its value is one of the following:

v DS_E_AFFECTS_MULTIPLE_DSAS

v DS_E_ENTRY_EXISTS

v DS_E_NAMING_VIOLATION

v DS_E_NOT_ALLOWED_ON_NON_LEAF

v DS_E_NOT_ALLOWED_ON_RDN

v DS_E_OBJECT_CLASS_MOD_PROHIB

v DS_E_OBJECT_CLASS_VIOLATION

Chapter 10. XDS Class Definitions 217

218 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 11. Basic Directory Contents Package

The standards define a number of attribute types (known as the selected attribute
types), attribute syntaxes, attribute sets, and object classes (known as the selected
object classes 1). These definitions allow the creation and maintenance of directory
entries for a number of common objects so that the representation of all such
objects is the same throughout the directory. They include such objects as Country,
Person, and Organization.

This chapter outlines names for each of these items, and defines OM classes to
represent those that are not represented directly by OM syntaxes. The attribute
values in the directory are not restricted to those discussed in this chapter, and new
attribute types and syntaxes can be created at any time. (For further information on
how the values of other syntaxes are represented in the interface, see “Chapter 9.
XDS Interface Description” on page 181.)

The constants and OM classes in this chapter are defined in addition to those in
“Chapter 10. XDS Class Definitions” on page 189, since they are not essential to
the working of the interface, but instead allow directory entries to be utilized. The
definitions belong to the basic directory contents package (BDCP), which is
supported by the DCE XDS API following negotiation of its use with ds_version() .

The object identifier associated with the BDCP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) bdcp(1)}

It takes the following encoding:

\x2B\xC\x2\x87\x73\x1C\x1

This identifier is represented by the constant DS_BASIC_DIR_CONTENTS_PKG. The C
constants associated with this package are in the xdsbdcp.h header file. (See the
IBM DCE Version 3.1 for AIX and Solaris: Application Development Reference.)

The concepts and notation used are introduced in “Chapter 10. XDS Class
Definitions” on page 189. A complete explanation of the meaning of the attributes
and object classes is not given since this is beyond the scope of this guide. The
purpose here is simply to present the representation of these items in the interface.

The selected attribute types are presented first, followed by the selected object
classes. Next, the OM class hierarchy and OM class definitions required to support
the selected attribute types are presented.

Note: This package should only be needed if a cell name is defined using the
X.500 format (for example, C=US/O=Acme Pepper Co/OU=Research). As
in “Chapter 10. XDS Class Definitions” on page 189, all definitions for this
package are provided for completeness; however, only those OM objects
required for an X.500 cell name definition should be needed for XDS/XOM
over CDS.

1. These definitions are chiefly in The Directory: Selected Attribute Types (ISO 9594-6, CCITT X.520) and The Directory: Selected
Object Classes (ISO 9594-7, CCITT X.521) with additional material in The Directory: Overview of Concepts, Models, and Services
(ISO 9594-1, CCITT X.500) and The Directory: Authentication Framework (ISO 9594-8, CCITT X.509).

© Copyright IBM Corp. 1990, 1999 219

Selected Attribute Types

This section presents the attribute types, defined in the standards, which are to be
used in directory entries. Each directory entry is composed of a number of
attributes, each of which comprises an attribute type together with one or more
attribute values. The form of each value of an attribute is determined by the
attribute syntax associated with the attribute’s type.

In the interface, attributes are displayed as instances of OM class DS_C_ATTRIBUTE
with the attribute type represented as the value of the OM attribute
DS_ATTRIBUTE_TYPE, and the attribute value (or values) represented as the value (or
values) of the OM attribute DS_ATTRIBUTE_VALUES. Each attribute type has an object
identifier, assigned in the standards, which is the value of the OM attribute
DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface by
constants with the same name as the directory attribute, and they are prefixed with
DS_A_ so that they can be easily identified.

Table 47 shows the names of the attribute types defined in the standards, together
with the BER encoding of the object identifiers associated with each of them.
Table 48 on page 221 shows the names of the attribute types, together with the OM
value syntax that is used in the interface to represent values of that attribute type.
Table 48 on page 221 also includes the range of lengths permitted for the string
types. This indicates whether the attribute can be multivalued and which matching
rules are provided for the syntax. Following the table is a brief description of each
attribute.

The standards define matching rules that are used for deciding whether two values
are equal (E), for ordering (O) two values, and for identifying one value as a
substring (S) of another in directory service operations. Specific matching rules are
given in this chapter for certain attributes. In addition, the following general rules
apply as indicated:

v All attribute values whose syntax is String(OM_S_NUMERIC_STRING),
String(OM_S_PRINTABLE_STRING), or String(OM_S_TELETEX_STRING) are considered
insignificant for the following reasons:

– Differences caused by the presence of spaces preceding the first printing
character

– Spaces following the last printing character

– More than one consecutive space anywhere within the value

v For all attribute values whose syntax is String(OM_S_TELETEX_STRING), differences
in the case of alphabetical characters are considered insignificant.

Note: The third and fourth columns of Table 47 contain the contents octets of the
BER encoding of the object identifier. All these object identifiers stem from
the root {joint-iso-ccitt(2) ds(5) attributeType(4)}.

Table 47. Object Identifiers for Selected Attribute Types

Object Identifier BER

Package Attribute Type Decimal Hexadecimal

BDCP DS_A_ALIASED_OBJECT_NAME 85, 4, 1 \x55\x04\x01

BDCP DS_A_BUSINESS_CATEGORY 85, 4, 15 \x55\x04\x0F

BDCP DS_A_COMMON_NAME 85, 4, 3 \x55\x04\x03

BDCP DS_A_COUNTRY_NAME 85, 4, 6 \x55\x04\x06

220 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 47. Object Identifiers for Selected Attribute Types (continued)

Object Identifier BER

Package Attribute Type Decimal Hexadecimal

BDCP DS_A_DESCRIPTION 85, 4, 13 \x55\x04\x0D

BDCP DS_A_DEST_INDICATOR 85, 4, 27 \x55\x04\x1B

BDCP DS_A_FACSIMILE_PHONE_NBR 85, 4, 23 \x55\x04\x17

BDCP DS_A_INTERNAT_ISDN_NBR 85, 4, 25 \x55\x04\x19

BDCP DS_A_KNOWLEDGE_INFO 85, 4, 2 \x55\x04\x02

BDCP DS_A_LOCALITY_NAME 85, 4, 7 \x55\x04\x07

BDCP DS_A_MEMBER 85, 4, 31 \x55\x04\x1F

BDCP DS_A_OBJECT_CLASS 85, 4, 0 \x55\x04\x00

BDCP DS_A_ORG_NAME 85, 4, 10 \x55\x04\x0A

BDCP DS_A_ORG_UNIT_NAME 85, 4, 11 \x55\x04\x0B

BDCP DS_A_OWNER 85, 4, 32 \x55\x04\x20

BDCP DS_A_PHYS_DELIV_OFF_NAME 85, 4, 19 \x55\x04\x13

BDCP DS_A_POST_OFFICE_BOX 85, 4, 18 \x55\x04\x12

BDCP DS_A_POSTAL_ADDRESS 85, 4, 16 \x55\x04\x10

BDCP DS_A_POSTAL_CODE 85, 4, 17 \x55\x04\x11

BDCP DS_A_PREF_DELIV_METHOD 85, 4, 28 \x55\x04\x1C

BDCP DS_A_PRESENTATION_ADDRESS 85, 4, 29 \x55\x04\x1D

BDCP DS_A_REGISTERED_ADDRESS 85, 4, 26 \x55\x04\x1A

BDCP DS_A_ROLE_OCCUPANT 85, 4, 33 \x55\x04\x21

BDCP DS_A_SEARCH_GUIDE 85, 4, 14 \x55\x04\x0E

BDCP DS_A_SEE_ALSO 85, 4, 34 \x55\x04\x22

BDCP DS_A_SERIAL_NBR 85, 4, 5 \x55\x04\x05

BDCP DS_A_STATE_OR_PROV_NAME 85, 4, 8 \x55\x04\x08

BDCP DS_A_STREET_ADDRESS 85, 4, 9 \x55\x04\x09

BDCP DS_A_SUPPORT_APPLIC_CONTEXT 85, 4, 3 \x55\x04\x03

BDCP DS_A_SURNAME 85, 4, 4 \x55\x04\x04

BDCP DS_A_PHONE_NBR 85, 4, 20 \x55\x04\x14

BDCP DS_A_TELETEX_TERM_IDENT 85, 4, 22 \x55\x04\x16

BDCP DS_A_TELEX_NBR 85, 4, 21 \x55\x04\x15

BDCP DS_A_TITLE 85, 4, 12 \x55\x04\x0C

BDCP DS_A_USER_PASSWORD 85, 4, 35 \x55\x04\x23

BDCP DS_A_X121_ADDRESS 85, 4, 24 \x55\x04\x18

Table 48. Representation of Values for Selected Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
valued

Matching
Rules

DS_A_ALIASED_
OBJECT_NAME

Object (DS_C_ NAME) — no E

DS_A_BUSINESS_ CATEGORY String(OM_S_TELETEX_
STRING)

1–128 yes E, S

Chapter 11. Basic Directory Contents Package 221

Table 48. Representation of Values for Selected Attribute Types (continued)

Attribute Type OM Value Syntax Value
Length

Multi-
valued

Matching
Rules

DS_A_COMMON_NAME String(OM_S_TELETEX_
STRING)

1–64 yes E, S

DS_A_COUNTRY_NAME String(OM_S_
PRINTABLE_STRING)1

2 no E

DS_A_DESCRIPTION String(OM_S_
TELETEX_STRING)

1–1024 yes E, S

DS_A_DEST_ INDICATOR String(OM_S_
PRINTABLE_STRING)2

1–128 yes E, S

DS_A_FACSIMILE_
PHONE_NBR

Object(DS_C_ FACSIMILE_
PHONE_NBR)

— yes —

DS_A_INTERNAT_ ISDN_NBR String(OM_S_
NUMERIC_STRING)3

1–16 yes —

DS_A_ KNOWLEDGE_INFO String(OM_S_
TELETEX_STRING)

— yes E, S

DS_A_LOCALITY_ NAME String(OM_S_
TELETEX_STRING)

1–128 yes E, S

DS_A_MEMBER Object (DS_C_ NAME) — yes E

DS_A_OBJECT_CLASS String(OM_S_OBJECT_
IDENTIFIER_STRING)

— yes E

DS_A_ORG_NAME String(OM_S_
TELETEX_STRING)

1–64 yes E, S

DS_A_ORG_UNIT_NAME String(OM_S_
TELETEX_STRING)

1–64 yes E, S

DS_A_OWNER Object (DS_C_NAME) — yes E

DS_A_PHYS_
DELIV_OFF_NAME

String(OM_S_
TELETEX_STRING)

1–128 yes E, S

DS_A_POST_ OFFICE_BOX String(OM_S_
TELETEX_STRING)

1–40 yes E, S

DS_A_POSTAL_ADDRESS Object(DS_C_ POSTAL_
ADDRESS)

— yes E

DS_A_POSTAL_CODE String(OM_S_
TELETEX_STRING)

1–40 yes E, S

DS_A_PREF_ DELIV_METHOD Enum(DS_Preferred_
Delivery_Method)

— yes —

DS_A_PRESENTATION_
ADDRESS

Object(DS_C_
PRESENTATION_ ADDRESS)

— no E

DS_A_REGISTERED_
ADDRESS

Object(DS_C_
POSTAL_ADDRESS)

— yes —

DS_A_ROLE_OCCUPANT Object (DS_C_ NAME) — yes E

DS_A_SEARCH_GUIDE Object(DS_C_
SEARCH_GUIDE)

— yes —

DS_A_SEE_ALSO Object (DS_C_NAME) — yes E

DS_A_SERIAL_NBR String(OM_S_
PRINTABLE_STRING)

1–64 yes E, S

DS_A_STATE_
OR_PROV_NAME

String(OM_S_
TELETEX_STRING)

1–128 yes E, S

222 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 48. Representation of Values for Selected Attribute Types (continued)

Attribute Type OM Value Syntax Value
Length

Multi-
valued

Matching
Rules

DS_A_STREET_ ADDRESS String(OM_S_OBJECT_
IDENTIFIER_STRING)

1–128 yes E, S

DS_A_SUPPORT_
APPLIC_CONTEXT

String(OM_S_OBJECT_
IDENTIFIER_STRING)

— yes E

DS_A_SURNAME String(OM_S_
TELETEX_STRING)

1–64 yes E, S

DS_A_PHONE_NBR String(OM_S_
PRINTABLE_STRING)4

1–32 yes E, S

DS_A_TELETEX_
TERM_IDENT

Object(DS_C_TELETEX_
TERM_IDENT)

— yes —

DS_A_TELEX_NBR Object(DS_C_TELEX_ NBR) — yes —

DS_A_TITLE String(OM_S_TELETEX_
STRING)

1–64 yes E, S

DS_A_USER_PASSWORD String(OM_S_OCTET_
STRING)

0–128 yes —

DS_A_X121_ADDRESS String(OM_S_NUMERIC_
STRING)5

1–15 yes E, S

1 As permitted by ISO 3166.
2 As permitted by Recommendations F.1 and F.31.
3 As permitted by E.164.
4 As permitted by E.123 (for example, +44 582 10101).
5 As permitted by X.121.

Throughout the descriptions that follow, the term object indicates the directory
object whose directory entry contains the corresponding directory attributes.

v DS_A_ALIASED_OBJECT_NAME

This attribute occurs only in alias entries. It assigns the distinguished name (DN)
of the object, provided with an alias, using the entry in which this attribute occurs.
An alias is an alternative to an object’s DN. Any object can (but need not) have
one or more aliases. The directory service is said to dereference an alias
whenever it replaces the alias during name processing with the DN associated
with it by means of this attribute.

v DS_A_BUSINESS_CATEGORY

This attribute provides descriptions of the businesses in which the object is
engaged.

v DS_A_COMMON_NAME

This attribute provides the names by which the object is commonly known in the
context defined by its position in the DIT. The names can conform to the naming
convention of the country or culture with which the object is associated. They can
be ambiguous.

v DS_A_COUNTRY_NAME

This attribute identifies the country in which the object is located or with which it
is associated in some other important way. The matching rules require that
differences in the case of alphabetical characters be considered insignificant. It
has a length of two characters and its values are those listed in ISO 3166.

v DS_A_DESCRIPTION

Chapter 11. Basic Directory Contents Package 223

This attribute gives informative descriptions of the object.

v DS_A_DEST_INDICATOR

This attribute provides the country-city pairs by means of which the object can be
reached via the public telegram service. The matching rules require that
differences in the case of alphabetical characters be considered insignificant.

v DS_A_FACSIMILE_PHONE_NBR

This attribute provides the telephone numbers for facsimile terminals (and their
parameters, if required) by means of which the object can be reached or with
which it is associated in some other important way.

v DS_A_INTERNAT_ISDN_NBR

This attribute provides the international ISDN numbers by means of which the
object can be reached or with which it is associated in some other important way.
The matching rules require that differences caused by the presence of spaces be
considered insignificant.

v DS_A_KNOWLEDGE_INFO

This attribute occurs only in entries that describe a DSA. It provides a
human-intelligible accumulated description of the directory knowledge possessed
by the DSA.

v DS_A_LOCALITY_NAME

This attribute identifies geographical areas or localities. When used as part of a
directory name, it specifies the localities in which the object is located or with
which it is associated in some other important way.

v DS_A_MEMBER

This attribute gives the names of objects that are considered members of the
present object; for example, a distribution list for electronic mail.

v DS_A_OBJECT_CLASS

This attribute identifies the object classes to which the object belongs, and it also
identifies their superclasses. All such object classes that have object identifiers
assigned to them are present, except that object class DS_O_TOP need not (but
can) be present provided that some other value is present. This attribute must be
present in every entry and cannot be modified. For a further discussion, see
“Selected Object Classes” on page 226.

v DS_A_ORG_NAME

This attribute identifies organizations. When used as part of a directory name, it
specifies an organization with which the object is affiliated. Several values can
identify the same organization in different ways.

v DS_A_ORG_UNIT_NAME

This attribute identifies organizational units. When used as part of a directory
name, it specifies an organizational unit with which the object is affiliated. The
units are understood to be parts of the organization that the DS_A_ORG_NAME
attribute indicates. Several values can identify the same unit in different ways.

v DS_A_OWNER

This attribute gives the names of objects that have responsibility for the object.

v DS_A_PHYS_DELIV_OFF_NAME

This attribute gives the names of cities, towns, villages, and so on, that contain
physical delivery offices through which the object can take delivery of physical
mail.

v DS_A_POST_OFFICE_BOX

224 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

This attribute identifies post office boxes at which the object can take delivery of
physical mail. This information is also displayed as part of the
DS_A_POSTAL_ADDRESS attribute, if it is present.

v DS_A_POSTAL_ADDRESS

This attribute gives the postal addresses at which the object can take delivery of
physical mail. The matching rules require that differences in the case of
alphabetical characters be considered insignificant.

v DS_A_POSTAL_CODE

This attribute gives the postal codes that are assigned to areas or buildings
through which the object can take delivery of physical mail. This information is
also displayed as part of the DS_A_POSTAL_ADDRESS attribute, if it is present.

v DS_A_PREF_DELIV_METHOD

This attribute gives the object’s preferred methods of communication, in the order
of preference. The values are as follows:

– DS_ANY_DELIV_METHOD, meaning that the object has no preference.

– DS_G3_FACSIMILE_DELIV, meaning via the Group 3 facsimile.

– DS_G4_FACSIMILE_DELIV, meaning via the Group 4 facsimile.

– DS_IA5_TERMINAL_DELIV, meaning via the IA5 text.

– DS_MHS_DELIV, meaning via X.400.

– DS_PHYS_DELIV, meaning via the postal or other physical delivery system.

– DS_PHONE_DELIV, meaning via telephone.

– DS_TELETEX_DELIV, meaning via teletex.

– DS_TELEX_DELIV, meaning via telex.

– DS_VIDEOTEX_DELIV, meaning via videotex.

v DS_A_PRESENTATION_ADDRESS

This attribute contains the OSI presentation address of the object, which is an
OSI application entity. The matching rule for a presented value to match a value
stored in the directory is that the P-Selector, S-Selector, and T-Selector of the
two presentation addresses must be equal, and the N-Addresses of the
presented value must be a subset of those of the stored value.

v DS_A_REGISTERED_ADDRESS

This attribute contains mnemonics by means of which the object can be reached
via the public telegram service, according to Recommendation F.1. A mnemonic
identifies an object in the context of a particular city, and it is registered in the
country containing the city. The matching rules require that differences in the
case of alphabetical characters be considered insignificant.

v DS_A_ROLE_OCCUPANT

This attribute occurs only in entries that describe an organizational role. It gives
the names of objects that fulfill the organizational role.

v DS_A_SEARCH_GUIDE

This attribute contains the criteria that can be used to build filters for conducting
searches in which the object is the base object.

v DS_A_SEE_ALSO

This attribute contains the names of objects that represent other aspects of the
real-world object that the present object represents.

v DS_A_SERIAL_NBR

This attribute contains the serial numbers of a device.

v DS_A_STATE_OR_PROV_NAME

Chapter 11. Basic Directory Contents Package 225

This attribute specifies a state or province. When used as part of a directory
name, it identifies states, provinces, or other geographical regions in which the
object is located or with which it is associated in some other important way.

v DS_A_STREET_ADDRESS

This attribute identifies a site for the local distribution and physical delivery of
mail. When used as part of a directory name, it identifies the street address (for
example, street name and house number) at which the object is located or with
which it is associated in some other important way.

v DS_A_SUPPORT_APPLIC_CONTEXT

This attribute occurs only in entries that describe an OSI application entity. It
identifies OSI application contexts supported by the object.

v DS_A_SURNAME

This attribute occurs only in entries that describe individuals. The surname by
which the individual is commonly known, normally inherited from the individual’s
parent (or parents) or taken at marriage, as determined by the custom of the
country or culture with which the individual is associated.

v DS_A_PHONE_NBR

This attribute identifies telephones by means of which the object can be reached
or with which it is associated in some other important way. The matching rules
require that differences caused by the presence of spaces and dashes be
considered insignificant.

v DS_A_TELETEX_TERM_IDENT

This attribute contains descriptions of teletex terminals by means of which the
object can be reached or with which it is associated in some other important way.

v DS_A_TELEX_NBR

This attribute contains descriptions of telex terminals by means of which the
object can be reached or with which it is associated in some other important way.

v DS_A_TITLE

This attribute identifies positions or functions of the object within its organization.

v DS_A_USER_PASSWORD

This attribute contains the passwords assigned to the object.

v DS_A_X121_ADDRESS

This attribute identifies points on the public data network at which the object can
be reached or with which it is associated in some other important way. The
matching rules require that differences caused by the presence of spaces be
considered insignificant.

Selected Object Classes

This section presents the object classes that are defined in the standards. Object
classes are groups of directory entries that share certain characteristics. The object
classes are arranged into a lattice, based on the object class DS_O_TOP. In a lattice,
each element, except a leaf, has one or more immediate subordinates but also has
one or more immediate superiors. This contrasts with a tree, where each element
has exactly one immediate superior. Object classes closer to DS_O_TOP are called
superclasses, and those further away are called subclasses. This relationship is not
connected to any other such relationship in this guide.

Each directory entry belongs to an object class, and to all the superclasses of that
object class. Each entry has an attribute named DS_A_OBJECT_CLASS, which was
discussed in the previous section, and which identifies the object classes to which

226 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

the entry belongs. The values of this attribute are object identifiers, which are
represented in the interface by constants with the same name as the object class,
prefixed by DS_O_.

Associated with each object class are zero or more mandatory and zero or more
optional attributes. Each directory entry must contain all the mandatory attributes
and can (but need not) contain the optional attributes associated with the object
class and its superclasses.

The object classes defined in the standards are shown in Table 49, together with
their object identifiers.

Note: The third and fourth columns of Table 49 contain the contents octets of the
BER encoding of the object identifier. All these object identifiers stem from
the root {joint-iso-ccitt(2) ds(5) objectClass(6)}.

Table 49. Object Identifiers for Selected Object Classes

Object Identifier BER

Package Attribute Type Decimal Hexadecimal

BDCP DS_O_ALIAS 85, 6, 1 \x55\x06\x01

BDCP DS_O_APPLIC_ENTITY 85, 6, 12 \x55\x06\x0C

BDCP DS_O_APPLIC_PROCESS 85, 6, 11 \x55\x06\x0B

BDCP DS_O_COUNTRY 85, 6, 2 \x55\x06\x02

BDCP DS_O_DEVICE 85, 6, 14 \x55\x06\x0E

BDCP DS_O_DSA 85, 6, 13 \x55\x06\x0D

BDCP DS_O_GROUP_OF_NAMES 85, 6, 9 \x55\x06\x09

BDCP DS_O_LOCALITY 85, 6, 3 \x55\x06\x03

BDCP DS_O_ORG 85, 6, 4 \x55\x06\x04

BDCP DS_O_ORG_PERSON 85, 6, 7 \x55\x06\x07

BDCP DS_O_ORG_ROLE 85, 6, 8 \x55\x06\x08

BDCP DS_O_ORG_UNIT 85, 6, 5 \x55\x06\x05

BDCP DS_O_PERSON 85, 6, 6 \x55\x06\x06

BDCP DS_O_RESIDENTIAL_PERSON 85, 6, 10 \x55\x06\x0A

BDCP DS_O_TOP 85, 6, 0 \x55\x06\x00

OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used to represent
values of the selected attributes described in “Selected Attribute Types” on
page 220. Some of the selected attributes are represented by OM classes that are
used in the interface itself, and hence are defined in “Chapter 10. XDS Class
Definitions” on page 189; for example, DS_C_NAME.

This section shows the hierarchical organization of the OM classes that are defined
in the following sections, and it shows which OM classes inherit additional OM
attributes from their OM superclasses. In the following list, subclassification is
indicated by indentation, and the names of abstract OM classes are in italics. For
example, DS_C_POSTAL_ADDRESS is an immediate subclass of the abstract OM class
OM_C_OBJECT.

Chapter 11. Basic Directory Contents Package 227

OM_C_OBJECT

v DS_C_FACSIMILE_PHONE_NBR

v DS_C_POSTAL_ADDRESS

v DS_C_SEARCH_CRITERION

v DS_C_SEARCH_GUIDE

v DS_C_TELETEX_TERM_IDENT

v DS_C_TELEX_NBR

None of the OM classes in the preceding list are encodable by using
om_encode() and om_decode() .

DS_C_FACSIMILE_PHONE_NBR

An instance of OM class DS_C_FACSIMILE_PHONE_NBR identifies and describes a
facsimile terminal, if required.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 50.

Table 50. OM Attributes of DS_C_FACSIMILE_PHONE_NBR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PARAMETERS Object (MH_C_G3_FAX_
NBPS)1

— 0 or 1 —

DS_PHONE_NBR String(OM_S_
PRINTABLE_STRING)2

1–32 1 —

1 As defined in the X.400 API specifications.
2 As permitted by E.123 (for example, +44 582 10101).

v DS_PARAMETERS

If present, this attribute identifies the facsimile terminal’s nonbasic capabilities.

v DS_PHONE_NBR

This attribute contains a telephone number by means of which the facsimile
terminal is accessed.

DS_C_POSTAL_ADDRESS

An instance of OM class DS_C_POSTAL_ADDRESS is a postal address.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attribute listed in Table 51.

Table 51. OM Attribute of DS_C_POSTAL_ADDRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_POSTAL_ ADDRESS String(OM_S_
TELETEX_STRING)

1–30 1–6 —

v DS_POSTAL_ADDRESS

Each value of this OM attribute is one line of the postal address. It typically
includes a name, street address, city name, state or province name, postal code,
and possibly a country name.

228 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

DS_C_SEARCH_CRITERION

An instance of OM class DS_C_SEARCH_CRITERION is a component of a
DS_C_SEARCH_GUIDE OM object.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 52.

Table 52. OM Attributes of DS_C_SEARCH_CRITERION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_TYPE String(OM_S_OBJECT_
IDENTIFIER_STRING)

— 0 or 1 —

DS_CRITERIA Object(DS_C_SEARCH_
CRITERION)

— 0 or more —

DS_FILTER_ITEM_TYPE Enum(DS_Filter_Item_
Type)

— 0 or 1 —

DS_FILTER_TYPE Enum(DS_Filter_Type) — 1 DS_ITEM

A DS_C_SEARCH_CRITERION suggests how to build part of a filter to be used when
searching the directory. Its meaning depends on the value of its OM attribute
DS_FILTER_TYPE. If the value is DS_ITEM, then the criteria suggests building an
instance of OM class DS_C_FILTER_ITEM. If DS_FILTER_TYPE has any other value, it
suggests building an instance of OM class DS_C_FILTER.

v DS_ATTRIBUTE_TYPE

This attribute indicates the attribute type to be used in the suggested
DS_C_FILTER_ITEM. This OM attribute is only present when the value of
DS_FILTER_TYPE is DS_ITEM.

v DS_CRITERIA

This attribute contains nested search criteria. This OM attribute is not present
when the value of DS_FILTER_TYPE is DS_ITEM.

v DS_FILTER_ITEM_TYPE

This attribute indicates the type of suggested filter item. Its value can be one of
the following:

– DS_APPROXIMATE_MATCH

– DS_EQUALITY

– DS_GREATER_OR_EQUAL

– DS_LESS_OR_EQUAL

– DS_SUBSTRINGS

However, the filter item cannot have the value DS_PRESENT. This OM attribute is
only present when the value of DS_FILTER_TYPE is DS_ITEM.

v DS_FILTER_TYPE

This attribute indicates the type of suggested filter. The value DS_ITEM means that
the suggested component is a filter item, not a filter. The other values suggest
the corresponding type of filter. Its value is one of the following:

– DS_AND

– DS_ITEM

– DS_NOT

– DS_OR

Chapter 11. Basic Directory Contents Package 229

DS_C_SEARCH_GUIDE

An instance of OM class DS_C_SEARCH_GUIDE suggests a criteria for searching the
directory for particular entries. It can be used to build a DS_C_FILTER parameter for
ds_search() operations that are based on the object in whose entry the search
guide occurs.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 53.

Table 53. OM Attributes of DS_C_SEARCH_GUIDE

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_CLASS String(OM_S_OBJECT_
IDENTIFIER_STRING)

— 0 or 1 —

DS_CRITERIA Object(DS_C_SEARCH_
CRITERION)

— 1 —

v DS_OBJECT_CLASS

This attribute identifies the object class of the entries to which the search guide
applies. If this OM attribute is absent, the search guide applies to objects of any
class.

v DS_CRITERIA

This attribute contains the suggested search criteria.

DS_C_TELETEX_TERM_IDENT

An instance of OM class DS_C_TELETEX_TERM_IDENT identifies and describes a
teletex terminal.

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 54.

Table 54. OM Attributes of DS_C_TELETEX_TERM_IDENT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PARAMETERS Object(MH_C_
TELETEX_NBPS)1

— 0 or 1 —

DS_TELETEX_TERM String(OM_S_
PRINTABLE_STRING)2

1–1024 1 —

1 As defined in the X.400 API specifications.
2 As permitted by F.200.

v DS_PARAMETERS

This attribute identifies the teletex terminal’s nonbasic capabilities.

v DS_TELETEX_TERM

This attribute identifies the teletex terminal.

DS_C_TELEX_NBR

An instance of OM class DS_C_TELEX_NBR identifies and describes a telex terminal.

230 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, in addition to the OM attributes listed in Table 55.

Table 55. OM Attributes of DS_C_TELEX_NBR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ANSWERBACK String(OM_S_
PRINTABLE_STRING)

1–8 1 —

DS_COUNTRY_CODE String(OM_S
PRINTABLE_STRING)

1–4 1 —

DS_TELEX_NBR String(OM_S_
PRINTABLE_STRING)

1–14 1 —

v DS_ANSWERBACK

This attribute contains the code with which the telex terminal acknowledges calls
placed to it.

v DS_COUNTRY_CODE

This attribute contains the identifier of the country through which the telex
terminal is accessed.

v DS_TELEX_NBR

This attribute contains the number by means of which the telex terminal is
addressed.

Chapter 11. Basic Directory Contents Package 231

232 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 12. Information Syntaxes

This chapter defines the syntaxes permitted for attribute values. The syntaxes are
closely aligned with the types and type constructors of ASN.1. The OM_value data
type specifies how a value of each syntax is represented in the C interface (see
“Chapter 13. XOM Service Interface” on page 239).

Syntax Templates

The names of certain syntaxes are constructed from syntax templates. A syntax
template is a lexical construct comprising a primary identifier followed by an *
(asterisk) enclosed in parentheses, as follows:

identifier (*)

A syntax template encompasses a group of related syntaxes. Any member of the
group, without distinction, is indicated by the primary identifier (identifier) alone. A
particular member is indicated by the template with the asterisk replaced by one of
a set of secondary identifiers associated with the template, as follows:

identifier1
(
identifier2)

Syntaxes

A variety of syntaxes are defined. Most are functionally equivalent to ASN.1 types,
as documented in “Relationship to ASN.1 Simple Types” on page 235 through
“Relationship to ASN.1 Type Constructors” on page 236.

The following syntaxes are defined:

v OM_S_BOOLEAN

A value of this syntax is a Boolean; that is, it can be OM_TRUE or OM_FALSE.

v Enum(*)

A value of any syntax encompassed by this syntax template is one of a set of
values associated with the syntax. The only significant characteristic of the
values is that they are distinct.

The group of syntaxes encompassed by this template is open-ended. Zero or
more members are added to the group by each package definition. The
secondary identifiers that indicate the members are also assigned there.

v OM_S_INTEGER

A value of this syntax is a positive or negative integer.

v OM_S_NULL

The one value of this syntax is a valueless placeholder.

v Object(*)

A value of any syntax encompassed by this syntax template is an object, which is
any instance of a class associated with the syntax.

The group of syntaxes encompassed by this template is open-ended. One
member is added to the group by each class definition. The secondary identifier
that indicates the member is the name of the class.

© Copyright IBM Corp. 1990, 1999 233

v String(*)

A value of any syntax encompassed by this syntax template is a string (as
defined in “Strings”) whose form and meaning are associated with the syntax.

The group of syntaxes encompassed by this template is closed. One syntax is
defined for each ASN.1 string type. The secondary identifier that indicates the
member is, in general, the first word of the type’s name.

Strings

A string is an ordered sequence of zero or more bits, octets, or characters
accompanied by the string’s length.

The value length of a string is the number of bits in a bit string, octets in an octet
string, or characters in a character string. Any constraints on the value length of a
string are specified in the appropriate class definitions. The length is confined to the
range 0 to 232.

Note: The length of a character string does not necessarily equal the number of
characters it comprises because, for example, a single character can be
represented by using several octets.

The elements of a string are numbered. The position of the first element is 0 (zero).
The positions of successive elements are successive positive integers.

The syntaxes that form the string group are identified in Table 56, which gives the
secondary identifier assigned to each such syntax.

Note: The identifiers in the first, second, and third columns of Table 56 indicate the
syntaxes of bit, octet, and character strings, respectively. The String group
comprises all syntaxes identified in the table.

Table 56. String Syntax Identifiers

Bit String Identifier Octet String Identifier Character String Identifier

OM_S_BIT_STRING OM_S_ENCODING_ STRING1 OM_S_GENERAL_ STRING2

OM_S_OBJECT_
IDENTIFIER_STRING3

OM_S_GENERALIZED_TIME_STRING2

OM_S_OCTET_STRING OM_S_GRAPHIC_STRING2

OM_S_IA5_STRING2

OM_S_NUMERIC_STRING2

OM_S_OBJECT_
DESCRIPTOR_STRING2

OM_S_ PRINTABLE_STRING2

OM_S_TELETEX_STRING2

OM_S_UTC_TIME_STRING2

OM_S_VIDEOTEX_STRING2

OM_S_VISIBLE_STRING2

1 The octets are those that BER permits for the contents octets of the
encoding of a value of any ASN.1 type.

234 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

2 The characters are those permitted by ASN.1’s type of the corresponding
name. Values of these syntaxes are represented in their BER-encoded
form. The octets by which they are represented are those that BER permits
for the contents octets of a primitive encoding of a value of that type.

3 The octets are those that BER permits for the contents octets of the
encoding of a value of ASN.1’s object identifier type.

Representation of String Values

In the service interface, a string value is represented by a string data type. This is
defined in “Strings” on page 234. The length of a string is the number of octets by
which it is represented at the interface. It is confined to the range 0 to 232.

The length of a character does not need to be equal to the number of characters it
comprises because, for example, a single character can be represented by using
several octets.

It may be necessary to segment large string values when passing them across the
interface. A segment is any zero or more contiguous octets of a string value.
Segment boundaries are without semantic significance.

Relationship to ASN.1 Simple Types

As shown in Table 57, for every ASN.1 simple type except Real, there is an OM
syntax that is functionally equivalent to it. The simple types are listed in the first
column of the table; the corresponding syntaxes are listed in the second column.

Table 57. Syntax for ASN.1 Simple Types

Type Syntax

Bit String String(OM_S_BIT_STRING)

Boolean OM_S_BOOLEAN

Integer OM_S_INTEGER

Null OM_S_NULL

Object Identifier String(OM_S_OBJECT_IDENTIFIER_STRING)

Octet String String(OM_S_OCTET_STRING)

Real None1

1 A future edition of XOM may define a syntax corresponding to this type.

Relationship to ASN.1 Useful Types

As shown in Table 58, for every ASN.1 useful type, there is an OM syntax that is
functionally equivalent to it. The useful types are listed in the first column of the
table; the corresponding syntaxes are listed in the second column.

Table 58. Syntaxes for ASN.1 Useful Types

Type Syntax

External Object(OM_C_EXTERNAL)

Chapter 12. Information Syntaxes 235

Table 58. Syntaxes for ASN.1 Useful Types (continued)

Type Syntax

Generalized Time String(OM_S_GENERALISED_TIME_STRING)

Object Descriptor String(OM_S_OBJECT_DESCRIPTOR_STRING)

Universal Time String(OM_S_UTC_TIME_STRING)

Relationship to ASN.1 Character String Types

As shown in Table 59, for every ASN.1 character string type, there is an OM syntax
that is functionally equivalent to it. The ASN.1 character string types are listed in the
first column of the table; the corresponding syntax is listed in the second column.

Table 59. Syntaxes for ASN.1 Character String Types

Type Syntax

General String String(OM_S_GENERAL_STRING)

Graphic String String(OM_S_GRAPHIC_STRING)

IA5 String String(OM_S_IA5_STRING)

— String(OM_S_LOCAL_STRING)

Numeric String String(OM_S_NUMERIC_STRING)

Printable String String(OM_S_PRINTABLE_STRING)

Teletex String String(OM_S_TELETEX_STRING)

Videotex String String(OM_S_VIDEOTEX_STRING)

Visible String String(OM_S_VISIBLE_STRING)

Relationship to ASN.1 Type Constructors

As shown in Table 60, there are functionally equivalent OM syntaxes for some (but
not all) ASN.1 type constructors. The constructors are listed in the first column;
corresponding syntaxes are listed in the second column.

Table 60. Syntaxes for ASN.1 Type Constructors

Type Constructor Syntax

Any String(OM_S_ENCODING_STRING)

Choice OM_S_OBJECT

Enumerated OM_S_ENUMERATION

Selection None1

Sequence OM_S_OBJECT

Sequence Of OM_S_OBJECT

Set OM_S_OBJECT

Set Of OM_S_OBJECT

Tagged None2

1 This type constructor, a purely specification-time phenomenon, has no
corresponding syntax.

236 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

2 This type constructor is used to distinguish the alternatives of a choice or
the elements of a sequence or set, a function performed by attribute types.

The effects of the principal type constructors can be achieved, in any of a variety of
ways, by using objects-to-group attributes or using attributes-to-group values. An
OM application designer can (but need not) model these constructors as classes of
the following kinds:

v Choice

An attribute type can be defined for each alternative, with just one being
permitted in an instance of the class.

v Sequence or Set

An attribute type can be defined for each sequence or set element. If an element
is optional, then the attribute has zero or one value.

v Sequence Of or Set Of

A single multivalued attribute can be defined.

An ASN.1 definition of an enumerated type component of a structured type is
generally mapped to an OM attribute with an OM syntax OM_S_ENUMERATION in this
interface. Where the ASN.1 component is optional, this is generally indicated by an
additional member of the enumeration, rather than by the omission of the OM
attribute. This leads to simpler programming in the application.

Chapter 12. Information Syntaxes 237

238 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 13. XOM Service Interface

This chapter describes the following aspects of the XOM service interface:

v The conformance of the DCE X/Open OSI-Abstract-Data Manipulation (XOM)
implementation to the X/Open specification.

v The data types whose data values are the parameters and results of the
functions that the service makes available to the client.

v An overview of the functions that the service makes available to the client. For a
complete description of these functions, see the corresponding reference pages
in IBM DCE Version 3.1 for AIX and Solaris: Application Development Reference.

v The return codes that indicate the outcomes (in particular, the exceptions) that
the functions can report.

See the IBM DCE Version 3.1 for AIX and Solaris: Application Development
Reference for examples of using the XOM interface.

Standards Conformance

The DCE XOM implementation conforms to the following specification:

X/Open CAE Specification, OSI-Abstract-Data Manipulation (XOM) (November
1991)

The following apply to the DCE XOM implementation:

v Multiple workspaces for XDS objects are supported.

v The OM package is supported.

v The om_encode() and om_decode() functions are not supported. The transfer
of objects between workspaces is not envisaged within the DCE environment.
The OM classes used by the DCE XDS/XOM API are not encodable.

v Translation to local character sets is not supported.

XOM Data Types

The data types of the XOM service interface are defined in this section and listed in
Table 61. These data types are repeated in the XOM reference pages (see
xom.h(4xom)).

Table 61. XOM Service Interface Data Types

Data Type Description

OM_boolean Type definition for a Boolean data value.

OM_descriptor Type definition for describing an attribute type
and value.

OM_enumeration Type definition for an Enumerated data value.

OM_exclusions Type definition for the exclusions parameter for
om_get() .

OM_integer Type definition for an Integer data value.

OM_modification Type definition for the modification parameter for
om_put() .

© Copyright IBM Corp. 1990, 1999 239

Table 61. XOM Service Interface Data Types (continued)

Data Type Description

OM_object Type definition for a handle to either a private or
a public object.

OM_object_identifier Type definition for an object identifier data value.

OM_private_object Type definition for a handle to an object in an
implementation-defined, or private,
representation.

OM_public_object Type definition for a defined representation of an
object that can be directly interrogated by a
programmer.

OM_return_code Type definition for a value returned from all OM
functions, indicating either that the function
succeeded or why it failed.

OM_string Type definition for a data value of one of the
String syntaxes.

OM_syntax Type definition for identifying a syntax type.

OM_type Type definition for identifying an OM attribute
type.

OM_type_list Type definition for enumerating a sequence of
OM attribute types.

OM_value Type definition for representing any data value.

OM_value_length Type definition for indicating the number of bits,
octets, or characters in a string.

OM_value_position Type definition for designating a particular
location within a String data value.

OM_workspace Type definition for identifying an
application-specific API that implements OM,
such as directory or message handling.

Some data types are defined in terms of the following intermediate data types,
whose precise definitions in C are defined by the system:

v OM_sint

The positive and negative integers that can be represented in 16 bits

v OM_sint16

The positive and negative integers that can be represented in 16 bits

v OM_sint32

The positive and negative integers that can be represented in 32 bits

v OM_uint

The nonnegative integers that can be represented in 16 bits

v OM_uint16

The nonnegative integers that can be represented in 16 bits

v OM_uint32

The nonnegative integers that can be represented in 32 bits

Note: The OM_sint and OM_uint data types are defined by the range of integers
they must accommodate. As typically declared in the C interface, they are
defined by the range of integers permitted by the host machine’s word size.
The latter range, however, always encompasses the former.

240 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

The type definitions for these data types are as follows:

typedef int OM_sint;
typedef short OM_sint16;
typedef long int OM_sint32;
typedef unsigned OM_uint;
typedef unsigned short OM_uint16;
typedef long unsigned OM_uint32;

OM_boolean

The C declaration for an OM_boolean data value is as follows:

typedef OM_uint32 OM_boolean;

A data value of this data type is a Boolean; that is, either FALSE or TRUE.

FALSE (OM_FALSE) is indicated by 0 (zero). TRUE is indicated by any other integer,
although the symbolic constant OM_TRUE refers to the integer 1 specifically.

OM_descriptor

The OM_descriptor data type is used to describe an attribute type and value. Its C
declaration is as follows:

typedef struct OM_descriptor_struct
{

OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

Note: Other components are encoded in high bits of the syntax member.

See the OM_value data type described in “OM_value” on page 249 or the
xom.h(4xom) reference page for a description of the OM_value_union structure.

A data value of this type is a descriptor, which embodies an attribute value. An
array of descriptors can represent all the values of all the attributes of an object,
and is the representation called OM_public_object. A descriptor has the following
components:

v type

An OM_type data type. It identifies the data type of the attribute value.

v syntax

An OM_syntax data type. It identifies the syntax of the attribute value.
Components 3 to 7 (that is, the components long-string through private that
follow) are encoded in the high-order bits of this structure member. Therefore, the
syntax always needs to be masked with the constant OM_S_SYNTAX. An example is
the following:

my_syntax = my_public_object[3].syntax &
OM_S_SYNTAX;

my_public_object[4].syntax =
my_syntax + (my_public_object[4].syntax &
xOM_S_SYNTAX);

v long-string

Chapter 13. XOM Service Interface 241

An OM_boolean data type. It is OM_TRUE only if the descriptor is a
service-generated descriptor and the length of the value is greater than an
implementation-defined limit.

This component occupies bit 15 (0x8000) of the syntax and is represented by the
constant OM_S_LONG_STRING.

v no-value

An OM_boolean data type. It is OM_TRUE only if the descriptor is a
service-generated descriptor and the value is not present because
OM_EXCLUDE_VALUES or OM_EXCLUDE_MULTIPLES is set in om_get().

This component occupies bit 14 (0x4000) of the syntax and is represented by the
constant OM_S_NO_VALUE.

v local-string

An OM_boolean data type, significant only if the syntax is one of the string
syntaxes. It is OM_TRUE only if the string is represented in an
implementation-defined local character set. The local character set may be more
amenable for use as keyboard input or display output than the nonlocal character
set, and it can include specific treatment of line termination sequences. Certain
interface functions can convert information in string syntaxes to or from the local
representation, which may result in a loss of information.

This component occupies bit 13 (0x2000) of the syntax and is represented by the
constant OM_S_LOCAL_STRING. The DCE XOM implementation does not support
translation of strings to a local character set.

v service-generated

An OM_boolean data type. It is OM_TRUE only if the descriptor is a
service-generated descriptor and the first descriptor of a public object, or the
defined part of a private object (see the *(3xom) reference pages).

This component occupies bit 12 (0x1000) of the syntax and is represented by the
constant OM_S_SERVICE_GENERATED.

v private

An OM_boolean data type. It is OM_TRUE only if the descriptor in the
service-generated public object contains a reference to the handle of a private
subobject, or in the defined part of a private object.

Note: This applies only when the descriptor is a service-generated descriptor.
The client need not set this bit in a client-generated descriptor that
contains a reference to a private object.

In the C interface, this component occupies bit 11 (0x0800) of the syntax and is
represented by the constant OM_S_PRIVATE.

v value

An OM_value data type. It identifies the attribute value.

OM_enumeration

The OM_enumeration data type is used to indicate an Enumerated data value. Its C
declaration is as follows:

typedef OM_sint32 OM_enumeration;

A data value of this data type is an attribute value whose syntax is
OM_S_ENUMERATION.

242 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

OM_exclusions

The OM_exclusions data type is used for the exclusions parameter of om_get(). Its
C declaration is as follows:

typedef OM_uint OM_exclusions;

A data value of this data type is an unordered set of one or more values, all of
which are distinct. Each value indicates an exclusion, as defined by om_get() , and
is chosen from the following set:

v OM_EXCLUDE_ALL_BUT_THESE_TYPES

v OM_EXCLUDE_MULTIPLES

v OM_EXCLUDE_ALL_BUT_THESE_VALUES

v OM_EXCLUDE_VALUES

v OM_EXCLUDE_SUBOBJECTS

v OM_EXCLUDE_DESCRIPTORS

Alternatively, the single value OM_NO_EXCLUSIONS can be chosen; this selects the
entire object.

Each value except OM_NO_EXCLUSIONS is represented by a distinct bit. The presence
of the value is represented as 1; its absence is represented as 0 (zero). Thus,
multiple exclusions are requested by ORing the values that indicate the individual
exclusions.

OM_integer

The OM_integer data type is used to indicate an integer data value. Its C
declaration is as follows:

typedef OM_sint32 OM_integer;

A data value of this data type is an attribute value whose syntax is OM_S_INTEGER.

OM_modification

The OM_modification data type is used for the modification parameter of
om_put() . Its C declaration is as follows:

typedef OM_uint OM_modification;

A data value of this data type indicates a kind of modification, as defined by
om_put() . It is chosen from the following set:

v OM_INSERT_AT_BEGINNING

v OM_INSERT_AT_CERTAIN_POINT

v OM_INSERT_AT_END

v OM_REPLACE_ALL

v OM_REPLACE_CERTAIN_VALUES

Chapter 13. XOM Service Interface 243

OM_object

The OM_object data type is used as a handle to either a private or a public object.
Its C declaration is as follows:

typedef struct OM_descriptor_struct *OM_object;

A data value of this data type represents an object, which can be either public or
private. It is an ordered sequence of one or more instances of the OM_descriptor
data type. See the OM_private_object and OM_public_object data types for
restrictions on that sequence (“OM_private_object” on page 245 and
“OM_public_object” on page 246, respectively).

OM_object_identifier

The OM_object_identifier data type is used as an ASN.1 object identifier. Its C
declaration is as follows:

typedef OM_string OM_object_identifier;

A data value of this data type contains an octet string that comprises the contents
octets of the BER encoding of an ASN.1 object identifier.

C Declaration of Object Identifiers

Every application program that uses a class or another object identifier must
explicitly import it into every compilation unit (C source module) that uses it. Each
such class or object identifier name must be explicitly exported from just one
compilation module. Most application programs find it convenient to export all the
names they use from the same compilation unit. Exporting and importing is
performed by using the following two macros:

v The importing macro makes the class or other object identifier constants
available within a compilation unit.

– OM_IMPORT (class_name)

– OM_IMPORT(OID_name)

v The exporting macro allocates memory for the constants that represent the class
or another object identifier.

– OM_EXPORT(class_name)

– OM_EXPORT(OID_name)

Object identifiers are defined in the appropriate header files, with the definition
identifier having the prefix OMP_O_ followed by the variable name for the object
identifier. The constant itself provides the hexadecimal value of the object identifier
string.

Use of Object Identifiers in C

The following macro initializes a descriptor:

OM_OID_DESC(
type, OID_name)

244 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

It sets the type component to that given, sets the syntax component to
OM_S_OBJECT_IDENTIFIER_STRING, and sets the value component to the specified
object identifier.

The following macro initializes a descriptor to mark the end of a client-allocated
public object:

OM_NULL_DESCRIPTOR

For each class, there is a global variable of type OM_STRING with the same name; for
example, the External class has a variable called OM_C_EXTERNAL. This is also the
case for other object identifiers; for example, the object identifier for BER rules has
a variable called OM_BER. This global variable can be supplied as a parameter to
functions when required.

This variable is valid only when it is exported by an OM_EXPORT macro and imported
by an OM_IMPORT macro in the compilation units that use it. This variable cannot
form part of a descriptor, but the value of its length and elements components can
be used. The following code fragment provides examples of the use of the macros
and constants.
/* Examples of the use of the macros and constants */

#include <xom.h>

OM_IMPORT(OM_C_ENCODING)
OM_IMPORT(OM_CANONICAL_BER)

/* The following sequence must appear in just one compilation
* unit in place of the above:
*
* #include <xom.h>
*
* OM_EXPORT(OM_C_ENCODING)
* OM_EXPORT(OM_CANONICAL_BER)
*/

main()
{
/* Use #1 - Define a public object of class Encoding
* (Note: xxxx is a Message Handling class which
* can be encoded)
*/

OM_descriptor my_public_object[] = {
OM_OID_DESC(OM_CLASS, OM_C_ENCODING),
OM_OID_DESC(OM_OBJECT_CLASS, MA_C_xxxx),
{ OM_OBJECT_ENCODING, OM_S_ENCODING_STRING, \
some_BER_value },

OM_OID_DESC(OM_RULES, OM_CANONICAL_BER),
OM_NULL_DESCRIPTOR
};

/* Use #2 - Pass class Encoding as parameter to om_instance()
*/

return_code = om_instance(my_object, OM_C_ENCODING,
&boolean_result);
}

OM_private_object

The OM_private_object data type is used as a handle to an object in an
implementation-defined or private representation. Its C declaration is as follows:

Chapter 13. XOM Service Interface 245

typedef OM_object OM_private_object;

A data value of this data type is the designator or handle to a private object. It
comprises a single descriptor whose type component is OM_PRIVATE_OBJECT and
whose syntax and value components are unspecified.

Note: The descriptor’s syntax and value components are essential to the service’s
proper operation with respect to the private object.

OM_public_object

The OM_public_object data type is used to define an object that can be directly
accessed by a programmer. Its C declaration is as follows:

typedef OM_object OM_public_object;

A data value of this data type is a public object. It comprises one or more (usually
more) descriptors, all but the last of which represent values of attributes of the
object.

The descriptors for the values of a particular attribute with two or more values are
adjacent to one another in the sequence. Their order is that of the values they
represent. The order of the resulting groups of descriptors is unspecified.

Since the Class attribute specific to the Object class is represented among the
descriptors, it must be represented before any other attributes. Regardless of
whether or not the Class attribute is present, the syntax field of the first descriptor
must have the OM_S_SERVICE_GENERATED bit set or cleared appropriately.

The last descriptor signals the end of the sequence of descriptors. The last
descriptor’s type component is OM_NO_MORE_TYPES and its syntax component is
OM_S_NO_MORE_SYNTAXES. The last descriptor’s value component is unspecified.

OM_return_code

The OM_return_code data type is used for a value that is returned from all OM
functions, indicating either that the function succeeded or why it failed. Its C
declaration is as follows:

typedef OM_uint OM_return_code;

A data value of this data type is the integer in the range 0 to 216 that indicates an
outcome of an interface function. It is chosen from the set specified in “XOM Return
Codes” on page 252.

Integers in the narrower range 0 to 215 are used to indicate the return codes they
define.

OM_string

The OM_string data type is used for a data value of String syntax. Its C declaration
is as follows:

246 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

typedef OM_uint32 OM_string_length;
typedef struct {

OM_string_length length;
void *elements;

} OM_string;

#define OM_STRING(string)\
{ (OM_string_length)(sizeof(string)-1), (string) }

A data value of this data type is a string; that is, an instance of a String syntax. A
string is specified either in terms of its length or whether or not it terminates with
NULL.

A string has the following components:

v length (OM_string_length)

The number of octets by means of which the string is represented, or the
OM_LENGTH_UNSPECIFIED value if the string terminates with NULL.

v elements

The string’s elements. The bits of a bit string are represented as a sequence of
octets (see Figure 40). The first octet stores the number of unused bits in the last
octet. The bits in the bit string, commencing with the first bit and proceeding to
the trailing bit, are placed in bits 7 to 0 of the second octet. These are followed
by bits 7 to 0 of the third octet, then by bits 7 to 0 of each octet in turn, followed
by as many bits as are required of the final octet, commencing with bit 7.

The service supplies a string value with a specified length. The client can supply a
string value to the service in either form, either with a specified length or terminated
with NULL.

The characters of a character string are represented as any sequence of octets
permitted as the primitive contents octets of the BER encoding of an ASN.1 type
value. The ASN.1 type defines the type of character string. A 0 (zero) value
character follows the characters of the character string, but is not encompassed by
the length component. Thus, depending on the type of character string, the 0 (zero)
value character can delimit the characters of the character string.

The OM_STRING macro is provided for creating a data value of this data type, given
only the value of its elements component. The macro, however, applies to octet
strings and character strings, but not to bit strings.

position in bit string: 0 1 2 3 4 5 6 7 8 9 ...

position in bit string: 7 6 5 4 3 2 1 0 7 6 ...

2nd octet 3rd octet

most
significant

bit

least
significant

bit

Figure 40. OM_String Elements

Chapter 13. XOM Service Interface 247

OM_syntax

The OM_syntax data type is used to identify a syntax type. Its C declaration is as
follows:

typedef OM_uint16 OM_syntax;

A data value of this data type is an integer in the range 0 to 29 that indicates an
individual syntax or a set of syntaxes taken together.

The data value is chosen from among the following:

v OM_S_BIT_STRING

v OM_S_BOOLEAN

v OM_S_ENCODING_STRING

v OM_S_ENUMERATION

v OM_S_GENERAL_STRING

v OM_S_GENERALIZED_TIME_STRING

v OM_S_GRAPHIC_STRING

v OM_S_IA5_STRING

v OM_S_INTEGER

v OM_S_NULL

v OM_S_NUMERIC_STRING

v OM_S_OBJECT

v OM_S_OBJECT_DESCRIPTOR_STRING

v OM_S_OBJECT_IDENTIFIER_STRING

v OM_S_OCTET_STRING

v OM_S_PRINTABLE_STRING

v OM_S_TELETEX_STRING

v OM_S_VIDEOTEX_STRING

v OM_S_VISIBLE_STRING

v OM_S_UTC_TIME_STRING

Integers in the narrower range 0 to 29 are used to indicate the syntaxes they define.
The integers in the range 29 to 210 are reserved for vendor extensions. Wherever
possible, the integers used are the same as the corresponding ASN.1 universal
class number.

OM_type

The OM_type data type is used to identify an OM attribute type. Its C declaration is
as follows:

typedef OM_uint16 OM_type;

A data value of this data type is an integer in the range 0 to 216 that indicates a
type in the context of a package. However, the following values in Table 62 on
page 249 are assigned meanings by the respective data types.

248 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 62. Assigning Meanings to Values

Value Data Type

OM_NO_MORE_TYPES OM_type_list

OM_PRIVATE_OBJECT OM_private_object

Integers in the narrower range 0 to 215 are used to indicate the types they define.

OM_type_list

The OM_type_list data type is used to enumerate a sequence of OM attribute
types. Its C declaration is as follows:

typedef OM_type *OM_type_list;

A data value of this data type is an ordered sequence of zero or more type
numbers, each of which is an instance of the OM_type data type.

An additional data value, OM_NO_MORE_TYPES, follows and thus delimits the sequence.
The C representation of the sequence is an array.

OM_value

The OM_value data type is used to represent any data value. Its C declaration is as
follows:

typedef struct {
OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

Note: The first type definition (in particular, its padding component) aligns the
object component with the elements component of the string component in
the second type definition. This facilitates initialization in C.

The identifier OM_value_union is defined for reasons of compilation order. It is
used in the definition of the OM_descriptor data type.

A data value of this data type is an attribute value. It has no components if the
value’s syntax is OM_S_NO_MORE_SYNTAXES or OM_S_NO_VALUE. Otherwise, it has one of
the following components:

v string

The value if its syntax is a string syntax

v boolean

The value if its syntax is OM_S_BOOLEAN

v enumeration

The value if its syntax is OM_S_ENUMERATION

Chapter 13. XOM Service Interface 249

v integer

The value if its syntax is OM_S_INTEGER

v object

The value if its syntax is OM_S_OBJECT

Note: A data value of this data type is only displayed as a component of a
descriptor. Thus, it is always accompanied by indicators of the value’s
syntax. The latter indicator reveals which component is present.

OM_value_length

The OM_value_length data type is used to indicate the number of bits, octets, or
characters in a string. Its C declaration is as follows:

typedef OM_uint32 OM_value_length;

A data value of this data type is an integer in the range 0 to 232 that represents the
number of bits in a bit string, octets in an octet string, or characters in a character
string.

Note: This data type is not used in the definition of the interface. It is provided for
use by client programmers for defining attribute constraints.

OM_value_position

The OM_value_position data type is used to indicate an attribute value’s position
within an attribute. Its C declaration is as follows:

typedef OM_uint32 OM_value_position;

A data value of this data type is an integer in the range 0 to 232-1 that indicates the
position of a value within an attribute. However, the value OM_ALL_VALUES has the
meaning assigned to it by om_get() .

OM_workspace

The OM_workspace data type is used to identify an application-specific API that
implements OM; for example, directory or message handling. Its C declaration is as
follows:

typedef void *OM_workspace;

A data value of this data type is the designator or handle for a workspace.

XOM Functions

This section provides an overview of the XOM service interface functions as listed
in Table 63. For a full description of these functions, see the *(3xom) reference
pages.

Table 63. XOM Service Interface Functions

Function Description

om_copy() Copies a private object.

250 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 63. XOM Service Interface Functions (continued)

Function Description

om_copy_value() Copies a string between private objects.

om_create() Creates a private object.

om_decode() Not supported by the DCE XOM interface; it
returns an OM_FUNCTION_DECLINED error.

om_delete() Deletes a private or service-generated
object.

om_encode() Not supported by the DCE XOM interface; it
returns an OM_FUNCTION_DECLINED error.

om_get() Gets copies of attribute values from a private
object.

om_instance() Tests an object’s class.

om_put() Puts attribute values into a private object.

om_read() Reads a segment of a string in a private
object.

om_remove() Removes attribute values from a private
object.

om_write() Writes a segment of a string into a private
object.

The purpose and range of capabilities of the service interface functions can be
summarized as follows:

v om_copy()

This function creates an independent copy of an existing private object and all its
subobjects. The copy is placed in the workspace of the original object, or in
another workspace specified by the DCE client.

v om_copy_value()

This function replaces an existing attribute value or inserts a new value in one
private object with a copy of an existing attribute value found in another. Both
values must be strings.

v om_create()

This function creates a new private object that is an instance of a particular
class. The object can be initialized with the attribute values specified as initial in
the class definition. The service does not permit the client to explicitly create
instances of all classes, but rather only those indicated by a package’s definition
as having this property.

v om_decode()

Not supported by the DCE XOM interface; it returns an OM_FUNCTION_DECLINED
error.

v om_delete()

This function deletes a service-generated public object or makes a private object
inaccessible.

v om_get()

This function creates a new public object that is an exact, but independent, copy
of an existing private object. The client can request certain exclusions, each of
which reduces the copy to a part of the original. The client can also request that
values be converted from one syntax to another before they are returned.

Chapter 13. XOM Service Interface 251

The copy can exclude attributes of types other than those specified, values at
positions other than those specified within an attribute, values of multivalued
attributes, copies of (not handles for) subobjects, or all attribute values. Excluding
all attribute values reveals only an attribute’s presence.

v om_instance()

This function determines whether an object is an instance of a particular class.
The client can determine an object’s class simply by inspection. This function is
useful since it reveals that an object is an instance of a particular class, even if
the object is an instance of a subclass of that class.

v om_put()

This function places or replaces in one private object copies of the attribute
values of another public or private object.

The source values can be inserted before any existing destination values, before
the value at a specified position in the destination attribute, or after any existing
destination values. Alternatively, the source values can be substituted for any
existing destination values or for the values at specified positions in the
destination attribute.

v om_read()

This function reads a segment of a value of an attribute of a private object. The
value must be a string. The value can first be converted from one syntax to
another. This function enables the client to read an arbitrarily long value without
requiring that the service place a copy of the entire value in memory.

v om_remove()

This function removes and discards particular values of an attribute of a private
object. The attribute itself is removed if no values remain.

v om_write()

This function writes a segment of an attribute value to a private object. The value
must be a string. The segment can first be converted from one syntax to another.
The written segment becomes the value’s last segment since any elements
beyond it are discarded. The function enables the client to write an arbitrarily
long value without having to place a copy of the entire value in memory.

XOM Return Codes

This section defines the return codes of the service interface, and thus the
exceptions that can prevent the successful completion of an interface function.

Refer to the ERRORS section of the *(3xom) references pages for a list of the errors
that each function can return. For an explanation of these error codes, refer to the
IBM DCE Version 3.1 for AIX and Solaris: Problem Determination Guide.

The return code values are as follows:

0 OM_SUCCESS

Explanation: The function completed successfully.

1 OM_ENCODING_INVALID

Explanation: The octets that constitute the value of an encoding’s Object
Encoding attribute are invalid.

2 OM_FUNCTION_DECLINED

Explanation: The function does not apply to the object to which it is
addressed.

252 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

3 OM_FUNCTION_INTERRUPTED

Explanation: The function is aborted by an external force. For example, a
keystroke designated for this purpose at a user interface.

4 OM_MEMORY_INSUFFICIENT

Explanation: The service cannot allocate the main memory it needs to
complete the function.

5 OM_NETWORK_ERROR

Explanation: The service could not successfully employ the network upon
which its implementation depends.

6 OM_NO_SUCH_CLASS

Explanation: A purported class identifier is not defined.

7 OM_NO_SUCH_EXCLUSION

Explanation: A purported exclusion identifier is not defined.

8 OM_NO_SUCH_MODIFICATION

Explanation: A purported modification identifier is not defined.

9 OM_NO_SUCH_OBJECT

Explanation: A purported object is nonexistent, or the purported handle is
invalid.

10 OM_NO_SUCH_RULES

Explanation: A purported rules identifier is not defined.

11 OM_NO_SUCH_SYNTAX

Explanation: A purported syntax identifier is not defined.

12 OM_NO_SUCH_TYPE

Explanation: A purported type identifier is not defined.

13 OM_NO_SUCH_WORKSPACE

Explanation: A purported workspace is nonexistent.

14 OM_NOT_AN_ENCODING

Explanation: An object is not an instance of the Encoding class.

15 OM_NOT_CONCRETE

Explanation: A class is abstract, not concrete.

16 OM_NOT_PRESENT

Explanation: An attribute value is absent, not present.

17 OM_NOT_PRIVATE

Explanation: An object is public, not private.

18 OM_NOT_THE_SERVICES

Explanation: An object is a client-generated object, rather than a
service-generated or private object.

19 OM_PERMANENT_ERROR

Chapter 13. XOM Service Interface 253

Explanation: The service encountered a permanent difficulty other than
those indicated by other return codes.

20 OM_POINTER_INVALID

Explanation: In the C interface, an invalid pointer is supplied as a function
parameter, or as the receptacle for a function result.

21 OM_SYSTEM_ERROR

Explanation: The service could not successfully employ the operating
system upon which its implementation depends.

22 OM_TEMPORARY_ERROR

Explanation: The service encountered a temporary difficulty other than
those indicated by other return codes.

23 OM_TOO_MANY_VALUES

Explanation: An implementation limit prevents a further attribute value from
being added to an object. This limit is undefined.

24 OM_VALUES_NOT_ADJACENT

Explanation: The descriptors for the values of a particular attribute are not
adjacent.

25 OM_WRONG_VALUE_LENGTH

Explanation: An attribute has, or would have, a value that violates the value
length constraints in force.

26 OM_WRONG_VALUE_MAKEUP

Explanation: An attribute has, or would have, a value that violates a
constraint on the value’s syntax.

27 OM_WRONG_VALUE_NUMBER

Explanation: An attribute has, or would have, a value that violates the value
number constraints in force.

28 OM_WRONG_VALUE_POSITION

Explanation: The use defined for value position in the parameter or
parameters of a function is invalid.

29 OM_WRONG_VALUE_SYNTAX

Explanation: An attribute has, or would have, a value whose syntax is not
permitted.

30 OM_WRONG_VALUE_TYPE

Explanation: An object has, or would have, an attribute whose type is not
permitted.

254 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Chapter 14. Object Management Package

This chapter defines the object management package (OMP). The object identifier
(referred to as om) assigned to the package, as defined by this guide, is the object
identifier specified in ASN.1 as

{joint-iso-ccitt(2) mhs-motis(6) group(6) white(1) api(2) om(4)}

Class Hierarchy

This section shows the hierarchical organization of the OM classes.
Subclassification is indicated by indentation, and the names of abstract classes are
in italics. Thus, for example, OM_C_ENCODING is an immediate subclass of
OM_C_OBJECT, an abstract class. The names of classes to which om_encode()
applies are in boldface. (DCE XOM does not support the encoding of any OM
classes.) The om_create() function applies to all concrete classes.

v OM_C_OBJECT

– OM_C_ENCODING

– OM_C_EXTERNAL

Class Definitions

The following subsections define the OM classes.

OM_C_ENCODING

An instance of class OM_C_ENCODING is an object represented in a form suitable for
transmission between workspaces, for transport via a network, or for storage in a
file. Encoding can also be a suitable way of indicating to an intermediate service
provider (for example, a directory, or message transfer system) an object that it
does not recognize.

This class has the attributes of its superclass, OM_C_OBJECT, in addition to the
specific attributes listed in Table 64.

Table 64. Attributes Specific to OM_C_ENCODING

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_OBJECT_ CLASS String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 1 —

OM_OBJECT_ ENCODING String1 — 1 —

OM_RULES String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 1 ber

1 If the Rules attribute is ber or canonical-ber, the syntax of the present
attribute must be String(OM_S_ENCODING_STRING).

v OM_OBJECT_CLASS

This attribute identifies the class of the object that the Object Encoding attribute
encodes. The class must be concrete.

v OM_OBJECT_ENCODING

This attribute is the encoding itself.

© Copyright IBM Corp. 1990, 1999 255

v OM_RULES

This attribute identifies the set of rules that are followed to produce the Object
Encoding attribute. Among the defined values of this attribute are those
represented as follows:

– OM_BER

This value is specified in ASN.1 as

{joint-iso-ccitt(2) asn1(1) basic-encoding(1)}

This value indicates the BER. (See Clause 25.2 of Recommendation X.209,
′′Specification of Basic Encoding Rules for Abstract Syntax Notation 1
(ASN.1),’’ CCITT Blue Book, Fascicle VIII.4, International Telecommunications
Union, 1988. Also published by ISO as ISO 8825.)

– OM_CANONICAL_BER

This value is specified in ASN.1 as
{joint-iso-ccitt(2) mhs-motis(6) group(6) white(1) api(2) om(4)
canonical-ber(4)}

This value indicates the canonical BER. (See Clause 8.7 of Recommendation
X.509, ′′The Directory: Authentication Framework,’’ CCITT Blue Book,
International Telecommunications Union, 1988. Also published by ISO as ISO
9594-8.)

Note: In general, an instance of this class cannot appear as a value whose syntax
is Object (C) if C is not OM_C_ENCODING, even if the class of the object
encoded is C.

OM_C_EXTERNAL

An instance of class OM_C_EXTERNAL is a data value and one or more information
items that describe the data value and identify its data type. This class corresponds
to ASN.1’s External type, and thus the class and the attributes specific to it are
described indirectly in the specification of ASN.1. (See Clause 34 of
Recommendation X.208, ′′Specification of Abstract Syntax Notation 1 (ASN.1),’’
CCITT Blue Book, Fascicle VIII.4, International Telecommunications Union, 1988.
Also published by ISO as ISO 8824.)

This class has the attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes specific to this class that are listed in Table 65.

Table 65. Attributes Specific to OM_C_EXTERNAL

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_ ARBITRARY_
ENCODING

String(OM_S_
BIT_STRING)

— 0 or 11 —

OM_ASN1_ ENCODING String(OM_S_ ENCODING_
STRING)

— 0 or 11 —

OM_DATA_ VALUE_
DESCRIPTOR

String(OM_S_ OBJECT_
DESCRIPTOR_ STRING)

— 0 or 1 —

OM_DIRECT_ REFERENCE String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 0 or 1 —

OM_INDIRECT_ REFERENCE OM_S_ INTEGER — 0 or 1 —

256 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Table 65. Attributes Specific to OM_C_EXTERNAL (continued)

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_OCTET_ ALIGNED_
ENCODING

String(OM_S_ OCTET_
STRING)

— 0 or 11 —

1 Only one of these three attributes is present.

v OM_ARBITRARY_ENCODING

This attribute is a representation of the data value as a bit string.

v OM_ASN1_ENCODING

The data value. This attribute can be present only if the data type is an ASN.1
type.

If this attribute value’s syntax is an Object syntax, the data value’s representation
is that produced by om_encode() when its Object parameter is the attribute
value and its Rules parameter is ber. Thus, the object’s class must be one to
which om_encode() applies.

v OM_DATA_VALUE_DESCRIPTOR

This attribute contains a description of the data value.

v OM_DIRECT_REFERENCE

This attribute contains a direct reference to the data type.

v OM_INDIRECT_REFERENCE

This attribute contains an indirect reference to the data type.

v OM_OCTET_ALIGNED_ENCODING

This attribute contains a representation of the data value as an octet string.

OM_C_OBJECT

The class OM_C_OBJECT represents information objects of any variety. This
abstract class is distinguished by the fact that it has no superclass and that all other
classes are its subclasses.

The attribute specific to this class is listed in Table 66.

Table 66. Attribute Specific to OM_C_OBJECT

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_CLASS String(OM_S_ OBJECT_
IDENTIFIER_ STRING)

— 1 —

v OM_CLASS

This attribute identifies the object’s class.

Chapter 14. Object Management Package 257

258 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Appendix. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1990, 1999 259

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between
us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form

260 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1990, 1999. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AIX
IBM

DFS is a trademark of Transarc Corporation, in the United States, or other
countries, or both.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are
registered trademarks of the Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix. Notices 261

262 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

Index

A
abstract OM class 100
abstract service 181
Abstract Service Definition 129
acl2.c 159
acl2.h

header file 174
administrative limit exceeded 212
API 182, 189
approximate match 207
ASN.1 256
attribute 193, 194

adding 203
error 194
list 194
matching rules 128
multi-valued 128
OM syntax 108, 109, 128
OM type 248
syntax template 108
type 84, 193, 220, 237, 241, 249
value 108, 193, 242
value length 128

Attribute Value Assertion 195
automatic connection management 126
automatic continuation 199
AVA 195

B
BER 186
Boolean 241, 249

C
C

naming conventions 87
canonical-ber 255
CCITT 256
chaining prohibited 198
character set

local 242
character string 234, 247, 250

length 250
type 236

class
abstract OM 100
concrete OM 100
OM 255
OM hierarchy 99
OM inheritance 99
OM object 99

closure
package 105

common results 195
communications error 196
compare result 196
concrete OM class 100

context 127, 181, 197
common parameters 127
local controls 127
service controls 127

continuation reference 200

D
default

context 185, 199
directory session 184
session 184

descriptor list 89
initializing 111
OM_descriptor data structure 110
representation of public object 89

directory 137
automatic connection management 126
building a distinguished name 91
class definitions 128
connection management functions 123, 125
context 127
modify operations 136
modifying entries 137
operation functions 129
read operations 129
reading an entry 130
search operations 136
selected attribute types 128
selected object classes 128
service functions 123
service package 128
session 125

distinguished name 91
as a public object 91

DMD 199
DSA

address 193, 217
name 217

E
elements 234
elements, string 247
encoding 248
entries 213, 214
entry

modification 202, 203
Enum(*) 233
enumerated type 108
enumeration 242
errors

directory service 194, 196, 208, 211, 215, 217
extensions 205
external type 256

F
facsimile telephone number 228
filter 206

© Copyright IBM Corp. 1990, 1999 263

filter 206 (continued)
item 206
item type 207
type 206

final substring 208
from entry 202, 209

H
header files

XOM API 119
high priority 198

I
identifier 205
information type 202
initial substring 208
integers 248
intermediate data type 240
ISO 256
item 206

L
length, string 234
length-unspecified 247
limit problem 212
list

info 208, 210
local scope 198
low priority 198

M
matched 196
max outstanding operations 188
medium priority 198
metacharacters 27

in CDS 27
in DNS 27
in GDS 27

modification type 203

N
name 210

maximum sizes 30
resolution phase 211
valid characters 26

naming
rules 26

network addresses 213
no limit exceeded 212

O
object

class hierarchy 99
encoding OM 255
entries 130

object (continued)
example of internal structure 84
identifier 86
management 83
name 194, 196, 202, 209, 214
OM class inheritance 99
private 244, 249
public 89, 241, 244, 249
representation of public object 89
selected attribute types 128
selected classes 128
subordinate 112, 209
type 109
value 84

OM
attribute types 84, 86
classes 86, 99, 100, 102, 103, 189, 255
objects 83
syntax 84
value syntax 128

operation
directory service 181
not started 198, 212
progress 198, 200, 211

optional functionality 199, 217
OSI

application contexts 226
application entity 193, 225
communications 193
presentation address 225

P
package 104

basic directory contents 105, 124
closure 105
directory service 104, 124
ds_version 105
GDS 104, 124
MHS directory user 104, 124
negotiating features 105
service 189
strong authentication 104
XDS 182

partial outcome qualifier 209, 212, 214
position

string 234
postal address 228
prefer chaining 198
presentation

address 213
selector 213

priority 198
private object 98
public object 89

client-generated 95
comparison with private objects 98
creating 131
representation by using descriptor list 89
service-generated 95

264 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

R
RDN 200, 201

resolved 200
read result 134, 213
referral 213
relative distinguished name 209
relative name 214
requestor 217
return codes 246

service interface 252
rules

OM object encoding 256

S
search

criterion 229
guide 230
info 214

selected attribute types 220
service

interface data types 110
package 189

service-generated descriptor 242
session 181

default directory 184
directory 125
multiple concurrent 126
selector 213

size limit 199
standards 181, 190
status

directory 188
storage management 106
string 234, 249

length 234, 247
position 234
type 109

string(*) 234
strings

in directory service 234
strong authentication package 104
subclasses 226
substrings 207
superclasses 226

OM 227
syntax

template 108, 233

T
target object 200
teletex terminal identifier 230
telex number 230
time limit 199

exceeded 199, 212
types

and values 202

V
value

OM attribute 242
OM data 249

W
workspace 83, 106, 250

X
XDS 79, 123

API 123, 124, 125, 133, 137
definitions 126
directory read operations 129
examples 80
interface class definitions 126
interface management functions 123
logging 80
management functions 123

XOM 83
API 83, 99, 111, 114, 130
header files 119
macros 119

xom.h header file 119

Index 265

266 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide — Directory Services

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

