IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

<|ll

Administration Guide — Core Components

IBM Distributed Computing Environment Version 3.1
for AIX and Solaris:

<|ll

Administration Guide — Core Components

Note
FBefore using this document, read the general information under EAppendix E_Natices” on page 531,

First Edition (August 1999)

This edition applies to Version 3.1 of IBM Distributed Computing Environment for AIX and Solaris and to all
subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation
Department VLXA

11400 Burnet Road

Austin, Texas

78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:
Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: "Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate lll, as applicable or in the equivalent clause of any other applicable Federal government
regulations.”

© Copyright International Business Machines Corporation 1990, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures L L L ..o
Tables o 0L L0 L
About This Book L oo XXiii
Audience. L L L L XX
Applicability. L L XXii
Purpose L L L X
Document Usage. Xxi
Related Documents. . . . C e e LI
Typographic and Keying Convent|ons D ¢\
Problem Reporting . . . Ce e e XXV
Pathnames of Directories and Frles in DCE Documentatron Ce XXV
Part 1. The DCE Control Program 1

Chapter 1. DCE Control Program Introduction 3
Flexible, Portable, and Extensible Administration . 3
DCE Administration Objects. Y
Using the DCE Control Program b

Starting and Stopping dcecp 5

Invoking dcecp Operations . 5
Doing More with dcecp 7

When to Use an Interactive Command or Scnpt .
Editing Command Lines . . . ¢
Editing the Current Command Llne S e K0
Editing Command Lines with the history Command 4
Using the dcecp Help Facilites 14
Customizing dcecp Sessions 16
Adding Scripts to dcecp Sessions 16
Adding New Objects to the DCE Control Program 18
Environment Variables. 18
Chapter 2. Using the DCE Control Program Command Language 19
Chapter Preview 1
Variable Substituton .. 20
Command Substitution. . . . 2
Grouping Elements and Controllrng Interpretatlon 2 |
Grouping Elements with Braces 22
Grouping Elements with Double Quotes 22
Including Special Characters with Backslashes. 23
Documenting Scripts with Comments 24
Convenience Variables . . . e e 24
Current Principal (User) Name (_u) 24 o3
Current CellName (¢) .25
Current Host Name (_h) C e e e 26
Most Recent Operation Argument Name (_n) e e 26
Parentof n(p). . . Y
Last dcecp Object Name (_o) Y
Last Operation’s Return Value (_r) 28
DCE ServerstoUse (_(S(xxx)) 28
Last Security Server Used (_b(sec)). 30
Most Recent Error Code (e) 3

© Copyright IBM Corp. 1990, 1999 iii

CDS Confidence Level (_conf). 30
Measuring and Counting with Expressions 30
Operating on Lists 32
Controlling Scripts . 33

Conditionalizing with if Statements 33

Controlling Script Execution with Loops 33

Terminating Loops with continue and break . 35

Testing with Patterns Before Execution with case . 36
Creating Commands Dynamically. 37
Reading Other Files as dcecp Scripts . 37
Creating New Commands 38
String Manipulation . 40

Constructing Strings 41

Parsing Strings 41

Other String Handling Operatlons 42
Dealing with Errors and Exceptions . . 43

Using Global Error Information Variables . 43

Using catch to Trap Errors and Exceptions . 44

Reissuing Complex Errors 45
Working with Files 45

Specifying Filenames . 46

Reading and Writing Files 46
Spawning Subprocesses . 47

Running Operating System Commands from a Scnpt 47
Chapter 3. Writing Scripts and dcecp Objects 49
Informal Administration Scripts . . 49
Formal Task Objects 51

A Model for Task Objects. 51

Using the parseargs Procedure 58

Invoking Task Objects . 59

Part 2. DCE Administration Tasks 61
Chapter 4. DCE Administration Task Objects 63
Using Task Objects to Simplify DCE Administration . 63
Looking Beyond the Tools . 64
Chapter 5. Managing a DCE Cell . . 65
Showing All Configured DCE Servers and DCE Hosts . 65
Testing Cell Operation . 66
Backing Up the Security Serwce Reg|stry and CDS 67
Changing the IP Address of a DCE Server 68

Server Updates Co e 68

Client Updates. 69
Changing the IP Address of a DCE Cl|ent 70
Modifying or Extending the Cell Object. 71
Chapter 6. Managing DCE Hosts 73
Listing the DCE Hosts in a Cell . 73
Showing All Servers Configured for a DCE Host . 74
Testing Whether a DCE Host is Running . 74
Modifying or Extending the Host Object 75
Chapter 7. Managing DCE Users 77
Creating a New User . . 77

iv

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Showing User Information . 78

Deleting a User . . . B)
Modifying or Extending the User Object . =10
Chapter 8. Event Management Service (EMS) 81
Starting the EMS Server . 8
Logging EMS Events .. 8
Managing EMS Consumers. 83
Managing EMS Event Filters 84
Managing EMS EventQueues. 86
Managing the EMS Daemon . . . e - o)
Setting Permission for the EMS Server . - 14
Event Type Security Management 87
Event Filter Security Management 88
Consumer Security Management. 89
EMS Security Initialization 89
Part 3. DCE Host and Application Administration T < X]
Chapter 9. Managing DCE Host Services and Host Data . K
DCE Host Services . . . I * I
Starting and Stopping DCE Host Servrces G A o 7
Abnormal Termination of the DCED Host Daemon .
Managing Host Data . . . S
Permissions for Accessing Host Data . [¢)
Modifying Host Cell Name Information. 97
Manipulating Data in Other Host Files 98
Routing Serviceability Messages 9
Serviceability Message Severity Levels 99
How to Route Serviceability Messages.100
Chapter 10. DCE Application Administration105
Controlling Server Operation . . . e (015}
Common Server Configuration Needs e [0S}
Configuring Servers. . . i
Listing and Retrieving Server Conflguratlon Informatlon I <
Unconfiguring Servers. .13
Starting and Stopping Servers.13
Disabling and Enabling Services14
Extending Server Configurations14
Changing Server Configurations116
Checking Whether Servers Are Running117
Managing Client/Server Binding Information 117
Using the Endpoint Map for Easy Application Development and Admlnrstratlon . 119
Automatic Endpoint Map Administraton119
Restricting Endpoints . . . A 210
Viewing Information in the Endpomt Map . T 2
Managing Server Entries, Groups, and Profiles in CDS S . 121
Using Unique Server Entry Names to Identify Individual Servers and Objects 122
Using Group Entries to Help Balance Server Workloads 126
Using Profiles to Direct Client Searches for Servers.130
Client Administration . . . e R 7
Determining the Entry Name 1)
Providing the Entry Name to Clients.136

Contents V

Part 4. Cell Directory Service

Vi

Chapter 11. Introduction to the DCE Directory Service
How the DCE Components Use the DCE Directory Service .
How to Use DCE Directory Services.
Directory Services and the Cell Environment
How Cells Determine Naming Environments.
Global Names .
Cell-Relative Naming in a Standalone CeII
An In-Depth Analysis of DCE Names
CDS Names e
X.500 Names .
LDAP Names .
DNS Names .
Names Outside of the DCE D|rectory Serwce .

Chapter 12. CDS Concepts
How CDS Works .
Replicas and Their Contents
CDS Preferred Clearinghouse Enhancement
Object Entries .
Soft Links
Child Pointers .
Summary
Security in the Cell D|rectory Enwronment
CDS User Interfaces

Chapter 13. How CDS Looks Up Names
Translating from Names to Resources .
How CDS Finds Names .
The Solicitation and Advemsement Protocol
Lookups .
The dcecp cdscache create Command

Chapter 14. How CDS Updates Data
Update Propagation. .o

Skulk Operation . .
How Timestamps Help Keep Data ConS|stent .
Downed Server Modifications .

Chapter 15. Managing the DCE Directory Service

Using the DCE Control Program . .o
CDS Managed Objects
DCE Control Program Operatlons for CDS
CDS Object Attributes .

Using dcecp to Maintain CDS .

Chapter 16. Controlling Access to CDS Names

Overview of DCE Authorization for CDS

ACL Types Supported by CDS.

How Permissions Propagate to CDS D|rectones and The|r Contents
ACL Entry Types Used for Principals

DCE Permissions Supported by CDS .

Controlling Access to CDS Clerk and Server Management Operatlons .

Control Program Commands and Required Permissions
Editing ACLs on CDS Names .

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

137

. 139
. 139
. 140
. 140
. 142
. 142
. 143
. 144
. 144
. 145
. 148
. 148
. 149

. 151
. 151
. 153
. 153
. 154
. 155
. 155
. 155
. 156
. 157

. 159
. 159
. 163
. 163
. 164
. 164

. 167
. 167
. 167
. 168
. 169

. 171
. 171
. 171
. 172
. 172
. 173

. 175
. 175
. 175
. 176
. 177
. 178
. 179
. 180
. 182

How CDS Servers Gain Access to the Namespace .

Setting Up Access Control in a New Namespace . .
Adding Members to the Namespace Authorization Group
Creating Additional Authorization Groups .

Establishing Maximum Permissions for Unauthentu:ated PrlnC|paIs

Chapter 17. Managing Clerks, Servers, and Clearinghouses
Monitoring Clerk, Server, and Clearinghouse Counters .
Displaying Clerk Counters
Displaying Server Counters . .
Displaying Clearinghouse Counters .
Setting Up Clerk Communications with Specrflc Clearlnghouses
Monitoring Clerk Communications with Specific Clearinghouses
Displaying the Contents of a Clearinghouse .
Forcing the Clearinghouse to Checkpoint to Disk .
Disabling Clerks and Servers .
Disabling a Clerk.
Disabling a Server .
Restarting Clerks and Servers
Restarting a Clerk .
Restarting a Clerk in a Slim Clrent Confrguratron .
Restarting a Server .

Preserving a Clearinghouse Across a Server System Upgrade .

Backing Up Namespace Information. .
Using Replication to Back Up Namespace Informatron .
Using Operating System Backups

Chapter 18. Managing CDS Directories

Creating Directories.
Permissions for Creating a Dlrectory
Entering the directory create Command
Checking the ACL Entries for a New Directory .

Upgrading the Directory Version on the Cell Root D|rectory .

Upgrading the Directory Version on a Directory.
Creating a Read-Only Replica .

Before You Create a Replica

Permissions for Creating Replicas

Entering the directory create Command
Deleting a Read-Only Replica .

Permissions for Deleting a Replica .

Entering the directory delete Command
Skulking a Directory.

Permissions for Skulking a Drrectory

Entering the directory synchronize Command

Synchronizing CDS Server Clocks
Modifying a Directory’s Convergence .

Before You Modify a Directory’s Convergence .

Permissions for Modifying a Directory’s Convergence

Entering the directory modify Command

Chapter 19. Viewing the Structure and Contents of a Namespace

Viewing the Namespace with the CDS Browser
Displaying the Default Namespace .
Expanding and Collapsing Selected Drrectorres
Expanding and Collapsing the Entire Cell Namespace .
Filtering the Namespace Display .

Contents

. 183
. 183
. 183
. 184
. 184

. 185
. 185
. 185
. 185
. 185
. 186
. 186
. 187
. 187
. 187
. 187
. 187
. 187
. 188
. 188
. 188
. 189
. 189
. 189
. 190

. 191
. 191
. 1901
. 192
. 192
. 193
. 193
. 193
. 194
. 195
. 195
. 196
. 196
. 196
. 196
. 197
. 197
. 197
. 198
. 199
. 199
. 199

. 201
. 201
. 201
. 202
. 202
. 202

Vii

Navigating the Namespace . . 202
Listing the Contents of Directories . . 203
Displaying the Attribute Values of CDS Names . 203
Displaying Clerk and Server Attribute Information . . 204
Chapter 20. Using the CDS Subtree Commands to Restructure CDS
Directories e . 207
Overview of the Merge and Append Procedures . 207
Merging CDS Directories . . 208
Appending CDS Directories . . 210
Modifying ACLs at the Target Locat|on . 211
Handling Errors e . 212
Duplicate Names. . 212
Unreachable Name Fallures . 212
Insufficient Permissions . . 212
Merging CDS Directories into a Forelgn CeII . 213
Establishing Cross-Cell Authentication . . 213
Performing a Merge Operation into a Foreign CeII . 213
Restoring Merged CDS Directories . . 213
Chapter 21. Restructuring a Namespace . 215
Managing Soft Links . 215
Creating a Soft Link. . 215
Changing a Soft Link’s Destlnatlon Name . 217
Changing a Soft Link’s Exp|rat|on or Extension Value . 217
Deleting a Soft Link. . . 217
Modifying a Directory’s Replica Set . 218
Before You Modify a Replica Set . . 218
Permissions Required for Modifying a Rephca Set . 218
Designating a New Master Replica . . 219
Excluding a Replica from a Replica Set . 220
Deleting Directories . . 221
Deleting a Nonreplicated Dlrectory . 221
Deleting a Directory Replica. . 222
Relocating a Clearinghouse . . 223
Disassociating a Clearinghouse from Its Host Server System . 224
Copying the Clearinghouse Database Files to the Target Server System . 224
Starting the Clearinghouse on the Target Server . . 225
Deleting a Clearinghouse. . 225
Before You Delete a Clearlnghouse . 225
Permissions for Deleting a Clearinghouse. . 226
Deleting a Clearinghouse. . 226
Chapter 22. Managing Intercell Naming . 227
How the Global Directory Agent Works. . 227
Managing the Global Directory Agent . 230
Enabling Other Cells to Find Your Cell . . 230
Defining a Cell in the Domain Name System . 231
Defining a Cell in an LDAP Server . 232
Part 5. DCE Distributed Time Service .235
Chapter 23. Introduction to DCE Distributed Time Service . 237
DTS Advantages . e e . 238
Applications Support . . 238
External Time-Provider Support . 238

Viil IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Manageability . .
Quantitative Inaccuracy Measurement
Basic DTS Concepts .
Time Measurement Factors .
Inaccuracy Values .
Synchronizing System Clocks .
How DTS Adjusts System Clocks.
DTS Time Representation
How DTS Works .
Clerks.
Servers

Chapter 24. Planning Your DTS Implementation

General Planning Guidelines

Configuring DTS for a LAN .

Configuring DTS for an Extended LAN

Configuring DTS for WANs and WAN Links .
LANs with WAN Links to Remote Sites.
LANs Connected by WAN Links .
WAN Cells .

Planning for External T|me Prowders

Chapter 25. Managing the DCE DTS
Using the DCE Control Program .
DTS Objects .
dcecp Operations for DTS .
DTS Object Attributes and Counters.
DTS Timestamp Format .
Reconfiguring DTS on Nodes . .
Stopping an Existing Clerk or Server
Creating a New Clerk or Server
Setting Clerk and Server Attribute Values
Temporarily Reconfiguring DTS
Modifying Clerk and Server Attributes .
The minservers Attribute .
Use of minservers Attribute with GIobaI Servers
Use of minservers Attribute with Systems on Point-to- Pomt Lmes
The maxinaccuracy Attribute
The syncinterval Attribute.
The tolerance Attribute.
The localtimeout, globaltimeout, and queryattempts Attrlbutes
The serverentry and serverprincipal Attributes .
Management Tasks Specific to Servers
Designating Global and Courier Servers .
Matching Server Epochs .

Setting the checkinterval Attribute for Connectlon to a T|me Provrder.

Changing the System Time .
Updating the Time Monotonrcally
Updating the Time Nonmonotonically
Forcing System Synchronization .
Controlling Access to DTS

Chapter 26. Interoperation with Network Time Protocol
Getting the Time from NTP Time Sources.
Getting the Time from Local NTP Time Sources
Getting the Time from Remote NTP Time Sources

. 239
. 239
. 240
. 240
. 241
. 242
. 243
. 244
. 247
. 247
. 248

. 251
. 251
. 252
. 252
. 253
. 253
. 254
. 254
. 255

. 257
. 257
. 257
. 257
. 258
. 259
. 260
. 260
. 260
. 261
. 261
. 263
. 263
. 265
. 266
. 266
. 267
. 267
. 269
. 269
. 270
. 270
. 272
. 272
. 273
. 273
. 274
. 275
. 275

. 277
. 277
. 277
. 278

Contents

iX

Giving the Time to NTP Nodes.279

Preventing Loops .. .281
Part 6. DCE Security Service283
Chapter 27. Overview of DCE Security . . . e e285
DCE Authentication Service Servers and CI|ents . e285
Preferred Security Server Replica286
The Registry Database . . . 2 S Y
Physical Security of the Database e e eZ288
How the Registry Database is Stored288
Replicated Databases .289
How Updates Are Handled .289
Master and Slave Replicas289
Handling Database Updates.29
Propagating Database Changes292
Master/Slave Authentication. . . . Ce e 292
The /etc/passwd and /etc/group Files and the Reg|stry Ce e e 292
The Local Registry 24 e K
Names for Security Objects 24 K
Using Names with dcecp Security Commands 24 Vi
Using Names with the dcecp acl Command29
Chapter 28. Using Access Control Lists L 1)
Authorization Overview .29
ACL Managers .29
ACL Interpretation . . . C e e 297
Credentials Inherited by Processes A Y
ACL Entriesand Masks .297
ACL Syntax. . . . C e e e 297
ACL Entry Types for Prmmpals and Groups e e 298
Group Permissions and Project Lists301
Using Principal and Group ACL Entries302
ACL Entry Types for Masks e (04
ACL Entry Types for Dissimilar DCE Releases303
The Checking Sequence for ACL Entries303
DenyingAccess .306
ACL ManagementTasks .306
Copying ACLs. . . . < 04
Generating ACLs from F|Ies < (04
ContainerACLs .308
Objects and Containers eg308
Initial ACLs for Objects and Contamers . e e eg308
Effect of Masks When EditngACLs.31
Chapter 29. Control Programs for Managing the DCE Security Service . . 313
Using the DCE Control Program313
Security Service Objects313
DCE Control Program Operations for the DCE Securlty Serwce A
Using the Registry Editor. . . . I 1)
Starting, Stopping, and Getting HeIp Coe36
rgy_edit Commands for Local Registry Mamtenance36

Chapter 30. Creating and Maintaining Principals, Groups, and
Organizations . . . T N R
Principal, Group, and Organlzatlon Names A J K]

X IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Primary Names
Full Names .
Aliases
Name Formats
Reserved Principals and Accounts
Object Creation Quotas
Universal Unique Identifiers and UNIX IDs
Adding and Maintaining Principals
Adding Principals. .
Changing Principals.
Deleting Principals and Allases
Extended Security Attributes for Prrncipals
DCE Authentication .
Managing Invalid Login Handlrng .
Managing Password Strength and Password Generatron .
The IBM DCE Enhanced Password Strength Server .
Managing Password Expiration .
Adding and Maintaining Groups and Organrzatrons .
Project Lists
Adding Groups and Organlzatlons
Changing Groups and Organizations
Deleting Groups and Organizations .
Maintaining Membership Lists .
Effects of Account Creation on Membershrp Llsts
Adding and Deleting Group Members .
Creating and Maintaining Aliases for Principals or Groups
Creating Aliases . .
Changing Primary Names to Alrases and Vrce Versa

Chapter 31. Creating and Maintaining Accounts
User Accounts.
Server Accounts .
Passwords for Server Accounts
Steps for Creating Server Accounts .
Machine Accounts .
How Identities Represented by Accounts Are Authentrcated .
Privilege Attributes .
Ticket-Granting Tickets and Tlckets to Servrces
Displaying Privilege Attributes and Tickets
Destroying a Principal’s Tickets
Adding Accounts . .
Setting Ticket Lifetimes

Ticket-Granting Ticket Lifetimes and Servrce Trcket eretrmes.

Adding Accounts Example
Modifying Accounts .
Deleting Accounts .
Creating, Maintaining, and Deletrng Keytab Frles .
The Keytab File . .
Creating and Maintaining Keys and Keytab Flles .
Removing Keytab Files
Changing Server and Machine Passwords in the Keytab Flle

Handling Compromised Server or Machine Passwords in the Keytab FrIe .

Maintaining the Local Registry .
The Registry Capacity Property .
Setting the Capacity and Lifespan Propertles
Purging Expired Entries e

. 319
. 319
. 319
. 320
. 320
. 320
. 321
. 321
. 322
. 323
. 324
. 324
. 325
. 336
. 336
. 339
. 344
. 345
. 345
. 346
. 347
. 347
. 348
. 348
. 348
. 349
. 349
. 350

. 351
. 351
. 351
. 352
. 352
. 352
. 352
. 353
. 353
. 354
. 355
. 355
. 358
. 359
. 359
. 360
. 361
. 361
. 361
. 363
. 365
. 366

. 366

. 366
. 367
. 367
. 368

Contents

Xi

Chapter 32. Creating and Using Extended Reglstry Attributes369

The xattrschema Object . . . < (1
Creating and Maintaining Attnbute Types e [1
Creating Attribute Types .370
Modifying Attribute Types.37
Renaming Attribute Types372
Deleting Attribute Types . . . N Y ¢
Defining the ACL Managers for Attnbutes e Y 44
Defining Attribute Type Encoding.374
Defining Attribute Trigger Servers.375
The -trigtype Option. .376
The -trigbind Option.o3716
Creating and Maintaining Attnbute Instances R <
Attaching Attribute Instances to Objects378
Modifying Attribute Instances379
Deleting Attribute Instances380
Using Attribute Sets. . . . I £ 0]
Extended Registry Attribute L|m|tat|ons C e e e38
Chapter 33. Administering a Multicell Environment383
Trust Relationships .383
Direct Trust Relationships383
Establishing Trust Relationships . . . N o
Constraints on Transitive Trust Relatlonshlps N 1 7
Creating Trust Relationships . . . G 1512
Command Options for the registry connect Command 1o 0]
Creating Cross-Cell Authentication Accounts Example 391
The Accounts Created by the registry connect Command391
Modifying Cross-Cell Authentication Accounts392
Intercell Access from OSF DCE 1.2.2 Clients393
Chapter 34. Viewing Registry Informaton39
Displaying Account Information . . . I o 15}
Displaying Group and Organization Informat|on e e39
Displaying Principal Information399
Displaying xattrschema Information400
Displaying ACL Information .401
Displaying keytab Information401
Chapter 35. Maintaining Policies and Properties403
Policies . . . ey (o
Standard Pollcy T (X1
Authentication Policy .405
Handling Conflicting Policies e406
The Effects of Changes on Existing PoI|C|es Lo4or
Displaying and Setting Standard and Authentication PoI|C|es.o 407
Properties . . . C e e408
Default Ticket Llfet|me Property e e408
Hidden Password Property408
Minimum Group ID Property.409
Minimum Organization ID Property409
Minimum UNIX ID Property409
Maximum UNIX ID Property.409
Minimum Ticket Lifetime Property.410
Displaying and Setting Properties.410

Xii IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 36. Performing Routine Maintenance
Adding Accounts . .
Overriding Entries in the Local Reglstry
How Overrides Work .
The passwd_override File Format
The group_override File Format .
Creating Override File Entries .
Leaving passwd_override File Fields Blank
Specifying Passwords for a Specific Machine
Preventing Login to a Machine.
Omitting Users from the Local Password Flles
Specifying a Home Directory and Login Shell for a Machme
Overriding a Principal’'s Group Affiliation
Applying Overrides to All Members of a Group . .
How passwd_override Handles Multiple Override Entrles .
Changing the Registry’s Master Key. .o
Validating the Authenticity of the DCE Security Serwce
Backing Up and Restoring the Registry Database.
Procedures for Backing Up the Registry Database
Procedure for Restoring the Registry Database
Setting the _s(sec) Variable .
Ensuring Consistent Local Files

Chapter 37. Handling Network Reconfigurations
Changing the Master Replica Site
Removing a Server Machine from the Network
Handling Network Address Changes.

Updating the pe_site File.

Handling Simultaneous Address Changes

Chapter 38. Setting Up the Registry .
Planning Sites for DCE Security Service Components .
Creating the Master Registry Database
The sec_create_db Command Format .
An sec_create_db Run Example .
The Results of sec_create_db .
Starting the Master Replica . .
Populating the New Registry Database
Setting Policies and Properties.
Adding Accounts .
Creating Slave Replicas .
Verifying that the Replicas Are Runnlng

Chapter 39. Importing UNIX Accounts to DCE
How passwd_import Works . .
The passwd_import Processing Steps .
Registry Entries Created by passwd_import .
The passwd_import Command Syntax .
Using passwd_import .
Using the Identical User Optlon
Using Check Mode . .
Resolving Conflicts .
Answering Prompts . .
Sample passwd_import Session .
Invoking passwd_import .
Examining the Group File

Contents

. 411
. 411
. 411
. 411
. 412
. 413
. 415
. 416
. 416
. 416
. 417
. 417
. 417
. 417
. 418
. 418
. 418
. 419
. 419
. 420
. 420
. 421

. 423
. 423
. 424
. 425
. 425
. 425

. 427
. 427
. 428
. 428
. 430
. 430
. 432
. 432
. 432
. 432
. 432
. 433

. 435
. 435
. 435
. 436
. 437
. 437
. 437
. 437
. 438
. 438
. 438
. 439
. 440

Xiii

Examining the Password File44

Adding Members to Groups. 442
Completing Processing . 442
Chapter 40. Troubleshooting Procedures . . . 443
Mapping of DCE Daemon Core Locations and How to Symlrnk to a Separate
Filesystem . . . e V4G
Restarting Security Servers .o . . 444
Back up and Recovery of the System after Fa|Iure in the Secunty Server . . .445
Backingup theregistry .445
Restoring the registry e e 445
Restarting the Master Server in Locksmrth Mode N TS
Automatic Changes to the Locksmith Account446
Starting a Security Server in Locksmith Mode447
Restarting a Security Server in Locksmith Mode447
Recovering the Master Replica . . . 2 V2
Determining the Most Current Database 2 v £
Converting a SlavetoaMaster448
Recovering Slave Replicas .449
Converting a Mastertoa Slave450
Forcibly Deleting a Slave Replica.450
Restoring a Duplicate Master451
Adopting Registry Orphans . . . LY
Accessing a Server Registered with User t0 User Protocol S . . 453
Designating a New Master Replica When the Current Master Replrca Has
Failed .453
Chapter 41. AIX/DCE Security Integration (AIX Only)455
More Detailed Information—Security Integraton455
Enabling DCEAccess .455
The SYSTEM Attribute. .455
The registry Attribute .456
Protecting Local Resources456
Protecting Local Resources with the /etc/securrty/user Frle S . . 457
Protecting Local Resources with the passwd_override and group_ overrrde
Files LY 4
Configuring DCE Access ona Per User BaS|sA458
Configuring and Protecting the Local RootUser458
Configuring and Protecting a Local-Only User458
Configuring a Synchronized User.459
Supporting Wandering DCE Users459
Access Method Identificaton460
Changing Passwords .460
Troubleshooting .460
Steps—Security Integration.463
Restrictions—Security Integration.463
Examples—Security Integration . . . e 464
Intercell Considerations—Security Integratron < [1)
Intercell Administration— Security Integration466
UNIX IDs for shadow principals466
Account Information. .466
Shadow Groups e 1616}
Manage UNIX IDs across ceIIs e e (Y 4
Security Integration on a Slim Client Confrgurauon468
Security Integration with Multiple Dceunixd Daemons 468

XiV IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 42. Pluggable Authentication Module (Solarls OnIy)
sso_cell Configuration File
The Authentication Module .

The Account Module

The Password Module.

Chapter 43. Accessing Registry Objects

The Registry Database

Registry Permissions .
Management, Authentlcanon and User Informatlon .

Permission Required to Create Principals, Groups, or Organlzatlons.
Permissions Required to Delete Principals, Group, or Organizations .

Permissions Required to Add Accounts

Permissions Required to Delete Accounts.

Permissions Required to Add Members to Groups
Permissions Required to Add Members to Organizations .
Permissions to Delete Members from Groups or Organizations .

Permissions Required to Change a Principal’s, Group’s, or Organlza'uon S

Full Name

Permissions Required to Change Management Informa'uon for Pnnmpals

Groups, or Organizations .

Permissions Required to Change Management Authentlcatlon and User

Information (Except Passwords) for Accounts
Permissions Required to Change Passwords for Accounts
Permissions Required to Change Authentication and Management
Information for Registry Policies and Properties.

Permissions Required to Execute Commands That Act on Rephcas .

Permissions Required to Create Extended Registry Attribute Types
Permissions Required to Delete Extended Registry Attribute Types
Permissions Required to View Extended Registry Attribute Types .
Permissions Required to Modify Extended Registry Attribute Types
Permission Required to Change ACLs on Registry Objects
Permissions Required by Slave Replicas . S

Registry ACL Manager.

Initial Registry ACLs

Chapter 44. DCE Audit Service
Features of the DCE Audit Service .
Components of the DCE Audit Service .
DCE Audit Service Concepts

Audit Clients

Code Points

Audit Events

Event Numbers

Event Classes.

Filters . .

Audit Trail File .
Administration and Programmmg in DCE Aud|t

Programmer Tasks .

Administrator Tasks .

Chapter 45. DCE Audit Service Administrative Tasks
Using DCE Auditing on AlX and Solaris .o
Configure the auditd daemon
Stop and restart the DCE servers.
Collect auditing records

Contents

. 469
. 469
. 469
. 470
. 471

. 473
. 473
. 474
. 474
. 476
. 476
. 477
. 480
. 480
. 480
. 481

. 481

. 482

. 482
. 482

. 483
. 483
. 484
. 484
. 484
. 484
. 485
. 485
. 485
. 486

. 489
. 489
. 489
. 489
. 489
. 490
. 490
. 490
. 491
. 493
. 496
. 496
. 496
. 497

. 501
. 501
. 501
. 501
. 502

XV

XVi

Display audit trail .

Change in Auditing of Login Attempts and RPC Server Functlons Usmg

Name-Based Authorization
Setting DCE Audit Environment Varlables
Starting the Audit Daemon
Controlling Access to the Audit Daemon

DCE Permissions Supported by the DCE Audlt Serwce.

Initial ACL of the Audit Daemon

Giving Permissions to Audit Clients and Adm|n|strators .

Defining Event Classes
Steps in Defining an Event Class
Example Event Class File
Creating and Maintaining Filters .
Creating Filters
Modifying Filters .
Deleting Filters
Default Filters . .
Enabling Audit Filters .
Enabling and Disabling the Audit Logglng Serwce
Modifying and Querying Audit Daemon Attributes .
Controlling and Displaying Audit Trails .
Displaying Audit Trail Files
Controlling the Audit Trail Size .
Changing the Audit Trail File Storage Opt|on

Chapter 46. Kerberos Interoperability with DCE and Secure Remote

Utilities
KDC Interoperabmty
Credential Cache and Keytab Flle Compatlblllty
New Configuration Command (kerberos.dce)
DCE/Kerberos Interoperability Enhancements .

Appendix A. Valid Characters and Namlng Rules for CDS
Metacharacters e e
Maximum Name Sizes.

Appendix B. Object Identifier Files

Origin of Object Identifiers

The cds_attributes File.

Modifying the Files . .

Modifying a CDS Entity’s Attrlbutes .
Adding a New Attribute .
Modifying the Value of an EX|st|ng Attrlbute .
Removing an Attribute .

Appendix C. Time-Providers and Time Services
Criteria for Selecting a Time Source.
Sources of Coordinated Universal Time
Telephone Services .
Radio Transmissions
Network Time Protocol.
Satellite .
World Time Zone Map

Appendix D. DTS Extended BNF

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

. 502

. 502
. 503
. 503
. 504
. 504
. 504
. 504
. 505
. 505
. 506
. 506
. 506
. 507
. 507
. 508
. 508
. 509
. 509
. 510
. 510
. 511
. 511

. 513
. 513
. 513
. 514
. 515

. 517
. 519
. 519

. 521
. 521
. 521
. 522
. 523
. 523
. 523
. 524

. 525
. 525
. 526
. 526
. 526
. 526
. 527
. 527

. 529

Appendix E. Notices .b3
Trademarks. .b33

Index53

Contents XVii

XVili IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Figures

P

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.

Pooo~NoOMWONE

Server Binding Information

Possible Information in a Server Entry

Possible Mappings of a Group .

Possible Mappings of a Profile .

Cell and Global Naming Environments .
Interaction of CDSs, GDAs, and Global Directory Serwces
Sample CDS Namespace Hierarchy .

RDNs and Distinguished Names . .
Comparison of CDS and X.500 Names.

Sample Portion of the BIND Namespace .

CDS Clerks and Servers on a LAN

A Sample CDS Lookup.

Components of a CDS Server Node

Logical and Physical Views of a Namespace.
Clearinghouse Object Entries and Clearinghouses.
A Soft Link and Its Resolution .

Child Pointers and Directories .

How the Clerk Finds a Name

Example Namespace Hierarchy

Example Namespace Before and After the Merge Operatlon .

Example Namespace Before and After the Append Operation
Example Replica Set .
Example Replica Set After Master RedeS|gnat|on .
Example Replica Set After Replica Exclusion

How the CDS Clerk Finds a GDA..

How the GDA Helps CDS Find a Name

Time and Inaccuracy

Computed Time

Adjustment of the Clock

ISO-Compliant Time Format .

ISO-Compliant Time Format Variation

Relative Time Format

DTS Configuration—LAN .

DTS Configuration—LAN with WAN Lmks

DTS Configuration—WAN Networks .

DTS Timestamp Format

Local Fault .

Local Time Source

Getting the Time from a Remote NTP T|me Source (Scenarlo 1)
Getting the Time from a Remote NTP Time Source (Scenario 2)

Giving the Time to NTP

Configuration Before Stratum 2 Node Falls
Configuration After Stratum 2 Node Fails .
Machines, Servers, and the Database .

Disk Memory and Virtual Memory Copies of the Reglstry Database

The Master Replica Update Process.

Slave Replica Update Process .

ACL Managers in Servers.

Sample ACL Entries .

Order of Checking ACLs and Applymg Masks
Initial ACLs for Objects Created in Containers .
Initial ACLs for Containers Created in Containers .
Public Key Certificate Authentication Flow .

© Copyright IBM Corp. 1990, 1999

. 118
. 123
. 127
. 131
. 141
. 142
. 145
. 146
. 147
. 149
. 152
. 152
. 156
. 160
. 161
. 162
. 163
. 165
. 208
. 210
211
. 219
. 220
. 221
. 228
. 229
. 242
. 243
. 244
. 245
. 246
. 246
. 252
. 254
. 255
. 259
. 268
. 278
. 279
. 279
. 281
. 281
. 282
. 286
. 289
. 290
. 291
. 296
. 298
. 305
. 309
. 310
. 328

XiX

54. Direct and Transitive Trust Relationships385

55. Cell Traversal in Transitive Trust Relationships 386
56. Limited Direct Trust Peer Traversal in Transitive Trust 386
57. Transitive Trust Without Direct Trust Peer Traversal 387
58. Limited Trust Traversal to Cell Ancestors388
59. Alternate Trust Traversal to Cell Ancestors389
60. The Registry Database Structure 474
61. Permission Required to Create Principals, Groups or Organrzatrons . . . 476
62. Permissions Required to Delete Principals, Groups, or Organizations. . . 477
63. Permissions Required to Add an Account and the Account Principal to the

Group and Organization 478
64. Adding an Account For Which the Pr|nC|paI Is Already a Member of the

Group and Organization 478
65. Permissions to Add an Account and the PrlnC|paI to the Group OnIy . . 479
66. Permissions to Add an Account and the Principal to the Organization Only 479
67. Permissions Required to Delete Accounts.480
68. Permissions Required to Add Members to Groups.480
69. Permissions Required to Add Members to Organizations481
70. Permissions to Delete Members From Groups or Organizations. 481
71. Permissions Required to Change a Principal’s, Group’s, or Organization’s

Full Name 481
72. Permissions Requwed to Change Management Informat|on For Pr|nC|paIs

Groups, or Organizations 482
73. Permissions Required to Change Management Authent|cat|on and User

Information (Except Passwords) For Accounts 482
74. Permissions Required to Change Passwords For Accounts483
75. Permissions Required to Change Authentication and Management

Information For Registry Policies and Properties483
76. Permissions Required to Execute Commands That Act on Repllcas .. .483
77. Permissions Required to Create Extended Registry Attribute Types . . . 484
78. Permissions Required to Delete Extended Registry Attribute Types . . . 484
79. Permissions Required to View Extended Registry Attributes 484
80. Permissions Required to Modify Extended Registry Attribute Types . . . 485
81. Permission Required to Change ACLs on Registry Objects485
82. Event Class Number Formats . . . N L 4
83. Override Relations Between Filter Types e (1)
84. Valid Characters in CDS and DNS Namesb518
85. World Time ZoneMap .b27

XX IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Tables

Pooo~NoOMwONE

EMSD Server Permission Bits .

Event Type Database Permission Bits .

Event Type Permission Bits .

Filter Database Permission Bits

Event Filter Permission Bits .

Consumer Database Permission Bits

Serviceability Message Severity Levels.

DCE Control Program Operations for CDS

dcecp Commands that Control CDS .

ACL Entry Types Used for CDS Principals

DCE Control Program Commands and Required Perm|SS|ons
Permissions Required To Create Target Objects

dcecp Operations for DTS

Settable DTS Object Attributes .

Unsettable DTS Object Attributes .

DCE Control Program Operations for the DCE Securlty Serwce
rgy_edit Commands for Maintaining the Local Registry .
Attribute Options to Create Principals

DCE Authentication Interoperation.

Merging Rules . .
Attribute Options to Create Groups and Orgamzauons .
Attribute Options to Create Accounts.

The keytab create and keytab add Options

Default Attribute Values of Cross-Cell Authorization Pr|nC|paIs and

Accounts .

Stricter Standard PoI|C|es

Initial Persons, Groups, and Organlzat|ons

Group Memberships Created by sec_create_db .
Locksmith Account Changes Made by the Security Server.
Registry Policy Changes Made by the Security Server .
Permissions for Registry Objects . .

ACL managers and Valid Permissions and ACL Entry Types .
Credential Cache Files. Coe . .
Keytab Files.

Metacharacters and Thelr Meanlngs

Maximum Sizes of Directory Service Names .

Time-Provider Selection Criteria

© Copyright IBM Corp. 1990, 1999

87
87
88
88
89
89

. 100
. 172
. 173
177
. 180
. 212
. 257
. 258
. 259
. 314
. 317
. 321
. 334
. 344
. 346
. 356
. 363

. 3901
. 406
. 430
. 431
. 446
. 447
. 474
. 485
. 513
. 514
. 519
. 519
. 525

XXi

XXil IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

About This Book

The IBM DCE Version 3.1 for AIX and Solaris: Administration Guide—Core
Components provides concepts and procedures that enable you to manage the
IBM" Distributed Computing Environment (DCE). Basic DCE terms are introduced
throughout this guide. A glossary for all of the DCE documentation is provided in the
IBM DCE Version 3.1 for AIX and Solaris: Introduction to DCE. The IBM DCE
Version 3.1 for AIX and Solaris: Introduction to DCE helps you to gain a high-level
understanding of the DCE technologies and describes the documentation set that
supports DCE.

Audience
This guide is written fog) system and network administrators who have previously
administered in an AIX or Solaris environment.

Applicability
This revision applies to the IBM DCE 3.1 offering and related updates. See your
software license for details.

Purpose

The purpose of this guide is to help system and network administrators to plan,
configure, and manage DCE. After reading the guide, you will understand what the
system administrator needs to do to plan for DCE. Once you have built the DCE
source code on your system, use this guide to assist you in installing executable
files and configuring DCE. See the IBM DCE Version 3.1 for AIX: Quick Beginnings
or the IBM DCE Version 3.1 for Solaris: Quick Beginnings for installing and building
DCE source code on your platform.

Document Usage

The IBM DCE Version 3.1 for AIX and Solaris: Administration Guide consists of two
books, each of which is divided into parts, as follows:

e The IBM DCE Version 3.1 for AIX and Solaris: Administration Guide—Introduction
— Part 1. Introduction to DCE Administration
— Part 2. Configuring and Starting Up DCE

e The IBM DCE Version 3.1 for AlIX and Solaris: Administration Guide—Core
Components

‘ A B ”

— tPart6_DCE melrify Service” on page 233

© Copyright IBM Corp. 1990, 1999 XXiii

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

IBM DCE Version 3.1 for AlX and Solaris: Introduction to DCE
IBM DCE Version 3.1 for AIX and Solaris: Administration Commands Reference
IBM DCE Version 3.1 for AIX and Solaris: Application Development Reference

IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Introduction and Style Guide

IBM DCE Version 3.1 for AIX and Solaris: Application Development Guide—Core
Components

IBM DCE Version 3.1 for AIX and Solaris: Application Development
Guide—Directory Services

OSF’ DCE/File-Access Administration Guide and Reference

OSF DCE/File-Access User's Guide

IBM DCE Version 3.1 for AIX and Solaris: Problem Determination Guide
OSF DCE Testing Guide

OSF DCE/File-Access FVT User’s Guide

Application Environment Specification/Distributed Computing

IBM DCE Version 3.1 for AIX: Release Notes

IBM DCE Version 3.1 for Solaris: Release Notes

For a detailed description of DCE 3.1 for AIX and Solaris documentation, see the
IBM DCE Version 3.1 for AIX and Solaris: Introduction to DCE.

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use

literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.

Italic type is also used to introduce a new DCE term.

Constant width

[]

Examples and information that the system displays appear in constant
width typeface.

Brackets enclose optional items in format and syntax descriptions.

{1} Braces enclose a list from which you must choose an item in format and

syntax descriptions.
A vertical bar separates items in a list of choices.
> Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl-x> or x

The notation <Ctr1-x> or ~x followed by the name of a key indicates a

XXIV IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

control character sequence. For example, <Ctr1-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation that
is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor’s customer service department.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE Version 3.1 for AlIX and Solaris: Administration Guide—Introduction and
OSF DCE Testing Guide.

About This Book XXV

XXVi IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Part 1. The DCE Control Program

© Copyright IBM Corp. 1990, 1999

2 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 1. DCE Control Program Introduction

DCE is an integrated set of services that supports the development and execution
of distributed applications between heterogeneous networked computers. Each DCE
environment (called a cell) maintains at least the following core DCE services:

* DCE Threads

* DCE Host Services

* DCE Cell Directory Service

* DCE Time Service

* DCE Security Service

With the exception of DCE Threads, all of the core services require administration
in one way or another. Some services, such as CDS and the DCE Security Service,
usually need more managing than, say, the DCE Time Service, which after you
have set it up needs practically no intervention. If your DCE cell consists of just a
few computers and their users, you could probably manage the naming, time, and
security needs of users, programs, and host systems by logging into individual
hosts to perform any necessary administration tasks. But most cells will consist of
many, perhaps hundreds or even thousands, of computers and their users.

Consequently, the core services in such large cells will likely be extensive and
complex, with some services being replicated or even partitioned across multiple
heterogeneous systems. Some services, such as the DCE host services, will exist
on every computer in the cell. Such large-scale operations demand an
administrative interface that provides consistent and uniform access to DCE
administration functions, wherever they reside, from any and every point in the cell.
This means that administrative operations must work consistently and predictably
regardless of the platform on which they execute.

The DCE control program (dcecp) fills this need, providing consistent, portable,
extensible, and secure access to nearly all DCE administration functions from any
point in a DCE cell. dcecp implements all of the operations previously performed by
using various component control programs.

dcecp further streamlines administration by providing a number of task objects for
performing complex DCE operations. For example, adding a host to a cell requires
adding a host principal to the registry, adding the principal to various security
groups and organizations, creating an account, placing host information in CDS and
probably setting some ACLs on CDS directories. All of these operations can be
accomplished using a single task object.

Flexible, Portable, and Extensible Administration

dcecp is built on a portable command language called Tcl (pronounced “tickle”),
which stands for Tool Command Language developed by John K. Ousterhout at the
University of California at Berkeley, California. Most computers provide a command
language of some sort to give users a flexible and extensible way to access and
use system capabilities. For instance, many UNIX systems offer shell language
interpreters, and Digital Equipment Corporation’s OpenVMS operating system offers
the Digital Command Language (DCL). But these command languages are not
always portable. Commands and scripts based on one command language might
not work in other command language environments.

© Copyright IBM Corp. 1990, 1999 3

Tcl, on the other hand, is a platform-independent command language that runs on
every system where DCE is installed. A Tcl command interpreter and the DCE
control program that uses it are provided as part of the DCE software.

The availability of both the DCE control program and the DCE control program
language offer important benefits to DCE administrators:

* You can perform all routine DCE operations from within a single administrative
interface.

* Most DCE administrative operations are consistently and uniformly executed from
any DCE platform, allowing administrators to manage just about all DCE
operations from any DCE system in the cell. DCE platforms that are not UNIX
systems might not handle all DCE control program file operations.

» dcecp provides administration objects with names like clearinghouse , principal ,
and endpoint . This direct approach makes DCE administration intuitive and
consistent. While for now this has only the appearance of being object oriented, it
is an important step toward a true object-oriented administration interface.

» Task objects (high-level dcecp scripts that perform complex DCE operations)
reduce the training requirements for DCE administrators. One need not be a
DCE guru to perform routine DCE administrative tasks.

* You can adapt the supplied task objects to new uses or write new task objects or
scripts by using the dcecp operations along with more general commands
provided within Tcl.

* The dcecp language allows the use of variables, if statements, looping functions
and other programming operations that let you boost the power of your
operations. For instance, looping functions let you repeat operations on multiple
objects such as users, servers, or CDS entries.

* Administrators can easily share their tools because scripts can be moved to
foreign platforms without change. For instance, enterprises with multiple cells
could use dcecp scripts to propagate a common cell configuration throughout the
enterprise.

The DCE control program is an administrative interface that you can use to manage
most aspects of the DCE core components. You cannot use dcecp to manage
every aspect of DCE. For instance, dcecp cannot control DFS.

The chapters in [Part 1. The DCE Control Program” on page 1 discuss how you can

use dcecp to administer the core services in your DCE environment. We also
discuss how to make your operations do more by using Tcl constructs on the
command line and by writing your own customized operations as scripts. We do not
provide a complete discussion of Tcl or its companion toolkit (called Tk) for the X11
window system.

DCE Administration Objects

A DCE cell consists of many things that need administration. As examples, CDS
servers (clearinghouses), DTS clocks, and server location information are all entities
in a DCE cell that require administration in one way or another. The DCE control
program treats all of DCE’s administrative entities as individual administration
objects.

You operate on an entity by invoking its object name with some operation. For
example, to check the time of a DTS clock, you invoke the object's name (clock)
and the desired operation (show) as in the following:

4 |BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> clock show
1994-09-23-10:46:42.016-04:001-----
dcecp>

Each administrative entity in DCE has a corresponding administration object in the
DCE control program. As a few examples, you can manage CDS clearinghouse
operations in a cell by using the clearinghouse object. Manage application servers
and their configuration information on DCE hosts by using the server object.
Compare and manipulate time information using the utc object. Administer users in
a DCE cell with the user task object. These examples represent just a few of the
dcecp administration objects. All of the objects are listed in the IBM DCE Version
3.1 for AIX and Solaris: Administration Commands Reference.

Using the DCE Control Program

This section provides a quick look at how to start and stop the DCE control program
and how to perform operations. Additional information about these topics is
contained in the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference.

Starting and Stopping dcecp

You can enter dcecp operations directly from your operating system prompt or from
within the DCE control program. If you are performing just one or two simple dcecp
operations, you can invoke them directly at the operating system prompt.

If you will be doing several operations, you can invoke the DCE control program
and then enter operations at the dcecp prompt. This method offers several
advantages.

» It is more efficient for multiple operations because dcecp is initialized once rather
than for each separate operation.

» The program stores operations in a history facility so they can be recalled and
reused.

* You avoid the extra keystrokes needed to precede each operation with the dcecp
command.

The following example shows how to invoke the DCE control program and perform
a directory operation:
% dcecp

dcecp> directory create /.:/hosts/appserver2
dcecp>

When you are through using the DCE control program, use the exit or quit
operation to stop the program and return to the operating system prompt. The
following example illustrates using the exit operation:

dcecp> exit

)
%

Invoking dcecp Operations

If you are performing a single dcecp operation, you can invoke it directly from the
operating system prompt. Just precede the desired operation with the dcecp
command and the -c (command-line operation) flag, as follows:

Chapter 1. DCE Control Program Introduction 5

% dcecp -c directory list /.:/subsys -simplename
HP applications dce sales eng admin accts
% dcecp -c cell show
{secservers
/.../my_cell.goodco.com/subsys/dce/sec/master}
{cdsservers
/.../my_cell.goodco.com/hosts/krypton}
{dtsservers
/.../my_cell.goodco.com/hosts/mars}
{hosts
/.../my_cell.goodco.com/hosts/earth
../my_cell.goodco.com/hosts/jupiter
../my_cell.goodco.com/hosts/kyrpton
../my_cell.goodco.com/hosts/mars
../my_cell.goodco.com/hosts/mercury
../my_cell.goodco.com/hosts/neptune
../my_cell.goodco.com/hosts/pluto
../my_cell.goodco.com/hosts/saturn
../my_cell.goodco.com/hosts/uranus
../my_cell.goodco.com/hosts/venus}

~— e N N~

[
%

You can also enter some limited multiple operations using the ; (semicolon) as a
command separator and enclosing the operations in "” (double quotes). The
following example adds a principal to the registry and then checks that the principal
is added:

% dcecp -c "principal

create S_Preska ; principal show S_Preska"
{fullname {}}

{uid 28}

{uuid 0000001c-dc77-21cd-b700-0000c08adf56}
{alias no}

{quota unlimited}

Be careful entering multiple operations via the dcecp command with the -c option
because operation results return to the dcecp interpreter, not to the shell. An
operation like the following returns the results of just the last operation (group Tist
users) to the shell:

dcecp -c "group list staff; group 1ist managers; group list users"
../ward_cell.osf.org/P_Pestana

../ward_cell.osf.org/R_Parsons

../ward_cell.osf.org/L_Jones

../ward_cell.osf.org/S_Preska

../ward_cell.osf.org/N_Long

../ward_cell.osf.org/D_Witt

../ward_cell.osf.org/C_Pilat

e

9
%

This particular problem can be overcome by:

% dcecp -c "puts [group list staff] puts [group Tist manager];
puts [group Tist users]" . . %

To invoke a dcecp script, omit the -c argument but include the name of the script.

The following example invokes a script that lists the names of all hosts in the cell in
alphabetical order:

6 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

% dcecp list_hosts
earth
jupiter
krypton
mars
mercury
neptune
planets
pluto
saturn
uranus
venus

9
%

When you want to invoke complex or multiple operations, you might want to invoke
operations from within dcecp . The program provides a convenient history facility
and a command-line editing capability that is useful for recalling and reusing
previous operations. The following example operations invoke dcecp and add a
new user to a DCE cell:

% dcecp

dcecp> principal create J_Jones

dcecp> group add users -member J_Jones

dcecp> organization add staff -member J_Jones

dcecp> account create J_Jones -group users -organization staff \
> -password change.me -mypwd mxyzptlk

dcecp>

All dcecp object, operation, and option names can be abbreviated to the shortest
unigue string when used interactively. These names have been chosen with this in
mind so that unique abbreviations are usually not more than one or two characters.

Avoid using object or command abbreviations within scripts as this limits a script’s
portability. Users defining their own commands could alter the uniqueness of
abbreviations, resulting in ambiguous command names or object names.

Doing More with dcecp

The DCE control program accepts commands ranging from simple to complex, with
more complex commands offering greater strength and versatility. Although simple
commands are the easiest to compose, they are also limited, usually to performing
one operation on a single object. So while it is always possible to enter simple
commands, you will probably find that, at times, you want to repeat operations over
several or even many objects, or to perform some operation only under certain
conditions. For instance you might want to add some entry to a CDS directory only
if some other specified entry already exists in CDS. dcecp makes this possible by
utilizing Tcl's built-in commands that imitate elements commonly found in numerous
programming and shell languages.

The DCE control program contains many C-like constructs that control command
execution. Some examples are if statements for conditional execution, looping
commands such as while, for, and foreach used to repeat operations under
various conditions, a case command for testing values against various patterns,
and proc for writing your own customized commands.

The DCE control program also includes other syntactic elements such as "”

(quotes), { } (braces), [] (brackets), and \ (backslash), which it uses to group
elements together and for controlling interpretation of special characters.

Chapter 1. DCE Control Program Introduction 7

Although many features are designed for use in scripts, you will probably find
yourself using some constructs and elements (particularly quotes, braces, brackets,
and backslashes) in interactive operations as well. You will need to decide when it
makes sense to perform operations interactively or to use a script. In general,
complexity and potential for reuse can help you decide.

Now let us look at a couple of simple examples that illustrate some DCE control
program and Tcl basics. Some dcecp operations can be very straightforward like:

dcecp> account modify N_Long -expdate
1996-06-30
dcecp>

This operation lets you change information in the DCE Security Service registry.
Here, we are changing the account expiration date for the principal (N_Long)
named in the command line. While it is relatively simple to execute this operation
for one or two principals, it is more difficult to change the account expiration date for
many principals.

Imagine that your organization employs six temporary workers and the project they
are associated with has been extended for three months. Rather than execute the
account modify operation six times, you can use a dcecp foreach command to
loop (repeat) an action for each item of a list:

dcecp> foreach i {N_Long L_Jones P_Sawyer \
> D_Witt M_Dougherty S_Preska} { \

> account modify $i -expdate 1996-06-30 }
dcecp>

In the example, the foreach looping command has three arguments: a variable, a
list, and the body. The variable i substitutes sequentially for each item in the list
(N_Long, L Jones, and so on). The foreach command executes the body
(account modify $i -expdate 1996-06-30) for each item in the list. The $i variable
in the body takes on the value of each principal name in the list, in turn, until all

items in the list have been used. See [Cantrolling Script Fxecution with 1 oops” od

for more detailed information about looping commands.

This example illustrates several other important syntax rules. The DCE control
program uses { } (braces) to determine where command arguments, such as the
script body, begin and end. For example, the foreach command has three
arguments: a variable name, a list, and a script body. Normally, command
arguments are separated by spaces. To prevent dcecp from incorrectly interpreting
the spaces between list elements as argument separators, we use braces to
enclose the list and disable special interpretation of the spaces. Thus, all of the list
elements appear as one argument. Similarly, we use braces to enclose the
individual elements in the script body.

Braces also help dcecp determine whether a command is complete; incomplete
commands will have more opening than closing braces. The lack of a closing brace
at the end of the first line signals dcecp that more command input is coming; so,
dcecp prompts with the secondary prompt (>). Similarly, the opening brace at the
end of line 2 signals that you are still not finished entering the command. This lets
you wrap lines without using a \ (backslash) line wrap character. The DCE control
program executes the command when you press <Return> after the closing brace

at the end of line 3. [Chapter 2_lIsing the DCE Control Program Command
Language” an page 19 contains more information about braces.

8 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Now assume that, instead of six temporary workers, your organization has fifty
temporary workers (all in one group called temps) for whom you want to add
three-month account extensions. We'll still use the foreach command but, rather
than write all fifty principals directly in the list, use the dcecp group list temps
operation to generate a list for you, as follows:

dcecp> foreach i [group Tist temps] {
> account modify $i -expdate 1996-06-30 }
dcecp>

In this example, we have put the group Tist temps operation in [] (brackets).
Called command substitution, this technique replaces the command inside the
brackets with the results returned by that command. The results of the group list
temps operation produces a valid Tcl list that might look like the following:

dcecp> group list temps
N_Long

L_Jones

P_Sawyer

D_Witt

M_Dougherty

S_Preska

J_Jones

Here, we have provided a high-level look at some practical uses of dcecp . Of
course there is a lot we have not seen, too. In the next chapter we will look more
closely at some of the dcecp operations that you are likely to use for DCE
administration. Remember that dcecp is based on Tcl, and Tcl has other commands
and command variations we will not discuss. So be sure you have access to the
standard Tcl publications for detailed information on all of the commands.

When to Use an Interactive Command or Script

There is no absolute dividing line for when you should enter commands interactively
or with a script. In general, though, the simpler operations—those that perform one
or maybe two tasks—make the best candidates for interactive use. The following
examples typify interactive operations:

dcecp> directory create /.:/printers
dcecp> account show w_shakespeare

dcecp> server start /.:/hosts/curley/config/srvrconf/BBSserver

The next example is a little more complicated, so at first you might choose to run
this as a script:

foreach i [group list temps] {
account modify $i -expdate 1996-06-30}

Saving a frequently used operation as a script (in a file) has its advantages; it can
help to automate repetitive or complicated tasks and you can keep it around for
possible modification and use in other situations later on. Whichever method you
choose, as you become more comfortable using dcecp and Tcl, you might find

Chapter 1. DCE Control Program Introduction 9

yourself entering fairly complex operations interactively. For information on how to

create and invoke scripts, refer to ECustomizing dcecp Sessions” on page 16.

Editing Command Lines

We have seen some basic ways to enter interactive dcecp commands. But let us
say that now you want to edit the command you are entering or that you want to
recall and modify a command you entered previously. The DCE control program
offers several ways to edit commands. You can edit a current command line by
using the command-line editing facility. You can use the history command to recall,
edit, and reissue a previously used command.

Editing the Current Command Line

You can edit a command line before sending it to dcecp by typing control
characters or escape sequences that resemble ksh or emacs editing commands. A
control character, shown as <Ctrl- x>, where x is a letter, is entered by holding down
<Ctrl> (or <Control>) and pressing the letter key. For example, <Ctrl-A> is <Ctrl>
and <A> pressed at the same time. Enter an escape sequence by pressing Escape
followed by one or more characters. In an escape sequence, <Escape> is referred
to as ESC, as in <ESC f> for example. Case matters in escape sequences (unlike
control characters, which do not distinguish between upper and lower case);

<ESC F> is not the same as <ESC f>.

You can enter an editing command anywhere on the line, not just at the beginning.
In addition, a return may also be pressed anywhere on the line, not just at the end.

Most editing commands accept a repeat count, n, where n is a number. Enter a
repeat count by pressing <Escape>, the number, and then the command to
execute. For example, <ESC 4><Ctrl-f> moves forward four characters. Some of
the descriptions that follow are marked with [n] to identify commands that accept a
repeat count.

The following control characters are accepted:

<Ctrl-A>
Move to the beginning of the line

<Ctrl-B>
Move left (backward) [n]

<Ctrl-D>
Delete character [n]

<Ctrl-E>
Move to end of line

<Ctrl-F>
Move right (forward) [n]

<Ctrl-G>
Ring the bell

<Ctrl-H>
Delete character before cursor (<Backspace>) [n]

<Ctrl-1>
Complete filename (<Tab>); see following text

10 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

<Ctrl-J>
Done with line (<Return>)

<Ctrl-K>

Kill to end of line (or column [n])
<Ctrl-L>

Redisplay line
<Ctrl-M>

Done with line (alternate <Return>)
<Ctrl-N>

Get next line from history [n]
<Ctrl-P>

Get previous line from history [n]
<Ctrl-R>

Search backward (forward if [n]) through history for text; must start line if

text begins with an up arrow

<Ctrl-T>
Transpose characters

<Ctrl-V>
Insert next character, even if it is an edit command

<Ctrl-w>
Wipe to the mark

<Ctrl-X><Ctrl-X>
Exchange current location and mark

<Ctrl-Y>
Yank back last killed text
<Ctrl-[>

Start an escape sequence (<Escape>)

<Ctrl-]>c
Move forward to next character ¢

<Ctrl-?>
Delete character before cursor (<Delete>) [n]

The following escape sequences are accepted:

<ESC><Ctrl-H>
Delete previous word (<Backspace>) [n]

<ESC DEL>
Delete previous word (<Delete>) [n]

<ESC SPC>
Set the mark (<Spacebar>); see <Ctrl-X><Ctrl-X> and <Ctrl-Y>

<ESC >
Get the last (or [nth]) word from previous line

<ESC 7>
Show possible completions; see following text

<ESC <>
Move to start of history

Chapter 1. DCE Control Program Introduction

11

<ESC >>
Move to end of history

<ESC b>

Move backward a word [n]
<ESC d>

Delete word under cursor [r]
<ESC f>

Move forward a word [n]
<ESC I>

Make word lowercase [n]
<ESC u>

Make word uppercase [n]
<ESC y>

Yank back last killed text
<ESC w>

Make area up to mark yankable
<ESC nn>

Set repeat count to the number nn

In some cases, existing terminal key bindings take precedence over these dcecp
control keys. In particular, the bindings used for erase, kill, eof, intr, quit, and
susp in your environment will supercede any dcecp bindings for those same
control keys. In most instances, control keys will not be interpreted by the terminal
but will be passed through to dcecp . One of the few exceptions is Inext (literal
next), which quotes the next character typed. When you type the control key that is
bound to Inext it is interpreted by the terminal, which will pass the next character
typed through to dcecp .

The DCE control program also provides filename completion. Suppose the root
directory has the following files in it:

bin vmunix
core vmunix.old

If you type rm /v and then press <Tab>, the command processor completes as
much of the name as possible by adding munix . Because the example name is not
unique, it beeps. If you press <Escape> followed by the ? (question mark), it
displays the two choices. The command processor completes the filename when
you then enter the period (which makes the name unique) followed by <Tab>, as
shown in the following:

rm /v <Tab>munix.<Tab>old

In this example, the constant width font indicates text automatically entered by the
command processor.

Editing Command Lines with the history Command

Sometimes when you are entering interactive commands, you want to recall and
reuse a previously entered command. Let us say you list the objects in a CDS
directory and then you modify one of the objects. Now you want to list the objects
again to verify that your modification took effect. You can use the history command

12 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

to recall, edit, and reissue a previously used command. The history facility saves
only interactive commands. Commands issued from scripts are not saved and
cannot be recalled.

The history command takes various arguments depending on what you want to do.
Entering history with no arguments lists all the commands (called events) entered
during the current invocation of dcecp, as shown:
dcecp> history
1 principal create wardr -fullname {Ward Rosenberry} \
-quota unlimited
2 group add users -member wardr
3 organization add consultants -member wardr
4 account create wardr -mypwd mxyptlk -password gwerty \
-group users -organization consultants
5 history
dcecp>

Each history event is independent of previous events. This means that, if a recalled
command used a variable, its current value may not be the same as when it was
first entered. The history command itself generates a history event, too.

By default, the history list keeps the 20 most recent commands. You can use the
history keep command to lengthen or shorten the history list. For example, the
following command lengthens the history list to keep the 50 most recent events:

dcecp> history keep 50
dcecp>

You can specify events in various ways. Positive numbers specify events relative to
the earliest event in the list. Negative numbers specify events relative to the most
recent command. You can also specify an event by typing characters that match all
or part of a previous event.

The history facility lets you reuse previous events in many ways. The following
discussion covers just a few of the history commands you can use.

* You can execute a previous command without revision by using the history redo
command:
dcecp> history
1 directory show /.:/printers
2 object create /.:/printers/ascii_printerl
3 object create /.:/printers/ascii_printer2
4 object create /.:/printers/ascii_printer3
5 history
dcecp> history redo directory
directory show /.:/printers

. [output omitted]

dcecp>

You can save the most typing by entering just the unique first characters of
words in a history command. For instance, you can enter the history redo
directory command from the previous example as:

dcecp> hi r d
directory show /.:/printers

. [output omitted]
dcecp>

Chapter 1. DCE Control Program Introduction 13

Other ways to redo commands include !!, which recalls the most recent
command, and !event number to recall a specific event.

* You can revise and reexecute a previous command by using the history
substitute command. A common use of this command is to correct typing
mistakes. The command syntax is as follows:

history substitute old new [event number]

If you omit the event number, you'll redo the most recent command. Replace the
old part of the recalled command with new information:

dcecp> history

1 directory show /.:/printers
object create /.:/printers/ascii_printerl
object create /.:/printers/ascii_printer2
object create /.:/printers/ascii_printer3
directory show /.:/printers
history
dcecp> hi s printer3 printerd -3
object create /.:/printers/ascii_printers
dcecp>

SOl W N

You can also recall and revise the most recent command by using the ~old” new
syntax familiar to users of the UNIX csh shell, as follows:

dcecp> 45
object create /.:/printers/ascii_printerb
dcecp>

Using the dcecp Help Facilities

The DCE control program offers help in several ways:

* If you want to see a list of objects provided by the DCE control program, enter
help at the dcecp prompt as shown in the following example:

dcecp> help
The general format of all dcecp commands is as follows:
dcecp> <object> <operation> [argument] [options]

In addition to all of the standard tcl commands, dcecp supports many
commands to administer DCE objects. A dcecp object or task represents
a DCE entity. Type 'man dcecp_<command>' for more information.

ATl

of the following dcecp objects and tasks require an operation:
account cdsalias dts log rpcprofile
acl cdscache endpoint name secval
attrlist cdsclient group object server
aud cell host organization user
audevents cellalias hostdata principal utc
audfilter clearinghouse hostvar registry uuid
audtrail clock keytab rpcentry xattrschema
cds directory Tink rpcgroup

Miscellaneous commands perform specific functions. Type 'man dcecp'
for more information. These commands take no operation:

echo errtext Togin logout quit resolve shell
To Tist all dcecp objects: dcecp> help -verbose
To 1ist all operations an object supports: dcecp> <object> help

14 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

To Tist all options for an object operation: dcecp> <object> help <operation>

For verbose information on a dcecp object: dcecp> <object> help -verbose
For the manual page of a dcecp object: dcecp> man dcecp_<object>
dcecp>

If you just need to know which operations an object supports, use the command
object operations which returns a list of the actions you can take on an object.
The following example shows how to list the operations available for the
principal object:

dcecp> principal

operations

catalog create delete modify show operations help
dcecp>

You can save typing by abbreviating this command to something like prin oper .

Get more detailed help about an object and its operations by using the object
help command. The following example returns a 1-line description of each
operation supported by the principal object:

dcecp> principal help

catalog Returns all the names of principals in the registry.
create Creates a DCE principal.

delete Deletes a principal from the registry.

modify Changes the information about a principal.

rename Renames the specified principal.

show Returns the attributes of a principal.

help Prints a summary of command-Tine options.

operations Returns a list of the valid operations for this command.
dcecp>

Get information about available command options by adding an operation
argument to the object help command. The following example returns a 1-line
description of each option supported by the principal create operation:

dcecp> principal help create

-alias Indicates the principal name is an alias of the uid.
-attribute Specify principal attributes in an attribute list format.
-fullname Fullname of the principal.

-quota How many registry objects can the principal create.

-uid User Identifier of the new principal.

-uuid Orphaned UUID to be adopted by the principal.

dcecp>

Get help about an object itself by using an object help -verbose command. The
following example returns a description of the principal object along with
information about how to use the object:

dcecp> principal help -verbose

This object allows manipulation of principal information stored

in the DCE registry. The argument is a Tist of either relative or
fully-qualified principal names. Specify fixed attributes using
attribute options or an attribute list. Specify any extended attributes
using an attribute Tist. Principal operations connect to a registry that
can service the request. Specify a particular registry by setting the
_s(sec) convenience variable to be a cell-relative or global replica
name, or the binding of the host where the replica exists. The
completed operation sets the _b(sec) convenience variable to the name

of the registry contacted.

dcecp>

Finally, some POSIX style systems will have reference pages for dcecp objects
as well as a Tcl summary reference page. Each dcecp object has its own
reference page that describes the object and the operations available to it. The
general syntax for viewing a dcecp object reference page is:

man object_name

Chapter 1. DCE Control Program Introduction 15

The following example shows how to invoke the reference page for the
principal object. Note that you can use the man command from within dcecp .

dcecp> man principal
. [output omitted]
dcecp>

The Tcl reference page summarizes the Tcl built-in commands. You can view the
Tcl summary reference page on a UNIX style system by entering:

dcecp> man Tcl
. [output omitted]

dcecp>

Customizing dcecp Sessions

The DCE control program includes a number of commands, objects, and task
scripts for performing most of the day-to-day DCE administration operations.
Nevertheless, as you gain experience using the dcecp interface, you may find you
want to add new commands and capabilities or to customize some existing ones.
The following sections explain how to add scripts and new objects to your dcecp
session. An object is just a formal implementation of a script that uses the dcecp

help system and takes the form of object operation. [Chapter 2_Using the DCH
Cantrol Program Command | anguage” an page 19 and EChapter 3 \Writing Scripts
and dcecp Qbjects” on page 49 explain the fundamentals of writing dcecp scripts

and creating new objects.

Adding Scripts to dcecp Sessions

Once you have written a script, you can make it available to one person or to
everyone who is logged into the host by modifying one or more of the following files
invoked when dcecp initializes:

[info library]/init.tcl
This file is read first and contains standard Tcl initialization commands for
the host. This affects all instances of dcecp running on a host. The file
contains definitions for the Tcl unknown command and the auto _load
facility used for initializing all of the dcecp objects. Administrators should
avoid adding dcecp customizations to this file.

dcelocallinit.dcecp
This file contains dcecp -specific startup information for the host. This
affects all instances of dcecp running on a host. The dcecp scripts
implementing operations and tasks are stored in the dcelocalldcecp
directory. Add customizations in the form of procedures to this file to make
them available to all dcecp users on the host.

$HOME/.dcecprc
This optional file stores user customizations that affect individual dcecp
users (the owners of the .dcecprc files). Each DCE user can maintain a
.dcecprc file and store private procedures or alias names for operations.
Modified .dcecprc files allow flexible administration in environments with
multiple administrators. For example, different .dcecprc files for each

16 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

administrator could use dcecp source commands to call specific
commands and task scripts that are tailored to particular areas of
administration.

The rest of this section illustrates a simple task script and shows one way to make
the script available for personal use. Our example begins with the control program’s
existing clock object that shows the current time. However, the time is simply a
DTS timestamp from the clock on the local host as in:

dcecp> clock show
1994-10-03-10:22:59.991-04:001-----
dcecp>

Let us say you create a procedure that gets a timestamp from a DTS server but
also displays the name of the DTS server with the time as in the following example
which invokes a user-created procedure called show_clock :

dcecp> show_clock
Time on mars is 1994-09-30-15:03:43.979-04:001-----
dcecp>

You can make this procedure available to one user by including the procedure in
the user’s .dcecprc file. The following sample .dcecprc file includes user
customizations consisting of the _dcp_show_clocks procedure and an alias that
lets you invoke the procedure with the simpler show_clocks command name.
Another procedure called _dcp_whoami shows the current login identity
information. Note the order of operations in the .dcecprc file. Procedures are
defined at the beginning of the file. Renaming and invoking the procedures must
occur after the procedures are defined.

##

Start up commands

##

A simple command to rerun .dcecprc after modifications
proc .d {} {source $HOME/.dcecprc}

Show your current login name and your current cell name.
proc _dcp_whoami {} {
global ¢ _u
return "You are '$_u' logged into '$ c'."
1
Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {
set x [directory list /.:/hosts]
foreach n $x {
if {[catch {object show $n/dts-entity}] == 0} {
set index [string last "/" $n]
set y [string range $n [incr index] end]
if {[catch {clock show $n/dts-entity} msg] == 0} {
set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \
[clock show $n/dts-entity]]
} else {
set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \
"Server not responding."]

}

Give some procs usable names

Chapter 1. DCE Control Program Introduction 17

rename _dcp_whoami whoami
rename _dcp_show_clocks show_clocks

If I am authorized, say so
if {$_ut=""} {

whoami

}

The rename command near the end of the file lets you invoke the
_dcp_show_clocks and dcp_whoami procedures using the easier command
names show_clocks and whoami .

When you start dcecp, the last part of this file invokes the _dcp_whoami
procedure if you are logged into DCE. If the _u convenience variable is set, the
_dcp_whoami procedure prints your current login identity as follows:

% dcecp
You are 'principal_name' logged into 'cell name'.
dcecp>

Adding New Objects to the DCE Control Program

If you have written a script as a formal dcecp object, you can make it available by
including the new object in the same directory where other task objects reside. On
UNIX systems, this is often dcelocalldcecp . As a rule, you should add the new
object to each host in the DCE cell. Chapter 3 Writing Scripts and dcecp Ohjects]
m describes how you can use the dcecp hostdata object to copy scripts
or other files to every host in a cell.

When you install a new script, you must run the auto_mkindex utility to make the
new object available to other users on the host. For more information about running

the auto_mkindex utility, see [Chapter 3 Writing Scripts and dcecp Ohjects” on

Environment Variables

18

Environment variables are variables used by DCE that customers can set
themselves. See the IBM DCE Version 3.1 for AlX and Solaris: Application
Development Guide—Core Components for more comprehensive information of
DCE environment variables.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 2. Using the DCE Control Program Command
Language

In lChapter 1. DCE Control Program Introduction” on page 3, we provided a
high-level look at some ways to use the DCE control program to administer your
DCE environment. In this chapter, we will discuss some syntax rules and some of
the more important commands you will need to use in composing your dcecp
administration commands and task scripts.

The dcecp command language consists of DCE administration commands like
directory create and object modify , as well as Tcl built-in commands such as if
and foreach . We will not discuss DCE administration commands here. These
commands are discussed in sections that deal with administering the particular DCE
component. Instead, we will focus on using the more generic syntax rules and
built-in commands.

The Tool Command Language (Tcl) on which dcecp is based is a general-purpose
language that is also used for other applications besides dcecp . Although there are
many ways you can use Tcl for various purposes, we will limit our discussion to
those commands most likely to be used for administering DCE environments.
Furthermore, our command discussions do not describe every aspect of individual
commands. Rather, they suggest why and how you might use a command in the
context of administering a DCE environment. If you are not already familiar with Tcl,
you'll likely need to have access to the appropriate Tcl documentation, including the
Tcl reference pages, for writing sophisticated commands and task scripts.

Chapter Preview

This chapter walks you through the basic dcecp syntax and then looks at some
commands that you are likely to use in interactive commands and task scripts. The
discussions will focus on:

» Use of variables as an easy way to pass data around in your command or script

» Command substitution as a way to channel the output from one command to the
input of another command

* Grouping elements together so that dcecp parses commands correctly
» Using lists to sort, find, and reuse information

* Using arithmetic functions in commands and task scripts

» Conditionalizing and controlling your script with if statements and loops
» Executing scripts associated with character patterns by using the case command
» Synthesizing commands by using eval

* Importing operations with source

» Creating new dcecp commands with proc

» Using error and exception information

» Handling strings

* Working with files

* Spawning subprocesses

© Copyright IBM Corp. 1990, 1999 19

Variable Substitution

Like other programming languages, dcecp provides shorthand ways to express and
use values. Variable substitution is one shorthand method that lets you represent a
value—say, the name of an object in a CDS directory—as a variable.

Use the set command to establish a value for a variable. For readability, a variable
name can consist of any combination of letters, numbers, and _ (underscore)
characters. Use “” (quotes) or \ (backslash) to include spaces in variable names
(although this is not usually recommended) or values. All of the following examples
use valid variable names:

set a $i
set CDS_clearinghouse_name cambridge_ch
set DCE_user_1 "William Rosenberry"

The following example sets variable a to have a value of 7. The second use of the
set a command without a value causes dcecp to display the current value of the
variable:

dcecp> set a 7
7

dcecp> set a

7

Once you have established a value for a variable using the dcecp set command,
the variable can be subsequently used elsewhere in your script or interactive
command. The DCE control program uses the $ (dollar sign) to trigger insertion of
the current value into the command word. A simple example is:

dcecp> set a 7

7

dcecp> expr $a+2
9

Here we first set variable ato 7. In line 2, we use the expr command to add 2 to
the value of a (7). The dollar sign triggers dcecp to insert the value 7. The last line
shows the return value from the expr command.

A more relevant example might be:

dcecp> set a /.:/sec
/.:/sec
dcecp> object show $a

{RPC_ClassVersion

{01 00}}

{RPC_ObjectUUIDs

{06 3b 23 00 72 e5 e0 1d 8c b4 00 00 cO 8a df 56}}

{RPC_Group

{2f 2e 2e 2e 2f 77 61 72 64 5f 63 65 6¢c 2e 6f 73 66 2e 6 72
67 2f 73 75 62 73 79 73 2f 64 63 65 2f 73 65 63 2f 6d 61 73 74
65 72 00}}

{CDS_CTS 1994-05-23-17:21:37.481+00:0010.000/00-00-c0-8a-df-56}
{CDS_UTS 1994-05-23-17:22:36.607+00:0010.000/00-00-c0-8a-df-56}
{CDS_Class RPC_Group}

{CDS_ClassVersion 1.0}
dcecp>

20 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Remove (undefine) a variable by using the unset command as in the following
example:

dcecp> unset a

dcecp> set a

Error: cannot read "a": no such variable
dcecp>

Command Substitution

Command substitution provides a convenient way to express the return value of
one command within another command. This is useful when you want to use the
return value of one command as input to another command. Use brackets to invoke
command substitution. The following example uses the expr command, which we’ll
discuss shortly. Generally, expr performs a math function, returning the computed
value expressed by its arguments, as shown:

dcecp> set a 4

4
dcecp> set b [expr $a+2]
6

dcecp> set b
6
dcecp>

A more practical example might use command substitution for a command that
returns a long name or a list. Let us recall an example we saw in EChapter 1 _DCH
Cantrol Praogram Introduction” on page 3. In this example, the [group Ilst temps]
command returns a list to the foreach command that performs the account modify
operation on each element in the list. We’'ll look more closely at the foreach looping
command later in this section.

dcecp> foreach i [group Tist users] {
> account modify $i -change {expdate 1995-12-31}}
dcecp>

Another practical use of command substitution is to set up a test condition for an if

statement. We show an example of this usage in [Conditionalizing with if
Btatements” on page 33.

Grouping Elements and Controlling Interpretation

Programming languages often use symbols such as braces, quotes, and
parentheses to operate on selected elements as a group rather than individually.
Similarly, dcecp uses “” (double quotes) and {} (braces) to group elements into
structures. Double quotes allow elements that would usually be parsed separately
to be grouped and treated as a single element. Braces are used to group elements
into a list so that dcecp can correctly parse commands and other data like return
values.

The dcecp command elements are separated by whitespace: the space, tab, and
newline characters. The following dcecp command uses space characters to
separate its three elements:

dcecp> directory create /.:/subsys/comm_services
dcecp>

Chapter 2. Using the DCE Control Program Command Language 21

Use either the newline character or the ; (semicolon) to separate commands in a
script. The following two examples, which set and then use a variable, are
equivalent:

dcecp> set a /.:/subsys/comm_services
/.:/subsys/comm_services

dcecp> directory create $a

dcecp>

dcecp> set a /.:/subsys/comm_services; directory create $a
dcecp>

The choice to use braces or quotes to group elements together depends on how
you want dcecp to interpret special characters like $, [, and {. While braces disable
special interpretation of most of these characters, double quotes disable special
interpretation of just a few. The backslash character, discussed in tlncluding Special
Characters with Backslashes” on page 23, offers another way to disable
interpretation of special characters. When used together, braces, quotes, and
backslashes offer lots of flexibility in composing dcecp command strings.

Grouping Elements with Braces

Braces group separate elements to create a new element that consists of
everything between a { (left brace) and its corresponding } (right brace). You can
also nest braced elements. Each of the following example lists contain three
elements:

larry moe curly
1 {357 11 13} {17 19}

red {orange yellow {green blue} indigo} violet

Braces disable command ([]), variable ($), and backslash substitution. While the
most important use of braces is to ensure a dcecp command has the correct
number of arguments, this also provides a convenient way to include special
characters in a list. To see how this works, consider the following example:
dcecp> set a solution

solution

dcecp> puts $a

solution

dcecp> puts {This is a convenient $a}

This is a convenient $a

While the puts command is often used for writing to files, when called with only one
argument it writes the argument to stdout . In our example, the first use of puts
allows normal interpretation of the variable a. The second use of puts groups the
separate elements into one argument by disabling special interpretation of space
characters and the dollar sign.

Grouping Elements with Double Quotes

Like braces, double quotes also group elements together. But unlike braces, double
quotes cannot be nested. Furthermore, while braces disable almost all special
characters, double quotes disable just a few—spaces, tabs, newlines and
semicolons— letting you avoid the potentially awkward use of backslashes in a
string of text elements. The most convenient use of double quotes is to allow clean,

22 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

readable expansion of variables using the dollar sign trigger. For instance, in the
following example, we set a variable (a) to a value that includes spaces:

dcecp> set a "XYZ server

for /.:/corp/comm_groups"

XYZ server for /.:/corp/comm_groups
dcecp> puts $a

XYZ server for /.:/corp/comm_groups
dcecp>

Use of double quotes does not disable command, variable, and backslash
substitution. Let us look at a variation of the example used in the

dcecp> set

a solution

solution

dcecp> puts $a

solution

dcecp> puts "This is a convenient $a."
This is a convenient solution.

dcecp>

In this example, the use of quotes with the second puts command gathers five
elements into a single argument for puts by disabling special interpretation of the
space characters. However, the quotes do not affect interpretation of the dollar sign.

Including Special Characters with Backslashes

We already know that dcecp relies on certain special characters such as spaces,
braces, quotes, or dollar signs to control its interpretation of elements. Sometimes,
you might want to include one special character in a string, temporarily suspending
its special interpretation. The backslash provides a form of substitution that
suppresses special interpretation of the character immediately following the
backslash.

Use the backslash to insert a nonprinting space character in a string of elements.
For instance, each of the following dcecp lists have three elements:

ab\cd
ab \{

The elements in the first example are a, b ¢, and d. The elements in the second
example are a, b, and {. A more practical example could use the backslash to
include quotes in error messages as shown in the following code fragment:

if {[11ength $a] < 2} {
error "Unable to parse \"$element Tist\"."
}

The following list shows the special characters that you can include in a string of
elements by using the backslash character:

\b Backspace
\t Tab

\e Escape

\n Newline

Chapter 2. Using the DCE Control Program Command Language 23

\r Carriage-return
\ Left brace

\} Right brace

\[Open bracket
\] Close bracket
\$ Dollar sign

\ (space) Space (" ")

\; Semi-colon

\” Double quote
\\ Backslash
\(newline) Nothing

\ddd Octal value

Documenting Scripts with Comments

When you are writing scripts, you might want to include some comment lines to
remind yourself and others what the script is doing. Use the # (number sign) to
insert comments. The DCE control program suppresses interpretation between a
number sign and the next newline. You must place the number sign in a position
where dcecp expects the first character of a command. Both of the following
examples are valid:

set a b
sets a to 5

set a 5 ;# sets a to 5

The following example is not valid because the number sign is not positioned where
dcecp expects the first character of a command:

set a 5 # sets a to 5

A common use of comments is to document procedures in scripts as in the
following sample script fragment:

#

_dcp_cleanup_user_create - This function undoes changes
after a failure in one of the user create functions as
though the operation never occurred.

#

proc _dcp_cleanup_user_create {account_name args}

{

Convenience Variables

The DCE control program remembers what you enter as well as command output,
and stores certain pieces of that information in convenience variables for reuse in
subsequent commands. Using these variables in your interactive commands can
reduce typing and help eliminate typing mistakes.

24 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Convenience variables apply only to dcecp commands like directory , principal ,
acl, account , and so on. They do not apply to Tcl commands like for or eval, or
UNIX commands like mv or grep. As an example, the convenience variable _n
holds the name (the argument) used in the following principal create operation.
The principal show operation retrieves the name by using the $_n variable.

dcecp> principal create D_Kalivas
dcecp> principal show $_n -all
{fullname {}}

{uid 17}
{uuid 00000011-d957-21cd-8d00-0000c08adf56}
{alias no}

{quota unlimited}

dcecp>

While this simple explanation demonstrates the general operation of convenience
variables, it understates their usefulness. Most of the convenience variables are
intended to aid interactive use, but some can be used in scripts as well, adding
flexibility because the information they contain is not hardcoded in the script.
Moreover, as you gain experience with the DCE control program, you will likely find
these variables to be indispensible administrative tools.

The DCE control program provides several convenience variables that substitute for
previously entered information or command output. All of the convenience variables
begin with an _ (underscore) to leave 1-character variable names free for other
uses.

The following sections describe the convenience variables. Their order of
presentation generally keeps similar or related variables together.

Current Principal (User) Name (_u)

The _u convenience variable holds the current simple principal name. The DCE
control program sets this variable from the login context inherited from the parent
process. You can change its value by performing another login operation. Setting it
using set generates an error.

dcecp> puts $_u
cell_admin
dcecp>

A practical use of this variable could be in scripts that test for a certain DCE identity
before proceeding. On finding an incorrect identity, scripts could prompt for the
necessary identity information and perform a dce_login operation.

See the cell name variable description in ECurrent Cell Name (c¢Yl for information
about composing fully qualified principal names.

Current Cell Name (_c)

The _c convenience variable holds the name of the cell in which the principal is
registered. The DCE control program sets this variable from the login context
inherited from the parent process. You can change its value by performing another
login operation. Setting it using set generates an error.

dcecp> puts $_c

/.../my_cell.goodco.com
dcecp>

Chapter 2. Using the DCE Control Program Command Language 25

This variable is generally useful in environments where administrators deal with
multiple cells. For example, you could use the _c variable as a building block in
constructing the current context’s fully qualified principal name for use in scripts.
Join the cell name and user name variables together with a / (slash) as shown in
the following example:

dcecp> puts $_c/$_u
/.../my_cell.goodco.com/cell_admin
dcecp>

Current Host Name (_h)

The _h convenience variable holds the DCE name of the current host. The DCE
control program sets this variable when dcecp is invoked. Setting it using set
generates an error.

dcecp> puts $_h
hosts/planets
dcecp>

The _h variable is useful for returning the name of the host to an interactive user.
You can also use it with the _c variable, as shown, to construct names such as a
host principal nhame in a script:

dcecp> puts $_c/$_h/self
/.../my_cell.goodco.com/hosts/planets/self
dcecp>

Most Recent Operation Argument Name (_n)

The _n variable holds the name or names used as an argument to the most recent
control program operation. Most dcecp objects take a name or a list of names as
an argument. Those that do not use names as an argument include the
miscellaneous dcecp commands dcecp_initinterp , login, logout , errtext , quit,
resolve , and shell.

The name is usually the third argument in a dcecp operation, as shown in the
following directory operation:

dcecp> directory create /.:/sales/printers/text_printers
dcecp>

Once set, you can use $_n in subsequent operations in place of the name
argument. For example, you could modify a directory attribute for the
/.:Isales/printers/text_printers directory created in the preceding example, as
follows:

dcecp> directory mod $_n -change {CDS_Convergence
Tow}
dcecp>

The _n variable can also hold a list of names, as when you perform a directory

service operation on more than one name. For instance, you could create several
directories and then decide to modify an attribute:

26 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> directory create {

> /.:/sales/printers/text_printers

> /.:/sales/printers/graphics_printers

> /.:/sales/printers/colorgraphics_printers }
dcecp>

A subsequent directory service operation can simply use the _n variable in place of
the name or list of names:

dcecp> directory
modify $_n -change {CDS_convergence high}
dcecp>

Parent of _n (_p)

The _p variable holds the parent of the name stored in _n. The _n variable holds
the name or list of names used in the argument to the most recent operation (see
[Most Recent Operation Argument Name (_n)” on page 26). The _p variable holds
the name or list of names that are hierarchically above the name in _n (closer to
the cell root).

One use of the _p variable is in traversing up a CDS hierarchy of directories.
Another use is showing the access control list (ACL) of a parent object. The
following operations view the ACLs of a server configuration object and of its parent
object (/.:/hosts/krypton/config/srvrconf):

dcecp> acl show /.:/hosts/krypton/config/srvrconf/video_clip
{app1_admin cdfrwx}
{unauthenticated r}

{any_other r}

dcecp>

dcecp> puts $_p
/.:/hosts/krypton/config/srvrconf
dcecp>

dcecp> acl show $_p

{app1_admin cril}
{unauthenticated r}

{any_other r}

dcecp>

Last dcecp Object Name (_0)

The _o variable holds the name of the dcecp object used in the most recent
operation. The following example uses the 0 variable to avoid retyping account :

dcecp> account show j_wanders
{acctvalid yes}
{client yes}
[output omitted]
{home /}
[output omitted]
{shell {}}
{stdtgtauth yes}

dcecp> $_o modify j_wanders -home /.:/fs/corporate_services/users/j_wanders
dcecp>

Chapter 2. Using the DCE Control Program Command Language 27

Last Operation’s Return Value (_r)

The _r variable holds the return value of the most recent operation. Many dcecp
commands return multiple lines of output which are in the form of a list.

The following example shows one use of the _r convenience variable. The dts
show command returns multiple lines as a list. The attrlist getvalues operation
(see the attrlist(8dce) reference page) searches through the returned list for the
string toofewservers and returns its associated value.

dcecp> dts show -counters
{creationtime 1994-09-16-07:50:13.067-04:00I----- }
{nointersections 0}

{nointersections 0}

{diffepochs 0}

{toofewservers 1}

{providertimeouts 82}

{badprotocols 0}

{badtimerep 0}

{noglobals 81}

{noresponses 0}

{abrupts 0}

{epochchanges 0}

{syserrors 0}

{syncs 1574}

{updates 0}

{enables 1}

{disables 0}

{nomemories 0}

{providerfailures 0}

{badlocalservers 0}

{badservers 0}

dcecp> attrlist getvalues $_r -type toofewservers
1

dcecp>

DCE Servers to Use (_s(xxx))

The _s(xxx) variables hold the names of the DCE servers to use for the next DCE
operation. The DCE control program provides four of these variables. Because the
variables are not set by dcecp, users must set these variables if they want to use
them. The variables are as follows:

_s(sec)
This variable holds the name of the security server you want to use for the
next registry operation. If you set this to specify a read-only replica and the
operation (such as principal create) requires a master replica, dcecp
ignores the variable and tries to bind to the master registry. Registry
operations that use the _s(sec) variable include principal , group,
organization , registry , account , and xattrschema .

DCE control program operations use the _s(sec) variable in conjunction
with the _b(sec) variable, which holds the name of the most recent registry
used. A registry operation uses the following order to select a security
server:

1. Use the server passed as a name argument to the registry operation.

2. If the operation lacks a name argument, use the server named in the
_s(sec) variable.

3. If the_s(sec) variable has not been set, use the server named in the
_b(sec) variable.

28 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

_s(cds)

_s(dts)

_s(aud)

4. If the_b(sec) variable has not been set (that is, this is the first registry
operation since dcecp was initialized), the service provides an arbitrary
server that is suitable for the operation.

This variable holds the name of the CDS server you want to use for the
next directory service operation. When set, CDS operations attempt to use
the specified server. The operation fails if the attempt is unsuccessful such
as when the server is unavailable for some reason. To overcome such a
failure, you must unset this variable or make the server available.

It makes sense to use the _s(cds) variable when all of your application
needs can be satisfied by the clearinghouse named in the variable.
Consider not using the _s(cds) variable when name lookups in CDS are
likely to traverse directories in several clearinghouses. In this case, you'll
get lookup errors because the _s(cds) variable limits the lookup operation
to using just the named clearinghouse.

This variable holds the name of the DTS server you want to use for the
next time service operation. When set, DTS operations attempt to use the
specified server. The operation fails if the attempt is unsuccessful such as
when the server is unavailable for some reason. To overcome such a
failure, you must unset this variable or make the server available.

One use of this variable is to restrict DTS operations to a single DTS server
for monitoring purposes. Normally, time service operations can use any
available DTS server.

This variable holds the name of the audit daemon you want to use for the
audit operation. By default, audit operations affect the local host’s audit
daemon. You can operate on a remote host’s audit daemon by specifying
its name as the value of the _s(aud) variable, as follows:

dcecp> set _s(aud) /.:/hosts/planets/audit-server
/.:/hosts/planets/audit-server
dcecp>

When _s(aud) is set, audit operations attempts to use the specified audit
daemon. The operation fails if the attempt is unsuccessful such as when
the specified audit daemon is unavailable for some reason. To overcome
such a failure, you must unset this variable or make the audit daemon
available.

You can specify a DCE server or audit daemon as any of the following:

* A DCE name. An example of a global registry name is
/.../my_cell.goodco.com/subsys/dce/sec/oddball . An example of a cell-relative
CDS clearinghouse name is /.:/Paris_CH .

* The string binding for the host where the server resides. String bindings can
represent security servers, DTS servers, and audit daemons. They cannot
represent CDS servers. An example of a string binding is {ncacn_ip_tcp
110.15.22.131}. The DCE control program resolves the binding to the appropriate
service on the host.

* The name of the cell. For a remote cell, specify a global cell name, for example
/.../my_cell.goodco.com . For the local cell you can specify the root as /... These
operations use an arbitrary server that is suitable for the operation.

Chapter 2. Using the DCE Control Program Command Language 29

Last Security Server Used (_b(sec))

The _b(sec) convenience variable holds the name of the security server used for
the most recent registry operation. The DCE control program sets this variable
based on previous registry operations. Consequently, users can view, but not set,
this variable.

One reason to read the value of this variable is to check which registry performed
the most recent operation as shown in the following example:

dcecp> puts $_b(sec)
/.../my_cell.goodco.com/subsys/dce/sec/oddball
dcecp>

Registry operations use the value of the _b(sec) variable in conjunction with the
value of the s(sec) variable to determine which security server to use. Refer to

EDCE Servers to Use (s(xxx))” on page 24 for information about the _s(sec)

variable and how these values work together for registry operations.

Most Recent Error Code (_e)

The _e convenience variable holds the last DCE error code encountered. If the
DCE control program can determine what the error code is, this variable is set. If an
actual error code is unknown, the variable is set to -1 (negative one).

CDS Confidence Level (_conf)

The _conf convenience variable indicates the confidence you have in the local CDS
daemon to fulfill requests. It alters the behavior of most commands that operate on
a CDS object. A confidence level can be low, medium , and high .

Measuring and Counting with Expressions

The expr command offers flexible ways to express and use arithmetic functions in
your scripts. Expressions are useful for things like comparing numeric information
such as the number of elements in a list, setting thresholds for monitoring purposes,
incrementing counters that control your script’'s execution, and producing statistical
information.

A simple dcecp expression is a combination of an operator like + (add) or *
(multiply) and some operands. The expr command takes one argument—the
expression—so parentheses or braces may be needed if your expression has
spaces. Use parentheses to control grouping in expressions. Expressions can also
be nested. All of the following are valid expressions:

dcecp> expr {2 + 3}
5

dcecp> expr 2+3

5

dcecp> set x 24

24

dcecp> expr ($x-8)=*2
32

dcecp> expr $x-(8*2)

30 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

8

dcecp> expr $x-8*2
8

dcecp>

Be careful using variables in expressions; variables like $x must be numeric strings
like 24, not nonnumeric strings like 4*6.

The DCE control program normally treats numbers as decimal integers, but can

read numbers in octal and hexadecimal formats too. Precede a number with 0
(zero) for octal interpretation, as in 0477. Precede a humber with Ox for
hexadecimal interpretation, as in Ox9FF. You can also represent numbers in

floating-point format by using any of the forms specified by the ANSI C standard

(with the exception of the f, F, |, and L suffixes).

The DCE control program also supports numerous mathematical functions in

expressions such as cos, exp, log, tan, sin, and others, by invoking the C math

library functions of the same name.

Here is a partial list of operators you can use with the expr command. The list
order also denotes precedence. This means, for instance, that expr multiplies
before adding (2+2*4 equals 10).

unary minus

bitwise NOT

logical NOT

multiply

divide

remainder

add

subtract

left shift

right shift

Boolean less than

Boolean less than or equal

Boolean greater than

Boolean greater than or equal

Boolean equal

not equal

bitwise AND

bitwise exclusive OR

bitwise OR

&&

logical AND

logical OR

a? b. c

if-then-else (as in C).

Chapter 2. Using the DCE Control Program Command Language

31

Operating on Lists

Lists provide convenient ways to operate on collections of things such as sets of
principals, group members, or other objects. Lists are collections of objects entered
by you or returned from commands. We have already seen lists in previous
examples in this chapter; they are any number of elements separated by spaces,
tabs, or newlines. Usually, a list is enclosed in braces.

All of the following are examples of lists:
{n_long 1_jones p_sawyer d_witt m_dougherty s preska}

{{/.:/hosts} {/.:/subsys}}

The DCE control program relies on lists to group elements so they can be correctly
parsed by the dcecp command interpreter. For example, the set command takes
two arguments:

set varName value

The following set command cannot be correctly parsed because dcecp detects a
third argument:

dcecp> set a John Hunter
Error: wrong # args: should be "set varName ?newValue?"
dcecp>

Use braces, quotes, or backslashes to create a valid list, as follows:

dcecp> set a {John Hunter}
John Hunter

dcecp> set a "John Hunter"
John Hunter

dcecp> set a John\ Hunter
John Hunter

dcecp>

The commands that operate on lists provide convenient ways to evaluate, select,
and act on individual elements or groups of elements in a list. The DCE control
program provides a comprehensive set of commands that let you create, modify,
search, sort, and convert to and from lists.

For example, the following script returns the last element in a list. The llength
command returns the number of elements in the list. Our list has four elements so
llength returns 4. The DCE control program numbers the elements from left to right
starting with O (zero) so our list with three elements has elements numbered 0, 1, 2,
and 3. The value of variable c is set to the number of the last element in the list (3).
Finally the lindex command returns element 2 (f).

dcecp> set a {a b {c

d e} f}

ab{cde}f

dcecp> set b [11ength $a]

4

dcecp> set ¢ [expr $b-1]

3

dcecp> Tindex $a $c

f

dcecp>

32 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

The DCE control program provides numerous commands for working with lists. You
can join lists together using the concat command. Use linsert to add elements to
an existing list. Extract a range of elements by using Irange , replace elements in a
list with Ireplace , and sort list elements in alphabetical (dictionary) order by using
Isort . The DCE control program also includes an attrlist object (see attrlist(8dce)
for use in manipulating list elements.

Here is an example that lists all child directories in a tree in alphabetic order. The _r
variable is a dcecp convenience variable that holds the output of the last command.
In this case, _r holds the list of directories returned by the directory list -simple
command.

dcecp> directory list -simple /.:

hosts subsys cell-profile fs lan-profile planets_ch sec sec-vl
dcecp> 1sort $_r

cell-profile fs hosts lan-profile planets_ch sec sec-vl subsys
dcecp>

Controlling Scripts

Conditionalizing

The DCE control program provides several commands for controlling your script’'s
execution. Commands such as if, while, for, foreach , and case execute parts of
scripts under various conditions. The break and continue commands can stop
execution of part or all of a command script.

with if Statements

Sometimes, you'll want part of your script to execute only under certain conditions.
Use an if statement to detect a condition and conditionally perform some operation.
The syntax for an if statement is:

if test true_body else false body

Let us say you are writing a script that searches through a list of attributes for a
particular attribute. An if statement could take particular actions depending on
whether an attribute exists. The following example script fragment returns an error
message if the account name does not exist in the list_of group_entries variable:

set list_of _group_entries [group 1ist $group -simplename]

if { [1search $1ist_of group_entries $account name] == -1} {
group add $group -member $account name
} else {

error "Group \"$group\" already has an entry \
for \"$account_name\"."

}

Controlling Script Execution with Loops

Programming languages use loops to repeat operations as long as specified
conditions exist. The DCE control program offers three kinds of loops: foreach ,
while , and for. The type of loop you use depends on the way conditions are
specified.

Chapter 2. Using the DCE Control Program Command Language 33

The foreach Loop

When you want to perform a given operation on each element in a list, use the
foreach command. Remember that a list is a colletion of objects, or things enetered
by you or returned from a command.

The syntax is:
foreach variable_name list body

The foreach command consists of a list, a script body, and a variable that
represents each element of the list, in turn. The command runs the script body on
the element represented by the variable and then sets the variable to be the next
element in the list.

The following sample foreach command could be part of a script that manages
hosts in a DCE cell. This script fragment removes the host principal name from the
registry if a failure occurs while configuring the host in the cell. The foreach
command looks at each principal name in the cell. If the string commands find the
host name listed in the output from principal catalog , the script deletes the
principal name from the registry.

foreach princ [principal catalog -simplename] {
if {[string match $host_name [string range $princ 0 \
[expr [string length $host _name] - 1]]] == 1} {
principal delete $princ

}

Keep in mind that loops return their results to the interpreter, not to stdout . You
need to take extra steps to send the results to stdout . The next example uses a
puts command to send the results of the foreach loop to stdout :

foreach i [group Tist subsys/dce/dts-servers] {
puts [principal show $i]
1

You can also append all the results together into a variable in a script, or you can
use lappend to append the results as separate list elements, as follows:

foreach i [group Tist subsys/dce/dts-servers] {
append result [principal show $i]
1

return $result
The while Loop

The while loop behaves like the while loop in C. It takes two arguments: an
expression and a script (called the body). When the expression evaluates to
nonzero, the while command executes the body and then reevaluates the
expression, continuing the loop until the expression evaluates to 0. The syntax for a
while loop is:

while expression body
The following example procedure uses a while loop to search through each
element in a list for a pattern. As long as the list size contains more than zero

elements ($size > 0), the procedure continues looping.

34 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

proc _dcp _list find {search 1ist pattern} {

set found_ items ""
set size [11ength $search 1ist]

while { $size > 0 } {
set size [expr §size - 1]
set index [Isearch $search Tist $pattern]
if { $index == -1 } {
return $found items
}
Tappend found_items [lindex $search_Tist $index]
set search_Tist [Ireplace $search _list $index $index]
}
}

The for Loop

The for loop also behaves just like its C counterpart. Although for is more complex
than its sibling while , for keeps all of the loop control information together, making
it easier to see what is going on. The for command syntax is:

for initial_expression test reinit script_body

To use for, set an initial expression and then test for that condition before executing
the script body. After executing the script body, the for command reinitializes the
initial expression and again tests for the new value, repeating the loop until the test
becomes false.

The following example shows a for loop that performs an operation a specified
number of times and stops. In this example, we create 50 guest principal names in
the registry.

dcecp> for {set i 0} {$i < 50}
{incr i} {

> principal create guest$i

>}

dcecp>

Terminating Loops with continue and break

The continue and break commands terminate loops started with the while , for,
and foreach commands.

Use the continue command to terminate the current iteration of a loop. For
instance, your loop can test for, and selectively ignore, particular elements in a list
while continuing to operate on the rest of the elements. Use the break command to
immediately terminate loop execution.

The following example script fragment is a foreach command loop that includes
continue and break commands. The foreach command looks through all the DTS
servers in a cell until it finds one that is a time-provider. (A time-provider is a special
DTS server that receives time from an external time source.) If the first server in the
list (created by the dts catalog operation) returns output from a dts show
operation, the continue command invokes the next lines in the script which search
the output for the {provider yes} attribute and value. If the provider attribute
(examined by the attrlist getval operation) is yes, the script sets the server
variable to be the name of that DTS server, and the break command terminates the
entire foreach loop.

Chapter 2. Using the DCE Control Program Command Language 35

foreach s [dts catalog] {
if {[catch {dts show $s} dts_sh_out] != 0} {
continue
1

set p [attrlist getval $dts_sh_out -type provider]
if {[string match $p "yes"] == 1} {

set provider "yes"

set server $s

break

}

set provider "no"

}
Testing with Patterns Before Execution with case

Some commands return a list such as a list of objects in a directory or a list of
servers running on a host system. You can use the case command to test a list or
string for specific patterns such as the name of a particular object or server. On
detecting a specified pattern, the case command then executes a script associated
with the pattern detected. The syntax for the case command is:

case string in pattern {script} pattern {script}

The case command looks in string for pattern and executes {script}. The word in
may be omitted. The following example illustrates how the case command works:

dcecp> set x {one ten twenty}

one ten twenty

dcecp> foreach el $x {case $el in one {puts scriptl} two {puts script2}}
scriptl

dcecp>

The case command first checks in $x for the pattern one. On finding this pattern,
the associated script echoes script 1 on the display. When it finds no more
matches, the case command ends.

For a more practical example, say you run a dcecp command that lists all the
servers on a particular system. You could search the list for particular server names
and execute a script that appends each name to a particular file, as follows:

case $x in serverl {lappend filenamel} server2 {lappend filename2}

If your list of patterns is lengthy and likely to break across lines, you can prevent
newlines from being interpreted as separators by enclosing the entire list of target
patterns and scripts in braces. This has the additional benefit of preventing variable
and command substitutions in the braced list.

Patterns can include wildcard characters. A ? (question mark) in a search pattern
matches any single character in the target pattern. For instance, ?at matches bat
and hat. An * (asterisk) in a pattern matches any string in the target pattern. For
instance, *at matches both bat and "three cornered hat " (note the use of quotes
to disable spaces as separators).

You might want a way to execute some default script when no pattern matches are
found. The case command has a special pattern called default whose
corresponding script executes when no pattern match is found. You should place
the default pattern as the last position in the list:

36 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

case $x in {
a {puts "script for case a"}
b {puts "script for case b"}
default {puts "run this script if no matches are found"}

Creating Commands Dynamically

The eval command lets you create scripts as you go along by chaining smaller
scripts together. This technique could be useful in a script that records administrator
responses to various questions and then constructs a specialized script based on
those responses. The syntax is:

eval arg ...arg

The following example uses variables to hold options and their values for an
account create operation. The eval command ensures that the variables expand
and execute properly.

dcecp> set

mpwd {-mypwd mxyzptlk}

-mypwd mxyzptlk

dcecp> set pwd {-password change.me}

-password change.me

dcecp> set org {-organization guests}

-organization guests

dcecp> set grp {-group guest}

-group guest

dcecp> eval account create guestl $mpwd $pwd $org $grp

dcecp>

Be careful when using variables to construct eval commands. An eval command
such as the following can sometimes cause problems within scripts because dcecp
parses it twice. First, dcecp parses the eval command and its arguments. Then it
again parses the eval arguments when they are executed as scripts.

dcecp> eval $a $b $c
dcecp>

You can avoid some parsing problems by placing braces around the arguments as
in this example:

dcecp> eval {$a $b $c}
dcecp>

To make certain dcecp parses your eval command correctly, you can invoke the
dcecp list command to generate a valid list structure:

dcecp> eval [list $a $b $c]
dcecp>

Reading Other Files as dcecp Scripts

The source command reads the contents of other files, executing them as dcecp
scripts. This capability lets you construct higher level scripts by plugging lower level
functions together—Ilike building blocks. Because you re-use your scripts rather than
duplicate them with potential variations, scripts are more consistent and easy to
develop and maintain. The command syntax is:

Chapter 2. Using the DCE Control Program Command Language 37

source filename

The return value from source is the return value from the last command in
filename.

As a practical example, imagine we have one script that lists entries in CDS
subtrees, another script that deletes subtrees, and another script that moves
subtrees. One common function needed by all these scripts might be to list every
child directory under the root of the subtree. You could write a script that lists every
child and name it something like children_list.dcp . (The .dcp extension is a dcecp
convention for naming script files.) When any of your scripts need to list all the child
directories, simply use the source command:

source children_Tist.dcp

Terminate a source command by using the return command. The return command
provides a way for commands like source and proc to exit in a controlled manner,
even when expected or unexpected error conditions occur. Rather than allow error
conditions to cause the whole script to exit and fail, the return command manages
error information and allows the script to continue executing. We discuss the use of

return with other error-handling techniques in tDealing with Errars and Exceptions’|

Creating New Commands

38

The DCE control program provides a powerful and comprehensive set of
commands for controlling and monitoring DCE operations. But the exact uses to
which DCE is put by end users is unpredictable. Consequently, it is quite likely that
some administrators will need additional commands to meet very specific needs.
The proc command offers an easy way to create additional commands that look
and behave just like built-in commands such as set, list, and while . But unlike
built-in commands, which are written in C, commands created with proc are written
using scripts, as follows:

dcecp> proc div {x y} {expr $x/$y}
dcecp>

The proc command takes three arguments: the procedure name, a list of names of
procedure arguments, and the dcecp script that forms the body of the new
procedure. Our new procedure div requires two arguments. For example:

dcecp> div 12 4

3
dcecp>

By default, proc assumes all variables are local variables. That is, their names and
values are set only within the procedure and they expire when the procedure
completes. The following command produces an error because variables x and y
have not been set within the procedure:

dcecp> set x 15
15
dcecp> set y 3

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

3

dcecp> proc div {} {expr $x/$y}

dcecp> div

Error: cannot read "x": no such variable

You can import global variables (variables defined outside the procedure) by using
the global command:
dcecp> set

x 15

dcecp> set y 3

dcecp> proc div {} {
> global x y

> expr $x/$y

>}

dcecp> div

5

dcecp>

Once you import a global variable, it persists for the duration of the procedure. Your
procedure can change the value of the variable by using unset and set. The new
value will be available for use inside and outside of your procedure, as shown.

You can use the return command to make your procedure return immediately. The
value of the argument to return becomes the procedure’s return value.
proc find {a} {
<some pattern matching script that looks for a specific CDS entry>
if {a != b} {
return 1
}

return 0

}

You can design procedures to take either no arguments or variable numbers of
arguments. For instance, a procedure with no arguments could simply perform
some straightforward operation as in the following example:

proc _do_create group {} {
global rpcgroupname
rpcgroup create $rpcgroupname

You can also specify a default value for an argument by using a nested list structure
in the argument list. In the following example, the first argument, attr, must be
supplied. The second argument, value, defaults to unset if no argument is supplied.

proc _attr_show {attr {value "unset"}} {
puts "$attr is $value"
1

Procedures can call other procedures. The current procedure can import variables
from any calling procedure by using the upvar command, as shown:

upvar level otherVarl myVarl otherVar2 myVar2

A level argument of 1 gets the variable context of the parent procedure. An
argument of 2 gets the variable context of parent’s parent procedure. You can also
specify levels relative to the global context by preceding the level argument with #.
A level of #0 gets global variables. A level of #1 gets variables from a procedure
invoked from the global level.

Chapter 2. Using the DCE Control Program Command Language 39

The otherVar argument names the variable you want to import. You need to include
the myVar argument to rename the variable for use in the current procedure. The
following example renames the imported variable to cargs:

upvar 1 local_args cargs

Procedures can also execute scripts under the context of parent procedures by
using the uplevel command. This command offers a convenient way to manage
your procedure’s context. For instance, rather than import and manipulate
numerous variables from a parent procedure, use uplevel to connect to them all at
once. The syntax is:

uplevel level arg arg arg

The uplevel command is similar to eval; it concatenates arguments and executes
them as scripts but, unlike eval, uplevel executes the script in the context specified
by level rather than the current context. The /evel argument works the same in
uplevel as it does in upvar . Use the parent’s context with a level argument of 1.
Use the context of a first-level procedure with a level argument of #1.

If a proc command specifies a command name that is already in effect, the new
procedure replaces the existing procedure with the same name. Except in unusual
cases, you should avoid naming new commands so that they replace existing
built-in commands.

You can rename or delete Tcl commands by using the rename command. For
instance, you could temporarily rename list to list.old and then use proc to create
another command called list. When you are through using the manufactured list
command, you could rename list old to list, restoring the original function of list as
in the following:

rename list list.old
proc Tist {} {

<some list operation>
}

rename list.old list

Delete a command by omitting the second argument to the rename command. The
following example deletes the list command:

rename list

String Manipulation

Many DCE administrative operations return information of some sort. For instance,
the principal show operation returns information about a principal. Usually this
information is in the form of a list, as in the following example:

dcecp> principal show R_Parsons
{fullname {}}

{uid 15}

{uuid 0000OOOT-d6T9-21cd-8d00-0000cO8adf56}
{alias no}

{quota unlimited}

{groups users}

dcecp>

40 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Although it is fairly easy for an administrator to scan a list and extract the necessary
information from it, scripts operate differently. When scripts search for specific
information, they usually ignore the notion of lists, operating instead on the
collection of characters (called a string) that makes up a list. The DCE control
program provides a set of commands to operate on strings, letting you construct,
parse, compare, extract values from, and modify strings.

Constructing Strings

Parsing Strings

Often, scripts need to construct strings for use in other commands or for displaying
on the screen for users. The DCE control program provides a format command that
you use to construct strings for use by your script.

The format command substitutes variables where needed. The following example
constructs the variable _dcp_host_entries by using the format command to
prepend the cell name string (the string type is indicated by %s) to the string
/hosts . The cell name is contained in the _c convenience variable.

dcecp> set _dcp_host_entries [format "%s/hosts" $_c]

/.../my_cell.goodco.com/hosts
dcecp>

The format command can also convert arguments between differing forms including
decimal, octal, hexadecimal, floating-point, and scientific notation. You can also
specify to print or omit signs for signed numbers, right or left justify output, and pad
with spaces or zeroes. The following examples convert the integer 8 to its octal
equivalent. The second example shifts the output nine character spaces to the right.

dcecp> format

%1o 8

10

dcecp> format %90 8
10

dcecp>

The DCE control program includes a scan command that parses strings and then
converts and stores relevant parts of strings in variables. This capability is useful,
for instance, when converting information returned by a previous command into
data that can be input to another command. The syntax for the scan command is
as follows:

scan "string" "format" [varname [varname]...]

You can specify the string literally or by using a variable. The format section
controls parsing, ignoring blanks and tab characters you might have included in the
format section for readability. This section consists of one or more conversion
specifiers delimited by % (percent sign). Conversion specifiers define which parts of
string get converted and stored, as well as the type of conversion.

The following example parses the string contained in the variable _dcp_temp for a
valid floating-point number and stores it in the variable _dcp_temp2 :
if { [scan $§ dcp_temp "%f" _dcp temp2] != 1} {
error "Variable \"$_dcp_temp\" is not a \
valid floating-point number"

Chapter 2. Using the DCE Control Program Command Language 41

Other String Handling Operations

You can specify one character or a range of characters in a string by using string
index and string range . These commands would be useful for extracting
information from a string of predictable length.

The string index command has one argument that is the position of one character
(counting from left to right beginning with O (zero) to be extracted from the string.
The string range command includes two arguments that are the positions of the
leftmost and rightmost characters to be included in the range. The following
example illustrates one use of the string range command:

dcecp> string range {The
quick brown fox} 4 9
quick

dcecp>

You can determine whether one string is lexicographically (alphabetically) greater
than, less than, or equal to another string by using string compare . Generally, this
operation performs a byte comparison of ASCII codes that make up the string.

Count the number of characters in a string using the string length command. Here
is an example:

dcecp> string length "The
quick brown fox"

19

dcecp>

Convert characters between uppercase and lowercase by using the string toupper
and string tolower commands. Here is an example:

dcecp> string toupper "The quick brown fox"
THE QUICK BROWN FOX
dcecp>

Trim specific characters from a string by using the string trim command. Remove
the leftmost or rightmost characters from a string by using the string trimleft and
string trimright commands.

You can perform pattern-matching operations in any of several ways. Invoke “glob”
style pattern matching with the string match command. This mimics the glob
pattern matching capabilities available in csh, returning 1 for a match and 0 for no
match. More flexible regular expression pattern matching (like that found in egrep)
can be performed using regexp command. You can extend this operation to
perform regular expression substitution by using the regsub command.

The following example illustrates the use of the regsub command. The first
argument specifies the search pattern. The second argument is the string to search.
The third argument specifies the replacement pattern. The last argument is a
variable into which regsub places the new string. The command returns 0 if no
substitution occurs and 1 if substitution does occur.

dcecp> regsub brown

"The quick brown fox" blue color

1

dcecp> puts $color
The quick blue fox

42 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Dealing with Errors and Exceptions

The dcecp interpreter includes error facilities that return error information when
something goes wrong with a dcecp script. Error information tells users what went
wrong so that they can avoid making the same mistake in the future. Many things
can cause dcecp errors. For instance, a command might not receive the correct
number of arguments, a command might have a typographic error of some kind, or
the object of an operation (such as a CDS directory) might be unavailable for some
reason.

Here, we discuss three ways of dealing with errors and exceptions:
» Using global error information variables

» Catching exceptions

* Reissuing complex errors

Using Global Error Information Variables
When dcecp encounters an error it prints a descriptive message, such as:
Error: wrong # args: should be "set varName ?newValue?"

In some cases, error messages may be insufficient for determining exactly where a
problem occurred. So dcecp stores additional error information in a global variable
called errorinfo . Your script can access and print this information to help you find
the error. Generally, it traces the commands that were executing when the error
occurred.

The following example shows the kind of information that can be stored in
errorinfo . Reading backwards, you can determine that the error occurred near line
4 of the script body in the parseargs procedure called from the _dcp_create_user
procedure of a user operation.

dcecp> puts $errorInfo

Unknown option "group"
while executing
invoked from within

("while" body line 4)
invoked from within

(procedure "parseargs" line 60)
invoked from within

(procedure " _dcp_create_user" Tine 64)
invoked from within

invoked from within
invoked from within
(procedure "user" line 24)

dcecp>

In addition, dcecp may store another kind of error information in another global
variable called errorCode . This variable contains a list like the following that can
identify other classes of errors.

Chapter 2. Using the DCE Control Program Command Language 43

UNIX, ENOENT, "insufficient arguments for filename"

The DCE control program sets the errorCode variable to NONE if an error
produces no useful error information.

Using catch to Trap Errors and Exceptions

Occasionally, you might want to trap some kinds of errors rather than let them
terminate an active command. The catch command lets you trap and ignore errors
S0 your script can continue processing. Let us say your script wants to rename a
command if it exists. However, it is possible that the command name might not exist
when you execute the rename command.

dcecp> rename move move.old
Error: cannot rename "move": command does not exist
dcecp>

Use catch to invoke the rename command as a script.

dcecp> catch {ren move move.old}
1
dcecp>

The catch command treats its argument as a script and executes it, returning a 0
on successful execution. If an error occurs, it is caught by the catch command
which returns a 1.

You can add a second argument to the catch command. This argument is a
variable that catch modifies to hold the script’s return value (on successful
completion) or the error message. The syntax for the catch command is:

catch command varName

One use of catch in scripts is to invoke other procedures. You can read the
following script fragment as follows: “If the _dcp_create_group procedure returns
unsuccessfully (= 0) then perform the _dcp_cleanup_user create procedure and
display the error stored in the msg variable.”
if {[catch {_dcp_create group $group group created} msg] != 0 } {
_dcp_cleanup_user_create $element -principal
error $msg

}

Exceptions are a special class of error generated by the break, continue , and
return commands. You use the break and continue commands to terminate loops
such as while, for, and foreach , and you use the return command to terminate a
proc or source command.

Resulting exceptions can be hard to handle in procedures where loops exist inside
(as part of) a more comprehensive command. For instance, a user-written
procedure that searches for specific object types in CDS might invoke foreach as
part of a looping activity to test for the occurrence of particular attributes.

If you use the break, continue , or return commands to manage loop execution or

to manage some other nested command (like case or if, for example), the parent
command will not be ready to catch the exception. The parent command will abort

44 |BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

and issue an error message as usual. However, the error is associated with the
parent command and is difficult to track to the looping command where it actually
occurred.

If it is necessary to use a continue , break, or return command to terminate a
command that has been called by another command, consider using catch to
invoke the nested command which, in turn, calls the continue , break, or return
command to recover from errors or exceptions. Used this way, the catch command
keeps the exception within the looping or nested procedure where it is easier to
track down.

foreach s [server catalog] {
if {[catch {server show $s} srv_sh out] != 0} {
continue
1

Reissuing Complex Errors

The proc command lets you create procedures or commands that perform very
precise operations. For instance, a user-written procedure called _dcp_get_servers
that retrieves and filters information about running servers could include nested
commands or procedures that perform various subtasks such as looping through
server information looking for certain strings. While use of nested commands or
procedures lets you develop comprehensive procedures or commands, they can
also produce errors that are difficult to pinpoint if errors are not passed along

properly.

Complex scripts can use the error command to reissue errors that have been
triggered by some previously executing part of the script. The following script
fragment simply prints out a hard-coded error message. This use also lets you
custom tailor messages to precisely explain error conditions.

set dts_cat_out [_dcp_dts_catalog]
if {[11ength $dts_cat_out] == 0} {

error "Unable to find any DTS servers"
}

The next script fragment does more, using catch to store any error information
returned from the _dcp_create_group procedure in the msg variable. On failure (1=
0), the script invokes a cleanup procedure that undoes whatever was done, and
then prints out the message stored in the msg variable.
if {[catch {_dcp_create_group $group group created} msg] != 0 } {

_dcp_cleanup_user _create $element -principal

error $msg

}

This discussion has provided some fairly simple error handling techniques. Note,
though, that error handling can be complicated, especially in more complex
situations. We encourage you to read more about error handling in other
publications that cover more general use of Tcl.

Working with Files

The DCE control program has several commands for use in reading from and
writing to files. Files are useful for things like storing the output of dcecp operations
for later reference. Here are several useful examples of file manipulation:

Chapter 2. Using the DCE Control Program Command Language 45

* You could run a server catalog operation across all of the hosts in a cell and
store the results from each host in a host-specific file. Later, you could compare
the files to produce a report of server configurations.

* You could detect inactive accounts by running a dcecp script that shows the last
time each account was logged into, storing this information in a file for later
evaluation.

* You could also modify DCE files that are not manipulated easily by using the
dcecp hostdata object. For example, you could write a function that added a
new attribute to the cds_attributes file.

DCE as provided by OSF currently supports file operations only for UNIX systems
or for systems that support POSIX system calls. However, some vendor DCE
versions may support file operations on other systems.

Specifying Filenames

Specify filenames using customary UNIX rules. For instance,
/opt/dcelocal/dcecp/server_snap.dcecp refers to a file named

server_snap.dcecp in a directory called /opt/dcelocal/dcecp . You can also refer to
files by using relative filenames, for example

“dce_admin/scripts/server_snap.dcecp and /admin/server_snap.dcecp . You
can print the current working directory by using the pwd command and set the
current working directory by using the cd command. The following command sets
the current directory to be ~dce_admin/scripts :

dcecp> c¢d dce_admin/scripts
dcecp>

You can view a list of files in a directory by using the glob command. This
command returns a list of flenames that match pattern arguments to the command.
Here is an example:

dcecp> glob *
help local_lib.dcp
dcecp>

You can view lots of other information about files by using the file command with
various options. The file commands can help select a file based on its age, its size,
or its permissions (whether it is executable, or readable, or writable by the current
user).

Reading and Writing Files

The dcecp commands for reading and writing to files look and act like their C
language counterparts fopen, fclose , and so on.

Open a file for reading and writing using the open command. The second argument
to the open command (shown in the following example as +r) specifies the file
access mode. You can open files for reading, or writing, or both and you can
specify whether to replace existing files or to add to them with new information. You
can also set the initial access position to the beginning or the end of a file. The
default access mode is read-only (the file must already exist).

46 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> open server_snap.dcecp
+r

fileb

dcecp>

The open command assigns a file identifier to each file when it is opened. Use the
file identifier to refer to files in subsequent commands.

Once a file is opened, you can add lines to a file by using the puts command.
Normally, dcecp waits until it has accumulated sufficient data before writing this
information to a file. If you want dcecp to immediately write the information to a file,
use the flush command. Use gets to read the next line from a file or use read to
read a number of bytes or all of the bytes in a file. The following example writes a
list of all principals in a file named prins :

dcecp> open prins w+

file8

dcecp> puts file8 [principal catalog]

dcecp> close file8
dcecp>

Sometimes, you do not want to start reading or writing at the first line of a file. The
DCE control program provides several commands that set the access position so
you do not have to advance through every line in the file. These commands will
produce an error if you use them for devices like terminals or other sequential
devices that do not support random access. Use the seek command to set the
access point in a file. Specify the offset as a number of bytes from the origin, which
can be the beginning or end of the file or the current position. Use a negative
number to move toward the beginning of the file, as in the following example which
moves back 16 bytes from the current access position.

dcecp> seek fileb
-16 current
dcecp>

You can determine the current access position by using the tell command. Save the
return value in a variable so you can go back to that position in the file later on.

Finally, you can close a file by using the close command, as follows:

dcecp> close fileb
dcecp>

Spawning Subprocesses

Using subprocesses to execute commands offers several convenient solutions to
some complex scripting or special administrative needs. Subprocesses can provide:

* Access to operating system commands
* A way to establish synchronous, orderly execution
* Methods for streamlining complex or sophisticated scripts

Running Operating System Commands from a Script

Although the DCE control program is versatile, there are times when you may want
your script to use operating system commands to accomplish some simple (or even
not-so-simple) operation. The exec command provides a way for scripts to perform

Chapter 2. Using the DCE Control Program Command Language 47

48

external commands by forking a subprocess in which the command executes. The
following example uses the exec command to retrieve the local host name which is
then established as a hostname variable and subsequently used in the script.

dcecp> set hostname

[exec hostname]

myhost

dcecp> directory list /.:/hosts/$hostname -simple
cds-clerk cds-server dts-entity profile self
dcecp>

The exec command normally returns the results of the operation performed in the
subprocess. However, you can use UNIX redirection symbols (<, <<, and >) to
redirect standard input or standard output. You can also use the | (vertical bar) to
pipe the output through filters such as nroff , sort, or grep.

When used alone, the exec command is synchronous, meaning that the external
command completes before the script continues executing. But when a subprocess
will take a long time to complete, for instance when you synchronize directories in a
CDS cell, you can use the exec command with an & (ampersand) to push a
subprocess into the background. The following example uses the exec command to
send previously collected output to a printer. This lets your script continue without
having to wait for the print command to complete.

dcecp> exec 1pr output.log &
dcecp>

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 3. Writing Scripts and dcecp Objects

The DCE control program supplies a number of objects that offer administrative
access to each manageable component in a DCE cell. For instance, the principal
object lets administrators manage principal information in the DCE Security Service
registry database. Similarly, the rpcgroup object lets administrators manage group
information in CDS.

Some DCE operations affect multiple components as when several operations must
be performed to add a new user to a DCE cell. To meet this need, the DCE control
program provides task objects, which let administrators operate on multiple
components with a single operation. For instance, the user task object performs
several operations that include creating principal information in the registry, adding
the principal to an organization and to relevant groups, creating a CDS directory for
the user, and so on. Task objects look and behave just like other dcecp objects,
implementing the same help system used by other dcecp objects. However, task
objects are written using the dcecp language instead of the C programming
language. This makes it easy for administrators to extend or customize existing
scripts.

While the DCE control program provides task objects to handle some
multicomponent operations, variations in cell configurations and differences in the
ways administrators manage their cells make it impractical for the supplied DCE
task objects to satisfy all the needs of every DCE cell. For instance, some cells may
use DFS components, or a cell may implement a cell directory naming scheme that
differs from the standard OSF DCE implementation. Alternatively, some DCE
implementations could have specialized administrative components, such as
services or repositories, that need distinct dcecp objects for managing them.

To accommodate a cell's specific needs, the DCE control program language lets
administrators create their own scripts. Administrators can also extend or modify
existing task objects or they can create new task objects to manage specialized
components in a DCE cell. This chapter provides information for extending,
modifying, or creating the following kinds of dcecp scripts:

* Informal administration scripts
* Formal task objects

Informal Administration Scripts

Informal administration scripts let administrators store multiple operations in a file
and replay them whenever necessary. Informal scripts are useful for operations that
take only one or two arguments or that just perform simple tasks. Furthermore, the
script’s precise behavior and output can be custom tailored to the needs of its
author. While informal scripts can be shared among administrators in a cell, they
are typically included just in the author’s .dcecprc file.

Scripts generally consist of one or more procedures created with the proc
command. This lets you invoke the scripted operation by simply typing the
procedure’s name at the dcecp prompt.

The following simple script prints information about your current cell and login
identity:

© Copyright IBM Corp. 1990, 1999 49

50

Show your current login name and your current cell name.
proc _dcp_whoami {} {

global _c¢ _u

puts stdout "You are '$ u' lTogged into '$ c'."

}

This script can be included in your .dcecprc file either directly or by using the
source command and keeping the actual script in an external file. The second
method lets other administrators include your same script by simply pointing to it
with source commands in their .dcecprc files. This method also keeps your
.dcecprc file uncluttered, making it easier for others to understand what is going
on. Alternatively, you can place the script or a pointer in the init.dcecp file.
Changes to this file are available to all users on a host For more mformatlon about
the init.dcecp file and the .dcecprc file, see

hage 14 of LCha.pLeu_J:lCE_C.omtoLEmgLam_hmoducm.n_o.n_pa.ge_d The following

is an example of the source command in a .dcecprc file:

source /usr/users/wardr/dcecp/Tocal_Tlib.dcp

The .dcp filename extension is a convention for naming files used by the DCE
control program. Another convention precedes procedure names with _dcp, as in
_dcp_whoami . Many dcecp procedures adhere to this convention to distinguish
their names from user-created procedures that do not need to use this convention.
If you find procedure names like _dcp_whoami hard to remember or type, you can
rename them. For instance, you could rename the procedure to whoami by using
the rename command in the .dcecprc file, as follows:

rename _dcp_whoami whoami

Restart dcecp to pick up any changes. Now you can enter whoami at the DCE
control program prompt, as follows:

dcecp> whoami
You are 'cell_admin' logged into '/.../my_cell.goodco.com'.
dcecp>

By chaining operations together, you can create scripts that do more. For example,
the following script lists all the hosts in a DCE cell. Then it checks whether each
host has an object entry in CDS for a dts-entity. (This would indicate that a DTS
server is available on the host.) For each host with an object entry for a dts-entity,
the script does a clock show operation which returns the time on that host. The
script prints the information on the display, formatting it for readability, and continues
looping through all the hosts in the cell until all host entries have been checked.

Make the _dcp_show_clocks procedure available to your dcecp session in the
same way as the simpler script described previously.

Show the time on all of the dts servers running in your cell.
proc _dcp_show clocks {} {
set x [directory list /.:/hosts]
foreach n $x {
f {[catch {object show $n/dts-entity}] == 0} {
set index [string last "/" $n]
set y [string range $n [incr index] end]

f {[catch {clock show $n/dts-entity} msg] == 0} {
set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \

[cTock show $n/dts-entity]]

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

} else {
set i [expr 20 - [string length $y]]
puts [format "Time on $y is %${i}s %s" " " \
"Server not responding."]

Formal Task Objects

Some DCE environments might have special administration needs that are not
strictly addressed by the standard DCE control program objects. While you could
write and distribute informal scripts to meet this administration need, you would
likely need to document their operation in some way. More importantly, though, a
complicated operation might require the use of numerous options to precisely
control the script’'s behavior. Rather than invent your own mechanisms to provide
help information and handle complicated argument parsing operations, you could
rely on the existing help system and the parseargs facility utilized by other formal
task objects supplied with dcecp . This approach makes your script consistent with
other dcecp objects.

Formal task objects build on the idea of the informal scripts presented previously
with some important additions:

* An argument table at the beginning of the script defines operations as separate
procedures within the script. An argument table can also define available options.
A parseargs procedure is called to parse the arguments and options passed to
the script when it is invoked.

» Help information for each operation is placed in the argument tables in the script.
Other script users can get this information by using standard dcecp help
operations.

» Extensive error control is included because you cannnot predict or control the
conditions in which the script executes.

The rest of this section shows the general structures and conventions used in a
formal task object. To aid our explanation, we use the dcecp user task object
supplied with the DCE control program.

A Model for Task Objects

This section examines the parts of the user task object that should be emulated in
other task objects that you create for use with the DCE control program. Adhering
to the basic model ensures that your task object will look and behave consistently
with other parts of dcecp .

For efficiency and readability, the example does not include all of the procedures
contained in the user task object. Furthermore, we have omitted some repetitive
parts of the included procedures, replacing the omitted parts with vertical ellipses in
the code examples. The entire user task object is contained in dcelocalldcecp .

Name your object after the entity on which it operates rather than as a verb such as
"show” or "modify.” DCE control program objects are named for the DCE entity on
which they operate. Primitive objects like rpcentry and principal objects operate on
single manageable DCE entities. Task objects operate at a higher level, generally

Chapter 3. Writing Scripts and dcecp Objects 51

invoking several primitive objects to achieve their goal. The authors of the user task
object contrived a higher-level entity—a user—as a manageable object.

The user object begins with the top level proc command and its argument table
that defines the procedures and operations provided by the user object. Use this
syntax to define separate procedures in this argument table:

verb command function_call procedure_name "helptext string"
The call to the parseargs procedure (defined in a separate file called

parseargs.dcp) returns the name of the internal procedure that is to be called a
long with its arguments. The parseargs procedure is explained in

proc user - This procedure is the front end for the user task

scripts. All argument checking for the provided switches is done
in the individual functions.

#

proc user { args } {
set arg_table {

{create command function _call _dcp create user
"Create a DCE user" }

{delete command function _call _dcp delete user
"Delete a DCE user"}

{show command function_call _dcp_show_user
"Show the attributes of a DCE user"}

{help help help_list
"Print summary of command-line options and abort"}

{operations operations operation_list
"Return valid operations for command."}}

set verbose prose
"This object allows the manipulation of a DCE user. A user is
represented as a principal and account with membership in a group and
organization as well as having a directory in the CDS namespace. A user
may be created, deleted or have attribute information returned. The
argument is a list of either relative or fully qualified principal names.
A1T fixed attributes of the principal and account object may be specified
when creating a user. The -force option to the create verb allows the
group or organization for that user to be created if necessary. The user
is provided a directory in the CDS namespace, with the appropriate ACLs.
Access to create a user requires the correct ACLs on principal, group and
organization directories within the registry and the clearinghouse and
users directory in the CDS namespace."

set Tocal_args $args
parseargs $arg_table Tocal_args -found_one
if { [info local help_prose] > 0 } { return $help_prose }
if { [info Tocal function_call] >0 } {
return [$function_call local_args]
} else {
error "\"user\" object requires a verb to form a command."

}
}

The next part of the script examines a procedure that takes many options or
attributes as input: the _dcp_create_user procedure. While this procedure relies on

52 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

numerous lower-level procedures to do the actual work of creating a user, the
example begins by showing just one of the lower-level procedures,
_dcp_create_principal_entry

Then the script continues with the _dcp_create_user procedure. Notice that the
name of this procedure (and all lower-level procedures) begins with an underscore.
That is because the Tcl info command is frequently used to return the names of all
procedures. This convention distinguishes these internal procedure names from
procedures like user, which are documented procedures. Furthermore, the _dcp
part of the name distinguishes dcecp procedures from other Tcl procedures on a
host.

The _dcp_create_user procedure has an argument table defining its available
options. This argument table differs from the script’s initial argument table in that it
lacks the command keyword and the function_call variable that define separate
procedures in the script.

Next it initializes variables entered either as options or as attributes in a list. A
process_attribute_list procedure (at the end of the example) actually parses
attributes that have been passed as a list. Then it does the work of creating the
user information in the registry and in CDS. Near the end, the cleanup procedure
_dcp_cleanup_user_create can undo a failed user create operation.

. [several Tow-level procedures omitted]

#

This procedure creates a principal in the current registry _s(sec)
if that principal does not yet exist.

#

proc _dcp_create_principal_entry { principal_name princ_args} {

set 1ist_of _principals [principal catalog]

if { [1search $1ist_of principals $principal_name] == -1} {
if { [11ength $princ_args] =0 } {

principal create $principal_name -attribute $princ_args

} else

} else {
error "Principal \"$principal_name\" already exists."

}

1
#
proc _dcp_create_user - This procedure actually creates a DCE user.

Several steps are performed. If the principal does not exist

a new one is created. If the groups do not exist and a -force switch is
set, then two new groups will be added. The user will be added to the

groups. The account will then be created. An entry in the CDS

namespace will then be created with the appropriate ACLs.

#

proc _dcp create user { local _args } {
set arg_table {
{-alias string alias
"Add principal named as an alias of specified uid."}
{-attribute string attribute_list
"Provide attributes in an attribute 1ist format."}
{-client string client
"Can the account principal be a client."}
{-description string descr
"A general description of the account."}

Chapter 3. Writing Scripts and dcecp Objects 53

{-dupkey string dupkey

"Can the accounts' principal have duplicate keys."}
{-expdate string expdate

"When does the account expire."}

. [repetitive elements omitted]

{-uid integer uid
"User Identifier of the principal to be added."}}

#
Initializing some variables.
#
upvar 1 local_args cargs
set local_args $cargs
set account_args ""
set princ_args ""
set group_args ""
set force 0

parseargs $arg_table local args -no_leftovers
if { [info Tocal help_prose] > 0 } { return }

if { [11ength $1ocal_args] > 1 } {

error "Unrecognized argument [lindex $local _args 1]."
} elseif { [11ength $1ocal_args] == 0 } { error "No user name."
} else { set account_name $local _args }

If parseargs returned attributes in a list instead of options,
create an attribute list. Then call process_attribute_list to
parse the Tist.

= FH I H=

if { [info local attribute_list] > 0} {
set pile_of_attributes "alias client descr dupkey expdate\
forwadabletkt fullname force group home organization maxtktlife \
maxtktrenew mypwd password postdatedtkt proxiabletkt pwdvalid \
renewabletkt server quota shell stdgtauth"
process_attribute 1ist attribute 1ist $pile of _attributes

}

If user entered attributes as options rather than in a Tist,
check for attribute options.

HH I e H

if { [info Tocal group] > 0} {
set account_args [format "%s {%s %s}" $account_args group $group]
} else { error "No group name specified." }

if { [info local organization] > 0} {
set account_args [format "%s {%s %s}" $account_args organiz \
$organization]
} else { error "No organization name specified." }

if { [info local password] > 0} {
set account_args [format "%s {%s %s}" $account_args password \
$password]
} else { error "No password specified." }

if { [info Tocal mypwd] > 0 } {
set account_args [format "%s {%s %s}" $account_args mypwd $mypwd]

} else { error "No admin password specified." }
#
principal and group operations both use the principal's fullname
#

if { [info Tocal fullname] > 0 } {

54 |1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

no

set princ_args [format "%s {%s {%s}}" $princ_args fullname \
$fullname]
set group_args [format "%s {%s {%s}}" $group_args fullname \

$fullname]

if { [info local uid] > 0 } {

set princ_args [format "%s {%s %s}" $princ_args uid $uid]
}

. [repetitive elements omitted]

if { [info Tocal stdtgtauth] > 0 } {
set account_args [format "%s {%s %s}" $account_args stdtgtauth \
$stdtgtauth]
}

#
set variables if entered as attributes in an attribute list
#

set account_name [Tindex $account_name 0]

set group_created 0

set org_created 0

set group_arg ""

set org_arg ""
#
do the work - create principal, do group and organization
operations, create the account, and create directory in CDS
#

foreach element $account_name {

set clup_user " dcp_cleanup_user_create $element -principal”

_dcp_create_principal_entry $element $princ_args

if { $force == 1} {
if {[catch {_dcp_create_group $group group created} \
msg] =0 } {
_dcp_cleanup_user_create $element -principal
error $msg
}
if { $group created == 1 } {

set group_arg "-group group"
}
if {[catch {_dcp_create_org $organization org_created} \
msg] !=0} {
set clup_user [concat $clup_user $group_arg]
eval $clup_user

error $msg
}
if { $org created == 1 } {

set org_arg "-org organization"
}

1

set clup_user [concat $clup_user $group arg $org arg]

if {[catch { dcp_add _group_entry $group S$element} msg] != 0} {
eval $clup_user
error $msg

}

if {[catch {_dcp_add_org entry $organization $element} msg] != 0 }
{
eval $clup_user
error $msg
}

if {[catch {_dcp_add_account_entry $element $account_args} \
msg] != 0} {

Chapter 3. Writing Scripts and dcecp Objects

55

eval $clup_user
error $msg

}

if {[catch {_dcp_add_namespace_entry $element} msg] != 0} {
eval $clup_user

error $msg
}
}
set _n $account_name
return
}
#

_dcp_cleanup_user _create - This function undoes changes after a

failure in one of the user create functions as though the operation
never occurred

#

proc _dcp_cleanup_user_create {account_name args} {

if { [1search $args -principal] != -1} {
principal delete $account_name

if { [1search $args -group] != -1} {
upvar 1 group clean_group
group delete $clean_group

}

if { [1search $args -org] != -1 } {
upvar 1 organization clean_org
organization delete $clean org

}

}

#

process_attribute Tist - Takes an attribute list and parses out the
appropriate attributes contained in the

pile_of _attributes variable

#

proc process_attribute_list {attribute_list pile_of_attributes} {

foreach element $pile_of attributes { upvar 1 $element _dcp_$element

upvar 1 attribute_list _dcp_attribute_list

set _dcp_attribute list [check list list $ dcp_attribute 1ist]
foreach element $ dcp_attribute list {
if { [1length $element] !'= 2 } {
error "Incorrect attribute Tist element
}

set attribute_name [Tindex $element 0]
set attribute_value [Tindex $element 1]
set _dcp_attr_name [info vars _dcp_$attribute_namex]
if {[11ength $§ dcp_attr _name] > 1} {
error
"Ambiguous attribute "\$attribute_name\" could be:
$ dcp_attr_name."

set [set _dcp_attr_name] $attribute_value

}
}

proc check_Tist_list {attribute_list} {

set not_Tist_list 0

56 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

set i1

foreach element $attribute Tist f{
if {[11ength $element] != 2 && [1Tength $attribute_list]

< 3} {
i {$1 == 1) |
return [format "{%s}" $attribute list]
1
b
incr i
1

return $attribute list

}

The next procedure we discuss in the user task object is one that takes a single
optional argument and returns lots of output information: the _dcp_show_user
procedure. This procedure returns the results of principal show , and account
show operations.

#

#_dcp_show_user - This procedure shows the principal and account
attribute Tists for a specified user.

#

proc _dcp_show user {local _args} {

upvar 1 local_args cargs
set local_args $cargs

parseargs "" local_args -no_leftovers
if { [info Tocal help_prose] > 0 } { return }
if { [1Tength $local_args] > 1 } {
error "Unrecognized argument [lindex $local_args 1]."
} elseif { [11ength $1ocal_args] == 0 } { error "No user name."

} else { set account_name $local_args }

Take the first element of the account_name in order to
eliminate Tist nesting.

set account_name [1index $account_name 0]
set _dcp_principals [principal catalog -simplename]

Show each account that has been requested.

foreach element $account_name {

if { [1search $ dcp principals $element] == -1 } {
error "User \"$element\" does not exist."

} else {
set _dcp_user_attributes [principal show $element]

}

set _dcp_accounts [account catalog -simplename]

if { [1search $ dcp_accounts $element] == -1 } {
error "User \"$element\" does not exist."

} else {

set _dcp_user_attributes [format "%s\n%s" \
$_dcp_user_attributes [account show $element -all]]
}
}

return $ dcp_user_attributes

Chapter 3. Writing Scripts and dcecp Objects

57

Using the parseargs Procedure

Task objects and scripts that take arguments or options can call the parseargs
procedure to parse arguments passed along with the object or script invocation.
The parseargs procedure is a script in a separate file that provides a convenient
and reusable method for argument parsing within a dcecp script. The basic syntax
is:

parseargs parse_options local_args args

The procedure relies on arguments passed to it by the calling script. The parseargs
procedure requires the following inputs:

parse_options
The argument table (arg_table) describing the parsing options. The
parse_options argument can consist of five elements, as in the script’s
top-level argument table, or four elements as in lower-level argument tables
for called procedures within a script. The two syntaxes for parse_options
are:

verb command variable command_name "help string"
or

-options type variable "help string"

verb Provides top-level parsing. Typically an operation contains an object
and a verb. The verb portion generally calls another procedure.

command
A keyword indicating that the procedure being defined is a verb of
an object.

variable
The name of the variable that holds the value of the option. When
parsing verbs, the variable is named function call . When parsing
options, the variable is named for the option being parsed. For
example, if the option name is -alias, the variable is named alias.

command_name
The procedure name to store in the variable.

help string
The string that describes the use of the verb or option.

-options
The actual string value of the option to be parsed such as
-attribute or -mypwd .

type The type of variable to be associated with -option . Acceptable
types are integer , string , float, boolean , command , and help.

local_args
The arguments to be parsed. The parseargs procedure extracts all of the
recognized entries into a list and resets local_args with the values that were
not parsed (or not parsable). For instance, a top-level command like user
create includes options that are parsed later when the procedure
implementing the create operation is invoked within the script.

args One of two flags:

58 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

-found_one
Tells the parser to return when one procedure argument has been
found. In user create , for example, the parser would return after
one create command had been found and processed.

-no_leftovers
Looks for extra options and generates an error if one is found.

Invoking Task Objects

Once your task object is written (and tested), you need to make it available for use.
If your script is intended just for your personal use, you can include it in your

dcecErc file and invoke it as described in Linfarmal Administration Scripts” ad

Formal task objects require a few steps to make them behave like other dcecp
objects.

1. Log in as root and copy the finished script into the dcelocall/dcecp directory and
set the file permissions to executable.

2. Start dcecp and run the auto_mkindex utility. This creates information that
informs the DCE control program about all available objects. With root
privileges, run the following command in the directory where the task objects
reside. On UNIX systems, this is often the dcelocalldcecp directory.

% dcecp
dcecp> auto_mkindex /opt/dcelocal/dcecp *.dcp
dcecp>

3. To include the new task object name in the dcecp help screen, edit the file
/opt/dcelocal/dcecp/help.dcp . This file is displayed in response to the dcecp
help operation.

You need to make this file available on each DCE host where the script will be
executed. Generally, this means copying the file to each host’s /opt/dcelocal/dcecp
directory and then running the auto_mkindex utility on the files in the directory. You
might want to place the object name in the /opt/dcelocal/dcecp/help.dcp file as
well.

As a convenience, you could write a script that uses the DCE control program’s
hostdata object to create the file on each host. The script could then run the
auto_mkindex utility using the hostdata object’s postprocessor attribute.

LQhapELQ__Managmg_DQF_tLQsLSenanes_and_tLQsLDalalm_page_QH contains

information on using the dcecp hostdata object.

Chapter 3. Writing Scripts and dcecp Objects 59

60 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Part 2. DCE Administration Tasks

© Copyright IBM Corp. 1990, 1999

61

62 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 4. DCE Administration Task Objects

This part of the IBM DCE Version 3.1 for AIX and Solaris: Administration
Guide—Core Components discusses the purpose and use of DCE administration
task objects provided with DCE. Generally, these special dcecp objects perform
routine high-level administration tasks by combining several lower-level operations.

Often, a single task object uses or affects multiple DCE services. For example, one
of the task objects, the host object, can configure a host computer into a DCE cell.
This task adds specific kinds of information to the DCE Security Service, the Cell
Directory Service, and the DCE host daemon services. Because a single invocation
of the host object can perform multiple steps, it shields DCE administrators from
some of the lower-level administration details that would otherwise have to be
attended to by using several lower-level dcecp administration objects.

While we discuss the task objects at a high level, you will need to keep in mind that
there is often more going on that we are not describing in detail. In these cases, we
will point out where to go in this guide for more detailed information. Usually you
will be directed to the corresponding lower-level discussion in the relevant
component’s part of this guide.

Using Task Objects to Simplify DCE Administration

Individual DCE control program objects operate on very specific pieces of
information in DCE. For example, the group object operates solely on security
groups in the DCE Security Service registry database. The group object enables
administrators to create and delete security groups, add and remove members from
security groups, rename the groups, and so on. Such precise control is necessary
because it allows you to custom tailor DCE to meet very specific needs or
circumstances.

While such control might be necessary when configuring a new cell or fixing some
access control problem, it can overwhelm routine DCE administration tasks. As an
example, let us look at the minimum steps needed to add a new user to a DCE cell:

Use the principal object to create a principal name for the user.

Use the group object to add the principal to a security group.

Use the organization object to add the principal to a security organization.
Use the account object to create an account for the principal.

Use the directory object to create a directory for the principal in CDS.
Use the acl object to give the principal access to the CDS directory.

o g wh P

Performing these six steps probably would not pose any problems in a small cell
with 15 or 20 users. But consider a cell with more, perhaps a hundred or maybe
even a thousand or more users, and the need to automate this and other
administration tasks becomes evident.

To meet this administration need, the DCE control program includes several
administration task objects for performing some routine DCE administration tasks.
Here, we'’re using the term task to mean doing something that requires multiple
steps, such as when adding a user consists of performing six lower-level
operations.

© Copyright IBM Corp. 1990, 1999 63

One of the task objects is the user object that you can use to add and remove user
information in your DCE environment. For instance, a single invocation of the user
object can perform all six of the previously mentioned steps needed to correctly add
a new user to your DCE environment. You can also use this same task object to
delete the user from your environment.

The task objects are implemented as dcecp scripts by using the DCE control
program language, which means that you can extend the scripts or change their
behavior according to your needs. For instance, the default implementation of the
user task object does not operate on any DFS information. If your DCE
environment includes these extended services, you might want to add some DFS
operations to the script. tRart 1. The DCE Cantrol Pragram” an page 1l of this guide
explains how to use the DCE control program language to write and modify a
dcecp task object.

Looking Beyond the Tools

Although you use the task objects to perform various administrative operations, your
most important focus is on the elements or entities that you're managing. Each of
four task objects provided with DCE enables you to manage a specific element or
entity in your DCE cell. The elements are as follows:

A DCE cell
You can test whether a cell is running, show general information about
available services in a cell, and back up security and CDS information by
using the cell task object.

Cell name
You can create and manage cell alias names, which are needed for
registering a cell in multiple global directory services. These operations use
the cellalias task object.

DCE hosts
You can configure and remove DCE hosts in a cell, show information about
hosts in a cell, and start and stop DCE processes on hosts in a cell by
using the host task object.

DCE users
You can add and remove users and show information about users in a DCE
cell with the user task object.

The remaining chapters in this part discusses how to manage these DCE elements

by using the default implementations of the four dcecp task objects provided with
DCE.

64 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 5. Managing a DCE Cell

From a cell administrator’s point of view, a DCE cell consists of a set of networked
services that supports the execution of distributed applications. This simple
statement, however, does not really say anything about what services are currently
available in your cell. In fact, the exact number of DCE servers and their locations
differs from cell to cell. Even in the same cell, host and network outages and
reconfigurations affect service availability.

Although you could use various service-related dcecp objects to test whether and
where services are available in a cell, it would be cumbersome. Instead, the DCE
control program provides a cell task object that conveniently lists configured DCE
servers and tests whether services are available. It can also back up critical data
maintained by the DCE Security Service and CDS.

Showing All Configured DCE Servers and DCE Hosts

Some DCE cells may be relatively stable, with few DCE hosts or DCE servers
being added or removed. Other cells can be quite dynamic, with hosts and DCE
servers being added, removed, or moved weekly or even daily. In this environment,
tracking the locations of DCE resources can be difficult; so, the cell task object has
a show operation that scans various databases in the cell returning the names of
configured DCE servers and DCE hosts.

One use of a cell show command could be to track performance problems. For
example, maybe many new hosts and users have been added, but the number or
location of CDS or security servers has not grown accordingly. Or perhaps you've
just been hired to administer a new cell and you want to see what your cell consists
of.

To show configured DCE servers and hosts in a cell, enter a cell show operation.
The command returns a list of servers grouped by type, along with a list of DCE
hosts, as follows:

secservers
Each value is the name of a security server.

cdsservers
Each value is the name of a machine running a CDS server. The name is
the simple name found under /.:/hosts . A clearinghouse must be configured
on that machine.

dtsservers
Each value is the name of a DTS server in the cell.

hosts Each value is the name of a host in the cell, including machines mentioned
previously as servers. This is simply the return value of a directory list
/.:/hosts operation.

The following example shows the names of all the configured DCE servers and
hosts in the local cell:

dcecp> cell show

{secservers
/.../my_cell.goodco.com/subsys/dce/sec/earth}
{cdsservers
/.../my_cell.goodco.com/hosts/earth}
{dtsservers

© Copyright IBM Corp. 1990, 1999 65

.../my_cell.goodco.com/hosts/krypton}

/
h
/.../my_cell.goodco.com/hosts/earth
/.../my_cell.goodco.com/hosts/jupiter
/.../my_cell.goodco.com/hosts/krypton
/.../my_cell.goodco.com/hosts/mars
/.../my_cell.goodco.com/hosts/mercury
/.../my_cell.goodco.com/hosts/neptune
/.../my_cell.goodco.com/hosts/pluto
/.../my_cell.goodco.com/hosts/saturn
/.../my_cell.goodco.com/hosts/uranus
/.../my_cell.goodco.com/hosts/venus}
C

If you have the necessary permission, you can show the configured DCE servers
and hosts in another cell by including that cell’'s name as an argument as shown in
the following example:

dcecp> cell show

/.../their_cell.goodco.com

{secservers
/.../their_cell.goodco.com/subsys/dce/sec/gold}
{cdsserver

/.../their_cell.goodco.com/gold}

{dtsservers
/.../their_cell.goodco.com/hosts/silver/dts-entity}
{hosts

/.../their_cell.goodco.com/hosts/brass
/.../their_cell.goodco.com/hosts/bronze
/.../their_cell.goodco.com/hosts/copper
/.../their_cell.goodco.com/hosts/gold
/.../their_cell.goodco.com/hosts/iron
/.../their_cell.goodco.com/hosts/mercury
/.../their_cell.goodco.com/hosts/silver
/.../their_cell.goodco.com/hosts/steel
/.../their_cell.goodco.com/hosts/tin}

dcecp>

Testing Cell Operation

When client-server communication problems occur, it is easy to suspect that one or
more DCE services is not operating in the cell. You can easily test whether a cell's
DCE services are running by invoking a cell ping operation.

If called with no option, the cell ping operation performs a server ping operation
on the master security server, on the CDS server that has a master clearinghouse,
and all the DTS servers in the cell. Use the -replicas option to test CDS and
security service replicas as well as the masters. The -clients option tests every
DCE host in the cell by looping though the /.:/hosts directory in CDS and
performing a host ping , with each host name as an argument.

In case of failure, the operation generates an error and returns a list of servers or
hosts that could not be contacted. For any successes, the operation returns the
message DCE Services Available. For successes with the -clients option, the
message is DCE Clients Available.

The following example pings the names of all the configured master DCE servers in
the local cell:

dcecp> cell ping
DCE services available
dcecp>

66 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

The following example pings the names of all the configured DCE hosts in the local
cell. Depending on the size of a cell and timeout values set, this command can take
a long time (from several to many minutes) to complete.

dcecp> cell ping -clients
DCE clients available
dcecp>

If you have the necessary permission, you can ping the configured DCE servers
and hosts in another cell by including that cell’'s name as an argument as shown in
the following example:

dcecp> cell ping /.../their_cell.goodco.com
DCE services available
dcecp>

Backing Up the

Security Service Registry and CDS

As organizations increasingly depend on DCE cells for their day-to-day operations,
they cannot afford to lose the cell’s directory and security data. Organizations
generally rely on regular backup schemes to prevent the loss of this and other
critical data. But backing up these DCE databases by using traditional backup
methods can cause security holes in your cell if the archives are not properly
protected.

Fortunately, DCE includes features that let you back up these essential databases
to destinations of your choosing. Once you've begun using the DCE mechanism to
back up CDS and security data, you can redirect your traditional backup program to
ignore these DCE databases.

The cell backup operation backs up the master security database and each
clearinghouse with master replicas in the cell. This operation requires that a dced
program is running on each of the server hosts being backed up.

Prepare a cell for regular backup operations by setting up an Extended Registry
Attribute (ERA) that can specify a backup destination (typically a tape archive).
Then add the new attribute to the principals for the master DCE Security Service
registry database and all CDS clearinghouses with master replicas that you want to
back up. To do this, follow these steps:

1. As cell administrator, create an ERA as a string that specifies a backup
destination. Name the ERA /.:/sec/xattrschema/bckp_dest and the type
printstring . Select the ACL manager named principal and set its four
permission bits to r (read), m (manage), r (read), and D (Delete) as shown in
the following command:

dcecp> xattrschema create /.:/sec/xattrschema/bckp_dest \
> -encoding printstring -aclmgr {principal r m r D}
dcecp>

2. As cell administrator, add the new ERA (bckp_dest) to the principal dce-rgy
(the DCE Security Service registry database). Set the value to be the tar
filename or the device that is the backup destination:

dcecp> principal modify dce-rgy -add {bckp_dest tarfilename or device}
dcecp>

Chapter 5. Managing a DCE Cell 67

3. As cell administrator, add the new ERA (bckp_dest) to the principal
/.:/Ihosts/ hostnamelcds-server (the CDS server). Set the value to be the tar
filename or the device that is the backup destination:

dcecp> principal modify /.:/hosts/hostname/cds-server \
> -add {bckp_dest tarfilename_or device}
dcecp>

To back up and restore the CDS server, back up and restore the following
directories in the CDS server:

/opt/dce/local

/var/dce

/krb5
/etc/dce

Now, whenever you want to back up your registry database or CDS database, just
invoke a cell backup operation as follows:

dcecp> cell backup
dcecp>

You can back up another cell by including the cell name as an argument to the cell
backup operation. Note that you need the necessary permissions in the remote
cell. (Refer to the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference for the required privileges.)

Changing the IP Address of a DCE Server

Server Updates

Use the following procedures to change the IP address of a machine configured as
a CDS and a Security server.

1. If a DFS server or any DCE applications are running on the system, stop them
and disable auto-restart in the inittab for AIX or in /etc/rc*.d for Solaris.

2. Remove knowledge of the clearinghouse on the machine. It is reinstated after
the IP address is changed. If you do not know the name, use the cdscp show
cell /.. command to get it.

cdscp clear clearinghouse /.:/<host_ch>
3. Stop all DCE daemons on the machine:
stop.dce

4. Remove the endpoint database, clerk cache, and old credentials in one
command:

clean_up.dce

5. Edit the /opt/dcelocal/etc/security/pe_site file to reflect the new address so
that security can start.

6. If opt/dcelocal/var/dced/cdscache.inf exists, change the IP address in it so
the cdsadv can find the Directory Server.

7. Change the IP address on your system and reboot. If DCE is not started
automatically by using inittab, start it using start.dce . The gdad and dtsd
daemons do not come up since CDS is not completely functional yet. Start

68 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

these daemons after the conversion process is completed. When the system
checks for dced registration (a wait message is displayed), press <Ctrl-C > to
exit.

8. Since CDS is not available, set the BIND_PE_SITE environment variable.

export BIND PE_SITE=1
dce_login cell_admin

9. Identify to CDS the clearinghouse it is to manage (ensure that you use the
same name as in the previous clear clearinghouse command):

cdscp create clearinghouse /.:/<host_ch>

10. Because the CDS server was not aware of its clearinghouse when it was
started, the cdsadv process is also unaware of the existence of this
clearinghouse. Edit the /opt/dcelocal/etc/security/pe_site file to reflect the
new address so that security can start. Rebuild the clerk cache:

stop.dce cds_srv cds_cl cds_second

cd /opt/dcelocal/var/adm/directory/cds
rm cds_cache.* cdsclerk_*

start.dce cds_srv cds_cl cds_second

When the system checks for dced registration (a wait message is displayed),
press <Ctrl-C > to exit.

11. The CDS and Security servers are now reconfigured to use the new IP

address. Unset the BIND_PE_SITE environment variable and verify that you
can dce_login normally:

unset BIND_PE_SITE
dce_login cell_admin

12. Verify that you can now successfully access the namespace:

cdsli -o
/.:/cell-profile
/.:/fs
/.:/1an-profile
/.:/sec
13. Update the server self entry in CDS. This step is critical if the system also runs
a DFS server or any other application which relies on the self entry.

rpccp unexport -i elaf8308-5d1f-11c9-91a4-08002b14a0fa,3.0 \
/.:/hosts/<server_name>/self

rpccp export -i elaf8308-5d1f-11c9-91a4-08002b14a0fa,3.0 \
-b ncadg_ip_udp:<new_ip_addr>[135] \
/.:/hosts/<server_name>/self

14. Run stop.dce .
15. Run start.dce .

Client Updates

After the IP address of either a CDS or a Security server has changed, the
following changes need to be made on the client machines. If DFS or any DCE
applications are running on the system, they need to be stopped before performing
these steps.

1. Stop all DCE daemons on the machine:

Chapter 5. Managing a DCE Cell 69

stop.dce

2. Remove the end-point database, clerk cache (it has references to the CDS
Server old IP address), and security credentials.

clean_up.dce
3. Change the /opt/dcelocal/etc/security/pe_site file so that the dced can find
the Security Server on restart.

4. Change the IP address in /opt/dcelocal/var/dced/cdscache.inf file so the
cdsadv can find the Directory Server. If the
/opt/dcelocal/var/dced/cdscache.inf file does not exist, create it. The format is:

<cds_server_ip_addr> ip

For example,
9.3.53.233 ip
5. Start the DCE daemons:

start.dce
6. The following steps need to be done only if the
/opt/dcelocal/var/dced/cdscache.inf file does not exist

a. Set the BIND_PE_SITE variable because CDS access is not restored yet:

export BIND_PE_SITE=1
dce_Togin cell_admin

b. Inform the cdsadv process of the new IP address for the CDS server:

cdscp define cached server <server_name> tower \
ncadg_ip_udp:<new_address>
c. At this point, the client is fully aware of the server's new IP address. Verify
that you can dce_login normally:

unset BIND_PE_SITE
dce_Togin cell_admin

7. Verify that you can now successfully access the namespace:

cdsli -o
:/cell-profile
:/fs
:/lan-profile
:/sec

~SSN N

Changing the IP Address of a DCE Client

1. Start the DCE Daemons:
start.dce
2. Update the client self entry in CDS:

rpccp unexport -i elaf8308-5d1f-11c9-91a4-08002bl4a0fa,3.0 \
/.:/hosts/<client_name>/self

rpccp export -1 elaf8308-5d1f-11c9-91af-08002bl4a0fa,3.0 \

-b ncadg_ip_udp:<new_ip_addr>[135] \
/.:/hosts/<client_name>/self

70 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Modifying or Extending the Cell Object

The cell task object is implemented as a script so that administrators can modify or
extend it on a per-site basis. Here are a few examples of possible modifications or
extensions you can make:

* Add a way to show DFS server information.

* Add options to the cell show operation to omit listing all the hosts in a cell or to
show only certain DCE servers.

lPart 1_The DCE Contral Program” on page 1 of this guide discusses ways to

create new dcecp objects or modify existing objects written with the dcecp
language.

Chapter 5. Managing a DCE Cell 71

72 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 6. Managing DCE Hosts

Larger DCE cells can contain many host computers, with some running both DCE
servers and application servers while others act only as client systems. Still other
hosts might run application servers but also act as clients to their resident users.
Such flexibility in DCE host configurations can make it difficult to control or track
what is running or available on each host in a cell. The host task object represents
DCE and application processes associated with hosts, letting administrators more
easily manage DCE server and application processes on machines.

You can use the host task object to show information about processes on local and
remote hosts in a cell, and start and stop DCE processes on hosts throughout a
cell. You can also configure local DCE hosts in a cell and remove (unconfigure)
remote DCE hosts from a cell. Online help for this object is available using the host
help and host operations commands in dcecp .

All of the host object operations performed on a remote host except host catalog
require dced to be running on the remote host.

Listing the DCE Hosts in a Cell

You can determine the number and names of DCE hosts configured in your DCE
cell by using the host catalog operation. This operation might be useful for
determining whether a specific host has already been configured into your cell. The
host does not have to be running for this operation to work because the host
catalog operation actually performs a directory list /.:/hosts operation and does
not interact with the host. This method relies on the convention that hosts register
their names in the /.:/hosts directory. If your hosts register in some other directory,
you need to modify the host catalog operation in the host task object. You can

read more about the purpose and use of CDS directories in [Chapter 18 Managing

CDS Directaries” an page 191

The host catalog operation resembles the cell show operation except that it does
not separately list DCE servers. The following example operation lists all DCE hosts
that have been configured in the cell:

dcecp> host catalog
/.../my_cell.goodco.com/hosts/bighox
/.../my_cell.goodco.com/hosts/drifter
/.../my_cell.goodco.com/hosts/duh
/.../my_cell.goodco.com/hosts/heater
/.../my_cell.goodco.com/hosts/pcl
/.../my_cell.goodco.com/hosts/pc2
/.../my_cell.goodco.com/hosts/pc3
/.../my_cell.goodco.com/hosts/peewee
/.../my_cell.goodco.com/hosts/xoltar
/.../my_cell.goodco.com/hosts/xray
/.../my_cell.goodco.com/hosts/zoof
dcecp>

You can omit the cell name by using the -simplename option as in the following
example:

dcecp> host catalog -simplename
hosts/bighox

hosts/drifter

hosts/duh

© Copyright IBM Corp. 1990, 1999 73

hosts/heater
hosts/pcl
hosts/pc2
hosts/pc3
hosts/peewee
hosts/xoltar
hosts/xray
hosts/zoof
dcecp>

Showing All Servers Configured for a DCE Host

In larger cells, in which DCE servers and application servers reside on multiple
hosts, you will likely want to see what servers are configured to run on particular
hosts from time to time. The DCE control program’s host show operation reads a
DCE host’s server configuration and execution information and returns a list of
configured servers on that host. The list contains each server’'s simple name and
indicates whether it is running. The list also indicates whether a security server is a
master or replica and whether a DTS entity is a clerk or server.

This operation relies on the server object (and consequently on the DCE host
daemon) to show information about configured servers. You can read more about
controlling servers in L icati ini ion”

The following example shows the servers configured to run on DCE host xoltar :

dcecp> host show /.:/hosts/xoltar
video_clip running

dts-entity running clerk

dcecp>

Note: Only servers registered with DCED will be shown. The DCE servers
registered with DCED are: dtsd , emsd, pwd_strengthd , gdad, and auditd .

Testing Whether a DCE Host is Running

Because DCE communications often involve several steps before clients
communicate with their servers, communication failures can be difficult to diagnose.
For instance, a server may not be running on a host or the DCE services may not
be currently running, even though the host has been configured into the cell. You
can use a server ping operation to test whether a server process is running but, if
this fails, you might need a way to see if the DCE host is even accessible through
the network. The DCE control program’s host ping operation tests whether a host’s
DCE services are accessible on the network, returning a 1 if it is and a 0 if it is not
accessible.

The host ping operation tests for the presence of the remote host's DCE daemon
dced). You can read more about the purpose and use of dced in

The following example tests whether dced on host duh is accessible on the
network:

74 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> host ping /.:/hosts/duh
1
dcecp>

Modifying or Extending the Host Object

The host task object is implemented as a script so that administrators can modify
or extend it on a per-site basis. For example, administrators might want to add DFS
information to the object. You could also add calls to specialized commands to start
or stop application servers. For instance a printer stop operation could be useful.

lPart 1_The DCE Contral Program” on page 1 of this guide discusses ways to

create new dcecp objects or modify existing objects written with the dcecp
language.

Chapter 6. Managing DCE Hosts 75

76 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 7. Managing DCE Users

One of the most frequent DCE administration tasks is likely to be managing users in
your DCE environment. Corporate reorganizations, changing business needs, and
fluctuating economics all exert pressures causing users to come and go or to move
between various groups or organizations.

DCE users represent a big part of what DCE is designed to support; the DCE
services authenticate and admit some while denying access to those who are
unauthorized. Indeed, users have complex management requirements; their
information is spread among multiple services that help validate and control their
activities. User information includes principal names, group and organization
information, account information, and information in CDS.

The DCE control program includes separate administration objects for managing
each piece of user information in a DCE cell. While these separate objects might be
very useful for making minor adjustments to certain user information, their constant
use for repetitive tasks such as adding and removing users from a cell would prove
quite tedious. A simpler method relies on the user task object that you can use to
more easily create, delete, and show user information in a DCE cell. Online help for
this object is available using the user help and user operations commands in
dcecp .

Creating a New User

Each user in a DCE environment is a person with a unigue identity (principal
name). Each principal is a member of at least one security group and organization
and has an account in the DCE Security Service registry database. Although it is
not required, each principal can also have a directory in CDS.

When you create a user with the user task object, you perform several lower-level
operations:

* The user create operation creates a new principal name and adds the principal
to a security group and organization. If the security group or organization does
not exist when you invoke the operation, you can force their creation by using the
-force option. The principal attributes assume default values, but you can specify
other attributes if necessary. All of the attributes are listed in the IBM DCE
Version 3.1 for AIX and Solaris: Administration Commands Reference.

Typically, a security group’s hame is included in access control lists (ACLSs) that
regulate user access to various server and data objects in the DCE environment.
A security organization maintains policies that are applied to all the principals that
are members of that organization. Policies control things like the lifespan of
accounts, whether or when account passwords expire, or whether passwords can
contain nonalphanumeric characters. You can read more about administering

principals, groups, and organizations in ['Chapter 30. Creating and Maintaining
Principals, Groups, and Qrganizations” on page 319.

* The user create operation creates an account for the principal and creates the
user’s password. The account attributes assume default values but you can
specify other attributes if necessary. All of the attributes are listed in the IBM
DCE Version 3.1 for AIX and Solaris: Administration Commands Reference.

A principal’'s account contains information about the principal such as group and
organization names, account creation and expiration information, and information

© Copyright IBM Corp. 1990, 1999 77

about tickets (which identify principals to resources in a DCE environment). You
can read more about administering accounts in Chapter 31.

* Finally, the user create operation adds a directory called /.:/users/ principalname
to CDS. This directory can store user-specific application location information.
The operation also adds an ACL entry to the default ACL which gives the user
rwtci permissions on the directory. These permissions allow users to insert
objects and links, but they cannot delete the directory or administer replication on
the directory. Furthermore, users cannot create additional directories unless you
give them w (write) access to the clearinghouse. You can read more about the

purpose and use of CDS directories in EChapter 18 Managing CDS Directaries]
m. You can read more about ACLs and CDS directories in

I‘(‘halnmr 16 (‘nntmlling Access tao CDS Names” on page. 174

You generally need numerous permissions to create new users in your DCE cell, so
you should log into the cell administrator’'s account (or a similar privileged account).
The IBM DCE Version 3.1 for AIX and Solaris: Administration Commands Reference
lists the required permissions.

To create a new user in a DCE cell, invoke a user create operation. The following
example creates a principal name P_Pestana and an account with the same name.
The create operation requires your password to prevent someone else from using
an unattended session to create an unauthorized account. You must also provide
the -password option to specify a password for the user. The required -group and
-organization options add principal P_Pestana to the named group and
organization. The optional -fullname option creates a fullname to help other human
users recognize the principal.

dcecp> user create P_Pestana -fullname {Patricia Pestana} \
-mypwd mxyzptlk -password change.me -group users \
-organization managers

dcecp>

You can create multiple users by specifying a list of user names as an argument to
the user create operation. This method poses some limitations, however. All
created users will have the same initial password, group name, and organization
name. Furthermore, you cannot specify the uid attribute since this is unique for
each user. The following example creates several users with a password
change.me , a group name of users, and an organization named staff :

dcecp> user create {R_Lee B_Joy N_Lynn D_Dee} -mypwd mxyzptlk \
-password change.me -group users -organization staff
dcecp>

Showing User Information

Sometimes you might want to view the attributes for a user. For instance, you might
want to see the expiration date for one or more accounts or view the fullname of a
principal.

The user show command returns the attributes associated with users that are
included as arguments to the command. The attributes include principal attributes
and ERAs, and account attributes and policies. The information is returned as if the
following commands were run in the following order:

* principal show

» account show -all

78 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

The following command displays the principal and account attributes associated
with user P_Pestana:

dcecp> user show P_Pestana

{fullname {Pat Pestana}}

{uid 5139}

{uuid 00001413-ad4f-21cd-8c00-0000c08adf56}

{alias no}

{quota unlimited}

{groups users}

{acctvalid yes}

{client yes}

{created /.../my_cell.goodco.com/cell_admin \
1994-08-01-16:41:32.000+00:00I----- }

{description {}}

{dupkey no}

{expdate none}

{forwardabletkt yes}

{goodsince 1994-08-01-16:41:32.000+00:00I----- }

{group users}

{home /}

{lastchange /.../my_cell.goodco.com/cell_admin \
1994-08-01-16:41:32.000+00:00I----- }

{organization managers}

{postdatedtkt no}

{proxiabletkt no}

{pwdvalid yes}

{renewabletkt yes}

{server yes}

{shell {}}

{stdtgtauth yes}

nopolicy

dcecp>

You can show information about multiple users by specifying a list of user names as
an argument to the user create operation.

Deleting a User

When users leave your organization, you might need to delete the user from the
cell. Use the user delete command to do this. This operation removes the principal
name from the registry which, in turn, deletes the account and removes the
principal from any groups and organizations. The operation also deletes the
/.:lusers/ principalname directory and any contents from CDS.

You need numerous permissions, such as those generally associated with cell
administrator, to delete a user. See the IBM DCE Version 3.1 for AIX and Solaris:
Administration Commands Reference.

The following example operation removes user P_Pestana from the cell:

dcecp> user delete P_Pestana
dcecp>

You can remove multiple users from your cell by specifying a list of user names as
an argument to the user delete operation, as follows:

dcecp> user delete {W_Rosenberry J Hunter P_Pestana}
dcecp>

Chapter 7. Managing DCE Users 79

If you have permissions in a foreign cell, you can remove one or more users from
that cell by specifying the global principal name of the users to be deleted. For
example:

dcecp> user delete /.../their_cell.goodco.com/J_Jones
dcecp>

Modifying or Extending the User Object

The user task object is implemented as a script so that administrators can modify
or extend it on a per-site basis. For example, administrators might want to add DFS
information to the object. Other possible modifications include the following:

* Changing the location of the CDS directory created for users, or removing it
completely.

* Changing the default ACLs placed on the various objects.

* Adding an option to give users write access to the clearinghouse where the
master replica of the /.:/users/ username directory resides. This allows users to
create their own subdirectories. The option could add individual principal names
to the clearinghouse ACL. An easier method could add principals to a group that
has write access to the clearinghouse.

» Setting certain attributes or policies on all newly created principals and accounts
to match the site’s policies. For example, you could set principals to have a
pwd_val_type ERA and set accounts to generate random passwords.

» Setting up site-specific defaults for passwords (to be changed by the user later),
groups, organizations, principal directories, and so on.

* Supporting a user modify command. Such a command could change group or
organization information or some other attributes associated with users.

[Part 1 _The DCFE Control Program” on page 1l of this guide discusses ways to

create new dcecp objects or modify existing objects written with the dcecp
language.

80 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

Chapter 8. Event Management Service (EMS)

EMS manages event services in a DCE cell. In EMS, an event is data being
transmitted from an event supplier to EMS and from EMS to one or more event
consumers. An event consists of an event header and a list of event attributes that
contain the event type-specific data.

EMS consists of three major components:
* The EMS daemon (emsd) is a server that:
Authenticates and authroizes event suppliers and consumers
Maintains databases of event types, event filters, and consumers
Associates an event fileter group with each event consumer
Ensures reliable delivery of events to interested consumers.
* The event supplier is any DCE-based user application that emits event data.
* The event consumer is a requestor that:

— Queries EMS for supported event types

— Obtains a list of existing filter names

— Constructs event filters for each event type

— Adds event filters to its event filter group.

EMS data structures are grouped into the following functions:
* Event Attributes

* Event Structure

* Event Types

* Event Filters

* Consumer Data Structures

» Server Data Structures

The ability to route events to EMS is integrated with the SVC and Audit subsystem.
You can also use EMS to communicate events through the SVC to theDCE SNMP
subagent. For more infoamtion on routing messages, see DCE Application
Development Guide —Core Components —SVC and Audit Sections.

DCE administrative functions include management of EMS servers, event queues,
and event logs. For more information, see:

© Copyright IBM Corp. 1990, 1999 81

Starting the EMS Server

The emsd command starts the EMS daemon. The EMS daemon must be running
on the host system in the DCE cell before a consumer can receive events or a
supplier can supply events.

The EMS daemon runs under the local host machine principal identity

(host/ hostnamelself). The DCE Host daemon (dced) must be running on the local
host when emsd is started. The emsd command also requires a CDS Advertiser
(cdsadv).

The emsd command has the following optional parameters:

—| log_directory
Specifies where the log file resides.

—q queue_size
Specifies the maximum number of events that are counted by EMS.

-W svc_route
Specifies DCE serviceability routing instructions.

To start the EMS daemon and to specify the queue size and location of the log,
type:

emsd -q 2048 -1 /opt/dcelocal/var/ems

To start the EMS daemon, specify the serviceability routing instructions, and define
the maximum queue size, type:

emsd -w NOTICE:STDOUT:- -w NOTICE_VERBOSE:STDOUT-:-

Logging EMS Events

The EMS event log is used to store events in case of EMS failures. EMS writes all
events to the event log and deletes the event record after it has been transmitted to
all consumers that are supposed to receive it. The event log is kept in a file on the
machine where emsd is running. Events are stored in a directory specified by the
environment variable EMS_EVENTLOG_DIR. An APl is provided to examine local
event logs.

The emslog object represents the EMS event log. The emslog command is issued
in the dcecp environment and is followed by one of the these subcommands:

help Returns help information on the object.

operations
Returns a list of operations supported by the object.

show Returns a list of events in the event log file.
To display the general EMS log help information, type:

dcecp> emslog help

EMS displays:

82 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

help Print a summary of command-line options.
operations Returns the valid operations for command.
show Returns a list of events in the event log file.

To obtain a list of operations supported by the object, type:
dcecp> emslog operations
EMS displays:
show help operations
To display a list of events in the event log file, type:

dcecp> emslog show

EMS Displays:

--- Start of an EMS event record ---

Type: SVC:Event Id: 8d1b0Ob00-e9e7-11ce-8af3-10005a890435

Name Service: DCE /.../eagle_dce/hosts/hidalgod.austin.ibm.com
Description Name: EMS_Test_ Producer

PID: 565 UID: O GID: ©

Severity: NOTICE

Arrival Time: 1995-09-08-14:06:32.970+00:00I-----

Printing 16 items

Item 8: [file] = char string supplier.c

Item 9: [progname] char string EMS Test Producer
Item 10: [line] = ulong int 63

Item 11: [threadid] = ulong int 2

Item 12: [component_name] = char string sup

Item 13: [sc_name] = char string general

Item 14: [attribute.debug] = ushort int 0

Item 15: [attribute.severity] = ushort int 4
Item 16: [attribute.actroute] = ulong int 0

--- End of an EMS event record ---

Item 1: [version] = ulong int 1

Item 2: [t] = 1995-09-08-14:06:32.970+00:00I-----

Item 3: [argtypes] = char string

Item 4: [table_index] = ulong int 0

Item 5: [attributes] = ulong int 64

Item 6: [message_index] = ulong int 389738500

Item 7: [format] = char string Test Supplier starting
8
9

Managing EMS Consumers

EMS consumers register with the event server to receive events. Each consumer
has a name, a UUID, a host where it is running, and a list of filter names that make
up the filter group.

If a consumer process terminates abnormally, the system administrator may have to
delete the consumer using the emsconsumer command.

If new filters have been defined in the filter database, the administrator can use the
emsconsumer command to add those filters to the consumer filter groups to further
refine the events that a consumer receives. Also, if a consumer is not receiving all
the events it should, the administrator can delete filters from the consumer filter
group with the emsconsumer command.

Chapter 8. Event Management Service (EMS) 83

DCE provides the emsconsumer command and associated subcommands to
manage the consumer. This command is issued in the dcecp environment and can
execute the following subcommands:

catalog
Returns the list of consumers registered with EMS on a host.

delete Deletes a registered consumer from EMS on a host.
help Displays help information on the object.

modify
Modifies the event filter group associated with the given consumer.

operations
Returns a list of operations supported by the object.

show Returns the list of filter names in a consumer filter group.

The following are the required permissions:

* For emsconsumer catalog and emsconsumer show , you must have r
permission on /.:/ hostnamelems-server/consumers

* For emsconsumer delete , you must have d permission on /.:/hostnamelems-
server/consumers .

* For emsconsumer modify , you must have w permission on
/.:lhostnamelems-server/consumers

To obtain the list of consumers registered with EMS, type:
dcecp> emsconsumer catalog
EMS displays:

{consumerl 7e383761-f41f-11ce-9051-08005acd43c6 /.:/hosts/eagle.austin.ibm.com}
{consumerl a4c7ff26-f449-11ce-a863-10005a4f3556 /.:/hosts/eagle.austin.ibm.com}
{consumer2 283cc40c-f447-11ce-9dd3-10005a4f3556 /.:/hosts/umesh.austin.ibm.com}

To add the filter foo to the consumer2 event filter group, type:
dcecp> emsconsumer modify consumer2 -add {filter foo}

To display the list of filter names in the consumer2 filter group, type:
dcecp> emsconsumer show consumer2

EMS displays:

{foo2 foo3 foo4 foob}

Managing EMS Event Filters

EMS event filters are applied by EMS to events received from suppliers to
determine if the events are to be forwarded to the consumers.

An EMS event filter is a collection of one or more filter expressions. Each filter

expression consists of an attribute name, an attribute operator, and an attribute
value.

84 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

You can issue the emsfilter command with an associated subcommand in the
dcecp environment to manage event filters on the local host. You can also specify
the —host option to issue the command to a different host. The format of the DCE
host name accepted is either an entire DCE name (for example,
/.:/hosts/jurassic.austin.ibom.com) or a DCE host name with a domain name (for
example, jurassic.austin.ibm.com).

The emsfilter executes the following subcommands:

catalog
Returns a list of all filter names in EMS.

delete Deletes a filter and its associated filter expressions from EMS.
help Displays help information on the object.

operations
Returns a list of operations supported by the object.

show Returns a list of filter expressions in a specified filter.

The following are the required permissions:

* For emsfilter catalog and emsfilter show , you must have r permission on
/.:lhostnamelems-serverffilters .

* For emsfilter delete , you must have d permission on /.:/hostnamelems-
serverffilters/ filtername.

To display the filters kept by the EMS daemon, type:
dcecp> emsfilter catalog
EMS displays:

Filterl
Filter2

To delete the filter named Filterl and its associated filter expressions, type:

dcecp> emsfilter delete Filterl

To display a list of operations supported by the object, type:
dcecp> emsfilter operations
EMS displays:
catalog delete show help operations
To display a list of filter expressions in the Filter2 filter, type:
dcecp> emsfilter show Filter2
EMS displays:

{event_type == SVC}
{file == file.c}

Chapter 8. Event Management Service (EMS) 85

Managing EMS Event Queues

The EMS event queue size can be set at emsd startup using the —q option or the
EMS_QUEUE_SIZE environment variable. If EMS starts receiving queue full
errors, the daemon should be restarted using a larger queue size. See

EMS Server” an page 82 for more information on emsd startup.

Using the configuration GUI, only the environment variable can be used to increase
the queue size.

Managing the EMS Daemon

The EMS daemon, emsd, is responsible for:

* Managing event ACLs in regards to event suppliers and consumers
* Maintaining databases of event types, event filters, and consumers
» Associating an event filter group with each event consumer

* Ensuring reliable delivery of events to interested consumers.

The ems command and its associated subcommands manage the EMS daemon on

a DCE host. This command is issued in the dcecp environment and can execute
the following subcommands:

catalog
Returns a list of all hosts the EMS daemon is running on in the current cell.

help Returns help information on the object.

operations
Returns a list of operations supported by the object.

show Returns the attribute list for the EMS daemon.

The ems show command requires that you have the r permission on
/.:lhostnamelems-server .

To list all hosts running in the current cell, type:
dcecp> ems catalog
EMS displays:

/.:/hosts/eagle.austin.ibm.com
/.:/hosts/umesh.austin.ibm.com

To return a list of operations supported by the object, type:
dcecp> ems operations

EMS displays:
catalog show help operations

To display the list of attributes for the EMS daemon, type:
dcecp> ems show

86 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

EMS displays:

{eventlog dir /opt/dcelocal/dce/var/ems}
{queue_size 5000}

Setting Permission for the EMS Server

EMS provides for secure manipulation of data in the EMS databases. This includes
the Event Filter Database, the Event Type Database, and the list of consumers in
the Consumer Database. EMS also provides for supplier and consumer
authentication and authorization as well as secure transmission of event data.

All ACLs are associated with names in the DCE namespace and the EMSD server
manages the namespace past the junction:

/.:/hosts/hostname/ems-server/

The ACL associated with this object controls access to the EMSD server registered
in this namespace. The permissions associated with ems-server are:

Table 1. EMSD Server Permission Bits

Permission bit Name Description

c control Modify the ACLs on the
server

r read Read the attributes for this
server

S stop Stop the EMS server

w write Modify the attributes on this
server

Three security objects are maintained under the EMS-server junction. The
directories and the databases they represent are:

event-types
Event Type Database

filters Filter Database

consumers
Consumer Database

Each of these databases has an ACL associated with it.

Event Type Security Management

The Event Type Database is represented by the following name in the DCE
namespace:

/.:/hosts/hostname/ems-server/event-types

The ACL associated with this object controls access to this database. The
permissions associated with event-types are:

Chapter 8. Event Management Service (EMS) 87

Table 2. Event Type Database Permission Bits

Permission bit Name Description
c control Modify the ACLs on the event type
d delete Delete an event type schema
i insert Add an event type schema
r read Read the contents of event type schemas

EMS event data access can be granted per event type. Authority on event data of a
given event type can be granted by modifying the ACL on:

/.:/hosts/hostname/ems-server/event-types/event_type name

where event _type name is the event type name that appears in the event type
schema. The name recognized for SVC events is:

/.:/hosts/hostname/ems-server/events/SVC

The permissions associated with event_type name are:

Table 3. Event Type Permission Bits

Permission bit Name Description
c control Modify the ACLs on the event type
d delete Delete an event type
r read Read (consume) an event of this type
w write Write (supply) an event of this type

Supplier rights are verified on the first event sent to EMS, and the consumer rights
are verified before forwarding events to that consumer. Authenticated RPC is used
to access the EMS supplier and consumer remote API.

Event Filter Security Management
The Filter Database is represented by the following name in the DCE namespace:

/.:/hosts/hostname/ems-server/filters

The ACL associated with this object controls access to this database. The
permissions associated with filters are:

Table 4. Filter Database Permission Bits

Permission bit Name Description
control Modify the ACLs on filters
d delete Delete an event filter
i insert Add an event filter
r read Get a list of or the contents of event filters

Event filter access control is granted on a per-event-filter basis. Authority on filter
access for a given event filter is granted by modifying the ACL on:

/.:/hosts/hostname /ems-server/filters/filter name

88 IBM DCE Version 3.1 for AIX and Solaris; Administration Guide — Core Components

where filter_name is the event filter name given the event filter on the call to
ems_filter_add .

The permissions associated with event filters are:

Table 5. Event Filter Permission Bits

Permission bit Name Description
c control Modify the ACL on the event filter
d delete Delete the event type filter
w write Modify the contents of an event filter

When a consumer creates an event filter, that consumer principal automatically
receives dwc permissions on the created event filter.

Consumer Security Management

The Consumer Database is represented by the following name in the DCE name
space:

/.:/hosts/hostname/ems-server/consumers

The ACL associated with this object controls access to this database. The
permissions associated with consumers are:

Table 6. Consumer Database Permission Bits

Permission bit Name Description
c control Modify the ACLs on consumers
d delete Delete a consumer
i insert Add (register) a consumer
r read List consumer information
w write Modify a consumer including his filter group

EMS Security Initialization

When EMS is configured, several security groups are created by default. The
groups are ems-admin , ems-consumer , and ems-supplier . The default
permissions are:

/.:/hosts/hostname/ems-server object acl

ems-admin crws
hosts/hostname/self rws
any_other r

/.:/hosts/hostname/ems-server/event-types object acl

ems-admin cri
ems-consumer r
ems-supplier ri
any_other r

initial object acl (/.:/hosts/&cont;hostname/ems-server/event-types/event_type name)

ems-admin cdw
ems-consumer r
ems-supplier w

/.:/hosts/hostname/ems-server/filters object acl

Chapter 8. Event Management Service (EMS) 89

ems-admin crdi
ems-consumer ir
any_other r

initial object acl (/.:/hosts/&cont;hostname/ems-server/filters/filter name)
ems-admin cdw

/.:/hosts/hostname/ems-server/consumers object acl

ems-admin cdrw
ems-consumer irwd
any_other r

Because these permissions are set for the ems_admin group, each new event filter
and event type created automatically inherits the same permissions.

Administrators can add principals to each of these groups to give them access to all

EMDs running in a cell. If tighter security is desired, the group can be removed from
the respective ACL and principals can be added.

90 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Part 3. DCE Host and Application Administration

© Copyright IBM Corp. 1990, 1999

91

92 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 9. Managing DCE Host Services and Host Data

Some services like DTS, CDS, and the DCE Security Service registry, which
produce or maintain cell-wide information, are centralized. Although the services
they provide are available throughout a cell, the servers themselves typically reside
on just a few selected hosts in a cell.

Other DCE services are pervasive; that is, they reside on every host in a DCE cell.
The DCE software that runs on every DCE host provides essential services that
enable local client and server programs to interact with remote client and server
programs in a reliable and secure way. Consequently, each host in a DCE cell has
administrative aspects which are discussed in the first part of this chapter.

Each DCE host maintains local data that is essential to host operation in a DCE
environment. Occasionally, you may find it necessary to modify parts of this data as
your cell configuration changes, or as you add DCE capabilities or DCE
applications. The second part of this chapter discusses how to use the DCE control
program to gain remote, authenticated access to this data.

When DCE operations do not succeed for some reason, you want to inform the
right people about what happened. DCE’s serviceability messaging facility lets you
route error messages based on the severity level of the message. The last part of
this chapter explains how to manage this facility.

DCE Host Services

Some DCE host services such as the runtime libraries are inert and require no
administration once DCE has been configured on a host. But other services are
active programs. One such active service is the endpoint mapper which acts as a
lookup service on a host. The endpoint mapper lists server communication ports
(called endpoints) in the host’s endpoint map. Remote clients looking for particular
servers query the endpoint mapper which returns information contained in the
endpoint map. The endpoint mapper, along with other active services, are contained
in a single program called the DCE host daemon or dced. Typically, once a host
has been configured with DCE software, the host booting process starts the dced
process along with other daemons or processes. Occasionally however, you may
need to manually start or restart this daemon.

The dced program comprises a set of DCE host services that satisfies many needs
of DCE client and server applications on a host system:

* The endpoint mapper service acts as a directory of servers running on a host.
Clients can acquire a registered server's communication endpoint by looking in
the host endpoint map.

* A security validation service manages DCE security on the local host.

» A server configuration and execution service lets administrators remotely set
servers’ starting and stopping conditions, explicitly start and stop individual
servers, and monitor running servers’ states.

* A key management service lets administrators manage server passwords
remotely.

* A hostdata service lets administrators remotely manage data stored in files on a
host. Administrators will find this most useful for remotely managing a host’s cell
name and cell alias information.

© Copyright IBM Corp. 1990, 1999 93

* An attribute schema capability lets administrators add new attributes to server
configuration information.

Normally, any system that hosts a DCE server (such as a DCE cell directory server)
or that runs a DCE-based application server or client that uses authentication, must
also run the dced process.

It is clear that if the dced process failed for some reason, it would take all of its
component services down along with it, leaving the host unable to respond to client
requests. Similarly, a failure of one of the component services (for example the key
management service) might be caused by the dced process unexpectedly exiting
for some reason. This relationship between dced and its component services is
worth remembering if problems occur.

Starting and Stopping DCE Host Services

Although the dced process generally starts as part of the host booting process,
sometimes you may need to start the process manually.

Before starting dced, any underlying network services on which client/server
communication depends must be available; on most UNIX systems, for example,
network interfaces and routing services must be enabled. Once these
transport-layer services are established, you can start dced. After dced starts,
RPC-based servers can start.

The endpoint mapper listens on privileged or reserved communication ports
(well-known endpoints) for client requests for service. Consequently, dced must be
started as a privileged user.

Part of dced (the endpoint map) contains information that clients use to locate
servers on a host system. The dced process maintains a copy of this information in
a database file named dcelocallvar/dced/Ep.db so it will not be lost if you stop and
then restart dced for some reason. Another database file called
dcelocallvar/dced/Srvrexec.db maintains information about servers (such as each
server's process ID) that are currently running on the host. The information in both
of these databases becomes obsolete when a system reboots because most
servers get different endpoints and different process IDs each time they start.

You can configure dced to start each time a host boots. To do this, use the
-autostart yes option on config.dce . Start.dce will start dced when any other DCE
daemon is started (unless a slim client is configured—when there is no dced).

While you normally do not need to start dced in a shell, if you ever need to do so,
log in as root and enter the following command:

dcelocal/bin/dced

By default, dced listens on one endpoint for each transport that is supported by the
host on which it is running. That is, if a host supports both TCP/IP and UDP/IP
transports, dced will listen on one TCP and one UDP socket for client requests. An
optional protseq argument lets you limit the transports that dced uses to the ones
you specify. Intended as a debugging capability, this feature should be used with
care; if you limit transports, clients will not be able to locate servers over the
excluded transports, and servers will not be able to register themselves in the

94 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

endpoint map by using the excluded transports. For information about the optional
protseq argument, see the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference.

Although you should run the host services on all hosts where DCE client or server
applications run, there are some situations where you can avoid running them:

* DCE clients that do not perform authentication

* DCE servers that do not perform authentication and that do not use the endpoint
mapper or other active DCE host services

Once you've started the DCE host services, you can perform all DCE host and
server administration tasks by using the DCE control program, dcecp . The control
program offers secure, remote access to host and server administrative functions,
which means you can manage all of your DCE hosts without having to log into each
host. tRart 1_The DCE Contral Program” on page 1 of this book explained how to
use dcecp in interactive mode as well as how to write dcecp scripts to manage
DCE activities. You should be acquainted with those basics before performing
administrative tasks explained in this chapter or elsewhere in this document.

Abnormal Termination of the DCED Host Daemon

If the DCE daemon stops or exits unexpectedly, you can restart it. The restarted
dced process does not lose any previously registered server bindings. It simply
loads the information from the Ep.db and Srvrexec.db files. As a rule, stopping and
restarting dced is not recommended because it also stops the security validation
service.

If dced has stopped or exited unexpectedly, there is a possibility some files might

be corrupted and need to be removed and recreated prior to restarting DCE. In

such instances, do the following:

1. Enter stop.dce all at the command line to stop all daemons for configured DCE
components.

2. Enter clean_up.dce to remove possibly corrupted files. All of the files that are
removed will be recreated if they are needed.

3. Enter start.dce all to restart all configured components.

Managing Host Data

Each host in a DCE cell maintains local data that is essential for operating in a
DCE environment. For instance, each host's DCE identity relies on certain data
items that specify the host’'s host name, cell name, and any cell aliases. Currently,
these data items are stored in a local file called dcelocalldce cf.db . These and
other data items can be modified remotely using the DCE control program’s
hostdata object.

The hostdata object has a much broader application, too; administrators will find it
extremely useful for accessing general data and files on remote hosts using secure
and platform-independent methods. The last part of this chapter examines this
powerful access method.

Chapter 9. Managing DCE Host Services and Host Data 95

Permissions for Accessing Host Data

Access control lists (ACLs) prevent unauthorized principals from creating, changing,
or deleting hostdata information. Two types of ACLs protect hostdata information.
One type of ACL protects the container in which the hostdata items reside. A
second type protects each individual hostdata item.

This section shows how to manage ACLs that protect hostdata information. For
detailed information about setting and using ACL protections, see

Permissions for the Hostdata Container

In DCE, the hostdata items reside in a container which is really a backing storage
mechanism maintained by dced . On UNIX systems this is usually a file called
dcelocallvar/dced/Hostdata.db . The file is owned by root and its access via dced
is protected by an ACL. These ACL permissions control who can access the data in
the container. Each DCE host has one hostdata Container ACL with the following
name:

/.../cellname/hosts/hostname/config/hostdata

The hostdata Container ACL has the following permissions:

¢ (control)
Modify the Container ACL.

r (read)
Read the list of hostdata items in the container.

i (insert)
Create new hostdata items.

I (Insert)
Although the | permission is present, it does not apply to hostdata items.
The permission applies to server control facilities, which are explained in

Use the dcecp acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the hostdata container object on host silver :

dcecp> acl show /.:/hosts/silver/config/hostdata
{user hosts/silver/self cril}

{unauthenticated r}

{any_other r}

dcecp>

Permissions for the Hostdata Items
Each of the following host identity data items is protected by an ACL:

/.../cellname/hosts/hostname/config/hostdata/host_name
/.../cellname/hosts/hostname/config/hostdata/cell_name
/.../cellname/hosts/hostname/config/hostdata/cell_aliases
/..

./cellname/hosts/hostname/config/hostdata/post_processors

96 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Each ACL can have the following permissions:

¢ (control)
Modify the ACL

d (delete)
Delete the item

p (purge)
Delete the backing storage for an item

r (read)
Read an item’s data

w (write)
Modify an item’s data

Use the acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the cell_aliases hostdata item on host silver :

dcecp> acl show /.:/hosts/silver/config/hostdata/cell_aliases
{unauthenticated ---r-}

{user hosts/silver/self cdprw}

{any_other ---r-}

dcecp>

Modifying Host Cell Name Information

Using the hostdata object, you can add, change, and remove data items on DCE
hosts. While administrators will find this useful for modifying a host’s cell name or
cell alias information, they can also operate on other data that is accessible on a
host.

Each DCE host maintains a protected local copy of the cell name and cell aliases of
the cell in which the host is registered. Hosts keep this information in a local file
called dcelocalldce_cf.db which is owned by root . A host uses this information for
authentication purposes—as part of its host identity information.

Although host cell name information tends to be fairly stable, there are
circumstances where it is necessary to change this information:

* When a host moves to a different cell
* When a host’s cell name changes or the cell name acquires an alias

When either of these situations occurs, however, it is usually not enough to just
update the cell name information on the host. Cell name information must also be
updated in CDS and in the DCE Security Service registry as well. For these
purposes, dcecp provides the cellalias task object which updates cell name
information wherever it needs to be changed.

When a host moves to a different cell, you should run unconfig.dce to remove the
host from one cell. Then run config.dce to establish the host in the new cell.

When a host’s cell name changes or the cell name acquires an alias, you should
perform a cellalias operation which updates cell information in CDS, in the DCE
Security Service registry, and in the dce_cf.db file of every affected host in the cell.

Sometimes however, the higher-level dcecp task objects do not offer enough
control such as you might need when fixing a corrupted file somewhere or when

Chapter 9. Managing DCE Host Services and Host Data 97

configuring a host by hand for some reason. In these cases, you can use the
hostdata object to change cell name information on individual hosts.

Note though, that this use of the hostdata object is intended mostly to be a
troubleshooting operation to be relied on when a host’s cell information is out of
synchronization with other cell information stored in the DCE registry or stored in
CDS. This situation might be a common occurrence in cells with many hosts.

To update the cell name or cell alias name information on a host, use the hostdata
object. The following example catalogs the hostdata objects in the cell named
/.../my_cell.goodco.com . Then it shows the contents of the cell_name object on
host silver . Finally, it modifies the cell name to be /.../my_cell.goodco.com on host
silver .

dcecp> hostdata cat
../my_cell.goodco.com/bronze/config/hostdata/dce cf.db
../my_cell.goodco.com/bronze/config/hostdata/cell_name
../my_cell.goodco.com/bronze/config/hostdata/host_name
../my_cell.goodco.com/bronze/config/hostdata/cell_aliases
../my_cell.goodco.com/bronze/config/hostdata/post_processors

N~ NN

dcecp> hostdata show cell_name

{uuid 00174f6c-6eca-1d6a-bf90-0000c09ce054}
{annotation {Name of cell}}

{storage cell_name}

{data {/.../o1d_cell.goodco.com}}

dcecp> hostdata modify \
/.../my_cell.goodco.com/hosts/bronze/config/hostdata/cell_name
\
-data {/.../my_cell.goodco.com}}
dcecp>

Manipulating Data in Other Host Files

While the hostdata object is useful for changing cell name and cell alias
information, it has a broader use too; you can use it to add, change, and remove
data from any file that is accessible on a DCE host.

One useful example is adding a new CDS attribute. Every DCE host has its own
CDS attributes file (cds_attributes) where it stores object IDs for each CDS
attribute. You could use the local host’s editor to add the attribute and then copy the
new file to each host. But this method requires you to log into each host. A simpler
method would be to use the hostdata object to add the new attribute to the CDS
attributes file. Place the operation within a foreach loop that reexecutes it for each
host in the cell.

1. Make the CDS attributes file accessible as an object of the hostdata object.
First, use the hostdata object to create a CDS entry representing the CDS
attributes file. Set the storage attribute to be the host filename of the CDS
attributes file. The following example assumes the CDS attributes file is in the
default location and that the file exists:

dcecp> hostdata create /.:/hosts/silver/config/hostdata/cds_attr \
> -storage /opt/dcelocal/etc/cds_attributes -entry
dcecp>

2. The hostdata object modifies data in files by replacing all the data in the file
with new data that you specify. The following example shows one way to do
this. First, retrieve and store all the lines as dcecp list elements in a variable.

98 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Then create a new variable by using the attrlist command to add the new line
as a list element to the variable. Finally, copy the new variable back to the file.

dcecp> set val [attrlist getvalues [hostdata show /.:/hosts/silver/config/ \
hostdata/cds_attr] > -type hostdata/data]

dcecp> set newval [attrlist add $val -member {NEW_ATTR 1.2.3.4}]

dcecp> hostdata modify /.:/hosts/silver/config/hostdata/cds_attr -data
$newval

dcecp>

Routing Serviceability Messages

The DCE serviceability mechanism is designed to be used mainly for server
informational and error messaging—that is, for messages that are of interest to
those who are concerned with server maintenance and administration (in the
broadest sense of these terms). The essential idea of the mechanism is that all
server events that are significant for maintaining or restoring normal operation
should be reported in messages that are made to be self-documenting. As a result
(assuming that all events have been correctly identified and reported), users and
administrators will always be able to learn what action they should take in a given
situation.

Note: User-prompted, interactive, client-generated messaging is handled through
the standard DCE messaging interface.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their own server messaging, and it is made available as an API for
use by DCE application programmers who wish to standardize their applications’
server messaging. (The serviceability API is described in the IBM DCE Version 3.1
for AIX and Solaris: Application Development Guide—Core Components.)

Messaging uses XPG4 (X/Open Portability Guide) message catalogs to hold
message texts, but it adds an additional layer to the XPG4 functionality. The
message catalogs and other required data (and documentation) files are generated
by a utility called sams (symbols and message strings). Its input is a text file that
establishes some organizational information about the program that is to use the
messages, followed by a series of specifications of the messages themselves. The
serviceability mechanism allows system administrators to control the routing of
these messages. Specifically, you can define message routings based on the
severity levels (FATAL, ERROR, and so on) defined for the messages.

The following sections describe how to control the routing of serviceability
messages. First, you are provided with an overview of serviceability messaging in
the DCE. Then the text describes how you can use message severity levels to
control routing. Finally, it describes the different ways in which you can specify
routing for serviceability messages.

Serviceability Message Severity Levels

Serviceability messages are categorized by their severity level, which provides
important information about the situation that causes the program to issue the
message. Every message’s severity is defined in the text of the message itself (for
example, NOTICE indicates that a message is an informational notice), and system
administrators can route messages differently on the basis of their severity levels.

Chapter 9. Managing DCE Host Services and Host Data 99

[able 7 lists the possible severity levels and provides an explanation for each.

Table 7. Serviceability Message Severity Levels

Name

Meaning

FATAL

Fatal error exit: An unrecoverable error (such as database
corruption) has occurred and will probably require manual
intervention to be corrected. The program usually terminates
immediately after such an error.

ERROR

Error detected: An unexpected event that is nonterminal
(such as a timeout), or is correctable by human intervention,
has occurred. The program will continue operation, although
some functions or services may no longer be available. This
severity level may also be used to indicate that a particular
request or action could not be completed.

WARNING

Correctable error: An error occurred that was automatically
corrected (for example, a configuration file was not found,
and default values were used instead). This severity level
may also be used to indicate a condition that may be an
error if the effects are undesirable (for example, removing all
files as a side effect of removing a nonempty directory). This
severity level may also be used to indicate a condition that,
if not corrected, will eventually result in an error (for
example, a printer is running low on paper).

NOTICE

Informational notice: A significant routine major event has
occurred; for example, a server has started.

NOTICE_VERBOSE

Verbose information notice: A significant routine event has
occurred; for example, a directory entry was removed.

How to Route Serviceability Messages

100

Serviceability messages can be written to any of the normal output destinations.
You can specify routing for serviceability messages in any of the following four

ways:

» Through the dcecp log object, if the server supports the remote serviceability

interface

* By the contents of a routing file
* By the contents of an environment variable
* By command-line flags (usually -w), if supported by the server

Note: Each of the methods accepts the string syntax form for serviceability routing
specifications. In addition, dcecp allows you to use Tcl (Tool Command
Language) syntax, which is easier to use when writing scripts.

Routing a message actually consists of specifying two things:
* How the message should be processed (that is, the form in which it should be

put)

* Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes
specifying a certain destination implies that the message must be put into a certain
form. This fact allows certain combinations to be abbreviated.

The ways to route serviceability messages are described separately in the following

sections.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Using the dcecp log Object

The dcecp log object represents the current state of routing for DCE serviceability
messages for a given server. The log object supports both serviceability routing and
debug routing.

The log object exports a number of operations. The following operations are useful
for serviceability message routing:

* The log list operation returns a list of the components registered by the server.
The -comp option allows you to also return a list of the subcomponents for one
or more named components.

* The log show operation returns a list describing the current serviceability routing
specifications for a server.

* The log modify operation sets message routing specifications for one or more
specified servers.

For a complete description of the dcecp log object and the syntax for its supported
operations, refer to the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference .

The remainder of this section describes only the log modify operation and how to
use it to establish routings for serviceability messages. Remember that routing is
always set on a per-server basis and is recorded in the log object for each server.

The syntax for the log modify operation is:

log
modify {string binding to_server | RPC_server namespace entry} \
{-change serviceability routing_specifications}

You can specify multiple target servers as a space-separated list. Specify each
server by supplying either the RPC string binding that describes the server’s
network location (string_binding_to_server) or a namespace entry of the server
(RPC _server_namespace_entry). When specifying multiple servers, you can mix the
forms in the same list.

A serviceability _routing_specification is a space-separated list of serviceability
routing elements. No spaces are allowed within the specification of an individual
routing element. Each routing element is a substring consisting of four fields
containing portable character set (PCS) data, as follows (shown in string syntax
form):

severity:output_form:destination[:application-defined]

where:

severity
A message severity level: FATAL, ERROR, WARNING, NOTICE, or
NOTICE_VERBOSE.

output_form
Specifies how messages of the associated severity level should be
processed, and must be one of the following:

BINFILE
Write these messages as binary log entries

Chapter 9. Managing DCE Host Services and Host Data 101

TEXTFILE
Write these messages as human-readable text

FILE Equivalent to TEXTFILE

DISCARD
Do not record these messages

STDOUT
Write these messages as human-readable text to standard output

STDERR
Write these messages as human-readable text to standard error

Do not set up routing of NOTICE and/or NOTICE_VERBOSE messages to
STDERR. These messages should be routed to STDOUT, FILE, EMS, etc.
Configuration of DCE will fail if NOTICE and/or NOTICE_VERBOSE
messages are routed to STDERR.

Files written as BINFILEs can be read and manipulated with a set of log file
APIs, which are described in the IBM DCE Version 3.1 for AIX and Solaris:
Application Development Guide—Directory Services.

The BINFILE, TEXTFILE, and FILE output_form specifiers may be followed
by a 2-number specifier of the form:

.gens.count

where:

gens Is an integer that specifies the number of files (that is, generations)
that should be kept

count Is an integer specifying how many entries (that is, messages)
should be written to each file

The multiple files are named by appending a . (dot) to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified by count, the file is closed,
the generation number is incremented, and the next file is opened.

When the maximum number of files have been created and filled, the
generation number is reset to 1, and a new file with that number is created
and written to (thus overwriting the already existing file with the same
name), and so on. Thus the files wrap around to their beginning, and the
total number of log files never exceeds gens, although messages continue
to be written as long as the program continues writing them.

destination
Specifies where the message should be sent, and is a pathname. You can
leave this field blank if the output form specified is DISCARD, STDOUT, or
STDERR. The field can also contain a %ld string in the filename which,
when the file is written, will be replaced by the process ID of the program
that wrote the message(s). Filenames may not contain : (colon), ;
(semicolons), % (percent sign), or the space character.

application-defined
Is used for application-specific information. Standard DCE programs ignore
it.

102 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

String Syntax: The string syntax for a serviceability routing specification is:
severity:output_form:destination[:application-defined][;...]

Note that you can define multiple routing specifications as a semi-colon separated
list.

For example, this specification:

FATAL:TEXTFILE:/dev/console;STDOUT:
ERROR: TEXTFILE.5.100:/tmp/errors
EXIT:DISCARD:

*:FILE:/tmp/svc-log
NOTICE:BINFILE:/tmp/Tog%1d
WARNING:STDOUT:

instructs the serviceability mechanism to do the following:

» Send fatal error messages to the console and to standard output
» Send other error messages to a log-rolled file

» Discard normal exit reports

* Write all messages to a log file

» Send informational messages to a temporary binary log

* Send warnings to standard output

Tcl Syntax: The Tcl syntax for a serviceability routing specification is:
{severity output_form destination application-defined}

where severity, output_form, destination, and application-defined are specified as
previously described. In Tcl syntax, multiple routing specifications take the following
form:

{ {specification} {specification} {specification} }

For example, the sample specification shown previously for string format would be
expressed in Tcl syntax as follows:

{FATAL { {TEXTFILE

/dev/console} STDOUT} }

{ERROR TEXTFILE.5.100 /tmp/errors}
{EXIT DISCARD}

{* FILE /tmp/svc-log}

{NOTICE BINFILE /tmp/log%1d }
{WARNING STDOUT {} }

Using a Routing File

If a file called dce-local-pathivar/svc/routing exists, the contents of the file (if in the
proper format) will be used to determine the routing of messages written by the
serviceability mechanism.

The default location of the serviceability routing file is normally
/opt/dcelocallvar/svc/routing . However, you can specify a different location for the
file by setting the value of the environment variable DCE_SVC_ROUTING_FILE to
the complete desired pathname.

Chapter 9. Managing DCE Host Services and Host Data 103

104

The routing file contains lines that specify the routing desired for the various kinds
of messages (based on message severity level). Each line consists of three fields
as follows:

severity:output_form:destination[:application-defined][...]

You can supply multiple routings by specifying additional output_form: destination
pairs as a semicolon-separated list.

In the routing file, blank lines beginning with the # character are treated as
comments.

Using Environment Variables

Serviceability message routing can also be specified by the contents of certain
environment variables. If you use environment variables, the routings you specify
will override any conflicting routings specified by a routing file.

The routings are specified (on the basis of severity level) by putting the desired
routing instructions in the following environment variables:

* SVC_FATAL

*+ SVC_ERROR

* SVC_WARNING

* SVC_NOTICE

* SVC_NOTICE_VERBOSE

* SVC_BRIEF

Each variable should contain a single string in the following format:
severity:output_form:destination[:application-defined][...]

You can supply multiple routings by specifying additional output_form: destination
pairs as a semicolon-separated list.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 10. DCE Application Administration

As DCE evolves, commonly needed functions are being included in the DCE
infrastructure. As an example, DCE includes server control capabilities that can
manage server operation and help servers exit in a controlled and efficient manner.
Application developers can rely on these capabilities rather than implement special
mechanisms to handle them independently in every server.

Moving commonly needed functions out of applications and into the DCE
infrastructure provides important benefits. Applications can be smaller and easier to
develop and maintain. Even more important, because applications are not
encumbered with lots of special code, they are easier to reconfigure and reconnect
with different kinds of clients. This adaptability is critical as organizations strive to
keep up with changing business needs.

DCE applications have always had administrative aspects. Often, programs include
the necessary functions to manage their own administrative needs, but this
approach can be awkward and somewhat inflexible for administrators. Now, virtually
all administrative functions are available to programmers and administrators alike
through dcecp . This does not mean programmers no longer need to deal with
these issues. We expect some programmers to provide scripts written with dcecp
that configure client and server programs to start and stop under specified
conditions.

Although this approach offers a convenient and consistent way to administer
applications, it also creates an area where programming and administrative
concerns overlap. Our discussions in this chapter will include this area of overlap,
noting circumstances where administrative action might be needed.

Controlling Server Operation

The conventional notion of a DCE application server assumes that a server is
running, waiting for client requests to service. While this is an effective model for
some general server operations, it does not offer the flexibility needed by DCE
applications. Commercial environments will likely have many kinds of servers. Some
may need to be constantly available, while others may be needed only at certain
times of the day. Still others may be needed on an infrequent or unpredictable
basis.

An application programmer or administrator could solve these kinds of problems by
writing a script or application that monitors server operation, automatically starting
or restarting servers when necessary. Such solutions frequently rely on host utilities
like startup and shutdown programs or schedulers like cron . However, this often
requires administrators to log into separate system administration accounts on each
host. Moreover, this approach places more burden on developers and
administrators to device independent server control mechanisms which may not be
portable, especially in heterogeneous environments.

DCE solves some of these problems by providing a server control facility that offers
a variety of ways to control DCE application servers. The server control facility is
part of the DCE daemon (dced) so servers can rely on it wherever dced runs.
Additionally, the facility’s administration functions are accessible via dcecp, so
administrators can use consistent (portable) methods to manage servers from any

© Copyright IBM Corp. 1990, 1999 105

host where dcecp is available. Furthermore, access to the server control facility is
authenticated, preventing unauthorized or accidental tampering of server control
information.

The following sections show some common configuration needs and describe ways
to configure and unconfigure servers, how to start and stop servers, and how to
view server information.

Common Server Configuration Needs

Before you configure a server, you might need to perform some preliminary steps. If
a server uses DCE authentication and authorization, its principal name must be
registered with the DCE Security Service or run under the DCE identity of the

parent process. For details on creating server accounts, see EChapter 31 _Creating

Naming Server Configuration Information

Server configuration information is accessible using a name of the form:
I...Icellnamelhosts/ hostname/config/srvrconf/ servername. If you have the
necessary permissions, you can use the global name to access the configuration
database on a remote host (even a host in another cell). The following example
shows configuration information for the video_clip server on host krypton in
remote cell /.../their_cell.goodco.com

dcecp> server show /.../their_cell.goodco.com/hosts/krypton/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}

{program {vclip}}

{arguments {-catalog}}

. (Output Omitted)
dcecp>

The next example shows configuration information for the video_clip server on host
silver in the local cell:

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}

{program {vclip}}

{arguments {-catalog}}

. (Output Omitted)

dcecp>

Use the simple name to show configuration information for the video_clip server on
the local host:

dcecp> server

show video_clip

{uuid 2fa4l7e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}

{arguments {-catalog}}

. (Output Omitted)

dcecp>

106 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Server Configuration Information

Each DCE has a database that can store configuration information for servers on
that host. Use the DCE control program server object to store, modify, or remove
server configuration information in the server configuration database on the host
system.

You need to specify some or all of the following information when managing server
configuration:

uuid An identifier for the particular server configuration object.

program
The name (including the pathname) that invokes the server program.

directory
The name of the program’s working directory. Once a server is running, it
might need a place to store its output or temporary files.

arguments
Command-line arguments used to start the server.

entryname
The name of an RPC entry to which the server exports its binding.

keytabs
A list of one or more UUIDs of related keytab objects (files) where the
server stores its keys. This information is needed for servers that use DCE
authentication or authorization.

principals
A list of one or more principal names for the server that are registered in
the DCE Security Service. This information is needed for servers that use
DCE authentication or authorization.

services
Identifies the services offered by the server. Each service attribute consists
of an attribute list with the following elements:

annotation
A human-readable string describing the service.

ifname
The interface name of this service (specified in the interface
definition file).

interface
The interface identifier (UUID and version number) of this service
(specified in the interface definition file).

binding
A list of string bindings identifying this service.

entryname

The name of an RPC entry to which the server exports its binding
for this service.

flags A list of keywords to identify flags for this server. Only the disabled
flag is currently supported.

objects
A list of object UUIDs supported by this service.

uid A POSIX UID that the server is started with.

Chapter 10. DCE Application Administration 107

starton
Specifies server starting conditions. The value is a list of one or more of the
following:

auto The server starts whenever a request for its service is received by
the DCE daemon.

explicit
The server starts (or stops) whenever an administrator performs a
server start or server stop operation that directly names the
server.

boot The server starts whenever the host system starts.

failure The server starts whenever it has exited with a unsuccessful exit
status.

Permissions for Accessing Server Control Facilities

An ACL prevents unauthorized principals from creating, reading, changing, or
deleting information maintained by the server control facilities.

The server control facility maintains two kinds of server control information. Server
configuration information (named srvrconf in DCE) consists of the information
needed to start servers. Server execution information (named srvrexec in DCE)
consists of information needed to control or stop servers when they are running.

Server configuration information is protected by two types of ACLs. One ACL
protects the container in which the server control information resides. A second ACL
type protects each individual server’s configuration information.

Similarly, server execution information is protected by two types of ACLs. One ACL
protects the container in which the server execution information resides. A second
ACL type protects each running server’'s execution information.

This section shows how to manage ACLs that protect server control information. For
detailed information about setting and using ACL protections, see

Permissions for the Server Configuration Container: The server configuration
information resides in a container. The container, a backing storage mechanism
implemented as a file on UNIX systems, is owned by root and is also protected by
an ACL. These ACL permissions control who can access information in the
container. Each DCE host has one server configuration Container ACL with the
following name:

/.../cellname/hosts/hostname/config/srvrconf

The server configuration Container ACL has the following permissions:

¢ (control)
Modify the Container ACL.

r (read)
Read configuration information in the container.

i (insert)
Create new configuration information.

108 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

I (Insert)

Create new configuration information for a server that runs as a privileged

user (for example, as root on a POSIX system). Such operations also
require the i permission.

Use the dcecp acl object to view or modify ACLs. For example, use the following

operation to view the ACL for the server configuration container object on host
silver :

dcecp> acl show /.:/hosts/silver/config/srvrconf
{user appl_admin cril}

{unauthenticated r}

{any_other r}

dcecp>

Because /.:/hosts/silver/config/srvrconf is a container, it also has an Initial

Container ACL and an Initial Object ACL. You can operate on these initial ACLs by

using the -ic and -io options to acl operations. Note, however, that because you

cannot currently create child containers under /.:/hosts/ hostnamelconfig/srvrconf ,

the Initial Container ACL has no effect.

Permissions for Accessing Server Configuration Information: Each server’'s

configuration information is protected by its own ACL. These ACLs can prevent
unauthorized principals from creating, reading, changing, or deleting server
configuration information, and from starting, stopping, enabling, and disabling
servers.

Each ACL is named for the server configuration information it protects and has a

name like the following:
/.../cellname/hosts/hostname/config/srvrconf/server_name,

This ACL has the following permissions:

¢ (control)
Modify the ACL.

d (delete)
Delete the server configuration information.

f (flag)
Start the server with custom flags.

r (read)
Read the server configuration information.

w (write)
Modify the server configuration information.

X (execute)
Start the server.

Use the acl object to view or modify ACLs. For example, use the following
operation to view the ACL for the video clip server on host silver :

dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip
{user appl_admin cdfrwx}

{unauthenticated r}

{any_other r}

dcecp>

Chapter 10. DCE Application Administration

109

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the video_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip
-io

{unauthenticated r}

{any_other r}

dcecp>

Permissions for the Server Execution Container: When servers are started, the
DCE daemon copies server configuration information into the server execution
database. The dced process also adds more information about the running server
such as a UUID, the server's communication endpoints and its process name and
ID. The execution information controls the running server; for instance, the process
ID is used to stop a server. When a server exits, the DCE daemon removes its
server execution information.

The server execution information resides in a container. The container, a backing
storage mechanism implemented as a file on UNIX systems, is owned by root and
its access through dced is protected by an ACL. These ACL permissions control
who can access information in the container. Each DCE host has one server
execution Container ACL with the following name:

/.../cellname/hosts/hostname/config/srvrexec

The server execution Container ACL has the following permissions:

¢ (control)
Modify the Container ACL.

r (read)
Read execution information in the container.

i (insert)
Create new execution information.

I (Insert)
Create new execution information for a server that runs as a privileged user
(for example, as root). Such operations also require the i permission.

Use the acl object to view or modify ACLs. For example, use this operation to view
the ACL for the server execution container object on host silver :

dcecp> acl show /.:/hosts/silver/config/srvrexec
{user appl_admin cril}

{unauthenticated r}

{any_other r}

dcecp>

Because /.:/hosts/silver/config/srvrexec is a container, it also has an Initial
Container ACL and an Initial Object ACL. You can operate on these initial ACLs by
using the -ic and -io options to acl operations. Note that the Initial Container ACL
has no effect because currently, child containers do not exist under

/.:Ihosts/ hostnamel/config/srvrexec .

Permissions for Accessing Server Execution Information: Each server’s
configuration information is protected by its own ACL. These ACLs can prevent

110 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

unauthorized principals from creating, changing, reading, or deleting server
configuration information, and from starting, stopping, enabling, and disabling
servers.

Each ACL is named for the server execution information it protects and has a name
like the following:

/«../cellname/hosts/hostname/config/srvrexec/server_name

This ACL has the following permissions:

¢ (control)
Modify the ACL

r (read)
Read the server execution information

w (write)
Modify the server execution information

s (stop)
Stop the server.

As an example, use the following operation to view the ACL for the server execution
information for the video_clip server on host silver :

dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip
{user appl_admin crws}

{unauthenticated r}

{any other r}

dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the video_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip
-io

{unauthenticated r}

{any_other r}

dcecp>

Configuring Servers

Use the server create operation to make an application server accessible to the
server control facility. Configuring a server means creating the information needed
to start and control the server. Typically this includes a server’s starting command
line and arguments, along with other information needed to start DCE applications.

Some servers need to be available whenever a host system is running. For
instance, you might want a server that provides information on host activity to start
at the host boot time and run until the host shuts down. Other kinds of services
might be needed or only for brief periods. The server control facility has an
administrative interface that lets you specify some conditions for starting and
stopping servers:

» Explicit : You can set a server so that you can explicitly start it whenever you
want.

* Boot: You can set a server to start at boot time.

Chapter 10. DCE Application Administration 111

« Automatic : You can set a server to start on demand; that is, it starts whenever a
client request for its services is received at the host system.

» Failure: You can set a server to start automatically if it exits unexpectedly.

The following example creates an entry for a fictitious video clip server named
video_clip on the local host. For a remote host or a host in another cell, use the
cell-relative or the global name. The program name vclip invokes the server that is
located in the /usr/local/bin working directory. The server has a catalog mode that
was set by specifying -catalog as the argument. The server uses the DCE Security
Service, so the server has a principal name Vclip_Srv_1 . The -entryname option
specifies the entry name in the Cell Directory Service (CDS) where the server
stores its binding information. The -starton option sets the server to start when
dced receives an explicit server start operation that names the video_clip server.
The failure attribute further specifies to restart the server if it exits with a status that
is not successful. The -services option has annotation information to help
administrators identify servers when this information is returned with server show
operations. The interface attribute is needed because the DCE daemon copies this
information into the host endpoint map when the server starts.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip

> -program {/usr/local/bin/vclip} \

> -directory {/tmp} -arguments {-catalog} \

> -principal {Vclip_Srv_1} \

> -entryname {/.:/subsys/applications/video_clip_1} \

> -starton {explicit failure} \

> -services {{annotation {Video Clip Catalog and Server}} \
> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}
dcecp>

The next example configures the same server to start whenever the host system
boots. The only difference from the preceding example is that the -starton option
has a value of boot.

dcecp> server

create /.:/hosts/silver/config/srvrconf/video clip \
-program {/usr/local/bin/vclip} \

v

> -directory {/tmp} -arguments {-catalog} \

> -principal {Vclip_Srv_1} \

> -entryname {/.:/subsys/applications/video_clip_1} \

> -starton {boot} \

> -services {{annotation {Video Clip Catalog and Server}} \
> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}
dcecp>

The final configuration example sets the video_clip server to start whenever a
client request for its services is received at the host system. The -starton option

value is auto . EUnconfiguring Servers” on page 113 discusses the steps for

disabling and enabling services.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
> -program {/usr/local/bin/vclip} \

> -directory {/tmp} -arguments {-catalog} \

> -principal {Vclip_Srv_1} \

> -entryname {/.:/subsys/applications/video _clip_1} \

> -starton {auto} \

> -services {{annotation {Video Clip Catalog and Server}} \

> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}

dcecp>

112 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Listing and Retrieving Server Configuration Information

When you want to see a list of the names of servers configured on a particular
host, use a server catalog operation, as shown. This operation does not show
every server available on a host, just those that have configuration information
stored in the server configuration database.

dcecp> server

catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video clip
dcecp>

List the names of all the configured servers in a DCE cell by using a foreach
command to repeat the server catalog operation for each host in a cell:

foreach h [directory Tist /.:/hosts]{
echo [server catalog $h]
}

If you are unsure of the configuration information established for a server, you can
view it using a server show operation, as shown. Use the -executing option to
view information about a running server.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

{program {/usr/Tocal/bin/vclip}}

{arguments {-catalog}}

{prerequisites {}}

{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56} }
{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}

{starton {explicit failure}}

{uid 1441)

{gid 1000}

{dir {/tmp}}

dcecp>

Unconfiguring Servers

You can remove server configuration information from a host’s configuration
database by using a server delete operation. You would perform this operation, for
instance, when a server moves to a different host. A server delete operation does
not stop a server that is currently running.

The following example removes the video_clip server’'s configuration information
from the configuration database on host silver :

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp>

Starting and Stopping Servers
Once a server has been appropriately configured, you can use a server start or
server stop operation to start or stop the server remotely. For example, the

following server start operation starts the server video_clip on host silver in the
local cell:

Chapter 10. DCE Application Administration 113

dcecp> server start /.:/hosts/silver/config/srvrconf/video_clip
eb814e2a-0099-11ca-8678-02608c2ea96e
dcecp>

The next example stops the server video_clip on the local host silver in the local
cell:

dcecp> server stop video_clip
dcecp>

Disabling and Enabling Services

You can prevent clients from using a service offered by a server—even when the
server is running—by setting its services to disabled. When set to disabled, server
endpoint information is not returned to requesting clients, thereby preventing clients
from finding servers. Instead, clients receive a server status of endpoint not
registered. Clients that previously acquired the server endpoint can still
communicate with the server, however.

When a server provides multiple interfaces, you can disable any one or more of its
interfaces by specifying their interface identifiers. The following example disables
one service of the video_clip server:

dcecp> server disable /.:/hosts/silver/config/srvrexec/video_clip \
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

The next example enables the vidsrv service of the video_clip server after it has
been disabled. This operation allows clients to acquire a server's endpoint.

dcecp> server enable /.:/hosts/silver/config/srvrexec/video_clip

\
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

Extending Server Configurations

Some servers may require configuration information that is not supported by the set
of attributes provided with your DCE software. You can add arbitrary information to
your server configuration information by creating additional extended registry
attributes (ERAs) with the xattrschema object.

For example, say you have a server that needs an attribute that specifies an object
family. You create such an attribute by using the xattrschema object. The following
example creates an ERA called srvrconf/objfamily . The operation specifies the
permissions needed to query, update, test, and delete the ERA, and it specifies the
ACL manager that supports the permissions.

dcecp> xattrschema create \

> /.:/hosts/silver/config/xattrschema/srvrconf/objfamily \

> -attribute {{annotation {object family}} {encoding uuid} \
> {aclmgr {srvrconf r w r d}}}

dcecp>

Once you have created a new attribute, use a server modify operation, as

explained in LChanging Server Configurations” on page 118, to insert the necessary

114 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

data. More information about ERAs is provided in tChapter 32, Creating and Using

You can review the attributes associated with an ERA by using an xattrschema
show operation as shown in the following example:

dcecp> xattrschema show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{acimgr {srvrconf {{query r} {update w} {test r} {delete d}}}}

{annotation {object family}}

{applydefs no}

{encoding uuid}

{intercell reject}

{multivalued yes}

{reserved no}

{scope {}}

{trigbind {}}

{trigtype none}

{unique no}

{uuid 1bef2222-e687-11cd-b74a-0000c08adf56}
dcecp>

ERAs in server configuration information are protected by two levels of ACLs. One
ACL type protects the container in which the ERA resides. The second ACL type
protects the individual ERA.

The ERA Container ACL is named as follows:
/.../cellname/hosts/hostname/config/xattrschema

The ERA Container ACL has the following permissions:

¢ (control)
Modify the Container ACL.

r (read)
Read the ERA in the container.

i (insert)
Create new ERA information.

I (Insert)
Although the | permission is present, it does not apply to ERA items. The
permission applies to server control facilities, which are explained in

Use the dcecp acl object to view or modify the Container ACL. For example, the
following operation views the ERA Container ACL on host silver :

dcecp> acl show /.:/hosts/silver/config/xattrschema

{user appl_admin cril}

{unauthenticated r}

{any_other r}

dcecp>

The ACL for an individual ERA is named as follows:
/.../cellname/hosts/hostname/config/xattrschema/ERA_name

ACLs on individual ERAs can prevent unauthorized principals from creating,
reading, changing, or deleting ERA information. The following example shows

permissions established for the srvrconf/objfamily ERA. In this example, the ¢
permission has no effect because it was not assigned when the ERA was created

Chapter 10. DCE Application Administration 115

with the xattrschema create operation. All users can query and test the ERA. Only
the user named appl_admin can also update and delete the ERA.

dcecp> acl show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily
{user appl_admin crwd}

{unauthenticated cr}

{any_other cr}

dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the -io option to acl operations. The
following example shows the Initial Object ACL for the xattrschema container on
host silver :

dcecp> acl show /.:/hosts/silver/config/xattrschema -io
{unauthenticated cr}

{any_other cr}

dcecp>

Changing Server Configurations

Sometimes you might want to change a server’s configuration information. For
instance, you want to change the -starton attribute from boot to explicit so that
you can control the server manually.

To change the normal server configuration attributes, you must first delete all of the
existing attributes and then create new ones. Avoid losing the current information by
first using a server show operation to display it on your screen.

The steps are illustrated in the following example which uses a server show
operation to capture the current server configuration information. The server delete
operation removes the configuration information, and a server create operation
inserts the new —starton attribute along with the remaining server configuration
information.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

{program {/usr/Tocal/bin/vclip}}

{arguments {-catalog}}

{prerequisites {}}

{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}

{services {{annotation "Video Clip Catalog and Server"}}
{principals {Vclip_Srv_1}}

{starton {boot}}

{uid 1441)

{gid 1000}

{dir {/tmp}}

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \
> -program /usr/local/bin/vclip \

> -directory /tmp \

> -arguments {-catalog} \

> -principal Vclip_Srv_1 \

> -entryname /.:/subsys/applications/video_clip_1 \

> -starton {explicit} \

> -services {{annotation "Video Clip Catalog and Server"}}
dcecp>

You can directly change ERA information by using a server modify operation. The
following example changes a server's ERA called srvrconf/objfamily to contain

116 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

new values. This operation assumes the ERA has already been created using an

xattrschema create operation described in lExtending Server Configurations” onl

dcecp> server modify /.:/hosts/silver/config/srvrconf/video_clip

\

> -change {srvrconf/objfamily {c09dcc40-e4f4-11cd-bd59-0000c08adf56}}
dcecp>

Checking Whether Servers Are Running

You can check whether a particular server is running by performing a server ping
operation. This might be a convenient test when some client users report they
cannot communicate with a server. The server ping operation communicates with
the named server to test its presence, returning a 1 is a server is listening and a 0
if it is not listening. The argument to the server ping operation is the entryname of
the server, not the name of the srvrconf object. The following example tests
whether the video_clip server is running:

dcecp> server ping /.:/subsys/applications/video_clip_1
1
dcecp>

Managing Client/Server Binding Information

In a DCE environment, clients and their servers frequently reside on different hosts
in a network, so clients need a way to find servers.

Clients need three pieces of information to communicate with a server:

* The host name (or network address) of the host where the server is running

* The name of the network transport the server is using

» The communication port (endpoint) the server is using for client communications

Of course, an application programmer could simply hardcode a server’s location
information (also called binding information) into the client side of the application
where it is immediately available for use. However, this approach requires that a
programmer have advance knowledge of precise network details such as host
names and available port numbers. Furthermore, servers with hardcoded binding
information do not easily adapt to configuration changes. If you move a server to a
different host, you need to recompile all of the clients with the server's new host
name. So DCE provides more flexible ways for clients to obtain server bindings.

The standard way for clients to find servers is by using CDS and the server host’s

endpoint map. Eigure 1 on page 118 provides a high-level example of this method,
showing how a fictitious dictionary client application on host larry finds a dictionary
server on host curly .

Chapter 10. DCE Application Administration 117

Server Entry

Server: Dict Server
Host: curly
Transport: TCP/IP

Host: larry Host: moe Host: curly

Application Client Application Servers

@ BBS Server
e e Start Server
9 Spell Server
Sersivee Dict Server
Services
0 * = o

Endpoint Map

Server_Name Endpoint
BBS Server 1012
Stat Server 1013
Spell Server 1014

Dict Server 1015
N

A4
DCE Host
Services

Figure 1. Server Binding Information

1. When the dictionary server starts up, DCE host software assigns the server a
communications port (endpoint), which clients will use to communicate with this
server. Here, the endpoint is TCP/IP port 1015. The DCE host software also
places the server identification information along with the current endpoint in the
host’s endpoint map.

2. The dictionary server then advertises its availability to clients by placing
(exporting) its host name (usually it is the host address) and the transport it
uses to a server entry in CDS.

3. When the dictionary client makes a call to a remote procedure provided by the
server, the DCE software on the client queries the CDS server to find the
dictionary server’'s host name and the transport.

4. The client system’s host software then queries the endpoint map on host curly
to find the dictionary server’s endpoint (port 1015).

5. Equipped with all the necessary binding information, the host services on host
larry transmit the remote procedure call directly to port 1015 on host curly .

Although we have omitted some details in this high-level example, the figure still
shows the major binding activities performed by clients and servers. That is, servers
place their binding information in CDS and in the host endpoint map where clients
look for it. There are other ways for clients to find servers and there are variations
on the mechanism we have described. But these alternatives are generally
controlled by the applications themselves rather than through conventional DCE
administration facilities like dcecp .

118 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

This section discussed one basic client/server binding mechanism. The following
sections examine the roles played by the endpoint map and by CDS. We will also
discuss specific administration tasks for managing binding information in endpoint
maps and in CDS.

Using the Endpoint Map for Easy Application Development and
Administration

Remote clients can find a server by using the server host’'s endpoint map to
determine the server's communication endpoint. But how do remote clients know
where to find the endpoint map itself? They know because the endpoint map is
always accessible at a well-known endpoint (that is, it is always the same endpoint)
on each host so clients can easily find it.

When hosts support multiple transports, the endpoint map listens on one port for
each transport. In the IP address family (both TCP and UDP), the endpoint map
process listens on port 135. In the Domain Domain Sockets (DDS) address family, it
listens on port 12. In the DECnet NSP address family, it listens on port 69. A
complete list of the protocol sequences and well-known endpoints used by the
endpoint mapper service can be found in the header file
/opt/dcelocal/share/include/dce/ep.idl

Note that not all hosts support all transports. DCE software tries to ensure that at
least one transport is shared between a client and a server.

While well-known endpoints provide convenient access to some critical servers, for
most servers they are impractical. That's because some address families have a
limited number of endpoints and well-known endpoints can be assigned only by a
central administrative authority. So most servers use dynamic endpoints. When a
server starts up, the RPC runtime library gets an available endpoint from the
operating system and registers it in the host endpoint map.

Because a server can be assigned a different endpoint each time it starts, the
endpoint information is stored in the endpoint map rather than CDS, which is a
repository for more stable information; namely, the server’s host address and the
transports it uses. As long as the server stays on the same machine, host and
transport information need not be updated, which tends to reduce bottlenecks at
CDs.

This scheme makes application development and administration easier because it
reduces the need to manage endpoints. Servers need not worry about passing
dynamic endpoints to clients. Furthermore, unless a server moves to a new host, or
removes or adds a transport, it does not even have to update the information in
CDsS.

Automatic Endpoint Map Administration

Each server that uses the endpoint map stores a set of information in the endpoint
map when it starts up. The information includes universal unique identifiers (UUIDs)
for objects and interfaces offered by the server, an annotation string, and other
fields.

The endpoint map resides on disk in dcelocallvar/dced/Ep.db and
dcelocallvar/dced/Srvrexec.db . After a system reboot, DCE-based servers restart

Chapter 10. DCE Application Administration 119

and reregister with the endpoint mapper service, so the database files need to be
deleted before the DCE daemon starts. This happens automatically on most
systems.

DCE-based servers normally need to register with the endpoint mapper service on
startup and unregister on termination. If any servers exit without unregistering, the
endpoint map may contain stale entries.

DCE provides server control facilities that help servers unregister and avoid leaving
stale entries in the endpoint map. Servers that do not use these facilities (older
servers, for example) are more likely to leave stale entries if they exit unexpectedly.
So periodically, the DCE daemon (dced) purges stale entries by scanning the
endpoint map, pinging each server that is registered, and deleting entries for
servers that do not respond.

The background process of removing stale entries is not intended to be highly
responsive. It is not intended to replace the need for servers to unregister
themselves from the endpoint map when they no longer service RPCs. Rather, this
processing is intended only to clean up after a server failure.

While the behavior of the pinging/purging mechanism is implementation dependent,
in a typical implementation the database is scanned (that is, servers are pinged and
stale entries removed) only infrequently; for example, a few times an hour. Once a
ping to a server fails, the server is pinged several times over a shorter interval; for
example, every 5 minutes. If the server continues to not respond, the dced process
determines that its entry is stale and removes it from the database. Ultimately, the
rate at which stale server entries are detected and purged depends on the number
of stale entries in the database; the more stale entries, the longer it takes to detect
and purge the stale entries.

Restricting Endpoints

You can restrict the assignment of endpoints (ports) for DCE servers and clients to
a specific set. This is useful if your environment has applications other than DCE
that are designed to use certain endpoints, and you do not want to be concerned
about DCE servers or clients monopolizing them.

The facility is activated by setting the RPC_RESTRICTED_PORTS environment
variable with the list of endpoints to which dynamic assignment should be restricted
before starting a client or server application. RPC_RESTRICTED_PORTS governs
only the dynamic assignment of server ports by the RPC runtime. It does not affect
well-known endpoints.

The following example restricts servers to using TCP/IP endpoints ranging from
5000 to 5110, and 5500 to 5521. It restricts UDP/IP endpoints to the range of 6500
to 7000.

% set RPC_RESTRICTED_PORTS

—

ncacn_ip_tcp[5000-5110,5500-5521] :ncadg_ip_udp[6500-7000]

o

To use RPC_RESTRICTED_PORTS for DCE servers such as CDS, set the
environment variable each time before starting your cell.

120 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Note that this facility does not add any security to RPC and is not intended as a
security feature. It merely facilitates configuring a network firewall to allow incoming
calls to DCE servers.

Viewing Information in the Endpoint Map

For the most part, the endpoint map on each host takes care of itself, purging stale
entries when necessary and removing the endpoint information each time the host
reboots. So there is really no administration needed for the endpoint map.

However, when client/server communication problems arise, the information stored
in the endpoint map might be useful to administrators, particularly for determining
whether servers are supplying the correct endpoint information to clients. In this
case, you can use the endpoint object to view endpoint map information. Besides
its use in troubleshooting, you can also use the endpoint object for other
specialized server operations such as adding new object UUIDs to existing
mappings.

Endpoints are not protected by ACLs. This means anyone who can run dcecp can
use an endpoint show operation on their host to view endpoint information on any
other host in the cell. Other endpoint operations, such as creating or deleting
endpoints, can be performed only by users who are logged into the local host. No
other special privileges, such as system administrator or root privileges, are needed
for local access to endpoint information.

You can view information stored in a host’s endpoint map database by using an
endpoint show operation. The following example shows the endpoint map
information for the video_clip server on a remote host megazoid . Omit the
hostname argument to operate on the local endpoint map.

dcecp> endpoint show /.:/hosts/megazoid

> -interface {2fa4l7e8-bb4c-11cd-831b-0000c08adf56 1.0}
{{object 99ff4fb8-c042-11cd-91cd-0000c08adf56}
{interface {2fa417e8-bb4dc-11cd-831b-0000c08adf56 1.0}}
{binding {ncacn_ip_tcp 130.105.1.227 1028}}
{annotation {Text Development Utilities}}}

dcecp>

You can view all of the endpoints in an endpoint map by not using any options with
the endpoint show operation.

Managing Server Entries, Groups, and Profiles in CDS

An endpoint map acts as a directory of servers on a host. Similarly, CDS acts as a
directory of servers in the cell. In the first part of this chapter, we gave a high-level
look at how applications can use CDS to store relatively stable binding information
such as a server’'s name, its host address, and the transports over which the server
is available. In this section, we will show how to use CDS facilities for organizing
your servers and other distributed objects in meaningful ways.

Many of the operations discussed in the following sections operate on CDS
directories that are protected by ACLs against unauthorized access. For detailed

information about ACLs and CDS see EChapter 16 _Contralling Access to CDY
Names” an page 175 .

Chapter 10. DCE Application Administraton 121

Using Unique Server Entry Names to ldentify Individual Servers and

Objects

We know that servers store their binding information in CDS where clients can find
it. But so far, we have been treating CDS like a black box. If a DCE cell consisted
of just a few servers or objects and a handful of users, CDS could be as simple as
a data file accessible to both servers and clients. Finding unique names for objects
would probably not pose a big problem. And you could probably even devise some
effective scheme for protecting objects from unauthorized use. But DCE cells can
include many hundreds or even thousands of objects. Large cells will likely contain
many similar or even identical servers that need convenient and effective ways to
offer their services to clients.

DCE CDS answers this need by providing a hierarchical (tree-structured) name
system that servers use to store binding information. CDS acts much like a
hierarchical file system of directories that stores names and other information
instead of files. You can build on its hierarchical structure, imposing directory names
that can correspond to your company’s organizational structure.

Servers have CDS names like /.:/admin/finance/payroll/check_writer . When this
check_writer server exports its server entry name to CDS, CDS stores it in a
directory named /.:/admin/finance/payroll . Consequently, clients will not confuse
this check_writer with another check_writer named
/.:ladmin/finance/accts_payable/check_writer . Thus, unique server entry names
fill a critical administration need, providing a way to access and control individual
servers.

[Part 4 Cell Directory Service” on page 137 of this book provides more information
about CDS and the structure and uses of CDS names. For our current purposes, it
is enough to know how and why CDS directory names help make potentially
identical server entries unique.

While servers themselves often manage exporting and removing their names and
binding information from CDS, sometimes administrators need to manually add,
change, or remove binding information. For instance, when a server host machine
crashes unexpectedly and stays offline for a long time, its resident servers cannot
remove their entry names and binding information from CDS. Clients can waste
time looking for these phantom servers. The DCE control program provides the
rpcentry object that you can use to manage server entry names and their binding
information in CDS.

Before we get to the actual management tasks, let us examine a server entry to
see exactly what it is we’ll be managing. Eigure 2 an page 123 shows possible
information in a server entry.

122 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

One Server Entry

Interface UUID/version pair 1 Interface UUID/version pair 2 000
with binding information 1 with binding information 1
Bindings Interface UUID/version pair 1 Interface UUID/version pair 2 eoo
with binding information 2 with binding information 3
°
Interface UUID/version pair 1 H
with binding information 3
°
°
°
Object UUID 1
Object UUID 2
Objects Object UUID 3
Object UUID 4

Figure 2. Possible Information in a Server Entry

The top part ofm contains bhindings. Each binding consists of an interface
identifier and a binding. The interface identifier identifies an interface offered by the
server, and its binding information indicates the host address and network transport
to use to access that interface. The following example of a binding (shown in dcecp
syntax) indicates the server is on the host with internet address 120.101.13.157 and
is available using the User Datagram Protocol (UDP):

{nacdg_ip_udg 120.101.13.157}

When an interface identifier is available over several transports, the server entry
contains bindings (one binding for each transport). Servers can offer more than one
interface. Multiple interfaces can be available through a single endpoint. That is,
different interfaces can have the same bindings.

The lower part of the figure contains object UUIDs. Object UUIDs offer additional
information to clients; they identify specific objects or resources managed by the
server. For instance, one print server offers printers on floor 2 while another print
server offers printers on floor 1. In this case, object UUIDs let clients select printers
on the appropriate floor. In other words, object UUIDs help clients distinguish from
among otherwise identical services.

Although application servers can manage their own server entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or
change information in a server entry. There are four methods for managing server
entries in CDS:

Chapter 10. DCE Application Administraton 123

* Server entry names can be hardcoded into an application. You can change
server entry information in the source code, but you need to recompile and rerun
the application before the entry names take effect.

» Server entry names can be stored as the entryname attribute of the server’'s
configuration information (using the server object) where it is accessible to the
application. This is more convenient than recompiling but, more importantly, this
method places the server's entry name in a standard (platform independent)
place where administrators can see it too. You might need to restart an
application to use this method, however.

* Server entry names can be passed to an application through environment
variables or arguments. While these are effective methods and they are more
convenient than recompiling, they are not platform independent. This means you
might need different approaches on different operating systems.

» Server entry names can be directly managed in CDS by using the DCE control
program’s rpcentry object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcentry object to manually manage
server entries in CDS.

Creating a Server Entry in CDS

Often, servers will create their own entries in CDS either when they initialize or
when they are configured after installation. But sometimes, you might want to create
a server entry manually. When you create a server entry, it is empty; it does not
contain any interface or binding information.

One reason to create an empty server entry is to establish ownership of the entry.
Server entries are owned by the creator. If a server creates an entry, the server can
also delete the entry later. You can preempt such a circumstance by creating the
entry yourself. Later, the server exports its bindings to the existing server entry
(provided that the ACL allows this).

Use an rpcentry create operation to create an empty server entry as in the
following, which creates one named /.:/subsys/applications/bbs_server . The CDS
directory /.:/subsys/applications must already exist for this operation to succeed.

dcecp> rpcentry create /.:/subsys/applications/bbs_server
dcecp>

Deleting a Server Entry from CDS

Because server entries generally contain stable server binding information, they
tend to stay around rather than be deleted. Even when a server goes away for a
short time, say, overnight, it might not be practical to remove its entry. But when a
server goes away for a long time, you can avoid the client expense of trying to use
the phantom server by removing the server’s entry from CDS.

Use an rpcentry delete operation to remove a server entry from CDS as shown in
the following example:

dcecp> rpcentry delete
/.:/subsys/applications/bbs_server
dcecp>

124 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Exporting Binding Information to a Server Entry in CDS

Servers usually export their own binding information to CDS when they initialize or
when they are configured after installation. But sometimes, binding information may
have been removed for some reason or by accident and you want to restore it. Or
another transport has been added and you want to export the binding for the new
transport.

You can manually export server binding information to a server entry by using an
rpcentry export operation. If the entry does not already exist, the rpcentry export
operation creates it provided the directory already exists and you have the
necessary permissions.

The following example illustrates exporting a server’s binding information to a server
entry named /.:/subsys/applications/bbs_server . The object UUID identifies the
data file resource used by bbs_server .

dcecp> rpcentry export /.:/subsys/applications/bbs_server \
> -interface {458ffche-98c1l-11cd-bd93-0000c08adf56 1.0} \
> -binding {ncacn_ip_tcp 130.105.1.227} \

> -object {76030c42-98d5-11cd-88bc-0000c08adf56}

dcecp>

Importing Binding Information from a Server Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. For instance, a client
might lack access to CDS but it could still communicate with the server if you
supplied it with a valid binding.

Use an rpcentry import operation to return a server’s binding information, as
follows:

dcecp> rpcentry import
/.:/subsys/applications/bbs_server \

> -interface {458ffcbe-98cl-11cd-bd93-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.227}

dcecp>

Viewing Information in a Server Entry

When clients are having difficulty communicating with servers, you might want to
see what binding information is contained in a server entry as a troubleshooting
step. Or say you are adding object UUIDs to server entries and you wonder
whether a server entry has been overlooked. You can use an rpcentry show
operation to view the information in a server entry as illustrated in the following
example. The returned information includes the interface identifier, two bindings
over which the server can be reached, and an object UUID of a resource
maintained by the server.

dcecp> rpcentry show /.:/subsys/applications/bbs_server
{458ffche-98c1-11cd-bd93-0000c08adf56 1.0

{ncadg_ip_udp 130.105.1.227}

{ncacn_ip_tcp 130.105.1.227}}
{76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>

Chapter 10. DCE Application Administraton 125

Removing Binding Information from a Server Entry in CDS

Occasionally, you might want to remove binding information from a server entry. If a
server host crashes, its servers cannot remove their server entries from CDS. To
prevent clients from trying to communicate with these phantom servers, you should
unexport the bindings from CDS manually. Unlike the endpoint delete operation,
this operation does not remove the entry name from CDS.

Use an rpcentry unexport operation to remove server binding information as
shown in the following example. Notice that the object UUID is not removed from
the server entry unless you specify it as an option to the unexport operation.

dcecp> rpcentry unexport /.:/subsys/applications/bbs_server

> -interface {458ffche-98cl-11cd-bd93-0000c08adf56 1.0}
dcecp>

dcecp> rpcentry show /.:/subsys/applications/bbs_server
{76030c42-98d5-11cd-88bc-0000c08adf56}

dcecp>

Using Group Entries to Help Balance Server Workloads

When a client queries CDS for a server binding, the request includes the name of
the entry to look in for the binding. When only one server offers the client’s
requested service, CDS will return the same binding for every client request for this
service. While this model works fine for limited client requests, it can cause service
bottlenecks when many client requests converge on one server. Applications can
avoid bottlenecks by providing multiple servers to service large numbers of client
requests. Server entry names alone do not provide a convenient way to distribute
client requests evenly among multiple servers because you'd have to explicitly
direct each client to a particular server. So CDS provides group entries as a
convenient mechanism for distributing the client load across multiple servers.

A CDS group entry gathers related servers together under a common group name.
Group entries contain members that are generally pointers to server entries, but
members can point to other group entries, too. When a client requests a binding
from a group entry, CDS returns, at random, one of the pointers contained in the
group entry. If the entry picked at random is another group entry, CDS does not
return that. Instead, CDS goes to that group and picks another random member,
continuing until a server entry is returned. This model requires that any group

member can service the client request. Eigure 3 on page 127 shows how a group
entry contains members that point to other groups and to server entries.

126 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

— ¥ Server entry 1:
~

7
7 Binding information
/ : oo
/ Interface identifiers
Group A / Object UUIDs
/
Member name / _ — —>Server entry 2:
/ ~
Member name 7 Binding information
Interface identifiers
Member name | Object UUIDs
~ ~
——>Group B _ —— —>Server entry 3:
Member name / Binding information
Interface identifiers
Member name Object UUIDs
~ ~
Server entry 5: ~ = >Server entry 4:
Binding information Binding information
Interface identifiers Interface identifiers
Key: Object UUIDs Object UUIDs
= Member of Group A

Figure 3. Possible Mappings of a Group

Now, let us see how group entries help balance a workload. Consider an
organization with 12 identical laser printers equally spread among three
departments. The following group entry examples show how each group entry name
returns any one of the four printers assigned to its own department:

Group entry name: /.:/admin/finance/accts payable printers
/.:/admin/finance/accts_payable/laser_10
/.:/admin/finance/accts_payable/laser_11
/.:/admin/finance/accts_payable/laser_12
/.:/admin/finance/accts_payable/laser_13

Group entry name: /.:/admin/finance/accts_receivable_printers
/.:/admin/finance/accts_receivable/laser_10
/.:/admin/finance/accts_receivable/laser 11
/.:/admin/finance/accts_receivable/Taser_12
/.:/admin/finance/accts_receivable/laser_13

Group entry name: /.:/admin/finance/payroll_printers
/.:/admin/finance/payrol1/laser_10
/.:/admin/finance/payroll/laser_11
/.:/admin/finance/payrol1/laser_12
/.:/admin/finance/payrol1/laser 13

You could temporarily make one department’s printers available to another group by
adding its group name to the group entry of the other group as shown in the next
group entry example:

Group entry name: /.:/admin/finance/accts_payable_printers
.:/admin/finance/accts_payable/laser_10
:/admin/finance/accts_payable/laser_11
:/admin/finance/accts_payable/laser 12
:/admin/finance/accts_payable/laser_13
:/admin/finance/accts_receivable_printers

N~ NN

Chapter 10. DCE Application Administration 127

The configuration in the preceding example means the clients in accounts payable
can use the printers in accounts receivable 20% of the time. You could offer a
higher percentage of use by adding server entry names rather than the group
name. The next group entry example shows a situation where the clients in
accounts payable can use the printers in accounts receivable 50% of the time.
However, do not try to increase the percentage of use by including a group name
multiple times because you'll get an error.

Group entry name: /.:/admin/finance/accts_payable_printers
.:/admin/finance/accts_payable/Taser_10
:/admin/finance/accts_payable/laser_11
:/admin/finance/accts_payable/Taser_12
:/admin/finance/accts_payable/laser_13
:/admin/finance/accts_receivable/Taser_10
:/admin/finance/accts_receivable/Taser_11
:/admin/finance/accts_receivable/laser_12
:/admin/finance/accts_receivable/laser_13

e e

Although application servers can manage their own group entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or
change server information in a group entry. Like managing server entries, there are
several methods for managing group entries in CDS:

* Group entry names can be hardcoded into an application. You can change group
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

» Group entry names can be passed to an application through environment
variables or arguments. These are more convenient methods than recompiling,
but you might need to restart an application to use either method.

* Group entry names can be directly managed in CDS by using the DCE control
program’s rpcgroup object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcgroup object to manually manage
group entries in CDS.

Creating a New Group Entry in CDS

You can create an empty group entry in CDS by using an rpcgroup create
operation. While group creation is frequently performed by applications that first use
a group entry, creating an entry yourself establishes you as the owner of the entry.
As the owner, you have ultimate control over who can export and manage
information in the entry.

To create an empty group entry in CDS, use an rpcgroup create operation as in
the following example:

dcecp> rpcgroup create
/.:/subsys/applications/admin_bbs_servers
dcecp>

Adding a Member to a Group Entry in CDS

You can use an rpcgroup add operation to add a member to a group entry. If the
group entry does not exist, the operation creates the group entry and adds the
member. The member can be a server entry or another group entry. Note that no
operations check whether the members you add actually exist. This lets you
configure the namespace even before servers are up and running.

128 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

To add a member to the /.:/subsys/applications/admin_bbs_servers group entry
in CDS, use an rpcgroup add operation as in the following example:

dcecp> rpcgroup add /.:/subsys/applications/admin_bbs_servers

> -member /.:/subsys/applications/bbs_server4
dcecp>

Viewing the Members of a Group Entry

You can list the members of a group entry by using an rpcgroup list operation.
This is useful for troubleshooting or for just seeing how servers are distributed in
group entries.

To list the members of a group entry in CDS, use an rpcgroup list operation, as
shown in the following example, which lists the members of the group
/.:Isubsys/applications/admin_bbs_servers

dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server3
/.../my_cell.goodco.com/subsys/applications/bbs_server4

dcecp>

Importing Binding Information from a Group Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. In the case where a
client lacks access to CDS, it could still communicate with the server if you supplied
the client with a valid binding.

You can use an rpcgroup import operation to return a server’s binding information.
You must specify an interface by using the -interface option as shown in the
following example:

dcecp> rpcgroup

import /.:/subsys/applications/admin_bbs_servers \

> -interface {458ffche-98cl-11cd-88bc-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.227}

dcecp>

You can use other options such as -version and -object to further specify a
binding. Use the -max option to limit the number of bindings returned.

Removing Members from a Group Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one group entry into
another.

Use an rpcgroup remove operation to remove one or more members from a
group. The following example removes bbs_server3 from the group
/.:/subsys/applications/admin_bbs_servers

dcecp> rpcgroup remove /.:/subsys/applications/admin_bbs_servers \
> -member /.../my_cell.goodco.com/subsys/applications/bbs_server3
dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers

Chapter 10. DCE Application Administraton 129

/.../my_cell.goodco.com/subsys/applications/bbs_serverd
/.../my_cell.goodco.com/subsys/applications/bbs_server5
/.../my _cell.goodco.com/subsys/applications/bbs_server6
d

Deleting a Group Entry from CDS

Organization changes or server redeployments can make some groups obsolete.
When you want to remove a group entry from CDS, use an rpcgroup delete
operation. The following example illustrates removing an obsolete group entry called
/.:/subsys/admin/temporaries/wp_services from CDS:

dcecp> rpcgroup delete /.:/subsys/admin/temporaries/wp_services
dcecp>

Using Profiles to Direct Client Searches for Servers

Group entries offer clients a random choice from among multiple available services.
Although a group entry can help in load balancing and resource allocation, its
random nature resists fine tuning. Furthermore, it does not offer a way to prioritize
servers for use by particular clients.

Profiles offer a complementary way to organize servers because you can prioritize
the search order of the profile members. (These were called elements in previous
DCE versions.) Members identify servers by providing the following information:

¢ Interface identifier

This field is the key to the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

* Member name
The entry name of one of the following kinds of directory service entries:
1. Aserver entry for a server offering the requested RPC interface
2. A group corresponding to the requested RPC interface
3. A profile
* Priority value

The priority value (0 is the highest priority; 7 is the lowest priority) is designated
by the creator of a profile member to help determine the search order to select
among like-priority members at random.

* Annotation string

The annotation string enables you to identify the purpose of the profile member.
The annotation can be any textual information; for example, an interface name
associated with the interface identifier or a description of a service or resource
associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Profiles are flexible; they contain members that can point to server entries, groups,
and to other profiles. Profiles can also contain a special member called a default
profile member. This optional member should point to a default profile, usually a
comprehensive backup profile that can serve the needs of most users in an

organization. Eigure 4 on page 131 shows some possible mappings of a profile.

130 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Profile A: _ - »Group: . - - »Server entry:

. / <

Profile member: |~ Member name- - Binding Information
Interface UUID |, Member name- . Interface identifiers
Interface version | \ Object UUIDs
member name- -~ \\
priority N

. N
annotation _ - »Server entry: ~ »Server entry:
'

Profile member:) Binding Information Binding Information
Interface UUID , Interface identifiers Interface identifiers
Interface version Object UUIDs Object UUIDs
member name- -~
priority
annotation _ - »Server entry:

'

Profile member:) Binding Information
Interface UUID , Interface identifiers
Interface version | Object UUIDs
member name- -~
priority
annotation

Default profile T »Default profile - »Server entry:

member: ,/ Profile member: |’ Binding Ir_1form_qtion
Interface UUID , Interface UUID K Interface identifiers
Interface version Interface version I Object UUIDs
member name- - member name- -~
priority _ priority
annotation annotation _ - »Server entry:

/7
Profile member: ,/ Binding Information
Interface UUID /] Interface identifiers
Interface version Object UUIDs
member name- -
priority
annotation - »Server entry:
/ . . .
Profile member: |’ Binding Information
Interface UUID /] Interface identifiers
Interface version [Object UUIDs
member name- -
Key: priority
=Member in element annotation

of Profile A

Figure 4. Possible Mappings of a Profile

To get an idea of how profiles can work, let us build on our printer example from the
preceding discussion on group entries. The following profile entry example shows
one way to use profiles to prioritize resources based on proximity to clients.

In the figure, three users have personalized printer profiles that return server entries

for printers nearest to them first. For example, user John is closest to laser_200

so the profile priorityl returns that binding first. John is furthest from laser_23, so

the profile priority 4 returns that binding last.

Profile entry name: /.:/admin/finance/accts_receivable printers/johns profile
/.:/admin/finance/accts_receivable/laser_20 1
/.:/admin/finance/accts_receivable/laser_21 2

/.:/admin/finance/accts_receivable/laser 22 3
/.:/admin/finance/accts_receivable/laser_23 4

Profile entry name: /.:/admin/finance/accts_receivable_printers/pats_profile

Chapter 10. DCE Application Administraton 131

:/admin/finance/accts_receivable/laser_20
:/admin/finance/accts_receivable/laser_21
:/admin/finance/accts_receivable/laser 22
:/admin/finance/accts_receivable/laser 23

=N W

Profile entry name: /.:/admin/finance/accts_receivable printers/wills_profile
/.:/admin/finance/accts_receivable/laser 20 2
/.:/admin/finance/accts_receivable/laser 21 1
/.:/admin/finance/accts_receivable/laser 22 3
/.:/admin/finance/accts_receivable/laser 23 4

To conclude this example, let us say that your department’s server is being
overused by another department. You could further limit its use by lowering the
server’s priority value in the foreign department’s profile that points to your server.

Just as application servers can manage their own profile entries in CDS, they can
also manage their own profile entries. However, you may find it more convenient
(and more straightforward) to manually add, remove, or change server information
in a profile entry. Like managing server entries and group entries, there are several
methods for managing profile entries in CDS:

* Profile entry names can be hardcoded into an application. You can change profile
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

* Profile entry names can be passed to an application through environment
variables or arguments. These methods are more convenient than recompiling,
but you might need to restart an application to use either method.

» Profile entry names can be directly managed in CDS by using the DCE control
program’s rpcprofile object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use the rpcprofile object to manually manage
profile entries in CDS.

Creating a New Profile

You can create an empty profile entry in CDS by using a rpcprofile create

operation. While profile creation is frequently performed by applications that first use
a profile entry, creating an entry yourself establishes you as the owner of the entry.
As the owner, you have ultimate control over who can export and manage
information in the entry.

To create an empty profile entry in CDS, use an rpcprofile create operation as in
the following example:

dcecp> rpcprofile create
/.:/subsys/applications/admin_group_profile
dcecp>

Adding a Profile Member

You can use an rpcprofile add operation to add a member to a profile entry. If the
profile entry does not exist, the operation creates the profile entry and adds the
member. The member can be a server entry or another profile entry.

To add a member to the /.:/subsys/applications/wards_profile profile entry in

CDS, use an rpcprofile add operation as in the following example which adds the
server entry /.:/subsys/applications/bbs_server3 with a priority of 2:

132 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> rpcprofile add /.:/subsys/applications/wards_profile

> -member /.:/subsys/applications/bbs_server3 \

> -interface {458ffcbe-98cl-11cd-88bc-0000c08adf56 1.0} \
> -priority 2

dcecp>

Viewing the Members of a Profile Entry

You can simply list the members of a profile entry by using an rpcprofile list
operation. This is useful for troubleshooting or for just seeing how servers are
distributed in profile entries.

To list the members of a profile entry in CDS, use an rpcprofile list operation as in
the following example which lists the members of the profile
/.:Isubsys/applications/admin_group_profile

dcecp> rpcprofile list /.:/subsys/applications/wards_profile
/.../my_cell.goodco.com/subsys/applications/admin_bbs_servers
/.../my_cell.goodco.com/subsys/applications/bbs_server
dcecp>

You can view the complete information stored with a profile entry by using an
rpcprofile show operation. This shows the priority and the interface UUIDs
associated with a member. The following example shows all of the information
contained in the profile named /.:/cell-profile :

dcecp> rpcprofile show /.:/cell-profile
{{d46113d0-a848-11cb-b863-08001e046aa5
{{0d7cle50-113a-11ca-b71f-08001e01ldcbc
{{8f73de50-768c-11ca-bffc-08001e039431
{{b1e338f8-9533-11c9-a34a-08001e019cle
{{b1e338f8-9533-11c9-a34a-08001e019cle
{{
{{
dc

../cell.co.com/sec O rs_bind}
../cell.co.com/sec-vl 0 secidmap}
../cell.co.com/sec O krb5rpc}
../cell.co.com/sec O rpriv}
../cell.co.com/sec O rpriv}
../cell.co.com/Tan-profile O LAN}
../cell.co.com/fs 0 fs}

6f264242-b9f8-11c9-ad31-08002b0dc035
4d37f2dd-ed43-0000-02c0-37cf2e000001
ecp>

Eo e e e i V)
[N NoNoNoNo)
o o

Importing Binding Information from a Profile Entry in CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But
occasionally, an administrator might want to import a binding. In the case where a
client lacks access to CDS, it could still communicate with the server if you supplied
the client with a valid binding.

You can use an rpcprofile import operation to return a server's binding
information. You must specify an interface by using the -interface option as shown
in the following example:

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458ffcbe-98cl-11cd-88bc-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.202}

{ncacn_ip_tcp 130.105.1.227}

dcecp>

You can use other options such as -version and -object to further specify a

binding. Use the -max option to limit the number of bindings returned, as shown in
the following example:

Chapter 10. DCE Application Administraton 133

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458ffcbe-98cl-11cd-88bc-0000c08adf56 1.0} \

> -max 1

{ncacn_ip_tcp 130.105.1.202}

dcecp>

Removing Members from a Profile Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one profile entry into
another.

Use an rpcprofile remove operation to remove one or more members from a
profile. In the following example, the rpcprofile remove operation removes member
/.:/Isubsys/applications/admin_bbs_servers from the profile
/.:Isubsys/applications/wards_profile

dcecp> rpcprofile remove /.:/subsys/applications/wards_profile \
> -member /.:/subsys/applications/admin_bbs_servers \

> -interface {458ffcbe-98cl-11cd-88bc-0000c08adf56 1.0}

dcecp>

Deleting a Profile Entry from CDS

Organization changes or server redeployments can make some profiles obsolete.
When you want to remove a profile entry from CDS, use an rpcprofile delete
operation. The following example illustrates removing an obsolete profile entry
called /.:/subsys/admin/temporaries/74232_profile ~ from CDS:

dcecp> rpcprofile delete /.:/subsys/admin/temporaries/74232_profile
dcecp>

Client Administration

So far, this chapter has focused on server administration issues. We’'ve seen how to
control some server operations, and how to store server binding information in CDS
and in the host endpoint map where clients can find it. This section discusses the
administration needs of application clients. Although client administration is very
simple— there are just two related operations—it is an essential step in getting
clients and servers working together.

We know that CDS is a hierarchical system of directories that stores server binding
information in the form of server entries. We also know that CDS offers group
entries and profile entries as a way to direct clients to appropriate servers. But how
do clients know where to begin looking for a server?

As we discussed earlier in this chapter, servers register interfaces and their
bindings in CDS. Each interface-binding combination is registered under a server
entry name. When a client makes a remote procedure call, it passes a server entry
name (or a group or profile entry name) to CDS along with the UUID of an interface
that offers the remote procedure. CDS uses the server entry name (or group or
profile entry name) as a starting point in the search for a binding that contains an
interface UUID and version matching that passed by the client. This method
presumes the client has previously acquired the server entry name (or group or
profile name) used by the server.

134 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Getting clients to use an appropriate server entry name is a 2-step process:
1. Determine what entry name a client should use.
2. Pass the name to the client program.

Note that a client uses whatever name you supply. The client program cannot
distinguish whether the name is a server entry name or group entry name or profile
entry name. To the client, all of these names look and behave the same.

Determining the Entry Name

You need to know the entry name exported by a server so you can provide it to
client programs when you configure them. Here, we are just calling this name an
entry name, but it can be a server entry name or group entry name or profile entry
name. Your application documentation should help you decide which kind of entry to
use.

If you are installing and configuring the server and client parts of an application,
make a note of the server's entry name when you configure the server.

If you are not installing or configuring the server (for instance, the server was
previously installed), you might need to do some detective work to determine the
name to use. There are several places you can look.

If a server uses the server control facility described earlier in this chapter, you can
probably use a server show operation to reveal its entry name. Of course, this
means you need to know the server’s object name on the host where the server
resides. You can see all of the server object names on a host by using a server
catalog operation. The following example lists all the server objects configured on
host silver . The server show operation reveals the entry name used by the
info_server program.

dcecp> server catalog /.:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/info_server
dcecp> server show /.:/hosts/silver/config/srvrconf/info_server
{uuid 6d5e7184-71bh7-11cd-a205-08000925634b}

{program {/usr/local/bin/infosrv}}
{arguments {-brief}}
{prerequisites {}}
{keytabs {}}
{entryname {/.:/subsys/applications/info_server_1}}
{services {}}

{principals {}}

{starton {explicit failure}}

{uid 1423}

{gid 1000}

{dir {/tmp}}

dcecp>

If a server starts from a boot program or script of some kind, look in the program or
script for the name or names (sometimes servers use multiple names when they
export multiple interfaces). The name might be supplied as an argument to the
command that starts the server, as in the following example:

infosrv /.:/finance/operations/infoserv

When the server side does not easily reveal its entry name, try to determine what
entry other client programs are using. Client programs frequently start from a boot

Chapter 10. DCE Application Administraton 135

program or script of some kind, and entry names are generally provided as
arguments to the command to start the client. These commands often follow the
same model shown in the previous example of the server startup command.

Providing the Entry Name to Clients

136

Sometimes, very simple clients can have the server entry name encoded within
them so you do not have to pass any entry name. But more often, you need to
supply an entry name to a client program when it starts. This approach is more
flexible than hardcoding an entry name because it offers an easy way to use a
different entry name should the need arise.

The client configuration documentation should include instructions on how to pass
the name to the client. One method uses a script or batch file that contains the
command to start the client along with arguments that include the appropriate
server entry name. The following example shows a server entry name passed as a
command argument in a shell script that starts the client:

Shell Script to start the InfoClient application
infoclient /.:/finance/operations/InfoServ_profile

Alternatively, the server entry name can be stored in an environment variable
(called RPC_DEFAULT_ENTRY on UNIX systems). The following example shows a
shell script that defines this variable and then invokes the client:

#! /bin/sh

Shell Script to start the InfoClient application

export RPC_DEFAULT_ENTRY=/.:/finance/operations/InfoServ_profile
infoclient

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Part 4. Cell Directory Service

© Copyright IBM Corp. 1990, 1999 137

138 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 11. Introduction to the DCE Directory Service

Distributed processing involves the interaction of multiple systems to do work that is
done on one system in a traditional computing environment. One challenge
resulting from this network-wide working environment is the need for a universally
consistent way to identify and locate people and resources anywhere in the
network.

The DCE Directory Service makes it possible to contact people and to use
resources such as disks, print queues, and servers anywhere in the network without
knowing their physical location. The directory service is much like a telephone
directory assistance service that provides a phone number when given a person’s
name. Given the unique name of a person, server, or resource, it can return the
network address and other information associated with that name.

The DCE Directory Service stores addresses and other relevant information as
attributes of the name. For example, attributes can contain the name of an
organizational unit, such as European Sales; a location, such as the first floor of
Building A; or a telephone number.

How the DCE Components Use the DCE Directory Service

The DCE Directory Service is a fundamental service that applications can rely on
and use to their advantage. This section describes how other DCE components use
the DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development and use
of distributed applications that follow a client/server model. In the RPC model,
clients are programs that make remote procedure calls, and servers are programs
that carry out the procedures. The DCE RPC software stores information in the
directory service about the addresses of RPC servers and the interfaces they
support.

When an RPC client wants to make a call to a particular server, it can query the
directory service for the information necessary to contact that server. If the client
wants to access a specific resource that is named in the directory service, it can
query for that specific name. If a client application knows the type of service that it
wants, such as C compilers, printers, or employee information, but does not know
the address of a specific server, it can also use the directory service to find that
information.

The DCE Security Service, which verifies the identity of users when they log in,
uses the directory service to store the addresses of its authentication servers.

The Distributed File Service (DFS) provides a location service for filesets (logical
groups of files) so that users can access remote files as if they are on the local
system. DFS uses the DCE Directory Service to find out how to contact its fileset
location servers.

The Distributed Time Service (DTS) is responsible for synchronizing system clocks
in the network. Synchronized clocks are important to any distributed application that
needs to keep track of the order in which events occur across multiple systems.
DTS uses the DCE Directory Service to find out how to locate its time servers.

© Copyright IBM Corp. 1990, 1999 139

How to Use DCE Directory Services

Other than DCE administrators, the people who use directory services normally do
so indirectly, through an application interface. An application can interact with the
directory service on behalf of users who create a name for a resource and
subsequently refer to it by that name. The following examples, both real and
hypothetical, explain some of the ways that users can use the directory service:

» A user invokes a spell-checking application on a new document. The application
contains DCE RPC client code on the user’s local system. The RPC client
contacts the directory service for information on an available spell-checking
server. The directory service returns the address of the server, the protocol type
it uses to communicate, and a universal unique identifier (UUID) that represents
an interface. Using this information, the RPC client makes a remote call to the
server and the server checks the spelling in the user’s document. The user is
unaware that use of the spell checker involved a call to the directory service and
interaction with a remote server.

* A user logging into a system enters a name and password. The directory service
helps the login program locate an authentication server, which verifies the user’'s
identity in an authentication database.

* A user enters a file specification. The directory service provides the address of a
DFS fileset location database, which contains the network address of a server
that allows the user to access the file.

* A user enters the name of a computer conference or electronic bulletin board and
the directory service provides an address, allowing the application to connect to
the conference service.

» By entering a name or some information about a printer’'s capabilities, a user can
learn the printer's network address. For example, the user may want to find the
address of the closest and fastest available color printer.

* A user needs information from an employee in the marketing department. The
user remembers that the employee’s last name is Wong, but cannot remember
the first name. By entering the last name and department name in an employee
locator application, the user can check the directory service for information on all
Wongs in the marketing department and find out how to contact the employee.

* A user enters a report in a problem-tracking database. Although the database
was recently moved to a new node, the user is not aware of the change because
the database is always referred to by its name only. The directory service stores
the current network address and provides it to the problem-tracking application
and any other application that requests it.

The remainder of this chapter explains how the DCE Directory Service environment
works with regard to cells. It introduces the main directory service components: the
Cell Directory Service (CDS) and the Global Directory Agent (GDA), which is a
gateway between the local and global naming environments. The chapter also
discusses DCE support for the Domain Name System (DNS) and LDAP Server,
which are global name services that are not parts of the DCE technology offering.

Directory Services and the Cell Environment

This section introduces the following main components of the DCE naming
environment and explains their relationship to the cell:

 CDS

 DNS

« GDS

140 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

e LDAP Client/Server
« GDA

CDS is a high-performance distributed service that provides a consistent,
location-independent method for naming and using resources inside a cell
(intracell). CDS can also be used for communication between cells (intercell).

DNS is a widely used existing global name service for which DCE offers support.
Many networks currently use DNS primarily as a name service for Internet host
names. Although DNS is not a part of the DCE technology offering, the directory
service contains support for cells to interoperate through DNS.

The GDS X.500 server accepts the directory access protocol (DAP) from an X.500
client to access objects in its directory. In DCE, the server is the GDS server and
the client is the GDS client. The GDA communicates with the GDS client via the
XDS/XOM API. The GDS client and server are based on the 1988 X.500 standard.
The Global Directory Service functionality is available as a separate product on AlX
Version 3.2.5. It is not supported on AlX Version 4.1 and greater.

The LDAP client is based on the University of Michigan 3.3 source code. The LDAP
client accepts the LDAP API from the GDA and communicates with the LDAP server
via the LDAP protocol.

The LDAP server is a server that will accept the LDAP protocol from an LDAP client
to access objects in its directory. The LDAP server may be an X.500 server that
also accepts the LDAP protocol or any proprietary directory service that accepts the
LDAP protocol. The LDAP server is not provided by DCE and must be provided by
the user. The GDA communicates with the LDAP client via the LDAP API.

m represents a hypothetical configuration of two cells that each use X.500 or
an LDAP server to access names in the other cell. Names that are stored directly in
X.500 or the LDAP Server also are accessible from each cell. CDS is the directory
service within each cell. The same organization administers both cells, which are
configured based on geographic location and network topology.

X500
GDS or
LDAP
Server

/\ /\
/ \, \
/7 \ /7 \
/ \ 7/ \
\
/" CDS /. CDS
/ \ /
[\ { \
Cell 1 Cell 2

Figure 5. Cell and Global Naming Environments

The GDA is the DCE component that makes cell interoperation possible. The GDA
enables CDS to access a name in another cell through one of the global naming
environments (X.500, LDAP, or DNS). The GDA is an independent process that can
exist on a system separate from a CDS server. CDS needs to be able to contact at
least one GDA to participate in the global naming environment.

Chapter 11. Introduction to the DCE Directory Service 141

Eigure d shows how the GDA helps CDS access names outside of a cell. When
CDS determines that a hame is not in its own cell, it passes the name to a GDA,
which searches the appropriate naming environment (CDS, X.500, LDAP, or DNS)
for more information about the name. The GDA returns information that enables the
original CDS server to contact the CDS server in whose cell the name resides. The
GDA can help CDS find names in a cell that is registered in DNS (Scenario A) and
in a cell that is registered in an X.500 or LDAP server (Scenario B). The GDA
demdes which name service to use based on the syntax of the name.

! describes name syntaxes in detail. Note the
interface between the GDA and the X.500, GDS, or LDAP server is dependent on
the type of server being used. The GDA uses the XDS/XOM API to interface with
the GDS client. The GDS client uses the DAP protocol to interface with the X.500
Server. The GDA uses the LDAP API to interface with the LDAP client. The LDAP
client uses the LDAP protocol to interface with the LDAP server.

Scenario A Scenario B

The GDA helps CDS resolve names:
A. in another cell that is registered in DNS
B. in another cell that is registered in GDS

Figure 6. Interaction of CDSs, GDAs, and Global Directory Services

How Cells Determine Naming Environments

Global Names

In addition to delineating security and administrative boundaries for users and
resources, cells determine the boundaries for sets of names. Because different
naming components operate in a cell and outside of a cell, naming conventions in
the cell and global environments differ as well. The DCE naming environment
supports two kinds of names: global names and cell-relative, or local, names. The
following subsections introduce the concept of global and local names.

Bnalysis of DCE Names” an page 144 describes CDS and DNS names in detail.

All entries in the DCE Directory Service have a global name that is universally
meaningful and usable from anywhere in the DCE naming environment. The prefix
/... indicates that a name is global. A global name can refer to an object within a cell
(named in CDS) or an object outside of a cell (named in X.500).

142 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

The following example shows the global nhame for an entry created in X.500. The
name represents user Ellie Bloggs, who works in the administrative organization
unit of the Widget organization, a British corporation.

/.../C=GB/0=Widget/OU=Admin/CN=E11ie Bloggs

The X.500 name syntax consists of a global prefix /... and a set of elements, called
relative distinguished names (RDNs). Each RDN consists of one or more pairs of
parts separated by an = (equal sign) character. The items that are separated by an
equal sign are multiple attribute value assertions (AVAs). See the OSF DCE GDS
Administration Guide and Reference for more information about AVAs. The first part
of a pair is an abbreviation that indicates a type of information. Some common
abbreviations are Country (C), Organization (O), Organization Unit %OUE, and
Common Name (CN). The second part of the pair is a value. (See

for more information on X.500 names.)

The following example shows a global name for a price database server named in
CDS. The server is used by the Portland sales branch of XYZ Company, an
organization in the United States.

Cell name CDS name

N
4 N B
/../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_serverl

As the example illustrates, global names for entries that are created in CDS look
slightly different from pure X.500-style names. The first portion of the name,
/.../C=US/O=XYZ/OU=Portland , is a global cell name that exists in an X.500 server.
The remaining portion, /subsys/PriceMax/price_serverl ,is a CDS name.

The cell name exists because cells must have names to be accessible in the global
naming environment. The GDA looks up the cell name in the process of helping
CDS in one cell find a name in another cell. Cell names are established during
initial configuration of the DCE components. Before configuring a cell that will
participate in standard intercell communication (that is, via the DNS X.500 global
directory services), the DCE administrator must obtain a unique cell name from
either of the global naming environments, depending on whether the cell needs to
be accessed through X.500 or DNS.

The next example shows the global name of a host at ABC Corporation. The global
name of the company'’s cell, /.../abc.com , exists in DNS.

Cell name CDS name

:

/.../]abc.com/hosts/mysystem

Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local, name
that is meaningful and usable only from within the local cell where that entry exists.

Chapter 11. Introduction to the DCE Directory Service 143

The local name is a shortened form of a global name, and thus is a more
convenient way to refer to resources within a user’'s own cell. Local names have the
following characteristics:

* They do not include a global cell name.
* They begin with the /.: prefix.

Local names do not include a global cell name because the /.. prefix indicates that
the name being referred to is within the local cell. When CDS encounters a /.: prefix
on a name, it automatically replaces the prefix with the local cell's name, forming
the global name. CDS can handle both global and local names, but it is more
convenient to use the local name when referring to a name in the local cell. For
example, these names are equally valid when used within the cell named
/.../C=US/O=XYZ/OU=Portland :

/.../C=US/0=XYZ/0U=Portland/subsys/PriceMax/price_serverl

/.:/subsys/PriceMax/price_serverl

The naming conventions required for the interaction of local and global directory
services may at first seem confusing. In an environment where references to names
outside of the local cell are necessary, the following simple guidelines can help
make the conventions easy to remember and use:

* Know your cell name.
* Know whether a name that you are referring to is in your cell.

* When using a name that is within your cell, you can omit the cell name and
include the /.. prefix.

* When using a name that is outside of your cell, enter its global syntax, including
the /... prefix and the cell name.

* When someone asks for the hame of a resource in your cell, give its global
name, including the /... prefix.

* When storing a name in persistent storage (for example, in a shell script), use its
global name, including the /... prefix. Local names (that is, names with a /.
prefix) are intended only for interactive use and should not be stored. (If a local
name is referenced from within a foreign cell, the /.: prefix is resolved to the
name of the foreign cell and the resulting name lookup either fails or produces
the wrong name.)

An In-Depth Analysis of DCE Names

CDS Names

The rest of this chapter describes in depth the different kinds of names that make
up the DCE namespace. Appendix A and the OSF DCE GDS Administration Guide
and Reference contain further details about valid characters and naming
conventions in CDS and DNS names.

Every cell contains at least one server that is running a CDS server. A CDS server
stores and maintains names and handles requests to create, modify, and look up
data. The total collection of names shared by CDS servers in a cell is called a cell
namespace. The cell namespace administrator can organize CDS names into a
hierarchical structure of directories. CDS directories, which are conceptually similar
to the directories in your operating system’s file system, are a logical way to group
names for ease of management and use.

144 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

X.500 Names

In a cell namespace, any directory that has a directory beneath it is considered the
parent of the directory beneath it. Any directory that has a directory above it is
considered a child of the directory above it. The top level of the cell namespace is
called the cell root. You can refer to the cell root either by the global name of the
cell or by the short-form /.: prefix.

m shows a simple cell namespace hierarchy, starting at the cell root. The cell
root (/.:) is the parent of the directories named /.:/hosts and /.:/subsys . The
/.:/subsys directory is a child of the cell root directory and the parent of the
/.:Isubsys/dce directory.

hosts subsys

dce

Figure 7. Sample CDS Namespace Hierarchy

The complete specification of a CDS name, going left to right from the cell root to
the entry being named, is called the full name. Each element within a full name is
separated by a / (slash) and is called a simple name. For example, suppose the
/.:/hosts directory shown in Eigure 7 contains an entry for a host whose simple
name is bargle . The CDS full name of that entry is /.:/hosts/bargle . Multiple
consecutive slashes are turned into a single slash in a full name.

Multiple directory levels enable flexibility in distributing, controlling access to, and
managing many names. A directory hierarchy also reduces the probability of
duplicate names. For example, the names /.:/subsys/Hypermax/printQ/serverl
and /.:/subsys/ABC/spell/serverl are unique.

The operation of X.500 is similar to that of CDS, but some important differences
exist in the structure of names and the ways they can be looked up. Like CDS,
X.500 and the LDAP Server have a server process that provides access to and
management of names for X.500. This process is called a Directory System Agent
(DSA). The combined knowledge of all DSAs that participate in the same global
directory service implementation is called the Directory Information Base (DIB). This
collective knowledge is viewed as a single global directory consisting of many
entries.

Information exists in the X.500 global directory in the form of a rooted hierarchy that
is called a directory information tree (DIT). The DIT is similar to a CDS namespace.
However, unlike a namespace, which has no inherent rules regarding structure and
content, the X.500 hierarchy is influenced by a set of rules that is called a schema.
Every X.500 DSA must define a standard schema to which all of the entries in its
portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does make
general recommendations that are based largely on existing X.400 standards for
electronic mail. For example, countries and organizations should be named close to
the root of the DIT; people, applications, and devices should be named further down
in the hierarchy. X.500 supplies a default schema that complies with these
recommendations.

Chapter 11. Introduction to the DCE Directory Service 145

Every X.500 entry has a distinguished name, which uniquely and unambiguously
identifies that entry. The distinguished name consists of a sequence of valid relative
distinguished names (RDNs). Each RDN consists of one or more assertions of the
type and value of an attribute at a particular position in the DIT. Attribute types
indicate the nature of the information that is stored in the attribute value. A pair
consisting of an attribute type and value is known as an attribute value assertion
(AVA). RDNs can have multiple AVAs. For example, the distinguished name:

/C=us/0=0sf/0U=branchl/CN=nol1man,0U=doc-team

consists of four RDNs. The final RDN consists of two AVAs that are separated by a
comma.

m illustrates the concepts of RDNs and distinguished names and how they
relate to the DIT. The figure shows the following:

* A DIT consisting of a hierarchy of schema-defined attribute types
* RDNSs that result from assertions of an attribute type and value
» Distinguished names that result from a concatenation of the RDNs

An X.500 name is understood by the GDA, and it contacts either an X.500 client
(GDS) via the XDS/XOM API or an LDAP client via the LDAP API to resolve the
X.500 cell name.

The LDAP server contacted by the LDAP client may be proprietary or could be an
X.500 server that supports the LDAP access protocol. Therefore, you may need to
contact the supplier of your LDAP server for this information.

Relative Distinguished Name | Distinguished Name
DIT Schema-Defined Distinguished
R Attribute Type Value
[] c = us I../C=US
O = ABC /../C=US/O=ABC
[] OU = Sales /../C=US/O=ABC/OU=Sales
I
|
[|] CN = Smith /.../C=US/O=ABC/OU=Sales/CN=Smith

Figure 8. RDNs and Distinguished Names

The shaded boxes in the DIT represent the entries that are named in the column
labeled relative distinguished name. The schema dictates that countries are named
directly below the root, followed by organizations, organization units, and names of
users. Each attribute value that makes up an RDN (and thus a distinguished name)
is called a distinguished value.

As the rightmost column in the figure illustrates, the distinguished name of the entry
at each level of the DIT is a concatenation of RDNs from the root of the global

146 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

directory to that entry’s level. The lowest entry in the hierarchy,
/.../C=US/0=ABC/0U=Sales/CN=Smith, represents the name of a user, John Smith,
who works in the sales division of ABC Company, an organization in the United
States. The abbreviated attribute type labels stand for Country (C), Organization (0),
Organization Unit (0U), and Common Name (CN).

Note that the figure shows the global DCE convention for distinguished names.
Each distinguished name starts with the representation of the global root (/...).
Attribute types and values are separated by equal signs, and RDNs are separated
by slashes. These conventions for specifying names are not followed by all X.500
implementations. In addition, these conventions are only used at the X.500
administration interface level. Internally, distinguished names are specified in other
ways.

The structure of X.500 names points out another important difference between
X.500 and CDS. A CDS name is distinct from its attributes; that is, it consists of a
string of directory names ending with the simple name of the entry. In contrast, a
X.500 name consists solely of a series of attribute types and their values.

m illustrates this difference in the construction of CDS and X.500 names. The
CDS full name /. :/Admin/Personnel/Employee DB is the complete directory
specification of an entry with the simple name Employee DB. Attributes and their
values are not a part of the CDS full name. The X.500 distinguished name
/.../C=US/0=ABC/0U=Sales is a concatenation of attribute types and values, one
from each level of a DIT schema.

/ /
Admin =US
Personnel O=ABC
Employee_DB
rarturd [Rput ou |[[see
CDS full name: GDS distinguished name:
/.:/Admin/Personnel/Employee_DB /../C=US/O=ABC/OU=Sales

Figure 9. Comparison of CDS and X.500 Names

Note: The LDAP name /.../0U=Sales,0=ABC,C=US is not valid in DCE. The name
must be specified as an X.500 distinguished name
(/../C=US/O=ABC/OU=Sales).

X.500 supports the ability to search for names by supplying the values of one or

more attributes. This results in what is called descriptive naming; in a sense, users
can describe the name they are looking for. Although the search capability is

Chapter 11. Introduction to the DCE Directory Service 147

LDAP Names

DNS Names

valuable, it can be expensive and time consuming; so, X.500 allows users to restrict
the scope of a search. Support for the search operation is limited to the X.500
environment.

The LDAP name contains the same information as an X.500 name, but differs in its
syntax. LDAP names start with the last RDN of an X.500 name and use a comma
(,) instead of a slash (/) for RDN separators. The following example shows these
differences:

X.500 name: /C=us/0=0sf/0U=branchl/CN=nollman/0U=doc_team

LDAP name: OU=doc_team,CN=nollman,OU=branchl,0=0sf,C=us

DCE only supports X.500 cell names. GDA will convert an X.500 cell name to LDAP
syntax when accessing an LDAP server via the LDAP client.

The DCE naming environment supports the version of DNS that is based on
Internet Request for Comments (RFC) 1034 and RFC 1035. Many networks
currently use DNS primarily as a name service for host names. The most commonly
used implementation of DNS is the Berkeley Internet Naming Domain (BIND). The
BIND namespace is a hierarchical tree with its topmost levels under the control of
the Network Information Center (NIC). (See the IBM DCE Version 3.1 for AIX and
Solaris: Administration Guide—Introduction for information on how to contact the
NIC Domain Registrar to register a domain name.)

The names directly under the root of the BIND namespace include 2-letter codes for
countries, such as us and gb, as defined in ISO Standard 3166, “Codes for the
Representation of Names of Countries.” Other hames one level below the root
include several generic administrative categories, such as com (commercial), edu
(educational), gov (government), and org (other organizations). The owners of
these names can grant permission to companies and organizations to create new
subordinate names. Eigure 10 on page 149 shows a sample portion of the BIND
namespace. (The double quotes indicate that the root of the namespace has a null
name and is not addressable.) Note that, like CDS names, DNS names are not
typed; that is, they do not consist of pairs of attribute types and values.

148 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Names Outside

com edu gov org gb

mit usc

Figure 10. Sample Portion of the BIND Namespace

A DNS name consists of a string of hierarchical names that are separated by .
(dots) and arranged right to left from the root of the namespace. For example, the
name ai.mit.edu represents the branch of the namespace owned by the
Massachusetts Institute of Technology artificial intelligence department. Note that
the order of elements in the name is the reverse of the order for CDS names.

To use a DNS cell name as part of a global DCE name, specify the DNS name
intact between two slashes. For example, a cell whose DNS name is ai.mit.edu
might contain a directory whose CDS name is /.:/profiles . Users should enter
/...Jai.mit.edu/profiles to refer to the directory by its global name.

of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some services
connect into the cell namespace by means of specialized CDS entries called
junctions. A junction entry contains binding information that enables a client to
connect to a server outside of the directory service.

For example, the security service keeps a database of principals (users and
servers) and information about them, such as their passwords. The default name of
the security service junction is /.:/sec.

The following example illustrates the parts of a global DCE principal name:

CDS Security Service
Cell name name name

.
4 A \/\/ A A

/.../C=US/O=ABC/OU=west/sec/principals/mozart

The cell name, /.../C=US/O=ABC/OU=west, is an X.500 name. The sec portion is
the junction entry in CDS, and principals/mozart is a principal name that is stored
in the security service database.

Another service that uses junctions is DFS. The DFS fileset location service keeps

a database that maps DFS filesets to the servers where they reside. The junction to
this database has a default name of /.:/fs. The following example illustrates the

Chapter 11. Introduction to the DCE Directory Service 149

parts of a global DCE filename:

CDS
Cell name name Filename

v oov ,

N \/3/ A ~
/...Jai.mit.edu/fs/users/mozart/myfile

The global name contains a DNS cell name, /.../ai.mit.edu . The fs portion is the file
system junction entry in CDS, and /users/mozart/myfile is the name of a file.

Thus, the DCE namespace is a connected tree of many kinds of names from many
different sources. The GDA component of the directory service provides connections
out of the cell and to other cells through a global namespace, such as X.500 or
DNS. In a similar manner, junctions enable connections downward from the cell
namespace to other services.

150 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 12. CDS Concepts

The Cell Directory Service (CDS) is a high-performance distributed service that
provides a consistent, location-independent method for naming and using resources
inside a cell. CDS offers the ability to replicate CDS names; that is, to store copies
of them on more than one node. CDS automatically keeps multiple copies
consistent. Names also can be distributed among several nodes so that no one
node has to store all of them. This feature is particularly valuable in large cells.

The ability to replicate and distribute information has many benefits, including the
following:

» Availability—Because you can store the same name in more than one place,
data is likely to be available even in the event of a system or network failure.

» Efficiency—CDS finds names efficiently because you can store them close to
where they are used most often. Furthermore, once CDS finds a name, it can
connect to the same name immediately on all subsequent lookups.

» Load Sharing—Because names are in more than one place, several systems can
share the load of looking them up.

» Expandability—New names are easily accommodated as the network grows and
more applications use CDS.

How CDS Works

Operation of the CDS involves several major participants:
» Client applications

» Servers

* Clerks

* Clearinghouses

CDS uses a client/server model. An application that depends on CDS to store and
retrieve information for it is a client of CDS. Client applications create names for
resources on behalf of their users. Through a client application, a user can supply
other information for CDS to store as attributes of a name. Then, when a client
application user refers to the resource by its CDS name, CDS retrieves data from
the attributes for use by the client application.

A system running CDS server software is a CDS server. A CDS server stores and
maintains CDS names and handles requests to create, modify, or look up data.

A component called the clerk is the interface between client applications and CDS
servers. Every DCE node must run a CDS clerk. The clerk receives a request from
a client application, sends the request to a server, and returns the resulting
information to the client. This process is called a lookup. The clerk is also the
interface through which client applications create and modify names. One clerk can
work on behalf of many client applications.

The clerk caches, or saves, the results of lookups so that it does not have to
repeatedly go to a server for the same information. The cache is written to disk
periodically so that the information can survive a system reboot or the restart of an
application. When you stop the CDS advertiser, which stops the clerks, the cache is
written to the disk. Caching improves performance and reduces network traffic.

© Copyright IBM Corp. 1990, 1999 151

152

Eigure 11 shows a sample configuration of CDS clerks and servers on a 9-node
local area network (LAN). Every node is a clerk, and CDS servers run on two
selected nodes.

Clerk Clerk Clerk Clerk Clerk

Server

1 1 1
I 1 I 1
Clerk Clerk Clerk Clerk
Server

Figure 11. CDS Clerks and Servers on a LAN

Every CDS server has a database called a clearinghouse in which it stores names
and other CDS data. The clearinghouse is where a CDS server adds, modifies,
deletes, and retrieves data on behalf of client applications. Although more than one
clearinghouse can exist at a server node, it is not recommended as a normal
configuration.

Eigure 14 shows the interaction between a CDS client, clerk, server, and
clearinghouse during a simple lookup. It illustrates the following CDS lookup steps:

1.
2.

(cX2)
|
v
Request path — —» s%R/?er
Response path ¢—

The client application on Node 1 sends a lookup request to the local clerk.

The clerk checks its cache and, not finding the name there, contacts the server
on Node 2.

The server checks to see if the name is in its clearinghouse.

The name exists in the clearinghouse, so the server gets the requested
information.

The server returns the information to the clerk on Node 1.

The clerk passes the requested data to the client application. The clerk also
caches the information so that it does not have to contact a server the next time
a client requests a lookup of that same name.

NODE 1

Application<_@_ Clerk S
A
1

Client [@ cDs %
o]

Figure 12. A Sample CDS Lookup

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Replicas and Their Contents

Directories are the units by which you distribute and replicate hames throughout the
cell's namespace. Each physical copy of a directory, including the original, is called
a replica. When you create a replica of a directory, you replicate all of the entries in
it as well.

Replicas are stored in clearinghouses. You can think of a clearinghouse as the
collection of directory replicas at a particular server. After you create a directory in
one clearinghouse, you can create replicas of it in other clearinghouses to increase
availability for looking up information. CDS periodically ensures that the contents of
all replicas of a directory remain consistent.

Two types of replicas can exist:
* Master
* Read-only

A replica’s type affects the processing that can be done on it and the way CDS
updates it. The type of replica that CDS uses when it looks up or changes data is
invisible to users. However, it helps to understand how the two types differ.

The master replica is the first instance of a specific directory in the cell’s
namespace. After you make copies of the directory, you can designate a different
replica as the master, if necessary. However, only one master replica of each
directory can exist at a time. (See I'Chapter 21 Restricturing a Namespace” orl
mé for complete information on how to redesignate the master replica of a
directory.)

The master replica is the only directly modifiable replica of a directory. CDS can
create, change, and delete information in a master replica. Because it is modifiable,
the master replica incurs more overhead than read-only replicas, which CDS keeps
up-to-date periodically with changes made to the master replica.

A read-only replica is a copy of a directory that is available only for looking up
information. CDS does not create, modify, or delete names in read-only replicas; it
simply updates them with changes made to the master replica.

Replicas can contain three kinds of entries:
* Object entries

» Soft links

* Child pointers

CDS Preferred Clearinghouse Enhancement

This enhancement improves the performance of CDS clients by ranking
clearinghouses in the order in which they should be contacted by the client for CDS
information. This can be accomplished automatically through the use of defaults
associated with the location of CDS clients with respect to CDS servers or by
manual overrides made by cell administrators.

This enhancement is useful in situations where, for example, there are multiple
high-performance LANs connected by a low-performance WAN, and there are CDS

Chapter 12. CDS Concepts 153

Object Entries

replicas in clearinghouses in each of the LANs. With this feature, the clearinghouse
with the best ranking is the one on the machine with the client, followed by one on
the same LAN with the client. The local clearinghouses are preferred over distant
clearinghouses. Clients will use the distant clearinghouses only when the local
clearinghouses are unable to satisfy a request. The administrators can override the
defaults to more specifically order communications with clearinghouses. The
preferencing is achieved by assigning a rank to each clearinghouse. For more
information, see LSetti icati i ifi i

An object is any real resource—like a disk, application, or node—that is given a
CDS name. When an object name is created, client applications and the CDS
software supply attributes to be stored with the name. An attribute, consisting of an
attribute name and value(s), describes a particular operational property of an object.
The name and its attributes make up the object entry. When a client application
requests a lookup of the name, CDS returns the value of the relevant attribute or
attributes.

Object entries are typically created and managed through a client application
interface. For example, the DCE control program and the name service interface
(NSI) of the RPC runtime let users create entries that represent RPC servers,
groups, and profiles. These are special kinds of entries that enable an RPC
application to locate and select servers. (See the IBM DCE Version 3.1 for AIX and
Solaris: Application Development Guide for details on how RPC uses CDS for this
purpose.)

You can also create object entries through the DCE control program (dcecp). (See
[Part 1_The DCF Contral Program” an page 1 of this document and the /IBM DCE
Version 3.1 for AIX and Solaris: Administration Commands Reference for
information on the commands that allow you to create and manage object entries
by using dcecp .)

Every object can have a defined class, which is an optional attribute of the object
entry. DCE components that use the directory service can define their own object
classes and supply class-specific attributes for the directory service to store on their
behalf. Class-specific attributes have meaning only to the particular class of objects
with which they are associated.

The clearinghouse object entry represents a special class of object that is
predefined by CDS. A clearinghouse object entry serves as a pointer to the location
of a clearinghouse in the network. CDS needs this pointer so that it can look up and
update data in a clearinghouse.

When you create a clearinghouse, CDS creates its clearinghouse object entry
automatically. The clearinghouse object entry acquires the same name as the
clearinghouse. The clearinghouse object entry is like any other object entry in that it
describes an actual resource, but it is different because it is solely for internal use
by CDS. Clearinghouses can only be created in the cell root directory. Therefore, all
clearinghouse object entries are stored in the cell root directory. CDS itself updates
and manages clearinghouse object entries when necessary. They do not require
any external management except in rare problem-solving situations. (See your
vendor for help in these situations.)

154 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Soft Links

Child Pointers

Summary

A soft link is a pointer that provides an alternate name for an object entry, directory,
or other soft link in the cell’s namespace. You can do minor restructuring of a cell’'s
namespace by creating soft links that point from an existing name to a new name.
Soft links also can be a way to give something multiple names so that different
kinds of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you
specify. If the name that a soft link points to is deleted, CDS deletes the soft link
automatically when it expires.

CDS managers should use soft links carefully. They should not use soft links to
completely redesign the cell’'s namespace or to provide shortcuts for users who do
not want to use the full name of an object entry. Overuse of soft links makes CDS
names more difficult to keep track of and manage.

A child pointer provides the following type of connection for cells:

* Between a directory to another directory immediately beneath it in a cell’'s
namespace

Users and applications do not create child pointers; CDS creates a child pointer
automatically when someone creates a new directory. The child pointer is created in
the directory that is the parent of (one level above) the directory to which it points.
CDS uses child pointers to locate directory replicas when it is trying to find a name.
Child pointers do not require management except in rare problem-solving situations.

To summarize, a cell consists of a complete set of names that are shared and
managed by one or more CDS servers in a cell. A name can designate a directory,
object entry, soft link, or child pointer. The logical representation of a cell’'s
namespace is a hierarchical structure of directories and the names they contain.
Every physical instance of a directory is called a replica. Names are physically
stored in replicas, and replicas are stored in clearinghouses. Any node that contains
a clearinghouse and runs CDS server software is a CDS server.

Eigure 13 on page 156 shows the components of a CDS server node. Every server
manages at least one clearinghouse containing directory replicas. A replica can

contain object entries, soft links, and child pointers. The figure shows only one
replica and one of each type of entry that is possible in a replica. Normally, a
clearinghouse contains many replicas, and a replica contains many entries.

Chapter 12. CDS Concepts 155

CDS server node

Replica
Child pointer

Object entry|| Soft link

~ 7

Figure 13. Components of a CDS Server Node

Security in the Cell Directory Environment

In a secure DCE cell operation, a server does not complete a user’s request unless
the user’s identity has been verified through the DCE Authentication Service. So, for
example, a CDS server allows a user to create a new directory only if that user’s
identity has been verified. The process of verifying that users are who they say they
are is called authentication. The proof is in the form of a user name, or principal
name, coupled with a special kind of password.

CDS servers themselves must be authenticated principals for two reasons:
» To prove to clients that they are trustworthy

* To prove to each other that they have the permission to modify and manage the
data that they share

The principal name of a CDS server is automatically selected by the configuration
program and is placed in a group that contains the names of all CDS servers in the
cell. The group is stored as an entry in the DCE Security Service database. After
initial contact with a CDS server, the clerk confirms through the DCE Security
Service that the server is a valid member of the server group.

Authentication is not an end in itself, but is instead a step in the process of
authorization. Once the identity of a principal has been verified, the software must
next determine whether that principal has the permissions that are required to
perform a requested action. This is called authorization. Therefore, to create a new
directory, the user in the previous example must not only be authenticated, but have
the appropriate permissions as well.

Servers need to be authenticated to each other because they share and modify
replicated data. For example, suppose server A and server B both store a replica of
the same directory. Associated with each directory is a list of all the servers
authorized to maintain that directory. When a user modifies an entry in the replica at
server B, server B must notify server A of the change. Server A does not accept the
update unless server B is an authenticated principal and is one of the principals
authorized to modify that directory.

156 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

The CDS permissions are read, write, insert, delete, test, control, and administer.
Each has a slightly different meaning depending on the kind of name it is
associated with, but, in general, their meanings are as follows:

» Read permission lets users view data.

* Write permission lets users add or change data.

* Insert permission lets users create entries in a directory.

» Delete permission lets users delete entries.

» Test permission lets users test whether an attribute of a name has a specific
value without being able to see any values—that is, without having read
permission to the name. The main advantage of this permission is that it gives
application programmers a more efficient way to check for a value: rather than
reading a whole set of values, the application can test for a particular value.

» Control permission lets users manage the access control list (ACL) of an entry.

» Administer permission lets users manage directory replication.

Note that it is possible to define a special ACL for users who cannot be
authenticated or who deliberately request unauthenticated operations. In such a
case, the user’s identity is not verified, and the ACL entry for unauthenticated users
determines whether the user has the permissions to perform the requested action.
(See lPart 6 DCE Security Service” on page 234 of this guide for details on
creating ACLs for unauthenticated users.)

CDS User Interfaces

CDS has several entities that can be managed via user interfaces that are provided
in DCE. A CDS entity is any individually manageable piece of the CDS software.
CDS directories, soft links, and object entries are the most common entities that
you manage with the DCE user interfaces. Some object entries, though, are
normally managed through the client application that creates them.

The DCE control program provides many commands for managing CDS entities.

[Chapter 15_Managing the DCFE Directory Service” on page 171 of this guide

contains information about these commands.

CDS also comes with one other user interface called the browser.

The browser is a tool for viewing the content and structure of a namespace. It runs
on workstations with windowing software that is based on the OSF/Motif® graphical
user interface. Using a mouse to manipulate pull-down menus, you can view the
directory structure of a namespace, view child directories of a particular directory,
view the object entries and soft links in a directory, and set a filter to display only
object entries of a particular class. (For users who do not have windowing software,
similar functions are available with dcecp .)

In addition to dcecp and the browser, other DCE user interfaces allow access to
and management of CDS names. For example, users can control access to CDS
directories and their contents by using an ACL editor such as the dcecp acl object,
which is supplied with the DCE Security Service. RPC application programmers can
create server entries, groups, and configuration profiles in the cell's namespace with
dcecp .

Chapter 12. CDS Concepts 157

158 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 13. How CDS Looks Up Names

This chapter illustrates the relationship between a name and the physical resource
that it describes, and explains how CDS handles requests to look up names.
Understanding these concepts can help you to plan for the location of
clearinghouses and directories in your cell namespace. It can also help you to
isolate the source of a problem if you encounter lookup errors or failures. Note that
the figures in this chapter do not reflect the actual structure of a typical DCE cell
namespace. For simplicity, the figures show fewer directories and directory levels.

Translating from Names to Resources

Just as directory names in a logical namespace hierarchy translate to physical
replicas in clearinghouses, CDS names translate to physical resources that are
used either internally by CDS or by client applications. The attributes of a name are
what make the translation possible. This section describes the relationship between
CDS names and the physical resources that they describe.

Eigure 14 an page 160 shows three directories and their contents in a logical
namespace, and how replicas of those directories are physically implemented in two
clearinghouses. The clearinghouses themselves have CDS names: /.:/Paris_ CH on
Node 1 and /.:/NY_CH on Node 2. The _CH suffix is a recommended convention
for naming clearinghouses. The /.:/Paris_CH clearinghouse contains replicas of the
root directory and the /.:/subsys/PrintQ directory. The /.:/NY_CH clearinghouse
contains replicas of the root directory and the /.:/subsys directory. Recommended
practice is to create at least two replicas of every directory. Therefore, the

/.:/subsys and /.:/subsys/PrintQ directories each need to be replicated in at least
one other clearinghouse somewhere in the cell.

© Copyright IBM Corp. 1990, 1999 159

/.:/Paris_CH
/:Isubsys <=

| /.:/subsys/Printl I

| J:INY CH [

[.:Isubsys/PrintQ <~

Legend:

<O = Replica

1 = Object entry
<<~ = Child pointer

/.:/subsys/PrintQ

T = Soft link
/.:Isubsys/PrintQ/serverl [
/.:/Isubsys/PrintQ/server2
Node 1 Node 2

/ /
/3
== &>
/.:/subsys/Print
s = /.:/subsys
\/ \Q-)/

Figure 14. Logical and Physical Views of a Namespace

To discover the physical location of a resource, CDS looks up an attribute that is
associated with its name. Eigure 15 an page 161l through [Ei

illustrate the connection between the various kinds of CDS names and the
resources that they describe. The figures are based on the namesEace in

. All of the names in Eigure 15 on page 161 through

are in the same cell namespace, as evidenced by the use of the /.: prefix

i H H ”

to represent the cell root. (See
for information about name resolution across multiple cells.)

Eigure 15 on page 161l shows the relationship between two clearinghouse object
entries and the clearinghouses that they describe. A clearinghouse object entry

differs from other kinds of object entries in that it is created, used, and maintained
by the CDS software instead of by a client application. However, it is like any other
object entry in that it describes a physical resource in the network: the
clearinghouse. CDS creates the object entry automatically when you create and
name the clearinghouse.

Eigure 15 on page 161 shows two clearinghouse object entries: /.:/Paris_CH , which
points to the clearinghouse that is named /.:/Paris_CH on Node 1, and /.:/NY_CH,

which points to the clearinghouse that is named /.:/NY_CH on Node 2. Each
clearinghouse object entry has an attribute called CDS_CHLastAddress attribute,
whose Tower subattribute contains RPC binding information that CDS uses to

160 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

contact the node where the clearinghouse resides. (See Appendix B for a list of
CDS attributes and their descriptions.)

Legend:
/:INY_ CH [O = Replica
/.:[Paris_CH 3 —1 = Object entry
Node 1 Node 2

e~ A N
/

/..

N I >~

Figure 15. Clearinghouse Object Entries and Clearinghouses

Eigure 16 on page 162 shows the relationship between a soft link, the object entry it
points to, and the resource that the object entry describes. The soft link,

/.:Isubsys/Printl , has an attribute called CDS_LinkTarget , which contains the
name that the link points to: an object entry that is named

/.:Isubsys/PrintQ/serverl . The object entry describes a print server machine that is
used by an application called PrintQ . The replica containing the
/.:Isubsys/PrintQ/serverl object entry exists in the /.:/Paris_CH clearinghouse.
The object entry has an attribute called CDS_Towers, whose Tower subattribute
contains RPC hinding information that enables the PrintQ application to contact the
print server machine.

-t /

Chapter 13. How CDS Looks Up Names 161

Legend:
O = Replica
1 = Object entry

| U = Soft link

@ Node 2
‘ /.:/subsys/Printl /:INY_CH

/.:INY_CH

|/.:/subs¥s/Print1l
/.:/subsys/PrintQ/serverl]

NOde 1 _/
/.:/Paris_CH m

/.:/subsys/PrintQ
([/.:/subsys/PrintQ/serverl])

~N_

/.:/subsys/PrintQ/serverl

/.:/subsys/PrintQ

=Ll

Figure 16. A Soft Link and Its Resolution

Eigure 17 an page 163 shows the relationship between directories and their

associated child pointers. It illustrates that, although a child pointer has the same
name as its associated directory, the child pointer is a separate entry in the
namespace and resides in the parent of the directory to which it refers.

The root replicas in both clearinghouses contain a child pointer for the /.:/subsys(:)
directory. The /.:/subsys child pointer has an attribute called CDS_Replicas which
contains the name and address of the /.:/NY_CH clearinghouse, where a replica of
the /.:/subsys directory exists.

In the /.:/NY_CH clearinghouse, the replica of the /.:/subsys directory contains a
child pointer for the /.:/subsys/PrintQ directory. The child pointer's CDS_Replicas
attribute contains the name and address of the /.:/Paris_CH clearinghouse, where a
replica of the /.:/subsys/PrintQ directory exists.

When a directory has multiple replicas, as is normally the case, the CDS_Replicas
attribute lists all of the clearinghouses containing a replica of the directory. You can

162 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

use the dcecp directory show command with the -replica and -clearinghouse
options to display this attribute.

Legend:
< = Replica

< = Child pointer
|/.:/subsys N

| /.:Isubsys/PrintQ <>

/.:/subsys/PrintQ

Node 1 Node 2

/. /.
/.:/subsys /.:/subsys
(;\

S \
/.:Isubsys
/.:/subsys/PrintQ

/.:/subsys/Print?;)‘ ll S

Figure 17. Child Pointers and Directories

How CDS Finds Names
As Eigure 14 on page 160 through Eigure 17 illustrate, CDS finds information about

the physical location of a resource by looking up one or more attributes that are
associated with its name. First, though, the clerk must know how to find the name.
If a name does not yet exist in the clerk’s cache, the clerk must know of at least
one CDS server to contact in search of the name.

The clerk can learn about CDS servers and their locations in any of three ways:
» Through the solicitation and advertisement protocol

* During a regular lookup

* The dcecp cdscache create command

The Solicitation and Advertisement Protocol

Clerks and servers on the same LAN communicate by using the solicitation and
advertisement protocol. A server broadcasts messages at regular intervals to
advertise its existence to clerks on its LAN. The advertisement message contains

Chapter 13. How CDS Looks Up Names 163

Lookups

data about the cell that the server belongs to, the server’'s network address, and the
clearinghouse it manages. Clerks learn about servers by listening for these
advertisements on the LAN. A clerk also sends out solicitation messages that
request advertisements at startup.

During a lookup, if a clearinghouse does not contain a name that the clerk is
searching for, the server managing that clearinghouse gives the clerk as much data
as it can about where else to search for the name. If a clearinghouse contains
replicas that are part of the full name being looked up, but not the replica containing
the target simple name, it returns data from a relevant child pointer in the replica it
does have. The data helps the clerk find the next child directory in the path toward
the target simple name. The child pointer's CDS_Replicas attribute contains this
data, in the form of clearinghouse names and binding information.

The dcecp cdscache create Command

A DCE administrator can run the dcecp cdscache create command to create
knowledge in the clerk’s cache about a server. This command is useful when the
server and clerk are separated by a wide area network (WAN), and the clerk
therefore cannot learn about the server from advertisements on a LAN.

Eigure 18 on page 169 is an example of how the clerk works downward from the

root of the cell namespace to locate an object entry. The object entry,
/.:/Sales/Spell , describes a spell-checking server at a company’s London sales
headquarters.

164 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Node A
Client Legend:
A — ¥» = Request Path
@ |o /.:/Sales/Spell? <— = Response Path

O = Replica
I_WX_I v:I = Object Entry

A Al = Child Pointer

Node B

/.:/Bristol_CH

Node C

/.:/London_CH
/.:/Sales
/.:/Sales/Spell

Server |L

/.:/London_CH

I

I

I

I

I

I

I

I

|

| —
I @ /.:/Sales is in
I

|

I

I

I

I

I

I

I

Server

@ Success!

Figure 18. How the Clerk Finds a Name

As shown in m the clerk locates the desired object entry by performing the
following steps:

1. On Node A, a spell-checking application requests the network address of the
/.:/1Sales/Spell server. The clerk does not have that name in its cache, and the
only clearinghouse it knows about so far is the /.:/Bristol_CH clearinghouse on
Node B.

2. The clerk contacts the server on Node B with the lookup request.

3. The /.:/Bristol_CH clearinghouse does not contain the target object entry, but it
does contain a replica of the root directory. From the /.:/Sales child pointer in
the root, the clerk can learn how to contact clearinghouses that have a replica
of the /.:/Sales directory. The server on Node B returns this data to the clerk,
informing it that a replica of /.:/Sales is in the /.:/London_CH clearinghouse on
Node C.

4. The clerk contacts the server on Node C with the lookup request.
5. The /.:/Sales replica in the clearinghouse on Node C contains the

/.:/Sales/Spell object entry, so the server passes the address of the
spell-checking server to the clerk.

6. The clerk returns the information to the client application, which can now make
a remote call to the spell-checking server.

Long lookups, as illustrated in w do not normally happen often after a clerk
establishes its cache and becomes more knowledgeable about clearinghouses and
their contents. However, the figure illustrates the resources and connections that
could be involved in an initial lookup. The figure also illustrates the importance of

Chapter 13. How CDS Looks Up Names 165

maintaining connectivity between parent and child directories in the namespace. If
somewhere the directory path is broken or a clearinghouse is unreachable, a clerk
may not be able to find a name.

166 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 14. How CDS Updates Data

Once names exist in the namespace, users who have the appropriate access can
make changes to the data associated with the names. Any addition, modification, or
deletion of CDS data initially happens in only one replica: the master replica. This
chapter introduces the main methods by which CDS keeps other replicas
consistent: update propagation and the skulk operation. It also describes two
timestamps that help to ensure consistency in CDS data. By understanding the
concepts in this chapter, you can more effectively plan the content and replication of
directories.

Update Propagation

An update propagation is an immediate attempt to apply one change to all replicas
of the directory in which the change was just made. Its main benefit is that it
delivers each change in an efficient and timely way.

Unlike a skulk operation, however, update propagation does not guarantee that the
change gets made immediately in all replicas. If a particular replica is not available,
the update propagation does not fail; the change is made later in that replica. The
skulk operation ensures that, when the replica is available again, it becomes
consistent with the other replicas in its set.

You can tune the degree of persistence that CDS uses in attempting an update
propagation by adjusting a directory attribute called CDS_Convergence .
Convergence also affects the frequency of skulks on a directory. (See

Managing CDS Directaries” an page 191l for details on viewing and changing a

directory’s convergence.)

Skulk Operation

The skulk operation is a periodic distribution of a collection of updates. Its main
functions are to ensure that replicas receive changes that may not have reached
them during an update propagation and to remove outdated information from the
namespace.

Skulk maintenance functions include the following:

* Removing soft links that have expired. You can specify an expiration time when
you create a soft link.

» Maintaining child pointers, which includes removing pointers to directories that
were deleted.

* Removing information about deleted replicas.

CDS skulks each directory individually. During a skulk, CDS collects all changes
that were made to the master replica since the last successful skulk and then
disseminates the changes to all read-only replicas of the directory. All replicas must
be available for a skulk to be considered successful. If CDS cannot contact a
replica, it continues making changes in the replicas that it can contact, while
generating an event to notify you of the replica or replicas it could not update. CDS
then periodically reattempts the skulk until it completes successfully.

A skulk can begin in one of three ways:

© Copyright IBM Corp. 1990, 1999 167

* A CDS manager can enter a command to start an immediate skulk on a
directory.

* CDS starts a skulk as an indirect result of other namespace management
activities, which include the following:

Adding or removing a replica

Creating or deleting a directory

Redesigning replica types

Adding or deleting a child cell name in a parent cell

All of these activities produce changes in the structure of the namespace; so, an
immediate skulk ensures that the new structure is reflected throughout the
namespace as quickly as possible.

* The CDS server initiates skulks automatically at a routine interval called the
background skulk time.

The background skulk time interval guarantees a maximum lapse of time
between skulks of a directory, regardless of other factors, such as namespace
management activities and user-initiated skulks. A CDS server periodically
checks each master replica in its clearinghouse and initiates a skulk if changes
were made in a directory since the last successful skulk of that directory.

How Timestamps Help Keep Data Consistent

CDS uses several timestamps to help ensure the consistency and accuracy of data.
The following two timestamps exist for every entry:

» Creation Timestamp (CTS)
* Update Timestamp (UTS)

CDS assigns a CTS to everything that is in a cell namespace: clearinghouses,
directories, object entries, soft links, and child pointers. The CTS is a unique value
reflecting the date, time, and location where a clearinghouse, directory, or entry in a
directory was created. It consists of two parts: a time portion and the system
identifier of the node on which the name was created. The two parts guarantee
unigueness among timestamps that are generated on different nodes.

During propagation of a new name or a changed name to each replica of the
directory where it was created, every CDS server checks the validity of the CTS
before accepting the new name.

The UTS reflects the most recent change that was made to any of the attributes of
a clearinghouse, directory, object entry, soft link, or child pointer. When a CDS
server receives an update to an existing entry in a directory, it checks the validity of
the UTS before accepting the update.

Directories and replicas have several other timestamps that CDS uses when
determining whether to skulk a directory or make a change in a directory. (See the
IBM DCE Version 3.1 for AlIX and Solaris: Administration Commands Reference for
information about other timestamp attributes used by CDS.)

168 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Downed Server Modifications

In previous releases of DCE for AlX, attempts at communications with downed
clearinghouses have resulted in long timeout delays. In DCE 3.1 for AlIX and
Solaris, several changes have been made to the client code to prevent such delays.
These changes can be overridden or configured by making additions in the
/etc/dce/cds.conf file.

The following is a summary of enhancements and cds.conf file modifications to
override or configure the changes:

* A new thread that runs periodically and checks the availability of the cached
clearinghouses is created. If it finds that all clearinghouses are marked ok, it
sleeps for a specified time interval. However, if it finds a clearinghouse that is
marked not ok, it attempts to contact that clearinghouse via the
rpc_mgmt_is_server_listening() call. If the server responds, its status is
changed to ok.

The delay interval between successive checks can be configured by adding a
line to the /etc/dce/cds.conf file of the form:
cds.*.ch_wait_interval: value

where value is the number of seconds to wait. The default is 120 seconds.

» Prior to the cdsclerk actually contacting a selected clearinghouse, it will build a
list of handles to that clearinghouse, putting the connectionless handles at the
front of the list. Then, it will perform an rpc_mgmt_is_server_listening() call.
The communications timeout for these handles is set to a low value so as not to
wait for long periods of time. If communication cannot be established, the
clearinghouse is marked not ok and another suitable clearinghouse, if any are
available, is chosen and checked.

This feature is also configured by adding a line to the /etc/dce/cds.conf file. The
format is:

cds.*.process_addr_check: value

where value is either 1 (perform the check) or 0 (do not perform the check). By
default, the check is performed.

* The client is prevented from contacting servers marked as down. (This may need
to be disabled in cells where other vendors’ rpc_mgmt calls may not be working

properly.)
To configure this feature, add the following line to the /etc/dce/cds.conf file:
cds.x.skip_down_ch: value

where value is 1 (skip not ok clearinghouses) or 0 (check not ok clearinghouses).
The default is 1.

Chapter 14. How CDS Updates Data 169

170 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 15. Managing the DCE Directory Service

The DCE control program (dcecp) provides most of the commands you need to
manage CDS. This chapter describes the CDS entities that the DCE control
program permits you to manage and summarizes the available commands for
managing these entities.

For detailed descriptions of dcecp commands, see the IBM DCE Version 3.1 for
AIX and Solaris: Administration Commands Reference.

Using the DCE Control Program

of this guide introduced
you to dcecp and its command syntax, so this chapter does not repeat that
information. Instead, this chapter describes commands that dcecp supplies
specifically for managing CDS.

CDS Managed Objects

DCE control program commands operate on the following objects representing CDS
entities:

directory
This object represents a CDS directory. The directory can be a parent or
child directory, or a master or read-only replica of the parent or child
directory. In addition to child directories, a CDS directory can contain soft
links and object entries for other CDS resources.

link This object represents a soft link in a CDS directory. A soft link is a pointer
to (alternate name for) a child directory, object entry, or other soft link.

object This object represents an object entry, which is the name of a CDS
resource that appears in the cell namespace. Some object entries name
resources that CDS clients can access (for example, a disk, machine, or
application). Others name resources solely for internal use by CDS (for
example, servers and clearinghouses).

clearinghouse
This object represents a CDS clearinghouse. A clearinghouse is a database
that is located on a CDS server machine for use by servers.

cdscache
This object represents a CDS cache. A CDS cache is a collection of
information about servers, clearinghouses, and other CDS resources that a
CDS clerk establishes on the local system for its reference.

cdsalias
This object represents an alias name of a DCE cell as known to CDS.

cds This object represents a CDS server.

cdsclient
This object represents a CDS client.

© Copyright IBM Corp. 1990, 1999 171

DCE Control Program Operations for CDS

[anle 4 lits the operations that dcecp performs on CDS objects.

Table 8. DCE Control Program Operations for CDS

Operation

Definition

add

Adds a child directory to a parent in the cell namespace.

catalog

Displays a list of a DCE cell's alias names or clearinghouses.

create

Creates an object in the cell namespace. The object type can be
a directory, object entry, soft link, clearinghouse, CDS cache, or
CDS cell alias.

delete

Deletes an object in the cell namespace. The object type can be
a directory, object entry, soft link, clearinghouse, or CDS cell
alias.

disable

Removes the knowledge of a clearinghouse from the server
running on the local machine or disables a CDS server or CDS
client.

discard

Completely removes the cache information held by a CDS client.

dump

Displays an in-core dump of a CDS cache.

help

Displays a help message for a CDS object type, describing the
operations that it performs or operations that can be performed
on it. The object type can be a directory, object entry, soft link,
clearinghouse, or CDS cache.

initiate

Begins a specific operation on the specified clearinghouse.

list

Displays the names of all of the CDS objects contained in a
directory.

merge

Copies the contents of a directory into another directory.

modify

Modifies the attribute information for a CDS object type. The
object type can be a directory, object entry, or soft link.

operations

Displays the operations that a CDS object type can perform or
can have performed on it. The object type can be a directory,
object entry, soft link, or clearinghouse.

ping

Checks if all or selected servers are running in a DCE cell.

remove

Removes a child directory from a parent in the cell namespace.

repair

Begins diagnostic operations on the specified clearinghouse.

show

Displays the attribute information for a CDS object type. The
object type can be a directory, object entry, soft link, or
clearinghouse.

synchronize

Tells a child or parent directory to synchronize with its replicas

(perform a skulk).

CDS Object Attributes

Every CDS object has attributes, which are pieces or sets of data associated with
the object. Attributes can reflect or affect the operational behavior of the object.
Some attributes are created and modified only by CDS; you can modify others as
needed for your environment. For a complete list of the attributes of a particular
CDS object, refer to the appropriate reference page. Also, you can use the dcecp
show operation for most objects to display the names and values of all attributes or
specific attributes of the objects.

172 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Using dcecp to Maintain CDS

You can use dcecp, for certain CDS maintenance tasks. The dcecp commands to
do this are listed in

Table 9. dcecp Commands that Control CDS

Commands Definitions

cdsclient disable Stops the execution of a CDS clerk.

cds disable Stops the execution of a CDS server.

directory modify Reconstructs a directory’s replica set by designating a new
master replica.

directory show Displays the information needed for creating a cell entry in
DNS or GDS.

cdsclient show Displays the attributes of a CDS clerk.

cds show Displays the attributes of a CDS server.

Chapter 15. Managing the DCE Directory Service 173

174 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 16. Controlling Access to CDS Names

This chapter presents information on the following CDS authorization topics:
» Overview of DCE authorization for CDS

* DCE authorization components supported by CDS

* DCE permissions supported by CDS

» Controlling access to CDS clerk and server management operations

» Control program commands and required permissions

» Editing ACLs on CDS names

* How CDS servers gain access to the namespace

* Setting up access control in a new hamespace

Overview of DCE Authorization for CDS

CDS authorization allows you to control user access to the following CDS
components:

* Names that are stored in the namespace, including clearinghouses, directories,
object entries, soft links, and child pointers

» Execution of privileged CDS clerk and server commands

You control access to a name in the namespace by creating an ACL. An ACL
contains individual ACL entries that specify the permissions you grant a user
(principal) to the name with which the ACL is associated. The ACL entries that you
create determine collectively which principals can use the name and what
management operations they are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers,
performs access checking for incoming CDS requests. When a principal requests
an operation on a CDS name, ACL management software on a server that stores
the name examines the ACL entries associated with the name. The software then
grants or denies the operation, based on the permissions granted to the requesting
principal in the ACL entries. Similarly, when a principal requests a privileged
operation on a CDS clerk or server, ACL management software on that system
examines the ACL entries that are associated with the principal name that
represents the clerk or server. The software then grants or denies the operation,
based on the permissions granted to the requesting principal in the ACL entries.

The DCE control program (dcecp) provides commands that add, modify, copy,
delete, and display ACLs that are associated with CDS names, clerks, and servers.
See the IBM DCE Version 3.1 for AIX and Solaris: Administration Commands
Reference for detailed information on the commands. The remainder of this chapter
describes DCE authorization as it applies specifically to CDS. Before you try to
create or modify permissions to CDS names, clerks, or servers, read ﬁﬁ

Becurity Service” on page 283 of this guide for complete information on the DCE

authorization mechanism.

ACL Types Supported by CDS

CDS supports the following DCE ACL types:

© Copyright IBM Corp. 1990, 1999 175

* Object ACL —You can use the object ACL type to grant permissions to any CDS
name (that is, object entries, soft links, child pointers, clearinghouses, and
directories), as well as to CDS clerks and servers. When associated with a CDS
directory, the permissions you grant with the object ACL type apply only to the
directory itself, not to the directory’s contents or to any child directories.

* Initial object creation ACL —The initial object creation ACL type applies only to
CDS directory names. Use this ACL type to grant permissions specifically to a
directory’s future contents, including soft links, application-defined object entries,
child pointers, and clearinghouse object entries. The permissions you grant by
using the initial object creation ACL type apply only to the future contents of the
directory, not to the directory itself. The permissions are inherited only by names
that are created in the directory after you create the ACL entry; permissions are
not propagated to names that already exist in the directory.

To edit an initial object creation ACL, you use the -io option of the dcecp acl
modify command.

* Initial container creation ACL —The initial container creation ACL type applies
only to CDS directory names. Use this ACL type to grant permissions to a
directory that automatically propagate (the default) to all child directories that you
may later create under that directory. The permissions you grant by using the
initial container creation ACL type are inherited only by the child directories that
you create after you create the ACL entry; permissions are not propagated to
child directories that already exist.

To edit an initial container creation ACL, you use the -ic option of the dcecp acl
modify command.

How Permissions Propagate to CDS Directories and Their Contents

176

By creating all three ACL types (object ACL, initial object creation ACL, and initial
container creation ACL) for a directory, you can grant access not only to the
directory itself but also to the directory’s future contents and all child directories
(and their contents) that may later be created.

For example, suppose you just created a new directory named /.:/sales . If you
create an ACL entry of the Object ACL type that grants user Smith read permission
to the /.:/sales directory, Smith can do the following:

* Read the attributes associated with the /.:/sales directory
» Display the names stored in the /.:/sales directory

If you create a second ACL entry of the initial object creation ACL type that grants
user Smith read permission to the /.:/sales directory, Smith can do the following:

* Read the attributes associated with the /.:/sales directory
» Display the names stored in the /.:/sales directory

* Read the attributes associated with all the names that you may later create in the
/.:/sales directory, unless prohibited by explicit ACL modification after their
creation

If you create a third ACL entry of the initial container creation ACL type that also
grants user Smith read permission to the /.:/sales directory, Smith can do the
following:

* Read the attributes associated with the /.:/sales directory.
» Display the names stored in the /.:/sales directory.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

* Read the attributes associated with all the names that you may later create in the

/.:/sales directory.

» Perform all of the three preceding operations on all child directories that may
later be created under the /.:/sales directory.

(See tPart 6. DCE Qemlrify Service” on page 2313 of this guide for Complete

information on default ACLs.)

ACL Entry Types Used for Principals

You use ACL entry types to specify the category of Erinci-g:al for which the ACL entry
is created. These ACL entry types are described in

Table 10. ACL Entry Types Used for CDS Principals

Entry Type Purpose

user Specifies an ACL entry for an individual principal
whose credentials were authenticated within the local
cell.

group Specifies an ACL entry for an authorization group
whose members have been authenticated within the
local cell.

other_obj Specifies an ACL entry for authenticated principals in

the local cell who are not individual users named by
an ACL entry of the type user or members of a
group named by an ACL entry of the type or group .

foreign_user

Specifies an ACL entry for an authenticated principal
in a foreign cell.

foreign_group

Specifies an ACL entry for an authorization group
whose members were authenticated in a foreign cell.

foreign_other

Specifies an ACL entry for authenticated principals in
a foreign cell who are not individual users named by
an ACL entry of the type foreign_user or members
of a group named by an ACL entry of the type
foreign_group .

any_other

Specifies an ACL entry for an authenticated principal
who is not otherwise covered by any of the
preceding ACL entry types.

mask_obj

Specifies an ACL entry containing a mask that is
substituted for the permissions of any principals,
whose credentials are either authenticated or
unauthenticated.

unauthenticated

Specifies an ACL entry for principals who cannot
pass authentication procedures.

user_delegate

Specifies an ACL entry for an intermediary that acts
for an authenticated principal in the local cell.

group_delegate

Specifies an ACL entry for an intermediary that acts
for the authenticated principals who are members of
an authorization group in the local cell.

Chapter 16. Controlling Access to CDS Names 177

Table 10. ACL Entry Types Used for CDS Principals (continued)

Entry Type Purpose

other_delegate Specifies an ACL entry for an intermediary that acts
for authenticated principals in the local cell who are
not individual users named by an ACL entry of the
type user_delegate or who are not members of a
group named by an ACL entry of the type
group_delegate .

foreign_user_delegate Specifies an ACL entry for an intermediary that acts
for an authenticated principal in a foreign cell.

foreign_group_delegate Specifies an ACL entry for an intermediary that acts
for the members of an authorization group in a
foreign cell.

foreign_other_delegate Specifies an ACL entry for an intermediary that acts

for authenticated principals in a foreign cell who are
not individual users named by an ACL entry of the
type foreign_user_delegate or members of a group
named by an ACL entry of the type
foreign_group_delegate

any_other_delegate Specifies an ACL entry for an intermediary that acts
for authenticated principals in the local cell or in a
foreign cell who are not named by an ACL entry of
any other type for intermediaries of authenticated
principals or groups.

DCE Permissions Supported by CDS

CDS supports the following DCE permissions: read (r), write (w), insert (i), delete
(d), test (t), control (c), and administer (a). Each permission has a slightly different
meaning, depending on the kind of CDS name with which it is associated. In
general, the permissions are defined as follows:

* Read permission—Allows a principal to look up a name and view the attribute
values that are associated with it.

» Write permission—Allows a principal to change the modifiable attributes that are
associated with a name, except its ACLs.

* Insert permission—Allows a principal to create new names in a directory (for use
with directory entries only).

* Delete permission—Allows a principal to delete a nhame from the namespace.

» Test permission—Allows a principal to test whether an attribute of a name has a
particular value without being able to actually see any of the values; that is,
without having read permission to the name.

Test permission provides application programs with a more efficient way to verify
a CDS attribute value. Rather than reading an entire set of values, an application
can test for the presence of a particular value.

= Control permission—Allows a principal to modify the ACL entries that are
associated with a name. (Note that read permission is also necessary for
modifying a CDS entry’s ACLs; otherwise, dcecp and acl_edit will not be able to
bind to the entry.) Control permission is automatically granted to the creator of a
CDS entry.

* Administer permission—Allows a principal to issue CDS commands that control
the replication of directories. Administer permission is for use with directory
entries only.

178 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

A principal needs some permission to a name before it can try to perform
management operations on the name. Otherwise, CDS does not recognize the
name when the principal tries the management operation and returns an error
stating that the name does not exist. If the principal has some permissions, but not
those required to perform the operation, CDS returns an error explaining that the
principal had insufficient rights to perform the operation.

The creator of a name is automatically granted all permissions that are appropriate
for the type of name that is created. For example, a principal that is creating an
object entry is granted read, write, delete, test, and control permissions to the object
entry. A principal that is creating a directory is granted read, write, insert, delete,
test, control, and administer permissions to the directory.

Note: Unlike the security mechanisms that are enforced by most other file systems,
CDS does not require a principal to have access to all intermediate elements
in the pathname (full name) of a name in order to perform an operation on
the name. For example, consider an object entry objectl stored in the
/.:/sales directory. In CDS, you can grant a principal access to the object
entry /.:/sales/objectl without necessarily granting the principal access to
either the /.:/sales directory or the cell root directory (/.:).

Controlling Access to CDS Clerk and Server Management Operations

CDS authorization allows you to control the use of CDS commands that involve
local management operations on CDS clerks and servers. Principal names for each
clerk and server are stored in the security namespace. An object entry that contains
the binding information for each clerk and server is stored in the CDS namespace
in the /.:/hosts subdirectory. Servers are represented as /.:/hosts/ hostnamelcds-
server . Clerks are represented as /../hosts/ hostnamelcds-clerk . (Slim clients are
not represented in the namespace.)

Each clerk and server maintains a separate ACL that contains entries specifying the
principals allowed to perform these operations. Unlike the ACLs that are associated
with names in the namespace, the ACLs that are associated with clerks and servers
exist exclusively to provide local control of the use of these commands.

Whenever a new clerk or server is initialized, an ACL is created on the clerk or
server system. An initial ACL entry is also created, granting the machine principal
and the namespace authorization group (subsys/dce/cds-admin) read, write, and
control permissions to the clerk or server process on that system. All other
principals, both authenticated and unauthenticated, are granted read permission.
The creation of this ACL entry ensures that, immediately after its creation, any user
logged into the system as the machine principal is permitted to execute privileged
clerk or server CDS commands.

Note: Use of the machine principal for this purpose is provided as a convenience
and assumes that the account itself (user name and password) is already
moderately secure. Namespace administrators may prefer to modify this
scheme and grant permission to particular clerks and servers on behalf of
other individual principals or authorization groups.

To edit an ACL that is associated with a CDS clerk or server, you use the dcecp acl
modify command with the -change option. For example, to change the permissions
for the user michaels in the ACL that is associated with the CDS clerk on node
orion , enter the following command:

Chapter 16. Controlling Access to CDS Names 179

dcecp> acl modify /.:/hosts/orion/cds-clerk -change {user michaels rw}

dcecp>

Keep in mind that clerks and servers are also represented by entries in the
namespace. To edit an ACL that is associated with the namespace entry for a CDS
clerk or server, you must include the -entry option, as well as the -change option,
in the acl modify command line. For detailed instructions on how to modify an ACL

on the CDS entry for a DCE resource, see LEditing ACL s on CDS Names” od

Control Program Commands and Required Permissions

180

frable 11l lists all the dcecp commands that operate on CDS objects and the
permissions that a principal must have to execute the commands.

Table 11. DCE Control Program Commands and Required Permissions

Commands Required Permissions

cds disable Delete, write, and create permissions on the
namespace entry of the server.

cds show Read permission on the namespace entry of the

server.

cdsalias catalog

Read permission to the cell’'s root directory whose
alias you want to list.

cdsalias connect

auth_info permission on the the local cell’s root
directory. Also, the CDS server principal on the
machine containing the master replica of the local
cell’s root directory needs insert permission on the
parent cell’s root directory.

cdsalias create

auth_info permission on the root directory of the cell.

cdsalias delete

auth_info permission on the root directory of the cell.

cdscache create

Write permission to the clerk that is to create the
server entry in the local CDS cache.

cdscache delete

Write permission to the clerk that will be deleted from
the server entry in the local CDS cache.

cdscache discard

Superuser (root) privileges on the clerk system where
the CDS cache resides. No CDS permissions are
required.

cdscache dump

Superuser (root) privileges on the clerk system where
the CDS cache resides. No CDS permissions are
required.

cdscache show

Read permission to the clerk that is designated to
retrieve either the server (-server option) or
clearinghouse (-clearinghouse option) information
from the CDS cache.

cdsclient disable

Delete, write, and create permissions on the
namespace entry of the clerk.

cdsclient show

Read permission on the namespace entry.

clearinghouse catalog

No special privileges are needed.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Table 11. DCE Control Program Commands and Required Permissions (continued)

Commands Required Permissions

clearinghouse create Write permission to the server on which you intend to
create the clearinghouse, and Admin permission to
the cell root directory. Also, the server principal
needs read, write, and Admin permissions to the cell
root directory.

clearinghouse delete Write and delete permissions to the clearinghouse to
be deleted, and Admin permission to all directories
that store replicas in the clearinghouse. Also, the
server principal needs delete permission to the
associated clearinghouse object entry, and Admin
permission to all directories that store replicas in the
clearinghouse.

clearinghouse disable Write permission to the CDS server on which the
clearinghouse resides.

clearinghouse initiate Write permission on the clearinghouse server and
Admin permission on the cell root directory. The
server principal needs read, write, and Admin
permission on the cell root directory.

clearinghouse repair Write permission to the clearinghouse server and
Admin permission to the cell root directory. The
server principal needs read, write, and Admin
permission to the cell root directory.

clearinghouse show Read permission to the clearinghouse whose
attributes you want to list.

clearinghouse verify Write permission to the clearinghouse server and
Admin permission to the cell root directory. The
server principal needs read, write, and Admin
permission to the cell root directory.

directory add Insert permission to the parent directory where the
child pointer (-member option) is to be placed.

directory create Insert and read permissions to the parent directory,
and write permission to the clearinghouse that stores
the master replica of the new directory. Also, the
server principal needs read and insert permissions to
the parent directory of the new directory.

directory delete Delete permission to the directory and write
permission to the clearinghouse that stores the
master replica of the directory. The server principal
(hosts/ hostnamelcds-server) needs Admin
permission to the parent directory delete permission
to the child pointer that points to the directory you
intend to delete.

directory list Read permission to the directory whose contents you
want to list.

directory merge Read permission to the source and destination
directories, and insert permission to the destination
directory.

directory modify Write permission to the directory for which you want

to add (-add option), change (-change option), or
remove (-remove option) the attribute or attribute
value.

Chapter 16. Controlling Access to CDS Names 181

Table 11. DCE Control Program Commands and Required Permissions (continued)

Commands Required Permissions

directory remove Delete permission to the child pointer (-member
option) or Admin permission to the parent directory.

directory show Read permission to the directory whose attributes
you want to list. For a replica of a directory (-replica
option)—Read permission to the directory of which
the replica is a member. For a child directory
(-member option)—Read permission to the child
directory.

directory synchronize Admin, write, insert, and delete permission to the
directory. Also, the server principal needs admin,
read, and write permissions to the directory.

link create Insert permission to the directory in which you intend
to create the link.

link delete Delete permission to the link entry, or Admin
permission to the directory that stores the link entry
to be deleted.

link modify Write permission to the link whose attributes are to
be modified.

link show Read permission to the link whose attributes are to
be listed.

object create Insert permission to the parent directory that is to

store the object entry.

object delete Delete permission to the object entry, or administer
permission to the parent directory that stores the
object entry.

object modify Write permission to the object entry for which you
want to add (-add option), change (-change option),
or remove (-remove option) the attribute or attribute
value.

object show Read permission to the object entry whose attributes
you want to list.

Editing ACLs on CDS Names

To edit an ACL that is associated with an entry in the CDS namespace for a child
directory, clearinghouse, soft link, or some other CDS object, specify the -entry
option to any dcecp acl command. The -entry option is especially useful in case of
an ambiguous pathname. In some cases, a pathname can resolve to a leaf object
in the DCE Directory Service and to an object in some other DCE component that
supports ACLs. In these cases, you must use the -entry option to edit the leaf
object in CDS. You do not need to specify this option to edit ACLs that are
associated with actual clearinghouses or directories.

For example, to edit the permissions in the Object ACL that is associated with a
CDS entry for a clearinghouse named /.:/Parisl_CH, you would enter the following
command:

dcecp> acl modify /.:/Parisl_CH -entry -change {unauthenticated -}

dcecp>

182 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

To edit the permissions in the Object ACL that is associated with the /.:/Parisl_CH
clearinghouse itself, you would enter the following command:

dcecp> acl modify /.:/Parisl_CH -change {unauthenticated -}
dcecp>

Another example is the soft link /.../eng_printer . The target of this soft link is
/.../boston.com/print_server . To edit the soft link leaf entry that is in the CDS
namespace, enter the following command:

dcecp> acl modify /.../eng_printer -change -entry \
> {group subsys/dce/cds-admin rwdtc}
dcecp>

How CDS Servers Gain Access to the Namespace

CDS servers require permission to the cell root directory and to lower-level
directories to successfully execute the following CDS commands:

» clearinghouse create

» directory create (For directories and replicas)

» directory delete (For directories and replicas)

» directory synchronize

To automate the process of granting all CDS servers the permissions that they
require, the CDS cell configuration process creates an authorization group for CDS
servers under the fixed name subsys/dce/cds-servers . The principal name of the
initial server in the cell is added to this group as part of the configuration process.
Immediately after the group is created, the configuration process grants full
permissions (r, w, i, d, t, c, a) to the cell root directory of the new namespace on
behalf of the group. ACL entries of the object ACL and initial container creation ACL
types are created by specifying subsys/dce/cds-servers as the principal in each
ACL entry. This ensures that the group has full access to all future directories and
their contents.

Thereafter, whenever a new server is configured in the cell, the server configuration
process automatically adds the principal name of the new server to the group.
Through this process, all CDS servers in the cell receive adequate permissions to
all directories in the namespace.

Setting Up Access Control in a New Namespace

You should plan a consistent access control policy and be ready to implement the
policy as soon as you configure your first CDS server and before you create or
populate any new directories. Among the tasks you can perform are the following
* Adding members to the namespace authorization group

» Creating additional authorization groups

» Establishing maximum permissions for unauthenticated principals

Adding Members to the Namespace Authorization Group

To facilitate managing and troubleshooting your namespace, the cell configuration
process creates a nhamespace authorization group under the fixed name
subsys/dce/cds-admin . The configuration process then grants the group full
access to the cell root directory. This access propagates to the entire namespace
as it evolves.

Chapter 16. Controlling Access to CDS Names 183

Immediately after its creation, the authorization group contains only the name that
the initial namespace administrator specified during the cell configuration process.
You can use the dcecp group add command to add the principal names of other
individuals in your organization who you want to administer and troubleshoot the
namespace. Because this group possesses full access to the entire namespace, its
members can intervene, whenever necessary, to solve problems for namespace
users with fewer permissions. By removing a user’s principal name from the group,
the user described by that principal loses the access assigned to the group.

(See LRart 6_DCE Security Service” on page 283 of this guide for complete

information on how to add and delete group members.)

Creating Additional Authorization Groups

Authorization groups can provide a convenient and flexible way to control access to
your namespace. You can combine users according to organization, work type,
security status, and so on, and then grant each group a specific set of permissions
to specific directories or other names in the namespace.

To delegate authority locally, you can create an authorization group for each of the
functional directories that you plan to create in your namespace. For example, you
could create an authorization group named subsys/dce/sales-admin and include,
as members, the individuals who are responsible for managing the /.:/sales
directory. Each local authorization group could have full access to the contents of
the directory for which it is responsible.

Establishing Maximum Permissions for Unauthenticated Principals

184

If you want to apply a namespace-wide set of maximum permissions for all
unauthenticated principals, you should do so immediately after you configure your
first CDS server and before you create and populate any directories below the cell
root. By creating an unauthenticated ACL entry and an any_other entry for the cell
root by using the object ACL and initial container creation ACL types, you can take
advantage of automatic propagation of the unauthenticated entry to the entire
namespace as it evolves.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 17. Managing Clerks, Servers, and Clearinghouses

CDS clerks, servers, and clearinghouses are initially created and started as part of
the CDS clerk and server configuration. Thereafter, clerk and server processes are
created and started with a series of commands that are executed either manually or
by the startup scripts on the systems where they are running. These CDS entities
are largely self-regulating and, apart from routine monitoring, require only minor
management intervention.

This chapter explains how to monitor CDS clerks, servers, and clearinghouses and
perform other management tasks, such as backing up namespace information.

Monitoring Clerk, Server, and Clearinghouse Counters

Every clerk, server, and clearinghouse maintains a set of attributes called counters
to keep track of the read, write, and other operations that it performed, or that were
performed on it, since it was last started up. You can monitor these counters to
determine the type and volume of the CDS traffic that is being generated on your
network.

Clerk, server, and clearinghouse counters are fully described in the IBM DCE
Version 3.1 for AIX and Solaris: Administration Commands Reference.

Displaying Clerk Counters
Use the dcecp cdsclient show command to display current counter values for a
clerk. For example, to display the current values of all attributes that are associated
with a clerk, you enter the following command:

dcecp> cdsclient show /.:/hosts/<hostname>/cds-clerk

Displaying Server Counters
Use the dcecp cds show command to display the current counter values for a
server. For example, to display the current values of all the attributes that are
associated with a server, you enter the following command:

dcecp> cds show /.:

Displaying Clearinghouse Counters
Use the dcecp clearinghouse show command with the -counters option to
display the current counter values for a specified clearinghouse. For example, the
following command displays the current values of all attributes that are associated
with the remote clearinghouse /.:/Parisl_CH :

dcecp> clearinghouse show /.:/Parisl CH -counters

© Copyright IBM Corp. 1990, 1999 185

Setting Up Clerk Communications with Specific Clearinghouses

Preferencing is achieved by assigning a rank to each clearinghouse. A rank is a
16-bit unsigned integer (range 0-65535). Lower numbers are preferred over higher
numbers (and a rank of 65535 means don't ever use this clearinghouse). These
ranks are specified in a text preference file called $DCELOCAL/etc/cds_serv_pref .
The format of the file is one clearinghouse name and one rank on each line of the
file. Blank lines and comments (# to the end of the line) are ignored. Ranks can be
0-65535 (0x0000-0OxFFFF) and may be specified in decimal, octal (with leading 0) or
hex (with leading 0x). Clearinghouse names can be in any of the following formats:

/.../cellname/foo_ch
/foo_ch

foo_ch

/.:/foo_ch

If the clearinghouse’s cellname is not specified, the local cell is assumed.
Example file:
/.:/foo_ch 50 # most preferred clearinghouse

/.:/bar_ch 100
/.../mycellname/baz_ch 100

If a clearinghouse is not mentioned in the preferences file, a rank will be calculated

for it (thus, you only need to specify ranks for clearinghouses whose default ranks

are to be overridden). The default ranks are calculated based on IP address:

» Clearinghouses with addresses that match the local host address get a default
rank of 5000.

» Clearinghouses on the same IP subnet as the local host get a default rank of
20000.

* Clearinghouses on the same IP network as the local host get a default rank of
30000.

» All other clearinghouses get a default rank of 40000.
The clearinghouse preferences file is read upon cdsadv startup and the values are

cached. If you change rank values, you must stop the cds client, remove the cache,
then restart the cds client.

The following commands will now include a rank attribute:

dcecp -c cdscache show -clearinghouse /.:/foo_ch
cdscp show cached clearinghouse /.:/foo_ch

Monitoring Clerk Communications with Specific Clearinghouses

Every CDS clerk maintains a separate set of clearinghouse counters to keep track
of read, write, and other operations that it directs to each of the clearinghouses with
which it communicates. These records collectively represent the cached
clearinghouse entity for a particular clerk.

You can monitor a clerk’s cached clearinghouse counters so that you can look at
the distribution of the clerk’s transactions to each of the clearinghouses that it uses
and find out where a clerk’s requests are most often directed. To do this, you use
the dcecp cdscache show command with the -clearinghouse option. For
example, to display the cached clearinghouse counters that are maintained by the
local clerk for the /.:/NY1_CH clearinghouse, you enter the following command:

186 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> cdscache show /.:/NY1_CH -clearinghouse

Displaying the Contents of a Clearinghouse

Use the dcecp clearinghouse show command to display the directory names of all
the directories that are stored in a particular clearinghouse. For example, to display
the names of the directories that are stored in the clearinghouse /.:/Chicago2_CH ,
you enter the following command:

dcecp> clearinghouse show /.:/Chicago2_CH

See iewi
m for more examples of displaying clearinghouse information.)

Forcing the Clearinghouse to Checkpoint to Disk

Under normal operations, the server will periodically checkpoint the clearinghouse
from memory to disk. However, you can perform this task immediately by having
write permission to the server and entering the dcecp clearinghouse initiate
command with the checkpoint option. For example, to checkpoint the
clearinghouse /.:/Boston3_CH from memory to disk, you enter the following
command:

dcecp> clearinghouse initiate /.:/Boston3_CH -checkpoint

Disabling Clerks and Servers
You may occasionally have to disable the clerk or server that is running on a
particular system when you need to perform diagnostic or troubleshooting work that
requires active clerk or server processes to be suspended. Usually, you can use the

dce_config procedure to start and stop DCE daemons. You can disable CDS clerks
and servers by using the dcecp commands, cdsclient disable and cds disable .

Disabling a Clerk
To disable the clerk that is on the local node, enter the following command:
dcecp> cdsclient disable /.:/hosts/<hostname>/cds-clerk

Disabling a Server
To disable the server that is on the local node, enter the following command:

dcecp> cds disable /.:/hosts/<hostname>/cds-server

Restarting Clerks and Servers

CDS clerk and server processes are created and started automatically by startup
scripts that execute whenever the host system is rebooted. Sometimes, however,
you may need to run these scripts yourself if a clerk or server fails to start
automatically upon reboot, or if you want to restart a clerk or server that you

Chapter 17. Managing Clerks, Servers, and Clearinghouses 187

disabled to perform a backup or do diagnostic work on the host system. The
start.dce command is used to start the DCE daemons.

Restarting a Clerk

To restart a clerk, follow these steps:
1. Log into the clerk system as superuser (root).
2. Enter the following command to see if the dced process is already running:

ps -e

3. If the dced process appears on the list of active processes, proceed to step 4. If
the dced process does not appear on the list of active processes, enter the
following command to start the process:

dced
4. Enter the following command to start the cdsadv process:

cdsadv
Restarting a Clerk in a Slim Client Configuration

To restart a clerk in a slim client configuration, follow these steps:
1. Log into the clerk system as superuser (root).
2. Enter the following command to start the cdsclerk process:

cdsclerk -n

Restarting a Server

To restart a server, follow these steps:
1. Log into the server system as superuser (root).
2. Enter the following command to see if the dced process is already running:

ps -e

3. If the dced process appears on the list of active processes, proceed to step 4. If
the dced process does not appear on the list of active processes, enter the
following command to start the process:

dced

4. Enter the following command to see if the cdsadv process is already running:
ps -e

5. If the cdsadv process appears on the list of active processes, proceed to step
6. If the cdsadv process does not appear on the list of active processes, enter
the following command to start the process:

cdsadv
6. Enter the following command to restart the server:

cdsd

When the server process starts, all clearinghouses on the system are available.

188 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Preserving a Clearinghouse Across a Server System Upgrade

If you plan to upgrade the operating system software on a CDS server system, and
you want to preserve the clearinghouse (or clearinghouses) on the system, follow
this procedure:

1. Make sure that you disable the clerk and server.
2. Before you perform the system upgrade, back up the following CDS files:
* $DCELOCAL/etc/cds_attributes
* $DCELOCAL/var/adm/directory/cds/cds_files
* $DCELOCAL/var/adm/directory/cds/*_ch.checkpoint nnnnnnnn
* $DCELOCAL/var/adm/directory/cds/*_ch.tlog nnnnnnnn
* $DCELOCAL/var/adm/directory/cds/*_ch.version
* $DCELOCAL/var/directory/cds/cds_cache. nnnnnnnn
* $DCELOCAL/var/directory/cds/cds_cache.version
* $DCELOCAL/var/directory/cds/cds_cache.wan

(See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Guide—Introduction and the OSF DCE Porting and Testing Guide for the full
pathnames of all CDS files.)

3. Perform the system upgrade.

4. Restore all the files that you backed up in step 2.

5. Follow the procedure described in Restarting Clerks and Servers” on page 187

for restarting a server. When the server process starts, it automatically locates
the appropriate restored files and starts all clearinghouses on the system.

Backing Up Namespace Information

Because updates and skulks of directories can occur asynchronously, and because
of the distributed nature of a namespace, you cannot always depend on traditional
backup methods to preserve CDS data.

The rest of this chapter tells when to use the following backup mechanisms:
» Directory replication
* Operating system backups

Using Replication to Back Up Namespace Information

Directory replication is always the most reliable way to back up the information that
is in your namespace. When you create a new replica of a directory at a
clearinghouse, you are not only distributing the information but also creating an
up-to-date, real-time backup of the information. If a replica in one clearinghouse
becomes unavailable, users can look up the information they need in another
replica of the directory in some other clearinghouse. The more replicas of a
directory you create, the more likely users will always be able to find the information
that is contained in the directory somewhere in the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new
clearinghouse and then creating new replicas of the directories that were stored

there. (See Chapter 18 Managing CDS Directaries” an page 191 for complete

information on how to create a replica.)

Chapter 17. Managing Clerks, Servers, and Clearinghouses 189

Using Operating System Backups

190

Because a namespace is a distributed database to which modifications are
synchronized at variable intervals, any traditional backup of a particular server
system always contains old and incomplete information. If you frequently create,
modify, or delete names, restoring an out-of-date backup can cause recently
created names to disappear, recent modifications to be reversed, or recently
deleted names to reappear in the namespace. The degree to which a traditional
backup reflects the current condition of a clearinghouse depends entirely on the
following conditions:

* How recently the backup was created
* What modifications were made since that time

* Whether the backup included the clearinghouse files in the directory
dcelocallvar/directory/cds

If you decide to use operating system backups, you only need to back up the server
systems whose clearinghouses store master replicas of directories. To ensure that
you back up your namespace completely, check for the following:

* The servers on these systems are disabled by using the dcecp cds disable
command.

» The files in the root directory dcelocallvar/directory/cds are included in the
backup.

If your namespace is small enough to be maintained in one clearinghouse, you can
reliably use traditional operating system backups to save and restore the
clearinghouse data. If only one clearinghouse exists, only one replica (the master
replica) of each directory exists. This eliminates the need to account for the
discrepancies that may exist among multiple directory replicas. Remember that the
more frequently you back up clearinghouse data, the more up-to-date that
information will be if you need to restore it.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 18. Managing CDS Directories

If you manage a namespace in a small, slow-growth network of 25 nodes or less,
you can maintain all your names in the root directory and may not need to create
additional directories. However, if you manage a namespace in a network of more
than 25 nodes, you should consider creating at least one additional level of
directories under the root.

This chapter explains how to create directory hierarchies in the cell namespace and
describes tasks related to managing directories, such as:

* Creating and deleting directory replicas
» Skulking a directory
* Modifying a directory’s convergence

Creating Directories

By creating directories, you make it possible to replicate and manage groups of
object entries according to where, how often, or by whom they are used. Grouping
related object entries into separate directories also makes it easier to control access
because it allows you to take advantage of default ACL entry propagation.

CDS cell configuration creates an initial hierarchy of directories under the root so
that DCE components can fix locations within the namespace where they can
create and catalog their object entries. Among the directories created by cell
configuration is the subsys directory, beneath which independent software vendors
(ISVs) can create their own directories to store the object entries that are used by
their distributed applications.

Alternatively, ISVs and other users of the namespace may prefer to create a
hierarchy of directories of their own design under the root to store their information.

(See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Guide—Introduction for more information on the initial hierarchy that is established
by cell configuration.)

Permissions for Creating a Directory

To create a directory, you need the following permissions:
* Insert permission to the parent of the new directory.

» Write permission to the clearinghouse that stores the master replica of the new
directory.

* The server principal for the server system where you enter the DCE control
program’s (dcecp) directory create command must have read and insert
permissions to the parent directory of the new directory.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the
dcecp acl show command on the parent directory to verify that the server
principal has the appropriate permissions. (See the IBM DCE Version 3.1 for AIX
and Solaris: Administration Commands Reference for more information on
arguments to the acl show command.)

© Copyright IBM Corp. 1990, 1999 191

Entering the directory create Command

Use the directory create command to create a new directory (master replica) with
the name that you specify. When you use this command, CDS, by default, stores
the master replica of the new directory in the same clearinghouse that stores the
master replica of the new directory’s parent directory.

For example, to create a directory named /.:/sales and store the master replica of
the new directory in the root directory’s initial clearinghouse, you enter the following
command:

dcecp> directory create /.:/sales
dcecp>

Note: For the directory creation to succeed, the master replica of the new
directory’s parent directory must be available when you enter the command.

You can use the directory create command’s -clearinghouse option to store the
master replica of a new directory in a different clearinghouse than the parent
directory’s clearinghouse. For example, to place the new directory created in the
previous example into another clearinghouse (/.:/Chicagol_CH), you would enter
the following command:

dcecp> directory create /.:/sales -clearinghouse /.:/Chicagol CH
dcecp>

(See the IBM DCE Version 3.1 for AIX and Solaris: Administration Commands
Reference for complete information on arguments and options to the directory
create command.)

Checking the ACL Entries for a New Directory

After you create a directory, you want to verify that the users and applications for
whom the directory was created have the appropriate permissions. To do this, use
the acl show command on the directory to see the associated ACL entries. For
example:

dcecp> acl show /.:/sales
{unauthenticated r--t-}

{group subsys/dce/cds-admin rwdtc}
{group subsys/dce/cds-server rwdtc}
{any_other r--t-}

dcecp>

(See the IBM DCE Version 3.1 for AIX and Solaris: Administration Commands
Reference for complete information on the acl show command.)

If the required permissions were not inherited from the new directory’s parent
directory, use the acl modify command to create the necessary ACL entries. For
example:

dcecp> acl modify /.:/sales -add
{user cell_admin rwdtcia}
dcecp>

192 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

(See the IBM DCE Version 3.1 for AIX and Solaris: Administration Commands
Reference for complete information on the arguments and options for the acl
modify command.)

Upgrading the Directory Version on the Cell Root Directory

Upgrading the directory version on the cell root directory has special significance.
This procedure implies that all CDS servers in the cell have been upgraded to the
latest version, given that a cell root directory is replicated in all CDS servers in the
cell. After you have set the CDS_UpgradeTo attribute on the cell root directory, the
server software soon recognizes this and sets the CDS_UpgradeTo attribute on all
directories in the cell. Eventually, the CDS_DirectoryVersion attribute on all the
affected directories in the cell will be upgraded to the new value.

Upgrading the Directory Version on a Directory

To use new features in a given release of CDS, you may need to explicitly update
the directory version of a directory. This typically occurs when the servers
replicating the directory all have been upgraded to the latest version of software, as
older versions will not recognize the new features.

To upgrade the directory version, you need write permission to the directory and
you must use the following commands:

dcecp> directory modify directory-name -add {CDS_UpgradeTo <v.n>} } -single
dcecp> directory synchronize directory-name

Eventually, all clearinghouses that contain a replica of this directory will detect the
presence of the CDS_UpgradeTo attribute and upgrade the CDS_ReplicaVersion
attribute on the appropriate replica. You can also use the following command on all
clearinghouses that are replicating the directory:

dcecp> clearinghouse verify clearinghouse-name

This command forces the server background thread to run, thereby freeing you to
perform other tasks until the job finishes. After you have verified all affected
clearinghouses, you will need to perform another skulk of the directory to finally set
the CSA_DirectoryVersion attribute to the appropriate value. The
CDS_DirectoryVersion attribute is not upgraded until all of the
CDS_ReplicaVersion attribute values of all replicas contain the new value.

Creating a Read-Only Replica

From time to time, you will want to create read-only replicas of directories. You
create read-only replicas of a directory for the following purposes:

» To distribute the information that is contained in the directory throughout your
network and to make the information more accessible to users and applications
at other locations.

» To improve response time, especially in a namespace where users are dispersed
over long distances. You should create read-only replicas in clearinghouses that
are located near the user groups and applications that most frequently use the
information that is contained in the directory.

» To preserve a backup of the information that is contained in the master replica of
the directory. Maintaining multiple replicas ensures that the temporary loss of an
individual replica does not cause an interruption in service and that the loss of a

Chapter 18. Managing CDS Directories 193

replica can be easily recovered. Even directories that store information used at
only one particular site should be replicated in at least one other clearinghouse,
preferably on a server at another location, so that a local failure at one site does
not cause both replicas to be unreachable at the same time. (See

Managing Clerks Servers_and Clearinghouses” on page 183 for more
information on using directory replication as a means of backing up CDS
information.)

Read-only replicas of directories are safe from alteration by users. Users can look
up information in a read-only replica, but they are not permitted to create new
information or modify existing information.

You create read-only replicas with the -replica option of the directory create
command. You should create the replicas in clearinghouses whose users need to
access the directory but do not need, or are not permitted, to update its contents.

Before You Create a Replica

Before you try to create a replica, verify that the clearinghouse containing the
master replica of the directory you intend to replicate is running and reachable. To
verify that this condition is satisfied, follow these steps:

1. For the directory that you intend to replicate, use the directory show command
to display the directories attribute values and look at the CDS_Replicas
attribute. The value of this attribute shows the names of the clearinghouses that
currently store a replica of the directory. For example:

dcecp> directory show /.:/sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-08-12-09:52:30.396-04:0010.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_Replicas
{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CH_Name /.../Chicagol/Chicagol CH}
{Replica_Type Master}
{Tower {ncacn_ip_tcp 130.105.5.16}}
{Tower {ncadg_ip_udp 130.105.5.16}}}}
{CDS_A11UpTo 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}
{Timeout
{expiration 1994-08-12-09:52:30.396}
{extension +1-00:00:00.00010.000}}
{myname /.../Chicagol/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_LastUpdate 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_ReplicaVersion 3.0}
dcecp>

2. With this information, use the directory show command with the

-clearinghouse and -replica options to verify that you can get a response from
the clearinghouse that stores the master replica. For example:

194 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

dcecp> directory
show /.:/sales -replica -clearinghouse /.:/Chicagol_CH
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-08-12-09:52:30.396-04:0010.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_Replicas

{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}

{CH_Name /.../Chicagol/Chicagol_CH}

{Replica_Type Master}

{Tower {ncacn_ip_tcp 130.105.5.16}}

{Tower {ncadg_ip_udp 130.105.5.16}}}}
{CDS_A11UpTo 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer

{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}

{Timeout

{expiration 1994-08-12-09:52:30.396}
{extension +1-00:00:00.00010.000}}

{myname /.../Chicagol/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_LastUpdate 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_ReplicaVersion 3.0}
dcecp>

The directory show command with the -clearinghouse and -replica options
displays all the attribute values for the directory and its replica role.

Note: If any read-only replicas in the directory’s existing replica set are unavailable,
the replication cannot complete. The normal skulking process completes the
replication as soon as all replicas in the directory’s replica set become
available.

Permissions for Creating Replicas

To create a replica, you need the following permissions:
» Administer permission to the directory that you intend to replicate
» Write permission to the clearinghouse that stores the new replica

* For the replica creation to succeed, the server principal for the server system
where you enter the directory create command with the -clearinghouse and
-replica options must have read, write, and administer permissions to the
directory that you intend to replicate.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
check command to verify that the server principal has the appropriate
permissions. (See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference for complete information on using the acl check
command.)

Entering the directory create Command

Use the directory create command with the -replica and -clearinghouse options
to create a replica of a directory and store it in the clearinghouse that you specify.

Chapter 18. Managing CDS Directories 195

For example, the following command creates a replica of the /.:/mfg directory and
stores the replica in a clearinghouse that is named /.:/Paris1_CH:

dcecp> directory create /.:/mfg -replica -clearinghouse /.:/Parisl_CH
dcecp>

Deleting a Read-Only Replica

Sometimes you may need to delete a read-only replica when the information that it
contains is no longer needed by the local users of the clearinghouse in which the
replica is stored. You may also need to delete a read-only replica to prepare for
deleting the directory of which the replica is a member, or before permanently
removing the clearinghouse in which the replica is stored.

Permissions for Deleting a Replica

To delete a replica, you must have the following permissions:
* Administer permission to the directory whose replica you want to delete
» Write permission to the clearinghouse from which you are deleting the replica

Entering the directory delete Command

Use the directory delete command with the -replica and -clearinghouse options
to delete a replica from the clearinghouse that you specify. For example, the
following command deletes a replica of the /.:/leng directory from the
/.:/IChicago2_CH clearinghouse:

dcecp> directory delete /.:/eng -replica -clearinghouse /.:/Chicago2_CH
dcecp>

Note: You can delete a directory’s master replica only by deleting the directory
itself (by using the directory delete command). (See ﬁm
i ” for complete information on how to

delete a master replica.)

Skulking a Directory

The skulk operation is a periodic distribution of recent modifications that were made
to the namespace. CDS skulks every directory at regular intervals according to the
value assigned to the directory’s CDS_Convergence attribute. To ensure that
updates are distributed to all replicas of a directory as soon as possible, you can
initiate a skulk of the directory by using the directory synchronize command rather
than waiting for the next scheduled skulk to distribute the new information. You can
use this command to perform the following tasks:

» Distribute crucial updates that were made to a directory’s contents or replica set
when you do not want to wait for the next skulk

» Skulk directories that store replicas on servers that were inoperative for an
extended period and were just brought back online

196 I1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Permissions for Skulking a Directory

To skulk a directory, you must have the following permissions:
« Administer, write, insert, or delete permission to the directory.

* The server principal for the server system where you enter the directory
synchronize command needs read, write, and administer permissions to the
directory that you intend to skulk.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
show command to verify that the server principal has the appropriate
permissions. (See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference for complete information on the acl show command
arguments.)

Entering the directory synchronize Command

Use the directory synchronize command to initiate an immediate skulk on a
directory.

After you enter the command, dcecp temporarily suspends the dcecp> prompt
while the skulk is in progress. Skulks of directories with large replica sets may take
some time to execute. If the prompt returns with no error messages, the skulk is
successful. If error messages are displayed before the prompt returns, the skulk
failed.

For a skulk to succeed, every replica in the directory’s replica set must be
reachable. Skulks may sometimes fail, especially on directories with large replica
sets, or when the servers that store replicas of the directory are located over great
distances where network connectivity is not always reliable.

Skulk failure does not make CDS unusable. Although the skulking process is unable
to update information in a replica that it cannot contact, it always updates
information in the replicas that it can reach. Temporarily, some replicas contain the
latest information and some do not. When a skulk fails, CDS automatically repeats
the skulking process, at an interval based on the directory’s convergence value,
until all replicas in the set are updated with the latest changes. When all replicas
contain identical information, CDS considers the skulk successful.

If skulks of a particular directory continue to fail, you can determine the cause by
reviewing the log of CDS events on the server that stores the master replica of the
directory. For example, the following command initiates a skulk on the /.:/admin
directory:

dcecp> directory synchronize /.:/admin
dcecp>

Synchronizing CDS Server Clocks
After performing a skulk operation on a directory, you may receive the message:
Server clocks are not synchronized

indicating that the server clocks are not synchronized. If so, you should first check
to see whether the system clocks on the server systems are indeed synchronized. If

Chapter 18. Managing CDS Directories 197

they are and you still receive the message, then perhaps the system clock on an
individual server was mistakenly set to a future time and subsequently restored.
This causes a problem for CDS because there may be timestamps stored in a
clearinghouse that are invalid (any timestamp greater than 5 minutes in the future
from the current time).

If this is the case, you should adjust the system clock to the current time and then
enter the following command:

dcecp> clearinghouse repair <clearinghouse-name> -timestamps

This command will disable the clearinghouse, analyze and repair bad timestamps,
checkpoint the clearinghouse to disk, and reenable the clearinghouse. To use the
command, you need write permission to the server on which the clearinghouse
resides. Also, you should execute this command on all clearinghouses that replicate
the directory (and its objects) that needs to be repaired.

After executing the clearinghouse repair command, you should be able to skulk
the directory successfully.

Modifying a Directory’s Convergence

The value assigned to a directory’'s CDS_Convergence attribute determines how
frequently the server that stores the master replica of the directory initiates a skulk
of the directory’s replica set. A directory’s convergence can be set to a value of
high , medium , or low.

A directory that is set to a convergence value of high is skulked at least once every
12 hours. If an update is made to the directory, the server that stores the master
replica immediately attempts to propagate the new information to the entire replica
set. If this update propagation fails, the server schedules a skulk of the directory to
begin within the hour. If this initial skulk fails, additional skulks are initiated at 1-hour
intervals until the skulk succeeds.

A directory that is set to a convergence value of medium is skulked at least once
every 12 hours. If an update is made to the directory, the server that stores the
master replica immediately attempts to propagate the new information to the entire
replica set. If the propagation fails, the server waits for the next skulk to
synchronize the replica set.

A directory that is set to a convergence value of low is skulked at least once every
24 hours. If an update is made to the directory, the server that stores the master
replica immediately attempts to propagate the new information to the entire replica
set. If the propagation fails, the server waits for the next skulk to synchronize the
replica set.

Every newly created directory inherits the convergence value of its parent directory.
When you create a namespace, the root directory is automatically assigned a
convergence value of medium . Unless you change this value, or the convergence
values of any lower-level directories after you create them, all directories that you
create under the root also have a convergence value of medium . For most
directories, you never need to modify this value. However, you may occasionally
find it useful to set a directory’s convergence to high or low.

198 IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Before You Modify a Directory’s Convergence

Before you modify a directory’s convergence, you want to verify the current
convergence value of the directory. To do this, use the directory show command to
display the directory’s attribute values and look at the CDS_Convergence attribute
value.

Permissions for Modifying a Directory’s Convergence

To modify a directory’s convergence, you must have write permission to the
directory.

Entering the directory modify Command

Use the directory modify command with the -change option to assign a value of
high , medium , or low to a directory’s CDS_Convergence attribute. For example,
the following command sets the convergence value of the /.:/sales/us directory to
high :

dcecp> directory modify /.:/sales/us -change {CDS_Convergence high}

dcecp>

Chapter 18. Managing CDS Directories 199

200 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 19. Viewing the Structure and Contents of a
Namespace

When you need to view the structure and contents of the cell namespace, you can
use one or more programs provided by CDS. The CDS browser (cdsbrowser)
allows you to display namespace information in a windowing environment, while the
DCE control program (dcecp) displays information through its command line
interface. This chapter explains how to use the CDS browser and dcecp to display
namespace information.

Viewing the Namespace with the CDS Browser

The CDS browser is a tool for viewing the content and structure of a namespace,
which runs on workstations with the OSF/Motif graphical user interface or
compatible software. The program can display an overall directory structure as well
as show the contents of directories, enabling you to monitor growth in the size and
number of directories in a namespace. You also can customize the CDS browser so
that it displays only a specific class of object names.

To start the CDS browser, enter the following command at your system prompt:
$ cdsbrowser

To end a CDS browser session and return to your system prompt, choose Quit from
the File pull-down menu. (See the cdsbrowser(8cds) reference page for a
complete description of the cdsbrowser command.)

Displaying the Default Namespace

The CDS browser lets you view the default namespace for your system. You can
see only the entries in the namespace to which you have read permission.
Directories to which you do not have read permission do not appear. When you use
the CDS browser, it sets the confidence level of clerk calls to low.

When you start the CDS browser, an icon representing the root directory is the first
item to be displayed in the window. Directories, soft links, and object entries alll
have distinct icons associated with them. The following table shows the CDS
browser icons and what they represent.

Icon Entry type Icon Entry type
QOQ Directory @ Object entry
Q Clearinghouse object entry @ Soft link

To expand (open) the root directory, double-click on it. Double-click on the
expanded directory to collapse (close) it. When you expand a directory, you see all
of the soft links and object entries that it contains. Object entries can represent
clearinghouses or any resource for which a client application creates entries in the
namespace. Note that object entries representing clearinghouses are shown with a
different icon than are ordinary object entries. All entries, such as object entries, soft
links, and directories, are shown indented from their parent directories.

© Copyright IBM Corp. 1990, 1999 201

Expanding and Collapsing Selected Directories

By double-clicking on single directories, you can continue expanding a particular
directory pathname one level at a time. Other methods are available to expand all
directories at once or to expand selected groups of directories.

To expand or collapse a group of directories, select them and double-click on them.
Note that, because double-clicking has a toggle effect, you can expand or collapse
groups of directories only one level at a time. If you double-click multiple directory
levels at one time, the result may be the opposite of what you expect.

To expand or collapse selected directories level by level, click on the first directory
that you want to select, then continue selecting directories by shift-clicking (pressing
<Shift> and clicking) on them. When you select the last directory, press <Shift>
and double-click, instead of single-clicking, on it. This selects the last directory and
expands or collapses all of the directories that you selected.

Expanding and Collapsing the Entire Cell Namespace

To expand all directories on all levels at once, choose the Expand All option from
the File menu. Likewise, choose Collapse All from the File menu to close an
expanded namespace.

Note: Use Expand All with care if you have a large namespace. The larger a
namespace, the longer it takes to display its entire contents.

Filtering the Namespace Display

Using the Filters menu, you can selectively display object entries of a particular
class. For example, if you are interested in seeing the entries for clearinghouse
objects only, choose the class CDS_Clearinghouse from the Filters menu. For any
directory that you expand after choosing a filter, you see only names of objects
whose class matches the filter.

Note that soft links are still displayed because they are not object entries and only
object entries can be filtered out. To reset the filter so that you can again view all
object entries, choose the * (asterisk) from the Filters menu.

Navigating the Namespace

Once you begin expanding the namespace, it can exceed the boundaries of your
CDS browser window, even if you enlarge the window. You can use the horizontal
and vertical scroll bars and stepping arrows to scroll through the namespace.

Dragging the slider up and down the vertical scroll bar on the right side of the
display window produces an index window. The index window shows the name
where the slider is currently positioned in the hamespace. When the index window
contains the name that you want to view, release the mouse button to position that
name at the top of the CDS browser window.

In displays that are larger than the length of the window, scrolling through directory
levels can produce a reference line toward the top of the window. The line orients
you by showing the full directory pathname from the current name to the root. It
also indicates that you have scrolled past other parts of the namespace that are no
longer displayed.

202 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Listing the Contents of Directories

The DCE control program (dcecp) provides a directory list command that allows
you to display a list of the descendants of a directory within the cell namespace. A
directory’s descendants are all the child pointers, clearinghouses, object entries,
and soft links existing in it.

To use the directory list command, you must have read permission to the CDS
names that you want to display.

For a complete listing of a directory’s contents, you enter the directory list
command with the name of the directory or directories whose contents you wish to
view. For example:

dcecp> directory list /.:/eng

/.../eng_cell.osf.org/hosts/eng/aud-acl \

/.../eng_cell.osf.org/hosts/eng/aud-svc \
/.../eng_cell.osf.org/hosts/eng/cds-clerk \
/.../eng_cell.osf.org/hosts/eng/cds-server \
/.../eng_cell.osf.org/hosts/eng/dts-entity \
/.../eng_cell.osf.org/hosts/eng/profile \

/.../eng_cell.osf.org/hosts/eng/self \

/.../eng_cell.osf.org/hosts/eng/CDS_CTS \

/.../eng_cell.osf.org/hosts/eng/CDS_UTS \

dcecp>

By default, the directory list command displays the full names of the objects (the
object names preceeded by /.../pathname) contained in the directory. To list only the
RDNs of the objects, enter the directory list command with the -simplename
option.

To display the names of a particular kind of directory descendant only, you include
the appropriate option of the directory list command. For example, you enter the
following command to display the names of all the soft links that are stored in the
/.:leng directory:

dcecp> directory list /.:/eng/ -links
/.../eng_cell.osf.org/hosts/eng/CDS_CTS \
/.../eng_cell.osf.org/hosts/eng/CDS_UTS
dcecp>

Displaying the Attribute Values of CDS Names
To display any or all of the current values of the attributes associated with the
names in a namespace (except for clerks or servers), use the dcecp show
operation.
The basic syntax of the show operation is as follows:
object-type show object-name
where object-type is the type of CDS object about which you want to display
information, and object-name is a complete directory specification terminating with a

simple name (that is, the full CDS name) of the object you are inquiring about.

To use the show operation, you must have read permission to the name that you
want to display.

Chapter 19. Viewing the Structure and Contents of a Namespace 203

In the following example, the show operation displays the current values of the
CDS_CHDirectories attribute associated with the /.:/Chicago2_CH clearinghouse.
The display returned by the operation shows two values for the attribute, each value
having two parts. The parts of the attribute value are UUID of Directory and Name
of Directory. The show operation displays the values separately. For each value, it
first lists the attribute name on a line ending with a colon, then the parts of the
value.

dcecp> clearinghouse show /.:/Chicago2_CH
{RPC_ClassVersion
{01 00}}
{CDS_CTS 1994-01-24-07:12:51.966-05:0010.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-02-03-07:17:35.794-05:0010.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID 0094e40e-bb43-1d43-9e0a-0000c0f7de56}
{CDS_A11UpTo 1994-02-03-09:17:06.393-05:0010.000/00-00-c0-f7-de-56}
{CDS_DirectoryVersion 3.0}
{CDS_CHName /.../Chicago2/Chicago2_CH}
{CDS_CHLastAddress
{Tower ncacn_ip_tcp:130.105.5.16[]}}
{CDS_CHLastAddress
{Tower ncadg_ip udp:130.105.5.16[]}}
{CDS_CHState on}
{CDS_CHDirectories
{dir_uuid 00595ca5-bb46-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2}}
{CDS_CHDirectories
{dir_uuid 00888574-bb53-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys}}
{CDS_CHDirectories
{dir_uuid 0069ffl4-bb55-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys/dce}}
{CDS_CHDirectories
{dir_uuid 0023cc38-bb56-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/subsys/dce/sec}}
{CDS_CHDirectories
{dir_uuid 0026d57c-bb57-1d43-9e0a-0000c0f7de56}
{directory /.../Chicago2/hosts}}
{CDS_ReplicaVersion 3.0}
{CDS_NSCellname /.../Chicago2}
dcecp>

In the following example, the show operation displays all of the object entries that
are stored in the /.:/sales directory:

dcecp> object show /.:/sales

{CDS_CTS 1994-06-23-15:56:44.734+00:0010.000/08-00-2b-0f-59-bf}

{CDS_UTS 1994-08-08-22:23:54.226+00:0010.000/08-00-2b-0f-59-bf}

{CDS_ClassVersion 1.0}

dcecp>

The following command displays all of the soft links stored in the /.:/mfg directory:

dcecp> link show /.:/mfg

{CDS_CTS 1994-06-23-15:56:44.734+00:0010.000/08-00-2b-0f-59-bf}
{CDS_UTS 1994-08-08-22:23:54.226+00:0010.000/08-00-2b-0f-59-bf}
{CDS_LinkTarget = /.../abc/mfg/robotics_controllerl}

dcecp>

Displaying Clerk and Server Attribute Information

To show the values of the attributes associated with clerk and server entries in the
cell namespace, use dcecp commands cds and cdsclient . The basic syntax for
each command is:

204 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

cds show cds-server-name
cdsclient show cds-client-name

To use these commands, you must have read permission to the CDS name that
you want to display.

You are not permitted to use wildcard characters in the simple names of clerks and
servers on the show operation line.

In the following example, the show operation displays the current values of all
attributes that are associated with the local clerk:

dcecp> cdsclient show /.:/hosts/hostname/cds-clerk
The returned display is as follows:

{Creation_Time 1996-08-01-15:39:06.052+00:001----- 1
{Protocol_Errors 0}
{Authentication_Failures 0}
{Read_Operations 1088}
{Cache_Hits 928}

{Cache_Bypasses 157}

{Write_Operations 68}

{Miscellaneous_Operations

94}

Chapter 19. Viewing the Structure and Contents of a Namespace 205

206 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 20. Using the CDS Subtree Commands to Restructure
CDS Directories

Sometimes, because of corporate restructuring or for other reasons, you need to
combine or rearrange various directories or subtrees of directories in your CDS
namespace.

For example, suppose the engineering group in your organization, /.:/eng, is
combined with the research and development group, /.:/rnd, and that the two
groups begin to share a common set of applications and other network resources.
You can reflect this organizational change in your namespace hierarchy by merging
the contents of these directories.

Similarly, if the engineering group becomes subordinate to the research and
development group, you can reflect this change by creating an empty directory
named /.:/rnd/eng and then merging the contents of the /.:/eng directory into
/.:Irnd/eng , effectively appending /.:/eng below /.:/rnd .

Overview of the Merge and Append Procedures

To merge or append CDS directories, you use the DCE control program (dcecp)
directory merge command. The basic steps for both procedures are as follows:

1. At your system prompt, enter dcecp to invoke the DCE control program.

2. Merge or append one existing directory with another existing directory. To do
this, use the directory merge command to combine the directory’s information
about its descendants (object entries, soft links, and child directories) with
another directory’s information or to append the information below an existing
bottom-level directory.

3. Delete the source directory or subtree (and its contents) that you merged in step
2 from its old location in the hierarchy by using the directory delete command.
Replace the deleted directory information with a single soft link of the same
name to redirect lookups of the information at the new location by using the link
create command.

Note: The presence of clearinghouses, duplicate names, or unreachable names in
a merged directory requires special handling. The merge and append
operations described in the following sections assume that no duplicate
names exist in the source and target directory or subtree, and that the
clearinghouses that store the master replicas of affected directories are
enabled and reachable at the time the operations are initiated.

The example merge and append operations described in this section are based on
an example namespace, shown in the following figure.

© Copyright IBM Corp. 1990, 1999 207

.
i
-
i

objl link1 obj2 link2
Figure 19. Example Namespace Hierarchy

The example namespace consists of two directories under the root: /.:/eng and
/.:Irnd . The source directory (/.:/eng) contains two entries: /.:/eng/objl and
/.:leng/link1 . The target directory (/.:/rnd) also contains two entries: /.:/rnd/obj2
and /.:/rnd/link2 .

Merging CDS Directories

The following procedure merges the source directory /.:/feng into the target directory
[.:Irnd :

1. Perform a skulk on the /.:/eng directory before merging it with the /.:/rnd
directory. This synchronization of the source directory’s replicas can prevent
errors that cause the merge operation to fail.

dcecp> directory synchronize /.:/eng
dcecp>

2. Run the directory merge command to merge the /.:/leng and /.:/rnd directories:

dcecp> directory merge /.:/eng -into /.:/rnd
dcecp>

Note that the directory merge command merges only the immediate contents
of the source directory named in the command-line argument (that is, the object
entries, soft links, and child directories in these directories).

To copy the descendants of any child directories of a directory to a target
location, you must use the -tree option of the command. For example, if the
/.:leng directory in the previous example included the child directories dev and
ga, and you wanted to merge the contents of these directories into the target
directory /.:/rnd , you would enter the following command line:

dcecp> directory merge /.:/eng -into /.:/rnd -tree
dcecp>

By default, the directory merge command places all object entries, soft links,
and child directories in the target directory’s master clearinghouse. You can,
however, place child directories in another clearinghouse. To do this, you use
the -clearinghouse option of the command to specify the name of the other
clearinghouse.

208 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Note that you are allowed to specify only one alternate clearinghouse in the
-clearinghouse option. If you wish to place child directories in different alternate
clearinghouses, you must issue separate directory merge commands for each
clearinghouse, or you must issue a single directory merge command to place
all the child directories in one clearinghouse, then relocate the directories after
the merge operation.

Note: The CDS objects created by the directory merge command retain all of
the writable attribute values and some of the read-only attribute values of
the source objects. However, these objects do not inherit the ACLs of the
source objects. If the merged object is a directory, the directory merge
command gives it the default ACLs of the initial container. If the merged
object is any other CDS object type, the directory merge command
gives it the default ACLs of the initial object.

If the directory merge command encounters problems with the merge
operation, it behaves in one of two ways. If you include the -nocheck option,
the command does not check for errors before performing the operation. It
proceeds immediately to perform the operation, and if it encounters an error,
stops. If you omit the -nocheck option, the command checks for certain error
conditions before starting the merge. If it finds errors, it displays messages for
the errors and stops; otherwise, it proceeds with the merge.

Error messages returned by the directory merge command identify the CDS
entity causing the problem and provide a brief description of the problem. You
should fix any problems that the command encounters, before running it again.

(See Handling Frrars” on page 212 for more information on the types of errors

that can occur during a merge operation.)

After the merge operation, the /.:/eng directory (and its contents) still exists at
the source location. Run the following commands to delete the /.:/eng directory
from its original location and create a soft link named /.:/eng in place of the
deleted directory. The soft link will redirect lookups of the obj1l and linkl object
entries to their new locations in the /.:/rnd directory.

It is recommended that you perform a skulk on a source directory before
deleting it. This synchronization of the directory’s replicas can prevent errors
that cause the delete operation to fail.

The sequence of commands to synchronize and delete the /.:/eng directory and
then create soft links for the former contents are as follows:

dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng -tree
dcecp> link create /.:/eng -to /.:/rnd
dcecp>

The directory delete command invoked with the -tree option deletes a directory
and all the object entries, soft links, and child directories beneath that directory.

If you use the the directory delete command without the -tree option, all of the
directories to be deleted must be empty, or errors will occur.

Eigure 20 on page 210 shows the structure of the example namespace before

and after the merge operation in our example.

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 209

Before Merge After Merge

1 1
objl link1 obj2 link2

ED @D

I l l I
obj1 link1 objl linkl obj2 link2

Figure 20. Example Namespace Before and After the Merge Operation
Appending CDS Directories

The following procedure appends the source directory /.:/eng to the /.:/rnd directory
(that is, copies the /.:/leng directory into the empty target directory /eng under the
/.:Irnd directory):

1. Run the directory create command to create a new empty directory named
/.:/Irnd/eng into which the contents of the source directory /.:./leng can be placed:

dcecp> directory create /.:/rnd/eng
dcecp>

By default, the directory create command creates new directories in the same
clearinghouse as the parent directory. If you wish to create a directory in
another clearinghouse, you must use the -clearinghouse option of the
command to specify the other clearinghouse.

2. Perform a skulk on the /.:/eng directory before appending it to the /.:/rnd
directory. This synchronization of the source directory’s replicas can prevent
errors that cause the append operation to fail:

dcecp> directory synchronize /.:/eng
dcecp>

3. Run the directory merge command to append the source directory /.:/eng to
the /.:/rnd directory (or merge it into the new /.:/rnd/eng directory):

dcecp> directory merge /.:/eng -into /.:/rnd/eng
dcecp>

If the source directory contains any child directories whose contents you want to
copy over, you must specify the -tree option in the directory merge command
line. Additionally, you need to specify the -clearinghouse option if you wish to
place the child directory and its contents in a different clearinghouse from the
/.:/Irnd/eng directory.

If the merge operation is not successful, you can delete any partially merged
information at the target location and run the command again. Be sure, though,
to delete any duplicate names and to make certain that connectivity to the
affected clearinghouses can be maintained.

Note: The CDS objects created by the directory merge command retain all of
the writable attribute values and some of the read-only attribute values of

210 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

the source objects. However, these objects do not inherit the ACLs of the
source objects. The ACLs on the target objects are either those that are
inherited from the initial container (the parent directory into which the
objects are merged) or the initial object.

4. After the append operation, the /.:/eng directory (and its contents) still exists at
the source location. You need to delete the /.:/leng directory from its original
location and create a soft link named /.:/eng in place of the deleted directory.
The soft link will redirect lookups of the objl and link1 object entries to their
new locations in the /.:/rnd/eng directory.

It is recommended that you perform a skulk on a source directory before
deleting it. This synchronization of the directory’s replicas can prevent errors
that cause the delete operation to fail.

The sequence of dcecp commands for removing the /.:/eng directory from the
source location is the following:

dcecp> directory synchronize /.:/eng
dcecp> directory delete /.:/eng

dcecp> link create /.:/eng -to /.:/rnd/eng
dcecp>

w shows the structure of our example namespace before and after the
append operation.

Before Append After Append

| |
obil linkI obj2 @ link2
1

objl link1

] 1
obj1 link1 obj2 link2

Figure 21. Example Namespace Before and After the Append Operation
Modifying ACLs at the Target Location

To preserve the access by principals to the merged information in the target
directories, the ACLs on the newly created objects at the target location need to
match those of the objects in the source directories. Because the directory merge
command does not recreate the source ACLs on the CDS objects at the new
location, you may need to modify the target ACLs after the merge operation. To
modify these ACLs, use the dcecp acl replace or acl modify command, depending
on whether you want to replace an entire ACL or just modify ACL entries.

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 211

Handling Errors

Most of the errors that the directory merge command encounters during its
operations are caused by the following:

* Duplicate names that are detected during the merge

* Names in the source subtree whose master clearinghouses were not reachable
when the command was executing

* Entries not created in the target location due to insufficient permissions

The following subsections explain how to recover from these errors.

Duplicate Names

If the full name of a CDS object entry or soft link is identical to a full name of an
object entry or soft link at the target location, the directory merge command lists
these duplicate names and stops. Duplicate names are not merged to avoid
overwriting and destroying the identical names in the target directory.

If duplicate names exist, you need to decide which names you want to preserve:
the names in the source subtree or the names in the target subtree. Once you have
made your decision, proceed in the following manner:

1. Use the dcecp create operations to recreate (under a new name) any duplicate
object entry or soft link as a new object entry or soft link in the source or target
subtree. Then delete the duplicate name.

2. When you are certain that connectivity to the affected clearinghouses can be
maintained, rerun the directory merge command to merge the contents of the
source and target directories.

Unreachable Name Failures

Sometimes, the clearinghouse that stores the master replica of a directory you are
trying to merge is disabled or unreachable when you enter the directory merge
command. When this happens, the command cannot create the directory and the
entries it contains at the new target location.

When unable to merge a name for this reason, the directory merge command
displays an error message specifying the name that could not be created and
terminates.

Insufficient Permissions

The directory merge command cannot create CDS objects at a target location if it
lacks the appropriate permissions. If the command returns error messages
indicating insufficient permissions, you need to examine the ACLs for the target
clearinghouse, directories, and object entries to see the current permissions and
change the inappropriate ones.

lable 12 on page 213 shows the permissions required to create directories and
other CDS object entries at the target.

212 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Table 12. Permissions Required To Create Target Objects

Objects Required Permissions

directory Write permission to the clearinghouse that is to store the
master replica of the new directory. Insert and read
permissions to the parent of the new directory. Insert and
read permissions to the initial container for the new
directory. The server principal also needs read and insert
permissions to the parent directory of the new directory.

other CDS object Insert and read permissions to the directory where it is to be
created. Insert and read permissions to the initial object for
its object type.

Merging CDS Directories into a Foreign Cell

You can also use the directory merge command to merge CDS directories into the
namespace of a foreign cell. In general, the procedure you follow is the same as
the procedure you use to merge directories or subtrees in the same namespace.
There are, however, some additional considerations to keep in mind:

* You need to establish cross-cell authentication in advance.
* You need to merge the entire directory hierarchy in the source and target cells.

Also, you need to modify the ACLs of the newly created target objects as when you
merge directories in the same namespace.

Establishing Cross-Cell Authentication

If you want users and applications in the source cell to be able to continue
accessing their merged information in the target cell conveniently, make sure that
an agreement of cross-cell authentication exists between the source cell and foreign
(target) cell. Otherwise, principals from the source cell requesting newly merged
information will not be permitted to communicate with the target cell. See

DCE Security Service” on page 283 for complete information on how to set up

cross-cell authentication.

Performing a Merge Operation into a Foreign Cell

To merge CDS data into the namespace of a foreign cell, follow these steps:

1. While logged into a privileged account (cell_admin or a member of cds-admin
group) on the target machine in the foreign cell, run the directory merge
command to merge the contents of the source cell’s directory with an existing
directory.

2. If you intend to continue accessing the merged information from the source cell,
delete the uppermost directory in the source subtree and replace the deleted
information with a single soft link of the same name as that directory. This
redirects lookups of the information to its new location in the foreign cell.

Restoring Merged CDS Directories

You can use the dcecp link delete and directory merge commands to restore
deleted directories and their contents to your namespace.

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories 213

214

First run the link delete command to remove the soft links in the former source
location, then use the directory merge command to append the copy of the
directory back under its former parent directory.

If the directory has read-only replicas, use the directory create command to create
a new replica of the directory in each of the clearinghouses from which the directory
was deleted.

Remember that the directory merge command affects only directories and their
contents. It does not copy clearinghouses or their associated clearinghouse object
entries and therefore cannot be used to restore clearinghouses or to account for
discrepancies in information among individual replicas resident on different
clearinghouses. Furthermore, the directory information in a particular location may
have changed since the time of the original merge operation.

IBM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Chapter 21. Restructuring a Namespace

Over time, you may need to restructure or rename certain elements of your
namespace. For example, you may want to create soft links to provide users with
one or more alternate names for an existing namespace entry. You may need to
reconfigure a directory’s replica set to modify the locations and replica types of
particular replicas, or exclude a replica from the set. Occasionally, you may want to
delete certain directories when the information that they contain is no longer needed
by users. You may also need to relocate a clearinghouse or delete a clearinghouse
from a server system to perform diagnostic or troubleshooting work on the system,
or to prepare for removing the system from your network. Finally, you may want to
create a hierarchy of cells, add a cell to an existing hierarchy, or change the
structure of a cell hierarchy.

This chapter explains how to perform the following namespace restructuring tasks:
* Managing soft links

* Modifying a directory’s replica set

* Deleting a directory

* Relocating a clearinghouse

* Deleting a clearinghouse

Managing Soft Links

A soft link is an alternate name, or alias, with which you can refer to another
existing name in a namespace. Soft links allow users and client applications to refer
to a particular directory, object entry, or soft link by more than one name.

In general, you should create soft links to assign alternate names to particular
network resources, or to make minor changes to the original names of directories in
your namespace hierarchy. You should avoid using soft links to completely redesign
your hamespace.

Creating a Soft Link

Use the DCE control program (dcecp) link create command to create a soft link. In
addition to the name for the new soft link, you must specify the soft link’s
destination name, or existing name to which the new soft link points, with the -to
option. You can specify any name in the local cell namespace or in any foreign cell
namespace, as the destination name, including another soft link.

To create a soft link, you must have insert permission to the directory in which you
intend to create the soft link.

Note: If you create a soft link that points to another soft link, make sure you do not
create a soft link loop. A soft link loop occurs when you specify a destination
name that eventually points back to the new soft link’s own link name. The
clerk detects this error.

All soft links that you create with the link create command are permanent and
never expire unless you use the command’s -timeout option to specify an
expiration date and time value for the CDS_LinkTimeout attribute of the soft link.

Enter the expiration date and time value in the format:

© Copyright IBM Corp. 1990, 1999 215

yyyy-mm-dd-hh:mm:ss

For example, the following value indicates that, if the soft link still exists (that is, has
not been deleted manually) on August 25, 1999, at 4:00 p.m., CDS will
automatically delete it the next time the directory in which it is stored is skulked:

CDS_LinkTimeout=(1999-08-25-16:00:00)

If you use the -timeout option to specify an expiration value for a soft link’s
CDS_LinkTimeout attribute, you can also specify an extension value, which is a
period of time to be added to the expiration date and time that are already
assigned. Enter the extension value in the format ddd-hh:mm:ss. For example, a
value of 030-00:00:00 indicates that, if the destination name of the soft link still
exists when the assigned expiration date and time are reached, CDS allows another
30 days to pass before it again checks, during a skulk, for the existence of the
destination name. If, at that time, the destination name cannot be found, CDS
deletes the soft link.

The following command creates a permanent soft link named /.:/sales/asia that
points to a directory named /.:/sales/eur :

dcecp> link create /.:/sales/asia -to /.:/sales/eur
dcecp>

The following command creates a soft link named /.:/mfg/robol that points to an
object entry named /.:/mfg/robotics_controller01 and sets its expiration date and
time:

dcecp> link create /.:/mfg/robol -to /.:/mfg/robotics_controller@l \
-timeout 1999-12-12-09:00:00
dcecp>

In the preceding command, the expiration date and time placed in the
CDS_LinkTimeout attribute value indicates that CDS will delete the soft link
/.:Imfg/robol on the next skulk after December 12, 1999, at 9:00 a.m.

The following command creates a soft link that is named /.:/admin/linka that points
to an object entry named /.:/sales/discount_stats

dcecp> link create /.:/admin/linka -to /.:/sales/discount_stats -timeout \
{1999-01-11-12:00:00 090-00:00:00}
dcecp>

In the preceding command, the expiration time placed in the CDS_LinkTimeout
attribute value indicates that CDS will check that the destination name
/.:Isales/discount_stats still exists on the next skulk after January 11, 1999, at
12:00 p.m. If the destination name does not exist, CDS deletes the soft link. If the
destination name still exists, the soft link remains in effect for another 90 days, as
specified by the extension time specified for the CDS_LinkTimeout attribute value
090-00:00:00. When the 90-day extension period expires, CDS repeats the check
at 90-day intervals until the destination name is deleted.

216 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

Changing a Soft Link’s Destination Name

Use the dcecp link modify command to specify a new value for a soft link’s
CDS_LinkTarget attribute and redirect the soft link from its current destination
name to some other name in the namespace.

To change a soft link’s destination name, you must have write permission to the soft
link. For example, the following command redirects a soft link that is named
/.:ladmin/work_disk from its current destination name to the new destination hame
/.:ladmin/work_disk03 :

dcecp> link modify /.:/admin/work_disk -change {CDS_LinkTarget \
/.:/admin/work_disk03}
dcecp>

Changing a Soft Link’s Expiration or Extension Value

Use the dcecp link modify command to specify a new value for the expiration and
extension values that are stored in a soft link's CDS_LinkTimeout attribute. Even if
you want to modify only one of the values, you must specify values for both
expiration and extension in your command. You specify a new value in the same
format that you used to establish the original value. The expiration value has the
format yyyy-mm-dd-hh:mm:ss and an extension value has the format
ddd-hh:mm:ss.

To change a soft link’s expiration or extension value, you must have write
permission to the soft link.

The following command sets the expiration value of a soft link that is named
/.:leng/link01 to December 31, 1999, at 12:00 p.m. In this example, no extension is
currently assigned to the soft link.

dcecp> link modify /.:/eng/1ink01 -change {CDS_LinkTimeout \
(1999-12-31-12:00:00 000-00:00:00}
dcecp>

The following command changes the expiration value of a soft link that is named

/.:leng/link01 to December 31, 1999, at 12:00 p.m. and sets the soft link’s
extension value to 90 days:

dcecp> link modify /.:/eng/1ink01 -change {CDS_LinkTimeout \
1999-12-31-12:00:00 090-00:00:00}
dcecp>

Deleting a Soft Link

If you find that a permanent soft link has outlasted its original purpose, or if you
prefer not to wait until a soft link’s assigned expiration and extension times have
been reached, you can delete the soft link from the namespace yourself.

Use the link delete command to delete the soft link of the name that you specify.

To delete a soft link, you must have delete permission to the soft link, or administer
permission to the directory that stores the soft link.

Chapter 21. Restructuring a Namespace 217

For example, the following command deletes a soft link that is named
/.:/dist/pointer_1 :

dcecp> link delete /.:/dist/pointer_1
dcecp>

Modifying a Directory’s Replica Set

A directory’s replica set always contains a master replica; it can also contain other
read-only replicas. The values that are stored in the CDS_Replicas attribute that is
associated with a directory contain information that describes the directory’s replica
set, including how many replicas exist, their replica types, and the name of the
clearinghouse where each of the replicas is stored. You can use the dcescp
directory modify command to overwrite the current values that are stored in the
directory’s CDS_Replicas attribute and to perform either or both of the following
tasks in a single command:

» Designate a new master replica in a directory’s replica set.
* Exclude a replica from a directory’s replica set.

Note: As part of the directory modify command, CDS initiates an immediate skulk
on the directory to distribute modifications to all members of the replica set
as soon as possible.

Before You Modify a Replica Set

Before you modify a directory’s replica set, you need to know how many replicas
exist, their replica types, and the name of the clearinghouse where each of the
replicas is stored. The command that you use to modify a directory’s replica set
does not allow you to accidentally leave a replica out of the new set. You must
explicitly list all existing replicas that are in the set. You can include or exclude any
replica from the new set, but you must account for all replicas. Only one of the
replicas that you include in the new set can be designated as the master replica.

To display the names of all of a directory’s replicas, use the dcecp directory show
command. This command queries the directory’s CDS Replicas attribute to gather

this information. (See EChapter 18 Managing CDS Directaries” an page 191 for

information on how to use the dcecp directory show command.)

Permissions Required for Modifying a Replica Set

The permissions for modifying a directory’s replica set are as follows:

* You must have administer permission to the directory. Also, the server principal
needs administer, read, and write permissions to the directory.

* When designating a new master replica, you also need write permission to the
clearinghouse that stores the current master replica. The server principal needs
write permission to the clearinghouse that stores the read-only replica that you
intend to designate as the new master replica.

The server principal on the server where the new master replica will be located
needs administer, read, and write permissions to the directory.

When you know which replicas to include and exclude and have changed
permissions that need to be changed, issue the directory modify command to

218 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

modify a directory’s replica set. Instructions for your two options—designating a new
master replica, and excluding an existing read-only replica—are given in the
sections that follow.

Designating a New Master Replica

Sometimes, for configuration management reasons, you may want to designate a
different replica as a directory’s master replica.

For example, you can specify a new master replica when:

* A server system whose clearinghouse contains one or more master replicas will
be down for an extended period of time or removed permanently from the
network.

» A clearinghouse that stores one or more master replicas will be deleted from the
namespace.

* You want to locate a master replica closer to where the majority of updates to the
directory originate.

To designate a new master replica, use the dcecp directory modify command.
m illustrates an example replica set. This replica set of the /.:/leng directory
consists of three replicas: the master replica, which is stored in clearinghouse

/.:INY1_CH, a read-only replica stored in clearinghouse /.:/NY2_CH, and a
read-only replica stored in clearinghouse /.:/Chicagol CH .

@ @ /.:/Chicagol_CH
Read-only

Read-only
Figure 22. Example Replica Set

The following command designates the read-only replica that is stored in
clearinghouse /.:/Chicagol _CH as the directory’s new master replica, designates
the former master replica (stored in clearinghouse /.:/NY1_CH) as a read-only
replica, and leaves the read-only replica stored in clearinghouse /.:/NY2_CH as it is:

dcecp> directory modify /.:/eng -master /.:/Chicago_1 CH \
> -readonly {/.:/NY1_CH /.:/NY2_CH}
dcecp>

Eigure 23 on page 220 shows the result of the preceding command.

Chapter 21. Restructuring a Namespace 219

@ @ /.:/Chicagol_CH
Read-only Read-only

Figure 23. Example Replica Set After Master Redesignation

Excluding a Replica from a Replica Set

You can temporarily exclude a replica from its replica set when the clearinghouse in
which the replica is stored unexpectedly becomes unavailable. This makes it
possible for CDS to complete skulks of the directory during the time the excluded
replica is unavailable.

To exclude a replica from a replica set, you use the dcecp directory modify
command with the exclude argument to rebuild a directory’s replica set, excluding
the replica that you specify. Remember that you must account for all existing
replicas in the command.

In the following example, the replica set of the /.:/feng directory consists of three
replicas: the master replica, which is stored in clearinghouse /.:/Chicagol_CH , and
the read-only replicas that are stored in clearinghouses /.:/NY1_CH and
/.:INY2_CH.

In this case, the /.:/NY1_CH clearinghouse is cut off from the network because of
accidental damage to the network transmission lines. Connectivity to the
clearinghouse will not be restored for several days. During this period, skulks of the
/.:leng directory will fail unless you temporarily exclude the read-only replica that is
stored in clearinghouse /.:/NY1_CH.

To make it possible for skulks of the /.:/eng directory to succeed during the repair
period, enter the following command to overwrite the current values of the /.:/eng
directory’s CDS_Replicas attribute with new values that include only the replicas
that are stored in the /.:/NY2_CH and /.:/Chicagol_CH clearinghouses:

dcecp> directory modify/.:/eng -master /.:/Chicagol_CH \
> -readonly /.:/NY2_CH -exclude /.:/NY1_CH
dcecp>

Eigure 24 an page 221l shows the result of the preceding command.

220 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

@ /.:/Chicagol_CH
_ T~

- Read-only N Read-only

K\excluded /

—_—

—_—

Figure 24. Example Replica Set After Replica Exclusion

When connectivity with the /.:/NY1_CH clearinghouse is reestablished, enter the
following command to reintroduce the read-only replica that is stored in
clearinghouse /.:/NY1_CH to the replica set:

dcecp> directory modify /.:/eng -master /.:/Chicagol_CH \
> -readonly {/.:/NY1_CH /.:/NY2_CH}
dcecp>

Note: Always reintroduce excluded replicas to their replica sets as soon as
possible after the clearinghouse in which they reside again becomes
available.

Deleting Directories

You may sometimes want to delete a directory from your namespace when the
information that it contains is no longer needed by users. You must take two
considerations into account when deleting a directory:

* Does the directory contain child directories or the entries for any other CDS
object? Before a directory can be deleted, it must be empty.

* Are there any replicas of the directory? They must each be deleted separately.
Both of these considerations are discussed in following sections.

To delete a directory, you must have the following permissions:
» Delete permission to the directory.

» Write permission to the clearinghouse that stores the master replica of the
directory.

* The server principal for the server from which you enter the directory delete
command needs administer permission to the parent directory or delete
permission to the child pointer that points to the directory you intend to delete.

If the server is included in the server authorization group subsys/dce/cds-
servers , these permissions should already be in place. If in doubt, use the acl
show of the dcecp utility and verify that the server principal has the appropriate
permissions. (See the IBM DCE Version 3.1 for AIX and Solaris: Administration
Commands Reference for complete information on the acl show command.)

Deleting a Nonreplicated Directory

To delete a directory that has no replicas, use the dcecp directory delete
command. For example, to delete the directory /.:/sales, all of its immediate
contents, and the contents of any of its child directories, you would enter the
following:

Chapter 21. Restructuring a Namespace 221

dcecp> directory delete /.:/sales -tree
dcecp>

Note: Be careful when using the -tree option of the directory delete command.
The command does not ask you to confirm that you want to delete the
directory that you specify in the command line; it proceeds immediately with
the delete operation. This can result in the loss of directories that you want
to keep.

Remember that you can change the behavior of dcecp commands through
scripts. In the case of the directory delete command, you could write a
script that prompted for a confirmation of the delete operation whenever the
command was run with its -tree option. See tRart 1_The DCE Contral

Bragram” on page 1l of this guide for a discussion of writing scripts.

A way to guard against the inadvertent deletion of directories and their entries is to
view the contents before you run the directory delete command. To display the
contents of a CDS directory by entry type, use the directory list command with the
-object, -link , and -directory options.

The following is an example in which a directory named /.:/sales is deleted. The
directory has one object entry and one soft link:

dcecp> directory list /.:/sales -simplename work_disk Tinkl
dcecp> directory 1ist /.:/sales -simplename -object work_ disk
dcecp> directory list /.:/sales -simplename -link Tinkl
dcecp> directory delete /.:/sales -tree

dcecp> directory show /.:/sales

Error: Requested entry does not exist

dcecp>

If a directory to be deleted is not empty, the directory delete command will fail. To
recover from this kind of failure, you must remove all the entries in the directory and
its child directories, then run the directory delete command again. Use the link
delete and object delete commands to delete the soft links and object entries in
any directories. Then run the directory delete command to delete the directories.

Deleting a Directory Replica

If a directory is replicated, all the replicas have to be deleted individually. Then the
directory can be deleted using the commands described in the previous section.

To display a list of all replicas of a directory, use the dcecp directory show
command. Look at the CDS_Replicas attribute of the directory in the list. Each
replica’s CDS_Replicas attribute has several subattributes. Look at the CH_Name
subattribute for each replica to get the name of the clearinghouse where it is
located. For example:

dcecp> directory show /.:/sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1999-05-06-11:41:05.314-05:0010.000/08-00-09-25-13-52}
{CDS_UTS 1999-06-21-03:06:08.842-05:0010.000/08-00-09-25-13-52}
{CDS_ObjectUUID 5f97a584-bf9b-11cd-9362-080009251352}
{CDS_Replicas

{{CH_UUID de3401e6-bb98-11cd-aac5-080009251352}

{CH_Name /.../absolut _cell/absolut ch}

{Replica_Type Master}

222 1BM DCE Version 3.1 for AIX and Solaris: Administration Guide — Core Components

{Tower {ncacn_ip_tcp 130.105.5.93}}
{Tower {ncadg_ip_udp 130.105.5.93}}}}
{CDS_A11UpTo 23854-01-29-19:45:44.841-05:0010.000/08-00-09-25-13-52}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID df13b228-bb98-11cd-aac5-080009251352}
{Timeout
{expiration 1999-08-24-19:30:30.827}
{extension +1-00:00:00.00010.000}}
{myname /.../absolut _cell/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1999-01-29-19:45:44.841-05:0010.000/08-00-09-25-13-52}
{CDS_LastUpdate 1999-06-21-03:06:08.842-05:0010.000/08-00-09-25-13-52}
{CDS_Epoch 60ac0730-bf9b-11cd-9362-080009251352}
{CDS_ReplicaVersion 3.0}
dcecp>

The name of the directory and the name of the clearinghouse can be used to
uniquely identify each replica. Use these names in a series of directory delete
commands to remove the replicas. The name of each replica is the argument to the
command, and the name of the clearinghouse should be used as the value of the
-clearinghouse option. The -replica option should also appear in the command line
to indicate that the directory to be deleted is a replica. A sample command line is
the following:

dcecp> directory delete /.:/sales -replica -clearinghouse /.:/NY1l_CH
dcecp>

Note: The directory delete command does not require that directory replicas are
empty in order to operate on them. It will delete the replicas, all their
contents, and their child directories immediately, without prompting for
confirmation of the operation.

You may want to write a dcecp script that looks at the CDS_Replicas attribute,
finds all the replicas and deletes them with one command. See tPart 1. The DCH

Cantrol Program” an page 1 of this guide for a discussion of writing scripts.

Relocating a Clearinghouse

Note: This section describes the procedure that you use to temporarily relocate a
clearinghouse from one CDS server system to another. Note that the
procedure cannot be used to configure additional CDS server systems. (See
the IBM DCE Version 3.1 for AIX and Solaris: Administration
Guide—Introduction for information on how to configure CDS servers and
CDS clerks.)

Occasionally, you may need to relocate a clearinghouse from the server system

where it currently resides to another server system. For example, you may want to

move a clearinghouse when:

* You need to temporarily disconnect the host server system from the network for
repair or for other reasons.

* You no longer want the current host system to function as a CDS server.

* You want to move the clearinghouse to a server system that is physically closer
on the network to the user groups and applications that use the information
contained in the clearinghouse.

Chapter 21. Restructuring a Namespace 223

To relocate a clearinghouse, follow these steps:
1. Log in as the cell_admin on CDS servers A and B.
2. Enter the following command on server A.

dcecp> dcecp -c clearinghouse
disable /.:/my_ch

3. Change directories on server A to /opt/dcelocal/var/directory/cds

4. Check the cdsfiles.map files for entries associated with /.:/my_ch . They will
look something like the following:

/opt/dcelocal/var/directory/cds/acell#my_ch.checkpoint001
/opt/dcelocal/var/directory/cds/acell#my_ch.t10g001
/opt/dcelocal/var/directory/cds/acell#my _ch.version

5. Transfer the files that you found in step U to the same directory on server B.

6. Extract and add the map entries you found in step din server A’s cdsfiles.map
file to server B’s cdsfiles.map file.

7. On server A, delete the entries you found in step Win server A's cdsfiles.map
file and the files associated with them.

8. Enter the following command on server B:

dcecp> dcecp -c clearinghouse create /.:/my_ch

Disassociating a Clearinghouse from Its Host Server System

Whenever a CDS server starts, one of the tasks the server software performs is to
start its clearinghouse (or clearinghouses). The server performs this task
automatically by examining a list of the clearinghouses that are resident on the
system. Before you relocate a clearinghouse, use the dcecp clearinghouse

disable command to update the clearinghouse files and ensure that the files are
consistent before you copy them to the target server.

The clearinghouse disable command also removes, from the source server’s
internal memory, knowledge of the clearinghouse that you specify. This ensures that
the relocated clearinghouse is not automatically started at the source server during
server restarts.

To use the clearinghouse disable command, you must have write permission to
the server on which the clearinghouse resides.

The following example command removes knowledge of clearinghouse
/.:/IChicago2_CH from the memory of its host server:

dcecp> clearinghouse disable /.:/Chicago2_CH
dcecp>

Copying the Clearinghouse Database Files to the Target