IBM Distributed Computing Environment for AIX,
Version 2.2:

Application Development Reference

<|II

IBM Distributed Computing Environment for AIX,
Version 2.2:

Application Development Reference

<|II

Note
FBefore using this document, read the general information under EAppendix Natices” on page 1607,

First Edition (February 1998)

This edition applies to Version 2.2 of IBM Distributed Computing Environment for AIX and to all subsequent releases
and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:
International Business Machines Corporation
Department VLXA
11400 Burnet Road
Austin, Texas
78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:
Copyright © 1995, 1996 Open Software Foundation, Inc.

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules
and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed
Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program,
Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program,
Documentation and/or technical data equivalent to or substantially as follows: "Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR
52.227-14, Alternate lll, as applicable or in the equivalent clause of any other applicable Federal government
regulations.”

© Copyright International Business Machines Corporation 1992, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface

Audience.

Purpose . .

Document Usage.

Related Documents. . .
Typographic and Keying Convenuons

Pathnames of Directories and Files in DCE Documentatlon .

Chapter 1. DCE Routines
dce_intro.

dce_attr_intro .

dce_cf_intro

dce_db_intro

dce_msg_intro.
dce_server_intro .

dce_svc intro .

dced_intro .

dce_svc_intro .

dce_assert .

dce_attr_sch aclmgr strlngs
dce_attr_sch_bind
dce_attr_sch_bind_free
dce_attr_sch_create_entry .
dce_attr_sch_cursor_alloc
dce_attr_sch_cursor_init .
dce_attr_sch_cursor_release
dce_attr_sch_cursor_reset .
dce_attr_sch_delete_entry
dce_attr_sch_get_acl_mgrs .
dce_attr_sch_lookup_by id .
dce_attr_sch_lookup_by name
dce_attr_sch_scan . .
dce_attr_sch_update_entry . .
dce_cf binding_entry from_host .
dce_cf_dced_entry_from_host .
dce_cf_find_name_by key .
dce_cf _find_names_by key.
dce_cf free cell _aliases .
dce_cf_get_cell_aliases
dce_cf _get _cell_name.
dce_cf_get_csrgy_filename .
dce_cf _get host name

dce_cf _prin_name_from_host .
dce_cf profile_entry from_host
dce_cf _same_cell_name .
dce_db_close .
dce_db_delete.
dce_db_delete_by name.
dce_db_delete_by uuid
dce_db_fetch . .
dce_db_fetch_by name .
dce_db_fetch_by uuid.
dce_db_free .

© Copyright IBM Corp. 1992, 1998

Xix
Xix
Xix
Xix
XX
XX
XXi

©oA~DNPE

13

17
20
30
33
34
36
38
39
41
43
45
46
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
84
86
87
89
91
93
95

dce_db_header fetch . 9
dce _db_inq_count .. . 98
dce_db_iter done L L. L0099
dce db iter next. .. .100
dce_db_iter_next by name.102
dce_db_iter_next by uud .104
dce_db_iter start. .105
dce db lock106
dce _db open . . . e K04
dce_db_std_header_ |n|t e K X0
dce_db_store . . . A i)
dce_db_store_ by name14
dce_db_store_ by uuid. .16
dce db unlock .18
dce error_ing_text .. .19
dce_msg_cat close. 121
dce_ msg cat get msg 122
dce_ msg catopen. ..123
dce_msg_define_ msg table.124
dce_msg_get12
dce_ msg getcat msg .128
dce_msg_get default msg .129
dce_msg get msg oL 0 L 12
dce_msg_translate_table. . . . N RS X
dce_pgm_printf, dce_pgm_fprintf, dce pgm sprmtf13
dce_printf, dce_fprintf, dce_sprintf T < Y 4
dce_server_disable_service.139
dce_server_enable service.14
dce_server_ing_attr. 142
dce_server_ing_server. .143
dce_server_inq_uuids .. 144
dce_server_register. .14
dce_server_sec begin. 147
dce_server sec done.14
dce_server_unregister.150
dce server_ use protseq 122
dce _svc components .152
dce svc debug routing .154
dce_svc debug set levels .155
dce_svc_define fiter .157
dce svc fiter .. .160
dce_svc log close .. .162
dce_svc logget.163
dce svc logopen .. .le4a
dce svc log rewind .1le5
dce svc printf. .. .1le6
dce svc register. .. .169
dce_svc routing 1IN
dce_svc_set prognameo 172
dce svc table.1714
dce_svc unregister .176
dced_binding create .177
dced_binding_free . . . N k0]
dced_hinding_from_rpc__ blndmg T KX N
dced_binding_set auth_info.1l84
dced entry add .186

iV IBM DCE for AlX, Version 2.2: Application Development Reference

dced_entry_get next
dced_entry _remove.
dced_hostdata_create .
dced_hostdata_delete .
dced_hostdata_read
dced_hostdata_write
dced_initialize_cursor .
dced_inqg_id.
dced_inq_name
dced_keytab_add key. .
dced_keytab_change_key
dced_keytab_create.
dced_keytab_delete. .
dced_keytab_get next_key .

dced_keytab_initialize_cursor .

dced_keytab_release_cursor
dced_keytab_remove_key
dced_list_get .
dced_list_release.
dced_object_read
dced_object_read_all .
dced_objects_release .
dced_release_cursor
dced_secval_start
dced_secval_status .
dced_secval_stop
dced_secval_validate .
dced_server_create.
dced_server_delete .
dced_server_disable_if
dced_server_enable_if.

dced_server_modify_attributes.

dced_server_start
dced_server_stop
DCE_SVC_DEBUG.

DCE_SVC_DEBUG_ATLEAST.

DCE_SVC_DEBUG_IS

DCE_SVC_DEFINE_HANDLE .

DCE_SVC_LOG .
svcroute .

Chapter 2. DCE Threads
thr_intro . .
datatypes

atfork .

exceptions . .
pthread_attr create .
pthread_attr_delete .
pthread_attr_getinheritsched
pthread_attr_getprio.
pthread_attr_getsched .
pthread_attr_getstacksize
pthread_attr_setinheritsched
pthread_attr_setprio.
pthread_attr_setsched .
pthread_attr_setstacksize.

. 188
. 190
. 192
. 195
. 197
. 199
. 201
. 203
. 205
. 207
. 209
. 211
. 213
. 215
. 217
. 219
. 220
. 222
. 224
. 225
. 228
. 231
. 233
. 234
. 236
. 238
. 240
. 242
. 244
. 246
. 248
. 250
. 252
. 255
. 258
. 260
. 261
. 262
. 263
. 265

. 269
. 270
. 274
. 277
. 278
. 279
. 280
. 281
. 282
. 283
. 284
. 285
. 287
. 289
. 291

Contents

\Y

pthread_cancel292
pthread cleanup pop .2%
pthread_cleanup_push. .29
pthread_cond_broadcast. .29
pthread_cond_destroy. .297
pthread_cond_init .298
pthread_cond_signal .300
pthread_cond_timedwait .30
pthread cond wait .303
pthread_condattr_create .305
pthread_condattr_delete .306
pthread_create .307
pthread_delay np .310
pthread_detach31
pthread_equal .312
pthread exit .313
pthread_get_expiraton np .314
pthread getprio .315
pthread_getscheduler .316
pthread_getspecific. .317
pthread_getunique_ np. .318
pthread_join .. .319
pthread_keycreate .32
pthread_lock_global np .322
pthread_mutex destroy .323
pthread_mutex_init .. .32
pthread_mutex_lock. .32
pthread_mutex_trylock. .327
pthread_mutex_unlock. .328
pthread_mutexattr create .32
pthread_mutexattr_delete. .33
pthread_mutexattr_getkind_ np.33
pthread_mutexattr_setkind_ np.33
pthread once33
pthread_pseudo_thread base end336
pthread_pseudo_thread base start.338
pthread self .340
pthread_setasynccancel .34
pthread_setcancel .343
pthread_setprio .345
pthread_setscheduler .347
pthread_setspecific .35
pthread_signal to cancel np351
pthread testcancel .352
pthread_unlock global np .353
pthread yield34
sigacton.35
sigpending .37
sigprocmask .358
sigwait360
ctime_r, localtime_r, gmtime_r, or asctme_r.361
rand r.363
readdir r.364

Chapter 3. DCE Remote Procedure Call < (574
rpc_intro. .368

Vi IBM DCE for AIX, Version 2.2: Application Development Reference

cs_byte from_netcs.

cs_byte local_size .

cs_byte net_size.

cs_byte to_netcs.
dce_cs_loc_to_rgy .
dce_cs_rgy_to_loc .
idl_es_decode_buffer .
idl_es_decode_incremental .
idl_es_encode_dyn_buffer
idl_es_encode_fixed_buffer .
idl_es_encode_incremental .
idl_es_handle_free .
idl_es_ing_attrs
idl_es_ing_encoding_id
idl_es_set_attrs .
idl_es_set_transfer syntax .
rpc_binding_copy
rpc_binding_free .
rpc_binding_from_string_ blndlng
rpc_binding_ing_auth_caller.
rpc_binding_ing_auth_client.
rpc_binding_ing_auth_info
rpc_binding_ing_object
rpc_binding_reset
rpc_binding_server_from cllent
rpc_binding_set_auth_info
rpc_binding_set_object
rpc_binding_to_string_binding .
rpc_binding_vector_free .
rpc_cs_binding_set tags . .
rpc_cs_char_set_compat_check .
rpc_cs_eval_with_universal .
rpc_cs_eval_without_universal .
rpc_cs_get tags .
rpc_ep_register
rpc_ep_register_no replace
rpc_ep_resolve_binding
rpc_ep_unregister
rpc_if_id_vector_free
rpc_if_ing_id
rpc_mgmt_ep_elt_ing_ begln
rpc_mgmt_ep_elt_ing_done .
rpc_mgmt_ep_elt_ing_next .
rpc_mgmt_ep_unregister .
rpc_mgmt_ing_com_timeout.
rpc_mgmt_ing_dflt_protect_level .
rpc_mgmt_ing_if_ids
rpc_mgmt_ing_server_princ_name
rpc_mgmt_ing_stats. .
rpc_mgmt_is_server_listening .
rpc_mgmt_set_authorization_fn
rpc_mgmt_set_call_timeout .
rpc_mgmt_set cancel_timeout.
rpc_mgmt_set_com_timeout.
rpc_mgmt_set server_stack size.
rpc_mgmt_stats_vector_free

Contents

. 398
. 401
. 404
. 407
. 410
. 413
. 415
. 417
. 419
. 421
. 423
. 426
. 427
. 428
. 430
. 431
. 432
. 434
. 436
. 438
. 442
. 446
. 449
. 450
. 452
. 455
. 460
. 462
. 464
. 466
. 468
. 470
. 472
. 474
. 477
. 481
. 485
. 489
. 491
. 493
. 494
. 498
. 500
. 503
. 505
. 507
. 509
. 511
. 513
. 515
. 517
. 520
. 521
. 523
. 525
. 527

Vii

viii

rpc_mgmt_stop_server_listening .
rpc_network_ing_protseqs
rpc_network_is_protseq_valid .
rpc_ns_binding_export.
rpc_ns_binding_import_begin .
rpc_ns_binding_import_done
rpc_ns_binding_import_next.
rpc_ns_binding_ing_entry_name .
rpc_ns_binding_lookup_begin .
rpc_ns_binding_lookup_done .
rpc_ns_binding_lookup_next
rpc_ns_binding_select .
rpc_ns_binding_unexport .
rpc_ns_entry_expand_name
rpc_ns_entry_ing_resolution.
rpc_ns_entry_object_ing_begin
rpc_ns_entry_object _inq_done.
rpc_ns_entry_object _inq_next .
rpc_ns_group_delete
rpc_ns_group_mbr_add
rpc_ns_group_mbr_ing_begin .
rpc_ns_group_mbr_ing_done .
rpc_ns_group_mbr_ing_next
rpc_ns_group_mbr_remove .
rpc_ns_import_ctx_add_eval
rpc_ns_mgmt_binding_unexport .
rpc_ns_mgmt_entry_create .
rpc_ns_mgmt_entry_delete .
rpc_ns_mgmt_entry_ing_if_ids.
rpc_ns_mgmt_free_codesets

rpc_ns_mgmt_handle_set_exp_age .

rpc_ns_mgmt_ing_exp_age .
rpc_ns_mgmt_read_codesets .
rpc_ns_mgmt_remove_attribute
rpc_ns_mgmt_set_attribute .
rpc_ns_mgmt_set_exp_age .
rpc_ns_profile_delete .
rpc_ns_profile_elt_add.
rpc_ns_profile_elt_ing_begin
rpc_ns_profile_elt_ing_done.
rpc_ns_profile_elt_ing_next .
rpc_ns_profile_elt_remove
rpc_object_ing_type.
rpc_object_set_ing_fn .
rpc_object_set type.
rpc_protseq_vector_free .
rpc_rgy_get codesets . .
rpc_rgy_get_max_bytes .
rpc_server_ing_bindings .
rpc_server_ing_if.
rpc_server_listen.
rpc_server_register_auth_ident
rpc_server_register_auth_info .
rpc_server_register_if .
rpc_server_unregister_if .
rpc_server_use_all_protseqs

IBM DCE for AlX, Version 2.2: Application Development Reference

. 528
. 530
. 532
. 534
. 537
. 539
. 541
. 544
. 546
. 549
. 551
. 555
. 557
. 560
. 562
. 564
. 566
. 568
. 570
. 572
. 574
. 576
. 578
. 580
. 582
. 585
. 589
. 591
. 593
. 595
. 597
. 600
. 602
. 604
. 606
. 608
. 610
. 612
. 615
. 619
. 621
. 624
. 626
. 628
. 630
. 632
. 633
. 635
. 637
. 639
. 641
. 644
. 646
. 650
. 653
. 655

rpc_server_use_all_protsegs_if
rpc_server_use_protseq .
rpc_server_use_protseq_ep.
rpc_server_use_protseq_if .
rpc_sm_allocate .
rpc_sm_client_free .
rpc_sm_destroy_client_ context
rpc_sm_disable_allocate .
rpc_sm_enable_allocate .
rpc_sm_free .
rpc_sm_get thread_ handle .
rpc_sm_set_client_alloc_free
rpc_sm_set_thread_handle .
rpc_sm_swap_client_alloc_free
rpc_ss_allocate
rpc_ss_bind_authn_ cI|ent
rpc_ss_client_free
rpc_ss_destroy_client_ context
rpc_ss_disable_allocate .
rpc_ss_enable_allocate
rpc_ss_free.
rpc_ss_get_thread_| handle
rpc_ss_set_client_alloc_free.
rpc_ss_set_thread_handle

rpc_ss_swap_client_alloc_free.

rpc_string_binding_compose
rpc_string_binding_parse .
rpc_string_free
rpc_tower_to_binding .
rpc_tower_vector_free .
rpc_tower_vector_from_binding
uuid_compare .

uuid_create .

uuid_create_nil

uuid_equal .
uuid_from_string .
uuid_hash

uuid_is_nil .

uuid_to_string .

Chapter 4. DCE Directory Service

xds_intro.
decode_alt_addr .
dsX_extract_attr_values .
ds_add_entry .
ds_bind .
ds_compare
ds_initialize .
ds_list.
ds_modify_ entry
ds_modify_rdn.
ds_read . .
ds_remove_entry.
ds_search
ds_shutdown .
ds_unbind

. 658
. 661
. 663
. 665
. 668
. 670
. 671
. 672
. 673
. 674
. 675
. 677
. 679
. 681
. 683
. 685
. 687
. 688
. 689
. 690
. 691
. 692
. 694
. 696
. 698
. 700
. 702
. 704
. 706
. 708
. 709
. 710
. 712
. 713
. 714
. 716
. 718
. 719
. 721

. 723
. 124
. 726
. 728
. 730
. 733
. 735
. 738
. 739
. 741
. 744
. 746
. 749
. 751
. 754
. 755

iX

X

ds_version .
encode_alt_addr .

gds_decode_alt_addr .
gds_encode_alt_addr .

xds_intro.
xds.h .
xdsbdcp.h
xdscds.h .
xdsdme.h
xdsgds.h .
xdsmdup.h .
xdssap.h .
xmhp.h
xmsga.h .
xom_intro
omX_extract
omX_fill .
omX_fill_oid

omX_object_to_string .
omX_string_to_object .

om_copy .
om_copy_value
om_create .
om_delete .
om_get
om_instance
om_put
om_read .
om_remove.
om_write.
xom.h .

Chapter 5. DCE Distributed Time Service

dts_intro .
utc_abstime.
utc_addtime
utc_anytime.
utc_anyzone
utc_ascanytime
utc_ascgmtime
utc_asclocaltime .
utc_ascreltime .
utc_binreltime .
utc_bintime .
utc_boundtime.
utc_cmpintervaltime.
utc_cmpmidtime .
utc_gettime .
utc_getusertime .
utc_gmtime .
utc_gmtzone
utc_localtime
utc_localzone .
utc_mkanytime
utc_mkascreltime.
utc_mkasctime

IBM DCE for AlX, Version 2.2: Application Development Reference

. 757
. 759
. 761
. 763
. 765
. 766
. 774
. 778
. 780
. 781
. 784
. 786
. 789
. 798
. 801
. 804
. 808
. 810
. 811
. 813
. 815
. 817
. 819
. 821
. 823
. 827
. 829
. 832
. 834
. 836
. 839

. 845
. 846
. 850
. 852
. 854
. 856
. 858
. 860
. 861
. 863
. 864
. 866
. 867
. 869
. 872
. 874
. 875
. 876
. 878
. 880
. 882
. 884
. 886
. 888

utc_mkbinreltime .
utc_mkbintime .
utc_mkgmtime.
utc_mklocaltime .
utc_mkreltime .
utc_mulftime
utc_multime.
utc_pointtime .
utc_reltime .
utc_spantime .
utc_subtime.

Chapter 6. DCE Security Service
sec_intro. . Co
Registry API Data Types .

Extended Registry Attribute Data Types

Login API Data Types .

Extended Privilege Attribute API Data Types

ACL API Data Types
Key Management API Data Types
ID Mapping API Data Types.

Password Management AP| Data Types .

audit_intro .

gssapi_intro.

dce_acl_copy_acl
dce_acl_ing_acl_from_ header
dce_acl_ing_client_creds.
dce_acl_ing_client_permset.
dce_acl_ing_permset_for_creds
dce_acl_ing_prin_and_group.3sec
dce_acl_is_client_authorized
dce_acl _is_unauthenticated .
dce_acl_obj_add_any_other_entry
dce_acl_obj_add_foreign_entry
dce_acl_obj_add group_entry .
dce_acl_obj_add id_entry
dce_acl_obj_add obj_entry .
dce_acl_obj_add unauth_entry
dce_acl_obj_add_user_entry
dce_acl_obj_free_entries .
dce_acl_obj_init . .
dce_acl_register_object type
dce_acl_resolve_by name .
dce_acl_resolve by uuid.
dce_aud_clean
dce_aud_close
dce_aud_commit.
dce_aud_discard .
dce_aud_event table .
dce_aud_first .
dce_aud_free_ev_info .
dce_aud_free_header .
dce_aud_get ev_info .
dce_aud_get_event.
dce_aud_get header .
dce_aud_last .

. 890
. 891
. 893
. 894
. 896
. 898
. 900
. 902
. 903
. 904
. 906

. 909
. 910
. 912
. 922
. 935
. 938
. 943
. 950
. 952
. 953
. 954
. 961
. 971
. 972
. 974
. 976
. 978
. 980
. 982
. 984
. 985
. 986
. 988
. 989
. 991
. 993
. 994
. 995
. 996
. 998
1002
1004
1006
1007
1008
1011
1012
1014
1016
1017
1018
1020
1022
1024

Contents Xi

dce aud length .. 1026
dce_aud_modify sstrategy Jloz8
dce_aud_next. JAlo3
dce_aud open. Aos3
dce_aud prev. Alo36
dce_aud print. Al039
dce_aud put evinfo . 1041
dce_aud rename. .. Alo43
dce_ aud reset. .. Alo4s
dce_ aud rewind .. Aloay
dce_aud_save. . . e Ko i ke
dce_aud_set_local ceII uwd e K0 [
dce_aud_set tra|I_5|ze_I|m|t. T 05y
dce_aud_start. 0 15
dce_aud_start with_.name 1058
dce_aud_start_with_pac e K0 [724
dce_aud_start_with_server blndmg e [0 [51
dce_aud_start with yuid. 1070
get event name_from _number 1074
get event_number_from_name 1075
gss_accept sec context . 1076
gss_acquire_cred . Jlo80
gss_compare_name . 1082
gss_context time. los4
gss_delete_sec context . 1085
gss_display name . JAlos7
gss_display status . 1089
gss_import_ name . 1091
gss_indicate mechs . 1093
gss_init_sec_context . 109
gss_inquire_cred. 1099
gss_process_context token. 1101
gss_release_buffer . oA102
gss release cred . Jdo3
gss release name .. .J04
gss release oid set .A05
gssseal.A06
gss.sign. ... J08
gss unseal10
gss_verify . . I I
gssdce_add_oid set member i K5
gssdce_create_empty oid_set. 6
gssdce_cred_to_login_context. i 4
gssdce_extract_creds_from_sec context e K
gssdce_extract PAC from cred 121
gssdce_extract PAC from_sec context 1122
gssdce login_context to cred.l123
gssdce_register_acceptor_identity 1125
gssdce_set_cred_context_ownership 1127
gssdce_test _oid_set member 22
Rdacl Interface for User-Written Back- end Code 130

rdacl get access. q31

rdacl_get manager typesJ133

rdacl_get mgr_types semantics 1135

rdacl_get printstring . 1137

rdacl_get_referral .Jl140

Xii IBM DCE for AlX, Version 2.2: Application Development Reference

rdacl_lookup
rdacl_replace .
rdacl_test_access
rdacl_test_access_on_| behalf
rsec_pwd_mgmt_gen_pwd .
rsec_pwd_mgmt_str_chk .
sec_acl_bind
sec_acl_bind_auth .
sec_acl_bind_to_addr .
sec_acl_calc_mask .
sec_acl_get_access.
sec_acl_get_error_info.
sec_acl_get_manager_types

sec_acl_get_mgr_types_semantics .

sec_acl_get_printstring
sec_acl_lookup
sec_acl_mgr_configure
sec_acl_mgr_get_access.
sec_acl_mgr_get_manager_types

sec_acl_mgr_get_types_semantics .

sec_acl_mgr_get_printstring.
sec_acl_mgr_is_authorized .
sec_acl_mgr_lookup
sec_acl_mgr_replace .
sec_acl_release . .
sec_acl_release_handle .
sec_acl_replace .
sec_acl_test_access
sec_acl_test_access_on_ behalf
sec_attr_trig_query .
priv_attr_trig_query .
sec_attr_trig_update
sec_attr_util_alloc_copy .
sec_attr_util_free.
sec_attr_util_inst_free .
sec_attr_util_inst_free ptrs .
sec_attr_util_sch_ent_free
sec_attr_util_sch_ent free_ptrs
sec_attr_util_sch_free_acl mgrs .
sec_attr_util_sch_free_binding .
sec_cred_free_attr_cursor
sec_cred_free_cursor .
sec_cred_free_pa_ handle
sec_cred_get_authz_session_info
sec_cred_get client_princ_name .
sec_cred_get deleg_restrictions .
sec_cred_get delegate
sec_cred_get delegation_type .
sec_cred_get _extended_attrs .
sec_cred_get_initiator .
sec_cred_get_opt_restrictions .
sec_cred_get _pa_data.
sec_cred_get _req_restrictions .
sec_cred_get tgt restrictions
sec_cred_get vl pac .
sec_cred_initialize_attr_cursor .

Contents

1142
1144
1146
1148
1150
1152
1154
1156
1160
1162
1164
1166
1167
1169
A171
1174
1176
1178
1180
1182
1184
1187
1190
1192
1194
1195
1196
1198
1200
1203
1206
1209
1212
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1226
1227
1228
1230
1231
1233
1235
1236
1237
1238
1239
1240

Xiii

Xiv

sec_cred_initialize_cursor

sec_cred_ing_auth_service_info .

sec_cred_is_authenticated .
sec_id_gen_group
sec_id_gen_name
sec_id_parse_group
sec_id_parse_name.
sec_key _mgmt_change_ key
sec_key mgmt_delete_key .

sec_key mgmt_delete_key type .

sec_key mgmt_free key .

sec_key _mgmt_garbage collect .

sec_key _mgmt_gen_rand_key .
sec_key mgmt_generate_key .
sec_key _mgmt_get _key .
sec_key_mgmt_get next_key .
sec_key _mgmt_get next _kvno.
sec_key _mgmt_get nth_key
sec_key mgmt_initialize_cursor
sec_key _mgmt_manage_key
sec_key_mgmt_release_cursor
sec_key _mgmt_set_key .
sec_login_become_delegate

sec_login_become_impersonator .

sec_login_become_initiator .
sec_login_certify_identity .
sec_login_cred_get delegate .
sec_login_cred_get_initiator.
sec_login_cred_init_cursor .
sec_login_disable_delegation .
sec_login_export_context.
sec_login_free_net_info
sec_login_get_current_context .
sec_login_get_expiration .
sec_login_get_groups .
sec_login_get_pwent
sec_login_import_context.
sec_login_init_first .
sec_login_ing_pag . .
sec_login_inquire_net_info .
sec_login_newgroups .
sec_login_purge_context .
sec_login_purge_context_exp .
sec_login_refresh_identity
sec_login_release _context .
sec_login_set_context .
sec_login_set_extended_attrs .
sec_login_setup_first
sec_login_setup_identity .
sec_login_tkt_request_options .
sec_login_valid_and_cert_ident
sec_login_validate_cert_auth
sec_login_valid_from_keytable.
sec_login_validate_first
sec_login_validate_identity .
sec_pwd_mgmt_free handle

IBM DCE for AlX, Version 2.2: Application Development Reference

1241
1242
1243
1244
1246
1248
1250
1252
1255
1257
1259
1260
1262
1264
1266
1268
1270
1272
1274
1276
1278
1279
1281
1284
1286
1289
1291
1293
1295
1296
1297
1299
1300
1302
1304
1306
1308
1310
1311
1312
1314
1317
1319
1320
1322
1323
1325
1327
1329
1332
1333
1336
1337
1341
1343
1347

sec_pwd_mgmt_gen_pwd
sec_pwd_mgmt_get val type .
sec_pwd_mgmt_setup .
sec_rgy_acct_add
sec_rgy_acct_admin_replace
sec_rgy_acct_delete
sec_rgy_acct_get_projlist.
sec_rgy_acct_lookup
sec_rgy_acct_passwd .
sec_rgy_acct_rename .
sec_rgy_acct_replace_all.
sec_rgy_acct_user_replace .
sec_rgy_attr_cursor_alloc
sec_rgy_attr_cursor_init .
sec_rgy_attr_cursor_release
sec_rgy_attr_cursor_reset
sec_rgy_attr_delete .
sec_rgy_attr_get_effective
sec_rgy_attr_lookup by id .
sec_rgy_attr_lookup_by name.
sec_rgy_attr_lookup_no_expand .
sec_rgy_attr_sch_aclmgr_strings .
sec_rgy_attr_sch_create_entry.
sec_rgy_attr_sch_cursor_alloc .
sec_rgy_attr_sch_cursor_init
sec_rgy_attr_sch_cursor_release .
sec_rgy_attr_sch_cursor_reset.
sec_rgy_attr_sch_delete_entry.
sec_rgy_attr_sch_get_acl_mgrs
sec_rgy_attr_sch_lookup_by id

sec_rgy_attr_sch_lookup_by name .

sec_rgy_attr_sch_scan
sec_rgy_attr_sch_update_entry
sec_rgy_attr_test and_update .
sec_rgy_attr update
sec_rgy_auth_plcy get effectivi
sec_rgy_auth_plcy get info.
sec_rgy_auth_plcy set _info.
sec_rgy_cell_bind
sec_rgy_cursor_reset .
sec_rgy_enable_nsi.
sec_rgy_login_get_effective .
sec_rgy_login_get_info
sec_rgy_pgo_add
sec_rgy_pgo_add_member .
sec_rgy_pgo_delete. .
sec_rgy_pgo_delete_member .

sec_rgy_pgo_get by eff unix_num .

sec_rgy_pgo_get by id
sec_rgy_pgo_get by name.
sec_rgy_pgo_get_by unix_num
sec_rgy_pgo_get_members.
sec_rgy_pgo_get_next.
sec_rgy_pgo_id_to_name
sec_rgy_pgo_id_to_unix_num .
sec_rgy_pgo_is_member.

1348
1350
1352
1354
1357
1360
1362
1365
1368
1370
1372
1375
1378
1380
1382
1384
1385
1387
1390
1394
1396
1399
1402
1404
1405
1407
1408
1409
1411
1413
1415
1417
1419
1422
1425
1428
1430
1432
1434
1436
1438
1439
1442
1445
1447
1449
1451
1453
1456
1459
1462
1465
1468
1471
1473
1475

Contents XV

sec_rgy pgo name toid Al4r7

sec_rgy_pgo_name_to unix_num 1479
sec_rgy_pgo_rename dald
sec_rgy_pgo_replace . l483
sec_rgy_pgo_unix_num_to id 1485
sec_rgy_pgo_unix_num_to_name 1487
sec_rgy _plcy_get_effective 1489
sec_rgy pley getinfo. 149
sec_rgy_plcy get override info 1493
sec_rgy_pley set info. 1494
sec_rgy_plcy_set _override_info 1496
sec_rgy_properties_get_info. 1497
sec_rgy_properties_set_info. 1499
sec_rgy_rep_admin_become master 1502
sec_rgy_rep_admin_become slave 1503
sec_rgy _rep_admin_change master 1504
sec_rgy_rep_admin destroy. 1505
sec_rgy_rep_admin_get sw vers. 1506
sec_rgy_rep_admin_info . 1507
sec_rgy_rep_admin_info_vers 1508
sec_rgy_rep_admin_init_replica 1510
sec_rgy_rep_admin_maint 511
sec_rgy_rep_admin_mkey 1512
sec_rgy_rep_admin_set sw vers. 1513
sec_rgy rep_admin_stop. A5h14
sec_rgy_site bind . 1515
sec_rgy_site_bind query. 1517
sec_rgy_site_bind update 1519
sec_rgy_site_binding get info. 1521
sec_rgy _site close . 1523
sec_rgy_site_get. .. . 1524
sec_rgy_site is readonly. 1526
sec_rgy_site open . Ab27
sec_rgy_site_open_query 4529
sec_rgy_site open update 1b31
sec_rgy_unix_getgrent. 1533
sec_rgy_unix_getgrgid. 1535
sec_rgy_unix_getgrmam . 1537
sec_rgy_unix_getpwent . 1539
sec_rgy_unix_getpwnam . 154
sec_rgy_unix_getpwuid . 1543
sec_rgy_wait_until_consistent 1545
Chapter 7. DCE Event Management Service APl 1547
ems_intro . . . e e e 1548
ems_add_filter_to group .o e 51510
ems_consumer_handler reglster 51622
ems_consumer_register . 1563
ems_consumer_start . 1565
ems_consumer_Stop . 1566
ems_consumer_unregister 1567
ems_delete_filter_from_group 1568
ems event type add . 1569
ems_event type delete . 1570
ems_event type free list. 1571
ems_event type. get . A572

XVi IBM DCE for AlX, Version 2.2: Application Development Reference

ems_event_type get list .
ems_filter_add.

ems_filter_append
ems_filter_delete .

ems_filter_free.
ems_filter_get_namelist
ems_filter_free_list .
ems_filter_free_namelist .
ems_filter_get .
ems_filter_get_list

ems_get filter_group
ems_log_close

ems_log_open.

ems_log_read .

ems_log_rewind .
ems_mgmt_add_filter_to group
ems_mgmt_delete_consumer .
ems_mgmt_delete_filter_from_group
ems_mgmt_free attributes .
ems_mgmt_free_consumers
ems_mgmt_free_ems .
ems_mgmt_get filter_group.
ems_mgmt_list_attributes.
ems_mgmt_list_consumers .
ems_mgmt_list_ ems
ems_register
ems_supplier_send . .
ems_svc_connect_push_ suppller.
ems_unregister

Appendix. Notices
Trademarks.

Index .

Contents

1573
1574
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1592
1594
1595
1596
1597
1599
1600
1601
1602
1603
1604
1606

1607
1607

1609

XVii

XViii IBM DCE for AIX, Version 2.2: Application Development Reference

Preface

The IBM DCE for AlX, Version 2.2: Application Development Reference provides
complete and detailed reference information to help application programmers use
the correct syntax for Distributed Computing Environment (DCE) calls when writing
AIX applications for a distributed computing environment.

Audience
This reference is written for application programmers with AIX ® or UNIX operating
system and C language experence who want to develop and and write applications
to run on DCE. It does not assume that you have prior knowledge of, or experience
with, designing and writing distributed applications using the Open Software
Foundation’s (OSF)® Distributed Computing Environment (DCE) services. Ideally,
you should be able to perform the following:
» Edit, browse, and copy AlX files
* Print files
* Write, compile, link, debug, and run C programs on AlX.
A good working knowledge and understanding of the following would also be
helpful:
» Structured programming techniques
» Computer communications over a network using Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP)

» Concepts behind a distributed application.
Some exposure to the UNIX or AIX operating systems is helpful but not essential to
use this guide.

Purpose

The purpose of this document is to assist application programmers when writing AIX
applications for a distributed computing environment. After reading this manual,
application programmers should be able to use the correct syntax for DCE calls.

Document Usage

This document is organized into eight chapters.

» For DCE Routines, see Chapter 1.

» For DCE Threads, see Chapter 2.

» For DCE Remote Procedure Call, see Chapter 3.

* For DCE Directory Service, see Chapter 4.

» For DCE Distributed Time Service, see Chapter 5.

* For DCE Security Service, see Chapter 6.

* For DCE Event Management Service, see Chapter 7.

© Copyright IBM Corp. 1992, 1998 XiX

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

1. IBM DCE for AlX, Version 2.2: Introduction to DCE

IBM DCE for AlX, Version 2.2: Command Reference

IBM DCE for AlX, Version 2.2: Administration Guide—Introduction

IBM DCE for AlX, Version 2.2: Administration Guide—Core Components
IBM DCE for AlX, Version 2.2: DFS Administration Guide and Reference
OSF DCE GDS Administration Guide and Reference

IBM DCE for AlX, Version 2.2: Application Development Guide—Introduction
and Style Guide

8. IBM DCE for AIX, Version 2.2: Application Development Guide—Core
Components

9. IBM DCE for AlX, Version 2.2: Application Development Guide—Directory
Services

10. OSF DCE/File-Access Administration Guide and Reference
11. OSF DCE/File-Access User’s Guide

12. IBM DCE for AlIX, Version 2.2: Problem Determination Guide
13. OSF DCE Testing Guide

14. OSF DCE/File-Access FVT User’s Guide

15. Application Environment Specification/Distributed Computing
16. IBM DCE for AlX, Version 2.2: Release Notes

No gk wDd

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant
width typeface.

[1] Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.
< > Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

dcelocal
The OSF variable dcelocal in this document equates to the AlX value
/opt/dcelocal .

XX IBM DCE for AlX, Version 2.2: Application Development Reference

dceshare
The OSF variable dceshare in this document equates to the AlIX value
/opt/dcelocal .

This guide uses the following keying conventions:

<Ctrl-x> or 'x
The notation <Ctrl-x> or "x followed by the name of a key indicates a
control character sequence. For example, <Ctrl-C> means that you hold
down the control key while pressing <C>.

<Return>
The notation <Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
IBM DCE for AlX, Version 2.2: Administration Guide—Introduction and OSF DCE
Testing Guide.

Preface XXi

XXil IBM DCE for AlX, Version 2.2: Application Development Reference

Chapter 1. DCE Routines

© Copyright IBM Corp. 1992, 1998

dce_intro

Purpose
Introduction to the DCE routines
Description

The DCE routines provide several facilities that are applicable across more than
one DCE component. They can be divided into the following major areas:

DCE Attribute Interface Routines
These routines allow applications to define and access attribute types
(schema entries) in a schema of your choice. They are based on the
extended registry attribute (ERA) interface, which defines and accesses
attribute types in the register database schema.

For more information about the individual attribute interface routines, see
the dce_attr_intro(3dce) reference page.

DCE Configuration Routines
These routines return information based on the contents of the local DCE
configuration file, which is created during the DCE cell-configuration or
machine-configuration process.

For more information about the various individual configuration routines, see
the dce_config_intro(3dce) reference page.

DCE Backing Store Routines
These routines allow you to maintain typed data between program
invocations. The backing store routines can be used in servers, in clients or
in standalone programs that do not involve remote procedure calls (RPCs).

For more information about the individual backing store routines, see the
dce_db_intro(3dce) reference page.

DCE Messaging Interface Routines
These routines give you access to message catalogs, to specific message
texts and message IDs, and to in-memory message tables.

For more information about the individual messaging interface routines, see
the dce_msg_intro(3dce) reference page.

DCE Server Routines
These routines are used by servers to register themselves with DCE. This
includes RPC runtime, the local endpoint mapper, and the namespace.
Routines are also available to set up DCE security so that servers can
receive and invoke authenticated RPCs.

For more information about the individual server routines, see the
dce_server_intro(3dce) reference page.

DCE Serviceability Routines
These routines are intended for use by servers that export the serviceability
interface defined in service.idl . There are also a set of DCE serviceability
macros can be used for diagnostic purposes, and to create a serviceability
handle.

2 IBM DCE for AlX, Version 2.2 Application Development Reference

dce_intro(3dce)

For more information about the individual serviceability routines, see the
dce_svc_intro(3dce) reference page. For more information about the
individual DCE serviceability macros, see the DCE_SVC_INTRO(3dce)
reference page.

DCE Host Daemon Application Programming Interface
These routines give management applications remote access to various
data, servers, and services on DCE hosts.

For more information about the individual host daemon application
programming interface routines, see the dced_intro(3dce) reference page.

Chapter 1. DCE Routines 3

dce_attr_intro

Purpose

Introduction to the DCE attribute interface routines
Description

The DCE attribute interface API allows applications to define and access attributes
types (schema entries) in a schema of your choice. It is based on the extended
registry attribute (ERA) interface, which defines and accesses attribute types in the
registry database schema. Except for the binding methods, the two APIs are similar.

Note however, that the extended registry attribute API provides routines to create
attribute types in the registry schema, to create and manipulate attribute instances,
and to attach those instances to objects. The DCE attribute interface in its current
state provides calls only to create attribute types.

The DCE Attribute Interface Routines

The DCE attribute interface consists of the following routines:

dce_attr_sch_aclmgr_strings
Returns printable ACL strings associated with an ACL manager protecting a
schema object.

dce_attr_sch_bind()
Returns an opaque handle of type dce_attr_sch_handle t to a schema
object specified by name and sets authentication and authorization
parameters for the handle.

dce_attr_sch_bind_free()
Releases an opaque handle of type dce_attr_sch_handle_t .

dce_attr_sch_create_entry()
Creates a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_update_entry()
Updates a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_delete_entry()
Deletes a schema entry in a schema bound to with dce_attr_sch_bind() .

dce_attr_sch_scan()
Reads a specified number of schema entries.

dce_attr_sch_cursor_init()
Allocates resources to and initializes a cursor used with
dce_attr_sch_scan() . The dce_attr_sch_cursor_init() routine makes a
remote call that also returns the current number of schema entries in the
schema.

dce_attr_sch_cursor_alloc()
Allocates resources to a cursor used with dce_attr_sch_scan() . The
dce_attr_sch_cursor_alloc() routine is a local operation.

dce_attr_sch_cursor_release()
Releases states associated with a cursor created by
dce_attr_sch_cursor_alloc() or dce_attr_sch_cursor_init()

4 |BM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_intro(3dce)

dce_attr_sch_cursor_reset()
Reinitializes a cursor used with dce_attr_sch_scan() . The reset cursor can
then be reused without releasing and reallocating.

dce_attr_sch_lookup_by id()
Reads a schema entry identified by attribute type UUID.

dce_attr_sch_lookup_by name()
Reads a schema entry identified by attribute name.

dce_attr_sch_get_acl_mgrs()
Retrieves the manager types of the ACLs protecting objects dominated by a
named schema.

dce_attr_sch_aclmgr_strings()
Returns printable ACL strings associated with an ACL manager protecting a
schema object.

Data Types and Structures

dce_attr_sch_handle_t
An opaque handle to a schema object. Use dce_attr_sch_bind() to acquire
the handle.

dce_attr_component_name_t
A pointer to a character string used to further specify a schema object.

dce_bind_auth_info_t
An enumeration that defines whether or not the binding is authenticated.
This data type is defined exactly as the sec_attr_bind_auth_info_t data
type in the ERA interface. See the sec_intro(3sec) reference page for
more information on sec_attr_bind_auth_info_t

dce_attr_schema_entry_t
A structure that defines a complete attribute entry for the schema catalog.
This data type is defined exactly as the sec_attr_schema_entry t data
type in the ERA interface. See the sec_intro(3sec) reference page for
more information on sec_attr_schema_entry t

dce_attr_cursor_t
A structure that provides a pointer into a database and is used for multiple
database operations. This cursor must minimally represent the object
indicated by dce_attr_sch_handle_t . The cursor may additionally represent
an entry within that schema.

dce_attr_schema_entry parts_t
A 32-bit bitset containing flags that specify the schema entry fields that can
be modified on a schema entry update operation. This data type is defined
exactly as the sec_attr_schema_entry parts t data type in the ERA
interface. See the sec_intro(3sec) reference page for more information on
sec_attr_schema_entry_parts_t

Chapter 1. DCE Routines 5

dce cf intro

Purpose

Description

Introduction to the DCE configuration routines

The DCE configuration routines return information based on the contents of the
local DCE configuration file, which is created during the DCE cell-configuration or
machine-configuration process. A configuration file is located on each DCE
machine; it contains the host’'s name, the primary name of the cell in which the host
is located, and any aliases for that cell name.

The configuration routines can also be used to get the following additional
information corollary to the host name:

* The host’s principal name
* Binding information to the host

The configuration file on machines that belong to internationalized DCE cells also
contains the pathname to the code set registry object file on the host.

The security service component on each DCE machine must be able to find out, by
strictly local means, its machine’s host hame, the host machine’s principal name,
and its cell's name. The DCE configuration routines exist primarily to enable
security components to do these things. But because this information can be useful
to DCE applications as well, these routines are made available as part of the
general application programming interface.

Note that host name as used throughout this section refers to the DCE host name
(that is, the machine’s /.../cellnamel host directoryl hostname entry in the CDS
namespace), and not, for example, its Domain Name Service (DNS) host name,
which could be quite different from the DCE name.

The DCE configuration routines are as follows:

dce_cf_binding_entry from_host()
Returns the host binding entry name.

dce_cf dced_entry from_host()
Returns the dced entry name on a host.

dce_cf find_name_by key()
Returns a string tagged by key (this is a lower-level utility routine that is
used by the others).

dce_cf _find_names_by key()
Returns an array of strings tagged by keys.

dce_cf _free_cell_aliases()
Frees a list of cell aliases for a cell.

dce_cf _get cell _aliases()
Returns a list of cell aliases for a cell.

dce_cf _get cell_name()
Returns the primary cell name for the local cell.

6 IBM DCE for AIX, Version 2.2 Application Development Reference

Files

Output

dce_cf _intro(3dce)

dce_cf get csrgy_filename()
Returns the pathname of the local code set registry object file.

dce_cf _get _host_name()
Returns the host name relative to a local cell.

dce_cf_prin_name_from_host()
Returns the host’s principal name.

dce_cf profile_entry from_host
Returns the host’s profile entry.

dce_cf _same_cell_name()
Indicates whether or not two cell names refer to the same cell.

dcelocal/ldce_cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The format of the configuration file is as follows:

Each of the entries is tagged with its own identifier, which must be the first nonblank
token on a line that does not begin with a # (number sign) comment character. The

second token on a line is assumed to be the name associated with the tag that was
detected in front of it.

For example, cellname and hostname are tags, identifying the cell name and host
name, respectively, for the machine on which the configuration file is located. A
sample configuration file could have the following contents, which would identify the
host brazil in the osf.org cell:

cellname /.../osf.org
hostname hosts/brazil

Text characterized by the following is ignored:

* Garbage lines (lines that do not conform to the previously described format)
* Leading and trailing spaces in lines

» Additional tokens appearing on a line after the second token

The configuration file should be writable only by privileged users, and readable by
all.

The DCE configuration routines return names without global or cell-relative prefixes,
such as the following:

host_directory/hostname

or

principalname

where host_directory is usually hosts .

However, the DCE Name Service Interface (NSI) routines require hames passed to
them to be expressed either in a cell-relative form or as global names. Cell-relative

names have the following form:

Chapter 1. DCE Routines 7

dce_cf _intro(3dce)

/.:/host_directory/ hostname

Global names, with the global root prefix /.../ and the cell name, have the following
form:

/.../cellname/ host_directory/ hostname

Therefore, an application must add either the cell-relative prefix (/.:/) or correct
global prefix (/.../cellname) to any name it receives from a DCE configuration routine
before it passes the name to an NSI routine. (NSI routines all have names
beginning with rpc_ns_). For example, the name host _directoryl hostname would
become the following, if expressed in cell-relative form:

/.:/hosts/ hostname

The cell-relative form of the name principalname would be
/.:/sec/principals/principalname

where hostname and principalname are the host's name and principal name,
respectively.

Related Information

Functions: dce_cf _binding_entry_from_host(3dce)

dce_cf dced_entry from_host(3dce) , dce cf find_name_by key(3dce) ,
dce_cf _find_names_by key(3dce) , dce cf free cell aliases(3dce) |,

dce_cf _get _cell_aliases(3dce) , dce_cf _get cell_name(3dce) |,
dce_cf_get_csrgy_filename(3dce) , dce_cf _get_host_name(3dce) |,
dce_cf_prin_name_from_host(3dce) , dce_cf profile_entry_from_host(3dce)
dce_cf_same_cell_name(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AlX, Version 2.2: Command Reference.

8 IBM DCE for AlX, Version 2.2: Application Development Reference

dce_db_intro

Purpose

Description

Introduction to the DCE backing store interface

The DCE backing store interface allows you to maintain typed data between
program invocations. For example, you might store application-specific configuration
data in a backing store, and then retrieve it from the backing store when the
application restarts. The backing store routines can be used in servers, in clients or
in standalone programs that do not involve remote procedure calls (RPCs). A
program can have more than one backing store open at the same time.

Sometimes the backing store is called a database. For instance, the associated IDL
file is dce/database.idl , and the name of the backing store routines begin with
dce_db_ . The backing store is, however, not a full-fledged database in the
conventional sense, and it has no support for SQL or for any other query system.

Backing Store Data

The backing store interface provides for the tagged storage and retrieval of typed
data. The tag (or retrieval key) can be either a UUID or a standard C string. For a
specific backing store, the data type must be specified at compile time, and is
established through the IDL encoding services. Each backing store can contain only
a single data type.

Each data item (also called a data object or data record) consists of the data stored
by a single call to a storage routine (dce_db_store() , dce_db_store_by name() ,
or dce_db_store_by uuid()). Optionally, data items can have headers. If a backing
store has been created to use headers, then every data item must have a header.
For a description of the data item header, see the section in this reference page
entitled Data Types and Structures

Encoding and Decoding in the Backing Store

When an RPC sends data between a client and a server, it serializes the user’'s
data structures by using the IDL encoding services (ES), described in the IBM DCE
for AlIX, Version 2.2: Application Development Guide.

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler, idl,
writes the routine that encodes and decodes the data.

This routine is passed to dce_db_open() , remembered in the handle, and used by
the store and fetch routines:

* dce_db_fetch()

* dce_db_fetch_by name()
* dce_db_fetch_by uuid()
* dce_db_header_fetch()
* dce_db_store()

* dce_db_store_by name()

Chapter 1. DCE Routines 9

dce_db_intro(3dce)

* dce_db_store by uuid()
Memory Allocation

When fetching data, the encoding services allocate memory for the data structures
that are returned. These services accept a structure, and use rpc_sm_allocate() to
provide additional memory needed to hold the data.

The backing store library does not know what memory has been allocated, and
therefore cannot free it. For fetch calls that are made from a server stub, this is not
a problem, since the memory is freed automatically when the server call terminates.
For fetch calls that are made from a nonserver, the programmer is responsible for
freeing the memory.

Programs that call the fetch or store routines, such as dce_db_fetch() , outside of a
server operation (for instance, if a server does some backing store initialization, or
in a standalone program) must call rpc_sm_enable_allocate() first.

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be
indexed either by name, or by UUID, while the restricted versions accept only the
matching type. It is advantageous to use the restricted versions when they are
appropriate, because they provide type checking by the compiler, as well as visual
clarity of purpose.

The backing store routines are as follows, listed in alphabetical order:

dce_db_close()
Frees the handle returned by dce_db_open() . It closes any open files and
releases all other resources associated with the backing store.

dce_db_delete()
Deletes an item from a backing store that is indexed by name or by UUID.
The key’s type must match the flag that was used in dce_db_open() .

dce_db_delete_by name()
Deletes an item only from a backing store that is indexed by name.

dce_db_delete_by uuid()
Deletes an item only from a backing store that is indexed by UUID.

dce_db_fetch()
Retrieves data from a backing store that is indexed by name or by UUID.
The key’s type must match the flag that was used in dce_db_open() .

dce_db_fetch_by name()
Retrieves data only from a backing store that is indexed by name.

dce_db_fetch_by uuid()
Retrieves data only from a backing store that is indexed by UUID.

dce_db_free()
Releases the data supplied from a backing store.

dce_db_header_fetch()
Retrieves a header from a backing store.

dce_db_ing_count()
Returns the number of items in a backing store.

10 I1BM DCE for AlX, Version 2.2 Application Development Reference

dce_db_intro(3dce)

dce_db_iter_done()
Terminates and iteration operation initiated by dce_db_iter_start() . It
should be called when iteration is done.

dce_db_iter_next()
Returns the key for the next item from a backing store that is indexed by
name or by UUID. The db_s_no_more return value indicates that there are
no more items.

dce_db_iter_next_by name()
Returns the key for the next item only from a backing store that is indexed
by name. The db_s_no_more return value indicates that there are no more
items.

dce_db_iter_next_by uuid()
Returns the key for the next item only from a backing store that is indexed
by UUID. The db_s_no_more return value indicates that there are no more
items.

dce_db _iter_start()
Prepares for the start of iteration.

dce_db_lock()
Locks a backing store. A lock is associated with an open backing store’s
handle. The storage routines, dce_db_store() , dce_db_store_by name() ,
and dce_db_store_by uuid() , all acquire the lock before updating.

dce_db_open()

Creates a new backing store or opens an existing one. The backing store is
identified by a filename. Flags allow you to

» Create a new backing store, or open an existing one.

* Create a new backing store indexed by name, or indexed by UUID.
* Open an existing backing store read/write, or read-only.

* Use the standard data item header, or not.

The routine returns a handle by which subsequent routines can reference
the opened backing store.

dce_db_std_header_init()
Initializes a standard backing store header retrieved by
dce_db_header_fetch() . It only places the values into the header, and
does not write into the backing store.

dce_db_store()
Stores a data item into a backing store that is indexed by name or by
UUID. The key’s type must match the flag that was used in
dce_db_open() .

dce_db_store_by name()
Stores a data item only into a backing store that is indexed by name.

dce_db_store_by uuid()
Stores a data item only into a backing store that is indexed by UUID.

dce_db_unlock()
Unlocks a backing store.

Chapter 1. DCE Routines 11

dce_db_intro(3dce)

Cautions

Files

Data Types and Structures

dce_db_handle_t
An opaque handle to a backing store. Use dce_db_open() to acquire the
handle.

dce_db_header _t
The data structure that defines a standard backing store header for data
items. Use dce_db_header_fetch() to retrieve it from a backing store and
dce_db_std_header_init() to initialize it.

dce_db_convert_func_t
An opaque pointer to the data conversion function to be used when storing
or retrieving data. This function is specified as an argument to
dce_db_open() at open time. It converts between native format and on-disk
(serialized) format. It is generated from the IDL file by the IDL compiler.

You can not use conformant arrays in objects stored to a backing store. This is
because the idl-generated code that encodes (pickles) the structure has no way to
predict or detect the size of the array. When the object is fetched, there will likely be
insufficient space provided for the structure, and the array’s data will destroy
whatever is in memory after the structure.

database.idl
database.h
db.h

dbif.h

Related Information

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

12 IBM DCE for AlX, Version 2.2 Application Development Reference

dce_msg_intro

Purpose

Description

Introduction to the DCE messaging interface

All DCE message texts are assigned a unique message ID. This is a 32-bit number,
with the special value of all-bits-zero reserved to indicate success. All other
numbers are divided into a technology/component that identifies the message
catalog, and an index into the catalog.

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. (The messages may
also be compiled into the application code, rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed.)

In typical use, a message is first retrieved from a message catalog, allowing
localization to occur. If this fails, the default message is retrieved from an
in-memory table. If this fails, a fallback text identifying the message number is
generated. The two most useful routines, dce_error_ing_text() and

dce_msg_get() , and the DCE printf routines follow these rules. The rest of this API
gives direct access for special needs.

The dce_msg_cat_ *) routines provide a DCE abstraction to standard message
catalog routines, mapping DCE message IDs to message catalog names. They offer
a convenient way of opening and accessing a message catalog simply by supplying
the ID of a message contained in it, rather than the name of the catalog itself. Once
opened, the catalog is accessed by means of an opaque handle (the
dce_msg_cat_handle _t typedef).

The DCE Messaging Routines

The messaging routines are as follows, listed in alphabetical order:

dce_error_ing_text()
Retrieves from the installed DCE component message catalogs the
message text associated with an error status code returned by a DCE
library routine.

dce_fprintf()
Functions much like dce_printf() , except that it prints the message and its
arguments on the specified stream.

dce_msg_cat_close()
Closes the message catalog (which was opened with
dce_msg_cat_open()) .

dce_msg_cat_get_msg()
Retrieves the text for a specified message.

dce_msg_cat_open()
Opens the message catalog that contains the specified message, and

returns a handle that can be used in subsequent calls to
dce_msg_cat_get msg() .

Chapter 1. DCE Routines 13

dce_msg_intro(3dce)

Files

dce_msg_define_msg_table()
Registers an in-memory table containing the messages.

dce_msg_get()
Retrieves the text for a specified message. A convenience form of the
dce_msg_get_msg() routine.

dce_msg_get_cat_msg()
A convenience form of the dce_msg_cat get msg() routine. Unlike
dce_msg_cat_get msg() , dce_msg_get cat msg() does not require the
message catalog to be explicitly opened.

dce_msg_get_default_msg()
Retrieves a message from the application’s in-memory tables.

dce_msg_get_msg()
Retrieves the text for a specified message.

dce_msg_translate_table()
The dce_msg_translate table() routine overwrites the specified in-memory
message table with the values from the equivalent message catalogs.

dce_pgm_fprintf()
Equivalent to dce_fprintf() , except that it prepends the program name and
appends a newline.

dce_pgm_printf()
Equivalent to dce_printf() , except that it prepends the program name and
appends a newline.

dce_pgm_sprintf()
Equivalent to dce_sprintf() , except that it prepends the program name and
appends a newline.

dce_printf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments on the standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID, and
prints the message and its arguments into an allocated string that is
returned.

Data Types and Structures

dce_error_string_t
An array of characters big enough to hold any error text returned by
dce_error_ing_text() .

dce_msg_cat_handle_t
An opaque handle to a DCE message catalog. (Use dce_msg_cat_open()
to get a handle.)

dce/dce_msg.h

Related Information

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

14 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_intro

Purpose

Description

Introduction to the DCE server routines

The routines described on this reference page are used by servers to register
themselves with DCE. This includes registering with the RPC runtime, the local
endpoint mapper, and the namespace. Routines are also available to set up DCE
security so that servers can receive and invoke authenticated RPCs.

The DCE Server Routines

The server routines are as follows, listed in alphabetical order:

dce_server_disable_service()
Unregisters an individual interface of a DCE server from the RPC runtime,
and marks the server's endpoints as disabled in the dced ’'s endpoint
mapper service.

dce_server_enable_service()
Registers an individual interface (application service) of a DCE server with
the RPC runtime, and marks the server’'s endpoints as enabled in the dced
's endpoint mapper service.

dce_server_ing_attr()
Obtains application-specific attribute data from the dced server
configuration data.

dce_server_ing_server()
Obtains the server configuration data dced used to start the server.

dce_server_ing_uuids()
Obtains the UUIDs that dced used in its srvrconf and srvrexec facilities to
identify the server's configuration and execution data.

dce_server_register()
Registers a DCE server by establishing a server’s binding information,
registering its services (represented by interface IDs) with the RPC runtime,
and entering its endpoints in the dced ’s endpoint mapper service.

dce_server_sec_begin()
Prepares a server to receive and generate authenticated RPCs.

dce_server_sec_done()
Releases the resources previously set up by a call to
dce_server_sec_begin() .

dce_server_unregister()
Unregisters a DCE server by unregistering a servers services (interfaces)
from the RPC runtime, and removing the server’s endpoints from the dced
's endpoint mapper service.

dce_server_use_protseq()
Registers a protocol sequence to use for the server.

Chapter 1. DCE Routines 15

dce_server_intro(3dce)

Data Types and Structures

dce_server_handle_t
An opaque data structure containing information the runtime uses to
establish the server with DCE.

dce_server_register_data_t
A structure that contains an interface handle (generated by IDL), a default
EPV, and a count and array of dce_server_type_t s for services that use
RPC object types.

dce_server_type t
A structure containing a manager type UUID and an RPC entry-point vector
(EPV) that specified which routines implement the IDL interface for the
specific type.

server_t
See dced_intro(3dce) for a complete description of server_t.

Files
dce/dced.h

dce/dced_base.idl

Related Information

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

16 IBM DCE for AlX, Version 2.2 Application Development Reference

dce_svc_intro

Purpose

Description

Introduction to the DCE serviceability interface

The routines listed below are intended to be used by servers that export the
serviceability interface defined in service.idl . The complete list of these remote
serviceability implementation calls is as follows (the remote operation name is given
in the left column, and the corresponding implementation routine is given in the right
column).

Remote Operation Implementation Routine
dce_svc_set_route dce_svc_routing
dce_svc_set_dbg_route dce_svc_debug_routing
dce_svc_set_dbg_levels dce_svc_debug_set_levels
dce_svc_ing_components dce_svc_components
dce_svc_ing_table ce_svc_table
dce_svc_filter_control dce_svc_filter
dce_svc_ing_stats ce_svc_ing_stats

These routines perform all the necessary processing (except for checking clients’
authorization) that must be done by the application manager to implement the
remote serviceability operations.

Note that most of these routines have little meaning except as implementations of
remote operations. However, the dce_svc_routing() , dce_svc filter() ,
dce_svc_debug routing() and dce_svc _debug_set levels() routines can
conceivably be used by servers as purely local operations (for example, in order to
allow routing and debug levels to be set via command line flags when the server is
invoked).

The dce_svc_log_ routines provide read access to BINFILE format logs which are
created and written by the DCE serviceability routines; see svcroute(5) for further

information. The dce_svc_log handle_t typedef is an opaque pointer to a handle

for an opened log file.

Applications that use the serviceability interface can install a routine that will be
effectively hooked into the operation of the interface. If a filter is installed, it will be
called whenever one of the serviceability output routines (dce_svc_printf()) is
about to output a message; whenever this happens, the filter will receive a group of
parameters that describe the message that is about to be output and the
circumstances that provoked the action. The filter can then allow the message
output to proceed, or suppress the message.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

Chapter 1. DCE Routines 17

dce_svc_intro(3dce)
The DCE Serviceability Routines

The serviceability routines are as follows, listed in alphabetical order:

dce_assert()
Adds runtime "can’t happen” assertions to programs (such as, programming
errors).

dce_svc_components()
Returns an array containing the names of all components in the program
that have been registered with the dce_svc_register() routine.

dce_svc_debug_routing()
Specifies both the level of an applications’s serviceability debug messaging,
and where the messages are routed.

dce_svc_debug_set_levels()
Sets serviceability debugging message levels for a component.

dce_svc_define_filter()
Lets applications define serviceability filtering routines.

dce_svc filter()
Controls the behavior of the serviceability message filtering routine, if one
exists.

dce_svc_log_close()
Closes an open binary format serviceability log and releases all internal
state associated with the handle.

dce_svc_log_get()
Reads the next entry from a binary format serviceability log.

dce_svc_log_open()
Opens the specified file for reading.

dce_svc_log_rewind()
Rewinds the current reading position of the specified (by handle) log file to
the first record.

dce_svc_printf()
Provides the normal call for writing or displaying serviceability messages.

dce_svc_register()
Registers a serviceability handle and subcomponent table.

dce_svc_routing()
Specifies how normal (non-debug) serviceability messages are routed.

dce_svc_set _progname()
If not called, the application’s generated serviceability messages will be
identified by its process ID.

dce_svc_table()
Returns the serviceability subcomponent table registered with the specified
component.

dce_svc_unregister()
Destroys a serviceability handle, releasing all allocated resources
associated with the handle.

Data Types and Structures

dce_svc filter_proc_t
The prototype of a serviceability filtering routine.

18 IBM DCE for AlX, Version 2.2: Application Development Reference

dce_svc_intro(3dce)

dce_svc filterctl_proc_t
The prototype of a serviceability filter-control routine.

dce_svc_handle_t
An opaque handle to generate serviceability messages. (Use
dce_svc_register() or DCE_DEFINE_SVC_HANDLE to obtain one.)

dce_svc_log_handle_t
An opaque handle to an open serviceability binary format log file. (Use
dce_svc_log_open() to obtain one.)

dce_svc_log_prolog t
A structure containing data about a serviceability binary format log entry.

dce_svc_prolog_t
A structure containing the initial message parameters passed to the filtering
routine.

Files
dce/service.idl

dce/dce_svc.h

Related Information

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

Chapter 1. DCE Routines 19

dced_intro

Purpose

Description

Introduction to the DCE host daemon routines

This introduces the DCE host daemon application programming interface: the dced
API. This API gives management applications remote access to various data,
servers, and services on DCE hosts. Servers manage their own configuration in the
local dced by using the routines starting with dce_server , introduced in the
dce_server_intro(3dce) reference page.

The dced API Naming Conventions

All of the dced API routine names begin with the dced_ prefix. This APl contains
some specialized routines that operate on services represented by the following
keywords in the routine names:

hostdata
The host data management service stores host-specific data such as the
host name, the host’s cell name, and other data, and it provides access to
these data items.

server The server control service configures, starts, and stops servers, among
other things. Applications must distinguish two general states of server
control: server configuration (srvrconf) and server execution (srvrexec).

secval
The security validation service maintains a host's principal identity and
ensures applications that the DCE security daemon is genuine.

keytab
The key table management service remotely manages key tables.

The dced also provides the endpoint mapper service which has its own API,
described with the RPC API. These routines begin with rpc_ep and rpc_mgmt_ep .

Since some of the dced daemon’s services require the same operations (but on
different data types), the dced API also contains generic routines that may operate
on more than one of the preceding services. For example, you use the routine
dced_object_read() to read a data item (object) from the hostdata , srvrconf ,
srvrexec , or keytab services.

dced Binding Routines

A binding must be established to a dced service on a particular host before you can
use any other dced routines. The resources of the dced binding should also be
released when an application is finished with the service.

dced_hinding_create()
Establishes a dced binding to a host service.

dced_binding_from_rpc_binding()

Establishes a dced binding to a dced service on the host specified in an
already-established RPC binding handle to any server.

20 IBM DCE for AlX, Version 2.2: Application Development Reference

dced_intro(3dce)

dced_binding_set_auth_info()
Sets authentication, authorization, and protection level information for a
dced binding handle.

dced_binding_free()
Releases the resources of a dced binding handle.

Generic Entry Routines

All data maintained by dced is managed as entries. Most of the services of dced
have lists of entries traversed with a cursor that describe where the actual data is

maintained.

dced_entry_add()
Adds a keytab or hostdata entry.

dced_entry_remove()
Removes a hostdata or keytab data entry from dced.

dced_initialize_cursor()

Obtains a list of data entries from dced and sets a cursor at the beginning

of the list.

dced_entry_get next()
Obtains the next data entry from a list of entries.

dced_release_cursor()
Releases the resources associated with a cursor which traverses a
service’s list of entries.

dced_list_get()
Returns the list of data entries maintained by a DCE host service.

dced_list_release()
Releases the resources of a list of entries.

dced_ing_id()
Obtains the UUID associated with an entry name.

dced_ing_name()
Obtains the name associated with an entry UUID.

Generic Routines to Read Data Objects

These routines obtain the actual data for items to which entries refer (objects).

dced_object_read()
Reads one data item of a dced service, based on the entry UUID.

dced_object_read_all()
Reads all the data of a dced service’s entry list.

dced_objects_release()
Releases the resources allocated for data obtained.
Host Data Management Routines

dced_hostdata_create()
Creates a hostdata item and the associated entry.

dced_hostdata_read()
Reads a hostdata item.

dced_hostdata_write()
Replaces an existing hostdata item.

Chapter 1. DCE Routines

21

dced_intro(3dce)

dced_hostdata_delete()
Deletes a hostdata item from a specific host and removes the associated
entry.

Server Configuration Control Routines

dced_server_create()
Creates a DCE server’s configuration data.

dced_server_modify_attributes()
Modifies a DCE server’s configuration data.

dced_server_delete()
Deletes a DCE server’s configuration data.

dced_server_start()
Starts a DCE-configured server.

Server Execution Control Routines

dced_server_disable_if()
Disables a service provided by a server.

dced_server_enable_if()
Re-enables a service provided by a server.

dced_server_stop()
Stops a DCE-configured server.

Security Validation Routines

dced_secval_start()
Starts a host’s security validation service.

dced_secval_validate()
Validates that the DCE security daemon (secd) used by a specific host is
legitimate.

dced_secval_status()
Returns a status parameter of TRUE if the security validation service is
activated and FALSE if not.

dced_secval_stop()
Stops a host’s security validation service.

Key Table Management Routines

dced_keytab_create()
Creates a key table with a list of keys in a new file.

dced_keytab_delete()
Deletes a key table file and removes the associated entry.

dced_keytab_initialize_cursor()
Obtains a list of keys from a key table and sets a cursor at the beginning of
the list.

dced_keytab_get_next_key()
Returns a key from a cached list, and advances the cursor.

dced_keytab_release_cursor()
Releases the resources associated with a cursor that traverses a key table.

dced_keytab_add_key()
Adds a key to a key table.

22 IBM DCE for AlX, Version 2.2: Application Development Reference

dced_intro(3dce)

dced_keytab_change key()
Changes a key in both a key table and in the security registry.

dced_keytab_remove_key()
Removes a key from a key table.

Data Types and Structures

The following data types used with the dced API are defined in dce/dced_base.idl
and are shown here in alphabetical order.

dced_attr_list_t
This data structure specifies the configuration attributes to use when you
start a server via dced. The structure consists of the following:

count An unsigned32 number representing the number of attributes in
the list.

list An array of configuration attributes where each element is of type
sec_attr_t . This data type is described in the sec_intro(3sec)
reference page. For dced, the list[i].attr_id field can have values
of either dced_g_uuid_fileattr specifying plain text or
dced_g_uuid_binfileattr specifying binary data.

dced_binding_handle _t
A dced binding handle is an opaque pointer that refers to information that
includes a dced service (hostdata , srvrconf , srvrexec , secval, or keytab)
and RPC bhinding information for a specific DCE host daemon.

dced_cursor_t
The entry list cursor is an opaque pointer used to keep track of a location in
an entry list between calls that traverse the list.

dced_entry t
An entry is the structure that contains information about a data item (or
object) maintained by a dced service. The actual data is maintained
elsewhere. Each entry consists of the following structure members:

id A unique identifer of type uuid_t that dced maintains for every data
item it maintains

name The name for the data item. The data type is dced_string_t .

description
A brief description the data item (of type dced_string_t) for the
convenience of human users.

storage_tag
A string of type dced_string_t describing the location of the actual
data. This is implementation-specific and may be a file (with a
pathname) on the host system or a storage identifier for the dced
process.

dced_entry_list_t
An entry list is a uniform way to list the data items a dced service
maintains. The entry list structure contains a list of all the entries for a given
service. For example, the complete list of all entries of hostdata, server
configuration data, server execution data, and keytab data are each
maintained in separate entry lists. The structure consists of the following:

count An unsigned32 number representing the number of entries in the
list.

Chapter 1. DCE Routines 23

dced_intro(3dce)

list An array of entries where each element is of type dced_entry t .

dced_key t
A key consists of the following structure members:

principal
A dced_string_t type string representing the principal for the key.

version
An unsigned32 number representing the version number of the
key.

authn_service
An unsigned32 number representing the authentication service
used.

passwd
A pointer to a password. This is of type sec_passwd_rec_t .

See also the security introduction reference page, sec_intro(3sec) .

dced key list t
A key list contains all the keys for a given key table and consists of the
following structure elements:

count An unsigned32 number representing the number of keys in the list.
list An array of keys where each element is of type dced_key t .

dced_keytab_cursor_t
The keytab cursor is an opaque pointer used to keep track of a location in a
key list between calls that traverse the list.

dced_opnum_list t
A list of operation numbers is used in the service_t structure. This structure
consists of the following fields:

count An unsigned32 number representing the humber of operations in
the list.

list An array of UUIDs where each element is of type uuid_t.

dced_service_type_t
The dced service type distinguishes the services provided by dced. It is an
enumerated type used mainly in a parameter of the
dced_binding_from_rpc_binding() routine. It can have one of the
following values:

dced_e_service_type_hostdata
The host data management service.

dced_e_service_type_srvrconf
The server configuration management service.

dced_e_service_type_srvrexec
The server execution management service.

dced_e_service_type_secval

The security validation service.
dced_e_service_type_keytab

The key table management service.

dced_e_service_type_null
A NULL service type used internally.

24 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_intro(3dce)

dced_string_t
This data type is a character string from the Portable Character Set (PCS).

dced_string_list_t
A list of strings with the following format:

count An unsigned32 number representing the number of strings in the
list.

list An array of strings where each element is of type dced_string_t .

dced_tower _list t
A list of protocol towers used in the service_t structure. This structure
consists of the following fields:

count An unsigned32 number representing the number of protocol towers
in the list.

list An array of pointers where each element is a pointer to a protocol
tower of the type sec_attr_twr_set p_t . This data type is described
in the sec_intro(3sec) reference page.

server_fixedattr_t
This structure is a field in the server_t structure. It contains the following

fields:

startupflags
This field is of type unsigned32 and can be any combination of the
following bits:

server_c_startup_at_boot
This means that dced should start the server when dced is
started.

server_c_startup_auto
This means that the server can be started automatically if
dced determines there is a need.

server_c_startup_explicit
This means dced can start the server if it receives an
explicit command to do so via dced_server_start() or the
dcecp operation server start

server_c_startup_on_failure
This means that the server should be restarted by dced if it
exits with an unsuccesful exit status.

Several bits are also reserved for vendor-specific startup and
include the following:

server_c_startup_vendorl

server_c_startup_vendor2

server_c_startup_vendor3

server_c_startup_vendor4

flags This represents the execution state of the server and is the
unsigned32 type. This field is maintained only by dced and should
not be modified. Valid values to check for are self-explanatory and
include the following:

server_c_exec_notrunning

Chapter 1. DCE Routines 25

dced_intro(3dce)

server_c_exec_running

Several bits are also reserved for vendor-specific execution states
and include:

server_c_exec_vendorl
server_c_exec_vendor2
server_c_exec_vendor3
server_c_exec_vendor4

program
This is the full path name of the server and is of type
dced_string_t .

arguments
This is a list of arguments for the server and is of type
dced_string_list_t

prerequisites
This is an advisory field that means this server is a client of other
prerequisite servers whose IDs are in a list of type uuid_list_t . The
UUIDs should be the id fields from the server_t structures of the
relevent servers.

keytables
This is a list of keytab entry UUIDs representing the key tables for
this server and is of type uuid_list t .

posix_uid
This is a POSIX execution attribute for the user ID. It is of type
unsigned32 .

posix_gid
This is a POSIX execution attribute for the group ID. It is of type
unsigned32 .

posix_dir
This is a POSIX execution attribute for the directory in which the
server started when it is invoked. It is of type dced_string t .

server_t
The DCE host daemon describes a server as follows:

id Each server has a unique ID of type uuid_t .
name Each server's name is of type dced_string_t .

entryname
The server’s entry name is a hint as to where the server appears in
the namespace. This is of type dced_string_t .

services
Each server offers a list of services specified in a list of type
service_list_t . This structure has the following members:

count An unsigned32 number representing the number of
services in the list.

list A pointer to an array of services where each element is of
type service _t .

26 IBM DCE for AlX, Version 2.2: Application Development Reference

dced_intro(3dce)

fixed This is a set of attributes common to all DCE implementations. The
data type is server_fixedattr_t .

attributes
This field is of type dced_attr_list t and contains a list of attributes
representing the behavior specific to a particular server or host.

prin_names
This field is a list of principal names for the server and is of type
dced_string_list t

exec_data
Data about an executing server is maintained in a tagged union
(named tagged_union) with a discriminator of type unsigned32
named execstate representing the server's execution state.

The union has the following two execution states:

server_c_exec_notrunning
For the case where the server is not running, the union
member has no value. For example:

if(server->exec_data.execstate == server_c_exec_notrunning)
server->exec_data.tagged_union = NULL;

server_c_exec_running
For the case where the server is running, and the value of
the union member is a srvrexec_data t data type named
running_data . A srvrexec_data_t structure contains the
following members:

instance
Each instance of a server on a host is identified
with a UUID (type uuid_t).

posix_pid
Each server has a POSIX process ID of type
unsigned32 .

service_t
This structure describes each service offered by a server. The server_t
structure, described earlier, contains an array of these structures. The
service_t structure contains the following fields:

ifspec An interface specification of type rpc_if id t, generated by an idl
compilation of the interface definition representing the service. This
data type is described in the rpc_intro(3rpc) reference page.

ifname
An interface name of type dced_string_t .

annotation
An annotation about the purpose of the interface (type
dced_string_t). This field is for user display purposes only.

flags The flag field is of type unsigned32 and currently has only one bit
field defined, service_c_disabled . If this flag is set, it indicates that
the service is not currently available for the server. Also, the dced
endpoint mapper will not map an endpoint to a disabled service.
Several values are also reserved for vendor-specific use:

service_c_vendorl

service_c_vendor2

Chapter 1. DCE Routines 27

dced_intro(3dce)
service_c_vendor3
service_c_vendor4

entryname
The entry name (type dced_string_t) is a hint as to where this
service appears in the namespace. If the value is NULL, the value
in the entryname field of the server_t structure is used.

objects
This is a list of objects supported by the service. The list is of type
uuid_list_t .

operations

This is a list of operation numbers of type dced_opnum_list t . This
field is not currently used.

towers
This is a list of protocol towers of type dced_tower_list_t
specifying the endpoints where this server can be reached.

srvrexec_stop_method _t
The server execution stop method is an enumerated type with one of the
following values:

srvrexec_stop_rpc
Stops the running server gracefully by letting the server complete
all outstanding remote procedure calls. This causes dced to invoke
the rpc_mgmt_server_stop_listening() routine in that server.

srvrexec_stop_soft
This uses a system-specific mechanism such as the SIGTERM
signal. It stops the running server with a mechanism that the server
can ignore or intercept in order to do application-specific cleanup.

srvrexec_stop_hard
This uses a system-specific mechanism such as the SIGKILL
signal. It stops the running server immediately with a mechanism
that the server cannot intercept.

srvrexec_stop_error
This uses a system-specific mechanism such as the SIGABRT
signal. The local operating system captures the server’s state
before stopping it, and the server can also intercept it.

uuid_list_t
A list of UUIDs in the following format:

count An unsigned32 number representing the number of UUIDs in the
list.

list A pointer to an array of UUIDs where each element is of type
uuid_t .
Files
dce/dced_base.h
dce/dced.h
dce/dced_data.h
dce/rpctypes.idl

dce/passwd.idl

28 IBM DCE for AlX, Version 2.2: Application Development Reference

dced_intro(3dce)

dce/sec_attr_base.idl

Related Information
Functions: dced_ *API.

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

Chapter 1. DCE Routines 29

dce_svc_intro

Purpose

Description

Introduction to the DCE serviceability interface

The routines listed below are intended to be used by servers that export the
serviceability interface defined in service.idl . The complete list of these remote
serviceability implementation calls is as follows (the remote operation name is given
in the left column, and the corresponding implementation routine is given in the right
column).

Remote Operation | Implementation Routine
dce_svc_set_route ce_svc_routing
dce_svc_set_dbg_route ce_svc_debug_routing
dce_svc_set_dbg_levels ce_svc_debug_set_levels
dce_svc_ing_components dce_svc_components
dce_svc_ing_table ce_svc_table
dce_svc_filter_control dce_svc_filter
dce_svc_ing_stats ce_svc_ing_stats

These routines perform all the necessary processing (except for checking clients’
authorization) that must be done by the application manager to implement the
remote serviceability operations.

Note that most of these routines have little meaning except as implementations of
remote operations. However, the dce_svc_routing() , dce_svc filter() ,
dce_svc_debug routing() and dce_svc _debug_set levels() routines can
conceivably be used by servers as purely local operations (for example, in order to
allow routing and debug levels to be set via command line flags when the server is
invoked).

The dce_svc_log_ routines provide read access to BINFILE format logs which are
created and written by the DCE serviceability routines; see svcroute(5) for further
information. The dce_svc_log handle_t typedef is an opaque pointer to a handle
for an opened log file.

Applications that use the serviceability interface can install a routine that will be
effectively hooked into the operation of the interface. If a filter is installed, it will be
called whenever one of the serviceability output routines (dce_svc_printf()) is
about to output a message; whenever this happens, the filter will receive a group of
parameters that describe the message that is about to be output and the
circumstances that provoked the action. The filter can then allow the message
output to proceed, or suppress the message.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

30 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_intro(3dce)
The DCE Serviceability Routines

The serviceability routines are as follows, listed in alphabetical order:

dce_assert()
Adds runtime ""can’t happen” assertions to programs (such as,
programming errors).

dce_svc_components()
Returns an array containing the names of all components in the program
that have been registered with the dce_svc_register() routine.

dce_svc_debug_routing()
Specifies both the level of an applications’s serviceability debug messaging,
and where the messages are routed.

dce_svc_debug_set_levels()
Sets serviceability debugging message levels for a component.

dce_svc_define_filter()
Lets applications define serviceability filtering routines.

dce_svc filter()
Controls the behavior of the serviceability message filtering routine, if one
exists.

dce_svc_log_close()
Closes an open binary format serviceability log and releases all internal
state associated with the handle.

dce_svc_log_get()
Reads the next entry from a binary format serviceability log.

dce_svc_log_open()
Opens the specified file for reading.

dce_svc_log_rewind()
Rewinds the current reading position of the specified (by handle) log file to
the first record.

dce_svc_printf()
Provides the normal call for writing or displaying serviceability messages.

dce_svc_register()
Registers a serviceability handle and subcomponent table.

dce_svc_routing()
Specifies how normal (non-debug) serviceability messages are routed.

dce_svc_set _progname()
If not called, the application’s generated serviceability messages will be
identified by its process ID.

dce_svc_table()
Returns the serviceability subcomponent table registered with the specified
component.

dce_svc_unregister()
Destroys a serviceability handle, releasing all allocated resources
associated with the handle.

Data Types and Structures

dce_svc _filter_proc_t
The prototype of a serviceability filtering routine.

Chapter 1. DCE Routines 31

dce_svc_intro(3dce)

dce_svc filterctl_proc_t
The prototype of a serviceability filter-control routine.

dce_svc_handle_t
An opaque handle to generate serviceability messages. (Use
dce_svc_register() or DCE_DEFINE_SVC_HANDLE to obtain one.)

dce_svc_log_handle_t
An opaque handle to an open serviceability binary format log file. (Use
dce_svc_log_open() to obtain one.)

dce_svc_log_prolog_t
A structure containing data about a serviceability binary format log entry.

dce_svc_prolog_t
A structure containing the initial message parameters passed to the filtering
routine.

Files
dce/service.idl

dce/dce_svc.h

Related Information

Books: IBM DCE for AlX, Version 2.2: Application Development Guide

32 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_assert

Purpose

Synopsis

Parameters

Description

Errors

Inserts program diagnostics

#define DCE_ASSERT
#include <dce/assert.h>

void dce_assert(
dce_svc_handle_t handle
int expression);

Input
handle A registered serviceability handle.

expression
An expression the truth of which is to be tested.

The dce_assert macro is used to add runtime ""can’t happen” assertions to
programs (that is, programming errors). On execution, when expression evaluates
to O (that is, to FALSE), then dce_svc_printf() is called with parameters to
generate a message identifying the expression, source file and line number. The
message is generated with a severity level of svc_c_sev_fatal , with the
svc_c_action_abort flag specified (which will cause the program to abort when the
assertion fails and the message is generated). See the dce_svc_register(3dce)
reference page for more information.

The handle parameter should be a registered serviceability handle; it can also be
NULL, in which case an internal serviceability handle will be used.

Assertion-checking can be enabled or disabled at compile time. The header file

dce/assert.h can be included multiple times. If DCE_ASSERT is defined before the
header is included, assertion checking is performed. If it is not so defined, then the
assertion-checking code is not compiled in. The system default is set in dce/dce.h .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_register(3dce) .

Chapter 1. DCE Routines 33

dce_attr_sch_aclmgr_strings

Purpose

Format

Parameters

Retrieves printable ACL strings for each permission bit that the acl_mgr_type will
support.

#include <dce/dce_attr_sch.h>

void dce_attr_sch_aclmgr_strings(
dce_attr_sch_handle_t 4,
uuid_t *acl_mgr_type,
unsigned32 size_avail,
uuid_t *acl_mgr_type chain,
sec_acl_printstring_t *acl _mgr_info,
boolean32 =*tokenize,
unsigned32 *total num printstrings,
unsigned32 *size_used,
sec_acl_printstring_t permstrings[],
error_status_t *st);

Input

h An opaque handle to the schema on which this operation is being
performed.

acl_mgr_type
The UUID of the acl_mgr_type for which the printstrings are to be returned.

size_avail
The size of the permstrings array.

Output

acl_mgr_type chain
If not uuid_nil , identifies the next acl_mgr_type UUID in a chain supporting
ACL managers with more than 32 permission bits.

acl_mgr_info
Printstrings containing the name, help information, and complete set of
supported permission bits for this ACL manager.

tokenize
If TRUE, permission bit strings should be tokenized. If FALSE, permission
print strings are unambiguous and print strings for various permissions can
be concatenated.

total_num_printstrings
The total number of permission print strings supported by this
acl_mgr_type.

size_used
The number of perm print strings returned.

permstrings[]
An array containing the print strings for each permission supported by this
acl_mgr_type.

34 IBM DCE for AIX, Version 2.2: Application Development Reference

Usage

Context

dce_attr_sch_aclmgr_strings(3sec)

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns
dce_attr_s_not_implemented

The dce_attr_sch_aclmgr_strings routine retrieves printable representations for
each permission bit that the input ac/_mgr_type will support. There can be aliases
for common permission combinations; by convention, simple entries should appear
at the beginning of the array, and combinations should appear at the end. When
FALSE, the tokenize flag indicates that permission print strings are unambiguous
and therefore can be concatenated for various permissions.When TRUE, however,
this property does not hold and the strings should be tokenized before input or
output.

The acl_mgr_info string provides a hame and help information for the manager type
as well as the complete set of supported permission bits. The total_num_printstrings
parameter contains the total number of ACL print strings supported by this ACL
manager type. If total_num_printstrings is greater than size_avail, this routine
should be invoked again with a buffer of the appropriate size.

If acl_mgr_type supports more than 32 permission bits, multiple manager types can
be used, one for each 32-bit-wide slice of permissions. When this is the case the
acl_mgr_type chain parameter is set to the UUID of the next manager type in the
set.The final result for the chain returns uuid_nil in the manager_type chain
parameter.

lusr/include/dce/dce_attr_sch.idl
The idl file from which dce/dce_attr_sch.h was derived.

Chapter 1. DCE Routines 35

dce_attr_sch_bind

Purpose

Synopsis

Parameters

Description

Files

Errors

Returns an opaque handle to a schema object

#include <dce/dce_attr_base.h>

void dce_attr_sch_bind(
dce_attr_component_name_t schema_name
dce_bind_auth_info_t *auth_info
dce_attr_sch_handle_t *h
error_status_t *st);

Input

schema_name
A pointer to a value of type dce_attr component_name_t that specifies
the name of the schema object to bind to.

auth_info
A value of type dce_bind_auth_info_t that defines the authentication and
authorization parameters to use with the binding handle. If set to NULL, the
default authentication and authorization parameters are used.

Output

h An opaque handle of type dce_attr_sch_handle_t to the named schema
object for use with dce_attr_sch operations.

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_bind() routine returns an opaque handle of type
dce_attr_sch_handle_t to a named schema object. The returned handle can then
be used for subsequent dce_attr_sch operations performed on the object.

Permissions Required

The dce_attr_sch_update_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

/usrfinclude/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AIX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

36 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_bind(3dce)
dce_attr_ s _bad_name
sec_login_s no_current_context
rpc_s_entry_not_found
rpc_s_no_more_bindings
dce_attr_s_unknown_auth_info_type
dce_attr s _no_memory

error_status_ok
Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_bind_free(3dce)

Chapter 1. DCE Routines 37

dce_attr_sch_bind_free

Purpose

Synopsis

Parameters

Description

Files

Errors

Releases an opaque handle of type dce_attr_sch_handle_t to a schema object

#include <dce/dce_attr_base.h>

void dce_attr_sch_bind_free(
dce_attr_sch_handle_t *h
error_status_t *st);

Input
h An opaque handle of type dce_attr_sch_handle_t .

Output

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_bhind_free() routine releases an opaque handle of type
dce_attr_sch_handle_t . The handle was returned with the dce_attr_sch_bind()
routine and used to perform dce_attr_sch operations.

Permissions Required

The dce_attr_sch_bind_free() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

lusr/include/dce/dce_attr_sch.idl
The idl file from which dce/dce_attr_sch.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_bind(3dce) .

38 IBM DCE for AIX, Version 2.2: Application Development Reference

dce attr_sch_create_entry

Purpose

Creates a schema entry in a schema bound to by a previous dce_attr_sch_bind()

Synopsis

#include <dce/dce_attr_base.h>

void dce_attr_sch_create_entry(
dce_attr_sch_handle_t h
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Parameters

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

schema_entry
A pointer to a dce_attr_schema_entry_t that contains the schema entry
values for the schema in which the entry is to be created.

Output

st A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_create_entry() routine creates schema entries that define
attribute types in the schema object bound to by h.

Permissions Required

The dce_attr_sch_create_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.
Files
/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr s bad_hinding

error_status_ok

Chapter 1. DCE Routines 39

dce_attr_sch_create_entry(3dce)

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_delete_entry(3dce)
dce_attr_sch_update(3dce)

40 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_alloc

Purpose

Synopsis

Parameters

Description

Files

Errors

Allocates resources to a cursor used with dce_attr_sch_scan()

#include <dce/dce_attr_sch.h>

void dce_rgy_attr_cursor_alloc(
dce_attr_cursor_t *cursor
error_status_t *status);

Output
cursor A pointer to a dce_attr_cursor_t .

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_cursor_alloc() routine allocates resources to a cursor used with
the dce_attr_sch_scan() routine. This routine, which is a local operation, does not
initialize cursor.

The dce_attr_sch_cursor_init() routine, which makes a remote call, allocates and
initializes the cursor. In addition, dce_attr_sch_cursor_init() returns the total
number of entries found in the schema as an output parameter;
dce_attr_sch_cursor_alloc() does not.

Permissions Required

The dce_attr_sch_cursor_alloc() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

/usrf/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr s no_memory

error_status_ok

Chapter 1. DCE Routines 41

dce_attr_sch_cursor_alloc(3dce)

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_init(3dce)
dce_attr_sch_cursor_release(3dce) , dce_attr_sch_scan(3dce).

42 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_init

Purpose

Synopsis

Parameters

Description

Files

Initializes and allocates a cursor used with dce_attr_sch_scan()

#include <dce/dce_attr_base.h>

void dce_rgy_attr_cursor_init(
dce_attr_sch_handle_t h
unsigned32 xcur_num_entries
dce_attr_cursor_t *cursor
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

Output

cur_num_entries
A pointer to an unsigned 32-bit integer that specifies the total number of
entries contained in the schema at the time of this call.

cursor A pointer to a dce_attr_cursor_t that is initialized to the first entry in the
the schema.

status A pointer to the completion status. On successful completion, the call
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_cursor_init() routine initializes and allocates a cursor used with
the dce_attr_sch_scan() routine. This call makes remote calls to initialize the
cursor. To limit the number of remote calls, use the dce_attr_sch_cursor_alloc()
routine to allocate cursor, but not initialize it. If the cursor input to
dce_attr_sch_scan() has not been initialized, dce_attr_sch_scan() routine will
initialize it; if it has been initialized, dce_attr_sch_scan() advances it.

Unlike the dce_attr_sch_cursor_alloc() routine, the dce_attr_sch_cursor_init()
routine supplies the total number of entries found in the schema as an output
parameter.

Permissions Required

None.

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Chapter 1. DCE Routines 43

dce_attr_sch_cursor_init(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding
dce_attr_s_no_memory

error_status_ok
Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_allocate(3dce),
dce_attr_sch_cursor_release(3dce) , dce_attr_sch_scan(3dce).

44 |BM DCE for AlIX, Version 2.2: Application Development Reference

dce_attr_sch_cursor_release

Purpose

Releases states associated with a cursor that has been allocated with either
dce_attr_sch_cursor_init() or dce_attr_sch_cursor_alloc()

Synopsis
#include <dce/dce_attr_base.h>
void dce_attr_sch_cursor_release(

dce_attr_cursor_t =*cursor
error_status_t *status);

Parameters

Input/Output

cursor A pointer to a dce_attr_cursor_t . As an input parameter, cursor must have
been initialized to the first entry in a schema. As an output parameter,
cursor is uninitialized with all resources released.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_init() routine releases the resources allocated to a
cursor that has been allocated by either dce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc() . This call is a local operation and makes no remote
calls.

Permissions Required
None.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_cursor_reset(3dce)
dce_attr_sch_scan(3dce) .

Chapter 1. DCE Routines 45

dce_attr_sch_cursor_reset

Purpose

Synopsis

Parameters

Description

Files

Errors

Resets a cursor that has been allocated with either dce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc()

#include <dce/dce_attr_base.h>

void dce_attr_cursor_reset(
dce_attr_cursor_t =*cursor
error_status_t *status);

Input/Output

cursor A pointer to a dce_attr_cursor_t . As an input parameter, an initialized
cursor. As an output parameter, cursor is reset to the first attribute in the
schema.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_cursor_reset() routine resets a dce_attr_cursor_t that has
been allocated by either the dce_attr_sch_cursor_init() routine or the
dce_attr_sch_cursor_alloc() routine. The reset cursor can then be used to
process a new dce_attr_sch_scan query by reusing the cursor instead of releasing
and reallocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

/usr/include/dce/dce_attr_sch.idl
The idl file from which dce/dce_attr_sch.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_scan(3dce) .

46 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_delete entry

Purpose

Synopsis

Parameters

Description

Files

Errors

Deletes a schema entry

#include <dce/dce_attr_sch.h>

void dce_attr_sch_delete_entry(
dce_attr_sch_handle_t h
uuid_t *attr_id
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

attr_id A pointer to a uuid_t that identifies the schema entry to be deleted in the
schema bound to by h.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_delete_entry() routine deletes a schema entry. Because this is
a radical operation that invalidates any existing attributes of this type on objects
dominated by the schema, access to this operation should be severely limited.

Permissions Required

The dce_attr_sch_delete_entry() routine requires requires appropriate permissions
on the schema object. These permissions are managed by the target server.

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr s bad_hinding

error_status_ok

Chapter 1. DCE Routines 47

dce_attr_sch_delete_entry(3dce)

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_create_entry(3dce) ,
dce_attr_sch_update_entry(3dce)

48 IBM DCE for AIX, Version 2.2: Application Development Reference

dce attr_sch_get acl _mgrs

Purpose

Synopsis

Parameters

Description

Retrieves the manager types of the ACLs protecting the objects dominated by a
named schema

#include <dce/dce_attr_base.h>

void dce_attr_sch_get_acl_mgrs(
dce_attr_sch_handle_t h
unsigned32 size_avail
unsigned32 *size_used
unsigned32 *num_acl_mgr_types
uuid_t acl _mgr_types[1
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

size_avail
An unsigned 32-bit integer containing the allocated length of the
acl_manager_types[] array.

Output

size_used
An unsigned 32-bit integer containing the number of output entries returned
in the acl_mgr_types|] array.

num_acl_mgr_types
An unsigned 32-bit integer containing the number of types returned in the
acl_mgr_types|] array. This may be greater than size_used if there was not
enough space allocated by size avail for all the manager types in the
acl_manager _types[] array.

acl_mgr_types|]
An array of the length specified in size_avail to contain UUIDs (of type
uuid_t) identifying the types of ACL managers protecting the target object.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_get_acl_mgrs() routine returns a list of the manager types
protecting the schema object identified by h.

ACL editors and browsers can use this operation to determine the ACL manager
types protecting a selected schema object.

Chapter 1. DCE Routines 49

dce_attr_sch_get_acl_mgrs(3dce)

Permissions Required
The dce_attr_sch_get_acl_mgrs() routine requires appropriate permissions on the

schema object for which the ACL manager types are to be returned. These
permissions are managed by the target server.

Files

lusr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Errors
The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_not_implemented

error_status_ok
Related Information

Functions: dce_attr_intro(3dce) .

50 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_lookup_by id

Purpose

Synopsis

Parameters

Description

Files

Errors

Reads a schema entry identified by UUID

#include <dce/dce_attr_base.h>

void dce_attr_sch_lookup_by id(
dce_attr_sch_handle_t h
uuid_t *attr_id
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

attr_id A pointer to a uuid_t that identifies a schema entry.

Output

schema_entry
A dce_attr_schema_entry t that contains an entry identified by attr_id.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_lookup_by id() routine reads a schema entry identified by
attr_id. This routine is useful for programmatic access.

After a successful call, free the resources allocated by this routine for the
schema_entry parameter by using the sec_attr_util_sch_ent_free_ptrs() routine.

Permissions Required

The dce_attr_sch_lookup_by id() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_hinding

Chapter 1. DCE Routines 51

dce_attr_sch_lookup_by_id(3dce)

error_status_ok
Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_lookup_by name(3dce)
dce_attr_sch_scan(3dce) .

52 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_lookup_by name

Purpose

Synopsis

Parameters

Description

Files

Errors

Reads a schema entry identified by name

#include <dce/dce_attr_base.h>

void dce_attr_sch_lookup_by name(
dce_attr_sch_handle_t h
id1_char *attr_name
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

attr_name
A pointer to a character string that identifies the schema entry.
Output

schema_entry
A dce_attr_schema_entry t that contains the schema entry identified by
attr_name.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_lookup_by name() routine reads a schema entry identified by
name. This routine is useful for use with an interactive editor.

After a successful call, free the resources allocated by this routine for the attr
parameter by using the sec_attr_util_inst free_ptrs() routine.

Permissions Required

The dce_attr_sch_lookup_by name() routine requires appropriate permissions on
the schema object. These permissions are managed by the target server.

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 53

dce_attr_sch_lookup_by name(3dce)
dce_attr_s_bad_binding

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_lookup_ by id(3dce)
dce_attr_sch_scan(3dce) .

54 1BM DCE for AlX, Version 2.2: Application Development Reference

dce_attr_sch_scan

Purpose

Synopsis

Parameters

Description

Reads a specified number of schema entries

#include <dce/dce_attr_base.h>

void dce_attr_sch_scan(
dce_attr_sch_handle_t h
dce_attr_cursor_t =*cursor
unsigned32 num_to_read
unsigned32 *num_read
dce_attr_schema_entry t schema entries|[]
error_status_t *status);

Input

h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

num_to_read
An unsigned 32-bit integer specifying the size of the schema_entries]] array
and the maximum number of entries to be returned.

Input/Output

cursor A pointer to a dce_attr_cursor_t . As input cursor must be allocated and
can be initialized. If cursor is not initialized, dce_attr_sch_scan will
initialize it. As output, cursor is positioned at the first schema entry after the
returned entries.

Output

num_read
A pointer to an unsigned 32-bit integer specifying the number of entries
returned in schema_entries|].

schema_entries|]
A dce_attr_schema_entry t that contains an array of the returned schema
entries.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_scan() routine reads schema entries. The read begins at the
entry at which the input cursor is positioned and ends after the number of entries
specified in num_to_read.

The input cursor must have been allocated by either the
dce_attr_sch_cursor_init() or the dce_attr_sch_cursor_alloc() routine. If the
input cursor is not initialized, dce_attr_sch_scan() initializes it; if cursor is
initialized, dce_attr_sch_scan() simply advances it.

Chapter 1. DCE Routines 55

dce_attr_sch_scan(3dce)

To read all entries in a schema, make successive dce_attr_sch_scan() calls. When
all entries have been read, the routine returns the message no_more_entries .

This routine is useful as a browser.
Permissions Required

The dce_attr_sch_scan() routine requires requires appropriate permissions on the
schema object. These permissions are managed by the target server.
Files
/usrf/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding
dce_attr_s_bad_cursor

error_status_ok

Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce) ,
dce_attr_sch_cursor_init(3dce) , dce_attr_sch_cursor_release(3dce)

56 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_attr_sch_update_entry

Purpose

Synopsis

Parameters

Description

Updates a schema entry

#include <dce/dce_attr_sch.h>

void dce_attr_sch_update_entry(
dce_attr_sch_handle_t h
dce_attr_schema_entry_parts_t modify parts
dce_attr_schema_entry_t *schema_entry
error_status_t *status);

Input
h An opaque handle bound to a schema object. Use dce_attr_sch_bind() to
acquire the handle.

modify_parts
A value of type dce_attr_schema_entry _parts_t that identifies the fields in
the schema bound to by h that can be modified.

schema_entry
A pointer to a dce_attr_schema_entry t that contains the schema entry
values for the schema entry to be updated.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_attr_sch_update_entry() routine modifies schema entries. Only those
schema entry fields set to be modified in the dce_attr_schema_entry_parts_ t data
type can be modified.

Some schema entry components can never be modified. Instead, in order to make
any changes to these components, the schema entry must be deleted (which
deletes all attribute instances of that type) and recreated. The schema entry
components that can never be modified are as follows:

+ Attribute name

* Reserved flag

* Apply defaults flag
* Intercell action flag
» Trigger types

* Comment

Fields that are arrays of structures (such as acl_mgr_set and trig_binding) are

completely replaced by the new input array. This operation cannot be used to add a
new element to the existing array.

Chapter 1. DCE Routines 57

dce_attr_sch_update_entry(3dce)

Permissions Required

The dce_attr_sch_update_entry() routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.
Files
/usrf/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.h was derived.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok
Related Information

Functions: dce_attr_intro(3dce) , dce_attr_sch_create_entry(3dce)
dce_attr_sch_delete_entry(3dce)

58 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf binding_entry from_host

Purpose

Synopsis

Parameters

Description

Files

Errors

Returns the host binding entry name

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_binding_entry_from_host(
char *hostname
char **entry_name
error_status_t *status);

Input

hostname
Specifies the name of the host. Note that host names are case sensitive. If
NULL, the configuration file is searched for the host name, and that name,
if found, is used.

Output

entry_name
The binding entry name associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_binding_entry_from_host() routine returns the binding entry name
string associated with the hostname passed to it. If hostname is NULL, the binding
entry name associated with the name returned by dce_cf_get_host_name() is
returned.

dcelocalldce cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
dce_cf st ok

Operation completed successfully.
dce_cf e file_open

File open error.

Chapter 1. DCE Routines 59

dce_cf _binding_entry_from_host(3dce)

dce _cf e no_mem
No memory available.

dce_cf e no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf find_name_by key(3dce) , dce_cf get cell_ name(3dce) ,
dce_cf _get _host name(3dce) , dce_cf _prin_name_from_host(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

60 IBM DCE for AlX, Version 2.2: Application Development Reference

dce cf dced _entry from_host

Purpose

Synopsis

Parameters

Description

Returns the dced entry name on a host

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_dced_entry_from_host (
char *hostname
char **entry_name
error_status_t *status);

Input

hostname
Specifies the name of the host. Note that host names are case sensitive. If
this value is NULL, the value returned by dce_cf get host name() is
used.

Output

entry_name

The dced entry name associated with the specified host. Storage for this
name is dynamically allocated; release it with free() when you no longer
need it.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_dced_entry from_host() routine returns the name entered into the
DCE namespace for a DCE host daemon (dced) on the host specified by the
hostname parameter. If the hostname parameter is NULL, the dced name
associated with the name returned by dce_cf get host name() is returned. The
string name is of the form /.:/hosts/ hostnamelconfig , and specifies the entry point
into the dced namespace on the host. This is the location in the DCE namespace
at which dced stores the objects associated with the host services it provides (the
hostdata , srvrconf , srvrexec , secval, and keytab services, as well as ACL
editing). It is also an actual name in the DCE namespace that you can import if you
want to create your own RPC binding to dced.

You can use the dced entry name returned by this routine as input to the
dced_binding_create() routine, input to sec_acl_ * routines, or to
rpc_ns_binding_import_ * routines to establish a binding to a dced host service.

If using dced_binding_create() , you append a service name to the entry returned
by this routine. If using sec_acl_ *routines, you append the service and the object
name. If using rpc_ns_binding_import_ * you use only the entry returned by the
routine.

Chapter 1. DCE Routines 61

dce_cf_dced_entry_from_host(3dce)

Files

Errors

You can also use the returned string to name objects that dced maintains, for
example, when editing these objects’ ACLs with dcecp . For example, the string
name /.:/hosts/vineyard/config/srvrconf/dtsd names the server configuration data
for the DTS server on the host vineyard .

dcelocalldce cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok

Operation completed successfully.
dce_cf e file_open

File open error.
dce _cf e no_mem

No memory available.

dce_cf e no_match
No host name entry in the DCE configuration file.

Related Information

Functions: dce_cf_binding_entry_from_host(3dce)
dce_cf_find_name_by key(3dce) , dce_cf get cell_name(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf_prin_name_from_host(3dce) ,
dced_binding_create(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AlX, Version 2.2: Command Reference.

62 IBM DCE for AlX, Version 2.2: Application Development Reference

dce cf find_name_by key

Purpose

Synopsis

Parameters

Description

Cautions

Files

Returns a string tagged by a character string key

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_find_name_by key(
FILE *fp
char *key
char *xname
error_status_t *status);

Input
fo A file pointer to a correctly formatted text file opened for reading.

key A character string key that will be used to find name.

Input/Output

name A pointer to a string (char **) in which a string containing the name found
will be placed.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf _find_name_by key() routine searches a text file for the first
occurrence of a string tag identical to the string passed in key. The tag string, in
order to be found, must be the first nonwhitespace string on an uncommented line.
If the tag string is found, dce_cf find_name_by key() copies the next string found
on the same line as the tag string into the buffer, and returns its address in the
name input parameter.

The name of the DCE configuration file is in the constant
dce_cf c_base_db_name ; in turn, this constant is defined in the source file
<dce_cf.h>.

The memory for a returned name string is allocated by malloc() , and must be freed
by the original caller of the configuration routine that called
dce_cf_find_name_by key() .

dcelocalldce _cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Chapter 1. DCE Routines 63

dce_cf _find_name_by key(3dce)
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok
Operation completed succesfully.

dce_cf e no_mem
No memory available.

dce_cf e _no_match
No match for key in the file.

Related Information
Functions: dce_cf_binding_entry from_host(3dce)
dce_cf_get_cell_name(3dce) , dce_cf _get host name(3dce) |,

dce_cf_find_names_by key(3dce), dce_cf prin_name_from_host(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

64 IBM DCE for AIX, Version 2.2: Application Development Reference

dce cf find_names_by key

Purpose

Synopsis

Parameters

Description

Cautions

Returns an array of strings tagged by character string keys

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_find_names_by key(
FILE *fp
char *key
char ***name
error_status_t *status);

Input
fo A file pointer to a correctly formatted text file opened for reading.

key A character string key that will be used to find name.

Input/Output

name A pointer to an array of strings (char ***) in which the strings containing the
names found will be placed. The name strings will be allocated by malloc() .

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf _find_names_by key() routine searches a text file for the first
occurrence of a string tag identical to the string passed in key. The tag string, in
order to be found, must be the first nonwhitespace string on an uncommented line.
If the tag string is found, dce_cf find_names_by key() allocates (by a call to
malloc()) a buffer for the next string found on the same line as the tag string,
copies this second string into the buffer, and returns its address in the name input
parameter.

The name of the DCE configuration file is in the constant
dce_cf c_base db_name ; in turn, this constant is defined in the source file
<dce cf.c>.

The memory for a returned name string is allocated by malloc() , and must be freed
by the original caller of the configuration routine that called
dce_cf _find_names_by key()

Chapter 1. DCE Routines 65

dce_cf _find_names_by key(3dce)

Files

Errors

dcelocalldce_cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok
Operation completed succesfully.

dce_cf e no_mem
No memory available.

dce_cf e no_match
No match for key in the file.

Related Information

Functions: dce_cf_binding_entry from_host(3dce)
dce_cf_get_cell_name(3dce) , dce_cf _get host name(3dce) |,
dce_cf_prin_name_from_host(3dce) , dce_cf find_name_by key(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

66 IBM DCE for AlX, Version 2.2: Application Development Reference

dce cf free_cell aliases

Purpose

Synopsis

Parameters

Description

Errors

Frees a list of cell name aliases for the local cell

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_free_cell_aliases(
char *xcell_alias_list
error_status_t *status);

Input

cell_alias_list
The address of a cell alias list, which is a null-terminated array of pointers
to the cell alias names for the local cell.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_free_cell_aliases() routine frees the list of aliases for the local cell that
the dce_cf _free_cell_aliases() routine allocated. The routine frees the memory
allocated to hold the array of pointers to cell alias string buffers, and also frees the
string buffers.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok
Operation completed succesfully.

dce_cf e file_open
File open error.

dce_cf e no_mem
No memory available.

dce_cf_e no_match
No match for key in the file.

Related Information

Functions: dce_cf _get cell aliases(3dce) , dce_cf _get cell name(3dce) |,
dce_cf get host name(3dce) , dce_cf prin_name_from_host(3dce) ,
dce_cf same_cell_name(3dce) .

Chapter 1. DCE Routines 67

dce_cf _free_cell_aliases(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AlX, Version 2.2: Command Reference.

68 IBM DCE for AlX, Version 2.2: Application Development Reference

dce cf _get cell aliases

Purpose

Synopsis

Parameters

Description

Errors

Returns a list of aliases for the local cell

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get cell_aliases(
char **xcell_alias_list
error_status_t *status);

Input
None.

Output

cell_alias_list
The address of a string pointer array. This routine sets this address to point
to the address of an allocated null-terminated array of pointers to the cell
alias names for the local cell. If no aliases exist, the routine returns NULL in
this parameter.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf _get _cell aliases() routine retrieves the local cell's cell name aliases. If
cell aliases are found, the routine returns the address of an allocated list of cell
alias names in the cell_alias_list parameter. If no aliases exist for the cell, the
routine returns NULL.

Use the dce_cf_free_cell_aliases() routine to free the memory allocated by the
dce_cf _get_cell_aliases() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
dce_cf st ok

Operation completed succesfully.
dce_cf e file_open

File open error.
dce_cf e no_mem

No memory available.

dce_cf e _no_match
No match for key in the file.

Chapter 1. DCE Routines 69

dce_cf _get_cell _aliases(3dce)

Related Information

Functions: dce_cf _free_cell_aliases(3dce) , dce_cf get cell name(3dce) ,
dce_cf _get_host_name(3dce) , dce_cf same_cell_name(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AlX, Version 2.2: Command Reference.

70 IBM DCE for AIX, Version 2.2: Application Development Reference

dce cf _get cell name

Purpose

Synopsis

Parameters

Description

Errors

Returns the primary name for the local cell

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_cell_name(
char *xcellname
error_status_t *status);

Input
None.

Output

cellname
The address of a string pointer. This pointer will be set by the function to
point to an allocated buffer that contains the cell name.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_get _cell name() routine retrieves the primary name for the local cell. If
the name is found, dce_cf get cell name() returns an allocated (by a call to
malloc()) copy of it in the cellname output parameter. Use free() to free the
allocated copy when you no longer need it.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok
Operation completed succesfully.

dce_cf_e file_open
File open error.

dce_cf e no_mem
No memory available.

dce_cf e no_match
No match for key in the file.

Chapter 1. DCE Routines 71

dce_cf _get_cell_name(3dce)

Related Information

Functions: dce_cf free_cell_aliases(3dce) , dce_cf get_cell _aliases(3dce) ,
dce_cf_get_host_name(3dce) , dce_cf prin_name_from_host(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

72 IBM DCE for AIX, Version 2.2: Application Development Reference

dce cf _get csrgy filename

Purpose

Synopsis

Parameters

Description

Cautions

Files

Returns the pathname of the code set registry file on a host

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_csrgy_filename(
char **csrgy_filename
error_status_t *status);

Input
None.

Input/Output

csrgy_filename
The address of a string pointer. This pointer will be set by the function to
point to a buffer that contains the pathname to the code set registry file.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_get _csrgy_filename() routine is a DCE function that returns the
pathname of a code set registry file that has been created on a given host with the
csrc utility. DCE RPC routines for code set interoperability use this routine when
they need to locate a host’'s code set registry file in order to map between unique
code set identifiers and their operating system-specific local code set names, or to
obtain supported code sets for a client or server. User-written code set
interoperability routines can also use the routine.

The dce_cf_get _csrgy_filename() routine searches the DCE configuration file for
the name of the local host’'s code set registry file, allocates a buffer for it (by a call
to malloc()), copies the name into the buffer, and returns its address in the
csrgy_filename input parameter.

The memory for a returned name string is allocated by malloc() , and must be freed
by the caller of dce_cf_get_csrgy_filename()

dcelocalldce cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

Chapter 1. DCE Routines 73

dce_cf _get _csrgy_filename(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok

Operation successfully completed.
dce_cf_e file_open

File open error.
dce_cf e no_mem

No memory available.

Related Information

Functions: dce_cf _find_name_by key(3dce) , dce_cf get cell_name(3dce) |,
dce_cf_get_host name(3dce) , dce_cf_prin_name_from_host(3dce)
rpc_rgy_get_codesets(3rpc)

Commands: csrc(8dce) .

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

74 1BM DCE for AlX, Version 2.2: Application Development Reference

dce cf _get host name

Purpose

Synopsis

Parameters

Description

Cautions

Files

Errors

Returns the host name relative to the local cell root

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_get_host_name(
char *xhostname
error_status_t *status);

Input
None.

Input/Output

hostname
The address of a string pointer. This pointer will be set by the function to
point to a buffer that contains the host name.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_get_host name() routine searches the DCE configuration file for the
local host’s name relative to the local cell's root. If the name is found,
dce_cf _get host_name() allocates (by a call to malloc()) a buffer for it, copies the
name into the buffer, and returns its address in the hostname input/output
parameter.

The memory for a returned name string is allocated by malloc() , and must be freed
by the caller of dce_cf get host _name() .

dcelocalldce_cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 75

dce_cf_get_host_name(3dce)

dce_cf st ok
Operation successfully completed.

dce_cf_e file_open
File open error.

dce_cf e no_mem
No memory available.

dce_cf_e no_match
No host name entry in the DCE configuration file.

Related Information
Functions: dce_cf _binding_entry_from_host(3dce)
dce_cf find_name_by key(3dce) , dce_cf get cell_name(3dce) ,

dce_cf_prin_name_from_host(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

76 1BM DCE for AlX, Version 2.2: Application Development Reference

dce cf prin_name_from_host

Purpose

Synopsis

Parameters

Description

Files

Errors

Returns the host’s principal name

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_prin_name_from_host (
char *hostname
char **prin_name
error_status_t *status);

Input

hostname
The name of the host. Note that host names are case sensitive. If NULL,
the configuration file is searched for the host name, and that name, if found,
is used.

Output

prin_name

The principal name associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_prin_name_from_host() routine returns the principal name associated
with the hostname passed to it. If hostname is NULL,
dce_cf_prin_name_from_host() returns the principal name associated with the
name returned by dce_cf_get_host_name() .

dcelocalldce cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
dce_cf st ok

Operation completed successfully.
dce_cf e file_open

File open error.

Chapter 1. DCE Routines 77

dce_cf_prin_name_from_host(3dce)

dce _cf e no_mem
No memory available.

dce_cf e no_match
No host name entry in the DCE configuration file.

Related Information
Functions: dce_cf _binding_entry from_host(3dce)
dce_cf _find_name_by key(3dce) , dce_cf get cell_name(3dce) ,

dce_cf_get _host_name(3dce) .

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

78 IBM DCE for AIX, Version 2.2: Application Development Reference

dce cf profile_entry from_host

Purpose

Synopsis

Parameters

Description

Files

Errors

Returns the host profile entry

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_profile_entry_from_host(
char *hostname
char **prof name
error_status_t *status);

Input

hostname
Specifies the name of the host. Note that host names are case sensitive. If
NULL, the configuration file is searched for the host name, and that name,
if found, is used.

Output

prof_name
The profile entry associated with the specified host.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_profile_entry_from_host() routine returns the profile entry string
associated with the hostname passed to it. If hostname is NULL, the profile entry
associated with the name returned by dce_cf get_host_name() is returned.

dcelocalldce cf.db
The machine’s local DCE configuration file (where dcelocal is usually
something like /opt/dcelocal).

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

dce_cf st ok
Operation completed successfully.

dce_cf e file_open
File open error.

dce_cf e no_mem
No memory available.

Chapter 1. DCE Routines 79

dce_cf _profile_entry_from_host(3dce)

dce_cf_e no_match
No host name entry in the DCE configuration file.

Related Information
Functions: dce_cf _binding_entry_from_host(3dce)
dce_cf find_name_by key(3dce) , dce_cf get cell_ name(3dce) ,
dce_cf _get host name(3dce) , dce_cf prin_name_from_host(3dce)

Books: IBM DCE for AlX, Version 2.2: Administration Guide.

80 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_cf _same_cell_name

Purpose

Synopsis

Parameters

Description

Errors

Indicates whether or not two cell names refer to the same cell

#include <stdio.h>
#include <dce/dce_cf.h>

void dce_cf_same_cell_name(
char xcell_namel
char *cell_name2
boolean32 *result
error_status_t *status);

Input

cell_namel
A character string that specifies the name of a cell.

cell_name2
A character string that specifies the name of a cell to compare with
cell_namel. If this value is NULL, the routine determines whether or not the
cell name specified in cell_namel is the name of the local cell.

Output

result A boolean value that indicates whether or not the specified cell names
match, when two cell names are given, and indicates whether or not the
specified cell name is the name of the local cell, when only one cell name
is given. A value of TRUE indicates that the cell names refer to the same
cell.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_cf_same_cell_name () routine, when given the names of two cells as
input parameters, compares the cell names to determine whether or not they refer
to the same call. The result parameter is set to TRUE if they do, and to FALSE if
they do not.

If only one cell name is specified as an input parameter, the

dce_cf same_cell_name() routine determines whether or not the specified cell
name is the same as the local cell's primary name (which it retrieves by calling
dce_cf_get_cell_name()). You can use the routine in this way to determine
whether a given cell name is the primary name of your local cell.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 81

dce_cf _same_cell_name(3dce)

dce_cf st ok
Operation completed succesfully.

dce_cf e no_match
No match for key in the file.

Related Information

Functions: dce_cf free_cell _aliases(3dce) , dce_cf get cell_aliases(3dce)
dce_cf _get_cell_name(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide—Core
Components, IBM DCE for AlX, Version 2.2: Command Reference.

82 IBM DCE for AIX, Version 2.2: Application Development Reference

dce _db_close

Purpose

Synopsis

Parameters

Description

Errors

Closes an open backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_close(
dce_db_handle_t *handle
error_status_t *status);

Input
handle A handle identifying the backing store to be closed.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_close() routine closes a backing store that was opened by
dce_db_open() . It also frees the storage used by the handle, and sets the handle’s
value to NULL.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) .

Chapter 1. DCE Routines 83

dce _db_delete

Purpose

Deletes an item from a backing store

Synopsis

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete(
dce_db_handle_t handle
void *key
error_status_t *status);

Parameters

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A pointer to a string or UUID that is the key to the item in the backing store.
The datatype of key must match the key method that was selected in the
flags parameter to dce_db_open() when the backing store was created.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error code.

Description

The dce_db_delete() routine deletes an item from the backing store that is
identified by the handle parameter, which was obtained from dce_db_open() . It is a
general deletion routine, interpreting the key parameter according to the type of
index with which the backing store was created.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s del failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s bad_index_type
The key's type is wrong, or the backing store is not by name or by UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

84 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_delete(3dce)
Related Information

Functions: dce_db_delete_by name(3dce) , dce_db_delete_by uuid(3dce) ,
dce_db_open(3dce) .

Chapter 1. DCE Routines 85

dce_db_delete_by name

Purpose

Synopsis

Parameters

Errors

Deletes an item from a string-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete_by_name(
dce_db_handle_t handle
char *key
error_status_t *status);

Input
handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A NULL-terminated string that is the key to the item in the backing store.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_del failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s bad_index_type
The backing store is not indexed by name.

db_s iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by uuid(3dce) |,
dce_db_open(3dce) .

86 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_delete_by uuid

Purpose

Synopsis

Parameters

Description

Errors

Deletes an item from a UUID-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_delete_by_uuid(
dce_db_handle_t handle
uuid_t *key
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A pointer to a UUID that is the key to the item in the backing store.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error code.

The dce_db_delete_by uuid() routine deletes an item from the backing store that
is identified by the handle parameter, which was obtained from dce_db_open() . It is
a specialized deletion routine for backing stores that are indexed by UUID, as
selected by the db_c_index_by_uuid bit in the flags parameter to dce_db_open()
when the backing store was created.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variable errno may indicate further
information about the error.

db_s bad_index_type
The backing store is not indexed by UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Deletion is not allowed during iteration.

error_status_ok
The call was successful.

Chapter 1. DCE Routines 87

dce_db_delete_by uuid(3dce)
Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by name(3dce) ,
dce_db_open(3dce) .

88 IBM DCE for AIX, Version 2.2: Application Development Reference

dce _db_fetch

Purpose

Synopsis

Parameters

Description

Notes

Retrieves data from a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch(
dce_db_handle_t handle
void *key
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A string or UUID that is the key to the item in the backing store. The
datatype of key must match the key method that was selected in the flags
parameter to dce_db_open() when the backing store was created.

Output
data A pointer to the returned data.

Status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_fetch() routine retrieves data from the backing store that is identified
by the handle parameter, which was obtained from dce_db_open() . It is a general
retrieval routine, interpreting the key parameter according to the type of index with
which the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

After calling dce_db_fetch() , it may be necessary to free some memory, if the call
was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch() outside of a server operation (for instance, if a
server does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate() first. Indeed, every thread that calls dce_db_fetch()
must do rpc_sm_allocate() , but in the server side of an RPC, this is already done.

Chapter 1. DCE Routines 89

dce_db_fetch(3dce)
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s key not found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s bad_index_type
The key's type is wrong, or else the backing store is not by name or by
UuID.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch_by name(3dce) , dce_db_fetch_by uuid(3dce)
dce_db_free(3dce) , dce_db_open(3dce) .

90 IBM DCE for AlX, Version 2.2: Application Development Reference

dce_db_fetch by name

Purpose

Synopsis

Parameters

Description

Notes

Retrieves data from a string-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch_by_name(
dce_db_handle_t handle
char *key
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A null-terminated string that is the key to the item in the backing store.

Output
data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_fetch_by name() routine retrieves data from the string-indexed
backing store that is identified by the handle parameter, which was obtained from
dce_db_open() . It is a specialized retrieval routine for backing stores that are
indexed by string, as selected by the db_c_index_by name bit in the flags
parameter to dce_db_open() when the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

After calling dce_db_fetch_by name() , it may be necessary to free some memory,
if the call was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch_by name() outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must call rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_fetch_by name() must do rpc_sm_allocate() , but in the server side of an
RPC, this is already done.

Chapter 1. DCE Routines 91

dce_db_fetch_by name(3dce)
Examples

This example shows the use of the user-defined data type as the data parameter.
extern dce_db_handle_t db_h;
uuid_t key uuid;
my_data_type_t my_data;
error_status_t status;
/* set key uuid = xxx; */
dce_db_fetch_by_name(db_h, &key uuid, &my data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key not_found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s bad_index_type
The backing store is not indexed by name.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by uuid(3dce) ,
dce_db_free(3dce) , dce_db_open(3dce) .

92 IBM DCE for AlX, Version 2.2: Application Development Reference

dce _db_fetch by uuid

Purpose

Synopsis

Parameters

Description

Notes

Retrieves data from a UUID-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_fetch_by_uuid(
dce_db_handle_t handle
uuid_t *key
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A UUID that is the key to the item in the backing store.

Output
data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_fetch_by uuid() routine retrieves data from the UUID-indexed
backing store that is identified by the handle parameter, which was obtained from
dce_db_open() . It is a specialized retrieval routine for backing stores that are
indexed by UUID, as selected by the db_c_index_by uuid bit in the flags
parameter to dce_db_open() when the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

After calling dce_db_fetch_by uuid() , it may be necessary to free some memory, if
the call was made outside of an RPC, on the server side. This is done by calling
rpc_sm_client_free() . (Inside an RPC the memory is allocated through
rpc_sm_allocate() , and is automatically freed.)

Programs that call dce_db_fetch_by uuid() outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must call rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_fetch_by uuid() must do rpc_sm_allocate() , but in the server side of an
RPC, this is already done.

Chapter 1. DCE Routines 93

dce_db_fetch_by uuid(3dce)
Examples

This example shows the use of the user-defined data type as the data parameter.
extern dce_db_handle_t db_h;
uuid_t key uuid;
my_data_type_t my_data;
error_status_t status;
/* set key uuid = xxx; */
dce_db_fetch_by_uuid(db_h, &key uuid, &my data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key not_found
The specified key was not found in the backing store. (This circumstance is
not necessarily an error.)

db_s bad_index_type
The backing store is not indexed by UUID.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by name(3dce) ,
dce_db_free(3dce) , dce_db_open(3dce) .

94 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_db_free

Purpose

Synopsis

Parameters

Description

Notes

Errors

Releases the data supplied from a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_free(
dce_db_handle_t handle
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

data The data area to be released.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_free() routine is designed to free the data area previously returned via
a call to any of the routines dce_db_fetch() , dce_db_fetch_by_name() , or
dce_db_fetch_by uuid() .

In the current implementation, the dce_db_free() routine does not perform any
action. For servers that execute properly, this is of little consequence because their
allocated memory is automatically cleaned up when a remote procedure call
finishes. For completeness, and for compatibility with future releases, the use of
dce_db_free() is recommended.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by name(3dce) ,
dce_db_fetch_by uuid(3dce)

Chapter 1. DCE Routines 95

dce_db_header_fetch

Purpose

Synopsis

Parameters

Description

Errors

Retrieves the header from a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_header_fetch(
dce_db_handle_t handle
void *key
dce_db_header_t *hdr
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A string or UUID that is the backing store key.

Output
hdr A pointer to a caller-supplied header structure to be filled in by the library.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_header_fetch() routine returns a pointer to a copy of the header of
the object in the backing store that is identified by the handle parameter, which was
obtained from dce_db_open() . The caller must free the copy’s storage. It was
allocated (as with other fetch routines) through rpc_ss_alloc() . The key parameter
is interpreted according to the type of index with which the backing store was
created.

The hdr parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_key not_found
The key was not found in the backing store.

error_status_ok
The call was successful.

96 IBM DCE for AlX, Version 2.2: Application Development Reference

dce_db_header_fetch(3dce)
Related Information

Functions: dce_db_fetch(3dce) , dce_db_std_header_init(3dce)

Chapter 1. DCE Routines 97

dce_db_ing_count

Purpose

Synopsis

Parameters

Description

Errors

Returns the number of items in a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_ing_count(
dce_db_handle_t handle
unsigned32 *count
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output
count A pointer to the number of items in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_ing_count() routine returns the number of items in the backing store
that is identified by the handle parameter, which was obtained from

dce_db_open() . It performs identically on backing stores that are indexed by UUID
and those that are indexed by string. The count of items can be helpful when
iterating through a backing store.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Determining the count is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_next(3dce) .

98 IBM DCE for AlX, Version 2.2: Application Development Reference

dce_db_iter_done

Purpose

Synopsis

Parameters

Description

Errors

Frees the state associated with iteration

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_done(
dce_db_handle_t handle
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

The dce_db_iter_done() routine frees the state that permits iteration. It should be
called after an iteration through a backing store is finished.

The iteration state is established by dce_db _iter_start() . The routines for
performing iteration over the items are dce_db_iter_next() ,
dce_db_iter_next_by_name() , and dce_db_iter_next_by_uuid()

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_next(3dce) , dce_db_iter_next_by name(3dce) ,
dce_db_iter_next_by uuid(3dce) , dce _db_iter_start(3dce) .

Chapter 1. DCE Routines 99

dce_db_iter_next

Purpose

Synopsis

Parameters

Description

Errors

During iteration, returns the next key from a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next(
dce_db_handle_t handle
void **key
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output

key A pointer to the string or UUID that is the key to the item in the backing
store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_iter_next() routine retrieves the next key from the backing store that is
identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use one of the
dce_db_fetch() routines to retrieve the actual data.

The iteration functions scan sequentially through a backing store, in no particular
order. The dce_db_iter_start() routine initialized the process, a dce_db_iter_next()
routine retrieves successive keys, for which the data can be retrieved with
dce_db_fetch() , and the dce_db_iter_done() routine finishes the process. The
iteration can also use the dce_db_iter_next by name() and
dce_db_iter_next_by uuid() routines; the fetching can use the

dce_db_fetch_by name() and dce_db_fetch_by uuid() routines.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

100 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_db_iter_next(3dce)

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_fetch_by name(3dce) ,
dce_db_fetch by uuid(3dce) , dce db_iter _done(3dce) ,
dce_db_iter_next_by name(3dce) , dce_db_iter_next_by uuid(3dce)
dce_db_iter_start(3dce) .

Chapter 1. DCE Routines 101

dce _db_iter_next by name

Purpose

Synopsis

Parameters

Description

Errors

During iteration, returns the next key from a backing store indexed by string

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next_by name(
dce_db_handle_t handle
char *xkey
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output
key The string that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_iter_next_by name() routine retrieves the next key from the backing
store that is identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by name() routine to retrieve the actual data.

This iteration routine is the same as dce_db_iter_next() , except that it only works
with backing stores indexed by name, and returns an error if the backing store
index is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

error_status_ok
The call was successful.

102 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_db_iter_next_by name(3dce)

Related Information
Functions: dce_db_fetch_by uuid(3dce) , dce_db_iter_done(3dce) ,

dce_db_iter_next(3dce) , dce_db_iter_next by uuid(3dce)
dce_db _iter_start(3dce) .

Chapter 1. DCE Routines 103

dce _db_iter_next by uuid

Purpose

Synopsis

Parameters

Description

Errors

During iteration, returns the next key from a backing store indexed by UUID

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_next_by uuid(
dce_db_handle_t handle
uuid_t **key
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output
key The UUID that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_iter_next_by uuid() routine retrieves the next key from the backing
store that is identified by the handle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by uuid() routine to retrieve the actual data.

This iteration routine is the same as dce_db_iter_next() , except that it only works
with backing stores indexed by UUID, and returns an error if the backing store
index is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_done(3dce) , dce_db_iter_next(3dce) ,
dce_db_iter_next_by name(3dce) , dce_db_iter_start(3dce) .

104 1BM DCE for AIX, Version 2.2: Application Development Reference

dce _db_iter_start

Purpose

Synopsis

Parameters

Description

Errors

Prepares a backing store for iteration

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_iter_start(
dce_db_handle_t handle
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok .

The dce_db_iter_start() routine prepares the backing store that is identified by the
handle parameter for iterative retrieval of all its keys in succession.

A given handle can support only a single instance of iteration at one time.

To avoid the possibility that another thread will write to the backing store during an
iteration, always use the dce_db_lock() routine before calling dce_db_iter_start() .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration was already in progress. The
concept of nested iterations is not supported.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_iter_done(3dce) , dce_db_iter_next(3dce) ,
dce_db_iter_next by name(3dce) , dce_db_iter_next by uuid(3dce)
dce_db_lock(3dce) , dce_db_open(3dce) , dce_db_unlock(3dce) .

Chapter 1. DCE Routines 105

dce _db_lock

Purpose

Synopsis

Parameters

Description

Errors

Applies an advisory lock on a backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_Tock(
dce_db_handle_t handle
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_lock() routine acquires the lock associated with the handle.

There is an advisory lock associated with each handle. The routines for storing and
deleting backing stores apply the lock before updating a backing store. This routine
provides a means to apply the lock for other purposes, such as iteration.

Advisory locks allow cooperating threads to perform consistent operations on
backing stores, but do not guarantee consistency; that is, threads may still access
backing stores without using advisory locks, possibly resulting in inconsistencies.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s already locked
An attempt was made to lock a backing store, but it was already locked.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_delete(3dce) , dce_db_delete_by name(3dce) ,
dce_db_delete_by uuid(3dce) , dce_db_store(3dce) ,
dce_db_store_by name(3dce) , dce db_store by uuid(3dce) |,
dce_db_unlock(3dce) .

106 1BM DCE for AIX, Version 2.2: Application Development Reference

dce _db_open

Purpose

Synopsis

Parameters

Opens an existing backing store or creates a new one

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_open(
const char *name
const char *backend type
unsigned32 flags
dce_db_convert_func_t convert
dce_db_handle_t *handle
error_status_t *xstatus);

Input

name The filename of the backing store to be opened or created.

backend_type

flags

Either of the strings, bsd4.4-hash or bsd4.4-btree , or a null pointer, which
defaults to hash. This parameter specifies the backing store backend type
for licensees adding multiple backends.

The manner of opening, as specified by any of the following bits:

db_c_index_by name
The backing store is to be indexed by name. Either this or
db_c_index_by uuid , but not both, must be selected.

db_c_index_by_uuid
The backing store is to be indexed by UUID. Either this or
db_c_index_by name , but not both, must be selected.

db_c_std_header
The first field of each item (which is defined as a union in
dce_db_header_t) is the standard backing store header, with the
case dce_db_header_std selected. The selection for header
cannot have both db_c_std _header and db_c_acl uuid_header .
If neither header flag is specified, no header is used.

db_c_acl_uuid_header
The first field of each item (the union) is an ACL UUID, with the
case dce_db_header_acl uuid selected. The selection for header
cannot have both db_c_std header and db_c_acl uuid_header .
If neither header flag is specified, no header is used.

db_c_readonly
An existing backing store is to be opened in read-only mode.
Read/write is the default.

db_c_create
Creates an empty backing store if one of the given name does not
already exist. It is an error to try to create an existing backing store.

Chapter 1. DCE Routines 107

dce_db_open(3dce)

Description

Notes

Examples

convert
The function, generated by the IDL compiler, that is called to perform
serialization.

Output
handle A pointer to a handle that identifies the backing store being used.

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_open() routine opens the specified backing store. The flags parameter
must specify whether the backing store is to be indexed by name or by UUID. If all
of a server’s objects have entries in the CDS namespace, then it is probably best to
use a UUID index. If the server provides a junction or another name-based lookup
operation, then it is probably best to use a name index.

The IDL code in /usr/include/dce/database.idl defines the backing store header
(selected by the flags parameter) that is placed on each item, the possible header
types, and the form of the function for serializing headers.

Backing stores are also called databases. For instance, the associated IDL header
is dce/database.idl , and the name of the backing store routines begin with
dce_db_. Nevertheless, backing stores are not databases in the conventional
sense, and have no support for SQL or for any other query system.

It is illegal to delete a mutex that is associated with a handle (one that identifies the
backing store to be closed) when the mutex has a current owner.

Standardized use of the backing store library is encouraged. The following is the
skeleton IDL interface for a server’'s backing store:

interface XXX_db

import "dce/database.id1";
typedef XXX_data_s_t {
dce_db_header_t header;
/* server-specific data */
} XXX_data_t;
void XXX_data_convert(
[in] handle_t h,
[in, out] XXX data_t =data,
[out] error_status_t st
)3
}

This interface should be compiled with the following ACF:
interface XXX_db

[encode, decode] XXX_data_convert();

}

A typical call to dce_db_open() , using the preceding IDL example, follows:

108 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_db_open(3dce)
dce_db_open("XXX_db", NULL,
db_c_std_header | db_c_index_by uuid,
(dce_db_convert_func_t)XXX_data_convert,
&handle, &st);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_bad_index_type
The index type in flags is specified neither by name nor by UUID, or else it
is specified as both.

db_s bad_header_type
The header type in flags is specified as both standard header and ACL
header.

db_s_index_type_mismatch
An existing backing store was opened with the wrong index type.

db_s_open_already_exists
The backing store file specified for creation already exists.

db_s no_name_specified
No filename is specified.

db_s open_failed_eacces
The server does not have permission to open the backing store file.

db_s open_failed_enoent
The specified directory or backing store file was not found.

db_s open_failed
The underlying database-open procedure failed. The global variable errno
may provide more specific information.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_close(3dce) .

Chapter 1. DCE Routines 109

dce_db_std header init

Purpose

Synopsis

Parameters

Description

Initializes a standard backing store header

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_std_header_init(
dce_db_handle_t handle
dce_db_header_t *hdr
uuid_t *uuid
uuid_t *acl _uuid
uuid_t *def_object_acl
uuid_t *def container_acl
unsigned32 ref count
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

hdr Pointer to the object header part of the users’ structure.
uuid The UUID to be placed into the header. Can be NULL.

acl_uuid
The UUID of the ACL protecting this object, to be placed into the header.
Can be NULL.

def_object_acl
The UUID of the default object ACL, to be placed into the header. Can be
NULL.

def container_acl
The UUID of the default container ACL, to be placed into the header. Can
be NULL.

ref_count
The reference count to be placed into the header.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_std_header_init() routine initializes the fields of the standard header
for a data object whose backing store is identified by the handle parameter. The
fields are only set in memory and should be stored to the backing store by one of
the store routines. The handle was obtained from dce_db_open() , which must have
been called with the db_c_std_header flag.

110 I1BM DCE for AIX, Version 2.2: Application Development Reference

dce_db_std_header_init(3dce)
Errors
The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s bad_header_type
The header type is not dce_db_header_std .

error_status_ok
The call was successful.

Related Information

Functions: dce_db_header_fetch(3dce) .

Chapter 1. DCE Routines 111

dce _db_store

Purpose

Stores data into a backing store

Synopsis

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store(
dce_db_handle_t handle
void *key
void *data
error_status_t *status);

Parameters

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A string or UUID that is the backing store key. The datatype of key must
match the key method that was selected in the flags parameter to
dce_db_open() when the backing store was created.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

Description

The dce_db_store() routine stores the data structure pointed to by data into the
backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Notes

Because the dce_db_store() routine uses the encoding services, and they in turn
use rpc_sm_allocate() , all programs that call dce_db_store() outside of a server
operation (for instance, if a server does some backing store initialization, or in a
standalone program) must call rpc_sm_enable_allocate() first. Indeed, every
thread that calls dce_db_store() must do rpc_sm_enable_allocate() , but in the
server side of an RPC, this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

112 I1BM DCE for AIX, Version 2.2: Application Development Reference

dce_db_store(3dce)

db_s bad_index_type
The key's type is wrong, or else the backing store is not by name or by
UuID.

db_s readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_fetch(3dce) , dce_db_open(3dce) ,
dce_db_store_by name(3dce) , dce_db_store by uuid(3dce)

Chapter 1. DCE Routines 113

dce_db_store by name

Purpose

Synopsis

Parameters

Description

Notes

Stores data into a string-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store_by_name(
dce_db_handle_t handle
char *key
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A null-terminated string that is the backing store key.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_store_by name() routine stores the data structure pointed to by data
into the backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

This routine is specialized for storage into backing stores that are indexed by string,
as selected by the db_c_index_by name bit in the flags parameter to
dce_db_open() when the backing store was created.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Because the dce_db_store_by name() routine uses the encoding services, and
they in turn use rpc_sm_allocate() , all programs that call

dce_db_store_by name() outside of a server operation (for instance, if a server
does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate() first. Indeed, every thread that calls
dce_db_store_by name() must do rpc_sm_enable_allocate() , but in the server
side of an RPC, this is already done.

114 1BM DCE for AIX, Version 2.2: Application Development Reference

Errors

dce_db_store_by name(3dce)

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s bad_index_type
The backing store is not indexed by name.

db_s readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) , dce_db_store(3dce) ,
dce_db_store_by uuid(3dce)

Chapter 1. DCE Routines 115

dce_db_store by uuid

Purpose

Synopsis

Parameters

Description

Notes

Stores data into a UUID-indexed backing store

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_store_by_ uuid(
dce_db_handle_t handle
uuid_t *key
void *data
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

key A UUID that is the backing store key.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_store_by uuid() routine stores the data structure pointed to by data
into the backing store. The conversion function that was specified in the call to
dce_db_open() serializes the structure so that it can be written to disk.

This routine is specialized for storage into backing stores that are indexed by UUID,
as selected by the db_c_index_by uuid bit in the flags parameter to
dce_db_open() when the backing store was created.

If the key value is the same as a key already stored, the new data replaces the
previously stored data associated with that key.

Because the dce_db_store by uuid() routine uses the encoding services, and
they in turn use rpc_sm_allocate() , all programs that call dce_db_store_by_uuid()
outside of a server operation (for instance, if a server does some backing store
initialization, or in a standalone program) must call rpc_sm_enable_allocate() first.
Indeed, every thread that calls dce_db_store by uuid() must do
rpc_sm_enable_allocate() , but in the server side of an RPC, this is already done.

116 I1BM DCE for AIX, Version 2.2: Application Development Reference

Errors

dce_db_store_by uuid(3dce)

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s bad_index_type
The backing store is not indexed by UUID.

db_s readonly
The backing store was opened with the db_c_readonly flag, and cannot be
written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variable errno may contain more information about the error.

db_s iter_not_allowed
The function was called while an iteration, begun by dce_db_iter_start() ,
was in progress. Storing is not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_open(3dce) , dce_db_store(3dce) ,
dce_db_store_by name(3dce) .

Chapter 1. DCE Routines 117

dce_db_unlock

Purpose

Synopsis

Parameters

Description

Errors

Releases the backing store lock

#include <dce/dce.h>
#include <dce/dbif.h>

void dce_db_unlock(
dce_db_handle_t handle
error_status_t *status);

Input

handle A handle, returned from dce_db_open() , that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returns error_status_ok . Otherwise, it returns an error.

The dce_db_unlock() routine releases the lock associated with the handle.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

db_s_not_locked
An attempt was made to unlock a backing store, but it was not locked.

error_status_ok
The call was successful.

Related Information

Functions: dce_db_lock(3dce) .

118 IBM DCE for AIX, Version 2.2: Application Development Reference

dce_error_inq_text

Purpose

Synopsis

Parameters

Description

Retrieves message text associated with a DCE error code

#include <dce/dce_error.h>

void dce_error_ing_text(
error_status_t status_to_convert
dce_error_string_t error_text
int xstatus);

Input

status_to_convert
DCE status code for which text message is to be retrieved.

Output

error_text
The message text associated with the status to _convert.

status Returns the status code from this operation. The status code is set to 0 on
success, and to -1 on failure.

The dce_error_ing_text() routine retrieves from the installed DCE component
message catalogs the message text associated with an error status code returned
by a DCE library routine.

All DCE message texts are assigned a unique 32-bit message ID. The special value
of all-bits-zero is reserved to indicate success.

The dce_error_ing_text() routine uses the message ID as a series of indices into
the correct DCE component’s message catalog; the text found by this indexing is

the message that explains the status code that was returned by the DCE or DCE

application routine.

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. (The messages may
also be compiled into the component code, rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed.)

If the user sets their LANG variable and has the correct message catalog files

installed, the user can receive translated messages. That is, the text string returned
by dce_error_ing_text() is dependant on the current locale.

Chapter 1. DCE Routines 119

dce_error_ing_text(3dce)

Examples

The following code fragment shows how dce_error_ing_text() can be used to

retrieve the message text describing the status code returned by a DCE RPC library
routine:

dce_error_string_t error_string;
error_status_t status;
int print_status;

rpc_server_register_if(application_vl_0_s_ifspec, &type_uuid,
(rpc_mgr_epv_t)&manager_epv, &status);

if (status != rpc_s_ok) {

dce_error_ing_text(status, error_string, &print_status);

fprintf(stderr," Server: %s: %s\n", caller, error_string);

}

120 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_cat_close

Purpose

Synopsis

Parameters

Description

Errors

DCE message catalog close routine

#include <dce/dce_msg.h>

void dce_msg_cat_close(
dce_msg_cat_handle_t handle
error_status_t *status);

Input

handle The handle returned by dce_msg_cat _open() to the catalog that is to be
closed.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_cat_close() routine closes the message catalog which was opened
with dce_msg_cat_open() . On error, it fills in status with an error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_get _msg(3dce) , dce_msg_cat_open(3dce) |,
dce_msg_get(3dce) , dce_msg_get cat_msg(3dce) , dce_msg_get msg(3dce) .

Chapter 1. DCE Routines 121

dce_msg_cat_get_msg

Purpose
DCE message text retrieval routine
Synopsis
#include <dce/dce_msg.h>
unsigned char *
dce_msg_cat_get_msg(
dce_msg_cat_handle_t handle
unsigned32 message
error_status_t *status);
Parameters
Input
message
The ID of the message to be retrieved.
handle A handle returned by dce_msg_cat_open() to an opened message catalog.
Output
status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.
Description
Once the catalog has been opened with the dce_msg_cat_open() routine, the
dce_msg_cat _get msg() routine can be used to retrieve the text for a specified
message (which is a 32-bit DCE message ID as described in
dce_error_ing_text(3dce)). The space allocated for the message should not be
freed. The output pointer is useable until a call to the dce_msg_cat_get_ msg() or
dce_msg_cat_close() routine. If the specified message cannot be found in the
catalog, the routine returns a NULL and fills in status with the appropriate error
code.
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .
Related Information

Functions: dce_msg_cat_close(3dce) , dce_msg_cat_open(3dce) ,
dce_msg_get(3dce) , dce_msg_get cat_msg(3dce) , dce_msg_get msg(3dce) .

122 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_cat_open

Purpose

Synopsis

Parameters

Description

Errors

DCE message catalog open routine

#include <dce/dce_msg.h>

dce_msg_cat_handle_tdce_msg_cat_open(
unsigned32 message_ID
error_status_t *status);

Input

message_ID
The ID of the message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_cat _open() routine opens the message catalog that contains the
specified message ID. It returns a handle that can be used in subsequent calls to
dce_msg_cat_get_msg() . On error, it returns NULL and fills in status with an
appropriate error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_close(3dce) , dce_msg_cat_get msg(3dce) |,
dce_msg_get(3dce) , dce_msg_get_cat_msg(3dce) , dce_msg_get msg(3dce) .

Chapter 1. DCE Routines 123

dce_msg_define_msg_table

Purpose

Synopsis

Parameters

Description

Examples

Adds a message table to in-memory table

#include <dce/dce_msg.h>

void dce_msg_define_msg_table(
dce_msg_table_t *table
unsigned32 count
error_status_t *status);

Input

table A message table structure (defined in a header file generated by sams
during compilation (see the EXAMPLES section).

count The number of elements contained in the table.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component (application) is built.

However, the messages may also be compiled directly into the component code,
thus rendering the successful retrieval of message text independent of whether or
not the message catalogs were correctly installed. Generation of in-memory
message tables is specified by the incatalog flag in the sams file in which the
message text is defined (see sams(1dce) for more information on sams files). If
the messages have been generated at compile time with this option specified, the
dce_msg_define_msg_table() routine can be called by the application to register
an in-memory table containing the messages.

The table parameter to the call should identify a message table structure defined in
a header file generated by sams during compilation (see the EXAMPLES section).
The count parameter specifies the number of elements contained in the table. If an
error is detected during the call, the routine will return an appropriate error code in
the status parameter.

The following code fragment shows how an application (whose serviceability
component name is app) would set up an in-memory message table:

124 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_define_msg_table(3dce)

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>

#include "dceappmsg.h" /* defines app_msg_table =/

error_status_t status;

The following call adds the message table to the in-memory table. Note that you
must include <dce/dce_msg.h> . You also have to link in dce appmsg.o and dce
appsvc.o (object files produced by compiling sams -generated .c files), which
contain the code for the messages and the table, respectively.

dce_msg_define_msg_table(app_msg_table,
sizeof(app_msg_table) / sizeof(app_msg_table[0]),
&status);

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_get(3dce) , dce_msg_get_default_msg(3dce) ,
dce_msg_get_msg(3dce) .

Chapter 1. DCE Routines 125

dce_msg_get

Purpose

Synopsis

Parameters

Description

Errors

Retrieves text of specified DCE message

#include <dce/dce_msg.h>

unsigned char *
dce_msg_get(
unsigned32 message);

Input

message
ID of message to be retrieved.

The dce_msg_get() routine is a convenience form of the dce_msg_get_msg()
routine. Like dce_msg_get_msg() , dce_msg_get() retrieves the text for a specified
message (which is a 32-bit DCE message ID as described in

dce_msg_intro(3dce)). However, dce_msg_get() does not return a status code; it
either returns the specified message successfully or fails (aborts the program) with
an assertion error if the message could not be found or memory could not be
allocated.

The routine implicitly determines the correct message catalog in which to access
the specified message, and opens it; the caller only has to call this routine.

The routine first searches the appropriate message catalog for the message, and
then (if it cannot find the catalog) searches the in-memory message table, if it
exists.

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller using free().

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

msg_s_bad_id
A message ID with an invalid technology or component was specified.

msg_s_no_cat_open
Could not open the message catalog for the specified message ID.

msg_s_no_cat_perm
Local file permissions prevented the program from opening the message
catalog for the specified message ID.

126 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_get(3dce)

msg_s_no_catalog
The message catalog for the specified message ID does not exist.

msg_s_no_default
Could not find the default message for the specified status code in the
internal tables.

msg_S_no_memory
Could not allocate memory for message table, string copy, or other internal
requirement.

msg_s_not_found
Could not find the text for the specified status code in either the in-core
message tables or the message catalogs.

msg_s_ok_text
The operation was performed successfully.

Related Information

Functions: dce_msg_define_msg_table(3dce) |,
dce_msg_get_default_msg(3dce) , dce_msg_get _msg(3dce) .

Chapter 1. DCE Routines 127

dce_msg_get cat_msg

Purpose

Synopsis

Parameters

Description

Errors

Opens message catalog and retrieves message

#include <dce/dce_msg.h>

unsigned char *

dce_msg_get_cat_msg(
unsigned32 message
error_status_t *status);

Input

message
ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_get _cat msg() routine is a convenience form of the
dce_msg_cat_get msg() routine. The difference between it and the latter routine is
that dce_msg_get_cat_msg() does not require the message catalog to be explicitly
opened; it determines the correct catalog from the message parameter (which is a
32-bit DCE message ID as described in dce_error_inq_text(3dce)), opens it, and
returns a pointer to the message. If the message catalog is inaccessible, the routine
returns an error. (See the routine dce_msg_get() for a description of the return
value.) The space allocated for the message should not be freed. The output
pointer is useable until a call to another dce_msg... routine or a call to the
dce_error_ing_text() routine.

The routine will fail if the message catalog is not correctly installed.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_cat_close(3dce) ,
dce_msg_cat get msg(3dce),dce_msg_cat open(3dce) , dce_msg_get(3dce) ,
dce_msg_get _msg(3dce) .

128 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_get default_ msg

Purpose

Synopsis

Parameters

Description

Examples

Retrieves DCE message from in-memory tables

#include <dce/dce_msg.h>

unsigned char *

dce_msg_get_default_msg(
unsigned32 message
error_status_t *status);

Input

message
ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_get_default_msg() routine retrieves a message from the
application’s in-memory tables. It returns a pointer to static space that should not be
freed. If the specified message (which is a 32-bit DCE message ID as described in
dce_error_ing_text(3dce)) cannot be found in the in-memory tables, the routine
returns NULL and fills in status with the appropriate error code.

This routine should be used only for message strings that will never have to be
translated (see dce_msg_translate_table(3dce)).

All messages for a given component are stored in a single message catalog
generated by the sams utility when the component is built. Messages may also be
compiled directly into the component code, thus rendering the successful retrieval of
message text independent of whether or not the message catalogs were correctly
installed. Generation of in-memory message tables is specified by the incatalog

flag in the sams file in which the message text is defined. (See sams(1dce) for
more information on sams files.) If the messages have been generated at compile
time with this option specified, the dce_msg_define_msg_table() routine can be
called by the application to set up an in-memory table containing the messages.

The following code fragment shows how dce_msg_get default msg() might be
called to retrieve the in-memory copy of a message defined by a DCE application
(whose serviceability component name is app):

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>
#include "dceappmsg.h" /* test msg is defined in this file */

Chapter 1. DCE Routines 129

dce_msg_get_default_msg(3dce)

unsigned char *my_msg;
error_status_t status;

<. . .>

my msg = dce_msg_get default msg(test msg, &status);
printf("Message is: %s\n", my_msg);

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
See dce_msg_get(3dce) .

Related Information

Functions: dce_msg_define_msg_table(3dce) , dce_msg_get(3dce) ,
dce_msg_get_msg(3dce) .

130 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_get _msg

Purpose

Synopsis

Parameters

Description

Errors

Retrieves a DCE message from its ID

#include <dce/dce_msg.h>

unsigned char *
dce_msg_get_msg(
unsigned32 message
error_status_t *status);

Input

message
ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_get _msg() routine retrieves the text for a specified message (which
is a 32-bit DCE message ID as described in dce_error_ing_text(3dce)). The
routine implicitly determines the correct message catalog in which to access the
message, and opens it; the caller only has to call the routine.

The routine first searches the appropriate message catalog for the message, and
then (if it cannot find the catalog) searches the in-memory message table. If the
message cannot be found in either of these places, the routine returns a default
string and fills in status with an error code. This routine thus always returns a string,
even if there is an error (except for msg_sno_memory).

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller using free(). If memory
cannot be allocated, the routine returns NULL and fills in status with the
msg_S_no_memory error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_get_msg(3dce) .

Chapter 1. DCE Routines 131

dce_msg_get_msg(3dce)
Related Information

Functions: dce_msg_define_msg_table(3dce) , dce_msg_get(3dce) ,
dce_msg_get_default_msg(3dce)

132 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_msg_translate table

Purpose

Synopsis

Parameters

Description

Examples

Translates all in-memory messages in a table

#include <dce/dce_msg.h>

void dce_msg_translate_table(
dce_msg_table_t *table
unsigned32 count
error_status_t *status);

Input

table A message table structure (defined in a header file generated by sams
during compilation (see the EXAMPLES section), the contents of which are
to be translated.

count The number of elements contained in the table.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_msg_translate_table() routine overwrites the specified in-memory
message table (that is, updates the in-memory table with the contents of a message
table, which has changed for some reason; for example, because of a change in
locale).

If any in-memory message is not found in the message catalog, all in-memory
messages are left unchanged.

The following code fragment shows how dce_msg_translate_table() might be
called (in an application whose serviceability component name is app) to translate a
DCE application’s in-memory message table, set up by an earlier call to
dce_msg_define_msg_table()

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>
#include "dceappmsg.h"

char *Toc_return;
error_status_t status;

<. .2
dce_msg_translate_table(app_msg_table,

sizeof(app_msg_table) / sizeof(app_msg_table[0]),
&status);

Chapter 1. DCE Routines 133

dce_msg_translate table(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .
Related Information

Functions: dce_msg_define_msg_table(3dce)

134 1BM DCE for AIX, Version 2.2: Application Development Reference

dce _pgm_printf, dce_pgm_fprintf, dce_pgm_sprintf

Purpose

Synopsis

Parameters

Description

Errors

Formatted DCE message output routines

#include <dce/dce.h>

int dce_pgm _printf(
unsigned32 messageid

int dce_pgm_fprintf(
FILE *stream
unsigned32 messageid

unsigned char *dce_pgm_sprintf(
unsigned32 messageid

BN

Input

messageid
The message ID, defined in the message’s code field in the sams file.

Stream
An open file pointer.

Any format arguments for the message string.

The dce_pgm_printf() routine is equivalent to dce_printf() , except that it prefixes
the program name to the message (in the standard style of DCE error messages),
and appends a newline to the end of the message. The routine dce_printf() does
neither. This allows clients (which do not usually use the serviceability interface) to
produce error (or other) messages which automatically include the originating
application’s name. Note that the application should call dce_svc_set progname()
first to set the desired application name. Otherwise, the default program name will
be PID# nnnn, where nnnn is the process ID of the application making the call.

The dce_pgm_sprintf() routine is similarly equivalent to dce_sprintf() , and the
dce_pgm_fprintf() routine is similarly equivalent to dce_fprintf() .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

Chapter 1. DCE Routines 135

dce_pgm_printf(3dce)
Related Information

Functions: dce_fprintf(3dce) , dce_msg_get_msg(3dce) , dce_printf(3dce) ,
dce_sprintf(3dce) , dce_svc_set_progname(3dce)

136 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_printf, dce_fprintf, dce_sprintf

Purpose

Synopsis

Parameters

Description

Formatted DCE message output routines

#include <dce/dce.h>

int dce_printf(
unsigned32 messageid
int dce_fprintf(
FILE *stream
unsigned32 messageid

unsigned char *dce_sprintf(
unsigned32 messageid

BN

Input

messageid
The message ID, defined in the message’s code field in the sams file.

Stream
An open file pointer.

Any format arguments for the message string.

The dce_printf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments on the standard output. The
routine determines the correct message catalog and, if necessary, opens it. If the
message catalog is inaccessible, and the message exists in an in-memory table,
then this message is printed. If neither the catalog nor the default message is
available, a default message is printed.

The dce_fprintf() routine functions much like dce_printf() , except that it prints the
message and its arguments on the specified stream.

The dce_sprintf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments into an allocated string that
is returned. The routine determines the correct message catalog and, if necessary,
opens it. If the message catalog is inaccessible, and the message exists in an
in-memory table, then this message is printed. If neither the catalog nor the default
message is available, a default message is printed. The dce_pgm_printf() routine
is equivalent to dce_printf() , except that it prefixes the program name to the
message (in the standard style of DCE error messages), and appends a newline to
the end of the message. For more information, see the dce_pgm_printf(3dce)
reference page.

Chapter 1. DCE Routines 137

dce_printf(3dce)
Examples

Errors

Notes

Assume that the following message is defined in an application’s sams file:

start

code arg_msg

text "This message has exactly %d, not %d argument(s)"
action "None required"

explanation "Test message with format arguments"

end

The following code fragment shows how dce_sprintf() might be called to write the
message (with some argument values) into a string:

unsigned char *my_msg;

my _msg = dce_sprintf(arg_msg, 2, 8);

puts(my_msg);

free(my_msg);

Of course, dce_printf() could also be called to print the message and arguments:
dce printf(arg msg, 2, 8);

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_msg_get(3dce) .

The final formatted string generated by dce_sprintf() must not exceed 1024 bytes.

Related Information

Functions: dce_msg_get _msg(3dce) , dce_svc_set progname(3dce)

138 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_disable service

Purpose

Synopsis

Parameters

Description

Errors

Disables an individual service of a server

#include <dce/dced.h>

void dce_server_disable_service(
dce_server_handle_t server_handle
rpc_if_handle_t interface
error_status_t *status);

Input

server_handle
An opaque handle returned by dce_server_register() .

interface
Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok .

The dce_server_disable_service() routine disables an individual service that a
server provides by unregistering the service’s interface from the RPC runtime and
marking the server’'s endpoints as disabled in the local dced ’'s endpoint mapper
service.

For dced to recognize all of a server’s services, a server should register all its
application services using the dce_server_register() routine. If it later becomes
necessary for the server to disable an interface, it can use the
dce_server_disable_service() routine rather than unregistering the entire server.

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_enable_service(3dce) , dce_server_register(3dce)
rpc_intro(3rpc) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 139

dce_server_enable_service

Purpose

Synopsis

Parameters

Description

Errors

Enables an individual service for a server

#include <dce/dced.h>

void dce_server_enable_service(
dce_server_handle_t server_handle
rpc_if_handle_t interface
error_status_t *status);

Input

server_handle
An opaque handle returned by dce_server_register() .

interface
Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok .

The dce_server_enable_service() routine enables an individual service that a
server provides by registering the service’s interface with the RPC runtime, and
registering the endpoints in the endpoint map. If the dce_server_c_no_endpoints
flag was set with the dce_server_register() call prior to callibng this routine, the
endpoints are not registered in the endpoint map.

A server commonly registers all its services with DCE at once by using the
dce_server_register() routine. If necessary, a server can use the
dce_server_disable_service() routine to disable individual services and then
reenable them by using dce_server_enable_service() . However, suppose a server
needs its services registered in a certain order, or it require application-specific
activities between the registration of services. If a server requires this kind of control
as services are registered, you can set the server->services.list[i].flags field of the
server_t structure to service_c_disabled for individual services prior to calling
dce_server_register() . Then, the server can call dce_server_enable_service() for
each service when needed.

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

140 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_enable_service(3dce)

Related Information

Functions: dce_server_disable_service(3dce) , dce_server_register(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 141

dce_server_ing_attr

Purpose

Synopsis

Parameters

Description

Errors

Obtains from dced the value of an attribute known to the server

#include <dce/dced.h>

void dce_server_ing_attr(
uuid_t attribute_uuid
sec_attr_t *value
error_status_t *status);

Input

attribute_uuid
The UUID dced uses to identify an attribute.

Output

value Returns the attribute.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dce_server_ing_attr() routine obtains an attribute from the environment
created by dced when it started the server. Each server maintains among other
things, a list of attributes that are used to describe application-specific behavior.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s_server_attr_not_found

dced_s not_started_by dced

Related Information

Functions: dce_server_ing_server(3dce) , dce_server_ing_uuids(3dce)
dced_intro(3dce) , sec_intro(3sec) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

142 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_ing_server

Purpose

Synopsis

Parameters

Description

Errors

Obtains the server configuration data dced used to start the server

#include <dce/dced.h>
void dce_server_ing_server(

server_t *xserver
error_status_t *status);

Output

server Returns the structure that describes the server’s configuration.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dce_server_ing_server() routine obtains the server configuration data
(srvrconf) maintained by dced and used by dced to start the server. This routine is
commonly called prior to registering the server to obtain the server data used as

input to dce_server_register() .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete

descriptions of all error messages.
error_status_ok
dced_s not_started by dced

dced_s data_unavailable

Related Information

Functions: dce_server_register(3dce) , dced_intro(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines

143

dce_server_ing_uuids

Purpose

Synopsis

Parameters

Description

Errors

Obtains the UUIDs that dced associates with the server’s configuration and
execution data

#include <dce/dced.h>

void dce_server_ing_uuids(
uuid_t *conf_uuid
uuid_t *exec_uuid
error_status_t *status);

Output

conf_uuid
Returns the UUID that dced uses to identify the server’'s configuration data.
If a NULL value is input, no value is returned.

exec_uuid
Returns the UUID that dced uses to identify the executing server. If a NULL
value is input, no value is returned.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dce_server_ing_uuids() routine obtains the UUIDs that dced uses in its
srvrconf and srvrexec services to identify the server’s configuration and execution
data. The server can then use dced API routines to access the data and perform
other server management functions.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s not_started by dced

Related Information

Functions: dce_server_ing_server(3dce) , dced_intro(3dce) , dced_ *3dce).

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

144 1BM DCE for AlX, Version 2.2: Application Development Reference

dce_server_register

Purpose

Synopsis

Parameters

Registers a server with DCE

#include <dce/dced.h>

void dce_server_register(
unsigned32 flags
server_t *server
dce_server_register_data_t *data
dce_server_handle_t *server_handle
error_status_t *status);

Input
flags

server

data

Specifies options for server registration. Combinations of the following
values may be used:

dce_server_c_no_protseqs
dce_server_c_no_endpoints
dce_server_c_ns_export

Specifies the server data, commonly obtained from dced by calling
dce_server_ing_server() . The server_t structure is described in
sec_intro(3sec) .

Specifies the array of data structures that contain the additional information
required for the server to service requests for specific remote procedures.
Each structure of the array includes the following:

* An interface handle (ifhandle) of type rpc_if_handle_t

* An entry point vector (epv) of type rpc_mgr_epv_t

* A number (num_types) of type unsigned32 representing the number in
the following array

* An array of server types (types) of type dce_server_type_t

The dce_server_type_t structure contains a UUID (type) of type uuid_t
representing the object type, and a manager entry point vector (epv) of type
rpc_mgr_epv_t representing the set of procedures implemented for the
object type.

Output
server_handle

status

Returns a server handle, which is a pointer to an opaque data structure
containing information about the server.

Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Chapter 1. DCE Routines 145

dce_server_register(3dce)

Description

Errors

By default, the dce_server_register() routine registers a DCE server by
establishing a server’s binding information for all valid protocol sequences,
registering all the servers services with the RPC runtime, and entering the server's
endpoints in dced ’'s endpoint mapper service.

Prior to calling the dce_server_register() routine, the server obtains the server
configuration data from dced by calling dce_server_ing_server() . The server must
also set up an array of registration data, where the size of the array represents all
the server’s services that are currently registered in the server configuration data of
dced (server->services.count). If the memory for the array is dynamically
allocated, it must not be freed until after the corresponding

dce_server_unregister() routine is called.

You can modify the behavior of dce_server_register() Depending on the values of
the flags parameter. If the flag has the value dce_server_c_ns_export , the the
binding information is also exported to the namespace. The namespace entry is
determined for each service by the server->services.list[i].entryname parameter.
If this parameter has no value, the default value for the entire server is used
(server->entryname). If the flag has the value dce_server_c_no_endpoints , the
binding information is not registered with the endpoint map. Your application can
use rpc_ep_register() to register specific binding information. If the flag has the
value dce_server_c_no_protseqs , specific protocol sequences are used rather
than all valid protocol sequences. Use of this flag requires that the server first call
dce_server_use_protseq() at least once for a valid protocol sequence.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

rpc_s_no_memory

Related Information

Functions: dce_server_ing_server(3dce) , dce_server_sec_begin(3dce) ,
dce_server_unregister(3dce) , dced_intro(3dce) , rpc_server_listen(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

146 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_sec_begin

Purpose

Synopsis

Parameters

Description

Errors

Establishes a server to receive fully authenticated RPCs and to act as a client to do

authenticated RPCs

#include <dce/dced.h>
void dce_server_sec_begin(

unsigned32 flags
error_status_t *status);

Input

flags Flags are set to manage keys and setup a login context. Valid values

include the following:
dce_server_c_manage_key

dce_server_c_login

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dce_server_sec_begin() routine prepares a server to receive authenticated

RPCs. It also sets up all that is required for the application, when behaving as a

client to other servers, to do authenticated RPCs as a client. When authentication is
required, this call must precede all other RPC and DCE server initialization calls,

including dce_server_register() . When your application is finished listening for

RPCs, it should call the dce_server_sec_done() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete

descriptions of all error messages.
error_status_ok

dced_s need_one_server_prin
dced_s _not_started_by_dced
dced_s_no_server_keyfile

dced_s cannot_create_key mgmt_thr

dced_s_cannot_detach_key_mgmt_thr

Chapter 1. DCE Routines

147

dce_server_sec_begin(3dce)

Related Information

Functions: dce_server_register(3dce) , dce_server_sec_done(3dce) |,
rpc_server_listen(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

148 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_sec_done

Purpose

Synopsis

Parameters

Description

Errors

Releases resources established for a server to receive (and when acting as a client,
to send) fully authenticated RPCs

#include <dce/dced.h>

void dce_server_sec_done(
error_status_t *status);

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok .

The dce_server_sec_done() routine releases the resources previously set up by a
call to dce_server_sec_begin() . The dce_server_sec_begin() routine sets all that
is needed for a server to receive authenticated RPCs and it also sets up all that is
required for the application to do authenticated RPCs as a client. If this routine is
used, it must follow all other server DCE and RPC initialization and cleanup calls.

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_sec_begin(3dce) , rpc_server_listen(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 149

dce_server_unregister

Purpose

Synopsis

Parameters

Description

Errors

Unregisters a DCE server

#include <dce/dced.h>

void dce_server_unregister(
dce_server_handle_t *server_handle
error_status_t *status);

Input

server_handle
An opaque handle returned by dce_server_register() .

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok .

The dce_server_unregister() routine unregisters a DCE server by unregistering a
server’s services (interfaces) from the RPC runtime. When a server has stopped
listening for remote procedure calls, it should call this routine.

The flags set with the corresponding dce_server_register() routine are part of the
server handle’s information used to determine what action to take or not take.
These actions include removing the server’'s endpoints from the dced ’'s endpoint
mapper service and unexporting binding information from the namespace.

Use the dce_server_disable_service() routine to disable specific application
services rather than unregistering the whole server.

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_disable_service(3dce) , dce_server_register(3dce) |,
rpc_server_listen(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

150 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_server_use_protseq

Purpose

Synopsis

Parameters

Description

Errors

Tells DCE to use the specified protocol sequence for receiving RPCs

#include <dce/dced.h>

void dce_server_use_protseq(
dce_server_handle_t server_handle
unsigned char *protseq
error_status_t *status);

Input

server_handle
An opaque handle. Use the value of NULL.

protseq
Specifies a string identifier for the protocol sequence to register with the
RPC runtime. (For a list of string identifiers, see the table of valid protocol
sequences in the intro(3rpc) reference page.)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok .

The dce_server_use_protseq() routine registers an individual protocol sequence
with DCE. Typical servers use all valid protocol sequences, the default behavior for
the dce_server_register() call, and so most servers do not need to call this
dce_server_use_protseq() routine. However, this routine may be called prior to
dce_server_register() , to restrict the protocol sequences used. A server must
register at least one protocol sequence with the RPC runtime to receive remote
procedure call requests. A server can call this routine multiple times to register
additional protocol sequences.

A representative list of errors that might be returned is not shown here. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Related Information

Functions: dce_server_register(3dce) , rpc_intro(3rpc)
rpc_server_use_protseq(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 151

dce_svc_components

Purpose

Synopsis

Parameters

Description

Examples

Returns registered component names

#include <dce/dce.h>#include <dce/svcremote.h>

void dce_svc_components (
dce_svc_stringarray_t *table
error_status_t *status);

Output

table An array containing the names of all components that have been registered
with the dce_svc_register() routine.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_components routine returns an array containing the names of all
components in the program that have been registered with the dce_svc_register()
routine.

The following code fragment shows how the dce_svc_components() routine
should be used in a DCE application’s implementation of the serviceability remote
interface. The function defined below is the implementation of the
app_svc_ing_components operation defined in the application’s serviceability .epv
file. Clients call this function remotely, and the function, when called, first checks the
caller’'s authorization and then (if the client is authorized to perform the operation)
calls the dce_svc_components() routine to perform the actual operation.

JEXTTE

* gpp_svc_ing_components -- remote request for Tist of all

* components registered by dce_svc_register().

kkKkkx [

static void

app_svc_inq_components(

handle_t h,

dce_svc_stringarray_t xtable,

error_status_t =*st)

{

int ret;

/* Check the client's permissions here, if insufficient, =*/
/* deny the request. Otherwise, proceed with operation =/

dce_svc_components(table, st);

}

152 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_components(3dce)

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. See dce_svc_register(3dce) .

Files

dce/service.idl

Chapter 1. DCE Routines 153

dce_svc_debug_routing

Purpose

Synopsis

Parameters

Description

Errors

Specifies how debugging messages are routed

#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_debug_routing(
unsigned char *where
error_status_t *status);

Input

where A four-field routing string, the format of which is described in
svcroute(5dce) .

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_debug_routing() routine specifies both the level of an applications’s
serviceability debug messaging, and where the messages are routed. The where
parameter is a four-field routing string, as described in svcroute(5dce) . All four
fields are required.

The routine is used to specify the disposition of serviceability debug messages. If
called before the component is registered (with dce_svc_register()), the disposition
is stored until it is needed. In case of error, the status parameter is filled in with an
error code.

To set only the debugging level for a component, use the
dce_svc_debug_set_levels() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_debug_set_levels(3dce)

Files: svcroute(5dce) .

154 1BM DCE for AlX, Version 2.2: Application Development Reference

dce _svc_debug_set levels

Purpose

Synopsis

Parameters

Description

Files

Errors

Sets the debugging level for a component

#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_debug_set_levels(
unsigned char *where
error_status_t *status);

Input

where A multifield string consisting of the component name separated by a colon
from a comma-separated list of subcomponent/level pairs, as described in
svcroute(sdce) .

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_debug_set_levels() routine sets serviceability debugging message
levels for a component. The where parameter is a multifield string consisting of the
component name separated by a colon from a comma-separated list of
subcomponent/level pairs, as described in svcroute(5dce) . The subcomponents are
specified by codes defined in the component’s sams file; the levels are specified by
single digits (1 through 9).

If the routine is called before the component is registered (with
dce_svc_register()), the disposition is stored until it is needed. In case of error, the
status parameter is filled in with an error code.

To set both the debug level and routing for a component, use the
dce_svc_debug routing() routine.

See svcroute(5dce) .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Chapter 1. DCE Routines 155

dce_svc_debug_set_levels(3dce)

Related Information

Functions: dce_svc_debug_routing(3dce)

156 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_define filter

Purpose

Synopsis

Description

Examples

DCE serviceability filtering routines

#include <stdarg.h>
#include <dce/dce.h>
#include <pthread.h>
#include <dce/svcfilter.h>

void dce_svc_define_filter(
dce_svc_handle_t handle
dce_svc_filter_proc_t filter function
dce_svc_filterctl_proc_t filter_ctl_function
error_status_t *xstatus);

The serviceability interface provides a hook into the message-output mechanism
that allows applications to decide at the time of messaging whether the given
message should be output or not. The application defines its own routine to perform
whatever checking is desired, and installs the routine (the filter_function parameter)
with a call to dce_svc_define_filter() .

The filter routine to be installed must have the signature defined by the

dce_svc _filter_proc_t typedef. Once installed, the routine will be automatically
invoked every time a serviceability routine is called to output a message. The filter
receives a prolog argument which contains all the pertinent information about the
message. If the filter returns TRUE, the message is output per the original
serviceability call. If the filter returns FALSE, the message is not output. The
information in the prolog allows such decisions to be made on the basis of severity
level, subcomponent, message index, and so on. For details, see the header file
dce/svcfilter.h .

In addition, an application that installs a message-filtering routine must also define a
routine that can be called remotely to alter the operation of the filter routine. This
procedure must have the signature defined by the dce_svc _filterctl_proc_t

typedef. The routine will be invoked with an opaque byte array parameter (and its
length), which it is free to interpret in an appropriate manner. The remote-control
routine is installed by the same call to dce_svc_define_filter() (as the
filter_ctl_function parameter) in which the filter itself is installed. See
dce_svc_filter(3dce) .

The following code fragment consists of example versions of an application’s
routines to filter serviceability messages, alter the behavior of the filter routine, and
install the two routines.

JEXTE)

* Filter routine-- this is the routine that's hooked into

* the serviceability mechanism when you install

* it by calling dce_svc_define_filter().
*kkkk [

boolean app_filter(prolog, args)

Chapter 1. DCE Routines 157

dce_svc_define_filter(3dce)

Errors

dce_svc_prolog_t prolog;

va_list args;

{

if (filter_setting) {
printf("The value of filter_setting is TRUE\n");
printf("The progname is %s\n", prolog->progname);
if (prolog->attributes & svc_c_sev_notice)
printf("This is a Notice-type message\n");

switch (prolog->table_index) {
case app_s_server:
printf("Server subcomponent\n");
break;
case app_s_refmon:
printf("Refmon subcomponent\n");
break;
case app_s_manager:
printf("Manager subcomponent\n");
break;
1
}
return 1;

}

JEETE:

* Filter Control routine-- this is the entry point for
* the remote-control call to modify the filter

* routine's behavior.

*kkkk [

void app_filter_control(arg_size, arg, status)
id1_long_int arg_size;

id1_byte *arg;

error_status_t =*status;

{

if (strncmp(arg, "Toggle", arg_size) != 0)

return;

else {
filter_setting = (filter_setting == FALSE) ? TRUE : FALSE;
if (filter_setting)

printf(" FILTER IS TURNED ON\n");
else

printf(" FILTER IS TURNED OFF\n");

1

return;

}

[xkHxx

* install_filters-- calls dce_svc_define_filter()
* to install the above 2 routines.
*kkkk [

void install_filters()

{

unsigned32 status;

filter_setting = TRUE;
dce_svc_define_filter(app_svc_handle, app_filter,

dce_svc_filterctl_proc_t)app_filter_control, &status);
}

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

158 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_define_filter(3dce)

See dce_svc_register(3dce) .
Related Information

Functions: dce_svc_register(3dce) , DCE_SVC_DEFINE_HANDLE(3dce) .

Chapter 1. DCE Routines 159

dce_svc filter

Purpose

Synopsis

Parameters

Description

Controls behavior of serviceability filter

#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_filter(
dce_svc_string_t component
id1_long_int arg size
id1_byte *argument
error_status_t *status);

Input

component
The name of the serviceability-registered component, defined in the
component field of the sams file.

arg_size
The number of characters contained in argument.

argument
A string value to be interpreted by the target component’s filter control
routine.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc _filter() routine controls the behavior of the serviceability message
filtering routine, if one exists.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. The dce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

If an application has installed a serviceability filtering routine, and if filter remote
control is desired, the application’s filter routine (installed by the call to
dce_svc_define_filter()) should be coded so that its operation can be switched to
the various desired alternatives by the values of static variables to which it has
access. These variables should also be accessible to the filter control routine. The
filter control routine thus receives from dce_svc_filter() an argument string (which it
uses to set the variables), the meaning of whose contents are entirely
application-defined.

160 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_filter(3dce)

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
See dce_svc_register(3dce) .

Files

dce/service.idl

Chapter 1. DCE Routines 161

dce_svc_log_close

Purpose

Synopsis

Parameters

Description

Errors

Closes an open log file

#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_close(
dce_svc_log_handle_t handle
error_status_t *status);

Input
handle The handle (returned by dce_svc_log_open()) of the log file to be closed.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_log_close() routine closes an open binary format serviceability log
and releases all internal state associated with the handle.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_get(3dce) , dce_svc_log_open(3dce) ,
dce_svc_log_rewind(3dce)

162 1BM DCE for AIX, Version 2.2: Application Development Reference

dce _svc _log_get

Purpose

Synopsis

Parameters

Description

Errors

Reads the next record from a binary log file

#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_get(
dce_svc_log_handle_t handle
dce_svc_log_prolog_t *prolog
error_status_t *status);

Input
handle The handle (returned by dce_svc_log_open()) of the log file to be read.

Output
prolog A pointer to a structure containing information read from the log file record.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_log_get() routine reads the next entry from a binary format
serviceability log, and fills in prolog with a pointer to a private data area containing
the data read. The contents of the prolog structure are defined in dce/svclog.h .

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log_open(3dce) ,
dce_svc_log_rewind(3dce)

Chapter 1. DCE Routines 163

dce_svc_log_open

Purpose

Synopsis

Parameters

Description

Errors

Opens binary log file

#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_open(
const char *name
dce_svc_log_handle_t *handle
error_status_t *status);

Input

name The pathname of the log file to be opened.

Output
handle A filled-in handle to the opened log file specified by name.

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_log_open() routine opens the binary log file specified by name for
reading. If the call is successful, handle is filled in with a handle to be used with the
other dce_svc_log_ calls. On error, status will contain an error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log_get(3dce) |,
dce_svc_log_rewind(3dce)

164 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_log_rewind

Purpose

Synopsis

Parameters

Description

Errors

Rewinds binary log file to first record

#include <dce/dce.h>
#include <pthread.h>
#include <dce/svclog.h>

void dce_svc_log_rewind(
dce_svc_log_handle_t handle
error_status_t *status);

Input

handle The handle (returned by dce_svc_log_open()) of the log file to be
rewound.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_log_rewind() routine rewinds the current reading position of the
specified (by handle) binary log file to the first record.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_log_close(3dce) , dce_svc_log get(3dce) ,
dce_svc_log_open(3dce) .

Chapter 1. DCE Routines 165

dce_svc_printf

Purpose

Synopsis

Parameters

Description

Generates a serviceability message

#include <dce/dce.h>

void dce_svc_printf(
DCE_SVC(dce_svc_handle_t handle
char * argtypes)
const unsigned32 table_index
const unsigned32 attributes
const unsigned32 messagelD

BN

Input
handle The caller’'s serviceability handle.

argtypes
Format string for the message.

table_index
The message’s subcomponent name (defined in the sams file).

attributes
Any routing, severity, action, or debug attributes that are to associated with
the generated message, OR’d together.

messagelD
The message ID, defined in the message’s code field in the sams file.

Any format arguments for the message string.

The dce_svc_printf() routine is the normal call for writing or displaying
serviceability messages. It cannot be called with a literal text argument. Instead, the
message text is retrieved from a message catalog or an in-core message table.
These are generated by the sams utility, which in turn outputs sets of tables from
which the messages are extracted for output.

There are two main ways in which to call the routine. If a message has been
defined in the sams file with both sub-component and attributes specified, then
the sams output will include a convenience macro for the message that can be
passed as the single argument to dce_svc_printf() , for example:

dce_svc_printf(SIGN_ON_MSG);

The convenience macro’s name will be generated from the uppercase version of
the message’s code value (as specified in the sams file), with the string _MSG
appended.

166 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_printf(3dce)

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its long
form. An example of this form of the call looks as follows:

dce_svc_printf(DCE_SVC(app_svc_handle, ""), app_subcomponent,\
svc_c_sev_error | svc_c_route_stderr, messagelD);

DCE_SVC() is a macro that must be passed as the first argument to
dce_svc_printf() if a convenience macro is not being used. It takes two arguments:

* The caller’s serviceability handle
» A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. It is a character string consisting of the argument types as they would be
passed to a printf() call. If the message is to be routed to a binary file, the format is
extended to include a %b specifier; using %b in a different routing will give
unpredictable results. The %b specifier takes two arguments: an integer size, and a
buffer pointer.

The remaining arguments passed to dce_svc_printf() are as follows:
* Subcomponent table index

This symbol is declared in the sub-component list coded in Part Il of the sams
file; its value is used to index into the subtable of messages in which the desired
message is located.

* Message attributes

This argument consists of one or more attributes to be applied to the message
that is to be printed. Note that you must specify at least one severity here.
Multiple attributes are OR'd together, as shown in the following example.

There are four categories of message attributes:

Routing
The available routing attribute constants are as follows:
— svc_c_route_stderr
— svc_c_route_nolog

However, most routing is done either by passing specially-formatted
strings to dce_svc_routing() or by environment variable values. Note
that using svc_c_route_nolog without using svc_c_route_stderr will
result in no message being generated.

Severity
The available severity attribute constants are as follows:
— svc_c_sev_fatal
— svc_c_sev_error
— svc_c_sev_warning
— svC_c_sev_hotice
— svc_c_sev_notice_verbose
Action
The available message action attribute constants are as follows:
— svc_c_action_abort
— svc_c_action_exit_bad
— svc_c_action_exit_ok
— svc_c_action_brief

Chapter 1. DCE Routines 167

dce_svc_printf(3dce)

— svc_c_action_none

Note that svc_c_action_brief is used to suppress the standard prolog.

Debug Level
Nine different debug levels can be specified (svc_c_debugl
svc_c_debug9 or svc_c_debug_off).

* Message ID
This argument consists of the message’s code, as declared in the sams file.

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
This routine has no return value.

Related Information

Functions: dce_svc_register(3dce) , DCE_SVC_DEFINE_HANDLE(3dce) .

168 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_register

Purpose

Synopsis

Parameters

Description

Errors

Registers a serviceability message table

#include <dce/dce.h>

dce_svc_handle_t dce_svc_register(
dce_svc_subcomp_t *table
const id1_char *component_name
error_status_t *status);

Input

table A message table structure (defined in a header file generated by sams
during compilation).

component_name
The serviceability name of the component, defined in the component field
of the sams file.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_register() routine registers a serviceability message table. An
application must call either it (or the DCE_SVC_DEFINE_HANDLE() macro) in
order to set up its tables and obtain the serviceability handle it must have in order
to use the serviceability interface.

Two parameters are required for the call: table is a pointer to the application’s
serviceability table, defined in a file called dce appsvc.h generated by the sams
utility. component_name is a string whose value is app, which is defined in the
component field of the sams file in which the serviceability messages are defined.

On error, this routine returns NULL and fills in status with an error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

The following serviceability status codes are defined:

svc_s_assertion_failed
A programmer-developed compile-time assertion failed.

svc_s at _end
No more data is available.

Chapter 1. DCE Routines 169

dce_svc_register(3dce)

svc_s bad_routespec
See svcroute(5dce) for information on routing specification format.

svc_s_cantopen
Permission denied or file does not exist; consult errno .

svc_s_no_filter
Attempted to send data to the filter-control handle for a component that
does not have a filter registered.

SVC_S_Nno_memory
Could not allocate memory for message table, string copy or other internal
requirement.

SvC_S_no_stats
The definition of the return value has not been specified.

svc_s ok
Operation performed.

svc_s_unknown_component
Could not find the service handle for a component.

Related Information

Functions: dce_svc_debug_routing(3dce) , dce_svc_debug_set levels(3dce) ,
dce_svc_define_filter(3dce) , dce_svc_routing(3dce) ,
dce_svc_unregister(3dce)

170 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_routing

Purpose

Synopsis

Parameters

Description

Errors

Files

Specifies routing of serviceability messages

#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_routing(
unsigned char *where
error_status_t *status);

Input
where A three-field routing string, as described in svcroute(5) .

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_routing() routine specifies how normal (non-debug) serviceability
messages are routed. The where parameter is a three-field routing string, as
described in svcroute(5) . For convenience, the first field of the routing specifier
(which indicates the message severity type to which the routing is to be applied)
may be an * (asterisk) to indicate that all messages, whatever their severity, should
be routed as specified.

If the routine is called before the component is registered (with the

dce_svc_register() routine), the routing is stored until it is needed. In case of error,
the status parameter is filled in with an error code.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

dce/service.idl

Chapter 1. DCE Routines 171

dce_svc_set_progname

Purpose

Synopsis

Parameters

Description

Examples

Errors

Sets an application’s program name

#include <dce/dce.h>

void dce_svc_set_progname (
char *program_name
error_status_t *status);

Input

program_name
A string containing the name that is to be included in the text of all
serviceability messages that the application generates during the session.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

This function sets the application’s program name, which is included in serviceability
messages. This allows serviceability messages from more than one application to
be written to the same file and still be distinguishable as to their separate origins.

If dce_svc_set progname() is not called, the application’s generated serviceability
messages will be identified by its process ID.

Suppose an application sets its program name to be demo_program , as follows:
dce_svc_set_progname("demo_program", &status);

Serviceability messages generated by the program will as a result look like the
following:

1994-04-05-20:13:34.500+00:00I----- demo_program NOTICE app
main.c 123 0xa444e208 message text

If the application does not set its program name, its generated serviceability
messages will have the following form:

1994-04-05-20:13:34.500+00:00I----- PID#9467 NOTICE app
main.c 123 0xa444e208 message text

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages. See dce_svc_register(3dce) .

172 1BM DCE for AIX, Version 2.2: Application Development Reference

dce_svc_set_progname(3dce)

Related Information

Functions: dce_printf(3dce) , dce_svc_printf(3dce) , DCE_SVC_DEBUG(3dce).

Chapter 1. DCE Routines 173

dce_svc table

Purpose

Synopsis

Parameters

Description

Examples

Returns a registered component’s subcomponent table

#include <dce/dce.h>
#include <dce/svcremote.h>

void dce_svc_table(
dce_svc_string_t component
dce_svc_subcomparray_t *table
error_status_t *status);

Input

component
The name of the serviceability-registered component, defined in the
component field of the application’s sams file.

Output

table An array of elements, each of which describes one of the component’s
serviceability subcomponents (as defined in its sams file).

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_table routine returns the serviceability subcomponent table registered
with the specified component. The returned table consists of an array of elements,
each of which describes one subcomponent. Each element consists of four fields,
which contain the subcomponent name, its description, its message catalog ID, and
the current value of its debug message level.

The first three of these values are specified in the sams file which is processed
during the application’s compilation, and from which the application’s message
catalogs and other serviceability and message files are generated.

The following code fragment shows how the remote operation might be called from
an application’s client side, and how the results might be printed out:

#include <dce/rpc.h>
#include <dce/service.h>

handle_t svc_bind_handle;

dce_svc_string_t component;
dce_svc_subcomparray_t subcomponents table;
error_status_t remote_status;

int i;

dce_svc_inqg_table(svc_bind_handle, component, &subcomponents_table,
&remote_status);

174 1BM DCE for AlX, Version 2.2: Application Development Reference

dce_svc_table(3dce)

fprintf(stdout, "Subcomponent table size received is: %d...\n",
subcomponents_table.tab_size);
fprintf(stdout, "Subcomponent table contents are:\n");
for (i = 0; i < subcomponents_table.tab_size; i++)
{
fprintf(stdout, "Name: %s\n",
subcomponents_table.table[i].sc_name);
fprintf(stdout, "Desc: %s\n",
subcomponents_table.table[i].sc_descr);
fprintf(stdout, "Msg Cat ID: 0x%8.81x\n",
(Tong) subcomponents_table.table[i].sc_descr msgid);
fprintf(stdout, "Active debug Tevel: %d\n\n",
subcomponents_table.table[i].sc_level);

}

Errors
The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.
See dce_svc_register(3dce) .

Files

dce/service.idl

Chapter 1. DCE Routines 175

dce_svc_unregister

Purpose

Synopsis

Parameters

Description

Errors

Destroys a serviceability handle

#include <dce/dce.h>

void dce_svc_unregister(
dce_svc_handle_t handle
error_status_t *status);

Input

handle The application’s serviceability handle, originally returned by a call to
dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
macro.

Output

status Returns the status code from this operation. The status code is a value that
indicates whether the routine completed successfully and if not, why not.

The dce_svc_unregister() routine destroys a serviceability handle. Calling it closes
any open serviceability message routes and frees all allocated resources associated
with the handle.

The handle parameter is the serviceability handle that was originally returned by the
call to dce_svc_register() , or filled in by the DCE_SVC_DEFINE_HANDLE()
macro. On error, the routine fills in status with an error code.

Note that it is not usually necessary to call this routine, since the normal process
exit will perform the required cleanup.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

See dce_svc_register(3dce) .

Related Information

Functions: dce_svc_register(3dce) .

176 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_create

Purpose

Synopsis

Parameters

Establishes a dced binding to one of the host services of a remote (or the local)
dced

#include <dce/dced.h>

void dced binding_create(
dced_string_t service
unsigned32 binding_flags
dced_binding_handle_t *dced_bh
error_status_t *status);

Input

service
A character string that specifies a host daemon service name and an
optional remote host. A service name is specified with one of the following:
hostdata , srvrconf , srvrexec , secval, or keytab . The format of a complete
service and host specification is one of the following:

service_name
A service at the local host. Pre-existing defined values include

dced_c_service_hostdata
dced_c_service_srvrconf
dced_c_service_srvrexec
dced_c_service_secval
dced_c_service_keytab

service_name@hosts/ host name
A service at a host anywhere in the local namespace.

/.:Ihosts/ host_namel/config/ service_name
A complete specification for service_name@ host, where the host is
anywhere in the local namespace.

/...Icelllhosts/ host_namelconfig/ service_name
A service at a host anywhere in the global namespace.

binding_flags
The only valid flag value for this parameter is
dced_c_binding_syntax_default

Output

dced bh
Returns a dced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the host
service, and a local cache.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Chapter 1. DCE Routines 177

dced_binding_create(3dce)

Description

Examples

Errors

The dced on each DCE host maintains the host services and provides a remote
interface to them. The host services include the following:

» endpoint mapper
* host data management (hostdata)

* server management, including server configuration (srvrconf) and server
execution (srvrexec)

* security validation (secval)
* key table management (keytab)

The dced_binding_create() routine establishes a dced binding to a dced service
and it (or dced_binding_from_rpc_binding()) must be the first dced API routine
called before an application can access one of the host services with other dced
API routines. When an application is finished with the service, it should call the
dced_binding_free() routine to free resources. To establish a dced binding to your
local host’s dced, you can use the service name by itself, and do not need to
specify a host.

To access the endpoint map directly, use rpc_mgmt_ep_elt_ing_begin() and
associated routines.

The following example establishes a dced binding to the server configuration
service on the host patrick .

dced_binding_handle_t dced bh;
error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",
dced_c_binding_syntax_default,
&dced_bh,
&status);

. /* Other routines including dced API routines. */

dced_binding_free(dced_bh, &status);

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dce_cf e no_mem
dced_s_invalid_arg
dced_s no_memory
dced_s_unknown_service
rpc_s_entry_not_found
rpc_s_incomplete_name

rpc_s_invalid_object

178 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_create(3dce)
rpc_s_name_service_unavailable
rpc_s_no_memory
rpc_s_no_more_bindings

rpc_s_no_ns_permission
Related Information

Functions: dced_binding_free(3dce) , dced_binding_from_rpc_binding(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 179

dced_binding_free

Purpose

Synopsis

Parameters

Description

Errors

Releases the resources associated with a dced binding handle

#include <dce/dced.h>

void dced_binding_free(
dced_binding_handle_t dced bh
error_status_t *status);

Input

dced bh
Specifies a dced binding handle to free for a dced service on a specific
host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_binding_free() routine frees resources used by a dced binding handle
and referenced information. Use this routine when your application is finished with a
host service to break the communication between your application and the dced .
The dced binding handle and referenced information is created with the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

180 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_from_rpc_binding
Purpose

Establishes a dced binding to one of the host services on the host specified in an
existing RPC binding handle

Synopsis
#include <dce/dced.h>
void dced _binding_from rpc_binding(
dced_service_type_t service
handle_t rpc_bh

dced_binding_handle_t *dced_bh
error_status_t *status);

Parameters

Input

service
A variable that specifies one of the host services. A valid variable name
includes one of the following:

dced_e_service_type_hostdata
dced_e_service_type_srvrconf
dced_e_service_type_srvrexec
dced_e_service_type_secval
dced_e_service_type_keytab
rpc_bh
An RPC binding handle to some server.
Output

dced _bh
Returns a dced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the host
service, and a local cache.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced on each DCE host maintains the host services and provides a remote
interface to the services. The dced_binding_from_rpc_binding() routine
establishes a dced binding to a dced service, and it (or dced_binding_create())
must be the first dced API routine called before an application can access one of
the host services with other dced routines. When an application is finished with the
service, it should call the dced_binding_free() routine to free resources.

Prior to using the RPC binding in this routine, make a copy of the binding by using
the rpc_binding_copy() routine. This is necessary if the application needs to
continue using the RPC binding, because otherwise the dced binding takes over
the RPC binding.

Chapter 1. DCE Routines 181

dced_binding_from_rpc_binding(3dce)

Examples

Errors

The RPC binding may be obtained from a call to specific RPC runtime routines
such as the routines rpc_binding_from_string_binding(3rpc)
rpc_ns_binding_import_next(3rpc) , or rpc_ns_binding_lookup_next(3rpc)

This example obtains an RPC binding from a string binding, and it later makes a
copy of the RPC binding for use in the dced_binding_from_rpc_binding() call.

handle_t rpc_bh, binding _handle;
dced_binding_handle_t dced_bh;
dced_service_type_t service_type;
error_status_t status;

unsigned_char_t string_binding[STRINGLEN] ;

rpc_binding_from_string_binding(string_binding, &binding_handle,
&status);

rpc_binding_copy(binding_handle, &rpc_bh, &status);
dced_binding_from_rpc_binding(service type, rpc_bh, &dced bh,
&status);

. /% Other routines including dced API routines. */

dced_binding_free(dced bh, &status);

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s _no_memory
dced_s_unknown_service
ept_s_cant_perform_op
ept_s_database_invalid
ept_s_invalid_context
ept_s_invalid_entry
rpc_s_comm_failure
rpc_s_fault_context_mismatch
rpc_s_invalid_arg
rpc_s_invalid_binding
rpc_s_no_more_elements

rpc_s_wrong_kind_of_binding

182 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_binding_from_rpc_binding(3dce)

Related Information
Functions: dced_binding_create(3dce) , dced_binding_free(3dce) ,
rpc_binding_copy(3rpc) , rpc_binding_from_string_binding(3rpc)
rpc_ns_binding_import_next(3rpc) , rpc_ns_binding_lookup_next(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 183

dced_binding_set_auth_info

Purpose

Synopsis

Parameters

Description

Sets authentication and authorization information for a dced binding handle

#include <dce/dced.h>

void dced_binding_set_auth_info(
dced_binding_handle_t dced bh
unsigned32 protect_level
unsigned32 authn_service
rpc_auth_identity_handle_t authn_identity
unsigned32 authz_service
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for which to set the authentication and
authorization information.

protect_level
Specifies the protection level for dced API calls that will use the dced
binding handle dced_bh.

authn_service
Specifies the authentication service to use for dced API calls that will use
the dced binding handle dced bh.

authn_identity
Specifies a handle for the data structure that contains the calling
application’s authentication and authorization credentials appropriate for the
selected authn_service and authz_service services.

Specify NULL to use the default security login context for the current
address space.

authz_service
Specifies the authorization service to be implemented by dced for the host
service accessed.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_binding_set_auth_info() routine sets up the dced binding handle so it
can be used for authenticated calls that include authorization information. The
rpc_binding_set_auth_info() routine performs in the same way as this one. See it
for details of the parameters and values. Prior to calling this routine, the application
must have established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

184 1BM DCE for AIX, Version 2.2: Application Development Reference

Examples

Errors

dced_binding_set_auth_info(3dce)

This example establishes a dced binding to a host's key table service, and then it
calls dced_binding_set_auth_info() so that the application is authorized to access
remote key tables by using additional calls to the key table service.

dced_binding_handle_t dced_bh;
error_status_t status;

dced _binding _create((dced_string t)"keytab@hosts/patrick",
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_binding_set_auth_info(dced_bh,
rpc_c_protect_level default,
rpc_c_authn_pkt_privacy,
NULL,
rpc_c_authz_dce,
&status);

. /* Other routines including dced API routines. */

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s_bad_binding

dced_s no_support
ept_s_not_registered
rpc_s_authn_authz_mismatch
rpc_s_binding_incomplete
rpc_s_comm_failure
rpc_s_invalid_binding
rpc_s_mgmt_op_disallowed
rpc_s_rpcd_comm_failure
rpc_s_unknown_authn_service
rpc_s_unsupported_protect_level

rpc_s_wrong_kind_of_binding

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
rpc_binding_set_auth_info(3rpc)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 185

dced_entry _add

Purpose

Synopsis

Parameters

Description

Examples

Adds a keytab or hostdata entry to a host's dced for an existing file on that host

#include <dce/dced.h>

void dced_entry_add(
dced_binding_handle_t dced bh
dced_entry_t *entry
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for a dced service on a specific host.

Input/Output

entry Specifies the data entry to add to the service.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_entry _add() routine adds a data entry to a dced service. The data it
refers to must already exist in a file on the dced ’s host. You can only add
hostdata or keytab entries.

A service’s data entries do not contain the actual data. Instead, they contain a
UUID, a name for the entry, a brief description of the item, and a storage tag that
describes the location of the actual data. In the cases of the hostdata and keytab
services, the data for each entry is stored in a file. The dced uses this two-level
scheme so that it can manipulate different kinds of data in the same way and so
names are independent of local file system requirements.

The hostdata and keytab services each have their respective routines to create
new data and at the same time, add a new entry to the appropriate service. These
routines are dced_hostdata_create() and dced_keytab_create().

Prior to calling the dced_entry_add() routine, the application must have established
a valid dced binding handle for the hostdata or keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

The following example shows how to add a printer configuration file to the hostdata
service. The example creates a dced binding to the local hostdata service, an
entry data structure is filled in with the storage tag containing the full path of the
existing configuration file, and finally, the dced_entry_add() routine is called.

186 1BM DCE for AIX, Version 2.2: Application Development Reference

Errors

dced_entry_add(3dce)

dced_binding_handle_t dced_bh;
error_status_t status;
dced_entry t entry;

dced_binding create(dced c_service hostdata,
dced_c_binding_syntax_default,

&dced_bh,

&status);

uuid_create(&(entry.id), &status);

entry.name = (dced_string t) ("NEWERprinter");

entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced string t)("/etc/NEWprinter");

dced_entry add(dced_bh, &entry, &status);

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s readonly
db_s_store_failed
dced_s_already_exists
dced_s bad_binding

dced_s import_cant_access
dced_s no_support
rpc_s_binding_has_no_auth
sec_acl_invalid_permission

uuid_s_no_address

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_remove(3dce) , dced_hostdata_create(3dce) ,
dced_keytab_create(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 187

dced_entry get next

Purpose

Synopsis

Parameters

Description

Examples

Obtains one data entry from a list of entries of a dced service

#include <dce/dced.h>

void dced_entry get_next(
dced_cursor_t cursor
dced_entry_t **entry
error_status_t *status);

Input/Output

cursor Specifies the entry list’s cursor that points to an entry, and returns the
cursor advanced to the next entry in the list.

Output
entry Returns a pointer to an entry.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_entry_get next() routine obtains a pointer to a data entry, and advances
the cursor to the next entry in the list. This routine is commonly used in a loop to
traverse a host service’s entry list. The data is obtained in an undetermined order.
Prior to using this routine, the application must call dced_initialize_cursor() to
obtain a list of entries and to establish the beginning of the cursor. When the
application is finished traversing the entry list, it should call dced_release_cursor()
to release resources.

A data entry does not contain the actual data, but it contains the name, identity,
description, and storage location of the data. In the cases of hostdata and keytab
services, the data for each entry is stored in a file. In the cases of srvrconf and
srvrexec services, data is stored in memory. The dced uses this two-level scheme
so that it can manipulate different kinds of data in the same way.

Prior to using the dced_entry_get next() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

In the following example, a dced binding is obtained from a service type and an
existing rpc binding handle. After establishing an entry list cursor, the
dced_entry_get next() routine obtains an entry, one at a time, and the name and
description of each entry is displayed until the entry list is exausted.

188 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_entry_get_next(3dce)

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced bh, &status);
dced_initialize_cursor(dced_bh, &cursor, &status);
for(;3 3) { /* forever Toop */

dced_entry_get_next(cursor, &entry, &status);

if(status != error_status_ok) break;

display(entry->name, entry->description); /* application specific */
!
dced_release_cursor(&cursor, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s no_more_entries
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_initialize_cursor(3dce) , dced_release_cursor(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 189

dced_entry remove

Purpose

Synopsis

Parameters

Description

Removes a hostdata or keytab data entry from a dced service’s list of entries

#include <dce/dced.h>

void dced_entry_remove(
dced_binding_handle_t dced bh
uuid_t *entry_uuid
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for a dced service on a specific host.

entry_uuid
Specifies the UUID of the entry to be removed from the service.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_entry_remove() routine removes an entry from the hostdata or keytab
service entry list of dced. It does not remove the actual data stored in the file, but
makes it inaccessible from a remote host by way of the dced ’s user interfaces
which include the dced API and the DCE control program, dcecp . Each host
service that maintains data also maintains a list of data entries. A data entry
contains a name, a UUID, a brief description, and a storage tag indicating the
location of the actual data.

To delete both the data and entry for the hostdata , keytab, or srvrconf services,
use dced_hostdata_delete() , dced_keytab_delete() , or dced_server_delete() ,
respectively. (The srvrexec service is maintained only by dced and the secval
service does not maintain data, so you cannot remove data for these services.)

Applications commonly obtain an entry by traversing the entry list using the
dced_entry_get _next() routine with its associated cursor routines.

Prior to calling the dced_entry_remove() routine, the application must have
established a valid dced binding handle to the hostdata or keytab service by
calling either the dced_binding_create() or dced_binding_from_rpc_binding()
routine.

190 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_entry_remove(3dce)
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
db_s del failed
db_s key not_found
db_s _readonly
dced_s_bad_binding
dced_s no_support
dced_s _not_found

sec_acl_invalid_permission
Related Information
Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,

dced_hostdata_delete(3dce) , dced_initialize_cursor(3dce)
dced_keytab_delete(3dce) , dced_server_delete(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 191

dced_hostdata_create

Purpose

Synopsis

Parameters

Description

Creates a hostdata item and the associated entry in dced on a specific host

#include <dce/dced.h>

void dced_hostdata_create(
dced_binding_handle_t dced bh
dced_entry_t *entry
dced_attr_list_t *data
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the host data service on a specific
host.

Input/Output

entry Specifies the hostdata entry to create. You supply a name (entry->name),
description (entry->description), and file name (entry->storage_tag), in
the form of dced strings. You can supply a UUID (entry->id) for dced to
use or you can use a NULL value and dced will generate a new UUID for
the entry.

Input

data Specifies the data created and written to a file on the host. The
dced_attr_list_t consists of a count of the number of attributes, and an
array of attributes of type sec_attr_t . The reference OSF implementation
has one attribute for a hostdata item (file contents). However some
vendors may provide multiple attributes.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_hostdata_create() routine creates a new host data item in a file on the
host to which the dced binding handle refers, and it generates the associated
hostdata entry in the host’'s dced.

If data that you want to add to the host data service already exists on the host (in a
file), you can add it to the service by calling dced_entry_add() , which only creates
the new data entry for dced .

Prior to calling the dced_hostdata_create() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

192 1BM DCE for AIX, Version 2.2: Application Development Reference

Examples

Errors

dced_hostdata_create(3dce)

The following example creates a binding to the host data service on the local host,

creates the entry data, and fills in the data structure for one attribute to a

hypothetical printer configuration. The attribute represents a plain-text file containing

one string of data.
dced_binding_handle_t dced_bh;

error_status_t status;
dced_entry t entry;
dced_attr_Tist_t data;

int num_strings, str_size;

sec_attr_enc_str_array_t xattr_array;

dced_binding_create(dced c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);

/*Create an Entry. */

uuid_create(&entry.id, &status);

entry.name = (dced_string_t) ("NEWERprinter");

entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t) ("/etc/NEWprinter");

/* create the attributes */
data.count = 1;
num_strings = 1;
data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr_t));
data.Tist->attr_id = dced_g_uuid_fileattr;
data.list->attr_value.attr_encoding = sec_attr_enc_printstring_array;
str_size = sizeof(sec_attr_enc_str_array t) +

num_strings * sizeof(sec_attr_enc_printstring_p_t);
attr_array = (sec_attr_enc_str_array t *)malloc(str_size);
data.list->attr_value.tagged_union.string_array = attr_array;
attr_array->num_strings = num_strings;

attr_array->strings[0] = (dced_string_t) ("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding_free(dced_bh, &status);

The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete

descriptions of all error messages.
error_status_ok

db_s_key not_found

db_s readonly

db_s store_failed
dced_s_already_exists
dced_s_bad_binding

dced_s _cant_open_storage_file
dced_s_import_already_exists
dced_s_unknown_attr_type

sec_acl_invalid_permission

Chapter 1. DCE Routines

193

dced_hostdata_create(3dce)

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_add(3dce) , dced_hostdata read(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

194 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_delete

Purpose

Synopsis

Parameters

Description

Warnings

Errors

Deletes a hostdata item from a specific host and removes the associated entry from
dced

#include <dce/dced.h>

void dced_hostdata_delete(
dced_binding_handle_t dced bh
uuid_t *entry uuid
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for the hostdata service on a specific
host.

entry_uuid
Specifies the UUID of the hostdata entry (and associated data) to delete.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_hostdata_delete() routine deletes a hostdata item (a file) from a
specific host, and removes the associated entry from the host data service of that
host's dced.

If you want to only make the data inaccessible remotely but not delete it, use the
dced_entry_remove() routine which only removes the data’s hostdata entry.

Prior to calling the dced_hostdata_delete() routine, the application must have
established a valid dced binding handle for the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Do not delete the standard hostdata items such as cell_name, cell_aliases ,
host_name, post_processors , or dce_cf.db . This will cause operational problems
for the host.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 195

dced_hostdata_delete(3dce)
error_status_ok
db_s bad_index_type
db_s_del failed
db_s_iter_not_allowed
db_s_key not_found
dced_s bad_binding
dced_s cant_remove_storage _file
dced_s _not_found

sec_acl_invalid_permission
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_entry_remove(3dce) , dced_hostdata read(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

196 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_read

Purpose

Synopsis

Parameters

Description

Reads a hostdata item maintained by dced on a specific host

#include <dce/dced.h>

void dced_hostdata_read(
dced_binding_handle_t dced bh
uuid_t *entry_uuid
uuid_t *attr_uuid
sec_attr_t **data
error_status_t *status);

Input
dced _bh
Specifies the dced binding handle for the hostdata service on a specific
host.
entry_uuid
Specifies the hostdata entry UUID associated with the data to read.
attr_uuid
Specifies the UUID associated with an attribute of the data. The attribute is
either plain text (dced_g_uuid_fileattr) or binary
(dced_g_uuid_binfileattr). Some vendors may allow other attributes.
Output

data Returns the data for the item. See the sec_intro(3sec) reference page for
details on the sec_attr_t data type.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_hostdata_read() routine returns a hostdata item maintained by dced on
a specific host. The standard data items include the cell name, a list of cell aliases,
the host name, a list of UUID-program pairs (post_processors), and the DCE
configuration database, among other items.

For programming convenience, the following global variables are defined for the
entry _uuid of some standard data items:

dced_g_uuid_cell_name

dced_g_uuid_cell_aliases

dced_g_uuid_host_name

dced_g uuid_hostdata_post_proc

dced_g_uuid_dce cf db

dced_g_uuid_pe_site

Chapter 1. DCE Routines 197

dced_hostdata_read(3dce)

Errors

dced_g_uuid_svc_routing

Other host-specific data items may also be maintained by the hostdata service.
The UUIDs for these are established when the data item is created (see
dced_hostdata_create()). After the application reads host data and when it is done
with the data, it should call the dced_objects_release() routine to release the
resources allocated.

Each hostdata item for a specific host is stored in a local file. The name of an
item’s storage file is indicated in the storage tag field of each dced hostdata entry.

You can also use the dced_object _read() routine to read the text of a hostdata
item. You might use this routine if your application needs to read data for other host
services (srvrconf , srvrexec , or keytab) in addition to data for the hostdata
service.

Prior to calling the dced_hostdata_read() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type

db_s key not_found
dce_cf e _file_open
dce_cf_e no_match

dce _cf e no_mem
dced_s_bad_binding
dced_s_cant_open_storage_file
dced_s_invalid_attr_type
dced_s_no_memory
sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_object _read(3dce) , dced_objects_release(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

198 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_hostdata_write

Purpose

Replaces an existing hostdata item maintained by dced on a specific host

Synopsis
#include <dce/dced.h>
void dced_hostdata_write(
dced_binding_handle_t dced bh
uuid_t *entry_uuid

dced_attr_list_t *data
error_status_t *status);

Parameters

Input

dced bh
Specifies the dced binding handle for the host data service on a specific
host.

entry_uuid
Specifies the hostdata entry UUID to associate with the data to be written.

data Specifies the data to write. The dced_attr_list t consists of a count of the
number of attributes, and an array of attributes of type sec_attr _t. The
reference OSF implementation has one attribute for a hostdata item (file
contents). However some vendors may require multiple attributes.
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_write() routine replaces existing data for a hostdata item
maintained by dced on a specific host. If the entry _uuid is not one maintained by
dced, an error is returned and a new entry is not created. Use
dced_hostdata_create() to create a new entry.

Prior to calling the dced_hostdata_write() routine, the application must have
established a valid dced binding handle to the hostdata service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
db_s bad_index_type
db_s key not found

Chapter 1. DCE Routines 199

dced_hostdata_write(3dce)
dced_s_bad_binding
dced_s cant_open_storage file
dced_s _no_postprocessors
dced_s_postprocessor_file_fail
dced_s_postprocessor_spawn_fail
dced_s_unknown_attr_type
sec_acl_invalid_permission

uuid_s_bad_version
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_hostdata_create(3dce) , dced_hostdata_read(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

200 IBM DCE for AIX, Version 2.2: Application Development Reference

dced _initialize_cursor

Purpose

Synopsis

Parameters

Description

Sets a cursor to the start of a cached list of data entries for a dced service

#include <dce/dced.h>

void dced_initialize_cursor(
dced_binding_handle_t dced bh
dced_cursor_t =*cursor
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for a dced service on a specific host.

Output

cursor Returns the cursor used to traverse the list of data entries, one at a time.
The cursor is an opaque data structure that is used to keep track of the
entries between invocations of the dced_entry_get_next() routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_initialize_cursor() routine sets a cursor at the start of a DCE host
service’s list of data entries. The cursor is then used in subsequent calls to
dced_entry_get next() to obtain individual data entries. When the application is
finished traversing the entry list, it should call dced_release_cursor() to free the
resources allocated for the cursor.

The valid services for this routine that have entry lists include hostdata , srvrconf ,
srvrexec , and keytab .

If a service’s entry list is small, it may be more efficient to obtain the entire list using
the dced_list_get() routine, rather than using cursor routines. This is because
dced_list_get() guarantees that the list is obtained with one remote procedure call.
However, your application is scalable if you use the cursor routines. This is because
when an entry list is very large, it may be more efficient (or even necessary) to
obtain the list in chunks with more than one remote procedure call.

Prior to calling the dced_initialize_cursor() routine, the application must have

established a valid dced binding handle by calling either the
dced_hinding_create() or dced_binding_from_rpc_binding() routine.

Chapter 1. DCE Routines 201

dced_initialize_cursor(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type
db_s_iter_not_allowed
db_s key not_found
dced_s_bad_binding
dced_s no_memory
dced_s no_support

sec_acl_invalid_permission
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_get next(3dce) , dced_list_get(3dce) , dced_release_cursor(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

202 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_inq_id
Purpose

Obtains the entry UUID that dced associates with a name

Synopsis
#include <dce/dced.h>
void dced_inqg_id(
dced_binding_handle_t dced bh
dced_string_t name

uuid_t *uuid
error_status_t *status);

Parameters

Input
dced bh
Specifies the dced binding handle for a dced service on a specific host.

name Specifies the name for which to obtain the uuid.

Output
uuid returns the UUID associated with the name input.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_ing_id() routine obtains the UUID associated with a name in a service of
a specific host's dced . Applications and administrators use strings maintained by
dced to identify data, but dced and its APl must associate each data entry with a
UUID. This routine is valid for the hostdata , srvrconf , srvrexec , and keytab
services.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example establishes a dced binding to a host's server configuration
service. The example then obtains the UUID of some known server in order to read
the server’s configuration data.

dced binding handle_t dced bh;

server_t conf;
dced_string_t server_name;
uuid_t srvrconf_id;

error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",
dced c_binding_syntax_default,
&dced_bh,
&status);

Chapter 1. DCE Routines 203

dced_ing_id(3dce)

dced_ing_id(dced_bh, server_name, &srvrconf_id, &status);
dced_object_read(dced_bh, &srvrconf_id, (void**)&(conf), &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type
db_s_iter_not_allowed
db_s key not_found
dced_s not_found

sec_acl_invalid_permission
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_ing_name(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

204 1BM DCE for AIX, Version 2.2: Application Development Reference

dced_inq_name

Purpose

Synopsis

Parameters

Description

Examples

Obtains the entry name that dced associates with a UUID

#include <dce/dced.h>

void dced_inqg_name (
dced_binding_handle_t dced bh
uuid_t *uuid
dced_string_t *name
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for a dced service on a specific host.

uuid Specifies the UUID for which to obtain the name.

Output
name Returns the name associated with the uuid input.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_ing_name() routine obtains the name associated with a UUID in a
service of a specific host’s dced.

A name is a label for each data entry to help applications and administrators identify
all data maintained by dced. The dced requires UUIDs to keep track of the data it
maintains. But it also maintains a mapping of UUIDs to names so that other
applications and administrators can more easily access the data by using a
recognizable name rather than a cumbersome UUID. A name is a label for

hostdata items, srvrconf and srvrexec servers, and keytab tables.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

The following example establishes a dced binding handle to the local host data
service, reads an entry, and uses dced_ing_name() to get the name associated
with the attribute ID.

dced_binding_handle_t dced_bh;

uuid_t entry_uuid;

sec_attr_t xdata_ptr;

error_status_t status;

Chapter 1. DCE Routines 205

dced_ing_name(3dce)

dced_binding_create(dced c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_hostdata_read(dced_bh,
&entry_uuid,
&dced_g_uuid_fileattr,
&data_ptr,
&status);
dced_ing_name(dced_bh, data_ptr->sec_attr.attr_id, &name, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type

db_s iter_not_allowed
db_s key not_found
dced_s_not_found
sec_acl_invalid_permission

uuid_s_bad_version
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_ing_id(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

206 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab _add key

Purpose

Synopsis

Parameters

Description

Adds a key (server password) to a specified key table on a specific host

#include <dce/dced.h>

void dced_keytab_add_key (
dced_binding_handle_t dced bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID that dced uses to identify the key table to which the key
is to be added.

Input/Output

key Specifies the key to be added. Some fields are completed by dced. See
dced_intro(3dce) .

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_add_key() routine adds a key to a server’s key table (file) on a
specific host, without changing the key in the security registry. (Servers use
sec_key _mgmt_set_key(3sec) to do this for their own local key table.)

Most management applications use the dced_keytab_change_key() routine to
remotely change a key because it also changes the key in the security registry.

Managing the same key in multiple key tables is a more complex process. The
security registry needs a copy of a server's key, so that during the authentication
process, it can encrypt tickets that only a server with that key can later decrypt. Part
of updating a key in the security registry also includes automatic version humber
updating. When servers share the same principle identity they use the same key. If
these servers are on different hosts, then the key must be in more than one key
table. (Even if the servers are on the same host, it is possible for their keys to be in
different key tables, although this is not a recommended key management practice.)
When the same keys in different tables need changing, one (perhaps the master
server or busiest one) is changed using dced_keytab _change key() which also
causes an automatic version update. However, all other copies of the key must be
changed using the dced_keytab_add_key() routine so that the version number
does not change again.

Chapter 1. DCE Routines 207

dced_keytab_add_key(3dce)

Prior to calling dced_keytab_add key() the application must have established a
valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type

db_s key not found

dced_s bad_binding
dced_s key v0 _not_allowe

dced_s key version_mismatch
dced_s_need_privacy

dced_s random_key not_allowed
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of_binding
sec_acl_invalid_permission
sec_key _mgmt_e authn_invalid
sec_key _mgmt_e key unavailable
sec_key mgmt_e key unsupported
sec_key _mgmt_e key version_exists

sec_key mgmt_e_ unauthorized
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_change key(3dce) , sec_key mgmt set key(3sec) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

208 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab _change_ key

Purpose

Synopsis

Parameters

Description

Changes a key (server password) in both a key table and in the security registry

#include <dce/dced.h>

void dced_keytab_change_key (
dced_binding_handle_t dced bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID dced uses to identify the key table in which the key is
to be changed.

Input/Output
key Specifies the new key. Some fields are modified by dced.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_change key() routine updates a key in both the key table on a
specific host and in the security registry. Management applications change keys
remotely with this routine. (Servers can change their own keys locally with the
sec_key _mgmt_change key() routine.)

The security registry needs a copy of a server’s current key, so that during the
authentication process, it can encrypt tickets that only a server with that key can
later decrypt. When a management application calls dced_keytab change_key() ,
dced first tries to make the modification in the security registry, and, if successful, it
then modifies the key in the key table. The old key is not really replaced, but a new
version and key is established for all new authenticated communication. The old
version is maintained in the key table (and registry too) for a time, so that existing
clients with valid tickets can still communicate with the server. The old key is
removed depending on the local cell's change policy and whether the server calls
sec_key _mgmt_garbage collect() to purge its old keys explicitly, or calls

sec_key _mgmt_manage_key() to purge them implicitly.

When more than one server shares the same principal identity, the servers use the
same key. If you need to change the same key in more than one key table, use
decd_keytab_change _key() for one change and then use the
dced_keytab_add_key() routine for all others.

Chapter 1. DCE Routines 209

dced_keytab_change_key(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete

descriptions of all error messages.
error_status_ok

db_s bad_index_type

db_s key not_found
dced_s_bad_binding

dced_s_key version_mismatch
dced_s need_privacy
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of binding
sec_acl_invalid_permission

sec_key _mgmt_e_authn_invalid
sec_key _mgmt_e_authn_unavailable
sec_key _mgmt_e key unavailable
sec_key mgmt_e key unsupported
sec_key _mgmt_e key version_exists
sec_key _mgmt_e_not_implemented
sec_key _mgmt_e_unauthorized
sec_rgy_object_not_found

sec_rgy_server_unavailable

Related Information

Functions: dced_binding_create(3dce)

, dced_binding_from_rpc_binding(3dce)

dced_keytab_add_key(3dce) , sec_key _mgmt _change_key(3sec)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

210 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab create

Purpose

Synopsis

Parameters

Description

Creates a key table with a list of keys (server passwords) in a new file on a specific
host

#include <dce/dced.h>

void dced_keytab create(
dced_binding_handle_t dced bh
dced_entry_t *keytab_entry
dced_key list_t *keys
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the keytab service on a specific host.

Input/Output

keytab_entry
Specifies the keytab entry to create for dced.

keys Specifies the list of keys to be written to the key table file.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_create() routine creates a new key table file on a specific host,
and it generates the associated keytab service entry in dced. This routine is used
by management applications to remotely create a key table. Servers typically create
their own key table locally using the sec_key mgmt_set key() routine. However, if
several servers on different hosts share the same principal, each host requires a
local copy of the key table.

If a key table that you want to add to the keytab service already exists on the host,
you can add it to the service by calling dced_entry_add() . This routine creates a
new keytab service entry by associating the existing key table file with a new UUID
in dced.

Prior to calling the dced_keytab_create() routine, the application must have

established a valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Chapter 1. DCE Routines 211

dced_keytab_create(3dce)
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_header_type

db_s bad_index_type

db_s bad_index_type
db_s_iter_not_allowed

db_s key not found

db_s readonly

db_s store_failed
dced_s_already_exists
dced_s_bad_binding
dced_s_import_already_exists
dced_s need_privacy
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of binding
sec_acl_invalid_permission
sec_key _mgmt_e_authn_invalid
sec_key mgmt_e key unavailable
sec_key _mgmt_e key unsupported
sec_key mgmt_e key version_exists
sec_key mgmt_e_ unauthorized

uuid_s_bad_version
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_add(3dce) , sec_key mgmt_set_key(3sec) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

212 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab delete

Purpose

Synopsis

Parameters

Description

Errors

Deletes a key table file from a specific host

#include <dce/dced.h>

void dced_keytab_delete(
dced_binding_handle_t dced bh
uuid_t *keytab_uuid
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID of the keytab entry and associated key table to be
deleted.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_delete() routine deletes a key table (file) from a specific host
and removes the associated entry from the keytab service of that host's dced. A
key table is a file containing a list of server keys (passwords). This routine is used
by management applications to remotely delete a key table.

To remove individual keys from a remote key table, use the
dced_keytab_remove_key() routine. If you only want to make the key table
inaccessible remotely (via dced), but not to delete it, use the dced_entry_remove()
routine. This routine only removes the key table’s keytab entry from dced.

Prior to calling the dced_keytab_delete() routine, the application must have
established a valid dced binding handle to the keytab service by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
db_s bad_index_type
db_s_del_failed

Chapter 1. DCE Routines 213

dced_keytab_delete(3dce)
db_s iter_not_allowed
db_s key not found
dced_s bad_binding
dced_s cant_remove_storage_file
dced_s_need_privacy
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_entry_remove(3dce) , dced_keytab_remove_key(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

214 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab get next key

Purpose

Synopsis

Parameters

Description

Errors

Returns a key from a cached list and advances the cursor in the list

#include <dce/dced.h>

void dced_keytab_get_next_key(
dced_keytab_cursor_t cursor
dced_key_t *xkey
error_status_t *status);

Input/Output

cursor Specifies the cursor that points to a key, and returns the cursor advanced to
the next key in the list.

Output
key Returns the current key to which the cursor points.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_get next key() routine obtains the current key to which the
key-list cursor points. This routine is commonly used in a loop to traverse a key
table’s keys. The keys are returned in an undetermined order. Prior to using this
routine in the loop, the application must call dced_keytab_initialize_cursor() to
obtain the key list and establish the beginning of the cursor. When the application is
finished traversing the key list, it should call dced_keytab release_cursor() to
release the resources allocated.

Management applications use dced_keytab_get next key() to remotely access a
server's individual keys. Servers use sec_key_mgmt_get_next_key() to access
their own local keys individually.

You can also use the dced_object read() routine to read an entire key table. You
might use dced_object_read() if your application needs to bind to and read data
for other host services (srvrconf , srvrexec , or hostdata) in addition to data for the
keytab service.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s _no_more_entries

Chapter 1. DCE Routines 215

dced_keytab_get next key(3dce)

Related Information
Functions: dced_keytab _initialize_cursor(3dce) ,
dced_keytab_release_cursor(3dce) , dced_object _read(3dce) ,
sec_key _mgmt_get next key(3sec)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

216 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab initialize cursor

Purpose

Synopsis

Parameters

Description

Errors

Obtains a list of keys from a key table and sets a cursor at the beginning of the list

#include <dce/dced.h>

void dced_keytab_initialize_cursor(
dced_binding_handle_t dced bh
uuid_t *keytab_uuid
dced_keytab_cursor_t *cursor
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the keytab entry dced associates with a key table.

Output
cursor Returns the cursor that is used to traverse the list of keys.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_initialize_cursor() routine obtains the complete list of keys from
a remote key table and sets a cursor at the beginning of the cached list keys. In
order to minimize the security risks of keys exposed to the network, the entire set of
keys are encrypted and transferred in one remote procedure call rather than
individually or in chunks. The cursor is then used in subsequent calls to
dced_keytab_get next key() to obtain individual keys. When the application is
finished traversing the key list, it should call dced_keytab release_cursor() to
release the resources previously allocated.

Management applications use dced_keytab_initialize_cursor() and its associated
routines to remotely access server keys. Servers use

sec_key mgmt_initialize_cursor() and its associated routines to manage their
own keys locally.

Prior to calling the dced_keytab _initialize_cursor() routine, the application must
have established a valid dced binding handle to the keytab service by calling either
the dced_binding_create() or dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

Chapter 1. DCE Routines 217

dced_keytab_initialize_cursor(3dce)
error_status_ok
dced_s_bad_binding
dced_s_need_privacy
dced_s _no_memory
dced_s_no_support
sec_acl_invalid_permission
sec_key mgmt_e authn_invalid
sec_key mgmt_e_unauthorized
Related Information
Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_keytab_get next key(3dce) , dced keytab release cursor(3dce) ,

sec_key _mgmt_initialize_cursor(3sec)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

218 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab release cursor

Purpose

Synopsis

Parameters

Description

Errors

Releases the resources of a cursor that traverses a key table’s list of keys (server
passwords)

#include <dce/dced.h>

void dced _keytab_release_cursor(
dced_keytab_cursor_t *cursor
error_status_t *status);

Input/Output
cursor Specifies the cursor for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_release_cursor() routine releases the cursor and resources
initially set by the dced_keytab _initialize_cursor() routine and used by the
dced_keytab_get next _key() routine.

Prior to calling this routine, the application must have first established a valid dced
binding handle by calling either dced_binding_create() or
dced_binding_from_rpc_binding() , and then the application must have called the
dced_keytab_initialize_cursor() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s_bad_binding

dced_s no_support

Related Information

Functions: dced_keytab_get next_key(3dce) ,
dced_keytab_initialize _cursor(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 219

dced_ keytab _remove_ key

Purpose

Synopsis

Parameters

Description

Errors

Removes a key (server password) from a specified key table on a specific host

#include <dce/dced.h>

void dced_keytab_remove_key(
dced_binding_handle_t dced bh
uuid_t *keytab_uuid
dced_key_t *key
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the keytab service on a specific host.

keytab_uuid
Specifies the UUID dced maintains to identify the key table from which the
key is to be removed.

key Specifies the key to be removed from the key table.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_keytab_remove_key() routine removes a key from a key table (file) on a
specific host. The key table is specified with a keytab entry UUID from the host’s
dced. Management applications use dced_keytab_remove_key() to remotely
remove server keys from key tables. Typically, servers delete their own keys from
their local key tables implicitly by calling sec_key _mgmt_manage_key() , or
explicitly by calling sec_key mgmt_delete_key() . Applications can delete an entire
key table file using the dced_keytab delete() routine.

Prior to calling this routine, the application must have established a valid dced
binding handle to the keytab service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
db_s bad_index_type
db_s key not found

220 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_keytab_remove_key(3dce)
dced_s_bad_binding
dced_s need_privacy
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of binding
sec_acl_invalid_permission
sec_key mgmt_e_ authn_invalid
sec_key mgmt_e key unavailable

sec_key mgmt_e_ unauthorized

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_keytab_delete(3dce) , sec_key mgmt_delete key(3sec)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 221

dced_list_get

Purpose

Synopsis

Parameters

Description

Examples

Returns the list of data entries maintained by a dced service on a specific host

#include <dce/dced.h>

void dced_list_get(
dced_binding_handle_t dced bh
dced_entry_list_t *list
error_status_t *status);

Input
dced_bh
Specifies the dced binding handle for a dced service on a specific host.
Output
list Returns a list of data entries for the service.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_list_get() routine obtains all the data entries for a dced service on a
specific host. The list of data entries obtained is not the actual data. Each entry
contains a UUID, name, description, and storage tag that describes where the data
is located (for example, a filename or memory location). Call the
dced_list_release() routine when your application is finished with the entry list to
release resources allocated with dced_list_get() routine.

If a service’s entry list is small, it may be efficient to obtain the entire list using the
dced_list_get() routine, because this guarantees that the list is obtained with one
remote procedure call. However, to make your application scalable, use the
dced_initialize_cursor() , dced_entry_get_next() , and dced_release_cursor()
routines, because if an entry list is very large, it may be more efficient (or even
necessary) to obtain the list in chunks with more than one remote procedure call.

Prior to calling this routine, the application must have established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

In the following example, a dced binding is obtained from a service type and an
existing RPC binding handle. The list of entries for the service is obtained with the
dced_list_get() routine and each entry’s name and description are displayed.
dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);
dced 1ist_get(dced bh, &entries, &status);

222 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_list_get(3dce)
for(i=0; i<entries.count; i++)
display(&entries); /* application specific */
dced list_release(dced _bh, &entries, &status);
dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s bad_binding
dced_s no_memory
dced_s no_support

sec_acl_invalid_permission
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_initialize_cursor(3dce) , dced_list_release(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 223

dced_list_release

Purpose

Synopsis

Parameters

Description

Errors

Releases the resources for a list of entries of a dced service

#include <dce/dced.h>

void dced_list_release(
dced_binding_handle_t dced bh
dced_entry_list_t *list
error_status_t *status);

Input
dced_bh
Specifies the dced binding handle for a dced service on a specific host.
InputOutput
list Specifies a list of data entries for the service.
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_list_release() routine releases the resources allocated for a list of data
entries previously retrieved by the dced_list_get() routine.

Prior to calling this routine, the application must have first established a valid dced
binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called the dced_list_get() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_list_get(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

224 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_object _read

Purpose

Synopsis

Parameters

Description

Reads a data item of a dced service on a specific host

#include <dce/dced.h>

void dced_object_read(
dced_binding_handle_t dced bh
uuid_t *entry_uuid
void **data
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for a dced service on a specific host.

entry_uuid
Specifies the UUID of the dced service’s data entry associated with the
data item.

Output

data Returns the data read. The data returned is one of the following structures,
depending on the service:

Service Data Type Returned
hostdata sec_attr_t
srvrconf server_t
srvrexec server_t
keytab dced_key _list_t

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_object _read() routine reads the data for a specified entry of a dced
service. When the application is done with the data, it should call the
dced_objects_release() routine with a value of 1 for the count parameter.

The valid services for which you can read data include hostdata , srvrconf ,
srvrexec , and keytab . These host services each have a list of data entries
maintained by dced. The entries do not contain the actual data, but contain the
data’s identity and an indicator of the location of the data item. The hostdata
service also has the dced_hostdata_read() routine to read data, and the keytab
service has a series of routines that traverse over the keys in a key table. (See the
dced_keytab_initialize_cursor() routine.) The secval and endpoint services do
not have data items to read with this routine.

Applications can also read the data for all entries of a service using one call to
dced_objects_read_all() .

Chapter 1. DCE Routines 225

dced_object_read(3dce)

Prior to reading the actual data, an application commonly obtains the entries to read
using the series of cursor routines that begin with dced_entry_initialize_cursor()

Prior to calling the dced_object_read() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

Examples
The following example creates a dced binding to a dced service based on a
service type and host in an RPC binding handle. The example then obtains the
service’s entry list and reads the data associated with each entry.
dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,
&status);
dced_Tlist_get(dced_bh, &entries, &status);
for(i=0; i<entries.count; i++) {
dced_object_read(dced_bh, &entries.list[i].id, &data, &status);
dced_objects_release(dced_bh, 1, data, &status);
}
Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type

db_s key not found
dce_cf_e file_open
dce_cf e no_match
dce_cf e no_mem
dced_s_bad_binding

dced_s need_privacy
dced_s_no_memory

dced_s no_support

dced_s not_found
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of binding
sec_acl_invalid_permission
sec_key mgmt_e_ authn_invalid

sec_key mgmt_e key unavailable

226 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_object_read(3dce)
sec_key mgmt_e_ unauthorized
uuid_s_bad_version
Related Information
Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_read(3dce) , dced_initialize_cursor(3dce)

dced_keytab_initialize_cursor(3dce) , dced_objects_read_all(3dce) |,
dced_objects_release(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 227

dced_object_read_all

Purpose

Synopsis

Parameters

Description

Reads all the data for a service of dced on specific host

#include <dce/dced.h>

void dced_object_read_all(
dced_binding_handle_t dced bh
unsigned32 *count
void **data_list
error_status_t *status);

Input
dced bh
Specifies the dced binding handle for a dced service on a specific host.
Output
count Returns the count of the number of data items read.
data_list
Returns the list of data items read. The data returned is an array of one of
the following types, depending on the service:
Service Data Type of Array Returned
hostdata sec_attr_t
srvrconf server_t
srvrexec server_t
keytab dced_key _list_t

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_object_read_all() routine reads all the data for a specified host service
on a specific host. When the application is done with the data, it should call the
dced_objects_release() routine. Applications can also read individual data objects
for a service using the dced_object_read() routine.

Note: This call may fail if calling the hostdata service and the hostdata object
called, points to storage file that do not exist. These hostdata objects are the
OSF default hostdata objects.

The valid services for which you can read data include hostdata , srvrconf ,
srvrexec , and keytab .

Prior to calling the dced_object_read_all() routine, the application must have
established a valid dced binding handle by calling either the
dced_binding_create() or dced_binding_from_rpc_binding() routine.

228 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_object_read_all(3dce)
Examples

The following example reads and displays all the data for a particular dced service.

dced_binding_handle_t dced_bh;
dced_string_t host_service;
void +data_Tlist;
unsigned32 count;
error_status_t status;

dced_binding create(host_service, dced c_binding_syntax_default,
&dced_bh, &status);

dced_object_read_all(dced_bh, &count, &data_list, &status);

display(host_service, count, &data_list); /* application specific */

dced_objects_release(dced_bh, count, data_list, &status);

dced_binding_free(dced bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

db_s bad_index_type
db_s_key not_found
dce_cf e file_open

dce_cf_e no_match

dce _cf e no_mem

dced_s bad_binding
dced_s_need_privacy
dced_s_no_memory

dced_s no_support

dced_s _not_found
rpc_s_binding_has_no_auth
rpc_s_invalid_binding
rpc_s_wrong_kind_of binding
sec_acl_invalid_permission
sec_key _mgmt_e_authn_invalid
sec_key _mgmt_e key unavailable
sec_key mgmt_e_ unauthorized
sec_s_no_memory

uuid_s_bad_version
Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_object_read(3dce) , dced_objects_release(3dce) .

Chapter 1. DCE Routines 229

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

230 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_objects_release

Purpose

Synopsis

Parameters

Description

Examples

Releases the resources allocated for data read from a dced service

#include <dce/dced.h>

void dced_objects_release(
dced_binding_handle_t dced bh
unsigned32 count
void *data
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for a dced service on a specific host.

count Specifies the number of data items previously read and now to be released.

Input/Output
data Specifies the data for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_objects_release() routine releases the resources allocated when data
for dced is read. Applications should call dced_objects_release() when finished
with data allocated by the following dced API routines:

» dced_object_read_all()
» dced_object_read()
* dced_hostdata_read()

If the data being released was read by using dced_object_read_all() , the count
returned from this routine is used as input to the dced_objects_release() routine. If
the data being released was read by using dced_object_read() or
dced_hostdata_read() , the count value required as input for the
dced_objects_release() routine is 1.

In the following example, a binding is created to a dced service on some host for a
service that stores data, and the service’s entry list is obtained. For each entry, the
data is read, displayed, and released.

dced_binding_handle_t dced_bh;

dced_entry list t entries;

unsigned32 i;
void *data;

Chapter 1. DCE Routines 231

dced_objects_release(3dce)

error_status_t status;

dced_binding create(host_service, dced c_binding_syntax_default,
&dced_bh, &status);
dced 1ist _get(dced bh, &entries, &status);
for(i=0; i<entries.count; i++) {
dced_object_read(dced_bh, &(entries.l1ist[i].id), &data, &status);
display(host_service, 1, &data); /* application specific */
dced_objects_release(dced bh, 1, data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s_bad_binding
dced_s no_support

Related Information
Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_hostdata_read(3dce) , dced_object_read(3dce) ,
dced_object_read_all(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

232 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_release cursor

Purpose

Synopsis

Parameters

Description

Errors

Releases the resources of a cursor which traverses a dced service’s list of entries

#include <dce/dced.h>

void dced_release_cursor(
dced_cursor_t *cursor
error_status_t *status);

Input/Output
cursor Specifies the cursor for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_release_cursor() routine releases the resources of a cursor initially s
by the dced_initilalize_cursor() routine and used by the dced_entry _get next()
routine.

et

Prior to calling this routine, the application must have first established a valid dced

binding handle by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called the dced_initialize_cursor() routine.

The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

Related Information

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_entry _get next(3dce) , dced_initialize_cursor(3dce)

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines

233

dced_secval_start

Purpose

Synopsis

Parameters

Description

Errors

Starts the security validation service of a specific host’s dced

#include <dce/dced.h>

void dced_secval_start(
dced_binding_handle_t dced bh
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the secval service on a specific host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_secval_start() routine starts the security validation service of a specific
host’s dced. This routine is typically used by management applications.

The security validation service (secval) has two major functions:
* Maintains a login context for the host’'s self identity.

» Validates and certifies to applications (usually login programs) that the DCE
security daemon (secd) is legitimate.

The secval program is commonly started by default when dced starts. See the
dced_secval_stop() routine for a discussion of when to use the combination of
dced_secval_stop() and dced_secval_start() .

Prior to calling this routine, the application must have established a valid dced
binding handle to the secval service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s bad_binding
dced_s sv_already_enabled

sec_acl_invalid_permission

234 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_secval_start(3dce)
Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_secval_stop(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 235

dced_secval_status

Purpose

Synopsis

Parameters

Description

Errors

Indicates whether or not a specific host's security validation service of dced is
running

#include <dce/dced.h>

void dced_secval_status(
dced_binding_handle_t dced bh
boolean32 *secval_active
error_status_t *status);

Input
dced_bh

Specifies the dced binding handle for the secval service on a specific host.
Output

secval_active
Returns a value of TRUE if the security validation service is running and
FALSE if it is not running.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_secval_status() routine sets a parameter to TRUE or FALSE depending
on whether the security validation service has been activated or deactivated.

Prior to calling this routine, the application must have established a valid dced
binding handle to the secval service by calling either the dced_binding_create() or
dced_binding_from_rpc_binding() routine.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s bad_binding

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce) ,
dced_secval_start(3dce) , dced_secval_stop(3dce) .

236 IBM DCE for AIX, Version 2.2: Application Development Reference

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 237

dced_secval_stop

Purpose

Synopsis

Parameters

Description

Errors

Stops the security validation service of a specific host's dced

#include <dce/dced.h>

void dced_secval_stop(
dced_binding_handle_t dced bh
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the secval service on a specific host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_secval_stop() routine stops the security validation service (secval) of a
specific host’'s dced. This routine is typically used by management applications.

The secval service is commonly started by default when dced starts. The main use
of dced_secval_stop() and dced_secval_start() is to force a refresh of the host
principal credentials. This is the only way to force certain registry changes made by
the host principal (such as groupset membership) to be seen by processes running
on the host.

You can easily stop and then start the secval service with the following operations:

dcecp -c secval deactivate
dcecp -c secval activate

It is not a good idea to remove the machine principal self credentials for an
extended period of time because processes running as self will fail in their attempts
to perform authenticated operations.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok
dced_s_bad_binding
dced_s_sv_not_enabled

sec_acl_invalid_permission

238 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_secval_stop(3dce)
Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_secval_start(3dce) .

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 239

dced_secval validate

Purpose

Synopsis

Parameters

Description

Errors

Validates that the secd used by a specific host is legitimate

#include <dce/dced.h>

void dced_secval_validate(
dced_binding_handle_t dced bh
error_status_t *status);

Input

dced bh
Specifies the dced binding handle for the secval service on a specific host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_secval_validate() routine validates and certifies for a specific host that
the DCE security daemon (secd) is legitimate. Typically, a login program uses the
security validation service when it uses the security service’s login API (routines that
begin with sec_login). However, if a management application trusts some remote
host, it can use dced_secval_validate() to validate secd, without logging in to the
host.

The following describes a partial list of errors that might be returned. Refer to the
IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete
descriptions of all error messages.

error_status_ok

dced_s bad_binding
ept_s_not_registered
rpc_s_comm_failure
rpc_s_invalid_binding
rpc_s_rpcd_comm_failure
rpc_s_wrong_kind_of binding

sec_login_s no_current_context

Related Information

Commands: dced(8dce) , the secval(8dce) object of dcecp .

240 IBM DCE for AIX, Version 2.2: Application Development Reference

dced_secval_validate(3dce)

Functions: dced_binding_create(3dce) , dced_binding_from_rpc_binding(3dce)
dced_secval_start(3dce) , sec_login_ *3sec) API.

Books: IBM DCE for AlX, Version 2.2: Application Development Guide.

Chapter 1. DCE Routines 241

dced_server_create

Purpose

Synopsis

Parameters

Description

Examples

Creates a DCE server’s configuration data for the host’s dced

#include <dce/dced.h>

void dced_server_create(
dced_binding_handle_t dced bh
server_t *conf data
error_status_t *status);

Input

dced_bh
Specifies the dced binding handle for the srvrconf service on a specific
host.

Input/Output

conf_data
Specifies the configuration data for the server. The dced_intro(3dce)
reference page describes the server_t structure.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The dced_server_create() routine creates a server’'s configuration data. This
routine is used by management installation applications to remotely (or locally)
establish the data used to control how a DCE server starts. However, this routine
does not create the program or start it. Since this activity is typically part of a
server's installation, you can also use dcecp ’s server create operation.

Management applications use the dced_object_read() routine to read the
configuration data.

Prior to calling dced_server_create() , the application must have established a valid
dced binding handle to the srvrconf service by calling either
dced_hinding_create() or dced_binding_from_rpc_binding()

The following example shows how to fill in some of the fields of a server_t structure
and then create the configuration in dced.

dced_binding_handle_t dced_bh;
server_t conf;
error_status_t status;

dced_binding_create("srvrconf@hosts/katharine",

242 I1BM DCE for AIX, Version 2.2: Application Development Reference

Errors

dced_server_create(3dce)

dced_c_binding_syntax_default,

&dced_bh,

&status);
/* setup a server_t structure x/
uuid_create(&conf.id, &status);
conf.name = (dced_string_t)"application";
conf.entryname = (dced_string_t)"/.:/development/new_app";
conf.services.count = 1;

/* service t structure(s) */

conf.services.list = malloc(conf.services.count * sizeof(service_t));

rpc_if_inq_id(application_vl 0 c_ifspec,
&(conf.services.list[0].ifspec), &status);

conf.services.list[0].ifname = (dced_string_t)"application";

conf.services.1ist[0] .annotation = (dced_string_t)"A new application”;

conf.services.list[0].flags = 0;

/* server_fixedattr_t structure */
conf.fixed.startupflags = server c_startup explicit |
server_c_startup_on_failure;
conf.fixed.flags =
conf.fixed.program

N ol

>

(dced_string_t)"/usr/users/bin/new_app";

dced_server create(dced_bh, &conf, &status);

The following describes a partial list of errors that might be returned. Refer to the

IBM DCE for AlX, Version 2.2: Problem Determination Guide for complete

descriptions of all error messages.
error_status_ok

db_s bad_header_type
db_s bad_index_type
db_s iter_not_allowed
db_s key not found
db_s readonly
db_s_store_failed
dced_s_already_exists
dced_s bad_binding
dced_s _name_missing

s