IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

Application Development Guide
—Core Components

<|ll

IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

Application Development Guide
—Core Components

<|ll

Note
FBefore using this document, read the general information under EAppendix Natices” an page 711,

First Edition (August 1999)

This edition applies to Version 3.1 of IBM Distributed Computing Environment for AIX and Solaris and to all
subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation
Department VLXA

11400 Burnet Road

Austin, Texas

78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:
Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: "Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate lll, as applicable or in the equivalent clause of any other applicable Federal government
regulations.”

© Copyright International Business Machines Corporation 1990, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . XVii
Tables Xix
Preface XXi
Audience. . XXi
Applicability . XXi
Purpose . . XXi
Document Usage. .OXXi
How This Book is Organlzed . XXii
Related Documents. . . . XXiii
Typographic and Keying Convent|0ns . . XXiii
Terminology Used in This Book . . XXV
Pathnames of Directories and Files in DCE Documentatlon . . XXV
Part 1. DCE Facilities 1
Chapter 1. Introduction to DCE Facilities 3
Chapter 2. Environment Variables 5
Audit Variables 5
DCEAUDITON. 6
DCEAUDITOFF . 7
DCEAUDITFILTERON . 8
DCEAUDITTRAILSIZE. 9
DCEAUDITWRAP . . . 10
DCEAUDMAXERASIZE . 11
SECDAUDITWRAP . 12
CONFIGURATION . 13
DCELOCAL. . 14
DCE_CFG_LOG_MAX. 15
DCE_CFG_LOGPATH . 16
Event Management Service . 17
EMS_QUEUE_SIZE . 18
EMS_EVENTLOG_DIR 19
IDL. . . . 20
IDL_GEN AUX FILES 21
IDL_GEN_INTF_DATA. 22
NLS/SECURITY . . . 23
DCE_USE_ NONPORTABLE NAMES 24
DCE_USE_WCHAR_NAMES . 25
RPC 26
DCERPCCHARTRANS 27
RPC_CN_AUTH_SUBTYPE. 28
RPC_DEFAULT_ENTRY . . 29
RPC_DEFAULT_ENTRY_SYNTAX . 30
RPC_DISABLE_EP_RESOLVE_V4 . . . 31
RPC_DISABLE_SINGLE_THREAD (AIX OnIy) 32
RPC_EXTRA_INTERFACE . . . 33
RPC_ITIMER_SIGNAL (AIX Only) 34
RPC_MAX_UDP_PACKET_SIZE . 35
RPC_RESTRICTED_PORTS 36
RPC_SUPPORTED_PROTSEQS. 37

© Copyright IBM Corp. 1990, 1999

RPC_UNSUPPORTED_NETADDRS 38

RPC_UNSUPPORTED_NETIFS 39
SECURITY4
KRB5CCNAME . . . ¥
BIND_PE_SITE | TRY_ PE SITE Y 24
Chapter 3. DCE Host Services 43
Types of Applications . . . e e e e 43
Issues of Distributed Applrcatlons v
Managing a Host’'s EndpointMap. 44
Binding to dced’s Services . . . L)
Host Service Naming in Appllcatrons 4 1S3
The dced Program Maintains Entry Lists 47
Reading All of a Host Service'sData 49
Managing Individual dced Entries. 50
Managing Hostdata on a Remote Host. 53
Kinds of Hostdata Stored. 53
Adding New Hostdata . b4
Modifying Hostdata b5
Running Programs Automatrcally When Hostdata Changes 55
Controlling Servers Remotely57
Two States of Server Management Conflgurat|on and Executron b8
Configuring Servers. . . e e e e 58
Starting and Stopping Servers o e 060
Enabling and Disabling Services of a Server N 4
Validating the Security Server 62
Managing ServerKey Tables 63
Sample dced Applicaton. 65
Running the Program . 65
greet dced.idl 066
greet_dced_serverc .. 067
greet_dced_managerc . 69
greet_dced clientc. 69
utibe o L L L L L L L L L. T0
utith T 4
greet_dced. |nstaII s
greet dced.delete T2
Makefile T2
Chapter 4. DCE Application Messaging Y o)
DCE and Messages. . . . Y £
DCE Messaging Interface Usage e (6
A Simple DCE Messaging Example 1716
The DCE Message Interface and sams Input and Output F|Ies I 4°]
DCE Messaging Routines 8
Message Output Routines 82
Message Retrieval Routines. 8
Message Table Routines . 85
DCE XPG4 Routines . 86
Chapter 5. Using the DCE SerV|ceab|I|ty Appllcatlon Interface 89
Overview. e < 1)
How Programs Use SerV|ceab|I|ty . [0
Simple Serviceability Interface Tutorial 90
Serviceability Input and Output Files. 99
Integrating Serviceability intoa Server 100

iV IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Serviceability Strategy . . . 100
Components and Subcomponents . 101
Identifying Event Points . 101
Application Use of Serviceability . . 102
Basic Server Calls . . 102
Extended Format Notation for Message Text . 105
Specifying Message Severity . 106
How to Route Messages 107
Table of Message Processing Specmers . 111
Logging and Log Reading . 112
Message Action Attributes . . 113
Suppressing the Serviceability Message Prolog . 113
Serviceability Use of the _ FILE__ Macro . 114
Forcing Use of the In-Memory Message Table . . 114
Dynamically Filtering Messages Before Output . . 114
Using Serviceability for Debug Messages. . 117
Performance Costs of Serviceability Debugging . 121
Using the Remote Serviceability Interface. . 122
Chapter 6. The DCE Backing Store . 129
Data in a Backing Store . . . 129
Using a Backing Store. . 129
Header for Data . . 129
The User Interface . . 130
The IDL Encoding Serwces . 131
Encoding and Decoding in the Backmg Store . 131
Conformant Arrays Not Allowed . 131
The Backing Store Routines. . 132
Opening a Backing Store. . 132
Closing a Backing Store . . 133
Storing or Retrieving Data . 133
Freeing Data . . . 133
Making or Retrieving Headers . . 134
Performing Iteration . . 134
Deleting Items from a Backing Store . 134
Locking and Unlocking a Backing Store . 135
Example of Backing Store Use. . 135
Part 2. DCE Threads . .139
Chapter 7. Introduction to Multithreaded Programming . 141
Advantages of Using Threads . . . 141
Software Models for Multithreaded Programmlng . 141
Boss/Worker Model . . 142
Work Crew Model . 142
Pipelining Model . . 142
Combinations of Models . . 143
Potential Disadvantages of Mulnthreaded Programmlng . 143
Chapter 8. Thread Concepts and Operauons(AIX Only) . 145
Thread Operations . .o . o . 145
Starting a Thread. . 146
Terminating a Thread . . . 146
Waiting for a Thread to Termlnate . 146
Deleting a Thread . 147
Routines That are Not Portable . 147
Contents V

Attributes Objects . . . T 4

Creating an Attributes Object e
Deleting an Attributes Object148
Thread Attributes. .148
Mutex Attributes . . . N 1<)
Condition Variable Attrlbutes T 110
Synchronization Objects N 1510
Mutexes . . . I £ 510
Condition Varrables Co e £
Other Synchronization Methods 1Y
One-Time Initialization Routines154
Thread-Specific Data .154
Thread Cancellation. .155
Thread Scheduling .156
Chapter 9. Programming with Threads161
POSIX.INotes161
Current Limitations . . . A K X §
File Descriptor Inheritance after fork and exec System CaIIs 161
UsingSignals .. .162
Types of Signals . . . 622
DCE Threads Signal Handllng eles
Alternatives to Using Signals165
Nonthreaded Libraries. . . C e166
Working with Nonthreaded Software . Ko 4
Making Nonthreaded Code Thread-Reentrant167
Avoiding Nonreentrant Software1l67
Global Lock. . . . e (Y4
Thread-Specific Storage P 1]
Avoiding Priority Inversion .le8
Using Synchronization Objects.168
Race Conditions .169
Deadlocks . . . e X 1
Signaling a Condition Varlable e X 1
Chapter 10. Using the DCE Threads Exception-Returning Interface ... 171
Syntax forC . . . T 4
Invoking the Except|on Returnlng Interface <
Operations on Exceptions . . . N S
Declaring and Initializing an Exceptlon Object T <
Raising an Exception . . . P Iy
Defining a Region of Code over WhICh Exceptlons Are Caught . £
Catching a Particular Exception or All Exceptions.174
Defining Epilogue Actions for a Block 175
Importing a System-Defined Error Status into the Program as an Except|on . 175
Rules and Conventions for Modular Use of Exceptions.175
DCE Threads Exceptions and Definitons177
Chapter 11. DCE Threads Example179
Details of Program Logic and Implementation179
DCE Threads Example Body180
Threads Example -- Searching for ane Numbers T ¥
Part 3. DCE Remote Procedure Call185
Chapter 12. Developing a Simple RPC Application N Y4

Vi IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The Remote Procedure Call Model .
RPC Application Code .
Stubs . .
The RPC Runtlme
RPC Application Components That Work Together
Overview of DCE RPC Development Tasks .
Writing an Interface Definition .
RPC Interfaces That Represent Serwces
Generating an Interface UUID .
Naming the Interface .
Specifying Interface Attributes .
Import Declarations .
Constant Declarations .
Type Declarations
Operation Declarations
Running the IDL Compiler
Writing the Client Code
Writing the Server Code .
The greet_server.c Source Code
The greet_manager.c Source Code .
Building the greet Programs.
Running the greet Programs

Chapter 13. RPC Fundamentals .
Universal Unique Identifiers .
Communications Protocols .
Binding Information . .
Server Binding Informatlon .
Defining a Compatible Server .
How Clients Obtain Server Binding Informat|on
Client Binding Information for Servers .
Endpoints
Well-Known Endpomts
Dynamic Endpoints .
Execution Semantics
Communications Failures.
Scaling Applications.
RPC Objects

Chapter 14. Basic RPC Routine Usage
Overview of the RPC Routines.
Basic Operations of RPC Commumcatlons
Basic Operations of the NSI. .
Basic Operations of Authenticated RPCs .
Server Initialization Using the RPC Routines
Assigning Types to Objects .
Registering Interfaces .
Selecting RPC Protocol Sequences .
Obtaining a List of Server Binding Handles .
Registering Endpoints .
Making Binding Information AcceSS|bIe to Cllents
Listening for Calls
How Clients Find Servers
Searching a Namespace .
Using String Bindings to Obtain B|nd|ng Informanon

Contents

. 187
. 188
. 189
. 190
. 191
. 192
. 193
. 194
. 195
. 196
. 196
. 197
. 197
. 197
. 198
. 199
. 200
. 201
. 201
. 203
. 204
. 204

. 207
. 208
. 208
. 209
. 210
. 211
. 212
. 213
. 214
. 214
. 215
. 216
. 217
. 217
. 218

. 221
. 221
. 221
. 221
. 222
. 223
. 223
. 225
. 225
. 226
. 226
. 227
. 229
. 229
. 229
. 231

Vii

Chapter 15. RPC and Other DCE Components233

Threads of Execution in RPC Applicatons233
Remote Procedure Call Threads235
Cancels . . . 22 1)
Multithreaded RPC Appllcatlons S Co. ... 237

Security and RPC: Using Authenticated Remote Procedure Calls239
Authentication. .240
Authorization . . . 2 24
Authenticated RPC Routrnes .o 2
Using RPC Within a Single Thread (AIX Only) e eo245

Directory Services and RPC: Using the Namespace.246
NSI Directory Service Entries . . . 22)
Searching the Namespace for Binding Informatlon258
Strategies for Using Directory Service Entries265
The Service Model for Defining Servers268
The Resource Model for Defining Servers272

Chapter 16. Developing Applications that Use Distributed Objects 279

IDL and the Class Hierarchy of a DCE Application279
Specifying a C++ Class via an IDL Interface.279
IDL-Generated Classes as Part of Your Hierarchy.281

Servers that Manage Distributed Objects282
Initializing Object-Oriented Servers282
Implementing Distributed-Dynamic Objects283
Implementing Static Member Functions285
When Function Parameters Are Remote Objects287
Naming Objects L o1

Clients That Use Distributed Objects e e e e s 294
Creating Remote-Dynamic Objects29
Creating Client-Local Objects . . . Co.296
Location Transparency of Local and Remote ObJects Ce e 297
Finding Known Remote Objects300

Multiple Interfaces and Interface Inheritance.302
Implementing Multiple Managers . . . T (015
Using Objects that Support Multiple Interfaces e 04

Passing C++ Objects as DCE RPC Parameters310
Representaton31
Delegation . . . G J

Integrating C and C++ Clrents and Servers e e315
Writing a C++ Client for C Servers315
Writing a C Client for C++ Servers316

Chapter 17. Writing Internationalized RPC Applications 0319

Character Sets, Code Sets, and Code Set Conversion320

Remote Procedure Call with Character/Code Set Interoperabrlrty320

Building an Application for Character and Code Set Interoperability 324
Writing the Interface Definition File324
Writing the Attribute Configuration File326
Writing the Stub Support Routines327
Writing the ServerCode .33
Writing the ClientCode .337
Writing the Evaluation Routine.34

Chapter 18. Topics in RPC Application Development31

Memory Management e31
Using the Memory Management Defaults e Loy

Viii IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Using rpc_ss_allocate and rpc_ss_free.

Using Your Own Allocation and Free Routines .

Using Thread Handles in Memory Management
Guidelines for Error Handling

Exceptions .

The fault_status Attrlbute

The comm_status Attribute .

Determining Which Method to Use for Handlrng Exceptrons .

Examples of Error Handling .
Context Handles . .
Context Handles in the Interface .
Context Handles in a Server Manager .
Context Rundown .
Binding and Security Informatlon .
Pipes . .
Input Pipes .
Output Pipes
Pipe Summary.
Nested Calls and CaIIbacks
Routing Remote Procedure Calls .
Obtaining an Endpoint .
Buffering Call Requests
Queuing Incoming Calls .
Selecting a Manager

Creating Portable Data via the IDL Encodrng Servrces .

Memory Management .

Buffering Styles .

IDL Encoding Services Handles
Programming Example.

Performing Multiple Operations on a Slngle Handle .

Determining the Identity of an Encoding

Chapter 19. Interface Definition Language
The Interface Definition Language File .
Syntax Notation Conventions
Typography .
Special Symbols .
IDL Lexical Elements .
Identifiers
Keywords
Punctuation Characters
Whitespace .
Case Sensitivity .
IDL Versus C .
Declarations
Data Types .
Attributes.

Interface Definition Structure
Interface Definition Header .
Interface Definition Body .

Overview of IDL Attributes

Interface Definition Header Attrrbutes
The uuid Attribute
The version Attribute
The endpoint Attribute .

The exceptions Attribute .

. 352
. 353
. 354
. 355
. 355
. 356
. 357
. 357
. 358
. 359
. 360
. 361
. 368
. 369
. 370
. 371
. 373
. 375
. 376
. 377
. 379
. 383
. 384
. 386
. 387
. 388
. 388
. 389
. 390
. 395
. 395

. 397
. 397
. 397
. 397
. 397
. 398
. 398
. 398
. 398
. 398
. 399
. 399
. 399
. 399
. 400
. 400
. 400
. 400
. 401
. 402
. 402
. 403
. 404
. 404

Contents

iX

X

The pointer_default Attribute
The local Attribute

Rules for Using Interface Deflnltlon Header Attrlbutes

Examples of Interface Definition Header Attributes
Import Declarations .
Constant Declarations .
Integer Constants
Boolean Constants .
Character Constants
String Constants .
NULL Constants .
Type Declarations
Type Attributes
Base Type Specifiers .
Constructed Type Specifiers.
Predefined Type Specifiers .
Type Declarator .
Operation Declarations
Operation Attributes.
Operation Attributes: Executlon Semantlcs
Operation Attributes: Memory Management .
Parameter Declarations
Basic Data Types
Integer Types .
Floating-Point Types
The char Type.
The boolean Type
The byte Type.
The void Type .
The handle_t Type .
The error_status_t Type .
International Characters .
Constructed Data Types .
Structures .
Unions
Enumeration
Pipes .
Arrays.
Strings
Pointers .
Customized Handles
Context Handles .
IDL Support for C++
The idl-generated Class Hrerarchy
The Interface Inheritance Operator .
The static Keyword for Operations

The C++ Reference Operator (&) on Parameters .

Functions Generated by IDL
Associating a Data Type with a Transmltted Type
IDL Grammar Synopsis

Chapter 20. Attribute Configuration Language
Syntax Notation Conventions .o
Attribute Configuration File .

Naming the ACF .

Compiling the ACF .

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

. 405
. 405
. 406
. 406
. 406
. 407
. 407
. 407
. 408
. 408
. 408
. 408
. 408
. 409
. 409
. 410
. 410
. 410
. 411
. 411
. 412
. 412
. 413
. 413
. 414
. 414
. 414
. 414
. 415
. 415
. 415
. 415
. 416
. 416
. 417
. 420
. 420
. 423
. 429
. 430
. 443
. 444
. 449
. 450
. 451
. 452
. 452
. 452
. 456
. 458

. 465
. 465
. 465
. 465
. 465

ACF Features. .465

Structure. . . e e e e e466
ACF Interface Header e e e e e46
ACF Interface Body. 467
The include Statement and the C++ Attrlbutes cstub and sstub 467
The auto_handle Attribute468
The explicit_handle Attribute470
The implicit_handle Attribute470
The client_memory Attribute. . . . T
The comm_status and fault_status Attrlbutes e ¥
The code and nocode Attributes475
The represent_as Attribute476
The enable_allocate Attribute478
The heap Attribute . . . e e eo .478
The extern_exceptions Attrlbute e 4
The encode and decode Attributes480
The cs_char Attribute 2 ks Y2
The cs_stag, cs_drtag, and cs rtag Attrrbutes . e486
The cs_tag_rtn Attribute .487
The binding_callout Attribute 489
The C++ Attributes cxx_new, cxx_ statlc CXX Iookup, and CXX delegate. .. 491

Summary of Attributes. .493

Attribute Configuration Language.494

Part 4. DCE Distributed Time Service497

Chapter 21. Introduction to the Distributed Time Service API Coe o 499

DTS Time Representation .49
Absolute Time Representation.49
Relative Time Representation501

Time Structures .b03
The utc Structure. .503
The tm Structure. .504
The timespec Structure .bh04
The reltimespec Structure504

DTS APl Header Files. .b05

DTS API Routine Functions.5b05

Chapter 22. Time-Provider Interface509

General TPI Control Flow .509
ContactProvider Procedure - i
ServerRequestProviderTime Procedure e o 74

Time-Provider Process IDLFilebl3

Initializing the Time-Provider Process515

Time-Provider Algorithm .bl7

DTS Synchronization Algorithm517

Running the Time-Provider Process.b518

Sources of Additional Information.b518

Chapter 23. DTS API Routines Programming Example519

Part 5. DCE Security Service521

Chapter 24. Overview of Securityb23

About Authenticated RPC .b523

Contents Xi

About the GSSAPIbz3

UNIX System Security and DCE Secunty e e . eb24a
What Authentication and Authorization Meanb24
Authentication, Authorization, and Data Protection in Bnef. .«52
Summary of DCE Security Services and Facilites.527
Interfaces to the Security Server5b27
Interfaces to the Login Facility« .«b29
Interfaces to the Extended Registry Attnbute FaC|I|tyb29
Interfaces to the Extended Privilege Attribute Facility529
Interfaces to the Key Management Facility529
Interfaces to the ID Map Facility N V2A®)
Interfaces to the Access Control List FaC|I|ty53
DCE Implementations of UNIX System Program Interfaces530
Interfaces to the Password Management Facility530
Relationships Between the DCE Security Service and DCE Appllcat|ons . . .530
DTS, the Cell Namespace, and Security531
DTS and Security . . X
The Cell Namespace and the Secunty Namespace53
Chapter 25. Authentication e e e53
Background Concepts .533
Principals . . . O <
The Shared-Secret Authent|cat|on Protocol e53
Cellsand Realms .b34
Protection Levels. . . . T e 7
Data Encryption Mechanlsms .o536
A Walkthrough of Shared-Secret Authent|cat|on Protocolsb36
AuthenticatingaUser .b37
Authenticating an Applicaton5b4
Intercell Authentication. .561
KDS Surrogates (o X A
Intercell Authentication by Trust Peers T 16 Y24
Chapter 26. Authorizaton .565
DCE Authorization . . . e e e565
Object Types and ACL Types e e e e565
ACL Manager Types « .« « .« .«bev
Access Control Lists .567
ACL Entries. .be7
Access Checking. . . Y
Examples of ACL Checklng S Y £
Name-Based Authorization .577
Chapter 27. GSSAPI Credentialsb79
Using Default Credentials .b79
Initiating a Security Context.580
Accepting a Security Context580
Creating New Credential Handles.580
Initiating a Security Context with New Credent|al Handles580
Accepting a Security Context Using New Credential Handles581
Delegating Credentials.58
Initiating a Security Context to Delegate Credent|als58
Accepting a Security Context with Delegated Credentials581
Chapter 28. The Extended Privilege Attribute API583
Identities of Principals in Delegation.583

Xil IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

ACL Entry Types for Delegation
ACL Checking for Delegation
Calls to Establish Delegation Chains
Types of Delegation.
Target and Delegate Restrlctlons
Optional and Required Restrictions .
Compatibility Between Version 1.1 and Pre- VerS|on 1 1 Servers and Cllents
Calls to Extract Privilege Attribute Information .
Disabling Delegation
Setting Extended Attributes .

Chapter 29. The Registry API

Binding to a Registry Site

The Registry Database
Creating and Maintaining PGO Items
Creating and Maintaining Accounts .
Registry Properties and Policies .
Routines to Return UNIX Structures.
Miscellaneous Registry Routines .

Chapter 30. The Extended Attribute API
The ERA API .
Attribute Schema. .
Attribute Types and Instances .
Attribute Type Components .
Calls to Manipulate Schema Entries.
The sec_attr_schema_entry_t Data Type .
Creating and Managing Schema Entries .
Reading Schema Entries .
Reading the ACL Manager Types
Calls to Manipulate Attribute Instances.
The sec_attr_t Data Type. .
Creating and Managing Attribute Instances .
Reading Attribute Instances .
The Attribute Trigger Facility. .
Defining an Attribute Trlgger/Attnbute Assomauon
Trigger Binding
Access Control on Attrlbutes W|th Tnggers
Calls that Access Attribute Triggers . .
Using sec_attr_trig_cursor_t with sec_attr trlg query() .
The sec_rgy_attr_trig_query() and sec_rgy_attr trlg update() Calls
The priv_attr_triq_query() Call .
The DCE Attribute API.
Macros to Aid Extended Attribute Programmmg
Macros to Access Binding Fields .
Macros to Access Schema Entry Fields
Macros to Access Attribute Instance Fields
Binding Data Structure Size Calculation Macros
Schema Entry Data Structure Size Calculation Macros .
Attribute Instance Data Structure Size Calculation Macros
Binding Semantic Check Macros .
Schema Entry Semantic Check Macros
Attribute Instance Semantic Check Macros .
Schema Entry Flag Set and Unset Macros
Schema Trigger Entry Flag Check Macros
Utilities to Use with Extended Attribute Calls.

Contents

. 584
. 585
. 585
. 585
. 586
. 587
. 588
. 588
. 590
. 590

. 591
. 591
. 592
. 593
. 594
. 595
. 596
. 596

. 597
. 597
. 598
. 598
. 598
. 603
. 603
. 604
. 606
. 607
. 607
. 607
. 608
. 609
. 611
. 612
. 613
. 614
. 614
. 615
. 615
. 615
. 616
. 617
. 617
. 618
. 619
. 621
. 622
. 622
. 623
. 624
. 624
. 625
. 626
. 626

Xiii

Xiv

Chapter 31. The Login API .
Establishing Login Contexts .
Multithreaded Access to Login Context
Validating the Login Context and Certifying the Secunty Server
Validating the Login Context Without Certifying the Security Server
Example of a System Login Program e
Context Inheritance . .
The Initial Context
Private Contexts . .
Handling Expired Certificates of Identrty
Importing and Exporting Contexts.
Changing a Groupset . .
Miscellaneous Login API Functrons .
Getting the Current Context . .o
Getting Information from a Login Context
Getting Password and Group Information for Local Process Identrtres
Releasing and Purging a Context.

Chapter 32. The Key Management API
Retrieving a Key . .o
Changing a Key .

Automatic Key Management

Deleting Expired Keys .

Deleting a Compromised Key .

Chapter 33. The Access Control List APIs
The Client-Side API .

Binding to an ACL

ACL Editors and Browsers .

Testing Access

Errors .

The Server-Side API .

The ACL Manager Interface . .
Guidelines for Constructing ACL Managers .
Extended Naming of Protected Objects

The ACL Network Interface .

The ACL Library .

Chapter 34. The ID Map API

Chapter 35. DCE Audit Service
Features of the DCE Audit Service .
Components of the DCE Audit Service .
DCE Audit Service Concepts

Audit Clients .

Code Paint .

Events

Event Class.

Event Class Number

Filters . .

Audit Records .

Audit Trail
Administration and Programmrng in DCE Audrt

Programmer Tasks .

Administrator Tasks .

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

. 627
. 627
. 628
. 628
. 628
. 629
. 629
. 630
. 630
. 630
. 631
. 631
. 632
. 632
. 632
. 632
. 632

. 633
. 633
. 634
. 635
. 635
. 635

. 637
. 638
. 638
. 638
. 639
. 639
. 640
. 640
. 641
. 642
. 642
. 644

. 649

. 651
. 651
. 651
. 651
. 651
. 652
. 652
. 654
. 654
. 654
. 655
. 655
. 655
. 656
. 657

Chapter 36. Using the Audit API Functions . e661

Adding Audit Capability to Distributed Applications66l
Opening the Audit Trail .661
Initializing the Audit Records662
Adding Event-Specific Information663
Committing an Audit Record.664
Closing an Audit Trail«0664

Writing Audit Trail Analysis and Examlnatlon Tools064
Opening an Audit Trail for Reading665
Reading the Desired Audit Records into a Buffer665
Transforming the Audit Record into Readable Text 666
Discarding the Audit Record.666
Closing the Audit Trail .666

Chapter 37. The Password ManagementAPI667

The Client-Side API.«068

The Password Management Network Interface . e669

Chapter 38. The DCE Certification Service Y4

Who Needs to Use the Certification API?671

Overview of DCE Certification672
Use of PublicKeys .672
Contents of Certificates . . . e0674
Component Parts of the DCE Certlflcat|0n API675
High Level CertificationAPI.676
Policy Models N YA 4

Implementing and Reglstenng a Cryptograph|c Module. N Y 4°)
Contents of a Cryptographic Module. . . . e YA
Accessing a Registered Cryptographic Module e Y4
Signature Algorithms Provided by DCE Certification 680
Registering a Cryptographic Module.680

Implementing and Registering a Policy Module.681
Policy Modules Provided with DCE Certification681

The Low Level Certificate Manipulaton APl682
Policy Module Implementaton.683
Accessing a Registered Policy Module.683
Registering a Policy Module.684
Registering the module .685

Part6. EMSand SNMP687

Chapter 39. DCE Event Management Service689

Functional Highlights .689

Functional Definiton .69
Event Flow Descripton .69
Event Type Definiton .691
Filtering . . . N S o K

User Interface ConS|derat|ons N 1o 7]
Writing Consumers . . . N 11

Using the Sample Supplier and Consumer T 612 19)
EnablingEMS.697
Compiling . . . 1o X 4

Event Consumer Template O o 12

Chapter 40. Event Management Using the Direct Supplier and Consumer
Model09

Contents XV

Chapter 41. Simple Network Management Protocol (SNMP) 703

DCE SNMP Subagent. .703

Monitoring Configured DCE Server Status Changes.703

Monitoring DCE Serviceability Messages703

Using the SNMPTRAP.TBL File704

DCE SNMP Management InformationBase704

DCE MIB Definitons .707

Part 7. Appendixes7T09
Appendix. Notices71

Trademarks. .713

Index715

XVi IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Figures

P

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.

PoooNoOMLONE

The dced Entry Lists

Structure of an Entry

Accessing Hostdata .

sams and DCE Messages .
Serviceability and DCE Applrcatrons
Work Crew Model S
Pipelining Model .

Thread State Transitions .

Only One Thread Can Lock a Mutex

Thread A Waits on Condition Ready, Then Wakes Up and Proceeds .

Thread B Signals Condition Ready

Flow with SCHED_FIFO Scheduling .

Flow with SCHED_RR Scheduling

Flow with SCHED_OTHER Scheduling .

The Parts of an RPC Application .

Marshalling and Unmarshalling Between ASCII and EBCDIC Data
Interrelationships During a Remote Procedure Call :
Generating Stubs. .

Building a Simple Client and Server

Role of RPC Interfaces.

A Binding. .

Information Used to Identlfy a Compatlble Server .

Client Binding Information Resulting from a Remote Procedure CaII .

Manager Types

Exporting Server Binding Informatron

Importing Server Binding Information

Local Application Thread During a Procedure CaII

Server Application Thread and Multiple Call Threads .

Execution Phases of an RPC Thread

Concurrent Call Threads Executing in Shared Address Space
Phases of a Cancel in an RPC Thread .

A Multithreaded RPC Applrcatron Actrng as Both Server and Clrent
NSI Attributes . e
Parts of a Global Name

Possible Information in a Server Entry

Possible Mappings of a Group .

Possible Mappings of a Profile .

The import_next, lookup_next Search Algorrthm ina Srngle Entry
Priorities Assigned on Proximity of Members. .
Service Model: Interchangeable Instances on Two Hosts .
Service Model: Interchangeable Instances on One Host

Service Model: Distinct Instances on One Host .

Resource Model: A System-Specific Application.

Resource Model: A Single Server Entry for Each Server

Resource Model: A Separate Server Entry for Each Object
Servers Need the Client Stub to Access Client-Local Objects.
Clients Use the Server Stub .

Multiple Interfaces and Inheritance

Clients Do Not Know About Server Implementatrons

Phases of a Nested RPC Call .

Phases of a Nested RPC Call to Client Address Space

Steps in Routing Remote Procedure Calls. .
Mapping Information and Corresponding Endpoint Map Elements .

© Copyright IBM Corp. 1990, 1999

48
48
51
80
99

. 142
. 143
. 145
. 150
. 152
. 153
. 157
. 157
. 157
. 189
. 190
. 191
. 192
. 193
. 195
. 209
. 212
. 214
. 224
. 228
. 230
. 234
. 234
. 235
. 236
. 237
. 239
. 248
. 250
. 251
. 252
. 254
. 261
. 268
. 269
. 270
. 272
. 275
. 276
. 277
. 287
. 298
. 303
. 307
. 376
. 377
. 378
. 380

XVii

XViii

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

Decisions for Looking Up an Endpoint .

A Request Buffer at Full Capacity . .
Stages of Call Routing by a Server Process
Decisions for Selecting a Manager

ISO Format for Time Displays .

Variations to the ISO Time Format

Full Syntax for a Relative Time .

Syntax for Representing a Duration .

DTS API Routines Shown by Functional Groupmg
DTS/Time-Provider RPC Calling Sequence

Shared-Secret Authentication and DCE Author|zat|on in Bnef.

DCE Security and the DCE Application Environment .

Conventions Used in Authentication Walkthrough Illustrations

Client Initiation of Private Key Acquisition .

Client Acquisition of Private Key from PKSS .

Client Acquires TGT Using Third-Party Protocol. .
Client Acquires TGT Using the DCE Version 1.0 Protocol .
Client Acquires PTGT .

Client Sets Authentication and Authorlzatlon Informanon
Client Principal Makes Application Request

Application Server Responds to Client’'s Request .
Derivation of ACL Defaults .

The sec_attr_schema_entry t Data Type)

The sec_attr_t Data Type . .

The sec_attr_bind_info_t Data Type .

ACL Program Interfaces

Protection with Extended Namlng

Event Number Formats . .

Overview of the DCE Audit Serwce . .

Use of Password Management Facility APIs .

How Public Keys Work: Part 1 .

How Public Keys Work: Part 2 .

The Essential Parts of a Certificate

Certification API Organization

A Certificate Chain

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

. 382
. 384
. 385
. 387
. 500
. 500
. 501
. 502
. 505
. 511
. 526
. 531
. 537
. 543
. 545
. 546
. 550
. 553
. 555
. 557
. 559
. 566
. 604
. 608
. 613
. 637
. 642
. 653
. 658
. 667
. 673
. 673
. 675
. 676
. 678

Tables

Pooo~NoOMwONE

API Routines for Remote Server Management .

Serviceability Message Severities .
Serviceability Message Processing Specmers
Remote Operations by Application Servers
Sample Thread Properties

DCE Threads Signal Handling .

DCE Threads Exceptions .

Basic Tasks of an RPC Appl|cat|0n

Execution Semantics for DCE RPC Calls .
Basic Runtime Routines

NSI next Operations.

Tasks of an Internationalized RPC Appllcat|on
IDL Attributes

Base Data Type SpeC|f|ers

Summary of the ACF Attributes.

Absolute Time Structures .

Relative Time Structures .

Credential Types . .

Encodings and Required Data Types

© Copyright IBM Corp. 1990, 1999

58

. 106
111
. 123
. 156
. 163
L 177
. 188
. 216
. 222
. 257
. 320
. 401
. 409
. 493
. 503
. 503
. 579
. 605

XiX

XX IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Preface

The IBM DCE Version 3.1 for AlX and Solaris: Application Development Guide
provides information on how to program the application programming interfaces
(APIs) provided for each Distributed Computing Environment (DCE) component.

The objective of this guide is to assist you in d®esigning, writing, compiling, linking,
and running distributed appligations on an AIX or Solaris operating system. It is for
use specifically with the IBM DCE products. The steps to develop a distributed
application using the services of DCE are described in progressive detail. Also
discussed are the tools, development issues, and considerations that you need to
address when developing your distributed application using DCE.

Audience
This guide is written for application programmers with AlX or Solaris operating
system and C language experience who want to develop and write applications to
run on DCE. It does not assume that you have prior knowledge of, or experience
with, designing and@writing distributed applications using the Open Software
Foundation’s (OSF) DCE services. Ideally, you should be able to perform the
following:
» Edit, browse, and copy files
* Print files
* Write, compile, link, debug, and run C programs on AlX or Solaris.
A good working knowledge and understanding of the following would also be
helpful:
» Structured programming techniques
« Computer communications over a network using transmission control protocol

(TCP) and User Datagram Protocol (UDP)

» Concepts behind a distributed application.
Some exposure to the AIX or Solaris or UNIX” operating systems is helpful but not
essential to use this guide

Applicability
This revision applies to the IBM DCE 3.1 offering and related updates. See your
software license for details.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide
consists of three books, as follows:

© Copyright IBM Corp. 1990, 1999 XXi

IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide—Core
Components

— DCE Facilities

— DCE Threads

— DCE Remote Procedure Call
— DCE Distributed Time Service
— DCE Security Service

IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Directory Services

DCE Directory Service

CDS Application Programming
XDS/XOM Application Programming
XDS/XOM Supplementary Information

Additionally, you might find the following documents helpful while developing your
distributed application using IBM DCE:

ANSI.C, American National Standard X3.159-1989
CCITT Blue Book, Fascicle VIII.4, International Telecommunications Union, 1988

Information Processing -- Programming Language C, 1SO Draft International
Standard DIS9899

How This Book is Organized

This document is organized into six main sections:

Sections 1 through 6 provide an overview of application development steps,
guidelines for using DCE features and services, and guidelines for developing
DCE applications.

Sections 7 through 11 describe multithreaded programming, thread concepts and
operations, programming with threads, a DCE thread example, and using the
exception-returning interface and the debugger.

Sections 11 through 20 describe Remote Procedure Calls (RPC), components,
runtime operations, and effects of remote operations. This section also provides
instructions on building a RPC application, including usage of the name service
interface, interface definition language, attribute configuration language, and the
network computing system. Advanced DCE RPC topics and error-handling
guidelines are also covered.

Sections 21 through 23 introduce the Distributed Time Service (DTS) API and
time-provider interface and provides a DTS API routines programming example.

Sections 24 through 38 provide an overview of security and detailed information
on security-related procedures and interfaces.

Sections 39 through 41 provide an overview and detailed information on
asynchronous event support for DCE based applications and interfaces. This
section also provides information on network management support in the TCP/IP
environment for monitoring DCE resources and services.

XXil IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

* IBM DCE Version 3.1 for AIX and Solaris: Introduction to DCE

* IBM DCE Version 3.1 for AlX and Solaris: Administration Commands Reference
* IBM DCE Version 3.1 for AIX and Solaris: Application Development Reference
* IBM DCE Version 3.1 for AIX and Solaris: Administration Guide

* IBM DCE for AlX, Version 2.2: DFS Administration Guide and Reference

* OSF DCE GDS Administration Guide and Reference

* OSF DCE/File-Access Administration Guide and Reference

* OSF DCE/File-Access User’s Guide

* IBM DCE Version 3.1 for AIX and Solaris: Problem Determination Guide

* OSF DCE Testing Guide

* OSF DCE/File-Access FVT User’s Guide

* Application Environment Specification/Distributed Computing

* OSF DCE Technical Supplement

* IBM DCE Version 3.1 for AIX: Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Iltalic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and
syntax descriptions.

[A vertical bar separates items in a list of choices.
< > Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

Vertical ellipsis points indicate that you can repeat the preceding item one
or more times.

dcelocal
The OSF variable dcelocal in this document equates to the AlX or Solaris
value /opt/dcelocal .

dceshare
The OSF variable dceshare in this document equates to the AlX or Solaris
value /opt/dcelocal .

Preface XXili

This guide uses the following keying conventions:

<Ctrl-x> or X
The notation <Ctrl-x> or “x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Enter>

The <Enter> notation refers to the key on your terminal or workstation that
is labeled with the word Enter or Return, or with a left arrow.

Entering commands
When instructed to enter a command, type the command name and then
press the <Enter> key. For example, the instruction "Enter the IDL
command” means that you type the IDL command, and then press the
<Enter> key.

Terminology Used in This Book

Although every attempt has been made to conform to Systems Application
Architecture (SAA) terminology guidelines, you must keep in mind that the DCE
technology has been developed from the UNIX environment.

Notes:

1. Throughout this document, the terms API, call, and routine all refer to the same
application programming interface that is referenced. For example,
rpc_binding_free API, rpc_binding_free call, and rpc_binding_free routine,
all refer to the same rpc_binding_free API.

2. Throughout this document, all references to individual DCE components (such
as RPC) refer to that component with the AIX or Solaris product. For example,
references to RPC, DCE RPC, and IBM DCE RPC all refer to the IBM DCE for
AIX or Solaris RPC component.

Pathnames of Directories and Files in DCE Documentation

XXIV

For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE Version 3.1 for AIX and Solaris: Administration Guide—Introduction and
the OSF DCE Testing Guide.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Part 1. DCE Facilities

© Copyright IBM Corp. 1990, 1999

2 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 1. Introduction to DCE Facilities

By now you are aware that DCE consists of a number of major components, each
of which addresses some necessary aspect of distributed computing: DCE Threads
make programs more efficient by allowing parallel execution of portions of code,
remote procedure calls (RPCs) hide network details from applications, the DCE
Time Service gives consistent time to widely scattered cells and hosts, the DCE
Security Service gives programs assurances that users and other programs are
who they say they are and that they are authorized to do what they are supposed
to do, and the DCE Directory Service helps clients find servers and other resources.
For most applications, a DCE component is not used by itself, but the components
all work together to create a very useful and powerful environment.

The more you understand DCE and its components, the more you'll realize that a
strict division by component is not always clear. The document set for DCE is
organized by component mostly for the convenience of people trying to explain and
understand DCE, but applications often contain a blend of aspects of all the
components. This is why it often seems like the information you need to do your
work is scattered across many chapters or volumes, and why advanced or unusual
features seem to be described along-side basic or typical tasks. DCE also has
some special facilities that just do not fit neatly into any one discussion of a DCE
component, and these are the facilities we describe in this first part of the IBM DCE
Version 3.1 for AIX and Solaris: Application Development Guide—Core
Components.

You should read the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Guide—Introduction and Style Guide prior to using the DCE facilities
described here, and you might want to skip to other parts of this guide before
learning details about the DCE facilities.

Most DCE facilities are already used by one or more major components of DCE to
accomplish some feature they require; others are standalone facilities intended to
make developing distributed applications easier. These facilities are described
separately here so that you can use them for your own applications too. The DCE
facilities include the following:

e Host Services

Host services give remote access to several kinds of data and functionality with
respect to each DCE host and its servers. Each host runs a DCE host daemon
(dced) as the interface to the host services. In many cases, dced automatically
maintains the data and performs the functions. Some of the data that you can
access (and maintain) remotely includes the host name, the host's cell name,
configuration and execution data for all servers configured through dced on the
host, and a database of endpoints (server addresses) through which running
servers can be contacted. Some of the functions that you can remotely perform
include starting and stopping servers.

* Application Message Service
This service provides a convenient way to manage readable character strings of
information that are usually displayed to application users. The service uses
message catalogs to maintain message text and explanations separate from the
program so that language, cultural, or other site-specific issues are easily
managed for applications. The message text can also be in memory during
program execution for more efficient programs.

* Serviceability

© Copyright IBM Corp. 1990, 1999 3

4

Serviceability is another kind of message text service with functionality beyond
just the display of general-purpose text. Serviceability is typically used for
message text about a server’s activity. Messages can be displayed through
standard output or standard error, or they can be routed to log files. The
serviceability facility maintains message text in catalogs (or memory) just as the
application message service does; but, in addition to the text and its explanation,
additional attributes specify subcomponents (program modules), message
severity, the action users or programs should take, and the debug level.

» Backing Store Database Service

You use a backing store to maintain typed data between invocations of
applications. For example, you could store application-specific configuration data
in a backing store, and then, when the application restarts, it could read the
previous configuration from the backing store. Data is stored and retrieved by a
Universal Unique Identifier (UUID) or character string key, and each record (or
data item) may have a standard header if you wish.

As DCE has developed and improved, useful facilities such as serviceability have
been added to make DCE easier and more useful. For example, serviceability
makes a distributed application much easier to develop. With it, you can log and
distinguish debug messages from complex applications involving multiple clients,
servers, and threads. Although the major components are required to make DCE
work, this kind of facility is not required.

Some solutions developed to implement a major component’s feature can also
prove useful to your applications. For example, the security component must have a
way to maintain access control lists (ACLs). While the backing store was developed
to handle this kind of task, you can use this facility to store your own
application-specific data across invocations.

This first part of the IBM DCE Version 3.1 for AIX and Solaris: Application
Development Guide—Core Components describes how you might put these useful
facilities to work in your applications.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 2. Environment Variables

Environment variables are variables used by DCE that customers can set
themselves. These variables are described in the following sections on Audit,
CDS/XDS, Configuration, IDL, NLS/Security, RPC, Security, and Event Management
Service variables.

Audit Variables

Setting the DCE Audit Environment variables is discussed in the following topics.

© Copyright IBM Corp. 1990, 1999 5

DCEAUDITON
Purpose
Turns auditing on for an application
Synopsis
export DCEAUDITON=<any_value>
Description

If this variable is defined at the time the application is started, auditing is turned on.

The presence or absence of this variable at start time can be used to select which
applications use auditing.

Examples

export DCEAUDITON=1

6 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCEAUDITOFF
Purpose
Turns auditing off for an application
Synopsis
export DCEAUDITOFF=<any_ value>
Description
If this variable is defined at the time the application is started, auditing is turned off.
This takes precedence over DCEAUDITON. If both are defined, auditing is turned

off. Auditing is off by default.

The presence or absence of this variable at start time can be used to select which
applications use auditing.

Examples

export DCEAUDITOFF=1

Chapter 2. Environment Variables 7

DCEAUDITFILTERON
Purpose
Turns event filtering on for an application
Synopsis
export DCEAUDITFILTERON=<any value>
Description

If this variable is defined at the time the application is started, audit filtering is
turned on. It is off by default.

The presence or absence of this variable at start time can be used to select which
applications use event filtering.

Note: If filtering is turned on in a program that does not export its bindings to the
endpoint map (for example, not a RPC-based application server), auditing
will fail to process any events generated by that program.

Examples

export DCEAUDITFILTERON=1

8 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCEAUDITTRAILSIZE
Purpose
Sets the maximum size of an audit trail
Synopsis
export DCEAUDITTRAILSIZE=<size in_bytes>
Description

If this variable is defined at the time the application is started, the application’s
value specifies the maximum size (in bytes) of the audit trails to which it writes.

Examples

export DCEAUDITTRAILSIZE=1000000

Chapter 2. Environment Variables 9

DCEAUDITWRAP

10

Purpose

Sets the storage strategy for any application to wrap
Synopsis

export DCEAUDITWRAP=<any_value>

Description

If this variable is defined at the time the application is started, the audit trail to
which the application writes will use the wrap storage strategy

(aud_c_trl_ss_wrap). When wrapping is turned on, the application starts writing
audit records until it reaches the trail size limit. Then it wraps around to the
beginning of the trail and continues writing audit records from there. The save
storage strategy (aud_c_trl_ss_store) is the default. This only applies to audit trails
to which the application sends audit records.

Examples

export DCEAUDITWRAP=1

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCEAUDMAXERASIZE
Purpose
Limits the size of the Extended Registry Attributes (ERAS) stored in audit records.
Synopsis
export DCEAUDMAXERASIZE=<max_era_size>
Description

Sets the maximum size (in bytes) of an ERA value to be put in an audit record as
event-specific information. All attributes whose values are too large will have their
values truncated to meet this requirement. Attributes with an encoding type of
sec_attr_enc_confidential_bytes will not be truncated. Such an attribute will not
have a value stored in the audit record. If an attribute’s value exceeds the limit, the
event-specific item, truncate_value will be TRUE. Otherwise, it will be FALSE.

Examples

export DCEAUDMAXERASIZE=10240

Chapter 2. Environment Variables 11

SECDAUDITWRAP
Purpose
Sets the storage strategy for the security server to wrap
Synopsis
export SECDAUDITWRAP=<any_value>
Description

If this variable is defined at the time the security server is started, the security
server will use the wrap storage strategy (aud_c_trl_ss_wrap). When wrapping is
turned on, the security server starts writing audit records until it reaches the trail
size limit. Then it wraps around to the beginning of the trail and continues writing
audit records from there. The save storage strategy (aud_c_trl_ss_save) is the
default.

Examples
export SECDAUDITWRAP=1

12 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

CONFIGURATION

The DCE Configuration Environment variables are:

Chapter 2. Environment Variables 13

DCELOCAL
Purpose
Variable defining the location of DCE binaries, data files, and other data.
Synopsis
export DCELOCAL=/opt/dcelocal
Description
This variable defines the location of the DCE files on the system.
Examples

export DCELOCAL=/opt/dcelocal

14 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCE_CFG_LOG_MAX
Purpose
Modifies the size of the DCE configuration log.
Synopsis
export DCE_CFG_LOG_MAX=<number of bytes>
Description
This variable can be used to overwrite the default configuration log length (100,000
bytes). The configuration log is backed up when a command begins if its size is
greater than the maximum log length.

Examples

export DCE_CFG_LOG_MAX=200000

Chapter 2. Environment Variables 15

DCE_CFG_LOGPATH
Purpose
Relocates the DCE configuration log.
Synopsis
export DCE_CFG_LOGPATH=<any existing directory>
Description
This variable can be used to relocate the DCE configuration log. When the
configuration log reaches maximum size, it is backed up. The backup log will also
go into this directory. The location of the default log is /opt/dcelocal/etc/ .

Examples

export DCE_CFG_LOGPATH=/opt/dcelocal/etc

16 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Event Management Service

The DCE Event Management Service (EMS) Environment variables are:

Chapter 2. Environment Variables 17

EMS_QUEUE_SIZE

18

Purpose

Sets the event queue size for the EMS daemon (emsd).
Synopsis

export EMS_QUEUE_SIZE=n (where n > 0)
Description

The EMS event queue size can be set using the EMS_QUEUE_SIZE environment
variable. If the EMS starts receiving queue full errors, the daemon should be
restarted using a larger queue size.

The queue size default is 512. Although the queue size can be set to any integer
value greater that zero, you should not make the queue too small or too large. Try
increments of 256 until the queue full errors subside.

DCE must be restarted for the change to take effect.

Examples

export EMS_QUEUE_SIZE=768

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

EMS_EVENTLOG_DIR
Purpose
Sets the directory where the EMS event log will be located.
Synopsis
export EMS_EVENTLOG_DIR=<path to log directory>
Description
The EMS event log is used to store events in case of EMS failures. EMS writes all
events to the event log and deletes the event record after the event has been
transmitted to all consumers that are supposed to receive the event. The event log
is kept in a file on the machine where emsd is running.

DCE must be restarted for the change to take effect.

The emslog object represents the EMS event log. For example, dcecp —c emslog
show can be used to view the event log from the command line.

Examples

export EMS_EVENTLOG_DIR=/tmp

Chapter 2. Environment Variables 19

IDL

Setting the DCE IDL Environment variables is discussed in the following topics.

20 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

IDL_GEN_AUX_FILES
Purpose
Generate dummy auxiliary files for compilation purposes
Synopsis
export IDL_GEN_AUX_FILES=any value
Description

The auxiliary files (_caux.c and _saux.c) generated by the IDL Compiler in older
releases are no longer being generated. Only the stub and header files are needed.
Older application Makefiles may contain references to these files. Users who
migrate from an old release of DCE may need to remove references to these
auxiliary files from their application Makefiles. Alternatively, the environment variable
IDL_GEN_AUX FILES can be set (to any value) to generate dummy auxiliary files
to avoid Makefile errors.

Examples

export IDL_GEN_AUX_FILES=1

Chapter 2. Environment Variables 21

IDL_GEN_INTF_DATA
Purpose
Add storage information list to the type vector definition of the generated stub files
Synopsis
export IDL_GEN_INTF_DATA=any value
Description

If the environment variable is not NULL, the IDL Compiler will add the storage
information list to the type vector definition within the client stub and server stub
files.

Examples

export IDL_GEN_INTF_DATA=1

22 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

NLS/SECURITY

Setting the DCE NLS/Security Environment variables is discussed in the following
topics.

Chapter 2. Environment Variables 23

DCE_USE_NONPORTABLE_NAMES

24

Purpose

Extends OSF naming rules for Principal, Group, and Organization (PGO) names to
allow characters outside of the DCE portable character set

Synopsis
export DCE_USE_NONPORTABLE_NAMES=1
Description

According to standard (OSF) DCE, entries in the Security namespace, such as
principal names, can be composed only of characters in the DCE portable character
set (see the Architectural Overview of DCE in the IBM DCE Version 3.1 for AIX and
Solaris: Introduction to DCE). DCE 3.1 for AlX or Solaris provides an override
capability which enables the use of non-portable characters. This capability should
be used only in environments that are homogeneous with respect to code set and
only in environments in which all DCE installations support this extension. Security
namespace entries that use non-portable characters are guaranteed to work
correctly only when the code set of the entire enterprise is the same as that of the
process under which the names are created. To enable non-portable Security
names, this environment variable must be set before DCE is started in all client and
server processes in which DCE Security will run.

Examples

export DCE_USE_NONPORTABLE_NAMES=1

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCE_USE_WCHAR_NAMES
Purpose

To improve performance in certain, user-restricted, Asian environments when
processing Cell Directory Service (CDS) names

Synopsis
export DCE_USE_WCHAR_NAMES=0
Description

According to standard (OSF) DCE, certain entries in the CDS namespace, such as
directory names, can be composed of characters from outside of the DCE portable
character set. Because DCE does not perform code set conversion on CDS names,
non-portable characters should be used only in environments which are, and will
remain, homogeneous with respect to the code set. If you are using an Asian
locale, but you are restricting names to the portable character set, Directory
performance can be improved by setting this environment variable to 0. By default,
it is set to 1.

Examples

export DCE_USE_WCHAR_NAMES=0

Chapter 2. Environment Variables 25

RPC

Setting the DCE RPC Environment variables is discussed in the following topics.

26 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCERPCCHARTRANS
Purpose
Point to a file containing replacement ASCII/EBCDIC translation tables
Synopsis
export DCERPCCHARTRANS=file name
Description
The file named in the environment variable DCERPCCHARTRANS contains the
replacement translation tables for the ASCII to EBCDIC and EBCDIC to ASCII
tables. This file replaces the default table contained within the RPC runtime.

Examples

export DCERPCCHARTRANS=tmp.tab

Chapter 2. Environment Variables 27

RPC_CN_AUTH_SUBTYPE
Purpose
Determines the checksum algorithm used when RPC encodes a packet
Synopsis

export RPC_CN_AUTH_SUBTYPE=number
/* where number is 0 for DES and 1 for MD5 =/

Description

This environment variable determines the checksum algorithm to be used when
RPC encodes a packet. The acceptable values are 0 for an 8 byte DES checksum,
or 1 for a 16 byte MD5 checksum. If the variable is not set, the default algorithm is
MDS5.

Examples

export RPC_CN_AUTH_SUBTYPE=0

28 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_DEFAULT_ENTRY
Purpose
Specifies the starting point for directory service searches
Synopsis
export RPC_DEFAULT_ENTRY=entry name in the namespace
Description

Designates the default entry in the name service database that the import and
lookup routines use as the starting point to search for binding information for a
compatible server. Normally, the starting entry is a profile.

An application that uses a default entry name must define this environment variable.
The RPC runtime does not provide a default. In particular, the environment variable
is required when using the auto_handle IDL attribute.

For example, suppose that a client application needs to search the name service
database for a server binding handle. The application can use the
rpc_ns_binding_import_begin routine as part of the search. If so, the application
must specify, to the routine’s entry_name parameter, the hame of the entry in the
name service database at which to begin the search. If the search is to begin at the
entry that the RPC_DEFAULT_ENTRY environment variable specifies, then the
application must specify the value NULL to parameter entry_name in routine
rpc_ns_binding_import_begin

Examples

export RPC_DEFAULT_ENTRY=/.:/Servers

Chapter 2. Environment Variables 29

RPC_DEFAULT_ENTRY_SYNTAX

Purpose

Specifies the syntax of directory service entries
Synopsis

export RPC_DEFAULT_ENTRY_SYNTAX=value
Description

Specifies the syntax for the name provided in the RPC_DEFAULT_ENTRY
environment variable. In addition, it provides syntax for those RPC NSI routines that
allow a default value for the name syntax parameter. Valid values are O for default
syntax and 3 for DCE syntax. If the RPC_DEFAULT_ENTRY_SYNTAX environment
variable is not defined, the RPC runtime defaults to the DCE name syntax.

Examples

export RPC_DEFAULT_ENTRY=3

30 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_DISABLE_EP RESOLVE_V4
Purpose
Disables support for 0S/390° load balancing
Synopsis
export RPC_DISABLE_EP RESOLVE_V4=any value
Description
This environment variable causes the RPC runtime to use version 3 of the
rpc_ep_resolve_binding interface instead of Version 4. Version 4 returns both an
endpoint and an IP address, allowing OS/390 to return a different IP address for
load balancing purposes. Version 3 returns only an endpoint.

Examples

export RPC_DISABLE_EP_RESOLVE_V4=YES

Chapter 2. Environment Variables 31

RPC_DISABLE_SINGLE_THREAD (AIX Only)
Purpose
Disables single-threaded behavior
Synopsis
export RPC_DISABLE_SINGLE_THREAD=any value
Description

This environment variable is used to disable single threaded behavior in the client
side of connectionless RPC applications. There should normally be no reason to
use this environment variable.

Examples

export RPC_DISABLE_SINGLE_THREAD=YES

32 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_EXTRA _INTERFACE
Purpose
Adds an extra IP interface for use by the RPC runtime
Synopsis
export RPC_EXTRA_INTERFACE=ip address
Description

This environment variable is used to add an extra IP interface to the list of IP
interfaces used by the RPC runtime. This would be used when the RPC runtime is
not already detecting the presence of this interface

Examples

export RPC_EXTRA_INTERFACE=111.111.111.111

Chapter 2. Environment Variables 33

RPC_ITIMER_SIGNAL (AIX Only)
Purpose
Specifies the type of itimer signal used when RPC is single threaded
Synopsis
export RPC_TIMER_SIGNAL=SIGVTALRM or SIGALRM
Description

This environment variable is used to set the type of interval timer used when RPC
is single threaded. The acceptable values are SIGVTALRM and SIGALRM. The
default is SIGVTALRM. SIGVTALRM specifies a timer of type ITIMER_REAL and
SIGVTALRM signals. SIGALRM specifies a timer of type ITIMER_REAL and
SIGALRM signals.

Examples

export RPC_TIMER_SIGNAL=SIGVTALRM

34 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_MAX_ UDP_PACKET_SIZE
Purpose
Sets the maximum UDP packet size
Synopsis
export RPC_MAX_UDP_PACKET_SIZE=number
Description

The RPC runtime by default will break large RPC calls into 4352 byte UDP packets
if the ncadg_ip_udp protocol is used. If larger packets should be supported, the
RPC_MAX_UDP_PACKET_SIZE environment variable can be set to the largest
size desired. This environment variable can also be set lower to prevent IP
fragmentation of the UDP packets, which may be necessary if the packets are
traversing a network with extremely limited resources or a firewall that is
misconfigured and dropping fragments.

Examples
export RPC_MAX_UDP_PACKET SIZE=16384
Comments

Solaris DCE does not support Single Threaded RPC.

Chapter 2. Environment Variables 35

RPC_RESTRICTED_PORTS

36

Purpose

Restricts TCP/IP port numbers used by RPC to a certain range

Synopsis

export RPC_RESTRICTED PORTS=1stprotseq[port#-port#]:2ndprotseq[port#-port#]
Description

This environment variable restricts the TCP/IP port numbers used by RPC to a
certain range. The problem is that RPC applications such as Distributed File
Service (DFS) will not work between sites which use router filtering as a security
measure. These filters restrict incoming network packets to specific addresses on
specific ports. Since RPC dynamically determines port numbers for its services it
will not work in this environment. When this environment variable is used, RPC will
only use port numbers in the specified ranges. Then the filters can be opened up
over those ranges.

Examples

export RPC_RESTRICTED_PORTS=ncadg_ip_udp[5000-5500] :ncacn_ip_tcp[6000-6500]

export RPC_RESTRICTED_PORTS=ncacn_ip_tcp[5000-5500,5800-6000]

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_SUPPORTED_PROTSEQS
Purpose
Limits the protocol sequences used by the RPC runtime
Synopsis
export RPC_SUPPORTED_PROTSEQS=protseq:protseq
Description

This environment variable is used to tell the RPC runtime to limit the set of
supported protocol sequences to those specified. The syntax is to list the desired
protocol sequence strings, separated by colons (not semicolons). The default is to
use all protocol sequences, for example, ncacn_ip_tcp and ncadg_ip_udp . This
environment variable should be used with caution. It will remove support for the
protocol sequences which are not specified, and can cause communication failures
when a client attempts to contact a server via a protocol sequence that it does not
support.

Examples

export RPC_SUPPORTED_PROTSEQS=ncadg_ip_udp

Chapter 2. Environment Variables 37

RPC_UNSUPPORTED_NETADDRS
Purpose
Prevents the RPC runtime from using the specified IP interfaces
Synopsis
export RPC_UNSUPPORTED_NETADDRS=ipaddress:ipaddress
Description

This environment variable is to be used in situations where TCP/IP network
interfaces are configured which you do not want DCE to use. It controls which of
the local TCP/IP interfaces will be used by the RPC runtime. The default is to use
all configured TCP/IP interfaces. The effect is that it controls how a server registers
itself in the CDS database and endpoint map by masking out one or more networks
through TCP/IP addresses.

This is useful in a machine that has multiple network adapters where the DCE
traffic should be excluded from some of the networks. For example, consider a
server machine that has one FDDI network connection for normal day-to-day traffic
and is also connected to two ethernet networks that are used only for X-station
traffic. If a DCE server is started on this machine, it will register all three addresses
in the CDS namespace and also in the dced endpoint map. This means that all
machines on the FDDI network that want to communicate with this server have to
have valid routing interfaces to the ethernet networks because when querying CDS
for an address to the server, CDS could return one of the ethernet addresses to a
machine that is only on the FDDI ring.

Suppose the machine described above has the following interfaces:

Interface Address

en0 125.46.78.91
enl 125.46.125.91
fio 9.25.47.91

The following example uses the RPC_UNSUPPORTED_NETADDRS environment
variable to eliminate both ethernet networks by address:
RPC_UNSUPPORTED_NETADDRS=125.46.78.91:125.46.125.91

Examples

export RPC_UNSUPPORTED_NETADDRS=129.46.78.9

38 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC_UNSUPPORTED_NETIFS
Purpose
Prevents the RPC runtime from using the specified IP interfaces
Synopsis
export RPC_UNSUPPORTED_NETIFS=if_0:if_1
Description

This environment variable is to be used in situations where TCP/IP network
interfaces are configured which you do not want DCE to use. It controls which of
the local TCP/IP interfaces will be used by the RPC runtime. The default is to use
all configured TCP/IP interfaces. The effect is that it controls how a server registers
itself in the CDS database and endpoint map by masking out one or more networks
through TCP/IP interfaces.

Examples

export RPC_UNSUPPORTED_NETIFS=en0:enl

Chapter 2. Environment Variables 39

SECURITY

Setting the DCE Security Environment variables is discussed in the following topics.

40 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

KRB5CCNAME

Purpose

Specifies the default credentials cache file

Synopsis

export KRB5CCNAME=FILE:/opt/dcelocal/var/security/creds/dcecred_[XXXXXXXX]
Description

This environment variable is set when you log in to DCE, for example when using
the dce_login command, or when using AlX or Solaris DCE security integration.
KRB5CCNAME points to a file where your DCE credentials obtained during login
are cached. The XXXXXXXX portion of the file name is generated randomly each
time you log in.

Once you log in and KRB5CCNAME is set, other programs you run can use the
cached DCE credentials (for as long as they are valid), without the need to
re-authenticate to DCE to get your credentials. This is why KRB5CCNAME is said
to refer to the default credentials cache.

By explicitly changing the value of KRB5CCNAME you can change your default
DCE credentials (providing you have previously logged in to DCE and obtained
another credentials file). Note, however, that changing the value of KRB5CCNAME
does not change your DCE credentials for DFS -- these can only be changed by
another log in to DCE.

For more information on DCE credentials files, refer to the article on dcecred * files
in the IBM DCE Version 3.1 for AIX and Solaris: Administration Commands
Reference.

Examples

export KRB5CCNAME=FILE:/opt/dcelocal/var/security/creds/dcecred 34210983

Chapter 2. Environment Variables 41

BIND_PE_SITE | TRY_PE_SITE
Purpose
Controls how a DCE client looks up the names of security replicas
Synopsis

export BIND PE_SITE=[0]|[1]
export TRY_PE_SITE=[0]|[1]

Description

When a DCE client needs to communicate with a security replica, it customarily
looks up a replica name in the CDS namespace. However, if the client contacts a
replica frequently, the overhead of performing these CDS lookups can be
significant.

To improve performance, The BIND_PE_SITE and TRY_PE_SITE environment
variables allow the client to lookup security replica names in the
/opt/dcelocal/etc/security/pe_site file. The pe_site file contains the names and
locations of the security replicas in the cell. Generally, locating a security replica
using the pe_site file will be faster than looking in CDS.

If neither BIND_PE_SITE or TRY_PE_SITE are set, or are set to 0, then the client
will locate a security replica using the traditional method of looking in the CDS
namespace.

If TRY_PE_SITE is set to 1, the client will attempt to locate a security replica using
the pe_site file. If no replica can be contacted, the client will next try to locate a
replica by looking in the CDS namespace.

If BIND_PE_SITE is set to 1, the client will attempt to locate a security replica using
only the pe_site file. If this fails, the client will not look in the CDS namespace. The
attempt to contact a security replica will fail.

If both TRY_PE_SITE and BIND_PE_SITE are set to 1, the TRY_PE_SITE
behavior takes precedence.

The pe_site file contains the names and locations of the security replicas in the
cell. It is created when the DCE client is first configured into the cell. As security
replicas become available and unavailable, the information on security replicas in
the pe_site file might not be as current as in the CDS namespace. For this reason,
BIND_PE_SITE or TRY_PE_SITE should be set when running programs that must
contact a security replica frequently (for example, for frequent DCE login or registry
operations).

The pe_site file is updated with current information on security replicas by the dced
daemon, which updates it at regular intervals. It can also be updated by running the
dcecp —c secual update command.

Examples

export BIND_PE_SITE=1
export TRY_PE_SITE=0

42 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 3. DCE Host Services

Every DCE host must maintain certain kinds of data about itself and the servers it
provides. For example, each host stores configuration data about its DCE
environment, and it also stores data about servers registered and running on the
host. In addition, each host needs some services to not only manage this data but
also to administer the host and DCE servers. For example, a service that can start
and stop specific servers has obvious value. The DCE host services consist of the
following:

* Endpoint Mapper

The endpoint mapper service enables a client to find servers on a particular host
and the services and objects provided by those services. This service maintains
on each host an endpoint map that contains a mapping of port addresses
(endpoints) to servers, the services servers provide, and the objects servers
manage.

* Hostdata Management

The hostdata management service stores and controls access to such data as
the host’s cell name, the host name, and the cell alias names, among other
things.

* Server Management

The server management service can start and stop specified servers on a host,
enable or disable specific services provided by a server, and manage
configuration and execution data about these servers.

» Security Validation

The security validation service maintains a login context for the host’s identity of
itself, maintains the host principal’s keys, and ensures applications (especially
login programs) that the DCE security daemon (secd) is genuine.

* Key Table Management

A server uses private keys for its security instead of human-entered passwords.
The key table management service can be used to manage the keys stored in
key tables on a server’s host.

Of course, in a distributed environment, these data and services must be easily yet
securely accessible from other hosts. The DCE host daemon (dced) is a
continuously running program on each host that provides access to the host
services either locally on that host or remotely from another host.

Types of Applications

Although applications may need some aspect of these host services (control over
which services are enabled for a particular server, for example), typical servers do
not have to do any special coding for them. This reduces the size and complexity of
server code and keeps the details of administration out of applications. It also
removes the burden of server administration so you can concentrate on the
application’s business functionality.

System administrators will appreciate this development model too because it is
unlikely that many servers implementing their own administrative mechanisms will
all behave in the same manner. Administrators commonly use the DCE control
program, dcecp, to access the host services (via dced) of any host in their
distributed environment (provided the user has the appropriate permissions). The
DCE control program also uses a script language for more sophisticated

© Copyright IBM Corp. 1990, 1999 43

administration. See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Guide—Core Components for more on using dcecp to access the host services.

Although dcecp commands offer an administrator a great deal of control over DCE
hosts and servers, a set of APIs are also supplied for application developers who
need to access the DCE host services from an application rather than from scripts
or the operating system’s command line.

Typical business applications do not use the APIs of these services, but a
management application might. A management application is a client or server that
manages other servers or some aspect of the distributed environment. (The dced
program is itself a management application that is built into DCE.) Some other
types of applications that might use these API include

» Applications that control other servers for load balancing or server redundancy.

* An application that uses a graphical user interface (GUI) instead of the
command-line interface provided by dcecp .

* An application that needs to monitor a server’s current state. For example, an
application may need to make sure a particular server or one of its services is
available.

Issues of Distributed Applications

The most important aspect of dced is that it gives system administrators the ability
to remotely manage services, servers, endpoints, and even objects on any host in
DCE. This eliminates the frustrating and tedious task of logging into many different
hosts to manage them. This also allows for scalability because it is impractical to
manage a large system by logging into all its hosts.

The features of dced are greatly enhanced when used remotely. Of course, an
administrator can use dced to locally manage a host’s services, but dced’s real
power is in remotely managing system and application server configurations, key
tables, server startup, login configurations, and cell information.

Security becomes a major issue when it comes to remote services. With the power
of dced’s services and dcecp, it is important that only authorized principals can use
them. The dced program controls access to its various objects by using ACLs.
Server keys are security-sensitive data that must be seldom transmitted over the
network. All key table data is encrypted when it is transmitted for secure remote key
table management.

Finally, the remote capabilities of dced give you real-time status of processes and
services in DCE.

Managing a Host’'s Endpoint Map

Each DCE host has an endpoint map that contains a mapping of servers to
endpoints. Each endpoint map server entry is associated with an array of services
(interfaces) provided by the server, and each service is associated with an array of
objects supported by the service.

When a typical server calls the dce_server_register() routine, the RPC runtime
generates the endpoints on which the server will listen for calls and then uses
dced’s endpoint mapper service of the local host to register the endpoints. Later,
when a typical client makes a remote procedure call, its RPC runtime uses the

44 |BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

server host’s endpoint mapper service to find the server. When the typical server
shuts down, it calls the dce_server_unregister() routine to remove its endpoints
from the endpoint map so that clients do not later try to bind to it.

Applications can also use the lower-level rpc_ep_register() and associated RPC
routines. Because the endpoint map is essential for RPCs to work, endpoints are
fully described in EChapter 13 RPC Fundamentals” on page 207 and the endpoint
map structure is described with respect to routing of RPCs in LCha.pLerJl.AALunnd
| - od Tcations”)

The endpoint map is for the most part maintained automatically by dced. For
example, it periodically removes stale endpoints so that the RPC runtime will not try
to complete a binding for a client to a server that is no longer running. However,
administrative applications may find it necessary to peruse a remote endpoint map
and even remove specific endpoints from a local host’s endpoint map.

To read the elements of a remote endpoint map, applications use a loop with the
set of routines rpc_mgmt_ep_elt_ing_begin() , rpc_mgmt_ep_elt_inq_next() , and
rpc_mgmt_ep_elt_ing_done() . The inquiry can return all elements until the list is
exhausted, or the inquiry can be restricted to return elements for the following:

* Elements matching an interface identifier (UUID and version number)
» Elements matching an object UUID
* Elements matching both an interface identifier and object UUID

Administrators can manage the endpoint map by using dcecp with the endpoint
object.

You can use the dced_server_disable if() routine to mark as disabled all the
endpoints for a specific interface. This will prevent any new RPCs with partial
bindings from binding to the server for this interface, but not prevent clients from
using the interface if they already have a full binding with these endpoints. You can
use the dced_server_enable if() routine to reenable previously disabled interfaces.
In an extreme situation, you could permanently remove endpoints directly from the
local endpoint map by calling the rpc_mgmt_ep_unregister() routine. This function
cannot be done remotely for security reasons.

Binding to dced’s Services

When you write a program that uses a host service, you begin by creating a dced
binding to the service on a particular host. Bindings are relationships between
clients and servers that allow them to communicate. A dced binding is a specific
kind of binding that not only gives your application a binding to the dced * server
but also associates the binding with a specific host service on that server.

In general, an application follows these basic steps to use a host service:

1. Establish a binding to the service on the desired host. For example, your
application can establish a binding to the host data management service on
another host.

1. Applications must establish a binding to each host service used. However, the endpoint mapper service uses a different binding
mechanism and API from the other host services. This is due to the fact that the endpoint mapper service already existed within
the very large RPC API in earlier versions of DCE, prior to the development of dced .

Chapter 3. DCE Host Services 45

2. Obtain one or more dced entries for that service. For example, your application
can obtain the hostdata entry that identifies the host’s cell name, among other
things. This step is valid for the following services:

* hostdata management
* server management
* key table management

Depending on the service and function desired, this step may or may not be
necessary. For example, the security validation service does not store data, so
dced maintains no entries for this service.

3. Access (read or write) the actual data for the entries obtained or perform other
functions appropriate for the service. For example, if your application reads the
hostdata management service’s cell name entry, the AP| accesses dced which
may actually read the data from a file. For another example, if your application
established a binding to the security validation service, it could validate the
security daemon.

4. Release the resources obtained in step 2.
5. Free the binding established in step 1.

Applications bind to a host service by using the dced_binding_create() or
dced_binding_from_rpc_binding() routine. The first routine establishes a dced
binding to a service on a host specified in a service name, and the second routine
establishes a dced binding to a service on a host for which the application already
has a binding. Both of the routines return a dced binding handle of type
dced_hinding_handle_t , which is used as an input parameter to all other dced API
routines.

Host Service Naming in Applications

Applications include a host service name as input to the dced binding routine
dced_hinding_create() . A host service name is a string that may include a host
name, or a cell and host name. The following key words in the host service name
refer to a specific DCE host service:

hostdata
Refers to configuration data of the hostdata management service.

srvrconf
Refers to the static server configuration portion of the server management
service. This refers to the management of a DCE-installed server.

srvrexec
Refers to the dynamic server execution portion of the server management
service. This refers to the management of a running DCE-installed server.

secval
Refers to the security validation service.

keytab

Refers to the private key data of the key table management service.
The following examples show service names and the locations of the hosts in the
namespace:

service
The host is local, the same as the application’s.

46 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

service@hosts/ host
The host is in the local namespace.

/.:Ihosts/ host/config/ service
The complete specification for service@hosts/ host where the host is in the
local namespace.

/...I celllhosts/ host/config/ service
The host is in the global namespace.

Because the dced_binding_from_rpc_binding() routine already knows which host
to bind to from an RPC binding input parameter, it uses one of the global variables
defined for each service (instead of a string) to specify which dced service to use.

The dced Program Maintains Entry Lists

One dced service’s data is very different from another’s (for example, server
configuration data versus key table data), but you manipulate the data in a similar
way. This is because it is a simpler and more efficient design to implement a few
API routines that can handle more than one kind of data rather than many routines
that do essentially the same thing but on a different service’s data. An added
benefit is a flexible API that can handle your own application’s data and new kinds
of DCE data in the future.

To separate the actual data from the APl implementation, a dced service maintains
a list of all data items in an entry list. Entry lists contain entries that describe the
name and location of each item of data, but they do not contain the actual data.
With this mechanism, dced can obtain and manipulate data very efficiently, without
concern for the implementation and location of the actual data. It also supports well
the model that administrators commonly need when accessing data: scan a list,
select an item, and use the data.

The dced program maintains entry lists for the hostdata , srvrconf , srvrexec , and
keytab services. The secval service does not need an entry list because it does
not maintain any data, but functions are performed to set its state.

There is a special relationship between srvrconf and srvrexec entries. In order for
dced to control the start of a server, the server must have a srvrconf entry
associated with server configuration data. When dced starts a server, it generates
from the srvrconf entry and data a srvrexec entry and associates the new entry
with the running server’s state.

Eigure 1 on page 48 shows the entry lists maintained by dced .

Chapter 3. DCE Host Services 47

dced]
hostdata entry list

Host Data Entry

Server Management Entry Lists

srvrconf entry list srvrexec entry list

Server Configuration Entry Server Execution Entry

keytab entry list

Key Table Entry

Figure 1. The dced Entry Lists

Although an entry can be associated with many different kinds of data items, all
entries have the same structure, shown in ﬁ

Entry UUID, Name, Description, Storage Tag

Figure 2. Structure of an Entry

Each entry is a dced_entry_t data structure. Each member of this data structure is
described as follows:

id An entry UUID is necessary to uniquely identify the data item. Some data
items have well-known UUIDs (the same UUID for the particular item on all
hosts). The data type is uuid_t.

name Each data item is identified with a name, to which applications refer. The
name need only be unique within an entry list because the entry UUID
guarantees the entry’s uniqueness. Some item names are well-known and
defined in header files. The data type is dced_string_t .

description
This is a human-readable description of the data item. Its data type is
dced_string_t .

storage_tag
The storage tag locates the actual data. Each service knows how to
interpret this tag to find the data. For example, some data is stored in a file,

48 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

the name of which is contained in the storage tag. Other data is stored in
memory and the storage tag contains a pointer to the memory location. The
data type is dced_string t .

Reading All of a Host Service’s Data

Suppose you want to display host service data in an application that has a
graphical user interface. The dcecp commands may not be adequate to display
data for this application. The following example shows how to obtain the entire set
of data for each host service:

dced_binding_handle_t dced_bh;
dced_string_t host_service;
void xdata_Tist;
unsigned32 count;
dced_service_type t service_type;
error_status_t status;

while(user_selects(&host_service, &service type)){ /*application*/
/*specific */
dced_binding_create(host_service,
dced_c_binding_syntax_default,
&dced_bh,
&status);
if(status == error_status_ok) {
dced _object read all(dced bh, &count, &data 1ist, &status);
if(status == error_status_ok) {
display(service_type, count, data_list); /* application =*/
/* specific =/
dced_objects_release(dced_bh, count, data_list, &status);

}
dced_binding_free(dced_bh, &status);

}
}

user_selects()
This is an example of an application-specific routine that constructs the
complete service name from host and service name information. Data is
stored and retrievable for the hostdata , srvrconf , srvrexec , and keytab
services. No data is stored for the secval service.

dced_binding_create()
Output from the dced_binding_create routine includes a dced binding
handle whose data type is dced_binding_handle_t . If an application
already has an RPC binding handle to a server on the host desired, it can
use the dced_binding_from_rpc_binding() routine to bind to dced and
one of its host services on that host. (Applications also use these routines
to bind to the secval service to perform other functions.)

dced_object_read_all()
Applications use the dced_object _read_all() routine to read data for all the
objects in an entry list. The output includes the address of an allocated
buffer of data and a count of the number of objects the buffer contains. The
data type in the buffer depends on the service used.

display()
This is an application-specific routine that displays the data. Before the data
is displayed, it must be interpreted depending on the service. The hostdata
data is an array of sec_attr_t data structures, the srvrconf and srvrexec

Chapter 3. DCE Host Services 49

data are arrays of server_t structures, and the keytab data is an array of
dced_key list t structures. The following code fragments show the data
type for each service:

void display(
dced_service_type t service_type, /* dced service type */

int count, /* count of the number of data items */
void *data) /* obtained from dced object_read{_all}() */
{

sec_attr_t *host_data;

server_t *Servers;

dced_key_list_t ~keytab_data;

switch(service_type) {
case dced_e_service_type_hostdata:
host data = (sec_attr_t =*)data;

case dced_e_service_type_srvrconf:
servers = (server_t =*)data;

case dced_e_service_type_srvrexec:
servers = (server_t *)data;

case dced_e_service_type_keytab:
keytab_data = (dced_key 1ist_t *)data;

default:
/* No other dced service types have data to read. */
break;

}

return;

}

dced_objects_release()
Each call to the dced_object_read_all() routine requires a corresponding
call to dced_objects_release() to release the resources allocated.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources for the binding
allocated.

Managing Individual dced Entries

Eigure 3 on page 51 shows examples of individual dced entries and the locations of
associated data. The data item name or its UUID is used to find an entry, and then
the storage tag is used to find the data.

50 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCE Host
dced
hostdata entry
- ———— — — = > uulD.. file locaton F——————— ~
N
\
\
\
srvrexec entry |
I
-——FF = —————— = » UUID...object location [~ [
\ I
/ I
srvrconf entry data 4~ :
— —r1» UUID...object location N :
/I |
I
data %~ |
I
I
I
I
keytab entry :
S » UUD..filelocation [~ |
\ I
+ I
| I
! I
Local Host's Disk /I ’l
/ /
/ /
s
// - [
/

Figure 3. Accessing Hostdata

The data for each hostdata item is stored in a file on disk. The dced program uses
the UUID to find the entry in the hostdata entry list. The entry’s storage tag is then
used to find the data. For hostdata , the tag contains a filename in OSF’s reference
implementation. The data returned for one entry is an array of strings in a
sec_attr_t structure.

The server management data is stored in memory. The dced program uses UUIDs
(maintained in the entry lists by dced) to find an entry. The location of the data in
memory is indicated by the storage tag. The data returned for one entry is a

Chapter 3. DCE Host Services 51

structure of server data (server_t). All data for the srvrconf and srvrexec entries
are accessed from memory for fast retrieval, but the srvrconf data is also stored on
disk for use when a host needs to reboot.

Each keytab entry stores its data in a file on disk. However, like the server
management entries, the keytab entries use server names and corresponding
UUIDs (maintained by dced) to identify each entry. The storage tag contains the
name of the key table file. The data returned for one entry is a list of keys of type
dced_key list t .

The following example shows how to obtain and manage individual entries for the
hostdata , srvrconf , srvrexec , or keytab services:

handle_t rpc_bh;
dced_binding_handle_t dced_bh;
dced_entry_list_t entries;
unsigned32 i
dced_service_type t service_type;
void *data;

error_status_t status;

dced_binding_from_ rpc_binding(service_type, rpc_bh, &dced_bh, &status);
if(status != error_status_ok)
return;
dced 1ist _get(dced bh, &entries, &status);
if(status == error_status_ok) {
for(i=0; i<entries.count; i++) {
if(select_entry(entries.list[i].name)) {/* application specific */
dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);
if(status == error_status_ok) {
display(service_type, 1, &data); /* application specific */
dced_objects release(dced bh, 1, data, &status);
}
!
}

dced Tlist_release(dced_bh, &entries, &status);

}
dced_binding_free(dced_bh, &status);

Each routine is described as follows:

dced_hinding_from_rpc_binding()
The dced_bhinding_from_rpc_binding() routine returns a dced binding
handle whose data type is dced_binding_handle_t . This binding handle is
used in all subsequent dced API routines to access the service. The host is
determined from the RPC binding handle, rpc_bh, and the service type is
selected from the following list:

* dced e service type hostdata
* dced_e_service_type_srvrconf
* dced_e_service_type_srvrexec
* dced _e_service type keytab
dced_list_get()
Applications use the dced_list_get() routine to get a service’s entire list of
names. Using the dced_list_get() routine gives your application great

flexibility when manipulating entries in an entry list. If you prefer, your
application can use the dced_entry cursor_initialize()

52 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

dced_entry_get_next() , and dced_entry_cursor_release() set of routines
to obtain individual entries, one at a time.

select_entry()
This is an application-specific routine that selects which entry to use based
on the entry name.

dced_object_read()
The default attribute for dced_object_read() is to return an array of strings.
The hostdata and keytab services have other read routines that allow you
to specify binary data.

display()
This is an example of an application-specific routine that simply displays the
server configuration data read. Depending on the service, a different data
structure is used. For the hostdata service, a sec_attr t is used. For the
srvrconf and srvrexec services server_t structures are used. For the
keytab service, a dced_key list t structure is used.

dced_objects_release()
After your application is finished with the data read with the
dced_object_read() routine, free the buffer of allocated data by using the
dced_objects_release() routine.

dced_list_release()
Each call to the dced_list_get() routine requires a corresponding call to
dced_list_release() to release the resources allocated for the entry list.

dced_binding_free()
Each call to the dced_binding_from_rpc_binding() routine requires a
corresponding call to dced_binding_free() to release the resources of the
allocated binding.

Managing Hostdata on a Remote Host

Administrators typically use the dcecp hostdata object to remotely manage the
data of the hostdata service. However, application developers can use the dced
API for their own management applications or if dcecp does not handle a task in
the desired way, such as for a browser of hostdata that uses a graphical user
interface.

Kinds of Hostdata Stored
Each hostdata item is stored in a file, and dced has a UUID associated with each.
The standard data items include the following well-known names:

cell_name
The name of the cell to which your host belongs.

cell_aliases
When the cell name changes, the old names are designated as cell aliases.
dce_cf.db

The DCE configuration data.

host_name
The host name.

pe_site
Lists the locations of the security servers configured in the cell.

Chapter 3. DCE Host Services 53

post_processors
The post_processors file contains UUID-program pairs for which the
UUIDs represent other hostdata items. If changes occur to an associated
hostdata item, the system runs the program.

svc_routing
The default routing file for serviceability messages is stored.

Depending on your DCE provider, additional items may exist. In addition to the
well-known hostdata items, applications can also add their own. The well-known
hostdata items have well-known UUIDs defined in the file
/usr/include/dce/dced_data.h , but you can use the dced_ing_uuid() routine to
obtain any UUID associated with any name known to dced.

Adding New Hostdata

In addition to modifying existing hostdata, you can add your own data by using the
hostdata API. For example, suppose you want to add a printer to a host and make
the configuration file part of that host's dced data. The following example shows
how to do this:

dced_binding_handle_t dced_bh;

error_status_t status;

dced entry t entry;
dced_attr_list_t data;

int num_attr, str_size;

sec_attr_enc_str_array_t *attr_array;

dced binding create(dced c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
/*Create Entry Data x/
uuid_create(&(entry.id), &status);
entry.name = (dced_string_t) ("NEWERprinter");
entry.description = (dced string t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");
/* Create the Attributes, one for this example */
data.count = 1;
num_attr = 1;
data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr t));
(data.list)->attr_id = dced_g_uuid_fileattr;
(data.list)->attr _value.attr_encoding = sec_attr_enc_printstring array;
str_size = sizeof(sec_attr_enc_str_array_t) +
num_attr * sizeof(sec_attr_enc_printstring p_t);
attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);
(data.list)->attr_value.tagged union.string array = attr_array;
attr_array->num_strings = num_attr;
attr_array->strings[0] = (dced_string_t) ("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_binding_create()
This routine creates a dced binding to a dced service. The binding handle
created is used in all subsequent calls to appropriate dced API routines. By
using the dced_c_server_hostdata value for the first parameter, we are
using the hostdata service on the local host.

54 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Create Entry Data
Prior to creating a hostdata entry, we have to set its values. These include
the name and UUID that dced will use to identify the new data, a
description of the entry, and a filename with the full pathname of where the
actual data will reside.

Create the Attributes
The data stored is of type sec_attr_t . This data type is a very flexible one
that can store many different kinds of data. In this example, we set the file
to have one attribute, printable string information. This example has only
one string of data. You can also establish binary data for the file.

dced_hostdata_create()
This routine takes the binding handle, entry, and new data as input; it
creates the file with the new data and returns a status code.

If the printer configuration file already exists on the host, but you want to
now make it accessible to dced, use the dce_entry_add() routine instead
of dced_hostdata_create() .

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Use the dced_hostdata_delete() routine to delete application-specific hostdata
items and their entries. For example, the printer installed in the example is easily
removed with this routine. If you are only taking the printer out of service for a short
time, use the dced_entry_remove() routine to remove the dced entry but not the
data file itself. When the printer is later ready again, use the dced_entry _add()
routine to reinstall it.

Do not delete the well-known hostdata items or remove their entries.

Modifying Hostdata

Changing hostdata cannot only change the way the host works but it also affects
other files and processes on the host. Therefore, care should be taken when
changing hostdata. Deleting the well-known hostdata entries can cause even more
serious operational problems for the host.

The current as well as earlier versions of DCE provide configuration routines that
use a dce_cf.db file for data. When hostdata changes, dced also makes the
appropriate changes to this file so that the dce_cf* routines continue to work
correctly. This is one reason the hostdata items are established as well-known
names with well-known UUIDs so that dced knows which values to monitor.

Management applications use the dced_hostdata_read() routine to obtain the data
for an entry referred to by an entry UUID. To modify an entry’s actual data,
applications use the dced_hostdata_write() routine. This routine replaces the old
data with the new data for the hostdata entry represented by the entry UUID. The
hostdata entry must already exist because this routine will not create it. Use the
dced_hostdata_create() routine to create new hostdata entries.

Running Programs Automatically When Hostdata Changes

The following example shows how to use the post_processors feature of the
well-known hostdata to cause dced to automatically run a program if another

Chapter 3. DCE Host Services 55

hostdata entry changes. In this example, the post_processors file is read, and
data is added for the NEWERprinter hostdata entry created in an earlier example.
The data is placed in a dced_attr_list t structure and written back to the
post_processors hostdata entry.

dced_binding_handle_t dced_bh;

uuid_t entry_uuid;
sec_attr_ t *xdata_ptr;
error_status_t status;
int i, num_strings, str_size;

sec_attr_enc_str_array_t *xattr_array;
unsigned_char_t *string_uuid, temp_string[200];
dced attr Tist t attr_Tist;

dced binding create(dced c_service hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_hostdata_read(dced_bh,
&dced_g_uuid_hostdata_post_proc,
&dced_g_uuid_fileattr,
&data_ptr,
&status);

/* Create New Array and Copy 01d Data into it */
num_strings = data_ptr->attr_value.tagged_union.string_array->num_strings + 1;
str_size = sizeof(sec_attr_enc_str_array t) +
num_strings * sizeof(sec_attr_enc_printstring p_t);
attr_array = (sec_attr_enc_str_array t *)malloc(str_size);
attr_array->num_strings = num_strings;
for(i=0; i<(num_strings-1); i++) {
attr_array->strings[i] =

data_ptr->attr_value.tagged union.string_array->strings[i];

}

dced_ing_id(dced _bh, "NEWERprinter", &entry uuid, &status);

uuid_to_string(&entry uuid, &string uuid, &status);
sprintf(temp_string, "%s %s", string_uuid, "/path/and/program/to/run");
attr_array->strings[num strings-1] = (dced_string_t)(temp_string);
data_ptr->attr_value.tagged union.string array = attr_array;
attr_list.count = 1;
attr _list.list = (sec_attr_t *)malloc(attr_Tist.count * sizeof(sec_attr t));
attr_Tist.list = data_ptr;
dced_hostdata_write(dced_bh,

&dced_g_uuid_hostdata_post_proc,

dattr_list,

&status);

dced_objects_release(dced_bh, 1, (void)(data_ptr), &status);
dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_hinding_create()
This routine creates a dced binding to the hostdata service on a specified
host. The binding handle created is used in all subsequent calls to
appropriate dced API routines. The dced_c_service_hostdata argument is
a constant string that is the well-known name of the hostdata service.
When this string is used by itself, it refers to the service on the local host.

dced_hostdata_read()
This routine reads the hostdata item referred to by the entry UUID. In this
example, the global variable dced_g_uuid_hostdata_post_proc
represents the UUID for the well-known post_processors file. The second

56 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

parameter specifies an attribute for the data. Attributes describe how the
data is to be interpreted. In this example, we know the data to be read is
plain text, so we use the global variable dced_g_uuid fileattr to specify
plain text rather than binary data (dced_g_uuid_binfileattr).

Create a New Array
The next few lines copy the existing array of print strings into a new array
that has additional space allocated for the new data.

dced_ing_id()
This routine acquires the UUID dced that maintains for a known entry
name. In this example, we need the UUID for the NEWERprinter hostdata
entry so that it can be included in the data stored back in the
post_processors file.

uuid_to_string()
This routine returns the string representation of a UUID. Each line in the
post_processors file contains a string UUID and a program name for dced
to run if the hostdata entry referred to by the UUID changes. The next few
lines create a new string containing the string UUID and a program name,
adds the new string to the new array, and reassigns the new array to the
old data pointer.

dced_hostdata_write()
Since hostdata could have more than one attribute associated with each
entry, the data must be inserted in an attribute list data structure before the
dced_hostdata_write() routine is called. In the case of the well-known
post_processors hostdata object, the attribute is for a plain text file. The
dced_hostdata_write() routine replaces the old data with the new data for
the hostdata entry represented by the entry UUID.

dced_objects_release()
Each call to the dced_hostdata_read() routine requires a corresponding
call to dced_objects_release() to release the resources allocated.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources allocated.

The post_processors data for this dced now contains an additional string with a
UUID and program name. If the hostdata item represented by the UUID for
NEWERprinter is changed, dced automatically runs the program.

Controlling Servers Remotely

Both applications developers and system administrators may want servers to have
certain support services and control functionality. For example, servers may need
mechanisms to store operational data, and they may need to start or stop in various
ways. The dced program provides these support and control mechanisms for
servers.

Servers are typically configured by an administrator using the dcecp server object
in a script after the server is installed on the host. In addition to configuring the
server, this script would commonly include other tasks like create an account and
assign a principal name for the server, modify the ACLs and key table files
(keytabs) to control access to the server and its resources, and export the server
binding information to the Cell Directory Service (CDS) so that clients can find a
server that will start dynamically later.

Chapter 3. DCE Host Services 57

After a server is configured, whether it runs as a persistent daemon or an
on-demand (dynamic) process, administrators would again use dcecp if they need
to control or modify its behavior. Although server management is typically an
administrator’s task, you may want a management application to perform these
tasks, including the following:

» Configure a server to describe how it can be invoked

» Start a server based on configuration data

» Stop a running server

» Disable a specific service provided by a running server
* Enable a specific service for a running server

* Modify a server’s configuration

* Delete a server’s configuration, effectively removing the server from dced’s
control

Two States of Server Management: Configuration and Execution

If all servers ran as persistent processes, dced could maintain data about each
server in a single (albeit complex) data structure. However, due to the fact that
some servers may run on demand, it is a more flexible design to have two sets of
data: one that describes the default configuration to start the server, and one that
describes the executing (running) server. Earlier in this chapter when we described
dced service naming, we defined srvrconf and srvrexec objects to name the two
portions of the server management service.

[fanle 1 lists the routines that applications can use to control servers. It also shows
the valid object names to use when establishing a dced binding prior to using the
routine.

Table 1. API Routines for Remote Server Management

API Routine Service Name for Binding
dced_server_create() srvrconf
dced_server_start() srvrconf
dced_server_disable_if() grvrexec
dced_server_enable_if() grvrexec
dced_server_stop() srvrexec
dced_object_read() srvrexec or srvrconf
dced_object_read_all() srvrexec or srvrconf
dced_server_modify_attributes() snvrconf
dced_server_delete() srvrconf

Configuring Servers

Although administrators commonly use dcecp to configure servers remotely,
management applications can use dced API routines to configure a new server
remotely by creating server configuration data, changing a remote server's
configuration, and deleting a server’s configuration data.

Configuring a New DCE Server

Management applications use the dced_server_create() routine to add a new
server to a host. After a server is configured, it can be remotely controlled by

58 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

modifying its configuration attributes, starting and stopping it, enabling or disabling

the RPC interfaces it supports, and deleting its configuration.

Configuring the server involves describing the server for DCE by allocating and

filling in a server_t data structure, as shown in the following example. Note that not

all server_t fields are assigned values in this example.

int i;

dced_binding_handle_t dced_bh;

server_t conf, exec;
dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;

dced_attr_list_t attr_list;
error_status_t status;
static service_t nil_service;

dced_binding_create("srvrconf@hosts/somehost",
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_inqg_id(dced_bh, server name, &srvrconf_id, &status);
if(status == error_status_ok) {
puts("Configuration already exists for this server.");
dced_binding free(dced bh, &status);
return;
1
/* setup a server_t structure */
uuid_create(&(conf.id), &status);
conf.name = server_name;
conf.entryname = (dced_string_t)"/.:/greeter";
conf.services.count = 1;
/* ___service_t structures represent each interface supported __ */
conf.services.list =
(service_t *)malloc(conf.services.count * sizeof(service_t));
for(i=0; i<conf.services.count; i++) {
rpc_if_ing_id(greetif vl 0 c_ifspec,
&(conf.services.list[i].ifspec),

&status);
conf.services.list[i] = nil_service;
conf.services.list[i].ifname = (dced_string_t)"greet";

conf.services.list[i].annotation = (dced_string_t)"The greet application";
conf.services.list[i].flags = 03

}

/* server_fixedattr_t structure */
conf.fixed.startupflags =

server_c_startup_explicit | server_c_startup_on_failure;
conf.fixed.flags = 0;
conf.fixed.program = (dced_string_t)"/server/path/and/program/name";

dced_server_create(dced_bh, &conf, &status);
dced_binding_free(dced bh, &status);

dced_binding_create()

To configure a server, the application must first create a dced binding to the
srvrconf portion of the server management service on a specified host. The
binding handle created is used in all subsequent calls to appropriate dced

API routines.
dced_ing_id()

This routine returns the UUID that dced associates with the name input.

Each configured server has an associated UUID used by dced to identify it.

In this example, we won't try to create a configuration for a server that

already exists.

Chapter 3. DCE Host Services

59

Set Up a server_t Structure for the Server
The server_t structure contains all the information DCE uses to specify a
server.

Set Up service_t Structures for Each Interface
Each service that the server supports is represented by a service_t data
structure that contains the interface specification, among other things. In
this example the client stub for the interface was compiled with the program
so that the interface specification (greetif v1_0_c_ifspec) could be
obtained without building the structure from scratch.

Set Up a server_fixedattr_t Structure
Other fixed attributes required for all servers describe how the server can
start, the program name and pathname for the server so that dced knows
which program to start, and the program’s arguments, among other things.

dced_server_create()
This routine uses the filled-in server_t structure to create a srvrconf entry
for dced. The data is stored in memory for quick access whenever the
server is started.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Modifying a Server’s Configuration Attributes

The data for configuring servers includes arrays of attributes. For flexibility, dced is
implemented using the extensible and dynamic data structures developed for the
DCE security registry attributes. This ERA schema gives vendors the flexibility to
modify the attributes appropriate for configuring servers on various systems. The
use and modification of these data structures are described in IChapter 29 The

Applications commonly use dced_server_modify_attributes() after the
dced_server_create() routine to change the default configuration attributes (the
attributes field of a server_t structure) for a remote server. A dced_attr_list t data
structure is input that contains an array of sec_attr t data structures and a count of
the number in the array.

Deleting a DCE Server

Management applications use dced_server_delete() to delete a server’s
configuration data and entry in its hosts dced. Although this does not delete the
actual server program from the host, it removes it from DCE control.

Starting and Stopping Servers

A server typically runs as persistent process or is started on demand when a client
makes a remote procedure call to it. Management applications can start remote
servers by using the dced_server_start() routine. This is a srvrconf routine that
takes as input server configuration data in the form of an attribute list.

Once a server has started, it tends to remain running until an administrator or
management application stops it, but some applications may stop themselves if, for
example, they do not detect activity within a specified time. To stop remote servers,
applications can use the dced_server_stop() routine.

60 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The following example shows how an application starts or stops a server:
dced_binding_handle_t dced_bh, conf_bh, exec_bh;

server_t conf, exec;
dced_string_t server_name;
uuid_t srvrconf_id, srvrexec_id;

error_status_t status;

/* Toggle the Starting or Stopping of a Server */
dced_binding_create("srvrconf@hosts/somehost",
dced _c_binding_syntax_default,
&conf_bh,
&status);
dced_binding_create("srvrexec@hosts/somehost",
dced_c_binding_syntax_default,
&exec_bh,
&status);
dced_ing_id(exec_bh, server name, &srvrexec_id, &status);
if(status != error_status_ok) {
puts("Server is NOT running.");
dced_ing_id(conf_bh, server_name, &srvrconf_id, &status);
dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id, &status);

}
else {
puts("Server is RUNNING.");
dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_rpc, &status);

}
dced_binding_free(conf_bh, &status);
dced_binding_free(exec_bh, &status);

dced_binding_create()
These routines create dced bindings to the srvrconf and srvrexec portions
of the server management service on a specified host. The binding handles
created are used in all subsequent calls to appropriate dced API routines.

dced_ing_id()
This routine returns the UUID that dced associates with the name input.
Each name used to identify an object of each service has a UUID. If dced
maintains a UUID for a srvrexec object, the server is running. However, it
is possible that the server is in an in-between state as it is starting up or
shutting down. For a more robust check as to whether the server is running,
use the dced_object read() routine to read the server_t structure for the
srvrexec object. If the exec data.tagged union.running_data.instance UUID
is the same as the srvrconf UUID (srvrconf_id), the server is running.

dced_server_start()
This routine starts the server via dced. The srvrconf binding handle and
UUID are input. For special server configurations, you can start a server
with a specific list of attributes, but a value of NULL in the third parameter
uses the attributes of the server configuration data. You can input a
srvrexec UUID for dced to use, or allow it to generate one for you.

dced_server_stop()
This routine stops a running server identified by its srvrexec UUID. The
cleanest stop method is to cause dced to use the
rpc_mgmt_server_stop_listening() routine so that all outstanding remote
procedure calls complete before the server stops.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the binding resources allocated.

Chapter 3. DCE Host Services 61

Enabling and Disabling Services of a Server

Most servers have all their services enabled to process all requests. However, a
server may need to enable or disable services to synchronize them, for example.
For another example, an administrator (or management application) may need to
disable or enable services to perform orderly startup or shutdown of a server.

Each service provided by a server is implemented as a set of procedures. DCE
uses an interface definition to define a service and its procedures, and application
code refers to the interface when controlling the service.

When a server starts, it initializes itself by registering with the RPC runtime and the
dced process on its host by using the dce_server_register() routine. This enables
all services (interfaces) that the server can support. The server can then disable
and reenable services (in whatever order it requires) by using the
dce_server_disable_if() and dce_server_enable if() routines.

To control the services of remote servers, management applications use the
dced_server_disable_if() and dced_server_enable_if() routines. These routines
work on the srvrexec object. When a service (interface) is disabled, a client that
already knows about the service (through a binding handle to this interface and
server) will no longer work because the interface is unregistered with the RPC
runtime. If you wish to have clients that already know about the server and service
work, but wish to prohibit any new clients from finding the server and service, you
can use rpc_mgmt_ep_unregister() to remove from the endpoint map the server
address information with respect to the service. This routine does not affect the
RPC runtime.

Validating the Security Server

The security validation service (secval) has the following major functions:

* It maintains a login context for the host’s self-identity which includes periodic
changes to the host’s key (password).

* It validates and certifies to applications, usually login programs, that the DCE
security daemon (secd) is legitimate.

Clients (including remote clients, local servers, host logins, and administrators) all
need the security validation service to make sure that the secd) process being used
by the host is legitimate. The security validation service establishes the link in a
trust chain between applications and secd so that applications can trust the DCE
security mechanism.

An application can trust its host’s security validation service because they are on
the same host, but an application has no way to convince itself that secd,
presumably on another host, is genuine. However, if the application trusts another
principal (in this case, the security validation service), which in turn trusts secd,
then the trust chain now extends from the application to secd .

Typically, a login program accesses the security validation service when it uses the

DCE Security Service’s login API, described in Chapter 30_The Extended Attributd

BPI” an page 597. Administrators access the secval service by using the dcecp
secval object. However, suppose you are writing a security monitoring application

62 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

to watch for and respond to security attacks. After the application binds to the
secval service, it can call the dced_secval validate() routine to verify that the
secd process is legitimate.

Applications can also use the dced_secval_start() and dced_secval_stop()
routines to start and stop the security validation service on a given host.

For example, during configuration of a host, the dced program can start with or
without the security validation service. Later when security is configured, a
management application can start secval by using the dced_secval_start() routine.
For another example, suppose our security monitoring application mentioned earlier
suspects an attack. The application can call dced_secval_stop() to stop the
security validation service without stopping the entire dced . This makes the login
environment more restrictive.

Managing Server Key Tables

Keys for servers are analogous to passwords for human users. Keys also play a
major role in authenticated remote procedure calls. Keys have some similarities with
passwords. For example, server keys and user passwords have to follow the same
change policy (or a more stringent one) for a given host or cell. This means that,
just as a user has to periodically come up with a new password, a server has to
periodically generate a new key. It is easy to see that a human user protects a
password by memorizing it. But a server memorizes a key by storing it in a file
called a key table.

It is more complex for a server to change keys than it is for a human user to
change a password. For example, a human user needs to only remember the latest
password, but a server may need to maintain a history of its keys by using version
numbers so that currently active clients do not have difficulty completing a remote
procedure call. When a client prepares to make authenticated remote procedure
calls, it obtains a ticket to talk with the server. (The security registry of the
authentication service encrypts this ticket by using the server’s key, and later the
server decrypts the ticket when it receives the remote procedure call.)

Timing can become an issue when a client makes a remote procedure call because
tickets have a limited lifetime before they expire, and servers must also change
their keys on a regular basis. Assuming the client possesses a valid ticket, suppose
that, by the time the client makes the call, the server has generated a new key. If a
server maintains versions of its keys, the client can still complete the call.

Authentication is described in detail in LChapter 24_Qverview of Security” od

A key table usually contains keys stored by one server, and it must be located on
the same host as that server. However, a key table can hold keys for a set of
related servers, as long as all the servers reside on the same host. Servers usually
maintain their own keys, and [Chapter 31 _The | agin API” on page 627 describes
the API they use. Administrators can remotely manage key tables and the keys in
the tables by using the dcecp keytab object. This section describes the API
routines that management applications can use to manage the key tables and keys
of other servers on the network.

Chapter 3. DCE Host Services 63

Suppose you discover that a server or an entire host’s security has been
compromised. Applications can use the dced_keytab change key() routine to
change a key table’s key. The following example shows how to reset the key for all
key tables on a specified host:

dced_binding_handle_t dced_bh;
dced_entry_list_t entries;

unsigned32 is
error_status_t status;
dced_key_t key;

dced_binding_create("keytab@hosts/somehost",
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced binding set auth_info(dced bh,
rpc_c_protect_level default,
rpc_c_authn_default,
NULL,
rpc_c_authz_dce,
&status);

dced 1ist _get(dced bh, &entries, &status);

for(i=0; i<entries.count; i++) {
generate_new_key(&key); /* application specific */
dced_keytab_change_key(dced bh, &entries.list[i].id, &key, &status);
1

dced_list_release(dced_bh, &entries, &status);
dced binding free(dced bh, &status);

dced_binding_create()
This routine creates a dced binding to a dced service on a specified host.
The binding handle created is used in all subsequent calls to appropriate
dced API routines. The keytab portion of the first argument represents the
well-known name of the keytab service. When this string is used by itself, it
refers to the service on the local host.

dced_hinding_set_auth_info()
Accessing keytab data requires authenticated remote procedure calls. The
dced_binding_set_auth_info() routine sets authentication for the dced
binding handle, dced_bh.

dced_list_get()
Applications use the dced_list_get() routine to get a service’s entire list of
names.

generate_new_key()
This application-specific routine generates the new key and fills in a
dced_key t data structure. This routine could use the
sec_key mgmt_gen_rand_key() routine to randomly generate a new key.

dced_keytab_change_key()
The dced_keytab _change _key() routine tries to change the principal’'s key
in the security service’s registry first. If that is successful, it changes the key
in the key table.

dced_list_release()
Each call to the dced_list_get() routine requires a corresponding call to
dced_list_release() to release the resources allocated for the entry list.

dced_binding_free()
Each call to the dced_binding_create() routine requires a corresponding
call to dced_binding_free() to release the resources allocated for a dced
binding handle.

64 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

For more detailed key table management, applications can peruse a key table’s list
of keys by using the dced_keytab initialize_cursor()
dced_keytab_get next key() , and dced_keytab release cursor() routines.
Reading key table data remotely presents a greater security risk because data is
sent over the network. For remote access, these routines actually get all the keys
during one remote procedure call to be more efficient and to minimize the time keys
are being sent over the network.

Earlier in this section we described how to change the key of a key table with the
dced_keytab_change key() routine. The key table management service also
provides the routines dced_keytab_add_key() and dced_keytab remove key() to
control key modification in even greater detail.

Finally, you can create a new key table by using dced_keytab_create() , or you can
delete an existing key table by using dced_keytab delete() .

Sample dced Application

The following sections contain the complete source code, Makefile, and dcecp
installation scripts for a simple DCE application that uses some of the dced server
management facilities.

The greet_dced application is an adaptation of the greet application described in
the IBM DCE Version 3.1 for AIX and Solaris: Introduction to DCE. The greet_dced
server is registered and executed via dced .

Once started, greet_dced ’'s behavior is identical to that of greet. The client side of
the application sends a greeting to the server side of the application. The server
prints the client’s greeting and sends a return greeting back to the client. The client
prints the server’s reply and terminates. (Note that the server does not catch
signals, so when it is stopped it does not clean up its namespace or registry entries;
this must be done manually.)

Running the Program

To run greet_dced , do the following:
1. Build the program by invoking the make command.

2. Change the uid and gid values in greet_dced.install according to your
preferences. If you do change them, make sure that you chown the keytab file
to the same uid in Step 4 below.

3. As cell_admin , do:
dcecp greet_dced.install

This creates a server principal and account with the password "'secret”, creates
a CDS directory and changes permissions on it (so that the server principal has
rights to create its server entry), creates a keytab entry and creates a srvrconf

entry. It handles errors, so if something fails (e.g. if the user already exists) the

program will still run to completion.

4. As root, do:
chown your _user _name greet_dced.ktab

This is necessary because the form of the chown command in
greet_dced.install will fail—it is present there only as a reminder. If you use a
different uid in the script, change it here as well.

5. As cell_admin , do:
Chapter 3. DCE Host Services 65

dcecp -c server start greeter_dced

6. Wait a few moments and check /tmp/srv.out to make sure the server has
started.

7. Start the client as follows:
Jgreet_dced_client /.:/subsys/my_company/greet_dced/greeter_dced_entry

After you are done, you can get rid of everything as follows:
1. As cell_admin , stop the server:

dcecp -c server stop greeter_dced -method soft
2. As cell_admin , run the delete script:

dcecp greet_dced.delete

The program has the following limitations:

1. The server does not catch signals, so when it is stopped it does not clean up
anything.

2. The dce_server_sec_begin() routine logs in using the server principal and
keytab specified in the srvrconf file. It also starts a thread to manage the
server’s key. However, it does not start a thread to refresh the server’s login
context. That still needs to be done by the application writer, using the same
method that was used in DCE 1.0.x:

create a thread to run the following:

Toop

find out when the login context expires

do a pthread_delay _np for

(expiration time - current time - 10 minutes)
sec_login_refresh_identity();

sec_key _mgmt_get key();
sec_login_validate_identity();

sec_key _mgmt_free key();

end Toop

greet_dced.idl

Following are the contents of the greet_dced.idl file.

* greet_dced.idl

* The "greet_dced" interface.

*/

[uuid(3dbead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greet_dcedif

{
const Tong int REPLY_SIZE = 100;

void greet_dced(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]
)s
1

66 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

greet_dced_server.c

Following are the contents of the greet_dced_server.c file, which contains the
greet_dced server setup and cleanup routines. This is where the server’s
interaction with dced takes place.

/* greet_dced server_dce.c

* Main program (initialization) for "greet_dced" server.
* NEW SERVER for DCE 1.1.

*/

#include <stdio.h>
#include <dce/dced.h>
#include "greet dced.h"
#include "util.h"

char invocation_instructions[] = "Usage:\n\
1. Invoke the dcecp program: dcecp\n\
dcecp>\n\

2. Start the server:\n\
dcecp> server start greeter_dced\n\
3. If dced cannot find a matching server object,
create server configuration:\n\
dcecp> source greet_dced.install\n\
dcecp> server start greeter_dced\n\
4. exit dcecp.\n\
dcecp> exit";

FILE %= out = NULL;
boolean32 rpc_mgmt_authorize (rpc_binding handle_t client_bn,

unsigned32 op_no,
unsigned32 =*st);

int main(
int argc,
char *argv[]

)

{
server_t *server_conf;
dce_server_register_data_t register_data[l];
dce_server_handle t server_handle;
error_status_t status;

/* if we are a daemon stderr is missing */
out = fopen ("/tmp/srv.out" , "w");

/* otherwise just use
out = stderr;

*/
fprintf(out, "Server start\n"); fflush(out);

[*Hxxxxkxxx Get the server's configuration from the Tocal dced xx#¥xx/
fprintf(out, "dce_server_ing_server() call\n");
fflush(out);
dce_server_ing_server(&server_conf, &status);
fprintf(out, "dce_server_ing_server() return\n");
fflush(out);
if(status != error_status_ok) { /* Describe startup via dcecp */
/* and dced x/

fprintf(out, "%s\n", invocation_instructions);

fflush(out);

ERROR_CHECK(status, "Cannot get server configuration structure");

}

Chapter 3. DCE Host Services

67

YRR I TE T login and manage key Fhkkkkkkkkk Rk kkkkhhkkkhkkhhkrhkhk [
fprintf(out, "dce server_sec_begin() call\n");
fflush(out);
dce_server_sec_begin(dce_server c_login|dce_server_c_manage key, &status);
fprintf(out, "dce_server_sec_begin() return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed in dce_server_sec_begin()\n");
fflush(out);
ERROR_CHECK(status, "Cannot sec_begin");
}

[*xxxxwsrxx Only the protocol sequences we want *kxxwwsrkkkrxsns/
fprintf(out, "dce_server use protseq() call\n");
fflush(out);
dce_server_use protseq(NULL, (id1_char *)"ncadg_ip_udp", &status);
fprintf(out, "dce_server_use_protseq() return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed to specify protocol sequence\n");
fflush(out);
ERROR_CHECK(status, "Cannot specify protocol sequence");
}

[**xxxx% Fi11 in rest of registration data structures #xxkxxkxxwx/
register_data[0].ifhandle = greet_dcedif vl 0 s ifspec;
register_data[0].epv = NULL; /* use default entry point vector */
register_data[0] .num_types = 0;

register_data[0].types = NULL;

/************************** Regjster the Server *****************/

fprintf(out, "dce_server register() call\n");

fflush(out);

dce_server_register(dce_server_c_ns_export, /* flag says register server with CDS */
server_conf,
register_data,
&server_handle,
&status

)s

fprintf(out, "dce_server_register() return\n");

fflush(out);

if (status != error_status_ok) {
fprintf(out, "Failed dce_server_register. Error %d\n", status);
fflush(out);

ERROR_CHECK(status, "Can't register server with DCE");
}

[*HxHxkkkkxkkkxkkxxk%* Listen for remote procedure calls *kkkkkkkkk [
fprintf(out, "Listening...\n"); fflush(out);
rpc_server_listen(rpc_c_listen_max_calls_default, &status);
fprintf(out, "Returned from listening...\n");
fflush(out);
if (status != rpc_s_ok) {
fprintf(out, "Failed rpc_server_Tisten\n");
fflush(out);
ERROR_CHECK(status, "Can't start Tlistening for calls");
}

/************************ Unregister from DCE *******************/
fprintf(out, "dce_server_unregister call\n");
fflush(out);
dce_server_unregister(&server_handle, &status);
fprintf(out, "dce_server_unregister return\n");
fflush(out);
if (status != error_status_ok) {
fprintf(out, "Failed dce_server_unregister\n");

68 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

fflush(out);
ERROR_CHECK(status, "Can't unregister server from DCE");

}

fprintf(out, "dce_server_sec_done call\n");
fflush(out);

dce_server_sec_done(&status);

fprintf(out, "dce_server_sec_done return\n");

fflush(out);

if (status != error_status_ok) {
fprintf(out, "Failed dce_server_sec_done\n");
fflush(out);

ERROR_CHECK(status, "Can't do sec_done");
}

}
greet_dced_manager.c

Following are the contents of the greet_dced_manager.c file, which contains the
implementation of the greet_dced interface.

* greet_dced_manager.c

* Implementation of "greet dced" interface.

*/

#include <stdio.h>
#include "greet_dced.h"

void

greet_dced(
handle_t h,
id1_char *client_greeting,
id1_char *server_reply

)

{

printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");

greet_dced_client.c
Following are the contents of the greet_dced_client.c file.

/*
* greet_dced_client.c
*

*

Client of "greet_dced" interface.

*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/rpc.h>

#include "greet dced.h"
#include "util.h"

int
main(

int argc,
char *argv[]

Chapter 3. DCE Host Services 69

rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;

id1_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet dced client <CDS pathname>\n");
exit(1l);

}

/*
* Start importing servers using the name specified
* on the command line.
*/
rpc_ns_binding_import begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1l],
greet_dcedif_vl 0 c_ifspec, NULL, &import_context, &status);

ERROR_CHECK(status, "Can't begin import");

/*

* Import the first server (we could interate here,

* but we'll just take the first one).

*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);
ERROR_CHECK(status, "Can't import");

/*

* Make the remote call.

*/

greet_dced(binding_h, (id1_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);

util.c

Following are the contents of the util.c file, which contains the error message
handling routines for the greet_dced server and client.

* util.c

* Utility routine(s) shared by "greet dced" client
% and server programs.

*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/dce_error.h>

void

error_exit(
error_status_t status,
char *text

)

{

unsigned char error_text[100];
int dummy;

dce_error_ing_text(status, error_text, &dummy);

fprintf(stderr, "Error: %s - %s\n", text, error_text);
exit(1l);

70 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

util.h

Following are the contents of the util.h file, which contains declarations used in the

util.c file.

/*
util.h

* o

*

Declarations of utility routine(s) shared by "greet_dced" client
% and server programs.

*/

#define ERROR_CHECK(status, text) if (status != error_status_ok) \
error_exit(status, text)

void

error_exit(
error_status_t status,
char *text

)s

greet_dced.install

Following are the contents of the greet_dced.install file, which is the dcecp install

script for the greet_dced server.

set dir
/users/ your_user_name/src/dce/greet_dced/greet_dced
set cds_dir /.:/subsys/my_company/greet_dced

Unix and group id of the server process owner
has to own the keytab file as well

set uid 1265

set gid 1000

add a PGO for the server

set cmd "user create greet_dced server -group servers \
-0 osf -password secret -mypwd -dce-"

if {[catch $cmd msg] !'= 0} {

echo "user create:" $msg

}

create a directory in CDS and give access to the server

this will fail if any directory in the chain is not already there
set cmd "directory create $cds_dir"

if {[catch $cmd msg] !'= 0} {

echo "directory create: " $msg

}

set cmd "acl modify $cds_dir -add {user greet_dced server rwdit}"
if {[catch $cmd msg] !'= 0} {
echo "acl modify: " $msg

}

create a keytab for the server

set cmd "keytab create greet_dced.ktab \
-storage $dir/greet_dced.ktab \

-data {greet_dced_server plain 1 secret}"
if {[catch $cmd msg] != 0} {

echo "keytab create: " $msg

}

dced create the keytab file with root as its owner
so we have to chown it, but

Chapter 3. DCE Host Services

71

this may require root permission, so it's likely to fail.
set cmd "exec chown $uid $dir/greet_dced.ktab"

if {[catch $cmd msg] != 0} {

echo "chown: " $msg

}

create the srvrconf object
set cmd "server create greeter_dced \
-program $dir/greet_dced_server \
-entryname $cds_dir/greeter_dced entry \
-keytabs [attrlist getvalues [keytab show greet dced.ktab]\
-type uuid]\
-principals {greet_dced_server} \
-starton explicit \
-directory $dir/exec_dir \
-services { {ifname greet_dced} \
{interface {3d6ead56-06e3-11ca-8dd1-826901beabcd 1.0}}} \
-uid $uid -gid $gid"
if {[catch $cmd msg] != 0} {
echo "server create: " $msg

}
greet_dced.delete

Following are the contents of greet_dced.delete , which contains the dcecp
cleanup script for the greet_dced server.

set dir /users/ your_user_name/src/dce/greet_dced/greet_dced
set cds_dir /.:/subsys/my_company/greet_dced

catch "server delete greeter_dced"
catch "keytab delete greet_dced.ktab"

catch "directory delete $cds dir -tree"
catch "user delete greet_dced_server"

Makefile

Following are the contents of the greet_dced Makefile.

#H##########H#HHH A A AR AR A AR A A A AR AR A AR AR AR AR R AR A

#

Makefile: A generic makefile suitable for building the greet_dced
application.

#

-77 cols-

idgadddadadpaddsaaddgadtpadddadddasgdssdddpaddadidaagdsaaddadatid

DCEROOT = /opt/dcelocal

CC = /bin/c89

IDL = id1

LIBDIRS = -L${DCEROOT}/usr/1ib

LIBS = -ldce -Tc_r

LIBALL = ${LIBDIRS} ${LIBS}

INCDIRS = -I. -I${DCEROOT}/share/include

CFLAGS = -g ${INCDIRS} -D SHARED LIBRARIES -D__hppa -Dhp9000s800 \
-Dhp9000s700 -D__hp9000s800 -D__hp9000s700 -DHPUX -D_ hpux \
-Dunix +DA1.1 -D_HPUX_SOURCE

IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet dced client greet dced server

greet_dced.h greet_dced_cstub.o greet_dced_sstub.o: greet_dced.id]l

${IDL} ${IDLFLAGS} greet dced.idl

72 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

greet_dced client: greet dced.h greet dced client.o util.o \
greet_dced_cstub.o

${CC} -0 greet dced client greet dced client.o \
greet_dced_cstub.o util.o ${LIBALL}

greet_dced_server: greet _dced.h greet_dced server.o \
greet_dced_manager.o util.o greet_dced_sstub.o

${CC} -0 greet_dced server greet dced_server.o \
greet_dced_manager.o greet_dced_sstub.o util.o ${LIBALL}

greet_dced_client.c greet_dced_server.c util.c: util.h
greet_dced_manager.c greet_dced_client.c greet_dced_server.c: greet_dced.h

clobber:

rm -f greet _dced.h greet_dced client greet_dced client.o \
greet_dced_cstub.o greet_dced_manager.o greet_dced_server \
greet_dced_server.o greet_dced _server dce.o \
greet_dced_sstub.o server_struct.o greet_dced_server_dce
util.o

Chapter 3. DCE Host Services 73

74 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 4. DCE Application Messaging

Message generation by distributed programs can be divided into two broad kinds:
* Normal (often user-prompted, client-generated) messages

* Server event messages, containing information about server activity, either
normal or extraordinary

Similarly, DCE makes available to applications two messaging APIs:
* The DCE messaging interface
* The DCE serviceability interface

The DCE serviceability interface is designed specifically to route messages of the
second type; it is described in tChapter 5_Using the DCE Serviceahility Applicatiod
Interface” on page 8d. Messages in the first category are output using the DCE
general-purpose application messaging routines, which are the subjects of this
chapter.

Although the two interfaces, broadly speaking, do the same general thing (that is,
write messages), their functionality was designed to serve different needs, both of
which occur in most distributed applications. Nevertheless, either interface can be
used more or less exclusively of the other, if desired.

DCE and Messages

A message is a readable character string conveying information about some aspect
of a program’s state or activity to a human audience. Messages may be purely
informational or they may be intended to be responded to (that is, be interactive).
Prompts, error displays, warnings, logs, announcements and program responses
are all various kinds of message.

DCE applications can simply use the standard output routines (such as printf() ,
sprintf() , and so on) for messaging. However, DCE provides two message
interfaces that automatically and transparently take care of many of the special
problems that distributed application messaging can give rise to. These interfaces
are used by the DCE components themselves to implement their messaging.

Both of the DCE message facilities use XPG4 message catalog files (see the
X/Open Portability Guide) to hold message text. The message catalogs are
generated by a DCE utility (called sams) during the application development
process, and must be installed in the correct platform-dependent location in order
for the DCE messaging library routines to be able to find them (and, consequently,
the messages) at runtime.

The main purpose of message catalogs is to allow programs’ message text to be
stored and organized (separately from the programs themselves) in a culture- or
nationality-specific way. This enables programs to switch their 1/0O styles and
contents to the form appropriate to the geographical location (locale) they are
running in, simply by using the appropriate catalog. Thus, it is essential to compose
catalogs in such a way that each one contains message text appropriate only to a
single (same) locale.

© Copyright IBM Corp. 1990, 1999 75

Questions such as the proper use of locales, proper language style for messages,
where catalogs should be installed, and so on, all fall under the broad topic of
internationalization, and are not discussed in this chapter. The other important
aspect of internationalization, namely character and code set compatibility, is

discussed in detail in LChapter 17 \Writing Internationalized RPC Applications” on

DCE Messaging Interface Usage

Use of the DCE messaging APl is very straightforward. In the application code
itself, all that is usually required is simply to call one of the output routines, passing
it the ID of the message to be output. The messages themselves must first be
defined in a text file which must then be processed by the DCE sams (symbols and
message strings) utility, which generates the message catalog file along with other
C source files that contain code necessary to facilitate the additional layer of
functionality that DCE has added to the XPG4 message catalog mechanism.

A Simple DCE Messaging Example

The following subsections describe all the steps and code necessary to compile an
application that uses the DCE messaging API to print the familiar " Hello world”
message.

Defining the Message

For our example, we will define a sams file with the minimum contents necessary
to print the one brief message we want to display. (Additional information on the
use of sams can be found in the sams(1dce) reference page, which contains
comprehensive descriptions of all aspects of the utility.)

Each line in a sams file consists of a simple header and value combination. The
header indicates the meaning of the value being specified, and value is the value
itself. A sams file for messaging use is normally made up of three parts (although
only two parts are needed for the short example in this chapter). The first part
consists of a minimum of one line that specifies the name of the component (that is,
the application) that is to use the messages that will be generated from the file.

Each invocation of sams to process a separate .sams input file produces a
complete set of output files that can be used by the DCE messaging routines to
print or log messages as required. These sets of output files are organized by DCE
component. (In DCE itself, these components are identical to the DCE components:
RPC, DTS, and so on; for applications, the categorization of components is
determined by the developer.) Each set of output files will have names in which the
component name (also determined by the developer) appears.

The component name that you specify at the top of a sams file must consist of a
three-character (no more, no less) string. For the "' Hello world” program we will
use the component name hel:

Part I of simple sams message file...
component hel

The hel string will be used to identify all the files and data structures that sams will
generate from the file.

76 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The second (and final) part of a sams file for DCE messaging consists of a series
of records that specify the messages themselves. Each record is delimited by the
start and end keywords. Within each record, a series of keywords identifies the
various information that each message consists of or has associated with it.

Our file will contain only one message, the text of which is to be " Hello world”. The
record that specifies it is as follows:

start

code hello_msg

text "Hello world"

action "None required"

explanation "Greeting message for sample messaging program"
end

The keywords specified have the following meanings:
code Identifies the message.
text Specifies the text of the message itself.

explanation
Describes the meaning of the message. The text following this keyword is
used to generate the documentation of the component’s messages.

action Describes any actions that should be taken in response to the message.
The text following this keyword is used to generate the documentation of
the component’'s messages.

Processing the .sams File

The entire sams file for the hello program is as follows:

Part I

component hel

Part II

start

code hello_msg

text "Hello world"

action "None required"

explanation "Greeting message for sample messaging program"
end

We create the file with these contents and name it hel.sams .

A sams file containing DCE messaging APl message definitions (in other words, a
sams file not containing definitions for DCE serviceability APl messages) should be
compiled by invoking sams as follows:

sams -0 thmc sams_filename

where:
-0 Introduces output flags as follows:
t Specifies that a file containing source code to generate an
in-memory message table be output by sams.
h Specifies that a header file defining codes for the message
numbers be output by sams.
m Specifies that a .msg file be output by sams.

Chapter 4. DCE Application Messaging 77

c Specifies that sams call gencat (with the .msg file as input) to
produce a message catalog.
Running the command as shown will result in four files being output:

dcehel.cat
XPG4 message catalog file created by gencat . If you wish to use the
message catalog, you must install it yourself.

dcehel.msg
Message input file for gencat .

dcehelmsg.c
Code defining the in-memory table of message texts. By using this table
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.h
Header file containing definitions for dcehelmsg.c .

The header file should be included in the program source code. The dcehelmsg.c
module should be compiled and linked with the program object module. The
message catalog should be installed in the correct platform-dependent location.

All that remains now is to create a simple C program that calls a DCE messaging
routine to output the " Hello world” message.

Program Source

The complete source code for hello.c is as follows:

#include <dce/dce.h>

#include <dce/dce_svc.h>
#include "dcehelmsg.h"

int
main(
int argc,
char +*argv[])
dce_printf(hello_msg);
1

To build the application, you simply
* Process the hel.sams file with the sams command.
* Build and link hello from the following modules:

— dcehelmsg.c

— hello.c

When executed, the program will print the following:
Hello world

This is the text of the hello_msg message as defined in the hel.sams file.

78 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

DCE Messaging and Message Catalogs

The reader may be wondering why, in the previous example, it was not necessary
to explicitly open the message catalog before making the call to retrieve and print
the message itself. The answer is that dce_printf() takes care of this step implicitly.
It is able to find the message catalog because the catalog’s name is generated from
the component field in the first part of the sams file. Of course, for this to work, the
message catalog must be installed in the correct system-defined location before the
application is run.

An application may even dispense with the use of installed message catalogs
altogether, and use in-memory message tables instead. The necessary code to
declare the sams file messages as arrays in program memory is contained in the
dce cmpmsg.c file generated with the sams -0 t option. To initialize the table
before using it the application must also call the dce_msg _define_msg_table()
routine, described in Message Tahle Routines” on page 85. The message routines
will, when called, attempt to use the application’s message catalog; but if it cannot
be found, the in-memory table will be used instead.

The DCE Message Interface and sams Input and Output Files

Eigure 4 on page 80 shows the relationship of the various files, both source and
sams output, that go to make up DCE application code that uses the DCE
messaging API.

The two parallelogram-shaped objects represent the files that must be created by
the developer (you).

Rectangular objects with solid lines represent files that are generated by sams; the
two ovals represent executable utilities: one is sams, the other gencat (which is
implicitly run by sams when message catalogs are generated).

The large rectangular object in dashed lines represents libdce , which contains the
DCE message API library.

This illustration makes no attempt to show how a DCE application that uses DCE

messaging should be compiled and linked, nor how it runs. It is merely a static map
of the general place of DCE application messaging in DCE development.

Chapter 4. DCE Application Messaging 79

\ hel.sams \
dcehelmsg.man

\ 4 (doc)

sams dcehelmsg.smi

dcehelmsg.h (doc)

[
dcehelmsg.c dCehgjll;nCs)g.ldx

dcehel.msg

hello.c A 4

: gencat

(executed by
sams)

\
\

dce_printf(hello_msg); «

< .4
N dcehel.cat

.| (message catalog)

libdce

[
|
|
|
|
|
| (DCE Library)
I

Figure 4. sams and DCE Messages

The sams output filenames are made up of the following pieces:

tech_name + comp _name + part_name + extension

where:

tech_name
Is the technology name (optionally specified at the top of the hel.sams file);
by default dce.

comp_name
Is the component name (specified at the top of the hel.sams file); in this
case, hel.

part_name
Is a substring identifying the particular file; for example, svc or msg, and so
on. This piece of the name is omitted from the message catalog filenames
(in our example, dcehel.msg and dcehel.cat).

extension

Is the file extension (preceded by a . (dot) character).
The files dcehelmsg.man (generated by sams -p d hel.sams) and
dcehelmsg.sml (generated by sams -p p hel.sams), which are shown in Eigure 4,
were not generated by the following command:

sams -0 thmc hel.sams

They could have been generated by executing this command:

80 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

sams -0 dp hel.sams

These are automatically generated documentation files (their nature and purpose
were previously described) that have nothing to do with the operation of the
interface itself.

A definitive description of sams and the contents of sams files can be found in the
sams(1dce) reference page.

DCE Messaging Routines

There are several different DCE messaging routines. It is possible for an application
to accomplish all of its messaging tasks with only one or two of these routines
(dce_printf() and dce_error_ing_text()); additional routines allow applications to
perform manipulations on message tables, open and close message catalogs
explicitly, retrieve messages without printing them, and so on. The complete list of
routines is as follows:

« Message output routines

These routines retrieve and output a specified message. If necessary, the
message catalog is opened.

— dce_printf()
— dce_fprintf()
— dce_sprintf()
— dce_pgm_printf()
— dce_pgm_sprintf()
— dce_pgm_fprintf()
* Message retrieval routines

These routines retrieve a specified message. If necessary, the message catalog
is opened.

dce_msg_get _msg()
dce_msg_get()
dce_msg_get _default_msg()
— dce_error_ing_text()
* Message table routines
Miscellaneous routines for manipulating in-memory message tables.
— dce_msg_define_msg_table()
— dce_msg_translate table()
* DCE XPG4 routines

DCE versions of the XPG messaging routines catopen() , catgets() , and
catclose() .

dce_msg_cat_open()
dce_msg_cat_get msg()
dce_msg_get cat msg()
dce_msg_cat_close()

Generally speaking, routines that retrieve or print messages will first try to get a
message from the message catalog file (the routines deduce the correct message

Chapter 4. DCE Application Messaging 81

catalog from the message ID that is passed to them). Routines will look for the
catalog in the current locale’s system-specific location for correctly installed
message catalogs.

If the message catalog cannot be found, and an in-memory message table has
been defined, the message will be retrieved from there.

The only exception to this message-finding algorithm occurs with
dce_msg_get default_msg() , which always attempts to retrieve the in-memory
message only.

The following sections describe each of the DCE messaging routines in detail.
Complete reference pages for the routines can be found in the IBM DCE Version
3.1 for AIX and Solaris: Application Development Reference.

Message Output Routines

The six message output routines in this group essentially reproduce the functionality
of printf() , fprintf() , and sprintf() , with the difference being that they operate on a
specified message rather than on a string variable. The routines can be called
without any special preparation (but see the descriptions of the three dce_pgm_
routines).

dce_fprintf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments on the specified stream. The
message is printed without a concluding newline; if a newline is desired at
the end of the message, then it should be coded (as \n) in the message
definition in the sams file.

The routine determines the correct message catalog and, if necessary,
opens it. If the message catalog is inaccessible, and the message exists in
an in-memory table, then this message (the default message) is printed. If
for any reason the message cannot be retrieved, an error message is
printed.

dce_printf()
Performs a dce_fprintf() of the specified message to standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID, and
writes the message and its arguments into an allocated string (which should
be freed by the caller). The routine determines the correct message catalog
and, if necessary, opens it. If the message catalog is inaccessible, and the
message exists in an in-memory table, then this message (the default
message) is printed. If for any reason the message cannot be retrieved, an
error message is printed.

For example, assume that the following message is defined in an
application’s sams file:

start

code arg_msg

text "This message has exactly %d not %d argument(s)"
action "None required"

explanation "Test message with format arguments"

end

The following code fragment shows how dce_sprintf() might be called to
write the message (with some argument values) into a string:

82 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

unsigned char *my_msg;
my_msg = dce_sprintf(arg_msg, 2, 8);
/* Process my_msg as appropriate... */

free(my_msg);

Of course, dce_printf() could also be called to print the message and
arguments:

dce_printf(arg_msg, 2, 8);

dce_pgm_printf()
Equivalent to dce_printf() , except that it prefixes the program name to the
message (in the standard style of DCE error messages), whereas
dce_printf() does not. This allows clients (which do not usually use the
serviceability interface) to produce error (or other) messages that
automatically include the originating application’s name. The message is
printed with a concluding newline.

Note that the client should call dce_svc_set_progname() first to set the
desired application name. Otherwise, the default program name will be

PID# nnnn

where nnnn is the process ID of the application making the call.

dce_pgm_sprintf()
Equivalent to dce_sprintf() , except that it prefixes the program name to the
string (in the standard style of DCE error messages), whereas
dce_sprintf() does not. Note that the client must call
dce_svc_set progname() first to set the desired application name.

Otherwise, the default name is
PID# nnnn

where nnnn is the process ID of the application making the call.

dce_pgm_fprintf()
Equivalent to dce_fprintf() , except that it prefixes the program name to the
string (in the standard style of DCE error messages), whereas dce_fprintf()
does not. The message is printed with a concluding newline.

Note that the client must call dce_svc_set_progname() first to set the
desired application name. Otherwise, the default name is

PID# nnnn

where nnnn is the process ID of the application making the call.

dce_error_ing_text()
Opens a message catalog, extracts a message identified by a message ID,
and places the message in the space pointed to by the text parameter. If
the message catalog is inaccessible, and there is a default message in
memory, the default message is copied into the space passed. If neither the
catalog nor the default message is available, a status code is placed in the
status output parameter and the message is returned as a hexadecimal
number; the routine always returns a printable message.

Chapter 4. DCE Application Messaging 83

This routine existed in prior releases of DCE and has been modified for
DCE for AlX 2.1 to use the default message arrays. Programs prior to DCE
for AIX Version 2.1 that use the routine do not need to be modified.

For example, assume that the following message is defined in an
application’s sams file:

start

code error_msg

text "Error: %s"

action "

explanation "DCE error status message"
end

The following code fragment shows how dce_error_ing_text() could be
used to retrieve the error status received from a DCE routine:

dce_error_string_t error_string;

unsigned32 status;

int error_ing_status;
uuid_t type _uuid, obj_uuid;
<. . >

rpc_object_set_type(&obj_uuid, &type_uuid, &status);
if (status != rpc_s_ok)

dce_error_inqg_text(status, error_string, \
&error_ing_status);
dce_printf(error_msg, error _string);

Message Retrieval Routines

84

The following three routines retrieve messages, but do not print them.

dce_msg_get msg()

Retrieves a message (identified by a global message ID) from a message
catalog, and returns a pointer to a malloc() 'd space containing the
message. The routine determines the correct message catalog and opens
it. If the message catalog is inaccessible, and the message exists in an
in-memory table, then this message (the default message) is returned in the
allocated space. If neither the catalog nor the default message is available,
an error status code is placed in the status output parameter.

The following code fragment shows how dce_msg_get msg() might be
called to retrieve the ” Hello world” message defined in the example
program earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *My_msg;

unsigned32 status;

<¢ . ->

my msg = dce_msg_get _msg(hello_msg, &status);

printf("Message is: %s\n", my msg);
free(my_msg);

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

dce_msg_get()
This is a convenience form of dce_msg_get_msg() . If it fails, it does not
pass back or return a status code, but instead fails with an assertion error,
that is, aborts the calling process.

The following code fragment shows how the routine might be called to
retrieve the " Hello world” message defined in the example program earlier
in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *my_msg;

<. . .>

my_msg = dce_msg_get(hello_msg);
printf("Message is: %s\n", my_msg);
free(my_msg);

dce_msg_get default_msg()
Retrieves a message (identified by a global message ID) from an
in-memory message table and returns a pointer to static space containing
the message retrieved. If the default message is not available, an error
status code is placed in the status output parameter.

The following code fragment shows how dce_msg_get_default_msg()
might be called to retrieve the in-memory copy of the ” Hello world”
message defined in the example program earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned char *My_msg;
unsigned32 status;

<. . .>

my_msg = dce_msg_get_default_msg(hello_msg, &status);
printf("Message is: %s\n", my_msg);

Note that, in order for this call to be successful,
dce_msg_define_msg_table() must first have been called to set the table
up in memory. For an example of how this is done, see the following
section.

Message Table Routines

The two routines in this group are intended to be used to perform manipulations on
the in-memory message table.

The in-memory table is implemented with code generated by sams and contained
in the dce cmpmsg.c module (where cmp is the component name of the
application, as specified in the component field in part | of the sams file). This file
must then be compiled and linked with the application, and
dce_msg_define_msg_table() is called at runtime to set up the table.

Note that, even if an in-memory table is defined, the DCE messaging routines still
will always attempt first to extract the specified message from the message catalog,

Chapter 4. DCE Application Messaging 85

and only if unsuccessful will they revert to the in-memory table. The exception to
this rule is dce_msg_get_default_ msg() , which always attempts to retrieve the
in-memory message only.

dce_msg_define_msg_table()
Installs a default in-memory message table accessible to DCE messaging
routines. This routine is intended to be used by programs that load all
messages from a catalog into memory in order to avoid file access
overhead on message retrieval.

The following code fragment shows how dce_msg_define_msg_table()
might be called to set up an in-memory message table consisting of the
contents of the messages defined in hel.sams earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned32 status;

<- . ->

dce_msg_define_msg_table(hel_msg table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),
&status);

dce_msg_translate_table()
Makes a new copy of the specified in-memory message table (that is,
updates the table with the contents of a message table, which has changed
because of a change in locale).

Note that this routine will fail if the message catalog is not installed or if
LANG is not properly set, since the update depends on accessing the
contents of the message catalog (unlike the initial table setup, which is
done from the code in the dce cmpmsg.c file).

The following code fragment shows how dce_msg_translate_table() might
be called to translate the in-memory table that was set up by the call to
dce_msg_define_msg_table() in the previous example:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <locale.h>
#include "dcehelmsg.h"

char *Toc_return;
unsigned32 status;
<. .>

loc_return = setlocale(LC_MESSAGES, "C");
dce_msg_translate_table(hel_msg table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),
&status);

DCE XPG4 Routines

The four routines in this group provide DCE versions of functionality of the XPG
messaging routines catopen() , catgets() , and catclose() .

dce_msg_cat_open()
(DCE abstraction over catopen()) Opens a message catalog identified by a
message ID. The routine returns a handle to the open catalog from which

86 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

messages will be extracted. This routine is intended for use by applications
(such as user interface programs) that display many messages from a
particular catalog.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_cat _open() might be
called to open the message catalog containing the " Hello world” message
defined for the example application earlier in this chapter:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel msg handle;
unsigned32 status;

<u . ->

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);

dce_msg_cat_get_msg()
(DCE abstraction over catgets()) Retrieves a message from an open
catalog. If the message is not available, returns NULL.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_cat_get msg() might
be called to retrieve the " Hello world” message. Note that the message
catalog must first be opened.

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;

unsigned32 status;
unsigned_char_t *MSg;
<. . ->

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);
msg = (unsigned_char_t *)dce_msg_cat_get msg(hel _msg_handle,
hello_msg,
&status);
printf("Message from dce_msg_cat_get_msg == %s\n", msg);
dce_msg_get _cat_msg()
Convenience form of previous routine. Opens a message catalog, extracts
a message identified by a global message ID, and returns a pointer to
malloc() 'd space containing the message. If the message catalog is
inaccessible, returns an error.

The routine will fail if the message catalog is not installed or if LANG is not
properly set.

The following code fragment shows how dce_msg_get _cat_msg() might
be called to retrieve the " Hello world” message:
#include <dce/dce.h>

#include <dce/dce_msg.h>
#include "dcehelmsg.h"

unsigned32 status;
unsigned_char_t *MSg;
<, . .>

Chapter 4. DCE Application Messaging 87

msg = dce_msg_get_cat_msg(hello_msg, &status);
printf("Message from dce_msg_get cat_msg == %s\n", msg);

dce_msg_cat_close()
(DCE abstraction over catclose()) Closes the catalog specified by handle.

The following code fragment shows how dce_msg_cat_close() might be
called to close the message catalog containing the ” Hello world” message:

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg _handle;
unsigned32 status;

<' . '>

dce_msg_cat_close(hel_msg_handle, &status);

88 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 5. Using the DCE Serviceability Application Interface

DCE serviceability was originally developed simply as a way of standardizing server
messages. The goal of its design was to make sure that all situations requiring
human intervention that can be encountered by a server are documented and
identified (both by the server when reporting them, and by the documentation when
explaining them) in a standard coordinated way so that system administrators can
easily determine the proper corrective action to take in response. Both the server
message text and the relevant documentation are derived from the same source
(that is, a .sams input file), which minimizes the possibility of any discrepancies
appearing between the two.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their server messaging, and it is made available as an API for use by
DCE application programmers who wish to standardize their applications’ server
messaging. (The DCE components are required to use the serviceability routines,
but applications are not.)

Overview

Serviceability uses XPG4 message catalogs to hold message text, but it adds an
additional layer to the XPG4 functionality. The message catalogs and other required
data (and documentation) files are generated by a utility called sams (symbols and
message strings). Its input is a text file that establishes some organizational
information about the program that is to use the messages, followed by a series of
specifications of the messages themselves.

Each message specification contains, along with the message text itself, a detailed
explanation of the situation in which the message will be displayed, together with a
description of the action required, where applicable, to correct the situation. Part of
the output of sams thus consists of automatic documentation of all the messages
writable via the serviceability API. This output was used as the basis of the contents
of the IBM DCE Version 3.1 for AIX and Solaris: Problem Determination Guide for
the DCE component server messages.

Messages also have one or more attributes specified in the sams input file. The
attributes fall into three broad categories: those that indicate message severity,
those that specify message routing, and those that specify some action (usually
some form of program exit) that should be taken immediately after the message is
written. The effect of the presence of a severity attribute is to cause the message
text to contain a severity-identifying string when displayed or written. The effect of
the presence of a routing attribute is to cause the message to be routed by default
to one of a couple of standard destinations (more flexible routing is available
dynamically). The effect of the presence of an action attribute is to cause the
program to terminate execution in one of three ways as soon as the message has
been written or displayed, or to cause a special short form of the message to be
generated.

The serviceability API can also be used by DCE applications. The advantage in
using it consists mainly in the following:

It allows all application messaging to be routed uniformly, on the basis of the
severity of the message and the functional part of the program originating the
message.

* It allows application messages to be made self-documenting.

© Copyright IBM Corp. 1990, 1999 89

Serviceability also contains facilities for debug messaging, which can be compiled in
or out of executables and which can be activated and routed by component at nine
different levels.

See the two serviceability examples located in these paths:

/opt/dcelocal/examples/svc/timop_svc
/opt/dcelocal/examples/svc/hello_svc

Note: You must login as the root user before running the
/opt/dcelocal/examples/svc/timop_svc ~ example.

How Programs Use Serviceability

The DCE serviceability mechanism uses XPG4 message catalogs to hold message
text. Additional files contain the messages’ associated documentation and other
extra information used by the mechanism. All of these files, including the message
catalog, are generated in a single step by running the DCE sams utility. The input
to sams is a single sams file that is written by the developer, and which contains all
the necessary information (text, documentation, additional information) for each
message. The message catalogs and associated information generated by sams
are then accessed whenever dce_svc_printf() or one of the other serviceability
routines is called to print or log a message.

Thus, the result of converting a program to use serviceability will essentially be that
all printf() , fprintf() , and other such routines will be replaced by calls to
dce_svc_printf() or one of the related serviceability routines. For example, a line of
code such as the first one that follows would be replaced by the second:

fprintf(stderr, "File %s not found\n", filename);

dce_svc_printf(DCE_SVC(cmp_svc_handle, ""), cmp_s_server, \
svc_c_sev_error, cmp_s_file_not_found, filename);

where the constants cmp_s_server and cmp_s_file_not_found were generated by
sams, and identify the server subcomponent of the application and the message to
be written, respectively. The cmp_svc_handle constant is the application’s handle
to its serviceability message tables and other necessary data; cmp_s_server is
actually an index to a subtable within this dynamically generated area, and
cmp_s_file_not_found is the index of the message text within the subtable.

By convention, cmp is a three-character code identifying the application as a whole;
serviceability uses it to group all of an application’s message and table data
together. Specifying svc_c_sev_error gives the message the severity of error; the
significance of severity in serviceability will be explained in the following sections.
DCE_SVC() is a macro that helps simplify the coding of dce_svc_printf() calls; as
will be seen, another macro mechanism can be used to make the calls much
simpler still.

Simple Serviceability Interface Tutorial

In this section, we’ll see how to go about creating a simple C program that uses the
serviceability interface to print the familiar ” Hello world” message.

All that is necessary to do this is to replace the first call that follows with something
like the second:

90 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

printf("Hello world\n");

dce_svc_printf(hello_world _message);

However, making the dce_svc_printf() call requires the following preliminary steps:
1. Defining the message in a sams file.

2. Processing the sams file to obtain a set of files that contain code used by the
serviceability routines.

3. Coding some serviceability initialization calls into the C program itself.
4. Coding the dce_svc_printf() call.

The next several sections describe each of these steps.
Defining the Message

In order to print any message through the serviceability interface, we must first
define the message in a sams file and process the file with the sams utility. For the
hello_svc program, we will define a sams file with the bare minimum contents
necessary. Additional information on the use of sams can be found in the
sams(1ldce) reference page.

Each line in a sams file consists of a simple header and value combination. The
header indicates the meaning of the value being specified, and value is the value
itself. A sams file for serviceability use is made up of three parts. The first part
consists of a minimum of one line that specifies the name of the component (that is,
the application) that is to use the messages that will be generated from the file.

The component name that you specify at the top of a sams file must consist of a
three-character (no more, no less) string. For the ” Hello world” program, we will
use the component name hel:

Part I of simple sams file ...
component hel

The hel string will be used to identify all the files and data structures that sams will
generate from the file.

The second part of the sams file contains some additional serviceability-specific
information about the message data structures that will be generated. (This
information is necessary if the sams file is intended for serviceability use because
sams is also used to generate message files for general, nonserviceability use.)

This part of the file specifies the names of the serviceability table and the
serviceability handle. It also contains a list of the component’s subcomponents. A
subcomponent consists of a distinct functional module of executing code. For
example, most distributed applications would have a basic server subcomponent, a
reference monitor subcomponent that would handle authorization decisions, and
one or more subcomponents that would contain the application’s particular
functionality.

The serviceability interface finds a component’'s messages in one or more
subtables, each one associated with a subcomponent. When the message is
displayed or written, the associated subcomponent name is written in a field of the
message. This allows messages to be distinguished during routing or other
processing on the basis of the subcomponent with which they are associated.

Chapter 5. Using the DCE Serviceability Application Interface 91

Following is what the second part of our simplified sample sams file looks like. We
call the serviceability table hel_svc_table , and we call the serviceability handle
hel_svc_handle . Although we have used the three-letter component code hel in
these names, we were under no obligation to do so; we could have named the
table and the handle anything we wanted. (We will need to know both of these
names when we make the call in the application to initialize the interface in
preparation for displaying messages.)

A component must have at least one subcomponent specified in its sams file.
Subcomponents are specified in this part simply by supplying their table index, their
name, and their descriptive id in a series of separate lines, one per subcomponent
and each one beginning with the sub-component keyword, between a set of start
and end keywords:

Part II

serviceability table hel _svc_table handle hel svc_handle
start

subcomponent hel_s main "main" hel_i_svc_main

end

In our example,

hel_s_main
is the table index name for the subcomponent. Serviceability routines need
this name in order to locate and print any of the subcomponent’s
messages.

main is the name of the subcomponent, specified in quotes.

hel_i_svc_main
is a name that will be used (later on in the file) to identify a message that
describes the subcomponent.

(Note that sams assigns values to all of these indexes automatically.)

The third (and final) part of the sams file consists of a series of records that specify
the messages themselves. Each record is delimited by the start and end keywords.
Within each record, a series of keywords identifies the various information that each
message consists of or has associated with it.

Our file will contain only one message, the text of which is to be " Hello world”. The
record that specifies it is as follows:

Note: See the hello_svc example in opt\dcelocal\examples\svc\hello_svc

Part III

start

code hel s hello

subcomponent hel_s_main

attributes "svc_c_sev_notice | svc_c_route stderr"
text "Hello world"

explanation "A short informational greeting"

action "None required."

end

The keywords specified have the following meanings:

start Marks the beginning of a message definition. This keyword can optionally
be followed by various values.

92 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

A number following the keyword specifies that the ID that is generated
by sams for the message should be based on (number multiplied by
100). This allows the ID numbers of messages that belong to the same
subcomponent of an application to be in the same numerical subseries
(collection), even if additional messages for subcomponents have to be
added later on. If each subcomponent’s first message is start ed with a
collection number that allows for enough extra ID space in the previous
subcomponent to accommodate a reasonable number of future
additional definitions, then each subcomponent’s ID series will be able
to maintain its unbroken series.

As mentioned, the default size of a collection number is 100. Thus, the
following collection specification is interpreted as 200"

start 2
To change the default collection size, specify
collection size dddd

(where dddd is the collection size you desire) in a separate line in Part
1 of the sams file.

code Identifies the message.

sub-component
Identifies the subcomponent that will use the message. (This must also
have been defined in Part Il of the sams file.)

attributes
Specifies various things about the message: what kind of message it is,
how it is to be routed, and so on. Multiple attributes are specified by ORing
their values together. In the example shown, the message has the severity
attribute svc_c_sev_notice , and the routing attribute svc_c_route_stderr ;
the latter forces the message to be routed to stderr whenever it is written
by a serviceability routine.

text Specifies the text of the message itself.

explanation
Describes the meaning of the message. The text following this keyword is
used to generate the documentation of the component’s messages.

action Describes any actions that should be taken in response to the message.
The text following this keyword is used to generate the documentation of
the component’s messages.

Not all the possible keywords are illustrated in our example, and, of those
illustrated, only code and text are required in all circumstances. In the example,
explanation and action have been specified because it is simpler at this point to
do so than to leave them out, and attributes and sub-component have been
specified for reasons that will be made clear later on.

This final part of the sams file also contains a series of one or more records that
specify messages identifying each of the subcomponents themselves. Since our
application has only one subcomponent, it contains only one such
subcomponent-identifying message:

Part Illa
Messages for serviceability table

Chapter 5. Using the DCE Serviceability Application Interface 93

start Iintable undocumented

code hel_i_svc_main
text "hello_svc main"
end

The keywords have the same meanings as they did in the ” Hello world” message.
A couple of flags have been specified after the start keyword. The first will cause
the message to not be generated in the message table, and the second means that
the message does not need any explanation or action text associated with it. By
specifying undocumented (with intable , to cause the message to actually be
generated even though it was to be undocumented) for the ""Hello” message, we
could have eliminated the explanation and action keywords there also.

Processing the sams File

The entire sams file for the hello_svc program is located in
opt/dcelocal/lexamples/svc/hello_sve and is as follows:

Part I
component hel
table hel_msg_table

Part II

serviceability table hel_svc_table handle hel_svc_handle
start

subcomponent hel_s_main "main" hel_i_svc_main

end

Part III

start

code hel_s_hello

subcomponent hel_s main

attributes "svc_c_sev _notice | svc_c_route stderr"
text !

Hello world"

explanation o

action "None required."

end

Part Illa

start lintable undocumented

code hel_i_svc_main

text "hello_svc main"

end

We create the file with these contents and name it hel.sams . It can be processed
with the simple command that follows:

sams hel.sams

Running the command as shown will result in ten files being created:

dcehel.cat
XPG4 message catalog file created by gencat . If you wish to use the
message catalog, you must install it yourself. Its proper location is platform
dependent.

dcehel.msg
Message input file for gencat .

dcehelmac.h
Defines convenience macros for use with the serviceability interface to write
serviceability messages.

94 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

dcehelmsg.c
Code defining the in-memory table of message texts. By using this table,
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.h
Header file containing definitions for dcehelmsg.c .

dcehelmsg.sml
Code for a IBM DCE Version 3.1 for AIX and Solaris: Problem
Determination Guide subsection documenting the messages.

dcehelmsg.man
Code for a reference page subsection documenting the messages.

dcehelmsg.idx

Code for building an index for the IBM DCE Version 3.1 for AIX and Solaris:

Problem Determination Guide subsection.

dcehelsvc.c
Code defining the serviceability table. (This is a separate table containing

the serviceability subcomponent identifying messages specified at the end

of the sams file.)

dcehelsvc.h
Header file containing definitions for dcehelsvc.c .

Of these files, only the following are needed for the hello_svc program:

dcehelmac.h
Contains convenience macro code.

dcehelmsg.c
Contains in-memory message table code.

dcehelmsg.h
Contains definitions for in-memory message table code.

dcehelsvc.c
Contains serviceability message table code.

dcehelsvc.h
Contains definitions for serviceability message table code.

The three header files should be included into the program source code. The
dcehelmsg.c and dcehelsvc.c modules should be compiled and linked with the
program object module.

All that remains now is to create a simple C program that calls the necessary
serviceability routines to output the " Hello world” message.

Coding the Serviceability Calls

The bare minimum required to initialize the serviceability interface and use it to
display our message is

» Call dce_svc_register() to get a serviceability handle that we can pass to
serviceability message routines.

» Call dce_msg_define_msg_table() to set up the in-memory message table.
» Call dce_svc_printf() to print the message.

Chapter 5. Using the DCE Serviceability Application Interface

95

To call dce_svc_register() , you must declare the serviceability handle that you
defined in hel.sams :

#include "dcehelsvc.h"

<c . o>

dce_svc_handle_t hel_svc_handle;
unsigned32 status;

<c . c>

hel_svc_handle = dce_svc_register(hel_svc_table, \
(1d1_char*)"hel", &status);
if (status != svc_s_ok)

printf("dce_svc_register failed\n");
exit(1l);
}

This call is the only initialization we need if we have installed our message catalog
and are willing to depend on the messages being extracted from there. However, if
we wish to have the messages available in program memory (and thus not depend
on the catalog’s being correctly installed), then we have to call
dce_msg_define_msg_table() to initialize the in-memory table, as follows:

#include <dce/dce_msg.h>
#include "dcehelmsg.h"

<. . .>

dce_msg_define_msg_table(hel_msg_table,
sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),
&status);

if (status != svc_s_ok)

{
printf("dce_svc_define_msg_table failed\n");
exit(1);

}

Now we can call dce_svc_printf() to print the message, as follows:
#include "dcehelmac.h"

<. . .>
dce_svc_printf(HEL_S_HELLO MSG);

Note the argument HEL_S HELLO_MSG, which we did not define in the hel.sams
file. HEL_S HELLO_MSG is, in fact, a macro that was generated by sams from
our definition for the hel_s_hello message, as you can see from the following code:

start

code hel_s_hello

subcomponent hel s main

attributes "svc_c_sev_notice | svc_c_route stderr"
text "

Hello world"

explanation an

action "None required."

end

96 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The macro automatically generates the long argument list that must be passed to
dce_svc_printf() to get it to print the message. The code for this convenience
macro is contained in dcehelmac.h .

A convenience macro is generated for every message in a sams file that has both
sub-component and attributes specified. The macro’s name is formed from the
uppercase version of its code value (as specified in the sams file), with the string
_MSG appended.

The complete source code for hello_svc.c is located in
/opt/dcelocal/examples/svc/hello_sve and is as follows:

#include <dce/dce.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <dce/utctypes.h>
#include <pthread.h>
#include <dce/dce_msg.h>

#include "hel_svc.h"
#include <dce/dcesvcmsg.h>
#include "dcehelmsg.h"
#include "dcehelsvc.h"
#include "dcehelmac.h"

int main(int argc,
char =*argv[])
{

dce_svc_handle_t hel_svc_handle;
unsigned32 status;

hel_svc_handle = dce_svc_register(hel_svc_table, \
(id1_charx)"hel", &status);

if (status != svc_s_ok)

{

printf("dce_svc_register failed\n");
exit(1);
}

dce_msg_define_msg_table(hel_msg_table,
sizeof (hel_msg_table) / sizeof(hel_msg_table[0]),
&status);
if (status != svc_s_ok)
printf("dce_svc_define msg table failed \
-- will use catalogs\n");

dce_svc_printf(HEL_S_HELLO MSG);
1

Building and Running the Program

To build the application, perform these steps:
1. Process the hel.sams file with the sams command.
2. Build and link hello_svc from the following modules:
* dcehelmsg.c
e dcehelsvc.c
* hello_svc.c

Chapter 5. Using the DCE Serviceability Application Interface 97

Fields of a Serviceability Message

When executed, the program prints a message similar to the following:

1994-04-05-20:13:34.500+00:00I----- PID#9467 \
NOTICE hel main hello_svc.c 47 0xa444e208
Hello world

This message is made up of the following fields:

time inaccuracy process_ID severity component subcomponent src_file src_line thread ID
text

Where the field names have the following meanings:

time The time that the message was written, in ISO format:
CCYY-MM-DD-hh:mm:ss. fff[+|- JII:ii

Where the digit groups represent:
CCYY Century and year

MM Month

DD Day

hh Hour

mm Minutes

Ss Seconds

fff Fractions of second

1:ii Time inaccuracy expressed in hours and minutes

The final groups represent a time differential factor (expressed in hours and

minutes), followed by an inaccuracy component. For further information on

time format, see I i istri i i
process_ID

The process ID of the program that wrote the message (PID#9467 in the

example). If dce_svc_set_progname() had been called to establish the

application’s program name, that name would appear in this field instead of

the process ID. See [Basic Server Calls” on page 104 for further

information.

severity
The severity level of the message (NOTICE in the example).

component
The component name of the program that wrote the message (hel in the
example).

subcomponent
The subcomponent that wrote the message (main in the example; note that
this program has only one subcomponent).

src_file
The name of the C source file in which the dce_svc_printf() call was
executed.

98 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

src_line
The line number, in the source file, at which the dce_svc_printf() call is
located.

thread ID
The thread ID of the thread that wrote the message, expressed as a
hexadecimal number (0xa444e208 in the example).

text The text of the message (Hello world in the example).

Serviceability Input and Output Files

w shows the relationship of the various files, both source and sams output,
that make up the hello_svc application.

The two parallelogram-shaped objects represent the files that must be created by
the developer.

Rectangular objects with solid lines represent files that are generated by sams; the
two ovals represent programs: one is sams, the other gencat (which is implicitly
run by sams when message catalogs are generated).

The large rectangular object in dashed lines represents libdce , which contains the
serviceability library.

The diagram makes no attempt to show how hello_svc.c itself is compiled and
linked, nor how it runs. It is just a static map of the general place of serviceability in
DCE development.

\ hel.sams \

dcehelmsg.man

dcehelmac.h (doc)

|
dcehelsvc.h
|
dcehelsvc.c
|
dcehelmsg.c
|
dcehelmsg.h
I

hello_svc.c
\

dcehelmsg.sml
(doc)

dcehelmsg.idx
(doc)

gencat
(executed by
sams)

\
\

[
I
: dce_svc_printf(HEL_S_HELLO_MS\G);
I
I
I

~

libdce

< | dcehel.cat
(DCE Library) .

(message catalog)

Figure 5. Serviceability and DCE Applications

Chapter 5. Using the DCE Serviceability Application Interface 99

The sams output filenames are constructed as follows:
tech_name .comp_name .part_name .extension

where:

tech_name
Is the technology name (optionally specified at the top of the hel.sams file);
by default it is dce.

comp_name
Is the component name (specified at the top of the hel.sams file); in this
case, hel.

part_name
Is a substring identifying the particular file; for example, svc or msg, and so
on. This piece of the name is omitted from the message catalog filenames
(in our example, dcehel.msg and dcehel.cat).

extension
Is the file extension (preceded by a . (dot) character).

Because we executed the simplest form of the sams command (that is, without
specifying any output flags), the full repertory of sams output files was created,
even though the following files were not needed for our application:

* dcehel.msg and dcehel.cat

The file dcehel.msg is input to gencat when it is invoked by sams to create
dcehel.cat , the message catalog. (Although our example application used
in-memory tables, the serviceability routines always attempt to use the message
catalog first.)

* dcehelmsg.man and dcehelmsg.sgm

These are automatically generated documentation files that have nothing to do
with the operation of the interface itself.

The many additional features of serviceability will be described in the following
sections. A definitive description of sams and the contents of sams files can be
found on the sams(1dce) reference page.

Integrating Serviceability into a Server

The purpose of the preceding tutorial was simply to give a brief taste of what it feels
like to use the interface. The main task involved in using serviceability does not,
however, lie in mastering the mechanics of the interface, but rather in understanding
the purpose of handling server messages in this way, and then applying this
understanding in order to develop an effective and serviceable messaging strategy
for one’s own application.

Serviceability Strategy

The serviceability mechanism is designed to be used mainly for server informational
and error messaging—that is, for messages that are of interest to those who are
concerned with server maintenance and administration (in the broadest sense of
these terms). The essential idea of the mechanism is that all server events that are
significant for maintaining or restoring normal operation should be reported in
messages that are made to be self-documenting so that (provided all significant
events have been correctly identified and reported) users and administrators will, by

100 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

definition, always be able to learn what action they should take whenever anything
out of the ordinary occurs. User-prompted, interactive, client-generated messaging
should be handled through the DCE messaging interface, which is described in

It follows that serviceability is not just an interface; it is partly a state of mind. The
first thing that developers who wish to use serviceability should do is examine their
server code with a view to identifying all the event points that should be covered by
serviceability calls. Once these have been determined, the sams file (containing the
message definitions) should be written; the last step will be to insert the messaging
calls into the code.

Components and Subcomponents

The very first step in incorporating serviceability into a server is to analyze it into
functionally discrete modules (called subcomponents), each of which will usually be
associated with a separate set of messages.

The program itself is regarded as the component. The main significance of
subcomponents is that each one uses a separate part of the message table
generated by sams, and every message is identified both by component and by
subcomponent; message routing and the level of debug messaging can be
specified separately by subcomponent.

Identifying Event Points

Once you have established the subcomponent organization of the server
application, you can begin the work of identifying all the points in the server code at
which events occur or can occur that require serviceability messaging.

Following is a list of the events and kinds of events that should be reported through
the serviceability interface:

» Server startup
Servers should report when they are started, when they have completed their

initialization, and when they are ready to perform work. They should also indicate
when they are going offline.

* Server exit
All fatal exits should be reported as fatal errors, using the svc_c_sev_fatal
severity attribute in a call to dce_svc_printf() . In other words, exit() or abort()

should not be called directly; this ensures that all such fatal errors will be logged.
For an explanation of severity level attributes, see tBasic Server Calls” on

e Other fatal errors

Errors that make it impossible to proceed should be detected as close as
possible to the point where the actual failure occurred. This class of error
includes such impossible conditions as failure to successfully allocate memory,
failure to open a configuration file for reading, failure to open a log file for writing,
and so on.

* Impaired efficiency

Conditions that might indicate system-level malfunction or poor performance
should be reported as warnings. An example of such a situation (from one of the
DCE components) would be the RPC runtime detecting that it is having to make
an excessive number of retransmits.

Chapter 5. Using the DCE Serviceability Application Interface 101

 Significant routine activity

Routine administrative actions should be reported as informational
(svc_c_sev_notice) messages. Such activity includes creation, modification and
deletion of tickets, threads, files, sockets, RPC endpoints, or other objects;
message transfer, including name lookup, binding, and forwarding; directory
maintenance (including caching, advertising, skulking, and replication); and
database maintenance (including replication or synchronization).

+ Data input syntax errors

Routines that process data that could have been entered from a keyboard should
fail gracefully (and not core dump, for example) if the data is syntactically
incorrect. Serviceability can be used to report this kind of failure.

Once you have identified the points in your code that should be reported with
serviceability messaging, the next step is to define the messages themselves (in the
sams file) and code the serviceability calls. The serviceability features of sams files
were described previously; the following sections describe the various parts of the
serviceability interface itself.

Using the serviceability interface to report errors ensures that the error codes used
will be unique within DCE.

Application Use of Serviceability

The following subsections describe in detail the various elements of the
serviceability APl and what you can do with them.

Complete reference pages for all the serviceability routines can be found in the IBM
DCE Version 3.1 for AIX and Solaris: Application Development Reference.

Basic Server Calls

The basic serviceability routines are the following:

* DCE_SVC_DEFINE_HANDLE()
This is a macro that can be used instead of dce_svc_register() to register a
table (it does this by means of a global variable created at compile time). It could

have been used in the hello_svc.c code as follows, with exactly the same
results as from using dce_svc_register() :

DCE_SVC_DEFINE_HANDLE(hel_svc_handle, hel_svc_table,

Ilhe'l II) ;

/* handle | Y
/% table | =/
/* component name
*/

If an application is using an advanced serviceability function, such as filtering
with dce_svc_fillter() , the dce_svc_register routine should be used instead of
the DCE_SVC_DEFINE_HANDLE routine. The DCE_SVC_DEFINE_Handle
routine does not actually register the handle, it simply defines the data structures.

Note: Either the DCE_SVC_DEFINE_HANDLE() or the dce_svc_register()
must be called before the interface can be used.

102 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

You must not insert a space before the first parameter of this macro
because it will result in syntax errors under some compile-time
environments.

» dce_svc_register()
This is the function call for registering a serviceability message table. Either it or
DCE_SVC_DEFINE_HANDLE() must be called before any routines can be called

to display or log messages. An example of its use can be seen in the
hello_svc.c code.

* dce_svc_unregister()

This is the function call for destroying a serviceability handle. Calling it closes
any open message routes and frees all allocated resources associated with the
handle. However, it is not usually necessary to call this routine since the normal
process exit will perform the required cleanup.

The routine could have been called at the end of the hello_svc.c code as
follows:

dce_svc_unregister(hel_svc_handle, &status);

where hel_svc_handle is the serviceability handle that was originally returned by
the call to dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
call.

* dce_svc_set_progname()

This function sets the application’s program name, which is included in all
messages. In this way, multiple programs can write messages to the same file
and the messages will remain distinguishable.

For example, this routine could have been called in the hello_svc.c code, as
follows:

dce_svc_set_progname("hello_program", &status);

The message printed by the program would, as a result, have looked like the
following:
1994-04-05-20:13:34.500+00:001----- hello_program \

NOTICE hel main ...
Hello world

instead of looking like this:

1994-04-05-20:13:34.500+00:001----- PID#9467 NOTICE hel
main ...
Hello world

where the default process ID information has been replaced by the string
hello_program in the first example. The second example shows what the
message looks like if the routine is not called. The PID# nnnn value is the value
returned by getpid() .

This call is optional.

* dce_svc_printf()
This is the normal call for writing or displaying serviceability messages. It cannot
be called with a literal text argument; instead, the message text and other

necessary information must be pre-specified in a file that is processed by the
sams utility, which in turn outputs sets of tables from which the messages are

extracted for output. The tutorial in ESimple Serviceahility Interface Tutarial” od

provides a brief example of how this is done.

Chapter 5. Using the DCE Serviceability Application Interface 103

There are two main ways in which to call the routine. If a message has been
defined in the sams file with both sub-component and attributes specified, then
the sams output will include a convenience macro for the message that can be
passed as the single argument to dce_svc_printf() , for example:

dce_svc_printf(HEL_S_HELLO MSG);

The convenience macro’s name will be generated from the uppercase version of
the message’s code value (as specified in the sams file), with the string MSG
appended.

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its

long form. For the hel_s_hello message, such a form of the call might look as
follows:

dce_svc_printf(DCE_SVC(hel_svc_handle, ""), hel_s _main,\
svc_c_sev_error | svc_c_route stderr, hel s hello);

DCE_SVC() is a macro that must be passed as the first argument to
dce_svc_printf() if a convenience macro is not being used. It takes two
arguments:

— The caller’s serviceability handle
— A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. The hel_s_hello message had no argument specifiers, so an empty
string is passed here to DCE_SVC. For an example of printing a message with
arguments, see the end of this subsection.

The remaining arguments passed to dce_svc_printf() are as follows:
— Subcomponent table index

This symbol was declared in the sub-component list coded in Part Il of the
sams file; its value is used to index into the subtable of messages in which
the desired message is located.

— Message attributes

This argument consists of one or more attributes to be applied to the
message that is to be printed. Note that you must specify at least a severity

here (for a list of message severity values, see [Specifying Message Severity!

). Multiple attributes are ORed together, as shown in the

example.
There are four categories of message attributes:
routing
The available routing attribute constants are:
- svc_c_route_stderr
- svc_c_route_nolog

However, most routing is done either by passing specially formatted
strings to dce svc routing() or by environment variable values. See

tHow to Route Messages” on page 107 for more detailed information.

severity
The available severity attribute constants are:

- svc_c_sev_fatal

104 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

- svc_c_sev_error
- svCc_c_sev_warning

- Svc_c_sev_notice

- SvC_C_sev_notice_verbose

For more detailed information, see ESpecifying Message Severity” an

action The available message action attribute constants are:
- svc_c_action_abort
- svc_c_action_exit_bad
- svc_c_action_exit_ok
- svc_c_action_brief

For more detailed information, see EMessage Action Attributes” an

debug level
Nine different debug levels can be specified. For more detailed
information, see LUSsi i ili z

— message ID
This argument consists of the message’s code, as declared in the sams file.

As an example of how to use format specifiers in messages, consider the
following sams file fragment, in which we define a second message for the
hello_svc.c application:

start

code hel_s_testmessage

text "This message has exactly %d not %d argument(s)"
explanation "This message is to show how to pass arguments"
action "None required."

end

The message could be printed by a call like the following:

dce_svc_printf(DCE_SVC(hel_svc_handle, "%d%d"), hel_s_main,\
svc_c_sev_notice | svc_c_route stderr,\
hel_s_testmessage, 2, 7);

Note the format specifiers passed in the format string to DCE_SVC, and the
argument values passed at the end of the argument list. This call would cause
the following message to be printed:

1994-04-06-20:06:33.113+00:001----- hello \

NOTICE hel main hello_svc.c line_nr Oxa444e208
This message has exactly 2 not 7 argument(s)

Extended Format Notation for Message Text

A slightly extended notation allows you to define message texts in the sams file that
will (if desired) have format specifiers in their application code forms (that is, in the
.c and .msg files output by sams), but which will be replaced by some specified
string constant in the message texts that are generated for documentation use (that
is, in the .sml and .man files).

Chapter 5. Using the DCE Serviceability Application Interface 105

The notation consists in surrounding the format specifier and alternative constant
with < and > (angle bracket) characters, and separating the two with a | (vertical
bar). (You can use a preceding \ (backslash) to escape these symbols.) For
example, the following message text field:

text Can't open input file %s for reading
would become something like the following:
text Can't open input file <%s|filename> for reading

This message text definition, when processed by sams, would generate a format
string with %s in the .c and message files, but this format specifier would be
replaced by the string filename in the .sml and .man file versions.

Specifying Message Severity

Production (that is, nondebuged) serviceability messages are categorized by their
severity level, which implies various important things about the kind of situation that
causes the message to be printed. Every message’s severity is stated in the text of
the message itself (for example, NOTICE in the examples given previously shows
that the messages are informational notices), and the serviceability routines can
route and process messages differently on the basis of their severity levels.

Severity levels are attached to messages either when the messages are defined (in
the sams file) or when the messages are written (by specifying an argument to the
routine writing the message). These severity levels can then be used at runtime as
the basis on which to route the messages (the way this is done will be explained in
the next section).

Thus, each severity level is represented by a constant by which it is specified in
program code, and a name by which it is referred to in routing files and
environment variables. Each level's name and constant is shown, together with an
explanation, in

Table 2. Serviceability Message Severities

Name Specifier Meaning

FATAL svc_c_sev_fatal A fatal error has occurred,
the program is about to exit.

ERROR SvVC_C_sev_error An error has occurred.

WARNING SVC_C_sec_warning An error has been detected;
the program is continuing
execution.

NOTICE svc_c_sev_notice A nonerror event has

occurred; this message is an
informational notice of it.

NOTICE_VERBOSE svc_c_sev_notice_verbose A nonerror event has
occurred; this message is a
verbose informational notice
of it.

Detailed explanations of the levels are as follows:

FATAL
Fatal error exit: An unrecoverable error (such as database corruption) has

106 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

occurred which will probably require manual intervention to be corrected.
The program usually terminates immediately after such an error.

ERROR
Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred. The
program will continue operation, although some functions or services might
no longer be available. This severity level can also be used to indicate that
a particular request or action could not be completed.

WARNING
Correctable error: An error occurred that was automatically corrected (for
example, a configuration file was not found, and default values were used
instead). This severity level can also be used to indicate a condition that
might be an error if the effects are undesirable (for example, removing all
files as a side effect of removing a nonempty directory), or to indicate a
condition which, if not corrected, will eventually result in an error (for
example, a printer is running low on paper).

NOTICE
Informational notice: A significant routine major event has occurred; for
example, a server has started.

NOTICE_VERBOSE
Verbose information notice: A significant routine event has occurred; for
example, a directory entry was removed.

Note that debug messages are identified as such by their own set of levels; see

[Using Serviceahility for Debug Messages” on page 117 for more information.

How to Route Messages

Serviceability messages can be written to any of the normal output destinations.
Routing for serviceability messages can be specified in any of three different ways
(in ascending order of precedence):

1. By the contents of a routing file
2. By the contents of a routing environment variable

3. By calling the dce_svc_routing() routine (often as part of processing an
application’s command-line arguments)

Additional routing (that is, in addition to whatever routing has been specified by the
means described) of a message to standard error can be performed in either of the
following two ways:

* By specifying the routing as one of the message’s attributes (in the sams file
definition of the message)

* By specifying the attribute in the call to dce_svc_printf() (or other serviceability
output routine) to generate the message

Routing a message actually consists of specifying two things:
* How the message should be processed (the form it should be put in)
* Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes
specifying a certain destination implies that the message must be put into a certain
form. This fact allows certain combinations of processing and destination to be
abbreviated.

Chapter 5. Using the DCE Serviceability Application Interface 107

108

In the following sections, each of the ways to route serviceability messages is
described.

Note that debug messages are routed by a similar, but slightly different, technique.

For a full description, see LUsing Serviceahility for Debug Messages” on page 117.

Using a Routing File

If a file called dce-local-path/svcirouting exists, the contents of the file (if in the
proper format) will be used to determine the routing of messages written via
serviceability routines.

The value of dce-local-path is usually /opt/dcelocal ; the default location of the
serviceability routing file is usually /opt/dcelocal/svc/routing . However, a different
location for the file can be specified by setting the value of the environment variable
DCE_SVC_ROUTING_FILE to the complete desired pathname.

The routing file consists of formatted strings specifying the routing desired for the
various kinds of messages (based on message severity). Each string consists of
three fields as follows:

sev:out_form:dest[;out form:dest . . .] [GOESTO:{sev | comp}]

where:
sev Specifies the severity level of the message, and must be one of the
following:
 FATAL
* ERROR
* WARNING
* NOTICE
* NOTICE_VERBOSE

The meanings of these severity levels are explained in detail in [Specifyind
out form

(output form) Specifies how the messages of a given severity level should
be processed, and must be one of the following:

BINFILE
Write these messages as binary log entries.

TEXTFILE
Write these messages as human-readable text.

FILE Equivalent to TEXTFILE.

DISCARD
Do not record messages of this severity level.

STDOUT
Write these messages as human-readable text to standard output.

STDERR
Write these messages as human-readable text to standard error.

EMS Send these messages as events to EMS (see ERart 6 EMS and

ISNMP” on page 687 for more information).

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

dest

Files written as BINFILEs can be read and manipulated with a set of log file
functions, or with the svcdumplog command. For further information, see

[Logging and | og Reading” on page 112.

The out_form specifier can be followed by a two-number specifier of the
form:

.gens.count

where:

gens Is an integer that specifies the number of files (that is, generations)
that should be kept.

count Is an integer specifying how many entries (that is, messages)
should be written to each file.

The multiple files are named by appending a dot (.) to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified by count, the file is closed,
the generation number is incriminated, and the next file is opened. When
the maximum generation number files have been created and filled, the
generation number is reset to 1, and a new file with that number is created
and written to (thus overwriting the already-existing file with the same
name), and so on, as long as messages are being written. Thus the files
wrap around to their beginning, and the total number of log files never
exceeds gens, although messages continue to be written as long as the
program continues writing them.

(destination) Specifies where the message should be sent and is a
pathname. The field can be left blank if the out_form specified is EMS
DISCARD, STDOUT, or STDERR. The field can also contain a %ld string
in the filename that, when the file is written, is replaced by the process ID
of the program that wrote the messages. Filenames may not contain
colons, semicolons, or periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as semicolon-separated strings in the following format:

out_form:dest

For example, consider the following:

FATAL:TEXTFILE:/dev/console
WARNING:DISCARD: --
NOTICE:BINFILE.50.100:/tmp/10og%1d;STDERR: -

These strings specify that
» Fatal error messages should be sent to the console file in the /tmp/log directory.
* Warnings should be discarded.

* Notices should be written both to standard error and as binary entries in files
located in the /tmp directory. No more than 50 files should be written, and there
should be no more than 100 messages written to each file. The files will have
names of the form

/tmp/logprocess_id.nn

Chapter 5. Using the DCE Serviceability Application Interface 109

where process id is the process ID of the program originating the messages, and
nn is the generation number of the file.

e Errors should be sent to EMS.

The GOESTO specifier allows messages for the severity whose routing
specification it appears in to be routed to the same destination (and in the same
output form) as those for the other, specified, severity level (or component name).
For example, the following specification:

WARNING:STDERR: ; GOESTO: FATAL
FATAL:STDERR: ;FILE:/tmp/foo

means that WARNING messages should show up in three places: twice to stderr
and once to the file /tmp/foo .

Note that a GOESTO specification should be the last element in a multidestination
route specification.

Routing by Environment Variable

Serviceability message routing can also be specified by the contents of certain
environment variables. If environment variables are used, the routes they specify
will override any conflicting routings specified by a routing file.

The routings are specified (on the basis of severity level) by putting the desired
routing instructions in the following environment variables:

.+ SVC_FATAL
« SVC_ERROR

+ SVC_WARNING

+ SVC_NOTICE

« SVC_NOTICE_VERBOSE

Each variable should contain a single string in the following format:
out_form:dest;[out_form:dest . . .] [GOESTO:{sev | comp}]

where out form and dest have the same meanings and form as described in FUsing
B _Routing File” on page 108. Multiple routings can be specified with

semicolon-separated additional strings specifying the additional routes, as shown.
For example:

rpc:*.9:FILE:rpclog
FATAL:STDERR: - ;GOESTO:rpc

In this example, all FATAL messages are routing to stderr and also to a debug
message file named rpclog . A form such as this one, with the component first, is
used for debug messages, not general serviceability messages.

Calling dce_svc_routing() to Set Routing

Message routing can be set up by the application itself, by calling the routine
dce_svc_routing() and passing to it a string formatted in the same way as a line of
text from a routing file. The routine must be called separately for each severity
level. When routing is specified this way, the routings so specified will override any

110 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

conflicting routings specified by environment variable or routing file (as described in
the preceding sections). This is especially useful for setting routes from
command-line arguments.

For example, to set routing in this way for the hello_svc.c application described
previously, use the following code:

unsigned_char_t *my_route = "NOTICE:STDOUT:-;TEXTFILE:/tmp/my _log";
unsigned_char_t *error_route = "ERROR:TEXTFILE:/tmp/errors_%1d";

dce_svc_routing(my_route, &status);
if (status != svc_s_ok)
{
printf("dce_svc_routing failed\n");
exit(1l);
1

dce_svc_routing(error_route, &status);
if (status != svc_s_ok)
{
printf("dce_svc_routing failed\n");
exit(1l);
1

Additional Routing by Attribute

Limited additional routing for messages can be specified by attribute, either in the
message definition itself in the sams file or as part of the argument list to
dce_svc_printf() . Two routing attribute specifiers are available:

svc_c_route_stderr
Route the message to standard error.

svc_c_route_nolog
Discard the message.

Note also the svc_c_action_brief attribute, which is described in EIMessage Action

Table of Message Processing Specifiers

As was seen, message processing can be specified either by text strings (read from
an environment variable or routing file, or passed to a routine) or, to a limited
degree, by attribute in the message definition or when the message is output.

shows all the available types of serviceability message processing; the
name by which it is specified in strings, and the attribute (where it exists) by which
it is specified in message definitions and calls are both given, along with the
meaning of each.

Table 3. Serviceability Message Processing Specifiers

Name Attribute Meaning

BINFILE Write binary log entry.

TEXTFILE Write human-readable text.

FILE Equivalent to TEXTFILE.

DISCARD svc_c_route_nolog Do not record.

STDOUT Write human-readable text to
standard output.

Chapter 5. Using the DCE Serviceability Application Interface 111

Table 3. Serviceability Message Processing Specifiers (continued)

STDERR svc_c_route_stderr Write human-readable text to
standard error.

GOESTO Route messages in same way
as named level or component.

EMS Send messages as events to
EMS

Logging and Log Reading

The serviceability interface includes a set of functions for reading and manipulating

log files written as BINFILE s (see LUsing a Routing File” on page 108).

dce_svc_log_open()
Opens a log file for reading.

dce_svc_log_get()
Reads the next entry from a log file. It returns the contents there of in the
form of a filled-in prolog structure to which it returns a pointer (see below
for a description of the structure fields).

dce_svc_log_rewind()
Returns log processing back to the first message in the log file.

dce_svc_log_close()
Closes the open log file.

The contents of the log prolog structure (defined in dce/svclog.h) are as follows:

int version
Version number of the interface that generated the message.

utc t t
Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to a tm
structure by calling one of the DCE DTS utc_ xxx() routines.

unsigned32 attributes
Message attributes, ORed together (a bit flag).

unsigned32 message_index
Index number of message in message table (for example, hel_s_hello in
the example at the beginning of this chapter).

pthread_t thread id
ID of application thread that caused the message to be written.

char *argtypes
The format-specifier string for the message.

int argtypes_size
The number of format specifiers for the message.

char *fac_name
The component or subcomponent ("facility’”) name string.

char *message _text
Message text string.

char *progname
Program name string, set by the application’s call to
dce_svc_set progname()

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

char *file
Filename string identifying file from which entry was read.

int line
Line number in file from where the message was printed.

int file_size
Length of filename string.

Message Action Attributes

Routing and severity attributes affect what happens to the messages they are
applied to, and nothing else. However, there is an additional set of attributes that,
when applied to a message, mainly affect what happens to the program after the
message is sent:

svc_c_action_abort
Causes the program to abort (with core dump) as soon as the message is
output.

svc_c_action_exit_bad
Causes the program to exit (with failure status) as soon as the message is
output.

svc_c_action_exit_ok
Causes the program to exit (with successful status) as soon as the
message is output.

svc_c_action_brief
Suppresses the standard prolog of the message. The prolog of a
serviceability includes all the nonmessage information that is output before
the message text itself. The prologs of all messages can be suppressed by
setting the SVC_BRIEF environment variable; see the next section.

Suppressing the Serviceability Message Prolog

You can suppress the prolog (honmessage text) part of all serviceability messages
generated by an application by setting the value of the SVC_BRIEF environment
variable to 1.

The prolog of a serviceability consists of all the nonmessage information that is
output before the message text itself. For example, examine the following message:

1994-04-05-20:13:34.500+00:001----- PID#9467 \
NOTICE hel main hello_svc.c line_nr 0xad44e208
Hello world

In this example, the first line is the message prolog, and the second line is the
message text. If the message were generated with the SVC_BRIEF environment
variable set to 1, the message would appear as follows:

Hello world

Prologs of separate messages can be suppressed selectively through the use of the
svc_c_action_brief attribute; see the previous section.

Note: Only text, not binary messages, are affected by the svc_c_action_brief
attribute. The svc_c_action_brief does not work for binary logging.

Chapter 5. Using the DCE Serviceability Application Interface 113

Serviceability Use of the __ FILE__ Macro

Whenever a serviceability message is generated, information identifying the source
file and line at which the invoked routine was called is included in the message
information. This information appears in the text-form nonerror messages, and it is
also written into the binary form serviceability logs (when binary logs are specified).
The information also appears in the text form of messages announcing error
situations. For example:
1994-07-20-11:11:09.906-04:00I----- sample_server FATAL \

smp server sample_server.c 2851 0xa44b0c18

server_renew_identity(): Togin context has not been certified \
(dce / sec)

(The preprocessor variable DCE_SVC_WANT__ FILE__ (in dce/dce_svc.h) will be

defined or undefined depending on whether or not the serviceability component has
been set up on your system to include the filename and line number information in

serviceability messages.)

The serviceability routines receive the source file information from
DCE_SVC__FILE__, which, by default, is defined to be the C preprocessor macro
__FILE__. However, if you desire to avoid these macro expansions in your
application code, you can redefine the symbol to be some kind of variable. For
example:

#define DCE_SVC__FILE__ myfile
#include <dce/dce.h>
static char myfile[] = _FILE ;

Forcing Use of the In-Memory Message Table

As described elsewhere in this chapter, the dce_msg_define_msg_table() routine
can be called by an application to initialize an in-memory copy of its message table,
thus freeing the application from depending on the message catalog’s being
properly installed for the serviceability messages to be properly generated.

However, the serviceability routines will still, by default, attempt first to retrieve a
specified message from the message catalog, even if an in-memory table has been
initialized; only if the message catalog cannot be found will the in-memory table be
used.

You can change the default behavior of the serviceability routines by setting the
SVC_NOXPGCAT environment variable to 1 (or any nonzero value). This will force
the routines to always go to the in-memory table for the specified message; they
will never look for the message catalog.

Dynamically Filtering Messages Before Output

114

The serviceability interface provides for a hook into the message-output mechanism
that allows applications to decide at the time of messaging whether the given
message should be output or not. The application defines its own routine to perform
whatever checking is desired, and installs the routine with a call to
dce_svc_define_filter() .

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

In addition, an application that installs such a message-filtering routine can also
define and install a routine that can be called remotely to alter the operation of the
filter routine. The remote-control routine is installed by the same call to
dce_svc_define_filter() .

The two routines must have the following signatures. The yes/no routine you define
and install is as follows:

boolean your filter_routine(
dce_svc_prolog_t prolog,
va_list args)

The filter remote-control call is as follows:

void your filter_remote_control(
id1_Tong_int arg_size;
id1_byte =*arg;
error_status_t *status)

Once installed, the filter routine will be automatically invoked every time a
serviceability routine is called to output a message. The filter receives a prolog
argument that contains all the pertinent information about the message. If the filter
returns TRUE, the message is output per the original serviceability call. If the filter
returns FALSE, the message is not output. The information in the prolog allows
such decisions to be made on the basis of severity level, subcomponent, message
index, and so on. Its fields are as follows:

dce_svc_handle t handle
Serviceability handle of the application writing the message.

int version
Version number of the interface that generated the message.
utc t t

Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to a tm
structure by calling one of the DCE DTS utc_...() routines.

const char “*argtypes
The format-specifier string for the message.

unsigned32 table index

sams file in [Defining the Message” on page 91..

unsigned32 attributes
Message attributes, ORed together.

unsigned32 message_index
Index number of the message in the message table (for example,
hel_s hello in the example at the beginning of this chapter).

char *format
Format argument values for the message.

const char *file
Filename string identifying the file to which the message is to be output.

char prognamel[dce svc _c_progname_buffsize]
Program name string, set by the application’s call to
dce_svc_set progname() .

Chapter 5. Using the DCE Serviceability Application Interface 115

int line
Line number in file from where the message was printed.

pthread_t thread id
ID of the application thread that is causing the message to be output.

The filter remote control routine is part of the remote serviceability interface, which
is described in detail in LUsng_Lhe_Remme_SemceabwL)umedace_m_page_lzd Its
operation is simple. If filter remote control is desired, the filter routine should be
coded so that its operation can be switched to the various desired alternatives by
the values of static variables to which it has access. These variables are also
accessible to the remote control routine, and can be changed by it. The filter routine
receives an argument string (which it uses to set the variables) whose contents are
entirely application defined.

The following code fragments show a skeleton filter that can be added to the
hello_svc.c example at the beginning of this chapter:

#include <stdarg.h>
#include <dce/svcfilter.h>

<. . .>
JEETIE:
* Filter routine-- once installed, this routine will be called
* automatically every time a serviceability
* routine (in our case, dce_svc_printf()) is
* called to write a message.
*kHkxk [
boolean hel filter(dce svc_prolog_t prolog,

va_list args)

{

/* Code could be inserted here to test the values of static
variables that would control the operation of the filter,
and which could be altered by calling the filter control
routine below. */

printf("The progname is %s\n", prolog->progname);

if (prolog->attributes | svc_c_sev _notice)
printf("This is a Notice-type message\n");
switch (prolog->table_index)

case hel_s main:
printf("Main subcomponent\n");
break;
default:
printf("Error\n");
break;

/* The routine returns 1, thus permitting the output
operation to go ahead; if O were returned here, the
operation would be suppressed ... */

return 1;

}

VR TS
* Filter Control routine-- this routine is normally called
* through the remote interface.

116 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

*hHkxk [

void hel_filter_control(idl_Tong_int arg_size,
idl_byte =*arg,
error_status_t *status)

/* Code would be inserted here to interpret the arg passed
and, on the basis of that, change the value(s) of one
or more static variables that control the operation of

hel filter() */
}
JEZTE2]
* install_filters-- calls dce_svc_define filter() to install
* the above 2 routines. Note that this must
* be done after dce_svc_register() is
* called, not before.
*kkkk [

void install_filters()
{

unsigned32 status;

dce_svc_define_filter(hel_svc_handle, hel_filter, \
hel filter_control, &status);

}

Using Serviceability for Debug Messages

Apart from the dce_svc_printf() routine for writing production serviceability
messages, the interface provides several macros that can be used for debug
messaging in a server. The advantages in using these macros in debugging are the
following:

» All of the debug messaging code can easily be compiled in or out of the
executable by changing the value of a compilation switch.

* Nine levels of debug messaging are provided for; the active level of debug
messaging can be controlled through the remote serviceability interface or by a
value passed to the server at startup.

* One of the macros allows message text to be specified in the call itself, rather
than extracting it by message ID from the message table.

The debug serviceability messaging routines are the following:
1. DCE_SVC_LOG()
Outputs a message specified by the message ID.

Suppose the following message had been defined in the hel.sams file for the
example application at the beginning of this chapter:

code hel_s_debug_message_1

subcomponent hel_s main

attributes "svc_c_debug3 "

text "This is a level 1 test debug message"
explanation "Debug level 3 test"

action "None required."

end

The following call in hello_svc.c would have written this message as a binary
record to the specified route, provided that debug level 3 had been activated:

DCE_SVC_LOG((HEL_S_DEBUG_MESSAGE_1 MSG));

Chapter 5. Using the DCE Serviceability Application Interface 117

118

Note the use of the double parentheses. This is necessary because
HEL_S_DEBUG_MESSAGE_1_MSG is a macro that takes a variable number
of arguments. Note also the use of the convenience macro form of the
message. A full form of the call, with all arguments explicitly specified, would
have been as follows:

DCE_SVC_LOG((DCE_SVC(hel_svc_handle, ""), \
hel s main, svc_c_debug3, hel_s_debug_message 1));

I | | */

/* table_index | */
/* debug Tevel */
/* message ID

*/

Debug messages, like normal serviceability messages, can also contain format
specifiers and argument lists.

DCE_SVC_DEBUG()

Outputs a message whose text is specified in the call. For example, the
following call could have appeared in hello_svc.c :
DCE_SVC_DEBUG((hel_svc_handle, \
/* | */
/* handle x/
/* */
hel_s main, svc_c_debug2, "A Debug Level %d message", 2));
[| | | =/
/* table_index | | | =/
Ve debug Tevel | */
/* message text */
/* argument

*/
Note here too the use of the double parentheses.

Note also that DCE_SVC_DEBUG cannot be used with the convenience macro
forms of serviceability messages.

DCE_SVC_DEBUG_ATLEAST()
Tests the active debug level for a subcomponent. Returns TRUE if the debug

level (set by calling dce_svc_debug_set_levels() ; see [Setting Debug | evels]
bn page 119) is not less than the specified level; otherwise returns FALSE. For
example, the following call would return TRUE if the debug level for the
hel_s_main subcomponent of the hello_svc application had been set to
svc_c_debug2 or any higher value:

DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s main, svc_c_debug2);

This macro can be used to test the active debug level and avoid calling a debug
output routine if the level of its message is disabled at the time of the call
(disabling the level does not stop any routines from being executed; it only
suppresses the output messages at that level). See tPerformance Casts of

i ili ing” for more information.

DCE_SVC_DEBUG_IS()

Tests the active debug level for a subcomponent. Returns TRUE if the debug
level is the same as that specified in the call; otherwise returns FALSE. For
example, the following call would return TRUE only if the debug level for
hel_s main had been set to svc_c_debug?2 :

DCE_SVC_DEBUG_IS(hel_svc_handle, hel_s main, svc_c_debug2);

5. dce_assert()

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Evaluates an int expression passed to it and, if the expression evaluates to 0
(that is, if the expression is false), automatically calls dce_svc_printf() with
parameters that will cause a message with a severity level of svc_c_sev_fatal
(that is, fatal) and an action attribute of svc_c_action_abort to be printed that
will identify the following:

e The expression
¢ The source file in which the assertion failed
¢ The line at which the assertion failed

For example, the following call will cause the failed expression (namely, the
string) to be printed and the program to be aborted.

dce_assert(hel_svc_handle, ("Test diagnostic message" == NULL))
A NULL can be substituted for the serviceability handle as the first argument.

It is very important that debug messages not be used for errors that can occur
during ordinary operation. This is because the debug messaging code can be
omitted when compiling for production.

Setting Debug Levels

Nine serviceability debug message levels are available. The precise meaning of
each level for an application is left to the developer; but the general intention is that
ascending to a higher level (for example, from svc_c_debug2 to svc_c_debug3)
should increase the level of information detail.

Setting debug messaging at a certain level means that all levels up to and including
the specified level are enabled. For example, if the debug level is set at
svc_c_debug4 , then the svc_c_debugl , svc_c_debug2 , and svc_c_debug3
levels are enabled as well.

A message can have a debug level attached to it in either of two ways:

* The debug level can be specified as one of the attributes in the message
definition in the sams file.

* If DCE_SVC_DEBUG() or DCE_SVC_LOG() is used to output the message, the
debug level is specified in the call.

The debug level can be set by calling dce_svc_debug_set _levels() and passing to
it a specially formatted string (the debug level is also set when debug routing is
specified; see F'Routing Debug Messages” an page 120 for further information).
Levels can be separately specified for subcomponents. For example, suppose two
subcomponents (rather than one) had been defined in the sams file for the
hello_svc application at the beginning of this chapter, as follows:

Part II
serviceability table hel_svc_table handle hel_svc_handle
start
subcomponent hel s main "main" hel i svc_main
subcomponent hel_s_utils "utils" hel_i_svc_utils
end

The following string would, when passed to dce_svc_debug_set levels() , set the
debug level for the main subcomponent to be svc_c_debugl , and the debug level
for the utils subcomponent to be svc_c_debug4 :

unsigned_char_t *levels = "hel:main.1l,utils.4";

Chapter 5. Using the DCE Serviceability Application Interface 119

120

The general format for the debug level specifier string is as follows:
component :sub_comp.level ,sub_comp.level,. . .

where:

component
Is the three-character component code for the program.

sub_comp. level
Is a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

If there are multiple subcomponents, and you want to set the debug level to be the
same for all of them, use the following form where the * (asterisk) specifies all
subcomponents.

component :*.level
The string can be passed to dce_svc_debug_set levels() as follows:
dce_svc_debug_set_Tevels(levels, &status);

where levels is a string declared similarly to the example shown earlier in this
section.

The nine serviceability debug message level specifiers are as follows:
* svc_c_debugl
* svc_c_debug2
* svc_c_debug3
* svc_c_debug4
* svc_c_debugb
* svc_c_debug6
* svc_c_debug?7
* svc_c_debug8
* svc_c_debug9

Routing Debug Messages

Routing for serviceability debug messages can be specified in any of four ways:
* By calling the dce_svc_debug_routing() routine

* By the contents of the SVC_ CMP_DBG environment variable (where CMP is the
three-character serviceability name of the component, in uppercase)
* By the contents of the routing file dce-local-path/svc/routing

* By one of the message’s attributes (as coded in the sams file)

Note: The precedence relationship of these techniques is the same as that of the
analogous non-debug techniques.

In all but the last method, the routing is specified by the contents of a specially
formatted string that is either included in the value of the environment variable, is
part of the contents of the routing file, or is passed to the

dce_svc_debug routing() routine.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The general format for the debug routing specifier string is
component:sub_comp.level, ...:out_form:dest [out_form:dest ...] [GOESTO:{sev | comp}]

where:

component
Specifies the component name.

sub_comp. level
Specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

The meanings of the remaining elements of the string are the same as those for the

identically named elements in FHow to Route Messages” on page 101.

Multiple routings for the same group of subcomponents can be specified by adding
semicolon-separated strings of the following format:

out_form:dest

to the specification, in a form analogous to that followed for specifying production
(nondebug) message routes, shown previously.

The following string would, when passed to dce_svc_debug_routing() , set the
debug level and routing for all hel subcomponents:

unsigned_char_t *debug_routes = \
"hel:*.4:TEXTFILE:/tmp/hel_debug Tog %1d;STDERR:-"

A debug level of svc_c_debug4 is specified, and all debug messages of that level
or lower will be written both to standard error and in text form to the following file:

/tmp/hel_debug_log_process_ID

where process_ID is the process ID of the program writing the messages.

The specification string could be passed to dce_svc_debug_routing() as follows:
dce_svc_debug_routing(debug_routes, &status);

To specify the same routing by environment variable, the following string value
should be assigned to SVC_ CMP_DBG:

hel:*.4:TEXTFILE:/tmp/hel_debug_log_%1d;STDERR: -

The same string information could also be inserted into the SVC_ CMP environment
variable or into the contents of the routing file.

Debug routing by attribute (as specified in the sams file) is done in the same way

as routing for normal messages. See Additional Rauting by Attrihute” on page 111,

Performance Costs of Serviceability Debugging

If serviceability debugging routines are used in an application, one of three different
things can happen to any given debugging routine at runtime:

Chapter 5. Using the DCE Serviceability Application Interface 121

* The routine is called, and its output is generated (because the debug level
associated with the message has been enabled).

* The routine is called, but its output is not generated (because the debug level
associated with the message has been disabled).

* The routine call is not present in the application code because serviceability
debugging has been compiled out (DCE_DEBUG was not defined when the
application was compiled).

* The DCE_DEBUG attribute is defined in dce/dce.h . To compile out debugging,
you must either comment out the line #define DCE_DEBUG in dce/dce.h, or
include the line #undef DCE_DEBUG before the line #include <dce/dce_svc.h>
in dce/dce.h .

Note that, even if a certain debug level has been disabled, any routine or macro call
to output a message with that level will still be executed unless other steps are
taken to prevent this. The performance cost associated with such smothered calls
will usually be insignificant, but situations can occur in which this will not be so.

For example, developers should understand the implications of supplying function
calls as arguments to serviceability debug output routines (such as
DCE_SVC_DEBUG). If the debug code is compiled in (that is, if DCE_DEBUG is
defined), then the parameterized function calls will always be executed because the
output routine itself will still be called—even though it will produce no output.

In situations like this, the desirable course of action is simply to not call the output

routine at all if the currently set debug level has turned it into a no-op. This can be

done by using the DCE_SVC_DEBUG_ATLEAST macro to check the current level,
as shown in the following example:

if (DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s main, vc_c_debug3))

DCE_SVC_DEBUG ((
hel_svc_handle,
hel_s main,
svc_c_debug3,
" a_function_call() return value is: %s",
a_function _call(parm, status)));

}

The normal performance cost of a serviceability logging operation normally amounts
to one mutex lock and (usually) one file lock access per operation.

Using the Remote Serviceability Interface

Serviceability is primarily a mechanism intended to be used by servers. Like other
server functionality, it should be remotely controllable by properly authorized
entities. This allows such things as message routing and debug levels to be
adjusted without having to restart the server.

The standard remote serviceability interface is defined in the file
/usr/include/dce/service.idl

An application server using serviceability is responsible for providing routines that
implement the operations defined in service.idl . However, implementing the
operations themselves is a simple matter of calling library routines that actually
perform them. The job of the application implementation is mainly to check the

122 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

authorization of the remote caller and then either reject the request (if authorization
is found to be insufficient) or call the appropriate library routine to perform the

operation.

fable 4 lists such remote operations.

Table 4. Remote Operations by Application Servers

Server Implementation

Llibrary Routine

P

rpose

com_svc_set_route()

dce_svc_routing()

Remotely sets serviceability
message routing.

com_svc_set_dbg_route()

dce_svc_debug_routing()

Remotely sets serviceability
debug message routing.

com_svc_set_dbg_levels()

dce_svc_debug_set_levels()

Remotely sets serviceability
debug message levels.

com_svc_ing_components()

dce_svc_components()

Returns a listing of all
components that have been
registered with the

dce_svc_register() routine.

com_svc_ing_table()

dce_svc_table()

Returns the message table
registered with a given
component.

com_svc_ing_routings()

dce_svc_routings()

Returns a list of routings in
effect for a component.

com_svc_filter_control()

dce_svc filter()

Remotely controls the
behavior of the serviceability
message filtering routine (if
one exists).

com_svc_ing_stats()

dce_svc_ing_stats()

Returns operating statistics.

Basic Steps in Setting Up the Remote Interface

To make the interface available, the developer must do the following:

1. Coding steps

a. Define the server implementation routines for the remote operations.

b. Initialize the serviceability interface manager entry point vector (manager
EPV) with the implementation routines.

2. Build steps

* Process the service.idl file to produce the following:

Client stub

This will be linked into the client object. The client itself can contain calls
to the remote routines, expressed by their interface names.

Server stub

This will be linked into the server object (just as its own stubs are) to
produce the server executable. Note that the server stub is generated with
the -no_mepv IDL option, which allows the implementation routines to be
named anything that suits the developer. This is why the EPV must be
explicitly initialized with the addresses of the implementation routines.

3. Runtime steps
* At server startup:

The binding handles that the server receives from the RPC runtime, and
which it then registers both with the Name Server Interface (NSI) and the

Chapter 5. Using the DCE Serviceability Application Interface

123

endpoint mapper under its own interface, must also be registered to the
endpoint mapper with the serviceability interface. Note that servers do not
explicitly register the serviceability interface with the NSI. Instead, they use
their existing namespace entries without change. They do register the
serviceability interface with their endpoint mapper.

* For a client application:

To call one of a server’'s remote serviceability routines, the client must import
a binding handle using a NULL UUID; this operation will yield a plain handle.
The client can then pass this handle to the desired remote serviceability
routine and make the call. The server’s host endpoint mapper will recognize
the incoming serviceability UUID in the RPC, and will send the RPC on to
one of the registered endpoints.

The following code fragments illustrate how to define, export, and access the
serviceability remote interface.

Implementing the Remote Routines

The following code fragments show in skeletal form how an application’s remote
serviceability routines should be implemented. The pseudo-code references to
access tests are calls to the application’s ACL manager to assess the caller's
authorization. For information on implementing an ACL manager, see the security
chapters of the IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide and the IBM DCE Version 3.1 for AIX and
Solaris: Administration Guide—Core Components.

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include <dce/svcremote.h>

struct serviceability vl 0 epv_t dce_svc_epv;

JEXTEE:
*
* hel_svc_set_route -- remote call-in to set routing.
*
*kkkk [
static void
hel_svc_set_route(
handle_t h,
id1_byte where[],
error_status_t *st

if (! your_test_write_access(h))
*st = no_authorization_error;
else
dce_svc_routing(where, st);

}

VEZTE2:

*

* hel_svc_set_dbg_route -- remote call-in to set debug routing.
*

*kkxk [

static void

hel_svc_set dbg_route(

handle_t h,
id1_byte where[],
error_status_t *st

124 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

if (! your_test _write_access(h))
*st = no_authorization_error;
else
dce_svc_debug_routing(where, st);

VRT3

*

* hel_svc_ing_stats -- remote request for operating statistics.
*

kkkkk [

static void

hel_svc_ing_stats(

handle_t h,
dce_svc_stats_t *stats,
error_status_t *st

)

{

if (! your test_access(h))
*st = no_authorization_error;

else
/* operation is currently not implemented in Tibrary... */
*st = svc_s_no_stats;

}

/* */

/* The table of slots is created by IDL from the service.idl =/
/* file, src/dce/utils/svc/service.idl, the output of which =/
/* is service.h. It's then the job of the application that x/
/* wishes to offer the remote operations to fill in the table =*/
/* with the implementations' entry points. That's what's being */
/* done below. Typically the application simply interposes an */

/* appropriate ACL check between the entry into an */

/* implementation and the subsequent call to the "real" x/
/* operation as implemented in the serviceability Tibrary. */
/* */

serviceability vl 0 _epv_t dce_svc_epv = {
hel_svc_set_route,
hel_svc_set_dbg_route,
hel_svc_set_dbg Tevels,
hel _svc_ing_components,
hel_svc_ing_table,
hel svc_ing_routings,
hel_svc_filter_ctl,
hel_svc_ing_stats

}s
Registering and Exporting the Remote Interface

The following code fragments show how the remote serviceability interface could be
exported and registered by a hello_svc server. Note that only the steps that are
closely or directly related to exporting and registering the server’s and the
serviceability remote interface are shown. For a full example of how to get a DCE
server application up and running, see the IBM DCE Version 3.1 for AIX and
Solaris: Application Development Guide—Introduction and Style Guide.

Chapter 5. Using the DCE Serviceability Application Interface 125

The steps shown are the following:

1. Reqgister interfaces with the RPC runtime

Request binding handles for the server interface from the RPC runtime
Request binding handles for the serviceability interface from the RPC runtime
Register both sets of binding handles with the endpoint map

Export both sets of binding handles to the namespace

a s~ DN

Note that (for brevity’s sake) status return checks have been omitted from this code.

<o . o>

/* Register server interface/type _uuid/epv associations */

/* with rpc runtime. */

rpc_server_register_if(timop vl 0 s ifspec, &type uuid,
(rpc_mgr_epv_t)&manager_epv, &status);

/* Register serviceability remote interface with rpc */

/* runtime ... */

rpc_server_register if(serviceability vl 0 s ifspec, &type uuid,
(rpc_mgr_epv_t)&dce_svc_epv, &status);

<- . ->

/* Tell rpc runtime we want to use all supported protocol =/
/* sequences. */
rpc_server_use_all _protseqs(MAX_CONC_CALLS PROTSEQ, &status);

/* Get server binding handles ... */
rpc_server_ing_bindings(&hello_bind_vector_p, &status);

/* Get binding handles for serviceability remote */
/* interface ... */
rpc_server_ing_bindings(&svc_bind vector p, &status);

<. . .>/* Register endpoints with server interface ... */
rpc_ep_register(hello_vl 0_s ifspec, hello_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec,
(unsigned_char_t *)"hello server, version 1.0",

&status);

/* Register endpoints with serviceability interface ... */
rpc_ep_register(serviceability vl 0_s_ifspec, svc_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec,
(unsigned_char_t *)"Hello SvVC",
&status);

/* Export server interface binding info to the namespace. x/
rpc_ns_binding_export (rpc_c_ns_syntax_dce, server_name,
hello_vl 0_s_ifspec, hello_bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec, &status);

Importing and Accessing the Remote Interface

The following code fragments are intended to give an idea how a client might import
both the hello_svc server's interface and its exported serviceability interface.

Note that (for brevity’s sake) status return checks have been omitted from this code.

/* Import binding info from namespace. */
for (server_num = 0; server_num < nservers; server_num+t+)
{
/* Begin the binding import loop. */
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,

126 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

server_name[server_num], hello_ vl 0 c_ifspec,

&obj _uuid, &import context, &status);

/* Begin the svc binding import Toop. */
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
server_name[server_num], NULL,
&obj _uuid, &svc_import_context, &status);
/* Import bindings one at a time. */
while (1)
{
rpc_ns_binding_import_next(import_context,
&bind_handle[server_num], &status);

rpc_ns_binding_import_next(svc_import_context,
&svc_bind_handle[server _num], &status);

/* Select, say, the first binding over UDP. =/
rpc_binding_to_string_binding(bind_handle[server_num],
&string_binding, &status);

rpc_binding_to_string_binding(svc_bind_handle[server_num],
&svc_string binding, &status);

rpc_string _binding parse(string_binding, NULL,
&protseq, NULL, NULL, NULL, &status);

rpc_string_binding_parse(svc_string_binding, NULL,
&svc_protseq, NULL, NULL, NULL, &status);

rpc_string_free(&string_binding, &status);
ret = strcmp((char *)protseq, "ncadg_ip_udp");
rpc_string_free(&protseq, &status);

rpc_string_free(&svc_string_binding, &status);
svc_ret = strcmp((char *)svc_protseq, "ncadg_ip_udp");
rpc_string_free(&svc_protseq, &status);

if ((svc_ret ==0) || (ret == 0))
{
break;

}
}

/* End the binding import loop. */
rpc_ns_binding_import_done(&import_context, &status);
rpc_ns_binding_import_done(&svc_import_context, &status);

}
/* Annotate binding handles for security. =*/
for (server_num = 0; server_num < nservers; server_num += 1)
rpc_binding set_auth_info(bind_handle[server num],
SERVER_PRINC_NAME, rpc_c_protect_Tevel_pkt_integ,
rpc_c_authn_dce_secret, NULL /+default Togin contextx/,
rpc_c_authz_name, &status);

for (server_num = 0; server_num < nservers; server_num += 1)
rpc_binding_set_auth_info(svc_bind_handle[server_num],
SERVER_PRINC_NAME, rpc_c_protect_Tevel pkt_integ,
rpc_c_authn_dce_secret, NULL /+default Togin contextx/,
rpc_c_authz_name, &status);

Chapter 5. Using the DCE Serviceability Application Interface

127

128 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 6. The DCE Backing Store

This chapter describes the backing store library that DCE provides for the
convenience of programmers who are writing DCE servers. A backing store is a
persistent database or persistent object store from which typed data can be stored
and retrieved by a key.

Note: Sometimes the backing store is called a database. For instance, the
associated IDL file is dce/database.idl , and the name of the backing store
routines begin with dce_db_ . The backing store is, however, not a
full-fledged database in the conventional sense, and it has no support for
SQL or for any other query system.

Servers generally need to manage several objects. Good design often requires that
the state of the objects be maintained over sequential instances of a particular
server. For example, the ACLs used by a server should not need to be recalculated
each time the system is rebooted. The backing store interface provides a way to
store, into a file, any data that can be described with IDL so that it can persist
across instances of software that run from time to time. For example, the ACL
library uses the backing store library. The backing store routines can be used in
servers, in clients or in standalone programs that do not involve remote procedure
calls (RPCs). Backing store data should not be used for sharing data between
processes.

Data in a Backing Store

The backing store interface provides the applications programmer with the capability
for tagged storage and retrieval of typed data. The tag (or retrieval key) can be
either a UUID or a standard C string. For a specific backing store, the data type
must be specified at compile time and is established through the IDL encoding
services. Each backing store can contain only a single data type.

Each data item (which might also be called a data object or a data record) consists
of the data stored in a single call to a storage routine. The storage routines are
dce_db_store() , dce_db_store_by name() , and dce_db_store_by uuid() .
Optionally, data items can have standard headers. If a backing store has been
created to use headers, then every data item has the header.

A program can have more than one backing store open at the same time.

Using a Backing Store

Although the backing store library is a generalized service, you are encouraged to
use it in a particular, standardized way. You should use the header and the
recommended IDL interface format that are described in the following sections.
Standardized use will ease the transition to later developments in DCE.

Header for Data

An optional standard header is available for data objects or items in the backing
store. If it is employed, then the backing store library automatically maintains the
created , modified , and modified_count fields, as shown in the following IDL
description, taken from the dce/database.idl file:

© Copyright IBM Corp. 1990, 1999 129

/* The standard header for each "object" n the database. */

typedef struct dce db_dataheader s t {

uuid_t uuid;

uuid_t owner_id;

uuid_t group_id;

uuid_t acl_uuid;

uuid_t def_object_acl;
uuid_t def_container_acl;
unsigned32 ref_count;

/* The following fields are updated by the Tibrary =/
utc_t created;

utc_t modified;
unsigned3?2 modified_count;

} dce_db_dataheader t;

typedef enum {
dce_db_header_std,
dce_db_header_acl_uuid,
dce_db_header_none

} dce_db_header_type_t;

typedef union switch (dce_db_header type t type) tagged union {

case dce_db_header none: /* none */ ;
case dce_db_header_std: dce_db_dataheader_t h;
case dce_db_header_acl_uuid: uuid_t acl_uuid;

} dce_db_header_t;

void dce_db_header_convert(

[in] handle_t h,
[in,out] dce db header_ t *data,

[out] error_status_t *st

)3

The acl_uuid field is intended for use as a UUID retrieval key in a server's ACL
database.

The User Interface

The recommended, standardized backing store IDL interface for a server looks like
the following, where XXX is the server name:

interface XXX_convert

{

import "dce/database.idl"

typedef XXX_data_s_t {
dce_db_header_t header; /* Header must be first! */
/* (server-specific data goes here) =*/

} XXX_data_t;

void XXX_data_convert(
[in] handle_t h,
[in, out] XXX_data_t *data
[out] error_status_t *st
)3
}

It should be compiled with the following Attribute Configuration File (ACF), which
instructs the idl compiler to write the data conversion routine into the XXX cstub.c
file:

130 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

interface XXX
{

[encode, decode] XXX_data_convert([comm status] st);

}

The IDL Encoding Services

When remote procedure call sends data between a client and a server, it serializes
the user’s data structures by using the IDL encoding services, described in

EChapter 17 \Writing Internationalized RPC Applications” on page 319 of this book.

Encoding and Decoding in the Backing Store

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler, idl,
writes the routine that encodes and decodes the data. This routine is passed to
dce_db_open() , remembered in the handle, and used by the following store and
fetch routines:

* dce_db_fetch()

* dce_db_fetch_by name()
* dce_db_fetch_by uuid()
* dce_db_header_fetch()
* dce_db_store()

* dce_db_store by name()
* dce_db_store_by uuid()

Conformant Arrays Not Allowed

You cannot use conformant arrays in objects stored to a backing store. This is
because the IDL-generated code that encodes (pickles) the structure has no way to
predict or detect the size of the array. When the object is fetched, there will likely be
insufficient space provided for the structure, and the array’s data will destroy
whatever is in memory after the structure.

To illustrate the problem more clearly, here is an example. An IDL file has a
conformant array, na, as an object in a struct :

typedef struct {
unsigned32 length;
[size_is(Tength)]
unsigned32 numbers[];

} num_array t

typedef struct {
char *name;
num_array_t na;

} my_type_t;

The idl compiler turns the IDL specification into the following .h file contents:

typedef struct {
unsigned32 length;
unsigned32 numbers[1];
} num_array t

Chapter 6. The DCE Backing Store 131

typedef struct {
id1_char *name;
num_array t na;
} my_type_t;

When the obiject is fetched, and the array length is greater than the 1 (one)
assumed in the .h file, the decoding operation destroys whatever follows my_struct
in memory:

my_type_t my_struct;
dce_db_fetch(dbh, key, &my_struct, &st);

The correct method is to use a pointer to the array, not the array itself, in the IDL
file. For example:

typedef struct {

char *name;
num_array t *na;
} my_type_t;

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be
indexed either by name, or by UUID; the restricted versions accept only the
matching type. It is advantageous to use the restricted versions when they are
appropriate because they provide type checking by the compiler, as well as visual
clarity of purpose.

The backing store operations described in the following sections are supported.

Opening a Backing Store

The dce_db_open() routine creates a new backing store or opens an existing one.
The backing store is identified by a filename. There are flags to permit the following
choices:

» Create a new backing store or open an existing one.

* Create a new backing store indexed by name or UUID. (The choice depends
upon the server’s purpose.) This index is called the backing store key.

* Open an existing backing store read/write or read-only.
» Use the standard header or not.

Every backing store is created with one of the two possible index schemes, by
name or by UUID, and you cannot subsequently open it for use with the other
scheme. Also, once a backing store has been created with (or without) standard
headers, you cannot subsequently open it the other way.

The routine returns a handle by which subsequent operations identify the backing
store.
The following conventions for filenames are recommended:

xxx.acl
ACL storage.

xxx.db Backing store filename.

132 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Closing a Backing Store

The dce_db_close() routine frees the handle. It closes any open files and releases
all other resources associated with the backing store.

Storing or Retrieving Data

Freeing Data

The following routines store data into a backing store:
dce_db_store()

This routine can store data into a backing store that is indexed by name or
by UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_store_by name()

This routine can store data only into a backing store that is indexed by
name.

dce_db_store_by_ uuid()

This routine can store data only into a backing store that is indexed by
UuID.

To retrieve data from a backing store, use the appropriate one of the following
routines:

dce_db_fetch()

This routine can retrieve data from a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_fetch_by name()

This routine can retrieve data only from a backing store that is indexed by
name.

dce_db_fetch_by uuid()

This routine can retrieve data only from a backing store that is indexed by
UuID.

When storing or retrieving data, a function that was specified at open time converts
between native format and on-disk (serialized) format. This function is generated
from the IDL file by the IDL compiler.

When fetching data, the encoding services allocate memory for the data structures
that are returned. These services accept a structure and use rpc_sm_allocate() to
provide additional memory needed to hold the data.

The backing store library does not know what memory has been allocated and,
therefore, cannot free it. For fetch calls that are made from a server stub, this is not
a problem because the memory is freed automatically when the server call
terminates. For fetch calls that are made from a nonserver, the programmer is
responsible for freeing the memory.

Chapter 6. The DCE Backing Store 133

Programs that call the fetch or store routines, such as dce_db_fetch() , outside of a
server operation (for instance, if a server does some backing store initialization, or
in a standalone program) must call rpc_sm_enable_allocate() first.

Making or Retrieving Headers

The dce_db_std_header _init() routine initializes a standard backing store header
from the values the caller provides in its arguments. It places the values into the
header only and does not write into the backing store file. The
dce_db_header_fetch() routine retrieves the header of an object in the backing
store.

Performing lteration

The following routines iteratively traverse all of the keys (name or UUID) in a
backing store. The order of retrieval of the keys is indeterminate; they are not
sorted, nor are they necessarily returned in the order in which they were originally
stored. It is strongly recommended to use the locking and unlocking routines,
dce_db_lock() and dce_db_unlock() , whenever performing iteration.

dce_db _iter_start()
This routine prepares for the start of iteration.
dce_db_iter_next()

This routine returns the key for the next item from a backing store that is
indexed by name or by UUID. The db_s no_more status code indicates
that there are no more items.

dce_db_iter_next_by name()

This routine returns the key for the next item only from a backing store that
is indexed by name. Again, db_s _no_more indicates that no items remain.

dce_db_iter_next_by uuid()

This routine returns the key for the next item only from a backing store that
is indexed by UUID. Again, db_s no_more indicates that no items remain.

dce_db_iter_done()

This routine is counterpart to dce_db_iter_start() and should be called
when iteration is done.

dce_db_ing_count()

This routine returns the number of items in a backing store.
Deleting Items from a Backing Store

The following routines delete an item from a backing store.
dce_db_delete()

This routine deletes an item from a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_delete_by name()
This routine deletes an item only from a backing store that is indexed by
name.

134 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

dce_db_delete by uuid()

This routine deletes an item only from a backing store that is indexed by
UuID.

To delete an entire backing store, ensure that the data file is not open, and remove
it. There is only one file.

Note: The DCE backing store does not release database pages that become
empty by deletion of all items on a page. Instead a list of empty pages is
maintained. Later, when a new page is needed, this list is checked first. If
there is a page available in the list, it is used. If not, then a page at the end
of the file is allocated. Thus, the database files never shrink, but rather
remain the maximum size to which they had grown. One example of this is
the impact to the dced endpoint database.

Locking and Unlocking a Backing Store

The dce_db_lock() and dce_db_unlock() routines lock and unlock a backing store.
If a backing store is already locked, dce_db_lock() provides an indication. A lock is
associated with an open backing store’s handle. The storage routines,
dce_db_store() , dce_db_store by name() , and dce_db_store_by uuid() , all
acquire the lock before updating. Explicit use of locking is appropriate in some
circumstances; for example, when reading or writing pairs (or multiples) of closely
associated items in a backing store, or when using iteration.

The locks are advisory. It is possible to write a backing store even if it is locked. So,
if you want to rely upon the locks, you must always check them.

Example of Backing Store Use

For a full example of backing store use, see the IBM DCE Version 3.1 for AIX and
Solaris: Application Development Guide—Introduction and Style Guide.

The following brief example shows a portion of a server that manages an office
telephone directory. Following are the relevant structures, defined in an IDL file:

typedef struct phone record s t {
[string,ptr] char *name;
[string,ptr] char *email;
[string,ptr] char *phone;
[string,ptr] char xoffice;

} phone_record_t;

typedef struct phone_record array s t {
unsigned32 count;
[ptr,size_is(count)] phone_record t xentry;
} phone_record_array_t;

typedef struct phone_data_s t {
dce_db_header_t h;
phone_record_t ph;
} phone_data_t;
/*
* The following routine returns the entire contents of the
* directory from the backing store by using the iteration
* routines. First, the portion of the IDL file that
* defines the routine's RPC format:

*/

Chapter 6. The DCE Backing Store 135

[idempotent] void entire_phone_book(

[in] handle_t h,

[out] phone_record array t *e_array,
[out] error_status_t *st

)s

Next the routine itself, written in C:

/* global variables */
dce_db_handle__t db_h; /* handle to phonebook backing store */

/* Other routines are not shown here, including the routine
* that opened the backing store.
*/

void
entire_phone_book(
/* [in] */ handle_t h, /* For RPC, but not used
* here. An ACL check
* would use it. */

/* [out] */ phone_record_array t *e_array,
/* [out] */ error_status_t *st

)

{
uuid_t *dbkey;
phone_data_t pd;
unsigned32 i;

error_status_t st2;

*st = error_status_ok;

/* Lock before starting work, so that the backing

* store does not change until after all the info

* has been returned.

*/

dce_db_lock(db_h, st);

/* Count the entries so enough storage can be allocated */

e_array->count = 0;

dce_db_ing_count(db_h, &e array->count, st);

if (*st != error_status_ok) {
dce_fprintf(stderr, *st); /* or some other treatment */
dce_db_unlock(db_h, st);
return;

}

if (e_array->count == 0) { /* No items, nothing to do */
dce_db_unlock(db_h, st);
return;

/* Allocate the space for the output. */
e_array->entry = rpc_sm allocate(
e_array->countxsizeof(e_array->entry[0]),st);
if (*st != rpc_s_ok) {
dce_fprintf(stderr, *st); /* or some other treatment */
return
}
dce_db_iter_start(db_h, st);
i=0;
while (TRUE) {
/* Get the next key. */
dce_db_iter next(db_h, &dbkey, st);
/* break when we've scanned the entire backing store */
if (*st == db_s_no_more) break;
/* Get the data associated with the next key. =*/
dce_db_fetch_by uuid(db_h, dbkey, (void *)&pd, st);
if (*st != error_status_ok) {
dce_fprintf(stderr, *st);

136 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

/* Don't forget to stop iterating and unlock after
* an error. */

dce_db_iter done(db_h, &st2);

dce_db_unlock(db_h, &st2);

return;

/* Stick the item into the array to be returned
* when done. */
e_array->entry[i].name strdup(pd.ph.name);
e _array->entry[i].email = strdup(pd.ph.email);
e_array->entry[i].phone = strdup(pd.ph.phone);
e_array->entry[i].office = strdup(pd.ph.office);
it++;
/* The use of strdup() above is illustrative, but it
* is not correct within a server, because the
* allocated memory is never freed. Correct code
* would involve the use of rpc_sm allocate().

*/
)

/* The iteration is finished. */
dce_db_iter_done(db_h, st);
dce_db_unlock(db_h, st);

Chapter 6. The DCE Backing Store 137

138 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Part 2. DCE Threads

© Copyright IBM Corp. 1990, 1999 139

140 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 7. Introduction to Multithreaded Programming

DCE Threads is a user-level (nonkernel) threads package based on the pthreads
interface specified by POSIX in 1003.4a, Draft 4. This chapter introduces
multithreaded programming, which is the division of a program into multiple threads
(parts) that execute concurrently. In addition, this chapter describes four software
models that improve multithreaded programming performance.

A thread is a single sequential flow of control within a program. It is the active
execution of a designated routine, including any nested routine invocations. Within a
single thread, there is a single point of execution. Most traditional programs consist
of a single thread.

Threads are lightweight processes that share a single address space. Each thread
shares all the resources of the originating process, including signal handlers and
descriptors. Each thread has its own thread identifier, scheduling policy and priority,
errno value, thread-specific data bindings, and the required system resources to
support a flow of control.

Advantages of Using Threads

With a threads package, a programmer can create multiple threads within a
process. Threads execute concurrently and, within a multithreaded process, there
are at any time multiple points of execution. Threads execute within a single
address space. Multithreaded programming offers the following advantages:

¢ Performance

Threads improve the performance (throughput, computational speed,
responsiveness, or some combination of these) of a program. Multiple threads
are useful in a multiprocessor system where threads run concurrently on
separate processors. In addition, multiple threads also improve program
performance on single processor systems by permitting the overlap of input and
output or other slow operations with computational operations.

You can think of threads as executing simultaneously, regardless of the number
of processors present. You cannot make any assumptions about the start or
finish times of threads or the sequence in which they execute, unless explicitly
synchronized.

* Shared Resources

An advantage of using multiple threads over using separate processes is that the
former share a single address space, all open files, and other resources.

» Potential Simplicity

Multiple threads can reduce the complexity of some applications that are
inherently suited for threads.

Software Models for Multithreaded Programming

The following subsections describe four software models for which multithreaded
programming is especially well suited:

* Boss/worker model

* Work crew model

* Pipelining model

* Combinations of models

© Copyright IBM Corp. 1990, 1999 141

Boss/Worker Model

In a boss/worker model of program design, one thread functions as the boss
because it assigns tasks to worker threads. Each worker performs a different type
of task until it is finished, at which point the worker interrupts the boss to indicate
that it is ready to receive another task. Alternatively, the boss polls workers
periodically to see whether or not each worker is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places
tasks in a queue, and workers check the queue and take tasks to perform. An
example of the work queue model in an office environment is a secretarial typing
pool. The office manager puts documents to be typed in a basket, and typists take
documents from the basket to work on.

Work Crew Model

In the work crew model, multiple threads work together on a single task. The task is
divided into pieces that are performed in parallel, and each thread performs one
piece. An example of a work crew is a group of people cleaning a house. Each
person cleans certain rooms or performs certain types of work (washing floors,
polishing furniture, and so forth), and each works independently. shows a
task performed by three threads in a work crew model.

Task

Thread A

Setup | Thread B |Cleanup

Thread C

(Time)

v

Figure 6. Work Crew Model
Pipelining Model

In the pipelining model, a task is divided into steps. The steps must be performed in
sequence to produce a single instance of the desired output, and the work done in
each step (except for the first and last) is based on the preceding step and is a
prerequisite for the work in the next step. However, the program is designed to
produce multiple instances of the desired output, and the steps are designed to
operate in a parallel time frame so that each step is kept busy.

An example of the pipelining model is an automobile assembly line. Each step or
stage in the assembly line is continually busy receiving the product of the previous
stage’s work, performing its assigned work, and passing the product along to the
next stage. A car needs a body before it can be painted, but at any one time
numerous cars are receiving bodies, and then numerous cars are being painted.

142 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

In a multithreaded program using the pipelining model, each thread represents a
step in the task. [Eigure 7 shows a task performed by three threads in a pipelining
model.

TASK

Thread A | Thread B | Thread C

(Time)

v

Figure 7. Pipelining Model
Combinations of Models

You may find it appropriate to combine the software models in a single program if
your task is complex. For example, a program could be designed using the
pipelining model, but one or more steps could be handled by a work crew. In
addition, tasks could be assigned to a work crew by taking a task from a work
queue and deciding (based on the task characteristics) which threads are needed
for the work crew.

Potential Disadvantages of Multithreaded Programming

When you design and code a multithreaded program, consider the following

problems and accommodate or eliminate each problem as appropriate:

» Potential Complexity
The level of expertise required for designing, coding, and maintaining
multithreaded programs may be higher than for most single-threaded programs
because multithreaded programs may need shared access to resources,
mutexes, and condition variables. Weigh the potential benefits against the
complexity and its associated risks.

* Nonreentrant Software

If a thread calls a routine or library that is not reentrant, use the global locking
mechanism to prevent the nonreentrant routines from modifying a variable that

another thread modifies. EChapter 9_Programming with Threads” on page 161

discusses nonreentrant software in more detail.

Note: A multithreaded program must be reentrant; that is, it must allow multiple
threads to execute at the same time. Therefore, be sure that your
compiler generates reentrant code before you do any design or coding
work for multithreading. (Many C, Ada, Pascal, and BLISS compilers
generate reentrant code by default.)

If your program is nonreentrant, any thread synchronization techniques
that you use are not guaranteed to be effective.

* Priority Inversion

Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads. The higher priority

Chapter 7. Introduction to Multithreaded Programming 143

inversion thread is blocked while waiting for the lower priority inversion thread to

release the locks.'Chapter 9. Programming with Threads” on page 161 discusses

priority inversion in more detail.
* Race Conditions
A type of programming error called a race condition causes unpredictable and

erroneous program behavior. EChapter 9_Programming with Threads” od

discusses race conditions in more detail.
» Deadlocks
A type of programming error called a deadlock causes two or more threads to be

blocked from executing. lChapter 9_Programming with Threads” on page 161

discusses deadlocks in more detail.
* Blocking Calls

Certain system or library calls may cause an entire process to block while waiting
for the call to complete, thus causing all other threads to stop executing.

EChapter 9_Programming with Threads” on page 161 discusses blocking in more

detail.

144 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 8. Thread Concepts and Operations(AlIX Only)

This chapter discusses concepts and techniques related to DCE Threads. The
following topics are covered:

* Thread operations

* Routines that are Not Portable

» Attributes objects

* Synchronization objects

* One-time initialization code

» Thread-specific data

* Thread cancellation

* Thread scheduling

For detailed information on the multithreading routines referred to in this chapter,
see the reference page for that routine in the IBM DCE Version 3.1 for AIX and
Solaris: Application Development Reference.

Note: Solaris DCE does not support Single Threaded RPC.

Thread Operations

A thread changes states as it runs, waits to synchronize, or is ready to be run. A
thread is in one of the following states:

* Waiting
The thread is not eligible to execute because it is synchronizing with another
thread or with an external event.
* Ready
The thread is eligible to be executed by a processor.
* Running
The thread is currently being executed by a processor.
* Terminated
The thread has completed all of its work.

m shows the transitions between states for a typical thread implementation.

A

Waiting Ready

Running » Terminated

A\ 4
\ 4

Figure 8. Thread State Transitions

The operations that you can perform include starting, waiting for, terminating, and
deleting threads.

© Copyright IBM Corp. 1990, 1999 145

Starting a Thread

To start a thread, create it using the pthread_create() routine. This routine creates
the thread, assigns specified or default attributes, and starts execution of the
function you specified as the thread’s start routine. A unique identifier (handle) for
that thread is returned from the pthread_create() routine.

Terminating a Thread

A thread exists until it terminates and the pthread_detach() routine is called for the
thread. The pthread_detach() routine can be called for a thread before or after it
terminates. If the thread terminates before pthread _detach() is called for it, then
the thread continues to exist and can be synchronized (joined) until it is detached.
Thus, the object (thread) can be detached by any thread that has access to a
handle to the object.

Note that pthread_detach() must be called to release the memory allocated for the
thread objects so that this storage does not build up and cause the process to run
out of memory. For example, after a thread returns from a call to join, it detaches
the joined-to thread if no other threads join with it.

A thread terminates for any of the following reasons:
* The thread returns from its start routine; this is the usual case.
* The thread calls the pthread_exit() routine.

The pthread_exit() routine terminates the calling thread and returns a status
value, indicating the thread’s exit status to any potential joiners.

* The thread is canceled by a call to the pthread_cancel() routine.
The pthread_cancel() routine requests termination of a specified thread if

cancellation is permitted. (See LThread Cancellation” on page 155 for more

information on canceling threads and controlling whether or not cancellation is
permitted.)

¢ An error occurs in the thread.

Examples of errors that cause thread termination are programming errors,
segmentation faults, or unhandled exceptions.

Waiting for a Thread to Terminate

A thread waits for the termination of another thread by calling the pthread_join()
routine. Execution in the current thread is suspended until the specified thread
terminates. If multiple threads call this routine and specify the same thread, all
threads resume execution when the specified thread terminates. In this situation, it
is strongly suggested that one thread should join.

If you specify the current thread with the pthread_join() routine, a deadlock results.
Do not confuse pthread_join() with other routines that cause waits and that are
related to the use of a particular multithreading feature. For example, use

pthread_cond_wait() or pthread_cond_timedwait() to wait for a condition variable
to be signaled or broadcast.

146 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Deleting a Thread

A thread is automatically deleted after it terminates; that is, no explicit deletion
operation is required. Use pthread_detach() to free the storage of a terminated
thread. Use pthread_cancel() to request that a running thread terminate itself.

If the thread has not yet terminated, the pthread_detach() routine marks the thread
for deletion, and its storage is reclaimed immediately when the thread terminates. A
thread cannot be joined or canceled after the pthread_detach() routine is called for
the thread, even if the thread has not yet terminated.

If a thread that is not detached terminates, its storage remains so that other threads
can join with it. Storage is reclaimed when the thread is eventually detached.

Routines That are Not Portable

Routines implemented by DCE Threads that are not specified by Draft 4 of the
POSIX 1003.4a standard are indicated by an _np suffix to the name. These
routines have not been incorporated into the POSIX standard, and as such are
extensions to that document.

Note: The routines may not be available on all platforms.

Attributes Objects

An attributes object is used to describe the behavior of threads, mutexes, and
condition variables. This description consists of the individual attribute values that
are used to create an attributes object. Whether an attribute is valid depends on
whether it describes threads, mutexes, or condition variables.

When you create an object, you can accept the default attributes for that object, or
you can specify an attributes object that contains individual attributes that you have
set. For a thread, you can also change one or more attributes after thread
execution starts; for example, calling the pthread_setprio() routine to change the
priority that you specified with the pthread_attr_setprio() routine.

The following subsections describe how to create and delete attributes objects and
describe the individual attributes that you can specify for different objects.

Creating an Attributes Object

To create an attributes object, use one of the following routines, depending on the
type of object to which the attributes apply:

* The pthread_attr_create() routine for thread attributes objects

* The pthread_condattr_create() routine for condition variable attributes objects
* The pthread_mutexattr_create() routine for mutex attributes objects

These routines create an attributes object containing default values for the
individual attributes. To modify any attribute values in an attributes object, use one
of the set routines described in the following subsections.

Creating an attributes object or changing the values in an attributes object does not
affect the attributes of objects previously created.

Chapter 8. Thread Concepts and Operations(AIX Only) 147

Deleting an Attributes Object

To delete an attributes object, use one of the following routines:

* The pthread_attr_delete() routine for thread attributes objects

* The pthread_condattr_delete() routine for condition variable attributes objects
* The pthread_mutexattr_delete() routine for mutex attributes objects

Deleting an attributes object does not affect the attributes of objects previously
created.

Thread Attributes

148

A thread attributes object allows you to specify values for thread attributes other
than the defaults when you create a thread with the pthread_create() routine. To
use a thread attributes object, perform the following steps:

1. Create a thread attributes object by calling the routine pthread_attr_create() .

2. Call the routines discussed in the following subsections to set the individual
attributes of the thread attributes object.

3. Create a new thread by calling the pthread_create() routine and specifying the
identifier of the thread attributes object.

You have control over the following attributes of a new thread:
» Scheduling policy attribute

* Scheduling priority attribute

* Inherit scheduling attribute

» Stacksize attribute

Scheduling Policy Attribute

The scheduling policy attribute describes the overall scheduling policy of the
threads in your application. A thread has one of the following scheduling policies:

1. SCHED_FIFO (First In, First Out)

The highest-priority thread runs until it blocks. If there is more than one thread
with the same priority, and that priority is the highest among other threads, the
first thread to begin running continues until it blocks.

2. SCHED_RR (Round Robin)

The highest-priority thread runs until it blocks; however, threads of equal priority,
if that priority is the highest among other threads, are timesliced. (Timeslicing is
a mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.)SCHED_RR makes use of fixed
thread priority assignments. Depending upon the application, a performance
improvement between 5 and 10% can be achieved by using the SCHED_RR
scheduling policy.

3. SCHED_OTHER, SCHED_FG_NP (Default)

All threads are timesliced. SCHED OTHER and SCHED_FG_NP do the same
thing; however, SCHED_FG_NP is simply more precise terminology. The FG
stands for foreground and the NP for non-portable. All threads running under the
SCHED_OTHER and SCHED_FG_NP policy, regardless of priority, receive
some scheduling. Therefore, no thread is completely denied execution time.
However, SCHED_OTHER and SCHED_FG_NP threads can be denied
execution time by SCHED_FIFO or SCHED_RR threads.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

4. SCHED_BG_NP (Background)

Like SCHED_OTHER and SCHED_FG_NP, SCHED_BG_NP ensures that all
threads, regardless of priority, receive some scheduling. However,
SCHED_BG_NP can be denied execution by the SCHED_FIFO or SCHED_RR
policies. The BG stands for background and the NP stands for non-portable.

The following two methods are used to set the scheduling policy attribute:

» Set the scheduling policy attribute in the attributes object, which establishes the
scheduling policy of a new thread when it is created. To do this, call the
pthread_attr_setsched() routine.

» Change the scheduling policy of an existing thread (and, at the same time, the
scheduling priority) by calling the pthread_setscheduler() routine.

[Thread Scheduling” on page 158 describes and shows the effect of scheduling

policy on thread scheduling.

Scheduling Priority Attribute

The scheduling priority attribute specifies the execution of a thread. This attribute is
expressed relative to other threads on a continuum of minimum to maximum for
each scheduling policy. A thread'’s priority falls within one of the following ranges,
which are implementation defined:

« PRI_FIFO_MIN to PRI_FIFO_MAX

« PRI_RR_MIN to PRI_RR_MAX

« PRI_OTHER_MIN to PRI_OTHER_MAX
« PRI_FG_MIN_NP to PRI_FG_MAX_NP
« PRI_BG_MIN_NP to PRI_BG_MAX_NP

[Thread Scheduling” on page 156 describes how to specify priorities between the

minimum and maximum values, and it also discusses how priority affects thread
scheduling.

The following two methods are used to set the scheduling priority attribute:

» Set the scheduling priority attribute in the attributes object, which establishes the
execution priority of a new thread when it is created. To do this, call the
pthread_attr_setprio() routine.

» Change the scheduling priority attribute of an existing thread by calling the
pthread_setprio() routine. (Call the pthread_setscheduler() routine to change
both the scheduling priority and scheduling policy of an existing thread.)

Inherit Scheduling Attribute

The inherit scheduling attribute specifies whether a newly created thread inherits
the scheduling attributes (scheduling priority and policy) of the creating thread (the
default), or uses the scheduling attributes stored in the attributes object. Set this
attribute by calling the routine pthread_attr_setinheritsched()

Stacksize Attribute
The stacksize attribute is the minimum size (in bytes) of the memory required for a

thread’s stack. The default value is machine dependent. Set this attribute by calling
the pthread_attr_setstacksize() routine.

Chapter 8. Thread Concepts and Operations(AIX Only) 149

Mutex Attributes

A mutex attributes object allows you to specify values for mutex attributes other
than the defaults when you create a mutex with the routine pthread_mutex_init() .

The mutex type attribute specifies whether a mutex is fast, recursive, or
nonrecursive. Set the mutex type attribute by calling the routine
pthread_mutexattr_setkind np() . (Any routine with the np suffix is a
non-portable; see tRoutines That are Not Portable” on page 147.) If you do not use
a mutex attributes object to select a mutex type, calling the pthread_mutex_init()
routine creates a fast mutex by default.

Condition Variable Attributes

Currently, attributes affecting condition variables are not defined. You cannot change
any attributes in the condition variable attributes object.

Candition Variahles” on page 153 describes the purpose and uses of condition

variables.

Synchronization Objects

In a multithreaded program, you must use synchronization objects whenever there
is a possibility of corruption of shared data or conflicting scheduling of threads that
have mutual scheduling dependencies. The following subsections discuss two kinds
of synchronization objects: mutexes and condition variables.

Mutexes

A mutex (mutual exclusion) is an object that multiple threads use to ensure the
integrity of a shared resource that they access, most commonly shared data. A
mutex has two states: locked and unlocked. For each piece of shared data, all
threads accessing that data must use the same mutex; each thread locks the mutex
before it accesses the shared data and unlocks the mutex when it is finished
accessing that data. If the mutex is locked by another thread, the thread requesting
the lock is blocked when it tries to lock the mutex if you call pthread_mutex_lock()
(see m The blocked thread continues and is not blocked if you call
pthread_mutex_trylock()

access

lock @ block

Thread A Thread B

Figure 9. Only One Thread Can Lock a Mutex

150 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Each mutex must be initialized. (To initialize mutexes as part of the program’s
one-time initialization code, see One-Time Initialization Routines” on page 154.) To
initialize a mutex, use the pthread_mutex_init() routine. This routine allows you to
specify an attributes object, which allows you to specify the mutex type. The
following are types of mutexes:

» A fast mutex (the default) is locked only once by a thread. If the thread tries to
lock the mutex again without first unlocking it, the thread waits for itself to release
the first lock and deadlocks on itself.

This type of mutex is called fast because it can be locked and unlocked more
rapidly than a recursive mutex. It is the most efficient form of mutex.

* A recursive mutex can be locked more than once by a given thread without
causing a deadlock. The thread must call the pthread_mutex_unlock() routine
the same number of times that it called the pthread _mutex_lock() routine before
another thread can lock the mutex. Recursive mutexes have the notion of a
mutex owner. When a thread successfully locks a recursive mutex, it owns that
mutex and the lock count is set to 1. Any other thread attempting to lock the
mutex blocks until the mutex becomes unlocked. If the owner of the mutex
attempts to lock the mutex again, the lock count is incremented, and the thread
continues running. When an owner unlocks a recursive mutex, the lock count is
decremented. The mutex remains locked and owned until the count reaches 0
(zero). It is an error for any thread other than the owner to attempt to unlock the
mutex.

A recursive mutex is useful if a thread needs exclusive access to a piece of data,
and it needs to call another routine (or itself) that needs exclusive access to the
data. A recursive mutex allows nested attempts to lock the mutex to succeed
rather than deadlock.

This type of mutex requires more careful programming. Never use a recursive
mutex with condition variables because the implicit unlock performed for a
pthread_cond_wait() or pthread_cond_timedwait() may not actually release
the mutex. In that case, no other thread can satisfy the condition of the predicate.

* A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives
an error. Thus, nonrecursive mutexes are more informative than fast mutexes
because fast mutexes block in such a case, leaving it up to you to determine why
the thread no longer executes. Also, if someone other than the owner tries to
unlock a nonrecursive mutex, an error is returned.

To lock a mutex, use one of the following routines, depending on what you want to
happen if the mutex is locked:

* The pthread_mutex_lock() routine
If the mutex is locked, the thread waits for the mutex to become available.
* The pthread_mutex_trylock() routine

If the mutex is locked, the thread continues without waiting for the mutex to
become available. The thread immediately checks the return status to see if the
lock was successful, and then takes whatever action is appropriate if it was not.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the pthread_mutex_unlock() routine.

If another thread is waiting on the mutex, its execution is unblocked. If more than
one thread is waiting on the mutex, the scheduling policy and the thread scheduling
priority determine which thread acquires the mutex. (See LScheduling Priority
Bitribute” on page 1449 for additional information.)

Chapter 8. Thread Concepts and Operations(AIX Only) 151

You can delete a mutex and reclaim its storage by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex is no
longer needed by any thread. This routine may require serialization. Mutexes are
automatically deleted when the program terminates.

Note: Never include DCE APIs (such as pthread_mutex_destroy()) in the
termination routine of a DLL. Doing so can result in an error (such as return
code 6 -- invalid handle) when termination occurs out of sequence.

Condition Variables

A condition variable allows a thread to block its own execution until some shared
data reaches a particular state. Cooperating threads check the shared data and
wait on the condition variable. For example, one thread in a program produces
work-to-do packets and another thread consumes these packets (does the work). If
the work queue is empty when the consumer thread checks it, that thread waits on
a work-to-do condition variable. When the producer thread puts a packet on the
queue, it signals the work-to-do condition variable.

A condition variable is used to wait for a shared resource to assume some specific
state (a predicate). A mutex, on the other hand, is used to reserve some shared
resource while the resource is being manipulated. For example, a thread A may
need to wait for a thread B to finish a task X before thread A proceeds to execute a
task Y. Thread B can tell thread A that it has finished task X by using a variable
they both have access to, a condition variable called a predicate. When thread A is
ready to execute task Y, it looks at the condition variable (predicate) to see if thread
B is finished (see

proceed unlock

< mutex_ready
and unlock

YES
System activity (unlock) .
(transparent : it
to thread) (?g?&) NO ready
A
read
predicate

lock
mutex_ready

Thread A

Figure 10. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds

First, thread A locks the mutex named mutex_ready that is associated with the
condition variable. Then it reads the predicate associated with the condition variable
named ready . If the predicate indicates that thread B has finished task X, then
thread A can unlock the mutex and proceed with task Y. If the condition variable

152 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

predicate indicated that thread B has not yet finished task X; however, then thread
A waits for the condition variable to change. Thread A calls the pthreadwait
primitive. Waiting on the condition variable automatically unlocks the mutex,
allowing thread B to lock the mutex when it has finished task X. The lock is
automatically reacquired before waking up thread A(see W)

h

y
unlock
Signal

lock
mutex_ready

Thread B

Figure 11. Thread B Signals Condition Ready

Thread B updates the predicate named ready associated with the condition variable
to the state thread A is waiting for. It also executes a signal on the condition
variable while holding the mutex mutex_ready .

Thread A wakes up, verifies that the condition variable (predicate) is in the correct

state, and proceeds to execute task Y (see [Eigure 10 on page 15d).

Note that, although the condition variable is used for explicit communications
among threads, the communications are anonymous. Thread B does not
necessarily know that thread A is waiting on the condition variable that thread B
signals. And thread A does not know that it was thread B that woke it up from its
wait on the condition variable.

Use the pthread_cond_init() routine to create a condition variable. To create
condition variables as part of the program’s one-time initialization code, see

Use the pthread_cond_wait() routine to cause a thread to wait until the condition is
signaled or broadcast. This routine specifies a condition variable and a mutex that
you have locked. (If you have not locked the mutex, the results of
pthread_cond_wait() are unpredictable.) This routine unlocks the mutex and
causes the calling thread to wait on the condition variable until another thread calls
one of the following routines:

* The pthread_cond_signal() routine to wake one thread that is waiting on the
condition variable

* The pthread_cond_broadcast() routine to wake all threads that are waiting on a
condition variable

If you want to limit the time that a thread waits for a condition to be signaled or
broadcast, use the pthread_cond_timedwait() routine. This routine specifies the

Chapter 8. Thread Concepts and Operations(AIX Only) 153

condition variable, mutex, and absolute time at which the wait should expire if the
condition variable is not signaled or broadcast.

You can delete a condition variable and reclaim its storage by calling the
pthread_cond_destroy() routine. Use this routine only after the condition variable
is no longer needed by any thread. Condition variables are automatically deleted
when the program terminates.

Other Synchronization Methods

There is another synchronization method that is not anonymous: the join primitive.
This allows a thread to wait for another specific thread to complete its execution.
When the second thread is finished, the first thread unblocks and continues its
execution. Unlike mutexes and condition variables, the join primitive is not
associated with any particular shared data.

One-Time Initialization Routines

You probably have one or more routines that must be executed before any thread
executes code in your application, but must be executed only once regardless of
the sequence in which threads start executing. For example, you may want to
create mutexes and condition variables (each of which must be created only once)
in an initialization routine. Multiple threads can call the pthread_once() routine, or
the pthread_once() routine can be called multiple times in the same thread,
resulting in only one call to the specified routine.

Use the pthread_once() routine to ensure that your application initialization routine
is executed only a single time, that is, by the first thread that tries to initialize the
application. This routine is the only way to guarantee that one-time initialization is
performed in a multithreaded environment on a given platform. The pthread_once()
routine is of particular use for runtime libraries, which are often called for the first
time after multiple threads are created.

Refer to the thr_intro(3thr) reference page for a list of the DCE Threads routines
which, when called, implicitly perform any necessary initialization of the threads
package. Any application that uses DCE Threads must call one of these routines
before calling any other threads routines.

Thread-Specific Data

The thread-specific data interfaces allow each thread to associate an arbitrary value
with a shared key value created by the program.

Thread-specific data is like a global variable in which each thread can keep its own
value, but is accessible to the thread anywhere in the program.

Use the following routines to create and access thread-specific data:

* The pthread_keycreate() routine to create a unique key value

* The pthread_setspecific() routine to associate data with a key

* The pthread_getspecific() routine to obtain the data associated with a key

The pthread_keycreate() routine generates a unique key value that is shared by all
threads in the process. This key is the identifier of a piece of thread-specific data.
Each thread uses the same key value to assign or retrieve a thread-specific value.

154 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

This keeps your data separate from other thread-specific data. One call to the
pthread_keycreate() routine creates a cell in all threads. Call this routine to specify
a routine to be called to destroy the context value associated with this key when the
thread terminates.

The pthread_setspecific() routine associates the address of some data with a
specific key. Multiple threads associate different data (by specifying different
addresses) with the same key. For example, each thread points to a different block
of dynamically allocated memory that it has reserved.

The pthread_getspecific() routine obtains the address of the thread-specific data
value associated with a specified key. Use this routine to locate the data associated
with the current thread’s context.

Thread Cancellation

Canceling is a mechanism by which one thread terminates another thread (or itself).
When you request that a thread be canceled, you are requesting that it terminate as
soon as possible. However, the target thread can control how quickly it terminates
by controlling its general cancelability and its asynchronous cancelability.

The following is a list of the pthread calls that are cancellation points:
* The pthread_setasynccancel() routine

* The pthread_testcancel() routine

* The pthread_delay _np() routine

* The pthread_join() routine

* The pthread_cond_wait() routine

* The pthread_cond_timedwait() routine

General cancelability is enabled by default. A thread is canceled only at specific
places in the program; for example, when a call to the pthread_cond_wait() routine
is made. If general cancelability is enabled, request the delivery of any pending
cancel request by using the pthread_testcancel() routine. This routine allows you
to permit cancellation to occur at places where it may not otherwise be permitted
under general cancelability, and it is especially useful within very long loops to
ensure that cancel requests are noticed within a reasonable time.

If you disable general cancelability, the thread cannot be terminated by any cancel
request. Disabling general cancelability means that a thread could wait indefinitely if
it does not come to a normal conclusion. Therefore, be careful about disabling
general cancelability.

Asynchronous cancelability, when it is enabled, allows cancels to be delivered to
the enabling thread at any time, not only at those times that are permitted when just
general cancelability is enabled. Thus, use asynchronous cancellation primarily
during long processes that do not have specific places for cancel requests.
Asynchronous cancelability is disabled by default. Disable asynchronous
cancelability when calling threads routines or any other runtime library routines that
are not explicitly documented as cancel-safe.

Note: If general cancelability is disabled, the thread cannot be canceled, regardless
of whether asynchronous cancelability is enabled or disabled. The setting of
asynchronous cancelability is relevant only when general cancelability is
enabled.

Chapter 8. Thread Concepts and Operations(AIX Only) 155

Use the following routines to control the canceling of threads:
* The pthread_setcancel() routine to enable and disable general cancelability

* The pthread_testcancel() routine to request delivery of a pending cancel to the
current thread

* The pthread_setasynccancel() routine to enable and disable asynchronous
cancelability

* The pthread_cancel() routine to request that a thread be canceled

Thread Scheduling

Threads are scheduled according to their scheduling priority and how the
scheduling policy treats those priorities. To understand the discussion in this
section, you must understand the concepts in the following sections of this chapter:

1. EScheduling Palicy Attribute” on page 144 discusses scheduling policies,

including the way in which each policy handles thread scheduling priority.

2. tScheduling Priarity Attribute” an page 149 discusses thread scheduling

priorities.

3. Elnherit Scheduling Attrihute” on page 149 discusses inheritance of scheduling

attributes by created threads.

To specify the minimum or maximum priority, use the appropriate symbol; for
example, PRI_OTHER_MIN or PRI_OTHER_MAX. To specify a value between the
minimum and maximum priority, use an appropriate arithmetic expression.

For example, to specify a priority midway between the minimum and maximum for
the default scheduling policy, specify the following concept using your programming
language’s syntax:

pri_other mid = (PRI_OTHER MIN + PRI_OTHER MAX)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it. Priority values are integers.

Note: With fixed priorities, all threads of equal priority get an equal chance to run,
but threads of higher priority can starve threads of lower priority. Care must
be taken when choosing thread priorities. A middle range thread priority is
recommended.

To show results of the different scheduling policies, consider the following example:
a program has four threads, called threads A, B, C, and D. For each scheduling
policy, three scheduling priorities have been defined: minimum, middle, and
maximum. The threads have the priorities shown in

Table 5. Sample Thread Properties

Thread Priority
A Minimum
B Middle
C Middle
D Maximum

Eigure 12 on page 157 through Eigure 14 on page 157 show execution flows,
depending on whether the threads use the SCHED_FIFO, SCHED_RR, or

156 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

SCHED_OTHER (default) scheduling policy. Assume that all waiting threads are
ready to execute when the current thread waits or terminates and that no
higher-priority thread is awakened while a thread is executing (during the flow
shown in each figure).

m shows a flow with SCHED_FIFO (First In, First Out) scheduling.

D » B » C > A >
Figure 12. Flow with SCHED_FIFO Scheduling

Thread D executes until it waits or terminates, then Thread B starts because it has
been waiting longer than Thread C and it executes until it waits or terminates, then
Thread C executes until it waits or terminates, then Thread A executes.

Eigure 13 shows a flow with SCHED_RR (Round Robin) scheduling.

v

D > B > C A > C > A

Figure 13. Flow with SCHED_RR Scheduling

All four threads are timesliced. Threads with higher priority are generally scheduled
when more than one thread is ready to run; however, to ensure fairness, all threads
are given some time. The effective priority of threads may be modified over time by
the scheduler, depending on the use of processor resources.

Thread D executes until it waits or terminates, then threads B and C are timesliced
because they both have middle priority, then thread A executes.

Eigure 14 shows a flow with SCHED_OTHER (default) scheduling.

D » B » C > A » B » C b e
Figure 14. Flow with SCHED_OTHER Scheduling

Thread D executes until it waits or terminates; then threads B, C, and A are
timesliced, even though thread A has a lower priority than the other two. Thread A
receives less execution time than thread B or C if either is ready to execute as
often as thread A is. However, the default scheduling policy protects thread A
against being blocked from executing indefinitely.

Because low-priority threads eventually run, the default scheduling policy protects
against the problem of priority inversion discussed in L i i

There are two ways to change the scheduling policy. In both cases root privilege is
required.

1. Write a program to set the scheduling policy of already running processes.
The following program is provided as an example:

/*

* This program sets the scheduling policy and thread priority of all
* currently existing threads of the specified process or list of

* processes. The scheduling policy is set to SCHED_RR and the thread

Chapter 8. Thread Concepts and Operations(AIX Only) 157

* priority is set as specified on input.

*

* Any threads created after this program is run will have the default

* scheduling policy of the process before this program is run. The

* scheduling policy set in this way does not get inherited by subsequent
* created threads.

*

* The user must be running with root privilege in order to execute this
* program.

*

* Usage: setpri <priority> <PID(s)>

*/

#include <sys/sched.h>
#include <stdio.h>
#include <sys/errno.h

main(int argc,char x*argv)

{
pid_t ProcessID;
int Priority,ReturnP;
if(argc <3) {
printf(" usage - setpri priority pid(s) \n");
exit(1l);
argv+t;
Priority=atoi(*argv++);
if (Priority < 50) {
printf(" Priority must be >= 50 \n");
exit(1l);
while (*argv) {
ProcessID=atoi (*argv++);
ReturnP = setpri(ProcessID, Priority);
if (ReturnP > 0)
printf("pid=%d new pri=%d old pri=%d\n",
(int)ProcessID,Priority,ReturnP);
else
{
perror(" setpri failed ");
exit(1);
!
}
}

2. Modify your program to change its scheduling policy itself.

Since the scheduling policy is inherited from parent to child threads, it is only
necessary to change the policy once in the main thread of your program, before
any other threads are created or APIs are called.

The following is an example of the code you might use:

*

Code to set the scheduling parameters of the current thread. The
scheduling policy is set to SCHED_RR and the thread priority is set
to 60.

A11 child threads of this thread will inherit the parents scheduling
parameters.

* Ok 3k X X X F S

158 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

* This program has no effect if the process is not running with root

* privilege.

*/

#define FIXED_PRIORITY 60
{

struct sched_param sched_param;

sched_param.sched_policy

= SCHED_RR;
sched_param.sched priority =

FIXED_PRIORITY;

pthread_setschedparam(pthread_self(),
SCHED_RR,
&sched_param);

Chapter 8. Thread Concepts and Operations(AIX Only)

159

160 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 9. Programming with Threads

This chapter discusses issues you face when writing a multithreaded program and
how to deal with those issues.

POSIX.1 Notes

The following POSIX.1 functions suspend the calling process until the request is
completed:

wait()
waitpid()
sigsuspend()
pause()
tcdrain()

The following POSIX.1 functions suspend the calling thread until the request is
completed:

sleep()
open()
creat()
close()
read()

write()
fnctl()

Current Limitations

In the current environment, you should be aware of the following limitations.

After fork() , the child process gets file descriptors for the same files that the
parent had open. The descriptors are still available after exec() if they are not set
to close on exec() (FD_CLOEXEC). If one of the file descriptors is for a socket
that is in use in the parent, it is set to blocking 1/O in the child. The result is that
the parent process gets the blocking behavior (that is, the process stops if a
thread does read() or write() on that file descriptor).

File Descriptor Inheritance after fork and exec System Calls

The fork and exec system calls may not provide the behavior you expect when file
descriptors are shared between parent and child processes. Consider the following
when coding this type of application:

When sharing descriptors between parent and child processes, use fcntl() before
using fork() . This sets up the FD_CLOEXEC flag for any file descriptor that the
child process will not use, and prevents the parent process from inadvertently
blocking all its threads when it performs I/O on a shared file descriptor.

The DCE threads package sets socket and pipe file descriptors to nonblocking
when they are opened. However, these descriptors are treated as blocking
unless the programmer explicitly sets them to nonblocking. When a new image is
executed using exec(), DCE threads sets descriptors being treated as blocking to
actually be blocking unless they are marked as FD_CLOEXEC (close on exec()).

© Copyright IBM Corp. 1990, 1999 161

Therefore, both the parent and child must be coded to use the socket in
nonblocking mode even if one of them is single-threaded. You may want to have
the parent use fentl() to specifically set the O_NONBLOCK flag for the socket’s
file descriptor before calling fork() .

* A process that uses a pipe to communicate with processes it creates should set
the FD_CLOEXEC flag on the file descriptor it uses.

* The pthreads library maintains an internal record of the state of all open file
descriptors. When a program executes, it attempts to determine this state by
guerying the OS for that state by way of the fstat() call. For some types of files,
in particular files on remote file systems (nfs and dfs) and sockets, changed
permissions or other state on that file may cause the fstat() to fail. Some of
these failures are not expected by pthreads and may cause a program failure
with the message cma_open_general: unexpected fstat error.

Using Signals

The following subsections cover three topics: types of signals, DCE Threads signal
handling, and alternatives to using signals.

Types of Signals

Signals are delivered as a result of some event. UNIX signals are grouped into the
following four categories of pairs that are orthogonal to each other:

* Terminating and synchronous

* Terminating and asynchronous

* Nonterminating and synchronous
* Nonterminating and asynchronous

The action that DCE Threads takes when a particular signal is delivered depends
on the characteristics of that signal.

Terminating Signals

Terminating signals result in the termination of the process by default. Whether a
particular signal is terminating or not is independent of whether it is synchronously
or asynchronously delivered.

Nonterminating Signals
Nonterminating signals do not result in the termination of the process by default.

Nonterminating signals represent events that can be either internal or external to
the process. The process may require notification or ignore these events. When a
nonterminating asynchronous signal is delivered to the process, DCE Threads
awakens any threads that are waiting for the signal. This is the only action that
DCE Threads takes because, by default, the signal has no effect.

Synchronous Signals

Synchronous signals are the result of an event that occurs inside a process and are
delivered synchronously with respect to that event. For example, if a floating-point
calculation results in an overflow, then a SIGFPE (floating-point exception signal) is
delivered to the process immediately following the instruction that resulted in the
overflow.

162 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The default behavior of DCE Threads in DCE Version 1.0.2 when a synchronous
terminating signal occurs is to dump core; that is, to not handle the signal. All
synchronous signal handling has been changed to this new behavior (register/core
dump) except SIGSYS and SIGPIPE. This differs from the behavior prior to DCE
Version 1.0.2, in which such a signal would be turned into an exception and
propagated out to whatever process was the original owner of the thread (namely
the client, even though the exception might have occurred in the server). Therefore,
if an application using DCE Threads wants to handle such signals, it must now set
up a signal handler to do so by calling sigaction() . This handler is specific to the
thread that called sigaction() and does not affect how that signal is handled in
other threads. Note that the new DCE Threads behavior is in fact similar to the
default behavior of most UNIX programs.

Synchronous, terminating signals represent an error that has occurred in the
currently executing thread.

Asynchronous Signals

Asynchronous signals are the result of an event that is external to the process and
are delivered at any point in a thread’s execution when such an event occurs. For
example, when a user running a program types the interrupt character at the
terminal (generally <Ctrl-C>), a SIGINT (interrupt signal) is delivered to the process.

Asynchronous, terminating signals represent an occurrence of an event that is
external to the process and, if unhandled, results in the termination of the process.
When an asynchronous terminating signal is delivered, DCE Threads catches it and
checks to see if any threads are waiting for it. If threads are waiting, they are
awakened, and the signal is considered handled and is dismissed. If a handler is
installed by way of sigaction() , it will be run in the context of the thread that was
interrupted by the signal. Any handler installed for an asynchronous signal is valid
for the entire process. If there are no waiting threads, then DCE Threads causes
the process to be terminated as if the signal had not been handled.

DCE Threads Signal Handling

DCE Threads provides the POSIX sigwait() service to allow threads to perform
activities similar to signal handling without having to deal with signals directly. It also
provides a jacket for sigaction() that allows each thread to have its own handler for
synchronous signals.

In order to provide these mechanisms, DCE Threads installs signal handlers for
most of the UNIX signals during initialization.

A list of all signals and how they may be handled, along with the behavior when
that signal is not handled (default action), is provided in the following table.

Table 6. DCE Threads Signal Handling

Signal sigaction() sigwait() Default Action
SIGHUP() YES YES Terminate Process
SIGINT() YES YES Terminate Process
SIGQUIT() YES YES Core Dump
SIGILL() YES* NO Core Dump
SIGTRAP() YES* NO Core Dump
SIGIOT() YES* NO Core Dump

Chapter 9. Programming with Threads 163

Table 6. DCE Threads Signal Handling (continued)

Signal sigaction() sigwait() Default Action
SIGEMT() YES* NO Core Dump
SIGFPE() YES* NO Core Dump
SIGKILL() NO NO Terminate Process
SIGBUS() YES* NO Core Dump
SIGSEGV() YES* NO Core Dump
SIGSYS() YES* NO Exception, Then Core Dump
SIGPIPE() YES* NO Exception, Then Terminate

Process
SIGALRM() YES YES Terminate Process
SIGTERM() YES YES Terminate Process
SIGURG() YES YES Ignored
SIGSTOP() NO NO Suspend Process
SIGTSTP() NO NO Suspend Process
SIGCONT() YES YES Continue Process
SIGCHLD() YES YES Ignored
SIGTTIN() YES YES Suspend Process
SIGTTOU() YES YES Suspend Process
SIGIO() YES YES Ignored
SIGXCPU() YES YES Terminate Process
SIGXFSZ() YES YES Terminate Process
SIGMSG() YES YES Terminate Process
SIGWINCH() YES YES Ignored
SIGPWR() YES YES Ignored
SIGUSR1() YES YES Terminate Process
SIGUSR2() YES YES Terminate Process
SIGPROF() YES YES Terminate Process
SIGDANGER() YES YES Ignored
SIGMIGRATE() YES YES Terminate Process
SIGPRE() YES YES Core Dump
SIGVIRT() YES YES Terminate Process
SIGGRANT() YES YES Terminate Process
SIGRETRACT() YES YES Terminate Process
SIGSOUND() YES YES Terminate Process
Note: Symbols marked with * have the specified handler installed for only the calling
thread. All other signals have the handler installed for the entire process.

Note: All of the signals are defined in /usr/include/sys/signal.h
The POSIX sigwait() Service

The DCE Threads implementation of the POSIX sigwait() service allows any thread
to block until one of a specified set of signals is delivered. A thread waits for any of
the asynchronous signals, except for SIGKILL and SIGSTOP.

164 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

A thread cannot wait for a synchronous signal. This is because synchronous signals
are the result of an error during the execution of a thread,; if the thread is waiting for
a signal, then it is not executing. Therefore, a synchronous signal cannot occur for
a particular thread while it is waiting, and so the thread waits forever. POSIX
stipulates that the thread must block the signals (using the UNIX system service
sigprocmask()) it waits for before calling sigwait() .

The POSIX sigaction() Service

The DCE Threads implementation of the POSIX sigaction() service allows for
per-thread handlers to be installed for catching synchronous signals. The
sigaction() routine modifies behavior only for individual threads and works only for
synchronous signals. Setting the signal action to SIG_DFL for a specific signal will
restore the thread’s default behavior for that signal. Attempting to set a signal action
for an asynchronous signal is an error.

The itimer VTALARM

DCE Threads installs a handler for the itimer VTALARM . Therefore, VTALARM is
unavailable for use by other applications.

The SIGVIRT Signal

SIGVIRT is an AlX-specific signal, tied to a timer similar to the one that generates
SIGVTALRM. This timer and signal are used internally by DCE Threads for thread
scheduling, so SIGVIRT is not allowed in sigaction() and sigwait() .

Summary of Differences from Nonthreaded Signals

» Handlers for synchronous signals are installed independently for each thread that
calls sigaction() or signal() .

» sigwait() is only available with DCE Threads.

* The fields sa_mask and sa_flags in the structure passed to sigaction() are
ignored when the handler is invoked with DCE Threads. Almost all signals are
blocked when in a signal handler.

Summary of Signal Differences Between IBM DCE and OSF DCE

* The ability to set a process-wide handler with sigaction() is specific to AIX and
Solaris. Other implementations do not allow sigaction() on asynchronous signal.

» AIX layers signal() and sigvec() on top of the DCE Threads sigaction() function,
meaning they will have the same behavior as sigaction() . In most other
implementations these calls directly manipulate the OS signal handlers, allowing
an application to replace the handlers installed by DCE Threads.

* The signals SIGXCPU and SIGXFSZ are considered synchronous signals in
most implementations, with the additional caveat that SIGXCPU also do not allow
sigaction() . These signals are handled as if they were asynchronous in AIX
DCE, being allowed in sigwait() , and setting a process-wide handler in
sigaction() .

Alternatives to Using Signals

Avoid using UNIX signals in multithreaded programs. DCE Threads provides
alternatives to signal handling. These alternatives are discussed in more detail in

W‘ ” and ESignaling a Condition Variahlel

Chapter 9. Programming with Threads 165

Note: In order to implement these alternatives, DCE Threads must install its own
signal handlers. These are installed when DCE Threads initializes itself,
typically on the first thread-function call. At this time, any existing signal
handlers are replaced.

Following are several reasons for avoiding signals:
* They cannot be used in a modular way in a multithreaded program.

* They are unnecessary when used as an asynchronous programming technique in
a multithreaded program.

* There are almost no threads services available at signal level.
* There is no reliable, portable way to modify predicates.

* The signal-handler interface is unsuitable for use with threads. (For example,
there is one signal action per signal per process, there is one signal mask per
process, and sigpause() blocks the whole process.)

Note: Signal handlers must not perform 1/O.

In a multithreaded program, signals cannot be used in a modular way because, on
most current UNIX implementations, signals are inherently a process construct.
There is only one instantiation of each signal and of each signal handler routine for
all of the threads in an application. If one thread handles a particular signal in one
way, and a different thread handles the same signal in a different way, then the
thread that installs its signal handler last handles the signal. This applies only to
asynchronously generated signals; synchronous signals can be handled on a
per-thread basis using the DCE Threads sigaction() jacket.

Do not use asynchronous programming techniques in conjunction with threads,
particularly those that increase parallelism such as using timer signals and 1/0
signals. These techniques can be complicated. They are also unnecessary because
threads provide a mechanism for parallel execution that is simpler and less prone to
error where concurrence can be of value. Furthermore, most of the threads routines
are not supported for use in interrupt routines (such as signal handlers), and
portions of runtime libraries cannot be used reliably inside a signal handler.

Applications should not attempt to do 1/0 from signal handlers. In particular, the
curses libraries (libcurses and libcur) attempt to do 1/O from their SIGTSTP signal
handlers. The signal handler in these libraries is installed from the initscr() function.
It is recommended that after you call initscr() , you change the signal handler for
SIGTSTP so that it either ignores 1/0 or permits an application to install its own
handler that does not do I/O.

Nonthreaded Libraries

As programming with threads becomes common practice, you need to ensure that
threaded code and nonthreaded code (code that is not designed to work with
threads) work properly together in the same application. For example, you may
write a new application that uses threads (for example, an RPC server), and link it
with a library that does not use threads (and is thus not thread-safe). In such a
situation you can do one of the following:

* Work with the nonthreaded software.
* Change the nonthreaded software to be thread-safe.

166 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Working with Nonthreaded Software

Thread-safe code is code that works properly in a threaded environment. To work
with nonthread-safe code, associate the global lock with all calls to such code.

You can implement the lock on the side of the routine user or the routine provider.
For example, you can implement the lock on the side of the routine user if you write
a new application like an RPC server that uses threads, and you link it with a library
that does not. Or, if you have access to the nonthreaded code, the locks can be
placed on the side of the routine provider, within the actual routine. Implement the
locks as follows:

1. Associate one lock, a global lock, with execution of such code.
2. Require all of your threads to lock prior to execution of nonthreaded code.
3. Perform an unlock when execution is complete.

By using the global lock, you ensure that only one thread executes in outside
libraries, which may call each other, and in unknown code. Using a single global
lock is safer than using multiple local locks because it is difficult to be aware of
everything a library may be doing or of the interactions that library can have with
other libraries.

Making Nonthreaded Code Thread-Reentrant

Thread-reentrant code is code that works properly while multiple threads execute it
concurrently. Thread-reentrant code is thread-safe, but thread-safe code may not be
thread-reentrant. Document your code as being thread-safe or thread-reentrant.

More work is involved in making code thread-reentrant than in making code
thread-safe. To make code thread-reentrant, do the following:

1. Use proper locking protocols to access global or static variables.

2. Use proper locking protocols when you use code that is not thread-safe.
3. Store thread-specific data on the stack or heap.

4. Ensure that the compiler produces thread-reentrant code.

5. Document your code as being thread-reentrant.

Avoiding Nonreentrant Software

Global Lock

The following subsections discuss two methods to help you avoid the pitfalls of
nonreentrant software. These methods are as follows:

* Global lock
» Thread-specific storage

Use a global lock, which has the characteristics of a recursive mutex, instead of a
regular mutex when calling routines that you think are nonreentrant. (When in
doubt, assume the code is nonreentrant.)

The pthread_lock_global_np() routine is a locking protocol that is used to call

nonreentrant routines, often found in existing library packages that were not
designed to run in a multithreaded environment.

Chapter 9. Programming with Threads 167

The way to call a library function that is not reentrant from a multithreaded program
is to protect the function with a mutex. If every function that calls a library locks a
particular mutex before the call and releases the mutex after the call, then the
function completes without interference. However, this is difficult to do successfully
because the function may be called by many libraries. A global lock solves this
problem by providing a universal lock. Any code that calls any nonreentrant function
uses the same lock.

To lock a global lock, call the pthread_lock_global np() routine. To unlock a global
lock, call the pthread_unlock_global _np() routine.

Note:

Many COBOL and FORTRAN compilers generate inherently nonreentrant
code. Many C, Ada, Pascal, and BLISS compilers generate reentrant code
by default. It is possible to write nonreentrant code in the reentrant
languages by not following a locking protocol.

Thread-Specific Storage
To avoid nonreentrancy when writing new software, avoid using global variables to

store data that is thread-specific data. (See tThread-Specific Data” on page 154 for

more information.)

Alternatively, allocate thread-specific data on the stack or heap and explicitly pass
its address to called routines.

Avoiding Priority Inversion

Priority inversion occurs when interaction among three or more threads blocks the
highest-priority thread from executing. For example, a high-priority thread waits for a
resource locked by a low-priority thread, and the low-priority thread waits while a
middle-priority thread executes. The high-priority thread is made to wait while a
thread of lower priority (the middle-priority thread) executes.

To avoid priority inversion, associate a priority with each resource and force any
thread using that object to first raise its priority to that associated with the object.
This method of avoiding priority inversion is not a complete solution because all
threads will then block at the same ceiling priority and be unblocked in FIFO order
rather than by their actual priority.

The SCHED_OTHER (default) scheduling policy prevents priority inversion from
causing a complete blockage of the high-priority thread because the low-priority
thread is permitted to execute and release the resource. The SCHED_FIFO and
SCHED_RR policies, however, do not force resumption of the low-priority thread if
the middle-priority thread executes indefinitely.

Using Synchronization Objects

The following subsections discuss the use of mutexes to prevent two potential
problems: race conditions and deadlocks. Also discussed is why you should signal
a condition variable with the associated mutex locked.

168 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Race Conditions

A race condition occurs when two or more threads perform an operation, and the
result of the operation depends on unpredictable timing factors; specifically, when
each thread executes and waits and when each thread completes the operation.

An example of a race condition is as follows:

1. Both A and B are executing (X = X + 1).

2. Areads the value of X (for example, X = 5).

3. B comes in and reads the value of X and increments it (making X = 6).
4

A gets rescheduled and now increments X. Based on its earlier read operation,
A thinks (X+1 = 5+1 = 6). X is now 6. It should be 7 because it was
incremented once by A and once by B.

To avoid race conditions, ensure that any variable modified by more than one
thread has only one mutex associated with it. Do not assume that a simple add
operation can be completed without allowing another thread to execute. Such
operations are generally not portable, especially to multiprocessor systems. If it is
possible for two threads to share a data point, use a mutex.

Deadlocks

A deadlock occurs when one or more threads are permanently blocked from
executing because each thread waits on a resource held by another thread in the
deadlock. A thread can also deadlock on itself.

The following is one technique for avoiding deadlocks:
1. Associate a sequence number with each mutex.
2. Lock mutexes in sequence.

3. Do not attempt to lock a mutex with a sequence number lower than that of a
mutex the thread already holds.

Another technique, which is useful when a thread needs to lock the same mutex
more than once before unlocking it, is to use a recursive mutex. This technique
prevents a thread from deadlocking on itself.

Signaling a Condition Variable

When you are signaling a condition variable and that signal may cause the
condition variable to be deleted, it is recommended that you signal or broadcast
with the mutex locked.

The recommended coding for signaling a condition variable appears at the end of
this chapter. The following two C code fragments show coding that is not
recommended. The following C code fragment is executed by a releasing thread:

pthread_mutex_lock (m);
/* Change shared variables to allow */
/* another thread to proceed */

pthread mutex_unlock (m); <---- Point A
pthread_cond_signal (cv); <---- Statement 1

The following C code fragment is executed by a potentially blocking thread:

Chapter 9. Programming with Threads 169

170

pthread_mutex_Tlock (m);
while (!predicate ...
pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);

Note: It is possible for a potentially blocking thread to be running at Point A while
another thread is interrupted. The potentially blocking thread can then see
the predicate true and therefore not become blocked on the condition
variable.

Signaling a condition variable without first locking a mutex is not a problem.
However, if the released thread deletes the condition variable without any further
synchronization at Point A, then the releasing thread will fail when it attempts to
execute Statement 1 because the condition variable no longer exists.

This problem occurs when the releasing thread is a worker thread and the waiting
thread is the boss thread, and the last worker thread tells the boss thread to delete
the variables that are being shared by boss and worker.

The following C code fragment shows the recommended coding for signaling a
condition variable while the mutex is locked:

pthread_mutex_Tock (m);
/* Change shared variables to allow */
/* some other thread to proceed */

pthread cond signal (cv); <---- Statement 1
pthread_mutex_unlock (m);

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 10. Using the DCE Threads Exception-Returning
Interface

DCE Threads provides the following two ways to obtain information about the status
of a threads routine:

e The routine returns a status value to the thread.
* The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the
preceding two methods of receiving status. These two methods cannot be used
together in the same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be reported to
the thread by setting the external variable errno to an error code and returning a
function value of —1. The threads reference pages document this
status-value-returning interface (see the IBM DCE Version 3.1 for AlX and Solaris:
Application Development Reference). However, an alternative to status values is
provided by DCE Threads in the exception-returning interface.

This chapter introduces and provides conventions for the modular use of the
exception-returning interface to DCE Threads.

Syntax for C

Access to exceptions from the C language is defined by the macros in the

exc_handling.h file. The exc_handling.h header file is included automatically

V\Tﬁ%ﬂude pthread_exc.h (see llnvaking the Exception-Returning Interface’]
)

The following example shows the syntax for handling exceptions:

TRY
try_block

[CATCH (exception_name)
handler_block]...

[CATCH_ALL
handler_block]

ENDTRY

Atry_block or a handler_block is a sequence of statements, the first of which
may be declarations, as in a normal block. If an exception is raised in the
try_block , the catch clauses are evaluated in order to see if any one matches the
current exception.

The CATCH or CATCH_ALL clauses absorb an exception; that is, they catch an
exception propagating out of the try_block , and direct execution into the associated
handler_block . Propagation of the exception, by default, then ends. Within the
lexical scope of a handler, it is possible to explicitly cause propagation of the same
exception to resume (this is called reraising the exception), or it is possible to raise
some new exception.

The RERAISE statement is allowed in any handler statements and causes the
current exception to be reraised. Propagation of the caught exception resumes.

© Copyright IBM Corp. 1990, 1999 171

172

The RAISE (exception_name) statement is allowed anywhere and causes a
particular exception to start propagating. For example:

TRY

sort(); /* Call a function that may raise an exception.
by calling RAISE (exception_name).
An exception is accomplished by Tongjumping
out of some nested routine back to the TRY
clause. Any output parameters or return
values of the called routine are therefore
indeterminate.

* Ok 3k X X X

*/

CATCH (pthread_cancel e)
printf("Alerted while sorting\n"); RERAISE;

CATCH_ALL
printf("Some other exception while sorting\n"); RERAISE;

ENDTRY

In the preceding example, if the pthread_cancel_e exception propagates out of the
function call, the first printf is executed. If any other exception propagates out of
sort, the second printf is executed. In either situation, propagation of the exception
resumes because of the RERAISE statement. (If the code is unable to fully recover
from the error, or does not understand the error, it needs to do what it did in the
previous example and further propagate the error to its callers.)

The following shows the syntax for an epilogue:

TRY try block
[FINALLY final_block]
ENDTRY

The final_block is executed whether the try_block executes to completion without
raising an exception, or if an exception is raised in the try_block . If an exception is
raised in the try_block , propagation of the exception is resumed after executing the
final_block .

Note that a CATCH_ALL handler and RERAISE could be used to do this, but the
epilogue code would then have to be duplicated in two places, as follows:

TRY
try_block
CATCH_ALL
final_bTock
RERAISE;
ENDTRY
{ final_block }

A FINALLY statement has exactly this meaning, but avoids code duplication.

Note: The behavior of FINALLY along with the CATCH or CATCH_ALL clauses is
undefined. Do not combine them for the same try_block .

Another example of the FINALLY statement is as follows:

pthread mutex_lock (some_object.mutex);
some_object.num_waiters = some_object.num waiters + 1;
TRY
while (! some_object.data_available)
pthread_cond wait (some_object.condition);

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

/* The code to act on the data_available goes here */
FINALLY
some_object.num waiters = some_object.num waiters - 1;
pthread_mutex_unlock (some_object.mutex);
ENDTRY

In the preceding example, the call to pthread_cond_wait() could raise the
pthread_cancel_e exception. The final_block ensures that the shared data
associated with the lock is correct for the next thread that acquires the mutex.

Invoking the Exception-Returning Interface

To use the exception-returning interface, replace the first statement that follows with
the second:

#include <pthread.h>

#include <pthread_exc.h>

Note: You cannot include both header files. You can use either the pthread.h file
to obtain errno numbers or the pthread_exc.h file to obtain exceptions.

Operations on Exceptions

An exception is an object that describes an error condition. Operations on exception
objects allow errors to be reported and handled. If an exception is handled properly,
the program can recover from errors. For example, if an exception is raised from a
parity error while reading a tape, the recovery action may be to retry 100 times
before giving up.

The DCE Threads exception-returning interface allows you to perform the following
operations on exceptions:

* Declare and initialize an exception object

» Raise an exception

» Define a region of code over which exceptions are caught

» Catch a particular exception or all exceptions

» Define epilogue actions for a block

* Import a system-defined error status into the program as an exception

These operations are discussed in the following subsections.
Declaring and Initializing an Exception Object

Declaring and initializing an exception object documents that a program reports or
handles a particular error. Having the error expressed as an exception object
provides future extensibility as well as portability. Following is an example of
declaring and initializing an exception object:

EXCEPTION parity_error; /* Declare it =/
EXCEPTION_INIT (parity_error); /+ Initialize it =/

Chapter 10. Using the DCE Threads Exception-Returning Interface 173

Raising an Exception

Raising an exception reports an error, not by returning a value, but by propagating
an exception. Propagation involves searching all active scopes for code written to
handle the error or code written to perform scope-completion actions in case of any
error, and then causing that code to execute. If a scope does not define a handler
or epilogue block, then the scope is simply torn down as the exception propagates
through the stack. This is sometimes referred to as unwinding the stack. DCE
Threads exceptions are terminating; there is no option to make execution resume at
the point of the error. (Execution resumes at the point where the exception was
caught.)

If an exception is unhandled, the entire application process is terminated. Aborting
the process, rather than just the faulting thread, provides clean termination at the

point of error. This prevents the disappearance of the faulting thread from causing
problems at some later point.

An example of raising an exception is as follows:

RAISE (parity_error);

Defining a Region of Code over Which Exceptions Are Caught

Defining a region of code over which exceptions are caught allows you to call
functions that can raise an exception and specify the recovery action.

Following is an example of defining an exception-handling region (without indicating
any recovery actions):

TRY {
read_tape ();

)
ENDTRY;
Catching a Particular Exception or All Exceptions

It is possible to discriminate among errors and perform different actions for each
error.

Following is an example of catching a particular exception and specifying the
recovery action (in this case, a message). The exception is reraised (passed to its
callers) after catching the exception and executing the recovery action:

TRY {
read_tape ();

}
CATCH (parity_error) {
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;

}
ENDTRY

174 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Defining Epilogue Actions for a Block

A FINALLY mechanism is provided so that multithreaded programs can restore
invariants as certain scopes are unwound; for example, restoring shared data to a
correct state and releasing locks. This is often the ideal way to define, in one place,
the cleanup activities for normal or abnormal exit from a block that has changed
some invariant.

Following is an example of specifying an invariant action whether or not there is an
error:

Tock_tape_drive (t);
TRY
TRY
read_tape ();
CATCH (parity_error)
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;
ENDTRY
/* Control gets here only if no exception is raised */
/* ... Now we can use the data off the tape */
FINALLY
/* Control gets here normally, or if any exception is */
raised unlock tape_drive (t);
ENDTRY

Importing a System-Defined Error Status into the Program as an

Exception

Most systems define error messages by integer-sized status values. Each status
value corresponds to some error message text that should be expressed in the
user’s own language. The capability to import a status value as an exception
permits the DCE Threads exception-returning interface to raise or handle
system-defined errors as well as programmer-defined exceptions.

An example of importing an error status into an exception is as follows:
exc_set_status (&parity_error, EPARITY);

The parity_error exception can then be raised and handled like any other
exception.

Rules and Conventions for Modular Use of Exceptions

The following rules ensure that exceptions are used in a modular way so that
independent software components can be written without requiring knowledge of
each other:

* Use unique names for exceptions.

A naming convention makes sure that the names for exceptions that are declared
EXTERN from different modules do not clash. The following convention is
recommended:

<facility-prefix>_<error_name>_e

For example, pthread _cancel e .
* Avoid putting code in a TRY routine that belongs before it.

Chapter 10. Using the DCE Threads Exception-Returning Interface 175

176

The TRY only guards statements for which the statements in the FINALLY,
CATCH, or CATCH_ALL clauses are always valid.

A common misuse of TRY is to put code in the try_block that needs to be
placed before TRY. An example of this misuse is as follows:

TRY

handle = open_file (file_name);

/* Statements that may raise an exception here */
FINALLY

close (handle);
ENDTRY

The preceding FINALLY code assumes that no exception is raised by open_file .
This is because the code accesses an invalid identifier in the FINALLY part if
open_file is modified to raise an exception. The preceding example needs to be
rewritten as follows:

handle = open _file (file_name);
TRY
{

/* Statements that may raise an exception here =/
1

FINALLY
close (handle);

ENDTRY

The code that opens the file belongs prior to TRY, and the code that closes the
file belongs in the FINALLY statement. (If open_file raises exceptions, it may
need a separate try_block .)

Raise exceptions to their proper scope.

Write functions that propagate exceptions to their callers so that the function
does not modify any persistent process state before raising the exception. A call
to the matching close call is required only if the open_file operation is
successful in the current scope.

If open_file raises an exception, the identifier will not be written, so open_file
must not require that close be called when open_file raises an exception; that
is, open_file should not be part of the TRY clause because that means close is
called if open_file fails, and you cannot close an unopened file.

Do not place a RETURN or nonlocal GOTO between TRY and ENDTRY.

It is invalid to use RETURN or GOTO, or to leave by any other means, a TRY,
CATCH, CATCH_ALL, or FINALLY block. Special code is generated by the
ENDTRY macro, and it must be executed.

Use the ANSI C volatile attribute.

Variables that are read or written by exception-handling code must be declared
with the ANSI C volatile attribute. Run your tests with the optimize compiler
option to ensure that the compiler thoroughly tests your exception-handling code.

Reraise exceptions that are not fully handled.

You need to reraise any exception that you catch, unless your handler performs
the complete recovery action for the error. This rule permits an unhandled
exception to propagate to some final default handler that prints an error message
to terminate the offending thread. (An unhandled exception is an exception for
which recovery is incomplete.)

A corollary of this rule is that CATCH_ALL handlers must reraise the exception
because they may catch any exception, and usually cannot do recovery actions
that are proper for every exception.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Following this convention is important so that you also do not absorb a cancel or
thread-exit request. These are mapped into exceptions so that exception

handling has the full power to hand
violations to thread exit. (In some a

le all exceptional conditions from access
pplications, it is important to be able to catch

these to work around an erroneously written library package, for example, or to

provide a fully fault-tolerant thread.)
Declare only static exceptions.
For compatibility with C++, you nee

d to only declare static exceptions.

DCE Threads Exceptions and Definitions

[fable 7 lists the DCE Threads exceptions and briefly explains the meaning of each
exception. Exception names beginning with pthread_ are raised as the result of
something happening internal to the DCE Threads facility and are not meant to be
raised by your code. Exceptions beginning with exc_ are generic and belong to the
exception facility, the underlying system, or both. The pthread-specific extensions

are listed followed by the generic exte

Table 7. DCE Threads Exceptions

nsions, each in alphabetical order.

Exception

Definition

pthread_badparam_e

An improper parameter was used.

pthread_cancel_e

A thread cancellation is in progress.

pthread_defer_qg_full_e

No space is currently available to process an
interrupt request.

pthread_existence_e

The object referenced does not exist.

pthread_in_use_e

The object referenced is already in use.

pthread_nostackmem_e

No space is currently available to create a new
stack.

pthread_notstack e

The current stack was not created by DCE
Threads.

pthread_signal_q_full_e

Unable to process condition signal from interrupt
level.

pthread_stackovf_e

An attempted stack overflow was detected.

pthread_unimp_e

This is an unimplemented feature.

pthread_use_error_e

The requested operation is improperly invoked.

exc_decovf_e

An unhandled decimal overflow trap exception
occurred.

exc_exquota_e

The operation failed due to an insufficient quota.

exc_fltdiv_e An unhandled floating-point division by zero trap
exception occurred.

exc_fltovf_e An unhandled floating-point overflow trap
exception occurred.

exc_fltund_e An unhandled floating-point underflow trap

exception occurred.

exc_illaddr_e

The data or object could not be referenced.

exc_insfmem_e

There is insufficient virtual memory for the
requested operation.

exc_intdiv_e

An unhandled integer divide by zero trap
exception occurred.

Chapter 10. Using the DCE Threads Exception-Returning Interface

177

178

Table 7. DCE Threads Exceptions (continued)

Exception

Definition

exc_intovf_e

An unhandled integer overflow trap exception
occurred.

exc_nopriv_e

There is insufficient privilege for the requested
operation.

exc_privinst_e

An unhandled privileged instruction fault
exception occurred.

exc_resaddr_e

An unhandled reserved addressing fault
exception occurred.

exc_resoper_e

An unhandled reserved operand fault exception
occurred.

exc_SIGBUS e An unhandled bus error signal occurred.

exc_SIGEMT_e An unhandled EMT trap signal occurred.

exc_SIGFPE_e An unhandled floating-point exception signal
occurred.

exc_SIGILL_e An unhandled illegal instruction signal occurred.

exc_SIGIOT e An unhandled 10T trap signal occurred.

exc_SIGPIPE_e

An unhandled broken pipe signal occurred.

exc_SIGSEGV_e

An unhandled segmentation violation signal
occurred.

exc_SIGSYS e

An unhandled bad system call signal occurred.

exc_SIGTRAP_e

An unhandled trace or breakpoint trap signal
occurred.

exc_SIGXCPU_e

An unhandled CPU time limit exceeded signal
occurred.

exc_SIGXFSZ e

An unhandled file-size limit exceeded signal
occurred.

exc_subrng_e

An unhandled subscript out-of-range trap
exception occurred.

exc_uninitexc_e

An uninitialized exception was raised.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 11. DCE Threads Example

The example in this chapter shows the use of DCE Threads in a C program that
performs a prime number search. The program finds a specified number of prime
numbers, then sorts and displays these numbers. Several threads participate in the
search: each thread takes a number (the next one to be checked), sees if it is a
prime, records it if it is prime, and then takes another number, and so on.

This program shows the work crew model of programming (see [Chapter 7]
Introduction to Multithreaded Programming” on page 141). The workers (threads)
increment a number (current_num) to get their next work assignment, which in this
case is the same task as before, but with a different number to check for a prime.
As a whole, the worker threads are responsible for finding a specified number of
prime numbers, at which point their work is completed.

Details of Program Logic and Implementation

The number of workers to be used and the requested number of prime numbers to
be found are defined constants. A macro is used to check for bad status (bad status
returns a value of —1), and to print a given string and the associated error value
upon bad status. Data to be accessed by all threads (mutexes, condition variables,
and so forth) are declared as global items.

Worker threads execute the prime search routine, which begins by synchronizing
with the boss (or parent) thread by using a predicate and a condition variable.
Always enclose a condition wait in a predicate loop to prevent a thread from
continuing if it receives a spurious wakeup. The lock associated with the condition
variable must be held by the thread when the condition wait call is made. The lock
is implicitly released within the condition wait call and acquired again when the
thread resumes. The same mutex must be used for all operations performed on a
specific condition variable.

After the parent sets the predicate and broadcasts, the workers begin finding prime
numbers until canceled by a fellow worker who has found the last requested prime
number. Upon each iteration, the workers increment the current number to be
worked on and take the new value as their work item. A mutex is locked and
unlocked around getting the next work item. The purpose of the mutex is to ensure
the atomicity of this operation and the visibility of the new value across all threads.
This type of locking protocol needs to be performed on all global data to ensure its
visibility and protect its integrity.

Each worker thread then determines if its current work item (a humber) is prime by
trying to divide numbers into it. If the number proves to be nondivisible, it is put on
the list of primes. Cancels are explicitly turned off while working with the list of
primes in order to better control any cancels that do occur. The list and its current
count are protected by locks, which also protect the cancellation process of all other
worker threads upon finding the last requested prime. While still under the prime list
lock, the current worker checks to see if it has found the last requested prime, and
if so unsets a predicate and cancels all other worker threads. Cancels are then
reenabled. The canceling thread falls out of the work loop as a result of the
predicate that it unsets.

© Copyright IBM Corp. 1990, 1999 179

The parent thread’s flow of execution is as follows: set up the environment, create
worker threads, broadcast to them that they can start, join each thread as it
finishes, and sort and print the list of primes.

» Setting up of the environment requires initializing mutexes and the one condition
variable used in the example.

» Creation of worker threads is straightforward and utilizes the default attributes
(pthread_attr_default). Note again that locking is performed around the
predicate on which the condition variable wait loops. In this case, the locking is
simply done for visibility and is not related to the broadcast function.

* As the parent joins each of the returning worker threads, it receives an exit value
from them that indicates whether a thread exited normally or not. In this case the
exit values on all but one of the worker threads are -1, indicating that they were
canceled.

* The list is then sorted to ensure that the prime numbers are in order from lowest
to highest.

The following pthread routines are used in this example:
1. pthread_cancel()

2. pthread_cond_broadcast()
3. pthread_cond_init()
4. pthread_cond_wait()
5. pthread_create()
6. pthread_detach()
7. pthread_exit()
8. pthread_join()
9. pthread_mutex_init()
10. pthread_mutex_lock()
11. pthread_mutex_unlock()
12. pthread_setcancel()
13. pthread_testcancel()
14. pthread_yield()

DCE Threads Example Body

The following is the DCE Threads example.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*

* Constants used by the example.

*/

#define workers 5 /* Threads to perform prime check =/
#define request 110 /* Number of primes to find */

/*

* Macros

*/

#define check(status,string) if (status == -1) perror (string)

/*

* Global data

*/

pthread_mutex_t prime_list; /* Mutex for use in accessing the prime */
pthread mutex_t current mutex; /* Mutex associated with current number */
pthread_mutex_t cond_mutex; /* Mutex used for ensuring CV integrity */

180 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

pthread_cond_t cond_var; /* Condition variable for thread start */

int current_num= -1;/* Next number to be checked, start odd */
int thread_hold= 1; /* Number associated with condition state =/
int count=0; /* Count of prime numbers - index to primes */
int primes[request];/* Store prime numbers - synchronize access */
pthread_t threads[workers];/* Array of worker threads */
/*
* Worker thread routine.
*
* Worker threads start with this routine, which begins with a condition
* wait designed to synchronize the workers and the parent. Each worker
* thread then takes a turn taking a number for which it will determine
* whether or not it is prime.
*
*/
void
prime_search (pthread_addr_t arg)
{
int numerator; /* Used for determining primeness */
int denominator; /* Used for determining primeness */
int cut_off; /* Number being checked div 2 */
int notifiee; /* Used during a cancelation x/
int prime; /* Flag used to indicate primeness */
int my_number; /* Worker thread identifier */
int status; /* Hold status from pthread calls */
int not_done=1; /* Work loop predicate */

my_number = (int)arg;

/*

* Synchronize threads and the parent using a condition variable, for
* which the predicate (thread_hold) will be set by the parent.

*/

status = pthread_mutex_lock (&cond_mutex);

check(status,"1:Mutex_lock bad status\n");

while (thread_hold) {
status = pthread_cond_wait (&cond_var, &cond_mutex);
check(status,"3:Cond_wait bad status\n");

}

status = pthread mutex_unlock (&cond mutex);
check(status,"4:Mutex_unlock bad status\n");

/*

* Perform checks on ever larger integers until the requested
* number of primes is found.

*/

while (not_done) {
/* cancelation point */

pthread_testcancel ();

/* Get next integer to be checked */
status = pthread mutex_Tock (¤t mutex);
check(status,"6:Mutex_lock bad status\n");

current_num = current_num + 2; /* Skip even numbers =*/
numerator = current_num;

status = pthread_mutex_unlock (¤t_mutex);
check(status,"9:Mutex_unlock bad status\n");

/* Only need to divide in half of number to verify not prime */
cut_off = numerator/2 + 1;

Chapter 11. DCE Threads Example

181

prime = 1;

/* Check for prime; exit if something evenly divides */
for (denominator = 2; ((denominator < cut_off) && (prime));
denominator++) {
prime = numerator % denominator;
}
if (prime != 0) {

/* Explicitly turn off all cancels */
pthread_setcancel (CANCEL_OFF);

/*

* Lock a mutex and add this prime number to the 1ist. Also,
* if this fulfills the request, cancel all other threads.
*/

status = pthread mutex_lock (&prime_list);
check(status,"10:Mutex_lock bad status\n");

if (count < request) {
primes[count] = numerator;
count++;
1
else if (count == request) {
not_done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {
if (notifiee != my_number) {
status = pthread cancel (threads[notifiee]);
check(status,"12:Cancel bad status\n");
}

}

status = pthread_mutex_unlock (&prime_list);
check(status,"13:Mutex_unlock bad status\n");

/* Reenable cancels x/
pthread_setcancel (CANCEL_ON);

}
pthread_testcancel ();

}

pthread_exit ((pthread_addr_t)my_number);
}

void main(void)

int worker_num; /* Counter used when indexing workers =*/
int exit_value; /* Individual worker's return status */
int Tist; /* Used to print list of found primes =/
int status; /* Hold status from pthread calls */
int indexl; /* Used in sorting prime numbers */
int index2; /* Used in sorting prime numbers */
int temp; /* Used in a swap; part of sort */
/*

* Create mutexes

*/

status = pthread_mutex_init (&prime_list, pthread mutexattr_default);
check(status,"15:Mutex_init bad status\n");

status = pthread_mutex_init (&cond mutex, pthread mutexattr default);
check(status,"16:Mutex_init bad status\n");

status = pthread mutex_init (¤t mutex, pthread mutexattr default);
check(status,"17:Mutex_init bad status\n");

/*

182 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

* Create condition variable

*/

status = pthread_cond_init (&cond_var, pthread condattr default);
check(status,"45:Cond_init bad status\n");

/*
* Create the worker threads.
*
/
for (worker_num = 0; worker_num < workers; worker_num++) {
status = pthread create (
&threads[worker_num],
pthread_attr_default,
(pthread_startroutine_t)prime_search,
(pthread_addr_t)worker_num);
check(status,"19:Pthread create bad status\n");

}
/*

* Set the predicate thread_hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.

*/

status = pthread_mutex_Tock (&cond mutex);
check(status,"20:Mutex_lock bad status\n");

thread_hold = 0;

status = pthread_cond_broadcast (&cond_var);
check(status,"20.5:cond_broadcast bad status");

status = pthread_mutex_unlock (&cond_mutex);
check(status,"21:Mutex_unlock bad status\n");

* Join each of the worker threads in order to obtain their
* summation totals, and to ensure each has completed

* successfully.
*
*

Mark thread storage free to be reclaimed upon termination by
* detaching it.

for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_join (

threads [worker_num],

(void *)&exit _value);
check(status,"23:Pthread_join bad status\n");

if (exit_value == worker_num) printf("thread terminated normally\n");

status = pthread_detach (&threads[worker num]);
check(status,"25:Pthread_detach bad status\n");

/*
* Take the 1list of prime numbers found by the worker threads and
* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers
* will be found in order. Therefore, a sort is performed.
*
/
for (indexl = 1; (indexl < request); indexl++) {
for (index2 = 0; index2 < indexl; index2++) {
if (primes[index1] < primes[index2]) {

temp = primes[index2];

primes[index2] = primes[index1];

primes[index1] = temp;

Chapter 11. DCE Threads Example

183

}

/*

* Print out the list of prime numbers that the worker threads
* found.

*/

printf ("The Tist of %d primes follows:\n", request);
printf("%d ",primes[0]);

for (Tist = 1; Tist < request; list += 15) {
int k;
for (k = list; (k < list + 15) && (k < request); k++) {
printf ("%d ", primes[k]);
1
printf ("\n");

}
printf ("\n");

Threads Example -- Searching for Prime Numbers

The listing for the prime source code is located:
/opt/dcelocal/examples/pubs/prime

184 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Part 3. DCE Remote Procedure Call

© Copyright IBM Corp. 1990, 1999 185

186 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 12. Developing a Simple RPC Application

This chapter first explains how to write an interface definition in the DCE RPC
Interface Definition Language (IDL) and illustrates the basic features of IDL. As an
example, we present an interface definition for greet, a very simple application that
prints greetings from a client and a remote server. The remainder of the chapter
describes how to develop, build, and run the greet client and server programs.

The IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide describes how to develop a DCE application
by using many of the features of DCE. The following chapters use the term remote
procedure call application (RPC application) to mean essentially the same thing,
except in this context an RPC application concentrates on the features of the RPC
technology, glossing over other DCE issues such as security, threads, and
messaging. Since the RPC mechanism is the root technology for all DCE
applications, the basic development approach is the same.

The Remote Procedure Call Model

A remote procedure call executes a procedure located in a separate address space
from the calling code. The RPC model is a well-tested, industry-wide framework for
distributing applications. The RPC model is derived from the programming model of
local procedure calls and takes advantage of the fact that every procedure contains
a procedure declaration. The procedure declaration defines the interface between
the calling code and the called procedure. The procedure declaration defines the
call syntax and parameters of the procedure. All calls to a procedure must conform
to the procedure declaration.

Applications that use remote procedure calls look and behave much like local
applications. However, an RPC application is divided into two parts: a server, which
offers one or more sets of remote procedures, and a client, which makes remote
procedure calls to RPC servers. A server and its clients generally reside on
separate systems and communicate over a network. RPC applications depend on
the RPC runtime to control network communications for them. The DCE RPC
runtime supports additional tasks, such as finding servers for clients and managing
servers.

A distributes application uses dispersed computing resources such as CPUs,
databases, devices, and services. The following are examples:

* A calendar-management application that allows authorized users to access the
personal calendars of other users.

» A graphics application that processes data on central CPUs and displays the
results on workstations.

* A manufacturing application that shares information about assembly components
among design, inventory, scheduling, and accounting programs located on
different computers.

DCE RPC meets the basic requirements of a distributed application, including
» Clients finding the appropriate servers

» Data conversion for operating in a heterogeneous environment

* Network communications

© Copyright IBM Corp. 1990, 1999 187

Distributed applications include tasks such as managing communications, finding
servers, providing security, and so forth. A standalone distributed application needs
to perform all of these tasks itself. Without a convenient mechanism for these
distributed computing tasks, writing distributed applications is difficult, expensive,
and error-prone.

DCE RPC software provides the code, called stubs, and the RPC runtime that
perform distributed computing tasks for your applications. This code and the runtime
libraries are linked with client and server application code to form an RPC
application.

[fable g shows the basic tasks for the client and server of a distributed application.
Calling the procedure and executing the remote procedure, shown in bold text, are
performed by your application code (just as in a local application) but here they are
in the client and server address spaces. For the other tasks, some are performed
automatically by the stubs and RPC runtime, while others are performed by the
RPC runtime via API calls in your application.

Table 8. Basic Tasks of an RPC Application

Client Tasks Server Tasks
1. Select network protocols.
2. Register RPC interfaces.
3. Register endpoints in endpoint map.
4. Advertise RPC interfaces and objects in
the namespace.
5. Listen for calls.
6. Find compatible servers that offer the
procedures.
7. Call the remote procedure
8. Establish a binding with the server.
9. Convert input arguments into network
data.
10. Transmit arguments to the server’'s
runtime.
11. Receive a call.
12. Disassemble network data and convert
input arguments into local data.
13. Locate and invoke the called procedure.
14. Execute the remote procedure
15. Convert the output arguments and
return value into network data.
16. Transmit results to the client’s runtime.
17. Receive results.
18. Disassemble network data and convert
output arguments into local data.
19. Return results and control to calling
code.

RPC Application Code

An RPC server or client contains application code, one or more RPC stubs, and the
RPC runtime. RPC application code is the code written for a specific RPC
application by the application developer. Application code implements and calls
remote procedures, and also calls any RPC runtime routines the application needs.
An RPC stub is an interface-specific code module that uses an RPC interface to
pass and receive arguments. A server and a client contain complementary stubs for

188 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Stubs

each RPC interface they share. The DCE RPC runtime manages communications
for RPC applications. In addition, the DCE RPC runtime supports an application
programming interface (API) used by RPC application code to enable RPC
applications to set up their communications, manipulate information about servers,
and perform optional tasks such as remotely managing servers and accessing
security information.

m shows the relationship of application code, stubs, and the RPC runtime in
the server and client portions of an RPC application. The arrows show the direction
calls are made by pointing to the called code.

RPC Client RPC Server
Runtime Calls Runtime Calls
Application
Code
Calling Code Remote Procedures
RPC Interface T
\
Client Stub Code Provided Server Stub
| by RPC A
v Mechanisms v
> RPC Runtime RPC Runtime D

Figure 15. The Parts of an RPC Application

RPC application code differs for servers and clients. Minimally, server application
code contains the remote procedures that implement one RPC interface, and the
corresponding client contains calls to those remote procedures.

The stub performs basic support functions for remote procedure calls. For instance,
stubs prepare input and output arguments for transmission between systems with
different forms of data representation. The stubs use the RPC runtime to handle the
transmission between the client and server. The client stub can also use the
runtime to find servers for the client.

When a client application calls a remote procedure, the client stub first prepares the
input arguments for transmission. The process for preparing arguments for
transmission is known as marshalling. Marshalling converts call arguments into a
byte-stream format and packages them for transmission. Upon receiving call
arguments, a stub unmarshalls them. Unmarshalling is the process by which a stub
disassembles incoming network data and converts it into application data by using a
format that the local system understands. Marshalling and unmarshalling both occur
twice for each remote procedure call; that is, the client stub marshalls input
arguments and unmarshalls output arguments, and the server stub unmarshalls
input arguments and marshalls output arguments. Marshalling and unmarshalling
permit client and server systems to use different data representations for equivalent

Chapter 12. Developing a Simple RPC Applicaton 189

data. For example, the client system can use ASCII characters and the server
system can use EBCDIC characters, as shown in

Client Stub Server Stub

1
marshalling unmarshalling

v ¥
Input argument Ol il el Fol

Byte-stream Format

- A - -
Output argument ASCII T e ---<"_ ! | EBCDIC
~1 <
<unmi’=\rshalling <marshalling

Figure 16. Marshalling and Unmarshalling Between ASCII and EBCDIC Data

The DCE IDL compiler (a tool for DCE application development) generates stubs by
compiling an RPC interface definition written by application developers. The
compiler generates marshalling and unmarshalling routines for platform-independent
IDL data types.

Note: In this release, the auxiliary files are no longer generated by the IDL
compiler. Only the stub and header files are needed. Users who migrate
from a previous release of DCE may need to remove references to these
files from their application Makefiles. Alternatively, the environment variable
IDL_GEN_AUX_FILES =1 can be used to generate dummy auxiliary files
for compilation purposes.

To build the client for an RPC application, a developer links client application code
with the client stubs of all the RPC interfaces the application uses. To build the
server, the developer links the server application code with the corresponding
server stubs.

The RPC Runtime

In addition to one or more RPC stubs, every RPC server and RPC client is linked
with a copy of the RPC runtime. Runtime operations perform tasks such as
controlling communications between clients and servers and finding servers for
clients on request. An interface’s client and server stubs exchange arguments
through their local RPC runtimes. The client runtime transmits remote procedure
calls to the server. The server runtime receives the calls and dispatches each call to
the appropriate server stub. The server runtime sends the call results to the client
runtime. The DCE RPC runtime supports the RPC API used by RPC application
code to call runtime routines.

Server application code must also contain server initialization code that calls RPC
runtime routines when the server is starting up and shutting down. Client application
code can also call RPC runtime routines. Server and client application code can
also contain calls to RPC stub-support routines. Stub-support routines allow
applications to manage programming tasks such as allocating and freeing memory.

190 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

RPC Application Components That Work Together

Eigure 17 shows the roles of application code, RPC stubs, and RPC runtimes
during a remote procedure call.

RPC Client RPC Server
Calling Code Remote Procedures
1 5
8 4
Client Stub Server Stub
2 6
RPC Runtime RPC Runtime
3 7

Output Arguments/return value

Input Arguments

Figure 17. Interrelationships During a Remote Procedure Call

The following steps describe the interrelationships of the components of RPC
applications, as shown in :

1. The client’s application code invokes a remote procedure call, passing the input
arguments to the stub for the particular RPC interface.

2. The client’s stub marshalls the input arguments and dispatches the call to the
client's RPC runtime.

3. The client's RPC runtime transmits the input arguments to the server's RPC
runtime, which dispatches the call to the server stub for the RPC interface of the
called procedure.

4. The server’s stub unmarshalls the input arguments and passes them to the
called remote procedure.

5. The procedure executes and then returns any results (output arguments or a
return value or both) to the server’s stub.

6. The server’'s stub marshalls the results and returns them to the server's RPC
runtime.

Chapter 12. Developing a Simple RPC Applicaton 191

7. The server's RPC runtime transmits the results to the client's RPC runtime,
which dispatches them to the correct client stub.

8. The client’s stub unmarshalls output arguments and returns them to the calling
code.

Overview of DCE RPC Development Tasks

The tasks involved in developing an RPC application resemble those involved in
developing a local application. As an RPC developer, you perform the following
basic tasks:

1. Design your application, deciding what procedures you need, which will be
remote procedures, and how the remote procedures will be grouped into RPC
interfaces.

2. Use the Universal Unique Identifier (UUID) generator to generate a UUID for
each new interface.

3. Use the IDL to describe the RPC interfaces for the planned data types and
remote procedures.

4. Use the DCE IDL compiler to generate the client and server stubs. (The IDL
compiler can invoke the C compiler to create the stub object code.)
illustrates this task.

Interface
definition
file

/
IDL Compiler

Y Y
Client Server
stub stub

Figure 18. Generating Stubs

Note: Optionally, instead of generating stub object code (which is not portable),
the IDL compiler can generate the stubs as ANSI C compliant source
code.

5. Write or modify application code by using a compatible programming language,
that is, a language that can be linked with C and can invoke C procedures, so
the application code works with the stubs.

Application code includes several kinds of code, as follows:
a. Remote procedure calls
b. Remote procedure implementations
c. Initialization code (calls to RPC stub-support or runtime routines)
d. Any non-RPC code your application requires
6. Generate object code from application code.

7. Create an executable client and server from the object files. m
illustrates this task.

192 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

For the client, link object code of the client stubs and the client application with
the RPC runtime and any other needed runtime libraries.

For the server, link object code for the server stubs, the initialization routines,
and the sets of remote procedures with the RPC runtime and any other needed

runtime libraries.

8. After initial testing, distribute the new application by separately installing the

server and client executable images on systems on the network.

Calling Client Server Server Remote
code stub stub initialization procedure
\ / code code
v
RPC and Llnker Linker RPC and
other DCE other DCE
runtime runtime
libraries libraries
v v
Client Server

Figure 19. Building a Simple Client and Server

Writing an Interface Definition

Traditionally, calling code and called procedures share the same address space. In
an RPC application, the calling code and the called remote procedures are not
linked; rather, they communicate indirectly through an RPC interface. An RPC
interface is a logical grouping of operations, data types, and constants that serves
as a contract for a set of remote procedures. DCE RPC interfaces are compiled
from formal interface definitions written by application developers using IDL.

The first step in developing a distributed application is to write an interface definition
file in IDL. The IDL compiler, idl, uses the interface definition to generate a header
file, a client stub file, and a server stub file. The IDL compiler produces header files
in C and can produce stubs as C source files or as object files.

For some applications, you may also need to write an Attribute Configuration File
(ACF) to accompany the interface definition. If an ACF exists, the IDL compiler
interprets the ACF when it compiles the interface definition. Information in the ACF
is used to modify the code that the compiler generates. (The greet example does
not require an ACF.)

The remainder of this section briefly explains how to create an interface definition
and gives simple examples of each kind of IDL declaration. For a detailed

description of IDL, see [Chapter 19 Interface Definition | anguage” on page 397,

For information on the IDL compiler, see the idl(1rpc) reference page.

An IDL interface definition consists of a header and a body. The following example
shows the interface definition for the greet application:

/*
* greet.idl

*

Chapter 12. Developing a Simple RPC Application 193

* The "greet" interface.
*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greetif

{
const Tong int REPLY_SIZE = 100;

void greet(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_SIZE]
)s
}

The header of each RPC interface contains a UUID, which is a hexadecimal
number that uniquely identifies an entity. A UUID that identifies an RPC interface is
known as an interface UUID. The interface UUID ensures that the interface can be
uniquely identified across all possible network configurations. In addition to an
interface UUID, each RPC interface contains major and minor version numbers.
Together, the interface UUID and version humbers form an interface identifier that
identifies an instance of an RPC interface across systems and through time.

The interface body can contain the following constructs:
* Import declarations (not shown)

» Constant declarations (REPLY_SIZE)

» Data type declarations (not shown)

» Operation declarations (void greet(...);)

IDL declarations resemble declarations in ANSI C. IDL is purely a declarative
language, so, in some ways, an IDL interface definition is like a C header file.
However, an IDL interface definition must specify the extra information that is
needed by the remote procedure call mechanism. Most of this information is
expressed via IDL attributes. IDL attributes can apply to types, to type members, to
operations, to operation parameters, or to an interface as a whole. An attribute is
represented in [] (brackets) before the item to which it applies. In the greet.idl
example, the [in, string] attributes associated with the client_greeting array
means the parameter is for input only and that the array of characters has the
properties of strings.

A comment can be inserted at any place in an interface definition where whitespace
is permitted. IDL comments, like C comments, begin with /* (a slash and an
asterisk) and end with */ (an asterisk and a slash).

RPC Interfaces That Represent Services

194

The simplest RPC application uses only one RPC interface. However, an
application can use multiple RPC interfaces, and, frequently, an integral set of RPC
interfaces work together as an RPC service. An RPC server is a logical grouping of
one or more RPC interfaces. For example, you can write a calendar server that
contains only a personal calendar interface or a calendar server that contains
additional RPC interfaces such as a scheduling interface for meetings.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Different servers can share one or more RPC interfaces. For example, an
administrative-support application can include an RPC interface from a calendar
service.

An RPC interface exists independently of specific applications. Each RPC interface
can be implemented by any set of procedures that conforms to the interface
definition. The operations of an interface are exactly the same for all
implementations of the same version of the interface. This makes it possible for
clients from different implementations to call the same interface, and servers from
different implementations to offer the same interface.

m shows the role of RPC interfaces in remote procedure calls. This client
contains calling code that makes two remote procedure calls. The first is a remote
procedure call to Procedure A. The second is a remote procedure call to Procedure
B.

Database Server

i / , ‘1 Procedure A
1 1
Client ! R
, -
1
S o
A(-)._ |-~
RPC Interfaces
! ! Statistics Server
B (-)~ - .7 1 T~ N |
\\\~ /// | \\ |
-7 | B \ |
1 21T~
: (V) J// 4 Procedure B
| T
| |

Figure 20. Role of RPC Interfaces

Clients can use any practical combination of RPC interfaces, whether offered by the
same or different servers. For this example, using a database access interface, a
client on a graphics workstation can call a remote procedure on a database server
to fetch data from a central database. Then, using a statistics interface, the client
can call a procedure on another server on a parallel processor to analyze the data
from the central database and return the results to the client for display.

Generating an Interface UUID

The first step in building an RPC application is to generate a skeletal interface
definition file and a UUID for the interface. Every interface in an RPC application
must have a UUID. When you define a new interface, you must generate a new
UUID for it.

Typically, you run uuidgen with the -i option, which produces a skeletal interface
definition file and includes the generated UUID for the interface. For example, the
following command creates a file chess.idl :

Chapter 12. Developing a Simple RPC Application 195

uuidgen -i > chess.idl

The contents of the file are as follows:

[
uuid(443f4b20-a100-11c9-baed-08001e0218ch),
version(1)

]
interface INTERFACENAME {

}

The first part of the skeletal definition is the header, which specifies a UUID, a
version number, and a name for the interface. The last part of the definition is { }
(an empty pair of braces); import, constant, type, and operation declarations go
between these braces.

By convention, the names of interface definition files end with the suffix .idl. The
IDL compiler constructs names for its output files based on the interface definition
filename and uses the following default suffixes:

» .h for header files

e _cstub.o for client stub files

* sstub.o for server stub files

For example, compilation of a chess.idl interface definition file would produce a
chess.h header file, a chess_cstub.o client stub file, and a chess_sstub.o server
stub file. (The IDL compiler creates C language intermediate files and by default
invokes the C compiler to produce object files, but it can also retain the C language
files.)

For more information on the UUID generator, see the uuidgen(1rpc) reference
page.

Naming the Interface

After you have used uuidgen to generate a skeletal interface definition, replace the
dummy string INTERFACENAME with the name of your interface.

By convention, the name of an interface definition file is the same as the name of
the interface it defines, with the suffix .idl appended. For example, the definition for
a bank interface would reside in a bank.idl interface definition file, and, if the
application required an ACF, its name would be bank.acf .

The IDL compiler incorporates the interface name in identifiers it constructs for
various data structures and data types in the .h file, so the length of an interface
name can be at most 17 characters. (Most IDL identifiers have a maximum length
of 31 characters.)

Specifying Interface Attributes

196

Interface attributes are defined within [] (brackets) in the header of the interface
definition. The definition for any remote interface needs to specify the uuid and
version interface attributes, so these are included in the skeletal definition that
uuidgen produces.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

If an interface is exported by servers on well-known endpoints, these endpoints
must be specified via the endpoint attribute. Interfaces that use dynamic endpoints
do not have this attribute. (A well-known endpoint is a stable address on the host,
while a dynamic endpoint is an address that the RPC runtime requests when the
server is started.)

The interface definition language can be used to specify procedure prototypes for
any application, even if the procedures are never used remotely. If all of the
procedures of an interface are called only locally and never remotely, the interface
can be given the local attribute. Since local calls do not have any network
overhead, the local attribute causes the compiler to generate only a header file, not
stubs, for the interface.

Import Declarations

The IDL import declaration specifies another interface definition whose types and
constants are used by the importing interface. (Similar to the include declaration in
C)

The import declaration allows you to collect declarations for types and constants
that are used by several interfaces into one common file. For example, if you are
defining two database interfaces named dblookup and dbupdate , and these
interfaces have many data types and constants in common, you can declare those
data types and constants in a dbcommon.idl file and import this file in the
dblookup.idl anddbupdate.idl interface definitions. For example:

import "dbcommon.idl";

By default, the IDL compiler resolves relative pathnames of imported files by looking
first in the current working directory and then in the system IDL directory. The -I
option of the IDL compiler allows you to specify additional directories to search. You
can thereby avoid putting absolute pathnames in your interface definitions. For
example, if an imported file has the absolute pathname
/dbproject/src/dbconstants.idl , then the IDL compiler option -l/dbproject/src allows
you to import the file by its leaf name, dbconstants.idl

Constant Declarations

The IDL const declaration allows you to declare integer, Boolean, character, string,
and null pointer constants, some of which are shown in the following examples:

const short TEN = 10;
const boolean VRAI = TRUE;
const charx JSB = "Johann Sebastian Bach";

Type Declarations

To support application development in a variety of languages and to support the
special needs of distributed applications, IDL provides an extensive set of data
types, including the following:

» Simple types, such as integers, floating-pointing numbers, characters, Booleans,
and the primitive binding-handle type handle_t (usually equivalent to
rpc_binding_handle_t)

» Predefined types, including ISO international character types and the error status
type error_status_t

Chapter 12. Developing a Simple RPC Applicaton 197

» Constructed types, such as strings, structures, unions, arrays, pointers, and pipes
The IDL typedef declaration lets you give a name to any types you construct.

The general form of a type declaration is

typedef [type attribute,...] type_specifier type declarator,...;

where the bracketed list of type attributes is optional. The type specifier specifies a
simple type, a constructed type, a predefined type, or a type previously named in
the interface. Each type_declarator is a name for the type being defined. As in C,
arrays and pointers are declared by the type declarator constructs [] (brackets)
and * (an asterisk).

The following type declaration uses the IDL’s simple data type, long (a 32-bit data
type), to define the integer32 integer type:

typedef long integer32;

The type_specifier constructs for structures and unions permit the application of
attributes to members. In the following example, one member of a structure is a
conformant array (an array without a fixed upper bound), and the size_is attribute
names another member of the structure that at runtime provides information about
the size of the array:

typedef struct {
long dsize;
[size_is(dsize)] float darray[];
} dataset;

Operation Declarations

Operation declarations specify the signature of each operation in the interface,
including the operation name, the type of data returned, and the types of all
parameters passed (if any) in a call.

The general form of an operation declaration is
[operation_attribute, ...] type specifier operation_identifier ([parameter_declaration,...]);

where the bracketed list of operation attributes is optional. Among the possible
attributes of an operation are idempotent , broadcast , and maybe , which specify
semantics to be applied by the RPC runtime mechanism when the operation is
called. If an operation when called once can safely be executed more than once,
the IDL declaration of the operation may specify the idempotent attribute;
idempotent semantics allow remote procedure calls to execute more efficiently by
letting the underlying RPC mechanism retry the procedure if it deems it necessary.

The type_specifier specifies the type of data returned by the operation.

The operation_identifier names the operation. Although operation names are
arbitrary, a common convention is to use the name of an interface as a prefix for
the names of its operations. For example, a bank interface may have operations
named bank_open , bank_close , bank_deposit , bank_withdraw , and
bank_balance .

198 I1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Each parameter_declaration in an operation declaration declares a parameter of the
operation. A parameter_declaration takes the following form:

[parameter_attribute, ...] type_specifier parameter declarator

Every parameter attribute must have at least one of the parameter attributes in or
out to specify whether the parameter is passed as an input, as an output, or in both
directions. The type specifier and parameter_declarator specify the type and name
of the parameter.

Output parameters must be passed by reference and therefore must be declared as
pointers via the pointer operator * (an asterisk) or an array.

If you want an interface to always use explicit binding handles, the first parameter
of each operation declaration must be a binding handle, as in the following
example:

void greet(
[in] handle_t h,
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_ SIZE]
)s

However, if you want applications to use the ACF feature of an implicit binding
handle (or even an automatic binding handle) for some or all procedures, operation
declarations must not have binding handle parameters in the interface definition:

void greet_no_handle(
[in, string] char client_greeting[],
[out, string] char server_reply[REPLY_ SIZE]
)s

This form of operation declaration is the most flexible because applications can
always specify explicit, implicit, or automatic binding handles through an ACF.

Running the IDL Compiler

After you have written an interface definition, run the IDL compiler to generate
header and stub files. The compiler offers many options that, for example, allow you
to choose what C compiler or C preprocessor commands are run, what directories
are searched for imported files, which of the possible output files are generated,
and how the output files are named.

The greet.idl interface definition can be compiled by the following command:
id]l greet.id]l
This compilation produces a header file (greet.h), a client stub file (greet_cstub.o),

and a server stub file (greet_sstub.o . For complete information on running the IDL
compiler, see the idl(1rpc) reference page.

Chapter 12. Developing a Simple RPC Applicaton 199

Writing the Client Code

200

This section describes the client program for the greet application, whose interface
definition was shown earlier in this chapter.

The client performs the following major steps:

1.

o s~ DN

It checks the command-line arguments for an entry name to use for its search in
the namespace.

It calls rpc_ns_binding_import_begin() to start the search in the namespace.
It calls rpc_ns_binding_import_next() to obtain a binding to a server.

It calls the greet remote procedure with a string greeting.

It prints the reply from the server.

The greet_client.c module is as follows:

/*

* greet_client.c

*

* Client of "greet" interface.
*/

#include <stdio.h>

#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
main(

int argc,
char *argv([]

rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;

id1_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet_client <CDS pathname>\n");
exit(1l);

/*
* Start importing servers using the name specified
* on the command line.
*/
rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif vl 0 _c_ifspec, NULL, &import_context, &status);
ERROR_CHECK(status, "Can't begin import");
/*
* Import the first server (we could iterate here,
* but we'll just take the first one).
*/
rpc_ns_binding_import_next(import_context, &binding h, &status);
ERROR_CHECK(status, "Can't import");
/*
* Make the remote call.
*/

greet(binding_h, (id1_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The module first includes greet.h, the header file for the greet interface generated
by the IDL compiler.

In this example, after each call to an RPC runtime routine, the client program calls
the application-specific ERROR_CHECK macro. If the status from the RPC runtime
routine is not error_status_ok , dce_error_ing_text() is called and the error
message is printed.

As specified in the greet.idl interface definition, the greet application uses explicit
handles. The client therefore passes a binding handle of type handle_t as the first
parameter of the greet procedure. At runtime, when the client makes its first remote
procedure call, the handle is only partially bound because the client does not know
the particular endpoint on which the server is listening; for delivery of its requests to
the server endpoint, the client depends on the endpoint mapping service of the
dced process on the server host.

Writing the Server Code

The following subsections describe the server program for the greet application.
The greet_server program takes one argument and is invoked as follows:

greet_server CDS_pathname

The greet_server program uses the input argument to establish an entry for itself in
the DCE CDS namespace.

The greet server program has two user-written modules:

* The greet_server.c module contains the server main function and performs the
initialization and registration required to export the greet interface.

* The greet_manager.c module contains the code that actually implements the
greet operation.

The greet_server.c Source Code

Most applications should use the DCE convenience routines for server initialization
routines (routines that begin with dce_server_) to prepare servers to listen for
remote procedure calls. These routines are simple to use, prepare a server so that
dced can manage it, and they allow enough flexibility to do most typical
initializations. However, for detailed control, applications can also use the
lower-level RPC API to do server initialization. In this chapter, we describe how to
use the RPC API for server initialization.

In this section, the greet_server.c module is described and shown in successive
pieces.

Including idl-Generated Headers

Like greet_client.c , the greet_server.c module includes greet.h so that constants,
data types, and procedure prototypes are available in the application. For example:
/*

* greet_server.c
*

* Main program (initialization) for "greet" server.

*/
#include <stdio.h>

Chapter 12. Developing a Simple RPC Application 201

#include <dce/dce_error.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"
int
main(

int argc,

char *argv[]

unsigned32 status;
rpc_binding_vector_t *binding_vector;

if (argc < 2) {
fprintf(stderr, "usage: greet_server <CDS pathname>\n");
exit(1l);

}

Registering the Interface

The server calls rpc_server_register_if() , supplying its interface specifier (defined
in greet.h), to register each interface with the RPC runtime:

/*

* Register interface with RPC runtime.

*/

rpc_server_register_if(greetif vl 0 s ifspec, NULL, NULL,
&status);

ERROR_CHECK(status, "Can't register interface");

Selecting Protocol Sequences

The server calls rpc_server_use_all_protseqs() to obtain endpoints on which to
listen for remote procedure calls:

/*

* Use all protocol sequences that are available.

*/

rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,
&status);

ERROR_CHECK(status, "Can't use protocol sequences");
Obtaining the Server’s Binding Handles

To obtain a vector of binding handles that it can use when registering endpoints, the
server calls rpc_server_ing_bindings()

/*

* Get the binding handles generated by the runtime.
*/

rpc_server_ing_bindings(&binding_vector, &status);
ERROR_CHECK(status, "Can't get bindings for server");

Registering Endpoints

A call to rpc_ep_register() registers the server endpoints in the endpoint mapper
service of the local dced:

/*
* Register assigned endpoints with endpoint mapper.
*/

rpc_ep_register(

202 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

greetif_vl 0 s ifspec, binding_vector, NULL,

(unsigned_char_p_t) "greet server version 1.0", &status);
ERROR_CHECK(status, "Can't register with endpoint map");

Exporting to CDS

To advertise itself to clients, the server calls rpc_ns_binding_export() . The server
entry for the namespace is obtained from the argument input when the server is
invoked (argv[1]).

/*
* Export ourselves into the CDS namespace.
*/
rpc_ns_binding_export(
rpc_c_ns_syntax_default, (unsigned char_p_t) argv[1],
greetif_vl 0_s_ifspec, binding_vector, NULL, &status);
ERROR_CHECK(status, "Can't export into CDS namespace");

Listening for Calls

To begin listening for remote procedure call requests, the server calls
rpc_server_listen() .

/*

* Start listening for calls.
*/

printf("Listening...\n");

rpc_server_listen(rpc_c_listen_max_calls_default, &status);
ERROR_CHECK(status, "Can't start listening for calls");

The greet_manager.c Source Code

The greet_manager.c module includes greet.h and it also defines the routine
greet, as follows:
/*

* greet_manager.c
*

* Implementation of "greet" interface.

*/

#include <stdio.h>
#include "greet.h"

void

greet (
handle_t h,
id1_char *client_greeting,
id1_char =*server_reply

)

{

printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");

Chapter 12. Developing a Simple RPC Application 203

Building the greet Programs

The client side of the greet application is the greet_client program, which is built
from the following:

* The user-written greet_client.c client module

* The IDL-compiler-generated greet_cstub.o client stub module

* The user-written util.c module containing the error-checking routine
* DCE libraries

The server side of the greet application is the greet _server program, which is built
from the following:

* The user-written greet_server.c server module

* The user-written greet_manager.c manager module

* The user-written util.c module containing the error-checking routine
* The IDL-compiler-generated greet_sstub.o server stub module

* DCE libraries

These programs can be built by make with a makefile such as the following:

DCEROOT = /opt/dcelocal

CC = /bin/cc

IDL = 1id]l

LIBDIRS = -L${DCEROOT}/usr/1ib

LIBS = -ldce

LIBALL = ${LIBDIRS} ${LIBS}

INCDIRS = -I. -I${DCEROOT}/share/include

CFLAGS = -g ${INCDIRS}

IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.id]
${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet client.o util.o greet_cstub.o
${CC} -0 greet client greet client.o greet cstub.o util.o \
${LIBALL}

greet_server: greet.h greet_server.o greet_manager.o util.o \

greet_sstub.o

${CC} -0 greet_server greet server.o greet manager.o \
greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h
greet_manager.c greet client.c greet_server.c:
greet.h

Running the greet Programs

204

Running the greet application involves starting the server program and then running
the client program. Before starting the server program, you need write access to the
CDS namespace and you need to ensure that the dced process is running on the
server host. For more information, see the dced(8dce) reference page.

You start the server program by using a CDS entry such as the following:

greet_server /.:/greet_entry
Listening...

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

You start the client on another host (or even the same host) by using the same
CDS entry as follows:

greet_client /.:/greet_entry

The following message is printed on the server’s host:
The client says: hello, server

The following reply is printed on the client’s host:

The Greet Server said: Hi, client!

The server program can be terminated at any time by a signal, which on many
systems can be generated by <Ctrl-C>.

When applications such as greet execute, many errors can occur that have nothing
to do with your own code. In general, errors that occur when a remote procedure
call executes are reported as exceptions. For example, exceptions that the client
side of greet_client could raise if the server suddenly and unexpectedly halts
include (but are not limited to) rpc_x_comm_failure and rpc_x_call_timeout .
Other ways to respond to these errors are available through the comm_status and
fault_status attributes in an interface definition or attribute configuration file.
Explanations of these attributes appear in EChapter 20_Attribute Configuration]
Language” an page 469. Also, see [Chapter 18 Topics in RPC Application]
Development” on page 351, which explains the guidelines for error handling.

In addition, tRart 2_DCE Threads” on page 139 of this guide contains information

about the macros (such as those specified by TRY, CATCH, and ENDTRY
statements) for exception handling. If an exception occurs that the client application
does not handle, it causes the client to terminate with an error message. The
client’s termination could include a core dump or other system-dependent
error-reporting method. Detailed explanations of RPC status codes and RPC
exceptions are in the IBM DCE Version 3.1 for AIX and Solaris: Problem
Determination Guide.

Chapter 12. Developing a Simple RPC Application 205

206 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 13. RPC Fundamentals

DCE RPC provides a call environment that behaves essentially like a local call
environment. However, some special requirements are imposed on remote
procedure calls by the remoteness of calling code to the called procedure.
Therefore, a remote procedure call may not always behave exactly like a local
procedure call.

This chapter discusses the following topics:
* Universal unique identifiers

» Communications protocols

* Binding information

* Endpoints

» Execution semantics

+ Communication failures

* Scaling applications

* RPC Objects

Distributed applications have the following implications:
* Client/server relationship—binding

Like a local procedure call, a remote procedure call depends on a static
relationship between the calling code and the called procedure. In a local
application, this relationship is established by linking the calling and called code.
Linking gives the calling code access to the address of each procedure to be
called. Enabling a remote procedure call to go to the right procedure requires a
similar relationship (called a binding) between a client and a server. A binding is
a temporary relationship that depends on a communications link between the
client and server RPC runtimes. A client establishes a binding over a specific
protocol sequence to a specific host system and endpoint.

* Independent address spaces

The calling code and called remote procedure reside in different address spaces,
generally on separate systems. The calling and called code cannot share global
variables or other global program state such as open files. All data shared
between the caller and the called remote procedure must be specified as
procedure parameters in the IDL specification. Unlike a local procedure call that
commonly uses the call-by-reference passing mechanism for input/output
parameters, remote procedure calls with input/output parameters have
copy-in/copy-out semantics due to the differing address spaces of the calling and
called code. These two passing mechanisms are only slightly different, and most
procedure calls are not sensitive to the differences between call-by-reference and
copy-in/copy-out semantics.

* Independent failure

Distributing a calling program and the called procedures to physically separate
machines increases the complexity of procedure calls. Remoteness introduces
issues such as a remote system crash, communications failures, naming and
binding issues, security problems, and protocol incompatibilities. Such issues can
require error handling that is unnecessary for local procedure calls. Also, as with
local procedure calls, remote procedure calls are subject to execution errors that
arise from the procedure call itself.

© Copyright IBM Corp. 1990, 1999 207

Universal Unique Identifiers

Each UUID contains information, including a timestamp and a host identifier.
Applications use UUIDs to identify many kinds of entities. DCE RPC identifies
several uses of UUIDs, according to the kind of entities each identifies:

e [Interface UUID

A UUID that identifies a specific RPC interface. An interface UUID is declared in
an RPC interface definition (an IDL file) and is a required element of the
interface. For example:

uuid(2fac8900-31f8-11ca-b331-08002b13d56d),
* Object UUID

A UUID that identifies an entity for an application; for example, a resource, a
service, or a particular instance of a server. An application defines an RPC object
by associating the object with its own UUID known as an object UUID. The
object UUID exists independently of the object, unlike an interface UUID. A
server usually generates UUIDs for its objects as part of initialization. A given
object UUID is meaningful only while a server is offering the corresponding RPC
object to clients.

To distinguish a specific use of an object UUID, a UUID is sometimes labeled for
the entity it identifies. For example, an object UUID that is used to identify a
particular instance of a server is known as an instance UUID.

* Type UUID
A UUID that identifies a set of RPC objects and an associated manager (the set
of remote procedures that implements an RPC interface for objects of that type).
This is often called a manager type UUID.

Servers can create object and type UUIDs by calling the uuid_create() routine.

Communications Protocols

A communications link depends on a set of communications protocols. A
communications protocol is a clearly defined set of operational rules and
procedures for communications.

Communications protocols include a transport protocol (from the Transport Layer of
the OSI network architecture) such as the Transmission Control Protocol (TCP) or
the User Datagram Protocol (UDP); and the corresponding network protocol (from
the OSI Network Layer) such as the Internet Protocol (IP).

For an RPC client and server to communicate, their RPC runtimes must use at
least one identical communications protocol, including a common RPC protocol,
transport protocol, and network protocol. An RPC protocol is a communications
protocol that supports the semantics of the DCE RPC API and runs over specific
combinations of transport and network protocols. DCE RPC provides two RPC
protocols: the connectionless RPC protocol and the connection-oriented RPC
protocol.

» Connectionless (Datagram) RPC protocol

This protocol runs over a connectionless transport protocol such as UDP. The
connectionless protocol supports broadcast calls.

» Connection-oriented RPC protocol
This protocol runs over a connection-oriented transport protocol such as TCP.

208 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Each binding uses a single RPC protocol and a single pair of transport and network
protocols. Only certain combinations of communications protocols are functionally
valid (are actually useful for interoperation); for instance, the RPC connectionless
protocol cannot run over connection-oriented transport protocols such as TCP. DCE
RPC supports the following combinations of communications protocols (as provided
by OSF):
* RPC connection-oriented protocol over the Internet Protocol Suite, Transmission
Control Protocol (TCP/IP)

* RPC connectionless protocol over the Internet Protocol Suite, User Datagram
Protocol (UDP/IP)

Binding Information

Binding information includes a set of information that identifies a server to a client
or a client to a server. Each instance of binding information contains all or part of a
single address. The RPC runtime maintains binding information for RPC servers
and clients. To make a specific instance of locally maintained binding information
available to a given server or client, the runtime creates a local reference known as
a binding handle. Servers and clients use binding handles to refer to binding
information in runtime calls or remote procedure calls. A server obtains a complete
list of its binding handles from its RPC runtime. A client obtains one binding handle
at a time from its RPC runtime. m illustrates a binding.

Client's System Server's System
—_— Network r
Network
. RPC & comm. protocols) address
Client
. Server
Endpoint

Figure 21. A Binding

Binding information includes the following components:
* Protocol sequence

A valid combination of communications protocols presented by the runtime as a
character string. Each protocol sequence includes a network protocol, a transport
protocol, and an RPC protocol that works with them.

An RPC server tells the runtime which protocol sequences to use when listening
for calls to the server, and its binding information contains those protocol
sequences.

* Network addressing information

Includes the network address and the endpoint of a server.

— The network address identifies a specific host system on a network. The
format of the address depends on the network protocol portion of the protocol
sequence.

— The endpoint acts as the address of a specific server instance within the host

system. The format of the endpoint depends on the transport protocol portion
of the protocol sequence. For each protocol sequence a server instance uses,

Chapter 13. RPC Fundamentals 209

it requires a unique endpoint. A given endpoint can be used by only one
server per system, assigned by the local system on a first-come, first-served
basis.

* Transfer Syntax

The server's RPC runtime must use a transfer syntax that matches one used by
the client's RPC runtime. A transfer syntax is a set of encoding rules used for the
network transmission of data and the conversion to and from different local data
representations. A shared transfer syntax enables communications between
systems that represent local data differently. DCE RPC currently uses a single
transfer syntax, Network Data Representation (NDR). NDR encodes data into a
byte stream for transmission over a network. A transfer syntax such as NDR
enables machines with different formats to exchange data successfully. (The
DCE RPC communications protocols support the negotiation of transfer syntax.
However, at present, the outcome of a transfer-syntax negotiation is always
NDR.)

* RPC protocol version numbers

The client and server runtimes must use compatible versions of the RPC protocol
specified by the client in the protocol sequence. The major version number of the
RPC protocol used by the server must equal the specified major version number.
The minor version number of the RPC protocol used by the server must be
greater than or equal to the specified minor version number.

Server Binding Information

Binding information for a server is known as server binding information. A binding
handle that refers to server binding information is known as a server binding
handle. The use of server binding handles differs on servers and clients.

Server Binding On a Server

Servers use a list of server binding handles. Each represents one way to establish
a binding with the server. Before exporting binding information to a nhamespace, a
server tells the RPC runtime which RPC protocol sequences to use for the RPC
interfaces the server supports. For each protocol sequence, the server runtime
creates one or more server binding handles. Each server binding handle refers to
binding information for a single potential binding, including a protocol sequence, a
network (host) address, an endpoint (server address), a transfer syntax, and an
RPC protocol version number.

Server Binding On a Client

A client uses a single server binding handle that refers to the server binding
information the client needs for making one or more remote procedure calls to a
given server. Server binding information on a client contains binding information for
one potential binding.

On a client, server binding information always includes a protocol sequence and the
network address of the server’'s host system. However, sometimes a client obtains
binding information that lacks an endpoint, resulting in a partially bound binding
handle. A partially bound binding handle corresponds to a system, but not to a
particular server instance. When a client makes a remote procedure call using a
partially bound binding handle, the client runtime gets an endpoint either from the
interface specification (if one a well-known endpoint is specified) or from the
endpoint map on the server's system. Bindings almost never use well-known
endpoints. Adding the endpoint to the server binding information results in a fully

210 1BM DCE Version 3.1 for AlIX and Solaris: Application Development Guide —Core Components

bound binding handle, which contains an endpoint and corresponds to a specific
server instance. Note clients can get a partially bound handle even if a server is not
running.

Defining a Compatible Server

Compatible binding information identifies a server whose communications
capabilities (RPC protocol and protocol version, network and transport protocols,
and transfer syntax) are compatible with those of the client. Compatible binding
information is sufficient for establishing a binding. However, binding information is
insufficient for ensuring that the binding is to a compatible server.

The additional information required that a client imposes on the RPC runtime
includes an RPC interface identifier and an object UUID, as follows:

¢ Interface identifier
The interface UUID and version numbers of an RPC interface:

— Interface UUID: The interface UUID, unlike the interface name, clearly
identifies the RPC interface across time and space.

— Interface version number: The combined major and minor version humbers
identify one generation of an interface.

Version numbers allow multiple versions of an RPC interface to coexist. Strict
rules govern valid changes to an interface and determine whether different
versions of an interface are compatlble For a description of these rules, see
: ” on IDL syntax and

The runtime uses the version number of an RPC interface to decide whether
the version offered by a given server is compatible with the version requested
by a client. The offered and requested interface are compatible under the
following conditions:

- The interface requested by the client and the interface offered by the server
have the same major version number.

- The interface requested by the client has a minor version number less than
or equal to that of the interface offered by the server.

* Object UUID
A UUID that identifies a particular object.

An object is a distinct computing resource, such as a particular database, a
specific RPC service that a remote procedure can access, and so on; for
example, personal calendars may be RPC objects to a calendar service.
Accessing an object requires including its object UUID with the binding
information used for establishing a binding. A client can request a specific RPC
object when requesting new binding information, or the client can ask the runtime
to associate an object UUID with binding information the client already has
available.

Sometimes the object UUID is the nil UUID; when calling an RPC runtime
routine, you can represent the nil UUID by specifying NULL. In this case, the
object UUID does not represent any object. Often, however, the object UUID
represents a specific RPC object and is a non-nil value. To create a non-nil
object UUID, a server calls the uuid_create() routine, which returns a UUID that
the server then associates with a particular object.

If a client requests a non-nil object UUID, the client runtime uses that UUID as
one of the criteria for a compatible server. When searching the namespace for

Chapter 13. RPC Fundamentals 211

server binding information, the client runtime looks for the requested interface
identifier and object UUID. The endpoint map service uses this same information
to help find a compatible server.

w illustrates the aspects of a server and its system that are identified by the

client’s server binding information, requested interface identifier, and requested
object UUID.

System

Network
Network
Protocol sequence\g/—b Comm. protocols ? addv;less Server

Endpoint

Interface

Interface UUID & version numbers

ObjectUUID—___—— [Objec>

o

Figure 22. Information Used to Identify a Compatible Server
How Clients Obtain Server Binding Information

When a client initiates a series of related remote procedure calls, the RPC runtime
tries to establish a binding, which requires the address of a compatible server. An
RPC client can use compatible binding information obtained from either a
namespace or from a string representation of the binding information. Using the
namespace is the most common approach.

Establishing a binding also involves requesting an endpoint from the endpoint
mapper of the server’s system.

Binding Information in a Namespace

Usually, a server exports binding information for one or more of its interface
identifiers and its object UUIDs, if any, to an entry in a namespace. The namespace
is provided by a directory service such as the DCE Cell Directory Service (CDS).
The namespace entry to which a server exports binding information is known as a
server entry.

To learn about a server that offers a given RPC interface and object, if any, a client
can import binding information from a server entry belonging to that server. A client
can delegate the finding of servers from the namespace to a stub. In this case, if a
binding is accidentally broken, the RPC runtime automatically tries to establish a
new binding with a compatible server.

Advantages of using a directory service to obtain binding information include the
following:

* It is convenient for large RPC environments. Initial overhead of understanding
and configuring a directory service is balanced by easier management over time.

* Management of data in a directory service is more automated.
* It is effective in dynamic end-user environments.

» Binding information is stored in a named server entry. Data can be dynamic.
Servers can automatically place their binding information in the namespace.

212 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Changes in binding information are made once by a server or administrator and
then propagated automatically by the directory service to the replicas of the data.

* There is centralized administration of data in a namespace. Sophisticated access
control is possible.

* It supports searching for and choosing services based on an interface identifier
and object UUID. Clients access data by specifying an entry name. Groups and
profiles in directory service entries provide search paths for importing binding
information.

Binding Information in Strings

Occasionally, a client can receive binding information in the form of a string (also
known as a string binding). The client can receive a string binding (or the
information to compose a string binding) from many sources; for example, an
application-specific environment variable, a file, or the application user. The client
must call the RPC runtime to convert a string binding to a binding handle. The
runtime returns this binding handle to the client to use for remote procedure calls.

String representations of binding information have several possible components.
The binding information includes an RPC protocol sequence, a network address,
and an endpoint. The protocol sequence is mandatory; the endpoint is optional; and
for a server on the client’s system, the network address is optional. Also, a string
binding optionally associates an object UUID with the binding information.

The string bindings have the following format:
obj-uuid@rpc-protocol-seq:network-addr[endpoint ,option-name=opt-value...]

or

obj-uuid@rpc-protocol-seq:network-addr[endpoint=endpoint,option-name=opt-value...]

The following example string binding contains all possible components:
b07122e2-83df-11c9-be29-08002b1110fancacn ip tcp:130.105.1.1.123[2001]

The following example string binding contains only the protocol sequence and
network address:

ncacn_ip_tcp:130.105.1.1.123

For more information about the string binding format, see the RPC introduction
reference page, rpc_intro(3rpc) .

String bindings are useful in small environments; for example, when developing and
testing an application. However, string bindings are inappropriate as the principal
way of providing binding information to clients. Applications should use the directory
service to advertise binding information.

Client Binding Information for Servers

When making a remote procedure call, the client runtime provides information about
the client to the server runtime. This information, known as client binding
information, includes the following information:

* The address where the call originated (network address and endpoint)
* The RPC protocol used by the client for the call
* The object UUID that a client requests

Chapter 13. RPC Fundamentals 213

* The client authentication information (if present)

The server runtime maintains the client binding information and makes it available
to the server application by a client binding handle. [Eigure 23 illustrates the
relationships between what a client supplies when establishing a binding and the
corresponding client binding information.

Client's system Server's system

Client Server

code uuID 9 binding handle

Network
Protqco

Networli
address}.

[Endpoint].

| N

Runtime

—

Key:
—» = Contributes to client binding information
-3 = Refers to client binding information

Figure 23. Client Binding Information Resulting from a Remote Procedure Call

The callouts in the figure refer to the following:
1. The requested object UUID, which may be the nil UUID
2. Client authentication information, which is optional

3. The address from which the client is making the remote procedure call, which
the communications protocols supply to the server

A server application can use the client binding handle to ask the RPC runtime about
the object UUID requested by a client or about the client’s authentication
information.

Endpoints

An endpoint is the address of a specific server instance on a host system. Two
kinds of endpoints exist: well-known endpoints and dynamic endpoints.

Well-Known Endpoints
A well-known endpoint is a preassigned stable address that a server uses every

time it runs. Well-known endpoints typically are assigned by a central authority
responsible for a transport protocol; for example, the Internet Assigned Numbers

214 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Authority assigns endpoint values for the IP family of protocols. If you use
well-known endpoints for a server, you should register them with the appropriate
authority.

Well-known endpoints can be declared for an interface (in the interface declaration)
or for a server instance, as follows:

* Any interface definition can be associated with one or more endpoints, along with
the RPC protocol sequence corresponding to each endpoint (the endpoint
attribute).

When compiling an interface, the IDL compiler stores each combination of
endpoint and protocol sequence in the interface specification. If a call is made
using binding information that lacks an endpoint, the RPC runtime automatically
looks in the interface specification for a well-known endpoint specified for the
protocol sequence obtained from the binding information. If the interface
specification contains an appropriate endpoint, the runtime adds it to the binding
information.

» Alternatively, server-specific, well-known endpoints can be defined in server
application code. When asking the runtime to use a given protocol sequence, the
server supplies the corresponding endpoints to the RPC runtime. On a given
system, each endpoint can be used by only one server at a time. If server
application code contains a hardcoded endpoint or the server’s installers always
specify the same well-known endpoint, only one instance of the server can run
per system.

When a server exports its binding information to a namespace server entry, the
export operation includes any well-known endpoints within the server binding
information stored in the server entry.

Dynamic Endpoints

A dynamic endpoint is requested and assigned at runtime. For some transport
protocols, the number of endpoints is limited; for example, TCP/IP and UDP/IP use
a 16-bit number for endpoints, which allows 65,535 endpoints. When the supply of
endpoints for a transport protocol is limited, the protocol ensures an adequate
supply of endpoints by limiting the portion that can be reserved as well-known
endpoints. A transport, on request, dynamically makes its remaining endpoints
available on a first-come, first-served basis to specific processes such as RPC
server instances.

When a server requests dynamic endpoints, the server’'s RPC runtime asks the
operating system for a unique dynamic endpoint for each protocol sequence the
server is using. For a given protocol sequence, the local implementation of the
corresponding transport protocol provides the requested endpoints. When an RPC
server with dynamic endpoints stops listening, its dynamic endpoints are released.

Because of the transient nature of dynamic endpoints, the NSI of the RPC API does
not export them to a namespace; however, NSI does export the rest of the server’s
binding information. References to expired endpoints would remain indefinitely in
server entries, causing clients to import and try, unsuccessfully, to establish bindings
to nonexistent endpoints. Therefore, the export operation removes dynamic
endpoints before adding binding information to a server entry; the exported server
address contains only network addressing information. The import operation returns
a partially bound binding handle. The client makes its first remote procedure call
with the partially bound handle, and the endpoint mapper service on the server’'s
system resolves the binding handle with the endpoint of a compatible server. To

Chapter 13. RPC Fundamentals 215

make dynamic endpoints available to clients that are using partially bound binding
handles, a server must register its dynamic endpoints in the local endpoint map.

By using object UUIDs, a server can ensure that a client that imports a partially
bound handle obtains one of a particular server’s endpoints. This requires that the
server do the following:

1. Specify a list of one or more object UUIDs that are unique to the server.
2. Export the list of object UUIDs.

3. Supply the list of object UUIDs to the endpoint map service when registering
endpoints.

4. If the server provides different managers that implement an interface for
different types of objects, the server must specify the type of each object.

To request binding information for a particular server, a client specifies one of the
server’'s object UUIDs, which is then associated with the server binding information
the client uses for making a remote procedure call.

Note: If a client requests the nil object UUID when importing from a server entry
containing object UUIDs, the client runtime selects one of those object
UUIDs and associates it with the imported server binding information. This
object UUID guarantees that the call goes to the server that exported the
binding information and object UUID to the server entry.

Execution Semantics

Execution semantics identify the ability of a procedure to execute more than once
during a given remote procedure call. The communications environment that
underlies remote procedure calls affects their reliability. A communications link can
break for a variety of reasons such as a server termination, a remote system crash,
a network failure, and so forth; all invocations of remote procedures risk disruption
due to communications failures. However, some procedures are more sensitive to
such failures, and their impact depends partly on how reinvoking an operation
affects its results.

To maximize valid outcomes for its operations, the operation declarations of an RPC
interface definition indicate the effect of multiple invocations on the outcome of the
operations.

[able 9 summarizes the execution semantics for DCE RPC calls.

Table 9. Execution Semantics for DCE RPC Calls

Semantics Meaning

at-most-once The operation must execute either once, partially, or not at all; for
example, adding or deleting an appointment from a calendar can
use at-most-once semantics. This is the default execution
semantics for remote procedure calls.

idempotent The operation can execute more than once; executing more than
once using the same input arguments produces identical outcomes
without undesirable side effects; for example, an operation that
reads a block of an immutable file is idempotent . DCE RPC
supports maybe semantics and broadcast semantics as special
forms of idempotent operations.

Semantics Meaning

216 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Table 9. Execution Semantics for DCE RPC Calls (continued)

Semantics Meaning

maybe The caller neither requires nor receives any
response or fault indication for an operation,
even though there is no guarantee that the
operation completed. An operation with
maybe semantics is implicitly idempotent
and must lack output parameters.

broadcast The operation is always broadcast to one
server on each host system on the local
network, rather than delivered to a specific
server, and one reply is returned to the
client. An operation with broadcast
semantics is implicitly idempotent .

The broadcast capabilities of RPC runtime have a number of distinct limitations:

* Not all systems and networks support broadcasting. In particular, broadcasting is
not supported by the RPC connection-oriented protocol.

* Broadcasts are limited to hosts on the local network.
* Broadcasts make inefficient use of network bandwidth and processor cycles.

* The RPC runtime library does not support at-most-once semantics for broadcast
operations; it applies idempotent semantics to all such operations.

* The input arguments for broadcast calls are limited to 944 bytes.

Communications Failures

If a server detects a communications failure during a remote procedure call, the
server runtime attempts to terminate the now orphaned call by sending a cancel to
the called procedure. A cancel is a mechanism by which a client thread of execution
notifies a server thread of execution (the to be canceled thread) to terminate as
soon as possible. A cancel sent by the RPC runtime after a communications failure
initiates orderly termination for a remote procedure call. (For a brief discussion of
how cancels work with remote procedure calls, see the discussions with respect to
Threads.)

Applications that use context handles to establish a client context require a context
rundown procedure to enable the server to clean up client context when it is no
longer needed. The name of the context rundown procedure is determined from the
type name of the context handle declared in the interface definition; this ensures
that the stub knows about the procedure in the server application code. If a
communications link with a client is lost while a server is maintaining context for the
client, the RPC runtime will inform the server to invoke the context rundown
procedure. For a more thorough discussion of context handles see

Scaling Applications

Unlike local applications, RPC applications require network resources, which are
possible bottlenecks to scaling an RPC application. RPC clients and servers require
network resources that are not required by local programs. The main network
resources to consider are network bandwidth, endpoints, network descriptors (the
identifiers of potential network channels such as UNIX sockets), kernel buffers and,

Chapter 13. RPC Fundamentals 217

for a connection-oriented transport, the connections. Also, RPC applications place
extra demands on system resources such as memory buffers, various quotas, and
the CPU.

The number of remote procedure calls that a server can support depends on
various factors, such as the following:

* The resources of the server and the network

* The requirements of each call

* The number of calls that can be concurrently offered at some level of service
* The performance requirements

An accurate analysis of the requirements of a given server involves detailed work
load and resource characterization and modeling techniques. Although
measurement of live configurations under load will offer the best information,
general guidelines apply. You should consider the connection, buffering, bandwidth,
and CPU resources as the most likely RPC bottlenecks to scaling. Use these
application requirements to scale resources.

Many system implementations limit the number of network connections per process.
This limit provides an upper bound on the number of clients that can be served
concurrently using the connection-oriented protocol. Some UNIX based systems set
this limit at 64. However, except for applications that use context handles, the
connection-oriented RPC runtime allows pooling of connections. Pooling permits
simultaneously supporting more clients than the maximum number of connections,
provided they do not all make calls at the same instant and occasionally can wait
briefly.

RPC Objects

DCE RPC enables clients to find servers that offer specific RPC objects. An RPC
object is an entity that an RPC server defines and identifies to its clients.
Frequently, an RPC object is a distinct computing resource such as a particular
database, directory, device, process, or processor. ldentifying a resource as an
RPC object enables an application to ensure that clients can use an RPC interface
to operate on that resource. An RPC object can also be an abstraction that is
meaningful to an application such as a service or the location of a server.

RPC objects are defined by application code. The RPC runtime provides substantial
flexibility to applications about whether, when, and how they use RPC objects. RPC
applications generally use RPC objects to enable clients to find and access a
specific server. When servers are completely interchangeable, using RPC objects
may be unnecessary. However, when clients need to distinguish between two
servers that offer the same RPC interface, RPC objects are essential. If the servers
offer distinct computing resources, each server can identify itself by treating its
resources as RPC objects. Alternatively, each server can establish itself as an RPC
object that is distinct from other instances of the same server.

RPC objects also enable a single server to distinguish among alternative
implementations of an RPC interface, as long as each implementation operates on
a distinct type of object. To offer multiple implementations of an RPC interface, a
server must identify RPC objects, classify them into types, and associate each type
with a specific implementation.

218 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The set of remote procedures that implements an RPC interface for a given type of
object is known as a manager. The tasks performed by a manager depend on the
type of object on which the manager operates. For example, one manager of a
gqueue-management interface may operate on print queues, while another manager
may operate on batch queues.

Chapter 13. RPC Fundamentals 219

220 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 14. Basic RPC Routine Usage

This chapter introduces a number of basic DCE RPC routines for directory service,
communications, and authentication operations and discusses major usage issues
important for developing DCE RPC applications.

This chapter discusses the following topics:

Overview of basic runtime routines
Server initialization tasks
How clients find servers

Overview of the RPC Routines

This section summarizes the major concerns of RPC communications, name
service interface (NSI) usage, and authenticated RPCs.

Basic Operations of RPC Communications

The DCE RPC runtime provides the following communications operations for RPC
applications:

Managing communications for RPC applications

As part of server initialization, a server sets up its communications capabilities by
a series of calls to the RPC runtime. These runtime calls register the server’'s
RPC interfaces, tell the RPC runtime what combination of communications
protocols to use for the server, and register the endpoints of the server for each
of its interfaces. After completing these and any other initialization tasks, the
server tells the runtime to begin listening for incoming calls.

Managing binding information
A variety of communications operations allow servers to access and manipulate
binding information. In addition, a set of communications operations enables

applications to manipulate string representations of binding information (string
bindings).

Basic Operations of the NSI

The NSI routines perform operations on a hamespace for RPC applications. The
fundamental operations include the following:

© Copyright IBM Corp. 1990,

Creating and deleting entries in namespaces
Exporting
A server uses the NSI export operation to place binding information associated

with its RPC interfaces and objects into the namespace used by the RPC
application.

Importing
Clients can search for exported binding information associated with an interface

and object by using the NSI import operation or lookup operation. These two
operations are collectively referred to as the NSI search operations.

Unexporting

The unexport operation enables a server to remove some or all of its binding
information from a server entry.

Managing information in a namespace

1999 221

Applications use the NSI interface to place information about server entries into a
namespace and to inquire about and manage that information.

Basic Operations of Authenticated RPCs

The authenticated RPC routines provide a mechanism for establishing secure
communications between clients and servers.

To engage in authenticated RPC, a client and server must agree on the
authentication service to be used. The server’s responsibility is to register its
principal name and the authentication service to be supported with the RPC
runtime. The client’s responsibility is to establish the authentication service, a given
protection level, and an authorization service for the server binding handle. The
protection level determines the degree of protection applied to individual messages
between the client and server. The authorization service determines the form in
which the client’s credentials will be presented to the server (for access checking).

Once authenticated RPC has been established between a client and server, the
client issues remote procedure calls in the usual fashion, with all authentication and
protection being handled by the DCE Security Service and the RPC runtime.

[anle 1d relates several of the RPC runtime operations just discussed with specific
routines or sets of routines.

Table 10. Basic Runtime Routines

Description of Operation Llsage Rloutine Name(s)

Communications Routines

Set the type of an RPC object with | Server rpc_object_set_type()

the RPC runtime

Register RPC interfaces Server rpc_server_register_if()

Select RPC protocol sequences Server rpc_network_ing_protseqs()
rpc_server_use_*protseq*_...()

Obtain server binding handles Server rpc_server_ing_bindings()

Register endpoints Server rpc_ep_register() ,
rpc_ep_register_no_replace()

Unregister endpoints Server rpc_ep_unregister()

Listen for calls Server rpc_server_listen()

Manipulate string representations Client rpc_binding_from_string_binding()

of binding information (string

bindings)

Client, Server rpc_binding_to_string_binding()
rpc_string_binding_compose()
rpc_string_binding_parse()

Change the RPC object in server | Client rpc_binding_set_object()
binding information

Convert a client binding handle to a | Server rpc_binding_server_from_client()
server binding handle

Name Service Interface Routines

Export binding information to a Server rpc_ns_binding_export()
namespace

222 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Table 10. Basic Runtime Routines (continued)

Description of Operation Usage Routine Name(s)

Search a namespace for binding Client rpc_ns_binding_import_...() ,

information rpc_ns_binding_lookup_...() ,
rpc_ns_binding_select()

Authentication Routines

Authentication and authorization |Server, Client rpc_*auth...()

Server Initialization Using the RPC Routines

Before a server can receive any remote procedure calls, it should usually initialize
itself by calling the dce_server_register() routine so that the server is properly
recognized by DCE. However, servers can instead use a series of the lower-level
RPC runtime routines. The server initialization code, written by the application
developer, varies among servers. However, every server must set up its
communications capabilities, which usually involves most of the following tasks:

1. Assigning types to objects

2. Registering at least one interface

3. Specifying which protocol sequences the server will use

4. Obtaining a list of references to a server’s binding information (a list of binding
handles)

5. Registering endpoints

6. Exporting binding information to a server entry or entries in the namespace

7. Listening for remote procedure calls

8. Performing cleanup tasks including unregistering endpoints

The following pseudocode illustrates the calls a server makes to accomplish these
basic initialization tasks:

/* Initialization tasks =/

rpc_object_set type(...);
rpc_server_register_if(...);
rpc_server_use_all_protseqs(...);
rpc_server_ing_bindings(...);
rpc_ep_register(...);
rpc_ns_binding_export(...);
rpc_server_listen(...);

/* Cleanup tasks */

rpc_ep_unregister(...);
Assigning Types to Objects

An object type is a mechanism for associating a set of RPC objects and the
manager whose remote procedures implement an RPC interface for those objects.
Object types allow an application to cluster objects, such as computing resources,
according to any relevant criteria. For example, a single accounting interface can be
implemented to operate on accounting databases that contain equivalent
information but that are formatted differently; each database format represents a
distinct type.

Chapter 14. Basic RPC Routine Usage 223

To simultaneously offer alternative implementations of an RPC interface for different
types of objects, a server uses alternative managers. Servers that implement each
of their interfaces with only one manager can usually avoid the tasks associated
with assigning object types. However, when a server offers multiple managers, each
manager must be dedicated to operating on a separate type of object. In this case,
a server must classify some or all of its objects into types; for example, a calendar
application that specifies one non-nil type UUID for departmental calendars and
another non-nil type UUID for personal calendars.

By default, objects have the nil type. Only a server that implements different
managers for different objects or sets of objects needs to type classify its RPC
objects. To type classify an object, a server associates the object UUID of the
object with a single type UUID by calling the rpc_object_set type() procedure
separately for each object. To create a UUID, a server calls the uuid_create()
routine.

The exact implementation of a manager can vary with the type of object on which
each manager operates. For example, a queue-management interface may be
implemented to manage print queues as objects in one case and to manage batch
gueues as objects in another. m illustrates the use of type UUIDs to identify
two types of managers.

Manager A (operates on objects of first type)

Type UUID:
4086B9D4-FB6C-11C9-B09A-08002B0OF4528

I Procedureget sum

l Procedure get_sums

Manager B (operates on objects of second type)

Type UUID:
E5E46D28-FB6A-11C9-881D-08002B0F4528

l Procedure get_sum

I Procedure get_sums

Figure 24. Manager Types

When the server receives an incoming call that specifies an object UUID, the server
dispatches the call to the manager for the type to which the object belongs. For
information on how a type is used to select a manager for an incoming call, see

3 ”

224 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Registering Interfaces

A server calls the rpc_server_register_if() routine to tell the RPC runtime about a
specific RPC interface. Registering an interface informs the runtime that the server
is offering that interface and makes it available to clients. A server can register any
number of interfaces with the RPC runtime by calling the rpc_server_register_if()

routine once for each set of procedures, or manager, that implements an interface.

To offer more than one manager for an interface, a server must register each
manager separately.

When registering an interface, the server provides the following information:
* Interface specification

This is a reference to information about an RPC interface as offered by its server
stub. The DCE IDL compiler generates an interface specification as part of the
stub code. For a specific version of an interface, all managers use the same
interface specification. Information in an interface specification that concerns
application developers includes the following:

— The interface identifier (UUID and major and minor version numbers)
— The supported transfer syntaxes

— Alist of any well-known endpoints (and their associated protocol sequences)
specified in the interface definition (.idl) file

— The interface’s default manager entry point vector (manager EPV), if present

A default manager EPV, constructed using the operation names of the
interface definition, is typically generated for stubs by the DCE IDL compiler
(the --no_mepv compiler option suppresses this feature).

* Atype UUID for the manager
Each implementation of an interface, a manager, is represented by a type UUID.
* A manager EPV for the interface

A server can register a given interface more than once by specifying a different
type UUID and manager EPV each time it calls rpc_server_register_if()

A manager EPV is a list of the addresses (the entry points of the remote
procedures provided by the manager) that represent the location of each remote
procedure implementation. A manager EPV must contain exactly one entry point
for each procedure defined in the interface definition.

The server can use the default manager EPV only once, and only for a manager
that uses the procedure names as they are declared in the interface definition.
For any additional manager of the RPC interface, (and if the server needs to
rename the implemented procedures), the server must create and register a
uniqgue manager EPV. Also, each manager must be associated with a distinct
type UUID.

Selecting RPC Protocol Sequences

A server can inquire about whether the local RPC runtime supports a specific
protocol sequence by using the rpc_network_is_protseq_valid() routine. The
server can also use the rpc_network_ing_protseqgs() routine to ask the RPC
runtime for a list of all protocol sequences supported by both the RPC runtime and
the operating system.

To prepare to receive remote procedure calls, a server uses
rpc_server_use_all_protseqs() or rpc_server_use_protseq() calls to tell the RPC

Chapter 14. Basic RPC Routine Usage 225

runtime to use at least one protocol sequence. For each protocol combination, the
RPC runtime creates one or more binding handles with dynamic endpoints on which
the server will listen for remote procedure calls. The server then can use a list of
these binding handles to register dynamic endpoints in the endpoint map and to
export its binding information (except the endpoints) to the name service.

As an option, an interface can contain one or more well-known endpoints, each of
which is accompanied by a protocol sequence. A server uses the
rpc_server_use_all_protseqs_if() , rpc_server_use_protseq_if() , or
rpc_server_use_protseq_ep() , to notify the RPC runtime about which protocol
sequence and well-known endpoint combinations will be used.

A server can use any protocol sequence declared in an interface endpoint
declaration, or the server can ignore the endpoint declarations, as long as it
registers at least one endpoint.

Note: If an application server has a well-known endpoint specified in the interface
specification it should use the rpc_server_use_protseq_if or
rpc_server_use_all_protseqs_if routine. These routines tell the RPC
runtime to listen on the protocol sequences and endpoints in the interface
specification.

If the server uses rpc_server_use_all_protseqs , rpc_server_use_protseq
or rpc_server_use_protseq_ep , the server is listening on dynamic
endpoints and not on the well-known endpoints specified in the interface
definition. A client application resolves a partially bound handle to the server
application using rpc_ep_resolve_binding , that uses a well-known endpoint
if one is available. Because the client is using a well-known endpoint, using
the ncadg_ip_udp protocol sequence causes a communications failure, and
using the ncacn_ip_tcp protocol sequence causes the server to reject the
connection.

Obtaining a List of Server Binding Handles

After a server passes to the RPC runtime the protocol sequences over which it will
listen for remote procedure calls, the RPC runtime constructs server binding
handles. Each binding handle refers to a complement of binding information that
defines one potential binding; that is, a specific RPC protocol sequence, RPC
protocol major version, network address, endpoint, and transfer syntax that an RPC
client can use to establish a binding with an RPC server.

Before registering endpoints or exporting binding information, a server must obtain
a list of its binding handles from the RPC runtime by using the
rpc_server_ing_bindings() routine. The server passes this list back to the runtime
as an argument when registering endpoints and exporting binding information.

Registering Endpoints
Servers can use well-known or dynamic endpoints with any protocol sequence.
When a server asks the runtime to use a dynamic endpoint with a protocol
sequence, the runtime asks the operating system to generate the endpoint. To use

the dynamic endpoints, a server must register the server’'s binding information,
including the endpoints, by using the rpc_ep_register() routine. For each

226 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Making Binding

combination of RPC interface identifier, object UUID, and binding information that
the server offers, the endpoint mapper service creates an element in the local
endpoint map.

A server does not necessarily need to register well-known endpoints; however, by
registering well-known endpoints, the server ensures that clients can always obtain
them. Registration also makes the endpoints accessible to administrators, who can
use the DCE control program, dcecp, to show the map elements of an endpoint
map by using the endpoint show operation.

Servers can remove map elements from a local endpoint map by using the
rpc_ep_unregister() routine. Servers should unregister endpoints after they stop
listening.

Information Accessible to Clients

A server needs to make its binding information accessible to clients. Usually, a
server uses the NSI export operation to place its binding information into a server
entry. However, it is also possible for servers to make string bindings accessible to
clients. In any case, the server obtains its binding information from the runtime by
first using the rpc_server_ing_bindings() routine to ask for a list of binding
handles.

Using String Bindings to Provide Binding Information

While implementing and debugging a server program you may temporarily want to
communicate binding information to clients by using string bindings. This allows a
server to establish a client/server relationship without registering endpoints in the
local endpoint map or exporting binding information to a namespace.

The server can convert into a string each binding handle in the list obtained from
the rpc_server_ing_bindings() call by calling rpc_binding_to_string_binding()
The resulting string binding is always fully bound. The server then makes some or
all of its string bindings available to clients somehow; for example, by placing the
string bindings in a file to be read by clients or users or both.

Exporting Binding Information

Servers can export binding information (and interface identifiers) or objects or both
by calling the rpc_ns_binding_export() routine. To export binding information
associated with a given RPC interface, a server uses an interface handle. The
interface handle is created by the IDL compiler as a reference to information about
the interface that the compiler stores in an interface specification.

To refer to binding information, the application code obtains a list of server binding
handles from the RPC runtime and passes the list to the export operation. The list
contains binding handles for all the protocol sequence and endpoint combinations
that the server has requested; it does this by calling the use-protocol-sequence
operations. However, the server can remove any of those binding handles from the
list before exporting it. This enables a server to export the binding information
associated with a subset of its binding handles.

To export object UUIDs, a server application must provide a list of object UUIDs for

the RPC objects it offers. The server can generate these object UUIDs itself or
obtain them from some application-specific source such as an object-UUID

Chapter 14. Basic RPC Routine Usage 227

database. All object UUIDs in a given server entry are associated with every
interface UUID and server address in the entry.

Eigure 29 illustrates how server binding handles in the application code refer to
server binding information in the runtime, which is exported to the name service.

Server erver erver
Application binding handle hg handle pg handle

Runtime

Server

0,

Server
binding
information

Exporting

Server
binding
information

Server entry

< = Reference to binding information

Figure 25. Exporting Server Binding Information

A server entry must belong exclusively to a server running on a given host. If there
are identical, interchangeable instances of a server on the host, they can share a
single set of server entries. However, if clients need to distinguish between
coexisting instances of a server (for example, when each offers a different RPC
object), each instance requires its own server entry.

Note: CDS databases are subject to access control. To access entries in a CDS

database, you need access control list (ACL) permissions. Depending on the
NSI operation, you need ACL permissions to the parent directory, the CDS
object entry, or both. If you need ACL permissions, see your CDS
administrator.

The ACL permissions are as follows:

To create an entry, you need insert permission to the parent directory.
To read an entry, you need read permission to the CDS object entry.
To write to an entry, you need write permission to the CDS object entry.

To delete an entry, you need delete permission either to the CDS object entry or
to the parent directory.

To test an entry, you need either test permission or read permission to the CDS
object entry.

Note that write permission does not imply read permission.

228 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Listening for Calls

When a server is ready to accept remote procedure calls, it initiates listening,
specifying the maximum number of calls it can execute concurrently; it does this by
calling the rpc_server_listen() routine. If a server allows concurrent calls, its
remote procedures are responsible for concurrency control. If executing a set of
remote procedures concurrently requires concurrency control and a server lacks this
control, the server must allow only one call at a time.

Under normal circumstances, the rpc_server_listen() routine does not return but
the RPC runtime continues listening for new remote procedure calls to the server's
registered interfaces until one of the following events occurs:

» Any of the server’s procedures makes a local management call to stop a server
from listening for future remote procedure calls.

» For applications whose servers enable clients to stop servers from listening, a
client makes a remote management call to stop a server from listening for future
remote procedure calls.

On receipt of a stop listening request, the RPC runtime stops accepting new remote
procedure calls for all registered interfaces. However, currently executing calls are
allowed to complete. After all executing calls complete, the listen operation stops
listening and returns control to the server. Servers should unregister endpoints after
they stop listening.

How Clients Find Servers

A client runtime can obtain server binding information from a namespace.
Alternatively, a client can obtain server binding information in string format from an
application-specific source such as a file. Runtime routines enable client
applications to obtain server binding handles that refer to server binding information
obtained from either source.

Searching a Namespace

To obtain binding information from a namespace, a client can do one of the
following:

* The client must call the import routines rpc_ns_binding_import_begin()
rpc_ns_binding_import_next() , and rpc_ns_binding_import_done() to obtain
a binding handle for a compatible server.

* The client must call the lookup routines rpc_ns_binding_lookup_begin()
rpc_ns_binding_lookup_next() , and rpc_ns_binding _lookup_done() to obtain
a list of binding handles for a compatible server. Select a binding handle from the
list by calling either of the following:

— The NSI select routine rpc_ns_binding_select() , which selects a binding
handle at random

— A user-defined select routine, which implements an application-specific
selection algorithm

* The client must use the automatic method of binding management to make the
client stub transparently manage binding information.

In this case, the application code lacks any calls to the NSI interface. However,
the automatic method does require the client to identify the directory service

Chapter 14. Basic RPC Routine Usage 229

entry at which to begin the search for binding information. The client must specify
the starting entry name as the value of the NSl-defined RPC_DEFAULT_ENTRY
environment variable.

An NSI import or lookup operation searches server entries for a compatible server.
On finding such a server entry, the search operation copies the server binding
information associated with the requested interface and an object UUID. The search
operation then creates a randomly ordered list of server binding handles to refer to
the potential bindings represented by the binding information.

m illustrates the use of a server binding handle to refer to server binding
information selected by an import operation.

Client
L Server
Application
PP binding handle
On
Server
Runtime binding
information
Importing
Server
binding
information
o . Server entry
< = Reference to binding information

Figure 26. Importing Server Binding Information

The callouts in the figure refer to the following operations:

1. The import operation looks up binding information of a server that is compatible
with the client.

The import operation finds a server entry based on the specified interface
identifier, and then looks at the list of object UUIDs. If the importing client
specifies a non-nil object UUID, the import operation looks for and returns that
object UUID. If the client specifies the nil object UUID and the server entry
contains any object UUIDs, the import operation selects and returns one UUID
at random. If the entry lacks any object UUIDs, the import operation returns the
nil UUID.

2. The import operation fetches the compatible binding information and creates a
binding handle for each potential binding represented in the binding information.

3. The import operation then selects a binding handle at random and passes it to
the client application.

230 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Using String Bindings to Obtain Binding Information

To use a string binding, a client starts with either an existing string binding or with
the components of the binding information. Do not hardcode string bindings into
application code. Rather, specify them at runtime using a command argument,
environment variable, file, or other means. The simplest way to specify a string
binding is for a user to supply a string binding manually to a client. However, this
manual approach is awkward for users who must know how to obtain and
manipulate the string bindings. Also, if binding information changes, the users are
responsible for updating any string bindings used by their clients. Reducing manual
intervention in the use of string bindings requires that an application provide its own
mechanisms for storing, maintaining, and accessing binding information. In contrast,
a directory service such as CDS provides these mechanisms automatically to
applications that store binding information in a namespace.

Regardless of how a client obtains a string binding, before establishing a binding,
the client must ask the RPC runtime for a binding handle that refers to the server
binding information depicted in the string binding. The client converts the string
binding into a server binding handle by calling the
rpc_binding_from_string_binding() routine.

The following pseudocode lists the calls for composing a string binding and for
using it to obtain a server binding handle:

rpc_string_binding _compose(...);

rpc_binding_from string_binding(...);

rpc_string_free(...);

Chapter 14. Basic RPC Routine Usage 231

232 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Chapter 15. RPC and Other DCE Components

This chapter discusses aspects of the internal behavior of remote procedure calls
that are significant for advanced RPC programmers, including the following topics:

* Threads of execution in RPC applications
» Authenticated remote procedure calls
» Using the Name Service Interface

DCE RPC is a fully integrated part of the distributed computing environment. The
communications capabilities of DCE RPC are used by clients and servers of other
DCE components. In turn, RPC uses services provided by DCE Threads, the DCE
Security Service, and the DCE Cell Directory Service.

A thread is a single sequential flow of control with one point of execution on a
single processor at any instant. Multiple threads can coexist in a single process.
DCE RPC uses threads internally for its own operations. DCE RPC also provides
an environment where RPC applications can use thread services.

The DCE RPC runtime provides RPC applications with a programming interface to
the security service. The RPC authentication interface enables RPC clients and
servers to mutually authenticate (that is, prove the identity of) each other. An
authenticated remote procedure call provides client authorization information and
authentication information to servers. Authorization information includes the
credentials a client has and the identities a client is associated with at the time of a
call. By comparing client authorization information to access control lists, a server
can find out whether a client is eligible to use a requested remote procedure. Client
authentication information identifies a client to a server.

To help RPC clients find RPC servers, RPC applications typically use a hamespace.
A namespace is a collection of information about applications, systems, and any
other relevant computing resources. A namespace is maintained by a directory
service such as CDS. DCE RPC provides a Name Service Interface (NSI) that is
independent of any particular directory service.

NSI communicates with supported directory services for both RPC applications and
the RPC control program. NSI insulates RPC applications from the intricacies of
using a directory service. An RPC server uses NSI to store information about itself
in a namespace, and a client uses NSI to access information about a server that
meets the client’s requirements for a specific RPC interface and object, among
other things. The client uses this information to establish a relationship, known as a
binding, with the server.

Threads of Execution in RPC Applications

Each remote procedure call occurs in an execution context called a thread. A thread
is a single sequential flow of control with one point of execution on a single
processor at any instant. A thread created and managed by application code is an
application thread.

Traditional processing occurs exclusively within local application threads. Local
application threads execute within the confines of one address space on a local
system and pass control exclusively among local code segments, as illustrated in

© Copyright IBM Corp. 1990, 1999 233

Traditional application

T
i
- Lo
Calling I \ Called
code ! , procedure
<« ---- ==
| '\
I
local application thread
I

Single address space
Figure 27. Local Application Thread During a Procedure Call

RPC applications also use application threads to issue both remote procedure calls
and runtime calls, as follows:

* An RPC client contains one or more client application threads; that is, a thread
that executes client application code that makes one or more remote procedure
calls.

* A DCE RPC server uses one server application thread to execute the server
application code that listens for incoming calls.

In addition, for executing called remote procedures, an RPC server uses one or
more call threads that the RPC runtime provides. As part of initiating listening, the
server application thread specifies the maximum number of concurrent calls it will
execute. The maximum number of call threads in multithreaded applications
depends on the design of the application. The RPC runtime creates the same
number of call threads in the server process.

The number of call threads is significant to application code. When using only one
call execution thread, application code does not have to protect itself against
concurrent resource use. When using more than one call thread, application code
must protect itself against concurrent resource use.

Eigure 2d shows a multithreaded server with a maximum of four concurrently
executing calls. Of the four call threads for the server, only one is currently in use;
the other three threads are available for executing calls.

Server
remote procedures
The server PN
application thread | ». A
(listening for calls) A » Single address space
Available g ; g ; ki 1. }
call threads // \ f

KRemote procedure
executing in

_ call thread

Maximum concurrent calls = 4

Figure 28. Server Application Thread and Multiple Call Threads

234 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Remote Procedure Call Threads

In distributed processing, a call extends to and from client and server address
spaces. Therefore, when a client application thread calls a remote procedure, it
becomes part of a logical thread of execution known as an RPC thread. An RPC
thread is a logical construct that encompasses the various phases of a remote
procedure call as it extends across actual threads of execution and the network.
After making a remote procedure call, the calling client application thread becomes
part of the RPC thread. Usually, the RPC thread maintains execution control until
the call returns.

The RPC thread of a successful remote procedure call moves through the
execution phases illustrated in

Remote procedure call

Client Server

------ Called
remote

...... B procedure

>
Calling
code

Client
application
— thread

Call thread

Figure 29. Execution Phases of an RPC Thread

The execution phases of an RPC thread in the preceding figure include the
following operations:

1. The RPC thread begins in the client process, as a client application thread
makes a remote procedure call to its stub; at this point, the client thread
becomes part of the RPC thread.

2. The RPC thread extends across the network to the server address space.

3. The RPC thread extends into a call thread, where the remote procedure
executes. While a called remote procedure is executing, the call thread
becomes part of the RPC thread. When the call finishes executing, the call
thread ceases being part of the RPC thread.

4. The RPC thread then retracts across the network to the client.

5. When the RPC thread arrives at the calling client application thread, the remote
procedure call returns any call results and the client application thread ceases
to be part of the RPC thread.

Eigure 30 on page 236 shows a server executing remote procedures in its two call

threads, while the server application thread listens.

Chapter 15. RPC and Other DCE Components 235

Cancels

Concurrent remote procedure calls

Client Server

A client application call thread
thread

p--Y--- Called

thread remote
...... procedure

Calling

The server application .
Single

J. chread
Client : 4) address
} space

A client application Call thread
thread

| _SERERE Called

thread remote
------ procedure

Calling

Maximum concurrent calls = 2

Figure 30. Concurrent Call Threads Executing in Shared Address Space

Note: Although a remote procedure can be viewed logically as executing within the
exclusive control of an RPC thread, some parallel activity does occur in both
the client and server.

An RPC server can concurrently execute as many remote procedure calls as it has
call threads. When a server is using all of its call threads, the server application
thread continues listening for incoming remote procedure calls. While waiting for a
call thread to become available, DCE RPC server runtimes can queue incoming
calls. Queuing incoming calls avoids remote procedure calls failing during
short-term congestion. The queue capacity for incoming calls is implementation
dependent; most implementations offer a small queue capacity. The queuing of

mcommg calls is discussed in EChapter 18 Topics in RPC Application Development’]

, under the topic of the routing of incoming calls.

DCE RPC uses and supports the synchronous cancel capability provided by POSIX
threads (pthreads). A cancel is a mechanism by which a thread informs another
thread (the canceled thread) to terminate as soon as possible. Cancels operate on
the RPC thread exactly as they would on a local thread, except for an
application-specified, cancel-timeout period. A cancel-timeout period is an optional
value that limits the amount of time the canceled RPC thread has before it releases
control.

During a remote procedure call, if its thread is canceled and the cancel-timeout
period expires before the call returns, the calling thread regains control and the call
is orphaned at the server. An orphaned call may continue to execute in the call

236 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

thread. However, the call thread is no longer part of the RPC thread, and the
orphaned call is unable to return results to the client.

A client application thread can cancel any other client application thread in the
same process (it is possible, but unlikely, for a thread to cancel itself.) While
executing as part of an RPC thread, a call thread can be canceled only by a client
application thread.

A cancel goes through several phases. m shows where each of these
phases occur.

Client Server

------ Called
remote
------ procedure

o>
Calling
code

Client
application
~ thread

Figure 31. Phases of a Cancel in an RPC Thread

The phases of a cancel in the preceding figure include the following:

1. A cancel that becomes pending at the client application thread at the start of or
during a remote procedure call becomes pending for the entire RPC thread.
Thus, while still part of the RPC thread, the call thread also has this cancel
pending.

2. If the call thread of an RPC thread makes a cancelable call when cancels are
not deferred and a cancel is pending, the cancel exception is raised.

3. The RPC thread returns to the canceled client application thread with one of the
following outcomes:

» If a cancel exception has not been taken, the RPC thread returns normal call
results (output arguments, return value, or both) with a pending cancel.

« If the remote procedure is using an exception handler, a cancel exception can
be handled. The procedure resumes, and the RPC thread returns normal call
results without pending any cancel.

 If the remote procedure failed to handle a raised cancel exception, the RPC
thread returns with the cancel exception still raised. This is returned as a
fault.

« If the cancel-timeout period expires, the RPC thread returns either a
cancel-timeout exception or status code, depending on how the application
sets up its error handling. This is true for all cases where any abnormal
termination is returned.

Multithreaded RPC Applications

DCE RPC provides an environment for RPC applications that create multiple
application threads (multithreaded applications). The application threads of a
multithreaded application share a common address space and much of the common
environment. If a multithreaded application must be thread-safe (guarantee that
multiple threads can execute simultaneously and correctly), the application is
responsible for its own concurrency control. Concurrency control involves

Chapter 15. RPC and Other DCE Components 237

programming techniques such as controlling access to code that can share a data
structure or other resource to prevent conflicting overlapping access by separate
threads.

A multithreaded RPC application can have diverse activities going on
simultaneously. A multithreaded client can make concurrent remote procedure calls
and a multithreaded server can handle concurrent remote procedure calls. Using
multiple threads allows an RPC client or server to support local application threads
that continue processing independently of remote procedure calls. Also,
multithreading enables the server application thread and the client application
threads of an RPC application to share a single address space as a joint
client/server instance. A multithreaded RPC application can also create local
application threads that are uninvolved in the RPC activity of the application.

Eigure 32 an page 239 shows an address space where application threads are

executing concurrently.

The application threads in Eigure 32 on page 2239 are performing the following

activities:
* The server application thread is listening for calls.
» Acall thread is available to execute an incoming remote procedure call.

* One client application thread has separated from an RPC thread and another is
currently part of an RPC thread.

* Alocal application thread is engaging in non-RPC activity.

238 IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Concurrent remote procedure calls

Multithreaded RPC application

The server application

thread (Iistening‘)>

The call thread (available)

Remote server
. o |
A client application
thread Call thread)
. .Y " Called
e thread remote
<o procedure
Remote server
. - |
A client application
thread Call thread)
i .t " Called
a dmg thread remote
COUE e procedure

A local application thread
(engaged in non-RPC activity)

. .
.

~

Single address space

Figure 32. A Multithreaded RPC Application Acting as Both Server and Client

Security and RPC: Using Authenticated Remote Procedure Calls

DCE RPC supports authenticated communications between clients and servers.
Authenticated RPC works with the authentication and authorization services
provided by the DCE Security Service.

Chapter 15. RPC and Other DCE Components 239

Authentication

On the application level, a server makes itself available for authenticated
communications by registering its principal name and the authentication service that
it supports with the RPC runtime. The server principal name is the name used to
identify the server as a principal to the registry service provided by the security
service. In practice, this name is usually the same as the name that the server uses
to register itself with the DCE Directory Service.

A client must establish the authentication service, protection level, and authorization
service that it wishes to use in its communications with a server. The client
identifies the intended server by means of the principal name that the server has
registered with the RPC runtime. Once the required authentication, protection, and
authorization parameters have been established for the server binding handle, the
client issues remote procedure calls to the server as it normally does.

The security service, in conjunction with the RPC runtime, assumes responsibility
for the following:

» Authenticating the client and server in accordance with the requested
authentication service

» Applying the requested level of protection to communications between the client
and server

* Providing client authorization data to the server in a form determined by the
requested authorization service

Note: For a detailed discussion of authentication within the context of DCE

security, refer to [Chapter 25 Authentication” on page 533 of this guide.

When a client establishes authenticated RPC, it must indicate the authentication
service that it wants to use. The possible values are the following:

rpc_c_authn_none
No authentication

rpc_c_authn_dce_secret
DCE shared-secret key authentication

rpc_c_authn_dce_public
Reserved for future use

rpc_c_authn_default
DCE default authentication service

The value rpc_c_authn_none is used to turn off authentication already established
for a binding handle. The default authentication is DCE shared-secret (also known
as private key) authentication.

Before a client and server can engage in authenticated RPC, they must ""agree” on
which authentication service to use. Specifically, the server must register the
""agreed on” authentication service with the RPC runtime, along with the server’'s
principal name. For its part, the client must select the same service for the server’'s
binding handle. The client indicates the appropriate server by supplying the server’s
principal name. If the client does not know the server's name, it can use the
rpc_mgmt_ing_server_princ_name() routine to determine the name.

240 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

Cross-Cell Authentication

A client can engage in authenticated RPC with a target server that is in the client’s
cell or in a foreign cell. In the case of cross-cell authentication, DCE security
performs the necessary additional steps on behalf of the client.

To establish authenticated RPC with a foreign server, a client must supply the fully
qualified principal name of the server. A fully qualified name includes the name of
the cell as well as the name of the principal and takes the following form:

/.../ cell_name/ principal_name
Protection Levels

When a client establishes authenticated RPC, it can specify the level of protection
to be applied to its communications with the server. The protection level determines
how much of client/server messages are encrypted. As a rule, the more restrictive
the protection level, the greater the impact on performance. Different levels are
provided so that applications can control the protection versus performance
tradeoffs.

Note that the protection level is entirely a client responsibility. When a server
registers its supported authentication service with the RPC runtime, it does not
specify any protection information for that service. However, the server can include
the protection level used for a particular operation when deciding if the caller is
authorized to perform the operation.

Authenticated RPC supports the following protection levels:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication service.

rpc_c_protect_level _none
There is no protection level.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship with the
server. This level performs an encrypted handshake when the client first
communicates with the server. Encryption or decryption is not performed on
the data sent between the client and server. The fact that the handshake
succeeds indicates that the client is active on the network.

rpc_c_protect_level call
Performs protection only at the beginning of each remote procedure call
when the server receives the request. This level attaches a verifier to each
client call and server response.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence; that is, ncacn_ip_tcp . If this level is
specified and the binding handle uses a connection-based protocol
sequence, the routine uses the rpc_c_protect_level _pkt level instead.

rpc_c_protect_level pkt
Ensures that all data received is from the expected client. This level
attaches a verifier to each message.

rpc_c_protect_level_cdmf_privacy
Performs protection as specified by all of the previous levels and also

Chapter 15. RPC and Other DCE Components 241

Authorization

encrypts each remote procedure call argument value. This level encrypts all
user data in each cell and provides a lower level of packet privacy than
rpc_c_protect_level_pkt_privacy

This is the second highest protection level, but it is available only if either
DCE-based privacy level protection or dcecdmf was installed.

rpc_c_protect_level pkt_integrity
Ensures and verifies that none of the data transferred between client and
server has been modified. This level computes a cryptographic checksum of
each message to verify that none of the data transferred between the client
and server has been modified in transit.

This is the highest protection level that is guaranteed to be present in the
RPC runtime.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and also
encrypts each remote procedure call argument and return values. This level
encrypts all user data in each call.

This is the highest protection level, but it may not be available in the RPC
runtime.

If a client wants to use the default protection level but does not know what this level
is, it can use the rpc_mgmt_ing_dflt_protect level() routine to determine what the
default level is.

Authorization is the process of checking a client’s permissions to an object that is
controlled by the server. Access checking is entirely a server responsibility and
involves matching the client’s credentials against the permissions associated with
the object. A client’s credentials consist of the principal ID and group memberships
contained in the client’'s network login context.

Authenticated RPC supports the following options for making client authorization
information available to servers for access checking:

rpc_c_authz_none
No authorization information is provided to the server, usually because the
server does not perform access checking.

rpc_c_authz_name
Only the client principal name is provided to the server. The server can then
perform authorization based on the provided name. This form of
authorization is sometimes referred to as name-based authorization.

rpc_c_authz_dce
The client’s credentials (DCE Privilege Attribute Certificate or PAC) is
provided to the server with each remote procedure call that is made using
the binding parameter. The server performs authorization by using the client
credentials. Generally, access is checked against DCE ACLSs.

When a client establishes authenticated RPC, it must indicate which authorization
option it wants to use.

It is the server’s responsibility to implement the type of authorization appropriate for
the objects that it controls. When the server calls rpc_binding_ing_auth_caller() to
return information about an authenticated client, it gets back either the client’s

242 1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

principal name or a pointer to the data structure that contains the client’s
credentials. The value that is returned depends on which type of authorization the
client specified on its call to establish authenticated RPC with that server.

Each server is responsible for implementing its own access checking by means of
ACL managers. When a server receives a client request for an object, the server
invokes the ACL manager appropriate for that type of object and passes the
manager the client’s authorization data. The manager compares the client
authorization data to the permissions associated with the object and either refuses
or permits the requested operation. In the case of certified (PAC-based)
authorization, servers must implement access checking by using the ACL facility
provided by the DCE Security Service.

An ACL management API (dce_acl*) is also available.
Name-Based Authorization

Name-based authorization (rpc_c_authz_name) provides a server with the client’s
principal name. The server call to rpc_binding_inq_auth_caller() retrieves the
name from the binding handle associated with the client and returns it as a
character string.

It is not recommended that names be used for authorization. To perform access
checking using client principal names, the names must be stored in the access lists
associated with the protected objects. Each time a name is changed, the change
must be propagated through all the access lists in which the name is defined.

DCE Authorization

DCE authorization (rpc_c_authz_dce) provides a server with the client’s
credentials.

Credentials offer a trusted mechanism for conveying client authorization data to
authenticated servers. The security service generates a client’'s credentials in a
tamper-proof manner. When a server receives a client credentials, it knows that the
credentials has been certified by DCE security.

Credentials are designed to be used with the DCE ACL facility. The ACL facility
provides an editor and a set of API routines that support the implementation of
access control lists and the managers to control them.

Authenticated RPC Routines

Authenticated RPC is implemented as a set of related RPC routines. Some of the
routines are for use by clients, some are for use by servers and their managers,
and some are for use by both clients and servers. The authenticated RPC routines
are as follows:

rpc_binding_set_auth_info()
A client calls this routine to establish an authentication service, protection
level, and authorization service for a server binding handle. The client
identifies the server by supplying the server’s principal name. The RPC
runtime, in conjunction with the security service, applies the authentication
service and protection level to all subsequent remote procedure calls made
using the binding handle.

Chapter 15. RPC and Other DCE Components 243

rpc_binding_ing_auth_info()
A client calls this routine to return the authentication service, protection
level, and authorization service that are in effect for a specified server
binding handle. This routine also returns the principal name of the server
associated with the binding handle.

rpc_mgmt_ing_dflt_protect_level()
A client or a server calls this routine to learn the default protection level that
is in force for a given authentication service.

rpc_mgmt_ing_server_princ_name()
A client, a server, or a server manager can call this routine to return the
principal name that a server has registered with the RPC runtime via the
rpc_server_register_auth_info() routine. A client can identify the desired
server by supplying a server binding handle and the authentication service
associated with the registered principal name.

rpc_server_register_auth_info()
A server calls this routine to register an authentication service that it wants
to support and the server principal name to be associated with the
registered service. The server can also optionally supply the address of a
key retrieval routine to be called by the security service as part of the client
authentication process. The routine is a user-supplied function whose
purpose is to provide the server’s key to the DCE security runtime.

Note that the server registers only an authentication service. It does not
establish a protection level or an authorization service. These are the
responsibilities of the client.

rpc_server_register_auth_ident
A server calls this routine to register user-to-user based authentication
information with the RPC runtime.

rpc_binding_ing_auth_caller()
A server calls this routine to return the authentication service, protection
level, and authorization service that is associated with the binding handle of
an authenticated client. This call also returns the server principal name
specified by the client on its call to rpc_binding_set_auth_info()
rpc_mgmt_set_authorization_fn()
A server calls this routine to establish a user-supplied authorization function
to validate remote client calls to the server's management routines. For
example, the user function can call rpc_binding_ing_auth_caller() to
return authentication and authorization information about the calling client.
The RPC runtime calls the user-supplied function whenever it receives a
client request to execute one of the following server management routines:

* rpc_mgmt_ing_if_ids()

* rpc_mgmt_ing_server_princ_name()

* rpc_mgmt_ing_stats()

* rpc_mgmt_is_server_listening()

* rpc_mgmt_stop_server_listening()
When an unauthenticated client calls a server that has specified authentication, the
RPC runtime will not perform any authentication, and the call will reach the
application manager code. It is up to the manager to decide how to deal with the
unauthenticated call.

Typically, servers and clients establish authentication as follows:

244 |1BM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

* The server specifies an authentication service for a principal identity under which
it runs by calling rpc_server_register_auth_info() . The authentication service is
specified by the authn_svc parameter of this call. Currently, servers may specify
either DCE secret key authentication (by supplying either
rpc_c_authn_dce_secret or rpc_c_authn_default) or no authentication (by
supplying rpc_c_authn_none). The specified authentication service will be used
if it is also requested by the client.

* The client sets authentication for a binding handle by calling
rpc_binding_set_auth_info() . The choices are also currently either DCE secret
key or no authentication. Client calls made on the binding handle attempt to use
the specified authentication service.

» The server manager code calls rpc_binding_ing_auth_caller() to extract any
authorization information from the client binding for the call.

Using RPC Within a Single Thread (AlIX Only)

The default behavior for an application client is to be single-threaded. This means
that only one thread, the main thread, exists in the client process. All application
and RPC runtime execution takes place within this single thread. This behavior
applies only to clients that use the User Datagram Protocol (UDP). If another
protocol sequence is used for RPC transport, the RPC runtime will spawn several
threads and revert to multithreaded behavior.

Single-threaded behavior, compared to multithreaded client behavior, provides
several benefits to application developers:

* Debugging is easier. Using advanced thread-aware debuggers and following
code execution through multiple thread context switches are unnecessary. The
same debugging techniques and tools used to debug standard applications can
be used to debug an RPC client.

» Usage of system resources is lower. The DCE Threads runtime is not initialized
in single-threaded mode. This means startup time will be faster, less memory will
be used, and performance will improve because context switching does not take
place.

» Linking libraries that are not thread-safe into DCE applications is less dangerous.
Some third-party libraries depend on default behavior from certain operating
system functions. However, in a multithreaded process this behavior is defined
differently. Examples of this include signal handling, I/0O, and fork , and exec
functions. When an application client is single-threaded, the default behavior for
these functions is guaranteed, and without risk when using libraries that are not
thread-safe.

To remain single-threaded, the application client has the following restrictions:

* must use UDP only. This can be accomplished either by using the following
command before starting the client export
RPC_SUPPORTED=PROTSEQS=NCADG_IP_UDP, or by using the -protocol udp option
when configuring the DCE client.

» cannot create any threads (cannot use pthread_create).

If any application-level threads are created in the RPC client, the single-threaded
process immediately reverts to multithreaded behavior. This means that both the
RPC runtime and DCE Threads runtime will be initialized and create several
runtime-level threads, and the benefits described for a single-threaded client will no
longer apply. Once the client becomes multithreaded, it remains so even if all of the
user-level threads have terminated.

Chapter 15. RPC and Other DCE Components 245

Existing applications can take advantage of single-threaded mode without requiring
changes to the code. As long as the client is using the UDP protocol sequence and
has not performed a pthread_create call, single-threaded behavior automatically
remains; applications can continue to make pthread API calls and remain in
single-threaded mode. If, for example, the application creates mutex variables, and
even locks or unlocks these variables, these calls will behave correctly and not
cause the process to become multithreaded. However, after the first
pthread_create call takes place in the client application, it becomes multithreaded
and all previously initialized pthreads primitives will function as expected in a
multithreaded environment.

To implement single-threaded behavior, the DCE Threads library performs its
initialization in two phases:

* Phase 1 occurs when the first pthread API call is made. This initializes mutexes,
condition variables, and attributes.

* Phase 2 occurs when the first pthread_create call is made. This initializes the
remaining DCE Threads functionality, including thread management, context
switching, the creation of a null background thread, and all of the multithreaded
operating system behavior as described in the chapter on multithreaded
programming.

Directory Services and RPC: Using the Namespace

This section discusses how the DCE RPC NSI configures directory service entries
and how RPC applications can use those entries. The following topics are included:

» Directory service entries defined by NSI
Describes the kinds of directory service entries NSI defines.
» Searching the namespace

Describes how the namespace is searched when a client requests binding
information.

» Strategies for using directory service entries
Outlines strategies for using each kind of entry.
* The service model

Describes the service model for defining RPC servers and introduces NSI usage
models intended to guide application developers in assessing how to best use
NSI for a given application.

* The resource model
Describes the resource model for defining RPC servers.

NSI Directory Service Entries

246

To store information about RPC servers, interfaces, and objects, NSI defines the
following directory service entries in the namespace: server entries, groups, and
profiles. These directory service entries are CDS objects.

* A server entry is a directory service entry that stores binding information and
object UUIDs for an RPC server.

* A group is a directory service entry that corresponds to one or more RPC servers
that offer one or more RPC interfaces, type of RPC object, or both in common.

» A profile is a directory service entry that defines search paths in a namespace for
a server that offers a particular RPC interface and object.

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide —Core Components

The use of server entries, groups, and profiles determines how clients view servers.
A server describes itself to its clients by exporting binding information associated
with interfaces and objects to one or more server entries. A group corresponds to
servers that offer a given interface, service, or object. Profiles enable clients to
access alternative directory service entries when searching for an interface or
object. Used together, groups and profiles offer sophisticated ways for RPC
applications to maintain and use directory service data.

NSI Attributes

Usually, the distinct server entries, groups, and profiles concepts are adequate for
using NSI. However, the way NSI stores RPC information allows you to combine
server entries, groups, and profiles into a single directory service entry. To store
information about RPC applications in a directory service entry, the RPC directory
service interface defines several RPC-specific directory service attributes, or NSI
attributes. NSI attributes contain information about RPC applications in a directory
service entry. The NSI attributes are as follows:

* NSI binding attribute

The binding attribute stores binding information and interface identifiers (interface
UUID and version numbers) exported to the server entry. This attribute identifies
a directory service entry as a server entry.

* NSI object attribute

The object attribute stores a list of one or more object UUIDs. Whenever a server
exports any object UUIDs to a server entry, the server entry contains an object
attribute as well as a binding attribute. When a client imports from that entry, the
import operation returns an object UUID from the list stored in the object
attribute.

* NSI group attribute

The group attribute stores the entry names of the members of a single group.
This attribute identifies a directory service entry as an RPC group.

* NSI profile attribute

The profile attribute stores a set of profile elements. This attribute identifies a
directory service entry as an RPC profile.

Eigure 33 on page 248 represents the correspondence between NSI attributes and
the different directory service entries: server entries, groups, and profiles.

Chapter 15. RPC and Other DCE Components 247

NSI attributes

Server entry «— — — —| Binding attribute
v. LI

Object attribute

Group €<= — — — Group attribute

Profile €<= — — — Profile attribute
Key:
< — — — = Basic attribute that defines an NSI name service entry
< ------- = Optional attribute

Figure 33. NSI Attributes

Any directory service entry can contain any combination of the four NSI attributes.
However, to facilitate administrating directory service entries, avoid creating binding,
group, and profile attributes in the same entry. Instead, use distinct directory service
entries for server entries, groups, and profiles. The object attribute, in contrast, is
designed as an adjunct to another NSI attribute, especially the binding attribute.

When implementing the resource model or when used to distinguish server
instances, a server entry contains an object attribute as well as a binding attribute.
On finding a server entry whose binding attribute contains compatible binding
information, an NSI search operation also looks in the entry for an object attribute.
For groups whose membership is selected according to a shared object or set of
objects, it may be useful to export those objects to the group. In this case, the
directory service entry of the group contains both group and object attributes. For
reading the object UUIDs in the NSI object attribute in any directory service entry,
NSI provides a set of object inquiry operations, called using the
rpc_ns_entry_object_ing_ {begin ,next,done }() routines.

Using separate entries facilitates administration of the namespace; for example, by
enabling entry names to specifically describe their contents. Keeping server entries,
profiles, and groups separate allows clear references to each of them.

Note: In addition to any NSI attributes, a directory service entry contains other
kinds of directory service attributes. Every entry in a hamespace contains
standard attributes created by the directory service. NSI operations rely on
some standard attributes to identify and use an entry.

Structure of Entry Names

Each entry in a namespace is identified by a unique global name comprising a cell
name and a cell-relative name.

A cell is a group of users, systems, and resources that share common DCE
services. A cell configuration includes at least one cell directory server a